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Summary 
Uncontrolled proliferation is one of the characteristic hallmarks of cancer and underlines the 

aberrant nutrient cycling seen in tumors. Cancer cells, therefore, need to rewire their metabolic 

pathways to meet the biosynthetic and bioenergetics demands of rapid growth.  Metabolic 

reprogramming is thus, crucial for oncogenesis. The ‘Warburg effect’ is the most commonly 

reported metabolic characteristic in tumors, where cancer cells consume high amounts of 

glucose which then get shunted mostly into lactate production. Glutamine addiction is 

commonly observed in several cancers making it the second most important carbon source 

which fuels the citric acid (TCA) cycle to provide both energy and biosynthetic precursors. 

Breast cancer is a heterogeneous disease and despite successes in targeted therapy of certain 

subtypes, treatment still remains a clinical challenge. Investigating metabolic changes in breast 

cancer, therefore, provides an opportunity to overcome these therapeutic challenges.  The aim 

of this project was to understand the mechanisms by which tumors efficiently utilize their 

carbon and nitrogen sources and to identify potential targets for future therapeutic 

interventions. To this end, I identified alanine aminotransferase 2(also known as glutamate 

pyruvate transaminase 2 or GPT2) as a highly deregulated enzyme in breast cancer patients 

who have a poor prognosis. GPT2 catalyzes the reversible reaction that generates alanine from 

glutamate and pyruvate which, in turn, are produced by glutaminolysis and glycolysis, 

respectively. I found RNAi and chemical inhibition of GPT2 to suppress proliferation of several 

breast cancer cell lines.  MDA MB 468 cells, which produce the highest levels of GPT2 and 

alanine, show a decrease in the supply of TCA cycle intermediates as well as a reduction in 

glutamine uptake when alanine production is blocked. Furthermore, GPT2 inhibition rewires 

glucose carbon cycling in the cell lines resulting in increased glucose carbon flow into the TCA 

cycle. I found the expression of GPT2 in these cancer cells to be regulated by the transcription 

factors, c-Myc and ATF4. In conclusion, my results demonstrate the role of GPT2 in connecting 

glucose and glutamine anaplerosis, thereby driving carbon atoms into key biosynthetic 

pathways of cancer cells. This study underlines the importance of investigating the balance of 

nutrient cycling in cancer to identify potential targets for therapeutic intervention. 
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Zusammenfassung 
Als Ursache von unkontrollierter Proliferation, die zu den Hauptmerkmalen von Krebs gehört, 

liegt häufig ein abnormaler Nährstoffzyklus der Tumorzellen zugrunde. Daher müssen 

Krebszellen ihre Stoffwechselsignalwege umprogrammieren um biosynthetische und 

bioenergetische Prozesse, die für ein schnelles Tumorwachstum benötigt werden, 

entsprechend anzupassen. Der „Warburg Effekt“ beschreibt metabolische Eigenschaften von 

Tumorzellen, welche ein hohes Maß an Glukose verbrauchen, das hauptsächlich in Laktat 

umgewandelt wird. Glutaminabhängigkeit wird bei vielen Krebsarten beobachtet und bildet die 

zweitwichtigste Kohlenstoffquelle, welche in den Citratzyklus einfließt um Energie und 

biosynthetische Vorläufermoleküle bereit zu stellen. Brustkrebs ist eine heterogene Krankheit 

und die Therapie verbleibt, unabhängig von therapeutischen Erfolgen in einzelnen Subtypen, 

herausfordernd. Ein Ansatz diese therapeutischen Maßnahmen gegen Brustkrebs zu verbessern 

liegt in der Erforschung metabolischer Veränderungen. Ein Ziel dieses Projektes war es die 

Mechanismen zu verstehen, mit welchen Tumore effizient Kohlenstoff- sowie Stickstoffquellen 

nutzen, um so potentielle Ziele für zukünftige therapeutische Interventionen zu entdecken. In 

Bezug auf diese Fragestellung identifizierte ich die Alanin Aminotransferase 2 (auch bekannt als 

Glutamat Pyruvat Transaminase 2 oder GPT2) als stark dereguliertes Enzym in 

Brustkrebspatienten mit schlechter Überlebenswahrscheinlichkeit. GPT2 katalysiert die 

reversible Reaktion, die Alanin aus Glutamat und Pyruvat produziert, welche entsprechend über 

Glutaminolyse und Glycolyse gewonnen werden. Mit RNAi und chemischer Inhibition von GPT2 

konnte ich die Zellproliferation von diversen Brustkrebszelllinien unterdrücken. MDA MB 468 

Zellen, die am meisten GPT2 und Alanin produzieren, zeigen, dass wenn die Alanin Produktion 

geblockt wird, eine Reduktion der Citratzyklus Zwischenprodukte sowie eine verminderte 

Glutaminaufnahme, stattfindet. Weiterhin führt GPT2 Inhibition zu einer Neustrukturierung des 

Glukose-Kohlenstoff-Zyklus in den Zelllinien und resultiert so in einem erhöhten Glukoseflux in 

den Citratzyklus. Die Expression von GPT2 in den verwendeten Brustkrebszellen konnte auf 

Regulation durch die Transkriptionsfaktoren c-Myc und ATF4 zurückgeführt werden.  
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Zusammengefasst zeigen meine Ergebnisse, dass GPT2  Glukose- und Glutaminanaplerose 

verbindet und so zu einer Bereitstellung von Kohlenstoffatomen für spezielle biosynthetische 

Signalwege der Krebszellen führt. Diese Studie betont die Wichtigkeit der Forschung an dem 

Gleichgewicht des Nährstoffzyklus von Brustkrebszellen, um so potentielle Ziele für 

therapeutische Interventionen zu entdecken. 
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1. Introduction 
1.1 Cancer and its hallmarks 
Cancer is a major public health concern worldwide which resulted in 8.8 million deaths in 2015. 

The American Cancer Society has predicted that, in 2017, there will be almost 1.7 million new 

cancer cases diagnosed and over 600,000 cancer related deaths in the United States alone 

(Siegel, Miller, & Jemal, 2017a) Cancer is a complex group of diseases, characterized by 

uncontrolled proliferation, which arises as a result of dynamic genomic changes. The discovery 

of mutations that lead to the dominant gain of function of oncogenes and recessive loss of 

function of tumor suppressor genes and the concomitant effect that these have on cell growth 

form the basis of our knowledge of tumorigenesis. Tumors commonly have a high number of 

mutations, including point mutations, copy number variations and changes in chromosome 

complement(Alexandrov et al., 2013). Relapses and metastases show further mutational 

dynamics(Yates et al., 2017).  

Decades of research in cancer has led to the understanding that the conversion of a normal cell 

to its neoplastic counterpart is a multistep process. Each of these steps reflects genetic 

adaptations that lead to the final malignant form via several pre-malignant states. Parallels can 

be drawn between Darwinian evolution and tumorigenesis where each subsequent change 

results in conferring a growth advantage to the cells, finally leading to the formation of a tumor 

(FOULDS, 1954; Nowell, 1976). 

In 2000, Weinberg and Hanahan proposed the hallmarks of cancer which are essentially 

characteristics gained by cancer cells during the process of tumorigenesis, enabling them to 

proliferate and metastasize efficiently.  These include self-sufficiency in growth signals, 

insensitivity to growth inhibitory signals, evasion of programmed cell death (apoptosis), 

sustained angiogenesis and tissue invasion and metastasis. The hallmarks are enabled by 

genomic instability and mutations acquired by the cancer cells along with tumor promoting 

inflammation (Hanahan & Weinberg, 2000). In 2011, the same authors updated the list of 

hallmarks as a result of progress made in research to include inflammation and genome 

instability The other new hallmark is reprogramming of energy metabolism (Hanahan & 
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Weinberg, 2011). The unrestricted rates of proliferation seen in cancer cells make it necessary 

for them to rewire their metabolic pathways to optimize nutrient utilization and energy 

production to support cell growth. This field has garnered a lot of attention in the past decade 

which has resulted in several clinical trials.  The hope is that by targeting metabolism of cancer 

cells one can target the core of the ability of tumors to rapidly proliferate. 

 

               

Figure 1: Hallmarks of Cancer, adapted from Hanahan and Weinberg, 2011 (Hanahan & Weinberg, 
2011) 

 

 

 

 

 

 

 

 

 



  Introduction 

7 
 

1.2 Breast Cancer 
Breast cancer is the leading cause of cancer among women and the second most commonly 

occurring carcinoma worldwide. Although it can occur in both genders, the frequency is much 

higher in women and its incidence increases significantly with age. According to the American 

Cancer Society, in 2017, breast cancer is predicted to account for 30% of all new cancer cases 

and 14% of cancer related death among women(Siegel, Miller, & Jemal, 2017b). This translates 

to over 200,000 new cases and 40,000 deaths due to breast cancer.  

Breast cancer is complex and heterogeneous; it is composed of several diseases with distinct 

histopathological and biological features which demand unique treatment strategies. Clinically, 

breast cancer is divided into 4 subtypes, Luminal A which is hormone receptor positive and 

heregulin 2 receptor (HER2, also known as ERBB2) negative, Luminal B which is also hormone 

receptor positive and HER2 positive or negative , HER2 amplified subtype and the triple 

negative subtype (which lack hormone and HER2 receptor)(Dai et al., 2015). These common 

immunohistochemistry markers along with clinical factors such as tumor grade, tumor size and 

nodal involvement are commonly used for tumor management and treatment strategies. 

However, the dawn of the omics era and evolution of high-throughput platforms such as 

microarrays and sequencing have made it possible stratify patients not only according to 

anatomical prognostic factors but also to intrinsic molecular characteristics, leading to better 

therapeutic strategies. 

 

1.2.1 Molecular Subytpes of Cancer 
In their pioneering work, Sorlie et al, identified five molecular subtypes of breast cancer with 

distinct clinical outcome (Sørlie et al., 2001). Subsequently, these five distinct subtypes have 

been identified by other groups using different gene signatures. For example, Hu et al, used a 

306 gene signature to classify breast cancer into these subtypes (Z. Hu et al., 2006). Another 

study found a 50-gene classifier (PAM50, which contains mostly hormone receptor and 

proliferation related genes, and genes exhibiting myoepithelial and basal features) which has 

remarkable prognostic values for breast cancer (Parker et al., 2009). 
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Luminal 

Luminal tumors (also known as ER positive cancers) which express hormone receptors are the 

most common subtype, accounting for nearly 70% of detected breast cancer. Luminal tumors 

can be further subdivided into luminal A and B. Very broadly, luminal A tumors are estrogen 

positive (ER+) (and/or progesterone positive (PR+)), HER2- and low Ki67, while Luminal B HER2+ 

are ER+ (and/or PR+) and HER2+ with low Ki67 and luminal B HER2- are ER+ (and/or PR+) and 

HER2- with high Ki67 (Dai et al., 2015). The luminal A subtype shows a higher expression of ER 

related genes and a lower expression of proliferation related genes. Luminal B subtype 

generally has a higher grade than the A subtype. Compared to the other subtypes of breast 

cancer the luminal subtypes have better prognosis. The luminal tumors are defined by their 

characteristic luminal expression signature. This includes ESR1, GATA3, FOXA1, XBP1 and MYB, 

genes commonly involved in development, which are all highly expressed. Several genes are 

also frequently mutated in luminal cancers, for example GATA1, FOXA1, RUNX1 which encode 

transcription factors involved in development (Cancer Genome Atlas Network, 2012). PIK3CA, 

which is also highly mutated in luminal cancer although it does not lead to pathway activation 

in luminal A cancers. MAP3K1 and MAP2K4 represent another class of genes commonly 

mutated in luminal tumors leading to inactivation of the p-38-JNK1 pathway (Cancer Genome 

Atlas Network, 2012) The tumor suppressor TP53 has a higher frequency of mutations in 

luminal B (29%) than in luminal A (12%). This together with the analysis of another tumor 

suppressor, pRb activity show that tumors of the luminal A subtype retain TP53 and pRb activity 

while these genes are frequently mutated in the more aggressive Luminal B subtype. 

Additionally, luminal B subtypes show hyper activation of MYC and FOXM1, leading to higher 

proliferation rates (Cancer Genome Atlas Network, 2012). 

 

HER2+ 

HER2+ subtype is defined by the overexpression of the HER2 amplicon and is identified by gene 

expression analysis and/or by immunostaining and FISH hybridization(Cancer Genome Atlas 

Network, 2012; Dai et al., 2015). However, not all clinically identified HER2 tumors show 
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overexpression at the transcriptional level leading to two subclasses of the HER2 subtype. One 

is HER2+ and expresses Her2E mRNA (around 50% of the tumors) and the other is HER2+ but 

essentially luminal(Cancer Genome Atlas Network, 2012). It has been observed that the 

HER2+/HER2E tumors have a dramatically higher expression of several receptor tyrosine 

kinases (RTKs) like FGFR4, EGFR, HER2, while the luminal/HER2+ tumors have a luminal 

expression signature. The HER2+/HER2E or ER negative subgroup also has a higher frequency 

for TP53 mutations whereas the luminal subtype is enriched for GATA3 mutations. Additionally, 

the HER2+/HER2E subtype has high aneuploidy and DNA amplification of other genes such as, 

FGFRs, EGFR and genes involved in cell cycle CDK4 and CCND1. HER2 overexpressing tumors are 

generally Grade 3 and have a poor prognosis(Cancer Genome Atlas Network, 2012). 

 

Triple Negative 

The triple negative subtype is devoid of any ER, PR and Her2 expression. The triple negative 

tumors are highly aggressive having the worst prognosis among the different breast cancer 

subtypes and are generally Grade 3 like the HER2 tumors. This subtype is characterized by 

germline and/or somatic BRCA1 and BRCA2 mutations, or mutations in other genes of the 

homologous end joining mechanism, as well as a high frequency of TP53 mutation and loss of 

RB1. PI3KCA is also frequently mutated in these tumors, and the PI(3)K-AKT pathway is highly 

active probably due to the loss of tumor suppressors PTEN  and INPP4B in addition to 

amplification of PIK3CA. The terms basal and triple-negative are often interchangeably used, 

however, 75% of TNBCs are basal, while the rest are of different subtypes. Lehmann et al., 

originally divided triple negative breast cancer into 6 subtypes, 2 basal-like (BL1 and BL2), 1 

immunomodulatory (IM), 1 mesenchymal (M), 1 mesenchymal stem-like (MSL) and 1 luminal 

androgen receptor (LAR) subtype(Lehmann et al., 2011). The BL1 subtype is enriched for cell 

cycle and cell division genes while BL2 is characterized by genes belonging to growth factor 

signaling and display features that have basal/myoepithelial origin. The IM subtype displays 

high expression of genes involved in the immune cell processes. The M subtype is enriched in 

genes involved in cell motility, ECM receptor interaction and cell differentiation pathways. The 
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MSL subtype is similar to the M subtype but is also enriched in genes involved in growth factor 

signaling and has low expression of claudin 3,4,7. Finally, the LAR subtype is ER- but has a 

luminal gene expression signature. As some of the expression of genes in these specimens were 

discovered to be from tumor infiltrating cells and the tumor stroma, the classification was later 

refined to 4 subtypes, namely  BL1, BL2 M and LAR(Lehmann, Jovanovi, et al., 2016) 

Sorlie et al also defined a fifth subgroup of breast cancer called normal breast-like which have 

high expression of several genes that are expressed in adipose and other non-epithelial 

tissues(Sørlie et al., 2001).  They also display elevated expression of basal epithelial genes and 

low expression of luminal epithelial genes. 

 

1.2.2 Therapy 
Currently the standard treatment regimen for breast cancer is either surgery or radiotherapy. 

Depending on the type of breast cancer, patients may undergo additional treatment. Some 

receive neo-adjuvant therapy to shrink the tumor before surgery, others may receive adjuvant 

therapy post-surgery to treat potential micro-metastases. Therapies include chemotherapy, 

endocrine therapy and targeted therapy.  

Endocrine therapy remains the mainstay and the first line of therapy for hormone receptor 

positive breast cancers(Liedtke & Kolberg, 2016) . Established in 1970, tamoxifen, an ER 

antagonist, remains a viable option with patients responding up to 12-18 months and in some 

cases up to years. However, in recent years tamoxifen has been replaced by aromatase 

inhibitors, AI, (e.g. letrozole and anastrozole) in postmenopausal patients as the first line of 

therapy due to higher response rates(Wood, Smith, & Dowsett, 2003). However, several 

patients have de novo or acquire resistance to first line therapy, leading to relapse. In case of AI 

resistance, estrogen receptor antagonists (tamoxifen and fulvestrant) are used as second line of 

therapy(Chia et al., 2008).  

Dysregulation of the cell cycle is a common phenomenon of breast cancer. CDK4/6 and CCND1 

regulate the transition from G1 to S phase via phosphorylation of pRb and are, therefore, 
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important to the highly proliferative cancer cells(Weinberg, 1995). As a result of this, metastatic 

ER+ breast cancers often benefit from additional therapy with cell cycle inhibitors as do cancers 

resistant to endocrine therapy. In view of this, CDK4/6 inhibitors, palbociclib (Ibrance; Pfizer 

Inc), ribociclib (LEE011; Novartis) and abemaciclib (LY2835219; Lilly) are undergoing clinical 

development. Given that cyclin D1 is regulated by PI3K/AKT/mTOR pathway and that over 70% 

of breast cancer show activation of this pathway, inhibiting this pathway provides a potential 

option for therapy(Fu, Osborne, & Schiff, 2013; Pang et al., 2014). As a result of its crosstalk 

with estrogen receptor, this pathway has also been implicated in endocrine resistance, thereby 

providing an opportunity to overcome resistance(Fu et al., 2013). While therapies targeting 

PI3K are still in development, mTOR inhibitor, everolimus, is used in combination with steroidal 

aromatase inhibitor, exemestane, in cases of non-response to non-steroidal aromatase 

inhibitors(Liedtke & Kolberg, 2016). Luminal breast cancers may also be treated with 

antiangiogenic therapy including, bevacizumab, which is an antibody directed against the 

vascular endothelial growth factor (VEGF)(Bear et al., 2012; Liedtke & Kolberg, 2016). Other 

targets for therapy include AKT, using inhibitors of AKT and PARP for patients harboring 

pathogenic mutations in BRCA1/BRCA2 or other genes involved in DNA damage response. 

HER2+ breast cancers are highly aggressive and tend to have a poor prognosis. However, due to 

the presence of the highly druggable target HER2, it has been possible to effectively treat this 

disease. The development of trastuzumab, a humanized monoclonal antibody that targets the 

extracellular domain of the HER2 receptor, has increased the overall survival of HER2+  breast 

cancers(Slamon et al., 2001). In addition, pertuzumab which targets the HER2-HER3 dimer has 

been recently approved for first line therapy and this in combination with 

docetaxel(chemotherapeutic drug) and trastuzumab has been shown to dramatically improved 

overall survival (Baselga et al., 2012).  TDM-1 (Trastuzumab etansine), antibody drug conjugate 

(ADC) of the cytotoxic DM-1 and trastuzumab has proved to be an effective therapy against 

HER2+ cancers(Verma et al., 2012). Besides HER2-targeted antibodies, small HER2-directed 

molecules have also proven to be efficacious treatments. An example of this is Lapatinib 

(targeting both HER1/EGFR and HER2) which is used as a later-line therapy in combination with 

chemotherapy(Geyer et al., 2006) . 
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Due to the lack of a druggable hormone or HER2 receptor, TNBC proves to be the most 

challenging subtype of breast cancer. Additionally, the presence of distinct subgroups within 

this subtype makes it difficult to develop a general therapy for this subtype. Currently, TNBCs 

are heavily dependent on chemotherapy. Due to the common occurrence of BRCA1/2 

mutations, patients suffering from TNBCs benefit from taxane and platinum salts. In addition to 

this, PARP inhibitors, which can prevent DNA damage repair in cells, are commonly used for 

treatment of BRCA1/2 mutated TNBC (Farmer et al., 2005). Increasing evidence suggests that 

tumors with strong lymphocytic infiltration can benefit from immune targeted agents which 

help to expose tumors cells to the immune system. Programmed cell death protein (PD-1) and 

its two ligands, PD-L1 and PD-L2 are currently being investigated as potential therapeutic 

targets. Phase I clinical trial of PD-1 inhibitor pembrolizumab has been a success with TNBC 

patients(Nanda et al., 2016). 

Early detection and targeted therapy have greatly improved survival rates in breast cancer. 

Endocrine therapy and HER2 targeted therapy have been highly successful, however, 

recurrence and development of resistance still remains a problem. Furthermore, TNBCs still lack 

efficient therapy barring chemotherapy. This has led to the need for further molecular 

characterization of breast cancer. Recent studies show that cancers are also metabolic 

diseases(Pavlova & Thompson, 2016). The high rates of cell division demand metabolic 

reprogramming within the tumors. Therefore, targeting metabolism provides a promising 

therapeutic window, especially for tumors that cannot be otherwise treated effectively. 
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1.3 Cancer Metabolism 

 

Figure 2:  Metabolic pathways involved in tumorigenesis. Adapted from Berardinis and Chandel 2016(R. 
J. Deberardinis & Chandel, n.d.) 

Metabolic reprogramming in cancer cells plays a crucial role in maintaining high levels of 

proliferation.  Cellular metabolism is defined by three main tasks which are, to maintain energy 

reserves of the cell (via ATP and NADPH regeneration), biosynthesis of macromolecules 

required for cellular homeostasis and to maintain redox state of the cell. In order to fulfill these 

requirements, particularly fast growing cancer cells depend on efficient nutrient cycling. 

Metabolic rewiring is essential in order to maintain optimum levels of four major classes of 

macromolecules comprising carbohydrates, proteins, lipids and nucleic acids.  

The association between cancer and metabolism dates back to nearly 100 years when Otto 

Warburg observed that cancer cells consume high amounts of glucose and instead of funneling 

it into the TCA cycle, it produces lactate via glycolysis(Warburg, 1927). In normal cells this 

occurs when the cells are under hypoxia but as this was observed in cancer cells even in the 

presence of oxygen it is called aerobic glycolysis or more famously the Warburg effect. 
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However, in the following years cancer research focused more on genetic alterations that are 

associated with tumorigenesis. This led to the identification of oncogenes and tumor 

suppressors that control growth factor signaling pathways leading to uncontrolled proliferation 

which remains a hallmark of cancer(Hanahan & Weinberg, 2000). However, in 1956, Otto 

Warburg claimed that “mutation and carcinogenic agents are not alternatives, but empty 

words, unless metabolically specified”(Warburg, 1956), thereby suggesting that despite the fact 

that several different factors can lead to different cancers, ultimately, they all lead to or depend 

on rewiring of metabolic pathways. In recent years, many studies have shown that these 

different signaling pathways indeed reprogram cellular metabolism via regulation of metabolic 

enzymes (Cairns, Harris, & Mak, 2011; Iurlaro, León-Annicchiarico, & Muñoz-Pinedo, 2014). 

Several metabolic enzymes are also amplified or mutated during tumorigenesis(L. Dang et al., 

2009; Martín-Rufián et al., 2014). These findings together with the observations that cancer 

metabolism can influence other hallmarks of cancer has led to the inclusion of cancer 

bioenergetics into the hallmarks of cancer(Hanahan & Weinberg, 2011) and has brought tumor 

metabolism into the forefront of cancer research(Pavlova & Thompson, 2016). The fact that 

cancer cells rely heavily on efficient nutrient utilization provides an opportunity to find 

therapeutic targets especially for those cancers which are otherwise unresponsive to present 

therapies. 

 

1.3.1 Warburg Effect and Glycolysis 
Aerobic glycolysis remains one of the most significant characteristics of tumor metabolism. In 

his seminal work, Warburg observed that ascites cancer cells and tumor slices have a high 

uptake of glucose which, irrespective of the presence of oxygen, is converted into lactate via 

pyruvate(Warburg, 1927). Subsequently, this phenomenon has been observed in several 

cancers including breast cancer(Gatenby & Gillies, 2004). Glucose is transported into the cell via 

glucose transporter proteins (GLUT), of which 14 isoforms have been identified. While the 

different isoforms may have different expression levels in many cancers, GLUT1 seems to be 

predominant in cancer with high rates of glycolysis(Carvalho et al., 2011). In breast cancer, the 

HER2+ and TNBC subtypes, which have the worst prognosis, have high levels of glycolysis and 
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TNBCs show the highest expression of GLUT1 compared to other subtypes of breast 

cancer(Choi, Jung, & Koo, 2013; Pinheiro et al., 2011). In fact, targeting GLUT1 in breast cancer 

cells induces autophagy via AMPK-mTORC1 signaling(Fumarola et al., 2013). Hexokinase 2, the 

first regulatory enzyme in the glycolytic pathway, is activated in several cancers and can be 

targeted to slow down proliferation in cancer cells(Hennipman, van Oirschot, Smits, Rijksen, & 

Staal, 1988). Tumor specific expression of phosphofructokinase 2 (PFK2), which regulates 

intracellular levels of the glycolytic intermediate fructose-1,6-bisphosphate, has made it a 

potential therapeutic target(Atsumi et al., 2002; Telang et al., 2006). Pyruvate kinase (PK) is the 

rate limiting enzyme of glycolysis catalyzing the final reaction converting phosphoenolpyruvate 

to pyruvate generating ATP in the process. The splice variant PKM2 is predominantly expressed 

in tumor cells, but is inhibited by tyrosine kinases which are active in most cancer 

cells(Christofk, Vander Heiden, Harris, et al., 2008; Christofk, Vander Heiden, Wu, Asara, & 

Cantley, 2008). This low activity of PKM2 is essential for growth of tumor cells as it creates a 

buildup of glycolytic intermediates that serve as precursors for biosynthesis of macromolecules 

such as nucleotides and amino acids and generation of NADPH. 

Lactate dehydrogenase (LDH) which catalyzes the interconversion of pyruvate to lactate has 

been implicated in oncogenesis. LDHA is the most common isoform of this enzyme that is 

upregulated in cancers and is being investigated as a target for highly glycolytic cancers(Miao, 

Sheng, Sun, Liu, & Huang, 2013; Xie et al., 2014). In breast cancers upregulation of ERBB2 leads 

to an increased expression of LDHA which promotes glycolysis and proliferation(Y. H. Zhao et 

al., 2009). Lactate produced by cancer cells is secreted into the surrounding of the tumor via 

monocarboxylate transporters (MCT). It has been shown that impaired function of these 

transporters can affect tumorigenesis, thereby suggesting that efficient secretion of lactate is 

important for the tumors(Dimmer, Friedrich, Lang, Deitmer, & Bröer, 2000). Notably, cancer 

cells use lactate to feed neighboring cells that are more oxidative to support its own growth 

and survival(Vegran, Boidot, Michiels, Sonveaux, & Feron, 2011). 

