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Abstract 

 

As for many proteins, subunits of the COPI and COPII vesicular coats have diverged during evolution. 

To date, multiple isoforms of almost all proteins involved in the formation of these vesicles can be 

found in higher organisms. While work of others and our own lab has established an important role 

of the four Sec24 isoforms in the process of cargo/machinery recruitment into COPII vesicles, it 

remains largely elusive what purpose the isoforms of the coatomer subunits γ- and ζ-COP as well as 

of the small GTPase Arf (Arf1-6) serve in COPI formation. To investigate a putative role of these 

proteins in the recruitment of specific proteins into COPI vesicles, and deepen our current 

understanding of the roles of COPII coat isoforms, we established a method to purify in vitro 

reconstituted vesicles from SILAC-labeled cells in order to assess and compare their protein content. 

By doing so we were able to narrow down a concise set of proteins that represents the proteome of 

these two classes of early secretory pathway vesicular carriers. In contrast to the COPII system, we 

found that neither isoforms of γ- or ζ-COP, nor any of the four vesicle-generating isoforms of Arf 

seem to have any influence on the content composition of COPI vesicles. However, while the 

isoforms of coatomer seem to be capable of recruiting cargo proteins with virtually identical efficacy, 

Arf1 could be distinguished as the most potent COPI-forming GTPase isoform. 

We further investigated disease-related mutations identified in one particular Sec24 isoform, 

Sec24D. These mutations were recently shown to be the sole cause for the development of a 

syndromic form of osteogenesis imperfecta, which is better known as brittle bone disease. We could 

show that one single point mutation within Sec24D, the conversion of serine in position 1015 to 

phenylalanine, completely abrogates the ability of this protein to bind to the ER-Golgi Qa-SNARE 

protein Syntaxin5 in direct interaction studies. As a consequence, COPII vesicles formed by this 

Sec24D variant were largely depleted in not only Syntaxin5 but also its partner ER-Golgi SNAREs GS27 

and Bet1. 

Moreover we studied fibroblast cells derived from a patient that carries the Sec24DS1015F mutation in 

one allele and a point mutation that causes a premature stop-codon within the second allele of the 

gene. In such cells, the level of all four ER-Golgi SNAREs and also some intra-Golgi SNARE proteins 

was markedly reduced. However, the distribution of Syntaxin5 under steady state conditions 

reflected that of control cells. 
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Zusammenfassung 

 

Im Verlauf der Evolution kam es zur Diversifikation vieler Proteine, darunter auch Untereinheiten der 

COPI und COPII Vesikelhüllen-Proteine. Inzwischen ist klar, dass von fast allen Proteinen, welche bei 

der Entstehung von COPI oder COPII Vesikeln in höheren Organismen eine Rolle spielen, mehrere 

Isoformen existieren. Während eine entscheidende Rolle der vier Isoformen von Sec24 beim Prozess 

der Maschinerie-/Frachtaufnahme in COPII Vesikel durch die Arbeiten Anderer und unseres Labors 

etabliert wurde, bleibt die Frage nach der Funktion der Isoformen der Coatomer Untereinheiten γ- 

und ζ-COP beziehungsweise der kleinen GTPase Arf (Arf1-6) bei der COPI Biogenese bisher 

unbeantwortet. Um eine mögliche Rolle dieser Proteine im Zusammenhang mit spezifischer Protein 

in COPI Vesikel zu untersuchen und unser bestehendes Verständnis dieser Rolle für COPII 

Vesikelhüllen-Proteine zu vertiefen, haben wir eine neue Methode zur Aufreinigung von in vitro 

rekonstituierten Vesikeln aus SILAC-markierten Zellen etabliert um deren Inhalt untersuchen und 

vergleichen zu können. Hierdurch war es uns möglich eine präzise Aufstellung jener Proteine 

vorzunehmen, die in Vesikeln des frühen sekretorischen Wegs zu finden sind. Wir konnten 

feststellen, dass Isoformen von γ- oder ζ-COP, beziehungsweise der vier Vesikel-formenden 

Isoformen von Arf keinen wesentlichen Einfluss auf den Protein-Inhalt von COPI Vesikeln haben, 

anders als im COPII System. Wir konnten jedoch beobachten, dass Arf1 die potenteste Isoform aller 

COPI-formenden GTPasen ist, während die Fähigkeit zur Frachtaufnahmen bei den Coatomer 

Isoformen sehr ähnlich zu sein scheint. 

Desweiteren haben wir krankheitsausprägende Mutationen in einer bestimmten Sec24 Isoform - 

Sec24D - untersucht. Diese kürzlich identifizierten Mutationen führen als einzige Ursache zur 

Ausprägung einer syndromischen Form von osteogenesis imperfecta, besser bekannt als 

Glasknochenkrankheit. Mithilfe direkter Interaktionsstudien konnten wir zeigen, dass eine einzige 

Punktmutation in Sec24D, Konversion von Serin in Position 1015 zu Phenylalanin, die Fähigkeit des 

Proteins an das ER-Golgi Qa-SNARE Protein Syntaxin5 zu binden, vollständig in blockiert. Als 

Konsequenz daraus, enthalten COPII Vesikel, die mit dieser Sec24D Variante hergestellt werden 

sowohl kaum Syntaxin5 als auch nur geringe Mengen der übrigen ER-Golgi SNAREs GS27 und Bet1. 

Wir untersuchten zudem Fibroblasten eines Patienten, der zum einen die bereits erwähnte 

Sec24DS1015F Mutation trägt und dessen zweites Sec24D Allel zudem eine Mutation enthält die in 

einem verfrühten Stop-Codon resultiert. Die Menge aller vier ER-Golgi und einiger intra-Golgi SNARE 

Proteine war in diesen Zellen erheblich reduziert. Demgegenüber konnten wir keine abweichende 

intrazelluläre Verteilung von Syntaxin5 im Vergleich zu Kontrollzellen beobachten.   
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1 Introduction 

 

1.1 Organelles of the Secretory Pathway and their Discovery 

 

The secretory pathway is an elaborate logistic center that is found in all eukaryotes. The major part 

of a cells’ membrane material forms this system. It can be roughly divided into three major functional 

units: The endoplasmic reticulum, the Golgi apparatus, and the endosomal system including the 

plasma membrane. In the following I briefly discuss the discovery of these organelles and try to point 

out their main functions. 

 

1.1.1  The Endoplasmic Reticulum  

 

In an early electron microscopic study from 1945, Keith Porter and his colleagues discovered 

structures which they described as “lace-like reticulum” (Porter et al., 1945). The term reticulum 

became widely accepted and was further specified by the prefix endoplasmic which simply 

underlines its location within the cytoplasm of a cell (Porter and Kallman, 1952). Over the cause of 

the following years it became clear that the endoplasmic reticulum (ER) is the largest of organelles 

which together make up the endomembrane system of a eukaryotic cell. George Palade noticed in 

the mid 1960s that the ER can be basically divided into two major functional units already based on 

its appearance under the electron microscope. He observed that some areas of the ER membrane 

appear to be smooth (smooth ER; sER), other regions seemingly were surrounded by a rough (rough 

ER; rER), dense outer surface (Palade, 1955, 1956; Palade and Siekevitz, 1956). 

Shortly thereafter, first indications pointed towards a role of the rER in protein secretion. It became 

clear that the dense surface of the rER was formed by “ribosomes”, a term coined by Richard B. 

Roberts that supposedly serve the synthesis of proteins destined to enter the pathway of secretion 

(Siekevitz and Palade, 1960). In the following decade more and more evidence was gathered in 

electron microscopic studies and radioactive labeling experiments that supported this idea (Blobel 

and Sabatini, 1970; Redman and Sabatini, 1966; Sabatini and Blobel, 1970; Sabatini et al., 1966). 

Together these findings then ultimately led to the proposal of the signal hypothesis by Günther 

Blobel and David Sabatini in 1971 which predicts the presence of specific targeting signals for protein 

entry into the secretory pathway. Only four years later, Blobel together with Bernhard Dobberstein 
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was able to prove the signal hypothesis experimentally in two classic publications (Blobel and 

Dobberstein, 1975a, b). 

It is common knowledge nowadays that the rough ER is the birthplace of secreted proteins. Most of 

them carry a so-called signal sequence/peptide, a short stretch of amino acids at the N-terminus of 

the protein (Blobel and Dobberstein, 1975b). This sequence is recognized like a barcode once it 

emerges from the exit tunnel of the translating ribosome by targeting factors, amongst other 

proteins (Krieg et al., 1986; Kurzchalia et al., 1986). The most prominent and first discovered 

ER-targeting factor was the signal recognition particle (SRP) (Walter and Blobel, 1980). When 

engaged with a ribosome, the SRP-ribosome complex is targeted to the ER membrane (Walter and 

Blobel, 1981a, b). The nascent chain subsequently elongates while being transcribed through a pore 

that is formed by the so-called Sec61 translocon in order to reach the lumen or the ER (Crowley et al., 

1994; Crowley et al., 1993; Görlich et al., 1992).  

In contrast to the rough ER which on EM images often appears as ribosome-studded flat cisternae, 

the smooth ER is more dilated and vesicular in structure. The difference in shape is linked to its 

function. The sER is not specified in producing transmembrane and secreted protein, but plays a 

pivotal role in lipid biosynthesis, synthesis of steroids, detoxification and the regulation of calcium 

homeostasis (reviewed in Baumann and Walz, 2001; Fagone and Jackowski, 2009; Schwarz and 

Blower, 2016; Shibata et al., 2006). Moreover, the smooth ER is often viewed as part of a larger 

fraction of the ER, called the transitional ER (tER) (Palade, 1975). The term transition in this context 

does not point out the transition from ribosome-associated to ribosome-free regions but rather at its 

function: It is the region of the ER from where vesicular transport/transition is initiated. The tER is 

located close to the cis-side of the Golgi (Schweizer et al., 1988). Because of its appearance it is also 

called vesicular tubular clusters (VTCs) (Bannykh et al., 1996), a name that can be used synonymous 

with tER. More commonly used nowadays is the term ER-Golgi intermediate compartment (ERGIC) 

(Klumperman et al., 1998; Schweizer et al., 1990) which points out the chimeric character of this sub-

compartment. The export of proteins from the ER is discussed in detail in the following. 

 

1.1.2 The Golgi Apparatus 

 

In contrast to the ER, the Golgi apparatus was discovered long before the invention of electron 

microscopy. At the end of the 19th century, Italian physician and histologist Camillo Golgi invented a 

silver-staining method for his studies of neuronal cells. Eventually he recognized reappearing 

intracellular structures that now carry his name (Golgi, 1989a, b; translations of the original articles 
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from 1898). Reportedly, the existence of the Golgi apparatus was hotly debated because it could not 

be observed in living cells but was only visible with the silver-staining technique introduced by Golgi. 

It took until the advent of electron microscopy when the existence of a membranous organelle that 

occupied the same regions stained by the Golgi-staining could be ultimately confirmed (Dalton and 

Felix, 1954; Sjostrand and Hanzon, 1954). Dalton and Felix described the morphology of the Golgi 

complex as it is generally found in higher organisms. They observed vacuole-like structures, flat 

profiles, lamellae, and vesicles (Dalton and Felix, 1954, 1956). 

Scientist started to understand the function of this organelle during the 1960s. Again, Palade, this 

time together with co-workers Lucien Caro and James Jamieson, found first evidence for a role of the 

Golgi apparatus in protein secretion by using a combined approach of autoradiography, electron 

microscopy, and cellular fractionation (Caro and Palade, 1964; Jamieson and Palade, 1967; Palade, 

1975). Simultaneously, employing similar methods, the lab of Charles Lebond could show that the 

Golgi apparatus is incorporating labeled sugar molecules (Neutra and Leblond, 1966; Whur et al., 

1969). This work was further substantiated by parallel studies from other labs which could show that 

the activity of glycosyltransferases is greatly increased in Golgi-enriched membrane fractions, 

pointing towards a role of the Golgi in glycosylation (Fleischer et al., 1969; Morre et al., 1969). After 

having found two major tasks of the Golgi it became clear that the Golgi complex cannot be viewed 

as one compartment where each region carries out the same functions (Novikoff et al., 1971). 

Instead, distinct regions of the Golgi are fulfilling very specific tasks (Kornfeld and Kornfeld, 1985). 

Nowadays, the cisternae of a Golgi stack are generally divided into a cis-, medial-, and trans-Golgi 

entity. Each sub-compartment contains a specific set of enzymes that successively drive the 

maturation of glycosylation that begins in the ER (reviewed in Dunphy and Rothman, 1985; Kornfeld 

and Kornfeld, 1985). Moreover, looser network-like structures were found both at the cis- and the 

trans-side of the Golgi. The ERGIC, mentioned in the previous section, is also known as cis-Golgi 

network (CGN). Here, secretory COPII vesicles from the ER arrive and also retrograde COPI vesicles do 

form (Appenzeller-Herzog and Hauri, 2006). Furthermore, it has also been shown to play a pivotal in 

sorting of lysosomal proteins, the initial tagging of which takes place as early as at the CGN-level 

(Coutinho et al., 2012; Schweizer et al., 1991). 

The trans-Golgi network (TGN) on the opposite side of the complex is a very specialized sorting hub. 

There is no other sub-compartment of the secretory pathway from where more different trafficking 

routs are taken (Griffiths and Simons, 1986; Gu et al., 2001). The TGN is furthermore the stage at 

which vesicular transport is no longer driven by the COPI/COPII system. Here other classes of 

vesicles, of which many are associated with the scaffold clathrin, take over vesicular transport 

(Robinson, 2004). 
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1.1.3 Late Secretory Organelles: The Endosomal System 

 

For some secreted proteins, the last packing into a carrier occurs at the TGN from where they are 

then directly transported towards the plasma membrane (PM). In yeast this is facilitated by packing 

of such proteins into carriers that are formed by the exomer complex (Wang et al., 2006). In 

mammals, the same trafficking route seems to exist, although it remains unclear how exactly these 

carriers form (Bard and Malhotra, 2006; Klemm et al., 2009; Wakana et al., 2012). The TGN-PM 

trafficking is in general poorly understood when compared to for example the back-and-forth 

exchange of material between the ER and the Golgi. One possible reason for this might be the 

presence of another elaborate section of the secretory pathway acting after the Golgi: The 

endosomal system. Its discovery is preceded by the discovery of the lysosomes by de Duve and his 

co-workers (Appelmans et al., 1955; De Duve and Wattiaux, 1966; Essner and Novikoff, 1961). First 

evidence for the existence of a compartment he called “phagosome” came from Werner Straus 

(Straus, 1964). He observed that internalized horseradish peroxidase was first in a membranous 

compartment separate from the lysosome with which it would eventually merge over time. Twenty 

years later, Ira Mellman and co-workers separated those organelles which they named “endosomes” 

from denser lysosomes (Galloway et al., 1983). 

After first discovering the organelle it became rapidly clear that - similar to Golgi complex - the 

endosome cannot be viewed as a uniform compartment. Endocytic vesicles fuse in order to form an 

early endosome which are also referred to as sorting endosomes (Gruenberg et al., 1989). Here, 

molecules to be ultimately degraded via the lysosomal pathway are separated from e.g. receptors 

which are recycled for another round of recognition and internalization (Maxfield and McGraw, 2004; 

Mayor et al., 1993). Moreover, trafficking between early endosomes and the TGN has been observed 

(Bonifacino and Rojas, 2006). The early endosomes will at some point mature to become a late 

endosome, a process that is regulated in part by Rab GTPases (Huotari and Helenius, 2011). Late 

endosomes then fuse with one another and with lysosomes in order to form a terminal organelle for 

the degradation of proteins (Luzio et al., 2010; Luzio et al., 2007). 
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Figure 1.1 Organelles of the Secretory Pathway 

Drawn are the organelles of the secretory pathway. Red arrows mark the transport of material. The classes of vesicular 

coat, which acts at the respective organelles, are indicated above the drawing. For additional information refer to 

(Bonifacino and Glick, 2004; Robinson, 2004) 

 

1.2 COPII Vesicles: ER to Golgi Transport 

 

The endoplasmic reticulum as the largest of secretory organelles harbors its own vesicular transport 

system. The current knowledge about the general mechanism of COPII vesicle biogenesis, 

non-essential accessory protein which support this process, as well as cargo-uptake, is discussed in 

the following. 
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1.2.1 COPII Vesicles: Biogenesis 

 

The endoplasmic reticulum (ER) is the first organelle which proteins have to access in order to enter 

the secretory pathway. From here proteins are transported within an organelle-specific type of 

vesicles to the Golgi apparatus. The proteins that form the coat of the so-called COPII vesicles were 

first identified in genetic screen carried out in the lab of Randy Schekman (Novick et al., 1981; Novick 

et al., 1980). COPII vesicles bud at specialized domains of the ER termed ER-exit sites (ERES) (Orci et 

al., 1991; Rossanese et al., 1999). These are stable, long-lived structures which can be formed de 

novo (Bevis et al., 2002; Stephens, 2003).  

COPII vesicle formation at these sites starts by the activation of secretion-associated Ras-related 

GTPase 1 (Sar1). This is facilitated by its membrane-bound guanidine nucleotide exchange factor 

(GEF) Sec12, which exchanges GDP for GTP rendering the protein from a soluble to a membrane 

associated-state (Barlowe et al., 1993; Barlowe and Schekman, 1995; d'Enfert et al., 1991; Nakano et 

al., 1988). The activation of Sar1 in mammals seems to occur mainly at ERES as both, Sec12 and Sar1, 

are enriched in this region of the ER (Kuge et al., 1994; Weissman et al., 2001).  

Once bound to GTP, the conformation of Sar1 changes dramatically. It exposes an amphipathic 

α-helix located at its N-terminus which unlike that of other small GTPases involved in trafficking is 

not post-translationally modified by a myristoyl group or prenyl moiety (Bi et al., 2002; Huang et al., 

2001). The helix is not only pivotal for the membrane binding ability but is furthermore key to the 

membrane surface activity of Sar1 (Bielli et al., 2005). Membrane-anchored Sar1 binds to single 

dimers of Sec23/Sec24 with the interaction surface being formed be Sar1 and Sec23 (Bi et al., 2002). 

The trimeric complex is further believed to interact with acidic lipids of the ER-membrane via a 

conserved positively charged surface in order to achieve a more stable association (Bi et al., 2002; 

Matsuoka et al., 1998). 

Between the two subunits of the inner coat complex, Sec23/Sec24, there is a strict division of labor. 

While Sec23 functions as the build-in GTPase activating proteins (GAP) for Sar1 (Yoshihisa et al., 

1993), Sec24 is binding to short cytoplasmic tails of membrane proteins, a process that is important 

for the formation of so-called “pre-budding complexes” (Aridor et al., 1998; Kuehn et al., 1998; 

Kuehn et al., 1996). These pre-budding complexes alone are not capable of deforming the ER 

membrane into a bud or vesicle (Lee et al., 2005). This is only achieved by the addition of a second, 

outer layer of coat which is composed of heterotetramers containing two subunits of each, Sec13 

and Sec31. The fact that Sec13/31 functions as the scaffold for COPII formation can already be 

deduced from its feature of forming empty cages by itself (Stagg et al., 2006). In vivo, the outer coat 
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is recruited via an interaction of the Sec31 subunit with an interface that is formed by Sec23 and Sar1 

(Bi et al., 2007). This interaction does not only lead to the formation of a COPII bud but also triggers 

GTP hydrolysis in Sar1 (Antonny et al., 2001). Another factor that seems to play an important role in 

modulating Sar1 activity and organization of ERES is Sec16 (Sprangers and Rabouille, 2015). 

Scission of the vesicles relies on the ability of Sar1 so deform membranes into tubules or even small 

vesicles at very high concentrations (Hariri et al., 2014; Lee et al., 2005). While the scission of COPII 

vesicles is not dependent on the ability of Sar1 to hydrolyze GTP (Adolf et al., 2013; Barlowe et al., 

1994) uncoating cannot happen when GTP hydrolysis is blocked (Aridor et al., 1995; Barlowe et al., 

1994; Oka and Nakano, 1994). In addition to the core machinery of COPII vesicle biogenesis, several 

other factors are crucial to ensure an optimal efficacy in cargo of formation, cargo packing and 

targeting in vivo which are thoroughly discussed elsewhere (Venditti et al., 2014; Zanetti et al., 2011).  

 

Figure 1.2 COPII Vesicle Biogenesis 

At the ER membrane, Sar1 is brought into an active, membrane-bound state by nucleotide exchange to GTP facilitated by 

Sec12. It in turn recruits the inner COPII coat, various heterodimeric Sec23/Sec24 complexes which together with 

transmembrane proteins form a pre-budding complex. The outer scaffolds, heterotetrameric Sec13/Sec31 complexes, join 

the pre-budding complex and polymerize to form a bud that will eventually undergo scission. Hydrolysis of GTP bound to 

Sar1 is stimulated by its built-in GAP, Sec23, will release the coat and allow fusion of the vesicle with its target membrane. 

For details and literature please refer to the main text. Images were taken and modified from Adolf et al. (2016) and Popoff 

et al. (2011a). 
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1.2.2 COPII vesicles: Cargo sorting 

 

After the finding that COPII vesicles are responsible for the ER-exit of secreted proteins, it was 

discovered that certain components of the COPII coat modulate the content of these carriers (Aridor 

et al., 1998; Kuehn et al., 1998; Kuehn et al., 1996). This led to the discovery of the first COPII sorting 

motif present in the C-terminal cytoplasmic tail of the vesicular stomatitis virus glycoprotein (VSV-G) 

(Nishimura and Balch, 1997) which is required to concentrate the protein at sites of COPII formation 

(Nishimura et al., 1999). The VSV-G sorting motif – DxE - is extremely short and its main feature is 

two acidic residues. Motifs following the same consensus (i.e. DxD/ExE/ExD) have been identified 

subsequently in non-viral endogenous protein Sys1p/Gap1p in yeast (Malkus et al., 2002; Votsmeier 

and Gallwitz, 2001) and Kir1.1/Kir2.1 in mammals (Ma et al., 2001). Later it was shown that the 

regions flanking diacidic motifs are important for their proper function (Ma et al., 2001; Sevier et al., 

2000). 

Using pulldown assays, reconstitutions and crystallography, the labs of Jonathan Goldberg and Randy 

Schekman were able to identify the binding site for these sequences present in the COPII 

components Sec24p in yeast (Miller et al., 2003; Mossessova et al., 2003). They found that not only 

the classical DxE of Sys1p but also an LxxLE and an LxxME motif present in Bet1p and Sed5p were 

bound by Sec24p at this interface, which was further referred to as “B-site” (Mossessova et al., 

2003). In the same study, a second Sec24p binding site - the “A-site” – was identified. Via this site, 

Sec24p interacts with the SNARE Sed5p, through a peptide sequence YNNSNPF present in Sed5p that 

becomes exposed when the ER-Golgi SNARE complex assembles (Mossessova et al., 2003).  

Most recently, it was proposed that another type of binding motif (ΦC motifs) which is characterized 

by bulky, hydrophobic residues at the very C-terminus of transmembrane proteins also binds to the 

B-site (Ma et al., 2017). Amongst the proteins that carry such a signal are ERGIC53 (Kappeler et al., 

1997), the yeast homologues Emp46p and Emp47p (Sato and Nakano, 2002), as well as 

Erv41p/Erv46p (Otte and Barlowe, 2002), and members of the yeast p24 family (Dominguez et al., 

1998). Similar to observations made for p24 in the COPI system, the oligomeric state of proteins 

carrying COPII sorting signals, can influence their efficient uptake (Springer et al., 2014). 

A third distinct binding site, the “C-site”, binds to a conformational epitope formed by the SNARE 

Sec22b when it is in the so-called closed conformation (Mancias and Goldberg, 2007). The binding 

motif can only be recognized by two of the four mammalian Sec24 isoforms (Sec24A/B) (Mancias and 

Goldberg, 2007). This observation is in line with the fact that not all Sec24 proteins have the same 

potential to bind and recruit cargo proteins in budding yeast several years earlier. The ER-Golgi 
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SNARE proteins Bet1p, Bos1p, and Sec22p are recruited into COPII vesicles by Sec24p and bind to the 

coat subunit directly while no such interactions could be observed for its homologue Lst1p (Miller et 

al., 2002). After the initial findings that the subclasses of Sec24 in yeast and mammals can influence 

the content of COPII vesicles, more and more isoform specific clients were identified. They are 

discussed in the following section. 

 

1.2.3 COPII vesicles: Coat Protein Isoforms 

 

As mentioned in the previous section, several isoforms of Sec24 with distinct functions exist in simple 

eukaryotes such as yeast. This repertoire of isoforms increases vastly when moving to higher 

organisms. In mammals, various isoforms of four of the five cytosolic proteins essential for COPII 

vesicle biogenesis have been identified. Sec24, the main cargo sorting subunit has four isoforms 

(Sec24A-D), Sar1, Sec13, and Sec31 have two isoforms (A/B), each. The Sec24 isoforms, which can be 

divided into the two subclasses Sec24A/B and Sec24C/D, came to the center of attention roughly ten 

years ago, when Mancias and Goldberg investigated the binding of ER-Golgi SNARE proteins so the 

COPII coat. They concluded that the two SNAREs Syntaxin5 (Sed5p in yeast) and GS27 (Bos1p in 

yeast) bind exclusively to Sec24C/D via an IxM peptide motif (Mancias and Goldberg, 2008). Sec22b 

and Bet1, the further SNAREs of the complex, were identified as interactors of Sec24A/B via the 

aforementioned conformational epitope in Sec22b and an YxxCE motif present in Bet1, respectively 

(Mancias and Goldberg, 2007, 2008). Most recently our lab could show that Bet1 does not bind to 

Sec24A but to Sec24C/D (Adolf et al., 2016). Moreover, we did not observe any direct binding of 

either Bet1 or GS27 to Sec24C which together with other experimental data led us to the conclusion 

that their recruitment into COPII vesicles is facilitated through binding to Syntaxin5 (Adolf et al., 

2016). 

Isoforms specific cargo sorting by Sec24 has even since become a major interest in the COPII field. 

Several proteins which are destined to reach the plasma membrane were identified as specific 

interactors of Sec24A (e.g. PCSK9, γ-Secretase), Sec24B (Vangl2), Sec24C (SERT1, AE1, Claudin-1), or 

Sec24D (GAT1, NET1, DAT) (Chen et al., 2013; Farhan et al., 2007; Kim et al., 2007; Merte et al., 2010; 

Otsu et al., 2013; Sucic et al., 2011; Yin et al., 2017). This led to the identification of novel, isoform 

specific targeting motifs such as the ΦxΦxΦ motif (Φ=bulky, hydrophobic amino acid) or a very short 

R[I/L] motif (Otsu et al., 2013; Sucic et al., 2013). As briefly pointed out before, not all proteins, e.g. 

the ER-Golgi SNAREs discriminate between individual isoforms. Most proteins rely on one of the two 

Sec24 classes in order to be correctly transported. For example, ER export of members of the p24 
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family and CD59 was shown to rely on Sec24C/D (Bonnon et al., 2010). The observation that p24 

proteins are transported by Sec24C/D was recently challenged by a crystallographic study from the 

Goldberg lab in which they found the cytoplasmic tail of p24 bound to the B-site in Sec24A (Ma et al., 

2017). Unpublished data from out lab does not support this finding as we could consistently observe 

elevated levels of p24 packing in in vitro reconstitution experiments only for Sec24C/D.  

Since Sec24 is the designated cargo-binding subunit of the COPII coat, much effort concentrated on 

investigating the role of its isoforms. However, as pointed out at the beginning of this section, also 

other COPII subunits exist as two distinct isoforms. Until today, however, little is known about their 

function. Mutations in the genes encoding either Sec23A or Sec23B have been linked to the 

development of different syndromes. While mutations in Sec23A lead to Cranio-lenticulo-sutural 

dysplasia (CLSD), Sec23B deficiency could be liked to Congenital Dyserythropoietic Anemia Type II 

(Bianchi et al., 2009; Boyadjiev et al., 2006). Despite the fact that the development of either 

syndrome is probably mainly due to the varying expression levels of the two Sec23 isoforms in 

different tissues, their discovery pointed at possibly diverging roles of the Sar1 isoforms (Fromme et 

al., 2008; Fromme et al., 2007). Sec23A with an F to L conversion in position 382 which caused CLSD 

was potent in packing ERGIC53 into COPII vesicles together with Sar1A. However, packing of the 

same cargo was completely abrogated in combination with Sar1B (Fromme et al., 2007). Although 

this observation could well be an artifact, the secretion of other large cargo molecules has been 

linked specifically to Sar1B (Fryer et al., 2014; Jones et al., 2003). In summary, isoforms of Sec23 and 

Sar1 are poorly understood and virtually no distinct functions have been assigned to the isoforms of 

Sec31. 

 

1.3 COPI: Transport System of the Golgi Apparatus 

 

Scientists in the Rothman lab in collaboration with Lelio Orci identified a new type of vesicles budding 

from the Golgi apparatus during the eighties of the last century (Malhotra et al., 1989). The new 

carriers were named COat Protein complex I (COPI) vesicles. It has early been shown that these 

carriers play a pivotal role in retrieving escaped ER-residents (Cosson and Letourneur, 1994; 

Letourneur et al., 1994). A role of COPI vesicles in intra-Golgi transport has ever since their discovery 

been heavy debated (reviewed by Glick and Luini, 2011; Glick and Nakano, 2009). 

In the following section I briefly review the work that has been done to elucidate the fundamental 

mechanisms that underlie the formation of these carriers.  
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1.3.1 COPI Vesicles: Biogenesis 

 

It is a common motif of vesicles biogenesis that it starts with the activation of a small GTPase. In case 

of COPI these GTPases belong to the ADP-ribosylation factor (Arf) family. Nucleotide exchange in Arf 

can be performed by multiple GEFs (reviewed in Casanova, 2007; Gillingham and Munro, 2007). 

Associated with COPI trafficking is the Golgi-associated brefeldin A-resistant GEF 1 (GBF1) (Claude et 

al., 1999; Kawamoto et al., 2002; Zhao et al., 2002). 

Despite the fact that several Arf family members have the ability to form COPI vesicles (Liang and 

Kornfeld, 1997; Popoff et al., 2011b; Volpicelli-Daley et al., 2005), Arf1 was the first COPI-forming 

GTPase to be identified and is believed to be the most involved Arf isoform (Serafini et al., 1991). 

Recruitment of Arf1 to the Golgi membrane is supported by transmembrane proteins of the early 

secretory pathway. The first protein implicated in this context was p23, which was shown to interact 

directly with Arf1 (Gommel et al., 2001; Majoul et al., 2001). In vitro binding experiments showed 

that this interaction is dependent on the oligomeric state of p23, and the nucleotide-state of Arf1. In 

order to be recruited, Arf1 needs to be in a GDP-bound state and p23 has to form oligomers 

(Gommel et al., 2001). The second protein implicated in Arf1 recruitment by means of binding and 

co-localization experiments was the ER-Golgi SNARE protein GS27 (Honda et al., 2005).  

Once recruited to the Golgi membrane and after GBF1 has stimulated nucleotide exchange, Arf1 

undergoes a significant structural rearrangement. The N-terminal amphipathic α-helix modified with 

a myristoyl group at its very end becomes exposed and concomitantly inserts into the lipid bilayer 

(Antonny et al., 1997; Franco et al., 1995, 1996). Thus anchored Arf1 recruits the outer COPI coat 

coatomer en bloc (Donaldson et al., 1992; Hara-Kuge et al., 1994). Coatomer (CM) is a 550 kDa 

heptameric complex that consists of the seven subunits α-, β’-, β-, γ-, δ-, ε-, and ζ-COP (Waters et al., 

1991). Four of the seven subunits have been implicated in binding directly to Arf: β-, γ-, δ-, β’-COP 

(Sun et al., 2007; Zhao et al., 1997; Zhao et al., 1999). Structural studies of the COPI coat assembled 

on the membrane could confirm the direct interaction of three of these subunits, while the 

interaction of Arf1 with β’-COP was not directly observed (Dodonova et al., 2017; Dodonova et al., 

2015). 

While Arf1 and coatomer constituted the minimal cytosolic machinery to form COPI vesicles 

(Bremser et al., 1999; Sohn et al., 1996; Spang et al., 1998), cytoplasmic tails exposed by 

transmembrane proteins of the Golgi have been identified as having a distinguished role in this 

process (discussed in more detail below). Especially proteins of the p24/TMED family, p23 and p24, 

which as dimers bind to the γ-COP subunit, were shown to affect the overall structure of the complex 



Introduction 

14 
 

(Langer et al., 2008; Reinhard et al., 1999). These rearrangements that can be observed in solution 

are believed to be the equivalent of coat polymerization on a membrane. 

Like for COPII vesicles, scission of COPI vesicles can occur even when GTP hydrolysis in Arf1 is blocked 

(Adolf et al., 2013; Malhotra et al., 1989). Concerning the driver of COPI vesicle scission there are 

different views. The brefeldin A ADP-ribosylated substrate (BARS) protein and the lipid phosphatic 

acid (PA) have been implicated in COPI vesicle fission (Yang et al., 2008; Yang et al., 2005). However, 

as both, BARS and PA were not determined as critical components in a minimal system (Bremser et 

al., 1999; Spang et al., 1998); their action is most likely restricted to a supportive role. Noteworthy, 

GTP-loaded Arf1, like Sar1-GTP, displays a strong membrane surface activity and can form tubules 

from synthetic liposomes by itself (Beck et al., 2008; Krauss et al., 2008). Together with the 

observation that a dimerization-deficient mutant of Arf1 fails to produce free vesicles, a pivotal role 

of the small GTPase in vesicle scission has been forwarded (Beck et al., 2011b).  

Uncoating of COPI vesicles depends on the hydrolysis of GTP in Arf that is stimulated by members of 

the ArfGAP family (Reinhard et al., 2003; Tanigawa et al., 1993). Unpublished data from our lab 

suggests that ArfGAPs in addition to promoting GTP hydrolysis furthermore drive the disassembly of 

the COPI coat (Ganeva et al., unpublished data).  

An extensive review on COPI biogenesis can be found elsewhere (Popoff et al., 2011a). 
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Figure 1.3 COPI Vesicles Biogenesis 

Arf1 is recruited to the Golgi membrane through interaction with p23/p24 and activated by its GEF GBF1. ArfGAP1 

potentially stimulates GTP hydrolysis at this stage to concentrate cargo. Coatomer is recruited by Arf1-GTP and binds to 

cytoplasmic tails of various transmembrane proteins. As the local concentration of coat protein rises, they will start to 

polymerize and form a bud. Vesicle scission is promoted by the small GTPase Arf in its dimeric form. Uncoating of COPI 

vesicles requires the hydrolysis of GTP stimulated by ArfGAPs. The model was taken from Popoff et al. (2011a). For more 

detailed information on COPI biogenesis and the accompanying literature please refer to the main text. 

 

1.3.2 COPI Vesicles: Cargo Sorting 

 

In order to make vesicle formation a productive process, it is not only required to correctly assemble 

the coat but to furthermore concentrate the right proteins at the site of vesicle budding. In the COPI 

system, selection of the right cargo molecules is driven by direct interactions of five of the seven 

subunits with short peptide motifs. The initially identified COPI binding motifs are characterized by 

the presence of two lysine residues at the very C-terminus of the short cytoplasmic tails of 

transmembrane proteins (Nilsson et al., 1989; Pääbo et al., 1987). These lysine residues can be either 

directly following one another (KKxx motif) or be separated by one amino acid (KxKxx motif) (Cosson 

and Letourneur, 1994; Jackson et al., 1990; Schröder-Köhne et al., 1998). Dilysine motifs are 

recognized be the two large coatomer subunits α-COP and β`-subunit. Both subunits show a 
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preference for either the KKxx motif (α-COP) or the KxKxx motif (β`-COP) (Eugster et al., 2004; 

Schröder-Köhne et al., 1998; Schröder et al., 1995) which they recognized with a high specificity via 

their most N-terminal WD-repeat domains (Jackson et al., 2012). The two best characterized proteins 

with dilysine motifs are Wbp1 in yeast and ERGIC53 in mammals (Gaynor et al., 1994; Schindler et al., 

1993). 

Another retrieval motif is characterized by the presence of basic arginine residues (Schutze et al., 

1994). The positioning of the residues within the protein is not as strict as for the lysine-based motifs 

(Michelsen et al., 2005). In contrast to KK-based motifs, binding of arginine-based motifs is mediated 

by the coatomer subuits β-COP and δ-COP via a binding site that is believed to be homologues to the 

region in AP complexes that recognize YxxΦ motifs (Michelsen et al., 2007). Functionally, RR motifs 

serve the same purpose as lysine-based motifs, namely the retrieval of proteins back to the ER. This 

however often serves the greater purpose to allow for the correct assembly of multimeric complexes 

at the level of the ER before they are ultimately exported as one functional unit (Brock et al., 2005; 

O'Kelly et al., 2002; Zerangue et al., 1999). 

As mentioned in the beginning, five subunits of coatomer are directly involved in binding to 

transmembrane proteins. The fifth, so far not mentioned subunit is γ-COP. It has been shown to bind 

to members of the p24 family (Fiedler et al., 1996; Sohn et al., 1996). The motifs found in these 

proteins are bipartite. They contain in addition to a basic signature, two pivotal phenylalanine 

residues (Harter and Wieland, 1998). Moreover, the FFxxBBxn motif (B=basic amino acid; n≥2) binds 

to γ-COP only after dimerization hinting at a possible mechanism for the circulation of p24 proteins in 

the early secretory pathway (Béthune et al., 2006; Harter and Wieland, 1998). 

Although heavily studied, the roles that p24 proteins fulfill in the context of COPI trafficking is still not 

fully understood. While a crucial role during the formation of the vesicles itself has been established 

earlier (Bremser et al., 1999; Sohn et al., 1996), more recent studies suggest that some p24 proteins 

are actively involved in the retrieval of (HDEL)/KDEL-bearing ER-residents (Pastor-Cantizano et al., 

2017a; Pastor-Cantizano et al., 2017b). 

