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Abstract 

Human cytochrome P450 (CYP) enzymes play an important role in the metabolism of 

drugs, steroids, fatty acids and xenobiotics. CYPs also catalyze the conversion of some 

pro-drugs into active drugs. Only about a dozen human CYPs metabolize 70-80% of all 

drugs. A subset of CYPs is responsible for steroidogenesis, of these CYP17 is a major 

drug target for prostate cancer therapy. Human CYPs are anchored to the endoplasmic 

reticulum membrane by their N-terminal transmembrane (TM) helix. However, most 

crystal structures of CYPs have been resolved after truncating the TM-helix or mutating 

residues that form contacts with the membrane. Therefore, the structural basis for CYP-

membrane interactions and orientation, and the mechanism of substrate entrance into 

the buried binding pocket and product release is not clearly understood. 

 In order to understand the interactions and orientations of CYPs and their degree of 

penetration into the membrane, I have optimized a multiscale modeling protocol that 

involves coarse-grained and all-atom molecular dynamics simulations. The protocol was 

validated by applying it to several drug-metabolizing CYPs (CYP1A1, 1A2, 2C9, 2C19, 

3A4) and CYPs involved in steroidogenesis (CYP17, CYP19) in a lipid bilayer. The 

simulations revealed that the sequence and structural differences in the protein-

membrane interface alter the interactions and orientations of CYPs in the membrane. 

Furthermore, mutations in the TM-helix of CYP17, particularly W2A and E3L, were seen 

to disrupt the CYP-membrane interactions and in some cases, obstruct the ligand 

tunnels between the active site and the membrane, which could lower enzyme 

turnover.   

In conclusion, the optimized multiscale simulation protocol has been used to identify 

different interactions and orientations adopted by the globular domains of CYPs with 

the membrane that have implications for CYP function. This protocol is also suitable for 

studying protein-protein-membrane complexes and proteins in membranes with 

different lipid compositions.    
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Zusammenfassung 

Humane Cytochrom P450 (CYP) Enzyme spielen eine wichtige Rolle bei der 

Verstoffwechselung von Steroiden, Fettsäuren, Arzneistoffen und anderen Xenobiotika. 

Ca. 70-80% aller Arzneistoffe werden durch die CYP450 Familie umgesetzt inkl. der 

Umwandlung von Prodrugs in aktive Wirkstoffe. Die Enzymfamilie dient zudem als 

Zielstruktur einiger Therapieansätze, z. B. das für die Steroidogenese wichtige CYP17 bei 

der Bekämpfung von Prostatakrebs. Humane CYPs sind durch eine N-terminale 

Transmembran (TM)-Helix mit der Membran des Endoplasmatischen Retikulums 

assoziiert. Kristallstrukturen der CYP Enzyme wurden meist jedoch nur für CYPs ohne 

TM-Helix oder mit eingeführten Punktmutationen an den Protein-Membran 

Kontaktstellen gelöst. Aus diesem Grund ist die strukturelle Basis der CYP-Membran-

Interaktionen und der Mechanismus des Substratein- und austritts in die versteckte 

Bindetasche nur unzureichend beschrieben. 

Um die Interaktionen und Orientierungen von CYPs in der Membran zu verstehen, 

beschreibe ich hier die Optimierung eines multiskalaren Modellierungsprotokolls, das 

„course-grained“ und „all-atom“ Molekulardynamik Simulationen nutzt. Das Protokoll 

wurde anhand von mehreren, funktionell variierenden CYPs validiert, inkl. CYP1A1, 1A2, 

2C9, 2C19 und 3A4 für die Verstoffwechselung von Arzneistoffen und die an der 

Steroidogenese beteiligten Enzyme CYP17 und CYP19. Die multiskalaren Simulationen 

zeigten, dass strukturelle und Sequenzunterschiede an der Protein-Membran 

Schnittstelle die Interaktionen und Orientierungen der globulären CYP-Domänen in der 

Membran verändern. Zudem behinderten Mutationen in der TM-Helix von CYP17 

(insbesondere W2A und E3L) die Ausbildung der Interaktionen und führten in einigen 

Fällen zur partiellen Blockade des Liganden-Tunnels zwischen der Membran und dem 

aktiven Zentrum. Aus diesem Grund könnten sich diese Punktmutationen negativ auf 

den enzymatischen Substratumsatz auswirken. 
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Zusammenfassend wurden mit der Anwendung des optimierten multiskalaren 

Modellierungsprotokolls Interaktionen und Orientierungen der globulären CYP-

Domänen in der Membran identifiziert, die für die Funktionsweise der Enzyme von 

Bedeutung sein könnten. Verallgemeinert bietet das Protokoll zudem Möglichkeiten der 

Untersuchung von Protein-Protein-Membran Komplexen und von Proteinen in 

Membranen mit variierenden Lipidzusammensetzungen. 
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 INTRODUCTION 

Membrane proteins (MPs) play important roles in cells as receptors, channels, 

transporters and enzymes. Around 26% of the human coding genome represents MPs 

(~5539), and the largest fraction of MPs are single transmembrane helix proteins(1, 2). 

Membrane protein are an important target for pharmaceutical companies, accounting 

for 50% of total drugs on the market(3). Membrane proteins are structurally divided 

into two main classes, integral membrane proteins (IMPs) and peripheral membrane 

proteins (PMPs), depending on their localization in the lipid bilayer. IMPs have some 

part inserted into the membrane forming a transmembrane domain (TMD) which has 

either an α- helical or a β-sheet topology. The TM regions of IMPs contain hydrophobic 

amino acid residues, due to which they are embedded into the central 30Å thick regions 

region of the lipid membrane. An α-helical IMP can interact with membranes by a single 

α-helical transmembrane anchor which spans the membrane bilayer and is therefore 

called a bitopic IMP (like Cytochrome P450 or CYPs). Alternatively, α-helical IMPs form 

a more complex helical bundle spanning the membrane, and are known as polytopic 

IMPs (examples are: GPCR, ion channels and transporters). There have been 

tremendous advances in the structure determination of IMPs, at the time of writing this 

the number of TM proteins has reached to 3099 out of which 2723 are α-helical and 

364 are with β-sheet topology (http://pdbtm.enzim.hu/)(4). These structures do not 

contain the lipid bilayer atoms and therefore lack the crucial information of how lipids 

modulate the function of IMPs. For example, the crystal structures of CYPs are resolved 

by truncating the N-terminal α-helical transmembrane anchor and mutating residues in 

the globular domain which develop interactions with the membrane, thereby losing 

significant information on protein-membrane interactions and function. However, 

there is only one full length structure of Saccharomyces cerevisiae lanosterol 14-alpha 

demethylase (CYP51) reported to date which contains single TM helix domain(5). 

Therefore, there is increased need for computational tools, such as molecular modeling, 
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docking and simulation to provide insights on structure function relationships, and the 

dynamic interplay between protein, ligand and membrane systems.  

I will discuss briefly biochemical/physiological aspect of biological membranes, 

membrane proteins and the interactions between membrane proteins. In the last part 

of the chapter, I will give overview of what has been learnt about the structure and 

dynamics of human cytochrome P450s (CYPs) which are proteins with single α-helical 

membrane anchor. I will discuss what experimental and computational approaches 

have been employed to understand structure-function relationship of human CYPs.  

1.1 Biological membranes 

Biological membranes are selectively permeable to various molecules and play 

important roles in maintaining the difference between the internal (cytosolic) and 

external environment of the cell.  Inside the cells of eukaryotes, various internal 

organelles are surrounded by membranes that separate the internal content of these 

organelles from the cytosol. These membranes are formed by lipid molecules which 

constitute 50% of the membrane. Lipids are amphipathic in nature i.e, they have both 

hydrophobic and hydrophilic characteristics, causing them to self-assemble in aqueous 

environment, forming lipid bilayer. Proteins are the second most abundant constituent 

of membranes. The protein-lipid interactions result in an array of specialized cellular 

functions, including cell-cell communications, receptor and signal transduction, the 

passage of polar substances into and out of the cell and its compartments, energy 

transduction and enzymatic activity.  

The composition of lipid bilayers depends on cell type and cellular compartment. The 

most abundant lipids in the membrane are phospholipids, which are further classified 

based on the nature of the lipid head groups into phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositol (PI) 

(Figure 1.1). The first two phospholipid head groups are zwitterions with net zero 

charge, whereas the later contain a negative charge on the head groups. Mammalian 
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bilayers also contain sphingolipid, glycolipids and cholesterol. The varying 

concentrations of cholesterol in membranes can influence the membrane fluidity, and 

can result in the formation of microdomains. The outer plasma membrane (PM) 

composition differs from that of internal organelles. For example, the endoplasmic 

reticulum (ER) contains more neutral PC (~40%) compared to the PM (~10-15%) while 

the PM contains more anionic lipid on the inner leaflet (PS and PI) which results in a 

negatively charged surface on the cytosolic side of the PM.  

 

Figure 1.1: Different phospholipid molecules varying in the lipid headgroup (shown in 
green). Reprinted with permission from the book “Molecular Biology of the Cell”, 4th 
Edition. 

Membrane lipids have characteristic interfacial hydrophilic head group and a 

hydrophobic tail groups formed by two fatty acid chains that vary in length from 14 to 

20 carbon atoms. In the case of unsaturated fatty acids, one of the tails contains a cis 
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double bond which results in a kink in that region. The chain length and saturation of 

the fatty acids influence the fluidity of lipid bilayer. A shorter chain length and a kink 

influences the tight packing allowing lipids to remain fluid at lower temperatures.  

1.1.1 Membrane dynamics and fluidity 

Biological membranes are dynamic in nature and the orientation and position of lipids 

in the membrane change by lateral diffusion in the membrane plane and transbilayer 

lipid diffusion (flip-flop movement or transverse diffusion). The transbilayer movement 

is slower compared to a lateral diffusion and is assisted by an enzyme known as flipase. 

Lipid molecules can change from trans to gauche conformations which can influence 

lipid packing and order (6). Lipid diffusion is influenced by the chemical composition of 

the lipid bilayer, presence of cholesterol, temperature, pH or ionic strength (Figure 1.2).  

The gel to liquid phase transition is a unique property of lipid bilayers which affects 

membrane associated phenomena such as enzymatic activity, energy coupling 

reactions and the transport of solutes across the membrane. In the gel phase, a lipid 

molecule will likely have poor van der Waals contacts with the rough surface of an IMP, 

compared to in the liquid crystalline phase. This can influence the activity of the protein 

in the membrane. 

Although there are no big molecular rearrangements during phase transitions, the 

molecular packing and fluidity of the lipid bilayer change. In the gel state, fatty acyl 

chains remain fully extended and are packed tightly in a hexagonal array which results 

in a small cross-sectional area per lipid, and maximum bilayer thickness and restricted 

molecular motion. In the liquid crystalline state, long range order, created by 

electrostatic interactions between the polar head groups and water, and hydrophobic 

interactions among acyl chains, are maintained. On the other hand, short range disorder 

is created due to flapping of acyl chains and formation of a hinge at the glycerol 

backbone.  
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Figure 1.2: Schematic representation of different phases of lipid bilayer. An example of 
gel to fluid transition in the absence (to and right arrow) and in the presence of 
cholesterol (bottom arrows). Reprinted with permission from (6). 

There is minimum fatty acyl chain motion at the carbonyl carbons of fatty acyl chains 

which increases progressively to the terminal methyl carbon (hydrocarbon core of 

bilayer) thus creating gradient fluidity, increased cross-sectional area per lipid and 

decreased bilayer thickness. For example, a dipalmitoyl phosphatidylcholine (DPPC) 

bilayer in the gel phase has a cross-sectional area per lipid of 40-45 Å2 and bilayer 

thickness of about and 50-55 Å, which changes in liquid crystalline state to cross-

sectional area of 60-70 Å2 and bilayer thickness to 40-45 Å (7).  
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The high-resolution X-ray and electron microscope (EM) structures of IMPs contain 

small numbers of lipid molecules which are highly ordered and do not represents the 

typical bulk lipid properties. The X-ray and neutron diffraction method is used to study 

the structure of the bilayer of dioleoylphosphatidylcholine [di(C18:1) PC] (DOPC) in the 

liquid crystalline phase at low hydration reveals a number of fragments formed by the 

lipid bilayer which are described by Gaussian distribution. The Gaussian distribution 

suggests the possible location of the fragments and range of the thermal motion 

depending on the width of the Gaussian, in the direction of the bilayer normal (8) 

(Figure 1.3). Accordingly, the Gaussian distribution is the narrowest and rigid region is 

glycerol backbone of the lipid molecule. While choline region of the headgroup and 

hydrocarbon tail towards the terminus methyl group shows high thermal motion and 

thus high flexibility. The hydrocarbon core thickness in the lipid bilayer is estimated at 

32 Å. However, the thickness is measured in low hydration condition which can 

decrease slightly in fully hydrated conditions. The hydrocarbon core is the region which 

a transmembrane α-helix is required to span(8). According to the distance of 1.5 

Å/residue in the perfect α-helix, it requires 20-21 residues for transmembrane α-helix 

to span the hydrocarbon core of 32 Å thickness in an un-tilted orientation. However, 

the number of residues can increase 10% if the helix form a tilt of 20◦(9). 
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Figure 1.3: The structure of a di(C18:1) PC (DOPC) bilayer. The figure shows projections 
of the time-averaged transbilayer distributions of the principal structural groups along 
the bilayer normal. Reprinted with permission from A.G. Lee / Biochimica et Biophysica 
Acta 1612 (9). 

1.1.2 Annular and non-annular lipids 

The lipid molecules surrounding IMPs act as solvent for the proteins and show non-

specific interaction with proteins. The solvent lipids surrounding these proteins are 

called annular lipids, or boundary lipids, and form annular shells around proteins. More 

specific interactions are observed between proteins and a small number of lipid 

molecules which can influence the activity of these proteins, such lipids act as cofactors. 

The cofactor lipids are bound within the grooves between α-helices, or between 
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protein-protein interfaces, and are known as non-annular lipids. Lipid molecules having 

no contact with proteins are referred to as bulk lipids, and retain the properties of a 

simple lipid bilayer in contrast to annular or cofactor lipids whose properties are 

influenced by the presence of membrane proteins (9). The bulk lipid molecules diffuse 

rapidly in the membrane plane, with diffusion constant of 10-7-10-10 cm2/s(6). The 

presence of proteins in the membrane restricts the diffusion of annular lipids. However, 

the rate of exchange between bulk and annular lipids is fast, indicating that the 

interactions between protein and annular lipids are non-specific and non-sticky. 

1.2 Membrane proteins 

Proteins participate in almost every process taking place in living organisms. They are 

the most abundant macromolecules and highly diverse in nature. Depending on their 

cellular environment, proteins are further classified into soluble and membrane 

proteins. Proteins are linear polymers formed by 20 different naturally occurring amino 

acids, which are joined together by peptide bonds. The amino acids share a common 

structure of a carboxyl group (COOH) and amino group (NH3) connected to a central 

carbon atom (COOH-CRH-NH2) but differ from each other in their side chain (R). The 

amino acids are broadly classified based on their side chains into hydrophobic (Ala (A), 

Val (V), Leu (L), Ile (I), Phe (F), Pro (P) and Met (M)), charged (Asp (D), Glu (E), Lys (K) and 

Arg (R)) and polar (Ser (S), Thr (T), Cys (C), Asn (N), Gln (Q), His (H), Tyr (Y) and Trp (W)) 

groups.  The side chains of amino acids are responsible for the various conformations 

proteins can adopt. It is because of the different length and arrangement of these amino 

acids that such diversity in structure and functions of the proteins is observed.  
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Figure 1.4: Level of protein structure. Reprinted with the permission from: “Lehninger 
principles of biochemistry”, 4th edition (2005). 

Proteins can vary in length from 50-3000 amino acids. The folding of water soluble 

proteins is favored by the burial of hydrophobic residues inside the core of the protein, 

and polar residues exposed on the surface to the aqueous solvent. The protein 

backbone (-NH-CA-C=O) is highly polar with one hydrogen bond donor (NH) and one 

hydrogen bond acceptor (C=O) and hydrogen bonding within the backbone atoms 

neutralizes the protein backbone leading to the formation of secondary structure. The 

secondary structures such as α-helix or beta-strands are connected by loops and turns 

to make different motifs and domains in the tertiary structure (Figure 1.4).  

On average, membrane proteins constitute 50 % of the mass of the membrane but this 

can vary from 25% to 75% depending on the cell type. Like lipid bilayer, membrane 

proteins are also amphipathic in nature i.e., they have polar surfaces which interact with 

water and lipid headgroup region, and a hydrophobic region which resides in the 

hydrophobic core of the lipid bilayer. Depending on the number of times a protein 

segment spans the membrane, IMPs are divided into single-pass (bitopic) or multipass 

(multitopic) integral membrane proteins (IMPs). The N-terminal side in most single-pass 

IMPs is found on the exoplasmic face (luminal side of endoplasmic reticulum) while the 

C-terminal end is on the cytoplasmic side, with a few exceptions where the reverse 

orientation is found (Figure 1.5). 
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Figure 1.5: IMPs topology and membrane orientation. Based on the number of spanning 
regions, multi-pass and mono-pass transmembrane helices are shown with their N and 
C-termini. 

1.2.1 Transmembrane alpha helix and amino acid distribution 

Most IMPs traverse the membrane hydrophobic region as transmembrane (TM) α-

helices and belong to the α-helical bundle class. The TM helix is inserted co-

translationally and folded in eukaryotes in the endoplasmic reticulum (ER) membrane 

by the Sec61 translocon (10). In contrast to globular proteins, where α-helices contain 

hydrophobic residues facing interior of protein and hydrophilic residues pointing to the 

outer surface of the protein, TM α-helices are built from predominantly hydrophobic 

residues. A TM α-helix requires a minimum of 20 residues to span the hydrophobic core, 

although the full length of a TM helix can be longer to cross through the glycerol 

backbone and lipid headgroup region of the bilayer. The prediction of TM helix 

segments from sequence is possible by using a hydrophobicity index calculated for each 

residue position in the sequence. Based on hydrophobicity indices, a hydropathy plot of 

possible transmembrane helices with high positive values can be drawn. The 

hydrophobicity scale has been determined experimentally by computing free energy of 

transfer of small model peptides from lipid  to water (11). These results show that 

aromatic residues are favored at interface while charged residues and peptide bonds 
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are disfavored. In in vitro studies, the apparent free energy (∆Gapp) of amino acid 

residues in TM segment suggest that Ile, Leu, Phe and Val have ∆Gapp < 0 and promote 

membrane insertion, while Cys, Met and Ale have ∆Gapp ≈ 0, and all charged residues 

have ∆Gapp > 0. It has been found that Leu and Phe behave similarly when placed in 

the middle of the TM helix, while Trp and Tyr behave differently and reduce membrane 

insertion when present in the center of the TM segment. However, when placed farther 

from the center they show less unfavorable behavior (10). The polar aromatic residues 

Trp and Tyr and charged residues Arg and Lys are located at the terminus of TM helices 

and are known as flanking residues (9). The energetic cost of burying charged residues 

in the hydrophobic core of lipid bilayer is so high (about 37 KJ/mol) that these residues 

are usually found at the end of TM-helices and in the  lipid-water interface region (12). 

However, two residues with opposite charges can be found in the middle of 

hydrophobic core which will neutralize the charge effect. The favored location of Trp 

residues in TM helices is unclear, as it contains largest non-polar surface (two aromatic 

rings) and an NH group which is capable of hydrogen bonding. Similarly, Tyr contains an 

aromatic ring and an OH group, resulting in amphipathic properties. Therefore, Trp and 

Tyr have preference for being positioned cloer to the lipid headgroup as well as in 

hydrophobic core. Yet in most cases, Trp and Tyr are found at the end of hydrophobic 

region of a TM α-helix, behaving as floating residues close to the lipid headgroups (9, 

13). Arg and Lys residues contain long flexible hydrophobic side chains which can be 

located in the hydrophobic core while the charge terminus snorkels up to the 

membrane-solvent interface. Several computational studies have been performed for 

measuring partitioning free energy of amino acids between water and hydrophobic 

solvents and used as basis for parametrization of molecular dynamics (MD) force-fields 

(see Chapter 2).  

1.2.2 Hydrophobic mismatch  

The energetic cost of exposing hydrophobic amino acids or lipid fatty acyl chains to 

water is so high that it leads lipid molecules or proteins to adopt conformations such 



   
GM  25 

 

that exposure to aqueous solvent is avoided. If the length of the hydrophobic region of 

a protein and the lipid hydrophobic region does not match, it is so-called a hydrophobic 

mismatch. The mismatch is described as positive when the protein hydrophobic 

segment exceeds that of the membrane in length and the mismatch is negative when 

TM hydrophobic segment is shorter than the lipid hydrophobic region. In case of a 

positive mismatch the protein may tilt, aggregate, or distort the bilayer leading to 

increased bilayer thickness. In negative mismatch, the shorter hydrophobic peptide or 

protein can aggregate or change conformation. If the TM hydrophobic region of a 

protein is too short or the cost of incorporating the protein in the bilayer is too high, it 

may be pulled out and remain at the surface. 

1.3 Bitopic membrane protein: Cytochrome P450 

Cytochrome P450 (CYP or P450) comprises a large superfamily of heme-thiolate 

monooxygenases found in all domains of life. Its name derives from its spectral 

absorbance which has a maximum at 450 nm when carbon-monoxide is bound to the 

ferrous heme iron. CYPs are highly versatile enzymes with diverse substrate specificities. 

They carry out stereo- and regio-selective oxidation of numerous physiologically and 

biotechnologically important molecules (14). Mammalian CYPs play an important role 

in the metabolism of both endogenous and xenobiotic compounds, including steroids, 

prostaglandins, fatty acids, environmental pollutants, agrochemicals, plant 

allelochemicals, and pharmaceuticals. CYPs also catalyze the conversion of some pro-

drugs into active drugs, and of procarcinogens and promutagens into highly toxic 

compounds (15).  

There are around 57 genes encoding CYPs in humans. These genes have been classified 

into 18 families and 44 subfamilies by sequence analysis (16). Based on their cellular 

location, CYPs can be divided into three main categories: mitochondrial CYPs which are 

responsible for steroid metabolism, microsomal CYPs which are bound to the 

endoplasmic reticulum (ER), and soluble cytoplasmic CYPs which are mainly found in 
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prokaryotes. Only about a dozen human CYPs are responsible for the phase I 

metabolism of most foreign substances, including 70-80% of all drugs (16, 17). These 

CYPs belong to the CYP1, CYP2 and CYP3 families and show partially overlapping 

substrate specificity. Most drugs are metabolized by CYPs 3A4, 2D6, 2C9, 1A2 and 2C19 

(18). 

1.3.1 Three-dimensional structures of human CYPS 

The first crystal structure of a human microsomal CYP, that of CYP2C9, was solved by 

Williams et al. in 2003 (19). Currently, there are 94 crystal structures of almost all the 

major human drug metabolizing CYPs reported in the Protein Data Bank (PDB). Most of 

these are in ligand-bound, closed conformations. Since human microsomal CYPs are 

membrane-bound proteins with a single N-terminal transmembrane helix anchored in 

the ER-membrane, crystallizing the native sequence is not trivial. To facilitate 

crystallization, the original sequence is modified by removing the residues of the N-

terminal transmembrane domain. Additional substitution mutations are often 

introduced into the globular part of the protein to replace hydrophobic residues that 

bind to the membrane. For example, for the CYP2C9 structure (PDB 1OG5), Williams et 

al. introduced seven substitutions to increase the solubility of the protein (19). 

Although there is a low level of sequence identity (<40%) between different families of 

CYPs, the overall secondary structure and folding pattern are conserved in both 

prokaryotes and eukaryotes. The crystal structures show that all CYPs contain 12 α-

helices, designated by letters A-L, and 4 β-sheets (pairs of strands), labeled 1-4 as shown 

in Figure 1.6  (20, 21). In mammalian CYPs, several additional helices, and in some cases 

β-strands (e.g. β3’ in CYP1A2), are present, which are indicated by prime or double 

prime symbols and follow the name of the neighboring helices (22–24). For example, 

many mammalian CYPs have F’ and G’ helices between the F and G helices. The F and G 

helices, the F-G loop and the B-C loop have been shown to play an important role in 

substrate access to the active site (14). The conserved I helix, the longest helix in CYPs, 
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is seen to run through the catalytic domain and bends or kinks next to the heme 

prosthetic group (25). 

 

Figure 1.6: Crystal structure of CYP2E1 (PDB 3T3Z) in two different orientations. The 
main α-helices are shown in green, the B’ helix in red, and the F’ and G’ helices in cyan. 
β-strands are shown in yellow and the loops in magenta. The heme is shown in light blue 
in the core of enzyme and the ligand pilocarpine in yellow above the heme co-factor. (A), 
looking along the I-helix. The membrane surface is indicated by a dashed line showing 
how the N-terminal region (truncated in the crystal structure), and part of catalytic 
domain embed in the membrane. (B), perpendicular view of CYP2E1, looking down on 
the heme from the distal side which shows the prism shape of the globular domain (26). 

The heme is accommodated between the distal and proximal domains of the globular 

protein structure surrounded by the most conserved regions of the protein, including 

helices E, I, J, K and L and a portion of β-sheet 1 (21). The heme iron is axially coordinated 

by a cysteine residue on the proximal side. The meander on the proximal side contains 

positively charged residues and is important for binding the heme and the electron 

transfer protein which binds to the proximal face of CYPs. The substrate binding site is 

located on the distal side of the heme. Less conserved regions in CYPs are found at the 

outer surfaces of the substrate binding cavity and in regions such as the B-C and F-G 

helices and their intervening loops. The B-C loop adopts a range of conformations in 
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different CYPs and some structures contain a B’ helix, e.g. CYP2A6 and 2C8, whereas in 

others it is less structured, e.g. CYP2C9 and 3A4 (21). 

The N-terminal transmembrane helix in microsomal CYPs is connected to the catalytic 

domain by a linker region containing a proline-rich segment (21, 25). Microsomal CYPs 

have been seen to retain association with the membrane on removal of the N-terminal 

helix, indicating additional lipophilic interactions between the catalytic domain and the 

membrane. It was shown by epitope analysis that, along with the N-terminal domain, 

the helix A, β-strands and F-G loops are also buried inside the membrane and 

inaccessible to antibodies (27). 

1.3.2 Substrate recognition sites 

Gotoh categorized the most important residues for substrate binding by using a manual 

alignment of the mammalian CYP2 family with the structure of a bacterial CYP-substrate 

complex. He identified six regions that line the active site which he named Substrate 

Recognition Sites (SRS)(28). These regions accounted for 16% of the residues. SRS1 

includes the B’ helix and flanking sequences, SRS2 the C-terminal end of the F helix, 

SRS3 the N-terminal end of helix G, SRS4 the N-terminal half of helix I, SRS5 the loop 

between the K helix and strand 3 of β-sheet 1, and SRS6 the turn in β-sheet 4 (24, 28). 

However, as defined, these six SRS do not fully represent the active site residues of 

mammalian CYPs that have large active sites, like CYP3A4. Recently, a new SRS map 

based on mammalian crystal structures and docking of 868 known substrates of 10 

mammalian CYP isoforms has been developed by Zawaira et al. (29). According to the 

new SRS map, two new regions, named SRS1’a and SRS1’b, were identified N-terminal 

to SRS1. Further, SRS1 in the new map is much longer (49 residues) than in the Gotoh 

map (28 residues). In the new map, SRS2 and SRS3 are merged into a single large site 

named SRS (2, 3), which covers 60 aligned sequence positions compared to 19 positions 

in the Gotoh map. SRS 4, 5 and 6 show extensions of a few residues compared to the 

Gotoh map. In the new SRS map, about 33% of the residues in a CYP are in the SRS. The 
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differences between the Gotoh and Zawaira SRS definitions are shown in the sequence 

alignment in Figure 1.7, where the dashed box represents the new SRS map and the 

Gotoh map is colored green. 

1.3.3 Dynamics of CYPs 

X-ray crystallography is one of the most valuable experimental techniques to obtain 3D 

structures of biomolecules, yet it does not provide direct information on the dynamics 

of membrane proteins or how these dynamics are affected by the presence of the lipid 

bilayer. Spectroscopic methods such nuclear magnetic resonance (NMR) spectroscopy 

can reveal the dynamics of CYPs. However, to obtain atomic-detail understanding of the 

dynamics of CYPs and how they influence function, a range of different computational 

approaches have been used. In this section, I will discuss computational studies to 

understand the dynamics of human microsomal CYPs, their interactions with 

phospholipid bilayer, their influence on protein flexibility and opening and closing of 

access and egress tunnels. A list of in silico studies on human drug metabolizing CYPs is 

presented in Appendix I which is taken from book chapter (26). 
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1z10_chainA_p006   30  ---------KGKLPPGPTPLPFIGNYLQLNTE--QMYNSLMKISERYGPVFTIHLGPRRVVVLCGHDAVR  88 

3qm4_chainA_p003   33  ------------LPPGPLPLPGLGNLLHVDFQ--NTPYCFDQLRRRFGDVFSLQLAWTPVVVLNGLAAVR  88  

3e4e_chainA_p004   31  -----------KLPPGPFPLPIIGNLFQLELK--NIPKSFTRLAQRFGPVFTLYVGSQRMVVMHGYKAVK  87 

1r9o_chainA_p001   26  ---------RGKLPPGPTP-------LPLQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVK  85 

2hi4_chainA_p005   34  -----RVPKGLKSPPEPWGWPLLGHVLTL-GK—NPHLALSRMSQRYGDVLQIRIGSTPVLVLSRLDTIR  95 

1w0g_chainA_p002   25  YGTHSHGLFKKLGIPGPTPLPFLGNILSY-HK--GFCMFDMECHKKYGKVWGFYDGQQPVLAITDPDMIK  91 

       

 

                                     
1z10_chainA_p006   89  EALVDQAE-EFSGRGEQATFDWVFKG---YGVVFSN--GERAKQLRRFSIATLRDFGVGK-------RGI  145 

3qm4_chainA_p003   89  EALVTHGE-DTADRPPVPITQILGFGPRSQGVFLAR-YGPAWREQRRFSVSTLRNLGLGK-------KSL  149 

3e4e_chainA_p004   88  EALLDYKD-EFSGRGDL-PAFHAHRD---RGIIFNN--GPTWKDIRRFSLTTLRNYG----------QGN  140 

1r9o_chainA_p001   86  EALIDLGE-EFSGRGIFPLAERANRG---FGIVFSN--GKKWKEIRRFSLMTLRNFGMGK-------RSI  142 

2hi4_chainA_p005   96  QALVRQGD-DFKGRPDLYTSTLITDG---QSLTFSTDSGPVWAARRRLAQNALNTFSIASDPASSSSCYL  161 

1w0g_chainA_p002   92  TVLVKECYSVFTNRRPF-GPV-GFMK---SAISIAE--DEEWKRLRSLLSPTFTSGKL---------KEM  145 

       

                             

1z10_chainA_p006  146  EERIQEEAGFLIDALRGT--GGANIDPTFFLSRTVSNVISSIVFGDRFDYKDKEFLSLLRMMLGIFQFT-  212 

3qm4_chainA_p003  150  EQWVTEEAACLCAAFANH--SGRPFRPNGLLDKAVSNVIASLTCGRRFEYDDPRFLRLLDLAQEGLKEE-  216 

3e4e_chainA_p004  141  ESRIQREAHFLLEALRKT--QGQPFDPTFLIGCAPCNVIADILFRKHFDYNDEKFLRLMYLFNENFHLL-  207 

1r9o_chainA_p001  142  EDRVQEEARCLVEELRKT--KASPCDPTFILGCAPCNVICSIIFHKRFDYKDQQFLNLMEKLNENIKIL-  209 

2hi4_chainA_p005  162  EEHVSKEAKALISRLQELMAGPGHFDPYNQVVVSVANVIGAMCFGQHFPESSDEMLSLVKNTHEFVETA-  230 

1w0g_chainA_p002  146  VPIIAQYGDVLVRNLRREAETGKPVTLKDVFGAYSMDVITSTSFGVNIDSLNNPQDPFVENTKKLLRFDF  115 

    

                        
 

1z10_chainA_p006  213  STSTGQLYEMFSSVMKHLP-GPQQQAFQLLQGLEDFIAKKVEHNQRTLDPN-SPRDFIDSFLIRMQEEEK  280 

3qm4_chainA_p003  217  SGFLREVLNA-VPVLLHIP-ALAGKVLRFQKAFLTQLDELLTEHRMTWDPAQPPRDLTEAFLAEMEKAKG  284 

3e4e_chainA_p004  208  STPWLQLYNNFPSFLHYLP-GSHRKVIKNVAEVKEYVSERVKEHHQSLDPN-CPRDLTDCLLVEMEKEKH  275 

1r9o_chainA_p001  210  SSPWIPII-------DYFP-GTHNKLLKNVAFMKSYILEKVKEHQESMDMN-NPQDFIDCFLMKMEKEKH  276 

2hi4_chainA_p005  231  SSG--NPLDFF-PILRYLPNPALQRFKAFNQRFLWFLQKTVQEHYQDFDKN-SVRDITGALFKHSKKGPR  296 

1w0g_chainA_p002  116  LDPFFLSIT-VFPFLIPIL--EVLNICVFPREVTNFLRKSVKRMKESRL-----EDFLQLM---------  275 

 

            

 

1z10_chainA_p006  281  N-PNTEFYLKNLVMTTLNLFIGGTETVSTTLRYGFLLLMKHPEVEAKVHEEIDRVIGKNRQPKFEDRAKM  349 

3qm4_chainA_p003  285  N-PESSFNDENLRIVVADLFSAGMVTTSTTLAWGLLLMILHPDVQRRVQQEIDDVIGQVRRPEMGDQAHM  353 

3e4e_chainA_p004  276  S-AERLYTMDGITVTVADLFFAGTETTSTTLRYGLLILMKYPEIEEKLHEEIDRVIGPSRIPAIKDRQEM  344 

1r9o_chainA_p001  277  N-QPSEFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRSHM  345 

2hi4_chainA_p005  297  ASGNL-IPQEKIVNLVNDIFGAGFDTVTTAISWSLMYLVTKPEIQRKIQKELDTVIGRERRPRLSDRPQL  365 

1w0g_chainA_p002  276  ----IALSDLELVAQSIIFIFAGYETTSSVLSFIMYELATHPDVQQKLQEEIDAVLPNKAPPTYDTVLQM  353 

 

                            
 

1z10_chainA_p006  350  PYMEAVIHEIQRFGDVIPMSLARRVKKDTKFRDFFLPKGTEVYPMLGSVLRDPSFFSNPQDFNPQHFLNE  419 

3qm4_chainA_p003  354  PYTTAVIHEVQRFGDIVPLGVTHMTSRDIEVQGFRIPKGTTLITNLSSVLKDEAVWEKPFRFHPEHFLDA  423 

3e4e_chainA_p004  345  PYMDAVVHEIQRFITLVPSNLPHEATRDTIFRGYLIPKGTVVVPTLDSVLYDNQEFPDPEKFKPEHFLNE  414 

1r9o_chainA_p001  346  PYTDAVVHEVQRYIDLLPTSLPHAVTCDIKFRNYLIPKGTTILISLTSVLHDNKEFPNPEMFDPHHFLDE  415 

2hi4_chainA_p005  366  PYLEAFILETFRHSSFLPFTIPHSTTRDTTLNGFYIPKKCCVFVNQWQVNHDPELWEDPSEFRPERFLTA  435 

1w0g_chainA_p002  354  EYLDMVVNETLRLFPIAMR-LERVCKKDVEINGMFIPKGVVVMIPSYALHRDPKYWTEPEKFLPERFSKK  422 
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Figure 1.7: Alignment of the six-major drug metabolizing CYPs.  The alignment was 
derived by structural alignment (chain A in the PDB files) using the PROMALS3D online 
server. The CYPs structures used are: 1A2 (PDB: 2HI4), 2A6 (PDB: 1Z10), 2C9 (PDB: 
1R9O), 2D6 (PDB: 3QM4), 2E1 (PDB: 3E4E), 3A4 (PDB: 1W0G). The conserved secondary 
structures are represented by red and blue colors, with thick lines and arrows, for α-
helices and β-strands, respectively. Boxes with dashed lines represent the new SRS map 
which differs in size and location from the SRS map first defined by Gotoh et al.,1992 
which is shown in green colored blocks. 

