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Summary 

With advances in genotyping and cost-effective sequencing technologies, 

Genome-wide association studies (GWAS) have emerged as approaches to 

study the genetics of natural variation. GWAS are particularly useful when 

inbred lines are available (as once they are genotyped, these lines can be 

phenotyped multiple times) and also with the availability of automated image 

acquisition and analysis systems for rapid phenotyping. The objective of this 

thesis is to identify a variety of phenotypic traits from the inbred lines of the 

teleost fish Medaka (Oryzias latipes) which will then assist in the investigation 

of the genetic basis for such a variety. Medaka is chosen as the model organism 

because of the presence of still free living wild populations in Japan and East 

Asia and for the ability to generate new inbred strains from these wild fish. 

Moreover, Quantitative Trait Loci (QTL) analysis done so far on craniofacial 

traits in adult Medaka shows that a substantial genetic component underlies 

the variance seen between two inbred strains. In this study different southern 

and northern Japanese Medaka hatchlings at 10 days post fertilization (dpf) and 

20 dpf were characterized.  The focus is on the two elements that essentially 

define an organism: morphology and behavior. Gross morphological features 

were extracted and quantified using custom developed algorithms.  In addition, 

behavioral patterns of the different inbred lines are studied since behavior 

provides a link and a perspective of how an organism relates to its 

environment. Specifically, locomotion, feeding, and prey capture behavior were 

analyzed and quantified. To our knowledge, this is the first characterization of 

prey capture behavior in Medaka. This behavior reveals interesting prey 

capture strategies and a comparison with a related teleost fish, the zebrafish, 

suggests that prey capture is not necessarily conserved. This combination of 

morphometric and behavioral features provides a large phenotype parameter 
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set that will be used as a basis for genotyping to study the degree of 

polymorphism and to eventually establish a phenotype-genotype map for the 

inbred lines. 
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Zusammenfassung 

Genom – weite Assoziationsstudien (GWAS) werden dazu eingesetzt, um 

natürliche Genotyp- Variationen zu untersuchen. Die Vorteile dabei liegen beim 

Genotypisieren und kostengünstigen Technologien für die Sequenzierung. 

GWAS sind besonders nützlich, wenn Inzucht-Linien vorliegen (sobald diese 

genotypisiert sind, können diese Linien vielfach phänotypisiert werden). Diese 

GWAS können mit automatisierten Bildgebungsverfahren und Analysesystemen 

zur Phänotypisierung kombiniert werden. Ziel dieser Arbeit ist es eine große 

Vielfalt an phänotypischen Merkmalen von Inzuchtlinien des Knochenfisches: 

Medaka (Oryzias latipes)  zu identifizieren. Diese sollen dabei helfen, die  

genetischen Grundlagen, die diese Vielfalt begründen, zu bestimmen. Medaka 

wird als Modelorganismus gewählt, da es immer noch Wildtyp -Linien in Japan 

und Ost-Asien gibt, aus denen neue Inzucht-Linien gewonnen werden können. 

Zusätzlich zeigen quantitative Merkmals- Analysen (Quantitative Trait Loci 

(QTL)) der Gesichtsknochen des adulten Medaka, dass die Variabilität zwischen 

zwei Inzucht Fischlinien von bedeutenden genetischen Komponenten abhängt. 

In dieser Arbeit werden verschiedene Süd- und Nord-japanische Linien 10 und 

20 Tage nach Befruchtung charakterisiert. Der Fokus liegt dabei auf der 

Morphologie und dem Verhalten. Dies sind zwei Elemente, die einen 

Organismus definieren. Morphologische Merkmale werden durch selbst 

entwickelte Algorithmen extrahiert und quantifiziert. Zusätzlich werden 

Verhaltensmerkmale der verschiedenen Inzuchtlinien beobachtet, da Verhalten 

zeigt, in wie fern ein Organismus mit seiner Umwelt verbunden ist. Besonders 

Fortbewegung, Fressverhalten und Beuteverhalten werden analysiert und 

quantifiziert. Das ist das erste Mal, dass in Medaka das Beuteverhalten 

charakterisiert wird. Es wird demonstriert, dass es interessante Beutestrategien 

gibt. Ein Vergleich mit verwandten Knochenfischen zeigt, dass Beuteverhalten 
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nicht zwingend in der Evolution konserviert ist. Die Kombination von 

morphometrischen Untersuchungen und Verhaltensstudien erlaubt es, viele 

phänotypische Parameter  zu untersuchen, um damit eine Grundlage für 

weitere Genotypisierungen zu schaffen. Damit soll der Grad von 

Polymorphismus bestimmt werden und eine Phänotyp-Genotyp-Karte für die 

Inzucht-Linien aufgebaut werden. 
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Introduction 

 

Two elements that define and describe an organism are its morphology and 

behavior. Every population displays a variety in morphological and behavioral 

phenotypes. This polymorphism could be the result of genetic diversity, 

environmental cues or a combination of both. It is of fundamental biological 

interest to understand this phenotypic variation, to characterize this variation 

and be able to establish a relationship between the observed phenotypes and 

the underlying genotype. This genotype-phenotype (G-P) map has the potential 

to address individual risk factors and in establishing a new paradigm directed 

towards personalized medicine.  

Phenomics 

Since the realization of the Human Genome Project, there has been an 

increased interest in large-scale phenotyping as a natural complement to 

genome sequencing. This phenomic data is of vital importance in 

understanding the effects of genetic variation, pleiotropy and will contribute to 

deciphering the complex phenomena of health, disease and evolutionary 

viability. The acquisition of high-dimensional phenotypic data at the whole-

organism level is currently defined as “phenomics” (Houle, Govindaraju, & 

Omholt, 2010; Soule, 1967). The importance of phenomics lies in its ability to 

allow for the identification of causal links between genotypes, environmental 

factors and phenotypes and thereby in establishing the genotype-environment-

phenotype (G-E-P) map. The concept of the G-E-P map is described in Figure 1 

and is adapted from (Houle et al., 2010). Any individual of a population 

occupies a single point in the G-space. The interaction between this position, 

other members of the population and the environment gives rise to the 

internal phenotypic state. Internal phenotypes are typically cellular, tissue level 
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and physiological properties. The internal phenotypes influence the external 

phenotypes (morphology and behavior) which in turn shapes the environment 

that the individual inhabits. This creates a complex relationship between the 

genetics of the individual, the environment and the phenotypes providing the 

G-E-P map (Houle, 2010; Houle et al., 2010). 

 

 

Table 1 shows some recent efforts in understanding this map in different 

species with emphasis on identifying phenotypes based on existing genetic 

variation (Bilder et al., 2009; Houle et al., 2010).  

 

 

 

Genotype 
Space 

 

Internal 
Phenotypes 

 

External 
Environment 
 

External 
Phenotypes 

 

Figure 1 The Genotype-Environment-Phenotype (G-E-P) map describes the 
interaction between individual genotypes, the environment and the internal 
and external phenotypes  
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Species Description Phenotypes Genotyping Links 

Plants International  
Plant 
Phenotyping 
Network (IPPN) 

Quantitative, high-
throughput, non-
invasive imaging of 
small model and crop 
plants; metabolomes 

 http://www.plantphe

nomics.com 

 

Arabidopsis Phenotyping 
and GWA 
studies on 191 
inbred lines 

107 quantitative 
phenotypes like 
flowering traits, life 
history, etc. 

250,000 SNPs http://walnut.usc.ed

u/2010/GWA 

 

Drosophila Drosophila 
Genome 
Reference Panel 

Physiology, disease 
resistance, gene 
expression, behavior 
and morphology. 

About 200 lines 
sequenced 

http://flybase.org/sta
tic_pages/news/whit
epapers/Drosophila_
Genetic_Reference_P
anel_Whitepaper.pdf 
 

Mouse The Mouse 
Phenome 
Database (MPD) 
phenotype 
information for 
common inbred 
lines 

Wide variety of 
phenotypes including 
morphology, 
behavior, physiology, 
etc. 

SNP typing of 
inbred lines 

http://www.jax.org/p
henome 
 
http://www.europhe
nome.org 
 

Rat National 
BioResource 
Project 

109 qualitative and 
quantitative 
phenotypes 

357 simple 
sequence 
length 
polymorphisms 
cover genomes 

http://www.anim.me
d.kyoto-u.ac.jp/nbr 
 

Dog Canine 
Phenome 
Project 

Heritable diseases, 
behavior 

SNP typing of 
different 
breeds 

http://www.caninep
henome.org 
 

Human Consortium of 
Neuropsychiatri
c Phenomics; 
UK Biobank; 
Personal 
Genome Project 

Brain imaging, 
behavior, physical 
measurements, cell 
lines, medical history 

Birth-cohorts, 
case-control 
genotyping, 
genome 
sequencing 

http://www.phenomi
cs.ucla.edu 
 
http://www.ukbioba
nk.ac.uk 
 
http://www.personal
genomes.org 
 

Table 1 Phenome projects focusing on characterization of phenotypes of existing genetic 
variation 

http://www.plantphenomics.com/
http://www.plantphenomics.com/
http://walnut.usc.edu/2010/GWA
http://walnut.usc.edu/2010/GWA
http://flybase.org/static_pages/news/whitepapers/Drosophila_Genetic_Reference_Panel_Whitepaper.pdf
http://flybase.org/static_pages/news/whitepapers/Drosophila_Genetic_Reference_Panel_Whitepaper.pdf
http://flybase.org/static_pages/news/whitepapers/Drosophila_Genetic_Reference_Panel_Whitepaper.pdf
http://flybase.org/static_pages/news/whitepapers/Drosophila_Genetic_Reference_Panel_Whitepaper.pdf
http://flybase.org/static_pages/news/whitepapers/Drosophila_Genetic_Reference_Panel_Whitepaper.pdf
http://www.jax.org/phenome
http://www.jax.org/phenome
http://www.europhenome.org/
http://www.europhenome.org/
http://www.anim.med.kyoto-u.ac.jp/nbr
http://www.anim.med.kyoto-u.ac.jp/nbr
http://www.caninephenome.org/
http://www.caninephenome.org/
http://www.phenomics.ucla.edu/
http://www.phenomics.ucla.edu/
http://www.ukbiobank.ac.uk/
http://www.ukbiobank.ac.uk/
http://www.personalgenomes.org/
http://www.personalgenomes.org/
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Forward Genetic Screens 

Given that the G-E-P map or the G-P map can be of significance in revealing risk 

factors and in the manifestation of specific traits in a population, the question 

is how to choose the best way to obtain this map. One of the most powerful 

tools to address this is forward genetic screening. In this method, individuals of 

a population differing in genotype are screened for phenotypes of interest. The 

genetic differences can be obtained either by sampling the natural population 

or by mutagenesis. The identified phenotypes can then be linked to the 

causative loci via mapping approaches like the Quantitative Trail Loci (QTL) 

mapping (Korte & Farlow, 2013). As opposed to qualitative traits (Mendelian) 

which have an “either-or” expression, quantitative traits (like height or weight) 

manifest as a result of both genetic and environmental effects. These traits may 

be discrete, like the number of digits on a limb, or may vary continuously across 

a population, like height or weight. A QTL is a genetic locus whose alleles are 

responsible for the variation (Abiola et al., 2003; Grisel, 2000). QTL mapping is a 

powerful tool that samples several regions across the genome that co-

segregate with a trait of interest in either F2 populations or in Recombinant 

Inbred Line (RIL) families.  However, this places a limitation on forward genetics 

with QTL mapping as it is useful only when there is a variation in a population 

for a given trait or when such differences can be generated via crosses. 

Furthermore, only allelic diversity among the F2 founders or within the RIL 

population can be assayed and the amount of recombination during the 

creation of the RIL population limits the mapping resolution. This approach is 

not suitable in species that are reproductively isolated (Abiola et al., 2003; 

Borevitz & Nordborg, 2003; Korte & Farlow, 2013; Pardo-Diaz, Salazar, & 

Jiggins, 2015). 
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Genome Wide Association Studies (GWAS) 

In the recent years, a complementary approach to establish the G-P map has 

emerged to overcome some of the limitations of forward genetics. An 

association mapping approach, the Genome Wide Association Study builds on 

the most common genomic variation, the Single Nucleotide Polymorphism 

(SNP). A SNP is a variation in a single nucleotide at a specific position in the 

genome with the variation present to some appreciable degree in a population. 

GWAS make use of the historical recombination in wild populations and detect 

associations between SNPs and the trait of interest scored over a large number 

of individuals (Hunter, Wright, & Bomblies, 2013; Pardo-Diaz et al., 2015; 

Shimizu & Purugganan, 2005; Stinchcombe & Hoekstra, 2008). GWAS can be 

conducted to (Pardo-Diaz et al., 2015): 

1. Identify causative/predictive factors for a given trait 

2. Establish a genetic architecture of a trait - determine the number of loci 

that contribute to and the extent of contribution to the trait. 

The ability to detect association between the SNP alleles and the trait depend 

on the Linkage Disequilibrium (LD) between the alleles and the surrounding 

SNPs. In order to understand LD better, suppose that in a population, 𝑝𝐴 is the 

frequency of allele 𝐴 at a locus and 𝑝𝐵 is the frequency of allele 𝐵 at another 

locus. Suppose also that 𝑝𝐴𝐵 is the frequency of the 𝐴𝐵 haplotype. Now, if the 

association between the alleles 𝐴 and 𝐵 is completely random and the 

occurrence of one does not influence the occurrence of the other, then the 

probability that both 𝐴 and 𝐵 occur together is the product 𝑝𝐴𝑝𝐵. If, 

however, 𝑝𝐴𝐵 differs from the product 𝑝𝐴𝑝𝐵 then the alleles are said to be in a 

linkage disequilibrium. The coefficient of linkage disequilibrium is given by 
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 𝑫𝑨𝑩 =  𝒑𝑨𝑩 − 𝒑𝑨𝒑𝑩. 

 

(1) 

   

GWAS identify novel loci defined by the LD blocks (known as haplotype blocks) 

(Cox & Church, 2011; Manolio, 2010; Moffatt, Traherne, Abecasis, & Cookson, 

2000; Pardo-Diaz et al., 2015; Slatkin, 2008; Spivakov et al., 2014). 