In order to be retrieved to the ER via COPI, luminal proteins need to be concentrated at sites of 

vesicle formation despite the inability to directly interact with the COPI coat. Thus, they need to be 

recognized by receptors which can couple them to the coat proteins. The KDEL-receptor was the first 

such retrieval factor to be identified in the COPI trafficking system (Munro and Pelham, 1987). It 

posses seven transmembrane domains connected by short loops and its C-terminal tail is facing 

towards the cytosol. The recognition of the receptor by coatomer happens via a short peptide stretch 

in the cytosolic tail which contains in addition to two lysine residues a serine that can be 
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phosphorylated by PKA (Cabrera et al., 2003). This phosphorylation has been shown to be critical for 

an interaction with coatomer and ArfGAP1 (Cabrera et al., 2003). Where exactly the KDEL-receptor 

binds to the COPI coat has not been shown, yet. A recent publication suggested a role for δ-COP in 

KDEL-receptor sorting (Arakel et al., 2016). Via the luminal portion, the receptor binds to more than 

50 proteins which bear a KDEL signal at their very C-Terminus which is recognized by the receptor in 

the early Golgi cisternae (Lewis and Pelham, 1992; Lewis et al., 1990; Majoul et al., 1998). The 

retrieval of KDEL-tagged proteins, despite happening indirectly, seems to be even more efficient than 

the retrieval of KKxx-bearing transmembrane proteins (Stornaiuolo et al., 2003). Release of the cargo 

from its receptors is likely mediated by the pH-difference between the ER and the Golgi (Wilson et 

al., 1993) as the Golgi complex has a slightly more acidic pH (~6.4) when compared to the ER (~7.2) 

(Wu et al., 2000).  

Other receptors with a different mode of client recognition are for example RER1 or Vps74/GOLPH3. 

RER1 is important for retrieval of the Sar1-GEF Sec12 (Boehm et al., 1994; Nishikawa and Nakano, 

1993) which it binds via its transmembrane domain and in doing so couples it to the COPI coat via a 

cytosolic motif (Sato et al., 2001). Vps74/GOLPH3 is a more recently discovered adaptor for 

glycosyltransferases that need to be properly retained in the Golgi. Unlike KDEL-receptor or RER1, 

recognition of its clients happens via the cytosolic portion of the protein (Eckert et al., 2014; Schmitz 

et al., 2008; Tu et al., 2008). Furthermore, the soluble proteins of the ArfGAP family, especially 

ArfGAP1, have been implicated in cargo sorting (Liu et al., 2005; Rein et al., 2002; Shiba and 

Randazzo, 2014; Spang et al., 2010). The most recently identified COPI sorting motif is characterized 

by the C-terminal sequence KxD/E. It was found in members of the nonaspanin protein family and 

serves the retention of these Golgi-residents (Woo et al., 2015). 

It is of note that none of the proteins that has been identified to bear a COPI sorting signal is 

transported to a destination other than the ER or the Golgi. This implies that uptake of secreted 

cargo is rather passive as has been proposed earlier (Karrenbauer et al., 1990; Wieland et al., 1987). 

 

1.3.3 COPI vesicles: Coat Protein Isoforms 

 

Coatomer consists of seven subunits (Stenbeck et al., 1993; Waters et al., 1991). Out of these seven 

subunits, γ-COP and ζ-COP two were found in genetic screen to exist as different isoforms which 

were termed γ1/2- and ζ1/2-COP (Blagitko et al., 1999; Futatsumori et al., 2000). They were 

furthermore shown to localize to the Golgi when expressed as tagged versions (Futatsumori et al., 

2000). Our lab shortly after studied the endogenous proteins (Wegmann et al., 2004). It was revealed 



Introduction 

18 
 

that in various mouse tissues, the expression levels of γ-COP and ζ-COP isoforms was very similar. No 

sample showed a marked expression of either isoform (Wegmann et al., 2004). Furthermore, 

Wegmann et al. probed the composition of coatomer complexes and found that >95 % of 

endogenous CM has either of the three combinations γ1ζ1, γ2ζ1, and γ1ζ2. Coatomer containing γ2ζ2 

was not found in significant amounts. Subsequently, a γ1ζ1:γ2ζ1:γ1ζ2 ratio of 2:1:2 was proposed 

(Wegmann et al., 2004). This ratio was roughly confirmed by a follow-up study which came up with a 

ratio of approximately 2.5:1:1.5 (Moelleken et al., 2007). Latter study was the first to point towards a 

putative functional difference between the isoforms of coatomer since a very clear divergence of 

intracellular distribution could be observed. While CM containing γ1-COP (any therefore also ζ2-COP) 

was predominantly located at the cis-Golgi (>70%), γ2-COP was found mainly associated with the 

trans-Golgi (>60%). In vitro reconstitution experiments later showed, that all coatomer isoforms, 

even γ2ζ2, are capable of forming COPI vesicles with similar efficacy (Sahlmuller et al., 2011). Until 

today only one further study by Hamlin et al. provides functional data regarding the isoforms of CM. 

In this study it was shown that the inactive cytosolic kinase Scyl1 interacts specifically with γ2-COP 

and furthermore with class II Arfs (Hamlin et al., 2014).  

The second family of cytosolic proteins important for COPI vesicle biogenesis are members of the Arf 

family. Six different isoforms of Arf have been identified in mammals, and simply termed Arf1-6 

(Bobak et al., 1989; Kahn et al., 1991; Lee et al., 1992; Price et al., 1988; Tsuchiya et al., 1991). All Arf 

isoforms except for Arf2 can be found in humans. Based on their sequence identity they can be 

grouped into three classes. Arf1, Arf2, and Arf3 constitute class I and are ~96% identical. Arf4 and 

Arf5 form class II (Kahn et al., 2006). They are ~90% identical to one another and show still a high 

similarity to class I Arfs (~80% identity). The only Arf in class III is Arf6. It shows still a decent amino 

acid sequence similarity to all other Arfs (~64-70% identity) (Kahn et al., 2006). 

The fact that Arf6 forms a separate class is in line with its unique intracellular localization (Cavenagh 

et al., 1996; D'Souza-Schorey and Stahl, 1995). The lab of Richard Kahn demonstrated that Arf6 is 

tightly associated with the plasma membrane and that this association is not controlled by its 

nucleotide state. In contrast they could observe that all other human Arfs are cytosolic and become 

bound to the endomembrane system only upon activation with GTPγS (Cavenagh et al., 1996). Its 

unique localization is likely the reason why Arf6 is, besides Arf1, the most studied Arf family member. 

It has been implicated amongst other things in events of endocytosis, endosomal sorting, actin 

remodeling, and cholesterol homeostasis (D'Souza-Schorey and Chavrier, 2006; Donaldson, 2003; 

Schweitzer et al., 2011). The second, intensely-studied Arf isoform, Arf1, has been identified as the 

main partner of coatomer for the formation of COPI vesicles (Serafini et al., 1991). It is furthermore 

involved in the biogenesis of clathrin-coated vesicles (see section 1.4.1). However, also Arf1 has been 
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shown to function beyond membrane trafficking. Early studies have identified Arf1 (and other Arf 

family members) as a regulator of lipid metabolism by activating e.g. phospholipase D or stimulating 

PIP2 biosynthesis (Brown et al., 1993; Cockcroft et al., 1994; Godi et al., 1999). Arf3, Arf4, and Arf5 

have been subject of much less investigation. A knockdown study by the Kahn lab showed that each 

Arf isoform is dispensable. Only when knocked down pairwise were they able to observe effects on 

protein trafficking and localization as well as organelle integrity (Volpicelli-Daley et al., 2005). The 

partial redundancy is in line with the fact that Arf3-5, like Arf1, support COPI vesicle biogenesis in 

vitro (Popoff et al., 2011b). Overall our knowledge, especially concerning the functions of class II Arfs 

is very scarce. Only recently, experimental evidence is gathered which points at distinct molecular 

roles of these Arfs. Arf4, for example, has been shown to play a specific role in trafficking of 

Rhodopsin C at late stages of the secretory pathway (Deretic et al., 2005). Additionally, recent studies 

showed that Arf4/5 in the early secretory pathway behave differently from Arf1. Both Arfs stayed 

associated with the ERGIC even in their GDP state (Chun et al., 2008; Duijsings et al., 2009). Overall, 

the mounting biochemical and cell biological data suggests that the Arf family of proteins is not 

nearly understood. Very comprehensive reviews covering the topic can be found elsewhere 

(Casanova, 2007; D'Souza-Schorey and Chavrier, 2006; Kahn et al., 2005). 

 

1.4 Clathrin-coated Vesicles (CCVs): Post-Golgi traffic 

 

The first class of vesicles identified were clathrin-coated vesicles (CCVs), during the advent of EM 

(Kanaseki and Kadota, 1969; Roth and Porter, 1964). Over the course of the last forty years it became 

clear that CCVs are by far the most diverse group of vesicles, which share common principles and the 

outer scaffold clathrin. A great review on the topic can be found elsewhere (Robinson, 2015), here I 

try to briefly outline the important aspects of CCV trafficking including other post-Golgi vesicle types 

which do not necessarily use clathrin as a scaffold. 
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Figure 1.4 Post-Golgi Vesicular Transport 

Vesicular transport between post-Golgi stack compartments is largely facilitated by CCVs in concert with adaptor protein 

complexes AP-1 (TGN-endosomes), AP-2 (endocytosis), and possibly AP-3 (endosomes-lysosomes). AP-4 and AP-5 are 

clathrin-independent adaptors acting at the TGN and late endosomes/lysosomes, respectively. The AP complexes often 

work in concert with alternative adaptors such as γ-adaptin ear-containing Arf-binding proteins (GGAs) and epsins at 

various sites. The most recently discovered endocytic adaptor complex TSET is not found in animals (Hirst et al., 2014). The 

image was taken from Robinson (2015) and modified. 

 

1.4.1 CCVs: Biogenesis 

 

Shortly after CCVs had been acknowledged as recurring structures in cells of higher organisms, 

Barbara Pearse purified the key protein for their formation by accident and called it “clathrin” 

(Pearse, 1976). At the same time, Goldstein and Brown working on uptake of LDL showed that in this 

process, (clathrin)-coated pits (CCPs) play a fundamental role (Anderson et al., 1977). With this the 

first functional data for CCVs was being provided.  

Insight into the molecular structure of CCVs came from studies which showed that clathrin is not a 

single protein but a complex composed of three light and three heavy chains (Ungewickell and 

Branton, 1981) and that the formation of clathrin cages is assisted by “assembly peptides (APs)” 

(Keen et al., 1979; Zaremba and Keen, 1983). Nowadays, AP is usually translated as adaptor protein 

(complex), for they not only assemble clathrin but also bind cargo and machinery. AP-1 and AP-2 

were the first APs discovered almost simultaneously. They serve trafficking in the TGN/endosomal 
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system (AP-1) and endocytosis at the plasma membrane (AP-2) (Pearse and Robinson, 1984; Unanue 

et al., 1981). APs are tetrameric complexes that consist of two large subunits, a medium sized and a 

small subunit (Owen et al., 2004). Until to date, three additional tetrameric adaptor protein 

complexes were identified and termed AP-3, AP-4, and AP-5 (Dell'Angelica et al., 1999a; Dell'Angelica 

et al., 1997; Hirst et al., 2011). In addition there are many other proteins which function as adaptors 

for clathrin and cargo but are not part of the AP family. Monomeric adaptors belonging into this 

group are for example AP180/CALM (Morris et al., 1993; Murphy et al., 1991), γ-adaptin 

ear-containing Arf-binding proteins 1-3 (GGA1-3) (Boman et al., 2000; Dell'Angelica et al., 2000; 

Puertollano et al., 2001b) and epsin1-3 (Chen et al., 1998; Drake et al., 2000). 

The fact that AP-3/4/5 were identified relatively long after the initial discovery of AP-1 and AP-2 can 

be partially explained by the circumstance that they act completely or partially clathrin-independent. 

Adaptor protein complex 3 despite having a discrete binding site to clathrin (Dell'Angelica et al., 

1997) shows only partial co-localization with the scaffold (Kural et al., 2012; Peden et al., 2004). AP-4 

and AP-5 function as adaptors independent of clathrin (Dell'Angelica et al., 1999a; Hirst et al., 2011; 

Hirst et al., 1999) and seem to use other layers of outer scaffold like SPG11 and SPG15 in case of AP-5 

(Hirst et al., 2013). 

Membrane recruitment of most of the APs (AP-1/3/4) and all GGAs have in common that it is 

triggered by a small GTPase of the Arf family (Boehm et al., 2001; Boman et al., 2000; Ooi et al., 

1998; Puertollano et al., 2001b; Stamnes and Rothman, 1993; Traub et al., 1993). Alternatively, 

binding to the lipid Phosphatidylinositol-4,5-bisphosphate (PIP2), like in the case of AP-2, can 

substitute for priming of the vesicle formation site by a small GTPase (Gaidarov et al., 1996; Ohno et 

al., 1995). Noteworthy, Arf6 has been shown to play an indirect role in AP-2 recruitment by binding 

to the PIP2-producing kinase (Krauss et al., 2003). 

Recruitment to the respective membrane by either Arf or PIP2 leads to a structural change within 

AP-1/2 which is referred to as transition from the “locked” to the “unlocked/open” conformation. 

The open conformation reveals binding sites for both clathrin and cargo (Collins et al., 2002; 

Heldwein et al., 2004; Jackson et al., 2010; Ren et al., 2013). Clathrin then is recruited from the 

cytosol and forms a lattice on its adaptors. A recent study suggests that clathrin – at least on the 

plasma membrane – first builds a flat lattice which then, possibly with the aid of other factors, forms 

into a CCP (Avinoam et al., 2015). 

Similar to their recruitment, also the scission of endocytic CCVs seems to be distinct from that of 

other late secretory vesicles. A pivotal role in this process is played by the large GTPase dynamin 

which is the key factor for scission (reviewed by Ferguson and De Camilli, 2012). The exact 
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mechanism of vesicle scission for all other CCVs is not clear, however, dynamin seems not to be 

involved (Kural et al., 2012). Possibly, the small GTPase of the Arf family which functions in adaptor 

recruitment plays a similar role in scission as has been forwarded in the COPI system. 

The final step of vesicle biogenesis, shedding of the coat, is a chaperone-assisted process in the CCV 

system. The clathrin lattice is actively disassembled by an Hsp70/Hsp40 pair, Hsc70 and auxilin 

(Ungewickell et al., 1995). Uncoating of the inner layer involves again ArfGAPs in case of the 

Arf-dependent adaptors (reviewed in Randazzo and Hirsch, 2004) and likely other factors in the case 

of AP-2 CCVs (Semerdjieva et al., 2008) 

 

1.4.2 CCVs: Cargo Sorting 

 

Sorting of proteins by adaptors in the late secretory pathway is mainly driven by two types of signals. 

The first motif is characterized by the presence of tyrosine. A mutation that led to conversion of the 

C-terminal tyrosine in the low density lipoprotein receptor (LDLr) was spotted as the cause of familial 

hypercholesterolemia (Davis et al., 1986). In the same study it was observed that the LDLr was no 

longer concentrated at sites of CCV formation at the plasma membrane when the NPxY motif was 

changed to NPxC. The same motif was subsequently identified in ten additional proteins (Chen et al., 

1990). It was shown that this particular trafficking signal is used only to mediate internalization at the 

plasma membrane, while more common, related YxxΦ motifs (Φ=bulky, hydrophobic amino acid) are 

used in virtually all steps of the late secretory pathway (Aguilar et al., 2001; Ohno et al., 1998). The 

YxxΦ motif was first identified as the signal for internalization of the mannose-6-phosphate/insulin-

like growth factor 2 receptor (Canfield et al., 1991; Jadot et al., 1992). The role of the YxxΦ motif in 

mediating protein trafficking between other organelles of the post-Golgi compartments was 

established shortly thereafter (Hunziker et al., 1991; Matter and Mellman, 1994). The promiscuity of 

this signal is reflected by the fact that it is bound by multiple AP complexes via their µ-subunit 

(Aguilar et al., 2001; Boll et al., 2002; Ohno et al., 1998). This binding occurs via a site that is distinct 

from the binding site used by NPxY-bearing receptors in order to get internalized (Ohno et al., 1998). 

Besides the NPxY/YxxΦ motifs, a third common targeting signal that contains critical (iso-)leucine 

residues has been identified first in CD3-γ chain (Letourneur and Klausner, 1992). Because the 

(usually two) leucines, which are important for the function of the signal are positioned close to 

glutamate or aspartate residues the motif is often called “acidic dileucine motifs”. The DKQTLL 

sequence found in CD3-γ chain was the first of the D/ExxxL/[LI] family. This signature drives 

transportation of a large number of proteins between virtually all organelles of the late secretory 
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pathway (Bonifacino and Traub, 2003; Chen et al., 1997; Johnson and Kornfeld, 1992). It interacts 

simultaneously with two subunits of various AP-complexes. One of the two subunits is always the 

σ-subunit; the second subunit is one of the two large subunits of the respective AP-complexes 

(Chaudhuri et al., 2007; Doray et al., 2007; Mattera et al., 2011).  

The second sub-family of acidic dileucine motifs follows the consensus DxxLL. They are recognized by 

GGAs via their VHS domain and hence only involved in trafficking between the TGN and endosomes 

(Misra et al., 2002; Nielsen et al., 2001; Puertollano et al., 2001a; Shiba et al., 2002). Interestingly, 

while all the sorting motifs so far described in the COPI/COPII system are located within the 

cytoplasmic regions of transmembrane proteins, acidic dileucine motifs were also identified in 

soluble proteins e.g. HIV-Nef which down regulates CD4 (Greenberg et al., 1998). Furthermore, the 

attachment of the soluble ubiquitin to a transmembrane protein can function as a transport signal 

(reviewed in Piper and Luzio, 2007). 

Despite the fact that the number of proteins carrying one of the classical post-Golgi sorting motifs is 

very large when compared to the COPI/COPII system (Bonifacino and Traub, 2003), they still do not 

account for all the trafficking events. A very impressive study in this concern was carried out by the 

Robinson lab in which they screen for endocytic motifs and found that their hits would usually not 

follow any consensus sequence (Kozik et al., 2010). This points out at a possibly much larger number 

of signals which have thus far not been assigned. 

 

1.4.3 CCVs: Coat Protein Isoforms 

 

Since the number of coat proteins that do function in post-Golgi transport is greater than the number 

of coat subunits found in the COPI or COPII system it is not surprising that CCV coat proteins account 

for the largest number of isoforms in vesicular transport. Apart from the isoforms of Arf, which were 

already discussed in paragraph 1.3.3, several subunits of the AP complexes have different isoforms. 

While the four proteins which form the latest discovered clathrin-independent heptameric AP-4 and 

AP-5 complexes have no isoforms, AP-2 possess one subunit with two isoforms: AP-2α1/2. The AP-1 

complex has two subunits, AP-1µ1/2/σ1-3, which exist as isoforms, AP-3 even harbors three isotypic 

subunits, AP-3µ1/2/σ1/2/β1/2. Hence, in the AP system alone 6 proteins exist that have different 

isoforms. The number of isotypic proteins expands, however vastly, when other adaptors are taken 

into account e.g. Epsin1-3, GGA1-3 (Dell'Angelica et al., 2000).  
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Evidence for a specific function of some isoforms came from the observation that in cells lacking the 

polarized cell specific AP-1µ2 subunit, baso-lateral sorting was disturbed. It could be re-established 

once the protein was restored (Folsch et al., 1999; Ohno et al., 1999). The AP1-µ2-containing AP 

complex was further called AP-1B because it became clear that its function in polarized cells is very 

distinct from the AP-1A complex containing isoform 1 of AP1-µ (Folsch et al., 2003; Guo et al., 2013). 

For example does AP-1B but not AP1-A interact with Arf6 (Shteyn et al., 2011). 

At around the same time, different isoforms of the AP-3 complex were discovered (Dell'Angelica et 

al., 1997; Pevsner et al., 1994; Simpson et al., 1996). Like for AP-1, there is one variant which is cell 

type specific, and one that is ubiquitously expressed. The AP-3B (with AP-3µ2/β2) is exclusively 

expressed in neurons, AP-3A (with AP-3µ1/β1) in all tissues (Hirst and Robinson, 1998; Le Borgne and 

Hoflack, 1998; Robinson and Bonifacino, 2001). The neuronal specific variant has been implicated in 

the formation of synaptic vesicles from endosomes (Blumstein et al., 2001; Faundez et al., 1998) 

while AP-3A seems to be involved in transport from the TGN/endosomes to lysosomes (Nakatsu and 

Ohno, 2003). 

Evidence is emerging which indicates that like in the COPII system, isoforms of the various coat 

subunits participate in specific sorting events. For example AP-1σ1 is thought to be involved in the 

trafficking of sortilin (Baltes et al., 2014) and GGA1 in transport of adiponectin (Xie et al., 2006). In 

general it can be said that these sorting events appear to be more cell-type specific in contrast to 

isoform-specific packing performed by Sec24 proteins which applies to ubiquitously expressed SNARE 

proteins (Adolf et al., 2016; Mancias and Goldberg, 2008). More concise information about this topic 

can be found elsewhere (Bonifacino and Traub, 2003; Nakatsu and Ohno, 2003; Paczkowski et al., 

2015; Robinson, 2015). 

 

1.5 Mass Spectrometry (MS) 

 

Mass spectrometry is a powerful tool in chemistry, pharmacology, as well as biochemistry of proteins 

and lipids. In analogy to the term “genomics” which describes the study of whole genomes, the term 

proteomics was coined for investigations that aim at the understanding of proteins at a global scale. 

In the following, basic principles and techniques used in modern proteomics are outlined. For 

further, more intensive review on this topic, the following articles are well suited (Aebersold and 

Mann, 2016; Bantscheff et al., 2012; Glish and Vachet, 2003). 
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1.5.1 Basic principles of MS and Proteomics 

 

Modern mass spectrometry allows for the simultaneous analysis of highly complex biological samples 

containing thousands of proteins. This discipline, called proteomics, was made possible by two 

important advancements. The first critical progress was the invention of ionization methods 

applicable to large, instable analytes such as proteins. Those were electrospray ionization (ESI) 

developed by John Fenn and, simultaneously, matrix-assisted laser desorption/ionization (MALDI) 

introduced by Koichi Tanaka (Fenn et al., 1989; Karas and Hillenkamp, 1988). Until then, the analysis 

of substances by mass spectrometry was limited to small, heat-resistant molecules due to the high 

energy used for ionization (e.g. electron ionization, EI). The second major breakthrough for 

proteomics was the progress made in the field of DNA sequencing. Approximately two decades ago, 

it became possible to sequence whole genomes (Goffeau et al., 1996). This was prerequisite for 

modern proteomics as it was now possible to develop databases containing all potentially expressed 

proteins with which mass spectra could be compared (Mann and Wilm, 1994; Perkins et al., 1999). 

In a typical modern MS experiment, proteins are separated according to their molecular mass by 

one- or two-dimensional SDS-PAGE with the second dimension being a focusing of proteins 

corresponding to their isoelectric point (Laemmli, 1970; O'Farrell, 1975). The gel can then be stained 

with Coomassie or silver to visualize the proteins. Bands or spots of interest are excised, in-gel 

digested with a sequence-specific protease, typically trypsin, and subjected to liquid chromatography 

(LC) (Shevchenko et al., 2006; Shevchenko et al., 1996; Wilm et al., 1996). Following LC, the peptides 

enter the mass spectrometer where a first MS scan is performed. Subsequently, (potentially 

pre-selected) precursor ions are fragmented by collision and subjected to a second round of MS 

scanning (tandem MS). The resulting product ions are detected and their spectra interpreted. In this 

regard, interpretation means they are usually compared to in silico generated databases containing 

the possible peptide fragments of all proteins which can occur during such an experiment. In doing so 

it is possible to determine the protein composition of a sample with high accuracy (the experimental 

setup is explained in more detail in Han et al., 2008 and Karpievitch et al., 2010). 

One of the major challenges of protein MS has been to directly compare two or more biological 

samples with one another. To overcome this problem, mainly two strategies have emerged: 

protein/peptide labeling of samples and metabolic labeling of studied organisms. The first protein 

labeling reagents introduced were so-called isotope-coded affinity tags (ICATs) (Gygi et al., 1999). 

Here, cysteine residues are labeled with an affinity tag (e.g. biotin) which is coupled to the cysteine-

reactive group via an isotope-labeled linker. The initially used deuterium for labeling was replaced by 

C13- and N15-based labels due to the observation that deuterium can cause differences in retention 
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time during LC (Yi et al., 2005; Zhang et al., 2001). The most popular sample labeling procedure 

nowadays is isobaric labeling, notably tandem mass tags (TMTs) and isobaric tags for absolute and 

relative quantification (iTRAQs) (Ross et al., 2004; Thompson et al., 2003; Wiese et al., 2007). These 

tags, of which a large variety exits, are coupled to the proteins/peptides like ICATs. When intact, they 

all have identical masses. Only upon fragmentation during tandem MS, reporter ions are produced 

which allow for the comparison of their precursor and ultimately the biological samples. Since the 

number of such tags it high, a large number of samples can be analyzed in parallel. 

The labeling strategies outlined above are challenged by an intensive modification of the samples 

prior to MS analysis. These experiments require a high level of accuracy and efficacy during the 

labeling procedure in order to be quantitative. The second type of labeling methods, metabolic 

labeling, overcome this potential bias very elegantly by introducing the labels directly into the 

proteins and allowing them to be incorporated by the studied biological model. The most prominent 

method, stable isotope labeling by amino acids in cell culture (SILAC), was described 15 years ago 

(Ong et al., 2002). Although crude labeling methods such as cultivation with heavy nitrogen (N15) is 

still in use (reviewed by Gouw et al., 2010), most labeling procedures use amino acids with heavy 

atoms, most frequently lysine and arginine (Ong and Mann, 2007). SILAC experiments are as the 

name implies usually done with cultured cells but also whole organisms have been isotope-labeled 

(Gouw et al., 2010). In contrast to post-sample preparation labels such as TMTs, there is a quite 

limited number SILAC labels available, restricting the number of samples that can be analyzed in 

parallel. Furthermore, the method is restricted to experiments where a sufficient labeling of proteins 

can be achieved by the studied organism/cell. However, if these requirements are met, SILAC is the 

most direct way to compare protein samples by simply calculating the ratio/enrichment of labeled 

versus non-labeled peptides from their MS intensities. 

Noteworthy, there are ways to quantify proteins without introducing a label (Wong and Cagney, 

2010). Such methods, but also all labeling methods, do not provide absolute quantification of 

samples but rather access the relative abundance of proteins in comparison to another sample. 

Hence absolute quantification is still one of the major challenges for MS in the upcoming years. 

 

1.5.2 Proteomics as a Tool to Study Organelles and Vesicles 

 

Modern mass spectrometry has advanced to a stage that allows the analysis of whole proteomes of 

classical model organisms such as yeast (de Godoy et al., 2008) or even the proteomes of more 

complex samples e.g. total human cell lines (Beck et al., 2011a; Nagaraj et al., 2011). Hence the 
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analysis of a cellular substructure is easily achievable which opens the possibility to study in detail 

which proteins belong to a certain organelle and how the protein composition of it changes in 

response to a certain treatment (Gannon et al., 2011; Yates et al., 2005) .  

Isolation of the cellular entity of interest can be achieved in different ways. The most simple way is 

differential centrifugation including density gradient centrifugation that has been used to isolate and 

study the proteomes of lysosomes (Bagshaw et al., 2005), mitochondria (Sickmann et al., 2003), or 

multiple organelles in one study (Dunkley et al., 2004; Foster et al., 2006; Gilchrist et al., 2006; Itzhak 

et al., 2016). Such isolation strategies have been extended by means of affinity purification. Zhang et 

al. for example labeled cells with biotin and subsequently performed streptavidin affinity purification 

in order to obtain a fraction highly enriched in plasma membrane (Zhang et al., 2003). Similarly, the 

Hauri lab has used an antibody against the KDEL receptor in order to isolate the ER-Golgi 

intermediate compartment from BFA-treated cells (Breuza et al., 2004). In all studies mentioned 

above, new proteins could be assigned to the respective organelles. But not only have organelles 

been subjected to MS analysis after enrichment, also vesicles which facilitate the transport between 

many of these compartments have been studied. To study them, two principal strategies were 

applied: Isolation of endogenous vesicles and in vitro reconstitution.  

The first strategy, isolation of endogenous vesicles, was applied to synaptic vesicles and CCVs (Borner 

et al., 2006; Takamori et al., 2006). In latter experiments, a CCV-enriched fraction was quantitatively 

compared to a mock fraction from cells where the heavy chain of the pivotal scaffold clathrin was 

knocked down (Borner et al., 2006). This clever setup has been improved by adaption of fast protein 

rerouting to mitochondria (“knocksideways”) (Robinson et al., 2010). It was used to mislocalize 

certain clathrin adaptor proteins. Subsequently, a CCV fraction from these knocksideways cells was 

prepared and compared to a non-treated control. Whatever proteins are no longer found in the CCV 

fraction from knocksideways cells are potential interactors of the depleted adaptor (Hirst et al., 

2012). 

The second approach, in vitro reconstitution, has been used to study COPI and COPII vesicles. COPI 

vesicles were reconstituted from a Golgi-enriched membrane fraction using cytosol and nucleotides 

(Gilchrist et al., 2006). The more recently published proteomic study of COPII vesicles was performed 

with yeast microsomes and purified COPII coat components (Margulis et al., 2016). In both cases, 

quantification was done without any labeling of the samples prior or after vesicle preparation. 

In general, proteomic investigation of organelles and vesicles has helped to understand the protein 

content of these structures and also the flow of material between different cellular compartments. 

With evolving bioinformatics tools, it is possible to do cellular proteomics using very crude 
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differential centrifugation as has been demonstrated by the Borner lab (Itzhak et al., 2016). All these 

developments will round out the intracellular protein landscape. A very comprehensive review on 

proteomic studies of organelles was written by Yates et al. (2005), the most recent advancement for 

rapid profiling of cellular organelles can be found in the publication of Itzhak et al. (2016). 

 

1.6 Emerging Role of Coat Proteins in Disease  

 

The first medical afflictions which partially result from protein miss-trafficking were beginning to be 

understood on a cell biological level during the sixties of the last century (Hashimoto et al., 1965; 

Hers, 1963). These so-called lysosomal storage disorders (LSDs) represent a broad group of diseases 

with more than 40 different known syndromes (Vellodi, 2005). One of these syndromes results for 

example from mutations that cause inactivity of the phosphotransferase that primes lysosomal 

enzymes for correct targeting by the mannose-6-phosphate (Kornfeld, 1986; Reitman and Kornfeld, 

1981; Reitman et al., 1981; Varki et al., 1981). Shorty after this finding, the famous single point 

mutation that affects the transportation of the LDLr was identified (Davis et al., 1986). Trafficking of 

the LDL receptor was studied in the first place because its perturbation causes familial 

hypercholesterolemia (Davis et al., 1986).  

The advent of deep sequencing at the turn of the millennium has made it easier to identify such 

mutations even for rare diseases with only very few patients. Amongst the first mutations identified 

in this fashion, were a deletion and a non-conservative amino acid conversion affecting the AP-3β1 

subunit of adaptor protein complex 3 (Dell'Angelica et al., 1999b). Those mutations lead to 

development of the Hermansky-Pudlak syndrome which is characterized by defective lysosomal 

targeting of proteins ultimately causing albinism and bleeding disorders (Dell'Angelica et al., 1999b; 

Gahl and Huizing, 1993; Huizing et al., 2002). Ever since then, several mutations in subunits of various 

AP complex subunits have been implicated in the development of disease. Mutations in AP-1σ2 were 

linked to X-linked mental retardation (Cacciagli et al., 2014; Tarpey et al., 2006). Similarly, mutations 

in the second isoform, AP-1σ1 cause the severe MEDNIK (mental retardation, enteropathy, deafness, 

peripheral neuropathy, ichthyosis, and keratodermia) syndrome (Montpetit et al., 2008). Moreover, 

the two AP complexes AP-4 and AP-5 are tightly linked to hereditary spastic paraplegia (HSP/SPG), a 

syndrome marked by spasticity of the lower limbs and sometimes mental retardation (reviewed in 

Fink, 2013, 2014). This connection is so intimate that some of the AP complex subunits were first 

identified as factors of SPG-development before becoming designated coat components, i.e. 

SPG11/SPG15 (Hirst et al., 2013; Slabicki et al., 2010). 
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In recent years, it became clear that not only coat proteins of the late secretory pathway play a role 

in development of disease, also proteins of the COPI and COPII systems are associated with medical 

conditions. For example mutations in the small GTPase Sar1B were shown to cause lipid absorption 

disorders (Jones et al., 2003). Furthermore, mutations within the inner coat subunits Sec23A were 

associated with Cranio-lenticulo-sutural dysplasia (CLSD) (Boyadjiev et al., 2006; Fromme et al., 

2007). The other Sec23 isoform, Sec23B, was shown to play a role in Dyserythropoietic Anemia Type 

II (Bianchi et al., 2009) and the Cowden syndrome which is characterized by a high risk of epithelial 

cancer (Yehia et al., 2015). Most recently, mutations within the isoform Sec24D were identified as 

the cause of syndromic form of osteogenesis imperfecta (OI) (Garbes et al., 2015). In the COPI 

system, mutations of the α-COP subunit could be linked to hereditary autoimmune-mediated lung 

disease and arthritis (Watkin et al., 2015), while mutations of δ-COP correlated with a craniofacial 

disorder (Izumi et al., 2016). 

Taken together the number of proteins which serve vesicular transport and play a role in the 

development of various diseases is strongly increasing especially in most recent years. 

 

1.7 Objective 

 

As pointed out in the previous sections, coat proteins and their isoforms can have a major influence 

on cargo-uptake, and on the directionality of vesicular transport (see 1.2-1.4). These findings are 

underlined by the fact that mutations within different isoforms of the same coat component can 

result in completely different medical afflictions (see 1.6). While for many subunits of the COPII and 

the CCV system data, which assigns them to a certain function, exists, such data is virtually absent for 

isoforms in the COPI system. Likewise, while the molecular mechanism which leads to the occurrence 

of a certain syndrome is understood for many of the mutations highlighted in section 1.6, such an 

explanation is missing for the most recently discovered mutations in Sec24D leading to syndromic 

osteogenesis imperfecta (Garbes et al., 2015). Therefore, in this thesis I worked on the following 

questions: 

- Do isoforms of γ- and ζ-COP influence the steady-state proteome of COPI vesicles? 

- Do isoforms of the small GTPase Arf influence the protein content of COPI vesicles? 

- What are the shared/diverging proteins in COPI vesicles with different origin? 

- What is the molecular mechanism that leads to a syndromic form of osteogenesis imperfecta 

in patients with Sec24D mutations? 
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2 Results 

 

2.1 Establishing a Workflow for COPI Proteomics 

 

As pointed out in section 1.7, one of the major goals of this study was to investigate the protein 

content of COPI vesicles prepared with different isoforms of coat proteins. Hence we decided to take 

advantage of an in vitro COPI reconstitution system in which recombinant coat proteins are used to 

produce vesicles from semi-intact cells (SIC) (Adolf et al., 2013), schematically drawn in figure 2.1. 

Briefly, the plasma membrane of cells is permeabilized with digitonin and the cytosol removed 

through washing with a physiological assay buffer. Recombinant coatomer, Arf, and nucleotides are 

added to the semi-intact cells following an incubation step to allow vesicle formation. Vesicles can be 

separated from the vast amount of SIC via medium-speed centrifugation (MSP) (Fig. 2.1; Material and 

Methods). 

 

Figure 2.1 COPI Reconstitution from Semi-intact Cells 

Cells are permeabilized with digitonin, washed with buffer, and incubated with COPI coat proteins and nucleotides for 30 

minutes. Donor membranes can be subsequently separated from the vesicles via medium-speed centrifugation at 14.000 ×g 

for 10 minutes. For experimental details see Material and Methods. 

 

The vesicle-containing supernatant recovered after MSP contains, besides COPI vesicles, the huge 

excess of recombinant coat protein used for reconstitution. When performing Western blot analyses 

it is usually sufficient to subject the supernatant to high-speed centrifugation (HSP) at 100.000 ×g in 

order to harvest the vesicles (Fig. 2.2). As can be clearly seen, vesicle marker proteins ERGIC53, 

ERGIC1, and p24 are enriched in the harvested fraction, when all COPI components and nucleotides 

were present compared to a control reaction without coatomer. In contrast, the non-vesicle marker 

GM130 is not particularly enriched in the COPI vesicle fraction (Fig 2.2). 
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Figure 2.2 Western Blot Analysis of Harvested COPI Vesicles 

Representative Western blot analysis of COPI vesicles reconstituted from SIC HeLa using recombinant CM, Arf1, GTP, and 
ATP regenerating system (ATPr) with 5 µg of SIC loaded as input. Vesicles were isolated via differential centrifugation (MSP 
and HSP). Indicated on the left are the antibodies used for detection. 

 

Despite the fact that HSPs from vesicle reconstitutions can be analyzed via Western blot, a mass 

spectrometric analysis of such a sample is not possible. When we tried to directly assess the protein 

content of such samples, very low quality data was obtained. We attributed this shortcoming to 

excess coat, which is harvested alongside the vesicles. The majority of peptides, coming from these 

coat proteins, seemed to hamper the detection of proteins from the vesicle membrane and inside. 

Thus we decided to purify the reconstituted vesicles by means of density gradient floatation. For this 

we used the density matrix iodixanol, which had been previously used to purify COPII vesicles (M.Sc. 

thesis Manuel Rhiel, Adolf et al., unpublished data). Vesicle samples obtained from medium-speed 

centrifugation were adjusted to a concentration of 40 % iodixanol. The samples were overlaid with a 

big 30 % and small 20 % layer and the whole gradient centrifuged over night at 250.000 ×g (for 

details see Material and Methods). Following ultracentrifugation, the gradient, which is schematically 

depicted in figure 2.3A, was fractionated into ten fractions from top (1) to bottom (10). Each fraction 

was diluted in assay buffer and subjected to high-speed centrifugation at 100.000 ×g for 2 h in order 

to harvest vesicles and to some extend free protein. Subsequently, the fractions were analyzed by 

Western blot and probed for the COPI vesicle marker proteins ERGIC53 and p24 as well as the COPI 

coat component γ-COP. When either coatomer or nucleotide had been omitted during the budding 

reaction, faint signals for ERGIC53 and p24 could be detected predominantly in fraction 2, but also 

fraction 3 (Fig. 2.3B two upper panels). The signal intensities for both proteins increased strongly, 

when GTP was added to the reaction. Also here, the strongest signals were detected in fraction 2 

(Fig. 2.3B second lowest panel). Using a non-hydrolysable GTP analog, GMP-PNP, instead of GTP also 
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resulted in the detection of strong signals for both COPI marker proteins. However, especially the 

detection for p24 did not longer give the strongest signal in fraction 2 but rather in fraction 3. 