1.3.4 Molecular dynamics simulations of CYPs in lipid bilayers 

Removal of the N-terminal helix for crystal structure determination limits our 

knowledge of the orientation and position of CYPs in the membrane. Experiments such 

as epitope analysis, mutagenesis, and tryptophan fluorescence scanning provide 

indirect information regarding the CYP-membrane topology, regions of the protein 

interacting with the membrane (27, 30). MD simulations of CYP2C9 in a phospholipid 

bilayer were performed by Cojocaru et al. (31) and Berka et al. (32) using the structures 

described in PDB 1R9O (in 1-palmitoyl-2-oleoyl-sn-glycro-3-phosphocholine (POPC)) 

and 1OG5 (in dioleoylphosphatidylcholine (DOPC)), respectively. Cojocaru et al. used an 

ab initio modeling and simulation procedure for predicting the missing F’-G’ helix/loop 

conformations and further employed coarse grained and atomic-detail MD simulations 

to immerse the protein in the bilayer and then compared the result with data from 

              
1z10_chainA_p006  420  KGQ-FKK--SDAFVPFSIGKRNCFGEGLARMELFLFFTTVMQNFRLKSSQSPKDIDVSPKHVGFATIP-R  485 

3qm4_chainA_p003  424  QGH-FVK--PEAFLPFSAGRRACLGEPLARMELFLFFTSLLQHFSFSVPTGQPRPSHHG-VFAFLVSP-S  488 

3e4e_chainA_p004  415  NGK-FKY--SDYFKPFSTGKRVCAGEGLARMELFLLLCAILQHFNLKPLVDPKDIDLSPIHIGFGCIP-P  480 

1r9o_chainA_p001  416  GGN-FKK--SKYFMPFSAGKRICVGEALAGMELFLFLTSILQNFNLKSLVDPKNLDTTPVVNGFASVP-P  481 

2hi4_chainA_p005  436  DGTAINKPLSEKMMLFGMGKRRCIGEVLAKWEIFLFLAILLQQLEFSVPPGV-KVDLTP-IYGLTMKH-A  502 

1w0g_chainA_p002  423  N---KDNIDPYIYTPFGSGPRNCIGMRFALMNMKLALIRVLQNFSFKPCKET-QIPLKL-SLGGLLQPEK  486 

     

                                           
1z10_chainA_p006  486  NY-TMSFLPR--  495 

3qm4_chainA_p003  489  PY-ELCAVPR--  497 

3e4e_chainA_p004  481  RY-KLCVIPRSH  494 

1r9o_chainA_p001  482  FY-QLCFIPIHH  493 

 

2hi4_chainA_p005  503  RCEHVQARRFS-  514 

1w0g_chainA_p002  487  PV-VLKVESRDG  498 

         

SRS6 
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epitope analysis and tryptophan fluorescence scanning. On membrane binding, the 

CYPs were seen to exhibit decreased flexibility in the B-C loop, the F-G loop and the β1 

sheet whereas the G-H and H-I loops did not show any change in flexibility. The opening 

of ligand tunnels for lipid soluble drugs was also observed with membrane binding 

although the overall protein structure remained in a closed or nearly closed 

conformation (31). The membrane-bound model of CYP2C9 shows the tunnels 2a and 

2f opening into the membrane whereas the 2b, 2ac, 2c, 2d and S tunnels lead to the 

aqueous solution (31, 33). The opening of the 2c and S tunnels showed correlation with 

the closure of the 2a and/or 2b tunnels. It was suggested that membrane-protein 

interactions favor the opening of the 2a tunnel for the access of hydrophobic substrates 

to the active site and the release of more polar products into the cytosol by either the 

2c or the S tunnels (31, 32). MD simulations performed for CYP3A4 in a bilayer revealed 

different conformations of CYP3A4 than in aqueous solution. Whereas the 2b and 2e 

tunnels were open in the absence of the membrane, only the 2b tunnel was open in the 

simulations of the membrane-bound protein due to structural rearrangement of the F 

and G helices and the beta domain, which interact with the membrane, and the B-C 

loop (34). 

1.3.5 Active site access and egress pathways 

In an analysis of CYP crystal structures by Wade et al., the conformations were classified 

as closed, holey or wide open based on the solvent accessibility of the active site (35). 

Computational methods to analyze ligand access and egress pathways include classical 

MD simulation, Random Acceleration Molecular Dynamics (RAMD) simulation (36) and 

Steered Molecular Dynamics (SMD) simulations (37). as well as tools to compute tunnels 

such as: CAVER (http://loschmidt.chemi.muni.cz/caver/) and MOL 

(http://mole.upol.cz/online/). These methods have been applied to both microbial and 

human microsomal CYPs to understand the routes of entry and exit adopted by the 

ligands and the important residues lining these pathways. The naming scheme for 

access/egress/ channels first identified in microbial CYPs was further extended and 

http://mole.upol.cz/online/
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modified for human microsomal CYPs (35, 36, 38–41). Cojocaru et al. studied the 

access/egress tunnels from the active sites to the protein surface in all then (2007) 

available crystal structures of CYPs using CAVER (42). These access/egress tunnels were 

suggested to play an important role in substrate selectivity and specificity as some of 

the SRS are found along these tunnels. The ligand pathways have been named according 

to the secondary structure elements lining them and their spatial orientation with 

respect to the CYP 3D-fold (42). Here, I discuss briefly the most common pathways and 

their location as described by Cojocaru et al.,(42) 

Pathway 2a (pw2a) lies between the F-G loop, the B’ helix, the B-B’ loop/B-C loop and 

the β1 sheet, where the B-C loop corresponds to SRS1 (Gotoh, 1992), the C terminus of 

the F helix constitutes SRS2, and the N-terminus of the G helix forms SRS3. Pathway 2b 

lies between the B-B’ loop and β1 and β3 (SRS5 is in the β3 sheet). Pathway 2c lies 

between the G and I helices and the B’ helix/B-C loop, with the I helix forming SRS4. 

Pathway 2ac lies between pw2c and pw2a and egresses between the tip of the B’ 

helix/B-C loop and the G helix. Pathway 2e egresses through the B-C loop. Pathways 2f 

and 2d are closer to pw2a, pw2d leaving between the N-terminus and helices A’ and A, 

whereas pw2f runs between the F’ helix/F-G loop and the β5 sheet. The solvent channel 

which was reported to be open in almost half of the CYPs studied by Cojocaru et al., lies 

between the F, E and I helices and the β5 sheet. As discussed earlier, the solvent (S) 

channel was originally found open in ligand-free CYP2D6 (PDB 2F9Q) (43), whereas it 

remained closed when CYP2D6 was complexed with a ligand (PDB 3QM4) (44). The 

water (W) channel runs between the B-C loop and the C terminus of the B helix. From 

analysis of the mechanism of tunnel gating, it has been noted that the relative 

movement of two secondary structure elements, the B-C loop and the F-G loop, leads 

to open/closed conformations of the 2c, 2ac, 2a, 2b and 2f tunnels, whereas opening of 

tunnels 2d, 2e and 4 results from conformational changes in the loops through which 

they thread. 



   
GM  34 

 

Figure 1.8: The important tunnels defined in Wade's nomenclature are labeled (orange). 
The protein is shown in cartoon representation with the B-C loop colored purple, the F-
G loop red and the helices labelled. The heme (cyan) and the POPC bilayer (purple) are 
shown in stick representation(45). 

Although classical MD simulation provides information on tunnel flexibility, the 

conformational space sampled in standard MD simulations is not generally sufficient to 

fully understand ligand access and egress from CYPs. To study phenomena taking place 

on longer time scales, enhanced sampling techniques such as RAMD(38, 46), in which 

an artificial force with random direction is applied to the center of mass of the ligand, 

and SMD (37, 39, 47, 48), in which a force is applied to the ligand in specified direction, 

are used. In RAMD simulations of mammalian CYP2C5 (41), pw2c was found to be the 

predominant product egress route, this was in contrast to the main egress route, pw2a, 

found in soluble bacterial CYPs (38). Since the 2a tunnel opens into the membrane in 

mammalian CYPs, a two route mechanism for lipophilic substrate entry (via pw2a) and 

hydrophilic product egress (via pw2c) was proposed by Schleinkofer et al. (41). Cojocaru 

et al. performed RAMD simulations of CYP2C9 in the presence of the substrates, 

flurbiprofen and warfarin, and their products (49). Depending on the physicochemical 
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properties of the ligands, different tunnels were preferred. More non-polar ligands 

tended to exit through the 2a tunnel to the membrane whereas the hydroxylated 

product of flurbiprofen exited through the 2ac and 2e tunnels, leading to solvent. RAMD 

simulations of membrane bound T.brucei CYP51 by Yu et al  found tunnel 2f as 

predominant ligand egress tunnel which leads to the membrane(45). 

1.4 Conclusion 

Given the important role of MPs in regulating cellular function, there is increasing focus 

on studying structure-function relationship of membrane proteins. For this purpose, 

several experimental techniques are used which are in the process of continuous 

development, aiming at a high-throughput pipeline for structure determination of MPs.  

Advances in experimental techniques like electron microscopy, NMR and X-ray 

crystallography have improved our understanding of the 3D-folds of MPs. However, 

there are practical difficulties with overexpression and solving high resolution crystal 

structures of α-helical MPs. Although, our knowledge in the field of structural biology, 

especially MPs, has increased over the past few years, the dynamic behavior of MPs in 

their physiological environment is difficult to understand through experimental 

techniques. Thus, computational tools such as modeling and simulations at various time 

and length scales have played a significant role in understanding the dynamics and 

mechanistic behavior of membrane protein interactions. Structural biology together 

with computational methods offer greater opportunity and better insights into MP 

which can be utilized to manipulate and target MP function and lead to novel drug 

discovery and design. A detail discussion about computational techniques employed to 

study membrane, protein and ligand interactions is given in Chapter 2.
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  COMPUTATIONAL MODELING AND SIMULATION 

METHODOLOGY  

2.1 Computational microscope  

The experimental difficulty in studying membrane proteins (MPs) arises because of the 

inherent property of MPs to fold and function in a complex heterogeneous and dynamic 

membrane environment. Although, improved experimental techniques have resulted in 

an increased number of atomic-resolution models of MPs, which have offered 

invaluable insight into secondary and tertiary folds of MPs, these models present static 

pictures of the conformational states biomolecules can adopt. MPs are however highly 

flexible and can adopt different conformational states which result in various cellular 

responses such as cell-signaling, ion-conductance, transportation across the cell-

membrane and enzyme catalysis reactions. The conformational changes can occur due 

to ligand binding, protein-protein interaction, a change in potential difference or 𝑝𝐻 

across the membrane. The presence of lipid molecules also modulates the structure 

and function of MPs (50). This effect is difficult to observe through experimental 

procedures due to spatial and temporal limitations (51). MPs, in turn, affect membrane 

properties such as lipid diffusion (52), membrane thickness (53), and membrane 

curvature or distortion (54).  Such effects of MPs on shaping the membrane are 

exemplified by molecular dynamics (MD) simulations of the voltage-gated potassium 

channels (KvAP K+ channel) S4 transmembrane helix. The positively charged residues in 

the S4 (TM-helix) reduce the effective thickness of the bilayer core from 27 Å to 10 Å. 

(55). 

The interplay between membrane and protein can be studied by employing various 

computational modeling approaches. Computational modeling has been recently 

termed “Computational Microscopy” by Schulten and co-workers (56) owing to its 

ability to study natural processes occurring at  different spatial and temporal 

resolutions. For example, zooming in to highest resolution by quantum mechanics 
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simulations, which include electrons and nuclei, to study any chemical reaction i.e., 

breaking/formation of chemical bonds or charge transfer reactions. And gradually 

zooming out to study MPs interactions with membrane, water and ions at atomic 

resolution and on a time scale as small as femtoseconds, or further zooming out to 

supra-atomic (coarse-grained) level where groups of atoms are represented by beads 

and the timescale is increased by 2 to 3 orders of magnitude (57), to supra-molecular 

(supra-coarse grained) or mesoscopic level simulations (58). In a recent review by 

Ingolfsson et al (59), the power of computational microscopy to study the lateral 

organization of plasma membrane model is compared with traditional microscopy-

based methods such as electron microscopy, atomic-force microscopy (AFM) as well as 

supra-resolution microscopy. Computational microscopy is useful to study dynamics, 

interactions and conformational changes similar to experimentally observed by 

fluorescence microscopy techniques such as fluorescence correlation spectroscopy 

(FCS), single-molecular fluorescence resonance energy transfer (smFRET), single 

particle tracking (SPT) and fluorescence recovery after photobleaching (FRAP) (59). 

2.2 Computational modeling of membrane proteins 

Biological processes occurring at different time and length scales and various 

computational modeling approaches are shown in Figure 2.1. that It is observed 

biologically relevant events, such as protein-folding, domain motion, protein-protein 

interactions, aggregation or assembly of biomolecules take place at time scales ranging 

from milliseconds to seconds, which require adjusting the computational microscope at 

appropriate resolution, which means modeling biomolecules (from fine-grained to 

coarse-grained levels and from higher resolution to lower resolutions) to obtain longer 

length and timescales. However, zooming out requires the trade-off of losing atomic 

detail interactions. In large-scale CG level simulations of 63 different lipids, the lipids 

were found to distribute asymmetrically in two leaflets, resembling closely a 

mammalian plasma membrane (60) .  
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Figure 2.1: Application ranges for molecular modeling at different resolutions: quantum, 
all-atom, coarse-grained, and mesoscale. The plot shows approximate ranges of time 
scales and system sizes (lengths). The presented application ranges can be expanded by 
merging tools of different resolution into multiscale schemes. Reprinted under ACS open 
access policy http://pubs.acs.org/page/policy/authorchoice_termsofuse.html from (61). 

Studying MPs is easier computationally than experimentally due to the fact that MPs 

adopt unique secondary and tertiary structures. The conformational search space for 

MPs is limited by the presence of membrane environment (62), and therefore, integral 

MPs form only two structural motifs in the bilayer: α-helices and β-sheets(63). However, 

MP 3D structure prediction is still challenging and requires accurate scoring functions 

and force-field parameters for dealing with the membrane. (63). There have been 

increasing efforts in developing various computational algorithms which predict from 

genome sequence the primary amino-acid sequence, and from the primary sequence 

the secondary structure, the TM spanning regions and the protein topology (α-helical 

bundles or β-barrels) as well as the different sequence motifs found in MPs. 

Computational methods such as homology modeling, fold recognition, and de novo 

predictions are used to predict tertiary structure (3D) of MPs. 

http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
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In order to understand the effect of the lipid bilayer on an MP’s function, various 

computational simulations approaches are employed, ranging from coarse-grained (CG) 

to all-atom (AA) molecular dynamics (MD) simulations. MD simulations help in exploring 

the structural dynamics of MPs in their native environment to bridge the gap between 

structure and function of these proteins. Advancements in the field of structural biology 

and experimental techniques in combination with advancements in the computer 

hardware, software and simulation algorithms have improved our understanding of 

biological structures, their mechanism and function. In this chapter, I will discuss the 

state-of-art computational modeling techniques used to predict the 3D structure of 

MPs and protein-membrane dynamics and interactions. Our focus will be mainly on 

multi-scale simulation studies, from atomistic to coarse-grained level resolution. I will 

briefly discuss the homology modeling technique for 3D structure prediction of MPs 

followed by discussion on computational modeling and simulations approaches.  

2.2.1 Homology modeling  

An important step in homology modeling is finding a template structure with high 

sequence similarity. A modeled structure with 70% sequence similarity to the template 

will have RMSD of 1-2 Å compared to 3-4 Å RMSD structures obtained from templates 

with 25% sequence similarity, which is twilight range which means the accuracy of 

model is low in this range. The quality of model also depends on how good the sequence 

alignment is. An incorrect alignment will result in inaccurate model generation. After 

target-template alignment, homology modeling tools are used to generate coordinates. 

The homology modeling tools most commonly used for MPs are: RosettaMP(64), 

Modeller(65) and Medeller(66),  later tool is especially designed for MPs. There are 

various online servers used to predict MP 3D structures such as MEMOIR which uses 

Medeller together with other tools(67), HHPred(68) or SwissModel(69).  The modeling 

tools generate coordinates using one of the following approaches: 1) assembly of rigid 

bodies (70)  2) segment matching or coordinate reconstruction (71), and 3) by 

satisfactions of spatial constraints (65). The final step in homology modeling is 
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assessment of the model for its quality by using different scores. The above steps, 

beginning from sequence alignment, model generation and model assessment is 

performed, are iterated several times to obtain better quality of model (72). 

2.2.2 Force-fields 

In classical MD, forces between particles and potential energy are calculated by 

empirically derived potential functions or molecular mechanics force-fields. Most 

molecular modeling force-fields represent the potential energy function for 

intramolecular (bonded) and intermolecular (non-bonded) interactions to model the 

proper geometry and structures of biomolecules. The potential energy change occurs 

when intramolecular interactions deviate from “equilibrium” or “reference” positions, 

such as by bond stretching, bond angle bending and rotation of bonds or changes in 

dihedral angle. The second contribution to the potential energy of the system is the 

forces on atoms due to non-bonded interactions such as van der Waals interactions and 

short and long range electrostatic interactions (which fall off slowly with distance).  

2.2.2.1 Bonded interactions 

In the equation (1), 𝒱(𝑟𝑁) is the potential energy, 𝑟𝑁 is the position of particles 𝑁. A 

harmonic potential with force constant 𝑘𝑑 is used to calculate the energy change due 

to deviation from the reference equilibrium bond length 𝑑0. The second term in the 

force-field is a harmonic potential used to calculate the potential energy change due to 

bond angle bending where 𝜃 is the bond angle and 𝜃0 is the bond angle at equilibrium, 

and 𝑘𝜃 is the force constant. The third term is the torsional term, used to calculate the 

potential energy change resulting from rotation about bond. The torsional terms apply 

to atoms separated by three bonds. 𝑘∅ is the barrier height, 𝑛 the number of minima, 

∅0 is a phase factor which determines the position of the minima. The 4th term 𝜓 is an 

improper dihedral,  𝜓0 is the improper dihedral at equilibrium and 𝑘𝜓 is the force 

constant for the improper dihedral angle harmonic potential. The improper term is used 

to retain planarity and chirality of certain groups. For example, peptide bonds in 
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𝒌𝜽

𝟐𝒂𝒏𝒈𝒍𝒆𝒔 (𝜽 − 𝜽𝟎)𝟐+ 
∑
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𝟐𝒕𝒐𝒓𝒔𝒊𝒐𝒏 (𝟏 + 𝒄𝒐𝒔(𝒏∅ − ∅𝟎))+ 

proteins and aromatic rings in amino acid side chains. It applies a penalty to bending 

out of plane.  
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2.2.2.2 Non-bonded interactions 

The forces arising due to non-bonded interactions are modelled by pair-potentials and 

are contributed by van der Waals and electrostatic forces. The van der Waals forces can 

be approximated by Lennard-Jones (LJ) 12-6 potentials which contain attractive (6) and 
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repulsive (12) terms. The attractive terms originate from dispersion forces caused by 

instantaneous dipole-dipole interactions, while repulsion results from Pauli’s exclusion 

principle describing electron repulsion within a certain distance (~ 0.3 nm). In equation 

(1),  𝑟𝑖𝑗 is the distance between particles 𝑖 and 𝑗. 𝜖 is the potential well depth, 𝜎 finite 

distance at which potential is zero. Electrostatic potential is sum of electrostatic forces 

arising from charges on atomic nuclei which is calculated by Coulomb’s law. As shown 

in above equation 𝑟𝑖𝑗 is the distance between two nuclei 𝑖 and 𝑗. 𝑞𝑖 and 𝑞𝑗 are the 

charges on particles 𝑖 and 𝑗. 𝜀0 is the dielectric permittivity of vacuum, and relative 

dielectric screening 𝜀𝑟𝑒𝑙, which is 1 in case of all-atom water model and 15 when using 

MARTINI standard coarse-grained (CG) water model (discussed below). 

Optimization of force-fields is done by fitting with quantum mechanical calculations and 

experimental spectroscopic and crystallographic data. In the early 80s, biomolecular 

force-fields and programs were developed such as AMBER, CHARMM and OPLS which 

are still widely in use. The software packages utilizing these force-fields include AMBER, 

NAMD and CHARMM, and GROMACS respectively (73). Although basic form of all force-

fields is almost same, the accuracy may vary. The accuracy of force-field is major limiting 

factor in MD simulations, and due to increased computational resources, improved 

hardware and parallelization have enabled computationally expensive validation of 

force-fields against experimental data (51). 

2.2.3 MARTINI coarse-grained force-field 

One of the most widely used CG models is the MARTINI force field implemented in the 

GROMACS MD program (74). The MARTINI force field was initially developed for lipids 

in 2004, improved in version 2.0 in 2007,(75, 76) and extended to proteins and peptides 

in MARTINI version 2.1 released in 2008.(77) A re-parameterization of the MARTINI 

protein force field to version 2.2(78) and the introduction of a polarizable water (PW) 

model resulted in MARTINI version 2.2P(79). Currently, MARTINI offers parameters for 

a wide variety of lipids molecules, cholesterol, protein, DNA, carbohydrates, fullerene, 

collagen and dendrimers(80).  
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2.2.4 MARTINI Coarse-grained mapping  

 The CG approach used in MARTINI is based on a 4-to-1 mapping, with 4 heavy atoms 

plus associated hydrogen atoms represented by one CG bead. Four water molecules are 

represented by 1 CG bead in both the original standard non-polarizable water (NPW) 

model and the new PW model. CG Ions are represented by one bead consisting of an 

Ion and its hydration shell. A ring like molecule such as cholesterol, benzene and 

aromatic side chains of amino-acid residues are mapped using a 2 to 1 instead of 4 to 1 

mappings.  

 

Figure 2.2: Coarse-grained representation of all amino acid residues. Different colors 
represent different particle types (81). Backbone is represented by yellow color. 

In order to reproduce chemical properties, the MARTINI model consists of 4 main types 

of CG particles: polar (P), nonpolar (N), apolar (C) and charged (Q) and, within the 4 

main types, there are subtypes based on hydrogen bonding ability (d=donor, 

a=acceptor, da=both, 0=none) or degree of polarity (1= low polarity, to 5=high polarity) 

(57) making a total of 18 bead types. 
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2.2.5 Bonded interactions in MARTINI 

Bonded interactions in MARTINI CG models are described by the same potential energy 

functions as in classical force-fields. The potential energy functions contain a harmonic 

potential used for bonds, angles, dihedral and improper dihedral terms. Dihedral 

potentials are used for preserving secondary structure and to prevent out-of-plane 

distortion of planar groups (aromatic side chains in amino-acids). Bonded interactions 

are directly parametrized using structural data from atomic structure or by comparison 

with atomistic simulations(57). For proteins, the equilibrium values for bonded 

potentials (bond, angles and dihedrals) are optimized against 2000 atomistic reference 

geometries of proteins from Protein Data Bank (PDB)(82). The secondary structure 

information is provided additionally using the DSSP (“define secondary structure of 

proteins”) prediction algorithm(83). The secondary structure in MARTINI protein 

models remains restrained using additional restrains applied via elastic network to keep 

protein close to native fold.  

2.2.6 Non-bonded interactions in MARTINI 

The MARTINI force-field was developed by optimizing non-bonded interactions to 

reproduce experimental thermodynamic data such as free energies of hydration, free 

energies of vaporization, and partition free energies between water and a collection of 

organic phases, such as hexane, octanol and chloroform, for 18 bead types. Partition 

free energy is calculated from equilibrium densities 𝜌 of CG particles in two phases 

(∆𝐺𝑜𝑖𝑙/𝑤𝑎𝑡𝑒𝑟). 

 ∆𝐺𝑜𝑖𝑙/𝑤𝑎𝑡𝑒𝑟= 𝑘𝐵𝑇𝑙𝑛(
𝜌𝑜𝑖𝑙

𝜌𝑤𝑎𝑡𝑒𝑟
⁄ ) (2) 

The non-bonded interactions are described by Lennard-Jones (LJ) 12-6 potential (as 

shown in equation (1)  and interactions between charged particles, such as lipid head 

groups and charged amino-acid side chains, are calculated using Coulomb’s law. The 

strength of the interactions for each particle varies and is determined by well-depth 𝜖𝑖𝑗 

. 𝜖𝑖𝑗 ranges from 5.6 KJ mol-1 to 2.0 Kj mol-1 for strongly polar groups to apolar groups 
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respectively (57). 𝜎=0.47 nm describes the size of the particles except for ring like atoms 

where reduced 𝜎=0.43 nm and 𝜖𝑖𝑗 scaled down to 75% of its original value to model 

ring-ring interactions. The details of interaction matrix is given in the original article (84).  

In CG simulations using standard water model or non-polarizable water (NPW), relative 

dielectric screening 𝜀𝑟𝑒𝑙=15 is used, as shown in equation (1), which was decreased from 

its initially value of 𝜀𝑟𝑒𝑙=20 (77). 

In MARTINI force-field, non-bonded interactions are cutoff at  𝑟𝑐𝑢𝑡=1.2nm. The LJ 

interactions are truncated using a shifted potential from 0.9nm to 1.2nm while the 

electrostatic interaction potential is shifted from 0.0nm to 1.2nm. Recently, the 

MARTINI force-field has been tested using simple cut-off at 1.1 nm for LJ and Coulomb’s 

interactions with a “potential modifier” implemented in a recent version of the Gromacs 

software package (5.0.x) (85, 86). It was observed that the use of a simple cut-off did 

not affect the system properties, such as partition free energies which remained within 

the range of the differences between the Martini force-field and experimental values. 

The use of a straight cut-off offered significant speedup in performance compared to 

shift method. Electrostatic interactions were treated by the RF method instead of the 

cut-off which gave slightly better results at negligible computational cost (86). 

2.2.7 MARTINI protein and Elastic Network models 

An Elastic Network (EN) model is used in combination with the MARTINI CG protein 

model to maintain the structure of biomolecules. In EN model, springs force constant 

𝐾𝑆𝑃𝑅𝐼𝑁𝐺  are used to connect a network of point masses when the inter-particle distance 

is less than a predefined cutoff 𝑅𝐶  . The MARTINI force-field together with the EN 

model, named ElNeDyN, has been used to determine the structure and dynamics of the 

CG model with respect to atomistic reference simulations (87). In ELNEDIN model is 

applied on Cα backbone bead instead of center of mass the, -N,Cα,C,0-,  used in earlier 

version. EN parameters, 𝐾𝑆𝑃𝑅𝐼𝑁𝐺  and 𝑅𝐶  were used ranging from 0.8 to 1.0nm and 500 
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to 1000 Kj mol-1 nm-2 respectively which provide agreement with atomistic simulations 

(87).  

2.2.8 MARTINI coarse-grained water models 

The MARTINI standard water (NPW) model does not contain charges and interacts by 

means of LJ interactions only. To prevent the CG water from freezing at 250 to 300 K, 

antifreeze particles are included in the NPW solvent (76).  The use of the NPW model 

requires a relative dielectric constant εrel = 15 offering uniform screening which is a 

reasonable approximation for bulk water. However, electrostatic screening varies at the 

water-lipid interface or around charged amino acids which is difficult to maintain using 

NPW model using εrel = 15. Recently, a polarizable water (PW) model has been 

developed (79),  which consists of three particles W, WP and WM. The two latter 

particles are positive and negative point charges, respectively, bonded to the central 

particle, W. The charged particles are able to rotate around W to model polarization. 

The central particle W is neutral, like NPW, and interacts with other particles by LJ 

interactions (79). The use of the PW model improves the modelling of electrostatic 

interactions with charged particles and the polarization effects of water. The ε 

(dielectric constant) of the PW model was computed between 75.6 to 77.1 at εrel = 2.5, 

which is close to experimental value 78.4 at 298 (79). The reduced εrel = 2.5 used with 

PW keeps dielectric constant more realistic in hydrophobic regions. The PW model 

reproduces the oil/water partition free energy, the freezing temperature and the free 

energy of pore formation in the membrane better than the NPW model. However, its 

effects on protein behavior were not explored when it was developed(79).  

2.3 Molecular dynamics simulation 

Molecular dynamics (MD) simulation is one of the most widely employed molecular 

mechanics techniques to study biochemical processes such as protein-folding, drug 

binding, membrane self-assembly, membrane transport, and conformational changes 

responsible for protein functions (51). Methods in molecular mechanics such as energy 
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minimization, normal mode analysis and Monte-Carlo simulations do not provide direct 

information about time dependence of dynamics of the system. Brownian dynamics 

(BD), dissipative particle dynamics (DPD) and molecular dynamics (MD) simulations 

methods are based on calculations of positions and motions of particles using equations 

of motions. MD simulations of large macromolecular systems, membrane protein 

complexes comprising more than tens of thousands of atoms, and smaller systems on 

longer time scales up to milliseconds have been performed to observe many critical 

biochemical processes.    

MD simulation is based on integrating Newton’s equation of motions (𝑭 = 𝒎 𝒂 ) 

numerically for a set of particles as a function of time. Given the initial position and 

velocity of each particle 𝑖, one can calculate the forces and therefore the acceleration 

𝒂𝒊 at the time point 𝒕. The iteration of the equation gives the spatio-temporal evolution 

of the system (59). 

2.3.1 Integration of equation of motion 

In MD simulations, the forces acting on particles, positions and velocities are updated 

by integrating equations of the motion, which is computationally intensive and one of 

the limiting factor in the sampling the conformational changes (59). At each MD step 

energy, forces and velocity are calculated and updated for the next time step. A variety 

of integration algorithms is being used to integrate equation of motion at finite time 

steps, where new positions 𝑟𝑖(𝑡 + ∆𝑡) and acceleration at time 𝑡 + ∆𝑡  are determined 

from previous step 𝑟𝑖(𝑡)(88).The most common algorithms are: Verlet algorithm (89), 

its derivative velocity Verlet algorithm (90, 91) and the Leapfrog algorithm(92). These 

algorithms are designed to offer accuracy, efficiency, time-reversible and symplectic. 

