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ABSTRACT 

Toxicity is one of the main causes of failure during drug discovery, and of withdrawal once 

drugs reached the market. Prediction of potential toxicities in the early stage of drug 

development has thus become of great interest to reduce such costly failures. Since toxicity 

results from chemical perturbation of biological systems, we combined biological and 

chemical strategies to help understand and ultimately predict drug toxicities.  

First, we proposed a systematic strategy to predict and understand the mechanistic 

interpretation of drug toxicities based on chemical fragments. Fragments frequently found in 

chemicals with certain toxicities were defined as structural alerts for use in prediction. Some 

of the predictions were supported with mechanistic interpretation by integrating fragment-

chemical, chemical-protein, protein-protein interactions and gene expression data. 

Next, we systematically deciphered the mechanisms of drug actions and toxicities by 

analyzing the associations of drugs’ chemical features, biological features and their gene 

expression profiles from the TG-GATEs database. We found that in vivo (rat liver) and in 

vitro (rat hepatocyte) gene expression patterns were poorly overlapped and gene expression 

responses in different species (rat and human) and different tissues (liver and kidney) varied 

widely.  

Eventually, for further understanding of individual differences in drug responses, we 

reviewed how genetic polymorphisms influence the individual's susceptibility to drug toxicity 

by deriving chemical-protein interactions and SNP variations from Mechismo database. Such 

a study is also essential for personalized medicine. 

Overall, this study showed that, integrating chemical and biological in addition to genetic 

data can help assess and predict drug toxicity at system and population levels. 

Keywords: mechanism of drug-action, toxicogenomics, biological features, chemical 

features, 1000 Genomes 
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ZUSAMMENFASSUNG 

Toxizitäten von Arzneimitteln sind eine der Hauptursachen des Scheiterns während des 

Wirkstoff-Entdeckungsprozesses - und der Vom-Markt-Nahme, sollten diese bereits den 

Markt erreicht haben. Daher ist die Vorhersage potentieller Toxizitäten im frühen Stadium 

der Arzneimittelentwicklung von großem Interesse geworden, um diesen langen und teuren 

Prozess zu verbessern. Da Toxizitäten aus der Störung biologischer Systeme durch 

Chemikalien resultieren, kombinierten wir biologische und chemische Strategien, um 

vollständige Vorhersagemodelle für Arzneimitteltoxizitäten bereitzustellen. 

Zuerst haben wir eine systematische Strategie vorgeschlagen, um die mechanistische 

Interpretation von Wirkstofftoxizitäten auf der Basis chemischer Fragmente vorherzusagen 

und zu verstehen. Fragmente, die in hohem Maße mit bestimmten Toxizitäten 

zusammenhängen, wurden als Strukturalarmhinweise für die Verwendung in der 

Toxizitätsvorhersage definiert. Einige der Vorhersagen wurden mittels mechanistischer 

Interpretation durch Integration von Fragment-Chemie-, Chemie-Protein-, Protein-Protein- 

Interaktionen und Genexpressionsdaten unterstützt. 

Als nächstes haben wir systematisch die Mechanismen von Arzneimittelwirkungen und - 

toxizitäten durch Analyse der Assoziationen zwischen chemischen Merkmalen und 

biologischen Merkmalen von Arzneimitteln und ihren Genexpressionsprofilen aus der TG- 

GATE-Datenbank entschlüsselt.  In der Zwischenzeit fanden wir, dass sich in vivo 

(Rattenleber) und in vitro (Rattenhepatozyten) Genexpressionsmuster nur selten ähneln und - 

reaktionen bei verschiedenen Spezies (Ratte und Mensch), verschiedenen Geweben (Leber 

und Niere) weit variieren. 

Zum besseren Verständnis der individuellen Unterschiede in den Medikamentenreaktionen 

untersuchten  wir,   wie  genetische  Polymorphismen  die  Anfälligkeit   des   Individuums 

gegenüber der Wirkstofftoxizität beeinflussen, indem wir chemische Protein-Interaktionen 

und SNP-Variationen aus der Mechismo-Datenbank abgeleitet haben. Eine solche Studie ist 

auch wichtig für die personalisierte Medizin. 

Insgesamt zeigte diese Studie, dass die Integration von chemischen Merkmalen (z. B. 

chemische Fragmente, chemische Struktur), biologische Merkmale - einschließlich 

Genexpression und genetische Daten - die Toxizität des Wirkstoffs auf System- und 

Populationsniveau einschätzen und voraussagen können. 



 

Schlüsselwörter: Mechanismus der Arzneimittelwirkung, Toxikogenomik, biologische 

Merkmale, chemische Eigenschaften, 1000 Genome 
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CHAPTER I: Introduction 

Despite overall dramatic increase in pharmaceutical R&D spending over the past few 

decades, relatively few drugs reached the market due to high failure rates at the clinical and 

pre-clinical testing stages (Kaitin, 2010). A major cause of these failures is toxicity (Paul et 

al., 2010). According to reports, only 8% of drug candidates in clinical trials entered the 

market, and around 20% of failures in the late drug discovery process were caused by the 

presence of toxicities (Muster et al., 2008). A small fraction of drugs were prohibited by 

regulatory agencies or withdrawn later after launching to the market due to the toxicity 

issues (e.g., adverse drug reactions, drug side effects) (Siramshetty et al., 2016).  

Despite the clinical impacts of drug toxicity, methods for monitoring them remain limited. 

Vast numbers of animals are used for testing toxicity in the pharmaceutical and cosmetic 

industry every year. Nevertheless, in line with the 3Rs (Replacement, Reduction and 

Refinement of animal testing) principle promoted by EPAA, alternative methods, such as in 

vitro arrays and in silico models have been prevalently established and optimized. In vitro 

methods test toxicity by measuring the biochemical and cellular assays of chemical 

compounds, but experimental examinations are more challenging, in terms of efficiency 

and operating cost (Bowes et al., 2012). Thus, in silico predictions of potential toxicities in 

the early stages of drug development have become an efficient way of improving this long 

and expensive process. Machine learning algorithms are used in much of our daily life in 

everything from smartphone apps (e.g., voice recognition, online transaction) to self-

driving cars. Drug discovery studies have profited from these developments and also the 

many improvements in cheminformatics and bioinformatics (Ekins, 2016). 

Chemoinformatics and bioinformatics have brought about beneficial insights particularly 

via analysis of high throughput data from drug discovery. The following chapter sections 

introduce the current roles of in silico methods in toxicity testing and propose a framework 

for a combined biological-chemical approach that can improve the efficiency and reduce 

cost for toxicity prediction. 

1.1 Cheminformatics-based predictions in toxicology 

Cheminformatics-based predictions broadly rely on structure-based methods. The principle 

is to link chemical structures (represented by molecular descriptors) to their activities or 

properties (e.g., toxicity endpoints). The methods broadly can be classified into QSAR 
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(quantitative structure-activity relationship) and expert system approaches (Valerio, 2009). 

More precisely, QSAR modeling establishes quantitative relationships between chemical 

structures and activities via statistical functions (activity = f(structural properties), where 

activity might be the value of IC50) (Valerio, 2009). Structural properties are represented by 

chemical descriptors, ranging from physicochemical properties (e.g., molecular weight, 

hydrophobicity, and charges), chemical fragments (e.g., structural alerts), molecular 

fingerprints (e.g., MACCS keys) to quantum mathematics (e.g., orbital energies) 

(Todeschini and Consonni, 2000). To set up this mathematical function, a set of chemical 

descriptors are calculated for the group of chemical compounds with known activities (e.g., 

IC50). Descriptors are then weighted according to their correlation with activity values, thus 

defining the most accurate function to predict activity based on chemical structure. 

With the evolution of chemical descriptors, a wide range of algorithms have been applied to 

QSAR, including Multiple Linear Regression (MLR), k-Nearest Neighbors (KNN), 

Principal Component Analysis (PCA), and Support Vector Machines (SVM) 

(Nantasenamat et al., 2010). Recently, within the framework of Big Data methods, a novel 

algorithm - Deep Neural Network (DNN) - has been developed and was shown to 

outperform all the other methods participated in the Tox21 Data Challenge (Unterthiner et 

al., 2016).  

In contrast to the above algorithms, expert systems attempt to capture human expert 

knowledge related to structure features and their relationship to toxicity and mechanism. 

Methods define rules that represent more interpretable means to label compounds and 

relating them to potential toxicities. These structure features are known as structural alerts 

(SAs) or toxicophores. For example, some substructures are used as mutagenicity alerts in 

the expert systems DEREK (Ridings et al., 1996) and Toxtree 2.1.0 (Benigni and Bossa, 

2008). Overall, chemical structure-based models can be defined quantitatively (e.g., QSAR 

defines mathematical function) and qualitatively (e.g., expert systems define toxicity by the 

presence of structural alerts), which enables chemists or pharmacists to exploit QSAR 

models with higher accuracy to filter drug candidates and regulation agencies to check new 

drugs for interpretable mechanisms of toxicity.  

Most QSAR predictors don not fully capture complicated biological processes. This is 

sometimes due to defects in data selection, modeling approaches, and validation. There 
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have been many attempts including training data set curation, descriptor selection, 

appropriate modeling algorithms development, and validation strengthen have been made to 

improve the QSAR modeling.  

In the reality, the complex relationship between chemical structures and toxicities is likely 

never to be fully understood without realistic models of organismal biology. Simple models 

do not capture the complexity of ADME (absorption, distribution, metabolism, and 

excretion) process in pharmacokinetics (Hansch et al., 2004) and are also woefully 

inadequate to capture the even greater complexity and diversity of toxic responses. QSAR 

is nevertheless useful for predicting specific and direct chemical-activated toxicities (e.g., 

mutagenicity that could be predicted by the interactions of chemicals and DNA) even if it is 

less successful at predicting toxicities arising from chemical-perturbed biological pathways 

involving proteins targeted by chemicals (e.g., carcinogenicity) (Ashby and Tennant, 1991; 

Benigni and Bossa, 2008). Human rule-based expert systems also have their limitations, 

because the rules derived from knowledge of human experts are incomplete and biased, and 

updating the system is difficult, requiring extensive literature to be carefully reviewed. 

These limitations make accurate and efficient toxicity predictors challenging. 

1.2 Bioinformatics-based predictions in toxicology 

The increasing availability (and decreasing cost) of high-throughput chemical screens (HTS) 

and high-throughput ‘omics’ tools (transcriptomics, proteomics, etc.) has been paralleled by 

the development of associated computational bioinformatics tools and expertise to help 

unravel mechanisms of diseases and drug toxicity. Adding novel data streams to models has 

been proposed to help alleviate the shortcomings mentioned above.  

