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ABBREVIATIONS 

ARI  Adjusted Rand Index 

AUC  Area Under Curve 

AVI  Adjusted Variation of Information 

BIC  Bayesian Information Criterion 

BMBF  German Federal Ministry for Education and Research 

CDT   Cold Detection Threshold 

CI  Confidence Interval 

CPT   Cold Pain Threshold 

CRPS  Complex Regional Pain Syndrome 

DB  Database 

DET  Deterministic algorithm 

DFNS  German Research Network on Neuropathic Pain 

DMA   Dynamic Mechanical Allodynia 

dPNP  diabetic Polyneuropathy 

EM  Expectation Maximization 

EMA  European Medicines Agency 

H  Healthy sensory profile 

HFS  electrical High-Frequency Stimulation  

HIV  Human Immunodeficit Virus 

HPT   Heat Pain Threshold 

i.d.  intradermal 

IASP  International Association for the Study of Pain 

IENFD  Intra-Epidermal Nerve Fiber Density 

IMI  Innovative Medicines Initiative 

IN  Irritable Nociceptor 
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MDT   Mechanical Detection Threshold 

MH  Mechanical Hyperalgesia phenotype 

MPS   Mechanical Pain Sensitivity 

MPT   Mechanical Pain Threshold 

NB  Nerve Block mechanistic phenotype 

NNT  Number Needed to Treat 

NPSI   Neuropathic Pain Symptom Inventory 

PH  Primary Hyperalgesia mechanistic phenotype 

PHN  Post-Herpetic Neuralgia 

PHS   Paradoxical Heat Sensation 

PiNS  Pain in Neuropathy Study 

PNI  Peripheral Nerve Injury 

PNP   Polyneuropathy 

PPT   Pressure Pain Threshold 

QST   Quantitative Sensory Testing 

RAD  Radiculopathy 

ROC  Receiver Operating Characteristics 

SH  Secondary Hyperalgesia mechanistic phenotype 

SL  Sensory Loss phenotype 

TH  Thermal Hyperalgesia phenotype 

TN  Trigeminal Neuralgia 

TRPV1 Transient Receptor Potential Vanilloid 1 

TSL   Thermal Sensory Limen 

UVB  Ultraviolet Radiation B 

VDT   Vibration Detection Threshold 

WDT   Warm Detection Threshold 

WUR   Wind-Up Ratio 
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1 INTRODUCTION 

1.1 Pain and neuropathic pain 

Pain is defined as an “unpleasant sensory and emotional experience associated with 

actual or potential tissue damage, or described in terms of such damage” by the 

International Association for the Study of Pain (IASP) (Marskey et al., 1979). While 

acute pain serves as a warning and protective system activated by tissue damage or 

trauma, chronic and persistent pain may turn into a pathological state of its own 

(Loeser and Treede, 2008). If the pathophysiological basis is known, chronic pain 

can be subdivided into two major groups: 

- Nociceptive pain is arising from activation of nociceptors (sensory neurons 

reporting actual or potential tissue damage). Chronic inflammation can lead to 

inflammatory pain, a chronic form of nociceptive pain. The nociceptive system 

itself is not directly affected, but may alter over time via sensitization (Loeser 

and Treede, 2008). 

- Neuropathic pain results from an injury or disease to the nociceptive system 

(Treede et al., 2008; Finnerup et al., 2016) and can be caused peripherally 

(peripheral neuropathic pain) or in the central nervous system (central 

neuropathic pain). 

Historically, peripheral neuropathic pain is classified based on the underlying disease 

or event initiating the nervous damage, such as diabetes, HIV, or chemotherapy-

induced polyneuropathy (PNP), post-traumatic peripheral nerve injury (PNI), 

radiculopathy (RAD), trigeminal neuralgia (TN) or post-herpetic neuralgia (PHN) 

(Colloca et al., 2017). Treatment guidelines are often based on these etiologies, 

though it has become evident over the last decades that this approach is not 

sufficient, as first line treatment fails in over 50% of patients (Finnerup et al., 2015; 

Bouhassira and Attal, 2016). While written ten years ago, the following devastating 

statement remains largely valid: “The management of patients with chronic NP 

[neuropathic pain, A/N] is complex and response to existing treatments is often 

inadequate. Even with well-established NP medications, effectiveness is 

unpredictable, dosing can be complicated, analgesic onset is delayed, and side 

effects are common” (Dworkin et al., 2007). 
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The fact that common symptoms and signs of neuropathic pain appear across 

etiologies, while varying in pattern within etiologies, has led to the idea that distinct 

pathogenic mechanisms of neuropathic pain appear across etiologies (Fields et al., 

1998; Woolf and Mannion, 1999; Campbell and Meyer, 2006; Baron et al., 2012; von 

Hehn et al., 2012). Treatment of neuropathic pain therefore should be aiming at 

mechanisms rather than at etiology.  

1.2 Peripheral sensory signal transduction 

The somatosensory (nervous) system comprises the afferent peripheral sensory 

receptor neurons, and their subsequent second-order neurons in the central nervous 

system (Kandel et al., 2013). All afferent sensory receptor neurons are pseudo-

unipolar neurons based in the dorsal root (or trigeminal) ganglia with a single axon 

that divides at a T-junction into a peripheral axon, innervating skin or deep tissue, 

and a central axon, transmitting signals onto secondary neurons in the spinal cord or 

medulla oblongata (Squire et al., 2008). Sensory neurons differ, however, in degree 

of myelination, and (conclusively) signal conduction velocity (Kandel et al., 2013). 

Three major fiber types can be distinguished in primary afferent neurons:  

- Aβ-fibers – thickly myelinated (nerve fiber diameter 6 – 12 μm), high 

conduction velocity (36 – 72 m/s) (Kandel et al., 2013) – innervate cutaneous 

mechanoreceptors (e.g. vibration, pressure) (Squire et al., 2008), 

- Aδ-fibers – thinly myelinated (nerve fiber diameter 1 – 6 μm), medium 

conduction velocity (3 – 36 m/s) (Kandel et al., 2013) – detect cold and 

noxious stimuli (Squire et al., 2008) and 

- C-fibers – unmyelinated (nerve fiber diameter 0.2 – 1.5 μm), slow conduction 

velocity (0.4 – 2 m/s) (Kandel et al., 2013) – transmit warm and noxious stimuli 

(Squire et al., 2008). 

1.3 Nociception 

Noxious stimuli are transduced (e.g. via TRPV1) and subsequently transformed into 

action potential trains (e.g. via NaV 1.7, 1.8, etc.). These trains are conducted via 

small, thinly or unmyelinated Aδ- or C-fibers. The divergent conduction velocity of 

these fibers results in the concept of first and second pain: the former, conducted by 
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faster Aδ-fibers, is discriminative and rapidly induces efferent response, the latter, 

conducted by slower C-fibers, is less localized and of longer duration (Squire et al., 

2008).  

Nociceptors with Aδ-fibers are sensitive to either mechanical stimuli and induce pain 

of sharp or pricking quality, or are sensitive to mechanical and heat stimuli and 

induce pain of burning quality (Kandel et al., 2013). Nociceptors innervated by C-

fibers are polymodal or sensitive to mechanical and cold stimuli and induce pain of 

burning or freezing quality (Kandel et al., 2013). It should be noted that the majority 

of nociceptors are polymodal and respond to various stimuli, such as heat, cold, 

sharp or blunt pressure, or chemicals, but the sensitivity spectrum varies broadly 

between nociceptors (Kandel et al., 2013).  

1.4 Mechanisms of neuropathic pain 

According to a recent review (Colloca et al., 2017), along the nociceptive pathways, 

at three levels the generation of neuropathic pain can take place: 

1. First-order nociceptor ion channels (peripheral sensitization). 

Altered function of transduction channels (e.g. TRPV1 (Haanpaa and Treede, 

2012)), as well as in- or decreased activity or expression of sodium, potassium 

and/or calcium channels in affected afferent nerves can induce spontaneous 

pain or hyperexcitability of the affected nerves, which has been shown for 

example in case of congenital overexpression of sodium channels, which can 

induce painful diseases like erythromelalgia (McDonnell et al., 2016). Similarly, 

increased sodium or decreased potassium channel function can induce 

hyperexcitable nociceptors (often called IN = irritable nociceptors) (Fields et 

al., 1998; Tesfaye et al., 2013). These can also cause spontaneous pain via 

ectopic activity. Increased pain sensitivity due to peripheral sensitization is 

limited to the site of injury, trauma or disease and called primary hyperalgesia 

(Treede et al., 1992; Hucho and Levine, 2007). 

2. Second-order neurons (central sensitization). 

Enhanced excitability of second order nociceptive neurons can increase their 

response to nociceptor input and widen their receptive field so that input from 

non-nociceptive sensory neurons induces nociceptive transduction (Woolf, 

2011). Central sensitization can be induced by primary hyperalgesia and 
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accounts for secondary hyperalgesia (pain increased in spatial extend beyond 

the initial area of the injury or disease) and allodynia (painful sensation to non-

painful stimuli) (Baron et al., 2013). 

3. Inhibitory modulation. 

Descending modulatory pathways and inhibitory interneurons can be impaired 

in patients with neuropathic pain, shifting the balance between pain inhibition 

and excitation further towards excitation (Colloca et al., 2017). It has been 

shown that the extent of conditioned pain modulation, where the perceived 

pain intensity of a steady painful test stimulus is reduced by applying a second 

tonic painful stimulus, is reduced in many patients with chronic pain (Lewis et 

al., 2012). 

These mechanisms are, as stated above, present across etiologies of neuropathic 

pain (though varying in frequency), they may co-exist and enhance or facilitate each 

other, and, most importantly, are assumed to respond to distinct forms of treatment 

(Finnerup et al., 2015). Therefore, a mechanistic classification of neuropathic pain 

has been under debate for over 25 years now (Fields et al., 1998; Woolf et al., 1998; 

Baumgartner et al., 2002; Baron et al., 2012; von Hehn et al., 2012; Edwards et al., 

2016). 

1.5 Sensory phenotyping 

To establish a mechanism-based classification, it is crucial to be able to detect and 

describe the mechanisms involved in the generation of pain in the individual patient. 

A first step can be patient-recorded questionnaires, capturing subjective reports of 

dimensions of neuropathic pain like the Neuropathic Pain Symptom Inventory (NPSI) 

(Bouhassira et al., 2004). As a second step, bedside testing of sensory signs like loss 

of thermal or mechanical detection or painful reaction to stimuli that are normally not 

perceived as painful may indicate involvement of mechanisms. However, both 

methods are subjective and hardly comparable between patients. 

A comprehensive way to capture a patient’s sensory function is Quantitative Sensory 

Testing (QST) (Krumova et al., 2012a). When performed in accordance with the 

DFNS (German Research Network on Neuropathic Pain) protocol (Rolke et al., 

2006b), QST assess thermal and mechanical detection and pain thresholds, 

capturing various aspects of neuropathic pain:  
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1. Denervation/deafferentation – increased detection thresholds indicate loss of 

activity and/or presence of Aβ- (mechanical detection), Aδ- (cold detection) or 

C-fiber sensory neurons. 

2. Peripheral sensitization – heat hyperalgesia or increased deep pain sensitivity 

to blunt pressure in combination with unimpaired thermal detection may 

indicate irritable nociceptors. 

3. Central sensitization – dynamic mechanical allodynia, increased pinprick pain 

sensitivity and cold hyperalgesia indicate central sensitization. 

4. Modulatory descending pathways – an increased wind-up ratio (rating of a 

single painful stimulus compared to a series of ten such stimuli) indicates 

impaired descending noxious inhibition controls. 

While QST has shown its capacity to identify and separate groups of patients with 

neuropathic pain (Maier et al., 2010; Smith et al., 2017), its usefulness for individual 

treatment is under discussion (Hansson et al., 2007; Backonja et al., 2013). Detection 

and pain thresholds vary broadly within healthy populations, and are influenced by 

age, gender, tested body region, and more problematic, by many factors that are 

impossible to control for, like genetics, epigenetics and individual development. Still, 

this is a frequent phenomenon in medicine and even more problematic in other tests 

assessing the nervous system (e.g. counting intraepidermal nerve fibers after skin 

biopsy (Isak et al., 2017)). 

1.6 Aims and objectives 

The European consortia IMI (Innovative Medicines Initiative) Europain, Neuropain 

and the DFNS have gathered QST data of 945 patients with peripheral neuropathic 

pain and 657 healthy participants with transient sensory changes due to surrogate 

models for neuropathic pain. In addition, reference data of healthy participants was 

collected in the DFNS (Rolke et al., 2006a; Blankenburg et al., 2010; Magerl et al., 

2010; Pfau et al., 2014; Vollert et al., 2016a), and 188 healthy participants from 

additional German and European centers were included subsequently (Vollert et al., 

2016a). All data have been collected in a central database in Bochum, Germany 

(Maier et al., 2010; Vollert et al., 2016a; Baron et al., 2017; Vollert et al., 2017b). 

While examination of patients and healthy participants was performed by physicians 

at the respective sites and collection and organization of data in a unified database 
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with high data quality was the central task of my master thesis (Vollert et al., 2015; 

Vollert et al., 2016b), scope of the present thesis was to adapt, develop and perform 

all mathematical analysis necessary to develop an individual algorithm to assign 

patients to sensory phenotypes that are linked to mechanisms of pain generation. En 

detail, aim of this work was to use this data to: 

1. Perform a systematic analysis of heterogeneity of QST assessment of patients 

and healthy participants between the participating European centers, to show 

that comparability between centers is guaranteed, a central prerequisite for 

analyzing the data as a homogenous dataset. 

2. Use unsupervised clustering methods to identify subgroups of sensory profiles 

appearing across etiologies of peripheral neuropathic pain and may indicate 

underlying mechanisms of pathophysiology. 

3. Develop an algorithm that enables assignment of individual patients to one or 

more of the subgroups identified in (2) based on the patient’s QST profile. 

4. Apply the algorithm from (3) to 83 patients with peripheral neuropathic pain, 

whose pain relief after treatment with oxcarbazepine  is known from a former 

study (Demant et al., 2014). Oxcarbazepine blocks sodium channels that are 

mainly located on small nerve fibers, and is therefore thought to be ineffective 

in patients with pain linked to deafferentation. In their study, Demant et al. 

found that patients with intact thermal detection show a significantly increased 

pain relief after treatment with oxcarbazepine compared to patients with loss of 

thermal detection. A pain relief that is significantly higher in a sensory 

subgroup from (2) with intact thermal detection compared to those with loss of 

thermal detection would indicate mechanistic variance in pain generation 

between subgroups. 

5. Apply the algorithm from (3) to 335 patients with painful peripheral nerve 

injury, 151 patients with painful diabetic neuropathy, and 97 patients with post-

herpetic neuralgia. Based on the frequency of each phenotype in each 

etiology, sample sizes of study populations that need to be screened to reach 

a sub-population large enough to conduct a phenotype-stratified study were to 

be calculated. 

6. To create a database of human surrogate models studied with full QST 

profiles and to perform a similar cluster analysis and a similar individual 

algorithm as in (3) in 657 healthy participants with transient sensory changes 
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due to surrogate models for denervation, peripheral sensitization and central 

sensitization. These represent well-studied mechanisms.  

7. To further validate the phenotypes identified in (2) by submitting them to the 

mechanism-based individual algorithm developed in (6). An emergence of 

similar phenotypes in surrogate models that are similar in mechanism would 

further strengthen the concept of sensory phenotypes representing 

mechanisms of neuropathic pain. 
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2 METHODS 

2.1 Consortia and participating centers 

The DFNS (http://www.neuropathischer-schmerz.de) was formed in 2002 and 

financed by a BMBF (federal ministry for education and research) grant to investigate 

mechanisms and treatments of neuropathic pain. Forming universities were the Ruhr 

University, Bochum, University of Schleswig Holstein, Kiel, Technical University, 

Munich, Ruprecht-Karls-University, Heidelberg, Johannes-Gutenberg-University, 

Mainz, University of Erlangen, University of Tübingen, University of Würzburg, 

University of Ulm. The study protocol was approved by the ethics committee of the 

University Hospital Kiel and subsequently by the ethics committees of all participating 

centers. Subsequently, the University Hospital of the Goethe-University, Frankfurt am 

Main, joined the DFNS and participated in collecting data from human surrogate 

models of neuropathic pain. 

The EUROPAIN project (http://www.imieuropain.org) was founded in 2009 and 

financed by the European union’s seventh framework programme. Data for this study 

were collected by the following centers: Aarhus University, Denmark, Ruhr-

University, Bochum, Germany, University of Schleswig Holstein, Kiel, Germany, 

Technical University, Munich, Germany, Medical Faculty Mannheim, Ruprecht-Karls-

University, Heidelberg, Germany. The ethics committee of each center approved the 

study protocol individually. 

The NEUROPAIN project is an investigator-initiated project sponsored by Pfizer. 

Data for this study were collected by the following centers: Aarhus University, 

Denmark, Ruhr-University Bochum, Germany, University of Schleswig Holstein, Kiel, 

Germany, Technical University, Munich, Germany, Medical Faculty Mannheim, 

Ruprecht-Karls-University, Heidelberg, Germany, Université Versailles-Saint-Quentin, 

Versailles, France, Sapienza University, Rome, Italy, Helsinki University Central 

Hospital, Finland, Karolinska Institutet, Stockholm, Sweden, Benedictus Hospital 

Tutzing, Germany, Imperial College, London, United Kingdom, Neuroscience 

Technologies, Ltd., Barcelona, Spain. The ethics committee for each center approved 

the study protocol individually. 
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The Pain in Neuropathy Study (PiNS) was supported by the Wellcome Trust, and the 

European Union's Horizon 2020 research and innovation program. Data for this study 

were collected at the Oxford University, Oxford, United Kingdom, Imperial College, 

London, United Kingdom, and Sheffield Teaching Hospitals, Sheffield, United 

Kingdom. The ethics committee for each center approved the study protocol 

individually. 

All participating centers underwent strict quality control (Geber et al., 2009; Magerl et 

al., 2010; Vollert et al., 2015) to ensure comparability of QST assessments between 

centers. 

2.2 Patient and participant selection 

2.2.1 Patients 

[The following section has been taken in parts and modified from (Vollert et al., 

2016b) and (Baron et al., 2017).] 