These integrators are time-reversible, meaning that if the direction of velocity is 

reversed, the simulation will run in the reverse direction.  
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2.3.2 Treatment of non-bonded interactions 

Biomolecular force-fields include long range electrostatic interactions where the 

summation of order of N2 is required to account for all non-bonded interactions (93). In 

MD simulations, forces are computed at each time step and, long range interactions are 

the most computationally expensive in MD algorithm. In order to increase 

computational speed, a cut-off scheme is used to calculate non-bonded interactions 

between nearby atoms and which are truncated after cutoff distance (0.8-1.4nm) (94). 

However, abrupt disruption of forces at cutoff results in energetic discontinuity leading 

to unstable simulation (88). Smoothing functions such as Shift or Switch functions are 

used to decrease the energy gradually to zero at given cutoff value. The use of Shift or 

Switch functions for LJ interactions is suited well and does not cause problems as 

dispersion forces are short ranged and decay quickly. 

The treatment of electrostatic interactions is a key issue in MD simulations. In particular, 

use of cutoff method in simulations of lipid-bilayer does not result in appropriate 

structure because of the high charge density at interface and a region of low dielectric 

constant which results in weakly shielded electrostatic interactions. The most common 

method to study long range interactions is particle mesh Ewald (PME)(95). PME is based 

on interpolation of the reciprocal-space Ewald sum. In PME, all the interactions are 

summed in a periodically replicated system including long range interactions. However, 

periodicity may cause artifacts due to artificial ordering leading to enhanced stability of 

system. The reaction field (RF) is another method to calculate long range electrostatic 

interactions. It was originally developed to simulate homogenous liquid systems. It adds 

a correction term to the cutoff results as solvent outside is considered as a continuum 

electrostatic. In the RF method, a charged particle beyond a certain distance (cut-off) 

does not see individual charges but rather the averaged homogenous medium of 

electrostatic field. It has been observed in simulations of a DPPC 

(Dipalmitoylphosphatidylcholine) lipid-bilayer  that the reaction field gives similar 

results  to PME (96). All the above methods have their own drawbacks when simulating 
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interfacial systems. The use of a cut-off creates artificial ordering, PME increases 

periodicity and RF neglects the heterogeneous nature of a membrane system. However, 

PME is generally considered to be the best choice with the fewst draw backs (94). Force-

fields are developed using one of these methods. Therefore, changing to a different 

method to calculate electrostatic interactions may affect the accuracy of the force-field. 

2.3.3 Periodic boundary conditions 

Molecular Dynamics simulations are often performed using periodic boundary 

conditions (PBC) to create bulk effect (an infinite system). In PBC, a virtual image of a 

box is replicated in all directions. The most common choices for PBC are the cubic and 

rectangular boxes or truncated octahedral box which is often used to decrease the 

solvent volume in the corners. In 3-dimensional space of a cubic box, PBC replicates into 

the 26 nearest neighbor boxes. If a particle exits the box from any side during 

simulations, it is replaced by the image particle entering from the opposite side. Thus, 

the total number of particles in the simulation box is kept constant. The use of PBC 

removes artifacts created due to surface effect (97).  

2.3.4 Simulation conditions 

Like in laboratories, in silico experiments can also be performed by selecting different 

thermodynamic conditions. MD simulation is the study of thermodynamic and kinetic 

properties of molecular systems. Thermodynamic state of the system is defined by 

macroscopic property of the system which depends on parameters such as the 

temperature T, pressure P and number of particles N. MD simulations are performed 

using different microscopic ensembles such as: canonical (𝑁𝑉𝑇), isothermal-isobaric 

(𝑁𝑃𝑇), microcanonical (𝑁𝑉𝐸) and grand-canonical ensembles (𝜇𝑉𝑇).  The letters 

denote macroscopic observables which are kept constant such as number of atoms, N, 

volume, V, pressure, P, temperature, T and chemical potential, µ.  Direct integration of 

Newton’s equation of motion results in 𝑁𝑉𝐸 ensemble while experiments are usually 

performed at constant temperature and volume and/or constant temperature and 
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pressure 𝑁𝑉𝑇 𝑜𝑟 𝑁𝑃𝑇 (88). In the 𝑁𝑉𝑇 ensemble, temperature is kept constant using 

an external thermal bath. There are different thermostat algorithms to keep 

temperature constant at the desired reference temperature. For example: Berendsen 

weak-coupling method (98), v-rescale (99), Nosé-Hoover (100), Langevin piston (101) 

etc. In the case of the 𝑁𝑃𝑇 ensemble, an external barostat is used to control pressure 

while allowing the volume of the system to change by rescaling box-dimensions. The 

most commonly used barostat algorithms are Berendsen weak-coupling (98) and 

Parrinello-Rahman (102) methods. 

2.3.5 Pressure control for membrane protein simulation 

When simulating a membrane protein system, one of the most important parameters 

to deal with is pressure coupling.  There are three methods of pressure coupling: 1) 

isotropic pressure coupling, where the x,y and z dimensions are coupled together; 2) 

semiisotropic pressure coupling, where x and y directions are coupled together while 

pressure in the z-direction is allowed to fluctuate independently; and 3) anisotropic 

pressure coupling which does not couple any directions of the pressure contribution 

(see Figure 2.3). 

In the case of membrane simulations, semiisotropic pressure coupling is the 

recommended method which allows area fluctuations. The semiisotropic pressure 

coupling in x-y directions does not produce constant surface area, but the size 

adjustment in x-y dimensions allows area fluctuation in both dimensions equally. 

Therefore, the ratio of the box-size remains constant. On the other hand, anisotropic 

pressure coupling allows fluctuations in all directions independent of each other, which 

may result in large deformations of the whole simulation system. Anisotropic pressure 

coupling should be used carefully. While isotropic pressure coupling is not 

recommended, which leads to very small changes in box size. Isotropic pressure 

coupling is inappropriate as it does not allow fluctuation in surface area and does not 

specify surface tension (103). 
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Figure 2.3: Different pressure coupling schemes and their effect on a membrane bilayer.  
a) Isotropic pressure coupling which does not allow large fluctuations. b) Semiisotropic 
or constant surface tension pressure coupling (recommended) for membrane system 
which allows area fluctuations as the pressure contribution in the x-y directions is 
coupled together while the z-direction is not. c) Anisotropic pressure coupling allows 
area fluctuations in all directions. Taken from the article (103). 

2.4 Multiscale simulations of membrane-protein system 

2.4.1 All-atomic molecular dynamics simulation 

In classical MD, the all-atom model is coarse-grained in the sense of removing electronic 

degrees of freedom and treating electrons and nucleus as one sphere. For all-atom MD 

(AAMD) simulations, the forces contributed by all atoms in the molecule including non-

polar hydrogens are computed. Due to fast vibrational frequency of H-bonds, time step 

to capture these motions is limited to 1-2 femtoseconds (59).  The integration of 

equations of motions at such a small time-step currently limits AAMD simulations to 

study a system consisting of maximum 106 and timescale of one microsecond. AAMD 

simulations is limited to sample only local energy landscape. Therefore, it is still 

challenging to observe large conformational changes, biological events occurring at 
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longer timescale (> µs), and larger systems using equilibrium atomistic simulations. 

However, compared to quantum mechanics AAMD simulations offers longer 

computation time and simulation of larger system. 

2.4.2 Coarse-grained simulation 

Studying large conformational changes and larger system such as membrane protein 

complex requires zooming out the “computational microscope” to more coarse-grained 

(CG) resolution. CG simulations of biomolecules dates back to earlier modeling 

approach used to study protein folding (104). Recently, CG has gained much attention 

and is being used as part of a multiscale, coarse-grained combined with all-atomic 

(CG/AT) resolution, modeling approach. Michael Levitt, Ariel Warshel, and Martin 

Karplus were awarded Nobel prize in Chemistry in 2013 “For the development of 

multiscale models for complex chemical systems”, which included CG modeling of 

proteins (61). A widely-used level of coarse-graining for proteins and lipids use 

approximately 4 non-H atoms substituted by one particle. This simplified model allows 

a substantial increase in the simulation time. Due to decreased degree of freedom and 

smoother energy landscape, longer integration time steps (10-100fs) is used which 

result in the faster dynamics. The interactions in the CG models are rather short range 

where longer range electrostatic interactions are avoided which gives significant 

speedups of CG simulations. There is an increasing number of CG models developed for 

studying protein folding, protein-protein docking, protein structure predictions, peptide 

membrane interactions, protein-protein aggregation, lipid bilayer domain formations, 

bilayer self-assembly and formation of a lipid bilayer around MPs. These CG models are 

developed using different modeling strategies based on their applications as given in 

table 2.1. The major differences being in the degree of coarse-graining (number of 

beads representing backbone and side chains), explicit/implicit treatment of solvent 

and treatment of non-bonded interactions (105). 

The CG modeling strategy is mainly divided in to “bottom up” force-matching and “top 

down” free-energy based approaches (106). The bottom up approach is based on 
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parametrization of models by comparing with atomic simulations or experiments to 

systematically derive the CG interactions. While top down approach is employed by 

MARTINI CG models in which chemical building blocks are extensively calibrated against 

thermodynamic data, such as partitioning free energies between polar and apolar 

phases (oil/water) (57). Thus, it offers a broader range of applications and 

transferability. The MARTINI CG models for lipids, used in this work, designed by 

Marrink group (75, 84) are also compatible with protein CG models developed by 

Schulten (107) and Sansom (108) groups.  

Table 2.1: Different coarse-grained models used to study biomolecular systems. 
Modified table from chapter 5 of the book  on “Advances in Protein Chemistry and 
Structural Biology”, Biomolecular Modeling and Simulations, Volume 96, (109).  

Model 

No of Particles 

Membrane Protein Solvent 

Speedup 

over 

AAMD 

*Back-

Bone 

*Side-

Chains 

UNRES 1 1 - X Implicita ~1000 

MARTINI 1 1-5 X X CGb 75-100 

OPEP 5 1 - X Implicit 30-40 

SCORPION 1 1-2 - X CG 100-130 

PaLac 3 1-2  X CVc ~1000 

PRIME 3 1 - X Implicit ~1000 

PRIMO 3 1-5 X X GBMVd 10-15 

Bereau 

and 

Deserno 

3 1 - X Implicit NA 

* No of CG particles/beads  
a Implicit solvent included within non-bonded parameters 
b CG water model C Circular variance d Generalized Born/molecular volume 
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2.4.3 From coarse-grained to all-atom (CG2AA) 

Recently, multiscale models have become popular, where coarse-grained in 

combination with fine-grained (all-atomic) resolutions, are used. CG simulations offers 

self-assembly and large conformational changes while AA simulations are used to study 

protein-membrane interactions at atomistic details. Thus, conformational orientation 

of MPs obtained by CG simulations provide starting structure for all-atomic simulations. 

Back-mapping procedures have been developed to obtain atomistic details from 

configurations achieved by CG simulations (110). The back-mapping strategy is useful 

to refine the lipid-binding sites on proteins (111, 112), membrane solvation of 

nanoparticles  or transmembrane pores formed by antimicrobial peptides . 
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 CYTOCHROME P450 MEMBRANE ASSOCIATION: AN 

OPTIMIZATION OF THE MARTINI COARSE-GRAINED PROTOCOL 

This chapter is mainly based on the published work in “The Journal of Chemical Physics 

(2016)” a Special Topic Issue on “Coarse Graining of Macromolecules, Biopolymers, and 

Membranes”; doi: http://dx.doi.org/10.1063/1.4936909, with contributions by authors 

G. Mustafa, P. P. Nandekar, X. Yu, and R. C. Wade (111). 

Note: P. P. Nandekar performed CG self-assembly simulations of pure membrane 

system and compared the effect of varying parameters on computational efficiency, 

computed membrane properties of pure lipid bilayer and helped in analysis of 

simulation results.  

3.1 Introduction 

Human drug-metabolizing CYPs are anchored in the endoplasmic reticulum membrane 

by an N-terminal helix. The N-terminal helix of CYPs is truncated for crystal structure 

determination and in some cases, hydrophobic residues in the globular domain that 

interact with the membrane are mutated to increase the solubility (27, 113). The 

association of the CYP globular domain with the membrane has therefore been studied 

by other experimental techniques, such as site-specific antibody experiments,(114, 

115), tryptophan fluorescence quenching and atomic force microscopy(30). The 

orientation of a few CYPs in the membrane has been experimentally determined by 

measuring the tilt angle of the active site heme by rotational diffusion measurements 

and found to vary from 38° to 78°(116). More recently, the heme-tilt angle of CYP3A4 

bound in a POPC nanodisc membrane was determined by linear dichroism as 

59.7±4.1°(117).  

The orientations of different CYPs may vary depending on their primary sequence, 3D-

fold or binding to other proteins or drugs. CYPs provide a particularly challenging case 

for prediction of membrane insertion because they possess a flexible linker of variable 

http://dx.doi.org/10.1063/1.4936909
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length between the N-terminal transmembrane helix and the globular domain, and 

because the globular domain dips into the bilayer using a part of the protein (including 

the FG loop region) that is highly variable in sequence and structure. Thus, although CYP 

isoforms possess the same overall fold, they may show different interactions with 

membranes. In general, predicting the membrane interactions of monotopic 

membrane proteins or monotopic protein domains of transmembrane proteins, like the 

CYPs, is more difficult than for multitopic transmembrane proteins with more 

transmembrane helices, such as G-protein coupled receptors, which usually have a 

more obvious orientation in the bilayer enabling straightforward placement in the 

membrane for simulation studies (118–120). 

Various computational methods have been used to predict the position, insertion and 

orientation of membrane proteins. For example, the Orientation of Protein in 

Membranes (OPM) database (http://opm.phar.umich.edu/)(121) and the Protein Data 

Bank of Transmembrane Proteins (http://pdbtm.enzim.hu/)(122) provide protein 

positions in a bilayer. However, these methods treat the membrane as a hydrophobic 

slab and do not account for charge or polar interactions between lipid head-groups and 

the protein or aqueous solvent. Alternatively, MD simulations have been used to study 

interactions at the atomic level and the conformational dynamics of transmembrane 

proteins in their physiological environment(103, 123). Many important biological 

processes require time scales of micro to milliseconds or longer and, therefore, the time 

scale and system size pose limitations on the use of all-atom molecular dynamics 

(AAMD) simulations. In comparison to AAMD simulations, Coarse-grained (CG) 

simulations allow greater exploration of conformational space by decreasing the 

number of degrees of freedom and allow the extension of simulations beyond the 

microsecond scale(124, 125). CG simulations are widely used to study large 

conformational changes such as bilayer self-assembly, the insertion of proteins in 

membranes and membrane protein folding(124–131). Sansom and colleagues have 

used CG bilayer self-assembly around proteins to insert about 2000 transmembrane 

http://opm.phar.umich.edu/
http://pdbtm.enzim.hu/
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proteins into a bilayer and created a database of inserted membrane proteins 

MemProtMD (http://sbcb.bioch.ox.ac.uk/cgdb/)(132, 133). Multiscale simulations, 

employing CG and AA simulations, have been used to study the orientations of several 

CYPs (CYP2C9, CYP3A4 and human CYP51) in a bilayer (31, 112, 134). 

One of the most widely used CG models is the MARTINI force field implemented in the 

GROMACS MD program(74). The MARTINI force field was initially parameterized for use 

with the Shift function implemented in GROMACS versions up to 4.5.5 and below, 

where non-bonded interactions beyond the cutoff distance of 1.2 nm are neglected. In 

GROMACS versions 4.6.x and above, which have enhanced parallelization algorithms, 

the Shift/Switch algorithm for non-bonded interactions has been deprecated. The 

newer versions support a cutoff for short-range interactions and long-range 

electrostatic interactions are instead treated with Particle Mesh Ewald (PME) or a 

reaction field (RF)(85). Particle Mesh Ewald (PME) and the Shift function have been 

tested for lipid bilayer simulations with the polarizable water (PW) model, showing 

similar lipid properties such as area per lipid (APL)(79). Here, we have evaluated the 

effect of different MARTINI water models standard water model or non-polarizable 

water (NPW) and PW models, different treatments of long and short-range interactions 

(both van der Waals and electrostatic interactions) for CG simulation of protein-bilayer 

systems, and the effect of using different cutoff schemes implemented in different 

versions of GROMACS 4.5.5 vs 4.6.X i-e., a group vs Verlet cutoff schemes respectively. 

In the present study, we use multiscale modeling for the insertion and orientation of 

CYP3A4 in a POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) bilayer by 

MARTINI CG and AAMD simulations. The CG simulations are used to generate large 

conformational changes and find a converged orientation of CYP3A4 in the membrane, 

whereas AAMD simulations are used to refine the protein-membrane interactions at an 

atomically detailed level. The CYP3A4 orientation in the membrane has been predicted 

previously by using MD simulations as well as by experiments. Therefore, it provides an 

excellent test system for evaluating different protocols. We identify an optimum 

http://sbcb.bioch.ox.ac.uk/cgdb/
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procedure in terms of computational efficiency and the quality of the results for 

CYP3A4. We then show that the same protocol can be successfully applied to four other 

human drug metabolizing CYPs (1A1, 1A2, 2C9 and 2C19). We expect this approach to 

be applicable to other membrane proteins that have monotopic globular domains that 

dip into lipid bilayers. 

3.2 Material and method 

3.2.1 All-atom models of CYP3A4  

The crystal structure of human CYP3A4 (PDB ID: 1TQN) was retrieved from the Protein 

Data Bank (PDB) (http://www.rcsb.org/pdb). The crystal structure was resolved at 2.05 

Å resolution by truncating the N-terminal residues from 1 to 27(113). The missing 

residues were modelled using Modeller9.10 (65) by applying constraints on residues 3-

28 to form an alpha-helical conformation as predicted by the advanced protein 

structure prediction server (APSSP2: http://www.imtech.res.in/raghava/apssp2/). The 

complete structure of CYP3A4 consists of an N-terminal loop (residues 1-2), the N-

terminal transmembrane (TM) region (3-28), a linker region (29-55) which includes the 

A’ (31-36) and A’’ (50-55) helices, and a globular domain (56-499). Five different 

orientations of the globular domain with respect to the TM region were generated by 

changing the dihedral angles of the residues in the linker region to obtain a diverse 

range of arrangements of the globular domain that would not clash with the membrane 

and that cover the available configurational space. A similar procedure was employed 

for the other CYPs simulated. The PDB coordinates used were: 2C9:1R9O, 2C19:4GQS, 

1A1:4I8V and 1A2:2HI4.  

3.2.2 Preparation of coarse-grained (CG) systems 

All-atom models of the protein were converted to MARTINI CG models using the 

martinize.py script(110) available from http://cgmartini.nl. A pre-equilibrated CG TM-

helix obtained from simulating CYP51(112) in a CG POPC membrane bilayer consisting 

of 594 POPC molecules (31) was used to superimpose the TM-helix of CYP3A4. In order 

http://www.rcsb.org/pdb
http://www.imtech.res.in/raghava/apssp2/
http://cgmartini.nl/


   
GM  59 

 

to maintain the secondary and tertiary structure of the protein during the simulation, 

harmonic restraints were applied to the backbone atoms of the protein with an elastic 

force constant of 500 kJ.mol-1.nm-2 and a distance cut-off of 5 to 9 Å (lower and upper 

limit) (87). Elastic restraints were removed from residues (28-36) to allow free 

movement in the linker region during simulations. The secondary structure information 

was provided in a DSSP file from the DSSP server (www.cmbi.ru.nl/dssp.html). Each 

protein-bilayer complex was solvated in a periodic box of water particles using the same 

x-y box dimensions as the POPC bilayer and the z dimension extending 13 nm above 

and 7 nm below the center of the bilayer (with the bilayer in the x-y plane and the z axis 

normal to the bilayer).  The system was neutralized by adding counter ions. 

3.2.3 Coarse-grained simulations using different parameters  

In the present study, we have tested different simulation parameters for our 

optimization protocol for CG simulations. A comparison between Shift, PME and RF for 

calculations of Coulombic interactions and of different pressure coupling methods 

(Parrinello-Rahman vs Berendsen) for both PW and NPW models for the CYP-bilayer 

system was performed. For reference, we also simulated the CG self-assembly of a 

POPC bilayer without protein with the PW and NPW models to distinguish effects due 

to the protein. 

All CG simulations were performed using the MARTINI CG force field for membrane, 

protein and solvent systems under periodic boundary conditions as implemented in the 

GROMACS software package (http://www.gromacs.org)(74, 85). The simulations were 

performed using two different water models, the standard non-polarizable water 

(NPW) and the polarizable water (PW) model with GROMACS versions 5.0.4 and 4.5.5 

(Table 3.1). In GROMACS 5.0.4, the Verlet cutoff-scheme with automated buffered 

tolerance is used to generate the pair list for calculation of non-bonded forces. The 

group cutoff scheme is used in older GROMACS versions (4.5.5 and below) to generate 

the neighbor list of groups of particles (charge groups) with neighbor list distance 

file:///E:/for%20PhDThesis/PhD%20Thesis%2001-06-2016/www.cmbi.ru.nl/dssp.html
http://www.gromacs.org/
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greater than the cutoff values (see the GROMACS Manual for details 

(www.gromacs.org/Documentation/Manual). 

The simulations started with a short steepest-descent energy minimization until the 

maximum force was less than 10 kJ/mol*nm (10,000 steps). The system was 

equilibrated in the NPT ensemble at a constant temperature of 310 K, where the 

temperature of the protein, POPC and the solvent was coupled separately by a velocity 

rescale (v-rescale) thermostat with a coupling constant of 1 ps. During the simulations, 

pressure was kept constant by a Parrinello-Rahman barostat with a coupling constant 

of 12 ps and a reference pressure of 1 bar. Semiisotropic pressure coupling was used 

with a compressibility of 3.0×10-5. The time step was 20 fs.  

The long-range non-bonded interactions were calculated by using RF or PME in 

GROMACS 5.0.4 and compared with the Shift function in GROMACS 4.5.5. In the CG PW 

simulations with PME, the Fourier grid spacing was set to 0.33 nm except in test 

simulations which were run with the Fourier spacing set to 0.12 nm. A relative dielectric 

constant of 15 was used with the NPW model and of 2.5 with the PW model. The default 

value for Verlet-buffer-tolerance (0.005 kJ/mol/ps) was used and the frequency of the 

neighbor list update was set to 10 steps. With the Verlet cutoff scheme, a potential shift 

was applied to the Coulomb and LJ interactions which shifts the potential by a constant 

such that potential is zero at the cutoff of 1.2 nm. With the group cutoff scheme, 

Coulomb interactions were shifted smoothly to zero between 0 and 1.2 nm and LJ 

interactions were smoothly shifted to 0 between 0.9 to 1.2 nm.  

http://www.gromacs.org/Documentation/Manual
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Table 3.1: CG Simulations performed for five CYPs. 

CYP3A

4 

(PDB) 

Residues in regions 

Water 

Model 

NB# 

treatment 
εrel* 

No of 

Simulations 
GROMACS  T

M  

Linke

r  
Globular  

1TQN 1-28 

1-28 

1-28 

1-28 

1-28 

29-55 56-499 PW Shift 15 5 4.5.5 

1TQN 29-55 56-499 PW RF 2.5 2 5.0.4 

1TQN 29-55 56-499 PW PME 2.5 3 5.0.4 

1TQN 29-55 56-499 NPW RF 15 5 5.0.4 

1TQN 29-55 56-499 NPW PME 15 1 5.0.4 

#Non-bonded, *relative dielectric constant 

3.2.4 Back conversion from coarse-grained to all-atom model 

The CG simulations were performed to find the predominant arrangement of the 

protein with respect to the membrane. After convergence of CYP3A4 in the membrane 

obtained by CG simulations using NPW and RF, a representative frame was selected 

from each of the five CG simulations. The snapshot was required to have values for the 

geometric parameters monitored (see Analysis section below) within 1% of their mean 

value(112). The representative frame was then converted to an all-atom model. The 

procedure used for conversion of the POPC bilayer is described in Cojocaru et al.(31). 

For conversion of the globular domain, the TM helix, and flexible linker region, I used 

the back-mapping procedure using scripts backward.py and initram.sh, available at 

MARTINI website (http://cgmartini.nl) (110). The X-ray structure’s globular domain 

residues 56-499 were superimposed on the back-mapped globular domain of CYP3A4. 

Then the TM-helix and flexible linker region from the back-mapped model were added 

to the X-ray globular domain and the resulting full length all-atom model was placed 

into the all atom model of the POPC bilayer. The heme cofactor, which was omitted in 

http://cgmartini.nl/
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the CG simulations, was thus added to the AA system by superposition from the crystal 

structure of the protein. 

3.2.5 All-atom molecular dynamics simulation 

AAMD simulation was performed for about 40 ns to relax the structure of the protein 

in the membrane. In the AAMD simulations, the ff12SB force field was used for protein 

residues(135), POPC lipids were simulated using the Lipid14 force field(136), and the 

heme parameters were provided by D. Harris with the partial atomic charges derived 

from DFT calculations(137). The ionic concentration was maintained at 150 mM using 

Na+ and Cl- ions in a periodic box of TIP3P water molecules. Unlike for previous AMBER 

lipid force fields, the updated Lipid14 force field was used without applying surface 

tension in the simulations(136). The procedure for AAMD simulation was described in 

detail by Cojocaru et al.(31). Initially, the system was energy minimized with the 

Amber12 software with a decreasing force constant from 1000 to 0 kcal/mol·Å2 on 

harmonic restraints on non-hydrogen atoms of the protein and lipid residues. The 

system was then equilibrated in NAMD2.9 at constant area and pressure at a 

temperature of 310 K (NPAT) for 1.5 ns with a time step of 1 fs by reducing restraints 

by scaling the force constant from 100 to 0 kcal/mol·Å2 on non-hydrogen atoms of 

protein residues. The temperature was maintained at 310 K during simulations. Then 

the system was equilibrated for 5 ns without any constraints in the NPAT ensemble. 

Afterwards, the production simulation was run for 27.5 ns with a time step of 2 fs in an 

NPT ensemble with periodic boundary conditions. The electrostatic interactions were 

calculated using the PME method. All bonds to hydrogen atoms were constrained with 

the SHAKE algorithm(138). Temperature was controlled by Langevin dynamics with a 

damping coefficient of 0.5/ps at 310 K on non-hydrogen atoms. Pressure was controlled 

by the Nosé-Hoover Langevin piston method with an oscillation time of 1000 fs and a 

damping time of 1000 fs.  
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3.3 Data analysis 

3.3.1 Angle and distance calculations 

The orientation of the CYP globular domain above the membrane was quantified by 

calculating various angles and distances, similarly to our previously reported work on 

CYP2C9 and CYP51 (31, 112). Different vectors were defined: v1, from the center of 

mass (CoM) of the backbone particles or atoms of the first 4 residues to the CoM of the 

last 4 residues of the I-helix, v2 from the CoM of the first 4 residues of the C-helix to the 

CoM of the last 4 residues of the F-helix, v3, the vector between the CoMs of the first 

and last four residues of the TM helix, and the z-axis perpendicular to the membrane 

(Figure 3.1).  

 

Figure 3.1: Representative initial and final configurations of CYP3A4 in a POPC bilayer. 
The transmembrane helix of the CYP3A4 protein is placed in the POPC membrane bilayer. 
A randomly generated position of the globular domain (brown surface representation) 
is shown in (a), where the A-linker (red spheres) and F’-G’ helices (green spheres) are 
outside membrane. The α, β and TM tilt, γ, angles are determined by v1 (vector-1 in 
green), v2 (vector-2 in red) and v3 (vector-3 blue), respectively (labeled as Vectors in 
figure). A converged orientation of the globular domain above the membrane is shown 
in (b) where the globular domain forms interactions with the lipid bilayer through the F’-
G’ helices and the A-linker regions, which are buried in the membrane. 

The angle α was defined as the angle between v1 and the z-axis and angle β was defined 

as the angle between v2 and the z-axis.  Similarly, the TM helix tilt angle or angle γ in 

the lipid membrane was defined as the angle between v3 and the z-axis. The distances 
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of the CoM of the globular domain, linker region and F’-G’ helices to the CoM of the 

lipid bilayer were monitored during the trajectories. The heme-tilt angle, defined as the 

angle between the heme plane (defined by the four nitrogen atoms coordinating the 

iron) and the z-axis, was monitored for the AAMD simulations. 

3.3.2 Analysis of membrane properties  

The different CG simulation methods and the presence of the protein may influence the 

physical properties of the membrane, such as the area per lipid (APL) and the 

membrane thickness. Therefore, the APL and the membrane thickness were calculated 

for CG and AAMD simulations. For the CG simulations, the time average APL was 

calculated simply by multiplying the x and y box dimensions and dividing by half the 

number of lipid molecules. The effect on APL and thickness due to the presence of the 

protein was checked after conversion of the CG model to the AA model. For the AA 

model, a Voronoi tessellation in combination with Monte Carlo (VTMC) integration 

method was used to compute the APL(139). The lipid molecules were separated into 

top and bottom layers and into those near the protein (boundary lipids) and those far 

from the protein (non-boundary lipids) (Figure 3.6). I also used the GridMAT-MD 

algorithm developed by the Bevan Lab for analysis of APL and thickness for protein-

membrane systems (http://www.bevanlab.biochem.vt.edu/GridMAT-MD/) (140). MD 

frames were taken from the complete trajectory for 90 ns of the AAMD simulation at 

an interval of ~200 ps. The phosphate head group atom was used as a reference atom 

and 20 grid points were used. The APL and thickness of the top and bottom layer within 

and beyond 1.5 nm from the protein residues were calculated.  

The lateral diffusion coefficient of the lipids in the CG simulations was calculated using 

the g_msd script available in the Gromacs 5.0.4 package. The jumps over the box 

boundaries and the overall center of mass motion were removed beforehand. A line 

was fitted to the linear regime of the mean-square-displacement curve to compute the 

lateral diffusion coefficient. This was then divided by 4 to account for the faster diffusion 

at the CG level than AA level due to the smoothened free energy landscape. 

http://www.bevanlab.biochem.vt.edu/GridMAT-MD/
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3.4 Results and discussion 

3.4.1 Effect of different simulation parameters on performance  

In the current study, two different CG water models, PW and NPW, are used for the 

POPC bilayer and CYP-bilayer simulations. A comparison is also made between two 

Gromacs versions 4.5.x vs 4.6.x which differ in the non-bonded cut-off schemes used. 

For example: a default cut-off scheme based on a classical buffered Verlet list is 

implemented in Gromacs 4.6.x and a group cut-off scheme, which is based on group of 

charged particles is used in Gromacs 4.5.x and below. When using the Verlet cut-off 

scheme, straight cut-off for VDW interactions is used together with PME and RF for 

Coulombic interactions. Whereas shifted potentials are used for both VDW and 

Coulombic interactions in Gromacs version 4.5.X and older. In another set of 

simulations, a comparison between Parrinello-Rahman and Berendsen pressure 

coupling is made. As shown in Table 3.2, the NPW model with the RF has the best 

computational performance, both with and without the protein, compared to the Shift 

method. Similarly, the PW model with the RF method showed better computational 

performance than with the PME method or the Shift method. It has been suggested by 

Gromacs developers that the Verlet scheme performs better and is more accurate than 

(http://manual.gromacs.org/documentation/5.1/user-guide/cutoff-schemes.html) 

group cutoff-scheme. The speed of the calculations with the PME method was sensitive 

to the Fourier spacing assigned. In simulations with PW and PME, changing the Fourier 

spacing from 0.12 to 0.33 nm increased simulation speed (for the protein system) more 

than 10-fold and reduced the time required for convergence of the protein orientations. 

However, increasing the grid spacing without increasing the cutoff affects the 

membrane properties as shown below (Section3.4.3). The NPW model with the Shift 

method (Gromacs version 4.5) was tested for other CYPs, namely CYP2C9 (31) and 

CYP51(112), and found to give reasonable protein-membrane interactions. Here, we 

observed that the computational performance for CYP3A4-membrane MD simulations 

with the NPW model and Shift method is approximately two times slower than with the 

http://manual.gromacs.org/documentation/5.1/user-guide/cutoff-schemes.html
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NPW model with the RF, as shown in Table 3.2. Overall, the best computational 

efficiency in terms of simulation time/CPU and the shortest simulated time for obtaining 

a converged protein orientation for the CYP-bilayer system (see Figure 3.2) was 

obtained with the new GROMACS version (5.0.4) and the NPW model with the RF 

treatment. 