Moreover, unlike under all conditions mentioned before, using GMP-PNP lead to the detection of 

γ-COP in fraction 3 of the gradient (Fig. 2.3B lower panel). Coat detection and the shift of marker 

proteins from fraction 2 to fraction 3 as observed for the GMP-PNP sample is in line with a higher 

buoyant density of coated vesicles, compared to uncoated vesicles. It is worth noting that most of 

the endogenous coatomer was removed from the SIC during the washing step. Hence, the 

recombinant protein complex, here detected via γ-COP, is in vast excess of the remaining fraction of 

endogenous proteins (Fig. 2.3B inputs). 

 

Figure 2.3 COPI Vesicle Purification via Floatation in an Iodixanol Density Gradient 

(A) Scheme of the density gradient used for COPI floatation. Samples were adjusted to 40 % and overlaid with 30 % and 20 
% density matrix. The black arrow indicated the movement of the vesicles; the red arrow indicates the fractionation 
procedure from top to bottom. (B) Western blot analysis of the fractions indicated above the blots. Components 
added/omitted during reconstitutions are depicted on the left. As inputs, 5 % of the SIC and 1% of CM used for the 
reconstitutions were loaded. Membranes were probed for the presence of the protein indicated on the right. Black box 
highlights the fractions that contain COPI marker proteins (2 and 3). 

 

In order to further verify that fractions 2 and 3 contain COPI vesicles, they were investigated by 

electron microscopy. A combined fraction 2/3 was harvested from gradients loaded with 

reconstitutions performed with GTP, GMP-PNP, or without coatomer and subjected to 

resin-embedding. From control samples (without CM), no pellet could be obtained. This is not 

unexpected as the Western blot analysis of this sample displayed only weak signals for COPI marker 

proteins (Fig. 2.3B second highest panel). For GTP and GMP-PNP reconstitutions, resin-embedded 

samples could be prepared. Inspection of ultrathin sections from these samples revealed 
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predominantly vesicle-like structures (Fig. 2.4). The vesicles were not perfectly homogenous in size, 

ranging from 60-100 nm. Moreover, while the vesicles recovered from the GTP sample appeared 

almost exclusively uncoated, an electron-dense coat could be observed on many of the vesicle 

profiles isolated from gradient loaded with the GMP-PNP reconstitution (compare Fig. 2.4 A and B). 

 

Figure 2.4 Resin-embedding EM of Purified COPI Vesicles 

Representative EM images of embedded samples recovered from a combined fraction 2/3 after iodixanol density gradient 

purification. Reconstitutions were performed either with GTP (A) or non-hydrolysable analog GMP-PNP (B). Scale bars with 

their respective length are depicted in the main images and insets. 

 

With an assay and purification procedure at hand to obtain a clean fraction of COPI vesicles we 

needed to choose a method for proteomics. Since semi-intact cells were used as source of Golgi 

membranes, we decided to use isotope labeling (SILAC) which would allow us to perform 

quantitative mass spectrometry. The workflow that was employed in order to investigate the protein 

content of COPI vesicles is outlined in figure 2.5: 

i) Cells were in parallel cultivated in heavy medium, containing isotope-labeled arginine and lysine, 

and light medium with unlabelled amino acids. ii) Once an incorporation of the heavy amino acids 

>95 % was achieved, cells were expanded and used as donor material for COPI reconstitution. In 

parallel to the budding reaction, a mock reaction without CM was performed, which contains 

background levels of COPI marker proteins (Fig. 2.3B), and furthermore all contaminants that are 

co-purified with the reconstituted vesicles. iii) Samples from the budding reaction and the mock 

reaction were mixed and processed for LC-MS. iv) The samples from both reactions were analyzed in 

the same MS run. By comparing the intensities of heavy and light peptides (SILAC ratio) it is possible 

to quantify the enrichment of proteins in either one of the two samples (Fig. 2.5). 
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Figure 2.5 Workflow of a SILAC-based COPI Proteomic Experiment 

i) Cells were labeled with heavy amino acids. ii) Heavy and light cells were used as membrane source for budding and mock 

reactions (without CM). The reconstituted (mock) vesicles were purified through density gradient floatation. iii) Vesicle and 

mock samples were mixed and processed for LC-MS. iv) Samples were analyzed in the same MS run. Labels allow the 

assignment of each peptide to one of the two samples. From their intensities, quantitative SILAC ratios can be calculated. 

 

2.2 The HeLa Cell COPI Vesicle Core Proteome 

 

In the workflow shown in figure 2.5, the COPI reconstitution was performed from heavy cells, while 

the mock reaction was carried out with unlabeled cells. In order to make sure that the labeling 

procedure had no influence on the later sample, the same experiment was performed with switched 

isotope labels – vesicles light, mock heavy. This general intrinsic control was kept for further SILAC 

experiments as they were usually performed as label switch replicates. 

The SILAC ratios obtained from two independent experiments are displayed in the scatter plot in 

figure 2.6. Here, each protein detected in both runs is displayed as a dot with its coordinates being its 

respective SILAC ratios. Obvious contaminants identified by high light/heavy and low heavy/light 

ratios e.g. keratin species or coat proteins were excluded from the plot. Noteworthy, in the final 
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experiments, presented here, only coatomer was omitted in the mock reactions. Initially also Arf1 

was omitted with the results that subunits of the adaptor protein complex 1 (AP-1) were enriched 

almost fourfold in the vesicle fraction. Through the addition of Arf1, no AP complex subunit displays 

SILAC ratios >1.6. From the plot in figure 2.6 it can be clearly seen that the majority of proteins have 

SILAC ratios of close to one meaning they are neither enriched in the COPI sample nor the mock 

control. Proteins which are enriched in the COPI vesicle sample spread out towards the upper right 

corner of the plot, aligning to a virtual diagonal. Values from both independent runs display a high 

degree of correlation, with an R2 value of 0.7. This value rises to 0.83 when a single protein with 

heavily diverging SILAC ratios, Zinc finger protein-like 1 (ZFPL1), which displays SILAC ratios of 29.5 

and 4.3, is excluded from the analysis (Fig. 2.6). The cis-Golgi protein ZPFL1, as well as other proteins 

and protein families that display particularly high SILAC ratios are highlighted in the plot. In 

particular, 6 members of the p24/TMED family, the two calcium binding proteins nucleobindin 1 and 

2 (NUCB1/2), the zinc transporters SLC30A6/7, as well as the ER-Golgi cycling protein ERGIC3, display 

robust enrichment in the COPI vesicle sample (Fig. 2.6). 

 

Figure 2.6 The HeLa Cell COPI Proteome 

Scatter plot of SILAC ratios obtained from two independent experiments performed according to figure 2.5 with switched 

labels. CMγ1ζ1 and Arf1 were used. Contaminants were removed from the datasets. Some proteins and protein families are 

highlighted in color. R
2
 value of the complete dataset is 0.7; it rises to 0.83 when ZFPL1 is neglected. 
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In total three COPI vesicles versus mock experiments were performed with HeLa cells. 102 proteins 

were identified in at least 2 experiments, displaying mean SILAC ratios of >2. An additional 20 

proteins were identified with SILAC ratios >2 in only one experiment with the SILAC label being 

carried by the COPI vesicle fraction. Hence, taken together 122 proteins are high fidelity COPI core 

proteome candidates. A complete list of these proteins is displayed in table 1. 
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Protein.names Gene.names 
ratio 1 
(H/L)  

ratio 2 
(L/H)  

ratio 3 
(H/L)  

Mean 
SILAC 
ratio 

SEM 

Zinc finger protein-like 1 ZFPL1 29,51 4,30 13,37 15,73 7,37 

Transmembrane emp24 domain-containing protein 7 TMED7;TMED7-TICAM2 16,79 10,41 11,29 12,83 2,00 

Solute carrier family 35 member E1 SLC35E1 13,62   10,88 12,25 1,37 

Endoplasmic reticulum-Golgi intermediate compartment protein 3 ERGIC3 15,26 11,43 9,31 12,00 1,74 

Zinc transporter 5 SLC30A5 10,65   12,74 11,69 1,04 

Transmembrane emp24 domain-containing protein 10 TMED10 12,96 10,12 9,31 10,80 1,11 

Transmembrane emp24 domain-containing protein 4 TMED4 13,61 8,95 9,64 10,73 1,45 

Zinc transporter 7 SLC30A7 12,28 11,15 8,67 10,70 1,07 

Nucleobindin-1 NUCB1 12,59 8,35 10,50 10,48 1,23 

Transmembrane emp24 domain-containing protein 2 RNP24;TMED2 11,88 9,17 9,89 10,31 0,81 

Zinc transporter 6 SLC30A6 12,17 7,77   9,97 2,20 

Transmembrane emp24 domain-containing protein 9 TMED9 10,99 8,43 9,64 9,68 0,74 

Nucleobindin-2;Nesfatin-1 HEL-S-109;NUCB2;Nucb2 14,18 7,08 7,69 9,65 2,27 

Transmembrane emp24 domain-containing protein 1 TMED1 11,13 6,16 8,48 8,59 1,44 

Endoplasmic reticulum-Golgi intermediate compartment protein 2 ERGIC2 7,24 8,64 8,16 8,01 0,41 

VIP36-like protein LMAN2L 7,24 7,05 8,10 7,46 0,32 

Protein RER1 RER1 9,28 7,47 5,56 7,44 1,07 

Protein cornichon homolog 4 CNIH4 7,34 6,72   7,03 0,31 

Surfeit locus protein 4 SURF4 7,01 6,90 5,96 6,62 0,33 

Protein ERGIC-53 LMAN1 6,96 6,63 6,23 6,61 0,21 

Protein YIPF;Protein YIPF5 YIPF5 7,07 6,80 5,90 6,59 0,36 

Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 3 B3GAT3 9,24 3,71   6,47 2,77 

Vesicular integral-membrane protein VIP36 LMAN2 7,52 5,84 5,63 6,33 0,60 

Golgi SNAP receptor complex member 2 GOSR2 8,31   4,30 6,31 2,01 

Transmembrane 9 superfamily member 3 TM9SF3;SMBP 8,67 5,36 4,60 6,21 1,25 

Rab-like protein 3 RABL3 6,05     6,05   

Beta-1,3-galactosyltransferase 6 B3GALT6 5,88     5,88   

Immediate early response 3-interacting protein 1 IER3IP1 7,28 6,04 4,25 5,85 0,88 

Protein YIPF4 YIPF4 8,45 3,10   5,78 2,67 

Vesicle transport protein GOT1B GOLT1B 5,87 5,38 5,72 5,66 0,14 

Endoplasmic reticulum mannosyl-oligosaccharide 1,2-alpha-mannosidase;alpha-1,2-Mannosidase MAN1B1 7,47 4,36 4,60 5,48 1,00 

Protein YIF1A YIF1A 6,08 5,41 4,88 5,46 0,35 

Vesicle-trafficking protein SEC22b SEC22B 6,76 4,34 5,06 5,39 0,72 

Endoplasmic reticulum resident protein 44 ERP44 6,17 4,91 4,44 5,17 0,52 

Protein kish-A TMEM167A 5,35   4,93 5,14 0,21 
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Protein.names Gene.names 
ratio 1 
(H/L)  

ratio 2 
(L/H)  

ratio 3 
(H/L)  

Mean 
SILAC 
ratio 

SEM 

Golgi reassembly-stacking protein 2 GORASP2 4,99     4,99   

Protein YIF1B YIF1B 5,24 4,98 4,37 4,86 0,26 

Alpha-(1,6)-fucosyltransferase FUT8 8,19 1,51   4,85 3,34 

ER lumen protein-retaining receptor 1;ER lumen protein-retaining receptor KDELR1 5,53   4,00 4,76 0,76 

Endoplasmic reticulum-Golgi intermediate compartment protein 1 ERGIC1 6,45 3,74 4,01 4,73 0,86 

Syntaxin-5 STX5;STX5A 4,88 3,68 5,61 4,72 0,56 

Ras-related protein Rab-18 RAB18 5,06 4,45 4,29 4,60 0,24 

Clusterin;Clusterin beta chain;Clusterin alpha chain;Clusterin CLU 4,36 5,66 3,68 4,57 0,58 

Protein CASP;Homeobox protein cut-like 1 
CUX1;Nbla10317;CUX1-
RETc;CUX1-RETa 6,43 2,45   4,44 1,99 

Protein YIPF3;Protein YIPF3, 36 kDa form III;Protein YIPF YIPF3 5,28 4,40 3,29 4,32 0,58 

Mannosyl-oligosaccharide 1,2-alpha-mannosidase IB MAN1A2 6,04 4,37 2,23 4,21 1,10 

Polypeptide N-acetylgalactosaminyltransferase 1 GALNT1 5,10 3,96 3,55 4,21 0,46 

Protein canopy homolog 2 CNPY2 4,15     4,15   

Lipoprotein lipase LPL 5,25 2,91   4,08 1,17 

Cell growth regulator with EF hand domain protein 1 CGREF1 4,81 2,73   3,77 1,04 

Protein disulfide-isomerase P4HB 4,00 3,51   3,76 0,25 

Palmitoyltransferase ZDHHC13;Palmitoyltransferase ZDHHC13 5,10 2,36   3,73 1,37 

Polypeptide N-acetylgalactosaminyltransferase 3;Polypeptide N-acetylgalactosaminyltransferase GALNT3 4,75 2,78 3,63 3,72 0,57 

Peptidyl-prolyl cis-trans isomerase;Peptidyl-prolyl cis-trans isomerase B HEL-S-39;PPIB 4,84 3,54 2,59 3,65 0,65 

Emerin EMD 2,96 4,82 3,03 3,60 0,61 

Reticulocalbin-1 HEL-S-84;RCN1 4,63 2,56   3,60 1,03 

Transmembrane protein 115 TMEM115 4,90 2,24   3,57 1,33 

Transmembrane emp24 domain-containing protein 5 TMED5 2,79 4,09 3,72 3,53 0,39 

Alpha-1,6-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase MGAT2 4,55 2,79 3,05 3,46 0,55 

Alpha-mannosidase 2;Alpha-mannosidase MAN2A1 4,91 2,65 2,65 3,41 0,75 

ER lumen protein-retaining receptor;ER lumen protein-retaining receptor 2 KDELR2     3,39 3,39   

Rho-related BTB domain-containing protein 3 RHOBTB3 3,32     3,32   

Glycosyltransferase 8 domain-containing protein 2 GLT8D2 3,26     3,26   

Sec1 family domain-containing protein 1 SCFD1 3,75 2,74   3,25 0,50 

ADP-ribosylation factor 4 ARF4 3,18     3,18   

BET1 homolog BET1;DKFZp781C0425 3,67 2,63   3,15 0,52 

Alpha-2-macroglobulin receptor-associated protein LRPAP1 3,14     3,14   

UbiA prenyltransferase domain-containing protein 1 UBIAD1 4,85 2,10 2,45 3,13 0,86 

Vesicle-trafficking protein SEC22a SEC22A 3,13     3,13   
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Protein.names Gene.names 
ratio 1 
(H/L)  

ratio 2 
(L/H)  

ratio 3 
(H/L)  

Mean 
SILAC 
ratio 

SEM 

Serpin H1 SERPINH1 3,73 3,20 2,34 3,09 0,41 

Galectin-3-binding protein LGALS3BP 4,15 2,01   3,08 1,07 

Thioredoxin domain-containing protein 5 
hCG_1811539;TXNDC5;STRF
8;DKFZp666I134 2,75 3,36   3,05 0,30 

Ras-related protein Rab-2A RAB2;RAB2A 3,65 3,18 2,27 3,03 0,40 

cDNA FLJ76981, highly similar to Homo sapiens golgi autoantigen, golgin subfamily a, 5 (GOLGA5), mRNA GOLGA5 3,06 2,87   2,97 0,09 

Transmembrane emp24 domain-containing protein 3 TMED3 2,42 3,49   2,96 0,54 

Calumenin CALU 3,67 2,29 2,73 2,89 0,41 

Probable glutathione peroxidase 8 GPX8 3,04 2,75 2,80 2,86 0,09 

Calreticulin HEL-S-99n;CALR 2,97 2,58   2,77 0,19 

Polypeptide N-acetylgalactosaminyltransferase 10;Polypeptide N-acetylgalactosaminyltransferase GALNT10 3,41 1,94 2,88 2,74 0,43 

Alpha-1,3-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase MGAT1 3,99 2,19 1,95 2,71 0,64 

Insulin-like growth factor-binding protein 7 IGFBP7 2,99 2,42   2,71 0,29 

Adipocyte plasma membrane-associated protein APMAP 2,51 2,86   2,69 0,17 

Ras-related protein Rab-6B RAB6A;RAB6B 3,62 2,53 1,88 2,68 0,51 

Exostosin-like 2;Processed exostosin-like 2 EXTL2 2,67     2,67   

Protein disulfide-isomerase A6 PDIA6 3,08 2,23   2,66 0,42 

Neutral alpha-glucosidase AB HEL-S-164nA;GANAB 2,43 2,85   2,64 0,21 

Transmembrane 9 superfamily member 1 TM9SF1 3,87 2,49 1,52 2,63 0,68 

Nucleoporin NDC1 NDC1 2,60     2,60   

78 kDa glucose-regulated protein HEL-S-89n;HSPA5 2,94 3,26 1,48 2,56 0,55 

Protein O-linked-mannose beta-1,2-N-acetylglucosaminyltransferase 1 POMGNT1 3,68 1,40   2,54 1,14 

Sulfhydryl oxidase 2 QSOX2 3,26 2,18 2,12 2,52 0,37 

Alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase B MGAT4B 2,91 2,10   2,50 0,40 

Golgi SNAP receptor complex member 1 GOSR1 3,28 1,95 2,28 2,50 0,40 

Carbohydrate sulfotransferase 14 CHST14 3,54 2,14 1,82 2,50 0,53 

Chondroitin sulfate synthase 2 CHPF 2,45     2,45   

SPARC-related modular calcium-binding protein 1 SMOC1 3,56 1,33   2,45 1,12 

Beta-1,4-glucuronyltransferase 1 B3GNT6;B4GAT1 3,65 1,23   2,44 1,21 

NADH-cytochrome b5 reductase CYB5R3 2,78 2,06   2,42 0,36 

Transmembrane protein 43 TMEM43;FLJ00144     2,39 2,39   

Golgin subfamily B member 1 GOLGB1 3,36 2,12 1,67 2,38 0,51 

Protein FAM3A FAM3A 2,32     2,32   

Protein CASC4 CASC4 3,22 1,62 2,13 2,32 0,47 

Calcium-transporting ATPase;Calcium-transporting ATPase type 2C member 1 ATP2C1 2,76 1,83 2,34 2,31 0,27 
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Protein.names Gene.names 
ratio 1 
(H/L)  

ratio 2 
(L/H)  

ratio 3 
(H/L)  

Mean 
SILAC 
ratio 

SEM 

Ras-related protein Rab-1B;Putative Ras-related protein Rab-1C RAB1B;RAB1C 2,84 2,31 1,76 2,31 0,31 

45 kDa calcium-binding protein SDF4 2,83 1,96 2,09 2,29 0,27 

DnaJ homolog subfamily B member 11 DNAJB11 2,27     2,27   

Very-long-chain enoyl-CoA reductase TECR 2,26     2,26   

Protein SYS1 homolog SYS1 2,25     2,25   

Catechol O-methyltransferase COMT 2,19     2,19   

Transmembrane protein 33 SHINC3;TMEM33 2,52 1,83 2,17 2,17 0,20 

Prenylated Rab acceptor protein 1 RABAC1 2,95 1,79 1,67 2,14 0,41 

Golgi integral membrane protein 4 GOLIM4 2,36 1,89 2,10 2,12 0,14 

Ras-related protein Rab-1A RAB1A 2,55 1,90 1,84 2,10 0,23 

Solute carrier family 35 member E2B;Solute carrier family 35 member E2 
hCG_2036609;SLC35E2B;SLC
35E2 3,22 0,88   2,05 1,17 

GDP-fucose transporter 1 SLC35C1 2,86 1,20   2,03 0,83 

Myosin-10 MYH10 3,22 0,84   2,03 1,19 

Transmembrane 9 superfamily member 4 TM9SF4 2,84 1,41 1,83 2,03 0,42 

Dermatan-sulfate epimerase DSE 2,28 1,76   2,02 0,26 

Glycoprotein endo-alpha-1,2-mannosidase-like protein MANEAL 4,07 1,97   2,01 1,05 

Transforming growth factor-beta-induced protein ig-h3 TGFBI 2,01     2,01   

40S ribosomal protein S2 RPS2;OK/KNS-cl.6;rps2 2,27 1,75   2,01 0,26 

Cleft lip and palate transmembrane protein 1-like protein CLPTM1L 1,63 2,38   2,00 0,38 

Table 1: Candidate Proteins for the HeLa Cell COPI Core Proteome 

List of candidates for the COPI core proteome from HeLa cells as determined by three independent experiments performed according to Fig. 2.5. CMγ1ζ1, Arf1, and GTP were used for 

reconstitutions. Given are gene and protein names of the identified proteins, the SILAC ratios (H/L or L/H) from each experiment, the mean SILAC ratio, and standard error of the mean (SEM). 

Displayed are protein with mean SILAC ratios of >2 or with a SILAC ratio >2 in one of the two experiments in which the vesicle sample was labeled with heavy isotopes (written in italic in the Mean 

SILAC ratio column). 
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Apart from the aforementioned proteins highlighted in figure 2.6, other ER-Golgi cycling proteins 

(e.g. ERGIC53/LMAN1, RER1, KDEL receptor), trafficking and fusion machinery such as SNAREs (e.g. 

Sec22b, Stx5, and GOSR1) and Rab proteins (e.g. Rab2A, Rab6A, and Rab18) alongside a large number 

of Golgi-localized enzymes (e.g. MAN1A2, ZDHHC13, GALNT1) were identified. Furthermore, ER-

residents, i.e. CALR, P4HB, HSPA5/BiP were found enriched in the COPI fraction. Of the 122 

candidates, few proteins e.g. LPL, CGREF1, TGFBI, and LGALS3BP are secreted from the cells. 

The core proteome of COPI vesicles as defined above consist with exception of the Rab proteins, 

luminal NUCB1/2, and the few secreted cargoes exclusively of transmembrane proteins. Since we 

planned to study CM isoforms, and the only described isoform-specific integrator Scyl1 is a cytosolic 

protein (Hamlin et al., 2014), we decided to test whether our assay was capable of capturing 

cytosolic factor that bind to the assembled COPI coat on a vesicle. To this end, the workflow outlined 

in Fig. 2.5 was modified in three ways. i) Both samples were prepared as actual budding reactions 

with CM, Arf1, and nucleotides. ii) One reconstitution was performed with GTP while the other one 

was performed its non-hydrolysable analog GTPγS to stabilize the COPI coat on the vesicles. 

iii) Isotope-labeled cytosol was added to the budding reaction in order to allow cytosolic factors to 

bind to COP vesicles during or after their formation. 

The cytosol, which was prepared via nitrogen cavitation, was completely depleted in abundant 

transmembrane proteins of the ER/Golgi Calnexin, ERGIC53, and p24 which are enriched in SIC and 

present in the whole cell lysate (Fig. 2.7A). As expected, soluble cytosolic proteins ε-COP and Arf1 are 

completely transferred from the lysate to the cytosol fraction but largely depleted in the SIC. The 

soluble Hsp70 of the ER, BiP, is also detected in large amounts in the cytosol indicating that 

organelles did not stay intact during the cytosol preparation (Fig. 7A). 

When the cytosol was added to COPI reconstitutions performed with GTP or GTPγS, many proteins 

displayed a significant enrichment in the sample prepared with the non-hydrolysable analog (Fig. 7B). 

Unlike expected, the vast majority of these proteins is not part of the cytosol. Among the highest 

scoring proteins, highlighted in Fig. 2.7B, are the large GTPases atlastin-2/3 (ATL2/3), the ER enzymes 

acetolactate synthase-like protein (ILVBL), and lanosterol synthase (LSS), as well as transmembrane 

protein 33 (TMEM33), and adipocyte plasma membrane-associated protein (APMAP) (Fig. 2.7B). 
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Figure 2.7 Influence of a Non-hydrolysable GTP Analog on COPI Budding in Presence of Cytosol 

(A) Western blot analysis of SIC (5 µg), whole cell lysate and a cytosol fraction (both 10 µg). Samples were probed for the 

presence of the proteins indicated on the right. (B) Scatter plot of SILAC ratios obtained from two independent experiments 

performed according to workflow in figure 2.5. Both samples were prepared with CMγ1ζ1, Arf1, and cytosol in the presence 

of either GTP or GTPγS. Experiments were performed with switched labels. Contaminants were removed from the datasets. 

Some proteins are highlighted in color. R
2
 value of the dataset is 0.78. 

 

Noteworthy, Scyl1 was not detected in the dataset. Only one cytosolic protein known to interact with 

Arf1 was enriched in the GTPγS vesicle sample, Arfaptin-1. A list showing the 72 proteins enriched 

more than twofold in either both (mean enrichment) or in the heavy GTPγS sample are displayed in 

table 2. 
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Protein.names Gene.names ratio 1 (H/L) ratio 2 (L/H) 
Mean SILAC 

ratio 
SEM 

Translocon-associated protein subunit alpha SSR1 6,91   6,91   

Acetolactate synthase-like protein ILVBL 6,29 6,76 6,53 0,23 

Translocon-associated protein subunit delta SSR4 5,95   5,95   

Adipocyte plasma membrane-associated protein APMAP 6,49 5,37 5,93 0,56 

Torsin-1A-interacting protein 2 TOR1AIP2 5,62   5,62   

Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3 HACD3 5,48   5,48   

Atlastin-2 ATL2 5,03 4,86 4,95 0,09 

Terpene cyclase/mutase family member;Lanosterol synthase LSS 4,92 4,72 4,82 0,10 

Transmembrane protein 33 SHINC3;TMEM33 5,21 4,39 4,80 0,41 

Torsin-1A TOR1A 4,63   4,63   

Cytochrome b5 type B DKFZp686M0619;CYB5B 4,48   4,48   

Atlastin-3 ATL3 4,35 3,61 3,98 0,37 

ADP-ribosylation factor-like protein 6-interacting protein 1 ARL6IP1;hCG_1994130 4,21 3,73 3,97 0,24 

Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating NSDHL 4,15 3,65 3,90 0,25 

Cleft lip and palate transmembrane protein 1-like protein CLPTM1L 3,86   3,86   

Protein FAM134C FAM134C 3,78 3,87 3,82 0,05 

Vesicle-associated membrane protein-associated protein A VAPA 4,08 3,22 3,65 0,43 

Membrane-associated progesterone receptor component 1 PGRMC1 3,92 3,36 3,64 0,28 

Transmembrane and coiled-coil domain-containing protein 1 TMCO1 3,62   3,62   

Vesicle-associated membrane protein-associated protein B/C VAPB 3,81 3,41 3,61 0,20 

7-dehydrocholesterol reductase DHCR7 3,57   3,57   

Receptor expression-enhancing protein;Receptor expression-enhancing protein 5 REEP5 4,00 2,97 3,48 0,52 

Extended synaptotagmin-2 ESYT2 3,67 3,25 3,46 0,21 

PRA1 family protein 3 ARL6IP5 3,87 2,95 3,41 0,46 

Membrane-associated progesterone receptor component 2 PGRMC2 4,48 2,23 3,36 1,12 

Arfaptin-1 ARFIP1 2,44 4,26 3,35 0,91 

Transmembrane protein 43 TMEM43;FLJ00144 3,79 2,91 3,35 0,44 

B-cell receptor-associated protein 31 BCAP31 3,93 2,66 3,29 0,63 

Fatty acid desaturase 2 FADS2 3,29   3,29   

Heme oxygenase 1 HMOX1 3,25   3,25   

Catechol O-methyltransferase COMT 3,58 2,86 3,22 0,36 

Extended synaptotagmin-1 FAM62A;ESYT1 3,40 3,03 3,22 0,18 

Reticulon;Reticulon-3 RTN3 3,80 2,50 3,15 0,65 

Calnexin CANX 3,65 2,61 3,13 0,52 

Reticulon;Reticulon-1 RTN1 3,54 2,70 3,12 0,42 

Reticulon RTN4;NOGOC;Nbla00271 3,55 2,68 3,11 0,44 

Fatty acid desaturase 1 FADS1 3,11   3,11   
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Protein.names Gene.names ratio 1 (H/L) ratio 2 (L/H) 
Mean SILAC 

ratio 
SEM 

Retinol dehydrogenase 11 RDH11 3,35 2,87 3,11 0,24 

NADH-cytochrome b5 reductase;NADH-cytochrome b5 reductase 3;NADH-cytochrome b5 
reductase 3 membrane-bound form;NADH-cytochrome b5 reductase 3 soluble form CYB5R3 3,30 2,90 3,10 0,20 

Epoxide hydrolase 1 EPHX1 3,35 2,79 3,07 0,28 

V-type proton ATPase subunit S1 ATP6AP1;FLJ00383 3,39 2,70 3,05 0,35 

Long-chain-fatty-acid--CoA ligase 3 ACSL3 3,32 2,74 3,03 0,29 

Lysophosphatidylcholine acyltransferase 1 LPCAT1;AYTL2 3,23 2,82 3,02 0,21 

Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 48 kDa subunit DDOST 3,02 2,98 3,00 0,02 

Signal peptidase complex subunit 2 SPCS2 2,99   2,99   

Reticulon RTN3 2,95 2,97 2,96 0,01 

NADPH--cytochrome P450 reductase POR;DKFZp686G04235 2,95 2,90 2,93 0,02 

Thioredoxin-related transmembrane protein 1 TMX1;TXNDC 3,28 2,52 2,90 0,38 

Fatty aldehyde dehydrogenase DKFZp686E23276;ALDH3A2 2,89   2,89   

Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 ATP2A2 2,79 2,83 2,81 0,02 

Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1 RPN1 2,86 2,66 2,76 0,10 

Aspartyl/asparaginyl beta-hydroxylase ASPH 2,71   2,71   

Lanosterol 14-alpha demethylase CYP51A1 2,68 2,64 2,66 0,02 

AP-1 complex subunit beta-1 AP1B1 2,71 2,54 2,62 0,08 

Leucine-rich repeat and calponin homology domain-containing protein 4 LRCH4 1,88 3,31 2,60 0,71 

Protein disulfide-isomerase;Protein disulfide-isomerase A3 HEL-S-269;PDIA3 2,27 2,91 2,59 0,32 

Protein disulfide-isomerase A6 PDIA6 2,85 2,08 2,47 0,38 

ADP-ribosylation factor 4 ARF4 2,41 2,49 2,45 0,04 

AP-1 complex subunit mu-1 AP1M1 2,20 2,64 2,42 0,22 

Immediate early response 3-interacting protein 1 IER3IP1 3,36 1,45 2,41 0,96 

Sarcolemmal membrane-associated protein SLMAP 2,39   2,39   

Glucosidase 2 subunit beta PRKCSH 2,27   2,27   

78 kDa glucose-regulated protein HEL-S-89n;HSPA5 2,29 2,22 2,25 0,04 

Probable glutathione peroxidase 8 GPX8 2,70 1,66 2,18 0,52 

Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 PLOD2 2,60 1,75 2,18 0,43 

Emerin EMD 2,71 1,64 2,17 0,53 

AP-1 complex subunit gamma-1 AP1G1 2,16   2,16   

Calreticulin HEL-S-99n;CALR 2,14   2,14   

Endoplasmin TRA1;HEL-S-125m;HSP90B1 2,29 1,90 2,09 0,19 

Glutathione peroxidase GPX8 2,09 2,09 2,09 0,00 

Transmembrane emp24 domain-containing protein 5 TMED5 2,50 1,57 2,03 0,46 

Aladin AAAS 1,97 2,07 2,02 0,05 
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Table 2: Proteins Enriched by GTPγS in the COPI Vesicle Fraction in the Presence of Cytosol 

List of proteins enriched in the COPI vesicle fraction yielded with GTPγS compared to GTP, both in the presence of cytosol. Experiments were in general performed according to Fig. 2.5. Vesicles 

were made from HeLa cells with CMγ1ζ1 and Arf1 in the presence of labeled/unlabeled cytosol with either GTP or GTPγS. Given are gene and protein names of the identified proteins, the SILAC 

ratios (H/L or L/H) from each experiment, the mean SILAC ratio, and standard error of the mean (SEM). Displayed are protein with mean SILAC ratios >2 or with a SILAC ratio >2 observed within 

the experiment in which the GTPγS vesicle sample was heavy labeled (written in italic in the Mean SILAC ratio column). 

 

Since the majority of proteins enriched in GTPγS vesicles were transmembrane proteins, which with high fidelity did not originate from the cytosol (Fig. 2.7A), 

the possibility was explored that the non-hydrolysable GTP analog had lead to the release of membranes from SIC. To this end, the experiment outlined above 

was performed this time omitting coatomer in both, the GTP and the GTPγS reconstitution. As can be seen in table 3, a large number of the proteins enriched in 

the original experiments (with CM) were also enriched in these samples, e.g. atlastins, reticulons, and many other mostly ER resident transmembrane proteins 

(Tab. 3). 

 

Protein.names Gene.names ratio 1 (H/L) ratio 2 (H/L) 
Mean SILAC 

ratio 
SEM 

Catalase CAT 6,77   6,77   

Atlastin-2 ATL2 4,00 4,82 4,41 0,41 

NADPH--cytochrome P450 reductase POR;DKFZp686G04235 3,53   3,53   

Extended synaptotagmin-2 ESYT2 3,75 3,25 3,50 0,25 

Atlastin-3 ATL3 3,37 3,47 3,42 0,05 

Vesicle-associated membrane protein-associated protein B/C VAPB   3,24 3,24   

PRA1 family protein 2 PRAF2   3,24 3,24   

Receptor expression-enhancing protein;Receptor expression-enhancing protein 5 REEP5 3,13 3,25 3,19 0,06 

Reticulon;Reticulon-3 RTN3 3,12 3,20 3,16 0,04 

ADP-ribosylation factor-like protein 6-interacting protein 1 hCG_1994130;ARL6IP1 3,12 3,15 3,13 0,02 

Extended synaptotagmin-1 FAM62A;ESYT1 3,00 3,25 3,12 0,13 

Calnexin CANX 3,07 3,16 3,12 0,04 

Reticulon;Reticulon-1 RTN1 3,09   3,09   

Reticulon-4 RTN4 3,06 3,07 3,06 0,01 

B-cell receptor-associated protein 31 BCAP31 2,84 3,16 3,00 0,16 
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Protein.names Gene.names ratio 1 (H/L) ratio 2 (H/L) 
Mean SILAC 

ratio 
SEM 

Vesicle-associated membrane protein-associated protein A VAPA 2,79 3,19 2,99 0,20 

Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating NSDHL   2,93 2,93   

PRA1 family protein 3 ARL6IP5 2,83 3,02 2,92 0,10 

Membrane-associated progesterone receptor component 1 PGRMC1 2,90 2,81 2,86 0,04 

Protein FAM134C FAM134C 2,49 3,15 2,82 0,33 

Epoxide hydrolase 1 EPHX1 2,77 2,70 2,73 0,03 

Leucine-rich repeat and calponin homology domain-containing protein 4 LRCH4 2,48 2,88 2,68 0,20 

Retinol dehydrogenase 11 RDH11 3,15 2,11 2,63 0,52 

Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1 RPN1 2,49 2,75 2,62 0,13 

Membrane-associated progesterone receptor component 2 PGRMC2 2,54 2,64 2,59 0,05 

Long-chain-fatty-acid--CoA ligase 3 ACSL3 2,37   2,37   

Terpene cyclase/mutase family member;Lanosterol synthase LSS 2,36   2,36   

Protein disulfide-isomerase;Protein disulfide-isomerase A3 HEL-S-269;PDIA3 2,28 2,30 2,29 0,01 

Transmembrane protein 33 TMEM33;SHINC3 2,26   2,26   

Sarcoplasmic/endoplasmic reticulum calcium ATPase 2;Calcium-transporting 
ATPase;Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 

ATP2A2;DKFZp779O2152;DK
FZp779G2251;ATP2A1 2,25   2,25   

NADH-cytochrome b5 reductase;NADH-cytochrome b5 reductase 3;NADH-cytochrome b5 
reductase 3 membrane-bound form;NADH-cytochrome b5 reductase 3 soluble form CYB5R3   2,23 2,23   

AP-1 complex subunit mu-1 AP1M1 2,13 2,30 2,22 0,09 

78 kDa glucose-regulated protein HEL-S-89n;HSPA5 2,12 2,17 2,15 0,02 

Translocon-associated protein subunit delta SSR4   2,11 2,11   

AP-1 complex subunit gamma-1 AP1G1 1,97 2,21 2,09 0,12 

Minor histocompatibility antigen H13 HM13   2,07 2,07   

Vesicle transport protein GOT1B GOLT1B 2,07 2,06 2,07 0,01 

Serpin H1 SERPINH1 1,84 2,19 2,02 0,17 

Table 3: Proteins Enriched by GTPγS in the COPI Vesicle Fraction in the Absence of Recombinant Coatomer 

List of proteins enriched in the COPI vesicle fraction when SIC were incubated with GTPγS, Arf1, and cytosol compared to GTP, Arf1, and cytosol. Coatomer was omitted in contrast to the 

experiments shown in table 2. Experiments were in general performed according to Fig. 2.5. Unlike in the other experiments, labels were not switched. Given are gene and protein names of the 

identified proteins, the SILAC ratios (H/L) from each experiment, the mean SILAC ratio, and standard error of the mean (SEM). Displayed are proteins with mean SILAC ratios >2 or with a SILAC 

ratio >2 observed during one of the experiments (written in italic in the Mean SILAC ratio column). 
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2.3 The Influence of Coatomer Isoforms on the COPI Core Proteome and 

Vesicle Size 

 

As pointed out in 1.3.3., the function of coatomer isoforms remains largely elusive. One function that 

coat protein isoforms - especially in the COPII system - have been shown to serve is differential 

sorting of pivotal proteins into vesicles (Adolf et al., 2016; Mancias and Goldberg, 2007, 2008). Using 

a baculovirus expression vector system, it has been possible to produce different coatomer isoforms 

recombinantly (Sahlmuller et al., 2011). The protein complexes, which were purified via an 

One-STreP-Tag C-terminal of α-COP, are shown on a Coomassie-stained SDS gel in figure 2.8A. When 

these isoforms are used to reconstitute COPI vesicles in vitro with subsequent Western blot analysis 

of the isotypic COPI vesicles for the presence of COPI core components ERGIC53 and p24, no 

differential sorting can be observed (Fig. 2.8B and C). The mean incorporation of both proteins in 

relation to the used SIC is highly similar ranging in case of ERGIC53 from 3.4 % (CMζ1µ2) to 

3.6 %(CMζ2µ1) and 10.9 % (CMζ1µ1) to 12.2 % (CMζ2µ1) for p24, respectively (Fig. 2.8C). Incorporation 

of non-vesicle marker Calnexin was ≪1% (Fig. 2.7B). 