Inclusion criteria for patients were carefully checked by a physician experienced in 

pain medicine at the local center. For each diagnosis, inclusion criteria were as 

follows:  

- Polyneuropathy: pathological electroneurography or pathologically decreased 

vibration detection thresholds at two of four sites (< 5/8) at the lower limb, 

which could not be explained by another disease, or pain with polyneuropathy-

type location and evidence of small fiber neuropathy based on skin punch 

biopsy, laser-evoked potentials or bedside thermal testing, which could not be 

explained by another disease. 

- Peripheral nerve injury: history of traumatic nerve injury of the distal upper or 

lower limb and sensory-motor abnormalities confined to the innervation 

territory of the injured nervous structure or idiopathic sensory trigeminal 

neuropathy or iatrogenic mandibular neuropathy (i.e., inferior alveolar or 

lingual nerve neuropathy after various kinds of intraoral procedures) or 

trigeminal neuropathy secondary to compression, trigeminal neuropathy 

secondary to percutaneous lesions of the ganglion and sensory loss in the 

neuroanatomical adequate trigeminal territory. 
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- Post-herpetic neuralgia: unilateral zoster rash in the facial or thoracic area with 

post-zoster scarring, hypo- or hyperpigmentation in the affected dermatome or 

sensory deficit around the previous zoster rash determined by bedside-testing. 

- radicular lesion: pain in the L5 and/or S1 dermatome and positive straight leg 

raising test or sensory deficit within the matching dermatome or diminished 

Achilles tendon reflex for S1 lesions and MRI of the lumbar spine confirming 

nerve root impairment by a herniated intervertebral disk or electromyography 

showing denervation in the L5 or S1 territory. 

Exclusion criteria were age under 18 years, missing informed consent, insufficient 

language skills or other communication problems, pain treatment by topical local 

anesthetics for ≥ 7 days in the last 4 months or by topical capsaicin in the last 6 

months, comorbidities treated by anticonvulsants or antidepressants, other pain 

locations with pain intensities ≥ 6 on ≥ 15 days/ month, other severe systemic or focal 

diseases of the central nervous system (e.g., stroke, spinal cord lesion), spinal canal 

stenosis, peripheral vascular disease (Fontaine stage II or higher), pending litigation 

and major cognitive or psychiatric disorders. In the cases of unilateral pain 

syndromes, contralateral neuropathies or painful conditions of the contralateral limb 

had to be excluded. Datasets were excluded in the case of incomplete records (e.g., 

no precise diagnosis available, more than 2 missing variables of the QST in the 

affected area, no information about age, gender or other demographic data). 

2.2.2 Healthy participants 

Healthy participants were included based on the recommendations by Gierthmühlen 

et al. (Gierthmuhlen et al., 2015) and collected by ten centers from the DFNS, IMI 

Europain and Neuropain for quality assurance purposes (Vollert et al., 2015) during 

the certification process of these centers (Geber et al., 2009).   

2.2.3 Human surrogate models of neuropathic pain 

The following human surrogate models for neuropathic pain were conducted within 

the DFNS and included in the analysis (Klein et al., 2005; Vollert et al., 2017b): 

- A-fiber-block (unpublished data collected in Kiel and Mannheim, methods as in 

(Ziegler et al., 1999)). Selectively blocking A-fibers leads to strongly decreased 
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sensory function (except warm detection, which is C-fiber mediated) and is a 

model for selective deafferentation/denervation of myelinated nerves (e.g. 

demyelinating polyneuropathy).  

- Topical lidocaine cream application. Topical lidocaine induces loss of sensory 

function and therefore is a model of denervation/deafferentation (Krumova et 

al., 2012b). 

- Topical capsaicin application, using cream, watery solution, or patch. The 

application of topical capsaicin induces peripheral sensitization, and can lead 

over time to a secondary hyperalgesia beyond the immediately affected area, 

a model for peripheral sensitization leading to central sensitization (Baron et 

al., 2013; Lotsch et al., 2015) 

- UV-B light irradiation (unpublished data collected in Mannheim and published 

data, methods as in (Gustorff et al., 2013)). The sunburn model induces 

primary and secondary hyperalgesia similar to topical capsaicin (Gustorff et 

al., 2013) 

- Intradermal capsaicin injection (unpublished data collected in Kiel, Mannheim 

and TU Munich, methods as in  (Magerl and Treede, 2004). The injection 

leads to secondary hyperalgesia, without inducing primary hyperalgesia first 

(Magerl and Treede, 2004). 

- Cutaneous electrical high-frequency stimulation (HFS). Cutaneous HFS leads 

to mechanical hyperalgesia and allodynia, and therefore is a model of central 

sensitization (Lang et al., 2007). 

- Muscular electrical high-frequency stimulation. HFS in the muscle is thought to 

lead to peripheral sensitization (Schilder et al., 2016). 

- Topical menthol application. As topical menthol application leads to primary 

and secondary cold and mechanical hyperalgesia, it is a model for central 

sensitization (Wasner et al., 2004; Binder et al., 2011). 

- Topical application of capsaicin solution in combination with lidocaine patch. 

This model induces primary hyperalgesia (peripheral sensitization) in 

combination with loss of function, e.g. numbness (Enax-Krumova et al., 2017). 

2.3 QST protocol 

QST in accordance with the DFNS protocol assesses 13 parameters: cold and warm 

detection thresholds (CDT and WDT, respectively), the thermal sensory limen during 
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alternating cold and warm stimuli and the number of paradoxical heat sensations 

(PHS) during this procedure, cold and heat pain thresholds (CPT and HPT, 

respectively), tactile (mechanical) detection threshold (MDT), mechanical pain 

threshold and sensitivity to pinprick stimuli (MPT, MPS), dynamical mechanical 

allodynia to touch with a brush, cotton wool or Q-tip (DMA), the wind-up ratio (WUR) 

of the perceived pain of a single pinprick stimuli compared to a series of ten stimuli, 

vibration detection threshold (VDT) and deep pain sensitivity to blunt pain (pressure 

pain threshold, PPT) (Rolke et al., 2006a).  

Thermal sensory and pain thresholds were performed using either a TSA 2001-II 

(MEDOC, Israel) or a MSA (SOMEDIC, Sweden) that in- or decreased temperature 

by 1°C per second (Rolke et al., 2006b). For the TSL, six warm and cool stimuli were 

applied. The participant was asked whether he or she felt a cold or a warm stimulus, 

and the number of PHS (warm sensations during cold stimuli) was recorded. MDT 

was defined as the geometric mean of 5 series of stimuli ascending and descending 

between 0.25 and 512mN by a standardized set of von Frey hairs, mechanical pain 

threshold as the geometric mean of 5 series of stimuli ascending and descending by 

applying pinprick stimuli between 8 and 512mN (Rolke et al., 2006b). MPS and DMA 

were assessed by applying a total of 50 stimuli (35 pinprick and 15 light tactile in a 

balanced protocol) and asking patients to give a pain rating on a 0 (no pain) to 100 

(worst pain imaginable) NRS scale. MPS was calculated as the geometric mean of 

the pain ratings of the pinprick stimuli, DMA as the geometric mean of the pain rating 

of the tactile stimuli. For the WUR the perceived intensity of a single pinprick stimulus 

was compared with that of a series of 10 repetitive pinprick stimuli of the same 

physical intensity on a 0-100 NRS scale, as an average of five series (Rolke et al., 

2006b). VDT was assessed with a Rydel–Seiffer graded tuning fork (64 Hz, 8/8 scale, 

mean of three testing series) and PPT was determined over muscle with a pressure 

gauge device (FDN200, Wagner Instruments, USA), exerting forces up to 2000 kPa, 

as a mean of three series of ascending stimulus intensities, each slowly increasing 

(50 kPa/s) (Rolke et al., 2006b). 

2.4 z-transformation 

The initial assessment of 180 healthy participants for the DFNS reference database 

revealed that all parameters except PHS and DMA could be transformed (partly in 



Methods 

15 

log-space) to a standard normal distribution (Rolke et al., 2006a; Magerl et al., 2010; 

Pfau et al., 2014). This process, called z-transformation, normalizes all values to a 

mean = 0 and a standard deviation = 1. Subsequently, all QST results of patients and 

healthy participants were transformed in accordance to this normalization. The z-

transformation normalizes for age decade, gender and tested body region, thus 

making pain and detection thresholds comparable between patients with different 

age and gender, with nerves affected e.g. at the face or the feet. Abnormal values 

are defined as values beyond the 95% confidence interval. While individual z-scores 

are considered as abnormal if beyond ± 1.96 (Rolke et al., 2006a), for groups of 

patients, z-scores of ± 1.0 have been shown to be of clinical significance, as they 

include a relevant number of patients with abnormal values (Maier et al., 2010). 

DMA and PHS, which do not normally occur in healthy participants, cannot be z-

transformed. They are usually presented as percentages of presence, but for use in 

statistical analysis, they can be transformed to pseudo-z-values: DMA can be coded 

into a 0/2/3-variable representing no DMA (coded as 0), DMA with average pain 

ratings below 1 on a 0-100 NRS scale (coded as +2) and DMA with average pain 

ratings between 1 and 100 (coded as +3). PHS can be transformed to a binary 0/2-

variable showing absence (coded as 0) or presence (coded as +2) of pathological 

values (Baron et al., 2017).  

As many surrogate models were applied at the volar lower arm or upper thigh, which 

are not standardized areas, data of the subjects tested in the same area before 

treatment, or, if this data was unavailable, of the contralateral untreated side was 

compared used to calculate effect sizes (Cohen’s d (Cohen, 2013)). This measure 

normalizes changes in the mean value before and after treatment to standard 

deviation, i.e. an effect size = 1 equals a change in the mean value after treatment 

that is equal to the standard deviation of the sample. There are no general 

interpretations of “good” effect sizes, but it is often considered that effect sizes below 

0.3 can be considered small, and above 0.7 can be considered as large treatment 

effects (Cohen, 1992). 

2.5 Analysis of heterogeneity 

[The following section has been taken in parts and modified from (Vollert et al., 

2016a).] 
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To assess the variability of QST results across the different centers, random effects 

models for the eleven normally distributed QST parameters were adopted, with the 

QST z-value of a certain parameter as the dependent variable and center as the 

random effect. For the analysis of cold detection thresholds in patients suffering from 

polyneuropathy, let 𝑌𝑖𝑗 be the CDT z-value of 𝑗th patient (1 ≤ 𝑗 ≤ 𝑁) in the 𝑖th center 

(1 ≤ 𝑖 ≤ 𝑀), the model is specified as: 

𝐹(1):   𝑌𝑖𝑗 =  𝜇 + 𝛼𝑖 + 𝜀𝑖𝑗 

𝐹(2𝑎):   𝜀𝑖𝑗 ~ 𝑁(0, 𝜎
2) 

𝐹(2𝑏):   𝛼𝑖  ~ 𝑁(0, 𝜎𝜇
2) 

where 𝜇 is the overall mean CDT z-value across all centers, 𝑎𝑖  is the unobserved 

center-specific random effect and ɛ𝑖𝑗  is the individual unexplained effect. The model 

is fitted so that 𝜀𝑖𝑗 and 𝑎𝑖 are normally distributed with a mean value = 0 (F(2a) and 

F(2b)). The estimated center-specific mean z-values (𝜇 + 𝑎𝑖 for 1 ≤ 𝑖 ≤ 𝑀) and the 

corresponding 95% confidence intervals from Model (1) are graphically displayed in 

forest plots separately for PNP, PNI and healthy participants, with the Y-axis showing 

a running number for the centers for all 11 QST parameters and the X-axis 

presenting the center-specific mean z-value. The I² statistic (Higgins and Thompson, 

2002) was employed to quantify the heterogeneity of mean z-values across the 

centers. This statistic ranges from 0 to 100% and it measures the percentage of 

variation across studies that is due to true heterogeneity rather than chance. The 

confidence interval estimates of I² were computed based on the test-based method of 

Higgins and Thompson (Higgins and Thompson, 2002).  

2.6 Cluster analysis protocol 

[The following section has been taken in parts and modified from (Baron et al., 

2017).] 

A cluster analysis was performed to unravel distinguishable subgroups of QST-

profiles. The procedure of this analysis was identical for patients suffering from 

peripheral neuropathic pain (Baron et al., 2017) and healthy participants under 

conditions that induce human surrogate models of neuropathic pain, in order to 
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guarantee comparability between the results. We made no a-priori-assumptions 

about the expected number of clusters and applied a k-means-approach for a 

number of k clusters ranging from 2 to 10 (MacQueen, 1967). A two-step protocol 

was used to determine the optimum number of clusters: 

- Negative silhouettes as exclusion criterion. A silhouette width is a value that 

can be calculated for each subject in each cluster and ranges between -1 and 

+1 (Rousseeuw, 1987). Positive values near +1 indicate a subject that can 

unambiguously be allocated to a certain cluster, values near zero indicate 

subjects that are on the edge between clusters, and negative values indicate 

that these subjects are allocated to a cluster that is not their nearest cluster. 

This is possible because if they would be allocated to their nearest cluster, the 

cluster mean would shift so that other subjects are then in a cluster that is not 

their nearest. A mean silhouette width well above zero for a cluster indicates 

that said cluster is clearly separated from the others, while a mean silhouette 

width below zero indicates a cluster that is rather a statistical artifact than a 

real subgroup. Therefore, a high count of negative silhouettes or a cluster with 

a mean silhouette width below zero indicate a cluster solution that is highly 

fragmented. Thus, to control for statistical artefacts, we excluded all solutions 

with at least one cluster with a negative mean silhouette width, and all 

solutions with over 10% negative silhouette widths.  

- Comparability between clustering methods. The remaining solutions were 

compared to two additional cluster methods with significantly different 

mathematical background, validating that the final solution is not dependent on 

the clustering method. We decided on a robust hierarchical clustering method 

(maximum linkage) and an Expectation Maximization (EM) algorithm 

(Dempster et al., 1977). Both solutions were compared to the initial k-means 

clustering, using the adjusted rand index (ARI) and the adjusted variation of 

information (AVI). While the ARI measures similarity on a scale from 0 – 1 

(high values are preferable), the AVI measures dissimilarity on the same scale 

(low values are preferable) (Rand, 1971). Final criterion for the decision 

between otherwise equal cluster solutions was the Bayesian Information 

Criterion (BIC) which captures the gain of information by increased number of 

clusters. As a rule of thumb, the higher number of clusters is preferable, if the 
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difference between the BICs of both solutions (Delta-BIC) is larger than ten 

(Schwarz, 1978). 

2.6.1 Validation sets 

To investigate the stability of the findings, for both cluster analyses (patients and 

surrogate models) a validation set was formed, in which additional k-means cluster 

analyses were performed, with a fixed number of clusters (as defined above).  

For patients suffering from peripheral neuropathic pain, this validation set was formed 

from patients with PNP, PNI and PHN who were collected either within the DFNS 

after closure of the initial database (Maier et al., 2010) or within the Europain 

consortium for treatment studies with oxcarbazepine and lidocaine (Demant et al., 

2014; Demant et al., 2015).  

For human surrogate models of neuropathic pain, no similar cohort was available. 

Therefore, 50% of all data (chosen by random number assignment) were excluded 

from the initial analysis to form the validation set. 

2.7 Individual sorting algorithm 

[The following section has been taken in parts and modified from (Vollert et al., 

2017a).] 

As QST z-values are (per definition) normally distributed, our approach was based on 

normally distributed probabilities. For each QST z-value of each parameter i and 

patient n, a probability can be calculated for a phenotype to be present based on the 

density function of said phenotype:  

 

𝐹(3):     𝑝𝑖𝑛,𝑚 = 
1

√2𝜋𝜎𝑖𝑚
2
 exp 

(

 
 
− 

(

  
(𝑥𝑖𝑛−𝜇𝑖𝑚)²

√2𝜎𝑖𝑚
2

 

)

 

)

 
 

 

 

With i = one of 13 QST parameters, n = the nth patient in a set of patients, m = one of 

the phenotypes determined in the cluster analysis of patients described above and 

conclusively, 𝜎𝑖𝑚 being the standard deviation of the ith QST parameter for the mth 

phenotype in the defining dataset (Baron et al., 2017), 𝜇𝑖𝑚 being the mean z-value of 
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the same QST parameter and phenotype in the defining dataset (Baron et al., 2017), 

and finally 𝑥𝑖𝑛 being the z-value found in the nth patient for the ith QST parameter. 

While this function will always reach its maximum at  𝑥𝑖𝑛 = 𝜇𝑖𝑚 , in relation to 

broadness of the standard deviation, density functions can become broader or 

narrower. This affects the maximum value the density function can reach. To control 

for these more or less broad functions, we normalized the formula so that a value that 

is equal to the mean of the phenotype equals 100%, leading to 
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which can be simplified to 
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The resulting probability value is ranging from 0% to 100% and can be calculated for 

all i = 13 QST parameters and m phenotypes. By averaging the probability over the 

13 QST parameters, we quantify the similarity of the individual patient’s QST profile 

to the mean profile of each of the phenotypes.  

As a simple way of categorizing patients into phenotypes, we suggest sorting each 

patient to the phenotype with the highest probability value: 

1. Calculate F(5) for each of the 13 QST parameters. Use μ and σ for phenotype 

1.  

2. Average the 13 probabilities. The resulting value is the probability for this 

patient to show this phenotype. 

3. Repeat steps 1 and 2, using μ and σ for the next phenotype. Repeat for all 

phenotypes. 

4. Allocate the patient to the phenotype with the highest probability value. 

The algorithm as described above was applied to the patients from the original cohort 

(Baron et al., 2017) to demonstrate its general sorting capacity.  
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2.7.1 Simplified phenotyping 

As the DFNS protocol is comprehensive, it might be too complex to be applied in all 

clinical settings and in large clinical trials. If the cluster analysis showed that few 

parameters explain large parts of the variance between the discovered phenotypes, 

the accuracy of a phenotyping based on these in comparison to a phenotyping using 

the full protocol is analyzed.  

2.7.2 Discrimination analysis against healthy participants 

To show if and how the algorithm can discriminate patients with neuropathic pain 

from healthy participants, we introduced a fourth probability - not for a phenotype, but 

for being healthy. For this purpose, we applied the definition of QST z-values, to 

which a group of healthy participants ideally has a z-value mean = 0 (μ) with a 

standard deviation = 1 (σ) for each QST parameter. The original cluster patient 

cohort (Baron et al., 2017) (n = 902) and n = 188 healthy participants from the 

European cohort (Vollert et al., 2016a) underwent a modified version of the algorithm:  

1. Calculate F(5) for each of the 13 QST parameters. Use μ and σ for healthy.  

2. Average the 13 probabilities. The resulting value is the probability for this 

patient to show a healthy profile. 