A recent study by MARTINI developers, described the testing of the MARTINI force field 

on different lipid systems by comparing the use of a shifted potential for both Coulomb 

and LJ interactions and new parameters using a straight cutoff for LJ and a RF for 

Coulomb interactions (86). Consistent with our study, the latter parameters were 

shown to give significantly improved computational performance without affecting 

computed system properties. However, simulation parameters were changed slightly 

by MARTINI developers. For example, time step was changed from 20 fs to 30fs, the 

neighbor list update was changed from 10 to 20 timestep, and the cutoff distance was 

decreased from 1.2 nm to 1.1 nm for both Coulomb and VDW interactions. These 

parameters were tested in a membrane only system. Therefore, we also tested 

sensitivity to the values assigned to these parameters for protein-membrane systems. 

We found that the simulations for protein-membrane system with the PW model and 

RF or PME crashed with the modified parameters. Therefore, we switched back to the 

set of parameters that we used in our previous studies (112), that is, time step 20 fs, 

nstlist (frequency to update the neighbor) after 10 steps and cutoff distance of 1.2 nm. 

From these tests, we found that calculations with the PW model and RF could also be 

run with the cutoff distance of 1.1 nm but a time step of 30 fs and/or a nstlist update 

after 20 steps resulted in simulation crashes. However, using NPW with RF and the 

modified parameters with a 20fs time-step, instead of 30fs, works fine with protein-

membrane simulations.  

3.4.2 Effect of different simulation parameters on convergence 

The convergence of the CYP orientation in the membrane was determined by 

monitoring the angle α, the angle β, and the distances of the CoM of the globular 
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domain of the protein, the linker and the F'-G' region from the CoM of the lipid-bilayer 

in the trajectories. The convergence of the CYPs orientation in the membrane was also 

influenced by changing the water model and simulation parameters. For example, in 

the case of the PW model with the RF, insertion of CYPs in the bilayer and convergence 

to the final protein orientation took more than 6 µsec in a few cases (for CYP2C9, 

CYP2C19 and CYP3A4). In CYP3A4 simulations using both NPW and PW water models 

with RF, most simulations converged quickly to a single orientation of CYP3A4 that 

remained stable throughout the rest of the simulations. In the first microsecond, the 

globular domain of CYP3A4 approached the lipid bilayer and made interactions with it. 

The protein-bilayer interactions were mainly formed by the linker region (residue 29 to 

48) and the F’-G’ helices (residue 218 to 236). The F’-G’ helices and the linker residues 

penetrated below the lipid head groups and formed stable hydrophobic interactions 

with the interior lipid tail region resulting in a stable orientation of the globular domain 

in the bilayer (Figure 3.1). The convergence of the CYP3A4 position with respect to the 

membrane during PW with PME and NPW with RF simulations is illustrated in Figure 

3.2a and Figure 3.2b. These plots show a transition of the globular domain towards the 

bilayer between about 400 and 600 ns for the PW model and in the first 200 ns for the 

NPW model, followed by a gradual reorientation that is completed within about 1 

microsecond; thereafter the position and orientation of the protein is maintained to the 

end of the 4.5 microsecond simulations. The normalized distributions of the COM 

distance and angles α and β averaged over the converged part of the 5 PW with PME 

and 5 NPW with RF simulations show similar distributions (Figure 3.2c Figure 3.2d).  
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Table 3.2: The performance of CG simulations with two water models, three non-bonded 
interaction treatments and two different pressure coupling schemes is shown. The 
performance is compared for pure POPC and for CYP3A4-POPC bilayer systems. Two 
different pressure coupling schemes, Berendsen (Ber) and Parrinello-Rahman (PR), with 
τp values of 2 ps and 12 ps, respectively, are compared. (a) PME with Fourier spacing set 
to 0.12 nm whereas all other PME runs had a Fourier spacing of 0.33 nm. 

Water 

model 

NB 

Treatmen

t 

Pressure 

control 

CG 

particles 

No: of 

CPUs 

Speed 

ns/day 

GROMACS 

Version 

POPC membrane only 

PW PME PR 3968 48 3268 5.0.4 

PW PMEa PR 3968 48 1614 5.0.4 

PW PME Ber 3968 48 1448 5.0.4 

PW RF PR 3968 48 7361 5.0.4 

NPW RF PR 2432 48 24018 5.0.4 

CYP-POPC membrane system 

PW PME PR 63817 192 1125 5.0.4 

PW PMEa PR 63817 192 76 5.0.4 

PW RF PR 63817 192 2733 5.0.4 

PW Shift PR 63817 192 2673 4.5.5 

NPW RF PR 34995 192 4358 5.0.4 

NPW PME PR 34995 192 556 5.0.4 

NPW Shift Ber 34995 192 2012 4.5.5 
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Figure 3.2: a, b. Convergence of the position of CYP3A4 with respect to the bilayer during 
a simulation with the PW model and PME (a) and with the NPW and RF (b). The distance 
from the center of mass (CoM) of the globular domain of the protein model, to the CoM 
of the lipid bilayer (green line). The angle α (black) between v1 and the z-axis, and the 
angle β (red) between v2 and the z-axis are shown. c, d. The normalized distribution of 
the distance between the CoM of the globular domain of the protein and the CoM of the 
lipid bilayer (c) and the angles α and β for snapshots at intervals of 1 ns from the 
converged part of the five simulations using NPW with RF and the five simulations with 
PW with PME (d). 

The calculated means and standard deviations of the protein CoM to membrane CoM 

distance and the angles for the simulations with the two water models and different 

non-bonded interaction treatments are shown in Table 3.3. The converged positions of 

the globular domain did not differ significantly in the different CG simulations. CG 

simulations using PW and NPW models and different non-bonded interactions show 

similar converged angles and distances. The CYP3A4 globular domain formed an α angle 

of 64-66° and a β angle of 139-144°. The N-terminal TM-helix tilt angle γ ranged from 
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29-34°. The distance of the CoM of the globular domain of the protein from the CoM of 

the bilayer was 42-44 Å. Thus, the final orientation of CYP3A4 with respect to the bilayer 

and membrane APL as rather robust to the differences in the calculations although 

these significantly affected the computational efficiency Table 3.2 

Table 3.3: The means and standard deviations for angles and distances defining the 
position of the CYP3A4 globular domain with respect to the bilayer were computed from 
averaging over snapshots obtained after convergence of the trajectories for CYP3A4.  

Model 
Water 

model 

NB 

treatment 
Epsr 

Angles (°) CoM 

distance 

(Å) 
Alpha (α) Beta (β) TM (γ) 

CG PW PME 2.5 66.2±4.6 144.3±5.0 34.4±8.3 42.1±1.4 

CG PW RF 2.5 63.8±5.2 142.2±5.9 30.79±8.7 47.6±1.8 

CG PW Shift 15 64.6±6.4 139.7±6.4 29.5±9.2 44.2±2.2 

CG NPW RF 15 64.7±6.5 139.3±6.1 30.5±7.4 42.0±1.9 

AA TIP3P PME 1 79.3±3.1 139.6±6.1 48.9±3.9 41.5±0.9 

3.4.3 Effect of different simulation parameters on the bilayer properties  

We tested the effect of water models and long-range interaction treatments on the 

POPC bilayer properties, in particular, the APL and the bilayer thickness. We evaluated 

CYP-membrane complexes and a pure POPC bilayer given in Table 3.4. For the pure 

POPC bilayer, the APL with PW and PME was a little higher at 0.63±0.02 nm2 than for 

PW with RF at 0.60±0.01 nm2. The experimentally determined APL for POPC is between 

0.64 nm2 and 0.68 nm2 and the thickness is 3.7 nm (141, 142). The APL of POPC in the 

CYP3A4-membrane complex using the NPW model was the same with the RF and PME 

treatments: 0.63±0.005 nm2. The comparison between Shift and PME methods using 

the group cutoff scheme (GROMACS 4.0.5) with PW gave no significant difference in 

APL: 0.66±0.005 nm2 vs 0.68±0.006 nm2. For the PW model with the newer GROMACS 

version and the Verlet cutoff scheme, the APL decreased slightly with PME to 

0.65±0.008 nm2 and to 0.66±0.005 nm2 with RF. In all CG simulations, the APL was found 
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in the range of the experimental APL of the POPC lipid membrane, and as reported 

earlier, there was no major change when treating long range interactions with RF or 

PME. However, when the Fourier grid spacing was increased from 0.12 to 0.33 nm in 

PW simulations with PME using the Verlet cutoff scheme, the performance speed 

increased more than 14-fold, the protein-membrane interaction and orientations were 

unaffected, but the APL increased from 0.65±0.008 nm2 to 0.74±0.008 nm2. A similarly 

large APL was obtained by using a dielectric constant of 15 with the PW model. These 

values of the APL are greater than those observed experimentally.  

Table 3.4. The area per lipid (APL) computed for CG simulations of the pure POPC and 
CYP3A4-bilayer systems with different water models and simulation parameters. a 

Fourier grid spacing of 0.12 nm. b Fourier grid spacing of 0.33 nm. C Cutoff increased 
from 1.2 to 1.4 nm. 

System 
Water 

model 

Coulombic 

interaction 

treatment 

LJ* 

interaction 

treatment 

Epsr 
Cutoff 

scheme 

Area per Lipid 

(APL) 

POPC PW PME a Cutoff 2.5 Verlet 0.63 ± 0.02 

POPC PW RF Cutoff 2.5 Verlet 0.60 ± 0.01 

POPC PW PME b Cutoff 2.5 Verlet 0.88 ± 0.04 

POPC PW PME b Cutoffc 2.5 Verlet 0.66 ± 0.02 

POPC NPW RF Cutoff 15 Verlet 0.67 ± 0.02 

CYP-POPC PW PME a Cutoff 2.5 Verlet 0.65±0.008 

CYP-POPC PW PME b Cutoff 2.5 Verlet 0.75±0.008 

CYP-POPC PW RF Cutoff 2.5 Verlet 0.66±0.005 

CYP-POPC PW Shift Shift 2.5 Group 0.66±0.006 

CYP-POPC PW PME a Shift 2.5 Group 0.68±0.006 

CYP-POPC PW Shift Shift 15 Group 0.72±0.007 

CYP-POPC NPW RF Cutoff 15 Verlet 0.63±0.005 

CYP-POPC NPW PME a Cutoff 15 Verlet 0.63±0.005 
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3.4.4 All-atom molecular dynamics simulation of CYP3A4 

An AAMD simulation of about 90 ns was performed to study protein-bilayer interactions 

at the atomic detail. The heme-tilt angle, defined as the angle between the heme plane 

and the z-axis normal to the membrane, was previously determined to define the 

orientations of various CYPs with respect to the membrane and was used here to 

monitor the CYP orientation. The orientation of the globular domain of CYP3A4 in the 

membrane changed after 60 ns and remained stable up to 90 ns (Figure 3.3). Besides 

the TM helix (1-28), the most predominant hydrophobic interactions between CYP3A4 

and the lipid tail were found for the linker region and the F’-G’ and loop between G’ and 

G helices (Figure 3.3). Compared to the CG simulations, the A’-helix (residues 32-36) 

reorients and buries into the lipid tail region whereas the A-linker region (42-48) 

remained buried in the hydrophobic tail region of the lipid bilayer which shows 

agreement with previous studies.(117, 134). Similar interactions of CYP3A4 in a DPPC 

membrane bilayer were observed by Navrátilová et al. (143). In AA simulations, the 

mean CoM distance initially increased from 42.0±1.9 Å by about 2 Å to relieve atomic 

clashes after the back conversion to the AA representation and then decreased resulting 

in an average of 41.5±0.9 in the last 30 ns of 90 ns simulations. The β angle remains 

stable during AA simulations and does not differ from CG simulations β angle while α 

angle increased after 60 ns from 64.7±6.5 (CG) to 79.3±3.1 (AA) (Table 3.3). The 

TM-helix remains highly flexible as seen from the B-factors and the TM tilt angle which 

increased from CG: 30.5±7.4° to AA: 48.9±3.9. During AA simulation I-helix shows 

bending/kink in the middle which is similar to previously observed kink in TM helix (144). 

The heme-tilt angle initially decreased from starting value of 53.74° (after CG to AA 

conversion) to 52.7±3°, which increased after 60 ns to 61.0±3.8 (computed for the last 

30 ns simulations).  
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Figure 3.3: Angles and distances calculations. The angles alpha (black), beta (red) and 
heme-tilt (cyan) angles, calculated for complete trajectory of ~90 ns (left), are shown in 
thick lines. Distances to the center of mass (CoM) of membrane to the globular domain 
and F’-G’ helices CoMs are shown in blue and green lines respectively. The orientation of 
CYP3A4 obtained from the last snapshot of the 90 ns AAMD simulation is shown in 
cartoon representation (right panel). The protein is shown in grey colored cartoon 
representation. TM helix and linker is shown by orange color, beta-strands in violet, BC- 
helices in yellow, F-G helices in red and F’-G’ helices are shown in green. Central I-helix 
is colored blue, and heme is shown by cyan licorice representation. The lipid head groups, 
phosphate atoms (PO4), are show in red spheres. CYP3A4 obtained from OPM database 
for PDB 1TQN (blue) and PDB 5TE8 (yellow) are superimposed on last snapshot of the 
AAMD simulation. Sphere representation indicates the orientation CYP3A4 with respect 
to the hydrophobic slab. 

The CYP3A4 interactions with the membrane were studied by defining residues within 

5 Å of various groups in the membrane (choline, phosphate and lipid tail). The 

computed average B-factors (mean squared atomic positional fluctuations multiplied 

by 8π3/3 Å2) in the 90 ns of this simulation were compared with the crystallographic B-

factors and which showed lower B-factors for residues interacting with the lipid 

membrane (Figure 3.4). 
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Figure 3.4: Comparison of representative B-factor values. X-ray crystal structure (1TQN) 
B-factor shown in thick green lines and B-factor values during simulations for Cα atoms 
are shown in red. The secondary structure of CYP3A4 is labelled below. The protein 
residues within 5 Å of the choline head, the phosphate group and the lipid tail regions 
are shown by lines. 

The analysis of RMSD is shown in 2D-RMSD plot with respect to each frame after 

extracting frames at 200 ps intervals (Figure 3.5). As shown in the 2D-plot, initial RMSD 

increased between 1.5-2.5 Å for first ~30 ns simulations and after 30 ns RMSD is 

decreased between 0.5 to 2.0 Å suggesting simulations leading to equilibrated system 

(stable conformation) till the end of the simulation. 
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Figure 3.5: 2D-RMSD in simulations of CYP3A4. The root mean square deviation of every 
frame (X-axis) is compared to all other conformations (Y-axis) for backbone Ca-atom as 
a function of time during a 90 ns simulation. The color code is shown in the right color 
bar. 

3.4.5 All-atom molecular dynamics simulation area per lipid 

The APL values shown in Table 3.5 are average values for all lipid molecules in the top 

and bottom layers and do not account for the presence of the N-terminal TM helix and 

the globular domain of the protein. Therefore, APL and membrane thickness were 

checked after conversion of the representative frame from the CG NPW and RF 

simulation to an AA model and after running AAMD simulations. The APL was computed 

with the VTMC algorithm which calculates APL separately for the upper and the lower 

layer and for the boundary lipids and the non-boundary lipids (Figure 3.6). The APL was 
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also calculated for a AAMD simulations trajectory of ~90 ns by extracting coordinates 

frames after every 200ps.  

The comparison is shown between initial and final frames in Table 3.5. The APL 

calculated for initial frame taken after 200 ps of AAMD trajectory for the boundary lipids 

was 0.47 nm2 for the upper layer and 0.53 nm2 for the lower layer, indicating distortion 

of the lipid immediately surrounding the protein. The non-boundary lipids had APL 

values in the upper layer of 0.64 nm2 and the lower layer of 0.66 nm2 consistent with 

experimental values for lipid alone. After running ~90 ns AAMD simulations the APL 

changed slightly from 0.64 nm2 to 0.65 nm2 for non-boundary lipids in the upper layer 

and from 0.66 nm2 to 0.68 nm2 in the lower layer. The average APL for all lipids increased 

from 0.636 nm2 to 0.646 nm2 which shows close agreement with experimental values 

e.g. experimental APL is between 0.64 nm2 to 0.68 nm2. 

Table 3.5: APL computed and shown for first and last frames from AAMD trajectory 
analysis. The green columns show the APL for all-lipids, boundary and non-boundary 
lipids in the upper layer, the yellow columns show APL for all lipids, boundary and non-
boundary in the bottom layer and blue columns show averages of APL for all lipids, all 
boundary lipid all non-boundary lipids.  

CYP3A4 

Time 

(ns) 

 

Box 

Dimension 

(Å) 

Number of Lipids 
Average APL (Å) 

(Expt 64.3,68.3*, Sim 65.6#) 

LIPID14 

 
X-

Size 

Y-

Size 

Boundar

y 

Non-

Boundar

y 

Boundar

y 

Non-

Boundar

y 

All 

Initia

l 

142.

4 

138.

4 
58 536 48.3 65.3 63.6 

90 
134.

7 

149.

9 
66 528 47.8 66.8 64.7 

*(142, 145),(136) 
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Figure 3.6: Area per lipid calculations. The assignment of lipid molecules as boundary 
(cyan) and non-boundary (white) lipids are represented by polygons. The violet regions 
show protein atoms. The + marks shows center of mass of each lipid molecule. The area 
per lipid is computed by Vornoi tessellation for non-boundary and Monte Carlo 
integration for boundary lipids. 

3.4.6 Comparison of results with experimental and simulation data 

We compared the results of our CG and AA simulations for the CYP3A4-bilayer 

orientation and interactions with experimental data and previous simulation results. 

The orientations of various CYPs with respect to the membrane have been 

experimentally determined by measurement of the heme-tilt angle and we used this 

angle for the comparison (Table 3.6). In all cases, the same CYP3A4 apo structure (PDB 

1TQN), which is a closed structure, has been selected. All measurements and 

simulations were performed for a POPC bilayer except those of Navrátilová et al (144) .  
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The heme-tilt angles observed at the end of our CG trajectory and in the subsequent 

AAMD simulation agree reasonably with the experimental data. However, there are 

three different X-ray structures used in the OPM database with PDB ids 1TQN, 3NXU 

and 5TE8. The later X-ray structure is published recently complexed with   

Table 3.6. Comparison of the heme-tilt angle from experiments and simulation results 
for CYP3A4. 

Source Reference Heme tilt angle (°) 

CYP3A4 in nanodiscs 

MD simulation 

Baylon et al (117) 59.7±4 

Baylon et al (117) 72.6±5 

MD simulation Navrátilová et al. (143) 
52 (pure DPPC) 

68 (DPPC with 50 wt% chol) 

MD simulation Lonsdale et al.(134) 72±14 

OPM (1TQN) (121) 67±11 

OPM (3NXU) (121) 52±12 

OPM (5TE8) (121) 62 ± 5* 

CGMD simulation this work 53.7 

AAMD simulation this work 61.0±3.8 

* New crystal structure of CYP3A4 bound with midazolam released on 7th Dec 2016 and 
paper published on Jan 2017.   

Recently, Sligar and colleagues measured the heme-tilt angle for CYP3A4 in a POPC 

nanodisc as 59.7±4°, which is in close agreement with the heme-tilt angle of 53.7° and 

61.0±3.8° for the representative structure from our CG simulations and the last 30 ns 

of the AAMD simulation, respectively. Navrátilová et al.(143) found that the 

orientations and insertion depth in the membrane of CYP3A4 were influenced by the 

addition of cholesterol to a DPPC bilayer with the heme-tilt angle changing from 52° for 

pure DPPC to 68° with 50 wt% cholesterol. Two different orientations of CYP3A4 are 

reported in the OPM database, where CYP3A4 (PDB id: 3NXU) has different orientation 

in the hydrophobic slab membrane with heme-tilt angle 52±12° than the structure with 

PDB id 1TQN which has higher heme-tilt angle (67±11°). Former is structure of CYP3A4 
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is complexed with ritonavir inhibitor, and may influence on the dynamics of 

protein(146). Recently, new structure of 3A4 bound with midazolam (PDB id 5TE8)(147) 

has been resolved and  orientation suggested by OPM database for 3A4 PDB id 5TE8 

(62±5°) and 1TQN structure (67±11°) is similar to our simulations results (61.0±3.8). 

Superimposition of our structure with coordinates obtained from the OPM database 

also showed similar orientation and position with respect to the membrane to the 1TQN 

and 5TE8 structures (Figure 3.3), which is in agreement with the heme-tilt angles 

obtained after AAMD simulations.  

3.5 Conclusion 

Our results show that a combination of simulations with the MARTINI CG model 

followed by AAMD simulations can be successfully used to immerse CYP proteins in a 

POPC bilayer. We expect this approach to be applicable to other membrane proteins 

with monotopic domains and to bilayers with different phospholipid content. The CG 

simulations are used to efficiently sample the configurational space of the system, 

reproduction of the dynamics of the system is not required in these CG simulations and 

was not evaluated here. Our tests of different water models, long-range interaction 

treatments and implementations for the CG simulations, showed that the computation 

times varied widely for different model and parameter choices. On the other hand, the 

final position of the immersed CYP protein with respect to the membrane and the 

membrane structural properties were similar for most model and parameter choices 

and these were consistent with available experimental data. We conclude that for a 

computationally efficient multiscale procedure to immerse a protein in a membrane, 

the CG simulations should be carried out with the MARTINI force field version 2.2 with 

the standard NPW water model and a RF treatment of long-range Coulombic 

interactions. 
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 UNDERSTANDING THE MEMBRANE PROTEIN 

INTERACTIONS OF TWO ISOFORMS OF THE CYP2C SUBFAMILY: 

CYP2C9 AND CYP2C19  

4.1 Introduction  

Among different CYP isozymes, human subfamily CYP2C contributes significantly in the 

hepatic clearance of several drugs. Although members of the subfamily exhibit >82% 

sequence identity, they have unique substrate specificity. The subfamily of CYP2C 

consists of 4 isoforms of CYPs i.e., CYP2C9, CYP2C19, CYP2C8, and CYP2C18. CYP2C9 is 

the most expressed CYP after CYP3A4, and is responsible for the metabolism of >12.8% 

of drugs that are mainly weak acids like non-steroidal drugs (NSAID). CYP2C19’s 

contribution to drug metabolism is 6.8% with a 10-fold lower expression level than 

CYP2C9 (16). The expression of CYP2C19 is increased in response to the treatment of 

Helicobacter pylori (H. pylori) with proton-pump inhibitors such as omeprazole, 

lansoprazole, and pantoprazole, thereby increasing drug clearance. The polymorphism 

of CYP2C19 dramatically influences the treatment of H.pylori (148). 

 Although CYP2C19 and CYP2C9 have high sequence conservation with 94% sequence 

identity (see sequence alignment (Figure 4.11), they have distinct substrate specificities. 

The crystal structure of CYP2C19 resolved at 2.8 Å (PDB 4GQS)(23) differs in two 

residues (V208 and I362) in the binding pockets from CYP2C9 structure (L208 and L362), 

complexed with flurbiprofen (PDB 1R9O)(149). Other differences are seen on the outer 

surface of the protein (23). The CYP2C19 crystal structure has a 3D fold closer to the 

CYP2C8 structure (PDB 2NNI) than the structure of CYP2C9 and CYP2C9m7 (PDBs 1R9O, 

10G2). The latter structure was resolved after making 7 substitutions (K206E, I215V, 

C216Y, S220P, P221A, I222L and I223L) in the F-G loop region. The CYP2C19 structure 

shows more than 3.0 Å Ca deviation from CYP2C9 (1R9O) and CYP2C9m7 (1OG2) on the 

outer surface of the protein responsible for substrate access and selectivity. The main 

differences are observed in helices F, F’-G’, G and their turns, the turn in the beta-
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strand1 and B-C loop regions. CYP2C9m7 (1OG2) structure differs from CYP2C9 (1R9O) 

structure in BC loop and F’-G’ helices conformations and position of Arg108 which is 

pointing out of the binding cavity in the 1OG2 (19) and inside in the 1R9O. 1R9O has a 

highly flexible BC loop conformation and missing F’-G’ loop/helices information. It has 

been suggested that the sequence difference and conformational changes outside the 

binding cavity are responsible for the differential selection of drugs to enter the binding 

pocket (23). These differences are mainly found in the substrate recognition regions 

identified by Zawaira et al (29). A description of SRS regions is given in chapter 1.  

Since most residues that differ between CYP2C9 and CYP2C19 are found in these SRS 

regions, I proposed that the sequence differences in the SRS regions and, thereby, the 

conformational differences observed in the two CYPs can contribute to the different 

membrane-protein interactions and orientations which lead to differences in the 

substrate access tunnels to the binding cavity and the product release tunnels. To 

investigate the effect of sequence differences between CYP2C9 and CYP2C19 on the 

membrane-protein interactions and orientations, I used our optimized multiscale 

modeling and simulation protocol (chapter 3) and compared our results with previously 

reported experimental and computational data. 

4.2 Material and method 

4.2.1 Preparation of full length CYP2C9 and CYP2C19  

The crystal structure of CYP2C9 (PDB 1R9O)(149), resolved at 2.0 Å resolution in 

complex with flurbiprofen (FLP), was taken from the Protein Data Bank 

http://www.rcsb.org. The structure was solved after removal of the N-terminal residues 

1-25. The 1R9O structure has missing residues in the linker region (residues 38-42) and 

in the F'-G' region (residues 214-220). Recently, a crystal structure of CYP2C19 (PDB id 

4GQS) was resolved at 2.87 Å, after truncating residues 1-28 from the N-terminus, in 

complex with the inhibitor (2-methyl-1-benzofuran-3-yl)-(4-hydroxy-3,5-

dimethylphenyl)methanone (Protein Data Bank chemical component 0XV)(23). The 

http://www.rcsb.org/
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sequence alignment of CYP2C9 with CYP2C19 shows 92% sequence identity (Figure 

4.11). The missing residues in the globular domain of CYP2C9 are identical to those in 

CYP2C19. Therefore, CYP2C19 was used as a template for modeling the missing linker 

residues and F’-G’ residues in CYP2C9.  The TM-helix (residues 3-21) and missing linker 

(residues 22-25) were modeled similarly as in Cojocaru et al (31). The TM-helix for 

CYP2C19 were predicted from residues 4-20 and 3-22 by online server Psipred using 

membrane protein structure and topology (MEMSAT3) software and transmembrane 

protein topology prediction using support vector machines (SVM-MEMSAT) software 

(150). PredictProtein server (https://www.predictprotein.org/) was also used which 

suggested N-terminal alpha-helical conformation starting from residues 2-23. I modeled 

two different TM helix lengths of CYP2C19: one with residues 3-21 (same as CYP2C9 TM 

helix length) and second with residues 3-24. Final models consisted of X-ray structure 

of globular domain and modeled missing regions (mentioned as systems (S)). Various 

starting orientations of globular domains above the membrane were generated by 

changing the dihedral angles in the linker regions before converting to CG systems.  

4.2.2 Preparation of additional models of CYP2C9: 

Additional CG systems of CYP2C9 were prepared using modelled structures. Since the 

x-ray structure is missing the F’-G’ helices (loop) in CYP2C9 (PDB 1R9O), different 

modeling approaches were used to prepare a full length CYP2C9 structure. The CG 

systems prepared from fully modeled structures of CYP2C9 are named by letter M for 

models, which differ from the CG systems (S), for which X-ray structures were used after 

modelling missing regions (Table 4.1). Different modeling procedures for CYP2C9 were 

used, brief descriptions of the resultant models are given below: 

CYP2C9 model 1: CYP2C9 model was generated using CYP2C9 X-ray structure (PDB 

1R9O) as template. For modeling missing residues in the linker region (residues 38-42) 

and in the F'-G' region (residues 214-220), CYP2C19 was used as template only for these 

missing regions. The CG system consisting of CYP2C9 model 1 is referred as M1. 

https://www.predictprotein.org/
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 CYP2C9 model 2: Another model of CYP2C9 was generated using complete 1R9O and 

4GQS X-ray structures as templates, which generated intermediate side chain 

conformations between CYP2C9 and CYP2C19 structures. The CG system using model2 

is referred as M2. 

CYP2C9 model 3: Modeling of CYP2C9 was also performed by using only single template 

of CYP2C19 X-ray structure (PDB 4GQS). This model of CYP2C9 resembles CYP2C19 in 

side chain conformations and CG system is called M3. 

CYP2C9 model 4: Modelled structure of CYP2C9 (residues 26-490) with F’-G’ helices  was 

taken from  previous studies by Cojocaru et al (31), detail of modeling procedure of CG 

system is given in the paper. The missing TM helix was modeled as discussed earlier. 

This modeled is referred as M4. 

4.2.3 Mutants of CYP2C9 and CYP2C19 

The residues different at the membrane-protein interface were substituted to create 

chimera structures of CYP2C9 and CYP2C19. The substituted residues between CYP2C9 

and 2C19 were in the linker (G46D), beta-sheet1 (K72E and P73R), B-C loop (I99H) and 

F’-G’ helices (S220P and P221T). The five different orientations of wild-type all-atom 

models (S1) were selected to make substitution mutations, thereby keeping the initial 

orientations of the globular domain of the mutant and wild-type structures the same.  

4.2.4 Preparation of coarse-grained systems  

A similar procedure was used to generate coarse-grained protein-membrane systems 

for CYP2C9 and CYP2C19 as given in chapter 3. The effect of different linker flexibility 

on the final orientations of CYP2C9 and CYP2C19 was checked by defining two different 

linker flexible regions, residues 22-36 (CG system 1 (S1)) and residues 26-38 (CG system 

2 (S2)). The linker was kept flexible by removing the restraints from specified residues, 

applied by elastic network (Chapter 3). CG system consisting of globular domain only 

(S3), residues 47-490, was prepared for CYP2C9 and CYP2C19 to allow an unbiased 
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conformational search of the protein orientation and to evaluate convergence of the 

orientations in the membrane. CG systems (S1-S3) were solvated using the MARTINI 

standard water model (NPW). However, the MARTINI polarizable water (PW) model was 

also tested (S4-S5) (Table 4.1).  

After preparation of CG models, different simulation parameters were tested as given 

in the following section: 

4.2.5 Coarse-grained simulations with different parameters: 

In the current study, the MARTINI CG force-field was used to study the orientation of 

two closely related isoforms, CYP2C9 and CYP2C19. The same CG simulation protocol 

was used as mentioned in chapter 3. Here, I extended our optimized protocol to CYP2C9 

and CYP2C19 to further validate it and tested different parameters to observe the effect 

of these parameters on the final orientations of the two isoforms of CYPs in the 

membrane. I used both NPW and PW water models and different treatments of non-

bonded interactions; use of Shift, PME or RF (reaction field) for the calculation of 

Coulombic interactions and Shift or cut-off methods for calculation of VDW interactions. 

With NPW model, long range electrostatic interactions were calculated using RF and 

VDW interactions by cut-off method (S1-S3). In the case of the PW model, electrostatic 

and VDW interactions were calculated by Shift method (Gromacs 4.5.5) (S4), PME and 

cut-off (S5) or RF and cut-off (S6) methods using Gromacs 5.0.4. All CG simulations for 

CYP2C9 modelled system (M1-M4) and mutant CYP2C9 and CYP2C19 were performed 

using NPW water model and RF and cut-off for calculating electrostatic and VDW 

interactions, respectively. The simulation procedure was kept the same as mentioned 

in chapter 3.  
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Table 4.1: Coarse-grained simulation protocols used for CYP2C9 and CYP2C19.  

CYP  

System 

 Residues in regions 
No. of 

Simulations 

Water 

Model 

Non-

bonded 

treatment 

GROMACS 

version PDB ID 
TM 

Helix 
Linker 

Flexible 

linker* 

Globular 

domain 

 CYP2C9 globular domain from X-ray structure  

S1 1R9O 3-21 22-49 22-36 50-490 10 NPW RF 5.0.4 

S2 1R9O 3-21 22-49 26-38 50-490 5 NPW RF 5.0.4 

S3 1R9O Globular domain only 1 NPW RF 5.0.4 

S4 1R9O 3-21 22-49 22-36 50-490 10 PW Shift 4.5.5 

S5 1R9O 3-21 22-49 22-36 50-490 5 PW PME 5.0.4 

S6 1R9O 3-21 22-49 22-36 50-490 5 PW RF 5.0.4 

 CYP2C9 modeled globular domain  

M1 Model1 3-21 22-49 22-36 50-490 6 NPW RF 5.0.4 

M2 Model2 3-21 22-49 22-36 50-490 6 NPW RF 5.0.4 

M3 Model3 3-21 22-49 22-36 50-490 5 NPW RF 5.0.4 

M4 Model4 3-21 22-49 22-36 50-490 10 NPW RF 5.0.4 

mtCYP2C9 Mutant 3-21 22-49 22-36 50-490 5 NPW RF 5.0.4 
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 CYP2C19  

S1 4GQS 3-24 25-49 26-38 50-490 10 NPW RF 5.0.4 

S2 4GQS 3-21 22-49 22-36 50-490 5 NPW RF 5.0.4 

S3 4GQS Globular domain only 1 NPW RF 5.0.4 

S4 4GQS 3-24 25-49 26-38 50-490 5 PW Shift 4.5.5 

S5 4GQS 3-24 25-49 26-38 50-490 5 PW RF 5.0.4 

  CYP2C19 modeled structure   

mtCYP2C19 Mutant 3-21 22-49 22-36 50-490 6 NPW RF 5.0.4 

*Linker region which was set flexible by removing elastic constraints from residues mentioned. #Mutant structures of CYP2C9 
and CYP2C19 prepared after substitution of linker, beta-strand1, BC and F’-G’ loop’s residues.   
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4.2.6 Convergence of coarse-grained simulation and back conversion  

The simulations were considered converged when no changes were observed in the 

orientations of CYPs above the membrane. Experimentally, the orientation of the CYPs 

above the membrane is determined by measuring the heme-tilt angle. Due to absence 

of heme in CG models of CYPs, the orientations were quantified by calculating the 

angles and distances mentioned in our previous work (31, 111, 112). Angles alpha and 

beta define the orientation of the globular domain above the lipid-membrane. The 

interactions of TM-helix in the membrane were quantified by measuring the TM-tilt 

angle. Various distance criteria were set as indicators of convergence of the positions 

of the CYPs in the membrane and insertion depth, for example, the distance of the 

center of mass (CoM) of the globular domain (residue 50-490), the distance of the linker 

(residues 22-49), the distance of the F’-G’ helices (residues 210-220) from the CoM of 

the POPC membrane.  