Omics studies provide large datasets for each toxic endpoint, and thus give the system view 

of toxicity, involving all the molecular players (e.g., DNA, RNA, proteins, and metabolites) 

instead of considering each of them separately. When a biological system is perturbed by an 

exogenous agent (e.g., a drug), the expression of some genes may be dysregulated 

(transcriptomics), leading to the dysfunctions of proteins (proteomics) and metabolites 

(metabolomics) (Figure 1.1). Toxicogenomics was developed to harness the collective 

technologies of genomics, proteomics and metabolomics, to study the adverse effects of 

toxic substances on biological system and ultimately to improve efficiency and safety 

through a better understanding of mechanism (Hamadeh et al., 2002).  
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Figure 1.1 Illustration of gene expression changes elicited by a drug and its metabolic pathway. The drug 

(green hexagon) binds to a receptor (magenta ellipse) on the cell surface and a series of signaling events are 

triggered, resulting in the expression of drug metabolizing genes, such as phase I modification enzymes (e.g., 

CYP1A1 and 1B1) and phase II conjugation enzymes (e.g., GST and UGT1A), leading to activation, 

detoxification and excretion. Meanwhile, the toxic features of the drug cause gene expression changes (e.g., 

red ellipses are up-regulated and blue are down-regulated).  

Transcriptomics measures the genome-wide mRNA expression (Barh et al., 2013) to 

provide gene expression changes involved in pathways or networks that might lead to toxic 

effects. DNA microarrays are one of the most common techniques. These measure tens of 

thousands of gene expression values by assessing the degree to which a sample of RNA or 

DNA hybridizes to a chip containing DNA probes (usually from a whole genome). The 

utility of gene expression profiles of toxicant responses is based on the presumption that 

compounds with similar toxicity mechanisms will give similar transcriptional changes 

(Waring et al., 2001). There is now a vast literature of microarrays applied to toxicology. 

For example, Huang et al., exploited cDNA microarrays to examine the expression 

alterations of genes involved in pathways of cell apoptosis, calcium homeostasis, and 

proposed a putative cisplatin-induced nephrotoxicity mechanism (Huang et al., 2001). 

Microarray studies are typically limited by the complexity of understanding gene 

expression changes and how they related to toxicity, and the oft-cited problem that 

alterations at the transcriptomic level do no always reflect protein expression (Barh et al., 

2013). 

Proteomics is the systematic, normally high-throughput study of proteins in a biological 
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context (e.g. cell, tissue, organ, disease, etc.). One typically measures expression, 

interactions with other molecules or aspects of function (e.g. post-translational 

modifications). Proteomics experiments are sometimes used to complement toxicogenomics, 

to help assess biological response by capturing altered proteins associated with the toxicant 

exposure. Key technologies include 2D gel electrophoresis combined with mass 

spectrometry analysis for protein separation (Shruthi et al., 2016), multi-dimensional liquid 

chromatography/mass spectrometry for protein characterization (Shruthi et al., 2016), and 

fluorescence resonance energy transfer for protein-protein interactions detection (Barh et al., 

2013). For example, Linge and coworkers used 2D gel electrophoresis to define fourteen 

altered proteins as novel biomarkers in melanoma patients (Linge et al., 2012). While 

several useful protein biomarkers for particular toxic responses have been identified (e.g. 

kidney injury molecule-1, Kim1, for nephrotoxicity) (Ichimura et al., 2008), there are still 

many pathologies lacking any clear biomarker. Biomarkers, once identified, can both aid 

the prediction of toxicities for new compounds and also help to understand the underlying 

mechanisms that drive particular pathophysiologies.  

Metabonomics is the study of the metabolic response of a living system to external stimuli 

or genetic perturbation. Within toxicology, the hypothesis is that toxicant-induced 

pathologies lead to modifications of metabolic pathways via changes in the concentrations 

of metabolites. Such changes can be determined by the changes of flux distribution 

compared with that of the steady state (Carbonell et al., 2017). Common techniques include 

gas chromatography mass spectrometry (GC-MS), liquid chromatography mass 

spectrometry (LC-MS), and nuclear magnetic resonance (NMR) spectroscopy, all of which 

measure these concentrations (Wishart, 2016). One well-known application of 

metabonomics in toxicity prediction was performed within the Consortium for 

Metabonomic Toxicity (COMET) where metabonomics was used to build an expert system 

to predict the drug-like-induced liver and kidney toxicities in rodents (Lindon et al., 2005). 

More recently, even smartphone streamlined metabonomics apps for chemical toxicity 

assessment have also been presented (Kwon et al., 2014). 

Overall, computational modeling, in the context of toxicology, has to some extent 

disregarded detailed information about chemical compounds, while cheminformatics-based 

approaches typically neglect biological mechanism. In the era of Big Data, masses of 

toxicity data, consisting of both chemical and biological attributes, argues for an integration 
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of these two approaches. Clearly, toxicities of drugs and the associated mechanisms should 

be studied from the viewpoint of the whole system (i.e., systems toxicology). 

1.3 Integrated chemical and biological modeling-based predictions in 

toxicology 

From the viewpoint of systems biology, drug action can be seen as the perturbation of the 

biological systems, which involves drugs interacting with both desired targets and 

undesired proteins (i.e. off-target interactions), as well as associated protein-protein 

interactions, metabolic pathways and signaling pathways, all of which produce intended 

and unintended effects (Keiser et al., 2009). It is known that most drugs bind to multiple 

target proteins with a wide range of affinities, which together is responsible for both desired 

drug actions and toxicity (Walker et al., 1999). For example, a cardiovascular agent, 

propranolol, which targets β-adrenoceptors (i.e. a β-blocker), was observed to interact with 

receptors in secondary organ systems, leading to bronchoconstriction in asthma (Ahmed 

and Branley, 2009), characterized as an exaggerated on-target effect. Another example is 

the anti-obesity medication, fenfluramine, which induced valvular heart disease via 

activation of 5-Hydroxytryptamine receptor 2B (5-HT2B), what led to its withdrawal from 

the market (off-target effects) (Roth, 2007).  

Overall, drug toxicity can be considered as how drugs via molecular interactions trigger 

adverse outcomes across different levels of human organization (cellular, tissue, organ, 

system) over time and as a function of dose (Figure 1.2). Unfortunately, only a few 

relationships between drug targets and toxicity endpoints have been well established, with 

most mechanisms remaining unknown (Vedani et al., 2012). Recent advances in big data 

acquisition, complemented by new experimental tools make systems toxicology, via the 

simultaneous combination of biological and chemical information more feasible.  

Carbonell et al. have developed a systems-wide protocol for modeling organ-specific 

toxicity. Models integrate gene expression data, metabolic pathway signatures and 

hepatotoxicity observations in primary human hepatocytes treated by 77 chemical 

compounds. Cheminformatics models, based solely on chemical structure features, found 

some relationships between chemical features and toxicities. The integration with gene-

expression data also provided general mechanistic hypotheses for hepatotoxicity (Carbonell 

et al., 2017). 
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Perualila-Tan and colleagues developed a joint model by integrating transcriptomic, 

phenotypic and chemical structure data. The model aimed to predict the impact of each 

chemical structure feature on gene expression and toxicity pIC50 (–log IC50) values. Two 

case studies were used to test the applicability of the model in drug discovery. The EGFR 

(epidermal growth factor receptor) dataset contained 35 compounds and expression data for 

3595 genes, and the ROS1 (reactive oxygen species) dataset contained 89 ROS inhibitors 

with 312 unique substructures. After pooling individual predictions from the compound-

gene expression and compound-substructure models into a final predicted value, the joint 

model gave an integrated view of how chemical substructures were associated with 

toxicities. For example, the model revealed that the higher expression of the genes TXNRD1 

and FNIP1 (ROS1 inhibition and cancer related genes) were linked to the presence of the 

particular substructure FF-2086493472 (Perualila-Tan et al., 2016). 

A relative new conceptual construct for toxicity assessment hosted by the Organisation for 

Economic Co-operation and Development (OECD) are adverse outcome pathways (AOPs), 

which capture interactions between chemical initiating events and adverse outcomes 

through curated biological (Ankley et al., 2010). This concept has been used, for example, 

to aid environmental toxicity prediction through the use of well-understood biological 

pathways and genomic data, which has highlighted mechanisms downstream of the initial 

chemical-induced key events. Algorithms analyzing data in the AOP framework are still 

somewhat limited. Recently, Antczak et al. built a multistep modeling method, which 

combines traditional QSAR modeling, gene expression and toxicity information from 

Daphnia magna. They described a strategy for defining putative AOPs via the integration 

of chemical structures with mechanistic insights from genomic data, and observed adverse 

outcomes (Antczak et al., 2015). 

Stem cells have also recently played important roles in toxicity prediction. For example, 

Yamane and co-workers first constructed a predictive SVM model using qRT-PCR data 

from human embryonic stem cells (hESC) treated by twenty compounds. After adding edge 

weights for a gene-gene interaction network to the model, prediction accuracy for 

neurotoxicity, genotoxic and non-genotoxic carcinogens reached to at least 97.5%. 

Moreover, this study used only undifferentiated hESCs, representing the potential to predict 

late-onset toxicity, and the toxicities observed during embryonic development (Yamane et 

al., 2016). 
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An et al. (An et al., 2016) proposed a predictive model for assessing adverse drug reactions 

within liver and kidney. They trained 210 chemical features extracted from 108 drugs in 

Japanese Toxicogenomics Project database (Uehara et al., 2010) by four models (ANN, 

kNN, LDA, and SVM) to predict toxicity. Compared to other models predicting toxicity 

within single organs, their multiple organ models (i.e. considering organs other than the 

target) provided more comprehensive knowledge of drug-induced adverse effect 

mechanisms in humans (An et al., 2016). 

1.4 Predictive toxicology at human population level 

Accessing individual differences in drug toxicity is a new challenge for toxicology and 

personalized medicine. Accordingly, pharmacogenomics has emerged to help uncover how 

human genetic variation affects drug efficacy and toxicity and provide more precise 

prescription to patients. Genetic variations, including common genetic variants, mostly are 

single-nucleotide polymorphisms or SNPs, and rare variants in genes that participate in 

drug pharmacodynamics or pharmacokinetics play a role in individual variability (Roses, 

2000). SNPs in genes encoding drug targets, drug transporters, drug-metabolizing enzymes 

could impact patients’ sensitivity to a drug (McLeod and Evans, 2001). So far, many efforts 

have been put to identify associations of genetic variations and drug-induced phenotypes. 