 

Figure 2.8 Recombinant CM Isoforms: Incorporation of ERGIC53 and p24 into Isotypic COPI Vesicles 

(A) Coomassie-stained SDS gel loaded with recombinant coatomer isoforms. (B) Representative Western blot analysis of 
COPI vesicles reconstituted from SIC HeLa cells using recombinant CM isoforms, Arf1, GTP, and ATP regenerating system 
(ATPr) with 5 µg of SIC loaded as input. Samples were probed for the presence of the proteins indicated on the left. Vesicles 
were isolated via differential centrifugation. (C) Quantification of (B); n=8; error bars=SEM. 
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With our novel COPI proteomics assay, outlined in section 2.1, it was possible to investigate the 

influence of coatomer isoforms on the COPI vesicle protein content not only for two proteins as 

shown in figure 2.8, but systematically for several hundred proteins at once. To this end, following 

the workflow shown in Fig. 2.5, isotypic vesicles were prepared in parallel, purified, and compared by 

SILAC-based quantitative LC-MS. In order to be able to distinguish between the influence of 

individual COPI subunit isoforms, isotypic vesicles were reconstituted with CMζ1µ1 and then 

compared with vesicles made from either CMγ1ζ2 or CMγ2ζ1 coatomer. 

Shown in the scatter plots of figure 2.9 is the comparison of isotypic COPI vesicles, differing with 

respect to the γ-COP subunit. Again, each dot represents a single protein and its respective SILAC 

ratios obtained from two experiments performed with switched isotope labels. Unlike in figure 2.6, 

there is no population of proteins which align to a virtual diagonal, but almost all dots crowd around 

a SILAC ratio of one. While there is virtually no protein that displays a meaningful enrichment in 

vesicles reconstituted with CMγ1ζ1 compared to CMγ2ζ1, very few proteins display slightly increased 

ratios in CMγ2ζ1 vesicles (compare Fig. 2.9A and B). These few proteins, which are marked by color in 

both plots include myosin-9 and myosin-10 (MYH9/10), subunits alpha and beta of the mitochondrial 

ATP synthase (ATP5B/ATP5A1), mitochondrial Hsp60 (HSPD1), as well as Peroxiredoxin-4 PRDX4 

(Fig. 2.9). The highest mean enrichment, 2.4, is scored by ATP5A1. All other proteins display 

enrichments <2. 

 



Results 

49 
 

 

Figure 2.9 Proteomic Comparison of γ-COP-isotypic COPI Vesicles  

(A) Scatter plot of SILAC ratios obtained from two independent experiments performed according to workflow in figure 2.5 

with two types of isotypic COPI vesicles, CMγ1ζ1 versus CMγ2ζ1. Experiments were performed with switched labels. 

Contaminants were removed from the datasets. Some proteins are highlighted in color. (B) Scatter plot of the inverted 

SILAC ratios shown in (A) to compare CMγ2ζ1 versus CMγ1ζ1. The same proteins are highlighted in color. 

 

In table 4, the 25 proteins with the highest enrichment in vesicles made with CMγ1ζ1 compared to 

CMγ2ζ1 are listed. Conversely, table 5 lists the 25 proteins with the highest SILAC ratios during the 

comparison of CMγ2ζ1 versus CMγ1ζ1 vesicles. 
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Protein.names Gene.names 
ratio 1: CMγ1ζ1 
(L) vs. CMγ2ζ1 

(H) 

ratio 2: CMγ1ζ1 
(H) vs. CMγ2ζ1 

(L) 

Mean 
SILAC 
ratio 

SEM 

Thioredoxin domain-containing protein 5 hCG_1811539;TXNDC5;STRF8;DKFZp666I134   1,47 1,47   

Beta-1,3-galactosyltransferase 6 B3GALT6 1,41 1,35 1,38 0,03 

Syntenin-1 SDCBP   1,35 1,35   

Ras-related protein Rab-12 RAB12 1,54 1,14 1,34 0,20 

Glutaminyl-peptide cyclotransferase-like protein QPCTL 1,54 1,13 1,34 0,20 

N-acetylglucosamine-6-sulfatase DKFZp686E12166;GNS 1,79 0,87 1,33 0,46 

Glucosidase 2 subunit beta PRKCSH   1,32 1,32   

CD276 antigen CD276   1,31 1,31   

Molybdate-anion transporter MFSD5   1,31 1,31   

Zinc transporter 7 SLC30A7 1,51 1,08 1,29 0,21 

60S ribosomal protein L27 RPL27 1,27 1,28 1,28 0,00 

Carbohydrate sulfotransferase 14 CHST14 1,26 1,29 1,27 0,01 

60S ribosomal protein L13 RPL13 1,34 1,20 1,27 0,07 

Fukutin-related protein FKRP 1,23 1,29 1,26 0,03 

RING finger and transmembrane domain-containing protein 1 RNFT1 1,52 1,00 1,26 0,26 

Aldo-keto reductase family 1 member C1;Aldo-keto reductase family 1 member C2 AKR1C1;AKR1C3;AKR1C2   1,25 1,25   

Receptor-type tyrosine-protein phosphatase F;Protein-tyrosine-phosphatase PTPRF;LAR;DKFZp686B1310   1,25 1,25   

ER lumen protein-retaining receptor;ER lumen protein-retaining receptor 3 KDELR3 1,22 1,27 1,24 0,03 

Integrin beta;Integrin beta-5 ITGB5 1,27 1,22 1,24 0,02 

Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 GNB2   1,22 1,22   

Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 3 B3GAT3 1,18 1,25 1,22 0,04 

Chondroitin sulfate synthase 1 CHSY1   1,21 1,21   

Nucleoporin NDC1 NDC1 1,32 1,08 1,20 0,12 

Alpha-1,6-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase MGAT2 1,23 1,17 1,20 0,03 

Gamma-glutamyl hydrolase GGH 1,75 0,64 1,20 0,55 

Table 4: Proteomic Comparison of COPI Vesicles: CMγ1ζ1 versus CMγ2ζ1 

List of the 25 proteins most enriched in the COPI vesicle made with CMγ1ζ1 in comparison to CMγ2ζ1. Vesicles were always reconstituted with Arf1 and GTP. Experiments were in general 

performed according to Fig. 2.5. Given are gene and protein names of the identified proteins, the SILAC ratios (H/L and L/H) from each replicate, the mean SILAC ratio, and standard error of the 

mean (SEM). Displayed are the 25 proteins with the highest mean SILAC ratios and the proteins with the highest SILAC ratios during the experiment in which the CMγ1ζ1 vesicle sample was labeled 

with heavy isotopes (written in italic in the Mean SILAC ratio column). 
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Protein.names Gene.names 
ratio 1: 

CMγ2ζ1 (H) vs. 
CMγ1ζ1 (L) 

ratio 2: 
CMγ2ζ1 (L) vs. 

CMγ1ζ1 (H) 

Mean 
SILAC 
ratio 

SEM 

ATP synthase subunit alpha;ATP synthase subunit alpha, mitochondrial HEL-S-123m;ATP5A1 3,62 1,09 2,36 1,27 

60 kDa heat shock protein, mitochondrial HSPD1 1,85 1,83 1,84 0,01 

ATP synthase subunit beta;ATP synthase subunit beta, mitochondrial HEL-S-271;ATP5B 2,05 1,56 1,81 0,25 

Alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase B MGAT4B 2,77 0,73 1,75 1,02 

Peroxiredoxin-4 HEL-S-97n;PRDX4 2,32 1,10 1,71 0,61 

Myosin regulatory light chain 12A;Myosin regulatory light chain 12B;Myosin regulatory light 
polypeptide 9 MYL12A;MYL12B;MYL9 1,69   1,69   

Myosin-9 MYH9 2,05 1,27 1,66 0,39 

Myosin-10 MYH10 1,76 1,18 1,47 0,29 

Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 ATP2A2 1,18 1,54 1,36 0,18 

Endoplasmin TRA1;HEL-S-125m;HSP90B1 1,37 1,34 1,35 0,01 

Na(+)/H(+) exchange regulatory cofactor NHE-RF2 SLC9A3R2 1,34   1,34   

DnaJ homolog subfamily C member 13 DNAJC13 1,28 1,36 1,32 0,04 

Calreticulin HEL-S-99n;CALR 1,28 1,32 1,30 0,02 

Roundabout homolog 1 ROBO1 1,17 1,41 1,29 0,12 

Zinc transporter 1 SLC30A1 1,29   1,29   

Membrane-associated progesterone receptor component 2 PGRMC2 1,41 1,13 1,27 0,14 

Alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase A MGAT5 0,95 1,58 1,26 0,32 

Glycosyltransferase 8 domain-containing protein 2 GLT8D2 1,63 0,90 1,26 0,36 

Calnexin CANX 1,23 1,29 1,26 0,03 

Phosphatidylinositol 4-phosphate 5-kinase type-1 alpha;Putative PIP5K1A and PSMD4-like protein PIP5K1A;PIPSL 1,41 1,11 1,26 0,15 

NADPH--cytochrome P450 reductase POR;DKFZp686G04235 1,17 1,31 1,24 0,07 

Myosin light polypeptide 6 MYL6 1,51 0,95 1,23 0,28 

Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 PLOD2 1,28 1,18 1,23 0,05 

Interferon-induced transmembrane protein 3;Interferon-induced transmembrane protein 
1;Interferon-induced transmembrane protein 2 IFITM3;IFITM2;IFITM1 1,09 1,37 1,23 0,14 

Putative sodium-coupled neutral amino acid transporter 10 SLC38A10 1,34 1,11 1,23 0,12 

Table 5: Proteomic Comparison of COPI Vesicles: CMγ2ζ1 versus CMγ1ζ1 

List of the 25 proteins most enriched in the COPI vesicle made with CMγ2ζ1 in comparison to CMγ1ζ1. Vesicles were always reconstituted with Arf1 and GTP. Experiments were in general 

performed according to Fig. 2.5. Given are gene and protein names of the identified proteins, the SILAC ratios (H/L and L/H) from each replicate, the mean SILAC ratio, and standard error of the 

mean (SEM). Displayed are the 25 proteins with the highest mean SILAC ratios and the proteins with the highest SILAC ratios during the experiment in which the CMγ2ζ1 vesicle sample was labeled 

with heavy isotopes (written in italic in the Mean SILAC ratio column). 
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As mentioned above, also COPI vesicles formed in vitro with different isoforms of ζ-COP were 

compared systematically by means of SILAC proteomics. The results are shown in figure 2.10. Similar 

to the comparison of γ-COP-isotypic vesicles, almost all proteins display rather low SILAC ratios. A 

few of the higher scoring proteins are highlighted in color (Fig. 2.10). In case of ζ2-COP, there is only 

one protein which shows a significant mean enrichment, the monocarboxylate transporter 1 

(SLC16A1). However, as can be seen in Fig. 2.10B, its SILAC scores are rather divergent, i.e. 6.1 and 

1.4. In vesicles made with ζ1-COP, no protein showed an enrichment >2. The proteins with the 

highest SILAC ratios, ranging from 1.5-1.7 are the glycosyltransferase POMGNT1, 

palymitoyltransferase ZDHHC13, the nonaspanin TM9SF1, and trophoblast glycoprotein TPBG 

(Fig. 2.10). 

 



Results 

53 
 

 

Figure 2.10 Proteomic Comparison of ζ-COP-isotypic COPI Vesicles 

(A) Scatter plot of SILAC ratios obtained from two independent experiments performed according to workflow in figure 2.5 

with two types of isotypic COPI vesicles, CMγ1ζ1 versus CMγ1ζ2. Experiments were performed with switched labels. 

Contaminants were removed from the datasets. Some proteins are highlighted in color. (B) Scatter plot of the inverted 

SILAC ratios shown in (A) to compare CMγ1ζ2 versus CMγ1ζ1. The same proteins are highlighted in color. 

 

Table 6 and table 7 list the 25 proteins with the highest SILAC ratios in direct comparisons of CMγ1ζ1 

versus CMγ1ζ2 vesicles (Tab. 6) or CMγ1ζ2 versus CMγ1ζ1 vesicles (Tab. 7). 
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Protein.names Gene.names 
ratio 1: CMγ1ζ1 

(L) vs. CMγ1ζ2 (H) 
ratio 2: CMγ1ζ1 

(H) vs. CMγ1ζ2 (L) 

Mean 
SILAC 
ratio 

SEM 

Transmembrane 9 superfamily member 1 TM9SF1 1,94 1,49 1,72 0,22 

Immediate early response 3-interacting protein 1 IER3IP1   1,66 1,66   

Protein O-linked-mannose beta-1,2-N-acetylglucosaminyltransferase 1 POMGNT1 1,94 1,27 1,61 0,34 

Palmitoyltransferase ZDHHC13;Palmitoyltransferase ZDHHC13 1,88 1,28 1,58 0,30 

Trophoblast glycoprotein TPBG 1,64 1,44 1,54 0,10 

Cytochrome b561 domain-containing protein 2 CYB561D2   1,54 1,54   

Transmembrane 9 superfamily member 3 TM9SF3;SMBP 1,69 1,32 1,51 0,18 

Endoplasmic reticulum mannosyl-oligosaccharide 1,2-alpha-mannosidase;alpha-1,2-Mannosidase MAN1B1 1,59 1,42 1,50 0,08 

Mannosyl-oligosaccharide 1,2-alpha-mannosidase IB MAN1A2 1,73 1,25 1,49 0,24 

Adipocyte plasma membrane-associated protein APMAP 1,51 1,45 1,48 0,03 

Chondroitin sulfate synthase 2 CHPF 1,49 1,43 1,46 0,03 

Protein GPR107 GPR107 1,48 1,44 1,46 0,02 

Phosphatidylcholine:ceramide cholinephosphotransferase 1 TMEM23;SGMS1   1,45 1,45   

Solute carrier family 35 member E1 SLC35E1 1,35 1,54 1,44 0,10 

40S ribosomal protein S8 RPS8 1,68 1,20 1,44 0,24 

Protein CASP;Homeobox protein cut-like 1 
CUX1;Nbla10317;CU
X1-RETc;CUX1-RETa 1,54 1,35 1,44 0,10 

Glycosyltransferase 8 domain-containing protein 2 GLT8D2 1,59 1,29 1,44 0,15 

Polypeptide N-acetylgalactosaminyltransferase;Polypeptide N-acetylgalactosaminyltransferase 
1;Polypeptide N-acetylgalactosaminyltransferase 1 soluble form GALNT1 1,60 1,27 1,43 0,16 

Alpha-1,6-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase MGAT2 1,54 1,32 1,43 0,11 

Protein YIPF3;Protein YIPF3, 36 kDa form III;Protein YIPF YIPF3 1,40 1,46 1,43 0,03 

UDP-glucuronic acid decarboxylase 1 UXS1 1,61 1,24 1,42 0,18 

Alpha-1,3-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase MGAT1 1,69 1,14 1,41 0,27 

Transmembrane protein 165 TMEM165 1,42 1,40 1,41 0,01 

Transmembrane 9 superfamily member 4 TM9SF4 1,64 1,17 1,41 0,23 

60S ribosomal protein L21 RPL21 1,60 1,22 1,41 0,19 

Table 6: Proteomic Comparison of COPI Vesicles: CMγ1ζ1 versus CMγ1ζ2 

List of the 25 proteins most enriched in the COPI vesicle made with CMγ1ζ1 in comparison to CMγ1ζ2. Vesicles were always reconstituted with Arf1 and GTP. Experiments were in general 

performed according to Fig. 2.5. Given are gene and protein names of the identified proteins, the SILAC ratios (H/L and L/H) from each replicate, the mean SILAC ratio, and standard error of the 

mean (SEM). Displayed are the 25 proteins with the highest mean SILAC ratios and the proteins with the highest SILAC ratios during the experiment in which the CMγ2ζ1 vesicle sample was labeled 

with heavy isotopes (written in italic in the Mean SILAC ratio column). 
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Protein.names Gene.names 
ratio 1: CMγ1ζ2 

(H) vs. CMγ1ζ1 (L) 
ratio 2: CMγ1ζ2 

(L) vs. CMγ1ζ1 (H) 

Mean 
SILAC 
ratio 

SEM 

Monocarboxylate transporter 1 SLC16A1 6,13 1,37 3,75 2,38 

Rab-like protein 3 RABL3 1,71   1,71   

Roundabout homolog 1 ROBO1 1,57 1,61 1,59 0,02 

Talin-1 TLN1 0,72 2,47 1,59 0,88 

Moesin HEL70;MSN 0,75 2,40 1,58 0,82 

Synaptophysin-like protein 1 SYPL1 1,54   1,54   

Ezrin;Tyrosine-protein kinase receptor EZR;HEL-S-105;EZR-ROS1 0,75 2,30 1,53 0,77 

Reticulon RTN3 1,52   1,52   

Ras GTPase-activating-like protein IQGAP1 IQGAP1;hCG_1991735 1,52   1,52   

Golgi-associated plant pathogenesis-related protein 1 GLIPR2;C9orf19 1,49   1,49   

Prolow-density lipoprotein receptor-related protein 1;Low-density lipoprotein receptor-related 
protein 1 85 kDa subunit;Low-density lipoprotein receptor-related protein 1 515 kDa 
subunit;Low-density lipoprotein receptor-related protein 1 intracellular domain LRP1 1,48   1,48   

40S ribosomal protein SA RPSA;LOC388524 1,23 1,72 1,48 0,24 

Plexin-B2 PLXNB2 1,27 1,68 1,47 0,20 

Tubulin beta chain TUBB;XTP3TPATP1 0,64 2,29 1,46 0,83 

Long-chain-fatty-acid--CoA ligase 3 ACSL3 0,91 2,01 1,46 0,55 

B-cell receptor-associated protein 31 BCAP31 1,15 1,75 1,45 0,30 

Phosphatidylinositol 4-kinase type 2-alpha PI4K2A 1,38 1,50 1,44 0,06 

Fermitin family homolog 2 PLEKHC1;FERMT2 1,00 1,88 1,44 0,44 

Brain acid soluble protein 1 BASP1 0,97 1,90 1,43 0,46 

Copper-transporting ATPase 1 ATP7A 1,42   1,42   

Coatomer subunit epsilon COPE 1,41   1,41   

Polyadenylate-binding protein;Polyadenylate-binding protein 1 PABPC1 1,20 1,61 1,41 0,20 

Pyruvate kinase;Pyruvate kinase PKM HEL-S-30;PKM;PKM2 0,96 1,85 1,40 0,44 

Heterogeneous nuclear ribonucleoprotein M HNRNPM;ORF;HNRPM 1,37 1,43 1,40 0,03 

60S ribosomal protein L18 RPL18 1,40   1,40   

 

Table 7: Proteomic Comparison of COPI Vesicles: CMγ1ζ2 versus CMγ1ζ2 

List of the 25 proteins most enriched in the COPI vesicle made with CMγ1ζ2 in comparison to CMγ1ζ1. Vesicles were always reconstituted with Arf1 and GTP. Experiments were in general 

performed according to Fig. 2.5. Given are gene and protein names of the identified proteins, the SILAC ratios (H/L and L/H) from each replicate, the mean SILAC ratio, and standard error of the 

mean (SEM). Displayed are the 25 proteins with the highest mean SILAC ratios and the proteins with the highest SILAC ratios during the experiment in which the CMγ2ζ1 vesicle sample was labeled 

with heavy isotopes (written in italic in the Mean SILAC ratio column). 
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Since the COPI coat, unlike the COPII or CCV coat, does not have an outer scaffold layer but is 

recruited en bloc, the size of a vesicle likely is dictated by coatomer. Therefore, we decided to 

investigate a putative role of CM isoforms in controlling the size of COPI vesicles. To this end, a set of 

pre-existing negative stain EM images of isotypic COPI vesicles prepared from rat liver Golgi was 

systematically analyzed. The image quality for all samples was comparable, as can be seen from the 

examples shown in figure 2.11A-D. In addition to isotypic vesicles (Fig. 2.11B-D), vesicles prepared 

with rat coatomer (Fig. 2.11A), which represents a physiological mixture of the isoforms, was 

included in the analysis. 

To determine the size of vesicles, we used a semi-automated segmentation approach, which is 

described in detail in the Methods section. Figure 2.11E shows an example of the vesicle areas that 

are recognized by the software marked in light green color. The extracted areas, without an overlay 

of the original EM image are highlighted in Fig. 2.11F. From these areas, the mean diameters of 

isotypic and rat CM vesicles were calculated (Fig. 2.11G). The mean diameter of all four vesicle types 

was almost identical, ranging from 73.4 nm to 74.4 nm. Also the standard deviations (SD) were in the 

same range between 7.7 and 8.9 nm (Fig. 2.11G). 
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Figure 2.11 Size Comparison of Isotypic COPI Vesicles 

(A-D) Representative negative stain EM images of COPI vesicles reconstituted from rat liver Golgi with either a single CM 

isoform or an endogenous mixture (rat CM). (E) Example of software-based vesicle area recognition. The areas recognized 

are colored light green. (F) Picture highlighting the areas recognized in (E) without overlay of the original EM image. (G) 

Summary of the vesicle size determination. Mean diameters, standard deviations (SD), and sample sizes are given. 

 

2.4 Influence of Arf Isoforms on COPI Vesicle Biogenesis 

 

As pointed out in the Introduction (1.3.3.), coatomer is not the only COPI biogenesis factor which 

exists as various isotypes. There are in total six isoforms of Arf, five of which are present in humans. 

In a previous study, performed in our lab, these five isoforms have been studied with regard to their 

ability to participate in COPI vesicle biogenesis (Popoff et al., 2011b). All human Arfs, except Arf6 
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were shown to be able to form COPI vesicles from rat liver Golgi. In order to investigate a possible 

role of the small GTPases in cargo sorting, all isoforms were cloned into a new plasmid so to be able 

to express them according to our latest, highly efficient expression protocol used for Arf1 (see 

Materials and Methods). Figure 2.12A shows a Coomassie-stained SDS gel with all five human Arf 

isoforms. As can be seen, all proteins could be purified with a low level of contaminating proteins. 

Moreover, for all Arfs only one distinct band can be observed which argues for a high degree of 

myristoylation of the proteins (Fig. 2.12A). This is further confirmed by the fact that in initial 

reconstitution experiments with SIC all isoforms except for Arf6 were able to produce COPI vesicles 

as deduced from the strongly increased GTP-dependent release of marker proteins ERGIC53 and p24 

(Fig. 2.12B). Noteworthy, Arf3 seemed to be less capable of producing vesicles compared to all other 

Arf isoforms (Fig. 2.12B). 

 

Figure 2.12 Recombinant Arf Isoforms: Ability to Form COPI Vesicles 

(A) Coomassie-stained SDS gel loaded with recombinant Arf isoforms. (B) Representative Western blot analysis of a COPI 

vesicles reconstituted from SIC HeLa using recombinant CM, Arf1 isoforms, GTP, and ATP regenerating system (ATPr) with 5 

µg of SIC loaded as input. Samples were probed for the presence of the proteins on the left. Vesicles were isolated via 

differential centrifugation. 

 

In order to obtain a deeper insight into the protein content of COPI vesicles formed with the different 

isoforms of Arf, the vesicle proteomics workflow outlined in section 2.1 was employed. Vesicles were 

produced from heavy and light semi-intact HeLa cells and compared to a light or heavy mock reaction 

lacking only coatomer. As can be told from the scatter plots of these experiments, presented in 

figure 2.13A-C, highly correlative datasets could be obtained in all six experiments (Fig. 2.13A-C). This 

is reflected by high R2 values of 0.87, 0.89, and 0.81 for experiments with Arf3, Arf4, and Arf5, 

respectively. Also here, some of the highest scoring proteins are highlighted with color. Several 

members of the p24/TMED family, nucleobindin 1, and ER cycling proteins ERGIC53 and ERGIC2/3 

are among the proteins with the highest SILAC ratios. Moreover, the proteins YIF1A and ERP44, both 
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of which are also ~sixfold enriched in the COPI proteome obtained with Arf1, exhibit high SILAC 

scores (Fig. 2.13A-C). 
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Figure 2.13 The Proteome of COPI Vesicles Made with Different Isoforms of Arf 

(A-C) Scatter plot of SILAC ratios obtained from two independent experiments performed according to figure 2.5, with 

various isoforms of Arf, as indicated above the plots. Experiments were performed with switched labels. Contaminants 

were removed from the datasets. Some proteins/protein families are highlighted in color. R
2
 values of the datasets are 0.87 

(A), 0.89 (B), and 0.81 (C). 

 

A comparison of the scatter plot in Fig. 2.6 and the plots shown in figure 2.13 reveals that less 

peptides and therefore proteins could be identified during the LC-MS runs of COPI samples obtained 

with Arf4 and Arf5, least with Arf3. Hence, less proteins fulfill the criterion of being twofold enriched 

in either sample, or the sample in which the vesicle fraction carried the isotope label. These criteria 

are met by only 25 proteins of the Arf3 datasets, 50 proteins in the datasets obtained with Arf4, and 

55 proteins in the datasets produced with Arf5. The vast majority of these proteins are found among 

the 122 best COPI proteome candidates mentioned earlier. The strong overlap between all COPI 

proteomic datasets obtained for different Arf isoforms is visualized by the Venn diagram shown in 

figure 2.14A. Except for eight candidates, all others appear in multiple datasets. Twenty candidates 

are shared between all four datasets, and they are listed in Fig. 2.14B. Among those candidates are 

five members of the p24/TMED, ER-Golgi cycling proteins such as ERGIC1 and 2, ERGIC53/LMAN1, or 

SURF4 and GOLT1B. Also NUCB1 and the SNAREs Sec22b and Stx5 are universally found (Fig. 2.14B). 
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Figure 2.14 Proteomic Comparison of COPI Reconstituted with Different Arf Isoforms 

(A) Venn diagram to visualized the overlap of proteins found twofold enriched in COPI proteomic datasets obtained with 

different isoforms of Arf. Numbers indicate the number of proteins shared between the various datasets. (B) List of the 20 

proteins that fulfill the COPI candidate criteria in all four datasets. Given are full protein and gene names. 

 

In the following tables 8-10 (Arf3, Arf4, Arf5) all candidates which are compared in the Venn diagram 

of Fig. 2.14A are listed more thoroughly. 
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Protein.names Gene.names ratio 1 (H/L) ratio 2 (L/H) Mean SILAC ratio SEM 
Transmembrane emp24 domain-containing protein 9 TMED9 4,48 5,19 4,84 0,35 

Endoplasmic reticulum-Golgi intermediate compartment protein 3 ERGIC3 5,19 4,17 4,68 0,51 

Nucleobindin-1 NUCB1 4,75 4,17 4,46 0,29 

Transmembrane emp24 domain-containing protein 10 TMED10 4,47 4,13 4,30 0,17 

Endoplasmic reticulum resident protein 44 ERP44 4,12 4,46 4,29 0,17 

Protein ERGIC-53 LMAN1 3,85 4,59 4,22 0,37 

Transmembrane emp24 domain-containing protein 2 RNP24;TMED2 4,19 3,67 3,93 0,26 

Transmembrane emp24 domain-containing protein 4 TMED4 3,32 3,70 3,51 0,19 

Transmembrane emp24 domain-containing protein 7 TMED7;TMED7-TICAM2 3,46   3,46   

Vesicular integral-membrane protein VIP36 LMAN2 3,22 3,68 3,45 0,23 

Surfeit locus protein 4 SURF4 3,54 3,09 3,31 0,23 

Vesicle-trafficking protein SEC22b SEC22B 2,98 3,37 3,17 0,19 

Endoplasmic reticulum-Golgi intermediate compartment protein 2 ERGIC2 2,82   2,82   

Solute carrier family 35 member E1 SLC35E1 2,48 3,07 2,78 0,29 

Zinc transporter 7 SLC30A7 2,72   2,72   

Vesicle transport protein GOT1B GOLT1B 2,39 2,80 2,59 0,20 

Immediate early response 3-interacting protein 1 IER3IP1 2,53   2,53   

Protein cornichon homolog 4 CNIH4 2,51   2,51   

Protein YIF1B YIF1B 2,36 2,54 2,45 0,09 

Syntaxin-5 STX5;STX5A 2,28 2,60 2,44 0,16 

Clusterin;Clusterin beta chain;Clusterin alpha chain;Clusterin CLU 1,67 3,05 2,36 0,69 

Endoplasmic reticulum-Golgi intermediate compartment protein 1 ERGIC1 2,38 2,27 2,33 0,06 

Ras-related protein Rab-18 RAB18 2,15 2,03 2,09 0,06 

Zinc finger protein-like 1 ZFPL1 2,04   2,04   

PRA1 family protein 2 PRAF2 2,01   2,01   

Table 8: Candidate Proteins for the Core Proteome of COPI Vesicles Reconstituted with Arf3 

List of candidates for the COPI core proteome from HeLa cells as determined by two independent experiments performed according to Fig. 2.5. CMγ1ζ1, Arf3, and GTP were used for all 

reconstitutions. Given are gene and protein names of the identified proteins, the SILAC ratios (H/L or L/H) from each experiment, the mean SILAC ratio, and standard error of the mean (SEM). 

Displayed are protein with mean SILAC ratios >2 or with a SILAC ratio >2 in one of the two experiments in which the vesicle sample was labeled with heavy isotopes (written in italic in the Mean 

SILAC ratio column). 
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Protein.names Gene.names ratio 1 (H/L) ratio 2 (L/H) Mean SILAC ratio SEM 
Endoplasmic reticulum-Golgi intermediate compartment protein 3 ERGIC3 9,48 6,64 8,06 1,42 

Endoplasmic reticulum-Golgi intermediate compartment protein 2 ERGIC2 9,59 6,11 7,85 1,74 

Zinc transporter 7 SLC30A7 7,65   7,65   

Nucleobindin-1 NUCB1 8,22 6,39 7,31 0,92 

Transmembrane emp24 domain-containing protein 7 TMED7;TMED7-TICAM2 8,50 6,10 7,30 1,20 

Transmembrane emp24 domain-containing protein 10 TMED10 8,00 6,55 7,27 0,73 

Transmembrane emp24 domain-containing protein 9 TMED9 8,14 6,08 7,11 1,03 

Protein ERGIC-53 LMAN1 7,09 7,02 7,06 0,03 

Zinc finger protein-like 1 ZFPL1 6,85   6,85   

Transmembrane emp24 domain-containing protein 4 TMED4 6,77 6,28 6,52 0,25 

Solute carrier family 35 member E1 SLC35E1 7,59 4,91 6,25 1,34 

Calumenin CALU 5,83   5,83   

Endoplasmic reticulum resident protein 44 ERP44 5,48 6,09 5,79 0,30 

Transmembrane emp24 domain-containing protein 2 RNP24;TMED2 6,94 4,30 5,62 1,32 

Transmembrane emp24 domain-containing protein 1 TMED1 7,45 3,62 5,54 1,92 

Vesicular integral-membrane protein VIP36 LMAN2 5,61 5,05 5,33 0,28 

Protein YIF1A YIF1A 5,82 4,79 5,31 0,51 

Protein cornichon homolog 4 CNIH4 5,05   5,05   

Protein RER1 RER1 5,31 4,63 4,97 0,34 

Protein YIPF;Protein YIPF5 YIPF5 4,81 5,00 4,91 0,10 

Surfeit locus protein 4 SURF4 4,45 5,02 4,74 0,28 

VIP36-like protein LMAN2L 4,71   4,71   

Nucleobindin-2;Nesfatin-1 HEL-S-109;NUCB2;Nucb2 4,38 5,00 4,69 0,31 

Vesicle-trafficking protein SEC22b SEC22B 4,84 4,15 4,50 0,35 

Clusterin;Clusterin beta chain;Clusterin alpha chain;Clusterin CLU 4,25 4,35 4,30 0,05 

Vesicle transport protein GOT1B GOLT1B 4,04 4,40 4,22 0,18 

Protein kish-A TMEM167A 3,97   3,97   

Transmembrane emp24 domain-containing protein 3 TMED3 3,92   3,92   

BET1 homolog BET1;DKFZp781C0425 3,83   3,83   

Immediate early response 3-interacting protein 1 IER3IP1 4,01 3,41 3,71 0,30 

Protein YIF1B YIF1B 3,92 3,49 3,70 0,22 

Endoplasmic reticulum-Golgi intermediate compartment protein 1 ERGIC1 3,43 3,88 3,66 0,23 

Serpin H1 SERPINH1 3,55 3,05 3,30 0,25 

Golgi SNAP receptor complex member 2 GOSR2 2,15 4,20 3,18 1,03 

PRA1 family protein 2 PRAF2 3,17   3,17   

45 kDa calcium-binding protein SDF4 3,32 2,92 3,12 0,20 

ER lumen protein-retaining receptor;ER lumen protein-retaining receptor 2 KDELR2 3,52 2,65 3,08 0,43 

Syntaxin-5 STX5;STX5A 3,03 3,12 3,07 0,05 
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Protein.names Gene.names ratio 1 (H/L) ratio 2 (L/H) Mean SILAC ratio SEM 
Ras-related protein Rab-18 RAB18 2,85 2,78 2,81 0,04 

Ras-related protein Rab-2A RAB2;RAB2A 2,49 2,79 2,64 0,15 

Transmembrane 9 superfamily member 3 TM9SF3;SMBP 2,17 2,71 2,44 0,27 

Neutral alpha-glucosidase AB HEL-S-164nA;GANAB 2,18 2,53 2,35 0,17 

Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 3 B3GAT3 2,30   2,30   

Protein YIPF4 YIPF4 2,39 2,06 2,22 0,16 

Peptidyl-prolyl cis-trans isomerase;Peptidyl-prolyl cis-trans isomerase B HEL-S-39;PPIB 2,12 2,14 2,13 0,01 

ER lumen protein-retaining receptor 1;ER lumen protein-retaining receptor KDELR1 1,98 2,19 2,09 0,11 

Protein YIPF3;Protein YIPF3, 36 kDa form III;Protein YIPF YIPF3 1,72 2,43 2,07 0,36 

Ras-related protein Rab-1A RAB1A 1,90 2,15 2,02 0,13 

Polypeptide N-acetylgalactosaminyltransferase;Polypeptide N-
acetylgalactosaminyltransferase 1;Polypeptide N-
acetylgalactosaminyltransferase 1 soluble form GALNT1 2,03 2,00 2,01 0,01 

Endoplasmin TRA1;HEL-S-125m;HSP90B1 1,44 2,58 2,01 0,57 

Table 9: Candidate Proteins for the Core Proteome of COPI Vesicles Reconstituted with Arf4 

List of candidates for the COPI core proteome from HeLa cells as determined by two independent experiments performed according to Fig. 2.5. CMγ1ζ1, Arf4, and GTP were used for all 

reconstitutions. Given are gene and protein names of the identified proteins, the SILAC ratios (H/L or L/H) from each experiment, the mean SILAC ratio, and standard error of the mean (SEM). 

Displayed are protein with mean SILAC ratios >2 or with a SILAC ratio >2 in one of the two experiments in which the vesicle sample was labeled with heavy isotopes (written in italic in the Mean 

SILAC ratio column). 