In normal cells, the mitochondria function as the powerhouses of the cell, where oxidative 

phosphorylation and the electron transport chain are utilized to produce ATP in order to meet 
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the bioenergetic needs. Therefore, the propensity of cancer cells to use aerobic glycolysis as the 

major pathway for glucose metabolism over the energetically rich oxidative phosphorylation 

pathway still remains a paradox (Ralph J. DeBerardinis, Lum, Hatzivassiliou, & Thompson, 2008). 

However, plenty of evidence suggests that glycolysis gives the cancer cells a growth advantage. 

It provides intermediates for macromolecule synthesis which contributes to the biomass of the 

cell(Hay, 2016). Glycolysis via the pentose phosphate pathway produces sugars and NADPH that 

support nucleotide synthesis and reductive biosynthesis respectively. It also supports 

hexosamine and glycogen synthesis. Moreover, glycolysis increases serine biosynthesis which is 

essential for tumorigenesis. Serine supports one carbon metabolism via glycine production, 

leading to nucleotide biosynthesis, methylation and production of NADPH. Serine is also a 

source for amino acid, protein and glutathione replenishment of cancer cells(M. Yang & 

Vousden, 2016).  Phosphoglycerate dehydrogenase (PHGDH) which catalyzes the first 

committed step in the biosynthesis of serine and is also the branching point from glycolysis, is 

amplified in 6% of breast cancers and 40% of melanomas(Ralph J DeBerardinis, 2011; Locasale 

et al., 2011; Possemato et al., 2011a). Possemato et al showed that 70% of ER negative breast 

cancers have elevated levels of PHGDH protein which when targeted by RNA interference lead 

to a significant decrease in cell proliferation(Possemato et al., 2011a).The high rates of 

glycolysis in tumors outpace oxidative phosphorylation which may lead to the accumulation of 

pyruvate. This is prevented by diverting excess pyruvate to lactate production. Furthermore, 

although the ATP yield per glucose via glycolysis is low, if the glycolytic rate is sufficiently high 

the percentage of cellular ATP contributed by glycolysis is more than oxidative 

phoshorylation(GUPPY, GREINER, & BRAND, 1993).  

Warburg hypothesized that cancer cells divert glucose from the oxidative phosphorylation and 

produce lactate due to defective mitochondria. However, over the years this theory has been 

disproved and it has been shown that the mitochondria are indeed active in tumors and 

mitochondrial metabolism is important for tumorigenesis(Tan et al., 2015). Pyruvate, produced 

by glycolysis can feed into the TCA cycle via two reactions that are catalyzed by pyruvate 

dehydrogenase (PDH) and pyruvate carboxylase (PC). PDH produces acetyl coA which is then 

condensed with oxaloacetate (OAA) to produce citrate. PC on the other hand directly produces 
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OAA from pyruvate. Recently it was observed that both PDH and PC are essential for KRAS-

driven lung tumors(Davidson et al., 2016) and that PC has a role in breast cancer-derived lung 

metastasis(Christen et al., 2016). Moreover, inhibiting glycolytic ATP production via deletion of 

PKM2 does not affect tumorigenesis, thereby, suggesting that the major role of glycolysis is not 

to supply ATP to the cell (Ralph J. DeBerardinis & Chandel, 2016; Israelsen et al., 2013). Taken 

together these studies show that the TCA cycle is indeed active and is a major source of ATP 

also in cancer cells and that glucose also feeds into this pathway. In rare cases, however, the 

TCA cycle genes are mutated and can function as tumor suppressors. This is seen in cancers 

which have deletions in TCA cycle genes including succinate dehydrogenase (SDH) and fumarate 

hydratase (FH). SDH mutations are found in familial paraganglioma(Astuti et al., 2001; Baysal et 

al., 2000; Müller & Niemann, 2000) while FH mutations can result in uterine fibroids, 

leiomyoma and papillary renal cell cancer(Tomlinson et al., 2002). SDH and FH mutations lead 

to the accumulation of succinate and fumarate respectively, which can promote tumorigenesis 

(Sullivan, Gui, & Heiden, 2016). Both these metabolites have been implicated in epigenetic 

modifications leading to DNA and histone hypermethylation and activation of hypoxic 

signaling(Gimenez-Roqueplo et al., 2002; Hoekstra et al., 2015; Isaacs et al., 2005; Killian et al., 

2013; Letouzé et al., 2013; Pollard et al., 2005). In contrast to this, only 3% of breast cancers 

show loss of SDHA or SDHB expression, while HER2+ breast cancers show high levels of SDHA 

expression(S. Kim, Kim, Jung, & Koo, 2013). A study in a Finnish population has shown that FH 

mutation is not associated with a predisposition to familial breast cancer(Kiuru et al., 2005). 

Furthermore, reports have shown that breast cancers are not associated with promoter 

methylation in SDH and FH genes(K. T. Huang, Dobrovic, Fox, Huang -KatieHuang, & Dobrovic -

AlexanderDobrovic, n.d.). In addition to loss of FH and SDH, mutations in TCA cycle genes can 

result in neomorphic activity in cancers. The most prominent example of this are the isocitrate 

dehyrogenase (IDH1and 2) enzymes which are frequently mutated in glioma, chondrosarcoma, 

cholangiocarcinoma ad acute myeloid leukaemia (AML)(O. Clark, Yen, & Mellinghoff, 2016; 

Figueroa et al., 2010; Yan et al., 2009).  While the wild type forms of these enzymes catalyze the 

reversible conversion of isocitrate to α-ketoglutarate (α-KG), the mutant forms convert α-KG to 

2-hydroxyglutarate (2-HG) via oxidation of NADPH to NADP+(S. Gross et al., 2010). 2-HG can be 
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degraded by D2HGDH, however, its activity is insufficient for the high rate of production seen in 

these cancers (Sullivan et al., 2016). This results in high levels of 2-HG in cancers which leads to 

CpG island and histone hypermethylation(Figueroa et al., 2010). c-Myc-driven breast tumors, 

mostly of basal and mesenchymal origin, show 100 fold higher levels of 2-HG compared to 

other breast cancers leading to elevated levels of DNA methylation and are associated with 

poor prognosis(Terunuma et al., 2014). Therefore, cancer cells maintain an active TCA cycle in 

order to sustain both their biosynthetic and bioenergetic needs. 

 

1.3.2 Glutamine addiction 
An important carbon source for the TCA cycle in cancers is glutamine. Glutamine is the most 

abundant amino acid present in blood and tissues and is the second highest consumed nutrient 

by the cancer cells after glucose. It complements the glycolytic pathway by proving carbon to 

replenish the TCA cycle(R. Deberardinis & Cheng, 2009). Glutamine is thus a crucial anaplerotic 

source for cancer cells. It is not only an important carbon donor but also provides nitrogen for 

de novo biosynthesis of various nitrogenous metabolites required for tumor growth. Glutamine 

addiction in cancer cells was first observed by Harry Eagle in HeLa cells in the 1950s(Eagle, 

1955). In later years this was also observed in Ehrlich ascites carcinomas, hepatomas and 

carcinomas(Márquez, Sánchez-Jiménez, Medina, Quesada, & de Castro, 1989; Sauer, Stayman, 

& Dauchy, 1982). In fact, several studies have shown that depletion of glutamine from the 

tumor microevironment is higher than in normal tissues(Márquez et al., 1989; Yuneva et al., 

2012). Successful detection of glutamine in tumors using 18F-labeled glutamine in preclinical 

and early clinical studies(Lieberman et al., 2011; Venneti et al., 2015), provides a solution for 

cases where glucose tracing is not possible due to high glucose utilization in normal tissues, e.g. 

the brain. Glutamine restriction has been shown to restrict growth of most cancer cells 

including those of breast, thereby displaying what is commonly known as glutamine addiction. 

As is seen with glucose, tumor cells tend to take up glutamine at a much higher rate than their 

normal counterpart. In order to overcome the poor vascularization within tumors tumor cells 

express high levels of transporters thereby behaving like a ‘Glutamine trap’(Souba, 1993). 
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Glutamine uptake by cancer cells is mediated by amino acid transporters such as solute-linked 

carrier family A1 member 5 (SLC1A5) (also known as ASCT2) which is over expressed in several 

cancers and has been shown to be critical for tumor survival (Hassanein et al., 2013). High 

expression as well as increased activity of ASCT2 is critical for cell proliferation in triple negative 

breast cancer cells(van Geldermalsen et al., 2015a). Moreover, ASCT2 has been shown as an 

independent prognostic marker  for survival in breast cancer(Bernhardt et al., 2017). There is 

also evidence that glutamine uptake is not only important for supporting the biosynthetic need 

of the cells but is also exported out in exchange for essential amino acids  via  the bidirectional 

amino acid transporter SLC7A5 (also called LAT1)(Nicklin et al., 2009). 

Glutamine is utilized in roughly two ways in the cells. Firstly, its γ-nitrogen is used for nucleotide 

and hexosamine synthesis which supports cancer cell growth(David R Wise & Thompson, 2010). 

Secondly, α-nitrogen and carbon skeleton are used for NEAA synthesis and TCA cycle. 

Glutamine is the main nitrogen donor for the synthesis of NEAA in the cells. In a first step 

glutamine is converted to glutamate via the phosphate dependent glutaminase which removes 

an amide group as ammonia. Glutaminase has been observed to be highly expressed in tumors 

and cancer cell lines and limiting its activity causes growth arrest in tumor cells and xenografts 

(Lobo et al., 2000; Gao et al., 2009). In triple negative breast cancer cells, glutaminase activity 

regulates glutamine and oxygen consumption, glutamate production and levels of TCA cycle 

intermediates(M. I. Gross et al., 2014).  The glutamate generated by glutaminase contains a 

sizeable pool of α (amino) nitrogen which is then distributed to different non-essential amino 

acids via transaminase reactions, namely alanine and aspartate transaminases (in details in the 

next section). Reactions catalyzed by transaminases and glutamate dehydrogenase (via 

liberation of ammonia) convert glutamate from glutamine into α-KG a key metabolic 

intermediate of the TCA cycle. PHGDH, the first enzyme in serine synthesis is also involved in 

supplying glutamine derived α-KG to the TCA cycle(Possemato et al., 2011b). In addition to 

being a TCA cycle metabolite, α-KG also functions as cofactor for various dioxygenases including 

prolyl hydroxylases, histone demethylases, and 5-methylcytosine hydroxylases(Zdzisińska, 

Żurek, & Kandefer-Szerszeń, 2017). Glutamine derived α-KG can be used to drive the TCA cycle 

or can contribute to lipid biosynthesis by a process called reductive carboxylation. Reductive 
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carboxylation or reversal of TCA cycle is a process by which α-KG is converted to citrate via IDH 

and it exits the mitochondria to be used for lipid biosynthesis(Metallo et al., 2011; Mullen et al., 

2011; D. R. Wise et al., 2011). Reductive carboxylation was first observed as a method to 

synthesize lipids in normal brown fat cells, however, later it was shown as a mechanism to 

generate lipids in hypoxic cancer cells(Yoo, Antoniewicz, Stephanopoulos, & Kelleher, 2008). 

Indeed under hypoxia, HIF1α activate pyruvate dehydrogenase kinase 1 (PDK1), an inhibitor of 

PDH, thereby blocking the entry of pyruvate into the TCA cycle and shunting it into lactate, a 

process known as anaerobic glycolysis, leading to a depletion of citrate pools. The same is also 

observed in hypoxic cancer cells, and gives rise to the need for glutamine to feed into the TCA 

cycle and for reductive carboxylation in order to maintain the lipid reserves of the cells(Fendt, 

Bell, Keibler, Olenchock, et al., 2013). Mitochondrial glutamine is also used for production of 

oncometabolite, 2-HG in breast cancer. Malic acid generated via glutaminolysis, is converted to 

lactic acid by malic enzyme thereby generating carbon dioxide, pyruvate and NADPH. NADPH 

generated by production of lactic acid is the used by highly proliferative cells to sustain their 

demand for nucleotide and lipid synthesis and to maintain GSH in its reduced state (R. J. 

DeBerardinis et al., 2007; M. G. Vander Heiden, Cantley, & Thompson, 2009).  Glutaminolysis 

can also be used to maintain glutathione pools, where glutamate is exported via the x-CT 

antiporter in exchange for cystine which is then used to generate glutathione (GSH). In a subset 

of triple negative breast tumors, which are glutamine auxotrophs and require glutamine to 

sustain their GSH pools, inhibition xCT antiporter abrogates tumor growth(Timmerman et al., 

2013). 

 

1.3.3 Transaminase reactions in Cancer 
Alanine (GPT) and aspartate (AAT or GOT) aminotransferases lead to the production of alanine 

and aspartate respectively and are the two most important transaminases in cancer cells(L. 

Yang, Venneti, & Nagrath, 2017).  

Aspartate transaminase derived aspartate is used for protein and nucleotide synthesis as well 

as ATP production via the aspartate malate shuttle. Aspartate is exported from the 



  Introduction 

21 
 

mitochondria into the cytosol where it is converted to oxaloacetate which is then reduced to 

malate using NADH generated during glycolysis (thereby regenerating NAD+ for glycolysis). 

Malate is then transported into the mitochondria where it donates electrons to complex I of 

the electron transport chain, thereby generating ATP(Sullivan et al., 2015). Inhibition of GOT 

selectively suppresses proliferation of breast cancer cells but not normal mammary epithelial 

cells(Korangath et al., 2015; Thornburg et al., 2008). Aspartate is also used for asparagine 

synthesis in the cells. Asparagine supports proliferation under glutamine deprived or glutamine 

independent conditions. It also serves as an amino acid exchange factor, whereby it is exported 

to increase the uptake of other amino acids including serine. In addition to this, asparagine 

supports protein and nucleotide synthesis via regulation of mTORC1 activity(Krall, Xu, Graeber, 

Braas, & Christofk, 2016). Asparagine directly uses glutamine for its synthesis and is essential 

for cellular proliferation and in fact asparagine synthetase has been proposed as a potential 

biomarker for ovarian cancer(Lorenzi & Weinstein, 2009). 

While the role of GOT has been clearly elucidated in cancers, GPT has emerged as a new target 

in cancers. Alanine is shown to be highly produced in patients including those with breast 

cancer(Budczies et al., 2012; Poschke, Mao, Kiessling, & de Boniface, 2013). Inhibition, of 

alanine aminotransferase like aspartate aminotransferase also impedes cell growth and 

survival(Beuster et al., 2011; Coloff et al., 2016; Hao et al., 2016). Aminooxyacetate which is a 

broad spectrum inhibitor of aminotransferases has been shown in several studies to suppress 

cell growth. In breast cancer cell lines, aminooxyacetate treatment increases the sub G1 

population and leads to S-phase arrest(Korangath et al., 2015). Inhibition of aminotransferase 

results in decrease in amino acids which activates the ER stress pathway leading to 

cytotoxicity(Korangath et al., 2015). This highlights the importance of aminotransferases in 

breast cancer progression. 
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1.4 Regulation of Tumor metabolism 
An important aspect of understanding the metabolic rewiring in cancer cells is to investigate 

the mechanism by which the metabolic pathways or individual enzymes are regulated. Cancer is 

driven by gain of function mutations in oncogenes and loss of tumor suppressors that enable 

the cells to proliferate rapidly. However, in recent years, it has become increasingly clear that 

cancer signaling pathways and the tumor microenvironment lead to rewiring of metabolic 

pathways in cancer cells. Moreover, these changes in metabolism are essential for sustaining 

the tumor progression that is propagated by these signaling pathways. 

The oncogene MYC is amplified in several cancers, including breast, prostate, colon and bladder 

cancers and contributes to the cause of nearly 40% cancers(Deming, Nass, Dickson, & Trock, 

2000). c-Myc is a transcription factor that has a central role in cancer progression. It regulates 

the expression of several cell cycle genes as well as those involved in mitochondrial biogenesis 

and stem cell maintenance. The last decade has seen c-Myc emerge into a master regulator of 

cancer cell metabolism(Chi V Dang, Le, & Gao, 2009; Miller, Thomas, Islam, Muench, & Sedoris, 

2012; Wahlström & Henriksson, 2014).  The first link between c-Myc and cancer metabolism 

was established when it was discovered that c-Myc regulates the expression of LDHA(Shim et 

al., 1997). c-Myc also promotes glycolysis via activation of glucose transporter, GLUT1 and other 

glycolytic genes such as hexokinase 2 (HK2), phosphofructokinase (PFKM), and enolase 1 

(ENO1)(J. -w. Kim, Gao, Liu, Semenza, & Dang, 2007; Osthus et al., 2000). Therefore, under 

normoxic conditions c-Myc is believed to be one of the drivers of lactate production. 

Additionally, under hypoxic conditions, c-Myc collaborates with hypoxia inducible factor 1-

alpha (HIF1a) to increase the activity of PDK1 which prevents the formation of acetyl CoA from 

pyruvate thereby promoting more lactate production(J. -w. Kim et al., 2007). However, under 

normoxic conditions c-Myc supports glucose oxidation via regulation of mitochondrial 

biogenesis. c-Myc also promotes RNA splicing to induce PKM2 expression which supports 

different biosynthetic pathways (David 2010). While c-Myc-induced glycolysis and 

glutaminolysis (in details later) promotes lipid biosynthesis, c-Myc can also directly induce fatty 

acid synthesis genes, FASN (fatty acid synthetase) and SCD (stearoyl-CoA desaturase) (Zeller et 

al. 2003; Loven et al. 2012). 
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c-Myc plays a major role in the energy metabolism of cancers via regulation of Glutamine 

metabolism(Chi V Dang et al., 2009). It has been found to increase the expression of Glutamine 

transporters ASCT2 (SLC1A5) and SLC7A5(Shajahan-Haq et al., 2014)(GAO 2009). In addition to 

this, c-Myc promotes expression of glutaminase (GLS1) via inhibition of microRNA-23A and 

microRNA-23B (Gao P, 2009). c-Myc induced GLS1 produces glutamate from glutamine, which 

can then drive the TCA cycle via production of α-KG. It has been shown that c-Myc driven 

glutamine uptake and glutaminolysis lead to glutamine addiction in cancer cells(David R Wise et 

al., 2008). Elevated glutamine metabolism by c-Myc leads to an upregulation of other amino 

acid pathways which are directly or indirectly fed by nitrogen from glutamine. A study in breast 

cancer shows that cancer cells are sensitive to a broad spectrum inhibitor of aminotransferase 

in a Myc dependent fashion. However, c-Myc has not been directly linked to the expression of 

these aminotransferase genes(Korangath et al., 2015).  c-Myc is also involved in the serine and 

one carbon metabolism via regulation of enzymes PHGDH and PSAT (involved in serine 

metabolism, described earlier) and SHMT2 which converts serine to glycine, leading to 

nucleotide synthesis(Nikiforov et al., 2002; Sun et al., 2015). 

One of the main mechanisms by which c-Myc regulates cell cycle is via induction of genes 

involved in cell cycle, E2F and CDK, and by inactivation of the tumor suppressor RB1 thereby 

allowing cells to enter into the S phase(C. V. Dang, 2013). c-Myc and E2F coordinate together to 

activate genes involved in DNA replication and nucleotide metabolism (Rempel et al. 2009, 

Zeller et al. 2006). Interestingly, loss of RB1, which frequently occurs in cancers, promotes 

glutamine metabolism. It has been observed that RB1 knockout cells have elevated expression 

of ASCT2 and GLS and show an increase in carbon flow from glutamine into the TCA 

cycle(Nicolay & Dyson, 2013; M. Reynolds et al., 2013). RB1 is also involved in antioxidation and 

its loss leads to the accumulation of ROS in cancer cells. Similarly, TP53, another well-known 

tumor suppressor, induces the expression of GLS2 which promotes de novo synthesis of GSH 

which also controls the redox potential of the cells (Suzuki, S. et al., 2010). However, the 

primary function of TP53 is to induce cell cycle arrest and apoptosis in case of DNA damage 

which leads to a buildup of ROS. Recent studies have shown that p53 is also involved in glucose 

and energy metabolism(Chen & Russo, 2012). TP53 also activates PTEN which inhibits PI3K-AKT 
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pathway which is known to activate glycolysis and mTOR signaling. mTOR signaling is essential 

in integrating growth signals and nutrient availability which influences cell metabolism and it 

activates HIF1a to stimulate further metabolic changes (details below). 

There are several other oncogenes which have been shown to regulate cancer metabolism. 

Prominent among these are mutant KRAS, which has been found in pancreatic, colon and lung 

cancers and also found in breast cancers. KRAS carrying activating mutations has been shown to 

regulate anabolic glucose metabolism as well as reprogram glutamine metabolism (Son et al., 

2013a; Ying et al., 2012). EGFR which is frequently mutated in breast and lung cancer has been 

shown to regulate glycolysis in triple negative breast cancer cells (Lim et al., 2016) and fatty 

acid synthesis in glioma and has also been implicated in sensitivity to glutamine inhibition in 

lung cancer (Momcilovic et al., 2017).  

Besides the genetic landscape of cancer cells, the tumor microenvironment also regulates 

tumor metabolism. The availability of nutrients, pH of the surrounding and oxygenation of the 

tumor are important factors controlled by the microenvironment that regulate cellular 

metabolism(Cairns et al., 2011). AMP-activated protein kinase (AMPK) functions as a metabolic 

checkpoint, which regulates metabolic pathways under stress including those imposed by the 

microenvironment. Under periods of stress and energy deficit, LKB1, a serine threonine kinase, 

activates AMPK and drives the cells towards a more oxidative metabolic pathway. Therefore, it 

is not surprising to see that LKB1 is mutated in several cancers, including non-small cell lung 

cancer and breast cancer(Avizienyte et al., 1999; Ji et al., 2007), and others show a suppression 

of AMPK signaling(X. Huang et al., 2008; Xiang, Saha, Wen, Ruderman, & Luo, 2004). As an 

mTOR and HIF1α inhibitor, loss of AMPK activity leads to a more glycolytic phenotype in cancer 

cells(Carretero et al., 2007; Luo, Zang, & Guo, 2010). 

As a result of irregular tumor vasculature, parts of the tumor are inconsistently oxygenated and 

receive insufficient nutrients, resulting in hypoxia and stress in these sections of the tumor. Low 

oxygen levels lead to stabilization of HIF1α(Keith, Johnson, & Simon, 2011; Wang, Jiang, Rue, & 

Semenza, 1995). As mentioned earlier, HIF1α can also be activated by mTOR signaling and ROS 

levels in cancer cells. HIF1α elevates glycolysis in the cells and inhibits mitochondrial respiration 
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(Denko N.C. 2008). HIF1α also cooperates with c-Myc to activate PDK1 and induce lactate 

production(Kim et al., 2007). HIF1α also regulates TCA cycle genes to support cancer cell growth 

(Wise et al., 2011). HIF is a heterodimer made up of two subunits HIF1α and HIF1β. The HIF1α 

subunit levels are controlled by oxygen levels and, during hypoxia, HIF1α levels are elevated via 

stabilization of the protein(Keith et al., 2011; Wang et al., 1995). While most of the metabolic 

changes seen under hypoxia are attributed directly to HIF1α, little is known about the 

metabolic role HIF1β (ARNT), which is stabily expressed in the cells. 

Extreme hypoxia (<0.02% O2) leads to endoplasmic reticulum (ER) stress and unfolded protein 

response (UPR) in cells, resulting in further metabolic adaptation that enable the cells to 

survive. For example, activating transcription factor 4 (ATF4) is a stress responsive gene which is 

activated in response to conditions of stress, including hypoxia, ER stress, amino acid 

deprivation, oxidative stress and growth factor heregulin (Cullinan & Diehl, 2006; Harding et al., 

2003; Salgado, Metón, Anemaet, & Baanante, 2014a). ATF4 in turn regulates metabolism to 

protect the cells from stress and ensure sufficient supply of amino acids. In a study conducted 

in liver cells induction of stress lead to an increase in expression of alanine aminotransferase 2 

by ATF4 (Salgado et al., 2014a). 

Tumorigenesis is multistep process orchestrated by changes in cell signaling networks that 

promote rapid cell proliferation. In order to maintain these high levels of proliferation, signaling 

pathways and transcription networks rewire metabolic activities of the cells. However, 

connections between signaling and tumor metabolism are complex and are still not well 

understood. While some potential focal points for these connections have been discovered it is 

difficult to find one master regulator as these associations are temporally and spatially 

regulated. Moreover, integrating data from metabolic and proteomic (or genetic) pathway 

analysis is a challenge and requires further development. Nevertheless, determining the 

regulation of metabolic pathways by signaling molecules will be beneficial in the quest to find 

more effective targets for cancer therapy. 
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Figure 3: Transcription factors and signaling molecules involve in the regulation of cancer 

metabolism. Adapted from Berardinis and Chandel, 2016(R. J. Deberardinis & Chandel, n.d.) 

 

1.5 Tumor Metabolism: Imaging and Therapeutics 
Understanding the metabolic landscape of cancer provides new opportunities for tumor 

imaging, biomarker discovery and treatment strategies.  

The last three decades have seen a surge in imaging of metabolic phenotypes of cancer cells. 

The most commonly used technique is positron imaging tomography (PET). Combined with a 

low-dose CT scan, PET imaging helps generate a three-dimensional image of the tumor. First 

discovered in the 1980s(Som et al., 1980), 18F-labelled fluorodeoxyglucose(FDG) is taken up by  

glucose transporters in the cells but unlike glucose it is phosphorylated to FDG-6 phosphate and 

cannot be metabolized further. Low levels of emission from FDG-6 phosphate are used as a 

measure for glucose consumption by the cells. This method is used to image breast, lung, head 

and neck, lymphoma, and sarcoma(Bar-Shalom et al., 2003).  Although this technique is useful 

to detect the progression of the disease and efficacy of treatment, it is limited by the 

differential ability of cancers to take up FDG(Schirrmeister et al., 2001). This has led to the 

development of other tracers which can track other metabolic pathways in cancer cells, some 
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of them include 18F-N-(methyl-(2-fluoroethyl)-1H-[1, 2, 3]triazole-4-yl)glucosamine ([18F] NFTG), 

which is incorporated into glycogen and can be used to measure gluconeogenesis in the 

cells(Cheng et al., 2012). The glutamine analog, g [18F] -(2S,4R)4-fluoroglutamine, is used to 

measure glutamine uptake in cells(Lieberman et al., 2011). Other pathways detected by this 

technique include, fatty acid metabolism using, [11C] acetate-PET(Jadvar, 2011), glutamate 

metabolism via (S)-4-(3-[18F]Fluoropropyl)-L-glutamic acid  (FSPG), which is a glutamate 

analogue(Baek et al., 2012) and amino acid metabolism with 11C methionine (MET-

PET)(Glaudemans et al., 2013). In addition to PET, magnetic resonance spectroscopic imaging 

(MRSI) has been used to monitor choline and NAD+ levels in tumors. Another method known as 

chemical exchange saturation transfer (CEST) has been shown to detect non labeled glucose 

uptake in the cells(Chan et al., 2012). Recent studies have shown the benefits of using dynamic 

nuclear polarization (a form of hyperpolarize MRI) in probing metabolic heterogeneity in cancer 

cells. Conversion of hyperpolarized pyruvate and glucose to lactate have been used in studies 

with tumor patients and models with  promising results(Nelson et al., 2013; Rodrigues et al., 

2013). While these techniques maybe powerful tools for cancer detection, they require further 

translational studies to prove their efficacy and ability to deal with the metabolic heterogeneity 

which is present with the tumor microenvironment. Furthermore, while the advantages of 

developing these techniques are undeniable, there is a need to develop more non-invasive 

methods for detection. 