3. Repeat steps 1 and 2, using μ and σ for all phenotypes. 

As this version of the algorithm does not sort each subject simply to the phenotype 

with the highest probability, this leaves every subject with a series of probabilities, 

one for each of the phenotypes of neuropathic pain, and one for being healthy. 

The probability of being healthy was used for a Receiver Operating Characteristics 

(ROC) plot (Zweig and Campbell, 1993). This graphical tool for assessing 

discriminatory power plots the false-positive rate (1 - specificity) on the x-axis versus 

the sensitivity of detecting patients on the y-axis for all possible probability values of 

being healthy. Each step in the ROC plot represents the specificity and sensitivity of 

one certain percentage. To assess the overall quality of separating healthy 

participants and patients via the probability for being healthy, the area under curve 

(AUC) and its 95% confidence interval were calculated (DeLong et al., 1988). To 

define a minimum probability, at which a subject should be considered being healthy, 
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the probability with the highest Youden-Index (sensitivity minus false-positive rate 

(Youden, 1950)) was chosen.  

2.7.3 Effectiveness for treatment with oxcarbazepine 

It has been shown in a recent study that the effectiveness of oxcarbazepine as 

treatment for neuropathic pain is dependent on the sensory phenotype of the patients 

(Demant et al., 2014). Oxcarbazepine is a blocker of voltage-gated sodium channels 

(McLean et al., 1994) and therefore has the potential to reduce neuropathic pain 

caused by overexpression or increased sensitivity of sodium channels (Ichikawa et 

al., 2001). This effect is, however, only possible in patients where this specific 

mechanism is present, and oxcarbazepine will therefore not help patients whose pain 

is generated more centrally (Katz et al., 2008). In their paper, Demant et al. 

phenotyped the patients as “irritable nociceptor” (IN, intact thermal detection, thermal 

or mechanical hyperalgesia) and “non-irritable nociceptor” (the remainder) (Demant 

et al., 2014). It was found that pain reduction was only significant in patients with 

“irritable nociceptor” phenotype. The number-needed-to-treat (number of patients that 

has to be treated with oxcarbazepine to find at least one patient with a pain reduction 

of at least 50% (Tramer and Walder, 2005)) was found to be 3.9 (95% CI: 2.3 – 11.5) 

for irritable nociceptor and 13.0 (95% CI: 5.2 - ∞) for non-irritable nociceptor. Using 

the original data provided by the principal investigators, the cohort underwent the 

individual algorithm to determine each patient’s cluster-based sensory phenotype. 

Based on mechanistic assumptions for the phenotypes identified in the previous 

steps, a hypothesis was formed which phenotype would respond to oxcarbazepine 

treatment. The treatment outcome was compared between cluster-based phenotypes 

and irritable/non-irritable nociceptor phenotyping, to analyze whether cluster-based 

phenotyping is similarly effective as (and non-inferior to) irritable/non-irritable 

nociceptor phenotyping as predictor for effectiveness of oxcarbazepine. 

Three metrics were applied to show cluster-based phenotype-specificity of 

oxcarbazepine-related pain relief and to compare treatment prediction between 

phenotyping methods (cluster-based vs. irritable/non-irritable nociceptor): 

- Treatment-phenotype interaction in a mixed effects model with pain relief as 

dependent variable, treatment (placebo/verum) and phenotype as fixed 

effects, patient as random effect and baseline pain as covariate, similar to the 
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model in the published study (Demant et al., 2014). This model was tested for 

both deterministic and probabilistic phenotyping. 

- Mean pain reduction in the verum phase. The pain reduction between baseline 

and week six in the verum phase for IN patients and patients with a cluster-

based phenotype that indicates effectiveness of oxcarbazepine was compared 

(two-tailed t-test). Cluster-based phenotyping was considered effective in case 

of a non-significant test or a significant test in combination with higher mean 

pain relief in the cluster-based phenotype compared to IN (non-inferiority). 

- Number-needed-to-treat. The NNT was calculated for the cluster-based 

phenotype along with its 95% confidence interval (Tramer and Walder, 2005). 

Cluster-based phenotyping was considered effective in case of a lower NNT in 

the cluster-based phenotype compared to IN or a higher NNT with CIs 

overlapping between the NNTs for IN and cluster-based phenotyping (non-

inferiority). 

2.8 Sample size recommendations 

[The following section has been taken in parts and modified from (Vollert et al., 

2017a).] 

If a new drug would be tested for efficacy in a phenotype-stratified subgroup with 

neuropathic pain of any single etiology, this would only be feasible if said phenotype 

appears in a relevant frequency within this etiology. To show how frequent these 

phenotypes are across three common etiologies of neuropathic pain, we applied the 

algorithm to patients suffering from neuropathic pain due to diabetic polyneuropathy, 

peripheral nerve injury or post-herpetic neuralgia from the databases of our previous 

studies (Maier et al., 2010; Demant et al., 2014; Demant et al., 2015; Themistocleous 

et al., 2016; Baron et al., 2017). 

Based on the frequencies found in the clinical entities, we calculated the size of a 

group of patients that need to be screened with either full or simplified phenotyping to 

find a sub-population large enough to perform a trial that still reaches a power of 80% 

for an effect size of 0.3, 0.5 and 0.7 at an alpha-level of 0.05, for a crossover and 

parallel design. The sample sizes presented in this thesis are examples and can be 

tailored to the needs of any planned RCT. We recommend the usage of the free 

software G*Power (Faul et al., 2007), but many other statistical packages provide 
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similar tools. The following information is required before starting: alpha-level (usually 

0.05), power (usually 0.8, 0.9 or 0.95), test family (usually t-test for independent 

(parallel design) or dependent (crossover design) means, or chi-squared for 

dichotomous outcome), and the estimated effect size in the phenotype of interest. 

Effect sizes are related to mean treatment effect and standard deviation between 

treatment response, e.g., a mean effect of 2 on a 0-10 NRS scale with a standard 

deviation of 4 corresponds to an effect size 0.5, a mean effect of 3.5 with a standard 

deviation of 5 an effect size of 0.7, and a mean effect of 1 with a standard deviation 

of 3 corresponds to an effect size of 0.3, and many other combinations are possible. 

With this information, the size of the subgroup of patients with the phenotype of 

interest that needs to be included can be calculated. To determine the size of the 

overall population which needs to be screened to find a subgroup of the calculated 

size, divide the subgroup size by the frequency of the phenotype in the etiology of 

interest as presented in the results section, in regard to the algorithm used 

(deterministic / probabilistic) and the phenotyping protocol (full / simplified). 

2.9 Subgrouping human surrogate models 

Human surrogate models were analyzed for patterns using a two-way strategy: 

1. A hypothesis-free cluster analysis was applied, using the protocol as defined 

for the cluster analysis in patients suffering from neuropathic pain (see 2.6). 

2. Since, unlike in the analysis of patients, for some human surrogate models, 

mechanisms are clearly described, as an additional means of subgrouping, a 

pattern-based individual algorithm using the method as developed based on 

patients suffering from neuropathic pain (see 2.7) was applied. This algorithm 

was in this case based on six surrogate models with a clearly described 

mechanism (A-fiber block and topical lidocaine for nerve block, topical 

capsaicin or UVB radiation for primary hyperalgesia, and i.d. capsaicin 

injection and cutaneous HFS for secondary hyperalgesia). 
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2.10 Patients in heuristic and mechanistic phenotypes 

To analyze similarities between the mechanistic sensory subgroups described above 

and the sensory phenotypes found by hypothesis-free pattern searching methods in 

patients suffering from neuropathic pain, the patients suffering from neuropathic pain 

underwent the algorithm from 2.9 and the result was compared to each patient’s 

sensory phenotype as determined using the algorithm developed for patients in 2.7.  

Agreement between algorithms was assed using Cohen’s Kappa (Fleiss et al., 2003). 

We then applied a probabilistic sorting algorithm to estimate the prevalence of the 

three presumed mechanisms in this cohort of patients; this allows each patient to be 

assigned to more than one mechanism. 
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3 RESULTS 

3.1 Patients and participants 

Patients and participants for the various analyses were not identical, and are 

therefore described briefly below. 

3.1.1 Patients 

Essential basis of all analyses of patients was the European cohort, formed for the 

cluster analysis in patients (Baron et al., 2017). This cohort comprises n = 902 

patients with peripheral neuropathic pain. Formation of this cohort is shown in Figure 

1.  

For the analysis of heterogeneity, a sub-collective of this cohort was formed: only 

data from centers which provided at least ten patients with painful polyneuropathy 

and ten patients with painful peripheral nerve injury were included. These ten centers 

provided 217 patients with painful PNP and 150 patients with painful PNI. 

For the validation set of the cluster analysis in patients, a second cohort was formed 

from patients that were included by the DFNS after the closure of the initial database 

(Maier et al., 2010) and in the IMI for pharmacological studies (Demant et al., 2014; 

Demant et al., 2015). This group comprised n = 233 patients with peripheral 

neuropathic pain due to polyneuropathy, peripheral nerve injury or post-herpetic 

neuralgia. 

For estimating frequency of phenotypes in etiologies of neuropathic pain and 

suggesting sample sizes for phenotype-stratified studies, the European cohort (n = 

902) and the validation cohort (n = 233) were merged with data from the PiNS cohort 

(n = 209). From the resulting patient group, all patients with painful peripheral nerve 

injury (n = 335), painful diabetic polyneuropathy (n = 151), and painful post-herpetic 

neuralgia (n = 97) were extracted. 
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Figure 1: CONSORT flowchart of data inclusion for the European cohort. CRPS: Complex Regional 

Pain Syndrome, DB: database. From (Baron et al., 2017). 
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3.1.2 Healthy participants 

For the analysis of heterogeneity and for separation of patients and healthy 

participants in the individual sorting algorithm, QST data from n = 188 healthy 

participants provided for ensuring quality control (Vollert et al., 2015) by ten 

European centers was included (Vollert et al., 2016a). 

3.1.3 Human surrogate models 

Many participants were tested more than once under various models, so the number 

of participants is less meaningful than the number of QSTs under surrogate models, 

which will therefore be referred to subsequently. A total of n = 657 QSTs under 

surrogate models could be included (see Table 1). 

 

model n 
Gender: 

n (%) female 
Age: 

mean (range) 
participating centers 

nerve block 

A fiber block 24 12 (50%) 25 (21 - 39) Kiel, Mannheim 

Topical lidocaine 41 20 (49%) 34 (19 - 69) Bochum 

primary hyperalgesia 

Topical capsaicin 273 147 (53%) 25 (15 - 75) 
Bochum, Frankfurt, 

Mannheim 

UVB 158 51 (32%) 24 (19 - 42) Frankfurt, Mannheim 

secondary hyperalgesia 

Capsaicin injection 36 19 (53%) 32 (23 - 68) Kiel, Mannheim, Munich 

Cutaneous HFS 12 3 (25%) 36 (24 - 57) Mannheim 

mixed 

Topical capsaicin, secondary 
hyperalgesia 

37 15 (41%) 24 (19 - 39) Mannheim 

UVB, secondary 
hyperalgesia 

22 0 (0%) 24 (24 - 24) Mannheim 

Muscular HFS 15 7 (47%) 24 (19 - 27) Mannheim 

Topical menthol 11 0 (0%) 25 (23 - 28) Kiel 

Topical lidocaine + topical 
capsaicin 

28 17 (61%) 30 (20 - 75) Bochum 

 

Table 1: Participants under human surrogate models of neuropathic pain included in the analysis. 

HFS: High Frequency Stimulation, UVB: Ultraviolet Radiation B. From (Vollert et al., 2017b). 
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3.2 Analysis of heterogeneity 

[The following section has been taken in parts and modified from (Vollert et al., 

2016a).] 

The forest plots for healthy participants, patients with polyneuropathy and peripheral 

nerve injury are shown in Figure 2 for each of the 11 normally distributed QST 

parameters, each of the 10 centers and mean effect. The forest plots show for each 

center, QST parameter and separately for healthy participants, PNP and PNI a center 

specific mean of each QST parameter, along with its 95% confidence interval. These 

confidence intervals indicate how individual and center-specific variance relate to 

each other: broader confidence intervals indicate high variance within centers that is 

not similar between all centers, narrow confidence intervals indicate high 

homogeneity within centers or variance that is similar between all centers. 

The corresponding I² values and their confidence intervals can be found in Table 2. 
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Figure 2: Forest plot of center-specific and overall mean QST z-values with 95% confidence intervals 

for healthy participants (left graph), patients with polyneuropathy (middle graph) and peripheral nerve 

injury (right graph). Note that confidence intervals are not equal to standard deviation or standard error 

of the data of each center. *model identified no center-specific mean, therefore only the overall mean 

and confidence interval is shown. All values represent the overall mean with 95% confidence interval. 

From (Vollert et al., 2016a). 
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3.2.1 Healthy participants 

All center-specific mean z-values were found to be well within the normal range of 0 ± 

1.96, the mean z-values per parameter are within 0 ± 0.20, with two exceptions: TSL 

(-0.26, 95% CI: -0.62; 0.10) and MPT (0.37, 95% CI: -0.01; 0.75). The overall mean 

z-value of all parameters and centers was found to be exactly 0.00. The 95% 

confidence intervals varied in width between 0.5 and 1.4, with a mean of 0.9. Broad 

confidence intervals indicate a high degree of individual variance within centers that 

is not found between all centers (i.e. the center-specific mean is uncertain). Inclusion 

of more participants per center might reduce the influence of this effect. In the given 

data, the largest part of variance is of individual origin, not between centers, which is 

represented in the I² values in Table 2 (first column), showing a heterogeneity of 0% 

for all parameters except PPT (41.8%, 95% CI: 0.0%; 66.1%) and MDT (5.4%, 95% 

CI: 0.0%; 18.1%).  

 

 Healthy participants Polyneuropathy Peripheral nerve injury 

CDT 0.0% (0.0% - 57.0%) 0.0% (0.0% - 0.0%) 0.0% (0.0% - 73.5%) 

WDT 0.0% (0.0% - 99.9%) 0.0% (0.0% - 54.0%) 0.0% (0.0% - 71.1%) 

TSL 0.0% (0.0% - 50.8%) 0.0% (0.0% - 57.9%) 0.0% (0.0% - 77.0%) 

CPT 0.0% (0.0% - 80.0%) 0.0% (0.0% - 91.1%) 0.0% (0.0% - 50.6%) 

HPT 0.0% (0.0% - 100.0%) 0.0% (0.0% - 98.9%) 0.0% (0.0% - 79.0%) 

PPT 41.8% (0.0% - 66.1%) 0.0% (0.0% - 82.3%) 0.0% (0.0% - 58.2%) 

MPT 0.0% (0.0% - 76.5%) 0.0% (0.0% - 99.8%) 0.0% (0.0% - 76.8%) 

MPS 0.0% (0.0% - 100.0%) 0.0% (0.0% - 59.3%) 0.0% (0.0% - 69.2%) 

WUR 0.0% (0.0% - 45.3%) 0.0% (0.0% - 33.5%) 0.0% (0.0% - 0.0%) 

MDT 5.4% (0.0% - 18.1%) 0.0% (0.0% - 92.1%) 0.0% (0.0% - 56.4%) 

VDT 0.0% (0.0% - 89.1%) 0.0% (0.0% - 26.7%) 0.0% (0.0% - 0.0%) 

 

Table 2: I² Index of heterogeneity, ranging from 0% (no heterogeneity) to 100% (perfect heterogeneity) 

for all eleven normally distributed QST parameters for healthy participants (n = 188), polyneuropathy 

patients (n = 217) and patients with peripheral nerve injury (n = 150). In brackets: lower and upper 

boundary of the 95% confidence interval. All values except PPT and MDT in healthy participants are 

zero, though the confidence intervals often cover a broad range up to 100% due to the broad 

confidence intervals of center specific mean z-values. From (Vollert et al., 2016a).  



Results 

31 

3.2.2 Polyneuropathy 

Center specific mean z-values for detection thresholds were characterized by loss of 

thermal and mechanical detection (CDT, WDT, TSL, MDT, VDT), which is typical for 

patients suffering from polyneuropathy. Note that the small confidence intervals (esp. 

for cold and warm detection threshold) do not reflect little variation in the dataset, but 

rather that only a small part of this variation is assigned to the center, the remainder 

is assigned to individual effects (ɛ𝑖𝑗 in F(1)) that appear across centers in similar 

form. For pain thresholds, ranges of center specific mean z-values and confidence 

intervals were found to be much broader, especially for MPT and PPT. Mean z-

values scattered within the normal range of 0 ± 1.96, but very broad confidence 

intervals show that this indicates merely high individual variance between PNP 

patients rather than systematic deviation by single centers. This is represented in I² 

values indicating heterogeneity of 0% between the centers for all parameters (Table 

2, middle column).  

3.2.3 Peripheral nerve injury 

Similar as for PNP, center specific mean z-values for detection thresholds in PNI 

patients showed loss of function. Pain thresholds are mainly decreased (with HPT as 

exception), as expected for PNI patients, who often show a combination of loss of 

detection and gain of nociception. Confidence intervals are broader compared to 

PNP, indicating that a larger amount of variance is found within instead of between 

centers. For wind-up ratio and vibration detection threshold, individual variation was 

found to superimpose any possible center specific effects (𝑎𝑖 in F(1)) in patients 

suffering from PNI, so the forest plot (Figure 2, right column) presents only the overall 

mean and its confidence interval instead of center specific means for all centers (𝜇 

instead of 𝜇 + 𝑎𝑖). As almost all center specific mean z-values lie within the 

confidence intervals of each other, the I² index of heterogeneity is 0% for all 

parameters.  