Genome-wide association studies (GWAS) is one of the most popular methods for this 

purpose. For example, GWAS has successfully identified variants located on VKORC1 

(vitamin K epoxide reductase complex subunit 1), CYP2C9, and CYP4F2, the targets of the 

anti-coagulant warfarin. Some variations in VKORC1 are involved with resistance to 

warfarin, and others affect warfarin dosage within the normal range prescribed. Variations 

in CYP2C9 and CYP4F2 are associated with the speed of metabolizing warfarin. In poor 

metabolizers (slow-processing), warfarin blood concentration can rise, leading to toxicity 

(Takeuchi et al., 2009). With the help of GWAS, a great number of SNPs related 

phenotypes have been identified. Recently, technological advances in sequences mean that 

exome or even whole genome sequences are more commonplace (The 1000 Genomes 

Project Consortium, 2015; Lek et al., 2016). The 1000 Genomes (The 1000 Genomes 

Project Consortium, 2015) and ExAC projects (Lek et al., 2016), which sequenced or 

collected genomes of thousands of people, provide information to help fine-map 

pharmacodynamics and pharmacokinetics-associated loci. 
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Personalized or precision medicine aims to use the sequences of an individual’s genes to 

make more rational treatment and dose suggestions for better efficacy and reduced toxicity. 

For example, Roche has developed the AmpliChip to detect the cytochrome P450 gene 

family variants that might affect drug efficacy or detoxification. 35% of the general 

population has found to carry abnormal CYP2D6 alleles, making them either poor or ultra 

metabolizers. AmpliChip can detect up to 33 CYP2D6 alleles to aid treatment decisions 

(Rebsamen et al., 2009). Computational phenotyping facilitates a fast development of 

quantitative models for individual’s drug toxicity risk. For instance, integrating preclinical 

biological experiments, clinical, human imaging and drug information, allowed the 

prediction of clinical responses for certain drugs (Geerts et al., 2015). Overall, personalized 

medicine is clearly an emerging theme in healthcare, and a wealth of novel discoveries 

from this field will ultimately improve risk assessment in medicine (Ingelman-Sundberg, 

2015). 

 

Figure 1.2 Scheme of drug toxicity prediction in complex biological systems. Drug chemical structures, 

targets, SNPs (target or other genes), the associated biological networks, metabolic pathways, tissues/organs 

influenced by the drug are all keys to understanding and predicting biological responses. 
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1.5 Dissertation outline 

Technologies such as gene sequencing, transcriptomic profiling, proteomics, metabolomics, 

and pre-clinical or clinical data related to single cells, organs, or patient populations provide 

the Big Data relevant to systems pharmacology and toxicology, which in principle should 

allow better predictions of drug action and adverse responses. Only when all these data are 

integrated can researchers and clinicians develop models or concepts to better predict 

outcomes. 

This dissertation presents systems approaches to addressing some of the above problems 

(Figure 1.2). Chapter II presents a chemical fragment/substructure-based approach to 

toxicity prediction exploiting machine learning (support vector machines (SVM) and sparse 

canonical correlation analysis (SCCA)) methods. Such fragment-based approaches are 

well-established for the development of novel lead compounds (Schuffenhauer et al., 2005). 

However, they can also be employed to identify fragments indicative of toxicities (Siegel 

and Vieth, 2007). We propose a predictive toxicity protocol based on chemical structures. 

We focus initially on the systematic derivation of chemical fragments associated with 

particular toxicities using an overall literature basis and avoiding any bias or limitations 

introduced by expert curation. Some of the enriched fragments for specific toxicities are 

potential structural alerts for future predictions on new drugs. We also provide mechanistic 

interpretation for some of the fragments by integrating chemical-protein interactions, 

protein-protein interactions and gene expression data.  

Chapter III generally explores the mechanisms of predictive toxicity. Predictive systems are 

generally more accepted if they provide descriptions of mechanism (e.g., drug metabolizing 

pathways) that underlie the biological properties of the molecule. The response of a 

biological system to a toxicant that afterwards causes pathology in certain organs can then 

be examined as changes in the expression of genes, proteins synthesis, and metabolism. Of 

these changes, the expression of genes is the most sensitive and readily accessible 

experimentally. Therefore, toxicogenomics, which measures gene expression changes 

caused by a toxin in a specific cell, tissue or organ, has become one of the most powerful 

strategies. We employ the Toxicity Evaluation System developed by the TGP in Japan 

(Uehara et al., 2010), which provides comprehensive toxicogenomics data for hundreds of 

compounds to uncover relationships between changes in gene expression and toxicity data. 
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Resources like this can help to identify candidate gene/protein biomarkers of toxicity. Such 

datasets also permit us to test hypotheses such as whether or not in vitro bioassays can be 

utilized to predict in vivo responses. 

Chapter IV attempts to study the underlying mechanisms of drug response differences 

among individuals and populations. Besides chemical and bioassay results, the recent 

availability of data for healthy individuals provides new possibilities to study drug effects 

in human populations. The Mechismo tool (developed in our group) provides potential 

mechanisms for how proteins interact with other molecules (i.e., proteins, chemical 

compounds, nucleotides) and how any changes/variations might affect these interactions 

and consequently an entire biological system (Betts et al., 2015). In this chapter, we use 

Mechismo to study data from the 1000 Genomes Project to investigate which genetic 

variations might impact drug response differences among individuals and subpopulations.  

The concluding chapter summarizes the findings from the entire thesis and discusses their 

contributions towards predictive toxicology and personalized medicine. 
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CHAPTER II: Chemical fragments as foundations for 

understanding the toxic effects of chemicals on biological 

systems 

2.1 Abstract 

The building blocks (fragments) of chemicals can sometimes be associated with particular 

biological effects of the chemical as a whole (e.g., metabolism, disease, pharmacological 

actions, toxicity). In this chapter, we present a systematic strategy to predict and 

understand the mechanistic interpretation of chemical toxicities based on chemical 

fragments.  

To identify toxicity structural alerts (SAs), we derived 93 902 chemical compounds with 

structures and MeSH (Medical Subject Headings) terms from PubChem (Bolton et al., 

2008), and their fragments from the ZINC database (Irwin and Shoichet, 2005). We 

classified compounds into different toxic (or non-toxic) classes according to information 

extracted from the literature, and performed statistical analyses to identify chemical 

fragments enriched particular classes (as potential structural alerts). 

Hundreds of fragments strongly related to specific toxicities were identified, which might 

be regarded as structural alerts for using in toxicity prediction. For validation, we 

performed toxicity predictions with support vector machines (SVM) and sparse canonical 

correlation analysis (SCCA) for 263 withdrawn drugs. Some predictions were supported 

by mechanistic explanations obtained by integrating fragment-chemical, chemical-protein, 

protein-protein interactions and gene expression data. Our findings might ultimately help 

understand toxicities of unknown chemicals and their potential mechanisms to aid drug 

development. 

2.2 Introduction 

Several in silico methods for predicting toxicities have been proposed previously. Most 

approaches relate particular chemical fragments to toxicity by statistical analysis, meaning 

that the fragment is significantly enriched in toxic compounds compared to others (Schnur 

et al., 2006). To date, a number of structural alerts (toxic fragments/ toxicophores that are 

associated with toxicity) (Ashby and Tennant, 1988)) have been defined for several toxic 
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endpoints (Liu et al., 2015). For example, Ashby and Tennant identified a set of structural 

alerts correlated with the modification of DNA based on the data from both in vivo 

carcinogenicity and in vitro mutagenicity (Ashby and Tennant, 1991). Benigni and Bossa 

reported 31 classes of structural alerts for carcinogenicity and mutagenicity with 

corresponding mechanisms of action (Benigni and Bossa, 2011), which has been 

implemented as prediction rules into Toxtree 2.1.0 (Benigni and Bossa, 2008). Expert 

systems are either developed manually or statistically by extracting expert knowledge, to 

predict the molecular toxicity based on the presence or absence of toxic fragments in their 

chemical structure. The program DEREK (from Lhasa Limited; 

http://www.lhasalimited.org) is an example of rule-based expert system where most 

general endpoints (e.g. reproductive toxicity and genotoxicity) are directly indicated by 

toxic fragments like phthalate, or nitrobenzene, if they have been detected in the examined 

molecules (Ridings et al., 1996). Another example is HazardExpert from CompuDrug, 

where the toxicity prediction is based on the list of known toxic fragments collected from 

the U.S. Environmental Protection Agency (Brink and Walker, 1987). Similarly, CASE, 

probably the first automated expert system, automatically recognizes structural alerts in 

new chemicals (Klopman, 1984). Other programs such as PASS (Poroikov et al., 2000), 

Cat-SAR (Cunningham et al., 2008), and LAZAR (Helma et al., 2004) also identify 

structural alerts indicative of toxicities. Rule-based systems have some limitations 

(Lepailleur et al., 2013; Liu et al., 2015), specifically: i) the number of structural alerts is 

limited for general toxic endpoints (e.g., hepatotoxicity) ii) they require extensive man-

power to harvest results from the literature to remain up to date, and iii) the opinions of the 

experts can lead to biases and potentially inaccurate results i.e., non-toxic compounds 

containing a structural alert might be predicted to be toxic. 

The development of data mining tools enables one to detect large-scale novel structural 

alerts beyond the limits of human perception. Commonly used machine learning 

algorithms for this purpose include multiple linear regression (MLR), partial least squares 

(PLS), support vector machines (SVM) and k-nearest neighbors (k-NN). For example, in a 

study from Zhang et al., liver toxicities of 1317 compounds were predicted using machine 

learning methods (e.g., SVM, k-NN, Random Forest, RF) based on a substructure pattern 

recognition method (Zhang et al., 2016). The best model (SVM) showed much higher 

predictive accuracies for the training set, test set and an external validation set compared 

to previous QSAR methods. Moreover, six structural alerts related to the mechanism of 

http://www.lhasalimited.org/
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drug-induced liver injury (DILI) were identified, which could be utilized for irradiating 

chemicals that might induce DILI. Mazzatorta et al. reported the correlation of chemical 

substructures from over 400 compounds and the chronic toxicity by a predictive model 

built on MLR and PLS methods. The model predicted that the chronic toxicity is caused 

by compounds containing particular chemical moieties (Mazzatorta et al., 2008). Pauwels 

et al. proposed sparse canonical correlation analysis (SCCA) model to predict potential 

side-effects of drugs in large molecular database based on their chemical fragments. The 

unique feature of this model is the capacity to extract the associations of side-effects of 

drugs and the emergence of structural alerts (Pauwels et al., 2011). The software SARpy 

automatically generated and selected chemical fragment structural alerts by analyzing the 

correlation between the frequency of each chemical fragment and the experimental 

activity of the chemicals (Ferrari et al., 2013).  