One of the important requirements to conduct GWAS is an appropriate model 

organism. The extent to which GWAS can identify a true association between a 

SNP and a trait is dependent on the phenotypic variation within the population 

as explained by the SNP. This variance is determined by how two allelic variants 

differ in their phenotypic effects (the effect size) and the frequency of these 

variants in the population. Furthermore, an ideal model organism is one that 

can be potentially maintained as inbred lines so that it is possible to repeatedly 

phenotype these lines of genetically identical individuals while also significantly 

improving the mapping resolution (Cox & Church, 2011; Korte & Farlow, 2013; 

Stinchcombe & Hoekstra, 2008). 

Medaka as a model organism 

Fish constitute the largest class of vertebrates. While fish diverged from 

humans more than 400 million years ago, there are substantial similarities that 

justify the study of fish and their translational relevance (Postlethwait et al., 

2000; Schartl, 2014). With minor differences at the biological organization level, 

there are very few differences at the molecular level (Postlethwait et al., 2000; 

Schartl, 2014). Furthermore, fish offer several unique advantages: fish models 

are usually small and their maintenance and breeding is large numbers is 

relatively easy and low cost. Secondly, they are amenable to genetic 

modifications including transgenesis and gene knock-out. Finally, they are an 

ideal model for high-throughput approaches. 
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The teleost fishes consisting of about 27 000 species are the largest and the 

most diverse group exhibiting a phenomenal variation in morphology, behavior 

and ecological adaptations. One of the reasons for this diversity is believed to 

be a whole genome duplication (WGD) event that occurred at the base of the 

teleost radiation as shown in Figure 2a (Furutani-Seiki & Wittbrodt, 2004; Ravi 

& Venkatesh, 2008; Takeda & Shimada, 2010).  

 

 

      (a) 

 

(b) 

Figure 2 Phylogenetic tree of chordates. (a). Three major Whole Genome Duplication 
depicted by red stars. The topmost WGD event occurs in the teleost ancestor. (b). Teleost 
radiation showing the reduction in genome size. 
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Owing to the WGD, fish resulted in having two copies of many genes of which 

other vertebrates had only one. This manifests in altered gene expression or 

protein functions so that the complement of the gene expression patterns or 

protein functions of both fish paralogs are equivalent to the single vertebrate 

ortholog (Furutani-Seiki & Wittbrodt, 2004; Meyer & Schartl, 1999; 

Postlethwait et al., 2000; Ravi & Venkatesh, 2008; Schartl, 2014). This process 

termed subfunction partitioning has significant consequences in the study of 

the function of these genes. Furthermore, when such genes have multiple 

functions the fish model becomes extremely relevant because different 

phenotypes resulting from these genes can be studied separately (Force et al., 

1999; Schartl, 2014). An example provided in (Schartl, 2014) suggests that if a 

gene in mouse that is responsible for early development and in an organic-

specific function at adulthood is mutated, it becomes impossible to understand 

the organ-specific function of this gene. However, in fish both functions are 

partitioned between the duplicates making the study of both phenotypes 

possible. 

In the recent decades, the zebrafish (Danio rerio) has emerged as an important 

and widely used model organism for studying development and disease (Jing & 

Zon, 2011; MacRae & Peterson, 2015; Santoriello & Zon, 2012; Zon & Peterson, 

2005). The zebrafish offer several advantages like high fecundity, short 

developmental time, transparent embryos, ease of creating transgenic lines, 

etc. Zebrafish have been extensively used for mutagenesis screens (Amsterdam 

& Hopkins, 2006; Driever et al., 1996; Mullins, Hammerschmidt, Haffter, & 

Nusslein-Volhard, 1994) and chemical screens (Brady, Rennekamp, & Peterson, 

2016; Kokel & Peterson, 2011; Peterson & Fishman, 2011). However, in order to 

be able to decipher general genetic principles and to understand conserved and 

species-specific genetic and molecular mechanisms, it is vital to study and 
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compare two related species (Furutani-Seiki & Wittbrodt, 2004). Due to the 

teleost lineages having evolved independently after the gene duplication event, 

it is possible that different fish species will show differences in the fate of the 

duplicated genes. Consequently, under the “complementarity argument”, 

comparing two divergent teleost species can be revealing and provide a better 

understanding of the evolution of genetic and molecular networks (Furutani-

Seiki & Wittbrodt, 2004; Schartl, 2014). Additionally, certain disadvantages of 

the zebrafish, like the lack of consistent success in inbreeding, warrants the 

necessity of a related model organism that can overcome these disadvantages 

while bringing in potential advantages. 

A related species (Figure 2b) sharing most of the advantages of the zebrafish, 

Medaka has a history of more than 100 years of genetic research. Medaka, 

Oryzias latipes, is a small egg-laying freshwater teleost fish primarily found in 

Japan, Korea, Taiwan and China (Takeda & Shimada, 2010; Wittbrodt, Shima, & 

Schartl, 2002) (Figure 3). It is closely related to members of the ray-finned fish 

like the pufferfish, stickleback and killifish. It is separated from zebrafish by 

about 150 million years of divergent evolution (Kirchmaier, Naruse, Wittbrodt, 

& Loosli, 2015; Shima & Mitani, 2004; Takeda & Shimada, 2010; Wittbrodt et 

al., 2002).  

In Japan, Medaka are found in small rivers, creeks and rice paddies. The adults 

grow up to 4 cm in length and the females can lay between 10 – 30 eggs per 

day. Similar to the zebrafish, the embryo fertilization is external and the 

chorion and the embryos are transparent (Takeda & Shimada, 2010) (Figure 3c). 

The embryos usually hatch between 7 and 10 days post fertilization (dpf) and 

reach sexual maturity within 2.5 months. 



17 
 

 

 

 

 

 

 

 

 

(a)                                                                                             (b) 

 

      (c) 

Figure 3 (a). Geographical distribution of Medaka. From (Spivakov et al., 2014). (b). Typical 
Medaka in an aquarium. (c). Transparent hatchling at 10 dpf. 

 

In addition to these features, Medaka offers several advantages over zebrafish. 

Firstly, the size of the genome is half that of zebrafish at 800 Mb. Secondly, 

Medaka are highly polymorphic with high degree of genetic variation (Figure 3a 

shows the population distribution). This makes them an ideal model for 

studying population genomics, speciation and for GWAS. Finally, Medaka is a 

eurythermal fish. They can survive between 0 °C and 40 °C. This makes them 

ideal for microinjections, transplantation, etc. as the embryonic development 

can be slowed down using low temperatures (~ 4 °C) or even arrest cell cycle 

progression of blastomeres (Shima & Mitani, 2004; Takeda & Shimada, 2010; 

Wittbrodt et al., 2002). A requirement for a model organism to be used for 

research purposes is a detailed developmental staging. Figure 4a – 4d show the 
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staging series taken from (Iwamatsu, 2004). Further details can be obtained 

from (Iwamatsu, 2004; Shima & Mitani, 2004; Wittbrodt et al., 2002).  
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Medaka Isogenic Panel 

One of the most important advantages of Medaka as a model organism is its 

amenability to inbreeding. Isogenic and Near Isogenic Lines (NILs) can be used  

Figure 4 Stages of Medaka development. (a). Stage 0: Unfertilized eggs; Stage 1: Activated egg stage; 
Stage 2:  Blastodisc stage; Stage 3 – 7: 2 cell to 32 cell stage; Stage 8 – 9: Early and late morula; Stage 10 
– 11: Early and late blastula. (b). Stage 12 – 16: Pre-, mid- and late gastrula; Stage 17 – 18: Early and late 
neurula; Stage 19 – 23: 2 somite to 12 somite stages. (c). Stage 24 – 35: 16 to 35 somite stage; Stage 31: 
Gill blood vessel; Stage32: Somite completion; Stage 33: Completion of notochord vacuolization; Stage 34: 
Pectoral fin blood circulation; Stage 35: Start of formation of visceral blood vessels. (d). Stage 36: Heart 
development; Stage 37: Formation of pericardial cavity; Stage 38: Spleen development; Stage 39: 
Hatching (around 9 days); Stage 40 – 44: From first fry stage with ~4.5 mm total length to stage with total 
length greater than 25 mm. From (Iwamatsu, 2004). 
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to address fundamental and related issues (Flint & Mackay, 2009): (1) Estimate 

interspecific differences in genetic architecture. (2) Estimate variation of 

genetic architecture between phenotypes. (3) Identify if same genes are 

responsible for same phenotypes across species. There are two classical 

approaches to creating defined genetic reference panels of inbred lines (Bailey, 

1971; Flint & Mackay, 2009; Spivakov et al., 2014). The first approach is to 

establish the panel via crossing of a few genetically distinct founders and 

following it up with a series of interbreeding steps that will then lead to an 

outcrossed population. This outcrossed population is then inbred to obtain 

recombinant inbred lines (RILs). The second approach is to use individuals from 

a wild population and inbreed them successively to give rise to near NILs. Both 

methods provide panels that have specific benefits (Bailey, 1971; Flint & 

Mackay, 2009; Spivakov et al., 2014). Firstly, since the same genotype can be 

reproduced several times from the panel, it offers a common resource to the 

research community. Secondly, nongenotypic variance can be overcome 

because of the possibility of making measurements from different individuals 

with the same genetic background. Lastly, the G-E-P interaction can be well 

studied by systematically varying the environment of different individuals with 

the same genotype. RILs provide a straightforward approach to characterizing 

the genetic background of a population while often being able to relate the 

phenotypes back to the founders. However, with this approach the mapping 

resolution is limited by the number of recombinations available in the panel 

and the panel diversity itself is limited by the diversity of the input founders. 

This poses a restriction on the ability to discover interesting traits. On the other 

hand, NILs have greater diversity and better recombination patterns which 

allows for the discovery of more traits and finer mapping resolution. 
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Over the last several decades, RILs and NILs have been used extensively. The 

yeast community has used such methods for genotype-phenotype mapping 

(Bloom, Ehrenreich, Loo, Lite, & Kruglyak, 2013; Liti et al., 2009) . In the plant 

research community a panel of 302 IBM maize strains (Fu et al., 2006; 

Sharopova et al., 2002) and the set of 107 strains in Arabidopsis have been 

applied regularly (Atwell et al., 2010). In Drosophila both RILs (King et al., 2012) 

and NILs (Mackay et al., 2012) have been used for genetic dissection of 

phenotypes. In vertebrates, mostly RILs have been relied upon and a significant 

number of traits have been mapped both in the rat (Pravenec, Klir, Kren, Zicha, 

& Kunes, 1989) and the mice (Peirce, Lu, Gu, Silver, & Williams, 2004) 

communities. The Mouse Collaborative Cross is the largest panel of RILs in 

vertebrates for complex trait analysis (Churchill et al., 2004). 

With animal husbandry and long generation times being bottlenecks, so far no 

isogenic lines from the wild have been established in vertebrates. However, 

with the emergence of Medaka and its amenability to inbreeding wild catches 

have been collected and several laboratory strains and highly inbred strains 

have been established. In the recent years, a Medaka inbreeding project has 

been started at the Karlsruhe Institute of Technology where several Medaka 

wild catches are being inbred successfully (Spivakov et al., 2014). Furthermore, 

the process of establishing 200 lines of a Medaka isogenic panel is in progress. 

The typical inbreeding protocol used for Medaka is illustrated schematically in 

Figure 5a. In this work, several northern and southern inbred lines were used. 

Specifically, the northern lines are Kaga and HNI. The southern lines are HdrR, 

Icab, HNCMH2 and HO5. The geographical locations of these fish are shown in 

Figure 3a.  Figure 5b shows lateral and dorsal orientations of 10 dpf Medaka 

hatchlings from the different inbred lines. The hatchlings show significant 

differences in morphology suggesting that these lines can indeed be used for 
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morphometric analysis and that this panel has the polymorphism that is 

required for GWAS.  

Integrative Phenotyping: From Morphology to Behavior 

As discussed before, one of the important goals of phenomics, and indeed 

GWAS, is to understand and relate phenotypes and genotypes. As a 

consequence it is essential to establish a “phenotype matrix” that consists of a 

host of consistent and defined parameters which can be used to characterize 

an individual in a population. The question then is: what formulates this 

phenotype matrix? In this work, we use an integrative phenotyping approach 

by drawing from both morphological and behavioral traits of Medaka. This 

simultaneous study of “form and function” is of immense importance in 

understanding ontogenetic and evolutionary changes and in assessing 

environmental effects on a population (Bertossa, 2011).     

   

                            

                                 (a)               (b) 

        

 

Figure 5 Inbreeding (a). The inbreeding protocol. (b). Lateral and dorsal 
orientations of the different southern and northern inbred lines at 10 dpf. 
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Morphometrics 

The study and analysis of size and shape and their covariance with other 

variables is referred to as morphometrics. The advent of fast and high-

resolution imaging in the recent years combined with statistical analysis tools 

provide an ideal platform for the use of morphometrics in characterizing the 

morphology of an organism. Furthermore, since the 1980s morphometrics has 

changed from a qualitative science to quantitative science (Adams, 2004; 

Bookstein, 1998; Bookstein, Grayson, Cutting, Kim, & McCarthy, 1991; Rohlf, 

1993). 

There are two classical approaches to morphometrics. The first, called the 

‘Traditional Morphometrics’, uses linear distances such as length, width and 

height in conjunction with multivariate statistics to assess variations in a 

population. While being simple, this approach has the biggest disadvantage 

that different shapes could produce identical measurement results because the 

location of the measurements is not taken into account (Rohlf, 1993). To 

overcome this disadvantage, landmark-based geometric morphometrics 

emerged. In this approach, certain specific landmarks were defined and then 

traditional approaches to quantify measures about the landmarks were used. In 

order to use this approach, the landmarks should be present in every individual 

of the population and if it is absent then it should either be approximately 

marked or not used at all (Bookstein et al., 1991; Rohlf, 1993). 

Fish morphology has been studied extensively in the context of ecomorphology 

to evaluate the effects of habitat and environmental changes on fish 

(Langerhans, 2008). In Medaka, craniofacial morphology, which is a complex 

trait, has been studied to identify individual phenotypic differences in adult fish 

within the species (Kimura et al., 2007). However, to our knowledge no 

extensive studies of overall morphological variation in different Medaka 
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populations at the hatchling stage and at different developmental time points 

have been performed. Such a study could provide statistical data about the 

Medaka population diversity and could be used to understand genetic and 

environmental variations that contribute to the polymorphism in Medaka.  

Behavior: Locomotion and Prey Capture 

In order to study the complete phenotypic diversity of an organism it is 

important to not only understand its morphology but also its behavioral traits. 