3.3 Cluster analysis of patients 

[The following section has been taken in parts and modified from (Baron et al., 

2017).] 
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According to the frequency of negative silhouette widths we excluded the solutions 

with 4 - 10 clusters because they each presented at least one cluster with a negative 

mean silhouette width that indicated an artifact. Furthermore, in each of these 

solutions negative silhouettes were frequent (15 - 23%). The remaining two and three 

cluster solutions were compared with two additional, mathematically different 

clustering algorithms for the same number of clusters. Compared with agglomerative 

hierarchical cluster analysis, both 2 and 3-cluster solutions were equal according to 

the ARI criterion, but the three-cluster solution was better according to the AVI 

criterion. In comparison to the EM algorithm, the two-cluster solution failed to show 

similarity between k-means and EM clustering (ARI almost zero, AVI almost 1). Since 

the Delta-BIC also strongly preferred the three-cluster solution (Table 3), the three-

cluster solution was used for further analysis as the optimal number of clusters. The 

replication data set was also subjected to a k-means cluster analysis with k = 3. 
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n 
(cluster) 

silhouette width: comparison to hierarchical: comparison to EM: 

mean ° 
minimum 
mean per 
cluster°° 

negative 
(%)°°° 

ARI* AVI** ARI* AVI** BIC*** 

2 0.29 0.28 0.7% 0.30 0.67 0.01 0.95 0 

3 0.25 0.13 4.8% 0.30 0.56 0.22 0.69 708 

4 0.23 -0.24 14.5% 
     

5 0.20 -0.28 16.4% 
     

6 0.15 -0.10 22.6% 
     

7 0.17 -0.07 21.2% 
     

8 0.19 -0.003 16.3% 
     

9 0.19 -0.02 16.0% 
     

10 0.21 -0.06 14.7% 
     

 

Table 3: Decision on the number of clusters. Green: optimum number of clusters according to this 

criterion. °Mean silhouette width per cluster.  A value below zero indicates clusters that do not 

separate from other clusters. Measure of discriminatory power (0 to 1). 0: no discrimination, 1: 

perfectly separated clusters (high values are preferred) °°Measure of fragmentation of solution (-1 to 

+1). -1: cluster that is solely a fragment, +1: a solution that is not fragmented (solutions with values 

below zero were discarded (yellow)) °°°Measure of fragmentation of solution (0% to 100%). 0%: no 

fragmentation, 100% a completely fragmented solution (solutions with values above 10% were 

discarded (yellow)) *ARI (Adjusted Rand Index): Measure of similarity (0 to 1). 0: only random identity, 

1: perfect identity (high values are preferred) **AVI (Adjusted Variation of Information): Measure of 

dissimilarity (0 to 1). 0: no dissimilarity, 1: strong dissimilarity (low values are preferred) ***Delta-BIC 

(Bayesian Information Criterion): Measure of gain of information by increasing cluster number. If delta-

BIC > 10, the higher cluster number is recommended. Modified from (Baron et al., 2017). 

3.3.1 Sensory profiles of the three-cluster solution 

Figure 3 shows the mean z-score sensory profiles for the test data set (Fig. 3A) and 

the validation data set (Fig. 3B). In both data sets, the clusters represented similar 

percentages of patients: cluster 1 was the largest (42% in A, 53% in B), followed by 

cluster 2 (33% in A and B) and cluster 3 (24% in A, 14% in B). Sensory profiles were 

also replicated excellently. For non-nociceptive temperature sensation (CDT, WDT, 

TSL), clusters 1 and 3 exhibited pronounced deficits with mean z-scores near -2, 

while temperature sensation was essentially normal in cluster 1. This offset was 

similar for thermal pain sensitivity (CPT, HPT), but here clusters 1 and 3 exhibited 

less of a deficit, while cluster 2 exhibited significant sensory gain. Cluster 2 was 

therefore given the label "thermal hyperalgesia". For mechanical pain sensitivity 
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(PPT, MPT, MPS), the rank order between clusters was different and cluster 1 and 3 

were separated: while there was again a deficit for cluster 1, cluster 3 exhibited 

significant sensory gain. Cluster 3 was therefore given the label "mechanical 

hyperalgesia". Wind-up did not differentiate between clusters. For non-nociceptive 

touch sensation (MDT, VDT), cluster 2 was again close to normal, cluster 3 had 

some deficit, and cluster 1 exhibited the most pronounced deficit. Cluster 1 was given 

the label "sensory loss", because it was characterized by negative mean z-scores 

across all QST parameters. Dynamic mechanical allodynia (DMA) was most 

pronounced in cluster 3, which also exhibits the most pronounced hyperalgesia to 

pinprick (MPT, MPS) and blunt pressure (PPT). Paradoxical heat sensations were 

most pronounced in cluster 1, associated with diminished cold detection (CDT) but 

not cold hyperalgesia (CPT). 

 

 

Figure 3: Sensory profiles of the three-cluster solution for test and replication data sets. Sensory 

profiles of the three clusters presented as mean z scores ± 95% confidence interval for the test 

dataset (n = 902, A) and the validation dataset (n = 233, B). Note that z-transformation eliminates 

differences due to test site, gender and age. Positive z-scores indicate positive sensory signs 

(hyperalgesia), negative z-values indicate negative sensory signs (hypoesthesia, hypoalgesia). 

Dashed lines: 95% confidence interval for healthy participants (-1·96 < z < +1·96). Inserts show 

numeric pain ratings for DMA on a logarithmic scale (0-100) and frequency of PHS (0-3). Blue 

symbols: cluster 1 "sensory loss" (42% in A, 53% in B). Red symbols: cluster 2 "thermal hyperalgesia" 

(33% in A and B). Yellow symbols: cluster 3 "mechanical hyperalgesia" (24% in A, 14% in B). From 

(Baron et al., 2017). 

 

Figure 4 illustrates the distinction of the three clusters in a 2D-scatter-plot and 

histograms of those two QST parameters that exhibited the best separation of 
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clusters: warm detection threshold (WDT) and mechanical pain sensitivity (MPS). 

Patients in cluster 1 had loss of pinprick sensitivity, while those in cluster 3 had 

pinprick hyperalgesia. Most patients in cluster 2 had WDT within the normal range of 

±1.96 z-values, while many of clusters 1 and 3 had hypoesthesia to warmth (z-values 

below -1.96). Although the k-means cluster separation was calculated in 13-

dimensional space, this 2D-projection illustrates some of the main characteristics 

how the three clusters differ between each other. Partial overlap between clusters 

may also be due to two mechanisms present in the same patient. WDT and MPS 

were therefore chosen for simplified phenotyping subsequently. 

 

 

Figure 4: Cluster separation projected onto two-dimensional space. Histograms and scatter plot of the 

two QST-parameters that gave the best cluster separation: warm detection threshold (WDT) and 

mechanical pain sensitivity (MPS). Blue: cluster 1 "sensory loss" (n=381 patients), red: cluster 2 

"thermal hyperalgesia" (n=302 patients), yellow: cluster 3 "mechanical hyperalgesia" (n=219 patients). 

Circles indicate centroids of each cluster. Modified from (Baron et al., 2017). 

 

3.3.2 Patient characteristics of the three clusters 

The patients´ gender and mean age as well as pain intensity did not differ between 

the three groups (Table 4). Depressive symptoms occurred significantly more 

frequently in the “sensory loss” cluster. Spontaneous pain described by the patients 

as "stabbing" was comparable across the clusters but "burning" pain was significantly 

less frequent in the “thermal hyperalgesia” cluster. 
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 sensory loss thermal hyperalgesia 
mechanical 

hyperalgesia 

n (%) 381 (42%) 302 (33%) 219 (24%) 

age 59 ± 14 56 ± 14 59 ± 15 

female 169 (39%) 152 (35%) 108 (25%) 

depression 104 (47%) * 69 (31%) 49 (22%) 

pain intensity 6.1 ± 3.1 5.8 ± 3.2 6.1 ± 3.0 

burning pain 4.5 ±3.4 4.3 ± 3.3 5.1 ± 3.2 * 

stabbing pain 4.7 ± 3.2 4.3 ± 3.2 5.0 ± 3.0 

sensory profile    

sensory loss touch, thermal, pain none mostly thermal 

hyperalgesia none mostly cold and heat mostly pressure and pin 

DMA little little much 

PHS much little little 

mechanisms    

sensory loss small and large fibers - mostly small fibers 

hyperalgesia - 
mostly peripheral 

sensitization 
mostly central 
sensitization 

ongoing pain 
ectopic activity in 

damaged nociceptors or 
CNS 

spontaneous activity in 
surviving nociceptors 

(ectopic?) activity in 
nociceptors 

 

Table 4: Cluster characteristics. *p < 0.05. From (Baron et al., 2017). 

 

According to the published DFNS reference data, each QST parameter in each 

patient can be individually rated as within or outside of the 95% confidence interval of 

variability in healthy age- and gender-matched subjects. This analysis is presented in 

Figure 5. Of patients in cluster 1 ("sensory loss"), more than 50% had significant non-

nociceptive sensory loss on an individual basis. Paradoxical heat sensation occurred 

in 40% and sensory loss for pain sensitivity was also prevalent, although at less than 

50%.  

Patients of cluster 2, in contrast, exhibited hardly any sensory loss (except for touch 

in about 20% of patients), but significant proportions of patients with hyperalgesia to 

various stimuli. Cold and heat hyperalgesia were only significant for this cluster, but - 

probably at least partly due to the substantial variability of CPT and HPT in healthy 

participants - all percentages were clearly below 50%.  
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Patients of cluster 3 were characterized by combination of loss of detection of non-

nociceptive stimuli and hyperalgesia to noxious stimuli. However, in contrast to 

cluster 1 the sensory loss was more pronounced for small fiber function, i.e. 

diminished temperature perception but relatively preserved tactile perception, and 

hyperalgesia was only present for mechanical stimuli. DMA was present in the vast 

majority of these patients.  
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Figure 5: Frequencies of abnormal QST findings for the test dataset (n = 902). Each column gives the 

percentage of patients with abnormal findings for that particular QST parameter (outside the 95% 

confidence interval of healthy participants). Positive values indicate positive sensory signs 

(hyperalgesia), negative values indicate negative sensory signs (hypoesthesia, hypoalgesia). Dashed 

lines: Expected value for healthy participants (±2.5%). A: cluster 1 "sensory loss" (n=381 patients), B: 

cluster 2 "thermal hyperalgesia" (n=302 patients), C: cluster 3 "mechanical hyperalgesia" (n=219 

patients). Significant compared to expected value (2.5%) on * p < 0.05, ** p < 0.01, *** p < 

0.001. From (Baron et al., 2017). 
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3.3.3 Distribution of clusters across etiologies 

Figure 6 illustrates that in principle all three clusters were distributed across all four 

etiologies, demonstrating that the sensory signs of neuropathic pain that are 

produced by these etiologies overlap considerably. Each of the different etiologies, 

however, showed a characteristic pattern of sensory profiles: In PNI, patients with 

“thermal hyperalgesia” were significantly more frequent (40.1%) than patients with 

other sensory profiles. In PNP and RAD, “sensory loss” occurred in 51.8% and 42.7% 

of cases, respectively. Patients with PHN were concentrated in the “mechanical 

hyperalgesia” cluster (46.6%). 

 

Figure 6: Distribution of the three clusters within each neuropathic pain etiology. Blue bars: cluster 1 

"sensory loss" (n=381 patients), red bars: cluster 2 "thermal hyperalgesia" (n=302 patients), yellow 

bars: cluster 3 "mechanical hyperalgesia" (n=219 patients). Cluster 1 was most frequent in 

polyneuropathy, cluster 2 in peripheral nerve injury and radiculopathy, and cluster 3 in post herpetic 

neuralgia. From (Baron et al., 2017). 
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3.4 Individual sorting algorithm 

[The following section has been taken in parts and modified from (Vollert et al., 

2017a).] 

3.4.1 Sorting algorithm 

The sorting algorithm was based on the means and standard deviations for each 

phenotype identified in the cluster analysis (Table 5). 

  

 

sensory loss 
(μ (σ)) 

thermal 
hyperalgesia  

(μ (σ)) 

mechanical 
hyperalgesia 

(μ (σ)) 

healthy 
participants  

(μ (σ)) 

CDT -2.42 (1.16) -0.47 (1.04) -2.03 (1.17) 0.00 (1.00) 

WDT -1.96 (0.96) -0.25 (0.97) -2.01 (1.14) 0.00 (1.00) 

TSL -2.23 (0.92) -0.45 (0.93) -2.10 (0.93) 0.00 (1.00) 

CPT -0.56 (0.81) 0.59 (1.09) -0.15 (1.01) 0.00 (1.00) 

HPT -1.20 (0.87) 0.78 (1.45) -0.67 (1.07) 0.00 (1.00) 

PPT -0.53 (1.56) 0.34 (1.56) 1.09 (2.02) 0.00 (1.00) 

MPT -1.60 (1.23) 0.42 (1.56) 0.86 (1.55) 0.00 (1.00) 

MPS -1.14 (0.81) 0.49 (1.35) 1.31 (1.41) 0.00 (1.00) 

WUR 0.13 (1.04) -0.01 (1.03) 0.21 (1.18) 0.00 (1.00) 

MDT -3.08 (4.94) -0.91 (2.46) -1.73 (2.48) 0.00 (1.00) 

VDT -2.88 (2.70) -1.02 (1.84) -1.18 (2.02) 0.00 (1.00) 

PHS 0.72 (0.96) 0.63 (0.93) 0.44 (0.83) 0.00 (1.00) 

DMA 0.24 (0.69) 1.67 (1.21) 0.54 (1.04) 0.00 (1.00) 

 

Table 5: Mean QST z-values (μ) and standard deviations (σ, in brackets) for each of the 13 QST 

parameters separately for each of the three phenotypes. Values for healthy participants follow the 

definition of z-values: mean = 0 and standard deviation = 1. PHS is coded as pseudo-normally 

distributed with 0 = absence and 2 = presence, DMA is coded pseudo-normally distributed with 0 = 

absence, 2 = 0-1 (on a 0-100 numerical rating scale), and 3 = 1-100. From (Vollert et al., 2017a). 

 

Individual allocation replicates the original cluster analysis (Baron et al., 2017) in 81% 

of the cases for the complete QST protocol using 13 parameters and in 76% of the 

cases using simplified phenotyping (only via WDT and MPS). Cohen’s kappa 
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coefficient of agreement (scale: 0 = random classification, 1 = perfect agreement 

between methods) was 0.72 for the complete protocol and 0.63 for simplified 

phenotyping, both values may be categorized as “good”, although no universal 

guideline for interpreting Cohen’s kappa exists (Fleiss, 1973). Most common shifts 

were former sensory loss or thermal hyperalgesia to mechanical hyperalgesia (14% 

and 17%, respectively), and least common shift was former sensory loss to thermal 

hyperalgesia (<1%). Patient shift between phenotypes is shown in Table 6. 

 

 
cluster 

sensory loss  
n = 381 

thermal 
hyperalgesia  

n = 302 

mechanical 
hyperalgesia  

n = 219 algorithm  

sensory loss  
n = 356 (356) 

325 (301) 15 (29) 16 (26) 

thermal hyperalgesia  
n = 267 (282 

3 (34) 235 (219) 29 (29) 

mechanical hyperalgesia  
n = 279 (264) 

53 (46) 52 (54) 174 (164) 

 

Table 6: Crosstabulation of dominant phenotype identified using cluster analysis vs. the proposed 

new, individualized algorithm (rows) for full and simplified phenotyping (in brackets). Overall, both 

classifications revealed a strong concordance of solutions (81% of the cases, 76% for simplified 

phenotyping using only warm detection threshold and mechanical pain sensitivity). From (Vollert et al., 

2017a). 

3.4.2 Discrimination analysis against healthy participants 

The ROC analysis for discrimination of patients against healthy participants is shown 

in Figure 7. The ROC-AUC value (scale: 0.5 – 1, 0.5: no discriminatory power, 1: 

perfect discrimination) for separating patients with neuropathic pain and healthy 

participants using the probability for being healthy was found to be 0.915 (95% CI: 

0.898 – 0.932), indicating high discriminatory power. For simplified phenotyping, 

discriminatory power was significantly lower (0.785, 0.753 – 0.815). The Youden-

Index was found to be highest at a probability of 64% - i.e., each subject with a 

probability value below 64% should be considered as a patient, and when above 

64% as being healthy. For simplified phenotyping, the highest Youden-Index was 

found at a very similar value of 63% with similar sensitivity (74%) but very reduced 
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specificity (72%). Due to the high similarity of cut-offs, 64% was used for both full 

protocol and simplified phenotyping. 

 

Figure 7: ROC (Receiver Operating Characteristics) analysis the discriminatory power of the healthy 

probability to separate between patients with neuropathic pain and healthy participants. Black line: full 

sensory testing, gray line: reduced protocol, using only warm detection threshold and mechanical pain 

sensitivity. The green dotted diagonal line indicates random classification (“coin flipping”). The area 

marked by dashed lines indicates the optimum ratio of sensitivity and specificity at 64% (reduced 

phenotyping: 63%) probability for being healthy. From (Vollert et al., 2017a). 

 

Individual probabilities for each phenotype for patients and healthy participants are 

plotted in Figure 8. Clinically, abnormal QST values have been defined as outside 

95% of the values found in healthy participants per parameter. As the QST protocol 

covers eleven normally distributed parameters, the chance of finding at least one 

abnormal parameter in the profile of a healthy participant is almost 50% (Vollert et al., 

2015): 

𝐹(6):      𝑝(ℎ𝑒𝑎𝑙𝑡ℎ𝑦|𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙) =  ∑(
11
𝑘
) 0.05𝑘0.9511−𝑘 ≅ 43% 

11

𝑘=1

 

 

Using the defined threshold, this probability could be reduced to 6% (94% of healthy 

participants detected correctly), sensitivity in detecting patients was 78% (i.e., 22% of 
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patients with neuropathic pain have a sensory profile with a probability for being 

healthy above 64%).  

 

 

 

Figure 8: Phenotype probabilities and probability of being healthy for n = 902 patients with neuropathic 

pain and n = 188 healthy participants. Grey line: probability for being healthy, blue line: sensory loss, 

red line: thermal hyperalgesia, yellow line: mechanical hyperalgesia. Subjects on the x-axis are sorted 

by their individual probability of being healthy. Dotted line: a phenotype with a probability over 64% 

should be considered relevant in the individual patient. From (Vollert et al., 2017a). 

3.4.3 Deterministic and probabilistic algorithm 

To this point, we use a deterministic approach, i.e. each patient is allocated to exactly 

one phenotype. It is, however, possible that a patient may be allocated to more than 

one phenotype if each phenotype represents one set of mechanisms. So, with the 

cut-off determined for healthy participants above transferred onto patients, we can 

suggest two alternative versions of the algorithm, a deterministic one: 

1. Calculate F(5) for each of the 13 QST parameters. Use μ and σ from Table 5 

for healthy.  

2. Average the 13 probabilities. The resulting value is the probability for this 

patient to show a healthy profile. 
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3. Repeat steps 1 and 2, using μ and σ from Table 5 for sensory loss, thermal 

hyperalgesia, and mechanical hyperalgesia. 