 

Protein.names Gene.names ratio 1 (H/L) ratio 2 (L/H) Mean SILAC ratio SEM 
Transmembrane emp24 domain-containing protein 7 TMED7;TMED7-TICAM2 13,99 6,61 10,30 3,69 

Zinc finger protein-like 1 ZFPL1 9,32   9,32   

Transmembrane emp24 domain-containing protein 10 TMED10 9,70 7,24 8,47 1,23 

Nucleobindin-1 NUCB1 10,47 5,96 8,21 2,26 

Transmembrane emp24 domain-containing protein 9 TMED9 7,76 8,16 7,96 0,20 

Endoplasmic reticulum-Golgi intermediate compartment protein 2 ERGIC2 8,59 5,85 7,22 1,37 

Transmembrane emp24 domain-containing protein 2 RNP24;TMED2 9,12 4,31 6,72 2,40 

Transmembrane emp24 domain-containing protein 4 TMED4 7,24 6,10 6,67 0,57 

Protein YIF1A YIF1A 7,36 5,17 6,26 1,10 

Protein ERGIC-53 LMAN1 6,71 5,45 6,08 0,63 

Transmembrane 9 superfamily member 3 TM9SF3;SMBP 5,83 6,18 6,00 0,17 

Transmembrane emp24 domain-containing protein 1 TMED1 7,13 3,93 5,53 1,60 

45 kDa calcium-binding protein SDF4 4,93 5,86 5,39 0,46 

Vesicular integral-membrane protein VIP36 LMAN2 5,94 4,80 5,37 0,57 
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Protein.names Gene.names ratio 1 (H/L) ratio 2 (L/H) Mean SILAC ratio SEM 
Endoplasmic reticulum resident protein 44 ERP44 5,91 4,64 5,27 0,64 

Vesicle-trafficking protein SEC22b SEC22B 5,17 4,12 4,64 0,52 

Solute carrier family 35 member E1 SLC35E1 4,62   4,62   

Protein YIPF;Protein YIPF5 YIPF5 5,51 3,65 4,58 0,93 

Surfeit locus protein 4 SURF4 5,14 3,97 4,56 0,58 

Endoplasmic reticulum-Golgi intermediate compartment protein 1 ERGIC1 5,07 3,14 4,10 0,97 

Nucleobindin-2;Nesfatin-1 HEL-S-109;NUCB2;Nucb2 3,71 4,38 4,05 0,33 

Polypeptide N-acetylgalactosaminyltransferase;Polypeptide N-
acetylgalactosaminyltransferase 1;Polypeptide N-
acetylgalactosaminyltransferase 1 soluble form GALNT1 4,84 3,16 4,00 0,84 

Clusterin;Clusterin beta chain;Clusterin alpha chain;Clusterin CLU 4,55 3,41 3,98 0,57 

Vesicle transport protein GOT1B GOLT1B 4,23 3,56 3,89 0,34 

Protein YIF1B YIF1B 4,43 2,75 3,59 0,84 

Golgi integral membrane protein 4 GOLIM4 3,70 3,40 3,55 0,15 

Serpin H1 SERPINH1 4,50 2,58 3,54 0,96 

Emerin EMD 3,33   3,33   

Peptidyl-prolyl cis-trans isomerase;Peptidyl-prolyl cis-trans isomerase B HEL-S-39;PPIB 3,80 2,83 3,32 0,48 

UbiA prenyltransferase domain-containing protein 1 UBIAD1 3,31   3,31   

Alpha-1,3-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase MGAT1 2,97 3,61 3,29 0,32 

Protein YIPF3;Protein YIPF3, 36 kDa form III;Protein YIPF YIPF3 2,57 3,35 2,96 0,39 

Polypeptide N-acetylgalactosaminyltransferase 10;Polypeptide N-
acetylgalactosaminyltransferase GALNT10 2,84   2,84   

Probable glutathione peroxidase 8 GPX8 2,87 2,70 2,78 0,09 

Protein RER1 RER1 2,67   2,67   

Transmembrane 9 superfamily member 1 TM9SF1 3,03 2,12 2,58 0,45 

Alpha-mannosidase 2;Alpha-mannosidase MAN2A1 2,23 2,61 2,42 0,19 

Thioredoxin domain-containing protein 5 
hCG_1811539;TXNDC5;STRF8;
DKFZp666I134 1,70 3,10 2,40 0,70 

Golgi SNAP receptor complex member 1 GOSR1 3,21 1,48 2,34 0,87 

Alpha-1,6-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase MGAT2 1,91 2,77 2,34 0,43 

Ras-related protein Rab-18 RAB18 2,79 1,82 2,30 0,49 

Calcium-transporting ATPase;Calcium-transporting ATPase type 2C member 1 ATP2C1 2,58 1,98 2,28 0,30 

78 kDa glucose-regulated protein HEL-S-89n;HSPA5 1,94 2,57 2,25 0,32 

Transmembrane 9 superfamily member 4 TM9SF4 2,40 1,85 2,13 0,27 

Golgin subfamily B member 1 GOLGB1 2,41 1,82 2,12 0,30 

Polypeptide N-acetylgalactosaminyltransferase 2;Polypeptide N-
acetylgalactosaminyltransferase 2 soluble form;Polypeptide N-
acetylgalactosaminyltransferase GALNT2 2,36 1,78 2,07 0,29 
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Protein.names Gene.names ratio 1 (H/L) ratio 2 (L/H) Mean SILAC ratio SEM 
Protein disulfide-isomerase A6 PDIA6 1,62 2,52 2,07 0,45 

Ras-related protein Rab-2A RAB2;RAB2A 2,20 1,91 2,05 0,14 

60S ribosomal protein L13 RPL13 2,03 2,07 2,05 0,02 

Ras-related protein Rab-6B RAB6A;RAB6B 2,02 2,06 2,04 0,02 

N-acetylgalactosaminyltransferase 7 GALNT7 2,28 1,80 2,04 0,24 

Syntaxin-5 STX5;STX5A 1,88 2,18 2,03 0,15 

Inositol monophosphatase 3 IMPAD1 2,02   2,02   

Golgi membrane protein 1 GOLPH2;GOLM1 1,81 2,21 2,01 0,20 

60S ribosomal protein L18 RPL18 1,45 2,54 2,00 0,54 

Table 10: Candidate Proteins for the Core Proteome of COPI Vesicles Reconstituted with Arf5 

List of candidates for the COPI core proteome from HeLa cells as determined by two independent experiments performed according to Fig. 2.5. CMγ1ζ1, Arf5, and GTP were used for all 

reconstitutions. Given are gene and protein names of the identified proteins, the SILAC ratios (H/L or L/H) from each experiment, the mean SILAC ratio, and standard error of the mean (SEM). 

Displayed are protein with mean SILAC ratios >2 or with a SILAC ratio >2 in one of the two experiments in which the vesicle sample was labeled with heavy isotopes (written in italic in the Mean 

SILAC ratio column). 
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2.5 The COPI Core Proteome of HepG2 Cells and Murine Macrophages 

 

Cells of higher organisms are often highly specialized. In order to fulfill a particular function the 

morphology, metabolic activity, protein and lipid composition can deviate strongly between different 

cell types. Hence, after having established a robust COPI proteomics workflow with HeLa cells, we 

decided to apply our strategy to other, specialized cell types. This was done in order to investigate 

whether the cell type specialization is reflected by a divergent composition of COPI vesicles. As 

additional specialized cell types, hepatocellular carcinoma HepG2 cells and immortalized murine 

macrophages (iMΦ) were chosen, as both of them differ functionally from one another and from 

HeLa cells. As for HeLa cells, vesicles were produced from unlabeled and labeled HepG2 cells and 

iMΦ in parallel to a mock reaction without CM. Two experiments, performed with switched labels 

gave rise to the scatter plots shown in figure 2.15. In all four experiments an average of roughly 3500 

peptides and ~600-700 proteins could be identified, which is in the range of what has been 

previously obtained for experiments with HeLa cells. The correlation of the two experiments with 

HepG2 cells, which result in an R2 value of 0.61, was lower than in the same experiment performed 

with HeLa cells(R2=0.7) and iMΦ (R2=0.79), but still decent. Noteworthy, the SILAC ratios obtained 

from experiments with HepG2 were on average lower compared to both HeLa cells and murine 

macrophages (compare Fig. 2.15A with Fig. 2.15B and Fig. 2.6). 

Some of the highest scoring proteins are highlighted with coloring in the scatter plots of figure 2.15. 

Again, multiple members of the p24/TMED protein family and nucleobindin 1/2 are amongst the 

candidates with the highest SILAC ratios. Moreover, the cis-Golgi protein ZFPL1 as well as several 

solute carrier proteins (SLCs) exhibit high ratios. Apart from the zinc transporters SLC30A5/6 

highlighted in the scatter blots of HeLa (Fig. 2.6) and iMΦ (Fig. 2.15B), the putative transporter with 

undefined substrate SLC35E1 and the putative sodium-coupled neutral amino acid transporter 10 

(SLC38A10) show strong enrichment in the COPI vesicle samples. Furthermore, the ER-retrieval 

receptor RER1 and the nonaspanin family member TM9SF3 in case of HepG2 (Fig. 2.15A) and the 

glycosyltransferase GALNT1 as well as the Sulfhydryl oxidase 2 (QSOX2) in the iMΦ datasets 

(Fig. 2.15B) are among the highest scoring proteins. 
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Figure 2.15 The COPI Proteome of HepG2 Cells and Immortalized Murine Macrophages (iMΦ)  

(A-B) Scatter plot of SILAC ratios obtained from two independent experiments performed according to figure 2.5 using 

either SIC HepG2 cells (A) or iMΦ (B) as donor membranes. Experiments were performed with switched labels. 

Contaminants were removed from the datasets. Some proteins/protein families are highlighted in color. R
2
 values of the 

datasets are 0.61 (A) and 0.79 (B). 

 

From a more general perspective, 69 proteins found in the HepG2 datasets and 144 proteins 

identified in the iMΦ COPI proteomic experiments fulfill the criteria of twofold enrichment in both 
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samples or the heavy vesicle sample that had led to our candidate list of the HeLa cell COPI proteome 

of 122 proteins (see 2.1). A comparison of the COPI proteome candidates from all three tested cell 

lines is display in the Venn diagram of Fig. 2.16A. A total of 39 proteins is found in all three datasets 

and listed in Fig. 2.16B. In addition to these ubiquitously identified proteins, 44 proteins are found in 

two of the three datasets. Due to the great overlap between the datasets, only five of the 69 

candidates are uniquely found in the HepG2 COPI proteome. The number of proteins unique to HeLa, 

HepG2, or iMΦ scales with the total number of candidate proteins identified for the respective cell 

line. Hence, roughly one third of the HeLa cell COPI proteome candidates (46 proteins) and slightly 

more than half of the candidates for iMΦ (79 proteins) are found exclusively on the lists of 

candidates for either cell line. 

The list of candidates shared between all three cell lines (Fig. 2.16B) is particularly enriched in ER-

Golgi cycling proteins e.g. six members of the p24/TMED family, ERGIC1/2/3, RER1, SURF4, ERGIC53, 

and KDEL receptor 1. Also ubiquitously found are proteins that serve glycosylation, e.g. B3GAT3, 

CHST14, MAN1A2, MGAT2, or POMGNT1 (Fig. 2.16B). Furthermore, the ER-Golgi SNAREs Sec22b and 

Stx5 as well as other proteins implicated in vesicle targeting and fusion (e.g. Rab18, YIPF3, ZFPL1) 

were found alongside several transporters for calcium (ATP2C1), zinc (SLC30A6/7), or of unknown 

substrate (SLC35E1). These candidates likely constitute the core machinery of a COPI vesicle. 
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Figure 2.16 Proteomic Comparison of COPI Reconstituted from Different Cell Types 

(A) Venn diagram to visualized the overlap of proteins found twofold enriched in COPI proteomic datasets obtained from 

different cell lines used as donor membranes. Numbers indicate the number of proteins shared between the various 

datasets. (B) List of the 39 proteins that fulfill the COPI candidate criteria in all three datasets. Given are full protein and 

gene names. 

 

Complete lists of the 69 candidates for HepG2 cell COPI proteome (Tab. 11) as well as the 144 

candidate identified in iMΦ (Tab. 12) are given below. 
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Protein.names Gene.names ratio 1 (H/L) ratio 2 (L/H) Mean SILAC ratio SEM 
Solute carrier family 35 member E1 SLC35E1 7,03 3,42 5,23 1,80 

Vesicle-trafficking protein SEC22a SEC22A 4,87   4,87   

Zinc finger protein-like 1 ZFPL1 4,43 4,84 4,63 0,20 

Protein RER1 RER1 6,07 3,05 4,56 1,51 

Transmembrane 9 superfamily member 3 TM9SF3;SMBP 3,63 4,27 3,95 0,32 

Endoplasmic reticulum-Golgi intermediate compartment protein 2 ERGIC2 5,43 2,21 3,82 1,61 

Transmembrane emp24 domain-containing protein 9 TMED9 4,87 2,59 3,73 1,14 

Nucleobindin-1 NUCB1 4,42 2,99 3,70 0,72 

Transmembrane emp24 domain-containing protein 1 TMED1 4,72 2,54 3,63 1,09 

cDNA FLJ76981, highly similar to Homo sapiens golgi autoantigen, golgin 
subfamily a, 5 (GOLGA5), mRNA GOLGA5 3,47 3,73 3,60 0,13 

Transmembrane emp24 domain-containing protein 10 TMED10 4,27 2,74 3,51 0,76 

Transmembrane emp24 domain-containing protein 7 TMED7;TMED7-TICAM2 3,70 2,94 3,32 0,38 

Alpha-(1,6)-fucosyltransferase FUT8 3,41 3,15 3,28 0,13 

Endoplasmic reticulum mannosyl-oligosaccharide 1,2-alpha-
mannosidase;alpha-1,2-Mannosidase MAN1B1 2,96 3,48 3,22 0,26 

GPI ethanolamine phosphate transferase 2 PIGG 3,28 3,12 3,20 0,08 

Surfeit locus protein 4 SURF4 3,95 2,39 3,17 0,78 

Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 3 B3GAT3 3,49 2,73 3,11 0,38 

Xylosyltransferase 2 XYLT2 3,10   3,10   

Transmembrane emp24 domain-containing protein 4 TMED4 3,43 2,72 3,07 0,35 

Beta-1,4-galactosyltransferase 7;Xylosylprotein 4-beta-galactosyltransferase B4GALT7 3,07   3,07   

Zinc transporter 6 SLC30A6 3,51 2,59 3,05 0,46 

Glutaminyl-peptide cyclotransferase-like protein QPCTL 2,96 3,01 2,99 0,03 

Alpha-fetoprotein AFP 3,67 2,22 2,95 0,73 

Polypeptide N-acetylgalactosaminyltransferase;Polypeptide N-
acetylgalactosaminyltransferase 1;Polypeptide N-
acetylgalactosaminyltransferase 1 soluble form GALNT1 2,92 2,90 2,91 0,01 

Golgi SNAP receptor complex member 2 GOSR2 4,01 1,77 2,89 1,12 

Transmembrane emp24 domain-containing protein 2 RNP24;TMED2 3,79 1,94 2,86 0,92 

UbiA prenyltransferase domain-containing protein 1 UBIAD1 2,51 3,21 2,86 0,35 

Nucleobindin-2;Nesfatin-1 HEL-S-109;NUCB2;Nucb2 3,41 2,24 2,82 0,58 

Transmembrane emp24 domain-containing protein 5 TMED5 3,68 1,94 2,81 0,87 

Protein YIPF;Protein YIPF5 YIPF5 3,28 2,30 2,79 0,49 

Protein ERGIC-53 LMAN1 3,41 2,13 2,77 0,64 

Palmitoyltransferase;Palmitoyltransferase ZDHHC17 ZDHHC17 2,72   2,72   

Vesicle-trafficking protein SEC22b SEC22B 3,09 2,31 2,70 0,39 

Protein kish-A TMEM167A 2,66   2,66   
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Protein.names Gene.names ratio 1 (H/L) ratio 2 (L/H) Mean SILAC ratio SEM 
Zinc transporter 7 SLC30A7 2,62   2,62   

VIP36-like protein LMAN2L 3,28 1,95 2,62 0,66 

Calcium-transporting ATPase;Calcium-transporting ATPase type 2C member 1 ATP2C1 2,63 2,54 2,58 0,05 

Endoplasmic reticulum-Golgi intermediate compartment protein 3 ERGIC3 3,14 2,02 2,58 0,56 

Vesicular integral-membrane protein VIP36 LMAN2 3,09 2,04 2,57 0,53 

Vesicle transport protein GOT1B GOLT1B 3,51 1,59 2,55 0,96 

Calumenin CALU 2,55   2,55   

Protein O-linked-mannose beta-1,2-N-acetylglucosaminyltransferase 1 POMGNT1 2,12 2,97 2,54 0,42 

Mannosyl-oligosaccharide 1,2-alpha-mannosidase IB MAN1A2 2,52 2,53 2,53 0,01 

Ras-related protein Rab-18 RAB18 2,82 2,16 2,49 0,33 

Transmembrane emp24 domain-containing protein 3 TMED3 3,29 1,63 2,46 0,83 

Polypeptide N-acetylgalactosaminyltransferase 2;Polypeptide N-
acetylgalactosaminyltransferase 2 soluble form;Polypeptide N-
acetylgalactosaminyltransferase GALNT2 2,29 2,61 2,45 0,16 

Endoplasmic reticulum resident protein 44 ERP44 3,17 1,66 2,42 0,75 

Adenosine 3-phospho 5-phosphosulfate transporter 2 SLC35B3 2,33 2,43 2,38 0,05 

Protein FAM198B FAM198B 2,42 2,30 2,36 0,06 

Protein YIF1A YIF1A 2,49 2,03 2,26 0,23 

Alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase A MGAT5 1,84 2,68 2,26 0,42 

Endoplasmic reticulum-Golgi intermediate compartment protein 1 ERGIC1 2,59 1,92 2,26 0,33 

Sulfhydryl oxidase 2 QSOX2 2,26 2,24 2,25 0,01 

Syntaxin-5 STX5;STX5A 2,44 2,04 2,24 0,20 

Putative sodium-coupled neutral amino acid transporter 10 SLC38A10 2,23   2,23   

Protein YIPF3;Protein YIPF3, 36 kDa form III;Protein YIPF YIPF3 2,23 2,15 2,19 0,04 

Alpha-1,6-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase MGAT2 2,12 2,24 2,18 0,06 

Beta-1,3-galactosyltransferase 6 B3GALT6 2,16   2,16   

Exostosin-like 2;Processed exostosin-like 2 EXTL2 2,07 2,23 2,15 0,08 

Protein CASP;Homeobox protein cut-like 1 
CUX1;Nbla10317;CUX1-
RETc;CUX1-RETa 2,03 2,27 2,15 0,12 

Alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase B MGAT4B 1,71 2,58 2,15 0,43 

Protein YIPF4 YIPF4 2,10 2,17 2,14 0,04 

ER lumen protein-retaining receptor 1;ER lumen protein-retaining receptor KDELR1 2,80 1,46 2,13 0,67 

Thioredoxin domain-containing protein 5 
hCG_1811539;TXNDC5;STRF8;
DKFZp666I134 2,11   2,11   

Fukutin-related protein FKRP 1,99 2,17 2,08 0,09 

Protein YIF1B YIF1B 2,47 1,67 2,07 0,40 

Carbohydrate sulfotransferase 14 CHST14 2,09 2,02 2,05 0,04 

Transmembrane 9 superfamily member 1 TM9SF1 1,88 2,17 2,03 0,14 
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Protein.names Gene.names ratio 1 (H/L) ratio 2 (L/H) Mean SILAC ratio SEM 
Glycoprotein endo-alpha-1,2-mannosidase-like protein MANEAL 2,29 1,74 2,01 0,27 

Table 11: Candidate Proteins for the Core Proteome of COPI Vesicles of HepG2 Cells 

List of candidates for the COPI core proteome from HepG2 cells as determined by two independent experiments performed according to Fig. 2.5. CMγ1ζ1, Arf1, and GTP were used for all 

reconstitutions. Given are gene and protein names of the identified proteins, the SILAC ratios (H/L or L/H) from each experiment, the mean SILAC ratio, and standard error of the mean (SEM). 

Displayed are protein with mean SILAC ratios >2 or with a SILAC ratio >2 in one of the two experiments in which the vesicle sample was labeled with heavy isotopes (written in italic in the Mean 

SILAC ratio column). 

 

Protein.names Gene.names ratio 1 (H/L) ratio 2 (L/H) Mean SILAC ratio SEM 
Nucleobindin-1 NUCB1 7,60 16,29 11,94 4,34 

Transmembrane emp24 domain-containing protein 7 TMED7 8,45 14,49 11,47 3,02 

Transmembrane emp24 domain-containing protein 9 TMED9 7,22 12,62 9,92 2,70 

Transmembrane emp24 domain-containing protein 10 TMED10 7,20 10,70 8,95 1,75 

Transmembrane emp24 domain-containing protein 2 TMED2 6,40 11,28 8,84 2,44 

Nucleobindin-2;Nesfatin-1 NUCB2 7,78 9,89 8,83 1,05 

Transmembrane emp24 domain-containing protein 4 TMED4 7,41 9,76 8,58 1,18 

Zinc transporter 5 SLC30A5 10,01 6,64 8,33 1,69 

Putative sodium-coupled neutral amino acid transporter 10 SLC38A10 8,00 8,56 8,28 0,28 

Zinc transporter 7 SLC30A7 7,94 7,50 7,72 0,22 

Solute carrier family 35 member E1 SLC35E1 7,45   7,45   

Polypeptide N-acetylgalactosaminyltransferase 1;Polypeptide N-
acetylgalactosaminyltransferase 1 soluble form GALNT1 7,21 6,93 7,07 0,14 

Sulfhydryl oxidase 2 QSOX2 6,61 7,41 7,01 0,40 

Endoplasmic reticulum-Golgi intermediate compartment protein 2 ERGIC2 6,07 7,49 6,78 0,71 

Alpha-mannosidase 2 MAN2A1 6,12 6,36 6,24 0,12 

Golgi integral membrane protein 4 GOLIM4 6,23 5,99 6,11 0,12 

Hexosyltransferase CHPF2 6,04   6,04   

Transmembrane 9 superfamily member 3 TM9SF3 5,74 6,23 5,99 0,25 

Alpha-1,3-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase MGAT1 5,28 6,68 5,98 0,70 

Chondroitin sulfate N-acetylgalactosaminyltransferase 2 CSGALNACT2 5,93   5,93   

Endoplasmic reticulum-Golgi intermediate compartment protein 3 ERGIC3 6,57 5,22 5,89 0,68 

Xylosyltransferase 2 XYLT2 3,94 7,50 5,72 1,78 

Glucoside xylosyltransferase 1 GXYLT1 5,71   5,71   

GDP-fucose transporter 1 SLC35C1 5,66   5,66   

Endoplasmic reticulum mannosyl-oligosaccharide 1,2-alpha-mannosidase MAN1B1 5,88 5,20 5,54 0,34 

Beta-1,4-glucuronyltransferase 1 B4GAT1 5,53   5,53   
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Protein.names Gene.names ratio 1 (H/L) ratio 2 (L/H) Mean SILAC ratio SEM 
Palmitoyltransferase ZDHHC13;Palmitoyltransferase ZDHHC13 4,46 6,36 5,41 0,95 

Vesicular integral-membrane protein VIP36 LMAN2 4,90 5,85 5,38 0,47 

Alpha-mannosidase 2x MAN2A2 5,16 5,32 5,24 0,08 

N-acetylglucosamine-1-phosphotransferase subunits alpha/beta;N-
acetylglucosamine-1-phosphotransferase subunit alpha;N-acetylglucosamine-1-
phosphotransferase subunit beta GNPTAB 3,67 6,73 5,20 1,53 

Transmembrane 9 superfamily member 1 TM9SF1 5,47 4,78 5,13 0,34 

Alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase A MGAT5 4,98 5,23 5,11 0,12 

Mannosyl-oligosaccharide 1,2-alpha-mannosidase IB MAN1A2 5,00 5,12 5,06 0,06 

Golgi membrane protein 1 GOLM1 4,83 5,23 5,03 0,20 

Ceramide glucosyltransferase UGCG 5,02   5,02   

Protein RER1 RER1 5,64 4,16 4,90 0,74 

Transmembrane emp24 domain-containing protein 5 TMED5 5,09 4,63 4,86 0,23 

Ectonucleoside triphosphate diphosphohydrolase 7 ENTPD7 4,79 4,91 4,85 0,06 

Osteopontin SPP1 4,85   4,85   

Zinc finger protein-like 1 ZFPL1 4,81   4,81   

Surfeit locus protein 4 SURF4 5,57 4,01 4,79 0,78 

alpha-1,2-Mannosidase;Mannosyl-oligosaccharide 1,2-alpha-mannosidase IA MAN1A;MAN1A1 4,89 4,68 4,78 0,11 

Polypeptide N-acetylgalactosaminyltransferase 2;Polypeptide N-
acetylgalactosaminyltransferase 2 soluble form GALNT2 4,49 5,07 4,78 0,29 

Adipocyte plasma membrane-associated protein APMAP 4,77   4,77   

Golgin subfamily A member 5 GOLGA5 5,08 4,40 4,74 0,34 

Alpha-1,6-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase MGAT2 4,52 4,89 4,71 0,18 

Protein ERGIC-53 LMAN1 4,91 4,42 4,67 0,25 

Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 3 B3GAT3 4,67   4,67   

Vesicle-trafficking protein SEC22b SEC22B 5,00 4,18 4,59 0,41 

RING finger and transmembrane domain-containing protein 1 RNFT1 4,58   4,58   

Carbohydrate sulfotransferase 14 CHST14 4,60 4,46 4,53 0,07 

Alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase B MGAT4B 5,74 3,24 4,49 1,25 

Phosphatidylinositol glycan anchor biosynthesis, class G PIGG 5,89 3,01 4,45 1,44 

Probable palmitoyltransferase ZDHHC21 ZDHHC21 4,45   4,45   

Alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase A;Alpha-
1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase A soluble form MGAT4A 4,41   4,41   

Dermatan-sulfate epimerase DSE 4,96 3,74 4,35 0,61 

Complement C1q subcomponent subunit B C1QB 3,04 5,49 4,27 1,23 

Syntaxin-5 STX5A;STX5 4,23   4,23   

Protein CASP;Homeobox protein cut-like;Homeobox protein cut-like 1 CUX1 4,15 4,28 4,22 0,06 

Molybdate-anion transporter MFSD5 4,77 3,67 4,22 0,55 
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Protein.names Gene.names ratio 1 (H/L) ratio 2 (L/H) Mean SILAC ratio SEM 
Endoplasmic reticulum resident protein 44 ERP44 3,87 4,52 4,20 0,32 

Transmembrane 9 superfamily member 4 TM9SF4 4,29 4,08 4,18 0,11 

Protein YIPF3;Protein YIPF3, N-terminally processed YIPF3 4,13 4,09 4,11 0,02 

ER lumen protein-retaining receptor;ER lumen protein-retaining receptor 1;ER 
lumen protein-retaining receptor 2 KDELR1;KDELR2 4,04   4,04   

Glycosyltransferase 8 domain-containing protein 1 GLT8D1 3,87 4,19 4,03 0,16 

Transmembrane protein 165 TMEM165 4,31 3,61 3,96 0,35 

Ectonucleoside triphosphate diphosphohydrolase 4 ENTPD4 3,36 4,52 3,94 0,58 

Palmitoyltransferase ZDHHC17 ZDHHC17 3,92   3,92   

UDP-glucuronic acid decarboxylase 1 UXS1 3,85   3,85   

Adenosine 3-phospho 5-phosphosulfate transporter 1 SLC35B2 3,83 3,84 3,83 0,00 

Golgi SNAP receptor complex member 1 GOSR1 3,89 3,76 3,83 0,07 

N-acetylgalactosaminyltransferase 7 GALNT7 4,05 3,43 3,74 0,31 

Xylosyltransferase 1 XYLT1 3,64 3,83 3,74 0,10 

Golgi autoantigen, golgin subfamily b, macrogolgin 1 GOLGB1 3,90 3,57 3,73 0,16 

Transmembrane protein 115 TMEM115 3,68   3,68   

Protein-tyrosine sulfotransferase 2 TPST2 3,67   3,67   

Beta-1,4 N-acetylgalactosaminyltransferase 1 B4GALNT1 3,89 3,46 3,67 0,22 

Heparan sulfate 2-O-sulfotransferase 1 HS2ST1 4,02 3,32 3,67 0,35 

Glycosyltransferase-like protein LARGE1;Xylosyltransferase LARGE;Beta-1,3-
glucuronyltransferase LARGE;Glycosyltransferase-like protein 
LARGE2;Xylosyltransferase LARGE2;Beta-1,3-glucuronyltransferase LARGE2 LARGE;GYLTL1B 3,63   3,63   

Extracellular serine/threonine protein kinase FAM20C FAM20C 3,16 4,03 3,60 0,43 

Endoplasmic reticulum-Golgi intermediate compartment protein 1 ERGIC1 4,06 3,12 3,59 0,47 

Polypeptide N-acetylgalactosaminyltransferase;Polypeptide N-
acetylgalactosaminyltransferase 12 GALNT12 3,50 3,58 3,54 0,04 

Renin receptor ATP6AP2 3,52   3,52   

alpha-1,2-Mannosidase MAN1C1 3,40 3,57 3,49 0,08 

Golgin subfamily A member 2 GOLGA2 3,45 3,43 3,44 0,01 

Calcium-transporting ATPase;Calcium-transporting ATPase type 2C member 1 ATP2C1 3,97 2,82 3,39 0,57 

Bifunctional heparan sulfate N-deacetylase/N-sulfotransferase 2;Heparan sulfate N-
deacetylase 2;Heparan sulfate N-sulfotransferase 2 NDST2 3,57 3,20 3,38 0,18 

GPI transamidase component PIG-S PIGS 3,29   3,29   

Soluble calcium-activated nucleotidase 1 CANT1 3,19   3,19   

Fukutin-related protein FKRP 3,19   3,19   

Ras-related protein Rab-6B;Ras-related protein Rab-6A RAB6B;RAB6A 3,01 3,30 3,16 0,15 

Phosphatidylinositide phosphatase SAC1 SACM1L 3,08   3,08   

V-type proton ATPase subunit S1 ATP6AP1 3,07   3,07   
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Protein.names Gene.names ratio 1 (H/L) ratio 2 (L/H) Mean SILAC ratio SEM 
Uncharacterized protein KIAA2013 KIAA2013 3,14 2,90 3,02 0,12 

Lysosomal alpha-glucosidase GAA 3,02 2,94 2,98 0,04 

ADP-ribosylation factor-related protein 1 ARFRP1 2,97   2,97   

Beta-1,4-galactosyltransferase 5 B4GALT5 3,27 2,60 2,94 0,33 

Protein O-linked-mannose beta-1,2-N-acetylglucosaminyltransferase 1 POMGNT1 2,93   2,93   

CMP-N-acetylneuraminate-poly-alpha-2,8-sialyltransferase ST8SIA4 2,98 2,87 2,92 0,05 

N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase 2 B3GNT2;B3GNT2 2,88   2,88   

Ectonucleoside triphosphate diphosphohydrolase 6 ENTPD6 2,89 2,84 2,87 0,02 

Protein FAM134C FAM134C 2,84   2,84   

UDP-GalNAc:beta-1,3-N-acetylgalactosaminyltransferase 1 B3GALNT1 2,84   2,84   

Polypeptide N-acetylgalactosaminyltransferase 6 GALNT6 2,71 2,95 2,83 0,12 

PRA1 family protein 3 ARL6IP5 2,82   2,82   

Neuropilin-2 NRP2 2,80   2,80   

Prenylated Rab acceptor protein 1 RABAC1 2,77   2,77   

Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating NSDHL 2,72   2,72   

Lactosylceramide alpha-2,3-sialyltransferase ST3GAL5 2,69   2,69   

Glycoprotein-N-acetylgalactosamine 3-beta-galactosyltransferase 1 C1GALT1 2,65   2,65   

Transmembrane protein 168 TMEM168 3,08 2,19 2,64 0,44 

Trans-Golgi network integral membrane protein 1;Trans-Golgi network integral 
membrane protein 2 TGOLN1;TGOLN2 2,63   2,63   

Protein FAM134B FAM134B 2,63   2,63   

Protein FAM3C FAM3C 2,59 2,67 2,63 0,04 

Lanosterol synthase LSS 3,17 2,04 2,61 0,56 

AHNAK nucleoprotein (desmoyokin) AHNAK2 2,59   2,59   

Deleted in autism protein 1 homolog DIA1 3,04 2,13 2,59 0,45 

Polypeptide N-acetylgalactosaminyltransferase;Polypeptide N-
acetylgalactosaminyltransferase 10 GALNT10 2,58   2,58   

N-acetyllactosaminide alpha-1,3-galactosyltransferase GGTA1 2,54   2,54   

Zinc transporter 6 SLC30A6 2,54   2,54   

Inositol monophosphatase 3 IMPAD1 2,53   2,53   

Beta-1,4-galactosyltransferase 1;Lactose synthase A protein;N-acetyllactosamine 
synthase;Beta-N-acetylglucosaminylglycopeptide beta-1,4-
galactosyltransferase;Beta-N-acetylglucosaminyl-glycolipid beta-1,4-
galactosyltransferase;Processed beta-1,4-galactosyltransferase 1 B4GALT1 2,71 2,34 2,53 0,18 

Protein FAM3A FAM3A 2,51   2,51   

Transmembrane 9 superfamily member 2 TM9SF2 2,65 2,33 2,49 0,16 

Alpha/beta hydrolase domain-containing protein 14A ABHD14A 2,48   2,48   

Endonuclease domain-containing 1 protein ENDOD1 2,45   2,45   
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Protein.names Gene.names ratio 1 (H/L) ratio 2 (L/H) Mean SILAC ratio SEM 
D-glucuronyl C5-epimerase GLCE 2,12 2,73 2,42 0,31 

Ras-related protein Rab-18 RAB18 2,23 2,53 2,38 0,15 

Long-chain-fatty-acid--CoA ligase 5 ACSL5 2,33   2,33   

Cathepsin B;Cathepsin B light chain;Cathepsin B heavy chain CTSB 1,92 2,72 2,32 0,40 

Golgi apparatus protein 1 GLG1 2,52 2,09 2,31 0,21 

Protein GPR107 GPR107 2,75 1,78 2,27 0,49 

Protein FAM177A1 FAM177A1 2,34 2,13 2,23 0,10 

Alpha-2-macroglobulin receptor-associated protein LRPAP1 1,93 2,52 2,23 0,30 

Membrane-associated progesterone receptor component 2 PGRMC2 2,18   2,18   

Neutral cholesterol ester hydrolase 1 NCEH1 2,13   2,13   

CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1 ST3GAL1 1,94 2,33 2,13 0,19 

Granulins;Acrogranin;Granulin-1;Granulin-2;Granulin-3;Granulin-4;Granulin-
5;Granulin-6;Granulin-7 GRN 2,40 1,84 2,12 0,28 

Lipoprotein lipase LPL 2,10   2,10   

Macrophage metalloelastase MMP12 2,04   2,04   

Prostaglandin G/H synthase 1 PTGS1 2,04   2,04   

Monoacylglycerol lipase ABHD12 ABHD12 2,04   2,04   

Keratinocyte-associated transmembrane protein 2 9530068E07RIK;KCT2 2,13 1,92 2,03 0,10 

Protein GPR108 GPR108 2,02   2,02   

Table 12: Candidate Proteins for the Core Proteome of COPI Vesicles of iMΦ 

List of candidates for the COPI core proteome from iMΦ cells as determined by two independent experiments performed according to Fig. 2.5. CMγ1ζ1, Arf1, and GTP were used for all 

reconstitutions. Given are gene and protein names of the identified proteins, the SILAC ratios (H/L or L/H) from each experiment, the mean SILAC ratio, and standard error of the mean (SEM). 

Displayed are protein with mean SILAC ratios >2 or with a SILAC ratio >2 in one of the two experiments in which the vesicle sample was labeled with heavy isotopes (written in italic in the Mean 

SILAC ratio column). 



Results 

78 
 

2.6 Sec24D Mutations Causing Syndromic Osteogenesis Imperfecta 

 

In addition to the investigation of the COPI vesicle proteome and coatomer and Arf isoforms, as part 

of this work most recently identified mutations within the COPII coat components Sec24D that cause 

a syndromic form of osteogenesis imperfecta (OI) were studied, using biochemical tools. In the 

affected families, three mutations were identified, causing either a premature stop-codon (Q208*), a 

glutamine-proline-conversion (Q978P), or the conversion of serine to phenylalanine in position 1015 

(S1015F). Carrying the Q208* and S1015F mutations leads to syndromic OI. A combination of the 

mutations Q978P and S1015F lead to pregnancy loss (Garbes et al., 2015). 

The positions of these point mutations within the crystal structure solved by Mancias and Goldberg 

(2008) are illustrated in figure 2.17. As indicated, the dimeric Sec23A/Sec24D complex forms an arch 

on the membrane (Fig. 2.17A). The side view of Sec24D (blue), shown in Fig. 2.17B, reveals a 

predominantly alpha-helical interaction surface on the edge of the cargo binding COPII subunit. On 

this side, Sec24D binds to the IxM motif present in Syntaxin5 (Stx5) involving the key residues 

834LIL836 (Fig. 2.17C). The point mutations, highlighted in the structure and also in the following are 

shifted by one amino acid because a Sec24D variant with one additional alanine in position 224 was 

used for the experiments. Mutation Q979P localizes to an alpha helix very distant from the 

membrane. Also, the conversion S1016F hits the very end of an alpha helix, closer to the membrane 

and the Stx5 binding site (Fig. 2.17C). 
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Figure 2.17 Crystal Structure of the Sec23A/Sec24D Complex 

(A-C) Crystal structures of the Sec23A/Sec24D complex determined by Mancias and Goldberg (2008): Protein Data Bank 

accession code 3EFO. Sec23A is colored pink, Sec24D shown in blue. (A) Side view of the dimeric complex with a schematic 

representation of membrane. (B) Side view of Sec24D after 90° rotation of the structure shown in (A). Sec23A can be seen 

in the background, a schematic membrane is displayed for orientation. (C) Enlarged side view of Sec24D shown in (B) 

without Sec23A. The point mutations S1016F, Q979P (both red), as well as the amino acid stretch 834LIL836 (green) that 

binds to Syntaxin5 (yellow) are highlighted. 

 

In order to study these mutations, we introduced them into the coding sequences of Sec23A/Sec24D 

expression plasmids. The Q208* mutation that gives rise to a protein shortened by 825 amino acids 

was excluded from the analysis as the resulting polypeptide surely is non-functional. 

Proteins complexes carrying either one of the remaining mutations could effectively be purified 

(Fig. 2.18). The Sec24D subunit of both variants Sec24DQ979P and Sec24DS1016F is partially degraded. 

However, the level of degradation is very comparable to the level of degradation observed for wild 

type Sec24D (Sec24Dwt) and the synthetic SNARE-binding mutant (Sec24DLIL834AAA). Also shown are 

recombinant Sar1B and the outer COPII coat Sec13/Sec31A (Fig. 2.18). These proteins were used in 

further experiments. 
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Figure 2.18 Recombinant Wild Type and Mutant COPII Coat Proteins 

Coomassie-stained SDS gel loaded with the recombinant COPII coat proteins indicated. Degradation products of the various 

Sec24D variants are marked by an asterisk (*). 

 

2.7 Mutant Sec24DS1016F is Deficient in ER-Golgi SNARE-Packing 

 

In order to obtain functional insight into the effect of the various mutations, recombinant proteins 

(Fig. 2.18) were tested in COPII in vitro reconstitution experiments. Vesicles were reconstituted from 

SIC HeLa cells (according to Fig. 2.1) and harvested by high-speed centrifugation at 100.000 ×g as 

previously described by Adolf et al. (2013). The vesicle samples were subsequently analyzed for the 

presence of the ER-Golgi cycling protein ERGIC53, as well as the three ER-Golgi SNAREs Syntaxin5, 

GS27, and Bet1 by Western blot (Fig. 2.19). 

Whereas all four variants incorporated highly similar fractions of ERGIC53, packing of SNARE proteins 

varied significantly between them (Fig. 2.19A and B). COPII samples prepared with Sec24Dwt 

contained between 5.8 and 6.9 % of the SNARE proteins present in the donor SIC. Slightly lower 

percentages of SNARE-packing were observed for the OI-related variant Sec24DQ979P, ranging from 

5.3 to 6.5 % (Fig. 2.19B). The synthetic mutant, Sec24DLIL834AAA is deficient in packing of SNAREs, as 

has been described earlier (Adolf et al., 2016; Mancias and Goldberg, 2008). This is reflected by the 

markedly reduced uptake of all three ER-Golgi Q-SNAREs, which drops to 3.5-2.4 % (Fig. 2.19B). A 

highly similar level of reduction of SNARE-uptake was observed for OI-related variant Sec24DS1016F. 
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Uptake of all three SNARE proteins was reduced by ~50% with 2.9-3.9 % incorporation of SNAREs 

present in the SIC (Fig. 2.19B). 