Behaviors are complex traits that are controlled by a network of multiple 

segregating genes in response to environmental inputs (Anholt & Mackay, 

2010). Organismal behavior is tuned by evolutionary forces (that tend to 

optimize survival and reproduction) along with developmental and 

physiological factors. These factors modify gene expression, neural circuitry and 

the interactions between them to provide an appropriate behavioral repertoire 

(Anholt & Mackay, 2010). A schematic diagram is shown in Figure 6 illustrating 

these interactions.  

In vertebrates, the two most essential behavioral traits that are required by an 

organism for its survival are locomotion and feeding. Prey capture is an innate 

goal-directed behavior responsible for the feeding success of an organism. This 

fundamental trait manifests itself very early in an organism’s developmental 

process. The mechanism of prey capture involves the use of specific sensory 

modalities and the execution of certain movements drawn from an organism’s 

repertoire of locomotion patterns and is consequently inherently dependent on 

the locomotor capabilities of the organism. This behavior is controlled by 

several parameters including locomotor speed, maneuverability, stability, etc. 

Different organisms exhibit different prey capture strategies depending on the 

organism’s morphology, physiology, environment and the nature of the prey. 
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Figure 6 Evolutionary, Developmental and Physiological interactions determine 
behavior. Adapted from (Anholt & Mackay, 2010). 

Figure 7 shows schematically how these different factors influence locomotion 

and prey capture (Higham, 2007).  

 

 

 

Figure 7 Factors influencing locomotion and 
prey capture in vertebrates. Adapted from 
(Higham, 2007). 

 

Studying prey capture, therefore, allows 

one to dissect sensory and motor 

system architecture in an organism. 

However, the process of locomotion is 

extremely difficult to discern due to the 

complex neural structure and 

mechanisms. There is, consequently, the need for simple vertebrate model 

organisms that can be used to quantitatively assess and compare locomotor 

and prey capture behavior (McElligott & O'Malley D, 2005). Indeed, 

larval/juvenile fish have been used to study prey capture behavior and to 
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better understand the locomotion strategies employed for this complex 

behavior (Borla, Palecek, Budick, & O’Malley, 2002; McElligott & O'Malley D, 

2005). Fish exhibit a variety of prey capture strategies and studying these 

strategies across different species can throw light on evolutionary diversity. 

Furthermore, a comparison between related species can provide valuable 

insight into the genetic principles involved in the development of these 

strategies (Furutani-Seiki & Wittbrodt, 2004). In this context, the zebrafish 

locomotion and prey capture has been extensively studied. However, to our 

knowledge, no study has been done to understand the locomotor and prey 

capture behavior in juvenile Medaka. 

The zebrafish use vision as the sensory modality in prey capture (Gahtan, 

Tanger, & Baier, 2005). To our knowledge, there is no report on sensory 

modalities employed by juvenile Medaka for prey capture behavior to date. 

Vision based goal-directed behavior starts with target identification followed by 

the execution of a series of movement patterns resulting in the capture of the 

target (Trivedi & Bollmann, 2013). The movements themselves could be 

discrete or continuous in time with the aim of resolving target coordinates and 

trajectory and using visual feedback to finally achieve the intended goal (Land, 

1992a). In recent years, several studies have been reported to understand axial 

kinematics and visually guided prey capture behavior in zebrafish  (Bianco, 

Kampff, & Engert, 2011; Borla et al., 2002; Fero, Yokogawa, & Burgess, 2011; 

McElligott & O'Malley D, 2005; Trivedi & Bollmann, 2013).  

Prey capture behavior starts to manifest itself in zebrafish around 5 dpf. 

Previous studies have identified the zebrafish locomotion repertoire (Fero et 

al., 2011) and the swimming movements and maneuvers while hunting prey. 

Table 2 summarizes the distinct swimming patterns that zebrafish larvae 
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between 5 and 7 dpf exhibit. Details of the nature of the maneuvers are also 

provided. 

 

Swim Pattern Stimulus Details  

    
Slow swim Spontaneous Also called scoots. Low 

tail beat amplitude; 

short travel distance 

 

Burst swim Escape response Large amplitude tail 

beat; longer distances 

 

Capture swim  Predation Forward swim to strike 

at prey;  

 

R-turn Spontaneous Routine turns for 

orientation 

 

J-turn Predation Repetitive small 

amplitude flexion to 

one side; for orienting 

toward small prey 

 

    
O-bend Dark flash Head of larvae meet 

the tail in an O-shape; 

low angular velocity 

 

    

Short latency C-bend Acoustic startle Response less than 15 

ms; high-angular 

velocity c-shape 

bending to one side 

 

Long latency C-bend Acoustic startle Weak stimuli evoke 

long latency c-bending 

 

Struggle Trapping When trapped, larvae 

show large amplitude 

body movements from 

tail towards head 

 

    

 

Table 2 Swim pattern repertoire of zebrafish larvae between 5 and 7 dpf. (Fero et al., 2011). 
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The execution of the movement patterns during prey capture could be either 

continuous or discrete in time. An instance of the former is smooth pursuit eye 

movements where there is a rapid initiation of smooth eye movement followed 

by uninterrupted accurate tracking of the target (Lisberger, 2010). Discrete 

capture behavior usually consists of chaining a set of interrupted locomotion 

sequences by saccadic eye movements which controls gaze (Land, 1999a; Schall 

& Thompson, 1999; Trivedi & Bollmann, 2013). 

Locomotor behavior in larval zebrafish is controlled by around 300 neurons 

descending from the brainstem into the spinal cord (McElligott & O'Malley D, 

2005; O'Malley, Zhou, & Gahtan, 2003). Zebrafish exhibit a discrete or 

intermittent prey capture behavior which involves swimming bouts 

interspersed with pauses (Kramer, 2001; McElligott & O'Malley D, 2005). The 

process culminates in a capture swim when the prey is within striking distance 

(Borla et al., 2002). Furthermore, it is shown that the individual swimming 

bouts are an elementary motor pattern which is superimposed with a graded 

turning component (via asymmetric tail bends) controlled by visual feedback to 

form a goal-directed motor sequence (Trivedi & Bollmann, 2013). Importantly, 

it was observed that the zebrafish detect the target monocularly while the 

subsequent tracking and capture phases are binocular (Bianco et al., 2011; 

Patterson, Abraham, MacIver, & McLean, 2013; Trivedi & Bollmann, 2013).  

 Feeding mechanisms in fishes 

Aquatic animals have to contend with several environmental factors that are 

significantly different from those experience by animals living on land. The 

density of the prey being about the same as that of water poses a special 

problem in that the prey often moves away from the closed mouth (Alexander, 

1967). Furthermore, the density of water is 1.024 × 103  𝑘𝑔/𝑚3 compared to 
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air density of 1.21 𝑘𝑔/𝑚3  with oxygen carrying capacity being about 95 % less 

than that of air. These environmental factors have contributed to the 

morphological evolution to improve feeding performance in fishes. The teleost 

cranium is of high evolutionary significance because these fishes have retained 

and expanded the number of joints compared to extant tetrapods (Gibb, Staab, 

Moran, & Ferry, 2015; Hulsey, Fraser, & Streelman, 2005; Liem, Bemis, Walker, 

& Grande, 2001). The teleost skull is made of up of more than 100 bones that 

act as functional units and are able to move relative to one another with the 

primary functions of respiration and feeding (Gibb et al., 2015). This is contrast 

to 44 bony elements at birth and 22 bones at adulthood in humans. In addition, 

the human skull shows very little kinesis. 

Three important categories into which fish feeding mechanisms can be divided 

are: 

1. Suction feeding 

2. Ram feeding 

3. Manipulation 

These three categories are not mutually exclusive (Liem, 1980). Suction feeding 

functions via the generation of a pressure gradient between the inside of the 

buccal cavity and the surrounding water caused by a rapid expansion of the oral 

cavity. This causes the water to flow into the mouth carrying the prey that is 

engulfed in the water current. Ram feeding is accomplished by the fish 

overtaking the prey through forward body movements. While in suction 

feeding the prey is consumed via the water current created by the fish, in ram 

feeding the mouth of the fish is thrust or rammed over the prey. Suction and 

ram feeding exist as the extremes of a feeding modality continuum (Norton & 

Brainerd, 1993; Wainwright, 1999). Finally, manipulation feeding involves 

variations in the use of oral jaws to grasp prey. It involves the application of the 
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oral jaws to the prey and biting the prey off a substrate or making pieces out of 

a large prey (Wainwright, 1999). It is believed that all fish species use one or a 

combination of these three fundamental modes of feeding. Furthermore, the 

mode (or modes) used reveal the relationship between craniofacial structure, 

and indeed morphological specialization, and the nature of the prey (Liem, 

1980; Wainwright, 1999). 
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Objectives 

 

Morphology and behavior are two key traits that can be used to understand the 

interactions between the genotype, the environment and the phenotype. The 

aim of this thesis is to establish a framework to identify and quantify 

appropriate morphological and behavioral phenotypes using representative 

northern and southern inbred Medaka lines. This framework will subsequently 

be used to systematically phenotype more than 200 inbred Medaka lines and 

use the resulting phenotypic matrix for GWAS. 

For morphometry, the thesis will address: 

 Establishing a protocol for extracting gross morphological features 

 Comparison of the morphological features of the different lines at two 

time points: 10 dpf and 20 dpf 

 Identifying key features that show significant differences among the 

different lines 

The second part of the thesis focusses on behavioral phenotyping and will 

address: 

 Establishing systems and algorithms for quantitative assessment of 

behavior 

 Evaluation of locomotion in Medaka 

 Prey capture behavior in Medaka 

 Comparison of prey capture behavior with zebrafish to understand 

interspecific strategies 

 Comparison of prey capture behavior among the different Medaka lines 

to understand variation in strategies within a population 
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Methods 

 

Fish Stocks and Husbandry 

The following Medaka lines were used for morphometric and behavioral 

analysis: 

 Northern lines: HNI and Kaga 

 Southern lines: HdrR, Icab, HNCMH2 and HO5 

 2 sets of Trios 

The geographical locations of these lines are shown in Figure 3a. The strains 

were obtained from the National Institute of Basic Biology (NIBB), Japan, and 

raised at the Karlsruhe Institute of Technology, Germany. The HdrR lines were 

generated by from the d-rR line (Yamamoto, 1953) established from 

commercial orange-red and white varieties from unknown locations. However, 

phylogenetic analysis has confirmed that the HdrR belongs to the Southern 

Japanese population (Spivakov et al., 2014). The HNI (Northern Japanese 

population) was established from a wild collection from Niigata city, Niigata 

Prefecture, Japan. The northern Kaga strain was established from wild 

population collected at Kaga, Ishikawa Prefecture, Japan. The southern Icab and 

HNCMH2 were purchased from Carolina Biological Supply (Burlington, NC) and 

were established from Southern Japanese populations with more than 20 

generations of inbreeding (Spivakov et al., 2014). All the lines were kept and 

raised under 14 h light/10 h dark conditions at 26 °C. The embryos were kept in 

a 1 x hatching medium (0.1% NaCl, 0.003% KCl, 0.004% CaCl2, 0.016% MgSO4, 

0.0001% Methylene blue) until hatching (Loosli et al., 2000).  

Zebrafish were maintained and bred using conditions described in (Westerfield, 

2007). Embryos were raised in embryo medium at 27 °C under 14 h light/10 h 
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dark cycles. Wild type ABTL zebrafish larvae at 6 – 8 dpf were used. The 

zebrafish lines were maintained at the Max Planck Institute for Medical 

Research, Heidelberg, Germany.  

Animal husbandry and experiments were performed in accordance with the 

German law on Animal Protection which was approved by the 

Regierungspräsidium Karlsruhe (Local Animal-Protection Committee), Az. 35-

9185.64. 

Morphometry 

Morphological features from the four southern lines, the two northern lines 

and the trios were analyzed. The embryos from all the lines were raised under 

identical conditions. 

Imaging 

The imaging of the different lines was performed with hatchlings at 10 dpf. 

Healthy individuals were transferred to a petri dish with fresh fish water. They 

were then anesthetized using Tricaine mesylate (MS-222). The hatchlings were 

then individually mounted in 85% glycerol. They were then manually oriented 

to dorsal or lateral orientations. The imaging itself was performed using a Leica 

MZ 16 FA stereomicroscope with a Planapo 1.0 x objective and a 10 (for 20 dpf 

hatchlings) or 20 x (for 10 dpf hatchlings) zoom factor. Typical dorsal and lateral 

orientation images are shown in Figures 8a and 8b.  

 

 

(a)                                                                     (b) 

Figure 8 Typical examples of hatchlings for morphometric imaging. (a). Dorsal orientation. 
(b). Lateral orientation. 
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The images obtained from both orientations were then analyzed using a semi-

automated and a completely automated algorithm. The intent was to compare 

and verify the accuracy of the automated algorithm read-outs with the read-

outs from the semi-automated version. This automated algorithm will be used 

in the future for quantifying the morphological features of the entire 200 

inbred lines panel. 

 

Semi-automated algorithm for quantifying features 

In this approach, the landmarks are selected manually from the microscopy 

images of the hatchlings from the two orientations. The images are presented 

to the user via a Graphical User Interface (GUI) and the user is prompted to 

select the “points” that define the landmarks. Each landmark is associated with 

two points. The morphometric feature is then the Euclidean distance between 

the two points. For example, let one landmark (say the total body length) be 

defined by two points: 𝑝1 = (𝑥1, 
 𝑦1) and 𝑝2 = (𝑥2, 

 𝑦2). The Euclidean distance 

between the two points is then: 

 𝐝(𝑝1,   𝑝2) =  √(𝑥2 − 𝑥1)2  +  (𝑦2 − 𝑦1)2 (2) 

After all the points of the landmarks have been entered via the GUI, the 

algorithm computes the respective landmark features and writes it to a file. The 

various features for the different lines and orientations are then statistically 

analyzed. The GUI and the algorithm was programmed using MATLAB (The 

Mathworks Inc., Natick, Massachusetts) (Peravali et al., 2011; Sinn, Peravali, 

Heermann, & Wittbrodt, 2014; Spivakov et al., 2014). Figure 9 shows the GUI 

with an example of landmark selection. 
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Figure 9 Graphical User Interface for the semi-automatic method of computing 
morphometric features. The GUI allows the user to choose the landmarks and then quantifies 
them. 

 

Automated approach to feature extraction and quantification 

For high-throughput phenotyping and quantification of morphometric features, 

the semi-automated approach is unsuitable. It is especially cumbersome to use 

this approach as the goal is to extract the morphometric features from a large 

number of individuals from 200 inbred lines in the future. Consequently, an 

automated algorithm was developed to avoid manual selection of the 

landmarks and provide an interface that automatically extracts the features 

and quantifies them. The developed algorithm is shown schematically in Figure 

10 and the steps comprising the algorithm are discussed individually. The 

algorithm was implement in MATLAB (The Mathworks Inc., Natick, 

Massachusetts).  