Predictive systems are more acceptable if they provide a description mechanism, i.e., the 

interactions between the molecule and target proteins or systems that lead to its ultimate 

biological effects. The response of a biological system to a toxicant that afterwards causes 

pathology in certain organs can be examined as changes in the expression of genes, 

proteins synthesis or metabolism. Of these, gene expression is the easiest to measure and 

interpret. For example, Low et al. developed hybrid models combining chemical and 

toxicogenomics descriptors for 127 drugs from the Japanese Toxicogenomics Project 

(Uehara et al., 2010) using classification methods (k-NN, SVM, RF, and distance 

weighted discrimination, DWD). Besides identifying and verifying chemical structural 

alerts for hepatotoxicity by HiT QSAR (Kuz'min et al., 2008) and XCHEM (Sedykh and 

Klopman, 2006), the transcripts predicted related to DILI mechanisms were also predicted 

(Low et al., 2011). Hewitt et al. clustered 951 diverse compounds into a few structurally 

clusters by molecular structure similarity and identified sixteen structural alerts associated 

with human hepatotoxicity, which were supported by mechanistic insights by gene 

expression (Hewitt et al., 2013). Antczak et al. proposed a system level strategy to define 

putative toxicity pathways by integrating chemical structure information with pathways 

defined by gene expression profiles induced by 26 chemicals, and their observed 

phenotypic effects (Antczak et al., 2015).  

An increasing number of databases are available to aid drug discovery by providing 

information on chemical fragments, chemical-protein interactions, protein-protein 
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interactions, toxic endpoints and gene expression. For example, the ZINC database stores 

162 261 (2013-11-05) “fragment-like” molecules that have molecular weight less than 250 

g/mol, LogP values between -2 and 3, fewer than three hydrogen-bond donors, fewer than 

six hydrogen-bond acceptors and fewer than three rotatable bonds (Irwin and Shoichet, 

2005). FragmentStore uses modified Lipinski rule-of-five criteria (Lipinski et al., 2001) to 

validate fragments for assembling compound libraries. The library contains more than 35 

000 fragments derived from more than 13 000 metabolites, 2 200 toxic compounds and 16 

000 drugs (Ahmed et al., 2011). 

There are also a wide range of toxicity databases capturing different measures of toxicity. 

The ToxCast program (Kleinstreuer et al., 2014) and Tox21 (Mahadevan et al., 2011) 

developed by the United States Environmental Protection Agency (US EPA) provide 

overall toxic effects for about 10 000 environmental chemicals and drugs. Non 

confidential regulatory submissions such as the European Chemicals Agency (ECHA) 

(http://echa.europa.eu/) and INCHEM (http://www.inchem.org/) also provide relevant data 

of toxic studies on compounds.  

In order to link the chemicals to proteins, interactions from a variety of databases of 

chemical-protein interactions are available, for example, experimental evidence 

interactions from protein data bank (PDB) (Gutmanas et al., 2014) and PDSP Ki databases 

(Roth et al., 2000), interactions from pathway databases KEGG (Kanehisa et al., 2012) 

and Reactome (Fabregat et al., 2016), and interactions from integrated database such as 

STITCH (Kuhn et al., 2014) which merge other databases. Resources that archive 

published protein-protein interactions are also available, such as Network Database (BIND) 

(Bader et al., 2003), Biological General Repository for Interaction Databases (BioGRID) 

(Chatr-aryamontri et al., 2015), the Database of Interacting Proteins (DIP) (Xenarios et al., 

2002), IntAct, Molecular Interaction database (MINT) (Orchard et al., 2014). All of these 

are merged in the Proteomics Standard Initiative Common Query Interface (PSICQUIC) 

(Aranda et al., 2011). 

Toxicogenomics datasets of gene expression (e.g. CMAP (build 02) 

(http://www.broad.mit.edu/cmap/) (Lamb et al., 2006), as discussed in the last chapter, 

also provide details on expression changes induced by toxicants.  

In this chapter, we propose a combined method to predict toxic endpoints. The method 

http://www.broad.mit.edu/cmap/
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exploits a combination of statistical analyses with machine learning algorithms (SVM and 

SCCA) to investigate the correlation between compound fragment with toxic endpoints 

derived from databases and the literature. We achieved good performance and high 

accuracy for predicting toxic endpoints of chemicals with proposed structural alerts. We 

also supplement prediction with putative mechanisms of toxicity, if possible, data on 

chemical-protein interactions (both on and off-targets), protein-protein interactions and 

gene expression datasets used to make the predictions.  

2.3 Methods 

2.3.1 Data preparation 

93 902 chemical compounds with MeSH terms and their structure files were downloaded 

from PubChem (2013) (Bolton et al., 2008), and chemicals with fewer than four non-

hydrogen atoms and more than 20 atoms were removed.  

The external validation set containing 258 known toxic compounds with annotated gene 

expression changes in toxicogenomics experiments was retrieved from ToxWiz 

(http://www.toxwiz.com/). 

263 withdrawn drugs as the test set to evaluate the interest of the models for predicting 

toxicities for uncharacterized drugs were collected from WITHDRAWN database 

(Siramshetty et al., 2016). 

The clean fragment-like subset of 162 261 molecules dated on November 05, 2013 was 

downloaded from ZINC (version 12) (Irwin and Shoichet, 2005) as the substructure 

dataset.  

All compounds were represented by SMILES strings, a widely used notation of encoding 

chemicals as ASCII strings (Weininger, 1988). Additional refinements including adding 

hydrogen to fulfill the valences of non-hydrogen atoms and neutralizing the charges were 

processed for all the chemical files with Open Babel 2.3.2 (O'Boyle et al., 2011). 

Conversions of files from .mol, .sdf chemical format to SMILES and the substructure 

searches were also implemented using Open Babel 2.3.2. 

http://www.toxwiz.com/
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2.3.2 Extracting toxicity information 

A total of 20 toxicity categories were defined based on the pathology pathways in ToxWiz 

(http://www.toxwiz.com/). These categories include 1504 MeSH terms of toxicity 

endpoints from 20 systems: male reproductive system, development, digestive system 

(excluding hepatic), lymphatic system, endocrine system, sensory apparati, integumentary 

system (e.g. skin, hair), activity system (e.g. muscle, bone), connective and other tissues & 

cells, pan-systemic pathologies, hepatic system, urinary system, circulatory system, 

respiratory system, immune system, nervous system, reproductive system (general), other 

toxicity related clusters, female reproductive system. The most prevalent toxicities (in 

terms of numbers of compounds) are neurotoxicity, hepatotoxicity, cardiotoxicity and 

genotoxicity. 

Compound-toxicity relationships were generated by automatically identifying PubChem-

MeSH-PubMed links and crossing compounds with references containing the textual 

terms (e.g. hepatotoxicity, carcinogenicity, mutagenicity, developmental toxicity).  

2.3.3 Classifying fragments and dataset diversity 

An important aspect of the fragment-based toxicity prediction is to assess diversity within 

a set of compounds having a particular property. This is important to avoid highly similar 

compounds (i.e. those that are likely derived from one another) dominating the fragments 

groups. A Tanimoto similarity calculation, for fragment dataset, was performed by a 

method based on MolPrint 2D (Bender et al., 2004) to determine whether a fragment is 

structurally novel. The Tanimoto coefficient (TC) is defined as follows: 

𝑇(𝑎, 𝑏) = ே௖
ே௔ା ே௕ିே௖

                                                                      (2.1) 

where Na and Nb are the number of bits set (denoting presence or absence of a particular 

fragment) for binary fingerprints of molecules A and B, respectively, and Nc is the set bits 

that A and B have in common. To estimate whether a dataset is structurally novel, an all-

by-all similarity matrix was calculated for these compounds. We defined compounds to be 

similar if the Tanimoto coefficient was 0.85 or above (Martin et al., 2002). We left single 

representatives for each group, and removed groups having fewer than four compounds.  

http://www.toxwiz.com/
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2.3.4 Toxic fragments analysis 

In order to identify whether a specific fragment is more frequent in a toxic than a nontoxic 

class, the ratio of the observed/expected value was calculated. If a fragment was more 

frequently presented in a particular toxic class than the expected number, this fragment 

was determined to be toxic. The expected number of the presence of a fragment in a 

particular toxic class is defined as following:  

𝑒𝑥𝑝 =  ே೑ೝೌ೒೘೐೙೟_೟೚೟ೌ೗ ∗ ே೟೚ೣ೔೎೔೟೤_೟೚೟ೌ೗

ே೟೚೟ೌ೗
                                               (2.2) 

Where Nfragment_total is the number of compounds containing the fragment; Ntoxicity_total is the 

number of compounds in each toxic class; and Ntotal is the total number of fragment-

chemical-toxicity pairs. The test of statistical significance for the observed/expected can 

be obtained in R fisher.test (Agresti, 2002). In this study we consider p < 0.05 is 

statistically significant. 

2.3.5 Prediction methods 

2.3.5.1 Support vector machines (SVM) 

Support vector machines (SVM) are a widely used technique for classification in 

bioinformatics and chemoinformatics (Guyon et al., 2002; Pauwels et al., 2011). The 

kernlab package in R (version 0.9-24) (Karatzoglou et al., 2004) was used in our study. 

We tested linear kernel and multiple nonlinear kernels; the Gaussian RBF kernel function 

was found to have the best performance. For a good generalization capacity of the 

classifier, two kernel parameters should be defined well, i.e. C and σ, where C is a cost 

factor that balances the trade-off between margin and training error and σ is a kernel 

parameter. 5-Fold cross-validation was applied to train nonlinear SVM(s) with various C 

values in the range of 2-10 to 215 and an automatically determined σ, and the combination 

of C and σ that generated the highest cross-validation accuracy was selected for training. 

The trained models were applied to the test set to predict whether a given compound is 

linked to toxicity endpoint or not. We constructed classifiers for each of the toxicity 

endpoints in our study. 