4. Allocate the patient to the phenotype with the highest probability value. 

And a probabilistic version, where steps 1 – 3 remain identical and step four is 

exchanged with: 

4. Sort the patient to all phenotypes with a probability above 64%. If the only 

probability over 64% is for being healthy or no phenotype reaches a probability 

of 64%, the patient should be excluded. 

These two versions were used for all analyses below and are presented alongside. 

The simplified version of the algorithm is the same, except in step 1, only WDT and 

MPS are used instead of all 13 QST parameters, as these parameters have shown to 

explain the largest part of variability between the three phenotypes in our previous 

analysis (Baron et al., 2017).  

3.4.4 Effectiveness for treatment with oxcarbazepine 

Oxcarbazepine is a sodium channel blocker acting at the endings of small peripheral 

nerves, so it is assumed that it would be inferior as pain medication for patients 

suffering from deafferentation-related neuropathic pain. Therefore, based on the 

mechanistic assumptions from Table 4, oxcarbazepine should be more effective in 

the “thermal hyperalgesia” phenotype in comparison to the “sensory loss” and 

“mechanical hyperalgesia” phenotype, which both present significant loss of thermal 

detection, hinting towards loss of small fiber function. Within a cohort of n = 83 

patients suffering from peripheral neuropathic pain whose pain relief after placebo 

and oxcarbazepine treatment is known (Demant et al., 2014), n = 32 patients 

presented the thermal hyperalgesia phenotype when the deterministic version of the 

algorithm was applied. In the probabilistic version, n = 39 patients showed a relevant 

probability over 64% for the thermal hyperalgesia phenotype. Overlap between 

deterministic and probabilistic “thermal hyperalgesia” phenotype and the “irritable 

nociceptor” phenotype used in the original study is shown in Table 7. 
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 deterministic  

thermal hyperalgesia 

probabilistic  

thermal hyperalgesia   

all patients (n = 83) 32 39 

irritable nociceptor (n = 31) 24 22 

non-irritable nociceptor (n = 52) 12 17 

 

Table 7: Crosstabulation of deterministic and probabilistic identification of thermal hyperalgesia 

phenotype in relation to irritable and non-irritable nociceptor phenotype in (Demant et al., 2014). 

 

Mean pain reduction in the verum phase in the subgroup of patients with “irritable 

nociceptor” phenotype of the original study (n = 31) was 1.4 (95% CI: 0.7 – 2.8, NRS 

0 - 10). Mean pain reduction under oxcarbazepine was 1.0 (95% CI: 0.5 – 2.0; 

treatment-phenotype interaction: f = 3.384 (p = 0.020); p = 0.437 in comparison to the 

original “irritable nociceptor” group) for the deterministically phenotyped subgroup 

and 1.1 (95% CI: 0.6 – 2.3; treatment-phenotype interaction: f = 3.431 (p = 0.066); p 

= 0.475 in comparison to the original “irritable nociceptor” group) for the subgroup 

identified with the probabilistic algorithm.  

The number-needed-to-treat was 3.9 (95% CI: 2.3 – 11.5) in the IN subgroup, 6.2 

(95% CI: 3.3 – 122.1) in the subgroup identified by the deterministic algorithm, and 

6.7 (95% CI: 3.7 – 24.6) in the subgroup identified by the probabilistic algorithm.  

Overall, both versions of the algorithm provided a subgroup in which oxcarbazepine 

was only to a non-significant degree less effective than the initially used “irritable 

nociceptor” classification. The treatment-phenotype interaction variable in the mixed-

effects model was only significant for the deterministic phenotyping, not the 

probabilistic phenotyping, but it should be stated that the variance found between the 

three subgroups is well within the margin of random sampling error, showing that 

cluster-based phenotyping is non-inferior to “irritable nociceptor” phenotyping. 

3.5 Frequency of phenotypes in clinical entities 

[The following section has been taken in parts and modified from (Vollert et al., 

2017a).] 



Results 

46 

An overview of the frequency of each phenotype across the etiologies, full or 

simplified phenotyping and deterministic and probabilistic algorithm is presented in 

Table 8, details in the chapters below. Frequency of phenotypes and overlap 

between phenotypes for each clinical entity for the full protocol is displayed in Venn 

and bar diagrams in Figure 9.  

 

Phenotyping protocol: full simplified 

Algorithm: deterministic probabilistic deterministic probabilistic 

Diabetic polyneuropathy (n = 151) 

Healthy profile 4% 14% 4% 12% 

Sensory loss 64% 82% 61% 64% 

Thermal hyperalgesia 13% 33% 9% 20% 

Mechanical hyperalgesia 19% 75% 26% 36% 

Peripheral nerve injury (n = 335) 

Healthy profile 8% 19% 14% 22% 

Sensory loss 24% 29% 26% 22% 

Thermal hyperalgesia 31% 44% 24% 33% 

Mechanical hyperalgesia 37% 52% 36% 36% 

Post-herpetic neuralgia (n = 97) 

Healthy profile 6% 19% 9% 20% 

Sensory loss 20% 22% 23% 12% 

Thermal hyperalgesia 30% 39% 28% 35% 

Mechanical hyperalgesia 44% 49% 40% 34% 

 

Table 8: Frequency of each phenotype in diabetic polyneuropathy, peripheral nerve injury and post-

herpetic neuralgia, separately for the deterministic and probabilistic algorithm, and for full and 

simplified phenotyping. From (Vollert et al., 2017a). 
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3.5.1 Deterministic 

Most common phenotype in diabetic polyneuropathy was sensory loss (n = 96, 64%), 

while in 20 (13%) patients thermal hyperalgesia and in 29 (19%) patients mechanical 

hyperalgesia was the dominant phenotype. Six (4%) patients presented a profile 

most similar to healthy participants.  

In peripheral nerve injury, mechanical and thermal hyperalgesia were frequent (n = 

125, 37% and n = 105, 31%, respectively), while sensory loss was less prominent (n 

= 82, 24%). Twenty-three (7%) patients showed highest probability for a healthy QST 

profile. Post herpetic neuralgia was mostly characterized by the mechanical 

hyperalgesia phenotype (n = 43, 44%), followed by thermal hyperalgesia (n = 29, 

30%) and sensory loss (n = 19, 20%). Six (6%) patients had the highest probability 

for a QST profile similar to healthy participants. 

3.5.2 Probabilistic 

Of the diabetic polyneuropathy cohort, 4 patients (3%) were not sorted to any 

phenotype nor healthy and had to be excluded. Twenty-one (14%) patients showed a 

relevant probability for the healthy profile, all of them were additionally assigned to a 

phenotype. Most common phenotype (n = 124, 82%) was sensory loss, while in 50 

(33%) patients thermal hyperalgesia and in 113 (75%) patients mechanical 

hyperalgesia was a prominent phenotype, the latter in significant difference to the 

deterministic algorithm (19%). Twenty-seven patients (18%) were possible to assign 

to all three phenotypes and 86 (57%) to two phenotypes, with the largest overlap 

between sensory loss and mechanical hyperalgesia.  

In peripheral nerve injury, 70 (21%) patients were not assigned to any phenotype and 

2 (<1%) only to the healthy profile, these patients were all excluded. Sixty-three 

(19%) patients were assigned to the healthy profile and at least one additional 

phenotype. Overall, mechanical hyperalgesia was most frequent, followed by thermal 

hyperalgesia (n = 173 (52%) and n = 146 (44%), respectively), while sensory loss 

was less prominent (n = 98, 29%).  17 patients (5%) were allocated to all three 

phenotypes, 120 (36%) to two phenotypes, with sensory loss and thermal 

hyperalgesia showing the least overlap.  
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Figure 9: Venn and bar diagrams of phenotype frequency and overlap between phenotypes for A) 

diabetic polyneuropathy, B) peripheral nerve injury and C) post-herpetic neuralgia. Bars are to scale, 

size of the circles and overlaps is illustrative, not to scale. Grey: healthy, blue: sensory loss, red: 

thermal hyperalgesia, yellow: mechanical hyperalgesia.  First bar (DET): deterministic algorithm (adds 

to 100%), three subsequent bars: probabilistic approach (a patient may be allocated to more than one 

phenotype, percentages are not additive). H: healthy, SL: sensory loss, TH: thermal hyperalgesia, MH: 

mechanical hyperalgesia. From (Vollert et al., 2017a). 
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In post-herpetic neuralgia, 29 (30%) patients were not possible to assign to any 

phenotype, these patients were excluded. Eighteen patients showed a relevant 

probability for a healthy profile, all of them were additionally sorted to at least one 

phenotype. Overall, patients with post-herpetic neuralgia were mostly characterized 

by the mechanical hyperalgesia phenotype (n = 48, 49%), followed by thermal 

hyperalgesia (n = 38, 39%) and sensory loss (n = 21, 22%). Six patients (6%) were 

possible to assign to all three phenotypes, 27 (28%) to two phenotypes, with the 

largest overlap between thermal and mechanical hyperalgesia.  

3.5.3 Simplified phenotyping 

Overall, 57% of patients with diabetic polyneuropathy, 62% of patients with peripheral 

nerve injury and 58% of patients with post-herpetic neuralgia were sorted into the 

same phenotype allocated when the full protocol was applied. The sensitivity of the 

simplified algorithm, however, is dependent on a combination of phenotype of 

interest and the clinical entity under study: in diabetic polyneuropathy, 74% of 

sensory loss patients were correctly identified, but only 48% of patients with thermal 

hyperalgesia and even less 43% of patients with mechanical hyperalgesia. In 

patients with peripheral nerve injury, allocation accuracy was more balanced between 

phenotypes (75% for sensory loss, 60% for thermal hyperalgesia, 64% for 

mechanical hyperalgesia). In patients with post-herpetic neuralgia, sensitivity was 

very low for sensory loss (24%), and better for thermal (76%) and mechanical 

hyperalgesia (56%).  

3.6 Sample size recommendations 

[The following section has been taken in parts and modified from (Vollert et al., 

2017a).] 

Estimated sample sizes for parallel or crossover design, the three phenotypes and 

the three etiologies of neuropathic pain are presented in Table 9 for both full and 

simplified phenotyping, applying the deterministic or probabilistic version of the 

algorithm.  

In summary, for parallel study design, either the estimated effect size of the treatment 

needs to be high (>0.7) or only phenotypes that are frequent in the clinical entity 
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under study can realistically be performed. For crossover design, populations under 

200 patients need to be screened for all phenotypes and clinical entities with a 

minimum estimated treatment effect size 0.5.  

Low sensitivity of the simplified algorithm is linked to low frequency of certain 

phenotypes (esp. thermal hyperalgesia in diabetic polyneuropathy and sensory loss 

in post-herpetic neuralgia), leading to higher numbers of patients that need to be 

screened. 

 

Study design parallel crossover 

Effect size 0.3 0.5 0.7 0.3 0.5 0.7 

Diabetic polyneuropathy 

Sensory loss 
550 (577) 
429 (550) 

200 (210) 
156 (200) 

106 (111) 
83 (106) 

141 (148) 
110 (141) 

53 (56) 
41 (53) 

30 (31) 
23 (30) 

Thermal 
hyperalgesia 

2708 (3911) 
1067 (1760) 

985 (1422) 
388 (640) 

523 (756) 
206 (340) 

692 (1000) 
273 (450) 

262 (378) 
103 (170) 

146 (211) 
58 (95) 

Mechanical 
hyperalgesia 

1853 (1354) 
469 (978) 

674 (492) 
171 (356) 

358 (262) 
91 (189) 

474 (346) 
120 (250) 

179 (131) 
45 (94) 

100 (73) 
25 (53) 

Peripheral nerve injury 

Sensory loss 
1467 (1354) 
1214 (1600) 

533 (492) 
441 (582) 

283 (262) 
234 (309) 

375 (346) 
310 (409) 

142 (131) 
117 (155) 

79 (73) 
66 (86) 

Thermal 
hyperalgesia 

1135 (1467) 
800 (1067) 

413 (533) 
291 (388) 

219 (283) 
155 (206) 

290 (375) 
205 (273) 

110 (142) 
77 (103) 

61 (79) 
43 (58) 

Mechanical 
hyperalgesia 

951 (978) 
677 (978) 

346 (356) 
246 (356) 

184 (189) 
131 (189) 

243 (250) 
173 (250) 

92 (94) 
65 (94) 

51 (53) 
37 (53) 

Post-herpetic neuralgia 

Sensory loss 
1760 (1530) 
1600 (2933) 

640 (557) 
582 (1067) 

340 (296) 
309 (567) 

450 (391) 
409 (750) 

170 (148) 
155 (283) 

95 (83) 
86 (158) 

Thermal 
hyperalgesia 

1173 (1257) 
903 (1006) 

427 (457) 
328 (366) 

227 (243) 
174 (194) 

300 (321) 
231 (257) 

113 (121) 
87 (97) 

63 (68) 
49 (54) 

Mechanical 
hyperalgesia 

800 (880) 
718 (1035) 

291 (320) 
261 (376) 

155 (170) 
139 (200) 

205 (225) 
184 (265) 

77 (85) 
69 (100) 

43 (48) 
39 (56) 

 

Table 9: Number of patients, that need to be screened to find a sub-population with a given phenotype 

large enough to conduct a study with a power of 80% with an alpha-level of 0.05 and a given effect 

size. First row: deterministic algorithm, second row: probabilistic algorithm. Values in brackets show 

the number needed to be screened with the simplified protocol. Numbers in bold indicate that 200 or 

less patients need to be screened. From (Vollert et al., 2017a). 



Results 

51 

3.7 Subgrouping human surrogate models 

[The following section has been taken in parts and modified from (Vollert et al., 

2017b).] 

The analysis comprised a total of n=657 healthy subjects that participated in studies 

on human surrogate models: nine distinct models (two of them in the area of primary 

and secondary hyperalgesia) at five centers (Table 1). About 44% of subjects were 

female (291/657); gender distribution was not homogenous across models, as for the 

UVB, cutaneous HFS and menthol models predominantly males were recruited. Age 

ranges were mostly lower than in neuropathic pain populations. These factors were 

accounted for by normalizing all QST data to gender-specific and age-specific 

reference data.  

Fig. 10 shows z-profiles of the six models used for defining phenotype means. As 

human surrogate models of nerve blocks, both nerve compression and topical 

lidocaine led to substantial loss in thermal and mechanical detection thresholds (Fig. 

10A). For CDT and MDT in the A-fiber block, this loss was almost complete, reaching 

a mean z-value beyond -5, i.e. beyond five standard deviations of normal detection. 

A-fiber block was also associated with pinprick hyperalgesia and paradoxical heat 

sensations.  

As human surrogate models of primary hyperalgesia, topical capsaicin and UVB 

sunburn both induced substantial heat and mechanical hyperalgesia (Fig. 10B). Heat 

hyperalgesia was more pronounced for capsaicin, mechanical hyperalgesia more 

pronounced for UVB. Capsaicin also induced loss of cold detection and cold pain.   

As human surrogate models of secondary hyperalgesia, cutaneous HFS and i.d. 

capsaicin injection led to mechanical hyperalgesia and thermal sensory deficits (Fig. 

10C). Mechanical hyperalgesia and DMA were more pronounced in the capsaicin 

injection model.  

Table 10 compares mean z-scores normalized to published reference data of healthy 

subjects with effect sizes in intra-individual comparison to untreated control areas. 

Intra-individual comparisons mostly confirmed the patterns of negative or positive 

sensory signs of z-values, but the loss of thermal detection for i.d. capsaicin and 

cutaneous HFS (Fig. 10C) appears to be overestimated in z-values due to the non-

standard test area.  
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Figure 10: Deep sensory profiling of human surrogate models of a priori mechanisms. A: nerve blocks, 

B: primary hyperalgesia, C: secondary hyperalgesia. From (Vollert et al., 2017b). 
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CDT WDT TSL CPT HPT PPT MPT MPS WUR MDT VDT 

A-fiber block z -5.49 -1.75 -3.23 0.08 -0.41 -0.75 2.74 0.90 1.28 -6.48 0.06 

 
D -4.36 -0.29 -1.90 0.69 0.28 -0.46 2.68 1.07 0.99 -4.83 0.02 

Topical lidocaine z -2.10 -1.33 -2.31 0.09 0.56 -0.58 -0.40 -0.86 -0.37 -1.85 0.42 

 
D -1.40 -1.21 -1.69 -0.59 0.05 -0.36 -1.27 -0.99 -0.36 -0.94 0.01 

Topical capsaicin z -1.62 -0.24 -1.27 -0.72 2.79 1.06 1.29 0.61 0.21 -0.48 -0.02 

 
D -1.22 -0.32 -0.84 -0.75 2.57 0.28 0.96 0.69 0.10 -0.30 0.08 

UVB z 0.03 -0.14 -0.67 0.71 1.70 1.92 1.97 1.03 0.27 -0.16 -0.42 

 
D 1.62 -0.23 0.40 0.18 1.30 0.78 2.80 1.39 -0.96 0.63 0.42 

capsaicin i.d. z -2.57 -2.14 -2.40 0.08 -0.05 1.15 3.67 2.18 -0.13 -0.63 -1.16 

 
D -0.49 -0.22 -0.29 -0.06 0.15 0.69 2.50 1.66 -0.20 0.28 0.04 

cutaneous HFS z -2.98 -1.89 -2.49 0.48 -0.25 -0.06 1.52 0.51 0.42 -0.93 
 

 
D -0.69 -0.17 -0.40 -0.25 -0.18 0.49 0.91 0.90 -0.05 0.81 

 

2° hyperalgesia z -1.64 -1.30 -1.48 0.48 0.65 1.07 1.71 1.10 0.14 -1.51 -2.18 

topical capsaicin D -0.40 -0.44 -0.34 0.06 0.31 0.22 0.73 1.04 -0.19 0.16 0.12 

2° hyperalgesia z -0.97 0.05 -0.74 0.59 0.58 1.10 0.56 0.14 1.24 -0.89 -1.11 

UVB D 0.43 -0.02 0.30 0.07 0.33 0.10 0.73 0.41 0.05 -0.33 0.03 

muscular HFS z -0.86 0.12 -0.41 0.75 0.83 1.01 0.52 0.08 0.49 -0.99 -0.86 

 
D 0.06 -0.04 -0.07 0.21 0.07 -0.13 -0.34 -0.15 0.04 0.04 0.00 

topical menthol z -1.00 -0.72 -0.08 1.08 0.03 -0.70 1.33 0.25 -0.28 0.34 0.29 

 
D -0.63 -0.41 0.07 1.94 0.67 0.32 2.59 0.80 -0.27 0.29 0.15 

topical lidocaine  z -3.31 -1.74 -3.09 -1.23 2.08 0.26 -0.07 -0.65 -0.20 -1.30 0.49 

+ capsaicin D -2.18 -1.57 -2.49 -2.49 2.07 0.21 -0.67 -0.30 -0.14 -0.53 -0.24 

 

Table 10: z-scores and effect sizes (D) of human surrogate models. z-scores: boundaries 1.0 and 

1.96. D values boundaries above 0.5 and 0.8. From (Vollert et al., 2017b). 

 

The QST profiles of the remaining models are presented in Figure 11. Fig 11A shows 

the QST profiles of surrounding skin from two models where secondary hyperalgesia 

is either controversial (UVB) or known to be mild (topical capsaicin). While the area of 

secondary hyperalgesia of topical capsaicin displays sensory loss in the z-profile, 

these effects are much smaller in the intra-individual comparisons with untreated 

skin, again suggesting an overestimation in z-values due to the non-standard test 

area (Table 10). Topical menthol has been introduced to induce cold hyperalgesia, 

and muscle HFS to induce deep hyperalgesia (Fig. 11B); sensory changes in both 

models were mild. Fig. 11C shows a combined model of nerve block and primary 

hyperalgesia. 
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Figure 11: Deep sensory profiling of additional human surrogate models. A: secondary hyperalgesia 

surrounding topical capsaicin or UVB treated areas, B: topical menthol (cold hyperalgesia model) and 

muscle HFS (deep pain model), C: sequentially combined topical application of lidocaine and 

capsaicin. From (Vollert et al., 2017b). 
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3.7.1 Cluster analysis of human surrogate models 

Unlike for patients suffering from neuropathic pain, the cluster analysis of human 

surrogate models did not reveal meaningful results. All solutions for 2 - 9 clusters 

presented with a high count of negative silhouettes (above 10%, see Table 11), 

which indicates solutions that are mere statistical artefacts rather than separate 

clusters and had to be excluded according to the quality criteria for acceptable 

solutions in our protocol. The two clusters solution scored highest in mean silhouette 

width and ARI in comparison to hierarchical clustering, but also showed a frequency 

of negative silhouettes above the cut-off of 10%. The ten clusters solution scored 

highest in the remaining quality criteria, still, ten is a suspiciously high number 

considering that only eleven models are included. 