Based on the convergence criterion, the representative frames were selected for back-

conversion to an all-atom model. The representative frame was chosen to have the 

angle and distance values within 1% of their mean value.(112). The back-conversion of 

POPC bilayer was performed as described in Cojocaru et al.(31), whereas the  protein 

back-conversion was done using scripts backward.py and initram.sh, available at the 

MARTINI website (http://cgmartini.nl) (110). In the absence of the heme cofactor in the 

CG model, conformational changes in the side chains of heme-binding pocket residues 

were observed. Therefore, globular domain (residues 50-490) from crystal structure 

was superimposed on the back-mapped structure and used in subsequent AA 

simulations. The AA model of the globular domain contained the heme-cofactor. If 

there was a co-crystallized ligand in the crystal structure, it was also incorporated in the 

model. The TM-helix and flexible linker region obtained from the back-conversion 

procedure were then connected to the globular domain, resulting in a full length all-

atom model. Finally, the all-atom model of CYP was placed into the all atom model of 

the POPC bilayer to obtain a complete CYP-membrane complex. 

http://cgmartini.nl/
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4.2.7 All-atom molecular dynamics simulations of CYP2C9 AND CYP2C19 

AAMD simulations were performed with two different starting orientations of CYPs in 

the membrane for each CYP. Different orientations were obtained from two different 

CG simulation systems S1 and S2. AA force-fields ff12SB and LIPID14 were used for 

protein residues (135) and for POPC lipids, respectively,(136). Additionally, the GAFF 

lipid force-field and ff99SB for protein were also used for test purposes. The LIPID14 

simulation results were compared with our previous simulations of CYP2C9 in a 

membrane (31), and the current GAFF lipid simulations. The GAFF lipid force-field 

requires surface tension to maintain the structural properties of the membrane bilayer, 

while LIPID14 parameters are optimized for use without application of surface tension. 

The heme parameters were provided by D. Harris with the partial atomic charges 

derived from DFT calculations.(137) The ionic concentration was maintained at 150 mM 

using Na+ and Cl- ions in a periodic box of TIP3P water molecules. Same procedure for 

AAMD simulation was used as described in detail by Cojocaru et al.(31). The detailed 

procedures of minimization, equilibration and production simulations are given in 

Chapter 3. However, with LIPID14 force-field, I have tested different pressure coupling 

mechanisms: Anisotropic (cell fluctuates independently in x, y and z cell dimensions), 

Constant Ratio (constant shape in x and y dimension) and Constant Area (keeping x and 

y dimension constant) http://www.ks.uiuc.edu/Research/namd/2.9/ug/node37.html. 

The suggested pressure coupling method by LIPID14 force-field developers is 

anisotropic method, which has been tested with pure membrane system without 

protein. Use of anisotropic pressure coupling in protein-membrane system on longer 

simulations (> 100 ns) resulted in unusual x and y box dimensions. Therefore, above 

mentioned pressure coupling options given in NAMD software package were tested. 

With the GAFF lipid, surface tension coupling was used. AAMD simulations performed 

for CYP2C9 and 2C19 are given in following table 4.2:

http://www.ks.uiuc.edu/Research/namd/2.9/ug/node37.html
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Table 4.2: AAMD Simulations performed for CYP2C9 and CYP2C19. Different starting structures, parameters and force-fields were 
used. 

Simulation AA System CG System Force-field Ensemble 
Pressure 

coupling 
Time (ns) 

 CYP2C9  

SIM1 Apo S1 LIPID14 NPT Anisotropic 193 

SIM2 Apo S1 LIPID14 NPT Constant Ratio 97 

 SIM3 Apo S1 LIPID14 NPAT Constant Area 120 

SIM4 Ligand* S1 LIPID14 NPT Anisotropic 156 

 SIM5 Apo S1 GAFF NPγT Surface-tension 80 

SIM6 Apo S2 LIPID14 NPT Anisotropic 50 

SIM7 Apo S2 LIPID14 NPT Constant Area 170 

SIM8 Apo S2 LIPID14 NPT Constant Ratio 105 

 CYP2C19  

SIM1 Apo S1 LIPID14 NPT Anisotropic 39 

SIM2 Apo S1 LIPID14 NPAT ConstantArea 120 

SIM3 Ligand* S1 LIPID14 NPT Ansiotropic 46 

SIM4 Apo S1 GAFF NPgT Surface Tension 30 

SIM5 Apo S2 LIPID14 NPT Anisotropic 95 

SIM6 Apo S2 LIPID14 NPT Constant Ratio 56 

*Ligand: Flurbiprofen bound in X-ray structure of in CYP2C9 and protein data bank chemical component 0XV inhibitor in 

CYP2C19 
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4.3 Coarse-grained simulation results 

4.3.1 Distinct orientations adopted by CYP2C9 and CYP2C19: 

The CG simulation trajectories were analyzed for two isoforms (CYP2C9 and CYP2C19) 

to assess convergence of their orientation and interactions with the membrane.  

Different starting structures, flexible linker regions (residues 22-36 (S1) and residues 26-

38 (S2)), and simulation methods were tested to obtain reliable CYP-membrane 

interactions and CYP orientations.  

In this study, both NPW and PW solvent models and different treatments of non-

bonded interactions were used. The final orientations of all sets of simulations (CG 

systems) are given in Table 4.3. The two isoforms consistently show different 

orientations from each other in the membrane regardless of simulation parameters 

used. For the full protein, the CYP2C9 angles range from 87 to 91° and 109 to 118° for 

alpha and beta, respectively. The CYP2C19 alpha and beta angles range from 89 to 100° 

and 123 to 144°, respectively. The distance of the center of mass (CoM) of the protein 

(globular domain residues 50-490) from the membrane CoM is 43 Å in CYP2C9 and 45-

50 Å in CYP2C19. In CG simulations of CYP2C9 with PW (S5 and S6) using PME or RF, 

none of the orientations converged to a stable orientation. The globular domain did not 

approach the membrane surface even after running 6 µs long simulations. PW with PME 

resulted in too slow simulations (see Chapter 3 Table 3.2), giving only a few hundred ns 

per day, and did not show convergence. Therefore, PME was not used for CYP2C19 

simulations. On the other hand, 3 out of 5 CG simulations of CYP2C19 with PW and RF 

(S5) converged to a final orientation. The angles formed by S5 simulations are the same 

as observed in S1-S2 simulations. However, the mean CoM distance in S5 simulation is 

higher (50±2 Å) than the S1-S2 simulations (48±2 Å). The different orientations of the 

two isoforms were classified into three different classes, A, A/B and B. The CYP with 

beta angle below 125° were categorized in class A, from 125° to 130° into class A/B, and 

above 130° into class B. All CYP2C9 CG systems (S1-S4) converged to class A and the 
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CYP2C19 CG systems S1-S3 and S5 converged to class B. CYP2C19 S4 simulations 

convergened into class A/B (Table 4.3).   

The angles and distance values are plotted in Figure 4.1, where left panel shows 

comparison between CYP2C9 and CYP2C19 orientations observed in CG systems (S1-

S5). The plot in the right panel (Figure 4.1) shows CG system S1 which comprises of 10 

CG simulations with different initial orientations but the same simulations protocol i-e., 

NPW and RF. In CYP2C9 S1 simulations three out of 10 simulations gave beta angle 

values between 115-118° (class A), in 8 simulations beta values are below 115° (class 

A). Similarly, in CYP2C19 (S1), beta values in 2 simulations out of 10 lie in the average 

120° (class A) and 130° (class A/B), the others are above 140° (B).  

Figure 4.1: CG simulation results. Comparison between CYP2C9 (green) and CYP2C19 
(red). CG simulation results of different systems are shown in the plot on left panel. 
Results for 10 trajectories from CG simulation systems 1 (S1) of CYP2C9 (green) and 
CYP2C19 (red) are shown in the right panel. Angles (°) (alpha and beta) and CoM 
distance (Å) are given by squares, circles and triangles, respectively.
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Table 4.3: CG simulation results for CYP2C9 and CYP2C19. Different simulation parameters are shown. Mean and standard 
deviation are shown for angles (alpha and beta) and distance of the center of mass of proteins globular domain (CoM) from the 
lipid center. 

CG 

Systems 

CG Simulation Parameters Angles (°) Distance (Å)  

TM-Helix 
Flexible 

Linker 

Water 

Model 

NB# 

Interactions 

No of 

Simulations 
Alpha Beta 

Protein 

CoM 
Class 

 CYP2C9  

 S1 3-21 22-36 NPW RF 10 89±7 111.7±7 43±2 A 

S2 3-21 26-38 NPW RF 5 91±8 118±14 43±2 A 

S3 Glob-domaina NPW RF 1 86±6 104±6 46±2 A 

S4 3-21 22-36 PW Shiftc 10 87±10 109±8 43±2 A 

S5 3-21 22-36 PW PME 5 --- --- --- -- 

S6 3-21 22-36 PW RF 5 --- --- --- -- 

mtCYP2C9b 3-21 22-36 NPW RF 5 91±10 121±11 43±2 A 

 CYP2C19  

S1 3-24 26-38 NPW RF 10 100±7 137±10 47±2 B 

S2 3-21 22-36 NPW RF 9 97±8 134±13 48±2 B 

S3 Glob-domaina NPW RF 1 106±5 133±6 46±2 B 

S4 3-24 26-38 PW Shiftc 5 100±9 123±10 45±3 A/B 

S5 3-21 26-38 PW RF   3* 89±8 144±8 50±3 B 

mtCYP2C19b 3-24 26-38 NPW RF 5 95±8 128±13 47±2 B 

a globular domain only system (CYP2C9 residues 47-490 and CYP2C19 residues 47-490), bMutant CYPs, cthe value of epsilon_r= 
15 used in PW model with Shift method, #Non-bonded interactions, *values for 3 out of 5 simulations showed convergence
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4.3.2 Full length vs globular domain simulation results  

In order to ensure initial orientations do not bias the results, two separate simulations 

of CYP2C9 and CYP2C19 were performed using X-ray crystal structures which consist of 

the only globular domain (S3). The globular-domain-only-CYPs could explore various 

configurations before reaching a stable orientation. In both isoforms, the final 

orientation of the CYPs were stabilized by insertion of the F’-G’ helices in the bilayer 

(Figure 4.2). Snapshots from CG simulations (S3) are shown at different time intervals. 

The F’-G’ helices region is one of the hydrophobic regions in CYPs which keep globular 

domain anchored in the membrane even after truncating the TM-helix. In CYP2C9 

globular domain simulations, the orientation converged in 3.5 microseconds with sharp 

decrease in the CoM distance of F’-G’ helices, shown by the arrow in Figure 4.3 B. 

CYP2C19 (S3) converged quickly in 200 ns and remained stable throughout simulations 

(Figure 4.3 D). After the F’-G’ helices in both CYPs developed contacts with the 

membrane, there was no further change observed in the orientation of the CYPs. The 

angles formed by the full length CYP2C9 CG simulations (S1) are same as CYP2C9 

globular domain CG system (S3) (Table 4.3). The full length CYP2C19 (S1 and S2) and 

CYP2C19 globular domain (S3) systems also converged to similar orientations. The 

difference in the orientations of two CYPs in membrane is maintained in both full length 

(S1) and globular domain simulations (S3). However, in the globular domain simulations 

(S3), the CoM distance does not vary (46±2 Å). Overall, the CYP2C9 CG simulations 

(Table 4.3, Figure 4.1 and Figure 4.2) show difference in the final orientations from 

CYP2C19 despite using the same simulations parameters, water models and protein 

components (Globular or full length).
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Figure 4.2: Snapshots from CG simulations of globular domains (S3) of CYP2C9 and CYP2C19. The globular domain is shown 
as silver surface representation, where F’-G’ region is shown in VDW spheres colored in green, I-Helix is shown in blue cylinder 
with arrow at the end (residue 286-316 in full protein). Different orientations of globular domain are shown at different time 
steps. The POPC membrane is shown in cyan color and phosphate atoms (membrane head group) by red spheres.
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Figure 4.3: Angles and distance graphs of CYP2C9 and CYP2C19. The angles (°) and 
distance (Å) values vs time (μs) are shown for selected trajectories from CG systems (S1 
and S3). A) Full length CYP2C9 CG system (S1) B) globular domain of CYP2C9 (S3), C) full 
length CYP2C19 CG system (S1), D) globular domain of CYP2C19 (S3). The angles are 
colored as: alpha (black), beta (red), and TM (cyan). The distances; CoM of the globular 
domain (blue) and the CoM of the F’-G’ helices shown in green color. The thick black 
arrows point to the decreased CoM distance of F’-G’ helices leading to stable 
orientations.  

4.3.3 Orientations of CYP2C9 modeled structures: 

Furthermore, I tested different models of CYP2C9 (M1-M4) simulated using NPW and 

RF method. The full-length models of CYP2C9 differ slightly in the side chain 

conformations in the globular domain, due to different modeling approach (templates) 

used (see method section). CYP2C9 is more extensively studied here due to the missing 

F’-G’ helices in its crystal structure, and therefore, when different templates are used 

(see method section) different side chain conformations are expected in different 

models. Important differences are observed in the beta-strand1, BC and F’-G’ helices 

conformations, which are critical for developing interactions between the CYPs and the 
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membrane, which determine the final orientations of the CYPs in the membrane. In 

Table 4.4, I compare the results of the CG simulations using different models of CYP2C9. 

Table 4.4: CG simulation results of CYP2C9 models to show dependence of final 
orientation in the membrane on the initial conformation of protein. Angles, alpha and 
beta, and distances (mean and standard deviation) values are compared between 
different models. 

CYP2C9 

Models 

Angles (°) Distance (Å) No of 

simul

ations 

Class 
Alpha Beta Linker F’-G’ Globular  

M1 94±6 119±8 20±2 25±2 46±2 6 A 

M2 92±8 120±12 19±2 25±2 46±2 6 A 

M3 95±6 138±6 22±2 24±2 48±2 6 B 

M4 85±9 106±9 25±2 26±3 47±2 5 A 

mtCYP2C9 98±7 130±10 27±4 29±4 44±2 5 B 

mtCYP2C19 95±8 127±13 20±2 25±3 46±2 5 A/B 

In all CG simulations (M1-M4), CoM distance of the globular domain to the CoM 

distance of the lipid bilayer was increased from 43±2 to 47±2 Å. The new CoM distance 

value for CYP2C9 is the same as observed for CYP2C19. The angles (alpha and beta) 

increased in CG simulations using modeled structures compared to the x-ray structure 

of CYP2C9. In M3 CG simulations, using the 2C19 crystal structure as the template, 50% 

of the simulations (3 out of 6 trajectories) show higher angles (class B), resembling the 

orientation of CYP2C19 in the membrane. The increased angle and distance values can 

be attributed to the initial conformations of the globular domain, based on the selection 

of the template. From CG simulations of CYP2C9 models (M1-M4), it was found that not 

only primary sequence but also conformational differences in the linker, BC loop and F’-

G’ helices regions contribute to the final orientation of CYPs in the membrane. 
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Figure 4.4: Angles (°) and distance (Å) values vs time (μs) for CG simulations of CYP2C9 
M1 (left) and M3 (right). Color scheme same as inFigure 4.3. 
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Table 4.5: Angles and distance values obtained from CYP2C9 M3 CG simulations. The 
results are shown for six orientations after excluding the first 5 microseconds of 
simulation. * Mean and standard deviation for M1 and ori3 was calculated after 12 
microseconds. For all other calculations first 5 microseconds were considered as 
equilibration time and was skipped.  

CYP2C9 

Orientations 

Angles (°) Distances (Å) 
Class 

Alpha (α) Beta (β) Linker F’-G’ Globular 

 CYP2C9:M1  

Ori1 88±6 110±6 20±2 25±2 46±2 A 

Ori2* 90±7 102±12 19±2 24±2 46±2 A 

Ori3 101±6 123±6 21±2 26±2 47±2 A 

Ori4 99±7 123±7 20±2 25±2 46±2 A 

Ori5 94±6 120±6 21±2 25±2 47±2 A 

Ori6 94±6 104±6 19±2 26±2 45±2 A 

 CYP2C9:M3  

Ori1 101±6 126±5 20±2 25±2 47±2 A/B 

Ori2 92±7 116±6 18±2 24±2 46±2 A 

Ori3 94±9 120±8 19±2 25±2 46±2 A 

Ori4 92±7 139±7 22±2 24±2 47±2 B 

Ori5 95±6 139±7 21±2 24±2 47±2 B 

Ori6 95±6 138±6 22±2 24±2 48±2 B 

4.3.4 Orientations of mutant models of CY2C9 and CYP2C19 

Mutant structures of CYP2C9 (mtCYP2C9) and CYP2C19 (mtCYP2C19) were prepared by 

substituting residues different at the membrane interface, mainly in the linker, beta-

strand1, BC loop and F’-G’ helices (method section).  For mtCYP2C9, 2 out of 5 

orientations converged to CYP2C19-like orientations (class B) and one intermediate 

orientation (A/B) while 2 simulations converged to same orientation of CYP2C9 (class 

A). Same trend was observed in mtCYP2C19 simulations which converged to CYP2C9 

orientations, 2 out of 5 converged to class A, one to the intermediate orientation (A/B) 
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and 2 simulations retained CYP2C19 wildtype orientations (class B), as shown in Table 

4.6. Moreover, mutant simulations resulted in differences in the insertion depth of 

linker and F’-G’ helices CoM distances, the regions where substitution mutations were 

introduced.  

Table 4.6: The angle and distance values of mtCY2C9 and mtCYP2C19 calculated for the 
5 orientations. Mean and standard deviations are calculated after 8.5 microseconds for 
mtCYP2C9 and after 1 microsecond for mtCYP2C19, to ensure correctness (see Figure 
4.5) 

mtCYPs 

Orientation* 

Angles (°) Distances (Å) 
Class 

Alpha (α) Beta (β) Linker F’-G’ Globular 

 mtCYP2C9  

Ori1 102±5 125±5 27±4 30±4 44±2 A/B 

Ori2 99±6 139±6 28±4 29±4 45±2 B 

Ori3 98±6 123±6 27±4 29±4 44±2 A 

Ori4 93±7 133±10 27±4 29±4 44±2 B 

Ori5 98±6 124±6 26±4 29±4 44±2 A 

Ori1-5 98±7 130±10 27±4 29±4 44±2 B 

 mtCYP2C19  

Ori1 93±6 114±6 20±2 25±2 47±2 A 

Ori2 94±8 139±8 18±2 24±2 47±2 B 

Ori3 102±6 128±5 19±2 25±2 46±2 A/B 

Ori4 94±8 116±12 18±2 24±4 45±2 A 

Ori5 94±7 138±6 21±2 24±2 47±2 B 

Ori1-5 95±8 127±13 20±2 25±3 46±2 A/B 

*initial orientations for all mutant simulations were the same as their wildtype CG 

system (S1) 
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Figure 4.5: Angles (°) and distance (Å) values vs time (μs) for CG simulations of mtCYP2C9 
(left) and mtCYP2C19 (right). Color scheme same as inFigure 4.4  
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4.4 All-atom simulation results 

All atom simulations were performed to obtain refined atomic level interactions 

between the membrane and the proteins. Two different initial configurations obtained 

from CG simulations (S1 and S2) were used for AA simulations. To observe the effect of 

force-fields on protein membrane interactions and orientations, I also used two 

different combination of force-fields: LIPID14 and ff12SB, and GAFF lipid and ff99SB for 

the lipid and the protein respectively. The results were compared with previously 

reported work on CYP2C9. As mentioned in the Methods section, different pressure 

control methods were applied with the LIPID14 force-field. When using NPT MD 

ensemble for LIPID14, it is recommended to use anisotropic pressure coupling, which 

allows all three cell dimensions to fluctuate independently. However, in longer 

simulations (> 100 ns), the box dimensions were changed resulting in unequal x and y 

dimensions. Therefore, I also used semiisotropic pressure coupling using two different 

options given in NAMD software package: constant area and constant ratio. With the 

GAFF lipid, a surface tension of 60 dyn/cm was applied in the x-y plane. The effect of 

the two force-fields and different simulation protocols on the orientations of the 

proteins in the membrane, protein structure and dynamics and structural properties of 

membrane are compared in the following sections. 

4.4.1  CYP2C9 orientations in the membrane 

All atom simulations of CYP2C9 (SIM1-SIM8) with different starting structures, different 

initial velocities and different force-fields were analyzed for the orientations of the 

globular domain above membrane by calculating angles and distances as in CG 

simulations. In AA-simulations, heme-tilt angle is calculated in addition to angles 

calculated in CG simulations. All CYP2C9 simulations using LIPID14 force-field showed 

changes in the orientations from the starting conformations (Figure 4.6 to Figure 4.8). 

The angle and distance values increased to 89±7° to 101±5° and to 117±5° to 124±6° 

for alpha and beta angles, respectively. The heme-tilt angle increased from 30.2° and 

ranged from 35±5° to 44±7°. In simulations using anisotropic pressure control (SIM1), 
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the heme-tilt angle decreased to 25±5° during first equilibration step and remained on 

lower side. In simulations with GAFF force-field (SIM5), no difference in the heme-tilt 

angle is observed from CG orientation. However, CoM distance of protein is decreased 

from intial position 45 to 39 Å. In previous studies with GAFF lipid, CoM distance was 

reported to decrease from 39.5±2.5 Å (CG) to 34.1±1.0 Å (31). In contrast, in simulation 

with LIPID14 force-field, CoM distance increased from starting distance 44 Å (CG_S1) to 

AA distance 48±2 Å (upper limit), and from 42 Å (CG_S2) to AA 44±2 Å (upper limit). 

Final orientation of CYPs in the membrane and normalized angle and distance 

distribution plots are shown in Figure 4.6 to Figure 4.8.



  
GM 103 

 

Table 4.7: Mean and standard deviations of angles and distances calculated for all-atom simulations of CYP2C9 using different 
starting configuration and different simulation methods 

CYP2C9 

AAMD 

Simulations methods Angles (°) Distance (å) 

Class 
Force-field 

Pressure 

Control 
Alpha (α) 

Beta 

(β) 
TM (γ) Heme Tilt 

Protein 

CoM 

CG_S1 NPW Semiisotropic 91.9 111.9 17.6 30.2 45.0 A 

SIM1 LIPID14 ConstantRatio 96.9±5.4 117.3±5.2 23.2±4.7 34.5±5.0 44.6±2.8 A 

SIM2 LIPID14 ConstantArea 100.8±7.0 121.3±7.0 24.7±6.9 44.3±6.8 45.5±1.8 A 

SIM3 LIPID14 Anisotropic 91.4±5.6 110.5±7.9 25.2±4.9 25.4±4.9 48.0±1.8 A 

SIM4* LIPID14 Anisotropic 96.7±4.0 124.3±5.6 16.2±4.9 38.9±6.2 47.1±2.0 A 

SIM5 GAFF Surface Tension 83.1±5.9 115±5.6 15.5±3.2 30.5±5.8 38.7±0.9 A 

CG_S2 NPW Semiistropic 90.5 111.8 13.9 33.8 42.3 A 

SIM6 LIPID14 Anisotropic 92.9±5.8 122.7±4.5 15.3±5.7 41.6±5.6 44.4±1.6 A 

SIM7 LIPID14 ConstantRatio 94.8±4.9 122.1±4.0 17.0±4.0 40.8±5.6 44.2±1.5 A 

SIM8 LIPID14 ConstantArea 88.8±6.8 122.6±3.9 11.3±6.4 41.3±5.4 43.9±1.9 A 
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Figure 4.6: Last frame from CYP2C9:SIM1 all-atom simulation. Orientation of CYP in the 
membrane.is shown in the top panels with different views of the same frame rotated by 
90° around the z-axis. The protein is shown in grey colored cartoon representation. 
Linker is shown by orange, beta-strands in violet, BC-loop/helices in yellow, F-G helices 
in red and F’-G’ helices in green. Central I-helix is colored blue, and heme is shown in 
cyan licorice representation. In the top left panel, the orange circle show positions of BC 
loop and A-helix above the membrane. Transparent circles in the right panel indicate 
heme position, and thick lines show angle formed by heme plane with membrane 
normal. Position of beta-strand2 (residues 370-380) in violet above the membrane is 
highlighted by transparent circle. POPC membrane is shown in grey lines with phosphate 
atoms in red spheres. In the bottom panel, the distance and angle distribution plots are 
compared between CG and AA simulations. 
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Figure 4.7: Last frame from CYP2C9:SIM5 all-atom simulation. Simulations were done 
using GAFF lipid. Top panel shows different view of the same frame rotated by 90° about 
z-axis. The representation is the same as in figure 4.5. 
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Figure 4.8: Last frame from CYP2C9:SIM7 all-atom simulation. CYP2C9:SIM7 showing 
different view of the same frame rotated by 90° about z-axis. Same representation as in 
figure 4.5. 

4.4.2 CYP2C19 orientation in the membrane 

CYP2C19 AAMD simulations were performed using both LIPID14 and GAFF lipid and with 

two different starting structures obtained from CG simulations (S1 and S2) as for 

CYP2C9. The starting structures of the two AA models in the membrane vary slightly in 

the heme-tilt angles, between 52° and 46° in CG_S1 and CG_S2, respectively. Distance 

CoM of globular domain is also different in two starting structures: 47 Å in CG_S1 and 

50 in CG_S2 Å. After AA simulations using LIPID14 force-fields (SIM1-SIM3 and SIM5), 
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the orientations of CYP2C19 above the membranes fluctuate around same starting 

position as measured by alpha, beta and heme-tilt angles. The angles formed by 

CYP2C19 range between 93±8° to 103±6° for alpha, 132±5° to 147±6° for beta (class B), 

and 50±6° to 60±6° for heme-tilt angle. Distance CoM range from 46 to 50 Å in AA 

simulation as in CG simulations (CG_S1 and CG_S2). In simulations using anisotropic 

pressure (SIM1 and SIM5), an increase in heme-tilt angle is observed from initial value 

52° (CG_S1) to 60° and from 46° (CG_S2) to 58° respectively, while distance CoM (46 Å) 

is consistent in two simulations (Table 4.8). A test simulation with GAFF lipid force-field 

(SIM4) was also performed for CYP2C19. As seen in CYP2C9 simulations with GAFF lipid 

force-field, CoM of protein decreased from 47 (CG_S1) to 44.6 Å. Orientation of 

CYP2C19 converged to same position as seen in CYP2C9 LIPID14 simulation (class A/B). 

Different orientations obtained in two force-fields and normalized distribution graphs 

for angles and CoM distance are shown in Figure 4.9 and Figure 4.10.
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Table 4.8: Mean and standard deviations for angles and distances for all atom simulations of CYP2C19. Different starting 
configurations and different simulation methods were used. 

CYP2C19 

AAMD 

Simulations methods 
Angles (°) Distance 

(å) 
Class 

Force-field 
Pressure 

Control 
Alpha (α) 

Beta 

(β) 
TM (γ) Heme Tilt 

Protein 

CoM 

CG_S1 NPW Semiisotropic 99.6 135.3 13.0 52.4 46.7 B 

SIM1 LIPID14 Anisotropic 102.8±5.5 146.9±5.5 19.7±9.0 60.2±5.5 46.6±2.6 B 

SIM2 LIPID14 ConstantArea 93.8±7.9 132.0±4.9 15.5±4.7 50.3±5.6 50.3±2.3 B 

SIM3* LIPID14 Anisotropic 97.2±6.9 138.9±7.9 16.9±9.3 52.1±7.5 47.7±2.1 B 

SIM4 GAFF Surface Tension 82.6±4.7 128.8±3.6 14.2±3.3 46.3±1.1 44.6±1.1 A/B 

CG_S2 NPW Semiisotropic 99.5 133.3 10.2 45.9 50.3 B 

SIM5 LIPID14 Anisotropic 96.4±4.6 138.5±4.2 16.6±4.1 57.9±4.5 46.3±1.4 B 

SIM6 LIPID14 Semiisotropic 93.4±6.5 135.3±5.4 15.8±5.1 57.0±4.6 49.7±2.9 B 

*CYP2C19 complexed with (2-methyl-1-benzofuran-3-yl)-(4-hydroxy-3,5-dimethylphenyl)methanone (Protein Data Bank 
chemical component 0XV)(23) 
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Figure 4.9: Last frame from CYP2C19:SIM1 all-atom simulation. Tope panel showing 
different view of the same frame rotated by 90° about z-axis. The representation is the 
same as in Figure 4.6. 
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Figure 4.10: Last frame from CYP2C19:SIM4 all-atom simulation. Top panel showing 
different view of the same frame rotated by 90° around z-axis. The representation is the 
same as in Figure 4.6. 

The differences in the orientations and interactions of two proteins (CYP2C9 and 

CYP2C19) were maintained in both CG and AA simulations using LIPID14 force-field. 

However, AA simulations with two different force-fields show different angle and 

distance values. Simulations with LIPID14 results in increased angles and distances 

compared to initial values. On the other hand, in simulations using GAFF lipid force-
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field, CoM distance decreased, corresponding to further insertion of protein in the 

membrane. In the following sections, I analyzed differences in protein-membrane 

interactions in relation to primary sequence and 3D conformations and highlight the 

regions that show direct interactions with the membrane. I also compared the effect of 

the two force-fields on the membrane-protein interactions and orientations.  

4.4.3 Effect of sequence on the membrane-protein interactions: 

From above AA and CG simulation results, it has been established that two isoforms of 

CYP2C family, despite high sequence conservation (92% sequence identity), maintain 

differences in the interactions, orientations and degree of insertion in the membrane. 

The most important residue differences are found in the substrate recognition sites 

(SRSs) as seen in the primary sequence analysis. For example, SRS1’ a, SRS1’b, SRS1 and 

SRS2,3 regions defined by Zawaira et al (29) cover residues in the linker region (G46D), 

beta-strand (72-73 KP- ER), BC loop (I99H) and F’-G’ helices (220-221 SP-PT), 

respectively (Figure 4.11). I have observed through simulations that secondary 

interactions are mainly developed through beta-sheet1 (residues 64-74), and F’-G’ 

helices (residues 210-226). However, CYP2C9 shows further interaction through A-helix 

(residues 50-60), B-C loop (residues 95-110) and C-terminal beta-sheet2 (residues 370-

385). The peripheral interactions developed by CYP2C9 are similar to the hydrophobic 

surface identified in CYP2C5 (residues 30–45, 60–69 after A-helix, 376–379 beta-strand 

2 and the F’-G’ helices) (27). These secondary interactions, with either lipid tail or head 

regions, are established by the SRS regions, that show primary sequence differences in 

two CYPs. Therefore, differences in SRS regions can be crucial for CYP-membrane 

interactions and orientation, and lead to distinct substrate specificity. 
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Figure 4.11: Sequence alignment between CYP2C9 and CYP2C19. The residues that are 
identical are shown in red and similar residues are shown with a yellow background. The 
residues different in two sequences have white background. The secondary structure 
information obtained from CYP2C19 crystal structure is given by arrows for beta-strands 
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and spring representation for alpha-helices. The regions forming turns are labeled with 
TT while long loops are left empty. The substrate recognition regions are highlighted by 
blue dotted line boxes and labeled. The residues different at the membrane interface are 
highlighted in red. The missing regions in CYP2C9 crystal structure are highlighted with 
transparent green boxes. 

Sequence analysis was further extended to human CYP2C family members 

CYP:2C9,2C19,2C18 and rabbit CYP2C5 to check the residues differing at the interface 

region. Sequence comparison suggests that only CYP2C19 has positively charged 

residue R73 at this position (Figure 4.12) as all other CYP2C members have P73. 

Furthermore, only CYP2C19 has negatively charged residues at position 72 (E72) as 

compared to other CYPs, which could play as selectivity filter for basic substrates over 

acidic substrates in CYP2C9. In F’-G’ helices, S220 and P221 sequence is only found in 

CYP2C9, while polar residue T221 is present only in CYP2C19. Substitution of S220P and 

P221A in CYP2C9m7 structure (PDB 1OG2) moved P221 to P220, same as in all CYP2C 

members, which resulted in turn between F’-G’ helix and further stabilized the G’-helix.  