Metabolic pathways are crucial for the proliferation of cancer cells thereby presenting a new 

vulnerability. The question remains whether, these potential targets can be translated into 

successful treatment strategies. So far, several new drug targets which target either the uptake 

of nutrients or biosynthesis of macromolecules have been identified. However, the success rate 

has not been very satisfactory (Table 1). Targeting glucose uptake or the Warburg effect via 

targeting LDH or PDH has led to limited success. Nevertheless, there are several other targets in 

preclinical or clinical stages of development, which could result in effect cancer therapies. 

Drugs targeting IDH mutations, for example, have been successful in hematological 

cancers(Tateishi et al., 2015).  Glutamine metabolism is another promising target for cancers 

that are dependent on glutamine. Currently, there are clinical trials being conducted with CB-
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839 which a GLS1 inhibitor. Other drugs targeting different amino acid metabolic pathways are 

under preclinical investigation. The hope is that some of these can be translated into effective 

treatment strategies. There are of course several challenges; first of all, most metabolic 

pathways are redundant, and  targeting one pathway may lead to usage of another pathway, 

therefore combinatorial therapies need to be developed.  Also, similar to chemotherapy, which 

targets growing cells, metabolic pathways are used by all metabolically active cells and 

targeting them could lead to severe side effects, especially liver toxicity. Moreover, metabolic 

heterogeneity within the tumor as a result of the presence of different cell types presents a 

formidable challenge to efficacious therapy. However, a deeper understanding of the metabolic 

vulnerabilities of the cells and better metabolic stratification of patients will lead to successful 

therapy regimes. 

 

Target pathway and Protein Drugs Development Stage 

Glycolysis   

Glucose Transporter 1 (GLUT1) WZB117, SILIBININ and RNAi Preclinical studies 

Hexokinases 2-DG, Ionidamine, 3-bromopyruvic 

acid and methyl jasmonate 

Preclinical and clinical studies 

Phospho-fructokinase 2 (isoform 

PFKFB3) 

PFK158 Preclinical studies 

Pyruvate Kinase isoform M2 (PKM2) TLN-232 and RNAi Preclinical and phase II clinical 

studies 

Lactate Dehydrogenase A  (LDHA) GNE-140, FX11, galloflavin and RNAi Preclinical studies 

MCT1 and MCT4 AZD3965 and AZ93 AZD3965 in clinical development 

TCA cycle   

Pyruvate dehydrogenase kinase 1 

(PDK1) 

Dichloroacetate (DCA) and RNAi Approved for treatment of lactic 

acidosis. In phase I clinical trials 

Pyruvate carboxylase RNAi Preclinical studies 

α-ketoglutarate dehydrogenase  CPI-613 Preclinical and clinical studies 

Isocitrate dehydrogenases  AG-120, AG-221, AG-881, and RNAi Preclinical and clinical studies 

Oxidative Phosphorylation   
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Mitochondrial membrane potential MKT-077 Clinical studies 

Mitochondrial complex I Metformin, phenformin Phase III Clinical Trials 

Mitochondrial complex III Arsenic trioxide Preclinical and clinical studies 

Glutamine Metabolism   

Glutaminase (GLS1) CB-839, BPTES and RNAi Preclinical and clinical studies 

Amino acid Metabolism   

Asparagine availability L-Asparginase Approved as anticancer agent 

Arginine availability PEG-BCT-100 (ADI-PEG20) 

AEB-1102 

Clinical development: phase II clinical 

trials 

Phosphoglycerate dehydrogenase 

(PHGDH) 

RNAi Preclinical studies 

Approved 

Lipid synthesis   

Fatty acid synthase (FASN)  TVB-2640 Preclinical studies 

ATP citrate lyase (ACL) Hydroxycitrate Preclinical studies 

Acetyl-CoA carboxylase (ACC) 

 

NDI-010976 

 

Preclinical studies and clinical studies 

Choline kinase TCD-717, CK37, MN58b, RSM932A, 

and RNAi 

TCD-717 is in clinical development 

Nucleic Acid Metabolism   

Dihydrofolate reductase 

 

Methotrexate, pemetrexed, and 

pralatrexate  

Approved as anticancer agents 

Thymidylate synthase 5-Fluorouracil Approved as anticancer agents 

Adenine/adenosine deaminase Pentostatin Approved as anticancer agents 

DNA polymerase/ ribonucleotide 

reductase 

Gemcitabine, Cytarabine and 

Fludarabine 

Approved as anticancer agents 

 

Table 1:  Selected metabolic targets under different stages of development. Adapted from Outschoorn et 
al, 2016(Martinez-Outschoorn, Peiris-Pagés, Pestell, Sotgia, & Lisanti, 2016) and Heiden and DeBerardinis 
2017(Matthew G Vander Heiden & DeBerardinis, 2017) 
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2. Aims 
 

Breast cancer is a broad spectrum of diseases affecting the mammary gland. This diversity is 

due the high variability in the genomic and microenvironmental landscape of the tumors. 

Therefore, it is reasonable to assume that metabolism is also variable within breast cancer. 

However, reprogramming of metabolic pathways itself is a common phenomenon of nearly all 

breast cancers. While glycolysis remains the mainstay of this rewiring, most breast cancer cells 

also depend on alternative sources of carbon, including amino acids, especially glutamine, 

which can also be important sources of nitrogen within the cells. Recent advances in this field 

have highlighted the importance of glutamine and other amino acids in tumor progression.  

Therefore, investigation of the cycling of carbon and nitrogen atoms in these pathways may 

provide an insight into the metabolic vulnerabilities of cancer cells which may then be utilized 

to target them. 

 

The aim of this study was to investigate the role of amino acid metabolism in breast cancer 

progression via 

1. Identifying activated amino acid metabolism pathways within different breast cancer 

cell lines using genomic, proteomic and metabolomic approaches. 

2. Using RNAi and chemical inhibitors to perturb the identified pathways and study the 

effect on cell growth. 

3. Elucidating metabolic mechanisms underlying the effect of identified pathways on the 

growth of cancer cells. 

4. Exploring the role of transcription factors in the regulation of identified pathways. 
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3. Materials and Methods 
3.1 Materials 

3.1.1 Instruments 

Aushon 2470 contact printer Aushon BioSystems (Billerica, USA) 

Biohit Proline multichannel pipette Sartorius (Göttingen, Germany) 

Cell counter CASY  Roche Innovatis AG (Bielefeld, Germany)  

Cell culture hood HERA Safe  Thermo Fisher Scientific (Waltham, USA)  

Cell culture incubator  Heraeus (Hanau, Germany)  

Centrifuges  Eppendorf AG (Hamburg, Germany)  

Extracellular flow bioanalyzer (Seahorse 

XF96) 

Agilent Technologies (Santa Clara USA) 

Flow Cytometer FACS Calibur  Becton Dickinson (New Jersey, USA)  

Gel documentation system  Herolab GmbH (Wiesloch, Germany)  

Infinite M200 microplate reader  Tecan Group (Männedorf, Switzerland)  

Molecular Devices Microscope IXM XLS  Molecular Devices (Sunnyvale, USA)  

Nanodrop ND-1000 spectrophotometer  Thermo Fisher Scientific (Waltham, USA)  

Odyssey Infrared Imaging System  Li-Cor Biosciences GmbH (Bad Homburg, 

Germany)  

Pipetboy acu pipette INTEGRA Biosciences (Fernwald, 
Germany) 

Pipetman® pipette Gilson (Limburg, Germany) 

Protein Gel Apparatus MiniProtean II  Bio-Rad (Hercules, USA)  

Sentrix Human HT-12 v4 BeadArrays  Illumina (San Diego, USA)  

Spectrophotometer Nano Drop nd-1000  Thermo Fisher Scientific (Waltham, USA)  

SW41 Ti Rotor and Tubes  Beckman Coulter (Brea, USA)  

Thermocycler  Applied Biosystems (Foster City, USA)  

Titramax 100 rocking platform Heidolph (Schwabach, Germany) 

Trans-Blot SD Semi-Dry Electrophoretic 

Transfer  

Bio-Rad (Hercules, USA)  

Tube Rotator VWR (Darmstadt, Germany) 
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Ultracentrifuge, Beckman L8-70M  Beckman Coulter (Brea, USA)  

Vacuboy aspiration device INTEGRA Biosciences (Fernwald, 
Germany) 

Vortex mixer  neoLab (Heidelberg, Germany)  

xCelligence Real-time cell analyzer (RTCA)  Roche Diagnostics (Mannheim, Germany)  

HPLC  

GC MS  

Mass spectrometry  

 

3.1.2 Chemicals 
Acrylamide/bisacrylamide 37.5:1  Carl Roth (Karlsruhe, Germany)  

Ammoniumperoxodisulfate (APS)  Sigma-Aldrich (Saint-Louis, USA)  

Β-chloro-L-alanine Sigma-Aldrich (Saint-Louis, USA) 

CASYton Roche Innovatis AG (Bielefeld, Germany) 

cOmplete Mini Protease Inhibitor 
Cocktail 

Roche Diagnostics (Mannheim, Germany) 

Dimethylsulfoxide (DMSO)  Sigma-Aldrich (Saint-Louis, USA)  

EDTA  Sigma-Aldrich (Saint-Louis, USA)  

Ethanol  Sigma-Aldrich (Saint-Louis, USA)  

Fast Green FCF Carl Roth (Karlsruhe, Germany)  

Hoechst 33258 Sigma (Krefeld, Germany) 

Isopropanol  Greiner Bio-One International GmbH 

(Kremsmünster, Austria)  

Metformin Sigma-Aldrich (Saint-Louis, USA) 

Methanol  Greiner Bio-One International GmbH 

(Kremsmünster, Austria)  

M-PER mammalian protein extraction 
reagent 

Thermo Fischer Scientific (Rockford, USA) 

NaCl  VWR International (Darmstadt, Germany)  

NaOH  Sigma-Aldrich (Saint-Louis, USA)  

non-DEPC treated nuclease-free water  Ambion, Thermo Fisher Scientific 
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(Waltham, USA)  

PhosSTOP Phosphatase Inhibitor Cocktail Roche Diagnostics (Mannheim, Germany) 

Protein Marker Precision Plus Protein 
Dual Color 

BioRad 

Proteinase K  Sigma-Aldrich (Saint-Louis, USA)  

RNAiMax Reagent Invitrogen 

Rockland Blocking Buffer Rockland Immunochemicals Inc. 
(Limerick, USA) 

Rotenone Sigma-Aldrich (Saint-Louis, USA) 

Roti®-Load 1, 4x sample loading buffer Carl Roth (Karlsruhe, Germany) 

SDS  Carl Roth (Karlsruhe, Germany)  

siRNAs  Dharmacon, Thermo Fisher Scientific 

(Waltham, USA)  

Sodium Citrate Tribasic Dihydrate  AppliChem (Darmstadt, Germany)  

NaF  

Na2VO4  

TaqMan® Fast Universal PCR Master Mix 

(2x)  

Applied Biosystems (Foster City, USA)  

TEMED  Carl Roth (Karlsruhe, Germany)  

Tricine  Carl Roth (Karlsruhe, Germany)  

Tris HCl  Sigma-Aldrich (Saint-Louis, USA)  

Tris-base  Sigma-Aldrich (Saint-Louis, USA)  

Triton X-100  Sigma-Aldrich (Saint-Louis, USA)  

Tunicamycin Tocris Bioscience 

Tween 20  Sigma-Aldrich (Saint-Louis, USA)  

 

3.1.3 Assay Kits 

ABSOLUTE qPCR Mix  Thermo Fisher Scientific (Waltham, USA)  

BCA Protein Assay Kit PierceTM  Thermo Fisher Scientific (Waltham, USA)  

cDNA Synthesis Kit  Thermo Fisher Scientific (Waltham, USA)  

RNeasy Mini kit  Qiagen (Hilden, Germany)  
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qPCR MasterMix (RT-QP2X-03+NR)  Eurogentec (Lüttich, Belgium)  

RevertAid™ H Minus First Strand cDNA 

synthesis kit  

Fermentas, Thermo Fisher Scientific 

(Waltham, USA)  

RNeasy Mini Kit  Qiagen (Hilden, Germany)  

TaqMan® MicroRNA Assays  Applied Biosystems (Foster City, USA)  

Universal Probe Library (UPL)  Roche Diagnostics (Mannheim, Germany)  

Seahorse kits Agilent Technologies (MA, USA) 

 

3.1.4 Cell culture  
All breast cancer cell lines were purchased from ATCC (LGC Standards GmbH, Wesel, Germany). 

 

0.25% Trypsin EDTA Solution  Gibco BRL (New York, USA)  

DMEM  Gibco BRL (New York, USA)  

DMEM F12  Gibco BRL (New York, USA)  

DMSO  PAN Biotech GmbH (Aidenbach, Germany)  

DPBS  Gibco BRL (New York, USA)  

Fetal Bovine Serum  Gibco BRL (New York, USA)  

L-glutamine, 200mM  Gibco BRL (New York, USA)  

OptiMEM  Gibco BRL (New York, USA)  

RPMI 1640 (A10491-01)  Gibco BRL (New York, USA)  

Sodium pyruvate, 100mM  Gibco BRL (New York, USA)  

 

3.1.5 Glass and Plastic ware 
1.5 mL micro centrifuge tube  Eppendorf AG (Hamburg, Germany)  

10cm Ø Petri dish  Techno Plastic Products (TPP) AG 

(Trasadingen, Switzerland)  

15mL conical tube  Becton Dickinson (New Jersey, USA)  

2 mL micro centrifuge tube  Eppendorf AG (Hamburg, Germany)  
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50mL conical tube  Becton Dickinson (New Jersey, USA)  

6-well plate, flat bottom, transparent  Nunc, Thermo Fisher Scientific (Waltham, 

USA)  

96-well plate, flat bottom, transparent  Becton Dickinson (New Jersey, USA)  

96-well plate, flat bottom, μCLEAR®, 

black  

Greiner Bio-One International GmbH 

(Kremsmünster, Austria)  

96-well plate, flat bottom, white  PerkinElmer (Waltham, USA)  

Adhesive Optically Clear Plate Seal  Thermo Fisher Scientific (Waltham, USA)  

AMICON® Ultra-4 filtration units  Merck Millipore (Darmstadt, Germany)  

Cell Culture Flasks, T-25, T-75, T-175  Greiner Bio-One International GmbH 

(Kremsmünster, Austria)  

Cell Scraper  Corning (Corning, USA)  

Cry vials 1.8mL  Nunc, Thermo Fisher Scientific (Waltham, 

USA)  

Filter tips, 10μL, 20μL, 100μL, 200μL, 

1000μL  

Neptune Scientific (San Diego, USA)  

HumanHT-12 v4 BeadChips  Illumina (San Diego, USA)  

Oncyte® Avid Nitrocellulose Film-Slide Grace Bio-Labs (Bend, USA) 

PCR strips  Steinbrenner Laborsysteme GmbH 

(Wiesenbach, Germany)  

PVDF membrane Immobilon-P  Merck Millipore (Darmstadt, Germany)  

RTCA E-plates  Roche Diagnostics (Mannheim, Germany)  

Seahorse Microplates and cartidges Agilent Biotechnologies (MA, USA) 

Sentrix Human HT-12 v4 BeadArrays  Illumina (San Diego, USA)  

Serological pipettes 2.5mL, 5mL, 10mL, 

25mL, 50ml  

Becton Dickinson (New Jersey, USA)  

Trans-well system (5.0μm pore size)  Corning (Corning, USA)  

Whatman 3 MM filter paper  GE Healthcare (Little Chalfont, United 

Kingdom)  
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3.1.6 Software 
GraphPad Prism 5  GraphPad Software, Inc. (La Jolla, USA)  

Image Studio LI-COR Biosciences (Lincoln USA) 

Inkscape Software Freedom Conservancy, Inc. (NY 

USA) 

Molecular Devices Analysis Software  Molecular Devices (Sunnyvale, USA)  

Odyssey 2.1  LI-COR (Lincoln, USA)  

Roche UPL Design Center Roche Diagnostics (Mannheim, Germany)  

SDS 2.2  Applied Biosystems (Foster City, USA)  

Seahorse analyzer Agilent Technologies (MA, USA) 

xCelligence Real Time Cell Analyzer 

(RTCA) software 1.2  

Roche Diagnostics (Mannheim, Germany)  

 

3.1.7 Database 

METABRIC mRNA data https://www.synapse.org/#!Synapse:syn1688369/wiki/27311  

TCGA mRNA data TCGA_BRCA_exp_HiSeqV2-2015-02-24 

 

 

3.1.8 Buffers and solutions  

 

Lysis buffer for mammalian cells  

MPER Buffer 10ml, 1tbl PhosSTOP Phosphatase Inhibitor, 1tbl Complete Mini Protease Inhibitor 

Cocktail, 10µl Na2VO4, 100µl NaF 

4% SDS-PAGE stacking gel  

1.33mL Acrylamide, 2.55mL 1M Tris pH 6.8, 100μl 10%SDS, 200μl 10%APS, 10μl TEMED, 6mL 

ddH2O  
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12.5 % SDS-PAGE separating gel  

8.3 ml Acrylamide:Bis, 5 ml 4x separation gel buffer, 0.2 ml 10% SDS, 6.4 ml ddH2O, 100 μl 10% 

APS, 20 μl TEMED 

 

SDS-PAGE running buffer  

30.3 g Tris Base (0.25 M), 144.1 g Glycine (1.92 M), 0.1% SDS (w/v), add 1L dH2O  

 

Western Blotting buffers  

Cathode buffer: 40mM aminohexanoic acid, 20% ethanol (v/v)  

Anode buffer I: 300mM Tris Base, 20% ethanol, and 500ml dH20  

Anode buffer II: 25mM Tris Base, 20% ethanol, and 500ml dH20  

Washing buffer: 0.1% Tween®20 in TBS (TBST)  

Blocking buffer: 50% Rockland blocking buffer, 5Mm NaF, 1Mm Na3VO4 

Secondary antibody buffer: Washing buffer + 0.02% SDS (w/v) 

 

10X TBS 

1.37M NaCl, 200mM Tris, pH 7.6 

 

1x TBS  

50mM Tris-HCl pH 7.4, 150mM NaCl 

 

1X TBST 
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0.1% Tween 20 in 1x TBS 

 

4x RPPA printing buffer 

10% Glycerol, 4% SDS, 10mM DTT, 125mM Tris, pH 6.8 

 

FCF staining solution 

0.005% Fast Green FCF, 10% acetic acid, 30% ethanol 

 

FCF destaining solution 

10% acetic acid, 30% ethanol 

 

3.1.9 Antibodies 

 

Primary antibody 

Protein name Host Product ID 

(Company) 

     beta-Actin 
 

mouse Actin (clone C4) (MP 

Biomedicals USA) 

beta-Actin rabbit Actin 21-33 (Sigma 

Aldrich USA) 

pAMPKa rabbit sc-33524 (Santa Cruz 

Biotechnology USA) 

ARG2 rabbit GTX118048 (Genetex 

USA) 
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ASS1 rabbit HPA020896 (Sigma 

Aldrich USA) 

Bcl2-L-4 (Bax) mouse  2772 (Cell Signaling 

Technology USA) 

GLS1 Rabbit ab156876 (Abcam plc 
UK) 

GPT2 Mouse sc-398383 (Santa Cruz 

Biotechnology USA) 

c-Myc Rabbit sc-764 (Santa Cruz 
Biotechnology USA) 

Cleaved PARP Rabbit 9541 (Cell Signaling 

Technology USA) 

PC Rabbit HPA058765 (Atlas 

Antibodies) 

PDH Rabbit 3205 (Cell Signaling 

Technology USA) 

pRPS6 Rabbit 4858 (Cell Signaling 

Technology USA) 

 

3.1.10 siRNAs 
siRNA Annotation Catalogue Number Target Sequence 

siGENOME Non-
Targeting siRNA 

Pool #2 

NTC D-001206-14-05 UAAGGCUAUGAAGAGAUAC 

AUGUAUUGGCCUGUAUUAG 

AUGAACGUGAAUUGCUCAA 

UGGUUUACAUGUCGACUAA 

ON-TARGETplus 
non-targeting Pool 

siControl D-001810-10 UGGUUUACAUGUCGACUAA 

UGGUUUACAUGUUGUGUGA 

UGGUUUACAUGUUUUCUGA 

UGGUUUACAUGUUUUCCUA 

siGenome Set of 4 
Upgrade siRNA 

GPT2 

siGPT2 D-004173-01 UCAAAUGGCUCCAGACAUG 

D-004173-03 GUGAAAGACUUCCACAUCA 

D-004173-04 UCAAGAAGGUGCUGUACGA 

D-004173-18 GUGAAAAGGUUAAAUCGUA 

siGenome Set of 4 siPC D-008950-01 GAAAGCAGAUGAAGCCUAU 
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Upgrade siRNA PC D-008950-03 GAGCUGAUGUGGUGGAUGU 

D-008950-18 GGAUAAUGCUUCCGCCUUC 

D-008950-19 UCUCUGAGCGAGCGGACUU 

 
siRNA pools composed of four different siRNA sequences targeting MYC (Cat. No. M-003282-04) 

and ATF4 (Cat No. M-005125-02) were picked from the human siRNA library of siGENOME 
(Dharmacon). 
 

3.1.11 Primers 
Gene Primer Left Primer Right Probe # 

ATF4 ggtcagtccctccaacaaca ctatacccaacagggcatcc 88 

GPT gggaaggcacctaccacttc ttggcatggaacctgctc 66 

GPT2 ggatcttcattcctgccaaa acatgtctggagccatttga 75 

MYC caccagcagcgactctga gatccagactctgaccttttgc 34 

PUM1 tcacatggatcctcttcaagc cctggagcagcagagatgtat 86 
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Methods 

3.1.12 Cell Culture and Growth Conditions 
All breast cancer cell lines were obtained from ATCC. Cell lines were regularly authenticated by 

multiplex cell line authentication (Multiplexion GmbH, Friedrichshafen, Germany) and tested 

for mycoplasma contamination. The cell lines were cultured in RPMI 1640 media with 10% FBS 

and incubated at 37oC with 5% CO2 in a humidified atmosphere.  Cells were passaged 

approximately every 3 days under aseptic conditions in a laminar air-flow hood. Briefly, medium 

was aspirated from the flask and the cells were washed with PBS following which 0.25% trypsin-

EDTA was added and the cells were returned to 37oC. Once the cells detached, growth medium 

was added to neutralize the trypsin. The cells were counted using the CASY counter. For 

counting, 50µl of cell suspension was diluted in 10ml CASYton and counted automatically. 

Depending on their growth and cell size, 1-2 x 10^6 cells were seeded into a 75 cm2  flask with a 

final volume of 15ml. Cells were used upto passage number 20 for experiments after which new 

cells were thawed. 

To generate frozen cell stocks, the trypsinized cells were counted as described above and 

centrifuged at 1200 rpm for 5min. The resulting pellets were resuspended in freezing media 

(70% growth media, 20%FBS, 10%DMSO) to a concentration of 1 x 10^6 cells per ml media and 

aliquoted into 1.5ml cryovials, The cell suspension was slowly cooled down in an isopropanol 

bath at -80oC for a minimum of 24h before transferring to a liquid nitrogen container for long 

term storage. 

Frozen vials of cells were recovered by thawing quickly in a 37oC water bath. The cell 

suspension was then pipette into a 75cm2 culture flasks with pre-warmed growth medium. Cells 

were allowed to attach overnight before aspirating the medium and replacing it with fresh 

growth medium. 
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3.1.13 siRNAs and Transfections 
Cells were seeded to a confluency of 80%. After overnight incubation, transfections were 

performed with RNAiMax® according to manufacturer’s instructions. Unless otherwise stated, 

siRNAs were used at a final concentration of 10nM. The transfection protocols were 

independent of the plate type, only the volumes of reagents were different.  

Plate Format Vol. of OptMEM 

added (µl) 

Vol. of 

RNAiMax 

added (µl) 

Final 

concentration 

of siRNA(nM) 

Total volume 

of transfection 

mix (µl) 

96 well plate 19.2 0.3 10 20 

6 well plate 231 3 10 240 

10 cm dish 955 15 10 1000 

 

Table 2: Volumes of reagents used for transfections 

A pre-mix of RNAiMax and Opti-MEM was prepared, and in parallel siRNAs were diluted in Opti-

MEM. The siRNA and RNAiMax pre-mix were mixed and incubated for 5min. During this 

incubation, media was aspirated from the cells and replaced with fresh growth media. Post 

incubation, the transfection mix was added to the cells. Cells were then incubated in 37oC, 5% 

CO2   humidified atmosphere for different time points depending on the assay being performed. 

Knockdown efficiency was determined by qPCR and western blot techniques (described below).  

 

3.1.14 Inhibitor Treatment  
Cells were seeded to a confluency of 60%. After overnight incubation cells were treated with 

inhibitors diluted in growth media, water (DMSO for Rotenone) was used as control. Cells were 

incubated in 37oC, 5% CO2 humidified atmosphere for different time points depending on the 

assay being performed. 
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3.1.15 Analysis of RNA expression 
 

3.1.15.1 mRNA isolation 

mRNA was isolated using the “RNeasy Mini” Kit from Qiagen according to manufacturer’s 

recommendations. Extracted RNA was eluted in 50µl of nuclease free water. 

 

3.1.15.2 Quantitative RT PCR 

Primers and probes were designed for Taqman® qRT-PCR using the Roche UPL Design Center 

(Refer to section 3.1.11 for Primer sequences and Probe numbers). For quantification, first 1ug 

of total RNA was reverse transcribed to  cDNA using the RevertAid™ H minus First strand Kit. 