2.3.5.2 Sparse canonical correlation analysis (SCCA) 
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Canonical Correlation Analysis (CCA) makes it possible to find linear combinations of 

two sets (p fragments and q toxic effects) generated from n samples (compounds) with the 

highest correlations. CCA enables one to find linear combinations of all the variables in 

matrix X (p × n) that maximally correlate with linear combinations of all the variables in 

matrix Y (q × n). Considering two linear combinations as canonical variates α = Xu and β 

= Yv, with the weight vectors u' = (u1, ..., up) and v' = (v1, ..., vq). The optimal weight 

vectors are obtained by maximizing the canonical correlation coefficient between the 

variate pairs: 

𝜌 = 𝑐𝑜𝑟𝑟 (𝑢, 𝑣) = ௩ᇱ௒ᇱ௑௨
√௩ᇲ௒ᇲ௒௩√௨ᇱ௑ᇱ௑௨

                                                  (2.3) 

In regular CCA, the weight vectors u and v are not unique if p or q is large. In our study, 

we used Sparse CCA (SCCA) based on the method proposed by Pauwels et al. (Pauwels et 

al., 2011) for high-dimensional settings, where assuming that the columns of X and Y are 

uncorrelated, therefore, SCCA considers solving another form of CCA with the following 

optimization problem: 

𝑎𝑟𝑔𝑚𝑎𝑥
𝛼, 𝛽  𝛼′ ∑ 𝑋𝑌𝛽 subject to ‖𝛼‖2

2 = 1, ‖𝛽‖2
2 = 1, ‖𝛼‖

1
≤ 𝑐1ඥ𝑝, ‖𝛽‖

1
≤ 𝑐2ඥ𝑞    (2.4) 

where ∑ XY is the covariance matrix of X and Y, and ‖. ‖
1

 is L1 norm (the sum of all 

absolute values in the vector), and c1 and c2 are parameters to penalize the sparsity in α and 

β. For simplicity, in this study, c1= c2 and 0 < c ≤ 1. 

The penalized multivariate analysis was performed with the “PMA” library in R (Witten et 

al., 2009). 

2.3.6 Performance evaluation 

We ran 5-fold cross-validation to evaluate the performance of the SVM and SCCA models. 

All models were assessed by counting the numbers of true positives (TP), true negatives 

(TN), false positives (FP), and false negatives (FN), and calculating overall predictive 

accuracy (accuracy = (TP+TN)/(TP+TN+FP+FN)), sensitivity (TP/(TP+FN)), and 

specificity (TN/(TN+FP)) (Baldi et al., 2000). Additionally, the receiver operating 

characteristic (ROC) curve, which is a graphical plot of the true positive rate (sensitivity), 
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against false positive rate (1-specificity) (Gribskov and Robinson, 1996) was used to 

evaluate the performance, and the area under the curve (AUC) was also calculated with 

ROCR package in R (Sing et al., 2005) where AUC = 1.0 represents a perfect classifier 

and AUC = 0.5 means a worthless test (Lobo et al., 2008). 

2.4 Results 

2.4.1 Datasets 

2.4.1.1 The fragment dataset 

We used a dataset of 30 086 compounds with between 4 and 20 non-hydrogen atoms out 

of a total of 93 902 with MeSH terms in PubChem (2013). After cleaning charges and 

eliminating duplicates, 148 310 out of 162 261 fragments from the clean fragment-like 

subset of ZINC were used as the set of substructures, of which 11 011 were observed in a 

total of 26 644 PubChem compounds using substructure search in Open babel 2.3.2 

(O'Boyle et al., 2011). 

It is clear that many toxic endpoints can be caused by very different compounds (Benigni, 

1991). However, it is still likely that highly similar structures can cause similar toxicities, 

and thus this situation could bias the results. Thus to further test the chemical diversity of 

the fragment data set, we computed the Tanimoto similarity index of the whole data set 

using MolPrint2D (Bender et al., 2004). From the distribution patterns of molecular 

similarity values among these 11 011 fragments (Figure 2.1), it is clear that most (~99%) 

of the values range from 0 to 0.4 (i.e. virtually no similarity in structure), suggesting that 

our data set is structurally diverse.  

2.4.1.2 The toxicity endpoint dataset 

The entire dataset contains 5 605 compounds linked to 1 477 toxicity endpoints, with a 

total 54 353 compound-toxicity associations and 115 639 fragment-toxicity associations.  

2.4.2 Toxic fragment analysis 

To understand the chemical fragments related to toxicities, frequency analysis was applied 

to recognize the structural alerts. Details of frequencies of each fragment occurred in 

different toxic classes with Obs/Exp > 1 and p < 0.05 were shown in Table S2.1 of  
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Figure 2.1 Histogram of the distribution of the molecular similarities between all fragment pairs 

Supplementary Materials. These 609 fragments reflected the chemical features of 234 

types of toxicity and can be considered as potential structural alerts to predict toxicity of 

uncharacterized compounds. Table 2.1 shows some well-known structural alerts that were 

detected in our study and their statistical performance.  

Table 2.1 Some examples of structural alerts 

Name Structure Endpoints Obs/exp 
 

P value 
 

Aniline 

 

hepatotoxicity 
nephrotoxicity 

1.40 
1.37 

0.0173 
2.67e-05 

Benzonitrile 

 

genotoxicity 3.96 0.0009 

Bromobenzene 

 

nephrotoxcity 2.20 0.0020 
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Several of the alerts identified correspond to compounds or moieties already associated 

with toxicities. For example, the aniline moiety, a common structural alert, is found in 

many drugs (Kalgutkar, 2015). Aniline groups can be oxidized to intermediates and 

transformed to phenylhydroxylamine and nitrosobenzene groups, which in turn can 

covalently bind macromolecules or radicals to induce toxicities (Kalgutkar, 2015). 

Benzonitrile is contained in some pesticides, such as ioxynil, chloroxynil, and bromoxynil, 

and it is reported that these compounds induce severe toxicity in human cells (Lovecka et 

al., 2015). 

Bromobenzene-induced nephrotoxicity is thought to occur after bromobenzene is first 

metabolized to 2-bromophenol and then to bromohydroquinone, which is then transported 

to the kidney where it induces toxicity (Schnellmann and Mandel, 1986). It is also thought 

to induce hepatotoxicity via GSH depletion, reduction of nucleophiles such as NAD(P)(H) 

Furan 

 

nephrotoxicity 
teratogenicity 
genotoxicity 

1.76 
1.78 
2.72 

0.0105 
0.0009 
1.23e-09 

Naphthalene 

 

nephrotoxicity 
teratogenicity 
genotoxicity 

3.12 
1.75 
3.26 

5.07e-05 
0.0039 
3.61e-20 

3-Ethyltoluene 

 

cardiotoxicity 
nephrotoxicity 

1.73 
1.34 

0.043 
0.014 

4-Aminophenol 

 

hepatotoxicity 
teratogenicity 
nephrotoxicity 

2.76 
1.57 
1.62 

0.0001 
0.0010 
0.0009 

4-Ethylphenol 

 

cardiotoxicity 2.52 0.0009 

Sulfanilamide 

 

epidermis necrosis 24.67 2.05e-08 

Thiazole 

 

neurotoxicity 1.96 0.0015 

Thiophene 

 

hepatotoxicity 
genotoxicity 

8.31 
2.10 

0.0004 
0.0008 
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and CoA, and by chemical intermediates binding to proteins (Schnellmann and Mandel, 

1986). 

Furan related compounds are involved in a wide range of toxicities (e.g., genotoxicity, 

nephrotoxicity and teratogenicity) and some mechanisms have been investigated (Moro et 

al., 2012). For example, furan could be activated by cytochrome P450 enzymes into 

reactive compounds such as α,β-unsaturated dialdehyde, cis-2-butene-1,4-dial, which can 

bind to nucleophiles to form cytotoxic adducts (Byrns et al., 2002). Another study showed 

that cis-2-butene-1,4-dial forms glutathione conjugates and protein adducts to amino and 

thiol groups of amino acids, leading to toxicity in the target organs (Chen et al., 1997).  

Naphthalene rings are implicated in various toxicities. The mechanism of naphthalene-

induced nephrotoxicity is first the metabolism by CYP450s into naphthalene epoxide, 

which induces serial reactions including GSH depletion, and naphthol or dihydrodiol 

production. The subsequent conversion to naphthalenediol and oxidation to 

naphthoquinone generates reactive oxygen species (ROS), leading to cell damage or death 

(Stepan et al., 2011). 

4-Aminophenol is known to be activated by liver enzymes into a quinoid structure (Fowler 

et al., 1991), which might contribute to the potential nephrotoxicity of compounds 

containing this. 

4-Ethylphenol induces toxicity by first binding macromolecules via the free electrons from 

oxidized substrates (e.g., phenoxy radicals, semiquinones and quinine methide) leading to 

additional ROS (Thompson et al., 1995). The acute toxicity of 4-ethylphenol has been 

assessed by a read-cross approach (Mellora et al., 2017), which correctly identified 

analogues of the 4-ethylphenol group as belonging to the same toxicity category. A 

literature review suggests the toxicity of substituted phenols is correlated with the 

formation of free radicals by abstracting a hydrogen radical from the phenolic hydroxyl 

group ultimately leading to cellular damage (Hansch and Gao, 1997). 

Because the thiophene moiety is more sensitive to S-oxidation, thiophene-containing 

drugs tend to be metabolized to reactive S-oxides in the liver where they can act as 

inhibitors of CYP450 enzymes (Liu and Uetrecht, 2000).  
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2.4.3 Prediction via support vector machines 

We then evaluated the capability of using the proposed structural alerts to predict 

uncharacterized compounds by machine learning methods. 3,743 compounds containing 

the 608 structural alerts (toxic fragments) and linking to the 234 toxic MeSH terms were 

found in our data set. Since the imbalance (the proportion of toxic and non-toxic cases) of 

the data set affects the learning process (Afzal et al., 2013), we reduced the classifiers to 

balance the positive (toxic) proportions increasing classifiers accuracy. This was achieved 

by removing the toxic terms that appeared in less than ten compounds. 

Having assessed which fragment or toxicity is present in any compound, we then defined a 

binary matrix for each compound where 1 indicates presence and 0 indicates absence of 

each fragment or toxicity. This led to a data set comprising 991 compounds containing 

415 proposed toxic fragments, and linked to 232 toxic terms, meaning a total of 647 

binary values for each compound (Supplementary Materials). 

Overall, we have then the potential to derive individual SVM classifiers for 232 different 

toxicity endpoints. We firstly applied 5-fold cross-validation support vector machines 

(SVM) to test the ability of predicting known toxicities by proposed structural alerts. The 

matrix was randomly divided into five roughly equal sized subsets, and then each subset 

was taken in turn as a test set, and the remaining four data sets as training sets to perform 

the prediction.  