In addition, all solutions from 4 - 10 clusters were unstable in the k-means clustering, 

i.e. the algorithm presented various solutions in various runs instead of coming to the 

same solution for a given number of clusters, indicating various local optimum 

solutions rather than one globally optimal solution. Indices for comparison to methods 

of distinct mathematical background (hierarchical and Bayesian clustering) presented 

a similarity between methods far lower than it was the case for clustering of patients.  

Therefore, for human surrogate models, no subgrouping based on a hypothesis-free 

cluster analysis of sensory profiles can be applied.  
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n 
(cluster) 

silhouette width: comparison to hierarchical: comparison to EM: 

mean ° 
minimum 
mean per 
cluster°° 

negative 
(%)°°° 

ARI* AVI** ARI* AVI** BIC*** 

2 0.29 0.06 14.5% 0.17 0.52 0.28 0.41 0 

3 0.26 0.10 12.2% 0.17 0.47 0.23 0.45 747.25 

4 0.21 0.13 12.5% 
     

5 0.20 0.12 11.3% 
     

6 0.18 0.10 11.9% 
     

7 0.17 0.09 16.1% 
     

8 0.20 0.11 14.8% 
     

9 0.21 0.14 11.6% 
     

10 0.21 0.11 9.7% 0.20 0.21 0.23 0.22 1338.85 

 

Table 11: Decision on the number of clusters for human surrogate models. °Mean silhouette width per 

cluster.  A value below zero indicates clusters that do not separate from other clusters. Measure of 

discriminatory power (0 to 1). 0: no discrimination, 1: perfectly separated clusters (high values are 

preferred). °°Measure of fragmentation of solution (-1 to +1). -1: cluster that is solely a fragment, +1: a 

solution that is not fragmented (solutions with values below zero were discarded) °°°Measure of 

fragmentation of solution (0% to 100%). 0%: no fragmentation, 100% a completely fragmented 

solution (solutions with values above 10% were discarded) *ARI (Adjusted Rand Index): Measure of 

similarity (0 to 1). 0: only random identity, 1: perfect identity (high values are preferred) **AVI (Adjusted 

Variation of Information): Measure of dissimilarity (0 to 1). 0: no dissimilarity, 1: strong dissimilarity (low 

values are preferred) ***Delta-BIC (Bayesian Information Criterion): Measure of gain of information by 

increasing cluster number. If delta-BIC > 10, the higher cluster number is recommended.  

 

3.7.2 Pattern-based sorting algorithm 

By random number assignment, 49% of subjects from the six surrogate models with 

clearly defined mechanism (topical lidocaine, A-fiber block, topical capsaicin, UVB 

radiation, capsaicin injection and cutaneous HFS) were assigned to the training data 

set (n = 265), which defined mean values and standard deviations for the sorting 

algorithm (Table 12).  
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nerve block  
(μ (σ)) 

primary 
hyperalgesia 

(μ (σ)) 

secondary 
hyperalgesia 

(μ (σ)) 

healthy 
participants  

(μ (σ)) 

CDT -2.94 (2.36) -1.05 (1.59) -2.71 (1.07) 0.00 (1.00) 

WDT -1.36 (1.27) -0.23 (1.04) -1.87 (0.89) 0.00 (1.00) 

TSL -2.55 (1.52) -1.03 (1.12) -2.28 (0.84) 0.00 (1.00) 

CPT 0.06 (1.13) -0.12 (1.31) 0.33 (1.16) 0.00 (1.00) 

HPT 0.52 (1.23) 2.37 (1.14) -0.14 (1.24) 0.00 (1.00) 

PPT -0.63 (0.97) 1.35 (1.66) 0.63 (1.45) 0.00 (1.00) 

MPT 0.86 (1.87) 1.54 (1.08) 3.12 (0.97) 0.00 (1.00) 

MPS -0.15 (1.38) 0.71 (1.21) 1.95 (1.19) 0.00 (1.00) 

WUR 0.25 (1.29) 0.18 (1.01) 0.31 (1.15) 0.00 (1.00) 

MDT -3.24 (2.89) -0.32 (1.13) -0.80 (1.38) 0.00 (1.00) 

VDT 0.22 (1.06) -0.23 (1.93) -1.08 (1.83) 0.00 (1.00) 

PHS 0.06 (0.34) 0.81 (1.07) 1.12 (1.11) 0.00 (1.00) 

DMA 0.48 (0.86) 0.13 (0.49) 0.16 (0.54) 0.00 (1.00) 

 

Table 12: Mean QST z-values (μ) and standard deviations (σ, in brackets) for each of the 13 QST 

parameters separately for each of the three mechanistic subgroups. Values for healthy participants 

follow the definition of z-values: mean = 0 and standard deviation = 1. PHS is coded as pseudo-

normally distributed with 0 = absence and 2 = presence, DMA is coded pseudo-normally distributed 

with 0 = absence, 2 = 0-1 (on a 0-100 numerical rating scale), and 3 = 1-100. From (Vollert et al., 

2017b). 

 

Individual allocation by the deterministic sorting algorithm replicated the a priori 

assignment of surrogate models in 79% of the cases for training set and in 81% of 

the cases for the test set (remaining 279 subjects from the same surrogate models). 

Cohen’s kappa coefficient of agreement (scale: 0 = random classification, 1 = perfect 

agreement between methods) was 0.54 (95% confidence interval: 0 – 1) for the 

training set and 0.56 (95% confidence interval: 0 – 1) for the test set, both values 

may be categorized as “good”, although no universal guideline for interpreting 

Cohen’s kappa exists (Fleiss, 1973), and the confidence intervals reaching from zero 

to one indicate that the profiles are so unevenly distributed that these kappa values 

should not be overinterpreted. Most common shifts were primary or secondary 

hyperalgesia to nerve block (18% and 27%, respectively), and least common shifts 
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were nerve block to secondary hyperalgesia and secondary to primary hyperalgesia 

(both <1%). Shifts between original and algorithmic assignment is shown in Table 13. 

 

 
original 

nerve block 
primary 

hyperalgesia 
secondary 

hyperalgesia algorithm 
 

nerve block 29 / 30 4 / 2 0 / 0 

primary hyperalgesia 35 / 42 162 / 178 10 / 4 

secondary hyperalgesia 8 / 5 0 / 1 17 / 17 

 

Table 13: Crosstabulation of dominant phenotype identified using the algorithm (columns) vs. the 

original assignment (rows) for training and test dataset (in brackets). Overall, concordance of the 

algorithm to original assignment was strong (79% of the cases for the training and 81% for the test 

dataset, note that the even higher concordance for the test dataset compared to training data indicates 

a very robust effect). From (Vollert et al., 2017b). 

 

3.7.3 Deterministic and probabilistic sorting 

The z-profiles of each sensory subgroup are shown in Figure 12. Forty-one subjects 

showed a sensory profile, that was most similar to untreated healthy skin, although 

part of a surrogate model (Fig. 12A). The subjects sorted to the nerve block profile 

were mostly characterized by loss of cold and mechanical detection (CDT and MDT, 

both representing A-fiber function, Fig. 12A). Loss of vibration detection was not 

detectable, which is due to a limitation in the A-fiber block, which only affects a small 

area, while vibration can be sensed by rapidly adapting mechanoreceptors situated 

beyond this area. Primary hyperalgesia (Fig. 12B) was characterized mostly by heat 

hyperalgesia, while secondary hyperalgesia presented mostly mechanical 

hyperalgesia, and also loss of thermal detection.  
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Figure 12: Average profiles per mechanism-stratified human surrogate models. Using the deterministic 

algorithm, 657 healthy subjects that had undergone human surrogate models of chronic pain were 

sorted into one of four categories of sensory profiles. A: nerve blocks vs. healthy profiles, B. primary 

vs. secondary hyperalgesia profiles. Positive z-scores indicate positive sensory signs (hyperalgesia), 

negative z-values indicate negative sensory signs (hypoesthesia, hypoalgesia). Dashed lines: 95% 

confidence interval for healthy participants (-1.96 < z < +1.96). Inserts show numeric pain ratings for 

DMA on a logarithmic scale (0-100) and frequency of PHS (0-3).From (Vollert et al., 2017b). 

 

In the probabilistic sorting algorithm, the percentage of sensory profiles compatible 

being from normal skin increased to 187 (28%) vs. 41 (6%) in the deterministic 

version of the algorithm. The highest frequency of healthy profiles was found in 

muscular HFS and topical menthol (see Figure 13 for all frequencies per model and 

prototypic mechanistic profile), which also had the mildest sensory changes in their 

averaged QST profiles (Fig. 11B).  

QST profiles compatible with the nerve block profile increased to 352 cases (54%) in 

the probabilistic algorithm vs. 178 (27%) in the deterministic version. Apart from the 

defining models of A-fiber block and topical lidocaine, the highest frequency of the 

nerve block profile was found in cutaneous HFS and in the menthol model.  

QST profiles compatible with primary hyperalgesia increased from 380 (58%) in the 

deterministic to 470 (72%) in the probabilistic algorithm. Beyond the defining models, 

this profile was frequent in the area of secondary hyperalgesia of the UVB radiation 

model, topical menthol and muscular HFS.  

QST profiles consistent with secondary hyperalgesia were more than twice as 

frequent in the probabilistic sorting (n = 134; 20%) that in the deterministic sorting (n 

= 58; 9%). Beyond the defining capsaicin injection and cutaneous HFS, this profile 
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was only found in the area of secondary hyperalgesia of topical capsaicin in a 

relevant frequency (deterministic: 27%, probabilistic: 65%).   

 

 

 

Figure 13: Deterministic and probabilistic sorting of human surrogate models and patients suffering 

from peripheral neuropathic pain. A: compression block (n=24), B: topical lidocaine (n=41), C: topical 

capsaicin (n=273), D: UVB sunburn (n=158), E: i.d. capsaicin injection (n=36), F: electrical high-

frequency stimulation through punctate surface electrode (n=12), G: skin surrounding topical capsaicin 

(n=37), h: skin surrounding UVB sunburn (n=22),I: muscle HFS (n=15), J: topical menthol (n=11), K: 

topical lidocaine plus capsaicin (n=28), L: patients suffering from peripheral neuropathic pain (n=902). 

Deterministic sorting (DET): each profile is sorted to its best fit, probabilistic sorting: each profile is 

sorted to each mechanism for which it reaches a probability above 64%, as determined as optimal cut-

off in a ROC analysis of patients suffering from neuropathic pain and healthy subjects in (Vollert et al., 

2017b). H (grey): normal healthy skin, NB (Blue): nerve blocks, PH (red): primary hyperalgesia, SH 

(yellow): secondary hyperalgesia. From (Vollert et al., 2017b). 

 

3.8 Patients in heuristic and mechanistic phenotypes 

In 65% of the cases, patients sorted to the sensory loss phenotype were sorted to 

nerve block, patients sorted to the thermal hyperalgesia phenotype to the primary 

hyperalgesia pattern, and patients sorted to the mechanical hyperalgesia phenotype 

to the secondary hyperalgesia pattern (Table 14). This corresponded to a Cohen’s 

kappa coefficient of agreement (scale: 0 = random classification, 1 = perfect 
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agreement between methods) of 0.44 (95% CI: 0.28 - 0.60), showing a substantial 

degree of agreement (Fleiss et al., 2003). The most prominent shifts were from the 

two hyperalgesia phenotypes in the heuristic patient clustering into the mechanistic 

phenotype consistent with nerve block.  

In the probabilistic sorting (Table 14), interestingly, fewer patients were sorted to the 

nerve block profile (512 vs. 600 in deterministic sorting), while relatively more 

patients were sorted to primary (271 vs. 186 in deterministic sorting) or secondary 

hyperalgesia (198 vs. 116 in deterministic sorting). But the most prominent shift was 

still towards the profiles consistent with nerve blocks. These findings suggest the 

presence of multiple mechanisms in some of the patients. In fact, only one third of 

patients could be uniquely assigned to one of the three mechanisms. Another third of 

the patient QST profiles was consistent with multiple mechanisms (n = 282), most 

frequently a combination including the nerve block phenotype. The last third was not 

sufficiently distinct from a normal skin QST phenotype to be assigned to any 

mechanism (n = 279).  
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sensory loss 
(n = 356) 

thermal 
hyperalgesia  

(n = 267) 

mechanical 
hyperalgesia  

(n = 279)   

deterministic 

nerve block (NB, n = 600) 337 97 166 

primary hyperalgesia  
(PH, n = 186) 

6 156 24 

secondary hyperalgesia 
(SH, n = 116) 

13 14 89 

probabilistic 

NB, n = 512 202 130 180 

PH, n = 271 12 163 96 

SH, n = 198 38 26 134 

of the above: patients sorted to a single mechanism (n = 341) 

NB, n = 247 163 30 54 

PH, n = 62 1 58 3 

SH, n = 32 3 3 26 

of the above: patients sorted to multiple mechanisms (n = 282) 

NB + PH (n=116) 4 84 28 

NB + SH (n=73) 28 2 43 

PH + SH (n=17) 0 7 10 

NB + PH + SH (n = 76) 7 14 55 

patients sorted to no mechanism (n= 279) 

 150 69 60 

 

Table 14: Crosstabulation of dominant phenotype identified using the algorithm developed in patients 

(columns) vs. the algorithm developed based on surrogate models (rows) for n=902 patients. In the 

clear majority of the cases (65%, note that random assignment would be 33%) both algorithms 

concurred in the deterministic variant. From (Vollert et al., 2017b). 
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Figure 14 illustrates the similarity in QST profiles grouped either according to the 

original cluster analysis or the mechanistic sorting. While the profiles of patients 

sorted according to both algorithms are highly similar, the profiles of patients and 

surrogate models in the mechanistic sorting displays some interesting differences 

(compare Fig. 12 with Fig. 14B): patients sorted to the nerve block suffer from 

hypoalgesia, while in surrogate models pain thresholds are normal or show mild gain. 

Patients sorted to nerve block also have loss of VDT, which could not be modeled in 

the A-fiber block. For primary hyperalgesia, the models display almost no cold, but an 

isolated heat hyperalgesia, while patients show both cold and heat hyperalgesia. For 

secondary hyperalgesia, participants under surrogate models have more gain in MPT 

than in MPS, which is reversed in patients. 

 

 

 

Figure 14: Average profiles per mechanism-stratified patient group. Using the deterministic algorithm, 

902 patients with peripheral neuropathic pain (Baron et al., 2017) were sorted either according to three 

heuristic patient clusters (A) or according to three mechanistic clusters from human surrogate models 

(B). Positive z-scores indicate positive sensory signs (hyperalgesia), negative z-values indicate 

negative sensory signs (hypoesthesia, hypoalgesia). Dashed lines: 95% confidence interval for healthy 

participants (-1.96 < z < +1.96). Inserts show numeric pain ratings for DMA on a logarithmic scale (0-

100) and frequency of PHS (0-3).  From (Vollert et al., 2017b). 
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4 DISCUSSION 

Aim of the presented work was to improve usefulness of Quantitative Sensory 

Testing for application in individual diagnostics, and to establish a mechanism-related 

classification of peripheral neuropathic pain that can be used for stratification of 

clinical trials and for individual patients’ therapy. This global aim, on which pain 

researchers work since over 25 years (Fields et al., 1998; Woolf et al., 1998; 

Baumgartner et al., 2002; Baron et al., 2012; von Hehn et al., 2012; Edwards et al., 

2016), has been progressed to a substantial degree. The main findings of this work 

were: 

As a premise to using QST in multicentral clinical trials, it is crucial that examiners 

across centers, countries and languages produce comparable results. In an analysis 

of heterogeneity of patient and healthy participant data from ten European centers, 

eight countries and eight languages, it could be shown that skilled QST examiners 

are able to produce homogeneous results (Vollert et al., 2016a). The I² index of 

heterogeneity, ranging from 0% (no heterogeneity) to 100% (completely 

heterogeneous data) (Higgins and Thompson, 2002) was found to be 0% for all QST 

parameters for patients suffering from painful polyneuropathy or peripheral nerve 

injury, and 0% for healthy participants for all QST parameters except MDT (negligible 

5.4%) and PPT (substantial 41.8%). Notably, the heterogeneity is lower in patients, 

where it is crucial that centers test reproducibly. 