For the Taqman assay the cDNA was first diluted to 2ng/µl. For each gene to be quantified a 

Mastermix was prepared consisting of 5.5µl 2x ABgene mastermix, 0.11µl forward primer, 

0.11µl reverse primer and 0.11µl Taqman probe per well. 6µl of the Mastermix was pipetted 

with 5ul of cDNA into 384 well plates in triplicates.  

A plate layout document was prepared using the SDS software and the PCR conditions were set 

as follows, 2min at 50oC, 15min at 95oC followed by 45 cycles of 15s at 95oC and 60s at 60o C. 

Raw data was analysed using the SDS software with the ΔΔCt method(Yuan, Reed, Chen, & 

Stewart, 2006). The Ct values were normalized to housekeeping gene PUM1. 

 

3.1.15.3 Microarray 

Genome-wide gene expression profiling is performed using HumanHT-12 v4 BeadChips 

(Illumina, San Diego, CA, USA). Raw probe intensities are back-ground corrected using negative 

control probes and a normal+exponential (normexp) convolution model. An offset value (16) is 

added to the data in order to prevent negative expressions in the background correction step. 

Data are then normalized via quantile normalization using the negative and positive probes(Shi, 

Oshlack, & Smyth, 2010) (Shi et al., 2010). Control probes are removed and intensities are log2 
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transformed after normalization. DKFZ microarray core facility performed sample preparation, 

RNA quality control and hybridization. Khalid Abnaof performed data normalization. 

 

3.1.16 Protein Analysis 
 

3.1.16.1 Western Blotting 
 

3.2.5.1.1 Protein Isolation 

After indicated times of incubation post transfection or inhibition, cell lysates were extracted. 

Cells were placed on ice, media was aspirated and cells were washed with ice cold PBS. Cells 

were lysed with M-PER lysis buffer (10ml MPER Buffer, 1x Complete Mini Protease Inhibitor 

Cocktail and 1x Phospho-Stop phosphatase Inhibitor) and detached and homogenized by 

scraping. The lysis reaction was collected in 1.5ml centrifuge tubes and incubated at 4oC for 

30min on a vertical rotor. The lysate was centrifuged at 13,000rpm for 10min and the 

supernatant was transferred to a fresh 1.5ml centrifuge tube. Lysates were stored at -80oC.  

 

3.2.5.1.2 Protein Quantification 

Protein concentrations of the lysates were determined using the BCA™ protein assay kit. 

Protein concentrations were hence, determined by following the kit protocol. Briefly, BSA 

standards of different concentrations (2000µg/ml, 1500µg/ml, 1000µg/ml, 750µg/ml, 

500µg/ml, 250µg/ml, 125µg/ml, 25µg/ml and 0µg/ml) were prepared according to the 

manufacturer’s recommendations. All standards were diluted in PBS. 25µl of each standard was 

pipetted into a 96-well microplate in duplicates. 5µl of each sample was pipetted into the plate 

in duplicates as well. Hence, the dilution factor of samples compared to standards in 1:5.  

BCA™ working reagent is prepared freshly for each assay by mixing Reagent A with Reagent be 

in a 50:1 ratio. The 200µl of the working reagent is then added to each well of the microplate. 
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The plate was protected from light and incubated at 37oC for 30min. Thereafter, the 

absorbance at 562nm was measured on the TECAN infinite200 plate reader. 

A standard curve was prepared after blank correcting the absorbance readings of the BSA 

standards and protein concentration of the samples were calculated from this curve. The 

obtained concentrations were then multiplied by 5 to account for the dilution factor.  

Cell lysates for gel electrophoresis were then prepared for gel electrophoresis by mixing with 

protein loading buffer (4X RotiLoad) in a 1:4 dilution and heated to 95oC for 5min for 

denaturation. 

 

3.2.5.1.3 SDS PAGE 

Gel electrophoresis is a method by which protein can be separated according to their size. In 

SDS PAGE (Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis) heat denatured 

proteins are coated with negatively charged SDS which therefore, migrate towards the cathode 

(irrespective of their intrinsic charge). The polyacrylamide gel serves as a sieve to retard the 

larger proteins while the smaller ones move faster and thus separates the different protein in 

the lysate spatially.  

The gels for electrophoresis were prepared prior to the experiment. Depending on the size of 

the protein to be detected different % acrylamide running gels were cast. The running and 

stacking gels were prepared as indicated earlier. The running gel was prepared first and poured 

into the gel casting chamber upto 2.5cm of the chamber and covered with isopropanol. Once 

the gel polymerized the isopropanol was discard and 4% stacking gel was casted into the 

chamber and a comb was inserted to create wells where protein lysates could be loaded. After 

polymerization the gels were wrapped in wet paper towels and stored at 4oC till they were 

used. 

On the day of the experiment, the gels were loaded onto the running box clamp of the 

MiniProtean gel assembly (BioRad) and the clamp was placed into the gel box. The clamp and 
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the box were filled with 1X running buffer. The comb was then removed and the wells were 

loaded with 5µl molecular weight marker (Precision Plus Protein™ Dual Color Standard) and 

20µg protein lysate. Electrophoresis was performed at 110V for 75min. 

 

3.2.5.1.4 SemiDry Transfer 

Blotting solutions were prepared according to the Section 3.1.8. Whatman filter papers and 

PVDF membranes (Millipore) were cut to a size of 6.5 x 9cm. The membranes were activated in 

ethanol and then soaked in Anode II blotting solution. For the transfer a sandwich was prepared 

with 4 filter papers soaked in Anode I solution, followed by 2 filter papers soaked in Anode II. 

The membrane was then placed and the gel was layered on top of the membrane carefully to 

avoid formation of bubbles. Finally, 6 filter papers soaked in Cathode solution were placed on 

top. The blotter was then assembled and run at 25V for 1h. After the transfer the membranes 

were blocked with blocking buffer (prepared as described in 3.1.8) for 1h at room temperature. 

 

3.2.5.1.5 Antibody Incubation and Detection 

After blocking, the membranes were incubated with primary antibodies (diluted in blocking 

buffer to concentrations indicated in table) overnight at 4oC. After primary antibody incubation 

the membranes were washed 3X for 10min each with TBST (1X TBS with 0.1% Tween-20). The 

membranes were then incubated with secondary IRDye®680 or IRDye®800 conjugated 

antibodies (diluted in TBST to concentrations indicated in table) for 1h at room RT on a shaker. 

The membranes were washed again with TBST (3X for 10min each) and scanned and analyzed 

with the Odyssey® Infrared Imaging System. Local background corrections and β-actin 

normalization was performed for quantification. 
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3.1.16.2 RPPA 

 Another technique used for analysis of protein expression was Reverse Phase Protein Array 

(RPPA)(Paweletz et al., 2001).  

In case of cell line samples, the lysates were harvested and protein concentration was 

determined as described above. In case of tumor specimens, the frozen samples were 

homogenized using a bead mill and tissue protein extraction reagent (50mM Tris, pH 8.5, 

138mM NaCl, 2.7mM KCl, 1% Triton X-100). Protein concentration was determined in the same 

way as for the cell line samples, i.e., with the BCA kit. 

Tumor and cell line lysates were adjusted to a total protein concentration of 2 µg/µl. Samples 

were mixed with 4 x RPPA printing buffer (10% glycerol, 4% SDS, 10 mM DTT, 125 mM Tris–HCl, 

pH 6.8) and denatured at 95°C for 5min. The lysates were then pipetted into 348-well plates 

and centrifuged for 2min at 200 x g. As internal controls a dilution series of tumor samples/cell 

line pools were created. All samples were printed as technical triplicates on Oncyte® Avid 

Nitrocellulose Film-Slides using a Aushon 2470 contact printer equipped with 185 µm solid pins 

(1.6nl sample per spot, average spot diameter 250µm). The humidity during the printing run 

was kept constant at 80%. Slides were stored after the print run at -20°C with desiccant. After 

spotting the slides were blocked for 2h at room temperature with blocking buffer (TBS (50%, v / 

v with 5mM NaF and 1mM Na3VO4). 

Post blocking, the arrays were incubated with target-specific primary antibodies at 4°C 

overnight. Representative subarrays were incubated without primary antibody and served as 

“blank” control. After incubation the slides were washed 4 x 5min with TBST and subsequently 

incubated   with Alexa Fluor® 680 F(ab')2 fragments of goat anti-mouse IgG or anti-rabbit IgG in 

1:12000 dilution for 1h at RT in dark. Slides were again washed 4 x 5min with TBST followed by 

two final washing steps with ultra-pure water for 5min. The slides were then air dried and 

imaged. Every ninth slide of each run was stained using Fast Green FCF protein dye for total 

protein quantification and was used for normalization. The slides were scanned with an 

excitation wavelength of 685nm and a resolution of 21 µm with the Odyssey® Infrared Imaging 

System and the resulting TIFF images (16 bit) were used for further analysis. 
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Signal intensities of individual spots were quantified using GenePixPro 7.0 software. The 

acquired TIFF image of each slide and gene pix array list file (generated by the printer to map 

the sample location on the slide) was matched into a gene pix result file. At this step, a visual 

inspection of each spot was performed and slides without uniform background signal were 

excluded from further analysis. RPPA raw data preprocessing and quality control were 

performed using the RPPanalyzer R-package (Mannsperger, Gade, Henjes, Beissbarth, & Korf, 

2010). The gene pix result files as well as sample and antibody information text files were 

required for further raw data analysis. The raw signal intensities of the control samples were 

plotted against the respective total protein concentration. Only data of antibodies showing a 

linear correlation between target signal intensity and protein concentration were used for 

further analysis. Next, target signals were normalized to the total protein amount per spot via 

Fast Green FCF control. After median calculation of technical replicates, normalized target 

signal intensities were plotted against the signal intensities obtained by incubation of primary 

antibody controls (blank signal).  

Untreated cell line data generation and raw data processing was done by Stephan Bernhardt, 

PhD student, Division of Molecular Genome Analysis. 

Experiments with siRNA and inhibitor treatments were done by me as described above (Section 

3.2.2 and 3.2.3), including protein harvest and protein concentration determination. Sample 

preparation for RPPA was done with the help of Stephan Bernhardt. Antibody incubation and 

imaging of slides were done by Stephan Bernhardt and me. Machine running and raw data 

processing was done by Stephan Bernhardt. 

RPPA of tumor specimens was done by Stephan Bernhardt and the normalized protein data was 

further analyzed by collaboration partners at the Institute of Physics at the Freiburg Institute for 

Advanced Studies (Freiburg, Germany). Details of dataset generation and analysis can be found 

in the thesis of Stephan Bernhardt and the subsequent publication(Bernhardt et al., 2017). 

Briefly, for statistical analysis, different groups were compared using the Kruskal-Wallis Rank 

Sum Test(Kruskal & Wallis, 1952) and p values were adjusted using Benjamini-Hochberg 

procedure(Benjamini & Hochberg, 1995).  
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3.1.16.3 Mass Spectrometry  
 

3.2.5.3.1 Sample preparation 

Cells were washed once with PBS, scratched, collected and transferred into a 1.5 ml Eppi. 

Sample was centrifuged at max. speed at 4°C, supernatant was removed, pellet snap-frozen and 

stored at -20 °C until further processing. Cells were lysed by adding 300 µl of 8M Urea buffer (8 

M Urea, 100 mM TrisHCl, pH 8.5) followed by sonification and centrifugation for 5 min at max. 

speed at 4 °C . Protein content was determined using the BCA Protein Assay Kit (Pierce, Thermo 

Scientific). Prior to digestion the denaturation and alkylation of proteins were performed by 

treating samples with 2 mM DTT (30 min at 25°C), followed by 11 mM iodoacetamide (20 min 

at room temperature in the dark).100 µg of protein were digested according using Lys-C (Wako, 

1:40, w/w, overnight under gentle shaking, 30°C) and immobilized trypsin beads (Applied 

Biosystem, 1:80, w/w, 4 hrs under rotation, 30°C). Lys-C digestions product were diluted four 

times with 50 mM ammonium bicarbonate before continuing the tryptic digestion that was 

stopped through acidification with 5 µL of triflouracetic acid. Fifteen µg of each resulting 

peptide mixture were then desalted on Stage Tip (Rappsilber et.al., 2007), the eluates dried and 

reconstituted to 15 µL in 0.5% acetic acid. 

 

3.2.5.3.2 LC-MS analysis 

5 microliters of each sample were injected in duplicate on a LC-MS/MS system (NanoLC 400 

[Eksigent] coupled to Q Exactive Plus [Thermo]), using a 240 minutes gradient ranging from 5% 

to 40% of solvent B (80% acetonitrile, 0.1 % formic acid; solvent A= 5 % acetonitrile, 0.1 % 

formic acid). For the chromatographic separation 100 cm long MonoCap C18 HighResolution 

2000 (GL Sciences) was used. 

The nanospray source was operated with spay voltage of 2.4 kV and ion transfer tube 

temperature of 260 °C. Data were acquired in data dependent mode, with a top10 method (one 

survey MS scan with resolution 70,000 at m/z 200, followed by up to 10 MS/MS scans on the 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0075162#pone.0075162-Rappsilber1
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most intense ions, intensity threshold 5,000). Once selected for fragmentation, ions were 

excluded from further selection for 45 seconds, in order to increase new sequencing events. 

 

3.2.5.3.3 Data analysis 

Raw data were analyzed using the MaxQuant proteomics pipeline (v1.5.3.30) and the built in 

the Andromeda search engine (Cox, Neuhauser et al. 2011) with the human Uniprot database. 

Carbamidomethylation of cysteines was chosen as fixed modification, oxidation of methionine 

and acetylation of N-terminus were chosen as variable modifications. The search engine 

peptide assignments were filtered at 1% FDR and the feature match between runs was enabled; 

other parameters were left as default. Raw data analysis was performed by Nadine Royla. 

Data dependent acquisition (DDA) in label-free quantification (LFQ) of peptides abundances in 

mass-spectrometry (MS) has stochastic precursor selection and low sampling efficiency (Cotte-

Rodriguez, Miao, Zhang, & Chen, 2013; Matthiesen & Bunkenborg, 2013). This intrinsic feature 

of mass-spectrometry technology poses the problem that protein expression is sometimes not 

fully quantifiable, i.e. signals are not determined for those peptides whose abundance have not 

reached the detection limits. This was particularly the case in our study of high throughput 

protein expression in different cell-lines (MDA-MB231, MDA-MB468 and MCF7). Many proteins 

were not expressed across the samples in the data. This implies that conventional t-test based 

approaches cannot be applied directly to test of differentially expressed proteins between 

different cell-lines. A common way to treat these undetermined features is by excluding them 

from the analysis (Noble & MacCoss, 2012). However, the expressions of these features might 

not be missing in all conditions or all replicates of a condition. 

  

In order to account for this issue we developed the double detection procedure, which 

comprises a detection step detection test as first step and in the second step a subsequent 

moderated t-test based approach is used either via the “limma” method. 
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First Step: The detection test is a one-sided t-test to investigate whether expression values of a 

particular feature in a given sample group are statistically significant higher than a defined 

threshold, meaning there is a significant detected protein expression. The threshold was set to 

the average of the minimum observable expression value per sample in a given experimental 

condition (here cell-line). Formally, this means testing for the null hypothesis: 

 H0 : Arg_Avr(Ct)c,m  >  Arg_Avr(min(Ct)c), where m denote features and the conditions c are 

factor combinations of cell-line type and replicates factors. The detection test aims to filter out 

features that are undetectable in a given sample group. Thus, it ensures the applicability of t-

test based significance tests in the subsequent step. 

Second Step: The Moderated test Features, which passed the detection test are checked for 

their differential expression using the “limma” method utilizing empirical Bayes (G. Smyth, 

2005; G. K. Smyth, 2004). However, many features did not pass the detection test. The number 

of which varies between ~700 and ~800 depending on the cell-lines under comparison. These 

features can be very informative, particularly when they pass the detection test in one 

condition in a comparison and measured in more than one peptide in each replicate of that 

condition. However, they cannot be tested in the second step properly.  In order to get useful 

information from these few features we computed a quasi- log fold change by imposing the 

missing values to be the equal to Arg_Avr(min(Ct)c) -1. Data analysis was done by Dr. Khalid 

Abnaof. 

 

3.1.17 Functional assays 

3.1.17.1 Cell Counting Assay 

Cell growth under different treatment (siRNA, inhibitor and media) conditions were analyzed 

with a microscopy based nuclei counting method. Cells were seeded in clear-bottomed 96 well 

black plates and after overnight incubation they were transfected with siRNA or treated with 

inhibitors. At different time points DNA was stained with intercalating dye Hoechst-33258 

(1:1000 dilution in growth media) for 45min. Subsequently, the plates were imaged with a 

molecular devices microscope IXM XLS.  All nuclei were defined by Hoechst signals within a 
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certain size and intensity and were detected and counted by the Molecular Devices Software. 

The number obtained was considered as cell number. 

 

3.1.17.2 RTCA-based Proliferation Assay 

Cell proliferation rates were also determined with the xCelligence Real Time Cell Analyzer 

(RTCA). The RTCA system uses plates which are similar to the 96 well cell culture plates, but are 

in A 16 well format. The plates are provided with golden electrodes at the bottom which can 

sense changes in impedance caused by cell attachment. Increase in electrical impedance can be 

due to increase in the number of cells attaching to the surface or increase in the attachment 

ability of the cells.  

For RTCA-based proliferation assays, RTCA E plates were used. Prior to seeding, background 

impedance was measured with 100µl media. For measurement of growth rates under different 

nutrient conditions, the cells were seeded directly in the indicated media and allowed to grow 

for 5 days. In case of transfection or inhibitor treatment, the day after seeding, the cells were 

treated with the respective conditions and allowed to grow for 72h. Cell Index values were 

recorded every 15 mins. The RTCA machine was kept in a 37oC incubator with 5% CO2 and a 

humidified atmosphere. 

 

3.1.17.3 WST Cell Viability Assay 

One of the methods to assess Cell viability was the WST-1 assay from Roche which measures 

the NADPH content of the cells. For this assay cells were seeded in transparent 96-well plates 

and after overnight incubation cells were treated with different media. 72h after media change, 

10µl of WST-1 reagent was added to each well and absorbance was measured at 450nm using 

the TECAN infinite200. In order to perform background correction, WST-1 was also added to 

wells containing only media without cells and the absorbance values of these wells were 

subtracted from all others. 
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3.1.17.4 Cell Titer Glo Assay 

Cell titer Glo assay from Promega was second assay used for measuring cell viability. This 

method detects the ATP in cells which is an indication of the metabolic activity. The incubation 

with the assay reagent results in lysis of the cells which can then release its ATP. Luciferin in the 

assay is catalyzed by UtraGlo® Luciferase and ATP to generate oxyluciferin which can be 

detected via Luminescence. The resulting signal serves as a quantification of ATP in the wells 

and thereby the metabolic activity of the cells in the well.  

For this assay cells were seeded into opaque white 96-well plates and treated after overnight 

incubation with siRNA or inhibitor. The assay was performed 72h after treatment according to 

the manufacturer’s recommendation. Luminescence was measured using the TECAN 

infinite200. 

 

3.1.17.5 Alanine assay 

Efficiency of the GPT2 inhibitor (BCLA) was determined by measuring the alanine levels in the 

supernatant after inhibitor treatment. Alanine assay kit from Sigma was used for this. In this 

assay alanine is converted to pyruvate which can be detected by fluorescence. The experiment 

was setup as follows; cells were seeded to 80% confluency in 6-well plates. The following day 

growth media was replaced by fresh growth media supplemented with inhibitor (water in 

control wells). After 24h of treatment spent media was collected in 1.5ml centrifuge tube and 

frozen in -80o C. Cells were counted using the CASY counter and cell numbers were used for 

normalization. The spent media was thawed, quickly spun down to remove debris and floating 

cells and diluted 1:10. 5µl of the diluted media was used for the assay. Using the 

manufacturer’s recommendation alanine was detected in the media using fluorescence 

detection which was measured with TECAN infinite200. 

 

3.1.18 Determination of metabolite levels via HPLC 
Aliquots of flash-frozen cell culture supernatants were used for absolute quantification of 

amino acid, cation, organic acid and sugar content each. 
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To analyze the content of amino acids, 10 µl supernatant was mixed with 290 µl cold 0.1M HCl. 

Insoluble material and proteins were precipitated by centrifugation for 10min at 25.000g. 5µl of 

the resulting supernatant were quantified after specific labeling with the fluorescence dye 

AccQ-TagTM (Waters) according to the manufacturers protocol. The resulting derivatives were 

separated by reversed phase chromatography on an Acquity BEH C18 column (150mm x 

2.1mm, 1.7µm, Waters) connected to an Acquity H-class UPLC system and quantified by 

fluorescence detection (Acquity FLR detector, Waters, excitation: 250nm, emission: 395nm) 

using ultrapure standards (Sigma). The column was heated to 42 °C and equilibrated with 5 

column volumes of buffer A (140 mM sodium acetate pH 6.3, 7 mM triethanolamine) at a flow 

rate of 0.45 ml min-1. Baseline separation of amino acid derivates was achieved by increasing 

the concentration of acetonitrile (B) in buffer A as follows: 1 min 8% B, 7 min 9% B, 7.3 min 15% 

B, 12.2 min 18% B, 16.3 min 40% B, 18.5 min 80% B, hold for 3 min, and return to 8% B in 3 min. 

Data acquisition and processing was performed with the Empower3 software suite (Waters). 

For determination of organic acids, cations and sugars, supernatants were diluted with ultra-

pure water before analysis. For sugar determination, samples were diluted 1/1000, for organic 

acids and cations a 1/30 dilution was used. Organic acids were separated using an IonPac AS11-

HC (2mm, ThermoScientific) column connected to an ICS-5000 system (ThermoScientific) and 

quantified by conductivity detection after cation suppression (ASRS-300 2mm, suppressor 

current 95-120 mA). Prior separation, the column was heated to 30°C and equilibrated with 5 

column volumes of solvent A (ultra-pure water) at a flow rate of 0.38ml min-1. Separation of 

anions and organic acids was achieved by increasing the concentration of solvent B (100mM 

NaOH) in buffer A as follows: 8min 4% B, 18min 18% B, 25min 19 % B, 43min 30% B, 53min 62% 

B, 53.1min 80% B for 6min, and return to 4% B in 11min.  

Cations were separated using an IonPac CS16 (2mm, ThermoScientific) column connected to an 

ICS-1000 system (ThermoScientific) and also quantified by conductivity detection after anion 

suppression (CERS-500 2mm, suppressor current 43 mA). Prior separation, the column was 

heated to 43°C and equilibrated with 10 column volumes of 30mM methanesulfonic acid at a 

flow rate of 0.36ml min-1. Cations were eluted using an isocratic run for 27min. Soluble sugars 
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were separated on a CarboPac PA1 column (ThermoScientific) connected to the ICS-5000 

system and quantified by pulsed amperometric detection (HPAEC-PAD). Column temperature 

was kept constant at 25°C and equilibrated with five column volumes of solvent A (ultra-pure 

water) at a flow rate of 1ml min-1. Baseline separation of carbohydrates was achieved by 

increasing the concentration of solvent B (300mM NaOH) in solvent A as follows: From 0 to 25 

min 7.4% B, followed by a gradient to 100% B within 12min, hold for 8min at 100% B, return to 

7.4% B and equilibration of the column for 12min. Data acquisition and quantification was 

performed with Chromeleon 7 (ThermoScientific). 

Sample preparation and raw data analysis was done at the Metabolomics Core Technology 

Platform of the Excellence Cluster CellNetworks by Dr. Gernot Poschet. 

 

3.1.19 Labelling experiments  
In order to investigate the utilization of carbon atoms (derived from one of the main nutrients 

namely Glucose) by different metabolic pathways under different conditions and in different 

cell lines, media supplemented with stable isotope labeled glucose was used. While stationary 

labelling is obtained by longer labeling time, the Kempa Lab at BIMSB, Berlin have developed a 

method called pulsed Stable Isotope Resolved Isotopic Metabolomics (pSIRM) with shorter 

labelling times in order to determine fate of nutrients and metabolic dynamics in a time 

resolved manner(Pietzke & Kempa, 2014). In order to track the fate of carbon atoms of glucose 

in the TCA cycle and adjacent pathways the label was applied for 30mins to the cells. All the 

labelling experiments were performed by me in Stefan Kempa’s lab in collaboration with 

Nadine Royla, PhD student, AG Kempa. 

 

3.2.8.1 Cell culture 

For each cell line (MCF-7, MDAMB231, MDA MB 468) cells were plated with a beforehand 

determined cell number to reach a similar confluency after 48h of incubation. The GPT2 

inhibitor was applied 24h after plating for another 24h. Four hours prior to harvest, 1 ml of 
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media was collected to determine all secreted metabolites and remaining media was renewed. 

Cell culture media was replaced by media containing 13C-glucose (Campro Scientific, Berlin, 

Germany). After incubation of 30min adherent cells were quickly flushed with wash buffer 

(140mM NaCl, 5 mM HEPES, pH 7.4, and supplemented with major carbon sources) to remove 

extracellular metabolites, but not the main carbon sources. Immediately, cells were quenched 

with 5 mL ice-cold 50% methanol (suppl. with cinnamic acid (final concentration: 2 µg/ml)). The 

cells were scratched, collected and transferred into a 15-ml falcon, and stored as well as the 

media samples at -20°C until proceeding with metabolite extraction.  

 

3.2.8.2 Intracellular extraction 

One milliliter chloroform was added to 5 ml of methanolic cell extracts, shaken for 60min at 

4°C, and centrifuged at maximum speed for 15min at 4°C for phase separation (methanol-

chloroform-water extraction). Polar phases were collected. Each polar phase was splitted into 

two aliquots - one for direct infusion MS and one for GS-MS analysis in order to measure 

nucleotides and central carbon metabolites from the same sample - and dried under vacuum. 

The cell extracts were stored at −20°C until preparation of GC-MS analysis or direct infusion MS 

analysis.  

 

3.2.8.3 Extracellular extraction 

One milliliter of methanol-chloroform-water (5:2:1, v/v/v, suppl. with cinnamic acid (final 

concentration: 2 µg/ml)) was added to 50 µL of media samples, shaken for 30 min at 4°C. 500 

µL of H2O were added and samples were centrifuged at maximum speed for 15 min at 4°C for 

phase separation. Two times 500 µL of polar phase were collected and dried under vacuum. 