Step 1: The image obtained from the microscope is in the RGB format which is 

an additive color model with red, blue and green as the primary colors 

(Gonzalez & Woods, 2002). The size of the image is 1944 pixels x 2592 pixels. 
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Step 2: In order to improve the 

processing speed for extracting the   

morphological features, the RGB image 

was converted to a grayscale image. The 

grayscale images are obtained by 

eliminating hue and saturation data 

while retaining the luminance 

information (MATLAB and Image 

Processing Toolbox™). The grayscale 

values are computed as a weighted sum of the R, G, and B components 

according to (Poynton, 1996): 

 
𝐺𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 = 0.2989 ×

𝑅 + 0.5870 × 𝐺 + 0.1140 × 𝐵. 
(3) 

   

The grayscale image is converted to an intensity image with values in the range 

[0, 1] by normalizing the grayscale values by the maximum possible grayscale 

value of 255. 

 Step 3: The image obtained from the previous step is then used to extract edge 

information. Edge detection identifies points of discontinuous brightness in an 

Figure 10 Automated algorithm to 
morphometric feature extraction and 
quantification. Left panel shows the 
algorithm flow. Right panel shows cropped 
versions of the images at each step of the 
algorithm. 
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image and connects and represents them via curved line segments. In the 

algorithm, the Canny edge detector is used (MATLAB and Image Processing 

Toolbox™). The Canny detector is an optimal detector that finds the edges 

using the local maxima of the gradient of the image in the horizontal and 

vertical directions. The gradient itself is found using the derivative of a Gaussian 

filter and the gradient direction is perpendicular to the edges. The detector 

uses a method called “feature synthesis” that integrates edge information from 

fine-to-coarse scale using two thresholds: the high and low thresholds. All 

edges above the high value are sure to be edges, while those below the low 

values are discarded as non-edges. Values between the two thresholds are 

considered edges only if they are connected to the “sure-edges”. This makes 

the detector robust to noise and other spurious effects due to non-uniform 

illumination, etc. (Bradski & Kaehler, 2008; Canny, 1986). In the algorithm, a 

Gaussian filter of size 7 with standard deviation σ = √2  is used with the 

thresholds being [0.15, 0.6]. The resulting edge image is binary with values 1 

representing the edges and the rest of the image values being 0. 

Step 4: In order to further improve the edge image and retain only relevant 

edge information a method known as area opening is applied to the binary 

edge image obtained in Step 3. Area opening removes those connected 

components (essentially objects) in a binary image whose area is smaller than a 

parameter λ (Vincent, 1993). In the algorithm, connected components are 

labeled using 8-connectivity neighborhood: that is, pixels are said to be 

connected if their edges or corners touch. This means that if two adjoining 

pixels have value 1 in a binary image, then they are considered as part of the 

same object irrespective of whether they are connected horizontally, vertically 

or diagonally (Cheng, Peng, & Hwang, 2009) .  All such objects in the image that 

have fewer than 10 pixels are removed.  
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Step 5: The image obtained in the above step has all the details of the 

landmarks (via the edge information) but still lacks continuity that is required 

for quantification. Morphological closing is an important operator applied to 

binary images to enlarge foreground boundaries (bright regions) while 

shrinking the background holes in these regions. It, however, preserves the 

original boundary shape (Gonzalez & Woods, 2002). It functions by using a 

structuring element which defines a particular shape and the closing operator 

then preserves regions that are similar to the shape descriptor in the image 

while eliminating other regions. As can be seen in the right panel of Figure 11, 

the closing operator extracts the elliptical shape of the eyes and the outer 

boundary which are required for the quantification of the morphometric 

features. In the algorithm, the structural element was a disk (elliptical shape) of 

radius 35. This shape descriptor was found to be optimal in extracting all 

relevant features in the hatchling image. 

Steps 6, 7 and 8: Once the contours of the outer boundary and the eyes have 

been obtained from the previous step, the algorithm quantifies the various 

landmarks. Firstly, the pixel coordinates (𝑋, 𝑌) of the outer boundary and the 

eyes are extracted. The perimeters and the areas of these different regions are 

then estimated. The region corresponding to the maximum area is the outer 

boundary and the regions with smaller areas are the eyes. For the eyes, the 

centroids of the ellipses fitting the coordinates are computed and the distance 

between the centroids is then evaluated. For the other landmarks, the extrema 

of the coordinates are computed and the distance between them are 

evaluated. 

The algorithm described above was implemented in MATLAB with the Image 

Processing Toolbox™ and parts of it are reported in (Herder et al., 2013; 

Peravali et al., 2011; Sinn et al., 2014; Spivakov et al., 2014). 
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Behavior 

Three behavioral traits are evaluated in the Medaka inbred lines: locomotion, 

feeding and prey capture. Imaging platforms are developed for acquiring 

behavioral data and algorithms are developed to quantify this data. For the 

feeding and prey capture experiments the hatchlings were fed with 

Paramecium caudatum. 

Imaging: Locomotion and Feeding 

In order to observe locomotion and feeding behavior, an automated system 

that is capable of imaging Medaka hatchlings over long periods of time is 

essential. Furthermore, the imaging resolution should be high enough to detect 

the hatchling and the paramecia in the acquired data. Accordingly a high-

throughput robotic imaging platform was developed to acquire video data of 

the hatchlings. The platform is shown in Figure 11 and consists of four essential 

elements. The first is a TX40 6-axis Stäubli robotic arm (Stäubli Tec-Systems 

GmbH, Germany). This is an articulated arm that provides high precision, high 

flexibility and high speed operability. The arm has 6 degrees of freedom and a 

reach at the wrist of 515 mm and a repeatability of ± 0.02 mm. Its wrist consists 

of a gripper that can carry loads of up to 2.3 kg. Such an arm has the advantage 

of maximal utilization of workspace that contributes towards a high-throughput 

performance. 

In order to observe locomotion and feeding behavior, an automated system 

that is capable of imaging Medaka hatchlings over long periods of time is 

essential. Furthermore, the imaging resolution should be high enough to detect 

the hatchling and the paramecia in the acquired data. Accordingly a high-

throughput robotic imaging platform was developed to acquire video data of 

the hatchlings. The platform is shown in Figure 11 and consists of four essential 

elements. The first is a TX40 6-axis Stäubli robotic arm (Stäubli Tec-Systems 
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GmbH, Germany). This is an articulated arm that provides high precision, high 

flexibility and high speed operability. The arm has 6 degrees of freedom and a 

reach at the wrist of 

515 mm and a 

repeatability of ± 

0.02 mm. Its wrist 

consists of a gripper 

that can carry loads 

of up to 2.3 kg. Such 

an arm has the 

advantage of 

maximal utilization of workspace that contributes towards a high-throughput 

performance. The second component is the imaging sensor. For this a 1.3 

megapixel CMOS sensor called the UI-1540SE (from iDS Imaging Development 

Systems GmbH, Germany) is used. This sensor provides up to 25.0 frames per 

second recording capability and offers a resolution of 1280 × 1024 pixels. The 

large pixels produce an extremely good signal-to-noise ratio and consequently 

a high image dynamic. The third component is a dark field illumination setup 

that was designed to provide better contrast of hatchlings and the paramecia in 

the acquired videos. The setup allows for 12 petri-dishes of 3.5 cm diameter to 

be positioned in 4 rows. Due to the flexibility of the robot arm, the number of 

petri-dishes can be scaled up to a significantly larger number in the future. 

Finally, the fourth component is the petri-dishes themselves. A magnified 

image of a typical petri-dish containing one hatchling and paramecia is shown 

on the right side of the Figure 11. The whole system is mounted on an optical 

table to provide vibration isolation and is enclosed in a temperature controlled 

chamber that maintains the temperature at 29 °C. Once the petri-dishes 

containing the hatchlings (and the paramecia, if required) are positioned on the 

Figure 11 Robotic imaging platform for locomotion and feeding 
behavior studies. 1. Robotic arm. 2. Camera functioning at 25 fps. 
3. Dark field setup. 4. Petri-dishes with hatchlings and the 
magnified view. 
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dark field setup, the robot arm positions the imaging sensor over the top of 

first petri-dish. Video of the hatchling activity is then recorded. The robot arm 

then moves to the next positions sequentially and repeats the recording over 

each petri-dish. After all the 12 petri-dishes have been recorded, the arm 

moves back to the first position and repeats the process all over again.  

Experiment Protocol: For locomotion experiments, Medaka hatchlings at 10 dpf 

are used. The hatchlings are transferred to petri-dishes containing 5 ml of fish 

water. They are allowed to acclimatize for 1 hour before the start of the 

experiment. For feeding experiments, Medaka hatchlings at 10 dpf are 

transferred to petri-dishes with 4 ml of fish water, one hatchling per petri-dish. 

1 ml solution with paramecia is then added to the petri-dishes. The density of 

the paramecia is adjusted to be 100 paramecia per ml. One control petri-dish 

with 4 ml of fish water and 1 ml of the paramecia solution is used in every 

feeding experiment. For both the locomotion and feeding experiments, videos 

of 3 minute duration per petri-dish are acquired every 36 minutes for 3 hours. 

This gives 6 independent recordings of activity for each petri-dish. In order to 

account for time-of-day influences, if any, the experiments were performed 

once in the morning (09:00 hours to 12:00 hours), once after noon (13:00 hours 

to 16:00 hours) and once in the evening (17:00 hours to 20:00 hours). For 

feeding experiments, the 3 time point’s repeats were performed on 3 different 

days using hatchlings of the same age and developmental stage in order to 

avoid the influence of food intake at one time point on the others. 

Automated tracking of Medaka hatchlings 

To assess locomotion in Medaka hatchlings, the videos acquired using the 

imaging platform described above are automatically analyzed to extract 

locomotion tracks and to quantify locomotion parameters: speed of movement 

and the distance travelled in a given time. The algorithm developed to achieve 
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this task is shown in Figure 12 and is based on frame differencing which has 

played an important role in many computer vision applications like 

compression, surveillance, etc. (Zeng, Gao, & Zhao, 2003). The first step in the 

procedure is to set the first frame in the video as a reference frame. Following 

this, the subsequent frames are read-in sequentially. In order to detect motion, 

each subsequent frame is subtracted from the reference frame pixel-by-pixel. 

This difference image is then converted to gray scale (similar to Step 2 in Figure 

10) and thresholded to improve the quality of the difference image. If there 

indeed was motion between the two frames, the difference image will then 

have intensity values only at those pixel locations where change occurred due 

to the motion. This will then result in a non-zero difference image. 

Subsequently, all non-zero components in the image are labelled similar to the 

procedure described in Step 4 of Figure 10.  

 

 

 

 

 

 

 

 

 

 

 
Figure 12 Algorithm to track Medaka hatchlings to assess locomotion 
behavior. Left panel shows the algorithm flow and the right panel 
images at each step of the algorithm. 
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The largest contour in this labelled image will correspond to the contour of the 

hatchling and is extracted. The centroid of this contour is then calculated. This 

process is repeated over all the frames in the video resulting in a list of 

centroids of the hatchling at its various positions.  

The temporal change in the centroid coordinates yields the locomotion track 

and can then be used to extract the distance travelled and the speed. 

Automated algorithm to quantify feeding behavior 

The rate at which different Medaka hatchlings from different lines consume 

paramecia in a given time is used as a measure to quantify feeding behavior. 

Since manual computation of the number of paramecia consumed over time is 

time-consuming and error prone, an automated algorithm to achieve this was 

developed. This algorithm essentially counts the number of paramecia at 

different time points during the course of the experiment. The rate is then 

computed as the number of paramecia consumed as a function of time. The 

algorithm is shown schematically in the left column of Figure 13. The middle 

and right columns of the figure show the detection and extraction of paramecia 

from the videos at two different time points. 
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The algorithm uses several components from the other algorithms described 

above and is therefore only briefly described here. The algorithm begins by 

extracting individual frames from the acquired videos of 3 minute duration. 

Since the well geometry and position is known a-priori, each image is cropped 

automatically to obtain only the relevant regions-of-interest. This operation is 

useful as the dimension of the paramecia is very small within the field-of-view 

and the edges of the petri-dish may introduce false positives. The cropped 

image is then binarized, filtered and the connected components are labelled 

similar to the algorithms described above. Finally the centroids of the detected 

paramecia are computed and the number calculated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Algorithm to assess feeding behavior. Left panel shows 
the analysis steps and the right panel representative images at 
each step. 
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All algorithms described above were implemented in MATLAB with the Image 

Processing Toolbox™. 

Imaging: Prey Capture Studies 

For prey capture studies, the HNI (northern line) and the HO5 (southern line) 

strains of Medaka hatchlings at 10 dpf and zebrafish larvae at 6 – 8 dpf were 

used. At this age, the Medaka and zebrafish larvae have similar size, are free-

swimming and capture paramecia successfully for feeding. The imaging setup 

used to study prey capture was identical to the system reported in (Trivedi & 

Bollmann, 2013) and is shown schematically in Figure 14.  

 

 

 

 

 

 

 

 

 

 

The larvae are imaged in a small petri-dish of 16 mm diameter and 5 mm height 

with a transparent bottom and opaque walls and with 3 – 4 mm of fish water. 

The dish contains a single larva which is provided with a single paramecium to 

capture. The arena is illuminated with white light from the top and an array of 

Figure 14 Experimental setup for prey capture studies. 
Adapted from (Trivedi & Bollmann, 2013) . 



46 
 

three infra-red LEDs (Kingbright, BLO-106) are mounted beneath to record the 

larvae and the paramecium under dark-field illumination. A high-speed camera 

(AOS Imaging Systems, Model S-PRI 1039) is used to record the prey capture 

sequence. A cold mirror is mounted to block white light from the camera. All 

prey capture sequences were recorded at 250 frames/second and the 

experiments were conducted at room temperature.  

Image analysis: Prey capture studies 

The video recordings obtained from the imaging system above are in the 8-bit 

grayscale format and are processed to extract different parameters of the prey 

capture sequence. Figure 15 shows the different parameters that are extracted 

and quantified. The image analysis is performed using the software developed 

in (Trivedi & Bollmann, 2013). To facilitate the analysis, the paramecium is 

initially identified manually in the first frame. After this, the tracking of the fish 

and the paramecium is done automatically. 