We evaluated the performance by accuracy (correctly predicted endpoints / total endpoints 

predicted) and ROC curves (plots of true positive versus false positive rates). Due to the 

imbalance of the dataset, the sensitivity (true positive rate) and specificity (true negative 

rate) were also used to measure the overall prediction performance. Statistical results of 

these values were shown in Table S2.2 of Supplementary Materials. Parameters were 

chosen by using the AUC score as an objective function. The best result was gained by 

Gaussian RBF kernel when width parameter σ = 0.1 and regularization parameter C = 1.  

Cross-validation, provided it is done correctly, will show reliable accuracy for the 

predictors. However, ultimate tests come from data external to that within the system. To 

do this, we chose the best model trained by SVM and tested with the external validation 

set from ToxWiz which contained 200 compounds relating with known toxic endpoints, 
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e.g., hepatotoxicity, neurotoxicity, nephrotoxicity and genotoxicity to evaluate the 

predictive ability of external data. Since the external set was independent from the training 

and test set, the performance on the external set could reflect predictive capability. The 

results are shown in Table S2.2 and Table 2.2. The best results were at the highest 

accuracy of 0.894, 0.890, 0.874, 0.865 for predicting hepatotoxicity, neurotoxicity, 

nephrotoxicity and genotoxicity, respectively, which represented credible predictions. 

However, as Table S2.2 shows, most specificity values are much higher than sensitivity 

values, which means that the models have higher accuracy for predicting non-toxicities 

than toxicities. One reason might be that most toxic endpoints (e.g., splenotoxicity, scalp 

inflammation, cone degeneration) are rarely occurring during clinical trials. By contrast, 

the high-throughput screening methods identified many hepatotoxicity, nephrotoxicity, 

genotoxicity drug candidates at the preclinical stage. Therefore, the models are more 

capable to predict most common observed toxicities than rarely observed toxic terms.  

Table 2.2 Performances of some toxic endpoints based on SVM method 

Toxic endpoint Data set Accuracy Sensitivity Specificity 
 

AUC 
 

genotoxicity Training set 
Validation set 

0.865 
0.740 

0.904 
0.600 

0.828 
0.751 

0.934 
0.734 

hepatotoxicity Training set 
Validation set 

0.894 
0.685 

0.556 
0.467 

0.983 
0.935 

0.971 
0.756 

nephrotoxicity Training set 
Validation set 

0.874 
0.895 

0.747 
0.533 

0.954 
0.930 

0.948 
0.953 

neurotoxicity Training set 
Validation set 

0.890 
0.755 

0.896 
0.792 

0.883 
0.750 

0.953 
0.822 

We also performed predictions on 263 withdrawn drugs from the WITHDRAWN database 

(Siramshetty et al., 2016). 195 withdrawn drugs contained potential toxic fragments and a 

total of 117 drugs with seven types of toxicity were predicted based on these fragments by 

SVMs model (Table 2.3). Hepatotoxicity (103 cases) was the most commonly predicted 

toxic endpoint. Rare drugs were predicted to be neurotoxic, genotoxic, cardiotoxic, 

nephrotoxic, teratogenic and skin toxic. The remaining 78 drugs were not predicted to 

associate with any specific toxicity. This is likely because, firstly, the average accuracy of 

our models is limited to 0.87. Secondly, post-marketing drugs were recalled from the 

market due to various events, ranging from safety reasons to non-safety problems 

including inefficiency, manufacturing, regulatory concerns and business issues 
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(Siramshetty et al., 2016). Less than 10% of products were withdrawn worldwide and 

many withdrawals occurred unpredictably in one or two countries due to idiosyncratic 

drug reactions (Hussaini and Farrington, 2007). 

Table 2.3 Predicted toxic endpoints associated with withdrawn drugs 

Toxic endpoint Number of 
withdrawn 
drugs 

Main structural alerts 

cardiotoxicity 6 1-butanol; 1-pentanol; 1-pentene; 2,2-dimethylpentane; 2-
methylbutane; acetic acid; cyclohexane; tetraisopropoxytitanium; 
trans-2-pentene 

genotoxicity 7 aniline; ethylbenzene; chlorobenzene; pyridinium; 
chlorochromate; thiophene 

hepatotoxicity 103 4-aminophenol; acetic acid; aniline; anisole; bromobenzene; 
chlorobenzene; ethylbenzene; furan; P-cresol; phenetole; phenol; 
thiazole; thiophene; sulfanilamide 

nephrotoxicity 3 acetic acid; aniline; naphthalene; propionamide; thiophene 

neurotoxicity 10 1,6-hexanediol; 1-butanol; 1-pentanol; ether; ethylbenzene; 
tetraisopropoxytitanium 

skin toxicity 1 aniline; ethylbenzene 

teratogenicity 2 ether 

Figure 2.2 shows some details for a selection of predictions. Many of these drugs are 

metabolized by CYP450s to form reactive metabolites, available of GSH depletion and 

binding to cellular proteins leading to toxicities and ultimate withdrawal from the market. 

For instance, NADPH-dependent covalent binding in human hepatocytes has been found 

in the metabolites of the uricosouric drug benzbromarone (McDonald and Rettie, 2007). 

Elsewhere, monohydroxylation catalyzed by CYP3A4 on the aniline moiety in the 

analgesic and antipyretic drug acetanilide apparently causes the formation of some 

intermediates that can be further metabolized to reactive quinone-imine species (Stepan et 

al., 2011). Ticrynafen can form reactive intermediate via epoxidation or S-oxidation of its 

thiophene fragment catalyzed by CYP450s. 
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Figure 2.2 Examples of chemical fragments (highlighted in red) that predicted to lead to toxicities in drugs 

withdrawn from the market. 
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2.4.4 Prediction via sparse canonical correlation analysis 

To explore how chemical fragments might be linked to toxicity endpoints, we employed a 

methodology similar to one used previously (Pauwels et al., 2011; Seoane et al., 2014), 

namely sparse canonical correlation analysis (SCCA). This technique can obtain the 

maximized correlation between the linear combinations of variables from two high-

dimensional heterogeneous datasets, e.g., a linear combination of chemical fragments and 

a linear combination of toxicity endpoints. SCCA can display a global view of the dataset 

by reducing variables into only a small number of dimensions that capture the main 

properties, for instance, chemicals containing the same substructures could have the 

similar toxicity endpoints. In our simulated study, two datasets containing categorical 

variables (e.g., 0, 1) - X (compound-fragment matrix) and categorical variables (e.g., 0, 1) 

- Y (compound-toxicity matrix), consisting of p (415 fragments) and q (232 toxicity 

endpoints), respectively, and n = 991 samples were used. First, we normalized variables of 

X and Y by subtracting the column means and dividing by the column standard deviations 

to delete null columns where all values were the same. For simplicity, the simulation was 

standardized by replacing variance-covariance matrices with identity matrices in equal 2.3. 

Then K is computed as the covariance between standardized datasets X t and Y t: 

K = Cov(X t , Y t ) = Σxt Y t                                                                                                (2.5) 

The results of this process are weight vectors, u1 and v1, in the linear combinations of 

variables from datasets X and Y. 

2.4.4.1 Performance evaluation 

We accessed the performance of SCCA using 5-fold cross-validation, thus datasets X and 

Y were split into five groups and each group takes turns to be the test set. Figure 2.3 

shows the ROC curve for the SCCA method where predictions for all toxicity endpoints 

are combined. With the parameters c1 = c2 = 0.04 and m = 100 for SCCA, the model 

obtained the best AUC score (0.801). The accuracy of individual toxicity endpoints 

(boxplot in Figure 2.4), obtained with the parameters c1 = c2 = 0.04 and m = 100.  
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Figure 2.3 ROC curves in the 5-fold cross-validation to evaluate the performance of SCCA 

 
Figure 2.4 Boxplot of the AUC scores for individual toxicity endpoints to evaluate the performance of 

SCCA 

The weight vectors for chemical fragments and toxicity endpoints were investigated and 

the index-plots of the first three canonical components were shown in Figure 2.5. Most all 

elements in the weight vectors in SCCA are zero in each component, which means SCCA 

can extract a small number of more selective and informative correlations between 

fragments and toxicities without losing performance. 
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Figure 2.5 Index-plot of weight vectors for chemical fragments (left) and toxicity endpoints (right) extracted 

by SCCA 

2.4.4.2 Extracted sets of chemical fragments and toxicity endpoints 

The above results prompted us to examine selected correlations of chemical fragments 

with toxicity endpoints in each canonical component extracted by SCCA for biological 

interpretations. Each component shows only a small set of chemical fragments related to a 

small set of toxicity endpoints. In each component of SCCA, there are two sets of 

compounds with high scores selected: one is the compounds with highest scores 

containing the associated chemical fragments, and the other is the compounds with highest 

scores containing the associated toxicity endpoints. A correlation coefficient is calculated 

to estimate the importance of the component correlation. Table 2.4 reports some 

components with higher coefficients clustering specific chemical fragments and toxicity 

endpoints in a small number of compounds. The results for the complete list can be found 

in Table S2.3. Most putative mechanisms of toxicity for the fragments are unknown, 

however, some plausible mechanistic explanations could be predicted by interrogation of 
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the literature. 