The extracellular extracts were stored at −20°C until preparation of GC-MS analysis. 
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3.2.8.4 GC-MS analysis  

A quantification dilution series was treated in parallel with extracts. Derivatization was carried 

out as described with modifications (Kempa et. al., 2007). Dried cell extracts were dissolved in 

20 μL of methoxyamine hydrochloride solution (Sigma, 40 mg/mL in pyridine (Roth)) and 

incubated for 60min at 30°C with constant shaking followed by the addition of 80 μL of N-

methyl-N-[trimethylsilyl]trifluoroacetamide (MSTFA; Machery-Nagel, Dueren, Germany) and 

incubation at 37°C for 90min. The extracts were centrifuged for 10min at 10,000 × g, and 

aliquots of 30 μL were transferred into glass vials (Th. Geyer, Berlin, Germany) for gas 

chromatography-mass spectrometry (GC-MS) measurement. 

Metabolite analysis was performed on a gas chromatography coupled to time of flight mass 

spectrometer (Pegasus III- TOF-MS-System, LECO Corp., St. Joseph,MI, USA), complemented 

with an auto-sampler (MultiPurpose Sampler 2 XL, Gerstel, Mülheim an der Ruhr, Germany). 

The samples were injected in split mode (split 1:5, injection volume 1 μL) in a temperature-

controlled injector (CAS4, Gerstel) with a baffled glass liner (Gerstel). The following 

temperature program was applied during sample injection: initial temperature of 80°C for 30 s 

followed by a ramp with 12°C/min to 120°C and a second ramp with 7°C/min to 300°C and final 

hold for 2 min. Gas chromatographic separation was performed on an Agilent 6890 N (Agilent, 

Santa Clara, CA, USA), equipped with a VF-5 ms column of 30-m length, 250-μm inner diameter, 

and 0.25-μm film thickness (Varian, Palo Alto, CA, USA). Helium was used as carrier gas with a 

flow rate of 1.2 mL/min. Gas chromatography was performed with the following temperature 

gradient: 2-min heating at 70°C, first temperature gradient with 5°C/min up to 120°C and hold 

for 30 s; subsequently, a second temperature increase of 7°C/min up to 350°C with a hold time 

of 2 min. The spectra were recorded in a mass range of 60 to 600 U with 20 spectra/s at a 

detector voltage of 1650 V.  

The GC-MS chromatograms were processed with the ChromaTOF software (LECO). Mass 

spectra data were extracted using the software tool MetMax (http://gmd.mpimp-

golm.mpg.de/apps/metmax/) or the in-house software Maui-VIA (Kuich et. al., 2014). Mass 

isotope distribution of unlabeled metabolites were used to determine the 13C-glucose derived 

http://gmd.mpimp-golm.mpg.de/apps/metmax/
http://gmd.mpimp-golm.mpg.de/apps/metmax/
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stable isotope incorporation of 13C in metabolites of interest. Absolute quantities were 

determined by the examination of the peak area in the GC-MS-derived chromatograms and 

their comparison to quantification standards. Acquired data were normalized to the internal 

standard cinnamic acid, the sum of area per sample and cell count.  

Cell culture, inhibitor treatment, labeling, sample extraction and preparation were done by 

Nadine Royla and me. Data analysis was done by Nadine Royla. 

 

3.1.20 Seahorse Experiments 
In order to see the effector of the GPT2 inhibitor on mitochondrial respiration of the cells the 

Seahorse Bioanalyzer and XF cell mitostress kit from Agilent was used and Oxygen consumption 

rate (OCR) was measured by the seahorse bioanalyzer. The cell mitostress kit can be used to 

measure key parameters of mitochondrial function via determination of the oxygen 

consumption rate of the cells via serial injection of different compounds. Oligomycin, ATP 

synthase (complex V) inhibitor, is first injected leading to a decrease in OCR which corresponds 

to the mictochondrial respiration associated with cellular ATP production. The next compound 

to be injected is Carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone (FCCP). FCCP is an 

uncoupling agent that collapses the proton gradient and disrupts the mitchondrial membrane 

potential. This leads to an increase in oxygen consumption by complex IV as the electron flow 

through the ETC is uninhibited. The increase in OCR can be used to calculate the spare 

respiratory capacity of the cells. Finally, a mix of rotenone (complex I inhibitor) and antimycin A 

(complex II inhibitor is injected into the cells to completely shut down the respiration, the 

remaining oxygen consumption gives a measure of the non-mitochondrial respiration of the 

cells.  

Seahorse analysis was performed according to the manufacturer’s recommendations. Briefly, 

cells were seeded as a uniform monolayer to a confluency of 80% in seahorse 96-well 

microplates. The following day, the cells were treated with inhibitor as indicated earlier. The 

same day the sensor cartridges were hydrated with a calibrant and incubated overnight in a 

non CO2 incubator. The next day after 24h incubation with inhibitor the media was changed to 
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seahorse assay media with inhibitor and incubated for 45min in a non CO2 incubator. The 

cartridge plate was then loaded with different reagents of the mitostress kit, namely, 

Oligomycin, FCCP and Antimycin/Rotenone A and calibrated in the Seahorse bioanalyzer. After 

calibration the calibrant plate was replaced by the cell plate and the mitostress test was 

performed. Obtained data from the bioanalyzer was analyzed using the Wave 2.0 software. 

After the mitrostress test sulforhodamine staining was done on the cell plate to determine 

protein concentration. These values were then used for normalizing the Seahorse data. Prof. Dr. 

Stephan Herzig kindly allowed the use of the Seahorse Bioanalyzer belonging to his group at 

Heidelberg University Hospital. 

 

3.1.21 Dataset Analysis 
Publicly available METABRIC and TCGA datasets were downloaded from the website given in 

Section 3.1.7. METABRIC data comprised of mRNA expression microarray and clinical data of 

nearly 2000 patients with a follow up of 20 years. Box plots are represented as log2 transformed 

gene expression data. Kaplan-Meier method was used to generate survival curves(Kaplan & 

Meier, 1958.). 25% of the patients with the highest and lowest expression GPT2 were used to 

generate survival curves. TCGA data comprises of RNA-sequencing and clinical data of nearly 

1200 patients. Box plots were generated using gene expression data represented as log2 (x+1) 

rsem.  

 

3.1.22 Statistical Analysis 
Unless otherwise mentioned, data are presented as mean ± SD and statistical analyses were 

performed by unpaired two-tailed Student’s t-test and p-values <0.05 were considered 

statistically significant. P values <0.05, <0.01 and <0.001 are indicated with one, two and three 

asterisks respectively. 
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3.1.23 Graphical Illustrations 
All graphs were generated using the GraphPad Prism Software and illustrated via Inkscape v 

0.91 
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4. Results 

4.1 Metabolic characterization of Breast cancer cell lines 
To study the role of metabolic pathways in breast cancer cells, 3 different model breast cancer 

cell lines were chosen. Two were triple negative breast cancer (TNBC) cell lines, MDA MB 468 

and MDA MB 231. The third was a luminal cell line, namely MCF7. All three cell lines have been 

shown to have active glutamine metabolism(Korangath et al., 2015; Lampa et al., 2017). MDA 

MB 468 cells were moderately dependent on glutamine (Figure 1a, d) while, MDA MB 231 cells 

were observed to be a glutamine addicted cell line (Figure 4b, e), MCF7 represents a less 

aggressive subtype of breast cancer was still dependent on glutamine for growth (Figure 4 c, f). 

Proliferation slowed down in all 3 cell lines under glutamine starvation conditions, however, 

glucose deprivation had a stronger effect on cell survival (Figure 4 a-f). The doubling times were 

calculated for each cell line, MDA MB 468 was the slowest while MDA MB 231 was the fastest 

growing cell line (Figure 4h). 
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Figure 4: Metabolic characterization of cancer cells. a-c, Microscopy based nuclei counting of cells grown 

without glutamine or glucose for 72h. All values are represented as relative values normalized to media 

values. (d-f) Cells were grown without glutamine or glucose and cell density was measured over time with the 

real time cell analyzer (RTCA). (g) Doubling times of the different cell lines in cell culture. Data are presented 

as mean ± SD. For nuclei count n=2(each with 6 technical replicates), for real time cell analyzer, n=1 (with 4 

technical replicates), for doubling time n=3 (each with 6 technical replicates). *** represents p < 0.001. 
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In order to understand the nutrient dependencies of cancer cells in more detail, consumption 

of key carbon sources, glucose and glutamine were measured (Figure 5 a, b).  MDA MB 468 

consumed the highest amount of glutamine and glucose, signifying that both these pathways 

are active in the cells. This was further validated by the high secretion of ammonia and lactate, 

which are major products of glutaminolysis and glycolysis, respectively (Figure 5 c, d). 

Metabolites were quantified at the Metabolomics Core Technology Platform (MCTP) by Dr. 

Gernot Poschet. 

 

 

Figure 5: Metabolic characterization of cancer cells. Cells were grown in growth media for 48h and spent 

media were used to measure metabolites. HPLC was used to measure glutamine (a) and glucose (b) 

consumption as well as ammonia secretion (c). GC-MS was used to measure lactate secretion (d). Data are 

presented as mean ± SD. n=3 
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At the protein level, expression of enzymes involved in different metabolic pathways was 

quantified by mass spectrometry (Figure 6).  Interestingly, MDA MB 231 showed higher 

expression of glycolysis/ gluconeogenesis enzymes, while glutaminolysis enzymes were highly 

expressed in both MDA MB 468 and MDA MB 231 (Figure 6 a, c). The TCA cycle enzymes were 

highest in MCF7 (Figure 6b), this was also confirmed by quantification of the TCA intermediates 

within the cells (Supplementary Table 1). The oxidative phosphorylation pathway was also most 

elevated in MCF7, followed by MDA MB 468 (Figure 6d). Blank boxes in the heatmap indicate 

that the respective protein was not detected. To understand whether this was due to the 

technique used, as in some cases the protein was detected in one or more of the replicates, 

other techniques were used. In a different experiment, a subset of the proteins was tested with 

RPPA, and it was found that ASS1, GPT2 and GLS could be detected in all three cell lines (Figure 

6 e, f  and 7c). Using a microarray all the other undetected proteins were found to be expressed 

at the mRNA level protein expression was not further tested (Supplementary Table 2). Mass 

spectrometry and raw data analysis was done by Nadine Royla (BIMSB). Differential expression 

analysis for mass spectrometry data was performed by Dr. Khalid Abnaof (DKFZ) and can be 

found in Supplementary Table 3. RPPA was performed by Stephan Bernhardt (DKFZ). 

Microarray was done by DKFZ microarray core facility and data normalization was performed by 

Dr. Khalid Abnaof. 
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Figure 6: Proteomic characterization of cancer cells. (a-d) Heatmaps show the levels of different proteins 
belonging to key metabolic pathways in the different cell lines measured by mass spectrometry. (e-f) 
Expression of a subset of enzymes not detected by mass spectrometry was confirmed by RPPA. Data in graphs 
are presented as mean ± SD, n=3 
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To validate metabolic pathways which are activated in these cells, amino acids were measured 

in the spent media from the cells. Interestingly, MDA MB 468 secreted the highest amount of 

alanine (Figure 7a), while other amino acids did not show similar levels of difference between 

cell lines (Supplementary table 4). This result was further consolidated by the fact that GPT2, 

which produces alanine from pyruvate, had the highest expression in MDA MB 468 at both 

mRNA and protein levels (Figure 7 b, c). mRNA of GPT, a liver specific isoform, was expressed 

much less in the cell lines (Figure 7b). To confirm that MDA MB 468 cells have an active GPT2 

catalyzed pathway, media supplemented containing 13C6 glucose was used to track the 

production of new alanine, and intracellular pools of alanine were also measured (Figure 7 d, e). 

Both experiments showed that MDA MB 468 produced high amounts of alanine compared to 

the other two cell lines. MCF7 also had a notably higher protein expression of GPT2 compared 

to MDA MB 231(Figure 7c). To confirm that this phenomenon is not restricted to a few cell 

lines, 13 different breast cancer cell lines were tested and it was found that the expression of 

GPT2 was diverse and did not conform to the molecular subtypes, however, that this pathway 

was active in many cell lines (Figure 7c). Alanine secretion quantification and raw data analysis 

was done by Dr. Gernot Poschet. The labeling and intracellular experiments were done together 

with Nadine Royla, who also did the analysis of the data.  RPPA and raw data processing was 

done by Stephan Bernhardt. 
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Figure 7: MDA MB 468 cells secrete high levels of alanine. (a) Alanine secretion in different cell lines, after 

48h of growth, measured via HPLC. (b) GPT2 and GPT mRNA expression levels in the different cell lines 

measured via microarray. (c) GPT2 protein levels in 13 different breast cancer cell lines measured via RPPA. 

(d) Intracellular alanine levels and % 13C labelling in alanine after 30 mins of 13C6 glucose media incubation. 

Data are presented as mean ± SD. n=3 

 

 

4.2 GPT2 is crucial to cancer cell growth  

4.2.1 Effect of GPT2 knockdown on cell growth 
The high levels of alanine secretion and GPT2 expression in breast cancer cell lines indicate that 

this pathway is active and possibly important for the cancer cells. Therefore, it was 

hypothesized that this pathway would provide a growth advantage to the cells and in order to 

verify this, an RNAi approach was used. As a first step, cell viability was measured using the cell 

titer glo assay from Promega. This assay measures the ATP content of the cells and thereby 



Results 

70 
 

gives an indication of their metabolic activity. Using a pool of 4 siRNAs targeting GPT2, cell 

viability was measured 72h after transfection. MDA MB 468 cells (Figure 8a), which had the 

highest expression of GPT2 protein showed a significant decrease in cell viability. Hs578T, 

another TNBC cell line, (Figure 8b) which also had significantly higher GPT2 levels compared to 

the other tested cell lines (Figure 7c) showed a significant decrease in cell viability. MCF7 

(Figure 8c) showed a small but significant decrease in cell viability. Interestingly, MDA MB 231 

(Figure 8d) which had both low expression of GPT2 and little production of alanine showed a 

similar decrease in cell viability upon GPT2 knockdown as MDA MB 468. In contrast, T47D 

(Figure 8e), one of the cell lines which had the lowest expression of GPT2 (Figure 7c), did not 

show any decrease in cell viability in the RNAi experiment. 

 

 

Figure 8: GPT2 knockdown affects cell viability. a-e, Cells were transfected with siGPT2 and cell viability 

was assessed after 72h with the cell titer glo assay. All values are represented as relative values normalized to 

non-targeting control siRNA (NTC).  Data are presented as mean ± SD, *** represents p < 0.001. n=2 (each 

with 6 technical replicates) 

 

As the cell viability assay did not take into account the number of cells in each well, further 

assays were required to validate these results. In order to check whether the decrease in 
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viability was a result of a decrease in cell numbers, microscopy based nuclei counting was done, 

after GPT2 knockdown, in the three cell lines of interest, namely, MDA MB 468, MDA MB 231 

and MCF7. Using Hoechst nuclei staining the cell numbers were measured 72h post 

transfection. Knockdown of GPT2 significantly decreased cell numbers in MDA MB 468 (Figure 

9a). Again, MDA MB 231, showed a similar decrease in cell numbers as compared to MDA MB 

468 (Figure 9b). MCF7, however, did not show a decrease in cell numbers post knockdown 

(Figure 9c). 

 

 

Figure 9: Knockdown of GPT2 decreases cell proliferation. Microscopy based nuclei counting of MDA MB 

468 (a), MDA MB 231 (b) and MCF7 (c) 72h after transfection with siGPT2. All values were normalized to 

NTC. Data are presented as mean ± SD, n=3 (each with 6 technical replicates).  *** represents p < 0.001.  

 

To confirm these findings with a different method, real time cell analyzer (RTCA) technology 

was used and cell growth was measured over time. Cell Index measurements showed that GPT2 

knockdown started to affect MDA MB 231 cells at an earlier time point compared to MDA MB 

468 cells (Figure 10 a, b). 
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Figure 10: Effect of GPT2 knockdown on cell proliferation determined by RTCA based assay. Cells were 

transfected with siGPT2 and cell proliferation was measured over time with the real time cell analyzer 

(RTCA). Data are represented as mean ± SD  of 4 technical replicates. Graphs are representative of  n=2. 

Deconvolution of the 4 siRNAs of the GPT2 pool revealed that all siRNAs show a strong decrease 

in GPT2 mRNA and protein levels (Figure 11, pool was also tested with RPPA, data not shown).  

 

 

Figure 11: Knockdown efficiency and deconvolution of siGPT2 pool. Cells were transfected with siGPT2 

(pool and individual). RNA and protein were harvested 72h after transfection and knockdown efficiency was 

determined by qPCR (a) and western blot (b) respectively. All values were normalized to NTC. For cell 

numbers, data are presented as mean ± SD, of 6 technical replicates). Values for mRNA expression were first 

normalized to PUM1 levels and are presented as mean ± SD of 3 technical replicates. Protein expression 

values were first normalized to actin levels, n=1. *** represents p < 0.001, ** represents p<0.01, * represents 

p<0.05. 

 

Next, phenotypic effect of the individual and pool GPT2 siRNAs was assessed. The different 

siRNAs affected cell growth variably, however, the pool behaved the same as 2 siRNAs (#1 and 

#3) which gave similar effect (Figure 12). 
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Figure 12: Deconvolution of siGPT2 pool. Cells were transfected with siGPT2 (pool and individual). 

Microscopy based nuclei counting of cells were done 72h after transfection with siGPT2. All values were 

normalized to NTC. Data are presented as mean ± SD, of 6 technical replicates. *** represents p < 0.001, ** 

represents p<0.01, * represents p<0.05.  

Knockdown efficiency was also tested in the MDA MB 231 and MCF7. All cell lines showed >80% 

decrease in mRNA expression 72h post transfection of the GPT2 siRNA pool (Figure 13 a-d). 

Protein expression levels were also determined for MDA MB 231 and MCF7 and the siRNA 

decreased the expression of GPT2 in both cell lines (Figure 13 a, b). The decrease in GPT2 

protein levels in MDA MB 231 was not as strong as in the other cell lines, this could be due to 

the fact that MDA MB 231 already has a low level of GPT2 expression under basal conditions 

and therefore the decrease is not accurately quantifiable.Hs578t and T47D also showed >80% 

decrease in GPT2 mRNA after transfection. 
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Figure 13: Knockdown efficiency of siGPT2. Cells were transfected with siGPT2 pool. RNA and protein 

were harvested 72h after transfection and knockdown efficiency was determined by qPCR and western blot 

respectively. All values were normalized to NTC. Values for mRNA expression were first normalized to PUM1 

levels and are presented as mean ± SD of 3 technical replicates. Protein expression values were first 

normalized to actin levels, n=1. . *** represents p < 0.001. 

 

In order to confirm that the siRNA did not cross target GPT, GPT mRNA levels were measured 

after transfection, MDA MB 468 showed a slight decrease in GPT (Figure 14a), while in MCF7 

the levels remained unchanged (Figure 14c). Interestingly, MDA MB 231 showed an increase in 

GPT expression (Figure 14b). 
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Figure 14: Off target effect of GPT2 siRNA on GPT1 gene expression. (a-c) Cells were transfected with 

siGPT2. RNA was harvested 72h after transfection and GPT1 levels were assessed by qPCR analysis. All values 

were normalized to NTC. Values for mRNA expression were first normalized to PUM1 levels and then to non-

targeting control and presented as mean ± SD of 3 technical replicates. ** represents p<0.01, * represents 

p<0.05. 

 

In conclusion, knockdown of GPT2 showed significant decrease in cell growth in all cell lines 

with a high to moderate expression of GPT2. Contrary to expectations, MDA MB 231 showed a 

significant decrease in cell growth indicating that, despite low GPT2 protein levels and alanine 

being produced, this pathway is still essential for the growth of these cells. 

 

 

4.2.2 GPT2 inhibition and cell growth 
While RNAi is an efficient method to determine the effect of gene knockdown in cells, there are 

drawbacks to this method due to the fact that both gene specific and non-targeting controls 

can have off-target effects. In order to circumvent this and to prove that the effects seen with 

RNAi are independent of the off target effects siRNAs might have, a commercially available 

alanine aminotransferase inhibitor, β-chloro-L-alanine (BCLA) was used. BCLA can target both 

GPT isoforms, however, any possible cross reactivity was not relevant as GPT2 is more 

abundant than GPT in breast cancer and the focus was to block the interconversion of pyruvate 

to alanine. 

Measurement of cell numbers 72h after inhibitor treatment showed a dose dependent effect of 

the inhibitor on cell growth and alanine secretion (Figure 15). While MDA MB 468 cell growth 
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and alanine secretion were considerably affected with 75µM inhibitor treatment (Figure 15 a, 

b), MDA MB 231 cells had the highest sensitivity and showed significant effects from 25µM 

(Figure 15a, d), MCF7 cell growth was least affected by the inhibitor with the highest effect at 

100uM (Figure 15 a, c). Subsequent experiments were done with the indicated effective 

concentrations.  

 

 

 

Figure 15: Alanine aminotransferase inhibitor reduces cell proliferation and alanine secretion. (a) 

Cells were treated with increasing concentration of alanine aminotransferase inhibitor and cell numbers 

were counted via microscopy after 72h. (b-d) Cells were treated with increasing concentration of BCLA, after 

24h supernatants were collected and alanine was measured by the alanine assay kit. All data were normalized 

to untreated control (0). For cell numbers data are presented as mean ± SD, n=2 (6 technical replicates each). 

Alanine levels are presented as mean ± SEM, n=3. *** represents p < 0.001, ** represents p<0.01, * represents 

p<0.05.      
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These results were also confirmed with the RTCA analyzer, both MDA MB 468 and MDA MB 231 

showed a strong decrease in cell growth after inhibitor treatment (Figure 16 a, b). 

 

 

Figure 16: Effect of alanine aminotransferase inhibitor on cell proliferation determined by RTCA 

assay. Cells were treated with GPT2 inhibitor, BCLA (MDA MB 468: 75uM, MDA MB 231 25uM) and cell 

proliferation was measured over time with the real time cell analyzer (RTCA). Data are presented as mean ± 

SD. MDA MB 68 n=3 and MDA MB 231 n=4. 

 

In order to confirm that the observed decrease in alanine levels in the media came from a 

blockage of the GPT2-catalyzed reaction, the cells were treated with the inhibitor for 24h and 

then incubated in inhibitor-containing media supplemented with 13C6 Glucose. Metabolite 

analysis after 30 minutes incubation with the labeled media showed almost complete 

abrogation in alanine production thereby proving that the inhibitor is efficacious in all three cell 

lines (Figure 17).   The labeling experiment was done together with Nadine Royla, who also did 

the initial analysis of the data.           
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Figure 17: Efficiency of alanine transferase inhibitor. Cells were treated with GPT2 inhibitor, BCLA (MDA 

MB 468: 75uM, MDA MB 231: 25uM, MCF7:100uM) for 24h (with a media change after 20h). Cells were then 

incubated with media containing 13C6 glucose for 30min and metabolites were extracted. % incorporation of 

glucose derived carbon-13 into alanine was measured by GC-MS.  Data are presented as mean ± SD. n=3. *** 

represents p < 0.001, ** represents p < 0.01. 

 

Therefore, two independent methods, namely RNAi of mRNA encoding GPT2 and targeting the 

activity of the protein, proved that GPT2 has an effect on cell proliferation and this pathway is 

essential for breast cancer cell growth. 

 

 

4.3 Effect of GPT2 on cancer cell metabolism  

4.3.1 Effect of GPT2 on extracellular metabolites 
To determine whether the inhibition of GPT2 had a role in nutrient cycling in the cancer cells, 

the composition of the media surrounding the cells was analyzed. All 3 cell lines were treated 

with inhibitor or control (water) containing media. Spent media was collected after 20h of 

inhibitor treatment. Then, cell numbers were determined and used later as normalization 

control. Spent media was then treated as described in the methods. MDA MB 468 cells treated 

with inhibitor showed a significant decrease in glutamine consumption indicating that GPT2 

plays an important role in glutaminolysis. Perturbation of GPT2 catalyzed pathway thus, seems 

to block an essential route of nitrogen cycling thereby forcing the cells to consume less 

glutamine (Figure 18a, first panel). In contrast, MDA MB 231 and MCF7 did not show any 

significant changes in glutamine consumption upon inhibitor treatment (Figure 18, c, first 

panel). Glucose, the other important carbon source of the cells indeed showed some changes 

(Figure 18 a-c, second panel). Inhibitor-treated MDA MB 468 cells showed a slight albeit 

significant increase in glucose consumption, whereas MDA MB 231 showed a significant 

decrease and MCF7 did not show any changes. To further confirm the effect of GPT2 inhibition 

on glycolysis, lactate secretion was measured. None of the cells showed a change in lactate 
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secretion confirming that the glycolytic pathway remains unchanged in these cells (Figure 18 a-

c, third panel). Glutamine was measured via HPLC by Dr. Gernot Poschet and glucose and 

lactate were measured via GC-MS together with Nadine Royla. Both performed extraction and 

initial data processing of the respective chromatograms. 
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Figure 18: Effect of GPT2 inhibition on extracellular metabolites. Cells were treated with GPT2 inhibitor, 

BCLA (MDA MB 468: 75uM, MDA MB 231: 25uM, MCF7:100uM) for 20h. Spent media was collected and 

glutamine was measure via HPLC and glucose and lactate were measured with GC-MS.   Data are presented as 

mean ± SD. n=3. *** represents p < 0.001, ** represents p < 0.01. 

 

To validate the metabolite data obtained from the inhibitor treated cells and to rule out any 

effects that might arise due to off-target effects, extracellular metabolites were measured of 

cells with GPT2 knocked down. In this experiment, MDA MB 468 cells were transfected with 

either GPT2 siRNA or a non- targeting control. After a media change 24h post transfection, the 

cells were incubated for a further 48h. Spent media was collected and processed according to 

the procedure described in the methods. Glutamine consumption was found to be significantly 

decreased in RNAi treated cells (Figure 19a). The decrease in glutaminolysis in the cells were 

further confirmed by the decrease in ammonia secretion which is one of the main byproducts 

of this pathway (Figure 19b). GPT2 knockdown did not affect glucose consumption (Figure 19c), 

while a small yet non-significant decrease in lactate secretion was observed (Figure 19d). The 

samples were derivatized, measured and initial data was processed by  Dr. Gernot Poschet. 
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Figure 19: Effect of GPT2 knockdown on extracellular metabolites. Cells were transfected with siGPT2 

and control siRNA (NTC). Transfection media was replaced by fresh media 24h after transfection. Spent 

media was collected after 48h of incubation with fresh media and used to measure (a) glutamine, (b) 

ammonia (c) glucose, and (d) lactate levels via HPLC. Data are presented as mean ± SD. n=4. * represents 

p<0.05. 