Figure 4.12: Sequence alignment between human CYP2C family (2C9,2C19,2C18,2C8) 
and rabbit CYP2C5. The conserved residues are shown in red for similar residues or with 
red background and in white for identical residues. The residues outside the of blue boxes 
are different in different CYPs. 

Experimentally, it has been observed that the substitution of CYP2C9 residues I99H, 

S220P and P221T enhanced omeprazole 5′-hydroxylation activity of CYP2C9 (151, 152). 

In another experimental study, E72K substitution in CYP2C19 decreased the metabolic 

activity while K72E substitution in CYP2C9 increased binding affinity of tricyclic 

antidepressant (TCA) drugs (153). Analysis of primary sequence, protein-membrane 

orientation and interactions and experimental findings together support our idea of role 
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of different residues in SRS regions in distinct orientations of two CYPs, leading to 

different substrate access and selectivity. 

Furthermore, trajectory analysis was performed to differentiate residues interacting 

with membrane head or tail regions, calculated by defining 5 Å distance cutoff between 

protein and lipid head group (phosphate atoms) and hydrophobic tail separately. The % 

contact time or occupancy of these residues was calculated (Figure 4.13) in trajectory. 

From the occupancy graph, the different interacting regions and therefore different 

orientations adopted by two proteins in the membrane can be explained. As shown in 

the graph, most interacting residues are found on the proximal side (BC-loop side) of 

the protein and in substrate recognition regions SRS1’-a, SRS1’-b and SRS5 while few or 

no contacts are seen in these regions by CYP2C19. The residues in A-helix and beta-

sheet1 are more in contact with lipid head and tail regions in CYP2C9 as compared to 

CYP2C19 which showed no or fewer contacts with membrane. In CYP2C19, secondary 

interactions are mainly formed by a patch of F-G, F’-G’ helices (residue 207-231) which 

resulted in the tilting of CYP2C19 from the distal side. The tilted F-G helices resulted in 

the increased beta-angles (discussed in earlier section) and higher heme-tilt angle in all 

CYP2C19 simulations.  
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Figure 4.13: Residues in contact with lipid headgroup (blue) and tail region (red). The percentage is shown on the y-axis and 
residues (numbers) interacting with membrane are given on x-axis. The secondary structures and substrate recognition regions 
are shown on the top. The residues differing in the interacting regions between CYP2C9 and CYP2C19 are labeled.
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4.4.4 Structural differences result in different membrane-protein interactions 

Apart from sequence differences, the structural analysis of CYP2C9 and CYP2C19 (PDB 

1R90 and 4GQS, respectively) revealed different conformations of beta-sheet1 and the 

B-C loop. The beta-sheet1 in CYP2C9 differs in sequence, (residues K72-P73), from 

CYP2C19, (residues E72-R73), as well as conformation. The turn in beta-sheet1 in 

CYP2C9 points away from globular domain towards membrane surface. During 

simulations, beta-sheet1 remained buried in the membrane or interacted with lipid 

head groups in CYP2C9 (SIM1, SIM5 and SIM7 shown in Figure 4.6-4.8. K72 in CYP2C9 is 

pointed towards binding pocket and formed hydrogen bond with S220 in the F’-G’ 

helices as well as phosphate head groups of lipid molecules. During simulations, 

positively charged ε-amino group (cation) of K72 made hydrogen bonds with the 

phosphate headgroups of lipids, which resulted in further insertion of beta-strand 

residues in the membrane (Figure 4.14 A-B). K72 has been suggested to play important 

role in the selection of anionic substrates in CYP2C9 and is found in pathway 2b 

(descriptions of pathways is given in Chapter 1) for ligand entrance into the binding 

pocket from the membrane (153); it is replaced by E72 in 2C19. Besides K72, presence 

of P73 in CYP2C9 favors interactions with hydrophobic interior of the membrane (also 

seen in the % occupancy graph). Thus, K72 and P73 position in beta-strand could be 

responsible for the orientation difference in CYP2C9. The conformation and orientation 

of beta-sheet1 also favors interactions of beta-sheet2 (residues 370-385) with 

membrane head groups in CYP2C9. In CYP2C19 simulations, beta-sheet1 remained out 

and showed fewer interactions with the membrane surface (Figure 4.9-4.10) which 

could be attributed partly to its charged residues E72 and R73 and the conformational 

difference observed in crystal structure. R73 in CY2C19 restricts insertion of beta-strand 

in the membrane (Figure 4.14 C-D). In various studies on membrane-protein 

interactions, it is found that arginine has propensity to stay in the lipid headgroup region 

(154–156, 156, 157).  
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An important difference between CYP2C9 and CYP2C19 is seen in the BC loop, which 

differs in only one residue I99H (H99 in CYP2C19) but has loop conformation in CYP2C9 

that is highly mobile compared to the B’-C’ helical conformation in CYP2C19. The BC 

loop also differs in the side chain conformations of R105 and R108 in the two CYPs. R105 

in CYP2C19 points downward and shows electrostatic interactions with D224 in G’ helix. 

In CYP2C9 X-ray structure (PDB 1R90), R105 has a different conformation and no 

interactions are reported with D224 due to the missing G’-helix. However, after 

modeling of F’-G’ helices and simulations, similar R105-D224 interactions were 

observed in most simulations. Another important difference between the two CYPs is 

in F’-G’ helices (S220P and P221T). P221 in CYP2C9 is located on the outer surface of 

the G’-helix which is in direct contact with membrane and would favor insertion of P221 

in the lipid tail, while T221 at same position in 2C19 has more propensity to stay in the 

lipid head group region.  

In CG simulations section, I have discussed the role of F’-G’ helices in stabilizing the 

interactions and orientations of CYPs in the membrane. By introducing mutations or 

changing the initial conformations of models in SRS regions of CYP2C9, the CG 

simulations revealed convergence to different orientations. This implies that not only 

sequence differences but conformational changes in the regions involved in membrane-

protein interactions contribute to the differences in the orientations adopted by two 

isoforms in the membrane. While, in AA simulations with different starting structures 

and velocities, CYP2C9 converged to the orientations which agree with previously 

reported orientations formed by CYP2C9 (31).  
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Figure 4.14: Differences in the CYP2C9 and CYP2C19 residues at the membrane interface. 
The residues in CYP2C9 apo form (A) and ligand (flurbiprofen) bound from (B) are shown 
in cyan colored stick representation. The protein is shown in cartoon representation with 
different colors assigned to secondary structures. Beta-sheet1 is shown in violet, BC loop 
in yellow, F’-G’ helices in green and I-Helix on the top is colored blue. The rest of protein 
is shown in transparent grey and red color.  Same representation is followed for CYP2C19 
apo (C) and ligand (OXV) bound form (D). 
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4.4.5 Different all-atom force-fields and simulations parameters affect dynamics of 

proteins 

The root mean square deviation (RMSD) was calculated for CYP2C9 and CYP2C19 by 

superimposition of backbone Cα atoms of globular domain (50-490) on the reference 

minimized structure. RMSDs were compared for all simulations using different force-

fields, pressure control and ligand free and ligand bound conformations (Figure 4.15). 

The RMSD graph suggests that the structure deviated during initial equilibration step by 

2.5 Å and then remained stable during production simulations. MD simulations using 

ff12SB and LIPID14 with different pressure coupling, show stable RMSD in CYP2C9. 

Fluctuations in RMSD graph for ff99SB and GAFF lipid force-field are observed during 

simulations. In case of CYP2C19, difference in RMSD in different simulations is visible. A 

large difference is seen between apo and ligand bound simulations with LIPID14 force-

fields and anisotropic pressure coupling. Higher RMSD is also seen in GAFF lipid force-

field.  

Furthermore, B-factor values were computed and compared with crystal structure B-

factors (Figure 4.16). Large fluctuations are observed in the regions which also show 

high crystallographic B-factor values. CYP2C9 and CYP2C19 crystal structures show 

different flexible regions, as seen by crystallographic B-factor values. Comparing the 

CYP2C9 and CYP2C19 crystal structures, higher B-factor values are seen in CYP2C19 in 

the HI loop, the meander region (consisting β-bulge region and the K′ helix region), and 

beta-strand 3 (residues 460-475) (Figure 4.17). In CYP2C9 crystal structure and in 

simulations with LIPID14, the membrane interacting regions such as linker, beta 

strand2, BC loop and F-G helices and beta-strand 2 remain flexible and the presence of 

membrane does not restrict the flexibility in these regions (Figure 4.16). There is 

increased flexibility in the GH and HI loop when using LIPID14 and anisotropic pressure 

control or constant area pressure control methods. The same effect is observed with 

GAFF lipid and surface tension simulations. LIPID14 simulations with constant ratio 

show less flexibility except in linker region, where reorientation of linker residues in the 
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membrane occurs. For ff99SB and GAFF lipid, there is increased flexibility in the loop 

regions outside the membrane, especially BC loop, EF loop, GH, HI loops and F and H 

helices (Figure 4.16). The increased flexibility in the BC loop results in a wide tunnel 

(tunnel 2) leading to the binding pocket. With GAFF lipid and ff99SB force-field, the BC 

loop shows increased interactions with the membrane headgroups. In CYP2C9 

simulations with GAFF lipid force-field, secondary structure distortion or bending of 

helices is observed in the C-terminal end of the F-helix (residues 203-208), C-terminal 

end of G-helix (residues 242-250) and unwinding of central I-helix (residues 293-295) in 

CYP2C9 simulations (Figure 4.18). Secondary structure calculation is performed on last 

4 ns trajectory time (2000 frames) for each simulation using LIPID14 and ff12SB and 

compared with GAFF lipid force-field. 

In apo CYP2C19 simulations using LIPID14 and ff12SB force-fields, similar fluctuations 

are observed corresponding to the X-ray B-factor values (Figure 4.16). However, 

changing the pressure coupling to anisotropic, higher fluctuations are observed in the 

linker residues preceding A-helix, F’-G’ helices and Beta-strands 3 and 4. Presence of 

membrane does not decrease the flexibility of these regions, rather, increased B-

factor is seen in linker and F’-G’ helices. The linker flexibility is consistent with the 

changing transmembrane helix angle. Conformational changes in the linker (patch of 

polar residues) result in the re-orientation of charged residues in the linker to interact 

with polar headgroup of the membrane. High fluctuations in F’-G’ helix could be partly 

due to unwinding of the G’-helix ( 

Figure 4.19). In simulations using GAFF lipid and ff99SB force-fields, high fluctuations 

are seen in the meander region, beta-strand 3 and 4 (residues 460-475). Besides, 

distortion in the F-helix (residues 205-208) prior to the F’-helix, and unwinding in the I-

helix is also observed in CYP2C19 with GAFF lipid and ff99SB ( 

Figure 4.19).   
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Figure 4.15: Root mean square deviation (RMSD) plots of CYP2C9 (top) and CYP2C19 
(lower) backbone Cα atoms with respect to minimized structure are shown. RMSD results 
from AAMD simulation starting with structure from CG_S1 are shown for CYP2C9 in top 
panel and for CYP2C19 in lower panel. Apo simulations using LIPID14 and anisotropic 
pressure control (thick black lines) and ligand bound (red). Apo simulation with constant 
area in blue and with constant ratio shown in green. Apo simulations using GAFF lipid 
are shown in cyan. 
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Figure 4.16: Comparison of the average B-factor values (8π2rmsf2/3) of CYP2C9 (top) and 
CYP2C19 (bottom) in AAMD simulations are compared with X-ray Structure B-factor 
(yellow). Simulation with LIPID14 and anisotropic pressure control shown in thick black 
lines (apo) and in red (ligand bound), with constant area pressure control (blue), 
constant ratio (green) and GAFF lipid with surface tension (cyan). 

Meander 
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Figure 4.17: X-ray crystal structure B-factor values for the two CYPs (CYP2C9 PDB 1R9O 
and CYP2C19 PDB 4GQS). The proximal view is from where heme-cofactor is interacting 
with CYP reductase enzyme. The distal view is where solvent tunnel opens. Increasing B-
factor is represented by color scale and thickness of ribbon from blue to red and thin to 
thick respectively. Heme is shown in the center in stick representation.
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Figure 4.18: Secondary structure analysis of CYP2C9.Comparison between two force-
fields, GAFF with ff99SB (left) vs LIPID14 with ff12SB (right). The color bar on the right 
shows different secondary structures. Secondary structures of F, G and I helix regions are 
compared.  
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Figure 4.19: Secondary structure analysis of 2C19. Comparison between two force-fields, 
GAFF lipid and ff99SB (left) vs LIPID14 and ff12SB (right) force-fields. The color bar on 
the right shows different secondary structures. F, F’-G’ and I-helices in CYP2C19 are 
compared and shown in descending order.  
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4.4.6 Structure and dynamics of the membrane is affected by choice of force-field 

While studying membrane protein interactions, it is important to study the bilayer 

properties. Proteins can influence membrane properties as much as membranes shape 

the structure and function of proteins. Therefore, I examined the basic structural 

characteristics and dynamics of the membrane. The most common structural properties 

considered are membrane thickness, surface area occupied by each lipid, commonly 

referred as area per lipid (APL), and electron density profile. The lipid molecules in the 

vicinity of the protein are called boundary lipids and those having no contact with 

protein are named non-boundary lipids. The non-boundary lipids or bulk lipids are 

expected to have characteristics of pure lipid. Compared to previous AMBER force-fields 

for lipids, the recently optimized LIPID14 force-field has shown improved structural 

properties without applying surface tension in MD simulations. However, these MD 

simulations were performed on pure phospholipids and to date no data is available on 

the compatibility of protein and lipid force-fields together. Since the Amber 

parametrization strategy has been followed, it is assumed that the new LIPID14 force-

field will be compatible with Amber protein and small molecules force-fields.  

4.4.7 Area per lipid 

The APL for pure lipid is calculated simply by multiplying the dimensions of the 

simulation box and dividing by the number of lipids in one layer. To calculate the APL of 

the lipids interacting with protein molecules, I have used a tool developed by Mori et 

al. 2012 (139) which combines both Voronoi tessellation and Monte Carlo methods 

(VTMC). Each lipid is assigned to a Voronoi polygon. Where the Voronoi polygon 

contains protein atoms, the lipids are termed boundary lipids. For calculation of APL for 

boundary lipids, the Monte Carlo method is used to calculate explicitly the area 

occupied by one lipid molecule in that polygon. APL for non-boundary lipids is computed 

simply from the area of Voronoi polygon. Changes in the box-dimensions, number of 

boundary and non-boundary lipids and average APL for boundary, non-boundary lipids 
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and total lipids are shown in Table 4.9 for first and last frames of the MD simulations 

and Figure 4.20.  

In all simulations with LIPID14, average APL of bulk lipids and all lipids is consistent with 

experiments. However, APL of boundary lipids is decreased due to interactions with 

protein. In an anisotropic system, despite changes in box dimensions, there is no effect 

on the average APL. In simulations using constant area pressure control, the box 

dimensions remain constant which prevents further relaxation of the system. Thus, 

increased number of boundary lipids and decreased average APL of the boundary lipids 

is seen. Simultaneously, APL of the bulk lipids and all lipids in constant area simulations 

was within the experimental range. The opposite effect is observed in the CYP2C9 

simulations with the GAFF lipid force-field, where box dimensions and number of 

boundary lipids increased along with the APL of non-boundary lipids. Visual inspection 

of GAFF lipid simulations and order parameters discussed below suggests highly 

ordered lipids. These might be expected to have decreased APL but voids between lipid 

molecules may contribute to the increased average APL. The increase in APL can be 

seen in the increased size of Voronoi polygons, Figure 4.20 (right panel). The increase 

in the number of boundary lipids corresponds to increased protein-membrane contacts 

and decreased CoM distance of protein to the CoM of the membrane with deeper 

insertion of the protein in the membrane. 
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Table 4.9:  Area per lipid and box dimensions are shown for the initial and final frames obtained from MD trajectories of 
CYP2C9 under different conditions.  

CYP2C9 
AAMD 

Time 

(ns) 

Cell Dimensions (Å) Number of lipids 
Average APL (Å) 

 (Exp: 64.3,68.3 (141, 142), Sim 65.6 (136)) 

X-Y length Boundary Non-Boundary Boundary Non-Boundary All 

LIPID14 Initial 142.4 138.1 49 545 51.7 64.9 63.8 

Anisotropic 193 131.3 150.8 48 546 50.2 65.4 64.1 

Constant Area 120 142.4 138.1 54 540 47.5 64.9 63.4 

Constant Ratio 97 143.6 139.3 49 545 49.5 66.2 64.9 

GAFF Lipid 80 150.6 150.1 78 516 57.9 74.2 72.1 
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Figure 4.20: The area per lipid calculations. CYP2C9 simulations with LIPID14 (SIM1) (left panel) are compared with GAFF lipid 
simulation (SIM5) (right panel), separated by dotted line. APL is, computed for first frame and final frame by Vornoi tessellation 
for non-boundary and Monte Carlo integration for boundary lipids. The APL is shown for top and bottom layers separately. 
The assignment of lipid molecules as boundary (cyan) and non-boundary (white) lipids are represented by polygons. The violet 
regions show protein atoms. The + marks show the center of mass of each lipid molecule.  

LIPID14 GAFF Lipid 
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4.4.8 Electron density and membrane thickness 

Bilayer thickness was calculated using the peak-to-peak distance of phosphate head 

groups in the electron density map. The membrane thickness has a direct relation with 

APL as increased APL results in decreased thickness. The experimental thickness for fully 

hydrated POPC is 37Å (142) and the reported thickness for pure lipid bilayer simulations 

using LIPID14 force-field is 36.9±0.6 Å (136). 

Experiments such as X-ray scattering, electron, or neutron diffraction are used to obtain 

structural information on lipid bilayers (141, 142, 158–160). The structural information 

on lipid bilayers is important for understanding protein-membrane interactions. The 

electron density profile is computed from atomic distribution in membrane normal. The 

membrane in Z-dimension is divided into slabs of 0.1 Å thickness. The calculated 

electron density in the slab is then divided by the average cross-sectional area to obtain 

electron density in 𝑒/Å3. The electron density is computed and time averaged for the 

last approximately 66 ns, 58 ns, 58 ns and 76 ns for anisotropic, constant area, constant 

ratio and simulations of CYP2C9 with GAFF lipid force-fields, respectively. The most 

important information the electron density profile can provide is the thickness of bilayer 

from the distance between the two highest peaks. The density profile can also give 

information about the hydration shell and insertion of water molecules in the lipid 

membrane (161). In Figure 4.21, electron densities are shown for head groups (max 

0.43 e/Å3 ) and the bilayer tail regions and indicated by 𝜌𝐻and 𝜌𝐶, respectively. The 

electron density below 0.3 e/Å3 is contributed by methylene groups 𝜌𝐶𝐻2(145). Bilayer 

thickness is defined as the distance between two headgroup peaks (Ԁ𝐻𝐻). Some water 

molecules interacting with the lipids are considered as part of the bilayer and contribute 

to the bilayer thickness (Ԁ𝐻𝐻). Therefore, the headgroup size (Ԁ𝐻) is estimated to be 

the full width at half maximum (FWHM) of the Gaussian curve for headgroup (Ԁ𝐻). 

According to a recent definition of bilayer thickness, total bilayer thickness is calculated 

as (Ԁ𝐵 = Ԁ𝐻 + Ԁ𝐻𝐻) which also includes the first hydration shell of water. From total 
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bilayer thickness, the thickness of the hydrocarbon core Ԁ𝐶  is derived as (Ԁ𝐶 = Ԁ𝐻 −

Ԁ𝐻𝐻) (161, 162).  

Figure 4.21: Electron density profile comparison between LIPID14 and GAFF lipid force-
field calculated for total system of CYP2C9, which include protein-membrane and water 
system. All three pressure control methods gave same electron density profile. Electron 
density of GAFF lipid (green) shows decreased thickness (dHH) and distance in the z-
dimension. Asymmetry in the z-axis electron distribution is due to protein globular 
domain interaction on the +ve z-axis of bilayer. 

The electron density profile from LIPID14 and GAFF lipid simulations differ in shape. All 

simulations with LIPID14 show similar bilayer shape and the bilayer thickness calculated 

from Ԁ𝐻𝐻 is 37.1 Å which matches with previous simulations (36.9±0.6 Å) and 

experiments (37 Å). The thickness of POPC in GAFF lipid simulations decreased to 

Ԁ𝐻𝐻=33.4 Å and showed a broad trough in the tail region, indicating that an 

interdigitated bilayer is formed. Similar effect is observed by Small- and wide-angle X-

ray scattering (SWAXS) experiments of multifunctional human peptide LL-37 which 

causes membrane disruption (163) by various mechanisms, depending on the 

membrane composition. The electron density profile in presence of LL-37 peptide 
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showed decreased membrane thickness, quasi-interdigitated phase interdigitation in 

the lipid bilayer and formation of ill-defined trough in the center of bilayer. 

Figure 4.22: Electron density profile. Comparison between LIPID14 and GAFF lipid force-
field for CYP2C9-POPC membrane system. All three pressure control methods for LIPID14 
are compared with GAFF lipid surface tension. The total electron density is shown in 
black which is further decomposed in to different segments of membrane bilayer, water 
and protein. A similar shape of trough is seen in all LIPID14 simulations, while for GAFF 
lipid, a broader trough is visible. 

The electron density profile for total system and decomposed electron density into 

water, lipid, phosphate, choline, glycerol, methylene and terminal methyl groups is 

shown together with density of protein (Figure 4.22). From protein density graph, the 

degree of insertion of the protein in the membrane can be seen. As seen also from 

decreased CoM distance of protein globular domain to membrane CoM, protein density 
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can be seen slightly higher in the membrane region in GAFF lipid simulations (Figure 

4.22). 

4.4.9 Order parameters 

The 2-oleoyl-1-palmitoyl-sn-glycerol-3-phosphocholine (POPC) membrane contains 

two fatty acyl chains. Palmitoyl is a 16-carbon chain which is ester linked to glycerol C1 

and named as Sn1 chain. The Sn2 chain is an unsaturated oleoyl (cis-9) ester linked to 

C2 of glycerol. The unsaturated Sn2 develops a kink and therefore results in less tightly 

packed hydrocarbon chains, which decreases melting temperature for transition from 

gel (solid ordered phase) to liquid crystalline. The phase transition to liquid crystalline 

results in liquid ordered phase (La) in the presence of cholesterol or liquid disordered 

(Ld) phase(6). The phase transition is important for studying membrane-protein 

interactions and biological processes that take place in the membrane. In the gel phase, 

all hydrocarbons occur in trans conformations and are highly ordered. The membrane 

in the liquid crystalline phase is highly dynamic and has a higher degree of freedom of 

motion resulting in the rotation around chemical bonds, trans/gauche isomerization, 

rotation around the axis and lateral diffusion(164). 

Experimental techniques such nuclear magnetic resonance (NMR) and electron spin 

resonance have been widely used to study the dynamics of membranes. Lipid order 

parameters such as deuterium order parameters are determined by NMR (SCD) and can 

be compared with MD simulation order parameters. Order parameters are used to 

measure spatial motion (orientational flexibility) around C-H (C-D) bonds or the C-C 

vector and indicates the degree of disorder in the hydrophobic tail. Higher order 

parameter values are observed in the first 6 carbons in the acyl chain starting from 0.2 

in Sn1 and near 0.1 in Sn2, which gradually decrease to a minimum at the terminus. A 

decreased order parameter indicates high mobility (flexibility) in the hydrocarbon 

chains which increases along the lipid tail and reaches a maximum at the termini. Order 

parameters calculated for LIPID14 simulations match well with experimental order 

parameters  [166], [167] and simulation results for both Sn1 and Sn2 chains (136) and 
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do not differ with different pressure control methods (Figure 4.23). GAFF lipid order 

parameters are higher in Sn1 saturated palmitoyl chain as well the Sn2 unsaturated 

oleoyl chain, suggesting a rigid gel like configuration of GAFF lipids. Higher order 

parameters in GAFF lipids were also observed in an earlier simulation Jójárt et al  (167). 

Figure 4.23: Deuterium order parameters compared between LIPID14 and GAFF lipid in 

CYP2C9-POPC membrane system. The time average order parameters are shown for 

Sn1 and Sn2 chain and different simulations methods.  

4.4.10 Comparison with experiments and previous simulations  

There is no experimental data characterizing full length CYPs and their interaction with 

the membrane in atomic detail. However, various experiments have been performed to 

study the membrane topology of CYPs and their interactions beyond the N-terminal 

transmembrane helix. Engineered CYP2C9 without an N-terminal helix remained 

membrane associated through catalytic domain as seen by atomic force microscopy 



  
GM 135 

 

(AFM) (168). Experimental studies on different CYPs have reported the orientation in 

the membrane (116) from the heme-tilt angle which varies between 38 and 78°. The 

height of the catalytic domain above the membrane is reported as 35±9 Å using atomic 

force microscopy (169). However, based on AFM study, two possible models of CYP-

membrane interactions are suggested (Figure 4.24). In model 1, the tip of the catalytic 

domain was proposed to interact with the membrane keeping the heme perpendicular 

to the membrane. In model 2, the distal side lies on the surface of the membrane while 

the heme remains parallel to the membrane. The height in model1 is suggested to be 

between 40 to 50 Å. Authors suggested model 1 to be closer to reality which is also 

consistent with site directed antibody-antipeptide studies and the surface 

hydrophobicity pattern in crystal structure of mammalian CYP2C5(27, 170), the first 

mammalian CYP to have structure determined. In our current study of CYP2C9 and 

2C19, the membrane orientations and degree of insertions match well with model 1. 

However, the two proteins have distinct orientations above the membrane and form 

different heme-tilt angles. 

Figure 4.24: Orientations of CYP in the membrane suggested from AFM study (171).The 
CYP globular domain shown in white surface representation. The substrate recognition 
regions are shown in cartoon with different colors for different regions. Heme is shown 
in cyan color in VDW representation POPC lipid bilayer in green lines and phosphate 
headgroups are shown in red spheres 
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Insertion depth of catalytic domain in the membrane was also studied by tryptophan 

fluorescence scanning of CYP2C2, which suggested that residues L36 and F69 flanking 

A-helix and L380 located at beta strand 2 are inserted in the membrane while residue 

Y225 in the F’-G’ helices remains outside (30). Primary sequence analysis of CYP2C2, 

CYP2C9 and CYP2C19 showed that CYP2C2 residues identified by tryptophan 

fluorescence scanning are conserved in all three CYPs. I observed similar interactions in 

CYP2C9 simulations where residues 36 and 380 shows interactions with the lipid tail 

region (100% occupancy), while residue 69 interacts with tail region for 40% of the 

simulation time. In CYP2C19, residue 36 is buried in the membrane while residue 69 

shows interactions with the membrane tail region for 49% of the simulation time. Due 

to the orientation difference between the two proteins, beta strand 2 does not interact 

with membrane in CYP2C19 and therefore residue 380 remains outside the membrane. 

In both CYPs, F’-G’ helices form strong anchoring point and residue 225 remains buried 

in the membrane. Furthermore, the linker re-orientation in two CYPs  exposed the 

polar/charged residues on the cytoplasmic surface of endoplasmic reticulum, which 

agrees with site-specific antibody studies (peptide 2 region) ((170)). Linker region 

consists of a patch of polar to charged residues (20-30), a hydrophobic patch of proline 

rich region (30-40) and a patch of charged residues (40-50). Linker orientation and 

interactions in two CYPs, distribution of amino acids in the lipid bilayer and their 

propensity to reside in lipid head or tail region match well with the hydrophobicity scale 

for amino acids determined by various experiments and MD simulation studies (172)  

(173). During simulations, linker remains highly mobile and changes conformation to 

keep polar residues outside the membrane, in situation where polar/charged residues 

were buried in lipid hydrophobic core.   
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Table 4.10: Heme-tilt angle comparison with previously available data and current 
simulations 

Source PDB Force-field References Heme tilt (°) 

 CYP2C9  

MD simulation 

1R9O 
LIPID14 

Current study 
35±5-44±7 

GAFF lipid 25±5 

1R9O 
GAFF lipid 

[31] 
44±4 (1R9O1) 

GAFF lipid 41±4 (1R9O2) 

1OG5 
Berger (32) 55±5 

Berger (174) 61±4 

OPM database 
1R9O 

OPM (121) 
59.8 

1OG5 71.9 

 CYP2C19  

MD simulation 4GQS 
LIPID14 

Current study 
50±6-60±6 

GAFF lipid 46±1 

OPM database 4GQS OPM (121) 74.0 

Using multiscale simulation approach enables us to study CYP2C19-membrane 

interactions and orientations, starting with several different configurations. There is no 

reported experimental study focusing CYP2C19-membrane orientations. Therefore, 

comparison of CYP2C19 is done with CYP2C9 simulations. The orientations of CYP2C9 in 

membrane in current study using LIPID14 force-field match well with previously 

published work on CYP2C9 (31). CYP2C9 membrane-protein simulation studies by Berka 

et al (2001) have suggested different orientations and degree of insertion (Table 4.10). 

The authors have used a different structure, different procedure to model and generate 
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starting orientations. The Berger united atom force-field for lipids was used which could 

also contribute in different membrane-protein interactions and orientations. The 

orientation of CYPs in membrane has been reported in the OPM (orientation of proteins 

in membranes) database. The heme-tilt angle of CYP2C19 reported in OPM data base is 

close to the heme-tilt angle observed in MD simulations. 

4.5 Conclusion  

The two isoforms of CYP2C subfamily, CYP2C9 and CYP2C19, exhibit ~94% sequence 

identity, yet they show distinct substrate specificity. Since mammalian CYPs are 

anchored in the ER membrane by a N-terminal helix and secondary contacts from the 

catalytic domain, differences in the sequence and 3D structure in the membrane-

interacting region in the catalytic domain can lead to different membrane protein 

interactions. As it has been hypothesized that lipophilic substrates enter into the 

binding pockets of CYPs from the membrane core, determining the orientation of CYPs 

in the membrane can provide insights into differences in substrate specificity. Here, I 

have used extended multiscale simulation methodology to understand the differences 

in primary sequence and 3D structure of two CYPs and their impact on the interactions 

and orientations in the membrane, which can elucidate the mechanism of drug 

selectivity and opening of ligand entrance tunnels through the membrane. 

Several CG and AA simulations show consistency in the results and maintain the 

difference in the orientations of the two CYPs above the membrane. Based on angles 

calculated from simulation trajectories, orientations formed by two CYPs were classified 

into class A, B or A/B (intermediate orientation). CYP2C9 adopts mainly class A 

orientation, which has lower alpha, beta and heme-tilt angles, and CYP2C19 form class 

B orientation. The difference in the sequence and in conformations in the substrate 

recognition regions (SRS), near the membrane interface, resulted in different 

orientation and insertion depths in the membrane in two CYPs. Mutation of the key 

residues different at the membrane interface in CYP2C9 resulted in the similar 

orientations (50% of simulation results) to the wildtype CYP2C19 orientation. Mutation 
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also affected the insertion depth of linker and F’-G’ regions, which was much lower than 

the wildtype CYP2C9. Whereas, similar mutations did not affect orientation of CYP2C19. 

However, an intermediate orientation (A/B) was formed by CYP2C9, when changing the 

starting structure, modeled or mutant. Whereas, in AA simulation using GAFF lipid 

force-field, similar orientation (A/B) was formed by CYP2C19, with lower angles 

compared to CYP2C19 orientations (B) observed in LIPID14 simulations. Therefore, I 

conclude that mutating key residues different in the linker, beta strand1 and F’-G’ loop, 

changing protein conformations in these regions or use of different force-fields can 

have direct influence on the final orientation and interactions of CYP membrane-

systems. 
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 INFLUENCE OF THE TRANSMEMBRANE HELIX-

ANCHOR ON CYTOCHROME P450 17A1 MEMBRANE 

INTERACTIONS 

5.1 Abstract 

Mammalian CYPs are anchored in the ER membrane by an N-terminal transmembrane 

(TM) helix that is connected to the globular domain by a flexible linker sequence. The 

structural and functional importance of the TM-helix is unclear since it has been shown 

that the crystal structure CYPs are truncated to remove the TM-helix and the flexible 

linker associate with the membrane, still retain their enzymatic activity. Furthermore, 

modification of the N-terminal amino acids sequence of mammalian CYPs is found to 

increase the expression in bacteria. It has been reported that the modified construct of 

CYPs, like truncated N-terminal TM-helix, retained membrane association as well as 

enzymatic activity (175–177). In current study, which employs both coarse-grained and 

all-atom simulations, I investigate the effect of such modification of first 8 N-terminus 

residues of the TM-helix of CYP17 on the orientation and interactions of the globular 

domain with the membrane. Here I found that the heme-tilt angle of two CYPs mutant 

and wild-type (mtCYP17 and wtCYP17) remained same, having same orientation above 

the membrane. However, modified TM-helix sequence (mtCYP17), especially W2A and 

E3L, increased the likelihood of the TM-helix being pulled out of the membrane core 

which showed an amphipathic helix like characteristics, lying parallel to the membrane. 