Table 2.4 Chemical fragments with significant correlations to toxic endpoints 

Canonical 
component 

Correlation 
coefficient 

Fragments with high 
scores 

Toxicity 
endpoints 
with high 
scores 

High scoring 
compounds 
(fragments) 

High scoring 
compounds 
(toxicity 
endpoint) 

59 0.988 

 
pyrimidine derivatives 

glioblastoma 
necrosis 

theophylline; 
tegafur; idoxuridine; 
floxuridine 

theophylline 

55 0.980 

 
phenol derivatives 

thyroid 
fibrosis 

 

equol;  

6,8-dimethoxy-3-
methyl-3,4-
dihydroisocoumarin;  

3-(2,3,4-
trimethoxyphenyl)ac
rylic acid 

equol 

48 0.816 

 
thiazole derivatives 

heart muscle 
necrosis 

thiamine; 
pramipexole 

pramipexole 

18 0.777 

 
indole derivatives 

liver 
ischaemia 

melatonin; 
hydroxyindoleacetic 
acid; 5-
hydroxytryptophan; 
norharman; harmine; 
clausine E 

clausine E; 
serotonin; 
melatonin; 
hydroxyindoleace
tic acid; 5-
hydroxytryptopha
n 

65 0.767 

 

t-cell necrosis urinastatin; 
furapyrimidone; 5-
nitro-2-
furylpropionamide; 
4-
hydroxynitrofurazon

furapyrimidone; 
4-
hydroxynitrofura
zone 
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e; methoxsalen; 
furanodienone; 
2,3,4,7,8-
pentachlorodibenzof
uran 

75 0.706 

 
halogenated derivatives 

testis 
degeneration 

pentabrominated 
diphenyl ether; DDT 

pentabrominated 
diphenyl ether; 
firemaster BP-6; 
dichlorodiphenyl 
dichloroethylene; 
DDT 

36 0.701 

 
thiophene derivatives 

coagulation ticlopidine; 
methapyrilene 

ticlopidine; 
fenfluramine; 
aspirin 

Compared with frequency analysis, SCCA extracted associations of a set of fragments 

with similar structures and a set of toxicity endpoints. The substructures responsible for 

toxicities can be obtained according to chemical categories: indole derivatives, thiophene 

derivatives, thiazole derivatives, phenol derivatives, etc. This makes the explanations of 

mechanisms more straightforward. For example, component 75 contains the halobenzene 

and halogenated hydrocarbon substructures linked to testis degeneration. The toxic effects 

are likely from cytochrome P450-dependent reduction to the reactive forms (halobenzene 

epoxide and trichloromethyl radical) which can bind to proteins to induce the toxicity 

(Allen et al., 1979; McGregor and Lang, 2000). 

2.4.4.2 Toxicity prediction for withdrawn drugs 

The prediction results for withdrawn drugs are shown in Table S2.4. Compared with SVM, 

SCCA tends to predict the specific toxicities (e.g., pulmonary oedema, neutrophil 

phagocytosis) that are associated with special drug clusters, while the common toxic terms 

(e.g., hepatotoxicity, nephrotoxicity) are rarely predicted with high scores for a drug. For 

example, amphetamine, dexfenfluramine, tranylcypromine, terfenadine were predicted 

with higher scores for a specific toxic term “valvulopathy” - a main cause of congestive 

heart failure (Carabello and Crawford, 1997), of which amphetamine and dexfenfluramine 
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were reported to associate with cardiac valvulopathy (Rothman et al., 2000).  

2.4.5 Mechanism study of toxicity 

Ideally, statistically significant predictions should be complemented with putative 

mechanistic explanations for why they are predicted. An emerging theme from the 

literature about several fragments suggests the finding that covalent binding by structural 

alert moieties to cellular proteins could be a direct cause of toxicities. Several of these 

moieties have been seen within protein three-dimensional structures. We identified these 

by searching for their occurrence in ligands within known structures (Figure 2.6). 

 

Figure 2.6 Interactions of selected structural alerts with biomolecules (black dashed lines show hydrogen 

bonds and green lines indicate hydrophobic interactions). The interactions provided by PoseView are 

extracted from the protein databank (PDB; rcsb.org). 

It is also important to note that toxicity owing to a structural alert is conditional. The toxic 

structural alert-containing drugs could be hazardous or safe depending on their metabolic 

pathways and the bioactivity of the structural alert (Rybacka et al., 2015). Most toxic cases 

are caused by the reactive metabolites of the drugs instead of the drugs themselves. 
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XenoSite can predict when structural alerts of furan, phenol, nitroaromatic, and thiophene 

will be bioactivated in drugs (Dang et al., 2017). We used the model of SMARTCyp in 

XenoSite to predict the six thiophene-containing drugs: methapyrilene, suprofen, 

ticrynafen, zileuton, dorzolamide, and olanzapine (Rydberg et al., 2010) (Figure 2.7). The 

first four drugs are shown to form reactive metabolites through the S-oxidation or 

epoxidation of thiophene (colored in red) by CYPs and they have been withdrawn from 

the market, while the thiophene groups contained by the last two drugs dorzolamide and 

olanzapine do not undergo bioactivation nor toxic (colored in green and blue). 

 

Figure 2.7 Metabolism model predicts whether thiophenes are bioactivated by CYPs. SMARTCyp model is 

used to shade atoms of drugs, ranging from white (0.0) to green (0.5) to red (1.0). The red represents the 

bioactivated parts and the blue parts are not bioactivated. 

Besides direct drug targets such as nuclear receptors, drug transporters, drug metabolizing 

enzymes with known toxicity associations, other protein interactions (i.e. off-target 

interactions) might also contribute to toxicities. We constructed a network (Figure 2.8) by 

integrating the interactions of the structural alert benzbromarone with gene expression 

data from TG-GATEs and associated pathways defined by gene ontology (GO) categories 

(Ashburner et al., 2000). A more systematic study relating gene expression to toxic 

response is given in Chapter III. Benzbromarone was withdrawn from the market in 

France due to its hepatotoxicity. It is metabolized by CYP3A4 to 1'-
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hydroxybenzbromarone and by CYP2C9 to 6-hydroxybenzbromarone, which is be further 

metabolized by CYP2C9 and CYP1A2 to 5,6-dihydroxybenzbromarone. The structural 

alert Acyclic di-aryl ketone moiety can be oxidized to 2,6-dibromohydroquinone and 2,6-

dibromobenzoquinone which might induce hepatotoxicity by covalent binding with 

proteins (Kitagawara et al., 2015). 

 

Figure 2.8 Network of benzbromarone-induced hepatotoxicity response. Genes are shown in circles; those 

in red are up-regulated and blue are down-regulated in rat liver (in vivo). Structural alerts are highlighted 

with stars. 

Single nucleotide polymorphisms in CYP2C9 might be associated with the individual 

toxicity response to benzbromarone (Takahashi and Echizen, 2003). 36 variations of 

CYP2C9 from 1000 Genomes Phase 3 (The 1000 Genomes Project Consortium, 2015) 

were tested using Mechismo (Betts et al., 2015). Four of these, R124L, S127F, M240T 

and I359L at the binding sites are predicted to affect the bindings of triflucan, bifonazole, 

flurbiprofen and piperazine, which might increase and/or inhibit the effectiveness of those 

drugs (Figure 2.9). A systematic analysis of associations between polymorphisms and 

toxicity is discussed in Chapter V. 
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Figure 2.9 Structures of CYP2C9 mutations in contact with four drugs 

2.5 Conclusion and discussion 

The systematic analysis of a large number of chemical compounds and their links to 

toxicity terms revealed that statistics (e.g., frequency analysis) and machine learning 

methods such as both SVM and SCCA are capable of identifying structural alerts 

associated with toxicity. We found hundreds of structural alerts, including some known 

alerts like aniline, furan, or phenol. Many of the identified fragments are known to form 

reactive metabolites that might induce toxic effects. This finding has been used previously 

to aid quantitative structure-toxicity relationships (QSTR) analyses (e.g., quetiapine versus 

clozapine (Nelson, 2001)), suggesting that the presence of the fragments leads to a higher 

incidence of toxicity and that they should be avoided in drug development where possible.  

Nevertheless, some structural alerts can be beneficial for activity. For example, quetiapine 

and clozapine’s structurally similar agent, olanzapine, contains the aniline structural alert 

and is indeed known to form reactive metabolites, and associated covalent bonds with 

proteins, but is nevertheless devoid of toxic effects (Nelson, 2001). Predictions from such 

alerts thus need to be considered with caution.  
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The results in this chapter also hint that toxicity predictions should be coupled to detailed 

mechanistic analyses. A comprehensive understanding of how bioactivation pathways 

produce toxic effects can come by integrating gene expression data from in vivo and in 

vitro models. Other studies suggest this strategy could be fruitful. For example, the 

withdrawn antibiotic trovafloxacin shows significantly different gene expression patterns 

(related to genes involved in oxidative stress response) compared to structurally similar 

fluoroquinolones still on the market (Stepan et al., 2011). A recent study also suggests that 

shifts in IL-6/TNF-α ratios play a role in immune-mediated trovafloxacin-induced 

hepatotoxicity (Bonzo et al., 2015).  

Several genetic studies indicate that polymorphisms in drug metabolizing enzymes could 

lead to individual differences in reactive metabolite formation and thus different responses 

to xenobiotics (Williams and Park, 2003). For instance, it has been suggested that 

polymorphisms in the enzyme N-acetyltransferase 2 (NAT2) are responsible for the 

severity of hepatotoxicity of isoniazid, an antibiotic used for the treatment of tuberculosis. 

The mutants of NAT2 were found to increase the risk of hepatotoxicity by activating the 

hydrazine group (a structural alert) to form N-acetylisoniazid intermediate (Huang, 2007). 

Overall, application of structural alerts to filter drug candidates should be complemented 

by putative mechanistic insights based on existing biological data. This is a subject that we 

discuss in the following chapters. 
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CHAPTER III: Deciphering mechanisms of drug action and 

toxicity by integrating gene expression signatures, biological 

features and chemical features 

3.1 Abstract 

The molecular mechanism for how xenobiotics exert beneficial or detrimental effects on 

biological systems is important for many applications in pharmacology and biomedicine. 

Gene expression screens performed systematically on many compounds in multiple 

tissue/species systems provide opportunities to investigate principles of the molecular 

impact of xenobiotics on biological systems. We analyzed the TG-GATES gene 

expression and pathology data on 131 compounds in liver or kidney tissues and cell lines. 

We found that in vivo and in vitro data are only rarely similar and gene expression profiles 

of in vivo rat liver data are more informative about mechanism than other datasets. 

Clustering compounds according to expression signatures forms groups with similar 

therapeutic characteristics and/or mechanism of drug actions, with relatively few clusters 

arising owing to a similarity in toxic response, suggesting that drug mechanism-of-action 

is the predominant effect observed in expression studies. We also found correlations 

between overexpression of genes related to cell proliferation and drug metabolism with 

compound solubility, and between structure alerts (e.g. acetanilide, 4-chlorotoluene) and 

the expression of genes associated with the mechanisms of drug-action, although we found 

no correlation between any measure of gene expression and molecular structure similarity. 

Our findings suggest that simultaneous exploration of biological, chemical features and 

gene expression changes can enrich understanding of drug action and ultimately help drive 

alternatives to animal models. 