 

 

4.3.2 Effect of GPT2 on intracellular metabolites 
Glutamine is an important source of TCA cycle intermediates in cancer cells. The observed 

decrease in glutamine consumption upon inhibition or knockdown of GPT2, in MDA MB 468 

cells, indicates that the supply of carbon to the TCA cycle may suffer due to the blockage of this 

pathway. In order to prove this hypothesis, levels of TCA cycle intermediates within the cells 

were measured 24h after inhibitor treatment. As shown in Figure 20a, MDA MB 468 showed 

significant decrease in α-ketoglutarate (α-KG) levels, which is the direct product of alanine 

aminotransferase and other glutaminolytic reactions. Concomitantly, malate and fumarate 
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levels were also significantly decreased in the cells. Pyruvate and citrate levels, however, did 

not show any significant change, further validating the fact that the decrease in the TCA cycle 

intermediates was a result of change in glutamine metabolism. Interestingly, MDA MD 231 

(Figure 20b) did not show a similar decrease in the TCA cycle intermediates, instead α-KG even 

showed a slight increase under inhibitor treatment. Pyruvate and citrate levels remained 

unchanged in MDA MB 231 cells like in the MDA MB 468 cells. MCF7 cells (Figure 20c), on the 

other hand did not show any change in α-KG levels, while, succinate, fumarate and malate 

levels increased slightly which is in line with data showing that MCF7 is least affected by the 

inhibitor (Figure 15a, 20c). These results indicated that even though the cells show similar 

phenotypic effects at the cellular level, the adaptation or reaction to inhibitor treatment differs 

between different cell lines at the molecular level. 

 

a MDA MB 468                                                                   b MDA MB 231    
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c MCF7 

 

Figure 20: Effect of GPT2 inhibition on TCA cycle intermediates. Cells were treated with inhibitor ((a) 

MDA MB 468: 75µM, (b) MDA MB 231: 25µM, (c) MCF7: 100µM) for 24h (with a media change after 20h). 

Cells were harvested, polar metabolites were extracted and TCA cycle intermediates were absolutely 

quantified via GC-MS. Data are presented as mean ± SD, n=3. ** represents p<0.01, * represents p<0.05. 

 

 

4.3.3 Effect of GPT2 inhibiton on metabolic enzymes 
The changes in metabolite levels seen after GPT2 inhibition indicated that the cells undergo 

metabolic rewiring when the alanine aminotranferase reaction is blocked. While these 

modifications arise as an adaptation to the altered substrate and product levels, there may be 

additional changes to the enzymes as well. In order to test this, levels of key enzymes in glucose 

as well as glutamine metabolism and the TCA cycle were analyzed after 24h treatment with the 

inhibitor (Figure 21). In MDA MB 468 cells, while glutamine metabolism enzymes showed a 

trend to decrease with inhibitor treatment, the TCA cycle enzymes decreased significantly 
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which was in concomitance with the changes observed at the metabolic level(Figure 21a). 

Glucose transporter also displayed a small but significant decrease even though consumption of 

glucose did not show any significant change. In MDA MB 231, the results again corroborated 

with the metabolite data as most enzymes tended to increase after inhibitor treatment 

although the changes were not significant(Figure 21b). MCF7 did not show any sgnificant 

change and there was not any clear trend in the enzyme levels seen(Figure 21c). RPPA and 

initial data analysis was done together with Stephan Bernhardt.  
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Figure 21: Effect of GPT2 inhibition on key metabolic enzymes. Cells were treated with inhibitor BCLA 

(MDA MB 468: 75µM, MDA MB 231: 25µM, MCF7: 100µM). Protein was harvested after 24h and expression 

levels of the different metabolic enzymes were determined via RPPA. Protein levels were first normalized to 

total protein levels and then to control samples. Data are presented as mean ± SD, n=3. * represents p<0.05. 
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4.3.4 Effect of GPT2 inhibiton on metabolic phenotypes 
The significant changes seen in the TCA cycle both at the metabolic and protemic levels in MDA 

MB 468 cells suggest that upon inhibitor treatment the cells suffer from the lack of crucial TCA 

cycle intermediates (Figure 20, 21). One of the main functions of the TCA cycle is to provide 

electron carriers for oxidative phosphorylation, absence of which causes an energy deficit in the 

cells. In Figure 8, the decrease in luminescence post GPT2 knockdown indicated that there was 

an energy deficit in the cells due to the fact that the cell titer glo assay measures ATP content in 

the cells.Therefore, it was intriguing to see what effect the inhibitor has on the oxygen 

consumption rate (OCR), which is often used as a proxy for oxidative phosphorylation. The 

seahorse bianalyzer was used to detect OCR (details in section 3.2.9) MDA MB 468 cells treated 

with BCLA indeed showed  decreased oxygen consumption (Figure 22a). Interestingly, despite 

not showing any significant changes at the metabolite or protein levels, OCR  also of MCF7 cells 

was found to be decreased post inhibitor treatment (Figure 22b). When the cells were pushed 

to utilize their maximum respirative capacity (via addition of mitochondrial uncoupler FCCP) the 

difference between control and inhibitor treated cells became even stronger, suggesting that 

indeed the fitness and flexibility of the cells are affected by the inhibition of GPT2. 

 

 

Figure 22:  Effect of GPT2 inhibition on oxygen consumption rate. Cells were treated with inhibitor (MDA 

MB 468: 75µM, MCF7: 100µM) for 24h. Oxygen consumption rate in the cells were analyzed by the seahorse 

bioanalyzer. Graphs are representative of n=3 (each with 7 technical replicates). 
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4.3.5 Effect of GPT2 on carbon labeling of intracellular metabolites 
The data above indicates that GPT2 inhibition results in a decrease in glutamine uptake in MDA 

MB 468 cells. This results in a reduction of carbon flow from glutamine into the TCA cycle. 

However, uptake of glucose which provides the carbon backbone of alanine remains 

unchanged. Lactate secretion is also unaltered under these conditions. This led to the question 

of what happens to the carbon from glucose that would enter the alanine aminotransferase 

pathway in non-perturbed conditions. In the absence of GPT2 activity and change in lactate 

secretion the excess carbons should lead to a buildup of pyruvate which might then enter into 

the TCA cycle. This way the decrease in carbon atoms entering the TCA cycle from glutamine 

could also be compensated for. In order to test this, cells were treated with inhibitor for 24h 

and then incubated with media supplemented with 13C-glucose instead of 12C-glucose for 30 

min. Thereafter, the cells were harvested and the incorporation of carbon-13 in TCA cycle 

metabolites was determined. In all cell lines, the glucose pools were replaced by 90% or more 

and lactate labeling remained unchanged by BCLA. The results are represented as % label 

incorporation into the intermediates which will be referred to as labeling, and total labeled 

quantities. The results corroborated the initial hypothesis as it was observed that all measured 

TCA cycle intermediates showed an increase in glucose carbon labeling in MDA MB 468 cells 

(Figure 23a). However, most interestingly, it was seen that as a result of GPT2 inhibition, MDA 

MB 468 showed a high increase in pyruvate carboxylase (PC) activity which results in the 

formation of labeled malate and fumarate m+3 fractions. Citrate m+3 fraction which can 

originate from both pyruvate dehydrogenase (PDH) and PC catalyzed reactions, also increased 

significantly. Further analysis of the total labeled products showed that indeed, the 13C labeled 

malate and fumarate m+3 fractions as well as citrate m+3 fractions were higher when GPT2 

activity was inhibited, whereas the m+2 fractions which exclusively originate from the PDH 

reaction remained unchanged.  

MDA MB 231 (Figure 23b) showed a trend of increased 13C-glucose derived incorporation in  

TCA cycle intermediates although this was not significant, which is in accordance with the fact 

that carbon flow into the alanine aminotransferase pathway is low in MDA MB 231 already in 

non-pertubed conditions. Hence, blockage of this pathway was not expected to lead to much 
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buildup of carbon atoms that could be shuttled elsewhere. Interestingly, MDA MB 231, did not 

show an increase in PC activity, however, it was observed that the PC reaction was already 

elevated in these cells compared to the other two cell lines (Figure 23, 24). Subsequently, the 

labeled quantities coming from the PC reaction did not increase further, however, labeled 

quantities of products coming from the PDH reaction showed an increasing trend.  

MCF7 (Figure 23c) showed a significant increase in fumarate and malate carbon labeling, while 

citrate, α-KG and succinate, remained unchanged, decreased or showed an increasing trend 

respectively. Although, MCF7 had a lower PC pathway activity compared to MDA MB 231 and 

was similar to MDA MB 468, it did not show an increase in PC reaction. Total labeled quantities 

of malate and fumarate m+2 fractions were higher in inhibitor treated cells, confirming that 

blockage of the GPT2 pathway shunts glucose carbon atoms into the TCA cycle pathway. 

Labelling expreiments were performed in collaboration with Nadine Royla, who also did the 

initial data processing 
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Figure 23: Effect of GPT2 inhibition on Glucose Labeling of TCA cycle intermediates.  Cells were treated 

with inhibitor ((a) MDA MB 468: 75µM, (b) MDA MB 231: 25µM, (c) MCF7:100µM) for 24h (with a media 

change after 20h). Cells were incubated with media supplemented with 13C-glucose for 30min and 

subsequently polar metabolites were extracted and incorporation of glucose derived carbon-13 in 

intracellular metabolites was measured via GC-MS. Data are presented as mean ± SD, n=3. *** represents 

p<0.001, ** represents p<0.01, * represents p<0.05. 
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4.4 Effect of Combinatorial targeting of GPT2 and PC 
The aforementioned results indicate that inhibition of the GPT2 catalyzed reaction rewires 

carbon flow in cancer cells. The reduction of TCA cycle intermediate α-KG, which is produced by 

the GPT2 catalyzed reaction, and the buildup of pyruvate leads to an increased flow of glucose 

into the TCA cycle. However, glucose can enter the TCA cycle via two routes, PDH catalyzes the 

forward TCA cycle and PC catalyzes the reverse cycle. PDH irreversibly catalyzes the reaction 

that results in oxidative decarboxylation of pyruvate to form acetyl CoA and NADH, while PC 

catalyzes the carboxylation of pyruvate to form oxaloacetate, products from both reactions can 

then be used to fuel the TCA cycle.  Different cell lines behave diversely, depending on their 

metabolic landscape. MDA MB 468 cells switched to a PC-driven TCA cycle under GPT2 

inhibition, while the other two cell lines did not and instead upregulated the PDH catalyzed 

reaction (Figure 23). While PDH activity was observed to be similar at basal conditions for these 

cell lines (Figure 24 a-c). In contrast, PC activity was diverse in the cell lines also at basal 

conditions which could be the rationale for differential usage of this pathway under metabolic 

stress (Figure 24 d-f). RPPA was done by Stephan Bernhardt, labelling was done together with 

Nadine Royla who did the initial data processing. 
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Figure 24: PDH and PC expression and activity in different breast cancer cell lines. (a,d) Basal levels of 

PDH and PC were measured by RPPA. (b-c, e-f). Protein expression was normalized to total protein levels 

Cells were labeled for 30min with glucose labeled media and subsequently harvested and labeling in 

intracellular metabolites was measured via GC-MS. Data are presented as mean ± SD, n=3. 

 

In order to see how much the cells depend on PC for their growth, first PC was knocked down 

using 4 siRNAs and knockdown efficiency was assessed 72h post transfection. All 4 siRNAs 

showed greater than 70% decrease in mRNA and protein levels in MDA MB 468 and MDA MB 

231 cells (Figure 25). siPC#3  and siPC#4 were used for further experiments.  
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Figure 25: Knockdown efficiency of siPC in MDA MB 468 and MDA MB 231 cells Cells were transfected 

with siPC (pool and individual). RNA and protein were harvested 72h after transfection and knockdown 

efficiency was determined by qPCR (a,c) and western blot (b,d) respectively. All values were normalized to 

NTC. Values for mRNA expression were first normalized to PUM1 levels and are presented as mean ± SD of 3 

technical replicates. Protein expression values were first normalized to actin levels. n=1 *** represents p < 

0.001, ** represents p < 0.01 

 

In the next experiments the effect of PC knockdown on cell proliferation was tested. While 

MDA MB 468 was affected the most, MDA MB 231 was least affected despite having a higher 

activity of PC. (Figure 26 a-c)  This was contrary to expectations as MDA MB 231 had the highest 

PC protein expression as well as activity (Figure 24).To investigate the effect of GPT2 inhibition 

on cells lacking PC, cells were treated with BCLA 8h after transfection with PC siRNA (Figure 26a 

and b). MDA MB 468 cells showed a moderate but significant decrease in cell proliferation 

following the combinatorial treatment with a PC siRNA and BCLA compared to the individual 

treatment (Figure 26a). MDA MB 231 showed no significant additional change in proliferation 

when treated with inhibitor in combination with siPC#3, while the minor difference seen with 

siPC#4 indeed reached significance (Figure 26b). MCF7 also seemed to be affected by 

combinatorial treatment since this showed a slight albeit significant change in cell proliferation 
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(Figure 26c). Knockdown of PC mRNA after 8h of transfection was confirmed in MDA MB 468 

cells (Figure 26d). 

 

 

Figure 26: Combinatorial Effect of GPT2 inhibition and PC knockdown on cell growth.  (a-c) Cells were 

transfected with PC siRNA. 8h post transfection cells were treated with inhibitor (MDA MB 468: 75µM, MDA 

MB 231: 25µM, MCF7:100µM) for 72h. Microscopy based nuclei counting was performed to determine cell 

numbers. (d) RNA was harvested from MDA MB 468 8h after transfection and knockdown efficiency was 

determined by qPCR. All values were normalized to control (NTC + water). For cell numbers data are 

presented as mean ± SD, n=2(each with 6 technical replicates). Values for mRNA expression were first 

normalized to PUM1 levels and are presented as mean ± SD of 3 technical replicates. *** represents p < 0.001, 

** represents p<0.01. 

 

Knockdown efficiency of the siRNAs in MCF7 was tested at both RNA and protein levels and was 

found to be >70% (Figure 27). 
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Figure 27: Transfection efficiency of siPC in MCF7 cells. Cells were transfected with siPC (pool and 

individual). RNA (a) and protein (b) were harvested 72h after transfection and knockdown efficiency was 

determined by qPCR and western blot respectively. All values were normalized to non-targeting control 

siRNA (NTC). Values for mRNA expression were first normalized to PUM1 levels and are presented as mean ± 

SD of 3 technical replicates. Protein expression values were first normalized to actin levels. n=1. ** represents 

p < 0.01 

 

As MDA MB 468 cells showed an increase in the flow of carbon atoms through the PC catalyzed 

pathway after inhibitor treatment, further investigation was required to answer the question of 

what effects PC and GPT2 proteins have on each other. Preliminary experiments showed that 

while GPT2 knockdown or inhibition did not have an effect on PC protein expression (Figure 

28a, inhibitor data not shown), PC knockdown did increase the levels of GPT2 protein (Figure 

28b). Further experiments need to be done to confirm these observations. 
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Figure 28 : Effect of GPT2 and PC on the expression of one another.  Cells were transfected with siGPT2 

(a) or siPC (b). Protein was harvested 72h after transfection and expression levels were determined by 

western blot. All values were first normalized to actin levels and then to NTC, n=1. 

 

 

4.5 Combinatorial Treatment of GPT2 and Oxidative 

Phosphorylation Inhibition 

4.5.1 Combinatorial Treatment of GPT2 Inhibitor and Rotenone 
Glycolysis and TCA cycle are important sources of electron carriers which are used in oxidative 

phosphorylation to generate ATP. The rewiring of the TCA cycle as a result of GPT2 inhibition, 

therefore not only affects the macromolecular biosynthetic pathways it supports but also 

energy generation which the cells strive to keep operative by pushing carbon flow into the TCA 

cycle. Therefore, it was hypothesized that a combinatorial treatment inhibiting GPT2 and 

oxidative phosphorylation be more effective in retarding cancer cell growth. Rotenone is a 

highly potent mitochondrial complex I inhibitor used in several studies to induce mitochondrial 

dysfunction(W. Hu et al., 2016). It inhibits the oxidation of NADH to NAD leading to oxidative 

stress. In breast cancer it has been shown to cause DNA damage and apoptosis(Deng, Huang, & 

Lin, 2009). 
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Using various concentrations of rotenone reported in previous studies conducted with the 

cancer cell lines, the effects of rotenone on the 3 cell lines used in this project were studied. All 

cell lines showed significant decreases in cell numbers 72h after treatment in a dose dependent 

manner (Figure 29a). However, MDA MB 231 cells were affected most severely, with an 80% 

decrease in cell numbers at the higher concentrations. Notably, in all three cell lines there was a 

sharp drop in cell numbers at 1µM concentration of rotenone. To confirm the effects of 

rotenone on the cell lines, reported markers, cleaved PARP (marker for DNA damage) and Bcl2-

L-4 (apoptosis marker), were tested (Figure 29 b-d). Cleaved PARP indeed increased in MDA MB 

468 and MCF7 even at the lowest concentration of rotenone tested, MCF7 showed a greater 

increase in cleaved PARP levels in line with the effect on cell numbers. Cleaved PARP could not 

be detected in MDA MB 231. Interestingly, even though MDA MB 231 showed a greater effect 

in cell proliferation, increase in Bcl2-L-4 was similar to that in MDA MB 468, while MCF7 had the 

highest increase in Bcl2-L-4 levels.  Bcl2-L-4, however, increased in all three cell lines confirming 

the toxic effect of rotenone on all three cell lines 
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Figure 29: Effect of rotenone on breast cancer cells.  (a) Cells were treated with different concentrations 

of rotenone for 72h. Microscopy based nuclei counting was performed to determine cell numbers. (b-d). 

Protein was harvested after treatment with different concentrations of rotenone for 24h and expression 

levels of target proteins were determined via Western blotting. All values were normalized to the untreated 

control (0). For cell numbers, data are presented as mean ± SD, n=1(with 6 technical replicates). Values for 

protein expression were first normalized to actin levels, n=1. *** represents p < 0.001, ** represents p<0.01. 
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Next, cells were treated with a combination of rotenone (rot) and the GPT2 inhibitor. For this 

experiment 3 concentrations of rotenone were chosen.  Firstly, 1µM was chosen as it was the 

least tested concentration showing the most pronounced effect in all 3 cell lines, thereafter, 0.1 

and 10µM were chosen to cover a large spectrum. BCLA concentrations were kept the same as 

before. As predicted, the combination of 0.1µM rotenone with the BCLA had an additive effect 

on the decrease in cell proliferation of MDA MB 468 cells (Figure 30a). In MDA MB 231, BCLA 

showed high toxicity and possibly therefore, the combination did not show any further effect 

(Figure 30b). In order to circumvent this, a lower concentration of the BCLA (10µM) was used in 

combination with rotenone, and similar to MDA MB 468, the combination of BCLA and 0.1 µM 

rotenone in MDA MB 231 cells showed an additive effect on growth (Figure 30c). MCF7 did not 

show a strong effect as a result of the combinatorial treatment (Figure 30d). While the effect of 

rotenone alone was high, the effect of BCLA was minor. Therefore, a higher concentration of 

BCLA (100µM)  was used in combination with rotenone, the combinatorial effect was negligibly 

more than the effect of rotenone (Figure 30e), further proving that the effect of GPT2 inhibition 

strongly affects MDA MB 468 and MDA MB 231 but is not significant in MCF7. 
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Figure 30: Combinatorial effect of rotenone and BCLA on breast cancer cells.  (a) Cells were treated with 

different concentrations (µM) of rotenone (rot) and BCLA for 72h. Microscopy based nuclei counting was 

performed to determine cell numbers. All values were normalized to untreated control. Data are presented as 

mean ± SD, n=2(each with 6 technical replicates). *** represents p < 0.001, ** represents p<0.01, * represents 

p<0.05. 
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4.5.2 Combinatorial Treatment of GPT2 Inhibitor and Metformin 

To further validate the findings made with rotenone, a different complex I inhibitor, namely, 

metformin was used. While rotenone is a specific inhibitor of complex I, metformin is not 

specific and has a milder effect on complex I(Madiraju et al., 2014). Similar to rotenone, a range 

of concentrations were used for metformin treatment as obtained from studies with breast 

cancer cell lines(Liu et al., 2009). For metformin, MDA MB 468 and MCF7 showed maximum 

and similar effects. Contrary to rotenone, metformin had the least effect on MDA MB 231 

which could be due to difference in efficiency or due to the fact that the two drugs act via 

different routes (Figure 31a). As metformin acts via phosphorylation of AMPKa, the levels of 

phosphoAMPKa were determined(Galdieri, Gatla, Vancurova, & Vancura, 2016). All cell lines 

showed an increase in phospho AMPKa levels (Figure 31 b-d). Furthermore metformin causes 

dephosphorylation of RPS6 which leads to growth arrest(Sacco et al., 2016). All the 3 cell lines 

showed significant decrease in PRPS6 (Figure 31 b-d). 
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Figure 31 : Effect of metformin on breast cancer cells.  (a) Cells were treated with different concentrations 

of metformin for 72h. Microscopy based nuclei counting was performed to determine cell numbers. (b-d). 

Protein was harvested after treatment with different concentrations of metformin for 24h and expression 

levels of target proteins were determined via western blotting. All values were normalized to untreated 

control. For cell numbers data are presented as mean ± SD, n=2(each with 6 technical replicates). Values for 
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protein expression were first normalized to actin levels, data is representative of two experiments. *** 

represents p < 0.001, ** represents p<0.01. 

 

As MDA MB 468 and MCF7 showed a sharp decrease in cell numbers at 2.5mM Metformin 

concentration and MDA MB 231 at 5mM these were chosen as the effective concentrations. In 

order to test a range of combinations, 0.25mM and 20mM were also tested.  MDA MB 468 

showed a slight additional decrease in cell numbers when a combination of metformin 2.5 mM 

and BCLA was applied (Figure 32a) compared to individual BCLA or metformin treatment. The 

combinatorial treatment did not result in any additional effects when higher or lower 

concentrations of metformin were applied. Effects seen in MDA MB 231 were similar to those 

observed with the combination of rotenone and BCLA (Figure 32b). However, in this case 

reducing the BCLA concentration did not change the effect of the combination (data not 

shown). MCF7 on the other hand showed an additional effect with combination of highest 

concentration of metformin and BCLA (Figure 32c), while increasing BCLA concentration did not 

have any additional effect in combination with lower concentrations of metformin (data not 

shown). 
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Figure 32 : Combinatorial effect of GPT2 inhibition and metformin on cell growth.  (a-c) Cells were 

treated with different concentration of metformin (Met) and BCLA (MDA MB 468: 75µM, MDA MB 231: 25µM, 

MCF7:100µM) for 72h. Microscopy based nuclei counting was performed to determine cell numbers. All 

values were normalized to untreated control. Data are presented as mean ± SD, n=2(each with 6 technical 

replicates). *** represents p < 0.001, ** represents p<0.01, * represents p<0.05. 

 

Therefore, the combination of BCLA, which has an impact on the TCA cycle and, likely, also on 

oxidative phosphorylation, and complex I inhibition further stresses the cells. However, this 

additional effect is dependent on the effect of the GPT2 inhibitor on the cells. 
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4.6 Clinical significance of GPT2 
The above experiments prove that in an in vitro setup, GPT2 plays a crucial role in maintaining 

cancer cell growth. However further investigation was required to establish a clinical role of 

GPT2 in breast cancer patients. Using two publicly available datasets METABRIC (2000 patients) 

and TCGA (1200 patients), the expression of GPT2 was analyzed. It was observed that in both 

datasets GPT2 expression is the highest in the basal subtype of breast cancer, which has the 

worst prognosis (Figure 33 a, b). A more in depth analysis of the METABRIC dataset showed that 

GPT2 expression significantly increases with increasing grade of tumor, which substantiates its 

role in aggressive cancers (Figure 33 c). As the METABRIC dataset has long follow-up data of 

patients (20 years), impact of GPT2 on overall patient survival was analyzed. The dataset 

showed that high GPT2 expression was associated with poor patient prognosis thus further 

consolidating the role of GPT2 in tumor progression (Figure 33c). 

 

 

Figure 33: GPT2 expression in breast cancer patients and correlation with overall survival.  (a) GPT2 

mRNA expression analysis [log2 (x+1) rsem] of the TCGA dataset comparing the PAM50 subtypes Lum A 
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(n=421), Lum B (n=192), Her2 (n=67) and Basal (n=141). (b) GPT2 mRNA expression analysis (log2 a.u.) of 

the METABRIC dataset comparing the PAM50 subtypes Lum A (n=721), Lum B (n=492), Her2 (n=240) and 

Basal (n=331). (c) GPT2 mRNA expression analysis of the METABRIC dataset comparing different grades, 

G1(n=170), G2(n=775) and G3(n=957). Quartile based survival analysis of the METABRIC dataset (Curtis et 

al., 2012) of GPT2 high vs. low gene expression (for each quartile n=492). *** represents p < 0.001, ** 

represents p<0.01, * represents p<0.05. 

 

The two analyzed datasets comprised of mRNA expression of genes. It was, therefore, 

important to find out whether or not these associations were correlating also at the protein 

level. Using an independent dataset from our group, containing clinical information of 800 

breast cancer patients, the expression of GPT2 was explored. In corroboration with the mRNA 

data, GPT2 protein levels were the highest in triple negative breast cancers most of which are 

basal (Figure 34a). GPT2 protein also positively correlated with increasing grade of tumors in 

this dataset (Figure 34b). RPPA and raw data processing was done by Stephan Bernhardt. 

Statistical analysis was done by collaboration partners at Freiburg Institute for Advanced 

Studies  

 

 

Figure 34: GPT2 protein expression in breast cancer patients. Box plots show GPT2 protein expression 

analysis of the 800 patient cohort comparing (a) molecular subtypes Lum (n=614), Lum HER2 (n=76), HER2 

(n=35) and triple negative (n=75) and (b) different grades, G1 (n=91), G2 (n=501) and G3 (n=207).  Kruskal-
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Wallis Rank Sum test was applied to compare the groups and p-values were adjusted using the Benjamini-

Hochberg procedure (Section 3.2.5.2). 