In simulations, where modified TM-helix was buried in the membrane, it influenced on 

the linker position, which was trapped in the F’-G’ loop region and formed polar 

contacts between linker, F-G region and C-terminal beta-sheet (residue 480-485). The 

trapped linker position in mtCYP17 could obstruct the tunnel 2d/2f which is opening 

through the membrane into binding pocket and may influence on the enzymatic 

activity.  
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5.2 Introduction 

Mammalian CYPs are bitopic integral membrane proteins with a single N-terminal 

transmembrane (TM) helix spanning the endoplasmic reticulum (ER) membrane which 

is connected to the globular domain in the cytosol by a flexible linker. The structural and 

functional importance of the TM-helix is unclear since it has been shown that upon 

truncation of the TM helix and the flexible linker associated with the membrane, CYPs 

still retain their enzymatic activity (178). The experimental information on TM-helix 

interactions and orientation in the membrane, i.e., TM-helix tilt angle with respect to 

the membrane plane is scarce. To date, only full-length crystal structures of 

Saccharomyces cerevisiae lanosterol 14α-demethylase of the  CYP51 family, has been 

resolved (5). It consists of an amphiphatic helix (residues 1-25), the TM-helix (residues 

27-50) and the globular domain connected to the TM-helix by a flexible linker. The TM-

helix is connected to the amphiphatic helix via a short linker region (residues 24-26) 

containing a proline at position 26 (P26), which makes a kink at the beginning of the 

TM-helix. The TM-helix, which is 24 residues long (37.5 Å),  has a pronounced tilt angle 

of 55° with respect to the membrane normal (5). The primary sequence and length of 

the TM-helix vary in different CYPs. Depending on the length of the hydrophobic 

sequence of the TM-helix, the distribution of amino acids, and the hydrophobic 

thickness of the membrane, the TM-helix can adopt different orientations and different 

tilt angles, or can develop kinks to avoid hydrophobic mismatch(9). 

A solid state nuclear magnetic resonance (NMR) spectroscopy study of full length rabbit 

CYP2B4 and cytochrome-b5 showed a TM-helix tilt angle of 17°  for cytochrome P450 

(179) and a TM-helix tilt angle of 13° has been observed for NADPH-cytochrome P450 

oxidoreductase (CYPOR)(180). The tilt angle for cytochrome oxidases (COX) with TM 

helix consisting of 20 residues is between 25-30° and between 28-32° for 21 residues 

long TM-helix (181). In our AAMD simulations of CYP3A4 with TM helix length of 24 

residues (residues 3-26), the TM tilt angle was  48.9±3.9° which formed a kink on the N-

terminal side (see Chapter 3 and Table 3.3 and Figure 3.3) (111). The higher TM tilt angle 
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observed in CYP3A4 is consistent with the TM tilt angle calculated for full length crystal 

structure of CYP51 (PDB 4LXJ). On the other hand, CYP2C9 and CYP2C19, with shorter 

TM-helix length of 19 residues, showed lower tilt angles of 11±6°-25±5° and 14±3°-

20±9°, respectively (see Chapter 4 and Table 4.8). In a molecular dynamics study of helix 

A of bacteriorhodopsin, different tilt and kink angle distributions were observed 

depending on the system size (POPC 84 vs 128 molecules)(182). An AAMD study of 25 

TM-helices with various hydrophobic lengths (tryptophan-alanine-leucine repeats) and 

numbers of flanking tryptophan residues revealed that shorter TM-helices have smaller 

tilt angles (10-12°) due to negative hydrophobic mismatch, while larger peptide tilting 

(31-41°) is  observed in the case of longer TM helices, due to a positive hydrophobic 

mismatch (157). 

The TM-helix of CYPs generally contains polar, aromatic or charged residues on either 

side of the transmembrane domain flanking the hydrophobic residues. They are 

important for TM-helix stabilization in the bilayer, protein sorting and retention of CYPs 

in the ER membrane (183).It has been observed that retention of the TM-helix of 

CYP2C1 in the ER membrane is dependent on the hydrophobicity of the transmembrane 

domain (residues 3-20) and hydrophilic residues (21-23 KQS) in the start of linker region 

(residues 21-28). Mutation of linker, hydrophobic transmembrane domain or both 

regions resulted in the expulsion of CYP2C1 from ER membrane and affected direct 

retrieval from the pre-Golgi compartment(183). 

A modified construct of CYP17 (pCWH17mod) was used for experiments performed by 

Ivan Lenov and Stefan Sligar (unpublished results) to study CYP17 membrane insertion 

and orientation in a POPC nanodisc. This modified construct of CYP17  was originally 

prepared by Professor M. R. Waterman (Vanderbilt University, Nashville, TN, U.S.A.) by 

mutating 5 residues in the N-terminal TM helix region for expression in the Escherichia 

coli and addition of 4 histidine residues at C-terminus (residue 509-5012) for 

purification (176). The five substitutions introduced in the N-terminal TM-helix are 

highlighted in red: wtCYP17: 1MWELVALL8 to mtCYP17: 1MALLLAVF8. Multiple 
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sequence alignment of CYP17 showed conserved W2 residues in different species (see 

result and discussion section 5.4.3 and Figure 5.1). As seen in the sequence comparison, 

after polar and charged residues on the N-terminal end (2WE3), two polar aromatic 

residues Y14 and W17 are found preceding P18 on the C-terminus, which act as 

boundary residues. Furthermore, the C-terminus of the TM-helix contains a patch of 

positively charged residues (19KRR21) which favor interactions with the lipid 

headgroup.  

Figure 5.1: Multiple sequence alignment for first 1-30 residues, comparing human 
wtCYP17, mtCYP17, rat, mouse, pig and bovine sequences. The color codes differentiate 
the residues based on their physicochemical properties and conservation. The residues 
different in multiple sequences are shown with white background. 

The substitutions of polar/charged residues (2WE3) on the N-terminus results in 

amphipathic helix-like characteristics, with hydrophobic residues at the N-terminal end 

and polar aromatic and charged residues at the C-terminus of the TM-helix. 

Amphiphatic helices, due to their segregation of hydrophobic and polar residues on two 

sides, are nonspanning and orient parallel to the membrane plane(184). In an 

amphiphatic helix, the central region interacts with membrane at the glycerol level, 

hydrophobic residues penetrate in the fatty acyl tail and polar residues remain at the 

lipid head-group region. With the replacement of the N-terminal residues of wtCYP17 

TM helix, specially 2WE3 by 2AL3 (mtCYP17), the likelihood of mutant TM-helix to be 

pulled out of the membrane or to act as monotopic membrane helix or behave like an 

amphiphatic helix is increased. Therefore, I investigate the effect of mutation of the N-

terminal polar/charged residues in the TM-helix in mtCYP17 on the globular domain 

interactions and orientation in the membrane and compared with wtCYP17-membrane 
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interactions. I also compare our results with the heme-tilt angle for mtCYP17 

experimentally determined using linear dichroism and nanodisc method by Ivan Lenov 

and Stefan Sligar. 

5.3 Material and methods 

5.3.1 Preparation of all-atom models 

The CYP17 X-ray crystal structure (PDB ID 3RUK) in complex with prostate cancer drug  

abiraterone was resolved after truncating the N-terminal residues (1 to 30)(185). The 

crystal structure has four protein copies (Chain A-D) in an asymmetric unit cell. First two 

chains A-B have further missing residues in the loop connecting helices H and I (residues 

274-282 in chain A and 275-282 in chain B) and C-terminal residues 503-512. Chains C 

and D have missing N-terminal TM helix and part of linker region (residues 1-30) and C-

terminal residues (503-512). Therefore, chain C was used after modeling missing TM-

helix and linker region. For prediction of TM helix length, secondary structure prediction 

servers: PredictProtein (https://www.predictprotein.org/) (186) and PSIPRED 

http://bioinf.cs.ucl.ac.uk/psipred/ (187) were used. The TM helix length reported by Y.-

L. Cui et al.(188) ranges from residues 1-19. Residues 3-19 were modeled as helical 

conformation and used the same initial helix length for both wtCYP17 and mtCYP17. 

The secondary structure prediction for TM helix length for wtCYP17 and mtCYP17 by 

various servers is discussed in the Results and discussion (section 5.4). After modeling 

the full- length structure, five different starting orientations of the globular domains 

wtCYP17 and mtCYP17 were generated which were used for preparation of coarse-

grained models. 

5.3.2 Preparation of coarse-grained systems and simulations 

A similar procedure was used to generate wtCYP17 and mtCYP17 coarse-grained 

protein-membrane systems as described in Chapter 3 (111). For mtCYP17, three 

different CG simulation systems (S1-S3) were prepared varying in the length of flexible 

linker region as elastic network restraints were removed from the linker residues: 20-

https://www.predictprotein.org/
http://bioinf.cs.ucl.ac.uk/psipred/
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29 (S1), 20-38 (S2) and 20-49 (S3). For wtCYP17 simulations, the linker residues 20-38 

(S4) were kept flexible (Table 5.1). CG simulations (S5) using only globular domain, 

without TM and linker, were also performed to study the interactions and orientations 

of globular domain only with membrane. Additionally, TM helix self-assembly 

simulations were performed for both wildtype and mutant TM helices (residue 1-22). 

For self-assembly simulations, TM helix, POPC lipid and water molecules were randomly 

placed a box of size of 14 nm in each dimension (x, y, z). Elastic network restraints were 

applied on complete peptide (1-22 residues). Five self-assembly simulations were 

performed for wildtype and mutant TM helices. 

Latest version of MARTINI force-field (MARTINI version 2.2) with standard water model 

(NPW) was used (78). The simulation procedure was same as described in Chapter 3. 

Before running CG simulations, short steepest descent energy minimization was 

followed by NPT equilibration with constant temperature of 310 K using a velocity 

rescale (v-rescale) thermostat. The temperature was coupled separately for the protein, 

the POPC and solvent by defining separate groups, with a coupling constant of 1 ps. 

Initial equilibration was performed with a Berendsen weak coupling scheme to maintain 

constant pressure with a coupling constant of 2.0 ps and a reference pressure of 1 bar. 

During production simulations, a Parrinello-Rahman barostat with a coupling constant 

of 12 ps was used. Semiisotropic pressure coupling was used with a compressibility of 

3.0×10-5. The time step was 20 fs. The non-bonded interactions were treated with RF 

(reaction field) and cut-off methods for calculations of Coulomb’s and VDW 

interactions, respectively.  



  
GM 146 

 

Table 5.1: CG simulations of mutant and wildtype CYP17 models and CYP17 globular 
domain only.  

CG 

Simulation 

Identifier 

Residues in regions 

No of 

Simulations 
TM Helix 

Linker 

region 

Flexible 

linker 

Globular 

domain 

 mtCYP17  

S1 3-19 20-49 20-29 50-502 5 

S2 3-19 20-49 20-38 50-502 5 

S3 3-19 20-49 20-49 50-502 5 

 wtCYP17  

S4 3-19 20-49 20-38 50-502 5 

S5 Globular Domain: 50-502 3 

S6* TM-helix self-assembly: residues 1-22 10 

*Five TM helix self-assembly simulations for wtTM and five for mtTM helix 

5.3.3 Trajectory analysis and back-conversion to all-atom models 

The CG simulation trajectories (S1-S5) were analyzed for convergence or stable 

orientations of CYP in the membrane. For this purpose, the same angles and distances 

as mentioned in previous chapters (Chapter 3 and 4) were calculated (31, 111, 112). A 

representative frame was selected from each set of CG simulations and this was used 

for back-conversion to an all-atom model. The representative frame was selected to 

have angle and distance values within 1% of their mean value(112). The back-

conversion procedure for the POPC bilayer was performed as described in Cojocaru et 
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al.(31). Protein back-conversion was done using the scripts backward.py and initram.sh, 

available at the MARTINI website (http://cgmartini.nl) (110). In previous studies, 

globular domain residues 50-490 (crystal structure) were superimposed on the back-

mapped structure to preserve the side chain interactions within heme cofactor binding 

pocket. However, during CG simulations of mtCYP17, the position of the TM helix and 

linker region changed such that it developed strong interactions with the F’-G’ loop, 

influencing the F’-G’ loop conformation. Therefore, following our previous protocol with 

superimposition of the crystal structure on the back-converted structure resulted in 

intramolecular and intermolecular (between protein and membrane) steric clashes. The 

conformation of such regions showing close interactions with the membrane and within 

the protein were kept same as obtained from back-conversion of representative CG 

frame by backward.py script. These regions include the TM-helix, linker, A-helix, beta-

strand1 (residues 1-76), F’-G’ loop (residues 210-228), and beta-strand2 (residues 378-

387). The conformation of the rest of the protein including heme binding pocket was 

extracted from the superimposed crystal structure. 

5.3.4 All-atom molecular dynamics simulation  

All-atom molecular dynamics (AAMD) simulations were performed using ff12SB and 

LIPID14 force field for protein residues (135), and POPC lipids(136), respectively. The 

detailed procedure for setting up a membrane protein and water system was described 

earlier in Chapter 3. With the LIPID14 force-field, two different pressure coupling 

methods i.e., anisotropic and semiisotropic (constant ratio) (Table 5.2) were used. 

Three AAMD simulations of mtCYP17 (SIM1-SIM3) were performed taking 

representative frame from CG simulation of mtCYP17 (S3). Two AA simulations of 

mtCYP17 (SIM1 and SIM2) have same starting velocities but different pressure coupling 

(anisotropic vs semiisotropic), whereas SIM3 is replica simulation with different starting 

velocities with semiisotropic pressure coupling (constant ratio). Three AAMD 

simulations of wtCYP17 (SIM4-SIM6) were performed with same starting structure but 

different pressure coupling method and different initial velocities. In SIM4 and SIM5, 

http://cgmartini.nl/
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same pressure coupling (anisotropic) but different velocities were used, while SIM6 is 

performed with same initial velocity as SIM5 but constant ratio instead of anisotropic 

pressure coupling. 

TABLE 5.2. AAMD Simulations performed for CYP17. 

AAMD 

Simulations 
System CG Simulation 

Pressure 

coupling 
Time (ns) 

SIM1 mtCYP17 S3 Anisotropic 148 

SIM2 mtCYP17 S3 Semiisotropic* 148 

SIM3 mtCYP17 S3 Semiisotropic* 172 

SIM4 wtCYP17 S4 Anisotropic 159 

SIM5 wtCYP17 S4 Anisotropic 124 

SIM6 wtCYP17 S4 Semiisotropic* 145 

* semiisotropic pressure coupling with constant ratio 

5.4 Results and discussion 

5.4.1 Transmembrane helix membrane interactions 

The MARTINI CG simulations were used to obtain the initial CYP-membrane interactions 

and orientations of the globular domain above the membrane. Several different starting 

orientations of globular domain were selected as mentioned in the Methods section 

5.3. CG simulations of mtCYP17 (S1-S3) were performed which differ from the wtCYP17 

(S4) in the first 8 residues in the N-terminal end of TM-helix. However, same length of 

the N-terminal helix (residues 3 to 19) was modeled for both mtCYP17 and wtCYP17 

(Figure 5.2). Different secondary structure prediction servers were used, which 

predicted different TM helix lengths. For example: PredictProtein server suggested 20 

residues long (residues 2-21) N-terminal α-helical conformation for wtCYP17 sequence, 

TM helix domain range from 4-17 residues, and buried region from 0-18 residues. For 
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mtCYP17 sequence, N-terminal α-helix length was predicted from residues 4-20 (17 

residues), TM-helix region from 6-18 and buried region from 0-18 residues. The PSIPRED 

server suggested 16 residues long N-terminal α-helix (residue 2-17). Different TM helix 

lengths were suggested by different servers which also vary at different times of 

predictions. According to a recent prediction by PredictProtein, the N-terminal helical 

conformation is predicted from residues 2-20 for both wtCYP17 and mtCYP17, whereas, 

TM-helix residues 6-19 is only predicted for wtCYP17 but not for mtCYP17. However, 

when only first 1 to 60 residues of sequence of mtCYP17 is used, TM helix is predicted 

which range from residues 3-19. Furthermore, an extra TM-helix (residues 29-43) is 

predicted in the latter case. Although the initial TM helix length was modeled for 

residues 3-19 before running CG simulations, back-conversion of representative frames 

from CG to AA models resulted in the TM-helix length of 3-17 in both mtCYP17 and 

wtCYP17 models. 

Figure 5.2: Left: Full length modeled structure of CYP17 superimposed on the x-ray 
crystal structure shown in grey (PDB 3RUK chain C). The cartoon representation of the 
secondary structures color coded by green alpha helices, linker in blue and F-G loop in 
red for modeled structure. Right: TM-helix length predicted for wildtype (top) and 
mutant (middle full length sequence and bottom only residues 1-60) are shown in the 
thick magenta line, predicted by PredictProtein server dated 06-22-2017 (186). 
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5.4.2 Convergence of coarse-grained simulations 

The effects of mutations on the final orientation and interactions of the globular domain 

of CYP17 with the membrane were analyzed by comparing the full-length wtCYP17, 

mtCYP17 and globular domain only simulations (S1- S5). For mtCYP17 CG systems (S1-

S3), different flexible lengths were used to check the effect on convergence and the 

orientation of the globular domain above the membrane. Only one flexible linker length 

(residue 20-38) was used for wtCYP17 CG-system S4. 

5.4.2.1 mtCYP17 CG system: S1:  

In mtCYP17 CG system S1, five different starting orientations (1-5) with the flexible 

linker residues 20-29 were used. In three out of five simulations (3-5), the globular 

domain did not develop stable interactions with the membrane (Figure 5.3). As shown 

in angles and distances graphs, mtCYP17 (3-5) remained fluctuating above the 

membrane surface and could not form stable orientation during 15 µs of simulation 

time. In two CG simulations (3 and 5), the TM helix was pulled out of the membrane 

after ~6 µs simulation time. The higher TM tilt angle value (~80°) corresponds to parallel 

positioning of the TM helix to the membrane plane (Figure 5.3). The pulling out of TM 

helix from membrane core disrupted globular domain interactions and orientations 

above the membrane, leading to higher CoM distances and unstable angles.  

Although in simulation 4 (Figure 5.3 and S1 and row 4), the TM helix remained inside 

the membrane, the F’-G’ loop formed unstable interactions with the membrane. The 

CoM distance of F’-G’ loop to the membrane CoM showed continuous fluctuations. 

Thus, weaker interactions of F’-G’ loop with the membrane resulted in the overall 

unstable orientation of the globular domain. As seen in previous studies of CYP2C9 and 

CYP2C19 membrane interactions, after TM helix and the linker region, secondary 

interactions are mainly developed by F’-G’ helices/loop which stabilized the final 

orientation and CYP-membrane interactions (Chapter 4).
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Figure 5.3: Evaluation of protein position with respect to the bilayer during CG simulations. Angle and Distance graphs for CG 
simulation systems (S1-S5). shown in columns 1-5 from left to right. X-axis shows time in μs and on Y-axis are shown angles (°) 
and distances (Å). Full length protein simulation systems are shown for mtCYP17 (S1-S3), wtCYP17 (S4) and globular domain only 
CG system (S5) and rows (1-3). Five initial orientations shown in rows 1-5 and TM helix only system S6 is shown in column 5 rows 
4-5. Color scheme: Angles (°) alpha, beta and TM tilt angle are shown in black, red and cyan, respectively. Distances (Å) CoM of 
F’-G’ loop (green) and globular domain (blue) to the membrane CoM are shown.
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5.4.2.2 mtCYP17 CG system: S2 

In mtCYP17 CG S2, flexible linker was set from residues 20-38. The starting orientations 

(1-5) were same as in S1 simulations. Due to unstable orientation of TM-helix and 

globular domain in the membrane CG simulations (S2) were extended to 20 

microseconds (Figure 5.3). Fluctuations in the TM tilt angle and CoM distance of F’-G’ 

loop resulted in the unstable globular domain orientation (1,2,4 and 5). In 3 out of 5 CG 

simulations (1,2 and 4), the TM-helix drifted out of the membrane and adopted an 

orientation parallel to the membrane plane, giving rise to a high TM tilt angle value 

(~80°). Only one simulation (3) converged to the final orientation, where globular 

domain interactions with the membrane remained stable and no fluctuations in angles 

and distances were observed. The angles and distance values matched with mtCYP17 

(S1:1-2) simulations. 

5.4.2.3 mtCYP17 CG system: S3  

In mtCYP17 CG simulation S3, all residues in the linker (residues 20-49) were treated as 

flexible. All simulations (1-3 and 5) except 4, converged to same orientation and 

remained stable for a simulation time of 12 microseconds (Figure 5.3). In simulation 4, 

the TM-helix drifted out of the membrane core and remained parallel to the membrane 

plane at interface, as seen in previous earlier simulations (S1-S2). The converged 

orientations in mtCYP17 (S3) vary from mtCYP17 and wtCYP17 simulations, as higher 

alpha (108±9°) and beta angles (134±6°) are seen in S3 simulations than S1-S2 or S4 

simulations (Table 5.3). 

In all mtCYP17 simulations, in which the TM helix went out of the membrane core, the 

globular domain interactions with the membrane were disrupted. As shown in the mean 

and standard deviation table (Table 5.3) and angle and distance graphs (Figure 5.3), the 

CoM distance of F’-G’ or CoM of protein globular domain to the membrane CoM, 

remained higher, resulting in unstable secondary contacts with the membrane. The 

secondary interactions by globular domain, especially by F’-G’ loop, are crucial for 

maintaining stable orientation of CYPs in the membrane. 
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5.4.2.4 wtCYP17 CG system: S4  

A set of five CG simulations of wtCYP17 (S4) with flexible linker (residue 20-38), same as 

for mtCYP17 CG simulation (S2), were performed. In all 5 wtCYP17 simulations (1-5), the 

globular domain converged to the same orientation and the TM helix remained 

embedded in the membrane (Figure 5.3). There were no large fluctuations in angles or 

distances or expulsion of TM-helix observed in wtCYP17 simulations, which were 

extended to 20 microseconds. The presence of polar/charged residues (2WE3) on the 

N-terminus stabilized the TM-helix interactions and orientation in the membrane and 

converged orientations in all 5 CG simulations. The orientations of wtCYP17 match with 

the converged orientations of mtCYP17 simulations (S1 and S2) but differ from mtCYP17 

(S3) orientations. 

5.4.2.5 Globular domain simulation: S5 

The mean and standard deviation values for angles and distances are calculated for all 

CG simulations and given in (Table 5.3), which showed difference in the angle and 

distance values in S3 compared to S4 system. The differences in orientations between 

mtCYP17 and wtCYP17 could be due to fully flexible linker and unstable TM helix in 

mtCYP17. Therefore, three separate (1-3) globular domain only (residues 48-502) 

simulations (S5) were performed to study the interactions and orientations of the 

globular domain in the membrane independent of TM and linker interactions (Figure 

5.4). The angle and distance values of globular domain were compared with the full-

length simulation results (S1-S4). As shown in the angle and distance graphs (Figure 5.3 

and column S5 rows 1-3) and Figure 5.4, the globular domain adopts various 

conformations and explores a wide conformational space, before F’-G’ loop (green line 

in graph) distance CoM to the membrane CoM is decreased. The F’-G’ loop interactions 

stabilized the orientation of the globular domain in the membrane, and no further 

changes in the orientations/conformation were observed (Figure 5.4). The final 

orientations of the globular domain in the membrane were stable. The mean and 

standard deviation values of angles alpha and beta, 105±5.3° and 123±6°, in the S5 
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simulations, match well with the wtCYP17 simulations (S4) angles, alpha 101±7° and 

beta 125±7° and also with the mtCYP17 CG simulations (S1-S2) with TM in the 

membrane. The beta angle in mtCYP17 simulation (S3) is 10° higher compared to the 

wtCYP17 and globular domain. The mtCYP17 simulations (S1-S2), in which TM remained 

inside the membrane, showed similar orientations of the globular domain in the 

membrane as wtCYP17 and globular domain only simulations. 

5.4.2.6 Transmembrane helix self-assembly simulations: S6 

Five separate self-assembly simulations of mtCYP17 and wtCYP17 TM helices (residues 

1-22) in POPC membrane (594 molecules) and MARTINI standard water model (NPW) 

were performed (TM1-5), to investigate the orientation of TM helix in the membrane. 

In one out of 5 wtCYP17 TM helix simulations (TM1-5), TM helix spanned the membrane 

like bitopic membrane-protein, and formed the TM tilt angle 12±6° which match with 

the TM tilt angle formed by full length wtCYP17 TM helix (13±6°) (Figure 5.5). In the rest 

of self-assembly simulations, wtCY19 and mtCYP17 TM helix could not span the bilayer 

or left the membrane and lay parallel to the membrane plane, as in full length mtCYP17, 

where the TM helix went out of the hydrophobic core of the membrane (Figure 5.5). 

The self-assembly simulation of wtCYP17 TM helix (TM1), in which the TM helix spanned 

membrane, was extended to 8 microseconds to observe any conformational change in 

the TM helix. As shown in the angles and distance graphs, column 5 and row 4, the TM 

helix remained embedded in the lipid bilayer, parallel to the membrane z-axis (bilayer 

normal), throughout the simulation time. 
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Table 5.3: Mean and standard deviations for angles and distances characterizing positioning of the protein in the phospholipid 
bilayer calculated for full length wtCYP17 vs mtCYP17 and globular domain of CYP17 CG simulations. 

CG system 
CG 

simulations 

Angles (°) Distances CoM (Å) 

TM 

position Alpha Beta 
TM tilt 

(3-19) 

Linker 

(20-49) 

F’-G’ loop 

(210-227) 

Globular 

domain (50-

502) 

  mtCYP17  

S1 1,2,4 105±9 123±10 11±6 21±2 29±4 47±3 In 

S1 3,5 111±10 110±13 78±6 27±2 39±4 53±3 Out 

S2 3,5 104±8 125±11 14±9 22±2 29±4 47±3 In 

S2 1,2,4 112±8 122±11 71±9 25±3 34±6 49±3 out 

S3 1-3,5 108±9 134±6 15±8 22±2.1 28±2 46±2 In 

S3 4 115±7 120±8 85±6 26±2 36±2 50±2 Out 

  wtCYP17  

S4 1-5 101±7.3 125±7 13±7 20±2 27±4 46±2 In 

S5 1-3 105±5.3 123±6 -- -- 27±2 46±2 -- 

S6 TM1 -- -- 12±6    In 
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Figure 5.4: Snapshots at 4 different time steps showing different orientations of the globular domain, taken from S5:1 simulations. 
The globular domain is shown in a silver surface representation, the F’-G’ loop in green VDW spheres, the I-Helix shown by blue 
cylinder. The phosphate atoms in the lipid-headgroup are shown by red spheres. The POPC membrane is shown in cyan color. The 
orientation of the globular domain remained stable after 3microsecond until the end of the simulation (9microsecond).
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Figure 5.5 Position of TM-helices in the full-length mtCYP17 simulation (S1:3) on the left, 
compared with wtTM helix self-assembly simulations (S6: 1-5) shown in the right panel, 
after back-conversion of last frame from CG to AA model. In the full length mtCYP17, the 
TM helix is shown in cyan, and the linker (residues 18-49) and F-G loop (residues 210-
228) are shown in blue and red, respectively. All five positions of wtCYP17 TM helices 
obtained from self-assembly simulations are shown relative to the phosphate atoms 
(orange spheres), representing lipid head-group region. The anchoring residues in the 
wtCYP17 and mtCYP17 TM helices are shown in stick representation. 

5.4.3 Difference in the orientation and position of wtTM vs mtTM helix:  

Compared to the TM-helices in CYP2C9 and CYP2C19 (19 residues) and CYP3A4 (24 

residues), CYP17 has a short TM helix (17 residues) and longer linker region (residues 

20-49), connecting the globular domain (residues 50-502) with the TM helix. As 

discussed in the introduction (section CHAPTER 5:), the shorter peptides or TM helices 

compensate the hydrophobic mismatch by forming aggregates, undergoing 

conformational change in the backbone residues or aligning parallel to the z-axis to 

avoid insertion of any charged residues in the hydrophobic core. Therefore, a lower TM 

tilt angle is observed for shorter TM helices (154). Due to negative mismatch in short 

TM helix, expulsion of the TM-helix from hydrophobic core could be seen (Figure 5.5). 



  
GM 158 

 

Although short in length, the wtCYP17 TM-helix is flanked by polar aromatic and 

charged residues at both ends of the TM-helix: W2 and E3 on the N-terminal end and 

W17 followed by patch of positively charged residues 19KRR21 on the C-terminal end 

(Figure 5.1), which result in stable wtCYP17 TM helix interactions and orientation in the 

membrane. 

Multiple sequence alignment of human wtCYP17 and mtCYP17 of first 1-30 residues 

was performed to check residue conservation in the region missing in the crystal 

structure (PDB 3RUK). For this CYP17 sequences from rat, mouse, pig and bovine (cow) 

were compared with the human CYP17 sequence. They have 63-70% sequence identity 

with human wildtype sequence. As shown in the sequence alignment in Figure 5.1, 

aromatic residues like W2, Y14, F16 and W17 are conserved in all species. Tryptophan 

(W) and Tyrosine (Y) residues in membrane proteins act as anchoring residues and are 

located between the polar headgroup and hydrophobic core of the lipid bilayer, most 

probably in the glycerol region of the lipid-bilayer (9). The presence of W2, W17 and 

charged residues on either side of the TM-helix of wtCYP17 keep the balance and 

stabilize the orientation of TM-helix in the membrane. Thus, wtCYP17 TM-helix showed 

bitopic characteristics during CG simulations (S4) and in self-assembly simulation of TM 

helix only (S6), which was fully spanning the hydrophobic core of the membrane. In 

mtCYP17, substitution of polar and charged residues 2WE3 by 2AL3 disrupted the 

balance and resulted in formation of amphiphatic helix characteristics which resulted in 

pulling out of the TM-helix from the membrane core, as discussed earlier (section 5.4.2). 

Trajectories where the TM-helix was unstable and left the membrane core, also showed 

unstable globular domain interactions with the membrane. 
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Figure 5.6: Starting configuration used for AAMD simulations of wtCYP17 (left) in green 
vs mtCYP17 (middle) in yellow superimposed on the x-ray crystal structure (silver) and 
wtCYP17, mtCYP17 and x-ray crystal structures (right), shown in cartoon representation. 
TM-helix and linker positions are compared. The linker residues 18-49 are shown in blue 
and F-G loop (residues 210-228) in red. The TM helix membrane spanning depth is 
compared between wtCYP17 and mtCYP17, with reference to the phosphate atoms 
(orange spheres) representing lipid head-group region. The anchoring residues W2 and 
W17 in the wtCYP17 and A2 and W17 in mtCYP17 TM helices are shown in ball and stick 
representation. 

Furthermore, the position of TM helix in the membrane were predicted for wtTM and 

mtTM helices by prediction server, position of protein in membrane (PPM) 

(http://opm.phar.umich.edu/server.php) (189). For this, modeled 3D structure 

coordinates for TM helices region (N-terminal residues 1-22) were used. The orientation 

and position of the two TM helices differ from each other in the insertion depth and TM 

tilt angle. The TM tilt angle predicted by PPM server for mtCYP17 was 18±12° which is 

closer to the TM angles observed in AAMD simulations (SIM1-SIM3) 19±11°-23±8°. A 

lower TM angle was predicted by PPM server for wtTM helix i.e., 13±6°, which is 

consistent with TM angle observed in CG (13±7°) (Table 5.3) and AAMD simulations 

13±8° and 15±7°, respectively (Table 5.4). Similar TM tilt angle was observed in the TM-

helix self-assembly simulation of wtTM helix (12±6°) (Table 5.3). Besides TM angle, the 

insertion depth of wtTM and mtTM also differs in two helices. As shown in Figure 5.7, 

http://opm.phar.umich.edu/server.php
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wtTM span through hydrophobic core of the membrane (red and blue spheres 

indicating boundaries of hydrophobic core), like bitopic TM helices. mtTM helix showed 

monotopic TM helix characteristics.  

Figure 5.7: The TM helix orientation and position predicted by PPM server for all-atom 
model taken from back-conversion of wtTM helix (green) and mtTM helix (yellow) 
residues 1-22 shown in cartoon representation. mtTM helix conformation was same as 
wtTM helix, by mutating residues by Pymol mutagenesis option. The anchoring residues 
in the wtTM helix (W2 and W17) and mtTM helix (A2 and W17) are shown in stick 
representation. The hydrophobic boundaries are shown by blue and red spheres. 