In a cluster analysis in 902 patients suffering from peripheral neuropathic pain, it 

could be shown that three sensory phenotypes appear across etiologies, and are 

stable across cohorts, as they are validated in a second cohort of 233 patients. 

These phenotypes are mainly characterized by  

1. Hypoesthesia, both thermal and mechanical. This phenotype is labelled 

“sensory loss”, 

2. Comparably intact sensory function, often combined with thermal hyperalgesia 

or allodynia. This phenotype is labelled “thermal hyperalgesia” and 

3. Thermal hypoesthesia, combined with mechanical hyperalgesia or allodynia, 

therefore called “mechanical hyperalgesia”. 

An algorithm that is able to assign single patients to each of these phenotypes was 

developed, validated in the original cohort and tested for its capability to separate 
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healthy participants from patients with neuropathic pain. Using this algorithm, sample 

sizes of patient groups that need to be screened to identify a phenotype-stratified 

subgroup large enough to conduct a clinical trial were calculated. These numbers 

suggest that crossover design studies are realistic for all phenotypes and the 

etiologies diabetic polyneuropathy, peripheral nerve injury and post-herpetic 

neuralgia, while parallel design studies will need very large screened populations for 

many phenotype-etiology combinations. 

To further validate mechanistic basics of the identified phenotypes, a cluster analysis 

with identical protocol was conducted in n = 657 QSTs of healthy participants under 

human surrogate models of neuropathic pain. While the cluster analysis revealed no 

sufficient results, a sorting algorithm previously validated for sensory profiles of 

neuropathic pain patients (Vollert et al., 2017a) led to reproducible sorting of 

surrogate model sensory profiles into patterns defined a priori according to known 

mechanisms in a randomized split half analysis. Sorting of 902 neuropathic pain 

patients into these mechanistic phenotypes led to a similar distribution as the original 

heuristic clustering of the same patients (Baron et al., 2017; Vollert et al., 2017b; 

Vollert et al., 2017a). 

4.1 Heterogeneity between centers 

[The following section has been taken in parts and modified from (Vollert et al., 

2016a).] 

A central goal of the consortia DFNS, IMI Europain and Neuropain was to jointly 

gather data of patients suffering from neuropathy from centers across Europe, 

assessed in a highly valid protocol for a psychophysical testing procedure with broad 

scientific and clinical applications (Rolke et al., 2006a; Backonja et al., 2013) in a 

central database. One essential premise for performing multi-center analyses is 

homogeneous, unbiased results across all centers. The presented analysis of 

heterogeneity showed that there is no evidence of systematic heterogeneity between 

the QST assessment of the ten included centers located in eight countries across 

Europe and that the data can be analyzed as a homogenous group of patients.   

The fact that these centers were able to produce highly reliable results in QST 

assessment, provided that the examiners are well trained and a strict protocol is 

applied, corresponds to previous findings in healthy participants (Rolke et al., 2006a; 
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Geber et al., 2009; Krumova et al., 2012a; Vollert et al., 2015) and patients suffering 

from painful neuropathies (Felix and Widerstrom-Noga, 2009; Geber et al., 2011). 

Still, this was the first multi-national and multi-lingual analysis of heterogeneity, 

showing that reproducible results can be achieved in bigger international consortia.  

These findings are in line with a previous study reporting high test-retest and inter-

observer reliability of QST in accordance with the DFNS protocol and training (Geber 

et al., 2011). QST has been suspected to be unreliable due to its subjective rating 

character (Yarnitsky and Granot, 2006), but it has been shown that subjective pain 

ratings correlate with neural activity in cortical regions associated with pain 

processing (Coghill and Eisenach, 2003). Furthermore, seemingly objective 

measures like corneal confocal microscopy or gold standards like skin biopsy for 

determining the intraepidermal nerve fiber density for detecting small fiber 

neuropathy have been conflictingly reported to be of high (Smith et al., 2005; Pacaud 

et al., 2015) or rather moderate (Wopking et al., 2009; Hertz et al., 2011) reliability, 

indicating that standardized procedures and extensive quality control are of higher 

importance for reliability than the method itself.  

These results hold direct implications on the future planning for multi-center studies 

and clinical trials. To our knowledge, these have been avoided since the 

homogeneity of QST results across different labs has been previously doubted. 

However, it seems to be possible to produce highly reliable DFNS QST results 

across different research units, and, more importantly, also across countries and 

languages. The DFNS protocol is applied by trained examiners meanwhile in more 

than 70 research units in 21 countries across the world, and it is a future challenge to 

show that QST data from other continents beyond Europe is comparable to the 

reference data. A first indication is a study by Haroun et al. (unpublished to this 

point), in which a well-trained examiner performed DFNS QST in 52 healthy 

participants in Mumbai, India, without systematic deviations from the DFNS reference 

data.  

There are no center effects that can be assigned to systematic heterogeneity in a 

meaningful way, and the I² Index for heterogeneity between centers was found to be 

above 0% only for the mechanical detection threshold (5.4%) and pressure pain 

threshold (41.8%) in healthy participants. While 5% for MDT can safely be assigned 

to normal scatter in (comparably) small samples, 42% for PPT can be considered as 
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high. This value was mainly influenced by two centers from Denmark and Sweden, 

but due to the broad confidence intervals of the center-specific means, the 

confidence interval of I² is still 0% to 66%, and Higgins and Thompson state that an I² 

Index with a confidence interval that includes 0% can be considered as no systematic 

heterogeneity (Higgins and Thompson, 2002). An indication of true heterogeneity in 

the assessment between the centers would be if the deviation from the overall mean 

in PPT of the above mentioned two centers was found also in the polyneuropathy 

and peripheral nerve injury group. This is only the case for one center in the 

polyneuropathy group, while the other three center-specific means (one center in the 

PNP group and both centers in the PNI group) lie very closely to the overall mean of 

PPT in the patient groups.  Nonetheless, the high heterogeneity in PPT may be 

explained by the methodological peculiarities of the PPT assessment. This 

parameter, which assesses the only deep pain threshold in the protocol, is harder to 

be performed in the standardized way as per protocol in comparison to the other QST 

parameters, especially regarding the speed of the stimulus application, as it is the 

only stimulus ramp in the DFNS protocol that is controlled manually (Rolke et al., 

2005; Mainka et al., 2014). Therefore, it is plausible that we found heterogeneity only 

in this parameter. The effect might be reduced if a device with a defined stimulus 

ramp application would be used (Mainka et al., 2014), still, this would further increase 

costs of the DFNS protocol. The effects are smaller over muscle than over bone 

structure (Mainka et al., 2014), therefore, the PPT is tested over muscle. 

One of the main drawbacks of the analysis is the small group sizes per center. While 

in healthy participants a normal range is well defined for DFNS QST (Rolke et al., 

2006a; Magerl et al., 2010; Pfau et al., 2014), however, patients suffering from 

painful neuropathies present with broadly scattering QST profiles (Maier et al., 2010; 

Backonja et al., 2013). It is important to keep in mind that the fact that CIs and I² 

indices are not higher for patients in comparison to healthy participants does not 

imply that heterogeneity between patients is comparable to heterogeneity between 

healthy participants. Both I² and the forest plot indicate measures of heterogeneity 

between centers, not between subjects. Individual differences can be influenced by 

many factors, such as underlying disease and its duration (Maier et al., 2010; 

Krumova et al., 2012a; Backonja et al., 2013). A high degree of individual scatter can 

lead to broad confidence intervals of the center-specific means, which may lead to 

underestimating the true heterogeneity (false negative results).  On the other hand, 
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this may lead to a high degree of heterogeneity that is in fact not due to differing 

application of the QST protocol but different patient groups in phenotype of pathology 

or disease duration (false positive results).  

While we can rule out the latter in our case, as we found no heterogeneity in the 

patient groups, the former is more difficult to conclude on. In 50% (11 of 22) of the 

QST parameters in the patient groups, the upper boundary of the 95% confidence 

interval of the I² Index is above 60%, indicating that although all I² values are found to 

be 0%, we find a very different picture if we look at the upper boundaries of the 

confidence intervals. Center-specific mean z-values scatter broadly for many QST 

parameters in the patient groups (e.g. mechanical pain threshold), and the I² values 

are low only because of the broad confidence intervals of the center-specific means. 

This emphasizes that our results should be treated with some caution, and analyses 

in larger patient groups may produce more nuanced results. Broad individual scatter 

within and between the centers in combination with small sample sizes can also 

result in the model finding no center-specific mean (Self and Liang, 1987; Andrews, 

1997), as it has been the case for wind-up ratio and vibration detection threshold in 

patients suffering from peripheral nerve injury. This should not be interpreted as a 

definitive lack of heterogeneity between the centers, but merely reflect that on the 

basis of the underlying data we cannot make any clear statements about 

heterogeneity for these parameters in the PNI group. 

4.2 Sensory phenotypes in patients 

[The following section has been taken in parts and modified from (Baron et al., 2017) 

and (Vollert et al., 2017a).] 

In a cluster analysis of n = 902 patients suffering from peripheral neuropathic pain 

without a predefined number of clusters, we found that a three-cluster-solution best 

describes patients with peripheral neuropathic pain. All subgroups occurred in 

relevant numbers across etiologies, but frequencies differed between the entities. 

This 3-cluster solution and the structure of the sensory profiles could be reproduced 

in the validation cohort. It matches the three subgroups described in smaller studies 

in patients with PHN almost 20 years ago (Fields et al., 1998). The subsequently 

developed algorithm enables individual allocation of patients to one or more sensory 
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phenotypes, and, further, can separate patients from healthy participants with a very 

high specificity of 94% and a sensitivity of 78%. 

Although the presented algorithm offers a barrier for excluding healthy participants, 

this should be considered within the clinical context. We decided on a rather 

conservative criterion with high specificity. It should be noted that patients eligible for 

clinical trials are usually screened beforehand, have been shown to have a lesion or 

disease and have spontaneous pain. Confirming neuropathic pain is relying on a 

grading system, following four steps:  

1. a history of a relevant neurological lesion or disease,  

2. anatomically plausible pain distribution  

3. sensory signs of neuropathy, and finally  

4. diagnostic tests confirming the lesion or disease (Finnerup et al., 2016).  

Our algorithm serves as step (3) for confirming or dismissing neuropathic pain, but on 

an averaged level across a full profile: e.g., a strongly decreased vibration or thermal 

detection in an otherwise normal profile would be considered a single negative 

sensory sign, but might still result in a high averaged probability of being healthy in 

this algorithm. Further studies will provide insights, if single negative sensory signs or 

a phenotype probability is more meaningful. A second use of our algorithm is for 

stratification of patients suffering from neuropathic pain according to pain phenotype, 

and its efficacy will have to be validated in future RCTs. 

4.2.1 Sensory loss phenotype 

Cluster 1 (42%) was characterized by a loss of small and large fiber function and the 

presence of paradoxical heat sensations. These patients did not suffer from sensory 

gain except a mild dynamic mechanical allodynia in few patients. Roughly 52% of 

patients with polyneuropathy fell into this category indicating dying-back 

degeneration of nearly all fiber classes. Interestingly, 43% of patients with painful 

radiculopathy demonstrated this sensory pattern, suggesting severe degeneration of 

sensory fibers within the affected nerve root. Paradoxical heat sensation was most 

frequent, underpinning the notion that it is induced by a loss of afferent input although 

at face value it is a positive sensory sign possibly related to a central disinhibition 

process (Yarnitsky and Ochoa, 1990; Hansen et al., 1996). 
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The sensory profile is similar to that of a compression nerve block (Fruhstorfer, 1984; 

Yarnitsky and Ochoa, 1991; Baumgartner et al., 2002). It likely represents the 

"deafferentation" or "painful hypoesthesia" subgroups described by others (Fields et 

al., 1998; Baumgartner et al., 2002; Truini et al., 2009; Hatem et al., 2010). The 

spontaneous pain was likely due to ectopic action potentials generated in proximal 

sites of injured nociceptors (Campbell and Meyer, 2006) e.g., in the dorsal root 

ganglion or in deafferented central nociceptive neurons (Devor et al., 1992; Orstavik 

et al., 2006; Serra et al., 2012). 

4.2.2 Thermal hyperalgesia phenotype 

Cluster 2 was characterized by relatively preserved large and small fiber sensory 

function in combination with heat and cold hyperalgesia and only low intensity 

dynamic mechanical allodynia. Burning pain quality in this cluster was less prominent 

than in the other groups, consistent with findings in Guillain-Barré syndrome where 

burning pain was associated with small fiber deficits (Martinez et al., 2010). This 

pattern occurred in 33% of all peripheral neuropathic pain patients regardless of 

etiology. The fact that in one third of all patients the cutaneous sensory function was 

relatively preserved despite documented nerve damage indicates that peripheral 

neuropathic pain may be associated with effective cutaneous regeneration and 

sensitized nociceptors. 

The sensory profile is similar to that of a UVB burn lesion (Gustorff et al., 2013) and 

is likely due to peripheral sensitization (Treede et al., 1992). It represents the 

"irritable nociceptor" subgroup described by others (Fields et al., 1998; Ochoa et al., 

2005; Demant et al., 2014; Demant et al., 2015). Sensitized nociceptors are 

associated with overexpression of channels and receptors leading to pathological 

spontaneous discharges and a lowered activation threshold for thermal (heat and 

cold) and mechanical stimuli. Ongoing hyperactivity in surviving nociceptors may be 

responsible for ongoing pain (Campbell and Meyer, 2006) and may lead to some 

central sensitization in the spinal cord dorsal horn, so that tactile stimuli conveyed in 

A-fibers become capable of activating central nociceptive neurons. As a result, 

mechanical stimuli induce enhanced pain percepts, i.e., pinprick hyperalgesia and 

dynamic mechanical allodynia (von Hehn et al., 2012). Since these types of 

mechanical hyperalgesia were only present in about 20% of the patients, peripheral 
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nociceptor drive obviously does not always induce central sensitization (Truini et al., 

2013). 

4.2.3 Mechanical hyperalgesia phenotype 

Cluster 3 (24%) was characterized by a predominant loss of cold- and heat-sensitive 

small fiber function in combination with blunt pressure hyperalgesia, pinprick 

hyperalgesia and more frequent dynamic mechanical allodynia. The profile was most 

commonly present in patients with PHN (47%). It is similar to the one induced by 

high-frequency electrical stimulation of the skin that is capable of inducing spinal 

long-term potentiation (Randic et al., 1993; Lang et al., 2007) and likely equivalent to 

"neurogenic hyperalgesia" or "central sensitization" subgroups described by others 

(Fields et al., 1998; Baumgartner et al., 2002). Central sensitization is prominent for 

mechanical stimuli (Baumann et al., 1991; Simone et al., 1991; Treede et al., 1992) 

but not thermal stimuli. The dissociation of thermal and mechanical hyperalgesia may 

be explained by differences in neural signaling of thermal and mechanical pain that 

starts with peripheral encoding in distinct subsets of nociceptors (Cavanaugh et al., 

2009; Henrich et al., 2015). Ongoing pain in this subgroup indicates spontaneous 

activity in the nociceptive system, which may originate in the peripheral and/or central 

nervous system. 

4.2.4 Sample size recommendations 

While a series of studies showed that a post-hoc responder analysis can reveal 

phenotypes that are important to predict treatment response (Attal et al., 2004; 

Wasner et al., 2005; Edwards et al., 2006; Simpson et al., 2010; Westermann et al., 

2012; Katz et al., 2015; Attal et al., 2016; Mainka et al., 2016; Reimer et al., 2017), 

the first phenotype-stratified, randomized, placebo-controlled trials have been 

published only recently (Demant et al., 2014; Demant et al., 2015). In these studies, 

oxcarbazepine showed a superior effect over placebo in a subgroup with “irritable 

nociceptors”, a group with a sensory profile very similar to the thermal hyperalgesia 

phenotype in this study. In contrast, for topical lidocaine no group difference could be 

demonstrated. 

The main problem with the definition of “irritable nociceptors” based on individually 

abnormal QST values and loss and gain of functions patterns (Rolke et al., 2006a; 
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Maier et al., 2010) is that it is based on a statistically very sound, but strictly 

conservative approach with (comparably) low sensitivity. For instance in diabetic 

polyneuropathy the “irritable nociceptor” phenotype is virtually not present 

(Themistocleous et al., 2016). 

The approach taken in this study does, in contrast, not rely on individually abnormal 

QST values, but focusses on cluster centroids. An appealing advantage of this 

dynamic method can be seen in Figure 9. The thermal hyperalgesia phenotype, 

which is similar to the “irritable nociceptor” and may have similar underlying 

mechanisms of pain generation, is found to be a prominent phenotype in a 

reasonable subgroup of roughly one third of the patients with neuropathic pain due to 

diabetic polyneuropathy. In a cohort of patients suffering from PHN, PNP or PNI 

treated with oxcarbazepine (Demant et al., 2014), the thermal hyperalgesia 

phenotype is similarly effective as predictor of treatment efficacy compared to 

phenotyping by the “irritable nociceptor” classification. 

To use stratification into subgroups in clinical trials a large patient population must be 

screened beforehand. As screening with QST may be considered expensive and 

time-consuming, not only needs the final stratified study population be considered, 

but also the number of patients necessary to screen. Thus, a solid sample size 

calculation is a prerequisite for a stratified study. In Table 9 we present sample size 

numbers for screening of populations for painful diabetic polyneuropathy, painful 

peripheral nerve injury and post-herpetic neuralgia in relation to estimated effect size 

(0.3 vs. 0.5 vs. 0.7) and study design (parallel vs. crossover). Crossover sample 

sizes are overall “realistic” numbers – across phenotypes and clinical etiology based 

entities. If a parallel study design is intended, however, phenotype stratification may 

only be possible if a high effect size (e.g. 0.7) is anticipated. Another way to deal with 

high numbers to screen would be to limit the screening process to few centers, while 

the study main RCT can be conducted after screening at multiple sites.  