 

 

 

 

 

The algorithm determines the midline of the fish which is composed of 6 

segments. The first segment is the head segment measured between the snout 

and the swim bladder. The rest of the midline is split into 5 line segments of 

equal length. The tail movements during the prey capture are quantified as 

angles (𝛾1,…,𝛾5) which are the angles between the 5 individual tail segments 

Figure 15 Parameters extracted from the prey capture 
sequences. 
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and the body axis (the heading direction of the first segment). With respect to a 

global reference plane, the orientation of the fish, ϴ, is the angle of the head 

segment of the midline. For each frame, the angle between the fish and the 

paramecium (the fish-target angle, φ) is calculated. Furthermore, the fish-

target distance, 𝑑, is computed as the distance between the center of the head 

segment of the midline and the centroid of the paramecium.  

To record the entire prey capture sequence, a large field-of-view was used. 

This, however, does not allow for automatic analysis of smaller details and 

consequently the ipsilateral and contralateral eye angles with respect to the 

midline and the prey were analyzed manually. The prey capture trajectories 

were plotted using the centroids of the detected fish in each frame.  
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Results 

Morphometrics 

The aim of morphometric analysis was to identify and quantify landmarks that 

could be used to distinguish between the different lines of the inbred Medaka 

panel. The landmarks were measured at two developmental time points: 10 dpf 

and 20 dpf. Furthermore, one southern inbred line (HO5) and one inbred 

northern line (HNI) were chosen as representatives for comparisons. Some lines 

were not included for analysis at 20 dpf due to lack of enough hatchlings at this 

time point. For each landmark, box plots of the data are shown and p-value 

indicating significant differences or not between HO5 and HNI are shown for 

each time point. The outliers are indicated as red crosses. Tables are also 

provided to show the basic statistics of the data. 

Morphological Landmarks 

For each orientation of the larva, several gross morphological landmarks were 

identified. Specifically, for the dorsal orientation the following landmarks were 

chosen: 

1. Lip width 

2. Distance between the eyes 

3. Dorsal width (just near the pectoral fins) 

4. Width just beyond the yolk sac and at the start of the yolk extension 

5. Dorsal length 

For the lateral orientation the following landmarks were chosen: 

1. Eye diameter 

2. Lateral width before the start of the yolk sac 

3. Point of maximal lateral width 
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4. Lateral length 

Figures 16a and 16b show these landmarks. These features were chosen as 

they offered the most distinguishable differences between the various lines on 

observation. The lengths are “total lengths” measured from the tip of the 

mouth at the anterior end to the tip of the caudal fin at the posterior end. Since 

in fish variations in individuals correlate with body length, the different 

features were normalized by the total body length.  

 

Figure 16 Morphometric landmarks. (a). Dorsal landmarks (b). Lateral landmarks. 

Dorsal lip width normalized to dorsal length 

The lip width is the length of the mouth of the hatchlings seen from the dorsal 

orientation. Figure 17 shows the lip widths of the different inbred lines. Table 3 

provides the relevant statistics. While some lines show similar lip widths 

although they are from different regions (HdRr and Kaga), the HO5 and HNI 

lines show significant differences both at 10 dpf (p << 0.01) and at 20 dpf (p <<< 

0.001). Furthermore, there are differences between the southern lines (Icab, 

HO5 and Hncmh2). The differences in the lip widths between southern and 

northern lines gets significantly more at 20 dpf. 
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Figure 17 Dorsal lip width normalized to dorsal length. (a). Comparison at 10 dpf showing 
significant differences between HO5 and HNI lines. (b). Comparison at 20 dpf. Very significant 
differences are seen between HO5 and HNI lines. Differences are also noticed among the 
southern lines. 

 

 

 

 

 

 

 

 

 

 

 

 

     

      (a) 

 
 

Sample 
Size 

Mean Median Standard 
Deviation 

Icab 
 

79 0.0721 
 

0.0717 
 

0.0084 
 

Hncmh2 16 0.07 
 

0.0692 0.0061 

HO5 53 
 

0.075 0.0746 0.0068 

HdrR 76 
 

0.0739 0.075 0.0066 

Kaga 122 
 

0.0747 0.0747 0.0072 
 

HNI 46 
 

0.0713 0.071 0.0061 
 

Trio 1 2 0.071 
 

0.071 0.0018 

Trio 2 4 0.0725 
 

0.074 
 

0.0041 
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     (b) 

Table 3 Dorsal lip width statistics. (a). At 10 dpf. (b). At 20 dpf.  

Distance between eyes normalized to dorsal length 

The second dorsal landmark that was quantified was the distance between the 

eyes measured from the dorsal orientation and is an important craniofacial 

landmark. This is the distance between the centroids of the ellipses fitted to the 

two eyes. This feature plays an important role in the visual mechanism of the 

fish. Figure 18 and Table 4 show the relevant measurements. 

 

Figure 18 Distance between the eyes normalized to dorsal length. (a). At 10 dpf. (b). At 20 
dpf. Significant differences are observed between HO5 and HNI at both stages. There are 
significant differences between all the southern lines at 10 dpf which tends to become 
smaller at 20 dpf. 

 
 

Sample 
Size 

Mean Median Standard 
Deviation 

Icab 24 0.0812 0.0816 0.0064 
 

HO5 25 
 

0.0856 0.0852 0.0065 

HdrR 16 
 

0.0758 0.0775 0.0078 

Kaga 49 
 

0.0773 0.0773 0.0074 

HNI 23 
 

0.0737 0.0752  0.0069 
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      (a) 

  

    

  

          

 

 

 

      (b) 

     

Table 4 Distance between eyes measured from dorsal orientation. (a). At 10 dpf. (b). At 20 
dpf. 

 

 
 

Sample 
Size 

Mean Median Standard 
Deviation 

Icab 79 0.0886 
 

0.0882 
 

0.0049 
 

Hncmh2 16 0.09876 
 

0.0988 
 

0.0073 
 

HO5 53 
 

0.094 
 

0.094 
 

0.0033 
 

HdrR 76 
 

0.0971 
 

0.0961 
 

0.0059 
 

Kaga 122 
 

0.0935 
 

0.0933 
 

0.0069 
 

HNI 46 
 

0.0861 
 

0.085 
 

 0.005 
 

Trio 1 2 0.0922 
 

0.0922 
 

0.0027 
 

Trio 2 4 0.094 
 

0.0914 
 

0.0139 
 

 
 

Sample 
Size 

Mean Median Standard 
Deviation 

Icab 24 0.0978 0.0970 0.0061 
 

HO5 25 
 

0.1014 0.1003 0.0074 

HdrR 16 
 

0.0958 0.0947 0.0038 

Kaga 49 
 

0.0976 0.0969 0.0080 

HNI 23 
 

0.0889 0.0883  0.0058 
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The differences between the HO5 and HNI lines are very significant (p <<< 

0.001) at both 10 and 20 dpf. Interestingly, all the southern lines show 

significant differences from each other at 10 dpf (with Icab and HdrR showing 

the most variation). However, at 20 dpf this difference tends to get smaller. 

Furthermore, the lines show an increase in the distance with age. 

Dorsal width normalized to dorsal length 

Two dorsal widths are used as landmarks. The first is the width of the hatchling 

measured between the pectoral fins. Figure 19 and Table 5 describe the 

landmark. 

 

Figure 19 Dorsal width normalized to the dorsal length. (a). At 10 dpf. (b). At 20 dpf. 
Significant differences are observed among the different lines at 10 dpf and the differences 
get reduced at 20 dpf. HO5 and HNI show differences at both time points. 

As in the case of the distance between the eyes, the dorsal width between the 

pectoral fins showed variations among the southern and the northern lines.  At 

10 dpf the difference between HO5 and HNI was very significant (p <<< 0.001) 

and at 20 dpf the difference was significant (p << 0.001). At 10 dpf the Icab and 

HdrR southern lines show maximum difference in width which becomes less 

pronounced at 20 dpf.  
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      (a) 

 

 

 

 

 

 

      (a) 

  

      (b) 

   

Table 5 Dorsal width normalized to the dorsal length. (a). At 10 dpf. (b). At 20 dpf. 

 
 

Sample 
Size 

Mean Median Standard 
Deviation 

     

Icab 79 0.1111 
  

0.1115 
  

0.0089 
  

Hncmh2 16 0.1167 0.1167 
 

0.0071 

HO5 53 
 

0.1141 0.1128 0.0086 

HdrR 76 
 

0.1249 0.1241 0.0063 

Kaga 122 
 

0.1153 0.1151 0.0112 

HNI 46 
 

0.0999 0.0984 0.0089 

Trio 1 2 0.1027 
 

0.1026 0.0003 

Trio 2 4 0.1119 
 

0.104 
 

0.019 

 
 

Sample 
Size 

Mean Median Standard 
Deviation 

Icab 24 0.1189 0.1196 0.0099 
 

HO5 25 
 

0.1175 0.1157 0.0105 

HdrR 16 
 

0.1221 0.1218 0.0093 

Kaga 49 
 

0.1129 0.1113 0.0147 

HNI 23 
 

0.1094 0.1099 0.0095 
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Dorsal width beyond the yolk sac normalized to dorsal length 

The second dorsal width landmark was measured just beyond the yolk sac. 

Figure 20 and Table 6 show the statistical data.  

 

Figure 20 Dorsal width beyond the yolk sac normalized to the dorsal length. (a). At 10 dpf. (b) 
At 20 dpf. There is no significant difference between the lines at both time points. The width 
remains approximately same at both 10 and 20 dpf. 

       

(a) 

 
 

Sample 
Size 

Mean Median Standard 
Deviation 

Icab 79 0.0576 
  

0.0563 
  

0.0057 
  

Hncmh2 16 0.0683 0.0673 
 

0.0106 

HO5 53 
 

0.0556 0.0552 0.0049 

HdrR 76 
 

0.0597 0.0588 0.0052 

Kaga 122 
 

0.0639 0.0627 0.0096 

HNI 46 
 

0.0562 0.0551 0.0057 

Trio 1 2 0.0550 
 

0.0550 9.7504e-04 

Trio 2 4 0.0588 
 

   0.0590 
 

0.0024 
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      (b) 

Table 6 Dorsal width beyond the yolk sac normalized to the dorsal length. (a). At 10 dpf. (2). 
At 20 dpf. 

There are no significant differences between the different lines for this 

landmark at 10 dpf. However, at 20 dpf, differences between the northern and 

southern lines emerge and specifically between the HO5 line and the HNI line 

(p < 0.05). 

Dorsal length 

The dorsal length is measured from the tip of the mouth at the anterior end to 

the tip of the caudal fin at the posterior end. Figure 21 and Table 7 describe this 

landmark. As can be seen from Figure 21, there is a large variation in the dorsal 

length between all the lines analyzed. There are also significant differences in 

the southern lines themselves. Overall, the Icab is the longest and the Kaga the 

shortest at both 10 and 20 dpf. Interestingly, there is no significant difference 

(p > 0.05) between the HO5 and HNI lines at both time points.  

 

 

 
 

Sample 
Size 

Mean Median Standard 
Deviation 

Icab 24 0.0578 0.0578 0.0059 
 

HO5 25 
 

0.0599 0.0582 0.0094 

HdrR 16 
 

0.0582 0.0587 0.0059 

Kaga 49 
 

0.0565 0.0554 0.0070 

HNI 23 
 

0.0530 0.0545 0.0095 
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      (a) 

 

 

 
 

Sample 
Size 

Mean Median Standard  
Deviation 

Icab 79 2181.738 
     

2197.101 
     

125.44 
     

Hncmh2 16 1939.717 1904.9405 
 

129.53 

HO5 53 
 

2087.4623 2092.138 118.77 

HdrR 76 
 

2006.764 2024.089 108.02 

Kaga 122 
 

1862.899 1857.5545 113.9 

HNI 46 
 

2067.788 2081.539 78.9597 

Trio 1 2 2128.3655 
 

2128.3655 112.48 

Trio 2 4 2133.3685 
 

2103.2275 
 

85.0822 

Figure 21 Dorsal length of the different lines. The y-axis is the length in pixels. (a). At10 dpf 
using at 20 x zoom factor. (b). At 20 dpf using a 10 x zoom factor. Significant differences in 
length are observed between the lines with Icab being the longest and the Kaga line being 
the shortest. No significant difference is observed between the representative lines: HO5 and 
HNI. 
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      (b) 

Table 7 Dorsal length statistics. (a). At 10 dpf. (b). At 20 dpf. 

 

Eye diameter normalized to the lateral length 

The first lateral landmark quantified was the eye diameter. As seen in Figure 22 

(and Table 8), the normalized eye diameter remains relatively constant 

between 10 and 20 dpf for the respective lines. There is also no significant 

difference between the eye diameter of the HO5 and HNI lines. However, there 

are significant differences among the southern and northern lines. The Icab 

individuals have the smallest diameter and the northern Kaga individuals 

showing the largest diameter when normalized to the lateral length. While the 

HdrR has a larger normalized eye diameter  compared to the Icab individuals at 

10 dpf, at 20 dpf there is no significant difference.      

 

 

 

 
 

Sample Size Mean Median Standard 
Deviation 

Icab 24 1.5290e+03 1.4866e+03 166.6860 
 

HO5 25 
 

1.2405e+03 1.2263e+03 157.4734 

HdrR 16 
 

1.2704e+03 1.2944e+03 74.2816 

Kaga 48 
 

1.1971e+03 1.1135e+03 338.8127 

HNI 23 
 

1.4135e+03 1.2745e+03 415.9160 
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Figure 22 Eye diameter normalized to the lateral length. (a). At 10 dpf there are differences 
among the southern and northern individuals. (b). At 20 dpf. The eye diameter remains 
relatively constant between the two time points. There are no significant differences between 
the HO5 and HNI lines. 

 

      (a) 

 

 
 

Sample 
Size 

Mean Median Standard  
Deviation 

Icab 80 0.0785 
   

0.0788 
   

0.0051 
   

Hncmh2 10 0.0824 0.0814 
 

0.005 

HO5 52 
 

0.0827 0.0833 0.0054 

HdrR 70 
 

0.0815 0.0816 0.0035 

Kaga 108 
 

0.089 0.0883 0.006 

HNI 41 
 

0.0832 0.0829 0.0058 

Trio 1 2 0.0856 
 

0.0856 0.0044 

Trio 2 4 0.0815 
 

     0.0813 
 

0.009 
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      (b) 

Table 8 Eye diameter normalized to the lateral length. (a). At 10 dpf. (b). At 20 dpf. 