5.4.3.1 Different linker positions observed in wtCYP17 and mtCYP17:  

The linker position was also checked after back conversion to AA models as it is affected 

by the TM-helix sequence and position in the membrane. The linker in CYP17 is 

comparatively long (32 residues) compared to other CYPs studied here, such as CYP2C9 

and CYP2C19 (linker length 28 residues) and CYP3A4 with the shortest linker (22 

residues). Different lengths of flexible linkers were used in mtCYP17 simulations (S1-S3) 

to obtain stable orientations of mtCYP17 in the membrane. The linker conformation in 

mtCYP17 differs from wtCYP17 linker position and develops strong polar interactions 

with F-G region in mtCYP17 ( Figure 5.8 and Figure 5.9). 
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Figure 5.8: The different linker positions are compared between mtCYP17 CG simulations 
S1-S3 (A-C) and wtCYP17 simulation S4 (D), after back-conversion of representative 
frames taken from each CG simulation systems. The mtCYP17 globular domains shown 
in yellow (A-C) and wtCYP17 globular domain in green (D). The linker in blue and F-G 
loop is shown in red. The length of flexible linker is labelled in different CG simulations 
systems (S1-S4). 

In CG simulation of mtCYP17, where TM-helix remained in the membrane, it was 

stabilized by the polar or charged interactions between linker and F-G region or by 

conformational changes in the TM helix backbone residues (extended conformation), 

resulting in the unwinding of TM helix conformation. The back-conversion of last frames 

obtained from mtCYP17 simulation (S1) trajectories resulted in the shorter TM-helix 

length which decreased from 3-19 residues (17 residues) to 4-13 (10 residues) in one 

trajectory and 4-15 (12 residues) in another trajectory, data not shown.  

The linker position in wtCYP17 matches with the linker position observed in X-ray 

structure and did not show interactions with the F-G loop. While in mtCYP17 
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simulations, F-G loop region is blocked by the linker conformation, which also can 

interfere with substrate access via tunnel 2d/2f from the membrane to the active site. 

According to the tunnel definition (42), 2d tunnel egresses between the N-terminus and 

helices a/A’ and A while tunnel 2f egresses between F’-helix/F-G loop and β5 sheet. The 

2f tunnel in CYP17 is formed by the aromatic gating residues (W220 and F224)(190), 

which are pushed away by linker position in mtCYP17 simulations. The side chain of 

F224 compared to crystal structure is flipped out and remains opposite to crystal 

structure F224 side chain (Figure 5.9). 

Figure 5.9: Initial representative frame after back-conversion of mtCYP17 (S3) (yellow) 
superimposed on X-ray crystal structure in grey (PDB ID 3RUK). Difference in the linker 
and F-G loop conformations between X-ray and CG frame is shown (A). The F-G loop 
orientation difference shown in pink for mtCYP17 after back-conversion and grey for X-
ray crystal structure, and change in the side chain conformation of F224 is shown in stick 
representation. The polar interactions between the linker (blue), A helix, F helix (yellow), 
F’-G’ loop region (pink) and beta-sheet (residue 480-485) shown by green dashed lines 
in the right panel. Side chains colored by atom-types. 

5.4.4 All-atom MD simulation results 

After achieving stable orientations of CYP17 in the membrane, AAMD simulations were 

performed to observe atomic level interactions between CYP17 and POPC membrane. 

The representative frames were taken from both wtCYP17 and mtCYP17 simulations. 

Three replica simulations for mtCYP17 and 3 wtCYP17 simulations were performed. In 

AAMD simulations (SIM1-6), the orientation of the globular domain above membrane 
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fluctuated throughout simulations in both mtCYP17 and wtCYP17 as shown in the angle 

and distance graphs (Figure 5.10). The angle alpha, TM and heme tilt angles show higher 

fluctuations, while, distances computed for CoM of linker, F’-G’ and globular domain to 

the membrane CoM remained similar or decreased slightly from the distances observed 

in CG simulations. One reason for high fluctuations in CYP17 is that it has highly charged 

interface residues, with long flexible side chains, which develop transient 

polar/hydrogen bonds with phosphate head-group atoms in the membrane, resulting 

in the change in the orientation of globular domain above the membrane. In wtCYP17 

simulation (SIM4), where angle alpha and distances varied from CG simulations, replica 

simulations with different initial velocity with anisotropic pressure (SIM5) and 

semiisotropic pressure (SIM6) were performed. The angles and distances values 

observed in mtCYP17 (SIM2-SIM3) and wtCYP17 (SIM5) match with each other. The 

heme-tilt angle values in mtCYP17 simulations are: 59±6° (SIM2), 54±5° (SIM3) and in 

wtCYP17 57±5° (SIM5). Lower heme-tilt angles are observed in mtCYP17 SIM1 (45±5°) 

and wtCYP17 SIM4 (47±5°) and SIM6 (40±5°). A wide range of heme-tilt angle values 

(47° or 63°) are observed experimentally by Ohta et al (116) for CYP17 purified from 

guinea pig, which has 70% sequence identity with human CYP17. The heme-tilt angle 

observed in simulations by Cui et al. (190) varied between 40° and 67°, which suggests 

that CYP17 can adopt various orientations in the membrane. Overall, the heme-tilt 

angles observed in our AAMD simulations of wtCYP17 and mtCYP17 are consistent with 

the heme-tilt angle of CYP17 determined experimentally by Y. Ohta et al. (116), in 

previous simulations by Cui et al. and by Ivan Lenov (64 ± 4°) (unpublished data). 

Compared to wtCYP17, mtCYP17 with linker trapped in the F’-G’ loop region shows less 

changes in the globular domain orientation (Table 5.4). However, increased fluctuations 

in the TM tilt angle are observed in mtCYP17 compared to wtCYP17, which could be due 

to the freely floating monotopic helix in the absence of an anchoring W2 residue on the 

N-terminal end. TM tilt angle in wtCYP17 simulations (SIM4 and SIM6) corresponds to 

the previously reported lower tilt angles (10-12°), observed in short TM-helices by AA 

simulation studies(157) as well as predicted by PPM server (discussed earlier). In the 
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presence of aromatic and charged flanking residues on both sides of the TM helix, 

wildtype TM helix remained stable in the membrane. However, due to the short TM 

helix length and the negative hydrophobic mismatch effect, a membrane curvature is 

observed near the N-terminal end of TM-helix, which is more pronounced in the 

mtCYP17 compared to wtCYP17 (Figure 5.11). 

Figure 5.10: Evaluation of the position of the potein with respect to the phospholipid 
bilayer during AAMD. The distance and angle plots for mtCYP17 (left column 1 SIM1-3) 
and wtCYP17 (column 2 SIM4-6). Angles: alpha (black), beta (red), heme-tilt (brown), 
TM-helix tilt (cyan) and distances: CoM distance of globular domain (blue) and F’-G’ 
(green) CoM to the membrane CoM are shown. 
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Table 5.4: Mean and standard deviations calculated for angles and distances formed by mtCYP17 (SIM1-3) and wtCYP17 
(SIM4-6) in AAMD simulations. CG simulation results are also shown for comparison. 

AAMD 

Simulations 

Angles (°) Distances CoM (Å) 

Alpha Beta TM Heme Linker F-G loop Globular 

   mtCYP17   

CG: S3 108±6  134±6 15±8 48.8* 22±2 28±2 46±2 

SIM1 117± 5 138±5 19 ± 11 45±5 20 ±2 26 ± 2 45± 2 

SIM2 105±7 136±4 20± 5 59±6 21 ±2 24 ± 2 44± 2 

SIM3 110±5 143±4 23 ±8 54±5 20 ±1 24 ± 1 44± 1 

   wtCYP17   

CG: S4 101±7 125±7 13±7 44.9* 20±2 27±2 46±2 

SIM4 93±6 127±5 13±8 47±5 26±2 29±2 50±2 

SIM5 108±5 142±4 15±7 57±5 22±2 23±2 44±2 

SIM6 105±8 127±5 12±7 40±5 21±1 26±2 46±2 

*heme-tilt angle of mtCYP17 and wtCYP17 was computed after conversion of representative CG frame to AA. 
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The orientations and interactions of wildtype vs mutant CYP17 are shown in Figure 5.11. 

Different orientation of linker position with respect to A-helix and F’-G’ loop is 

highlighted in mtCYP17 (SIM3) and wtCYP17 (SIM6) by transparent circles. Compared 

to wtCYP17, mtCYP17 is more tilted towards the membrane on the distal side, 

increasing alpha and beta-angles, which also resulted in increased heme-tilt angle. In 

mtCYP17, F’-G’ loop is more inserted in the membrane than wtCYP17 which is also 

evident from the CoM distance of the F’-G’ and globular domain from the membrane 

(Table 5.4). An important difference between two proteins (wtCYP17 vs mtCYP17) can 

be seen in the linker orientation and position of TM-helix, which is positioned in front 

of A-helix in mtCYP17 and behind the A-helix in wtCYP17. The polar/charged patch of 

linker region (19-30) developed contact with beta-strand1 (residue 61-74) and beta-

strand2 (residue 370-380) in wtCYP17. Whereas, linker in mtCYP17 interact with A helix, 

F-G region (residues from F-helix, F’-G’ loop) and beta-sheet on the C-terminal end 

(residue 470-480) (Figure 5.12).  Thus, the linker position near F’-G’ loop (mtCYP17) or 

away from F’-G’ loop (wtCYP19) could give the reason for more changes in the 

orientation occurring in the wtCYP17 compared to the mtCYP17. The linker in the 

mtCYP17 changed its conformation during AAMD simulations (SIM3) and moved away 

from F’-G’ loop region. However, large conformational changes are difficult to observe 

during AAMD simulation.  
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Figure 5.11: Last frame from mtCYP17: SIM3 (top panel) and wtCYP17: SIM6 simulations 
showing orientation of CYP17 in the membrane. Top panels show different views of the 
same frame rotated by ~90° around z-axis. The protein is shown in grey colored cartoon 
representation. Linker is shown by iceblue color, A-helix in orange, beta-strands in violet, 
BC-loop/helices in yellow, F-G helices in red and F’-G’ loop in green. Central I-helix is 
colored blue, and heme is shown in cyan licorice representation. In the bottom panels is 
shown wtCYP17. Transparent circles indicate position of the linker with respect to the F’-
G’ loop (green) and A-helix (orange). The red spheres represent phosphate atoms in the 
POPC membrane. 
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Figure 5.12: Comparison between the initial (left) and last frames (right) and between 
mtCYP17 (top) and wtCYP17 (bottom) is shown. The final frames are zoomed in view of 
Figure 5.11. Transparent circles indicate position of the linker (iceblue) with respect to 
the F-G loop (green). The red spheres represent phosphate atoms in the POPC 
membrane. The polar and charged residues within 5Å of phosphate atoms are shown in 
licorice representation.  
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Figure 5.13: RMSD (top panel) and the average B-factor values (mean squared 
fluctuations multiplied by 8π2/3) Å2 (bottom panel) are shown for wtCYP17 and mtCYP17 
simulations. mtCYP17 simulation using anisotropic pressure control is shown in thick 
black line (SIM1) and replica simulations with semiisotropic pressure control red line 
(SIM2) and green (SIM3). wtCYP17 simulations shown in black (SIM4) and red (SIM5) 
using anisotropic pressure control while SIM6 using semiisotropic pressure control is 
shown in green lines. Crystallographic B-factor value shown in yellow line in bottom 
panel. 

Furthermore, root mean squared deviation (RMSD) and B-factor values were calculated 

for AAMD simulations. The RMSD of the backbone atoms of the globular domain of the 

protein was calculated against the minimized structure. According to the RMSD graph 

for both mutant and wildtype simulations, the protein globular domain remained stable 
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throughout simulations (Figure 5.13). The average RMSD of the Cα back-bone atoms of 

the globular domain (residues 50-502) with respect to the minimized structure was 

equal to or below 2.0 Å. However, in mtCYP17 SIM2, RMSD increased to 2.5 Å after ~80 

ns, and then remained stable till 140 ns. The increased RMSD in SIM2 was observed due 

to highly flexible H-I loop as shown in the B-factor graph. The B-factor values obtained 

from AAMD simulations (SIM1-SIM6) were compared with the crystallographic B-factor 

values which showed similar pattern of fluctuation as seen in x-ray structure (Figure 

5.13). The higher B-factor values are observed mainly in the TM-helix, linker regions and 

the different loops in contact with membrane or in the aqueous solvent. Compared to 

wtCYP17 simulations, lower B-factor is seen in mtCYP17 where linker is trapped in the 

F-G loop region 

5.5 Conclusion 

The current study, which involves CG and AA simulations to study CYP17-membrane 

interactions and to evaluate the effect of TM helix mutation on these interactions, 

reveals differences in the orientation and interactions of the TM-helix and linker region 

which influence the final orientations and interactions of the globular domain of mutant 

vs wildtype protein in the membrane. The change in N-terminal TM helix sequence leads 

to unstable interactions of TM helix in the membrane. In several mtCYP17 CG 

simulations (S1-S3), TM-helix is pulled out of the membrane interior and lies on the 

membrane interface, parallel to membrane plane. Expulsion of TM-helix in turn results 

in unstable orientations of CYP17 above the membrane. In mtCYP17 simulations, where 

TM-helix is seen in the membrane, it is stabilized due to the strong polar interactions 

developed by polar and charged linker residues (19-30) with the F-G region, or by 

distortion of TM helix length, change in the conformations of the backbone atoms of 

TM helix leading to unwinding of TM-helix. The interactions and orientation of the TM-

helix in wtCYP17 is stabilized by aromatic and charged residues (W2 and E3) on the N-

terminal end, which are mutated to hydrophobic residues (2AL3) in mtCYP17. The TM 

tilt angle matches well with tilt angles reported for short TM helices (10-12°). The linker 
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position in wtCYP17 is similar to the linker position observed in the x-ray crystal 

structure. Due to mutation in the TM-helix, the mtCYP17 interactions with the 

membrane are disrupted due to expulsion of TM-helix from the hydrophobic core of 

the membrane. However, during AAMD simulations, the heme-tilt angles of mtCYP17 

and wtCYP17 vary between 45 ±5° to 59 ±6° and 40±5° to 57±5°, respectively. The 

heme-tilt angles observed in our simulations are closer to the experimental heme-tilt 

angle measure by Ivan Lenov for mtCYP17 (64 ± 4°), Ohta et al 1992 (47° to 63°) (116) 

and previous simulations results by Cui et al (190) who reported varying heme-tilt angles 

between 40° and 67°. Although the heme-tilt angles in mtCYP17 and wtCYP17 match 

with experimental values, the linker position and membrane interaction and degree of 

insertion in two CYPs differ from each other. In mtCYP17 where TM-helix is inside the 

membrane, the linker is trapped in the position which can obstructs the substrate 

entrance tunnels 2f/2d and could hinder substrate entrance in to the binding pocket 

through these tunnels.  Although, mtCYP17 and wtCYP17 both are  reported to be 

catalytically active (176), CG and AAMD simulations of two CYPs in the membrane 

showed different TM-helix and linker position. In wtCYP17 2d/2f tunnels are accessible 

for the hydrophobic substrates to enter the binding pocket through membrane, which 

are blocked by the linker position in mtCYP17. However, mtCYP17 TM-helix and linker 

position would not affect the binding of electron-transfer protein such as cytochrome-

b5, rather CYP17- cytochrome-b5 intra-transmembrane interactions may stabilize the 

orientation and position of mutant TM-helix. A recent study using DNP-MAS-ssNMR 

spectroscopy has revealed such transmembrane-transmembrane interactions between 

full-length CYP2B4 and  and cytochrome-b5 (191).   
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 CONCLUSION 

Membrane-bound proteins (MPs) play important roles in cells as receptors, channels, 

transporters and enzymes. Around 26% of the human coding genome corresponds to 

MPs (1). Human cytochrome P450 (CYP) enzymes provide an example of bitopic integral 

membrane proteins (IMPs) with a single TM α-helix anchoring the catalytic domain with 

the membrane. CYPs play an important role in drug metabolism, steroid biosynthesis 

and xenobiotic degradation. Given the important role of MPs in regulating cellular 

function, there is increasing focus on studying the structure-function relationships of 

MPs. Experimental techniques like cryo-electron microscopy, NMR and X-ray 

crystallography have improved our understanding of the 3D-folds of MPs. However, 

there are practical difficulties with overexpression, solving high resolution crystal 

structures and studying the dynamic behavior of MPs in their physiological environment 

using experimental techniques. For example, the expression of eukaryotic CYPs in E. coli 

is increased after mutating residues in the TM-helix, truncating it, or even by mutating 

residues in the globular domain region that interact with the membrane. Moreover, the 

structures are usually determined without a lipid bilayer environment. Therefore, 

significant information on protein-membrane interactions and function is lost. 

Experiments such as epitope analysis, mutagenesis, and tryptophan fluorescence 

scanning have been performed to understand the topology of CYPs, and to identify 

regions interacting with the membrane. The orientation of a few CYPs in the membrane 

has been determined experimentally by measuring the tilt angle of the active site heme 

by rotational diffusion and nanodisc experiments. However, these studies have been 

performed for specific CYPs. It is unclear how different CYPs interact with the 

membrane and what the key residue differences at the protein-membrane interface 

are that influence the orientations of CYPs above the membrane. Understanding these 

interactions and orientations in the membrane can help to elucidate the drug selectivity 

and specificity, as most of the substrates, prior to metabolism, are hydrophobic in 

nature and enter into the buried binding pocket of CYPs through the ligand access 
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tunnels which open into the membrane. For this purpose, computational modeling and 

simulations at various time and length scales have played a significant role in 

understanding the mechanistic behavior and dynamics of CYPs in their native 

environment.  

Previously, multiscale simulations, employing CG and AA simulations, have been used 

to study the orientations of several CYPs (human CYP2C9, CYP3A4 and CYP51) in a 

bilayer (31, 134, 192). In this work, I have optimized the multiscale simulation protocol 

to study CYP-membrane interactions (193). For this, CYP3A4 was used as a test case for 

the insertion and orientation of CYP3A4 in a POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine) bilayer. The CYP3A4 orientation in the membrane has been predicted 

previously by experiments and MD simulations. Therefore, it provided us with an 

excellent test system for evaluating different protocols. We have identified an optimum 

procedure in terms of computational efficiency and the quality of the results for CYP3A4 

which match with the experiments. This protocol was successfully applied to four other 

human drug metabolizing CYPs (1A1, 1A2, 2C9 and 2C19) and CYP17 and CYP19, which 

are involved in steroidogenesis. From simulations results, we conclude that, for a 

computationally efficient multiscale procedure to immerse a protein in a membrane, 

the CG simulations should be carried out with the MARTINI force field version 2.2 with 

the standard NPW water model and a RF treatment of long-range Coulombic 

interactions. 

The optimized multiscale simulation protocol was applied to the CYP2C subfamily 

specifically CYP2C9 and CYP2C19, which contributes significantly to the hepatic 

clearance of several drugs. The two isoforms have high sequence conservation (94% 

sequence identity), yet, they have distinct substrate specificities. The main differences 

are observed in the linker, beta-strand1, the B-C loop, helices F, F’-G’, G regions and 

their turns, which are the flexible substrate recognition sites (SRS1,2 and 3), located at 

the entrance to the active site. The sequence differences and conformational changes 

outside the binding cavity can be responsible for the differences in CYP-membrane 
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interactions and orientations and differential entry of drugs in to the binding pocket. 

Using our optimized multiscale simulation approach, I was able to observe differences 

in CYP2C9 and CYP2C19 orientations and insertion depths in the membrane. The key 

residue differences were identified in the protein-membrane interface that appear to 

be responsible for these differences. On mutation of the residues differing in the 

interface region, CYP2C9 showed similar orientations to CYP2C19 in 50% of CG 

simulations, as well decreased insertion depth. However, in this study, a critical issue is 

the selection of the starting structure of CYP2C9, as the crystal structure of CYP2C9 was 

determined either with missing linker and F’-G’ loop regions, or with F’-G’ region 

residues modified to those of the CYP2C5 sequence. Therefore, models with loop and 

helix conformations of the F’-G’ regions of CYP2C9 have been simulated. Depending on 

the initial structure of CYP2C9, different orientations of CYP2C9 in the membrane were 

observed (31). However, both models of CYP2C9, with loop or helix conformations of 

the F’-G’ region, differ in the orientation and insertion depth in the membrane from 

CYP2C19, the crystal structure of the latter was resolved with a helix conformation F’-

G’ region (23).  

Furthermore, I investigated the effect of mutations in the TM-helix of CYP17 on the 

interactions and orientation of mtCYP17 in the membrane and compared with wtCYP17 

employing both CG and AA simulations. The structural and functional importance of the 

TM-helix and the position of the linker is unclear, since, on truncation of the TM-helix, 

CYPs can still associate with the membrane and retain their enzymatic activity. 

Modification in the N-terminal helix residues was done to increase expression of CYP17 

in E. coli. The heme-tilt angles observed in mtCYP17 and wtCYP17 match with the 

experimental heme-tilt angle measured by Ivan Lenov for mtCYP17 (64 ± 4°) (194), Ohta 

et al (47° to 63°) (116) and simulations results by Cui et al (195). However, in 

simulations, it was observed that mutations in the TM-helix affected the TM-helix 

orientation and interactions with the membrane. In mtCYP17 simulations, the TM-helix 

was pulled out from the hydrophobic core of the membrane and was lying parallel to 
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membrane plane. The unstable TM-helix in mtCYP17 disrupted the globular domain-

membrane interactions, or in some cases, the linker was trapped in a position which 

blocked tunnel 2d/2f opening in the membrane. On the other hand, in wtCYP17 the 

2d/2f tunnels are accessible for the hydrophobic substrates to enter the binding pocket 

through membrane and the linker position is similar to the linker position observed in 

X-ray structure. I assume that the mtCYP17 TM-helix and linker positions would not 

affect the binding of electron-transfer proteins such as cytochrome-b5, and therefore, 

not inhibit the catalysis at the enzyme active site but that enzyme turnover could be 

affected. Truncation of the TM-helix residues in CYP17 has shown 2.4-fold decreased 

catalytic activity which could be due to loss of hydrophobic interactions between CYP17 

and its redox partner (196). Such hydrophobic interactions between TM helices of 

CYP2B4 and cytochrome-b5 have been reported by dynamic nuclear polarization (DNP) 

NMR spectroscopy under magic angle spinning (MAS)(191). Therefore, the unstable 

TM-helix lying parallel to the membrane plane in mtCYP17 could result in loss of inter-

TM helix interactions between mtCYP17 and its redox partner, leading to decreased 

catalytic activity or affect membrane anchoring and thereby lead to reduced activity. 

The TM-helix orientation can be measured experimentally using solid state NMR 

spectroscopy (179, 180).  

A complex biomolecular system, such as a CYP-membrane in explicit water solvent, 

constitutes a large system of more than 300,000 atoms and requires long 

computational times to equilibrate the system and achieve convergence of the dynamic 

properties. Increasing system size decreases the possible simulation time and therefore, 

sampling slow conformational changes in atomistic detail becomes difficult. In order to 

study mechanistic interactions in a CYP-membrane system and conformational 

transitions and the reorientation of CYP globular domain with respect to the membrane, 

current simulation time scales present a major bottleneck. However, using simplified 

models or enhanced sampling methods can overcome this limitation, but at the expense 

of losing atomic detail information and accuracy. MARTINI CG simulation is one of the 
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most widely used methods to obtain large conformational changes with reduced 

computational needs. Therefore, combining CG and AA simulations can increase the 

length of simulations and solve the sampling issue.   

With the advancement of computational resources, MD simulation has increased the 

possibility to study biomolecular processes at spatial and temporal levels often 

inaccessible by experiments. However, biomolecular force-field accuracy is one of the 

major bottlenecks in MD simulation, when studying complex macromolecular systems. 

Force-fields are typically parameterized independently for each molecule type, i.e., 

small molecules, protein, lipid, DNA, carbohydrate etc. Therefore, combining different 

force-fields for protein-membrane systems correctly is critical as there is little 

experimental data for mixed systems against which to validate force-fields. In this study, 

I have evaluated the effects of different all-atom force-fields on CYP-membrane 

interactions. Two different lipid force-fields, GAFF lipid and LIPID14, showed different 

orientations and insertion depths of CYP2C9 and CYP2C19. GAFF lipid requires 

application of additional surface tension whereas LIPID14 is optimized without surface 

tension. The structural and dynamic properties of the membrane, such as area per lipid, 

membrane thickness and order parameters, matched well with experimental values in 

the case of LIPID14, while the GAFF lipid showed decreased membrane thickness, 

increased APL and higher order parameters. Furthermore, the effect of combining two 

force-fields on the conservation of protein secondary structures was also checked. I 

therefore concluded that LIPID14 in combination with the latest protein force-fields, 

ff12SB or ff14SB, gives a better prediction of CYP-membrane interactions, compared to 

the GAFF lipid and ff99SB force-fields. 

In this work on CYP-membrane interactions, I have used a homogeneous lipid bilayer 

(POPC), while the native endoplasmic reticulum membrane is a mixture of different lipid 

molecules and cholesterol concentrations which may form different membrane 

microdomains, such as lipid-ordered domains enriched with saturated lipids and 

cholesterol, and lipid disordered domains containing unsaturated lipids. It has been 
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shown that different CYPs are localized in different domains of the ER membrane (197, 

198). It could be possible that the length of the TM-helix plays a role in the localization 

of CYPs in different regions due to the hydrophobic mismatch effect. Also, inclusion of 

cholesterol in the membrane will not only affect the membrane properties, such as 

membrane thickness, lipid order parameter, gel to fluid phase transition and fluidity of 

membrane, but it will also affect the protein-membrane interaction, degree of insertion 

of the globular domain in the membrane, as well as the entry of substrates from the 

lipid bilayer into the active site by substrate access tunnels (143, 199). The strength of 

interaction and stability of the TM-helix, as well as globular domain orientation, may 

vary on changing the lipid bilayer composition. It would therefore be desirable to check 

the effect of cholesterol on CYP-membrane interactions and orientations. But, inclusion 

of several different lipid molecules will not only increase the complexity of system but 

it will also mean that longer simulation times are required to fully equilibrate such 

complex systems. Furthermore, CYPs are known to form homo- and heterooligomers in  

biological systems (200), and also to interact with their redox partners to carry out 

catalytic reactions. These reactions will influence the orientation of CYPs in the 

membrane. The orientation and interactions of the TM-helix in the membrane can also 

be stabilized in the oligomer state. Therefore, studying protein-protein and protein-

membrane interactions can further improve our understanding about CYP orientations 

in the membrane and opening of ligand access tunnels, and, thereby the mechanism of 

drug selectivity and drug metabolism.  

This work provides a mechanistic view of different CYP-membrane interactions at 

atomistic detail and sheds light on the mechanism of drug selectivity and specificity 

exhibited by different CYPs. In this work, I have identified important SRS regions located 

at the outer surface of CYPs, which contribute to the ligand selectivity and entrance into 

binding pocket as well as the CYP-membrane orientation and interactions. I have also 

identified the effect of mutations in the TM-helix on CYP-membrane interactions, which 

explains the decreased catalytic efficiency of the enzyme. Since CYPs are highly 
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polymorphic, this work can be extended to understand the mechanism of single 

nucleotide polymorphisms (SNP) on enzyme catalysis. The orientations of different CYPs 

(CYP2C9, CYP2C19, CYP3A4 and CYP17 and CYP19) in the membrane obtained in the 

current study can be used as starting point for studying protein-protein interactions, 

such as CYP and CPR (cytochrome P450 reductase) interactions to investigate the 

mechanism of electron transfer from CPR to different CYPs. The optimized multiscale 

protocol is suitable for use with different membrane compositions or with different 

CYP-oligomers in the membrane environment, which will give a more realistic picture 

and mechanistic insights into protein-protein-membrane interactions.   
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APPENDIX I 

Table A 1  A list of in silico studies on human drug metabolizing CYPs is taken from the book chapter on “Drug Metabolism 
Prediction” (201). The data presented in the table was compiled in July 2014. 

CYP PDB 
RESOLUTION 

 (Å) 
LIGAND# TUNNELS METHOD+ REFERENCE YEAR 

1A2 

2HI4 1.95 

-----b 2, S 
UV/VIS 

MD 
(202) 2011 

-----b 
1, 2a, 2b, 2e, 

2f, 5, S 
MD (203) 2011 

Model  
7-ethoxy 

7-methoxyresorufin 
 

Modeling 

Docking 

MD 

(204) 2008 

2A6 

1Z10 1.9 Coumarin 2e, S MD (205) 2008 

1Z11 2.05 
Methoxsalen 

(S)-(-)-nicotine 
 

Docking 

MD 

MM-PBSA 

QM/MM 

(206) 2011 
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1Z10 

1Z11 

2FDU 

2FDV 

2FDW 

2FDY 

1.90 

2.05 

1.85 

1.65 

2.05 

1.95 

NNK 
 

 

Docking 

MD 

MM-GBSA 

(207) 2011 

1Z10 1.90 Coumarin 
2c, 6, 3, 2a, 

2e, S 

MD, RAMD 

SMD 
(47) 2011 

1Z10 1.90 Coumarin 2b, 2e MD (208) 2012 

2C9 

1OG2 2.60 -----b 2e, S MD (205) 2008 

1OG2 2.6 -----b 2, S 
UV/VIS 

MD 
(202) 2011 

1R90 1.9 Gliclazide  
Modeling 

MD 
(209) 2011 
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1R90 1.9 Methoxychlor  MD (210) 2008 

1R90 2.0 -----b 2a, 2c, S 
Modeling 

MDmem 
(31) 2011 

1OG2 2.6 -----b 2b, 2c, S 
Modeling 

MDmem 
(32) 2011 

1OG5 

10G2 

1R90 

2.7 

2.6 

2.0 

WAR, WAR-OH 

FLU, FLU-OH 

2a/2b, 2c, 2e, 

2d, 2f, S, 3 

MD 

RAMD 
(46) 2012 

1OG2 2.6 -----b 2a, 2b, 2e, S MD (208) 2012 

1OG2 

1OG5 

2.6 

2.7 
Warfarin  MD (211) 2006 

2C9*2 

*3 

*5A 

10G2 2.6 

Diclofenac 

Mefnamic acid 

Phenytoin 

Piroxicam 

 

Modeling 

MD 

Docking 

(212) 2010 
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S-Warfarin 

Tenoxicam 

Tolbutamide 

2C9*13A 1R90 1.9 
Diclofenac 

Lornoxicam 
S 

Modeling 

Docking 

MD 

(213) 2006 

2D6 

2F9Q 3.0 -----b 2, S 
UV/VIS 

MD 
(202) 2011 

2F9Q 3.0 
-----b 

Quinidine 
 

UV/VIS 

MD 
(214) 2012 

2F9Q 3.0 -----b S MD (208) 2012 

2E1 

3E6I 2.2 -----b 2ac, 2e MD (208) 2012 

3E6I 2.2 

Indazol 

 

 

 

 

 

2a, 2b, 2c, 2f, 

3, S, W, 1, 2d 

MD 

RAMD 

SMD 

(37) 2012 
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2E1 3E4E 2.20 

4-methylpyrazole 

BNZ, ANI, AAP, CLZ 

& THP 

 

Modeling 

Docking 

MD 

(215) 2012 

3A4 

1TQN 

1W0E 

1W0F 

1W0G 

2.05 

2.80 

2.65 

2.73 

-----b 

CBZ 
 

Modeling 

Docking 

MD 

(216) 2012 

1TQN 2.05 -----b 2, S 
UV/VIS 

MD 
(202) 2011 

1TQN 

1W0E 

2.05 

2.08 
4-OHT 2b, 4, S 

Modeling 

Docking 

MD, QM 

(217) 2012 

1TQN 2.05 -----b 2e, S MD (205) 2008 

1W0F 2.6 VARIOUS LIGANDSC  
DOCKING 

MD 
(218) 2010 

 



  
GM 202 

 

a, CYP2C9*2,*3,*5 and *13 are the allelic variants of wild type CYP2C9 with single-point mutations R144C, I359L, D360E and 

L90P, respectively. 

b, In the ligand column, “----” is used to show ligand free structures of CYPs, either from removal of the ligand from original 

structure or from solving the crystal structure without a ligand (apo form). 

c, Various ligands are docked which are given in Table 1 of Teixeira et al,. 2010. 

#, The ligand names are abbreviated as follows: ANF (α-naphthoflavone), NNK (4-(methylnitrosamino)-1-(3-pyridyl)-1-

butane), CBZ (carbamazepine), TMZ (temazepam), TST-OH (hydroxylated testosterone), WAR and WAR-OH (warfarin and its 

hydroxylated product), FLU and FLU-OH (flurbiprofen and its hydroxylated product), BNZ (benzene), ANI (aniline), AAP 

(acetaminophen), CLZ (chlorzoxazone), THP (theophylline), 4OH-T (4-hydroxy-temoxifen). 

+, In the methods column, abbreviations for the experimental and computational methods are given which indicate, UV/VIS: 

Ultra-violet/Visible and resonance Raman spectroscopy, MD: molecular dynamics simulations, Modeling: either homology 

modeling or modeling of missing residues in the crystal structure, Docking: ligand docking, RAMD: random accelerated 

molecular dynamics, SMD: steered molecular dynamics, QM; quantum mechanics, and MM-PBSA/GBSA: Molecular 

Mechanics/Poisson-Boltzmann Surface Area/Generalized Born Surface Area calculation of free energies. The superscript 

‘mem’ denotes that the simulations have been performed with a bilayer present. All other simulations were performed for 

the proteins in water without any membrane bilayer. 