 

Figure 2.19 Sec24D Variants: Incorporation of ERGIC53 and ER-Golgi SNAREs into COPII Vesicles 

(A) Representative Western blot analysis of a COPII vesicles reconstituted from SIC HeLa using recombinant Sar1B, 
Sec13/Sec31A, Sec23A/Sec24D, GTP, and ATP regenerating system (ATPr) with 5 µg of SIC loaded as input. Samples were 
probed for the presence of the proteins indicated on the left. Vesicles were isolated via differential centrifugation. (B) 
Quantification of (A); n=5; error bars=SEM. 

 

To further investigate the SNARE-packing defect observed for the OI-related Sec24DS1016F mutant, 

pulldown experiments were performed. As has been shown by Mancias and Goldberg (2008), a short 

peptide motif present in Stx5 binds to Sec24D (see Fig. 2.17C). The binding motif is occluded by a 

closed conformation that Syntaxins can adopt when the N-terminal Habc domain folds back onto the 

membrane-proximal region (MacDonald et al., 2010). To overcome this auto-inhibitory state, a 
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shortened GST-tagged version, Syntaxin5205-328-GST, was used for the pulldown experiments lacking 

both the Habc region and the transmembrane domain. In figure 2.20A, schematic representations of 

the full length protein (top) and the shortened version used for pulldowns (bottom) are shown. The 

Stx5 construct was coupled to beads and incubated with the different Sec23A/Sec24D variants. After 

the incubation, the beads were washed and the bound material analyzed through Western blotting 

with an antibody against Sec23 and Coomassie staining (CBB). As can be seen in Fig. 2.20B, equal 

amounts of the Stx5 construct were bound in the different pulldown reactions (compare signals in 

CBB). Syntaxin5205-328-GST pulled down with high efficiency both wild type Sec23A/Sec24D (14.6 %) 

and the OI-mutant Sec23A/Sec24DQ979P (11.4 %) as deduced from the Sec23 signal (Fig. 2.20B and C). 

Binding of either Sec23A/Sec24DLIL834AAA (2.8 %) or the second OI-mutant Sec23A/Sec24DS1016F (2.9 %) 

dropped to the level of the GST control which was 2.7 % of the input (Fig. 2.20B and C). 

 

Figure 2.20 Pulldown Experiments: Binding of Sec24D Variants to Syntaxin5 

(A) Schematic representation of full length Syntaxin5 (top) with its N-terminal Habc domain, the SNARE motif and the 

transmembrane (TM) region as well as Syntaxin5
205-328

 used as C-terminal GST-fusion for pulldown experiments. (B) 

Representative pulldown experiment. Syntaxin5
205-328

-GST and GST control were coupled to beads and incubated with the 

inner COPII coat variant indicated. Bound material was eluted from the beads with SDS sample buffer, subjected to 

SDS-PAGE and probed for bound COPII via detection of Sec23 with an antibody. Forty percent of each pulldown reaction (P) 

was loaded together with 1 % of input (I). Equal loading of the beads was assessed through Coomassie staining (CBB) of the 

lower part of the gel. (C) Quantification of (B); n=4; error bars=SEM. 
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2.8 Sec24D Deficient Cells Have Less but Normally Localized ER-Golgi 

SNAREs 

 

In order to investigate the effect of the mutations in a cellular context, cells from an OI patient 

(“Lukas”) who carries both the Q208* and the S1015F mutation were studied. The cells, which had 

previously been shown to contain less Sec24D (Garbes et al., 2015), were probed for the presence of 

transmembrane marker proteins of the early secretory pathway. The amount of Histone H3 (91 %), 

ER marker protein Calnexin (99 %) and the Golgi SNARE Ykt6 (107 %) were very similar in patient cells 

compared to CRL-2091 control fibroblasts (Fig. 2.21). The expression of p24 and the ER-Golgi SNARE 

GS27 were reduced by ~25 % in patient fibroblasts when put into relation to control cells. For the 

other SNAREs of the ER/Golgi tested, a more strongly reduced protein level was observed. The 

expression level of GS28 and Sec22b were reduced by more than 40 % in patient cells compared to 

control fibroblasts. The most significant divergence of protein level was observed for Stx5 and Bet1. 

For both proteins, a decrease in protein level in patient cell of ~50 % was observed (Fig. 2.21). 

 

Figure 2.21 Protein Levels of Early Secretory Pathway Membrane Proteins in OI patient Cells and Normal Fibroblasts 

Western blot analysis of SIC control fibroblasts (CRL-2091) and OI patient cells (“Lukas”). Of each sample 5 µg were loaded. 

Proteins detected are indicated on the left side of each blot. Quantifications of the signals in relation to the control cells 

(100%) are given on the right side of each blot; n=3; error bars=SEM. 
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In order to investigate if, in addition to a reduced protein level, also the steady state localization of 

ER-Golgi-SNAREs was changed, confocal immunofluorescence microscopy (IFA) experiments were 

performed. The Q-SNARE Syntaxin5, the expression of which in patient cells is reduced by almost 

50 % (Fig. 2.21), was co-localized with the ER-resident Calnexin (Fig. 2.22) and the ER-Golgi cycling 

protein p24 (Fig. 2.23). As can be seen in both patient and control cells, there is a strict separation of 

the signals for Calnexin and Syntaxin5. Calnexin stains the reticular network that fills almost all 

sections of the cells body, whereas the Syntaxin5 signal is restricted to the Golgi adjacent to the 

nucleus and additionally dot-like structures (Fig. 2.22). 

 

 

Figure 2.22 IFA: Co-localization of Syntaxin5 and Calnexin in OI patient and control fibroblasts 

Methanol-fixated control fibroblasts (CRL-2091) and OI patient fibroblasts (“Lukas”) were immune-stained with anti-

Calnexin and anti-Syntaxin5 antibodies. Shown are representative images acquired with a spinning disc confocal 

microscope. Magnification 100×; inlets are marked. 

 

IFA experiments with antibodies against Stx5 and p24 revealed some degree of co-localization, 

although no perfect merge of signals for the two proteins could be observed (Fig. 2.23). This is 

generally in line with the fact that p24 cycles in the early secretory pathway and hence localizes at 

cis-Golgi and the ERGIC under steady-state conditions (Dominguez et al., 1998). Stx5 on the other 

hand is engaged in at least two different SNARE complexes and is believed to act at the ER-Golgi 

interface and along the whole cis-to-trans axis of the Golgi (Hong, 2005; Malsam and Söllner, 2011). 

In general there was no major difference in Stx5/p24 localization between patient cells and control 

fibroblasts to be observed, except possibly a slightly higher level of co-localization in patient cells. 
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A more general observation was that control fibroblasts displayed more distinct Stx5-positive 

punctae compared to Sec24D-deficient “Lukas” patient cells (compare Stx5 signals CRL-2091/”Lukas” 

in Fig. 2.22 and 2.23). 

 

Figure 2.23 IFA: Co-localization of Syntaxin5 and p24 in OI patient and control fibroblasts 

Methanol-fixated control fibroblasts (CRL-2091) and OI patient fibroblasts (“Lukas”) were immune-stained with anti-

Calnexin and anti-Syntaxin5 antibodies. Shown are representative images acquired with a spinning disc confocal 

microscope. Magnification 100×; inlets are marked. 
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3 Discussion 

 

Section 2 shows our results gathered on the proteome of COPI vesicles, the role of coatomer and Arf 

isoforms, as well as OI-related mutations in Sec24D. In the following these results are discussed with 

respect to the current knowledge, and I try to suggest how open questions could be addressed 

further. 

 

3.1 A Novel Proteomic Setup 

 

In section 2.1, our novel proteomic setup to investigate COPI is outlined. Noteworthy, the described 

setup has been employed to study COPII vesicles in parallel to the presented work on COPI (Adolf et 

al., unpublished data). With this setup we have unified various aspects of earlier proteomic studies of 

vesicular carriers and thus generated a simple, reliable, and adjustable workflow for proteomics of 

vesicles. Many MS studies of transport vesicles used endogenous vesicles, purified from tissue or cell 

culture (Borner et al., 2006; Hirst et al., 2012; Takamori et al., 2006). The great advantage of this 

approach is that native vesicles formed not in vitro but in vivo are captured. For special cases such as 

synaptic vesicles (SVs), which can be purified with high fidelity, this setup has proven very useful 

(Takamori et al., 2006). As purification of SVs is performed from brain tissue, however, experiments 

become more difficult to modulate because of the high demands for genetic manipulation of a whole 

organism e.g. by knockout/knockin. 

Purification of endogenous vesicles from cell culture faces one major experimental challenge: Most 

vesicle types are ubiquitously found in all cell types and cannot be easily separated from all other 

classes of vesicles. Hence, there is a distinct issue of vesicle cross-contamination, which needs to be 

considered. The common vesicle types, COPI, COPII, and CCVs behave very similar during purification 

procedures such as differential or density gradient centrifugation. This can be deduced from the fact 

that COPII vesicles, formed in vitro, float up to the exact same fractions (2 and 3) of the density 

gradient shown in figure 2.3 as do COPI vesicles (M.Sc. thesis Manuel Rhiel, Adolf et al., unpublished 

data). Moreover, in almost all MS datasets presented here, AP-1 and AP-2 complex subunits were 

identified, indicating that these carriers are not easily separated from COPI and COPII vesicles. Other, 

earlier purification protocols, e.g. for CCVs (Hirst et al., 2004), or COPI (Gilchrist et al., 2006) were not 

systematically controlled for the presence of other contaminating vesicle types.  
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While co-purification of endogenous vesicles is a problem common to all vesicle proteomic setups, 

unwanted formation of other vesicles is a problem only of in vitro reconstitution systems. For 

example, when cytosol is used to produce COPI vesicles from a Golgi-enriched membrane fraction, 

formation of other vesicle types is unpreventable as Golgi membranes cannot be purified entirely 

omitting ER and other membrane contaminants. As a consequence, in a very comprehensive MS 

study of the ER, Golgi, and COPI vesicles, COPII coat subunits displayed high MS scores in the donor 

Golgi fraction and the COPI (GTPγS) fraction formed from this Golgi with cytosol (Gilchrist et al., 

2006).  

While contamination by other classes of newly formed vesicles can be prevented by using purified 

coat components, as has for example been done for COPII vesicles in yeast (Margulis et al., 2016), 

removing endogenous contaminations is more difficult. In this concern it has been proven useful to 

employ a “subtractive” setup. Borner et al. purified a fraction enriched in CCVs from wild type cells 

and from cells after knockdown of the pivotal CCV component Clathrin heavy chain (Borner et al., 

2006). In a comparison of both fractions, the lost/subtracted proteins are the putative CCV proteins. 

Building on this, the same lab has refined this method by rapidly knocking CCV adaptors “sideways”, 

i.e. tethering them to mitochondria, to investigate their function (Hirst et al., 2012). In the latter 

study, SILAC labeling was further introduced as the most direct means for quantitative MS in cell 

culture. With this setup, it is possible to assess the role of single factors during vesicle biogenesis. 

However, investigating the interplay of several factors at once requires preparation of cell lines with 

multiple knockins/knockouts and thus advanced genetic manipulation. Moreover, investigating 

dose-effects for chosen candidates would require fine-tuning of expression levels, e.g. by means of 

different promoters, complicating the experimental setup further. 

In our proteomic setup (Fig. 2.5) we have tried to combine different aspects of vesicular proteomics 

into a novel, improved workflow. The beneficial aspects of our protocol as well as the drawbacks in 

comparison to other protocols are listed below. 

 

Benefits of the novel setup: -Simple cell culture methods; no need for genetic manipulation 

    -Simple/clear interpretation of MS data (SILAC ratios) 

-Highly reproducible (R2 values between runs usually ~0.7-0.9) 

-Unlimited combinations/concentrations of vesicle biogenesis factors 

can be tested 
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-Dissection of molecular mechanisms in detail (e.g. through 

competition/titration of various factors)  

 

Drawbacks of the novel setup: -Requires advanced protein expression/purification skills 

-Vesicles are formed in vitro (not endogenous) 

-potential limitations in capturing cytosolic factors 

-Not suitable for new vesicle classes; requires fundamental 

knowledge of the biogenesis process (in vitro reconstitution system) 

 

3.2 What Makes a COPI Vesicle 

 

Sections 2.2 and 2.5 provide insight into protein content of COPI vesicles that were produced in a 

minimal system from donor membranes of various cell types. Using SILAC-based proteomics, we 

compared vesicles from reconstitution reactions with a mock vesicles fraction. In the mock fraction, 

SIC cells were treated with nucleotides and Arf1. The addition of Arf1 to the mock control became 

necessary as initial experiments, in which the small GTPase was omitted in the mock reaction, 

showed an enrichment of AP-1, another coat protein known to interact with Arf1 (Stamnes and 

Rothman, 1993). Having coatomer as the sole difference between both reactions solved this issue. 

Using the common criterion of a >twofold enrichment for protein to be considered as candidates for 

the vesicle proteome resulted in a list of 122 candidate proteins in HeLa cells (Tab. 1). Most of these 

proteins (102) were identified in 2-3 independent experiments; a minor fraction of 20 proteins was 

identified in only one MS run. Since these 20 proteins were identified in a vesicles sample from 

isotope-labeled cells, and thus are no exterior contaminations, they were included as potential 

candidates into further analyses. The same vesicle versus mock setup was furthermore used to 

investigate the proteomes of COPI vesicles reconstituted from HepG2 cells (hepatocarcinoma) and 

iMΦ (murine macrophages). In HepG2 cells, 69 proteins (Tab. 11) and in iMΦ 144 proteins (Tab. 12) 

could be determined as candidates for the respective COPI proteome within two independent 

experiments. Of the three candidate lists the mean SILAC ratio was highest for HeLa (mean SILAC 

ratio 4.5) and lowest for HepG2 cells (mean SILAC ratio 2.82). The 144 candidates identified in iMΦ 

showed an average SILAC ratio of 4.18. The relatively small number of proteins that fulfill the twofold 
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enrichment criterion and their low mean SILAC ratio for COPI candidates proteins in HepG2 cells can 

be explained in several ways. Either, in vitro reconstitution of COPI vesicles in these cells is less 

efficient than in the other two cells lines, or the background that is produced by endogenous, Arf-

independent coat proteins and the unspecific release of small membrane fragments during the 

assays is much higher in HepG2 cells. Conversely, the long list of candidates obtained for murine 

macrophages possibly reflects a very high suitability of these cells for this assay. Potentially, 

combining murine cells and murine coatomer enhances the productivity of the assay despite the fact 

the human and murine coatomer are highly similar (i.e. the largest subunit α-COP is 98.5 % identical). 

Of the three candidate lists, 39 proteins are found in all three datasets defining them, with a very 

high level of fidelity, as core components of COPI vesicles. Another 44 proteins are enriched >twofold 

in two out of the three datasets, marking them as very good additional candidates for the COPI 

proteome (Fig. 2.16). Thus, of the 213 individual candidate proteins identified across three cell lines 

and two species roughly 40 % (83 proteins) are recurring. 

The very core of the recurring proteins, the 39 ubiquitously shared proteins, contain a lot of 

expected, classical COPI proteins but still hint towards an important role for some proteins that has 

not been appreciated thus far. Classical COPI proteins are for example the various members of the 

p24/TMED family, which are well characterized single transmembrane proteins that cycle in the early 

secretory pathway, where they assist COPI biogenesis and transport of GPI anchored proteins 

(Belden and Barlowe, 2001; Bonnon et al., 2010; Bremser et al., 1999; Dominguez et al., 1998; 

Gommel et al., 2001). Additional ER-Golgi cycling proteins such as the cargo adaptors ERGIC53 

(LMAN1) (Kappeler et al., 1997), the SNAREs Sec22b and Stx5 (Adolf et al., 2016; Hay et al., 1998), or 

the KDEL receptor (Lewis and Pelham, 1992; Munro and Pelham, 1987) (Fig. 2.16B) are also 

conserved COPI components. Other proteins, such as the nonaspanins TM9SF1/3, which we define as 

core components of COPI vesicles (Fig. 2.16B), were only recently characterized and shown to carry 

distinct KxD/E interaction motifs for COPI transport (Woo et al., 2015). This motif, which is conserved 

from yeast to human, confers Golgi-retention through interaction with coatomer. Apart from the 

various cycling proteins, and not unexpected, multiple glycosylation enzyme, i.e. MAN1A2, MAN1B1, 

MGAT2, MGAT4B, POMGNT1 (Fig. 2.16B) were among the proteins found in COPI vesicles of various 

cell lines. Whether Golgi-resident enzymes are enriched in COPI vesicles has been controversial since 

studies that based on the same methodology (immunogold labeling EM) came to opposing 

conclusion (Martinez-Menarguez et al., 2001; Orci et al., 2000). Several Golgi enzymes within the 

core COPI proteome strongly argues towards an active uptake of these proteins into COPI vesicles, in 

line with more recent studies (Eckert et al., 2014; Gilchrist et al., 2006; Rutz et al., 2009). 
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In general, there is a clear enrichment of putative or known cargo adaptors, vesicle targeting factors, 

and enzymes among the 39 shared proteins. These core components are strongly enriched in 

membrane proteins (35 proteins). Most of them have a single TM domain (20 proteins), however, the 

number of transmembrane spans can go up to ten in case of the calcium-transporting ATPase 

ATP2C1. The five proteins lacking a TM domain are ERP44, NUCB1/2, and Rab18. ERP44 is an 

ER-retention factor which possess a C-terminal RDEL signal and forms mixed disulfide bonds in order 

to retrieve its substrates (Anelli et al., 2003). NUCB1 and NUCB2 are major calcium-binding proteins 

of the ERGIC and cis-Golgi (Lin et al., 1998). Earlier proteomic studies of the ERGIC (Breuza et al., 

2004) and the ER/Golgi and COPI vesicles (Gilchrist et al., 2006) support these findings. Interestingly, 

Coomassie staining of a fraction enriched in COPI vesicles reveals a distinct band with intensity 

comparable to those seen for membrane machinery proteins such as p24 and p25 (Rutz et al., 2009). 

Together with the recurring identification of both proteins with very high SILAC ratios (see Tab. 1, 

11-12) this strongly argues for a high concentration of NUCB1/2 inside the lumen of COPI vesicles and 

a direct link between COPI vesicle transport and calcium homeostasis. Since the overall 

concentration of nucleobindin in the Golgi lumen is high (Lin et al., 1998) further experiments are 

required to investigate an active sorting into vesicles. 

Another attractive hypothesis is that NUCB1/2 functions as calcium-switchable cargo receptors 

possibly in addition to its function as buffer for luminal calcium in the Golgi. As the concentration of 

calcium decreases from the ER towards the TGN (Pizzo et al., 2011), nucleobindins could bind certain 

proteins at a low calcium concentration (e.g. TGN), and release them at higher concentration (e.g. ER 

or CGN), or vice versa. Such a mechanism would resemble the pH-dependent binding/release of KDEL 

clients by their receptor (Wilson et al., 1993). 

Of the COPI vesicle core proteome without a TM domain, Rab18 is the only protein localized to the 

outer leaflet of the vesicle membrane. The fact that Rab18 shows the tightest and most conserved 

association with COPI is partially surprising. Rab18 has mainly been implicated in lipid droplet (LD) 

homeostasis (Ozeki et al., 2005), a process in which it seems to interact also with COPI and the 

tethering complex TRAPPII (Li et al., 2017; Zappa et al., 2017). The identification of this particular Rab 

family member in our proteomic datasets points towards a significant role for Rab18 in addition to 

LD homeostasis, potentially in intra-Golgi and ER-Golgi transport. Such a function would be in line 

with observations made during overexpression and knockdown studies that revealed trafficking 

defects at these organelles when Rab18 levels were altered (Dejgaard et al., 2008). 

One of the recurrent transmembrane proteins worth highlighting is QSOX2 (quiescin 

Q6/FAD-dependent sulfhydryl oxidase 2). QSOX2 has a single TM domain at its very C-terminus and 

thus a short cytoplasmic tail with the sequence RVRSRRWKVKHHHPAV (N- to C-terminus). Proteins of 
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this family serve formation of disulfides and have been previously placed in part to the Golgi complex 

(Mairet-Coello et al., 2004; Wittke et al., 2003). Here we can show for the first time that QSOX2 is a 

conserved component of COPI vesicles. Together with its intracellular localization, much argues for a 

role of COPI in its retention at the Golgi apparatus. As the cytoplasmic tail does not display any of the 

classical retrieval motifs (e.g. KKxx, KxKxx, KxD/E) further studies are required to determine how 

QSOX2 is kept at the Golgi complex. 

As only Rab proteins (Tab. 1) were be identified as cytosolic factors associated with COPI vesicles, we 

decided to refine the assay by introducing cytosol to the budding reaction. The cytosol, which was 

prepared from SILAC-labeled HeLa cells, was depleted in membrane proteins but contained also 

luminal ER content (Fig. 2.7). In order to capture cytosolic proteins that interact with the COPI coat, 

vesicles were either prepared with GTP or GTPγS. The use of non-hydrolysable analogs instead of 

GTP did not result in a decreased level of COPI marker proteins release (Fig. 2.3). 

When comparing COPI vesicles made in the presence of cytosol and GTPγS with COPI vesicles made 

in the presence of cytosol and GTP, 72 proteins showed a twofold enrichment in one to two 

experiments (Fig. 2.7B and Tab. 1). Unlike expected, the vast majority of these proteins have 

transmembrane domains and reside in the ER. With the exception of Arfaptin-1, no potential 

cytosolic COPI interactors could be identified. Arfaptin-1 has been shown to interact with the COPI 

coat component Arf and to be associated with the Golgi apparatus (Kanoh et al., 1997; Williger et al., 

1999). However, as more recent studies place Arfaptin at the TGN (Cruz-Garcia et al., 2013; Man et 

al., 2011) and the fact that AP-1 coat subunits are enriched in the COPI vesicle fraction produced with 

GTPγS vesicles (Tab. 2), one cannot conclude with certainty that Arfaptin-1 is a cytosolic interactor of 

COPI vesicles. 

The unexpected finding that many ER resident transmembrane proteins were enriched in the COPI 

vesicle fraction produced with GTPγS and cytosol prompted us to investigate this observation in 

more depth. A control experiment without coatomer revealed that many of these ER proteins are 

released from SIC in the absence of the coat complex (Tab. 3). Notably, many constituents of the 

tubular ER (reticulons and atlastins) were identified. As atlastins, which are involved in regulation of 

ER morphology (Zhao et al., 2016) are large GTPases, one possible explanation for this observation is 

that the tubular ER undergoes shredding due to a constitutive activation of these proteins. 

Earlier reports performed with Golgi-enriched membrane fractions and cytosol suggested that 

non-hydrolysable GTP analogs interfere with the uptake of retrograde and anterograde cargo into 

COPI vesicles (Lanoix et al., 1999; Nickel et al., 1998). Our proteomic comparison of GTP and GTPγS 

vesicles and also WB analysis of known COPI marker proteins (Fig. 2.3B) did not hint towards a 
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defective uptake of these marker proteins when assays are performed with recombinant proteins 

and SIC. 

In a nutshell, what a minimal model COPI vesicle could look like based upon our high fidelity core 

proteome is shown in figure 3.1. Many of the components are expected and are in agreement with 

previous findings. Other components, which we could identify consistently in multiple datasets, had 

not been appreciated as core components of COPI vesicles before. 

 

 

Figure 3.1 Schematic of a Model COPI Vesicle 

Schematic drawing of a COPI vesicle based on our proteomic data (Fig. 2.14 and Tab. 1, Tab. 11, and Tab. 12) that highlights 

commonly known and new features. The vesicle contains mainly TM proteins that cycle between the ER and the Golgi. Our 

data together with previous observations (see 3.2) suggests that NUCB1/2 are major constituents of the COPI lumen. 

NUCB1/2 potentially interact with similarly abundant TM proteins for packing into vesicles (e.g. p24 proteins) and serve as 

cargo-adaptors. Secreted cargo, if present, is found only at low concentration. Glycosylation enzymes are retained by COPI. 

Targeting/fusion of the vesicle is performed by SNAREs (most prominently Stx5 and Sec22b) as well as tethering factors 

(ZFPL1) and Rab proteins. Rab18, was the most frequently identified Rab family member associated with COPI. Some core 

components of COPI vesicles, e.g. QSOX2, are likely retained in the Golgi through interaction with the COPI coat via an 

unknown mechanism/motif. 
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However, many open questions concerning the protein content of COPI vesicles remain. Some 

questions that future research, especially with respect to coatomer and Arf isoforms, could try and 

answer are mentioned in sections 3.3 and 3.4. Two more general aspects of COPI that could be 

addressed by future research are discussed below. 

i) Role of COPI in the endosomal system 

A most recent study in yeast provides strong evidence that COPI plays a role in recycling of the 

exocytic SNARE Snc1 through recognition of its ubiquitinated form and subsequent trafficking 

through the endosomal system (Xu et al., 2017). This is in line with earlier studies in mammalian cells 

which provided evidence for the localization of COPI on endosomes and even suggested vesicle 

budding at these sites (Aniento et al., 1996; Whitney et al., 1995). A possible role of COP in the 

endosomal system in mammals could be studied further e.g. by the following experiments: 

 -Using isolated endosomal membrane fractions for COPI binding/budding studies 

 -MS analysis of potential endosomal COPI vesicles 

 -MS of COPI vesicles after temperature block at the TGN (Saraste and Kuismanen, 

1984) 

 -Knocksideways of COPI and monitoring of the effect on the endosomal system 

(Robinson et al., 2010) 

 

ii) COPI on lipid droplets 

Lipid droplets are cellular inclusions that serve the storage of neutral lipids (Guo et al., 2009). LD 

homeostasis has been previously linked to COPI (Beller et al., 2008; Guo et al., 2008). Transport of 

proteins to LDs (Soni et al., 2009) and localization and activity of COPI proteins on LDs (Wilfling et al., 

2014) has been shown earlier. Most recent studies further linked the tethering complex TRAPP and 

Rab18 to LD homeostasis (Li et al., 2017; Zappa et al., 2017). This could be further addressed by: 

 -Using isolated LDs to perform micro LD budding with COPI with subsequent 

proteomic analysis (Wilfling et al., 2014) 

 -Interaction studies between LD proteins and the COPI coat components (targeting 

motifs?) 

 -Lipidomic analysis of COPI-budded micro LDs and their parental donor LDs 
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3.3 The Role of Coatomer isoforms 

 

As mentioned in the introduction, coatomer is a heptameric complex. Two of its seven subunits, γ- 

and ζ-COP, exist as two isoforms. What function these isoforms serve remains largely elusive. A main 

function that isoforms of coat proteins have been shown to serve is sorting of cargo and machinery. 

Prominent examples are the isoforms of mammalian Sec24, which pack the ER-Golgi SNAREs 

(Mancias and Goldberg, 2007, 2008), transporters of the plasma membrane (Farhan et al., 2007; 

Sucic et al., 2011), and many ER-Golgi cycling proteins (M.Sc. thesis Manuel Rhiel, Adolf et al., 

unpublished data) into COPII vesicles in an isoform-specific manner. In order to investigate an 

equivalent function for the isoforms of the COPI coat, we have compared hundreds of COPI vesicle 

proteins at once in our novel MS setup (Fig. 2.5). 

In a direct comparison of γ1ζ1- and γ2ζ1-vesicles all proteins crowd around a SILAC ratio of one. No 

proteins are >twofold enriched in vesicles reconstituted with γ1ζ1 over γ2ζ1-vesicles (Tab. 4). A few 

proteins display a slight enrichment in vesicles formed using γ2ζ1 (Fig. 2.9 and Tab. 5), however, the 

most promising candidates based on their SILAC ratios are mitochondrial proteins (HSPD1, ATP5B, 

and ATP5A1). Abundant proteins such as p24 and ERGIC53, which give highly similar signals in 

Western blot analyses (Fig. 2.8), display equally similar SILAC ratios in MS experiments. In our 

datasets ERGIC53 and p24 are slightly more enriched in γ1ζ1-vesicles as compared to γ2ζ1-vesicles, 

showing mean SILAC ratios of 1.11 (ERGIC53) and 1.16 (p24). Since there was a slightly higher 

incorporation of both proteins by γ2ζ1 in vesicles assays analyzed by Western blot (Fig. 2.8), these 

subtle differences, especially since both proteins behave in the same way, are not significant and in 

the margin of error of this system. 

Similarly, a proteomic comparison of COPI vesicles reconstituted with recombinant coatomer 

containing either ζ1- or ζ2-COP did not reveal any major differences. A few proteins (i.e. TM9SF1, 

TPBG, POMGNT1, and ZDHHC13) are somewhat more enriched in γ1ζ1- compared to γ1ζ2-vesicles (Fig. 

2.10 and Tab. 6). Of these four potential candidates, TPBG can be discarded because it was not 

enriched in COPI vesicles made with γ1ζ1 compared to a control (Tab. 1). The remaining three 

proteins were found >twofold enriched in COPI vesicles in the same experiments and are thus 

candidates for the COPI proteome. However, also ERGIC53 (SILAC ratio 1.11) and p24 (SILAC ratio 

1.09) were slightly enriched in COPI vesicles prepared with γ1ζ1- compared to γ1ζ2 coatomer. Hence, 

the observed differences for TM9SF1, POMGNT1, and ZDHHC13 are likely to result from a slightly 

better budding efficacy during these experiments, rather than differential sorting of these proteins 

by ζ1-COP. In isotypic vesicles formed by ζ2-COP, only one protein, the monocarboxylate transporter 1 
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(SLC16A1) stood out with a rather high mean SILAC ratio of 3.75 (Fig. 2.10 and Tab. 7). However, the 

two individual SILAC ratios for this protein (6.13 and 1.37) are highly diverging, rendering it a rather 

weak candidate for being a ζ2-COP specific client. In summary, it can be concluded that the isoforms 

of coatomer do not seem to sort the COPI core components differentially. 

We furthermore investigated a potential influence of coatomer isoforms on the size of vesicles. In 

the CCV system it has been shown previously that clathrin adaptor proteins such as AP180 (Zhang et 

al., 1998) or clathrin assembly lymphoid myeloid leukemia protein (CALM) (Miller et al., 2015) 

influence the size of endocytic vesicles. Contrary, isoforms of the COPII coat subunit Sec24 in yeast 

(Sec24p and Lst1p) have been shown to give rise to vesicles with highly similar size and morphology 

(Miller et al., 2002). To explore this putative function, negatively stained EM images of isotypic COPI 

vesicles were analyzed systematically using bioinformatics tools for accurate segmentation of 

objects. The compiled data, presented in figure 2.11, shows that neither isoforms of γ- nor ζ-COP 

have a substantial influence on the size of COPI vesicles. Indeed, the size of isotypic vesicles was 

almost identical to that of vesicles reconstituted using an endogenous mix of all CM isoforms 

represented by rat CM (Fig. 2.11). Noteworthy, the average size of vesicles determined by our 

approach (~74 nm) matches the size of COPI vesicles determined at the time of their initial discovery 

(74-76 nm) (Orci et al., 1989). A most recent in situ study revealed that COPI vesicles are not uniform 

with respect to their size and the luminal density under the electron microscope (Bykov et al., 2017). 

This plasticity is reflected by the standard deviations which range from 7.7 to 8.9 nm (Fig. 2.11). 

With our MS and EM data presented throughout this thesis, we can exclude two major functions for 

the isoforms of CM subunits: i) the uptake of core components into vesicles, and ii) the modulation 

of COPI vesicle size. This leaves the question regarding a function of these isoforms unanswered. Two 

previous studies point towards a diverging function of CM isoforms. First, an EM-based study of 

intracellular coatomer isoform distribution showed that γ1ζ1 and γ1ζ2 were preferentially at the 

cis-Golgi, whereas γ2ζ1 concentrated at the trans-side (Moelleken et al., 2007). A later study by 

Hamlin et al. showed that Scyl1, an inactive cytosolic kinase, interacts preferentially with γ2-COP and 

class II Arfs (Hamlin et al., 2014). Mutations in Scyl1 have been implicated in the development of 

neuropathies and liver failure (Schmidt et al., 2007; Schmidt et al., 2015). Scyl1 has furthermore been 

shown to interact with coatomer (Burman et al., 2008; Ma and Goldberg, 2013), co-localizes with the 

ERGIC and cis-Golgi as well as COPI coat proteins (Burman et al., 2008), and to influence Golgi 

apparatus morphology (Burman et al., 2010). Despite these observations, a functional link between 

COPI and Scyl1 is missing. 

The fact that COPI vesicles are not entirely uniform was observed earlier as they can vary largely with 

respect to their appearance in the electron microscope (Bykov et al., 2017; Donohoe et al., 2007). 
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Donohoe et al. defined COPIa vesicles in algae and plants, which show a light content and form at the 

cis-Golgi, and COPIb vesicles that display a strongly stained lumen in EM studies and form at the 

medial- and trans-Golgi. As we could not observe any visual differences between isotypic vesicles 

(compare vesicles in Fig. 2.11), a link between the mammalian coatomer isoforms and putative 

COPIa/b vesicles is highly unlikely. Moreover, a differential interaction of COPI vesicles with various 

tethers of the Golgi complex have been described (Malsam et al., 2005; Wong and Munro, 2014). 

While the p115/GM130(GOLGA2) tethering complex selectively associated with COPI vesicles 

carrying ER-Golgi cycling proteins such as members of the p24 family, the intra-Golgi tethering pair 

golgin-84(GOLGA5)/CASP(CUX1) was found to tether those vesicles that carry Golgi enzymes 

(Malsam et al., 2005). Three of these proteins, GM130, golgin-84 and CASP were identified in our 

datasets of isotypic COPI vesicles. Two of them, golgin-84 and CASP, were furthermore found 

consistently enriched in COPI vesicles (Fig. 2.16). However, in all comparisons of COPI vesicles made 

with a single isoform of coatomer, none of the three proteins was significantly enriched. Hence, a 

functional link between CM isoforms and Golgi tethers is unlikely. 

As we could not determine a function for γ- or ζ-COP isoforms, further investigations are required. 

Three putative functions of coatomer isoforms and how they could be addressed experimentally are 

listed in the following: 

i) Coatomer isoforms could have a specific role in protein sorting in polarized cell type (i.e. 

neurons) 

Isoforms of CM could function similar to isoforms of adaptor protein complexes (see 1.4.3) in sorting 

of proteins into different trafficking routs. This question could be addressed by: 

 -Comparative COPI proteomics according to Fig. 2.5 using e.g. a neuronal cell line 

 -Knockout of isoforms in specific cell lines 

 -Knocksideways with adjacent purification of endogenous COPI vesicles and MS 

analysis 

 -Immunoprecipitation of endogenous COPI vesicles using isoform-specific antibodies 

 

 

ii) CM isoforms could fulfill a specific function in cargo export or at a certain cellular condition 
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Using our proteomics approach we were able to identify the core machinery of COPI vesicles. We did 

not find many cargo proteins, possibly due to their low concentration. During all experiments cells 

grown under optimal conditions we used. Hence, we did not address a role of CM isoforms under 

challenging conditions or with a focus on uptake of secreted cargo. A possible role of CM isoforms in 

these processes could be further challenged by: 

 -COPI proteomics under stress conditions (e.g. starvation/drug treatment)  

 -Knockdown/knockout of CM isoforms with concomitant starvation/drug treatment 

 -Vesicle proteomics using cells with secreted proteins trapped in the ERGIC (15°C) or 

the TGN (20°C) by temperature block (Saraste and Kuismanen, 1984) 

 -Using a secreted model protein to assess the effect of CM isoforms on protein 

secretion via knockdown/knockout 

 

iii) CM isoforms could act in combination with different isoforms of Arf 

We have not assessed the possibility that isoforms of CM interact differentially with COPI forming 

isoforms of Arf. 

 -COPI proteomics analyzing various combinations of CM/Arf isoforms according to 

Fig. 2.5 

 -Bio-ID of CM/Arf isoforms to fish for potential isoform specific interactors 

 -Competition of different Arfs during vesicle biogenesis (Popoff et al., 2011b) 

 

3.4 The Role Arf Isoforms 

 

In addition to isoforms of the outer COPI coat complex coatomer, we have investigated 

systematically the function of Arf isoforms. To this end, human Arf isoforms Arf3-6 were cloned into 

our improved expression system in which the expression of myristoyltransferase (hNMT1) and 

methionine aminopeptidase (MetAP1) can be induced independently prior to the induction of Arf 

expression (see Material and Methods). This allowed us to produce Arf isoforms with high purity and 

a degree of myristoylation close to 100% (Fig. 2.12A). As has been previously shown by Popoff et al. 

(2011b) in a reconstitution system based on rat liver Golgi membranes and rat liver coatomer, all 
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isoforms of Arf except Arf6, promote formation of COPI vesicles in vitro (Fig. 2.12B). This is in line 

with the observation that Arf6 localizes to the plasma membrane where it is implicated in playing a 

role in endocytosis rather than promoting COPI transport (Cavenagh et al., 1996; D'Souza-Schorey et 

al., 1995). Popoff et al. (2011b) furthermore showed that Arf3 can be outcompeted from COPI 

vesicles by other Arf isoforms. In agreement with this finding and further studies that place Arf3 at 

the TGN, where it is specifically activated by the GEF protein brefeldin A-inhibited guanine 

nucleotide-exchange protein 1 (BIG1) (Manolea et al., 2010), a significantly lower but still appreciable 

release of ERGIC53 and p24 could be observed when COPI reconstitution from SIC was performed 

with Arf3 compared to Arf1, Arf4, and Arf5 (Fig. 2.12B). Accordingly, endogenous Arf4 and also Arf5 

were found in multiple COPI proteomics datasets (e.g. Arf4 can be found in Tab. 1), while Arf6 was 

never identified. Whether Arf3 was also present cannot be concluded due to its high sequence 

similarity to Arf1 that is not resolved by MS. 