 

Lateral width before the beginning of the yolk sac normalized to lateral length 

The first of the two lateral widths quantified is the width measured just before 

the beginning of the yolk sac (Fig. 16b). Figure 23 and Table 9 show the relevant 

measurements. Firstly, there is very significant difference between the HO5 and 

HNI lines both at 10 and 20 dpf. As before, at 10 dpf there is variation among 

the different southern lines with Icab and Hncmh2 being close to each other 

and HO5 and HdrR being close to each other. However, at 20 dpf differences 

start to show between HO5 and HdrR. For the northern lines studied, Kaga and 

HNI are both seen to be significantly different at both time points. Interestingly, 

at both time points, the southern HdrR and northern Kaga are close to each 

although significant differences are seen between HO5 and HNI. 

 

 

 

 
 

Sample Size Mean Median Standard 
Deviation 

Icab 24 0.0812 0.0811 0.0048 
 

HO5 25 
 

0.0845 0.0872 0.0060 

HdrR 16 
 

0.0782 0.0776 0.0040 

Kaga 48 
 

0.0889 0.0881 0.0069 

HNI 23 
 

0.0821 0.0821 0.0043 
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Figure 23 Lateral width measured before the beginning of the yolk sac normalized to the 
lateral length. (a). At 10 dpf. Significant differences are observed among and between the 
different lines. The HO5 and HNI are very significantly different. (b). At 20 dpf. Very 
significant difference is still observed between HO5 and HNI. HdrR and HO5 which were quite 
similar at 10 dpf begin to show differences at 20 dpf. 

 

      (a) 

 

 
 

Sample 
Size 

Mean Median Standard  
Deviation 

Icab 80 0.1282 
   

0.1272 
   

0.0064 
   

Hncmh2 10 0.1305 0.1289 
 

0.0085 

HO5 52 
 

0.1382 0.1380 0.0063 

HdrR 70 
 

0.1398 0.1389 0.0066 

Kaga 108 
 

0.1381 0.1362 0.0101 

HNI 41 
 

0.1290 0.1279 0.0087 

Trio 1 2 0.1331 
 

0.1331 0.0023 

Trio 2 4 0.1267 
 

     0.1245 
 

0.0097 
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      (b) 

Table 9 Lateral width measured before the beginning of the yolk sac normalized to the lateral 
length. (a). At 10 dpf. (b). At 20 dpf. 

 

Lateral width normalized to the lateral length 

The second width related morphometric distance in the lateral orientation is 

the width across the middle of the yolk sac (Fig. 16b). This width is of 

importance as it correlates to the size of the yolk sac. Figure 24 and Table 10 

summarize the data for this parameter. At 10 dpf, there is very significant 

difference (p <<< 0.001) between the normalized lateral width of the HO5 and 

HNI lines. But, at 20 dpf this difference is not significant anymore (p > 0.05). 

The differences between the individual lines that are seen at 10 dpf tend to get 

smaller at 20 dpf.  

 

 

 

 

 
 

Sample Size Mean Median Standard 
Deviation 

Icab 24 0.1301 0.1303 0.0062 
 

HO5 25 
 

0.1393 0.1393 0.0076 

HdrR 16 
 

0.1312 0.1325 0.0052 

Kaga 48 
 

0.1316 0.1310 0.0079 

HNI 23 
 

0.1243 0.1248 0.0057 
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Figure 24 Lateral width normalized to the lateral length. (a). At 10 dpf very significant 
differences are observed between HO5 and HNI lines. (b). At 20 dpf the differences HO5 and 
HNI are not significant. 

      (a) 

 

 

 

 
 

Sample 
Size 

Mean Median Standard  
Deviation 

Icab 80 0.1456 
    

0.1401 
    

0.0173 
    

Hncmh2 10 0.164 0.1615 
 

0.0196 

HO5 52 
 

0.1504 0.1447 0.0187 

HdrR 70 
 

0.1707 0.1613 0.0284 

Kaga 108 
 

0.1368 0.1343 0.0152 

HNI 41 
 

0.1321 0.1299 0.008 

Trio 1 2 0.1502 
 

0.1502 0.0109 

Trio 2 4 0.176 
 

0.1626 
 

0.0436 
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      (b) 

Table 10 Lateral width normalized to lateral length. (a). At 10 dpf. (b). At 20 dpf. 

 

Lateral length 

The last morphometric feature to be characterized for the inbred panel was the 

lateral length. It is the total distance from the tip of the mouth at the anterior 

end to the tip of the fin at the posterior end in the lateral orientation (Fig. 16b). 

As can be seen from Figure 25 and Table 11, at both time points there are 

variations in length among the southern and northern lines. Similar to the 

dorsal length, as would be expected, the Icab is longest and the Kaga 

individuals are the smallest in terms of length. There is no significant difference 

between the HO5 and HNI lines at both 10 dpf and 20 dpf (p > 0.05). 

 

 

 
 

Sample Size Mean Median Standard 
Deviation 

Icab 24 0.1537 0.1553 0.0091 
 

HO5 25 
 

0.1443 0.1453 0.0110 

HdrR 16 
 

0.1495 0.1484 0.0085 

Kaga 48 
 

0.1444 0.1459 0.0122 

HNI 23 
 

0.1395 0.1412 0.0111 
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Figure 25 Lateral length. The y-axis is length in pixels. (a). At 10 dpf at 20 x zoom factor: No 
significant differences observed between HO5 and HNI lines. Differences are seen among 
southern and northern lines. (b). At 10 dpf at 10 x zoom factor: No significant difference 
between HO5 and HNI. Differences among southern and northern lines can still be observed. 

 

      (a) 

 

 
 

Sample 
Size 

Mean Median Standard  
Deviation 

Icab 80 2016.1089 
     

2037.564 
     

   130.4475 

     

Hncmh2 10 1899.7318 1889.266 
 

85.4364 

HO5 52 
 

1937.9264 1944.1645 96.3895 

HdrR 70 
 

1854.7904 1878.9605 98.3455 

Kaga 108 
 

1740.6117 1736.255 105.8033 

HNI 41 
 

1930.1593 1933.214 75.0756 

Trio 1 2 1972.013 
 

1972.013 110.5887 

Trio 2 4 1986.3055 
 

      1974.119 
 

67.3167 
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Figure 26 Comparison of the total body length from dorsal and lateral orientations. (a). At 10 
dpf the Pearson correlation coefficient is ~ 0.94. (b). At 20 dpf the correlation coefficient is ~ 
1.  

 

       (b) 

Table 11 Lateral length. (a). At 10 dpf. (b). At 20 dpf.  

 

Summary of the morphometric analysis of the Medaka inbred lines 

The first reassuring result was that the automated quantification of body length 

from both the dorsal and the lateral perspectives was almost perfectly 

correlated (Spivakov et al., 2014). Figure 26 shows the comparison between the 

mean lengths derived from the two viewpoints at both 10 and 20 dpf.  

 

 

 

 

 

 
 

Sample Size Mean Median Standard 
Deviation 

Icab 24 1.4885e+03 1.4409e+03 157.9945 
 

HO5 25 
 

1.2277e+03 1.1790e+03 166.2848 

HdrR 16 
 

1.2499e+03 1.2931e+03 105.2443 

Kaga 48 
 

1.1920e+03 1.1034e+03 315.6714 

HNI 23 
 

1.3939e+03 1.2666e+03 397.6591 
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It is observed that the total body lengths of the HO5 and HNI lines were similar 

and showed no significant differences both at 10 and 20 dpf. This was one of 

the main reasons to choose these two lines as representatives of the southern 

and northern populations respectively. However, there is variation in body 

length “within” the different southern and northern populations. Since majority 

of the variance between individuals in a fish correlates with the body length, 

the morphometric features were all normalized to the body length (Spivakov et 

al., 2014).  

Two morphometric parameters, the distance between the eyes (measured in 

the dorsal orientation) and the eye diameter (measured in the lateral 

orientation), are craniofacial features that play an important role in the vision 

system. Interestingly, given that the southern HO5 and the northern HNI lines 

have similar total body lengths they differ significantly in the distance between 

the eyes while the diameter of the eyes are similar.  

Finally, from the prey capture mechanism perspective, there is a significant 

difference in lip width between the different lines and the difference becomes 

more pronounced at 20 dpf between the HO5 and HNI lines. Variations are also 

observed among the southern individuals for this feature at 20 dpf.  

 

Behavior 

Three behavioral patterns were characterized and compared across the 

different inbred lines and with zebrafish. The aim was to establish that 

differences exist in behavior among the inbred lines and to quantify these 

behavioral patterns and further populate the phenotype matrix. The behavioral 

phenotypes that were characterized are: spontaneous locomotion, feeding 
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Figure 27 Comparison of locomotion behavior between HO5 and HNI 
lines. (a). Example of motion track for HNI. (b). Example of motion 
track for HO5. (c). Average distance travelled in 3 minutes. Very 
significant difference observed between HO5 and HNI. (d). Average 
speed of motion in the 3 minute window. Very significant difference 
observed between the two lines (P <<< 0.001). 

behavior and finally prey capture behavior. All the behavioral assays were 

conducted with hatchlings at 10 dpf. 

 

Spontaneous locomotion 

Medaka begin to exhibit spontaneous locomotion just after hatching around 10 

dpf. It was observed that different Medaka lines showed different locomotion 

behavior. In order to quantify this behavior, hatchlings from the southern HO5 

and the northern HNI lines were used. As described in Figure 11, motion was 

recorded for each hatchling in 3 minute durations over 3 hours. The experiment 

was conducted at 3 different time points (as described in the experiment 

protocol in the Methods chapter) to account for time-of-day effects. Using the 

automated tracking algorithm, two parameters were quantified: the average 

distance travelled in 3 minutes and the speed of motion. Figure 27 shows the 

comparison of locomotion between the HO5 and HNI lines. 
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(a) (b) 

Figure 28 Comparison of feeding rate between two southern lines. (a) Icab at 10 dpf. (b) HdrR 
at 10 dpf. While both lines consumed 90 % of the paramecia in about 5 – 6 hours, there are still 
significant individual differences. 

Very significant differences are observed in both the distance travelled and the 

speed between the northern HNI and southern HO5 lines. While the HNI line 

was slower, the hatchlings explored the experimental arena much more. The 

HO5 hatchlings showed very rapid locomotion and mostly showed movement 

along the boundaries of the arena and occasionally moving into the center of 

the arena. Since, both lines exhibit anxiety when first introduced into the arena, 

only the data after acclimatization was used in the analysis. 

Feeding behavior 

A preliminary analysis of feeding rate among two southern lines (the Icab and 

the HdrR) was conducted to identify if any differences exist among hatchlings at 

10 dpf with regard to the amount food consumed. Indeed, it was observed that 

there are differences not just between the lines but also among individuals 

drawn from the same line. The experiment performed was similar to the 

locomotion analysis but with about 100 paramecia provided to the hatchlings. 

The hatchlings were then recorded for about 10 hours after being given the 

paramecia. The amount of paramecia left in the petri-dish after each hour is 

then automatically analyzed according the algorithm described in Figure 13. 

Figure 28 shows the preliminary results. 
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It is observed from Fig. 28 that most of the individuals consumed about 60 % of 

the food within the first 2 hours. But, there are still very large variations in how 

the individuals fed. This was the motivation to understand prey capture 

mechanism in Medaka hatchlings and to also compare it with how the related 

organism, the zebrafish, captures prey. 

Prey capture behavior 

Prey capture is an innate goal-directed behavior responsible for feeding success 

and critical for ensuring the survival of an organism. This fundamental trait 

manifests itself very early in an organism’s developmental process. The 

mechanism of prey capture involves the use of specific sensory modalities and 

the execution of certain movements drawn from an organism’s repertoire of 

locomotion patterns. Different organisms exhibit different prey capture 

strategies depending on the environment and the nature of the prey.  Studying 

prey capture, therefore, allows one to dissect sensory and motor system 

architecture in an organism. Larval/juvenile zebrafish have been used to study 

prey capture behavior to understand the complex locomotion strategies 

employed during this behavior (Borla et al., 2002; McElligott & O'Malley D, 

2005). However, currently no prey capture studies have been performed on 

Medaka hatchlings. 

The zebrafish use vision as the sensory modality in prey capture (Gahtan et al., 

2005). To date, there is no report on sensory modalities employed by juvenile 

Medaka for prey capture behavior. Vision based goal-directed behavior starts 

with target identification followed by the execution of a series of movement 

patterns resulting in the capture of the target (Trivedi & Bollmann, 2013). The 

movements themselves could be discrete or continuous in time with the aim of 

resolving target coordinates and trajectory and using visual feedback to finally 

achieve the intended goal (Land, 1992b).  
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Prey capture behavior starts to manifest itself in zebrafish around 5 days post 

fertilization (dpf) while Medaka demonstrate it from 10 dpf (just after 

dechorionation). At these developmental time points, the zebrafish and the 

Medaka have similar size attributes (being about 4 mm in length). Previous 

studies have identified the zebrafish locomotion repertoire (Fero et al., 2011). 

Types of locomotion patterns in Medaka during prey capture 

Several studies have been reported to understand axial kinematics and visually 

guided prey capture behavior in zebrafish (Bianco et al., 2011; Borla et al., 

2002; Fero et al., 2011; McElligott & O'Malley D, 2005; Trivedi & Bollmann, 

2013). We begin with trying to find the locomotion patterns in Medaka during 

prey capture.  

When free swimming Medaka are provided with paramecia in a small petri-

dish, they execute different locomotion patterns and capture the paramecia. 

Using the high-speed imaging system described in Figure 14 (Trivedi & 

Bollmann, 2013) 18 independent prey capture episodes of the HNI strain and 9 

episodes of the HO5 strain were recorded. Each episode consists of one 

hatchling capturing a single paramecium. An analysis of all these video 

sequences revealed four consistent locomotion patterns exhibited by both 

strains of Medaka during the prey-capture event. Figure 29 shows an example 

prey-capture sequence that reveals these patterns. The first was the large 

rostro-caudal asymmetrical bend that facilitates large turns and is also seen to 

contribute to the first significant movement towards the prey. The second 

pattern observed were small symmetrical tail movements that were used for 

facilitating forward movement and slow swimming. Small asymmetrical caudal 

tail bends constituted the third set of patterns to provide small angular 

adjustments and was employed just before the final capture event. Finally, a 

rapid short-duration turn of the head, referred to as the “head snap”, with the 
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Figure 29 Locomotion patterns exhibited by Medaka during an episode of prey capture. The 
blue arrows show the large asymmetrical tail bend (used to execute a large angle turn and is 
the first movement towards the prey: the initiation phase, the symmetrical tail bends used 
for slow swimming and forward movements: the swim phase; small asymmetrical tail bends 
to make small adjustments before the prey capture: the pre-snap phase. The red arrows 
show the short “head snap” movement used to consume the prey: the snap phase. The blue 
circle shows the position of the paramecium.  

body exhibiting a characteristic bending to assist the snap was used to consume 

the prey. 