 

4.7 Regulation of GPT2 expression  

4.7.1 Regulation of GPT2 expression by c-Myc  
The high expression of GPT2 seen in patients having a poor prognosis indicates that cancer cells 

rewire their metabolic pathways to increase alanine production. This reveals a higher level of 

regulation that may take place. c-Myc has been shown to regulate glutamine metabolism in 

several tumor entites including breast cancer (Korangath et al., 2015). To test if GPT2 levels 

might also be regulated by c-Myc, the MDA MB 468 cell line was used as a biological test 

system. Indeed, GPT2 both mRNA and protein levels decreased upon knockdown of c-Myc 

(Figure 35 a, c). c-Myc knockdown was confirmed at both mRNA and protein levels (Figure 35 

b,d). Furthermore, GLS levels (Figure 35e) were also tested as a positive control for c-Myc 

knockdown(Gao et al., 2009) and showed a significant decrease.  
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Figure 35: Regulation of GPT2 expression by c-Myc. (a-f) Cells were transfected with siMYC (30nM). RNA 

and protein were harvested 72h after transfection and knockdown efficiency was determined by qPCR (a-b) 

and RPPA (c-f) respectively. All values were normalized to non-targeting control. For mRNA the values were 

first normalized to PUM1 levels and are presented as mean ± SD of 3 technical replicates. For protein levels 

the values were first normalized to total protein levels and are presented as mean ± SD, n=3. *** represents p 

< 0.001, ** represents p<0.01. (g)  

 

To understand whether c-Myc regulation plays a role in breast cancer patients, c-Myc levels 

were next correlated with GPT2 levels in the the METABRIC dataset as well as in the in-house 

800 patient dataset (RPPA done by Stephan Bernhardt, analysis done by Khalid Abnaof)(Figure 
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36 a,b). Myc levels correlated positively with GPT2 levels at both mRNA and protein levels. In 

fact the correlation was better at the protein levels. 

 

 

Figure 36: Correlation between MYC and GPT2 expression in patients. (a)Correlation analysis of MYC 

with GPT2 gene expression of the TCGA dataset (n= 1215). (b) Correlation analysis of c-Myc with GPT2 

protein expression of the 800 patient cohort (n=800).  Correlation coefficient was calculated using Pearson 

correlation. 

 

 

4.7.2 Regulation of GPT2 expression by ATF4  
The previous experiments revealed that while c-Myc does play a role in GPT2 regulation, it does 

not regulate the entire expression, and GPT2 could thus be regulated also by other 

transcription factors. ATF4 has been reported to regulate GPT2 expression in other cell 

types(Salgado et al., 2014a). Therefore, it was interesting to see whether it also plays a role in 

breast cancer. Indeed GPT2 mRNA levels decreased significantly upon ATF4 knockdown (Figure 

37 a,b).  Additionally, tunicamycin treatment, which is a commonly used ER stress 

inducer(Salgado et al., 2014a), led to ATF4 up regulation(Figure 37d),  and it  also increased 

GPT2 expression significantly (Figure 37c).  
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Figure 37: Regulation of GPT2 expression by ATF4. (a-d) Cells were transfected with siATF4. RNA and was 

harvested 72h after transfection and mRNA levels were determined by qPCR. All values were normalized to 

PUM1 levels and non-targeting control. Data are presented as mean ± SD of 3 technical replicates. *** 

represents p < 0.001.  

 

This observed regulation in the previous figure was further consolidated by a positive 

correlation between the expression of ATF4 and GPT2 at the patient level in the TCGA dataset 

(Figure 38). 
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Figure 38: Correlation between ATF4 and GPT2 expression in patients. Correlation of ATF4 with GPT2 

expression of the TCGA dataset (n= 1215). Correlation coefficient was calculated using Pearson correlation 
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5. Discussion 

Breast cancers, like several other cancers undergo global metabolic shifts in order to sustain 

their growth and survival. Considerable evidence suggests that unraveling these metabolic 

transformations holds the promise for discovery of new therapeutic susceptibilities(Chakrabarti 

et al., 2015; Morin, Letouzé, Gimenez-Roqueplo, & Favier, 2014; Sotgia, Martinez-Outschoorn, 

& Lisanti, 2013; Tennant, Durán, & Gottlieb, 2010; X. Zhang et al., 2016).  In this project I aimed 

to dissect the metabolic landscape of breast cancer with the aim of finding important players in 

the bioenergetics and biosynthetic pathways of tumor cells. This led to the identification of 

alanine aminotransferase (GPT2) which I found to have a strategic role in maintaining the 

glycolytic and glutaminolytic equilibrium of breast cancer cells and may thus qualify as a 

potential target for therapeutic intervention. This study also underlines metabolic 

heterogeneity within and between different subtypes of breast cancer, highlighting the fact 

that when it comes to metabolism, the conventional classifications may not apply.  

 

5.1 Metabolic characterization of cancer cells reveals 

heterogeneity within breast cancer cell lines 
While it is widely accepted that the aggressive subtypes of breast cancer, like triple negative 

breast cancers, display pronounced dependence on metabolic rewiring (Lim et al., 2016; Maiti, 

Kundranda, Spiro, & Daw, 2010; J. H. Park et al., 2016; Pelicano et al., 2014; Peterson, Walker, 

Sloan, & Creek, 2016; Shen et al., 2015; van Geldermalsen et al., 2015b), there is a large body of  

evidence which suggests that less aggressive subtypes of breast cancer such as the ER positive 

ones, can also undergo large-scale metabolic transformations (Audet-Walsh et al., 2016; A. R. 

Clark & Toker, 2014; Lloyd, Arnold, & Sreekumar, 2015; Mishra & Ambs; S. Park et al., 2016; 

Penkert et al., 2015). This could also be recapitulated in this project where all three cell lines, 

MDA MB 468, MDA MB 231 and MCF7, despite their genetic differences, showed comparable 

levels of glucose and glutamine consumption, as well as active breakdown of these carbon 

sources as marked by high levels of lactate and ammonia secretion (Figure 5). However, amino 
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acid metabolism activity was found to be higher in the triple negative breast cancer cell lines as 

seen by the protein levels of the enzymes involved in these pathways (Figure 6c). Previous 

studies have also reported aberrant amino acid metabolism in triple negative breast cancer 

cells (M. I. Gross et al., 2014; Possemato et al., 2011a; Timmerman et al., 2013; van 

Geldermalsen et al., 2015a). It is to be noted however, that MDA MB 468 showed a higher 

consumption of both carbon sources as well as higher secretion of their end products when 

compared to MDA MB 231 (Figure 5). Additionally, MDA MB 468 had a higher expression of 

oxidative phosphorylation (OXPHOS) related proteins compared to MDA MB 231 (Figure 6d), 

validating functional experiments which showed higher oxygen consumption rates of MDA MB 

468 (Lanning et al., 2017). This is not surprising as TNBC patients have high levels of genetic 

heterogeneity (Lehmann et al., 2011; Lehmann, Jovanović, et al., 2016). While both the MDA 

cell lines belong to the triple negative subtype of breast cancer, they are assigned to different 

subclasses. MDA MB 468 belongs to the basal A subclass while MDA MB 231 is basal B 

(Lehmann, Jovanovi, et al., 2016) (it was previously assigned to mesenchymal like (Lehmann et 

al., 2011)). MCF7, which is a luminal cell line, had the highest expression of enzymes involved in 

oxidative phosphorylation, in concordance with previous studies (Pelicano et al., 2014) (Figure 

6d). Expression of enzymes of the citric acid (TCA) cycle, which directly feeds OXPHOS, was also 

higher in MCF7 compared to the triple negative breast cancer cell lines (Figure 6b), further 

underlining the difference between the luminal and triple negative subtypes. 

While basal metabolic rates and enzyme levels are important to understand the metabolic 

tendencies of the cells, tumor cells can easily switch between pathways and sources to quickly 

adapt to changing metabolic environments, thereby increasing fitness of the cells resulting in 

sustained growth and proliferation. It is important to introduce perturbations to these cells and 

find out how they behave under different stress conditions and what alternative pathways can 

get activated in order to target them efficiently. All 3 cell lines were grown under different 

nutrient starvation conditions, namely, glucose and glutamine deprivation. It was clear that all 

cell lines were affected by the lack of either nutrient, however, the extent of the effect varied 

between the different cell lines (Figure 4 a-f). In line with previous studies (Dilshara et al., 2017; 

Korangath et al., 2015; Timmerman et al., 2013; van Geldermalsen et al., 2015b) MDA MB 231 
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cells were most sensitive to glutamine deprivation. In contrast, MCF7 cells were most affected 

under glucose deprived conditions. Other studies have shown that ER+ cells are more 

dependent on glucose than on glutamine (Timmerman et al., 2013). However, the subtypes are 

not clearly separated into glucose and glutamine dependent groups, for example, glucose is a 

critical source for ER- cells as well and they tend to have higher glycolytic rates, as I have shown 

in this project and has also been reported(Rizwan et al., 2013; Shen et al., 2015). MDA MB 468 

cells showed moderate dependence on both carbon sources which was also in line with other 

studies (Lampa et al., 2017; Lukey, Greene, Erickson, Wilson, & Cerione, 2016), suggesting that 

they may be metabolically more flexible and can switch on/off certain pathways rapidly to 

adapt to changes in the environment. In fact, another study has shown that even though MDA 

MB 468 cells have higher OXPHOS versus glycolytic levels compared to MDA MB 231 cells, 

under conditions of glycolytic stress they survive better as they have a higher glycolytic reserve 

(Lanning et al., 2017).  MDA MB 468 cells depend on arginine as an important source for 

nitrogen to sustain polyamine biosynthesis and blocking the breakdown of this amino acid can 

lead to cell apoptosis (Singh, Pervin, Karimi, Cederbaum, & Chaudhuri, 2000). In this project, as 

well, it was clear that this pathway was active from the high levels of arginase 2 (ARG2) 

particularly in MDA MB 468 cells (data not shown).This data suggests that MDA MB 468 cells 

can use multiple nutrient sources for their sustenance and can thus compensate for the lack of 

one source by switching to other sources they are already ready to utilize. However, further 

experiments need to be done to confirm this hypothesis. 

Metabolic intermediates derived from both glycolysis and glutaminolysis, provide the 

biosynthetic molecules required for the cancer cells. In cancer cells, glycolysis provides carbon 

atoms for different biosynthetic intermediates that lead to the production of building blocks 

required for the cell growth(Lunt & Vander Heiden, 2011). Conventionally, glutamine is the 

primary nitrogen donor of the cells which supports nucleotide and protein synthesis, however, 

in cancer cells the role of glutamine is extended to become the second major carbon source as 

it also supplies intermediates that keep the TCA cycle functional(R. J. DeBerardinis et al., 2007; 

L. Yang et al., 2017). As a result, cancer cells have highly deregulated amino acid metabolism. 

These deregulated pathways facilitate the transport of carbon from glutamine into the 
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biosynthetic pathways. An important example of this, particularly in breast cancer, is the serine 

synthesis pathway which is upregulated in cancers with poor outcome, especially the ER- 

subtype(Pacold et al., 2016; Possemato et al., 2011b). Serine synthesis pathway has a dual role 

in these cells. On the one hand, it leads to the production of glycine which contributes to the 

one carbon metabolism which has an impact on diverse pathways including nucleotide, protein 

and lipid metabolism, as well as epigenetic regulation and redox balance.  On the other hand, 

breast cancer cells have been shown to suffer under blockage of serine synthesis as a result of 

depletion of the α-Ketoglutarate (α-KG) pool. Indeed, glutamine contributes to the TCA cycle 

mainly via maintaining α-KG levels in the cells (Lampa et al., 2017; C. Yang et al., 2014b). While 

α-KG is important for TCA cycling, it can also undergo reverse carboxylation to produce citrate 

which feeds the fatty acid biosynthesis (Zaidi, Swinnen, & Smans, 2012). Additionally, it can 

provide the substrate for the oncometabolite 2-HG production, which can promote 

tumorigenesis(L. Dang et al., 2009).  α-KG is therefore, the crucial metabolite that cancer cells 

depend on glutamine for. As a consequence, high glutamine uptake in the cells results in the 

upregulation of aminotransferase reactions, in addition to the serine biosynthesis pathway. 

Indeed alanine and aspartate aminotransferases play critical roles in cancer cells(Korangath et 

al., 2015; Thornburg et al., 2008).  

 

5.2 Alanine aminotransferase (GPT2) is deregulated in breast 

cancers and is crucial for their growth 
I have shown (Figure 7b, c) that several breast cancer cell lines have high expression of GPT2 

both at the mRNA and protein levels. This is consistent with other studies which have shown 

that glutamine addicted cells upregulate their aminotransferase expressions including 

GPT2(Korangath et al., 2015; Son et al., 2013b). In liver tumors, GPT1 activity is elevated already 

in the pre-tumor state and increased secretion of alanine has been found to be among the 

earliest metabolic changes that occur (S. Hu, Balakrishnan, Bok, Anderton, Larson, Nelson, 

Kurhanewicz, Vigneron, Goga, et al., 2011). The expression of GPT2 correlated with alanine 

levels, MDA MB 468 cells (which have the highest expression of GPT2) showed the highest 
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production and secretion of alanine (Figure 7a, d). Furthermore, high GPT2 activity in these cells 

was confirmed by the high rates of glucose label incorporation into alanine (Figure 7e).  

Interestingly, GPT1 is expressed at much lower levels than GPT2 at the mRNA level and does 

not show any difference between the three tested cell lines (MDA MB 468, MDA MB 231 and 

MCF7) and (Figure 7b). It must be noted that GPT1 and GPT2 genes map to two different 

chromosomes suggesting that the genes are regulated independently(Yang, Roong-Ze; 

Blaileanu, Greorche; Hansen, Barbara C;Shuldiner, Alan R; Gong, 2002). Furthermore, the GPT1 

protein is cytosolic, whereas GPT2 is mitochondrial. GPT1 is expressed in the kidneys, liver, 

skeletal muscle, and in low amounts in the heart, whereas GPT2 is expressed in the heart, 

skeletal muscle and pancreas. While GPT1 is mostly abundant in liver and is a biomarker for 

liver toxicity, GPT2 has higher expression in other specific organs(Salgado et al., 2014a). 

Therefore, the upregulation of GPT2 in cancer and the lack thereof of GPT1 suggest that when 

the need to upregulate alanine aminotransferase activity arises in cancer cells, they tend to rely 

on GPT2. Indeed, in cancer cells it has been shown that alanine is produced mainly by the 

mitochondrial pyruvate (Vacanti et al., 2014; C. Yang et al., 2014a). 

The dependence of breast cancer cells on GPT2 was confirmed with two independent 

approaches. In one, RNAi approach was used to specifically knockdown GPT2. This led to 

decreases in viability and cell growth in all cell lines tested except T47D (luminal subtype) which 

had the lowest expression of GPT2 (Figure 8, 9 and 10). Notably, MDA MB 231 which had low 

GPT2 expression and activity, as seen by the low labeled glucose carbon incorporation into 

alanine, showed significant dependence on alanine biosynthesis pathway, in accordance with a 

previous report (Korangath et al., 2015). Although this result was surprising in the light of GPT2 

activity levels (which had not been tested in the previous report (Korangath et al., 2015)) in the 

cells, it highlighted the fact that this enzymatic reaction is crucial to the cells even when protein 

levels are low. 

The second approach was to use a commercially available alanine aminotransferase inhibitor, 

β-chloro-L-alanine (BCLA), a substrate analog of the enzyme. Previously used in a study in lung 

cancer cell lines(Beuster et al., 2011), this inhibitor is not specific to either isoform of GPT but 
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since breast cancer cell lines did not have high or changing expression of GPT1 (Figure 7b)and 

the aim was to inhibit the production of alanine, this inhibitor was chosen. In this approach, 

MDA MB 468 showed a significant decrease in cell proliferation while MCF7 was the least 

affected (Figure 15a and 16a). MDA MB 231 turned out to be the most affected cell line, in line 

with the data obtained with the siRNA approach (Figure 9d, 10b, 15a and 16b). This indicates 

that the GPT2 catalyzed reaction is still important for MDA MB 231 cell survival and the cells 

cannot quickly compensate for the perturbation in this pathway. In the study on lung cancer 

cells previously stated, inhibition of alanine transaminase impaired cell growth by reducing ATP 

production and growth inhibitory signals leading to an increase in AMPK and reactive oxygen 

species (ROS) and a decrease in cell cycle proteins (Beuster et al., 2011). Aminooxyacetate, a 

broad spectrum inhibitor of aminotransferase, has been shown in several studies to suppress 

cell growth. In breast cancer cell lines, aminooxyacetate treatment increases the sub-G1 

population and S-phase arrest (Korangath et al., 2015). Furthermore, inhibition of 

aminotransferase causes a decrease in amino acids thus activating the ER stress pathway and 

leading to cytotoxicity (Hao et al., 2016; Korangath et al., 2015). The disadvantage of this 

approach is that aminooxyactate is a broad spectrum aminotransferase inhibitor and its effects 

cannot be solely attributed to GPT2 inhibition. BCLA, on the other hand, has been shown in 

previous studies to specifically target alanine aminotransferase. This is the first time that the 

effect of specific inhibition of GPT2 has been studied in breast cancer. 

 

5.3 Perturbation  of alanine metabolism affects nutrient 

utilization capacity of cancer cells 
Alanine, produced via the transfer of α-nitrogen from glutamate to pyruvate, supports protein 

synthesis, but is also secreted from the cells in large amounts to get rid of excess carbon from 

glycolysis and nitrogen from glutaminolysis (R. Deberardinis & Cheng, 2009). One report even 

revealed that alanine may function as an important carbon fuel in pancreatic cancer cells which 

take it up from the tumor microenvironment where it is secreted by the pancreatic stellate cells 

(Sousa et al., 2016). The alanine amintransferase reaction is one of the pivots joining the 



  Discussion 

123 
 

glycolysis and glutaminolytic pathways. Therefore, it was interesting to find out whether GPT2 

inhibition affects either pathway. In colorectal cancer cells upregulation of GPT2 leads to 

increased glutamine consumption (Hao et al., 2016). A study in mammary epithelial cells 

demonstrated that the transition from quiescence to proliferation is accompanied by an 

increase in glutamine consumption and subsequent GPT2 expression (Coloff et al., 2016). 

Indeed, it was observed that a decrease in alanine production in MDA MB 468 cells results in 

reduced uptake of glutamine (Figure 18a and 19a). This was further validated by a decrease in 

ammonia production, an important outlet for excess nitrogen (Figure 19b). In MDA MB 231 and 

MCF7 cells, glutamine uptake showed a tendency to decrease, indicating that this 

aminotransferase pathway might be one of several routes for glutamine cycling and that 

MDA MB 231 as well as MCF7 cells do not depend on it for nitrogen cycling to the same extent 

as MDA MB 468 (Figure 18b,c). This is also seen in other cancer entities, which demonstrates 

that alanine production is an important glutaminolytic route (Hao et al., 2016; Smith et al., 

2016a). Glucose uptake and lactate secretion on the other hand did not show considerable 

change in MDA MB 468 cells (Figure 18a and 19c, d) whereas MDA MB 231 cells displayed a 

slight but significant decrease in glucose uptake, underlining the fact that the two cell lines are 

metabolically quite diverse (Figure 18b). The lack of any significant change in nutrient uptake in 

MCF7 cells further supports the fact that it is least affected by GPT2 inhibition (Figure 18c). 

 

5.4 GPT2 Inhibition reduces the pool of TCA cycle 

intermediates in cancer cells  
Alanine is an important nitrogen source in cells which can provide building blocks for protein 

and nucleotides that are essential for cell growth. However, it has been shown in other cancers 

that the GPT2 catalyzed reaction is also an important source of α-KG for the cells. In colorectal 

cancer, PI3KCA mutations have been shown to render the cells addicted to glutamine and 

thereby dependent on aminotransferases, in order to replenish the α-KG pools driving the TCA 

cycle (Hao et al., 2016).  In another study, young adult murine colon (YAMC) cells which were 

transformed to malignant cells via activation of RAS and p53 mutation showed upregulation of 
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GPT2 expression(Smith et al., 2016). These cells became GPT2 dependent. GPT2 is, therefore, a 

critical factor that utilizes products of glycolysis (i.e., pyruvate) to shunt glutamine-derived 

carbon atoms into the TCA cycle. Similarly, studies in mammary epithelial cells have shown that 

as the cells transition from quiescent to proliferative states, similar to cancer cells, they become 

more dependent on transaminase reactions to support glutamine catabolism which, in turn, 

promotes cell proliferation (Coloff et al., 2016). In corroboration with other reports, I have 

shown that inhibitor treatment in breast cancer cells led to a decrease in α-KG pools (Figure 

20a). It is however, interesting to note that even though MDA MB 231 cells were severely 

affected by GPT2 inhibition, they showed an increase in α-KG levels (Figure 20b). This indicates 

that even though both MDA MB 468 and MDA MB 231 have similar phenotypic reactions in 

response to GPT2 inhibition they respond differently at the molecular level. It has been shown 

in other studies that increases in α-KG can stabilize hypoxia inducible factor 1 α (HIF1α) 

resulting in a stressful environment in the cells. Hence, this could be the mechanism activated 

in MDA MB 231 cells which leads to slowing cell growth (Hou et al., 2014). However, the exact 

source of this α-KG needs further investigation.  

The decrease in α-KG is concurrent with a decrease in the pool of TCA cycle intermediates 

downstream of α-KG, further supporting the data that cells are affected by a decrease in 

glutamine uptake and alanine production both of which contribute to the TCA cycle via α-KG 

production (Figure 20a). An earlier study in colorectal cancer (Hao et al., 2016) showed that 

upregulation of GPT2 expression and glutamine increased the flux of glutamine derived TCA 

cycle intermediates, the entry point for which is α-KG. Decrease in TCA cycle activity extended 

to reduced oxygen consumption rates, which indicated reduced cellular respiration (Figure 22). 

 

5.5 GPT2 activity influences expression of enzymes involved 

in anaplerosis 
Here, I have also demonstrated that the effect of GPT2 inhibition on nutrient cycling extends to 

the enzymatic level (Figure 21). MDA MB 468 cells showed a decrease in glutamine transporters 

as well as glutaminolytic proteins, while glycolytic proteins remained unchanged in line with the 
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metabolite data (Figure 18, 19 and 21a). In concurrence with metabolite data TCA cycle 

enzymes showed significantly decreased levels upon GPT2 inhibition. Interestingly, most tested 

enzymes tended to increase in MDA MB 231, indicating that the cells might be responding to 

the perturbation by upregulating these enzymes in order to maintain/regain the rapid 

proliferation rates seen in MDA MB 231, though most changes were not significant (Figure 

21b).  MCF7 did not show any clear tendencies (Figure 21c). However, understanding the 

mechanism by which enzyme levels are adjusted entails further study.  

 

5.6 GPT2 inhibition redistributes glucose carbon utilization in 

cancer cells 
The data discussed above demonstrate that GPT2 is indeed used by breast cancer cells to 

propel glutamine derived α-KG into the TCA cycle. However, this reaction is also fed by glucose. 

The fate of glucose carbon atoms under GPT2 inhibition has not been explored so far. In this 

study two of the cell lines did not show any significant decrease in glucose consumption levels, 

MDA MB 468 rather increased slightly, MDA MB 231 showed a small decrease in uptake in 

glucose (Figure 18, 19 c). Pyruvate which is the final glycolytic product has three main fates, it 

can feed into the TCA cycle to produce ATP via OXPHOS and other biosynthetic intermediates or 

produce lactate which builds up the NADH reserves in the cells or produce alanine. In the 

absence of alanine production the pyruvate buildup can lead to an increase in lactate 

production or TCA cycle intermediates.  

As the total levels of lactate did not change (Figure 18 and 19d) it is clear that the excess carbon 

atoms from glucose do not feed into this pathway and could thus flow into the TCA cycle to 

compensate for the reduced input from glutamine. Indeed glucose labeling showed significant 

increase in carbon atoms flowing from glucose into the TCA cycle (Figure 23). In the PDH-

catalyzed forward TCA cycle the percentage of glucose carbon increased, likely due to decrease 

in carbon flow from glutamine, but this could not be observed in the total labeled 

quantities(citrate showed a small but insignificant increase in total labeled levels) (Figure 23a). 

Intermediates of the reverse reaction catalyzed by pyruvate carboxylase showed an increased 
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input of carbon atoms from glucose both in percentage and quantity. The oxaloacetate derived 

from pyruvate by PC can feed the reverse TCA cycle via malate or can be converted to citrate. In 

MDA MB 468 cells there was a significant increase in carbon labeling of malate and fumarate 

coming from this reverse reaction. Citrate, whose sources are a little more difficult to detect, 

also showed an increase of 13C-incorporation if the fragment indicating the forward and reverse 

reaction but not the fragment reflecting the forward reaction.. This indicates that the 

oxaloacetate coming from pyruvate cycles into the TCA cycle via malate but some of it might 

also be used to produce citrate. The absence of a change in the labeled quantities of α-KG may 

indicate that either the labeling time was too short for the reverse reaction to reach it and/or 

produced citrate was utilized to be transported outside mitochondria in order to feed other 

biosynthetic pathways. Further experiments are required to confirm this. 

While the labeling data clearly showed that in MDA MB 468 cells the inhibition of GPT2 shunts 

more carbon atoms from glucose into the TCA cycle via the PC catalyzed pathway, the results 

from the other two cell lines were more complicated to interpret. MDA MB 231 cells did not 

show any change in the proportion of glucose labeling, but the total labeled quantities of the 

intermediates in the PDH catalyzed forward reaction showed a tendency to increase (Figure 

23b). This could be due to the fact that MDA MB 231 cells already have a high PC activity and 

probably this pathway is functioning to its maximum capacity and therefore, under conditions 

of stress, they cannot switch to this pathway and have to rather push the forward reaction.  

MCF7 cells, similar to MDA MB 468 cells, showed significant increase in malate and fumarate 

labeled proportions and quantities of the forward reaction (Figure 23c). However, despite their 

basal PC activity being similar to MDA MB 468 cells, MCF7 cells did not increase PC activity 

under stress.  

Thus, even though the increase in PC activity under inhibition is unique to MDA MB 468 cells, it 

is clear from the labeling data that when the GPT2 pathway is not available to the cells, the 

carbon from the glucose flows into the TCA cycle. As MDA MB 231 cells already have a higher 

PC activity, they tend to push more carbon through the PDH catalyzed pathway, and it is clear 

that both routes are active under stress. MCF7 does not increase PC activity despite having a 
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low basal activity, this could be due to the metabolic landscape of the cell line in general or that 

the GPT2 inhibitor has the least effect on the cells and the cells probably have other 

compensatory pathways to overcome the blockage. Higher concentrations of the inhibitor and 

the identification of possible compensatory pathways need to be tested. 

 

5.7 Combinatorial perturbation of GPT2 and PC retards cell 

growth 
Pyruvate carboxylase (PC) is a mitochondrial enzyme which is highly active in liver and kidneys 

where it promotes gluconeogenesis. It is also expressed in other organs where it has a role in 

replenishing the TCA cycle by converting pyruvate to oxaloacetate. The alternative to PC 

catalyzed replenishment of TCA-cycle intermediates is glutamine dependent anaplerosis. 