To challenge a putative role of Arf isoforms in modulating the content of COPI vesicles we used our 

SILAC-based mass spectrometry setup (Fig. 2.5) to study the content of these carriers prepared with 

Arf3-5 (Fig. 2.13 and Tab. 8-10). In comparisons of COPI vesicles reconstituted with Arf3-5 with a 

mock reaction, overall less peptides/proteins were identified compared to samples produced with 

Arf1. Least proteins were identified with Arf3, again in agreement with previous observations 

(Fig. 2.12). Only 25 proteins were >twofold enriched in Arf3-COPI vesicles, 50 proteins in COPI 

vesicles made with Arf4, and 55 proteins in vesicles reconstituted with Arf5 (Tab. 8-10). These 25-56 

proteins however, largely overlapped with the COPI proteomics dataset acquired with Arf1 

(Fig. 2.14A). Only 8 proteins were not identified with Arf1. These proteins are among the proteome 

candidates with the lowest SILAC scores. The 6 proteins unique to Arf5 display a mean SILAC ratio of 

2.03 including the ribosomal proteins RPL13 and RPL18 which are obvious contaminants. The list of 

proteins shared between all Arf isoforms (Fig. 2.14B) largely overlaps with the list of proteins 

identified as COPI protein candidates in different cell lines (Fig. 2.16). Of the 20 proteins shared 

among all Arf-isotypic COPI vesicles, 17 are found in COPI vesicles made with Arf1 from three 

different cell types. These proteins include five p24/TMED proteins, the SNAREs Sec22b and Stx5, 

ER-Golgi cycling proteins such as ERGIC1/2 and LMAN1/2 plus additional targeting factors like ZFPL1 

and Rab18 (core components of COPI vesicles as discussed in 3.2). 

It can be concluded that the core content of a given COPI vesicle does not depend on usage of a 

given Arf isoform (Fig. 2.14A), whereas the total yield of reconstituted vesicles, judged by the 

number of identified peptides and proteins, seems to change. These findings indicate that Arf1 is the 

most potent small GTPase for COPI vesicle biogenesis. This is in line with the fact that the expression 

level of Arf1 in rat liver is more than fivefold higher than that of Arf5 and threefold higher than that 
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of Arf3 (Popoff et al., 2011b). Moreover, knockdown studies performed by the lab of Richard Kahn 

highlight the importance of Arf1 for COPI transport (Volpicelli-Daley et al., 2005). They found that 

depletion of a single Arf isoform did not interfere with protein traffic and or Golgi morphology. Only 

when knocking down two Arf isoforms at a time did they observe phenotypes. Knockdowns of 

various combinations of Arf3-5 interfered mainly with recycling of the transferrin receptor at the PM, 

and, when Arf4 was depleted, mislocalization of the KDEL receptor. However, only when Arf1 was 

knocked down in combination with Arf3-5 did they observe changed Golgi morphology or localization 

of coatomer (Volpicelli-Daley et al., 2005). 

A specialized role for Arf4 and Arf5 is supported by the findings that both proteins respond 

differently to class I Arfs during BFA treatment. Their membrane association, especially with the 

ERGIC, seems to much less affected by the drug (Chun et al., 2008; Duijsings et al., 2009). Moreover, 

Arf4 has been shown to play a role in trafficking of Rhodopsin C at the late Golgi/TGN (Deretic et al., 

2005), whereas Arf5 has been implicated in endocytosis of α5β1 intergin (Moravec et al., 2012) and 

the disease gerodermia osteodysplastica that a cause by mutations of golgin GORAB that interacts 

specifically with Rab6 and Arf5 (Egerer et al., 2015). 

Several aspects of how differential roles of Arf isoforms could be challenged experimentally are 

already described in the previous section (3.3). Interaction studies between different isoforms of Arf 

and coatomer as well as uptake of temperature-blocked cargo into COPI vesicles with different Arf 

isoforms could be tested. A focus of further investigations of Arf isoforms, however, should be placed 

on their role in post-Golgi trafficking. Multiple studies, cited in this paragraph, forward a role of 

Arf3-5 in specialized cargo sorting in the TGN/endosomal system. In this respect, the knocksideways 

approach, which has successfully been used to investigate the role of CCV adaptor proteins (Hirst et 

al., 2012), would provide a very useful tool, as it could be used in various cell types of interest. 

 

3.5 Syndromic Osteogenesis Imperfecta Caused by Compromised 

ER-Golgi SNARE Sorting? 

 

As part of this study, a most recently discovered link between a syndromic form of OI and mutations 

within the COPII coat subunit Sec24D was investigated (Garbes et al., 2015). To this end, point 

mutations found in the patients were introduced to recombinant proteins in order to study their 

effect on a molecular level. We found that one of the mutations (S1016F) had a strong negative 

effect on the ability of Sec24D to sort the ER-Golgi Q-SNAREs Stx5, GS27, and Bet1 into COPII vesicles 
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(Fig. 2.19). The ability of the protein to bind and incorporate ERGIC53 was comparable to the wild 

type and all other mutants tested, which emphasizes that various independent binding sites are 

displayed by the COPII coat for active sorting. The second patient-derived mutant COPII variant, 

Sec23A/Sec24DQ979P showed only minor, ~5-15 %, reduced levels of SNARE-uptake. Since ERGIC53 

incorporation was also slightly reduced by ~7 % with this mutant (Fig. 2.19B), it can be concluded 

that the second mutation has no specific effect on SNARE-sorting. The fact that the 

Sec23A/Sec24DQ979P did not display a significant impairment of protein uptake is in line with the 

localization of the regarding glutamate residue in a region distant from the membrane (Fig. 2.17B 

and C). It is not in immediate proximity to any known binding site for ER export signals. Likewise, the 

effect observed for the S1016F-mutation is compatible with its localization within the structure, close 

to the Stx5 binding pocket (Fig. 2.17B and C). 

In a previous study we could provide strong evidence that the ER-Golgi Q-SNAREs are sorted into 

COPII vesicles as a pre-assembled complex via an interaction of Sec24C/D with Syntaxin5 (Adolf et al., 

2016). In order to analyze if the ~50 % reduced SNARE-uptake by Sec23A/Sec24DS1016F was a result of 

a flawed direct interaction between Syntaxin5 and Sec24D, pulldown experiments were performed. 

As has been previously observed for Sec24C (Adolf et al., 2016), the shortened Syntaxin5 construct 

Syntaxin5205-328-GST displays a very strong interaction also with Sec24D (Fig. 2.20). This interaction 

was completely abrogated in experiments performed with the binding site mutant 

Sec23A/Sec24DLIL834AAA (Mancias and Goldberg, 2008) or the OI-patient mutant Sec23A/Sec24DS1016F, 

coherent with the observations made during the vesicle reconstitution experiments. Here, the 

second point mutant, Sec23A/Sec24DQ979P showed a minor defect in Sec23A/Sec24D binding (~20 % 

less than wild type). 

Having amounted functional data that showed a major SNARE-sorting defect of one OI-related point 

mutation, Sec23A/Sec24DS1016F, and no (or potentially a very mild) effect on protein uptake by the 

second mutation Sec23A/Sec24DQ979P, we decided to study Sec24D-deficiency in a cellular context. To 

this end, OI-patient derived fibroblasts “Lukas” (genotype Sec24DQ208*/Sec24DS1015F) were analyzed in 

comparison to a fibroblast control cell line (CRL-2091). Both cells in a first step were studied with 

respect to the protein level of multiple ER/Golgi proteins (Fig. 2.21). As a general loading control 

Histone H3 was detected, which showed only a slightly reduced protein level (91 % of control). Also 

other proteins such as the ER chaperone Calnexin (99 % of control) or the intra-Golgi SNARE Ykt6 

(107 % of control) displayed protein levels in patient fibroblasts highly comparable to control cells. 

Other proteins, such as p24 and GS27 displayed a reduction of ~25 % in “Lukas” fibroblasts. The 

strongest reduction was observed for the SNAREs Stx5, Bet1, Sec22b, and GS28 (>40-50%). This 

observation indicates that an impairment of proper trafficking/ER export of proteins can cause their 
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degradation. Stx5, which binds directly to Sec24D (Fig. 2.20) shows the strongest reduction of protein 

level in patient cells, together with Bet1, the transport of which is also directly coupled to Stx5 (Adolf 

et al., 2016). Surprisingly, GS27, which is also part of the ER-Golgi Q-SNARE complex showed only a 

slightly reduced protein level (Fig. 2.21). Moreover, Sec22b, the R-SNARE that is not sorted by 

Sec24C/D but by Sec24A/B, displayed a substantially lower protein level, as does the Q-SNARE GS28. 

Interestingly, p24 displayed a ~25% reduced protein level in patient cells, similar to GS27. Assuming 

that the reduced protein level of the SNARE-complex partners Stx5, Bet1, GS27, and Sec22b is a 

result of their miss-sorting, a similar observation for p24 would be perfectly in line with unpublished 

observation from our lab that shows a Sec24C/D specific sorting of this protein (Adolf et al., 

unpublished data). Moreover, RNAi experiments from the Hauri lab pointed towards incorporation 

into COPII vesicles of p24 by Sec24C/D (Bonnon et al., 2010). The down-regulation of the SNARE 

GS28 makes sense in the light of its involvement in two SNARE complexes with different combination 

of Stx5, Bet1, Ykt6, and GS15 (Shorter et al., 2002; Xu et al., 2002; Zhang and Hong, 2001). 

Conversely, the fact that Ykt6 protein levels are not affected by the Sec24D mutations points towards 

the de-coupling of the fate of this particular SNARE from other interacting SNAREs. Ykt6 has been 

implicated in ER-Golgi, endosome-TGN, and intra-Golgi transport (Fukasawa et al., 2004; Tai et al., 

2004; Xu et al., 2002; Zhang and Hong, 2001). Apart from its engagement in multiple, different 

trafficking events, Ykt6 is special in that it has no transmembrane domain but is lipidated to enable 

membrane association (Fukasawa et al., 2004). A large proportion of the protein seems to be in a 

cytosolic, potentially inactive state (Hasegawa et al., 2004; Zhang and Hong, 2001). All these 

peculiarities might contribute to its protein levels not responding to perturbation of Sec24D. 

Having observed that the protein levels of multiple proteins, especially the ER-Golgi SNAREs, were 

significantly lower in Sec24D-deficient patient cells compared to control fibroblasts, we decided to 

probe their intra-cellular localization. One possible effect of the reduced SNARE binding and sorting 

observed in vitro (Figs. 2.19 and 2.20) could be a miss-localization of these proteins. However, in 

both, control and patient fibroblasts, Syntaxin5 showed a peri-nuclear stain (Figs. 2.21 and 2.22). This 

is in line with previous IFA observations that localized Stx5 predominantly at the Golgi (Bennett et al., 

1993; Subramaniam et al., 1997). No shift towards the ER, here stained with Calnexin (Fig. 2.22) 

could be observed, as there was no overlap between both signals. Furthermore, both fibroblast lines 

displayed a highly similar level of co-localization between Stx5 and p24 with possibly a slightly higher 

degree of co-localization in patient cells (Fig. 2.21). Moreover, the Stx5-positive punctate structures 

observed in both cell types appeared in general more distinct in OI fibroblasts compared to its 

control (Figs. 2.22 and 2.23). Taken together, the IFA observations lead to the conclusion that Sec24D 

deficiency does not cause a major redistribution of Stx5, Calnexin, and p24. The residual 

incorporation into COPII vesicles, observed for the Sec23/Sec24DS1016F mutant (Fig. 2.19), in addition 
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to the activity of Sec24C, which possesses the same sorting specificity for p24 (Adolf et al., 

unpublished data) and the ER-Golgi Q-SNAREs (Adolf et al., 2016; Mancias and Goldberg, 2008), are 

sufficient to facilitate their proper localization. Potentially, the localization of Stx5 is slightly changed 

in relation to p24, as has been for some cells. However, most of the times patient and control cells 

were non-distinguishable during IF assays using antibodies against Stx5/p24. The second general 

observation, namely weaker, less distinct Stx5 punctae, was made more frequently. Assuming that 

these structures are either vesicles or sites of vesicle biogenesis (i.e. ERES), a lesser staining with Stx5 

is in agreement with the hampered incorporation of this protein into COPII vesicles by the 

Sec23/Sec24DS1016F mutant (Fig. 2.19) and the reduced Sec24D protein level in these cells due to the 

premature stop-codon in the second allele (Garbes et al., 2015). 

In summary, the experiments show that one of the two point mutations found in Sec24D involved in 

the development of a syndromic form of OI shows a SNARE sorting and binding defect (Figs. 2.20 and 

2.21) that is equivalent to a synthetic mutant designed for this very purpose (Mancias and Goldberg, 

2008). The intracellular localization of the Sec24D-interacting SNARE Stx5, however, remained largely 

unaltered (Figs. 2.22 and 2. 23). This leads to the question of a role for Sec24D in the development of 

this syndrome, a hallmark of which is the imperfect built of extracellular collagen networks. 

Mutations within the COPII coat subunit Sec23A were previously linked to Cranio-lenticulo-sutural 

dysplasia (CLSD), which is also marked by a hampered collagen secretion (Boyadjiev et al., 2006; 

Fromme et al., 2007). Noteworthy, disruption of the Sec24D gene in the model organisms medaka 

(Ohisa et al., 2010) and zebrafish (Sarmah et al., 2010) results in highly similar symptoms, namely an 

imperfect skeletal morphogenesis especially of the craniofacial region due to a hampered secretion 

of extracellular matrix proteins. Knockdown of Sec24C, which in terms of SNARE-sorting shows the 

same preferences as Sec24D (Mancias and Goldberg, 2008) did not result in the phenotype of Sec24D 

disruption (Sarmah et al., 2010). Hence, it can be concluded that the isoforms Sec24D plays a crucial 

role in ossification and assembly of the extracellular matrix (ECM), potentially in concert with Sec23A 

(Boyadjiev et al., 2006; Lang et al., 2006). 

The export of large cargoes, especially of (pro)collagen (PC) pivotal for ossification and ECM 

assembly, is highly regulated and involves additional factors such as TANGO1 and cTAGE5 at the ER 

(Malhotra and Erlmann, 2011, 2015). These factors bind to the inner COPII coat via Sec23. Binding to 

Sec24C has also been reported, but remains controversial (Ma and Goldberg, 2016; Saito et al., 2009; 

Saito et al., 2011). In addition, special requirements for vesicle fusion machinery have been pointed 

out. For secretion of collagen I and collagen VII, the protein Sly1 and the SNAREs Stx18 (collagen VII) 

and Stx5 (collagen I and VII) have been shown to be crucial (Nogueira et al., 2014). Noteworthy, Stx5 
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has early been known as one of the SNARE proteins absolutely required for secretion (Gordon et al., 

2010). 

In conclusion different scenarios why Sec24D deficiency leads to OI are possible. Two of these 

scenarios as well as arguments for and against them are listed below together with a few 

experiments that would challenge them: 

 

i) Sec24D is crucial for the formation of large COPII super-carriers. 

Pro:  -Sec24D loss in model organisms and syndromic OI patients leads to skeletal 

morphogenesis defects (Garbes et al., 2015; Ohisa et al., 2010; Sarmah et al., 2010) 

  -Sec24C knockdown does not resemble Sec24D loss in zebrafish (Sarmah et al., 2010) 

-TANGO1/cTAGE5 were shown to interact with both subunits of the inner COPII coat, 

Sec23 and Sec24 in yeast two-hybrid (Saito et al., 2009) 

-Sec24D has been shown to be able and pack procollagen I into COPII vesicles (Gorur 

et al., 2017) 

Contra:  - Positive yeast two-hybrid interaction studies were performed with Sec24C and not 

Sec24D (Saito et al., 2009) 

 -TANGO1/cTAGE5 did not interact with Sec24C in pulldown experiments (Ma and 

Goldberg, 2016) 

 -packing of procollagen I into COPII vesicles was cytosol-dependent in an in vitro 

system (Gorur et al., 2017) 

  

Experiments to address this hypothesis include: 

 -Interaction studies between all Sec24 isoforms, especially Sec24D, and 

TANGO1/cTAGE5 via pulldowns/yeast two-hybrid 

 -Systematic in vitro reconstitution studies to assess packing of procollagens using 

defined recombinant proteins 

 -Overexpression of Sec24C in Sec24D deficient cells/fish to test whether the defect 

can be rescued 
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ii) ER-Golgi SNARE levels are critical for collagen export and partly controlled by Sec24D 

Pro:    -Stx5 has been shown to be critical for PC I and VII export (Nogueira et al., 2014) 

   -ER-Golgi SNAREs expression levels are reduced in OI patient cells (this study) 

   -Stx5 is important for constitutive secretion (Gordon et al., 2010) 

  

Contra: -Sec24C and Sec24D were shown to be functionally redundant in terms of SNARE 

sorting (Mancias and Goldberg, 2008) 

-No abnormal localization of ER/Golgi proteins in patient cells despite a lower SNARE 

protein level (this study) 

-Stx5 and Bet1 expression levels were up-regulated in cells put under ER stress (Suga 

et al., 2015) 

Experiments to address this hypothesis include: 

  -To investigate the expression level of ER-Golgi SNAREs (i.e. Stx5, Bet1) in different 

Sec24 isoform knockdown/knockout cells 

 -To introduce the Stx5-binding mutation into Sec24C via genome editing and evaluate 

PC export from the ER 

 -Overexpression of Stx5/Bet1 in Sec24D-deficient cells 
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4 Materials and Methods 

 

4.1 Chemicals, Commercial Kits, Supplies, and Instruments 

 

Chemicals, kits for molecular biology and cell culture, disposable plastic ware, proteins (antibodies), 

DNA, and instrumentation was purchased from one of the companies listed below. 

Abcam      Cambridge, UK 

Acris (part of OriGene)    Herford, Germany 

Affymetrix (part of TFS)    Santa Clara, USA 

Anthos Mikrosysteme    Friesoythe, Germany 

Assistent     Sondheim, Germany 

Axon Labortechnik    Kaiserslautern, Germany 

Beckman Coulter    Pasadena, USA 

BD Biosciences     Franklin Lakes, USA 

Biomers     Ulm, Germany 

Bio-Rad      München, Germany 

Boehringer     Mannheim, Germany 

Carl Zeiss     Oberkochen, Germany 

Dr. Maisch HPLC    Ammerbuch-Entringen, Germany 

Eppendorf     Hamburg, Germany 

Fluka      Taufkirchen, Germany 

GERBU Biotechnik    Heidelberg, Germany 

GE-Healthcare     Freiburg, Germany 

Greiner Bio-One    Frickenhausen, Germany 

Heraeus     Hanau, Germany 

IBA Lifesciences    Göttingen, Germany 

Intavis Bioanalytical Instruments AG  Köln, Germany 

Invitrogen (part of TFS)    Carlsbad, USA 

Jenway      Staffordshire, UK 

LI-CORE      Lincoln, USA 

Life Technologies (part of TFS)   Carlsbad, USA 

Macherey-Nagel    Düren, Germany 

Merck      Darmstadt, Germany 
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Merck-Millipore/Novagen (part of Merck) Darmstadt, Germany 

Microfluidics Corp.    Westwood, USA 

New England Biolabs (NEB)   Frankfurt, Germany 

Parr Instruments    Moline, USA 

PerkinElmer     Waltham, USA 

PeqLab      Erlangen, Germany 

Roboklon     Berlin, Germany 

Roche      Mannheim, Germany 

Roth      Karlsruhe, Germany 

Santa Cruz Biotechnology   Heidelberg, Germany 

Sarstedt     Nümbrecht, Germany 

Sartorius     Göttingen, Germany 

Serva      Heidelberg, Germany 

Sigma-Aldrich (part of Merck)   Taufkirchen, Germany 

Silantes      München, Germany 

Sorvall (part of TFS)    Waltham, USA 

Source BioScience    Nottingham, UK 

Thermo Fisher Scientific (TFS)   Waltham, USA 

Qiagen      Hilden, Germany 

 

4.2 Molecular Biology Materials 

 

4.2.1 Enzymes for Cloning 

 

PCRs were performed with Pfu Plus! DNA polymerase (Roboklon). Restriction of plasmids and 

PCR-generated inserts was carried out using NEB restriction enzymes. Plasmids were usually 

dephosphorylated using calf intestine alkaline phosphatase (Roche) before ligation with an insert 

achieved by incubation with T4 DNA ligase (Thermo Fisher Scientific). Colony PCRs were performed 

with Taq polymerase (Axon). 
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4.2.2 DNA Ladder 

 

As size standard during agarose gel electrophoresis either 1kb DNA Ladder or 2-Log DNA ladder from 

NEB were used.  

 

4.2.3 Bacterial Selection Reagents 

 

The following reagents were used for selection of bacterial clones after transformation. They were 

prepared as stock-solutions (1000×) and diluted in the growth medium down to the final 

concentration. 

Substance Storage Temp. Solvent  Concentration (final) 

Ampicillin  -20°C H2O 100 µg/ml 

Bluo-Gal -20°C DMF 20 µg/ml 

Chloramphenicol +4°C Ethanol 25 µg/ml 

Gentamicin +4°C H2O 7 µg/ml 

Kanamycin -20°C H2O 50 µg/ml 

Tetracyclin -20°C Ethanol 10 µg/ml 

 

4.2.4 Bacterial Media 

 

Bacteria were usually grown in Luria broth (LB) or on LB agar dishes. After transformation they were 

grown in super optimal broth with catabolite repression medium (SOC). All media were autoclaved 

before use. 

Medium Ingredient Concentration  

LB 

Trypton 

Yeast extract 

Sodium chloride 

10 g/l 

5 g/l 

10 g/l 

LB agar 

Trypton 

Yeast extract 

Sodium chloride 

Agar 

10 g/l 

5 g/l 

10 g/l 

15 g/l 
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SOC 

Trypton 

Yeast extract 

Sodium chloride 

Potassium chloride 

Magnesium chloride 

10 g/l 

5 g/l 

10 g/l 

0.59 g/l 

0.19 g/l 

 

4.2.5 Bacterial Strains 

 

Strain Application Source 

E.coli DH5α  Cloning Invitrogen  

E.coli BL21 (DE3) Protein expression Invitrogen  

E.coli BL21-CodonPlus-RIL (DE3) Protein expression Invitrogen  

E.coli DH10MultiBacCre Cloning/Recombination Imre Berger (EMBL, Grenoble) 

 

4.2.6 Oligonucleotides 

 

Oligonucleotides were purchased from Biomers. They were used as primers in PCR reactions for 

molecular cloning of the indicated inserts and for sequencing. 

Primer name Sequence (5`-3`) Insert 

hArf3 For NcoI AAAAAACCATGGGCAATATCTTTGG hArf3 

hArf3 Rev HindIII TTTTTTAAGCTTTTACTTCTTGTTTTTGAGC hArf3 

hArf4 For NcoI AAAAAACCATGGGCCTCACTATC hArf4 

hArf4 Rev HindIII TTTTTTAAGCTTTTAACGTTTTGAAAGC hArf4 

hArf5 For NcoI_new AAAAAACCATGGGCCTCACCG hArf5 

hArf5 Rev HindIII TTTTTTAAGCTTTTAGCGCTTTGACAGC hArf5 

Sec24D mut2936A-C-fw GGGTATTATCCCACAAAAGAGGCC Sec24D-Q979P 

Sec24D mut2936A-C-rev GGCCTCTTTTGTGGGATAATACCC Sec24D-Q979P 

Sec24D mut3047C-T-fw CGGAGGCTCTTTTTATGTGGATTTCC Sec24D-S1016F 

Sec24D mut3047C-T-rev GGAAATCCACATAAAAAGAGCCTCCG Sec24D-S1016F 

Sec24D fwd NotI AAAAAGCGGCCGCATGAGTCAACAAGGTTACGTG Q979P/S1016F 

seq-pFBDM MCSII rev GCATTCATTTTATGTTTCAGG Q979P/S1016F 

M13-FP TGTAAAACGACGGCCAGT for sequencing 
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M13-RP CAGGAAACAGCTATGACC for sequencing 

pBakPAC-FP TAAAATGATAACCATCTCGC for sequencing 

pEGFP-RP AACAGCTCCTCGCCCTTG for sequencing 

pMON Sequencing 2 AGGAGAGCGCACGAG for sequencing 

recA promoter TGAGCATACAGTATAATTGC for sequencing 

S-Pr. Sec24D rev ACCTTGGGTGCTGGATAT for sequencing 

S-Pr. Sec24D rev-2 GGATCTTATGAATATGTTGCC for sequencing 

S-Pr. Sec24D rev-3 GGCCTCGCTGGGGCTGG for sequencing 

T7 TAATACGACTCACTATAGGG for sequencing 

 

4.2.7 Plasmids 

 

Plasmid name Insert(s) Application Creator 

pHV738 hNMT1; hMetAP1 Expression Simone Röhling 

pMON5840-hArf1 hArf1 Expression Simone Röhling 

pET21d-hArf3 hArf3 Cloning Vincent Popoff 

pET21d-hArf4 hArf4 Cloning Vincent Popoff 

pET21d-hArf5 hArf5 Cloning Vincent Popoff 

pET21d-hArf5 hArf6 Cloning Vincent Popoff 

pMON5840-hArf3 hArf3 Expression This study 

pMON5840-hArf4 hArf4 Expression This study 

pMON5840-hArf5 hArf5 Expression This study 

pMON5840-hArf6 hArf6 Expression This study 

pFBDM-HT-hSec23A hSec23A Expression Frank Adolf 

pFBDM-HT-hSec23A/24D-LIL834AAA hSec23A/HT-hSec24D-
LIL834AAA 

Expression Frank Adolf 

pFBDM-HT-hSec23A/24D-Q979P hSec23A/HT-hSec24D-Q979P Expression This study 

pFBDM-HT-hSec23A/24D-S1016F hSec23A/HT-hSec24D-
S1016F 

Expression This study 

pFBDM-HT-hSec13/31A hSec13/HT-hSec31A Expression Frank Adolf 
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4.3 Materials for Protein Biochemistry and Cell Biology 

 

4.3.1 Antibodies 

 

Primary antibodies 

Epitope Clone/Specification Host  Dilution WB Dilution IFA Source 

Bet1 sc-136390 (17) Mouse 1:200 - Santa Cruz 

Calnexin ab75801 Mouse 1:1000 1:400 Abcam 

ERGIC-1 16108-1-AP Rabbit 1:500  - Acris  

ERGIC-53 sc-365158 (C6) Mouse 1:200  - Santa Cruz 

γR-COP (Pavel et al., 1998) Rabbit 1:5000 - F. Wieland lab 

GM130 610822 Rabbit 1:250 - BD Biosciences 

GS27  sc-135932 (25) Mouse 1:200 - Santa Cruz 

GS28 sc-15270 (N-16) Goat 1:100 - Santa Cruz 

Histone H3 ab1791 Rabbit 1:1000 - Abcam 

p24 (Gommel et al., 1999) Rabbit 1:5000   1:400  F. Wieland lab 

Sec22b sc-101276 (29-F7) Mouse 1:200 - Santa Cruz  

Sec23 sc-12107 (E-19) Goat 1:200 - Santa Cruz  

Syntaxin5 sc-365124 (B8) Mouse - 1:100  Santa Cruz 

Ykt6 sc-30097 (NL-198) Rabbit 1:100 - Santa Cruz 

Primary antibodies were stored at -20°C diluted in PBST with 1 % (w/v) BSA. 

Secondary antibodies 

Epitope Fluorophor Host Dilution WB Dilution IFA Source 

Goat IgG Alexa-680 Donkey 1:10000 - Invitrogen  

Mouse IgG Alexa-546 Goat  1:1000 Invitrogen 

Mouse IgG Alexa-680 Goat 1:10000 - Invitrogen 

Rabbit IgG Alexa-488 Goat  1:1000 Invitrogen  

Rabbit IgG Alexa-680 Goat 1:10000 - Invitrogen  

Secondary antibodies used for Western blot (WB) were diluted in PBST with 1 % (w/v) BSA and stored 

at 4°C. Antibodies for immunofluorescence assay (IFA) were diluted in PBS with 1 or 5 % (w/v) BSA. 
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4.3.2 Cell Culture Media 

 

Medium Supplementation Concentration (final) 

αMEM (Minimum Essential Medium Eagle) Fetal calf serum (FCS) 

Penicillin 

Streptomycin 

L-glutamine 

10 % (v/v) 

100 mg/ml 

100 mg/ml 

2 mM 

DMEM (Dulbecco’s Modified Eagle’s Medium) Fetal calf serum (FCS) 

Penicillin 

Streptomycin 

L-glutamine 

(L-proline) 

10 % (v/v) 

100 mg/ml 

100 mg/ml 

2 mM 

(100 mg/l) 

Sf9 (GIBCO SF-900 II SFM) - - 

DMEM and αMEM were usually purchased from Sigma-Aldrich. For SILAC experiments, DMEM with 

isotope-labeled arginine (Arg-10) and lysine (Lys-8) from Silantes was used. Here, the medium was 

additionally supplemented with L-proline in order to prevent conversion of arginine to proline 

(Bendall et al., 2008). 

 

4.3.3 Cell Lines 

 

Cell Line Species Application Source 

HeLa Homo sapiens COPI/COPII reconstitution, 
WB, SILAC proteomics, 
cytosol preparation 

ACC57 (DMSZ) 

HepG2 Homo sapiens COPI reconstitution, WB, 
SILAC proteomics 

- 

Immortalized 
macrophages (iMΦ) 

Mus musculus COPI reconstitution, WB, 
SILAC proteomics 

Eicke Latz (Uniklinik, Bonn) 

Control fibroblasts  Homo sapiens WB, IFA Jinoh Kim (UC, Davis); 
CRL-2091 (ATCC) 

Patient fibroblasts 
“Lukas” 

Homo sapiens WB, IFA Jinoh Kim (UC, Davis); 
(Garbes et al., 2015) 

Sf9 Spodoptera 

frugiperda 

Protein expression Invitrogen  
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4.3.4 Nucleotides 

 

Nucleotide Stock conc. [mM] Source 

Adenosine-5`-triphosphate (ATP) 40 Roche 

Guanosine-5`-triphosphate (GTP) 25 Affymetrix 

Guanosine-5`-O-[γ-thio]-triphosphate (GTPγS) 25 Sigma-Aldrich 

Guanosine-5`-O-[β, γ-imido]-triphosphate (GMP-PNP) 25 Sigma-Aldrich 

Nucleotides were prepared as stock solutions in 25 mM HEPES pH 7.2 (KOH), 150 mM KOAc, 5 mM 

MgOAc and stored at -20°C. 

 

4.3.5 ATP Regenerating System (ATPr) 

 

During COPI/COPII budding reactions, an ATP regenerating system was added, as it has been shown 

to support vesicle biogenesis through an unknown mechanism (Aridor et al., 1995; Aridor et al., 

1998). 

Component Stock conc. [mM] Source 

Adenosine-5`-triphosphate (ATP) 40 mM Roche 

Creatine phosphate (CP) 200 mM Sigma-Aldrich 

Creatine kinase (CK) 8 mg/ml Roche 

Components of the ATPr system were prepared as separate stocks in 25 mM HEPES pH 7.2 (KOH), 

150 mM KOAc, 5 mM MgOAc. ATP and CP were stored at -20°C. Creatine kinase was stored at -80°C. 

 

4.3.6 Protein Molecular Weight Standard 

 

During SDS-PAGE, Precision Plus Protein™ Prestained Standard from Bio-Rad was used for 

determination of the apparent molecular masses of proteins. It ranges from 10 to 250 kDa. 
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4.3.7 Affinity Chromatography 

 

Proteins tagged with polyhistidine were (partially) purified through affinity chromatography with 

Ni-Sepharose High Performance from GE Healthcare. Coatomer which was tagged with a 

One-STreP-Tag (OST) that consists of two times Strep-Tag® II was purified with Strep®-Tactin 

Sepharose® (IBA Lifesciences). For pulldown experiments, GST-tagged proteins were coupled to 

Glutathione Sepharose 4B (GE Healthcare). 

 

4.3.8 Fast Protein Liquid Chromatography (FPLC) – Gel Filtration 

 

Proteins expressed without an affinity tag or with a polyhistidin tag were purified by gel filtration 

(size exclusion chromatography). To this end, an Ettan LC FPLC system was used in combination with 

a Superose6 or a Superdex75 column (both GE Healthcare). For buffer exchange, disposable PD-10 

desalting columns were used (GE Healthcare). 

 

4.4 Methods in Molecular Biology 

 

4.4.1 Polymerase Chain Reaction (PCR) 

 

PCRs for the production of inserts were performed with Pfu Plus! DNA polymerase (Roboklon), 

primers (Biomers) at a concentration of 10-100 µM, 200 µM dNTPs, and 10-50 ng template DNA. 

They were run in a PCR Spring cycler (Thermo Fisher Scientific). The melting temperature was usually 

set to 95°C and elongation was performed at 72°C. The elongation times were calculated by 

assuming that 1 kb of DNA is replicated per minute. The annealing temperatures were determined 

for each reaction individually. 

 

4.4.2 Overlap Extension PCR 

 

Overlap extension PCRs were performed in order to introduce point mutations into a gene. In a first 

round, two PCRs were performed to generate fragments of the insert which overlap at the site where 
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the mutation is to be introduced. These two overlapping fragments are used as templates in a 

second round of PCR to generate the final insert which covers the whole length of the desired gene 

and carries the mutation. 

 

4.4.3 Colony PCR 

 

In order to screen for positive clones after a transformation, colony PCRs were performed. To this 

end, Taq polymerase (Axon) was used instead of a high precision polymerase. Moreover, a bacterial 

colony served as template for the PCR reaction instead of purified DNA. 

 

4.4.4 Agarose Gel Electrophoresis 

 

Agarose gels were prepared with 1-2 % (w/v) agarose dissolved in TAE buffer (40 mM Tris-HCl pH 8.0, 

20 mM acetic acid, 1 mM EDTA), supplemented with 10 µl/l DNA Stain Clear G (Serva). DNA samples 

were mixed with 5× GelPilot DNA Loading Dye (Qiagen) prior to electrophoresis. Agarose gels were 

inspected with a Bio-Rad GelDoc system. 

 

4.4.5 Gel Extraction and PCR Purification 

 

Desired PCR fragments and plasmids were routinely purified by gel extraction using a QIAquick Gel 

Extraction Kit or with a QIAquick PCR Purification Kit (both Qiagen). Kits were used according to the 

manufacturer’s manuals. 

 

4.4.6 Ethanol Precipitation 

 

In order to increase their purity or concentration, DNA samples were subjected to ethanol 

precipitation. To this end, they were mixed with cold 100 % ethanol (2 volumes) and 3 M sodium 

acetate (0.1 volume) and incubated at -20°C for 30 min. Precipitated DNA was harvested 

(14.000 rpm, 15 min, 4°C) and washed once with 1 ml of 70 % (v/v) ethanol (14.000 rpm, 15 min, 

4°C). After discarding the ethanol, DNA was dried and resuspended in the desired volume ddH2O. 
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4.4.7 Restriction 

 

For subsequent ligation, 5-10 µg of plasmid DNA and 1-5 µg of insert DNA were digested with 

restriction enzymes purchased from NEB in a recommended buffer for 1-3 h. Fragments were 

purified by either ethanol precipitation, gel extraction, or using a PCR purification kit (Qiagen). Prior 

to DNA sequencing, samples were usually subjected to a preparative restriction using 500-1000 µg of 

plasmid. 

 

4.4.8 Ligation 

 

Prior to ligation, restricted plasmids were treated with calf intestine alkaline phosphatase (CIP) to 

remove 5` phosphates and prevent re-ligation of partially digested plasmids. After CIP treatment, 

50-200 ng of plasmid DNA was mixed with up to 10-fold molar excess of insert in ligation buffer 

together with T4 ligase (Thermo Fisher Scientific). The reaction was incubated for 1-2 h at room 

temperature or over night at 16°C before transformation. 

 

4.4.9 Plasmid and Bacmid Preparation 

 

Plasmids were purified using either the NucleoSpin Plasmid Kit (Machery-Nagel) or the QIAprep Spin 

Miniprep Kit (Qiagen) following the manufacturer’s manual. Bacmids were isolated following the 

instructions of the Bac-to-Bac manual from Invitrogen using the solutions S1-S3 from the NucleoSpin 

Plasmid Kit (Machery-Nagel). 

 

4.4.10 Transformation of E.coli 

 

Chemically competent E.coli strains DH5α, BL21 (DE3), and BL21-CodonPlus-RIL (DE3) (all Invitrogen) 

were transformed via heat shock. The competent cells were carefully mixed with purified plasmid 

DNA (5-10 ng) or whole ligation reactions, incubated on ice for 30 minutes and subjected to a brief 

heat shock at 42°C for 45 seconds. The cells were allowed to recover on ice for 2 minutes before 
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adding 1 ml of SOC medium and incubation at 37°C for 1 h, shaking. Finally, the cells were streaked 

onto LB agar plates containing the required selection reagents. 

DH10MultiBacCre cells (Imre Berger, EMBL Grenoble) were transformed through electroporation. 

They were carefully mixed with 10 ng plasmid DNA and incubated on ice for 10-20 minutes. The 

electroporation was performed in 2mm cuvettes using a GenePulser Xcell™ (Bio-Rad) at 2.5 kV, 200 Ω 

electrical resistance, and an electrical capacity of 25 μF. Cells were recovered in 1 ml SOC medium 

shaking at 37°C for 3 h. Recovered cells were streaked into LB agar plates supplemented with the 

required selection reagents. 

 

4.4.11 Bacterial Expression of ADP-ribosylation Factors 

 

Small GTPases of the Arf family were expressed in E.coli. To this end, pMON5480 plasmids encoding 

one of the five human Arf family members were co-transformed with the pHV738 plasmid, which 

encodes human glycylpeptide N-tetradecanoyltransferase 1 (hNMT1) and methionine 

aminopeptidase (hMetAP1), in BL21 (DE3) or BL21-CodonPlus-RIL (DE3) cells (both Invitrogen). Cells 

containing both plasmids were used to inoculate 100-300 ml of pre-culture which was grown at 27°C 

or 37°C over night shaking at 180 rpm. Of the pre-culture, 100 ml were used to inoculate a final 

2 liter expression culture. The final expression culture was usually incubated at 27°C, for Arf4 and 

Arf5 occasionally at 37°C, shaking with 180 rpm. The optical density measured at 600nm (OD600) 

during the expression was monitored using a Jenway 6300 Spectrophotometer (Jenway). Shortly 

after inoculation of the final expression culture, the BSA/myristate solution was prepared. To this 

end, 42 mg of sodium myristate (Sigma-Aldrich), dissolved in 3 ml PBS by heating in a microwave was 

mixed with 20 ml of PBS containing 4.5 % (w/v) fatty acid free BSA (Sigma-Aldrich), pre-heated to 

50°C. Once an OD600 of approximately 0.6 was reached, the BSA/myristate solution was added. Ten 

minutes after the addition, IPTG (Gerbu) to a final concentration of 1 mM was added to the culture 

to induce the expression of hNMT1 and hMetAP1. After 1 h, the expression of the respective Arf 

protein was induced upon addition of nalidixic acid (dissolved in 300 mM NaOH) to a final 

concentration of 30 µg/ml. The expression culture was further incubated for 3-4 h before harvest of 

the cells by centrifugation (4000 ×g, 20 min, 4°C). The harvested cells were usually snap-frozen in 

liquid nitrogen and stored for later usage at -80°C. 
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4.4.12 Preparation of Bacterial Glycerol Stocks 

 

Glycerol stocks of transformed bacterial strains were usually used to inoculate over night 

pre-cultures for protein expression. They were prepared by taking a small aliquot of overnight 

culture and mixing it with glycerol to a final concentration of 20 % (v/v). The stocks were immediately 

stored at -80°C. 