Of the two methods of sorting patients to phenotypes presented in parallel here, we 

do not recommend one or the other in general, because they have individual 

advantages and disadvantages. The deterministic approach, sorting each patient to 

exactly one phenotype, ignores that multiple mechanisms of pathology may be 

present in a patient, and that these mechanisms may overlay each other and result in 

a sensory phenotype that cannot easily be allocated to one phenotype over the other. 
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The probabilistic approach, however, holds its own challenges: while the overlap 

between phenotypes is reasonable for peripheral nerve injury and post-herpetic 

neuralgia, patients with diabetic polyneuropathy tend to present more than one 

phenotype with significant probability. This effect, probably caused by the 

overwhelming effect of loss symptoms in these patients, may dilute especially the 

mechanical hyperalgesia phenotype, and to a lesser extend the thermal hyperalgesia 

phenotype. When screening for these phenotypes in patients with diabetic 

polyneuropathy, this limitation should be considered by rather using the deterministic 

algorithm (or a probabilistic assignment on mechanistic basis developed in 

participants under surrogate models). For peripheral nerve injury and post-herpetic 

neuralgia, a notable part of the patients (21% and 30%, respectively) is not sorted to 

any phenotype in the probabilistic algorithm and therefore excluded from the 

analysis. While this is acceptable for phenotype-stratified trials, it becomes a problem 

if the algorithm would be used for designing individual patients’ treatment strategy in 

the future. Again, the deterministic approach might be favorable in this case.  

4.3 Subgrouping human surrogate models 

[The following section has been taken in parts and modified from (Vollert et al., 

2017b).] 

While the clustering approach for human surrogate models without a-priori 

assumptions did not lead to a sufficient result, a mechanistically guided grouping of 

models into surrogates for denervation, peripheral sensitization and central 

sensitization led to three mechanistic phenotypes that show high similarity to the 

phenotypes heuristically found in patients. 

4.3.1 Nerve blocks as human surrogate model of denervation 

The sensory profile of human surrogate models for denervation (i.e. compression 

block and topical lidocaine) was characterized by pronounced loss in thermal and 

mechanical detection thresholds in combination with paradoxical heat sensations. 

These patterns have been reported in previous single center studies (Ziegler, 1999; 

Klein et al., 2005; Krumova et al., 2012b) and may hence serve to validate our multi 

center QST profiling approach. Consistent with its selective effect on myelinated 

nerve fibers, compression nerve block had larger effects on mechanical and cold 
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detection thresholds than on warm detection threshold (Ziegler, 1999; Henrich et al., 

2015). Paradoxical perception of cooling stimuli as warm has been reported by some 

but not all of these studies (Fruhstorfer, 1984). Pinprick stimuli are often perceived as 

less painful in complete A-fiber block (Ziegler, 1999; Henrich et al., 2015), while mild 

pinprick hyperalgesia has been found associated with preserved A-delta fiber 

function (Andrew and Greenspan, 1999; Jørum et al., 2000) Topical lidocaine had 

mild effects when compared to complete conduction block by regional anesthesia 

(Gandevia and Phegan, 1999; Klein et al., 2005). Other clinical trials using this 

lidocaine patch did not assess sensory profiling.  

4.3.2 Primary hyperalgesia as human surrogate model of peripheral sensitization 

The profile of surrogate models of peripheral sensitization (topical capsaicin or UVB 

radiation) was characterized by pronounced hyperalgesia to heat, pressure and 

pinprick pain, but also presented very mild thermal sensory loss. Primary nociceptive 

afferents are easily sensitized to heat stimuli, but much less so to von Frey or 

pinprick stimuli (Treede et al., 1992). Peripheral sensitization to heat may be 

explained by phosphorylation of the heat-gated cation channel TRPV1 through 

multiple pathways (Voets et al., 2004), but has also been shown to be induced by 

TRPA1 agonist allyl-isothiocyanate (Andersen et al., 2017). While some peripheral 

sensitization to blunt pressure has been reported before (Kilo et al., 1994), pinprick 

hyperalgesia in these models may indicate additional central sensitization induced by 

enhanced peripheral nociceptive input to the spinal cord. Sensory loss occurred 

mostly in the topical capsaicin model and was restricted to thermal detection 

thresholds; this likely reflects desensitization by the TRPV1 agonist capsaicin, which 

is the intended clinical mode of action (Hayman and Kam, 2008). 

4.3.3 Secondary hyperalgesia as human surrogate model of central sensitization 

Human surrogate models of central sensitization (intradermal capsaicin and electrical 

high-frequency stimulation) were characterized by pronounced pinprick hyperalgesia, 

but also pronounced thermal sensory loss. Other human surrogate models using 

intra-cutaneous electrical stimulation have not yet undergone full sensory profiling, 

but published data are also consistent with a secondary hyperalgesia model (Koppert 

et al., 2001). Combined studies in monkey and humans using i.d. capsaicin have 
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shown pronounced increases in both WDT and high threshold spinal neuron output 

despite unchanged A- and C-nociceptor input (Baumann et al., 1991; Simone et al., 

1991). The same studies suggested that dynamic mechanical allodynia is a hallmark 

sign of central sensitization. Hyperalgesia to blunt pressure was mild in these models 

as compared to the primary hyperalgesia models, suggesting that this type of 

mechanical hyperalgesia may be primarily peripherally mediated (Ochoa, 1993; 

Koltzenburg et al., 1994). Tactile sensory loss has been reported in human surrogate 

models of secondary hyperalgesia (Magerl and Treede, 2004) and also in patients 

with pinprick hyperalgesia (Geber et al., 2013). An inverse spinal gate with small fiber 

input inhibiting processing of large fiber input (Zimmermann, 1968; Mendell, 2014) 

has been suggested as a mechanism. Thermal sensory loss is a new finding, 

suggesting that broad loss of detection of non-painful stimuli may be a characteristic 

feature of central sensitization (according to the IASP definition, this includes 

contributions by descending control systems). This implies that sensory loss in 

chronic pain patients does not necessarily have to be due to structural changes (e.g. 

intraepidermal nerve fiber loss), but may also be a functional sign, and hence 

potentially sensitive to analgesic treatment regimes.  

Additionally, the secondary hyperalgesia phenotype would have been suspected in 

the skin surrounding a primary hyperalgesia area induced by topical capsaicin or 

UVB irradiation. Sensory profiles (Fig. 11 and Table 10) confirmed this prediction, 

albeit in mild form. This may explain why the sorting algorithm assigned only 63% 

(skin surrounding topical capsaicin) and 4% (surrounding UVB) to the secondary 

hyperalgesia phenotype.  

4.3.4 Other human surrogate models 

The sensory profile of topical lidocaine plus topical capsaicin displays a combination 

profile of nerve block and primary hyperalgesia, but is unlike the secondary 

hyperalgesia phenotype. In the cluster analysis of neuropathic pain patients (Baron et 

al., 2017), the heuristic “mechanical hyperalgesia” phenotype exhibited a 

combination of sensory loss and hyperalgesia; one might have expected that this 

mixture could be induced by combining an experimental nerve block with an 

experimental hyperalgesia model. The present analysis indicates that primary and 

secondary hyperalgesia models are still distinguishable in the presence of a 
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concomitant mild nerve block. This finding suggests that sensory profiling may also 

be able to distinguish between contributions of peripheral vs. central sensitization in 

patients with neuropathic pain that have concomitant sensory loss.  

4.3.5 Mechanistic significance of heuristically found phenotypes  

QST data for both patients and human surrogate models were normalized to the 

same published reference data. Therefore, we could immediately apply the sorting 

according to surrogate model profiles to our previously published patient data. 

Sorting of 902 neuropathic pain patients into mechanistic phenotypes led to a similar 

distribution as the original heuristic clustering (65%, Cohen's κ=0.44, note that the 

expected value of random sorting is 33%). This supports previous mechanistic 

interpretations of the clinically found phenotypes: the thermal hyperalgesia patient 

phenotype shows strong overlap with surrogate models of primary hyperalgesia. Both 

show no pronounced loss of thermal detection, which indicates intact small fiber 

function in both patients and models. This supports previous interpretations as 

irritable nociceptor (Fields et al., 1998) and peripheral sensitization (Truini et al., 

2013). Both evoked and ongoing pain is likely to be due to surviving nociceptors in 

these patients.  

The mechanical hyperalgesia patient phenotype shows a strong overlap with 

surrogate models of secondary hyperalgesia, which supports an interpretation of this 

phenotype to be a phenotype of reorganization or central sensitization. Substantial 

thermal sensory loss (indicating loss of small fibers or small fiber function) suggests 

that also damaged nociceptors are involved, generating ongoing pain and inducing 

central sensitization (Baron et al., 2013).  

The sensory loss patient phenotype shows a strong overlap with experimental nerve 

blocks. These blocks were frequently used as tools to identify normal sensory 

function of fiber classes (A vs. C), but not yet widely recognized as mimicking 

aspects of neuropathic pain (Baumgartner et al., 2002; Klein et al., 2005). Both the 

clinical phenotype and the surrogate models are dominated by loss of small and large 

fibers or fiber function. This supports an interpretation as denervation or 

deafferentation, where central neurons may develop denervation super-sensitivity to 

other inputs (Colloca et al., 2017). Mild pinprick hyperalgesia appears to be intrinsic 

to these mechanisms.  
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While this relationship of patient phenotype and mechanistically defined surrogate 

model phenotype was true for about 2/3 of the patients, most of the remaining third 

were assigned to the nerve block phenotype according to the surrogate models vs. 

one of the hyperalgesia phenotypes in the heuristic patient cluster analysis. This 

systematic shift is consistent with the presence of partial nerve damage in most of the 

neuropathic pain conditions that may lead to coexistence of denervation and 

sensitization of the remaining pathways (Campbell and Meyer, 2006). In fact, in the 

probabilistic sorting algorithm, roughly one third of the patients had evidence for 

multiple mechanisms, most frequently a combination with the denervation phenotype. 

Of interest, the primary hyperalgesia phenotype was more frequent than the 

secondary hyperalgesia phenotype, suggesting that the relevance of peripheral 

sensitization of surviving nociceptors may have been underestimated in the past. In 

turn, central sensitization may be more frequent than the secondary hyperalgesia 

phenotype, since it may also be induced by ectopically generated impulses from 

damaged nociceptors or by enhanced input from sensitized nociceptors. Based on 

these findings, the probabilistic sorting may be a useful approach for mechanism-

based patient stratification. These data cover, however, only peripheral neuropathic 

pain, and to this point we cannot make any extrapolations onto, e.g., central pain, 

nociceptive pain, or deep pains. 

4.4 Limitations 

[The following section has been taken in parts and modified from (Vollert et al., 

2016a), (Baron et al., 2017), (Vollert et al., 2017a) and (Vollert et al., 2017b).] 

This analysis is based on QST z-values, which are dependent on the availability and 

quality of the underlying normative data, which are constantly in development (Rolke 

et al., 2006a; Blankenburg et al., 2010; Magerl et al., 2010; Pfau et al., 2014). There 

are methodological limits in the assessment, e.g., for the cold pain threshold at the 

feet, there is only a small window for abnormal values narrowing with growing age 

(Rolke et al., 2006a) (compare abnormal findings for CPT in patients with 

polyneuropathy), some sharp mechanical stimuli that are part of the standard 

protocol are too painful if applied in sensitive body areas as the cheek (Rolke et al., 

2006a) or in children (Blankenburg et al., 2010). This is especially a problem in 

assessing the wind-up ratio, as for an important part of the patients, either the 
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sharpest stimulus (512nm) is rated as not painful (and a ratio of zero cannot be 

calculated), or the softest stimulus is rated as too painful to endure a series of ten 

stimuli. This leads to a missing rate of WUR of over 10% of the patients (Baron et al., 

2017).    

Since the inclusion criteria slightly differed between the three consortia, there is no 

perfect homogeneity of patients’ clinical history within etiologies. Furthermore, in 

contrast to short-term stability of QST long-term stability over weeks has not been 

studied largely and is known to change over time during major events like 

adolescence (Hirschfeld et al., 2012). Hence, it is unknown whether patients can shift 

from one cluster into another. Patients may, however, suffer from more than one type 

of mechanism which changes during the course of chronicity.  

The sample size calculations in Table 9 show both advantage and disadvantage of a 

QST-based phenotype stratification for clinical trials. A novel drug that is aiming at a 

phenotype that is only present in a fifth of the population will never show an effect 

superior to placebo in a non-stratified population. On the other hand, many patients 

must be screened to identify an eligible subpopulation, and screening with QST 

needs substantial training to be reliable. Furthermore, some QST parameters are 

mechanistically linked and therefore probably intercorrelated (e.g., CDT or WDT and 

TSL). In the presented algorithm, these domains will be slightly overweighed. While 

beyond the scope of this thesis, a factorial analysis of the QST protocol is one of the 

upcoming tasks to show the importance and meaning of each parameter in relation to 

the full protocol. 

The human surrogate models entered into our analysis do not explicitly cover the 

actions of endogenous pain modulating systems (Kennedy et al., 2016), which may 

also play an important clinical role in pain generation. Descending modulation may 

contribute to the secondary hyperalgesia phenotype, but might also exhibit yet 

another sensory profile. This implies that the list of distinguishable sensory 

phenotypes may be longer than the three we describe, but not shorter.  

In many cases, surrogate models were tested in proximal upper or lower limbs, for 

which no separate published reference data are available (Rolke et al., 2006a; 

Magerl et al., 2010; Pfau et al., 2014). This may have confounded our z-values. To 

control for this factor, we compared effect sizes of treatment vs. untreated sites 

(same area before treatment or contralateral, untreated side) to effects on z-values. 
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These data showed that effect sizes and z-values generally concur, and that the 

confounding element of non-reference areas is neglectable. One exception should be 

noted: secondary hyperalgesia models (i.d. capsaicin and cutaneous HFS) show 

significant loss of thermal detection on the z-scale, while effect sizes compared to the 

untreated area are present, but smaller (0.2 – 0.7). Loss of thermal detection might 

therefore be overestimated in the secondary hyperalgesia mechanism. Still, it should 

be noted that patients are often tested beyond reference areas as well, so this 

limitation partly reflects a normal clinical setting.   

An additional limitation for the use in large clinical trials is that the QST protocol 

requires substantial training and an expensive device. In the long run, both for large 

trials and daily clinical practice, an approximation via a simple bed-side testing 

protocol would be highly valuable. 

4.5 Impact and conclusions 

[The following section has been taken in parts and modified from (Vollert et al., 

2016a), (Baron et al., 2017), (Vollert et al., 2017a) and (Vollert et al., 2017b).] 

In summary, this work showed that  

1. centers across Europe can produce similar results when assessing patients’ 

and participants’ sensory profile,  

2. profiles of patients suffering from peripheral neuropathic pain persistently 

show three sensory subgroups, which are present across etiologies, genders 

and age decades, 

3. a simple algorithm can be used for stratification of patients into these three 

sensory phenotypes for use in clinical trials and in the future to indicate 

individual patients’ optimal treatment strategies, 

4. frequencies of these phenotypes differ between etiologies of neuropathic pain, 

which should affect the number of patients screened for clinical trials, 

5. similar phenotypes are identified based on mechanistic assumptions in human 

surrogate models of neuropathic pain. 

The parts of this work that are already published were well accepted in the pain 

research community (Dworkin and Edwards, 2017). As a result of this analysis, the 

European Medicines Agency’s (EMA) committee for medicinal products for human 
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use recommends the phenotype stratification presented here for determining eligible 

sensory phenotypes of patients in exploratory trials on neuropathic pain, as also 

incorporated in the new EMA guideline for clinical development of new treatments for 

pain (European Medicines Agency, 2016). Using the probabilistic sorting according to 

human surrogate model profiles, patients suffering from neuropathic pain can be 

tentatively stratified in future studies to presumed underlying mechanisms. It should 

be noted, however, that the three classes of human surrogate models studied here 

likely represent combined rather than single mechanisms (e.g. peripheral and central 

sensitization in primary hyperalgesia). This, however, is likely true also for studies in 

awake behaving animals. Therefore, a reverse translation approach may be useful 

for developing novel analgesic medications, if they are initially validated in animal 

models of nerve block, primary or secondary hyperalgesia. Medications effective on 

these phenotypes can easily be validated in human surrogate models and then 

transferred to subgroups of neuropathic pain patients. 
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5 SUMMARY 

Quantitative Sensory Testing (QST) following the DFNS (German Research Network 

on Neuropathic Pain) protocol assesses the function of the somatosensory nervous 

system. Long-term aim of QST research is the establishment of a mechanism-based 

classification of neuropathic pain. Over the last years, a central database with QST 

assessments of healthy participants, healthy participants under human surrogate 

models of neuropathic pain, and patients suffering from neuropathic pain has been 

built within the European consortia IMI Europain, Neuropain and the DFNS.  

Aim of this work was to show that QST assessment is comparable between the 

participating centers across Europe in an analysis of heterogeneity, to use 

unsupervised clustering methods to identify subgroups of sensory profiles appearing 

across etiologies of peripheral neuropathic pain and may indicate underlying 

mechanisms of pathophysiology, to develop an individual assignment algorithm 

sorting QST profiles to these subgroups, to estimate the frequency of these 

subgroups across the common entities of peripheral neuropathic pain diabetic 

polyneuropathy, peripheral nerve injury and post-herpetic neuralgia and to further 

validate the subgroups identified in patients in surrogate models of neuropathic pain, 

in which the underlying mechanisms are well described. 

Heterogeneity was overall low between the 11 participating European centers and 

the 13 QST parameters for healthy participants, and virtually non-existing for patients 

suffering from polyneuropathy or peripheral nerve injury. The cluster analysis found 

three sensory phenotypes, which are mainly characterized by either sensory loss 

(SL), intact sensory function and mild thermal hyperalgesia (TH) or loss of thermal 

detection and mild mechanical hyperalgesia (MH). The most common phenotype in 

diabetic polyneuropathy was SL (83%), followed by MH (75%) and TH (34%, note 

that percentages are overlapping and not additive). In peripheral nerve injury, 

frequencies were 37%, 59% and 50%, and in post-herpetic neuralgia, 31%, 63% and 

46%. Surrogate models of nerve block were similar to the SL phenotype, but also 

showed mild pinprick hyperalgesia and paradoxical heat sensations. Peripheral 

sensitization models resembled the TH phenotype, while models of central 

sensitization showed high similarities to the MH phenotype. 
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These data suggest that classifying patients based on QST profiles in an approach 

developed hypothesis-free in patients and validated in models with well-described 

mechanisms may be a good strategy for mechanism-based stratification of 

neuropathic pain patients for future clinical trials, as encouraged by the European 

Medicines Agency EMA. 
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