Based on these locomotion patterns we divide an entire Medaka prey-capture 

episode into four phases. The first phase is the ‘initiation’ phase where the 

Medaka detect the presence of the prey and perform the first large movement 

towards the prey. The second phase, which we call the ‘swim’ phase, is 

characterized by the fish moving towards the prey and is temporally chosen to 

be half-way between the initiation phase and the end of the third phase called 

the ‘pre-snap’ phase. The pre-snap phase occurs just before the final capture 

event and involves the culmination of minor angular adjustments and the start 

of the final phase. The final phase is the ‘snap’ phase which constitutes the 

head snap to consume the prey. 
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Prey tracking and capture in Medaka 

For prey capture, larval zebrafish perform a series of approaching maneuvers 

which are interrupted by brief pauses. The sequence terminates with a capture 

swim when the prey is at striking distance. So, zebrafish exhibit a discrete or 

intermittent prey capture behavior which involves swimming bouts 

interspersed with pauses (Kramer, 2001; McElligott & O'Malley D, 2005). 

Furthermore, it was shown that the individual swimming bouts are an 

elementary motor pattern which is superimposed with a graded turning 

component controlled by visual feedback to form a goal-directed motor 

sequence (Trivedi & Bollmann, 2013). Importantly, it was observed that the 

zebrafish detect the target preferably monocularly while the subsequent 

tracking and capture phases are binocular (Bianco et al., 2011; Patterson et al., 

2013; Trivedi & Bollmann, 2013). Quantitative analysis of larval zebrafish prey 

capture  from (Trivedi & Bollmann, 2013) determined the midline of the larva in 

each frame of the high-speed videos and computed the angular deviations, γ1 – 

γ5 of five tail segments from the body axis. Furthermore, the angle between the 

prey position and the body axis (φ), the prey distance with respect to the 

midpoint between the eyes (d) and the orientation of the fish (ϴ) were 

extracted. This parametrized the prey capture sequence using a set of 8 

observables (γ1 – γ5, d, φ, ϴ). This is shown schematically in Fig. 15. Using the 

same approach, Medaka prey capture sequences were quantified in order to 

facilitate a comparison. Figure 30a – 30d show representative comparisons for 

the tail angle γ5, the fish-prey angle φ, the orientation ϴ and the fish-prey 

distance d  between Medaka and zebrafish larva during one prey capture 

sequence.  

The most important feature of the Medaka prey capture was that it was 

executed in continuous motion (Fig. 30a). There were no pauses or individual 
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Figure 30 Comparison of prey capture parameters between Medaka (left panel) 
and zebrafish (right panel). (a). Tail angle γ5 showing that Medaka have a 
continuous motion during prey capture as opposed to zebrafish that has discrete 
intermittent motion (red arrows). (b) Fish-prey angle in both Medaka and 
zebrafish reduces with time but in Medaka it is more continuous. (c)Orientation. 
Zebrafish orient towards the prey at the beginning of the prey capture sequence 
while Medaka do not orient themselves completely in the line-of-sight of the 
prey. (d). Distance to prey reduces monotonically in both but again with 
differences in the continuous and discrete approach.  

(a) 

(b) 

(c) 

(d) 

swimming bouts but rather a continuous movement towards the prey. This is in 

sharp contrast to the zebrafish behavior which employs discrete swimming 

bouts interspersed with pauses. 

Figure 30b shows that the fish-prey angle in both the Medaka and the zebrafish 

reduces with time. However, while in zebrafish the first few bouts bring it 

almost in the line-of-sight of the prey, in Medaka the reduction in the angle is 

more continuous and decreases over time. The orientation of the fish with 

respect to the prey over time can be seen in Fig. 30c. The zebrafish orient 

themselves to be aligned to the prey directly in the beginning of the prey 

capture sequence while the Medaka never orient themselves such that they are  
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Figure 31 Comparison of mean distances to the prey for the two 
lines: HNI shown in (a) and HO5 shown in (b). There is a 
monotonic decrease in distance to the prey over the different 
phases. The distance to the prey just before the snap phase is 
identical for both lines. 
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directly aligned to the prey, always tending to keep the prey to one side of their 

midline (Fig. 39b). Finally, Fig. 30d shows that both Medaka and zebrafish 

monotonically reduce the distance to the prey over time. However, the 

zebrafish does this in discrete steps while the Medaka reduces the distance 

continuously over time.  

As discussed above, and to reiterate, since the Medaka prey capture event 

does not have individual swim bouts, the prey capture episode is divided into 

four phases (Fig. 29): 1. the initiation phase, 2. the swim phase, 3. the pre-snap 

phase and finally 4. the snap phase.  

 The mean distances to the prey for all the capture sequences both for the HNI 

and HO5 lines were compute and are shown in Fig. 31.  

 

 

                       (a) 

 

 

     

   

 

                       (b) 
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Figure 32 Eye angles computed to understand vision directed prey 
capture in Medaka hatchlings. The blue circle denotes the location of 
the prey. Red: the angle the prey makes with respect to the body 
axis. White: the ipsi- and contralateral eye angles. Yellow: The angle 
the prey makes on the ipsi- and contralateral eyes.  

7 

2
 

-

7

7

 

The mean distances to the prey in the initiation phase for HNI was 4.37 ± 0.25 

mm and for the HO5 line it was 4.6 ± 0.53 mm. In the swim phase, for the HNI 

the distance was 2.79 ± 0.21 mm and 2.3 ± 0.33 mm for the HO5 line. Finally, in 

the pre-snap phase just before the final capture event, the mean distance to 

the prey for the HNI line was 0.49 ± 0.01 mm and 0.49 ± 0.03 mm for the HO5 

line. As can also be seen from Fig. 31, the trend lines confirm that there is a 

monotonic decrease in distance between the fish and the prey over the 3 

phases of prey capture. Finally, the distance to the prey just before the final 

capture event is identical in both lines.  

In order to systematically investigate vision directed Medaka prey capture, 

three types of eye angles were computed for all the sequences: 1. The angle 

the prey makes with the midline (body axis) of the fish; 2. The ipsilateral and 

contralateral eye angles with respect to the body axis and 3. The ipsi- and 

contralateral eye angles with respect to the prey as well. An illustration of the 

different eye angles is given in Fig 32.  
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(a) (b) 

Figure 33 Distribution of the angle of the prey in the initiation phase. Mean angle when prey 
capture was initiated was (mean ± s.e.m.): (a). HNI: 64.5° ± 5.03°. (b). HO5: 91.33° ± 7.86°. 

 

 

 

Depending on whether the prey was visible to the ipsilateral or the 

contralateral eye in the initiation phase, the angle the prey made to the body 

axis (shown in red in Fig. 32) was computed for all sequences. This distribution 

is shown in Fig. 33.  

 

It is observed that the prey was preferentially detected at the initiation phase 

for HNI only at angles greater than 32° (the mean being 64.5° ± 5.03°, 32° < φ < 

104°) and with the prey being invisible to the contralateral eye. For the HO5 

strain, the detection happens at angles greater than 61° (the mean being 91.33° 

± 7.86°, 61° < φ < 140°). Clearly, the HO5 line individuals have a larger angle 

with respect to the prey before initiation as compared to the HNI line. Since the 

prey was completely invisible to the contralateral eye at initiation, it can be 
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Initiation 
Point 

Swim 
Point 

Before Snap 
Point 

Figure 34 The position of the prey (indicated with the blue circle) with 
respect to the ipsilateral and contralateral eye angles at three temporal 
points during prey capture. As is observed in all the three phases, the 
prey is never in the binocular field-of-view of the fish suggesting that 
prey capture in Medaka hatchlings is monocular. 

concluded that prey capture in Medaka is initiated monocularly. This was 

reported to be similar in zebrafish (Trivedi & Bollmann, 2013).  

However, the intriguing feature of the prey capture sequences in Medaka was 

that the orientation of the fish was never aligned to that of the prey and the 

Medaka tended to position themselves in such a way as to keep the prey 

always lateral to their body axis. This suggested strongly that the Medaka prey 

capture maybe completely monocular (as opposed to the zebrafish which 

changes to binocular prey capture locomotion after monocular detection). 

Monocular prey capture in Medaka hatchlings 

We begin with evaluating the position of the prey with respect to the ipsi- and 

contralateral eye angles (shown in white in Fig. 32) in the first three temporal 

phases of prey capture: the initiation point, the swim point and the point just 

before the head snap movement for capture occurs. An illustration of this is 

given in Fig. 34. 
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As can be seen from the three temporal snapshots of a typical prey-capture 

sequence in Fig. 34, in none of the time points, during the progression of the 

prey-capture event, does the prey ever come into the binocular field-of-view of 

the fish’s vision. The prey is always invisible to the contralateral eye. In fact, it 

was observed in the prey capture sequences that the hatchlings made an effort 

to always keep the prey on one side of the body axis. This strongly suggests 

that Medaka seem to prefer monocular prey tracking and capture. To obtain a 

quantitative evidence of this, we also quantified ocular vergence angles at the 

three different time points as shown in Fig. 35. 

 

(a) 

 

(b) 

Figure 35 Ocular vergence angles (mean ± s.e.m) at the initiation point, swim point and 
before snap point for HNI and HO5 lines shown in (a) and (b) respectively. There is no 
significant change in vergence during the prey capture sequence. 
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The vergence angles at initiation for HNI and HO5 strains were: 35.1667° ± 

3.1501° and 42.6667° ± 3.8586° respectively; at the swim point were: 30.6667° 

± 2.8924° and 39.8889° ± 2.3596° respectively and at the pre-snap point were: 

33.3333° ± 3.5874° and 49.2222° ± 1.31° respectively. There was no significant 

increase in the vergence angle in both the HNI and the HO5 lines between prey-

capture initiation and the swim point (p > 0.3 for HNI and p > 0.5 for HO5, t - 

test) and between the initiation point and before snap (p > 0.7 for HNI and p > 

0.1 for HO5, t – test). This is in sharp distinction to the zebrafish behavior 

where the ocular vergence increases substantially from the pre-capture to the 

strike phase where an increase vergence of close to 40° has been reported 

(Bianco et al., 2011). While there was no significant difference in vergence 

between the swim point and the before snap point in HNI individuals (p > 0.3, t-

test), there was a slight significance in HO5 individuals (p ~ 0.02). We believe 

this is because of the limited number of HO5 prey capture episodes (N = 9) one 

outlier in the data. With this one outlier removed there was no significant 

difference anymore (p ~ 0.08). However, a more number of prey capture 

episodes for HO5 need to be analyzed.  

To further investigate the monocular prey capture behavior, we studied the 

relation between the fish-prey angle and the angle the prey makes on the ipsi- 

and contralateral eyes for all the sequences at the three different time points. 

The eye angle is scored positive if the prey is visible to that eye and negative if 

it is not. Figure 36 shows the diagrammatic representation of this analysis for 

all the different phases. As can be seen, the eyes never position themselves in a 

way that the prey is visible to both eyes in both the HNI and HO5 lines. This 

gives further evidence that the prey capture mechanism is indeed monocular. 
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      (a) 

 

 

 

 

 

 

      (b) 

 

 

 

 

 

 

 

      (c) 

 

 

 

Figure 36 Comparison of fish-prey angle and the angle the prey makes on the ipsi- and 
contralateral eyes. The left panels is for the HNI line and right pane for the HO5 line. (a), (b), and (c) 
indicate the three different prey capture phases respectively. In none of the sequences, the two 
eyes are positioned such that the prey is visible to both eyes and thereby indicating monocular 
vision during prey capture. 
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Having qualitatively and quantitatively established the monocular prey capture 

behavior in Medaka, we investigated if there is a correlation between the initial 

prey angle and the change the fish makes in its orientation from the initiation 

point to the swim point. This is shown in Fig. 37. We computed the coefficient 

of determination that indicated a linear relationship between the two 

parameters. 

 

 

(a) 

 

      (b) 

Figure 37 Prey angle vs. change in orientation of the fish from initiation to the swim point. 
(a). Illustration of the calculated angle. (b). HNI on the left side and HO5 on the right side 
show linear relation between the two. 

 

One of the characteristic features in Medaka prey capture is the snap 

movement of the head to consume the prey. Figure 38a shows an overlay of 
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two time points: the before snap time point and the end of the snap movement 

time point. During the snap movement, the body of the fish exhibits a 

characteristic bending followed by a very short snap of the head (lasting 

between 28 – 32 ms on the average) to consume the prey. We quantified the 

angle of the snap movement and found the snap angle to be 26.67° ± 1.79° 

(mean ± s.e.m.) for HNI and 32.44° ± 2.8° for the HO5 strain. Furthermore, 

there was a correlation between the prey angle before snap and the angle of 

the snap itself, Fig. 38b, indicating that the snap angle depends on the angle 

the prey makes to the ipsilateral eye just before capture. 

 

(a) 

 

 

      (b) 

Figure 38 Head snap movement is a characteristic feature of prey capture in Medaka 
hatchlings. (a) An illustration of the movement of the head from before snap phase to the 
snap and capture phase. (b) Correlation between prey angle before snap and the angle after 
the snap is linear (Pearson’s coefficient > 0.6).  
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Frequency analysis 

We performed two frequency analyses to identify the frequency components in 

the locomotion patterns exhibited during the prey capture. Firstly, we 

computed the power spectral density of the temporal tail angle data. A 

representative spectrum is shown in Fig. 39a. We identified two major 

frequency components: one is the low frequency 3 – 5 Hz component and the 

other is the 15 – 20 Hz high frequency. We compared this with the zebrafish 

analysis from (Trivedi & Bollmann, 2013) and found that the zebrafish has a low 

frequency tail-angle component in the range of 3 – 5 Hz and a high-frequency 

component in the range of 20 – 35 Hz. We performed a time-frequency spectral 

decomposition and compared it with the temporal progression of the fish 

during a capture event (shown in Fig. 39b). We found that the high-frequency 

15 – 20 Hz component corresponds to forward swimming with symmetrical tail 

beat motion. The low frequency 3 – 5 Hz component corresponded to angular 

changes in orientation of the fish. 