 

4.5 Biochemical Methods 

 

4.5.1 SDS Polyacrylamide Gelelectrophoresis (SDS-PAGE) 

 

Standard, discontinuous SDS-PAGE for adjacent Western blotting or to monitor protein purification 

procedures was performed with a PROTEAN II system (Bio-Rad). For self-casting of gels, 4× stock 

solutions of the stacking gel buffer (0.5 M Tris-HCl pH 6.8) and the separating gel buffer (1.5 M 

Tris-HCl pH 8.8) were prepared and stored at 4°C. Gels were casted using Rotiphorese®Gel 30 

acrylamide (Roth). The stacking gels were prepared with a final acrylamide concentration of 4 %. For 

separating gels the concentration was chosen according to the proteins that were to be analyzed 

ranging from 10 % to 15 % final acrylamide concentration. Samples designated for later MS analysis 

were separated on pre-cast Novex™ 10% Tris-Glycine Gels using an XCell SureLock™ electrophoresis 

system (both Invitrogen). 

Samples for SDS-PAGE were denatured in 1× SDS sample buffer which was prepared as a 4× stock 

solution (200 mM Tris-HCl pH 6.8, 40 % (v/v) glycerol, 12 % (v/v) β-mercaptoethanol, 8 % (w/v) SDS, 

0.2 % (w/v) bromophenol blue) via heating to 95°C for 5-10 min. Self-casted gels were run in SDS 

running buffer (25 mM Tris, 192 mM glycine, 0.1 % (w/v) SDS) at a constant electric voltage of 200 V. 

Pre-casted gels were run in NuPAGE™ MES SDS running buffer (Invitrogen) at 140 V. 

 

4.5.2 Coomassie Staining 

 

Coomassie staining of SDS gels was performed to monitor the purification of proteins, to ensure 

equal conditions during pulldown experiments, and to stain proteins destined for MS analysis prior to 

excision from the gel. For purification monitoring and pulldown experiments, SDS gels were stained 
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with Coomassie Brilliant Blue R250 (Bio-Rad). To this end, the gels were briefly heated in staining 

solution (0.25 % (w/v) Coomassie Brilliant Blue R250, 40 % (v/v) ethanol, 10 % (v/v) acetic acid) in a 

microwave and then incubated for approx. 15 minutes. The de-staining was performed by repeatedly 

incubating the gel in de-staining solution (20 % (v/v) ethanol, 5 % (v/v) acetic acid) with occasional 

heating in a microwave. 

Pre-cast gels loaded with samples for MS analysis were stained with Roti-Blue colloidal Coomassie 

(Roth) prepared according to the manufacturer`s manual for a minimum of 2 h. Gels were de-stained 

in de-ionized water. 

 

4.5.3 Western Blot Analysis 

 

Semi-dry Western blotting was performed using a semi-dry Trans-Blot® SD Semi-Dry Transfer Cell 

from Bio-Rad. Proteins were transferred onto Immobilon®-FL PVDF membranes (Merck-Millipore) at 

a constant electric voltage of 20 V for 1.5 h after soaking all blot components with transfer buffer 

(48 mM Tris, 39 mM glycine, 1.3 mM SDS, 20 % (v/v) methanol). 

After blotting, membranes were blocked with 5 % (w/v) milk powder dissolved in PBST 

(35.7 mM Na2HPO4, 14.3 mM KH2PO4, 136 mM NaCl, 3 mM KCl, 0.05 % (v/v) Tween 20) for 30 

minutes at room temperature. Subsequently, the membranes were briefly washed with PBST 

(3× 5-10 min) and then incubated with first antibodies either for at least 2 h at room temperature or 

preferably over night in the cold room at 8°C. Membranes were thoroughly washed with PBST 

(3x 10 min) after incubation with the first antibodies, before detection with fluorophore-coupled 

secondary antibodies for 30-60 minutes at room temperature. After the final antibody incubation, 

membranes were again washed with PBST (3× 10 min), and ultimately 2-3x 10 minutes in PBS 

(35.7 mM Na2HPO4, 14.3 mM KH2PO4, 136 mM NaCl, 3 mM KCl) before scanning at the LI-COR 

Odyssey System (LI-COR) run with Image Studio software (Version 2.1.10).  

 

4.5.4 Protein Concentration Determination (Bradford Assay) 

 

Protein concentration was determined using Bio-Rad Protein Assay Dye Reagent (Bradford). After 

incubation with the dye, absorbance of the samples at 405 nm and 620 nm was measured using an 
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Anthos Reader 2001 (Anthos). In parallel to the samples which were prepared in triplicates standard 

samples prepared from BSA-solution of known concentration were measured. 

 

4.5.5 Purification of Untagged ADP-ribosylation Factors 

 

For a regular purification of myristoylated Arf proteins, bacterial pellets originating from four liters of 

expression culture were first resuspended in 30-50 ml of cold Arf lysis buffer (50 mM Tris-HCl pH 8.0, 

1 mM MgCl2, 1 mM DTT, 1 mM GDP, 1 tablet cOmplete™ EDTA-free Protease Inhibitor Cocktail from 

Roche). Cells were broken during 5-7 runs through a Microfluidizer® (Microfluidics) at an applied 

pressure of 15.000 psi. Cell debris was removed by ultracentrifugation using a Beckman Coulter 

Optima™ LE-80L/L-90K ultracentrifuge equipped with a TLA50.2/TFT55.38 rotor (100.000 ×g, 1 h, 

4°C). The supernatant was filled up to 200 ml using Arf lysis buffer without GDP. Afterwards, an 

ammonium sulfate precipitation (ASP) was performed. To this end, the lysate was stirred in an 

ice-cooled water bath and finely grounded ammonium sulfate was slowly added over a period of 

45 minutes until a final concentration of 35-40 % was reached. The supernatant was continued to stir 

for 45 more minutes before the precipitate was harvested in a Sorvall RC-6 centrifuge equipped with 

an SLC-1500 rotor (8.000 rpm, 30 min, 4°C). The precipitate was resuspended in Arf lysis buffer with 

GDP, subjected to ultracentrifugation within a Optima™ TLX ultracentrifuge equipped with TLA45/55 

rotor from Beckman Coulter (100.000 ×g, 15 min, 4°C) to remove aggregates and run over a 

Superdex75 (16/60) column using an Ettan LC FPLC system (both GE Healthcare) with storage buffer 

(25 mM HEPES pH 7.4 (KOH), 200 mM KCl, 5 mM MgCl2, 1 mM DTT, 1 mM, 10 % (w/v) glycerol) while 

collecting 0.5 ml fractions. Small samples of the fractions expected to contain the purified proteins 

were checked via SDS-PAGE with Coomassie staining. Those fractions with little contaminations and 

decent amounts of purified Arfs were pooled, concentrated using an Amicon® Ultra (10 kDa cut-off) 

concentrator device (Merck-Millipore), aliquoted, and snap-frozen in liquid nitrogen before long-

term storage at -80°C. 

 

4.5.6 Purification of OST-Coatomer 

 

A standard purification of OST-coatomer (One-STreP-Tag C-terminal of α-COP) was performed with 

two Sf9 cell pellets each originating from 500 ml of expression culture. Cells were resuspended in 

approx. 30 ml of cold OST buffer (25 mM HEPES pH 7.4 (KOH), 200 mM KCl, 1 mM DTT, 1 mM, 
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10 % (w/v) glycerol) supplemented with 1 tablet cOmplete™ EDTA-free Protease Inhibitor Cocktail 

(Roche) and cracked within 5 runs through a Microfluidizer® (Microfluidics) at 15.000 psi. Cell debris 

was removed via centrifugation with a Beckman Coulter Optima™ LE-80L/L-90K ultracentrifuge 

equipped with a TLA50.2/TFT55.38 rotor at 100.000 ×g for 1 h at 4°C. The cleared lysate was 

incubated rotating at 8°C with 2-3 ml of pure Strep®-Tactin Sepharose® beads (IBA) for 2-3 hours. 

After incubation with the lysate, beads were washed twice with 50 ml of OST buffer by centrifugation 

in a Megafuge 40R (Heraeus) (2.000 rpm, 5 min, 4°C), transferred to an empty Econo-Pac 

®chromatography column and washed once more with 50 ml of the buffer. The protein complex was 

eluted stepwise (1 ml steps) from the beads with 2.5 mM desthiobiotin (IBA) dissolved in OST buffer. 

The eluted fractions were analyzed for the presence of protein via the Bradford assay. Those 

fractions which contained significant amounts of protein were pooled and the proteins concentrated 

with a 100 kDa cut-off Amicon® Ultra (Merck-Millipore) if necessary. Desthiobiotin was removed 

from the eluted protein pool via gel filtration using OST buffer without desthiobiotin and a PD-10 

desalting column (GE Healthcare). Finally, the protein was aliquoted and stored at -80°C. 

 

4.5.7 Purification of HT-Sec23/Sec24 and HT-Sec13/Sec31 Complexes 

 

Purification of COPII coat components HT-Sec23/Sec24 and HT-Sec13/Sec31 was usually performed 

with two Sf9 cell pellets originating from 500 ml expression culture, each. The cells were thawed on 

ice and resuspended in approx. 30 ml cold lysis buffer (25 mM HEPES pH 7.2 (KOH), 500 mM KCl, 

5 mM MgCl2, 30 mM imidazole, 0.02 % (v/v) MTG, 1 tablet cOmplete™ EDTA-free Protease Inhibitor 

Cocktail from Roche). Cells were lysed within 5 runs through a Microfluidizer® (Microfluidics) at 

15.000 psi. The lysate was cleared by ultracentrifugation within a TLA50.2/TFT55.38 rotor using a 

Optima™ LE-80L/L-90K ultracentrifuge from Beckman Coulter (100.000 ×g, 1 h, 4°C) and immediately 

incubated rotating with 2-3 ml of pure Ni-Sepharose High Performance beads (GE Healthcare) for 

2-3 h in the cold room. Following incubation with the lysate, sepharose beads were washed three 

times with 50 ml of wash buffer (25 mM HEPES pH 7.2 (KOH), 500 mM KCl, 5 mM MgCl2, 

50 mM imidazole, 0.02 % (v/v) MTG) in batch via centrifugation (3.000 rpm, 5 min, 4°C). For the 

elution, beads were transferred to an empty Econo-Pac ®chromatography column. The complexes 

were eluted in 1 ml steps using elution buffer (25 mM HEPES pH 7.2 (KOH), 500 mM KCl, 5 mM 

MgCl2, 200 mM Imidazole, 0.02 % (v/v) MTG). After determining the protein concentration with the 

Bradford assay, those fraction which contained most protein were pooled and the proteins 

concentrated using a 100 kDa cut-off Amicon® Ultra (Merck-Millipore). From the concentrated 

Ni-bead eluate, aggregates were removed via ultracentrifugation within an Optima™ TLX 
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ultracentrifuge equipped with TLA45/55 rotor from Beckman Coulter (100.000 ×g, 15 min, 4°C). 

Subsequently, the eluate was run over a pre-equilibrated Superose6 column coupled to an Ettan FC 

FPLC system (both GE Healthcare) with storage buffer (25 mM HEPES pH 7.2 (KOH), 200 mM KCl, 

5 mM MgCl2, 10 % (w/v) glycerol, 0.02 % (v/v) MTG) while collecting 0.5 ml fractions. Fractions 

expected to contain the purified protein complexes were inspected by SDS-PAGE with Coomassie 

staining. Finally, those fractions which contained stoichiometric amounts of the complexes were 

pooled, concentrated if necessary, aliquoted, snap-frozen in liquid nitrogen, and stored at -80°C. 

 

4.5.8 COPII Pulldown Assay with Syntaxin5205-328-GST 

 

For the pulldown assay, control GST or Stx5205-328-GST were centrifuged in a TLA45/55 rotor using an 

Optima™ TLX ultracentrifuge from Beckman Coulter (100.000 ×g, 1 h, 4°C) to remove protein 

aggregated. Subsequently, 100 µg of the control GST or 150 µg or the Stx5-GST fragment were 

incubated with 10 µl of pure Glutathione Sepharose 4B (GE Healthcare) in 0.5 ml of assay buffer 

(25 mM HEPES pH 7.2 (KOH), 200 mM KCl, 5 mM MgCl2) for 1 h at 8°C, rotating. Following the 

incubation, the beads were washed twice with 1 ml of assay buffer (3.000 rpm, 2 min, 4°C) using an 

Eppendorf tabletop centrifuge 5417 R. Afterwards, the beads were in a second round incubated with 

30 µg of purified HT-Sec23A/Sec24D variants in a total volume of 0.5 ml for 1 h in the cold room. 

Subsequently, the beads were again washed twice by centrifugation (3.000 rpm, 2 min, 4°C). Bound 

material was eluted by boiling the beads in SDS sample buffer. The resulting samples (40 %) were 

separated by SDS-PAGE and analyzed for the presence of Sec23 by Western blotting. To control for 

equal loading, the lower part of the SDS gel containing the GST constructs was subjected to 

Coomassie staining. 

 

4.6 Cell Biology Methods 

 

4.6.1 Tissue Culture of Mammalian Cells 

 

All mammalian cells used in this study were grown adherent in flasks or on dishes. They were 

cultivated at 37°C in incubators with 5 % CO2. HeLa cells were grown in αMEM medium 

(Sigma-Aldrich) but transferred to DMEM for SILAC experiments. All other cells were generally grown 
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in DMEM (Sigma-Aldrich). Cells were usually grown up to 70-90 % confluency before splitting/dilution 

using Trypsin-EDTA solution (Sigma-Aldrich).  

 

4.6.2 Freezing of Mammalian Cells 

 

For freezing, cells from one 15 cm dish were trypsinized, harvested by centrifugation (300 ×g, 5 min, 

4°C) and gently resuspended in a tiny amount of residual medium. Afterwards, the cells were mixed 

with 1.5 ml of FCS and incubated on ice for 20 minutes. Finally, the resuspended cells were mixed 

with 1.5 ml of ice-cold freezing medium (DMEM supplemented with 20 % DMSO) and transferred 

into Cryo.S™ vials (Greiner Bio-One). The vials were stored at -80°C for 24-48 hours before being 

transferred to a liquid nitrogen tank. 

 

4.6.3 Mycoplasma Treatment 

 

In order to remove mycoplasma contaminations from the fibroblast cells, they were treated with 

BM-cyclin (Roche). The treatment was performed following the instructions provided by the 

manufacturer. Success of the treatment was assessed based on an inspection of the cells using 

fluorescence microscopy and DAPI staining. 

 

4.6.4 Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) 

 

For proteomics experiments, HeLa and HepG2 cells, as well as iMΦ were labeled with heavy lysine 

and arginine. To this end, an SILAC-Lys8-Arg10-Kit (Silantes) was used. To prevent arginine to proline 

conversion by the cells, the DMEM medium was further supplemented with 200 mg/l of L-proline 

(Bendall et al., 2008). Cells were cultivated in heavy amino acid containing medium for five passages 

(approx. 2 weeks) before a small sample was taken. The sample was boiled in SDS-sample buffer, 

subjected to SDS-PAGE, and analyzed by MS for the incorporation of heavy amino acids. Only when 

an incorporation >95 % was reached the cells were used for experiments. 
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4.6.5 Culture of Sf9 Insect Cells 

 

Sf9 insect cells were grown non-adherent in GIBCO SF-900 II SFM medium (Life Technologies) in 

CELLMASTER Roller Bottles from Greiner Bio-One. The cells were cultured at a temperature of 27°C 

shaking at 180 rpm. Density of Sf9 cells was monitored every 2-3 days using a Neubauer improved 

counting chamber (Assistent). In order to provide optimal growth conditions, cells were grown at a 

density of 0.8×106–8×106 cell/ml. 

 

4.6.6 Transfection of Sf9 Insect Cells and Baculovirus Production 

 

Transfection of Sf9 cells was performed with isolated Bacmid DNA. To this end, the isolated DNA was 

dissolved in 20 µl of ddH2O and subsequently mixed with 200 µl GIBCO SF-900 II SFM medium 

(Life Technologies). Meanwhile, 15 µl of X-tremeGENE™ HP Transfection Reagent (Roche) were 

diluted in 100 µl of the Sf9 cell medium. Afterwards, the DNA containing medium and the diluted 

transfection reagent were mixed. Transfections were always performed in duplicate. Hence, 160 µl of 

the transfection mixture was added to two wells of a 6-well plate each containing 3 ml of Sf9 cells 

with a density of 0.25×106 cells/ml. The transfected cells were incubated at 27°C for 72h before 

harvest of the supernatant which contains the first virus generation (P1). To the cells, 3ml of fresh Sf9 

cell medium was added and the cells were incubated for 48 more hours. After two days, the cells 

were resuspended in the medium and harvested in a tabletop centrifuge (13.000 rpm, 1 min). The 

harvested cells were resuspended in SDS sample buffer, boiled, and a small sample loaded onto an 

SDS gel followed by Coomassie staining to assess the success of transfection. 

From the P1 virus, a second generation of virus (P2) was produced by infecting 50 ml of Sf9 cells with 

a density of 0.8×106 cells/ml with 1 and 2 ml of P1 virus. The virus was expanded for 72h by 

incubating the infected cells at 27° and shaking with 70 rpm. Following virus expansion, the 

supernatant containing the P2 virus generation was separated from the Sf9 cells (4.000 rpm, 5 min, 

4°C). The different P2 viruses were next tested in small scale expressions before being used on a 

large scale. To this end, 50 ml of Sf9 cells (2×106 cells/ml) were infected with different amounts of P2 

virus (between 200-800 µl). Three days after the infection, a small sample of the cells was prepared 

for analysis via SDS-PAGE and Coomassie staining. The virus concentration which produced the best 

expression was upscaled and used for final 500 ml expressions. 
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4.6.7 Preparation of Baculovirus-Infected Cell (BIC) Stocks 

 

For later expressions, stocks of baculovirus-infected Sf9 cells (BIC stocks) were prepared. For this, 

200 ml of cells (1×106 cells/ml) were infected with the amount of P2 virus used to infect 500 ml 

expression cultures. The cells were infected with the virus for 24 h. After the infection, the BIC were 

harvested gently (1.200 rpm, 5 min, 4°C), resuspended in 20 ml of freezing medium (60 % GIBCO 

SF-900 II SFM medium, 30 % FCS, 10 % DMSO) and aliquoted (usually 1 ml aliquots). The BIC stocks 

were immediately put to -80°C for 48 h before being transferred to liquid nitrogen for long term 

storage. Potency of the stocks was tested in small scale test expressions. 

 

4.6.8 Large Scale Expression of Protein Complexes in Sf9 Cells 

 

Large scale expressions of protein complexes, i.e. coatomer, Sec23/Sec24, and Sec13/Sec31 were 

performed in 500 ml Sf9 cells at a starting density of 2×106 cells/ml. The cells were infected with 

either P2 virus or with BIC stocks using optimal virus titers which have been determined in small 

scale expressions beforehand. The infected cells were allowed to express the proteins for 72-96 h. 

After the expression, cells were harvested (2.000 rpm, 5 min, 4°C), snap-frozen in liquid nitrogen and 

immediately stored at -80°C. 

 

4.6.9 Preparation of Semi-intact Mammalian Cells (SIC) 

 

Semi-intact cells for subsequent vesicle reconstitution assays were prepared basically as described by 

Mancias and Goldberg (2007). Briefly, mammalian cells grown adherent to 70-90% confluency were 

detached with Trypsin-EDTA solution (Sigma-Aldrich). The protease was inactivate by adding 300 µl 

of 1 mg/ml trypsin inhibitor (Sigma-Aldrich) followed by resuspension of the cells in 20 ml of PBS 

(35.7 mM Na2HPO4, 14.3 mM KH2PO4, 136 mM NaCl, 3 mM KCl) for one 15 cm dish. The cells were 

subsequently harvested via centrifugation (300 ×g, 5 min, 4°C) and resuspended again in 10 ml PBS. 

At this step, cells originating from two 15 cm dishes were combined in one 50 ml falcon tube. Next, 

20 µl of 40 mg/ml digitonin (Sigma-Aldrich) was added to each falcon tube, the cells were mixed with 

the detergent by inversion (3-4 times) and incubated on ice for 5 min. The permeabilization was 

quenched by adding 30 ml of cold PBS. The now semi-intact cells were harvested (300 ×g, 5 min, 4°C), 
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resuspended in 50 ml of assay buffer (25 mM HEPES pH 7.2 (KOH), 200 mM KCl, 5 mM MgCl2) and 

incubated on ice for 10 min for further removal of the cytosol. Afterwards, the SIC were harvested 

again (300 ×g, 5 min, 4°C) and resuspended in a small volume of assay buffer (0.3-0.5 ml). The protein 

concentration of the SIC was subsequently determined via the Bradford assay and the cells were 

used for a reconstitution assay within 1 h after preparation. 

 

4.6.10 Preparation of HeLa Cell Cytosol 

 

For preparation of cytosol, cells from 6 confluent 15 cm dishes were trypsinized and resuspended in 

20 ml of PBS (35.7 mM Na2HPO4, 14.3 mM KH2PO4, 136 mM NaCl, 3 mM KCl) per dish, supplemented 

with 300 µl of 1 mg/ml trypsin inhibitor (Sigma-Aldrich). The cells were subsequently harvested via 

centrifugation (300 ×g, 5 min, 4°C), combined, and washed with 50 ml of assay buffer (25 mM HEPES 

pH 7.2 (KOH), 200 mM KCl, 5 mM MgCl2). After the second harvest, cells were resuspended in a small 

volume (~1 ml) of assay buffer. Cell lysis was achieved through nitrogen cavitation (800 psi, 30 min, 

on ice) using a 4639 cell disruption vessel (Parr Instruments). The soluble cytosolic fraction was 

cleared from debris via centrifugation at 100.000 ×g within an Optima™ TLX ultracentrifuge and a 

TLA45/55 rotor (Beckman Coulter) at 4°C for 1 h. 

 

4.6.11 In vitro reconstitution of COPI and COPII Vesicles from SIC 

 

In vitro reconstitution of COPI and COPII vesicles was essentially performed as described previously 

by Adolf et al. (2013). Briefly, first recombinant proteins used for reconstitution reactions were 

centrifuged using a Beckman Coulter Optima™ TLX ultracentrifuge equipped with a TLA45/55 rotor 

(100.000 ×g, 15 min, 4°C) to remove aggregates. Afterwards, semi-intact cells were prepared as 

described above. For a regular COPII reconstitution reaction, 200 µg of SIC were incubated with 4 µg 

of Sar1, 8 µg of HT-Sec23/Sec24, and 10 µg of HT-Sec13/Sec31. COPI reconstitution from 200 µg SIC 

was performed with 4 µg of Arf and 10 µg of OST-coatomer. For both, COPI and COPII budding 

reactions, SIC and proteins were incubated with ATP-regenerating system (40 mM creatine 

phosphate (Sigma-Aldrich), 0.2 mg/mL creatine kinase (Roche), 1 mM ATP (Roche)) and guanine-

nucleotide (1 mM GTP (Affymetrix) or 0.2 mM GMP-PNP/GTPγS (Sigma-Aldrich)) for 30 minutes at 

30°C in a final volume of 200 or 400 µl of assay buffer (25 mM HEPES pH 7.2 (KOH), 200 mM KCl, 

5 mM MgCl2). For some experiments, 150 µg of cytosol per 200 µg of SIC was added to the 
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incubation. In negative controls either nucleotides or crucial coat proteins were omitted. After 

30 min, generated vesicles were separated from SIC via medium-speed centrifugation (14.000 ×g, 

10 min, 4°C) in a table top centrifuge. The vesicle containing supernatant was immediately 

transferred to a fresh tube and the vesicles were either harvested directly by high-speed 

centrifugation (100.000 ×g, 30 min, 4°C) using a TLA45/55 rotor or subjected to further purification 

via floatation. 

 

4.6.12 Floatation of Vesicles using an Iodixanol Density Gradient 

 

In order to separate reconstituted vesicles form the excess of recombinant coat proteins, they were 

subjected to density gradient floatation. To this end, vesicle containing supernatant, obtained after 

medium-speed centrifugation, was brought to 40% iodixanol concentration and the whole sample 

was adjusted to 1x assay buffer (25 mM HEPES pH 7.2 (KOH), 200 mM KCl, 5 mM MgCl2). The final 

volume of the load sample was 700 µl. It was subsequently put into a 4 ml UltraClear™ Thinwall 

SW-60 Tube (Beckman Coulter), overlaid with 1200 µl of 30% iodixanol and finally 400 µl of 20% 

iodixanol density gradient matrix both prepared in 1x assay buffer. The gradient was ultracentrifuged 

over night (14-16 h) at 250.000 ×g and 4°C in a Optima™ LE-80L/L-90K ultracentrifuge equipped with 

a SW-60 rotor (Beckman Coulter). To initially assess the movement of vesicles, 10 fractions (230 µl) 

were taken from top to bottom, diluted with 770 µl assay buffer and centrifuged in a TLA45/55 rotor 

from Beckman Coulter (100.000 ×g, 2 h, 4°C). The harvested material was boiled in SDS sample buffer 

and subjected to Western blot analysis. 

 

4.6.13 Vesicle Reconstitution for SILAC Proteomics 

 

For a single SILAC mass spectrometry sample, two vesicle reconstitution or a vesicles reconstitution 

plus a mock reaction were performed in parallel. One of the reactions was performed with light SIC, 

the other reaction from SILAC-labeled heavy cells. In total, 1200 µg of SIC were used for each 

condition, split into 6 separate budding reactions. Following the budding reaction, the samples were 

subjected to floatation within iodixanol density gradients. From each gradient, the top 200 µl were 

discarded and one major vesicle containing 500 µl fraction taken. This fraction was diluted with 1 ml 

of assay buffer and subjected to ultracentrifugation using a Beckman Coulter Optima™ TLX 

ultracentrifuge equipped with a TLA45/55 rotor (100.000 ×g, 2 h, 4°C). The supernatant was again 
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discarded and the harvested material from each gradient was solubilized within 5 µl of SDS sample 

buffer and boiling at 95°C for 10 min. All sub-samples were combined into one large sample 

containing the floated/harvested material from one reaction performed with light and one reaction 

performed with heavy SIC. The final sample was briefly run into a pre-cast Novex™ 10% Tris-Glycine 

Gel (Invitrogen), just so that the sample had entered the gel. The gel was subsequently stained with 

Roti-Blue colloidal Coomassie (Roth), de-stained in de-ionized water and handed over to the MS 

facility for downstream analyses. 

All SILAC experiments were performed at least in duplicate with switched labels to make sure that 

the labeling procedure had no influence on the cells. 

 

4.7 Imaging, Mass Spectrometry and Data Analysis 

 

4.7.1 Immunofluorescence Assay (IFA) and Confocal Microscopy 

 

For immunofluorescence assays, 0.5-1.0×105 cells were seeded onto sterile cover slips (Roth) in a 

24-well plate in the evening and cultivated over night for 12-16 h prior to the assay. On the next day, 

the cells were washed twice with 2-3 ml of PBS (35.7 mM Na2HPO4, 14.3 mM KH2PO4, 136 mM NaCl, 

3 mM KCl) before permeabilization/fixation by incubating the cells with ice-cold, pure methanol for 

20 min at -20°C. After incubation with methanol, cells were washed again twice with PBS before 

incubation with PBS containing 1 % (w/v) BSA (Sigma-Aldrich) for 30-60 minutes at room 

temperature to prevent later unspecific binding of antibodies. After this blocking step, the cells were 

incubated with first antibodies, diluted in 1 % BSA-PBS by putting the cover slips onto small drops of 

the antibody solutions in a humidified Petri dish. Incubation with the primary antibodies was 

performed over night (12-16 h) at 8°C. On the following day, unbound antibodies were removed by 

washing the cover slips twice by putting them on drops of PBS and letting them sit for 5-10 minutes. 

Afterwards, the samples were incubated with secondary antibodies diluted in 1 % (w/v) BSA-PBS for 

60 minutes in the dark at room temperature. The cover slips were washed two more times with PBS 

and once with ddH2O before mounting onto microscopy glass slides using 5-10 µl of DAPI containing 

ProLong™ Gold Antifade (Life Technologies). Samples were kept at 8°C in the dark until imaging. 

Imaging of the samples was performed at the Nikon Imaging Center at the Heidelberg University 

using a PerkinElmer ERS-6 spinning disk confocal microscope. Z-stacks were acquired in 150 nm steps 

with a 100× oil immersion objective using the PerkinElmer Volocity 6.3 software to operate the 
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microscope. They were further subjected to deconvolution using the Huygens Remote Manager 

v3.4.1. Downstream processing of the images was done with Fiji/ImageJ 2.0.0-rc-54 software. 

 

4.7.2 Electron Microscopy 

 

Electron microscopy was performed at the Interdisciplinary Center for Neurosciences of the 

Heidelberg University (IZN). For resin-embedding, in vitro reconstituted COPI vesicles were purified 

via floatation within an iodixanol gradient. Vesicles from three gradients were sequentially harvested 

by centrifugation (100.000 ×g, 1 h, 4°C) as described above in the presence of 2 % glutaraldehyde 

(v/v) dissolved in assay buffer (25 mM HEPES pH 7.2 (KOH), 200 mM KCl, 5 mM MgCl2). The vesicles 

were then resuspended in 10 µl assay buffer and the samples further prepared as described 

previously by Adolf et al. (2013). Briefly, tannic acid in assay buffer was added to a final 

concentration of 0.5 % (w/v) and the samples incubated for 1 h. Subsequently, the samples were 

washed, treated with 2 % (v/v) osmium tetroxide/ 1.5 % (w/v) ferrocyanide and washed again. 

Finally, samples were stained with uranyl acetate and embedded using glycid ether 100. Ultrathin 

sections of the embedded samples were further contrasted with uranyl acetate/ lead citrate. Image 

acquisition was performed at an EM 10 transmission electron microscope from Carl Zeiss operated at 

60 kV. 

Negative stain EM was performed on vesicles reconstituted as described previously (Beck et al., 

2008). Samples were adsorbed onto a carbon grid for 30 min. The sample was subsequently fixed for 

10 min by putting it on a drop of 1 % (v/v) glutaraldehyde in assay buffer and then washed in the 

same way with just buffer three times for 1 min. The samples were then treated with 0.05 % (w/v) 

tannic acid for 5 minutes and washed again four times with water. Contrasting was achieved by 

incubating the grids on a drop of water containing 0.4 % (w/v) uranyl acetate/ 1.8 % methyl cellulose 

on an ice block. Finally, excess of contrasting solution was removed from the grids and they were 

dried at room temperature. 

 

4.7.1 Size Determination of COPI Vesicles 

 

Bioinformatics to determine the size of vesicles was performed at the Biomedical Computer Vision 

Group of the Heidelberg University and the DKFZ. Briefly, size determination was achieved by 

employing the segmentation routine introduced by Dimopoulos et al. which exploits the membrane 

pattern for the detection of an object boundary (Dimopoulos et al., 2014). We performed a semi-
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automated segmentation. First all intact vesicles were localized manually and subsequently used as 

seeds for the following segmentation. Second, the method described by Dimopoulos et al. (2014) 

was performed to obtain the membrane profiles of a few examples. Segmented vesicles displaying a 

low-score were excluded from the further analyses. Finally, the vesicle area enclosed by its 

membrane was computed from the pixel size information.  

 

4.7.2 Mass Spectrometry of Reconstituted Vesicles 

 

Mass spectrometric analysis was performed at the Core Facility for Mass Spectrometry and 

Proteomics of the Center for Molecular Biology of the Heidelberg University (ZMBH). In summary, gel 

pieces were excised, reduced with DTT, alkylated with iodoacetamide and trypsin-digested using a 

DigestPro MSi platform (Intavis) as described previously (Shevchenko et al., 2006). Following in-gel 

digest, peptides were analyzed by liquid chromatography with subsequent mass spectrometry 

(LC-MS). LC was performed with an UltiMate 3000 directly coupled either to an Orbitrap Elite™ or a Q 

Exactive™ for MS analysis (all instruments from Thermo Fisher Scientific). For analysis with the 

Orbitrap Elite™, peptides were loaded onto an Acclaim™ PepMap™ 100 C-18 Trap-column (Thermo 

Fisher Scientific) at a flow rate of 30 µl/min using 0.1 % trifluoroacetic acid. The peptides were eluted 

from the trap-column and further separated using a 75 µm x 250 mm Acclaim™ PepMap™ 100 C-18 

RSLC analytical column (Thermo Fisher Scientific). Elution was performed with a gradient starting 

with 3 % buffer A (0.1% formic acid, 1 % acetonitrile) and ending with 40 % buffer B (0.1% formic 

acid, 90 % acetonitrile) over the course of 2 h with a flow rate of 300 nl/min. MS data acquisition was 

performed through automatic switches between a full scan and up to 30 data-dependent MS/MS 

scans. For samples analyzed with the Q Exactive™, peptides were directly loaded onto a 

75 µm x 300 mm column packed with ReproSil Pur™ C18 AQ (Dr. Maisch HPLC) and eluted with the 

same 2 h gradient just described. Here, MS data was acquired with automatic switches between a full 

scan and up to 15 data-dependent MS/MS. 

The initial data analysis was performed with MaxQuant v1.5.3.8 (Cox and Mann, 2008). Standard 

setting for each instrument type were used and a search performed against human or mouse protein 

databases extracted from UniProt (The UniProt, 2017). Carbamidomethylation of cysteine residues 

was set as fixed modification. Methionine oxidation, asparagine and glutamine deamination, and 

N-terminal acetylation were set as variable modifications. The options “match between runs” and 

“requantify” were both enabled. All results were filtered for a false discovery rate of 1% on a peptide 
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spectrum match and on protein level. The MaxQuant output files were downstream processed and 

analyzed using R-Script and Microsoft Excel. 
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6 Appendix 

 

6.1 Abbreviations 

 

AP  Adaptor protein complex 

Arf  ADP-ribosylation factor 

ATP  Adenosine 5′-triphosphate 

Bet1  Blocked in early transport 1 homologue; ER-Golgi Q-SNARE 

BFA  Brefeldin A 

BSA  Bovine serum albumin 

CBB  Coomassie brilliant blue 

CCV  clathrin-coated vesicle 

CM  Coatomer 

COPI  Coat protein complex I 

COPII  Coat protein complex II 

DMEM  Dulbecco’s modified eagle’s medium 

DMSO  Dimethyl sulfoxide 

DNA  Desoxyribonucleic acid 

DTT  Dithiothreitol 

EDTA  Ethylenediaminetetraacetic acid 

ER  Endoplasmic reticulum 

ERGIC  ER-Golgi intermediate compartment 

GAP  GTPase-activating protein 

GBF1  Golgi-specific brefeldin A-resistant factor 1 

GDP  Guanosine 5′-diphosphate 

GEF  Guanine nucleotide exchange factor 

GGA  Golgi-localized, gamma ear-containing, Arf-binding proteins 

GM130  Cis-Golgi matrix protein of 130 kDa 

GMP-PNP Guanosine-5′-O-[β,γ-imido]-triphosphate 

GP  Glycosylphosphatidylinositol 

GS15  Golgi SNARE of 15 kDa; intra-Golgi Q-SNARE 

GS27  Golgi SNARE of 27 kDa; ER-Golgi Q-SNARE 

GS28  Golgi SNARE of 28 kDa; intra-Golgi Q-SNARE 
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GST  Glutathione-S-transferase 

GTP  Guanosine-5′-triphosphate 

GTPγS  Guanosine-5′-O-[γ-thio]-triphosphate 

HeLa  Human epithelial cell line derived from cervical cancer 

HEPES  4-(2-hydroxyethyl)-1-piperazin-ethansulfonic acid 

HepG2  Human cell line derived from hepatic cancer 

IFA  Immunofluorescence assay 

iMΦ  Immortalized murine macrophages 

IP  Immunoprecipitation 

IPTG  Isopropyl-1-thio-β-D-galactopyranoside 

KDEL  ER-retrieval sequence composed of Lysine (K)-Aspartate (D)-Glutamate (E)-Leucine 

(L) 

kDa  Kilo Dalton 

LB  Luria broth 

OD  Optical density 

p24  Transmembrane emp24 domain-containing protein 

PBS  Phosphate buffer saline 

PBST  Phosphate buffer saline + Tween 20 

PCR  Polymerase chain reaction 

psi  Pounds per square inch 

PVDF  Polyvinyldifluoride 

rpm  Revolutions per minute 

Sar1  Secretion-associated and Ras-related protein 1 

SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

Sec  Secretion mutant 

Sec22b  Vesicle-trafficking protein Sec22b; ER-Golgi R-SNARE 

SEM  Standard error of the mean 

Sf9 cells Insect cell line derived from Sf21 (spodoptera frugiperda) ovarie cells  

SNARE  N- ethylmaleimide sensitive-factor attachment receptors  

SRP  Signal recognition particle 

Stx5  Syntaxin5; ER-Golgi Q-SNARE 

TGN  Trans-Golgi network 

×g  Times gravity 

Ykt6  Synaptobrevin homologueYkt6; intra-Golgi R-SNARE 
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6.2 Publications 

 

Major parts of this thesis are presented in the following manuscripts: 

Rhiel, M., Hessling, B., Gao, Q., Hellwig, A., Adolf, F., and Wieland, F.T. (2017). Quantitative 

proteomics of isotypic mammalian COPI vesicles. In preparation. 

Adolf, F., Rhiel, M., Hessling, B., Hellwig, A., and Wieland, F.T. (2017). SILAC-based proteomic profiling 

of mammalian COPII vesicles. In preparation. 
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Rhiel, M., Bittl, V., Tribensky, A., Charnaud, S.C., Strecker, M., Muller, S., Lanzer, M., Sanchez, C., 

Schaeffer-Reiss, C., Westermann, B., Crabb, B.S., Gilson, P.R., Külzer, S., and Przyborski, J.M. (2016). 

Trafficking of the exported P. falciparum chaperone PfHsp70x. Sci Rep 6, 36174.  
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