Cancers use different anaplerotic sources. Lung cancers chose PC-dependent anaplerosis over 

GLS1 activity (Sellers et al., 2015), however, major changes in the tumor microenvironment 

have been shown to shift lung cancer cells to being more dependent on glutamine (Davidson et 

al., 2016). Breast cancers mostly use the glutamine anaplerotic route and thus, have low PC  

activity (Christen et al., 2016), as is also evident in some of the cell lines tested in this project 

(Figure 24 a-c). MDA MB 231, despite having the highest basal activity of PC, was not affected 

by PC knockdown, while MDA MB 468, which has very low basal activity of PC, is significantly 

more affected (Figure 26 a, b). This could be traced back to differential glutamine metabolism 

between the cell lines (Figure 4 a-f). While MDA MB 231 is more dependent on glutamine for 

survival, MDA MB 468 is just moderately affected by changing levels of glutamine indicating 

that this cell line might use other anaplerotic sources to maintain a functional TCA cycle. PC has 

been associated with glutamine independent growth (Biancur et al., 2017; T. Cheng et al., 

2011). Thus, it makes sense that when cells reduce their uptake of glutamine under GPT2 

inhibition, PC driven anaplerosis is induced to feed the TCA cycle. PC activity therefore, may be 

a compensatory route that is activated by cells to offset the effect of decreased or abolished 

GPT2 activity (Figure 23a). The combination of PC knockdown and GPT2 inhibition 

consequently, had a stronger effect compared to the individual treatments, in both MDA MB 
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468 and MCF7 (even though MCF7 cells did not show an activation of PC pathway) (Figure 26 

a,c).  However, the lack of a synergistic effect signals that there are other compensatory 

pathways that can get activated in the cells. In MDA MB 231 cells, the combined knockdown of 

PC did not have any additional effect probably because the effect of the inhibitor was severe 

(Figure 26b). 

 

5.8 Dual targeting of alanine and energy metabolism has a 

combinatorial effect on cell growth 
The TCA cycle provides energy precursors to be fed into the electron transport chain via 

oxidative phosphorylation. Depletion in TCA cycle intermediates will therefore, directly impact 

OXPHOS. Following GPT2 inhibition the cells displayed a decrease in oxygen consumption rate, 

a measure of OXPHOS (Figure 22). As discussed earlier, under conditions of stress the cells 

compensate for the lack of glutamine anaplerosis with PC driven anaplerosis which could be 

used to feed the ETC as well. Additionally, targeting the respiratory chain directly upregulates 

reductive glutamine metabolism (Fendt, Bell, Keibler, Olenchock, et al., 2013), which in turn 

could render the cells more susceptible to inhibition of glutamine metabolism. As GPT2 

inhibition showed a change in glutamine metabolism, combinatorial targeting of GPT2 and 

OXPHOS could provide a more effective treatment strategy for cancer cells. In order to test this 

hypothesis, the cell lines were treated with the two drugs, rotenone and metformin. 

Rotenone, an irreversible complex I inhibitor, blocks the NADH oxidation in the respiratory 

chain and has been show to induce apoptosis in breast and lung cancer cells (Deng et al., 2009; 

W. Hu et al., 2016) mainly via ROS generation. Figure 29 shows that all three cell lines were 

sensitive to rotenone treatment. MDA MB 231 was found to be the most susceptible even 

though it is the least OXPHOS dependent cell line (Lanning et al., 2017; Pelicano et al., 2014). As 

mentioned earlier, respiratory chain targeting has been shown to make cancer cells more 

dependent on glutamine metabolism. Combinatorial treatment of rotenone and BCLA (Figure 

30a-c) in MDA MB 468 and MDA MB 231 cells showed some additional effect than the 

individual inhibitors, while MCF7 showed effects similar to rotenone treatment alone. This is in 
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line with data that shows that ER+ cell lines are more OXPHOS dependent (Pelicano et al., 2014) 

and less dependent of glutamine.  

Metformin is another complex I inhibitor which is widely used to control blood sugar levels in 

type 2 diabetes patients. Epidemiological data suggests that diabetic patients treated with 

metformin have a lower risk of developing cancer (Evans, Donnelly, Emslie-Smith, Alessi, & 

Morris, 2005). Preclinical studies have also provided evidence for metformin being a potential 

candidate for anticancer treatment (Birsoy et al., 2014). One report showed that in triple 

negative breast cancers, which occur frequently in women with obesity or type II diabetes, 

metformin treatment can be used as effective therapy(Liu et al., 2009). The same report 

showed that treatment results in growth arrest and apoptosis and has been shown to also 

reduce tumor formation in xenograft models. Another report, however, suggests that 

metformin can have diverse effects, such as cell cycle arrest and reduction in colony formation 

and cell growth, in all molecular subtypes of breast cancer(Alimova et al., 2009). 

Metformin can act through several routes. In diabetes, it is used for its ability to reduce blood 

glucose levels by increasing glucose uptake by skeletal muscles, inhibiting gluconeogenesis in 

the liver, and controlling the blood insulin levels (Teicher, Linehan, & Helman, 2012). Metformin 

targets gluconeogenesis via glycerophosphate dehydrogenase (Madiraju et al., 2014). This is 

important also for cancer cells as glycerophosphate dehydrogenase is an important enzyme 

which supports the glycolytic phenotype of the cells and provides electrons for the respiratory 

chain (Chowdhury, Gemin, & Singh, 2005). Moreover, the role of metformin in targeting the 

mitochondrial complex I and inhibiting the energy metabolism of cells makes it an attractive 

drug. Unlike rotenone, metformin is a reversible inhibitor and less toxic and is also thought to 

be targeting complex I at a different site(Wheaton et al., 2014). In this study metformin is 

shown to induce significant retardation of cell growth in all three cancer cell lines, though it 

should be noted that MDA MB 231 is comparatively least affected (Figure 31). These results 

corroborate previously reported data (Liu et al., 2009). The difference in the behavior of the cell 

lines to the two complex I inhibitor treatments could be due to different efficiencies of the 

drugs or due to the notion that they act on different sites. Additionally, metformin can act on 
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targets other than complex I for example the targeting of glycerophosphate dehydrogenase, 

which may contribute to the difference as the cell lines are also metabolically distinct. However, 

further experiments need to be done to confirm this. 

Similar to rotenone, metformin-induced reduction in glucose oxidation induces a switch to 

glutamine anaplerosis (Fendt, Bell, Keibler, Davidson, et al., 2013; Fendt, Bell, Keibler, 

Olenchock, et al., 2013). In triple negative breast cancer xenografts, metformin has been shown 

to reduce cancer cell growth by reducing c-Myc and HIF1α levels(Li, Xue, Xi, & Xie, 2017; J. 

Zhang et al., 2017). These reports in combination show that metformin can directly target 

tumor cells and render the cells sensitive to glutamine targeting therapy. In this study as well, I 

have shown that treatment of metformin and BCLA had a combinatorial effect on MDA MB 468 

(Figure 32). These changes could not be recapitulated in the other cells, and can potentially be 

attributed to the fact that the change in glutamine metabolism after GPT2 inhibition is not as 

prominent in these other cell lines as in MDA MB 468 cells. Additionally, as MDA MB 231 is least 

affected by metformin, it clearly can bypass any inhibitory effect coming from this drug, while 

MCF7 are more dependent on OXPHOS than glutamine anaplerosis, hence they are more 

affected by the drug than by GPT2 inhibition. 

 

5.9 GPT2 expression correlates with poor prognosis in breast 

cancer patients 
There is substantial evidence that alanine metabolism is important for cancer cell growth in 

culture(Hao et al., 2016; Korangath et al., 2015; Smith et al., 2016a). However, the potential 

relevance of these findings depends on the clinical implications they have.   

Earlier findings focused on the role of GPT1 rather than GPT2, owing to its association with liver 

toxicity(Conde et al., 2015; S. Hu, Balakrishnan, Bok, Anderton, Larson, Nelson, Kurhanewicz, 

Vigneron, & Goga, 2011; Maximos et al., 2015). A review of different population studies 

showed that GPT1 expression is associated with the risk of cancers in digestive 

organs(Kunutsor, Apekey, Hemelrijck, Calori, & Perseghin, 2014). Similarly, in liver tumors, GPT1 

activity is elevated in the pre tumor state and increased secretion of alanine is one of the 
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earliest metabolic changes that occur (S. Hu, Balakrishnan, Bok, Anderton, Larson, Nelson, 

Kurhanewicz, Vigneron, Goga, et al., 2011).  

Studies have shown that tissues and blood samples from cancer patients, including breast 

cancers, have elevated levels of Alanine (Budczies et al., 2012; Poschke et al., 2013), suggesting 

that it is indeed secreted at a higher rate by neoplastic cells. A study in a small group of patients 

also showed that compared to healthy samples, serum from breast cancer patients have a 

higher activity of alanine and aspartate transaminase(Al-Mashhadani, Muk, & Al-Faraji, 2012).  

While upregulation of GPT2 expression in cancer cells is evident from in vitro studies(Hao et al., 

2016; Korangath et al., 2015; Smith et al., 2016a), there is a need for population studies into the 

association between GPT2 expression and tumorigenesis. Analysis of the TCGA and METABRIC 

datasets (Cancer Genome Atlas Network, 2012; Curtis et al., 2012) revealed that GPT2 

expression is upregulated in the more aggressive subtypes of breast cancer, including basal and 

HER2+ (Figure 33a, b). It is also associated with a more malignant phenotype owing to a positive 

correlation with increasing grades of cancer (Figure 33c). GPT2 expression also correlated 

significantly with poor overall survival (Figure 33 d). 

However, most available information is comprised of mRNA data which requires researchers to 

assume that the same is reflected at the protein level which may be inaccurate in certain cases. 

There is, therefore, the need for more functional studies in patient tissues to confirm the 

conclusions drawn from genetic data. Using an in house generated dataset of 800 breast cancer 

patients, GPT2 was analyzed at the proteomic level for the first time in a large scale breast 

cancer cohort (Figure 34a) (Bernhardt et al., 2017). This analysis confirmed that the 

upregulation of GPT2 in the more aggressive subtypes also translates to the protein level. This 

association also extended to other clinical parameters, including grading of tumors (Figure 34b). 

This study, thus consolidates the fact that GPT2 is indeed deregulated in tumors, and better 

detection methods for this enzyme might prove to be an important analytical tool. Despite 

some smaller cohorts showing higher alanine levels in patients versus normal patients, as 

discussed earlier, there is a lack of large scale analysis of alanine levels in patients of different 
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subtypes of breast cancer. Furthermore, it would be worth investigating the correlation 

between the levels of GPT2 expression with alanine secretion levels in the patients.  

 

5.10 GPT2 expression is controlled by metabolism regulators c-

Myc and ATF4 
Progress in the field of cancer metabolism has established this as a hallmark of cancer (Hanahan 

& Weinberg, 2011). To better comprehend tumorigenesis it becomes vital to understand how 

the cancer cells efficiently rewire their metabolic pathways to ensure a ‘favourable’ outcome 

for their growth. While some metabolic genes, like IDH, are mutated in certain cancer entities 

like brain cancer(Yan et al., 2009), most metabolic genes especially those belonging to 

glutamine metabolism do not have any reported mutations or amplifications in cancers. 

Therefore, understanding the rewiring of metabolic pathways in cancers necessitates a deeper 

look into the genetic background of the tumor and its microenvironment. Indeed, several 

oncogenic signaling pathways have been implicated in orchestrating metabolic rewiring to fuel 

the tumorigenic properties that they propagate(Cairns et al., 2011; Iurlaro et al., 2014). In a 

recent study it was also shown that several cancer associated metabolic genes, due to their 

proximity to oncogenic genes get co-altered (Sharma, Eils, & König, 2016). Therefore, large 

scale metabolic changes in cancers may be driven by the virtue of proximity of metabolic genes 

to other mutated genes or as a result of regulation by oncogenic proteins. Prominent among 

them, is c-Myc which is frequently deregulated in cancers. In breast cancer, it is overexpressed 

in 30-50% high grade tumors and which are mostly basal (Blancato, Singh, Liu, Liao, & Dickson, 

2004; Deming et al., 2000). c-Myc has been linked to several of the metabolic changes that 

cancer cells undergo (Anso et al., 2013; Chi V Dang, n.d.; Chi V Dang et al., 2009; Hsieh, Walton, 

Altman, Stine, & Dang, 2015; Shen et al., 2015). While its role in glycolysis has been well 

established(Le et al., 2012; Shim et al., 1997), recent studies have focused on the role of c-Myc 

in glutamine metabolism. c-Myc is considered to be the master regulator of glutamine 

metabolism in cancer cells(C. V. Dang, 2013; Chi V Dang, n.d.; R. Deberardinis & Cheng, 2009; Le 

et al., 2012; McCarthy, 2015). By upregulating glutamine transporters, c-Myc triggers glutamine 
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addiction in tumors(David R Wise et al., 2008). Subsequently, efficient utilization of glutamine is 

ensured by c-Myc which also regulates the expression of glutaminolytic genes(Gao et al., 2009). 

In a study in breast cancer cell lines, glutamine dependence and expression of glutaminolytic 

genes increased in a c-Myc dependent manner (Korangath et al., 2015). c-Myc either directly 

targets metabolic genes, or indirectly for example via microRNAs(Gao et al., 2009).  

In this study, c-Myc knockdown resulted in significant knockdown of GPT2 levels (Figure 35 a, 

c). In addition to the positive correlation between the MYC and GPT2 at the mRNA level (Figure 

36a), there was a positive correlation observed even at the protein levels in patients (Figure 

36b). The correlation was positive for each individual subtype of breast cancer. In fact the 

correlation was higher at the protein level compared to the mRNA level emphasizing the need 

for proteomic and functional analyses to complement genetic studies.  

c-Myc, however, does not account for the all the metabolic changes that occur in cancer cells. 

In this study it was observed that knockdown of c-Myc did not completely obliterate GPT2 

levels. This finding led me to explore other transcription factors that might be relevant for 

regulating GPT2 expression. ATF4 has a well-recognized role in amino acid management: under 

conditions of ER stress, redox imbalance, hypoxia and nutrient deprivation, it regulates the 

amino acid synthesis genes to ensure cell survival (Harding et al., 2003; Quirós et al., 2017; Ye 

et al., 2010; E. Zhao et al., 2016). ATF4 is found to be upregulated in solid tumors where it 

controls amino acid metabolism and consequently cell proliferation (Ye et al., 2010) as well as 

contributes to drug resistance (Tanabe et al., 2003). In esophageal squamous cell carcinoma 

ATF4 is upregulated which in turn controls the expression of serine synthesis genes (E. Zhao et 

al., 2016).  In fibrosarcoma and colorectal adenocarcinoma cells, induction of ER stress and 

NEAA deprivation results in ATF4 upregulation, and addition of NEAA rescues cells deficient in 

ATF4 (Ye et al., 2010). ATF4 is also reported to be overexpressed in cancer associated stromal 

cells leading to the induction of asparagine synthesis which, in turn, is used as a nitrogen source 

by the surrounding cancer cells to combat glutamine deprivation (Linares et al., 2017). ATF4 is a 

known transcription factor of GPT2. Under conditions of stress, liver cells have been reported to 

upregulate GPT2 via stress response factor ATF4 (Salgado, Metón, Anemaet, & Baanante, 
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2014b). In colorectal cancer, PIK3CA mutations have been shown to make cells glutamine 

dependent by upregulating GPT2 via PDK1-RSK2-ATF4 signaling (Hao et al., 2016). 

In this study, ATF4 knockdown significantly reduced GPT2 expression (Figure 37a). Conversely, 

ER stress induced ATF4 upregulation via tunicamycin treatment and increased GPT2 expression 

(Figure 37c), confirming previous reports(Salgado et al., 2014b). To test this association at 

clinical level the METABRIC dataset was analyzed which revealed a strong positive correlation 

exists between ATF4 and GPT2 in breast cancer patients (Figure 38). ATF4 has been previously 

linked to glutamine metabolism in breast cancer patients (van Geldermalsen et al., 2015a). In 

the cohort of 96 triple negative breast cancer cases ATF4 gene expression significantly 

correlated with glutamine transporter ASCT2 and glutamine metabolism related genes GLS and 

GLUL. Therefore, similar to c-Myc, ATF4 might play an important role in regulation of glutamine 

metabolism in cancer. 

While c-Myc and ATF4 play important roles in cancer cell metabolism rewiring, in case of GPT2 

and other genes as well, knockdown of the transcription factors does not induce complete 

elimination of gene expression. In the same way as cancer cells can compensate for blockage of 

one metabolic pathway by using another pathway, signaling pathways can also be switched 

according to the need of the cells(McCormick, 1999). Furthermore, gene expression can be 

controlled by multiple regulatory factors. Even though the afore-mentioned two transcription 

factors play a role in GPT2 expression, there could be other factors as well. The factors may also 

vary according to the subtype and genetic background of the cancer. It is interesting to note 

that MDA MB 468 cells, which have the highest expression of GPT2, are deficient of the tumor 

suppressor RB1 (Retinoblastoma transcriptional corepressor 1), which is commonly mutated in 

cancers(Johnson et al., 2016). Loss of RB1 in mouse embryonic fibroblasts, has been shown to 

increase glutamine consumption via upregulation of ASCT2 and consequent increase in 

glutamine breakdown via GLS1 activity (M. R. Reynolds et al., 2014). Therefore, it is reasonable 

to assume that lack of RB1 in MDA MB 468 may have a function in regulating metabolism and it 

would be worth investigating if it plays a role in GPT2 expression as well. The expression of 

GPT2 could, however, be dependent on a many more factors, including, the genetic landscape 
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like mutations, amplifications, epigenetic regulation as well as the tumor microenvironment 

and all these factors have to be taken into consideration while investigating the regulation of 

GPT2. 
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6. Conclusions and Outlook 
In conclusion, GPT2 plays a crucial role in connecting the glycolytic and glutaminolytic pathways 

as the GPT2 catalyzed reaction requires both to be functional. Warburg effect and 

glutaminolysis, the two pillars of cancer metabolism are, therefore, not independent of each 

other, rather they work in a concerted manner, via aminotransferases, to meet the energetic 

and biosynthetic demands of the cells. Finally, alanine secretion and alanine aminotransferase 

activity have the potential to be biomarkers as well as therapeutic targets. 

While it is clear from this study that GPT2 is important for breast cancer cell growth and is also 

deregulated in patients, there is a need to prove that the effect it has on cell growth translates 

to tumorigenesis in vivo. In this regard, future experiments have been planned to study this 

aspect. While the RNAi approach and chemical inhibition are suitable for cell lines studies, in 

vivo experiments necessitate a different approach. Therefore, in the planned experiments, 

GPT2 in MDA MB 468 cells will be knocked out using the CRISPR/Cas9 system and used to 

monitor tumor growth in xenograft mouse models. These experiments are currently on-going. 

There is evidence that in the case of metabolism, the boundaries between the well-established 

molecular subtypes of breast cancer become indistinguishable. This gives rise to the need for 

different markers, possibly metabolic to identify the metabolic propensity of cell lines (and 

subsequently of patients). In this regard this study should be extended to more cell lines in 

order to represent a larger genetic and metabolic spectrum seen in patients. Furthermore, 

there is a need for larger cohorts of patient tissues and blood to be analyzed for both GPT2 

expression and alanine levels. As an extension to this project, future studies have been planned 

to correlate GPT2 and alanine levels in breast cancer patient cohorts. Associations seen in these 

analyses could help develop alanine as a biomarker. 

While combinatorial effects of targeting GPT2 together with other factors involved in energy 

metabolism were observed, none of these effects substantial. This indicates that cells have yet 

other pathways that can compensate for these blockages and there is a need to discover what 

these are. It is clear that the cells reorganize their glucose carbon expenditure under GPT2 
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inhibition, therefore, dual targeting of GPT2 and glycolysis might lead to substantial decrease in 

cell growth. Furthermore, effects of GPT2 on other biosynthetic pathways that are fed by 

transaminase pathways need to be investigated to get a broader understanding of the role of 

GPT2 in cell growth. 

This study, therefore, emphasizes the heterogeneity in the metabolic landscape of breast 

cancer, and the importance of glutamine driven anaplerosis in the cells. Effects of GPT2 on cell 

growth indicate that this is an important factor for cancer cells, however, combinatorial 

treatment with other compensatory pathways will hopefully ensure maximum success in 

combating tumor progression. 
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Appendix 

Supplementary Table 1                                                                                                

MDA MB 468, MDA MB 231, MCF7 were grown under normal growth conditions in 10cm dishes 

in triplicates. Following day, media was changed and after 4h polar metabolites were extracted 

and quantified via GC-MS. 

Please refer to the supplementary CD due to the length of the table. 

Supplementary Table 2 

MDA MB 468, MDA MB 231, MCF7 were grown under normal growth conditions in 6 well 

dishes in triplicates. After 48h RNA was harvested and mRNA expression was measured via 

microarray. Data was then normalized and differential gene analysis was performed by Khalid 

Abnaof. 

Please refer to the supplementary CD due to the length of the table. 

Supplementary Table 3 

MDA MB 468, MDA MB 231, MCF7 were grown under normal growth conditions in 6 well plates 

in triplicates. Cell pellets were collected and lysates were harvested for mass spectrometry 

analysis after 48h. Harvesting of lysates, mass spectrometry, raw data extraction and initial 

analysis was done by Nadine Royla. Differential expression analysis and heatmaps were 

prepared by Khalid Abnaof. 

Please refer to the supplementary CD due to the length of the table. 

Supplementary Table 4 

MDA MB 468, MDA MB 231, MCF7 were grown under normal growth conditions in 10cm dishes  

in triplicates. Spent media was collected after 48h and cell numbers were counted with CASY 

and used for normalization. Amino acids were derivatized, measured and initial analysis was 

done by Gernot Poschet. 

Please refer to the supplementary CD due to the length of the table. 
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Abbreviations 
α-KG  α-ketoglutarate 

AKT  Serine/Threonine Kinase 1 

AMPK  Adenosine monophosphate-activated kinase 

ARG2  Arginase 2 

ASCT2  Solute-linked carrier family A1 member 5 (SLC1A5) 

ASS1  Argininosuccinate Synthase 1 

ATF4  Activating transcription factor 4 

ATP  Adenosine triphosphate  

BAX  BCL2 Associated X, Apoptosis Regulator  

BCA  Bicinchoninic acid protein assay 

BCLA  β-chloro-L-alanine 

BL  Basal-like 

BRCA  Breast Cancer 

CDK  Cycling dependent kinase 

CEST   Chemical exchange saturation transfer 

CO2  Carbon dioxide 

CRISPR  Clustered Regularly Interspaced Short Palindromic Repeat   

cDNA  Complementary deoxyribonucleic acid 

DNA  Deoxyribonucleic acid 

DMSO  Dimethyl sulfoxide 

ECM  Extracellular matrix 

EDTA  Ethylenediaminetetraacetic acid 

EGFR  Epidermal growth factor receptor  

ER  Endoplasmic reticulum 

ER+  Estrogen positive 

ER-  Estrogen negative 

ERBB2  Erb-B2 Receptor Tyrosine Kinase 2 
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ESR1  Estrogen Receptor 1 

ETC  Electron transport chain 

FBS  Fetal Bovine Serum 

FCCP  Carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone 

FDG  Fluorodeoxyglucose 

FISH  Fluorescence in situ hybridisation 

FGFR  Fibroblast growth factor receptor 

FH  Fumarate hydratase 

FOX  Forkhead Box 

FSPG  (S)-4-(3-[18F]Fluoropropyl)-L-glutamic acid  

GC-MS  Gas chromatography-mass spectrometry 

GLS  Glutaminase  

GLUL  Glutamate-ammonia ligase 

GLUD  Glutamate dehydrogenase 

GLUT  Glucose transporter 

GOT  Glutamic-oxaloacetic transaminase 

GPT   Glutamate pyruvate transaminase  

GSH  Glutathione 

HER2  Human Epidermal Growth Factor Receptor 2 

HIF1α  Hypoxia inducible factor 1α 

HK2  Hexokinase 2 

HPLC  High pressure liquid chromatography 

IDH  Isocitrate dehydrogenase 

IM  Immunomodulatory 

LAR  Luminal androgen receptor 

LAT1  Solute Carrier Family 7 Member 5 (SL7A5) 

LDH  Lactate dehydrogenase 

LKB1  Serine/Threonine Kinase 11 

KRAS  Kirsten Rat Sarcoma Viral Oncogene Homolog  
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M  Mesenchymal 

MAPK  Mitogen-Activated Protein Kinase 

MCT  Monocarboxylate transporters 

MPER  Mammalian Protein Extraction Reagent 

mRNA  Messenger ribonucleic acid 

MRSI  Magnetic resonance spectroscopic imaging 

MSL  Mesenchymal-like 

mTOR  Mechanistic Target Of Rapamycin Kinase  

NAD  Nicotinamide adenine dinucleotide 

NADH  Nicotinamide adenine dinucleotide + hydrogen 

NaF  Sodium Fluoride 

NEAA   Non-essential amino acids 

NTC  Non targeting control 

OAA  Oxaloacetic acid 

OCR  Oxygen consumption rate 

OXPHOS Oxidative phosphorylation 

TP53  Tumor protein 53 

PARP  Poly(ADP-Ribose) Polymerase 

PBS  Phosphate buffered saline 

PC   Pyruvate carboxylase 

PD-1  Programmed cell death protein 

PD-L  Programmed cell death protein ligand 

PDH  Pyruvate dehydrogenase 

PDK1  Pyruvate dehydrogenase kinase 1 

PET  Positron emission tomography 

PHGDH  Phosphoglycerate dehydrogenase 

PI3K  Phosphatidylinositol-4,5-Bisphosphate 3-Kinase 

PI3KCA  Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha  

PKM  Pyruvate Kinase, muscle 
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pRb  Retinoblastoma-associated protein 

pRPS6  Phospho ribosomal protein S6 

PTEN  Phosphatase and Tensin Homolog 

PVDF  Polyvinylidene fluoride 

PUM1  Pumilio RNA Binding Family Member 1 

qRT-PCR  Quantitative reverse transcriptase polymerase chain reaction 

RB1  Retinoblastoma Transcriptional Corepressor 1 

RNA  Ribonucleic acid 

RNAi  Ribonucleic acid interference 

ROS  Reactive oxygen species 

RPPA  Reverse phase protein array 

RT  Room temperature 

RTCA  Real time cell analyzer 

SD  Standard deviation 

SDHA  Succinate dehydrogenase A 

SDS PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

siRNA   Small interfering ribonucleic acid  

TBST  Tris buffered saline with Tween 20 

TCA cycle  Tricarboxylic acid (citric acid) cycle 

TCGA  The cancer genome atlas 

TEMED  Tetramethylethylenediamine 

TNBC  Triple negative breast cancer 

WST-1  Water-soluble tetrazolium salt 1 

XBP1  X-Box Binding Protein 1 

2-HG  2-hydroxyglutarate 
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