 

 

(a) 
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(b) 

Figure 39 Frequency analysis of the tail beat. (a) Power spectral density analysis revealed a 
low frequency component between 3 – 5 Hz and and high frequency component of 15 – 20 Hz 
for HNI individuals. This is in contrast to zebrafish which shows a 3 – 5 Hz low frequency 
component and a 30 Hz high frequency component. (b) Spectrogram analysis revealed that 
the high frequency component corresponds to forward swimming with symmetrical tail 
movement and the low frequency component corresponds to angular changes when 
compared with the temporal progress of the hatchling. The red line indicates 0° suggesting 
that the Medaka do not orient themselves to the prey but rather approach it continuously. 
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Discussion and Outlook 

 

Medaka are highly polymorphic organisms that show several phenotypic 

differences depending on their geographic origins. They are tolerant to 

inbreeding (Kirchmaier et al., 2015) and, therefore, provide a rich resource for 

genomic and phenotypic studies (Spivakov et al., 2014). Owing to their 

phenotypic variance they are ideal vertebrate model organisms that can be 

used to understand the relationship between the genotype, the environment 

and the phenotype (the G-E-P map) and for Genome Wide Association Studies 

to assess individual risk factors for disease and disorders. 

The goal of this thesis was twofold: one was to establish a comprehensive 

phenotyping platform that can automatically image and analyze a number of 

phenotypic features of teleostei like Medaka and zebrafish and the second was 

to identify and quantify morphometric and behavioral phenotypes in juvenile 

Medaka using a panel of near-isogenic lines. The intention is to be able to 

establish a benchmark to form a comprehensive phenotypic matrix for the 

panel of approximately 200 inbred Medaka lines that is being set up.  

Why study differences (with Medaka)?  

Indeed differences hold populations together! (Reznick & Travis, 2017). 

Differences between individuals of a species and those between related species 

offer a way of understanding population structure, evolutionary mechanisms 

and adaptation to particular environments. It was shown in (Reznick & Travis, 

2017) that stickleback fish living in lakes and streams differed substantially from 

each other in body shape and is the result of adaptive evolution determining 

the body shape best suited to the environment. However, frequency-
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dependent selection favors rarity and therefore helps in maintaining genetic 

variations in a population (Reznick & Travis, 2017). 

Medaka is ideal for studying differences as Medaka from different geographical 

locations show differences in size, color, form and behavior. Consequently, they 

can be used to study population variations due to latitudinal clines and 

biodiversity in general. Furthermore, this has translational relevance as humans 

have a significant variability across geographical regions with individuals from 

certain regions having a propensity to certain diseases to which individuals 

from other regions are not so susceptible. 

In this thesis, the focus was on extracting and comparing differences in gross 

morphological features and a few behavioral patterns from Medaka hatchlings 

using a representative set of inbred lines.  

 

Morphometrics 

Morphology is a very useful trait to understand intraspecific variations and 

interspecific divergence. In Medaka, while adult craniofacial morphology has 

been studied (Kimura et al., 2007), no literature to our knowledge exists for 

hatchlings and for characterization of gross morphological features. In this 

work, four southern lines (Icab, HncmH2, HdrR and HO5), 2 northern lines (HNI 

and Kaga) and 2 trios were used to characterize dorsal and lateral landmarks in 

hatchlings at two developmental time points: 10 dpf and 20 dpf. All 

morphometric distances were normalized to the body length. 

The dorsal lip width was significantly different among different individuals and 

especially different between the southern HO5 and the northern HNI lines 

(with HO5 having wider lip widths). The differences get more pronounced at 20 

dpf. This is probably related to the nature of the food in the individual habitats 
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that require a different mouth construction to facilitate the ingestion of the 

prey.  A similar significant difference was observed in the distance between the 

eyes with HO5 individuals tending to have a larger distance compared to the 

HNI individual. However, there were also differences among the southern and 

northern individuals. The dorsal width of the hatchlings were seen to be 

different for the HO5 and HNI lines at both time points. From the lateral 

perspective, the eye diameter was not significantly different among the lines. 

The lateral width measured across the middle of the yolk sac showed significant 

differences at 10 dpf but disappears at 20 dpf. For the HO5 and HNI lines the 

body lengths were not significantly different.  

One conjecture to explain the differences between the HO5 and HNI could be 

the geographic separation between the southern and northern lines. It is also 

possible that there is ecological speciation owing to the different environments 

and the northern lines are a species of their own. 

Outlook 

While it is known that the individual habitats of HO5 and HNI are different, it 

will be interesting to study the habitats of the individual southern and northern 

lines to understand if there are any local differences. This could potentially 

explain differences among the southern and northern lines. Furthermore, in 

this study only two developmental time points were used. It is essential to 

correlate the morphometric features at these time points to other time points 

to see if which of these variations are preserved even in young and adult fish. 

Finally, are there other features and landmarks where the differences between 

the strains are significant? This is important to assess both for QTL mapping 

and for GWAS. 
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 Behavior 

Behavioral patterns are highly connected to the genome and are significantly 

influenced by the environment. So, understanding behavioral traits could 

reveal how organisms react to stimuli in their habitats and in dissecting their 

neural mechanisms. Locomotion and feeding are two fundamental and 

complex traits that are responsible for an organism’s survival. In this thesis, for 

the first time, we present a qualitative and quantitative description of juvenile 

Medaka prey capture behavior.  

The motivation for the study came from observations that showed differences 

in the spontaneous locomotion among the southern and northern lines. So, the 

HO5 and the HNI strains at 10 dpf were then extensively analyzed using the 

developed automated imaging platform and the associated algorithms. It was 

observed that while the HO5 individuals move faster and cover a larger 

distance on the average, they tend to move along the boundaries of the 

experimental arena and move into the center of the arena occasionally. This 

was in contrast with HNI individuals that moved slower, covered a shorter 

distance on the average but were more explorative. Furthermore, there were 

differences in the feeding rates among the different individuals. This suggests 

that probably the habitat plays a crucial role in determining exploratory and 

spontaneous locomotion while hunting for prey. 

In order to understand the prey capture behavior in detail we systematically 

characterized hatchlings from the HNI and HO5 lines capturing a single 

paramecium using high speed video recordings. Firstly, we have empirical 

evidence that juvenile Medaka use vision as the sensory modality for prey 

capture. Our different high-speed video recordings of prey capture show 

Medaka can successfully find, track and prey on paramecia in a given arena 

using vision. We identify different locomotion patterns exhibited by Medaka 
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during prey capture and show that the Medaka track and capture the prey by 

continuous locomotion. Furthermore, we show that the Medaka execute the 

entire prey capture routine monocularly and employ a unique snap movement 

of the head to consume the prey. Finally, we perform spectral analysis to 

identify the spectral components in the locomotion patterns and to identify the 

functionalities of the different patterns. We compare Medaka prey capture 

behavior with the behavior zebrafish. The intent is to show how Medaka 

reveals interspecific variability and how two related species adopt strikingly 

different strategies in performing a similar and vital task necessary for survival. 

Locomotion during prey capture 

Observation and quantitative analysis of several video recordings of the 

predation, four distinct locomotion patterns could be identified. The Medaka 

perform large rostro-caudal asymmetrical bends in order to execute large 

angular turns. Since the prey was preferentially detected at angles greater than 

32°, it was observed that this locomotion pattern was the first significant 

movement that propels the fish towards the prey after the initiation of the prey 

capture event. The fish execute small symmetrical tail movements for forward 

motion and slow swimming. This is seen during the prey capture swim after 

initiation. Small positional adjustments were seen to be made by using 

asymmetrical caudal tail bends. These bends were typically used just before the 

final capture event in order, possibly, to bring the fish to the right striking 

distance from the prey. All the three locomotion patterns described above are 

also seen in the zebrafish. However, the most unique locomotion pattern 

occurs in the final capture event. The Medaka execute a snap movement of the 

head, where the head snaps in the direction of the prey with a mean angle of 

about 26.67° and consumes the prey. During the snap movement, the whole 

body exhibits a bending which we believe facilitates the sharp movement of the 
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head. In comparison, the larval zebrafish employ two strategies in the final 

capture phase. One is the ram capture where the prey is consumed following 

forward movements and the other is the suction capture where the prey is 

consumed with almost no body movements. As explained in the Introduction 

chapter, the two feeding mechanisms are at the ends of a feeding continuum 

(Norton & Brainerd, 1993; Wainwright, 1999). In the case of Medaka, this final 

strategy of head snap is consistent across all the recordings suggesting that 

craniofacial morphology directs the hatchlings to thrust the mouth on to the 

prey and allows for the jaws to grasp the prey. Another hypothesis is probably 

the nature of the prey (in terms of size and movement) in the natural 

environment is such that normal suction does not work and the hatchlings 

overcome this by striking at the prey. In all the cases, the fish-prey angle before 

the snap movement showed very little variation. This could suggest a vision-

based explanation which will be discuss later. 

Another striking difference between zebrafish and Medaka predation events is 

that, while both decrease the distance to the prey monotonically, they differ in 

the nature of the locomotion. Larval zebrafish approach the prey in a series of 

swim bouts that are interrupted by brief pauses. Consequently, the entire prey 

capture event is discrete in time. However, the juvenile Medaka execute the 

prey capture in continuous motion. There are no pauses and the fish is 

constantly swimming towards the prey. So, in the absence of discrete swim 

bouts, we have created a nomenclature to identify different temporal events 

during prey capture in juvenile Medaka. We divide the capture episode into the 

‘initiation’ phase, the ‘swim’ phase, the ‘pre-snap’ phase and finally the ‘snap’ 

phase. 
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Monocular vs. binocular prey capture 

It was observed that the juvenile Medaka, in the initiation phase, preferentially 

detect the prey at angles greater than 32° among HNI individuals (mean 64.5° ± 

5.03°) and at angles greater than 61° (mean 91.33° ± 7.86°) among HO5 

individuals. Furthermore, the prey was always visible to only one eye, the 

ipsilateral eye, while being invisible to the contralateral eye. This clearly 

indicated that prey capture initiation in juvenile Medaka was monocular. A 

similar observation was also made in larval zebrafish prey detection (Trivedi & 

Bollmann, 2013). After detection, larval zebrafish orient themselves to be 

aligned with the prey almost immediately and thereby reducing the fish-prey 

angle to ~0° (Fig. 30b). From here onwards, the prey is always maintained in the 

binocular vision region until the final capture. This suggests, and has been 

substantially well established, that while larval zebrafish detect the prey 

monocularly, the rest of the prey capture episode is executed using binocular 

vision (Bianco et al., 2011; Trivedi & Bollmann, 2013). The most interesting and 

intriguing feature in juvenile Medaka prey capture was that these fish never 

aligned themselves with the prey directly and always tended to orient 

themselves with the prey lateral to their body axis (Fig. 39b). As a consequence, 

the prey was visible only to the ipsilateral eye and never comes into the 

binocular field-of-view throughout the prey capture event. Furthermore, the 

ocular vergence angle never increases during the prey capture episode (in 

contrast to larval zebrafish where there is a large increase in vergence (Bianco 

et al., 2011). 

The question now is, how do juvenile Medaka capture prey only with 

monocular vision? To understand this, we need to know what monocular cues 

the fish can successfully exploit. Our hypothesis is that juvenile Medaka rely on 

relative motion between the detected prey and themselves as a cue to 
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deciphering distance. Importantly, this explains the continuous locomotion 

during prey capture. Motion parallax and depth from motion are known to act 

as cues to assess the location and the distance to objects in a monocular 

context. In motion parallax, the movement of the observer results in a relative 

motion of objects in a scene and can serve as a powerful perceptual cue for 

depth perception (Wagemans, 2016; Yoonessi & Baker, 2011). A monocular 

observer cannot assess the distance to the object using one snap-shot of the 

scene. However, if now angular information is introduced along with motion 

the object stretches out in depth. 

We observe that juvenile Medaka continuously move in a curved trajectory 

with respect to the prey before the final capture event. We believe this 

provides the fish with several angular “snap-shots” at the prey which when 

integrated over different time points produces a “map” which is then 

constantly updated with each new position and helps the fish to navigate 

towards the prey. Indeed, to confirm our hypothesis we computed the 

trajectories of the fish using all our recordings and these are shown in Fig. 40. 

The trajectories have been normalized so that the prey position is always at 

(0,0). As can be seen, all the trajectories have a curved component supporting 

our hypothesis that juvenile Medaka use relative motion and angular motion to 

resolve the position and distance to the prey.  

The Medaka monocular prey capture mechanism may also explain the head 

snap movement. Since the hatchlings always orient themselves such that the 

prey is on one side of their body axis, they would have to move their head in 

the direction of the prey in order to consume the prey.  
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Figure 40 The trajectories during prey capture with the prey 
position normalized to be at (0,0) show curved paths taken by 
the fish to capture the prey. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In terms of evolutionary strategy, we believe juvenile Medaka use monocular 

vision during prey capture in order to employ the contralateral eye for 

detecting potential predators or competitors. Furthermore, in an environment 

where food is scarce, monocular vision could increase the success in foraging. 

This work has shown that strategies governing an essential behavioral trait, the 

prey capture, may not be conserved between related species.  
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Outlook 

It would be interesting to observe the movement of the eyes in the different 

strains of Medaka by minimally restraining them in a virtual environment. Such 

experiments can be used to study the relationship of the eye movements to the 

size of the prey, angular coverage of the eye and in extracting reproducible 

movement patterns in a more robust way. 

It has been reported that sandlance fish differ from other fish optically and in 

the eye movements (Land, 1999b). Sandlances, similar to chameleons, avoid 

binocular mechanisms in prey capture and effectively capture prey with one 

eye. So, the focusing mechanism based on the lens-cornea combination is 

postulated to be the likely means to judge distances by using motion parallax. It 

may be useful to morphologically study the eye of the different inbred Medaka 

strains at high resolution to see commonalities to other organisms. 

From the feeding behavior perspective, integration of morphology and 

behavior is the key to understanding strategies. The goal is to see how 

differences in morphology (for example, lip width and distance between the 

eyes) influence the locomotor performance and kinematics among the different 

strains similar to (Higham, 2007) where a relationship was shown between 

pectoral fin morphology and maximum gape in centrarchid fishes. 

Finally, the aim is to be able to extract and quantify as many morphological and 

behavioral phenotypes in order that the community can benefit from this and 

move towards successfully establishing a genotype-phenotype map using the 

Medaka inbred panel. 
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