3.2 Introduction 

The advent of high-throughput techniques to study gene expression led, when used in 

toxicology studies, to the field of toxicogenomics, where changes in gene expression are 

used to identify potential markers of compound toxicity (Afshari et al., 2011). There have 

been a number of success stories, for example, where particular biomarkers or gene 

signatures have been identified using these techniques (Caiment et al., 2014; Ichimura et 

al., 1998; Yamada et al., 2012). Moreover, despite many studies both in toxicogenomics, 
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but also more generally in chemically induced gene expression changes, the relationship 

between a chemical features and biological response remains elusive. Gene expression 

profiling has been a popular technique to study responses to cell or tissue stimuli and has 

been used, for example, to detect differences between normal and diseased tissues 

(Velculescu et al., 1999), to detect RNA expression responses in tissues that have been 

treated with drugs (Gray et al., 1998) and to detect the mechanisms underlying biological 

pathways (Bertilsson et al., 1998). Previous studies have shown that chemical features can 

be related to gene expression. For example, there are correlations between chemical 

structure of cancer drugs and gene expression (Blower et al., 2002). Elsewhere distinct 

chemical properties correlate with specific cellular responses: for instance, hydrophobic 

properties correlate strongly with DNA damage response, and hydrogen bonding is linked 

to metabolic stress (Khan et al., 2012). A reliable connection between one class of up-

regulated genes induced by certain compounds in the liver and their chemical information 

found in ECFP4 fingerprints has also been predicted (Fernald and Altman, 2013).  

More recently, a variety of public and commercial databases of expression profiles have 

been developed and presented many advantages to the identification of pharmacological or 

toxic phenotype of new chemical entities. For example, the Connectivity Map dataset 

contains (in build 02) more than 7 000 microarray expression profiles from cultured 

human cells treated with 1 309 bioactive small molecules and has been used in drug 

repositioning and for elucidating the mechanism of action of drugs (Lamb et al., 2006). 

The Open Japanese Toxicogenomics Project-Genomics Assisted Toxicity Evaluation 

System (Open TG-GATEs) consists of gene expression data and pathological data from 

131 different compounds, mainly medical drugs, given in vivo and in vitro to rats and 

human at different doses and time points and then measured in liver and kidney tissues 

and cell-lines (Uehara et al., 2010). These data have been employed in studies to identify 

candidate biomarker genes and to construct prediction models for hepatotoxicity (Gao et 

al., 2010; Hirode et al., 2009; Kiyosawa et al., 2007; Omura et al., 2007; Uehara et al., 

2011, 2008a), nephrotoxicity (Kondo et al., 2009) and hepatocarcinogenicity (Uehara et al., 

2011, 2008b). Such studies have provided data and approaches to systematically compare 

the gene expression profiles in vivo and in vitro, across different species and within 

different tissues, and to explore the relationships between biological features, chemical 

features, gene expression profiling and pathology. In this chapter, we explore how 

toxicogenomics signatures (within the TG-GATEs project) relate to chemical features and 
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how well expression changes capture toxic or other mechanistic information related to 

drug response. 

3.3 Methods 

3.3.1 Toxicogenomics datasets 

The TG-GATEs (http://toxico.nibiohn.go.jp/english/) database (Phase I) contains 131 

compounds, mainly drugs (Uehara et al., 2010). For the in vivo studies, selected rats were 

treated with both a single-dose, consisting of four time points (3h, 6h, 9h and 24h) with 

three doses (low, middle and high), and a repeated-dose, consisting of four treatment 

durations (4d, 8d, 15d and 29d) with three dose levels (low, middle and high). Gene 

expression of livers and kidneys from the rats were profiled with three animals in each 

group. In the in vitro studies, the primary rat hepatocytes and primary human hepatocytes 

were treated at three time points (2h, 8h and 24h) with three concentrations (low, middle 

and high) by each of the 131 compounds. All the studies had time-match controls.  

3.3.2 Microarray data and pathological data processing 

Affymetrix CEL-files were downloaded from the Open TG-GATEs database 

(http://toxico.nibiohn.go.jp/datalist.html) and processed by the Bioconductor package 

simpleaffy (Wilson and Miller, 2005) for generation of expression values for each probe 

set using the robust multiarray averaging (RMA) method (Irizarry et al., 2003). Probe sets 

were then reannotated to genes using custom CDF file (version 15.1.0) (Dai et al., 2005). 

Finally, the replicate samples were summarized by taking the average and differential 

expression was calculated as log 2-ratio compared to the time-matched controls. Statistical 

significance p-values were assigned using a modified t-test (Storey and Tibshirani, 2003). 

For subsequent analysis we considered genes which had a significant (at least 2 fold) 

increase or decrease (p < 0.01) in expression by any of the 131 compounds at any dose or 

time point (Table S3.1). 

Histopathological records for the rat in vivo data were obtained from the TG-GATEs web 

site. Pathological observations were coded from 0 to 4 based on intensity by pathologists: 

0=no change, 1=minimal, 2=slight, 3=moderate, 4=severe and values from replicate 

samples belonging to each instance were averaged. We then summed up the values of all 

histopathology findings in each organ and used them as an overall measurement of 
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pathology classes (Table S3.3). 

3.3.3 Principal component analysis (PCA) and hierarchical clustering analysis (HCA) 

Principal component analysis (PCA) was performed to visualize the gene expression data 

in two dimensions, i.e., the first two principal components with highest variance. 

Specifically, a matrix (100 top-ranking genes vs compounds) was built with each element 

representing the expression of the 100 genes with highest fold change (absolute values) in 

in vitro rat hepatocyte (Table S3.2). Then, a PCA using the prcomp command in R (R 

Development Core Team, 2012)) was implemented on this matrix to investigate the batch 

effects in the TG-GATEs. 

Furthermore, for investigating the gene expression similarity between any two compounds, 

we calculated a Jaccard index (intersection divided by union) as a measure of similarity, 

counting each gene/expression-direction pair once. We then used the hierarchical cluster 

analysis program, OC (GJ Barton, University of Dundee) to obtain compound clusters 

based on these scores. We employed “complete” linkage options to divide the whole set 

into discrete clusters. Tree figures were generated using iTOL (Letunic and Bork, 2011). 

3.3.4 Biological data collection and visualization 

We extracted ATC-classes (i.e. descriptions of therapeutic use) for all 131 chemical 

compounds from the WHOCC database (http://www.whocc.no/). Annotations of toxic 

endpoints induced by chemicals were extracted from the publications of toxicogenomics 

experiments (http://www.toxwiz.com/) and drug-target interactions were assigned using 

DrugBank (Knox et al., 2011). 

We constructed networks of genes and their interactions from the rat metabolic and 

signaling pathways in KEGG (Kanehisa et al., 2012), and rat protein-protein interactions 

from STRING (Franceschini et al., 2013) and rat chemical-protein interactions from 

STITCH (Kuhn et al., 2014). We considered both experimental and predicted with high 

confidence (score > 0.7) interactions in STRING and STITCH.  

3.3.5 Chemical data collection and visualization 

We extracted structure files for 98 compounds from PubChem (Bolton et al., 2008). After 

adding hydrogen atoms, transforming to 3D structures, chemical properties (e.g. number 
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of hydrogen bond acceptors and donors, LogP, topological polar surface area) were 

computed by Open Babel (v. 2.3.1) (O’Boyle et al., 2011). The structure similarity 

between any two compounds was calculated based on Molprint 2D using Tanimoto 

coefficient (Bender et al., 2004), as shown in Chapter II Methods.  

We downloaded 162 261 clean fragment structures filtered according to the rule-of-three 

selection criteria from ZINC database (version 12, Irwin and Shoichet, 2005) and cleaned 

charges manually. For substructure searching, we used structural fingerprints from Open 

Babel (v. 2.3.1) and PubChem (Bolton et al., 2008).  

We matched 1 332 distinct small fragments from ZINC database to 98 compounds that 

modulated gene expression in vivo rat liver. We then created a binary feature matrix with 

98 rows (one for each compound), and 1 332 columns (one for each small fragment). 

Entries in the binary feature matrix were set to 1 if the fragment was found in the 

compound, otherwise the entries were 0. We then performed principal component analysis 

on this 98 x 1 332 matrix.  

3.3.6 Sparse canonical correlation analysis (SCCA) 

See sparse canonical correlation analysis (SCCA) in Chapter II Methods. 

3.4 Results 

3.4.1 Gene expression quality controls 

Since the large scale of transcriptomics data were from several contributors, differences 

arising from subsets of sample batches are unavoidable. In order to identify the reliability 

of the genes and eliminate implausible data, here, we executed curation steps including 

controlling batch effects, assessing reproducibility across replicates and analyzing 

concentration-response relationship presented by Grinberg et al. (Grinberg et al., 2014).  

3.4.1.1 Batch effects 

PCA was performed for the expression values of 229 probe sets representing the 100 

genes with the highest fold change (absolute values) across 130 compounds (carbon 

tetrachloride was excluded due to unavailable data) in the 24h-high concentration of rat in 

vitro subset (Table S3.2). PCA applied to two replicates and two controls for each probe 
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which illustrates their locations within four clusters (Figure 3.1 (a)). Using the mean 

values of the replicates and the mean values of controls gives similar clusters (Figure 3.1 

(b)). When controls and the corresponding treated samples are connected by lines, we see 

two main clusters revealing that the difference between the clusters is a consequence of 

batch effects in microarray data (Figure 3.1 (c)) and that, after subtracting the controls 

from the corresponding treated samples, the initial clusters are not observed any more 

(Figure 3.1 (d)), suggesting that batch effects were eliminated by this step. 

Figure 3.1 Principle component analysis for rat in vitro gene expression data obtained after treatments of 

131 compounds with high dose level at 24h time point. The red and blue symbols represent the controls and 

treated samples, separately (a) PCA for all controls and samples (b) PCA for using the mean values of 

controls and replicates (c) Connecting lines between controls and the corresponding treated samples (d) PCA 
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after subtracting the controls from the corresponding treated samples 

3.4.1.2 Reproducibility 

We checked the distance between replicates and compared this to the influence caused by 

the test compound. Figure 3.2 shows the frequency distributions for Euclidean distances 

between replicates and control-treatment pairs tested at the 24h time point at high 

concentrations, where 90% of distances between replicates are lower than 14, while 92.5% 

distance between control-treatment pairs are larger than 14. The median distance between 

replicates is 5.3-fold lower than that between control-treatment pairs, which suggests that 

the reproducibility between replicates is acceptable. 

 
Figure 3.2 Frequency distribution of Euclidean distance between all replicate sample pairs (blue) and 

control-treatment sample pairs (red) for 24h high dose treatment  

3.4.1.3 Number of dysregulated genes per compound 

The number of dysregulated genes among the 100 top-ranking genes (Table S3.4) in rat in 

vitro subset was checked separately for all nine combinations of dose level (low, middle, 

and high) and time-point (2h, 8h, and 24h) (Figure 3.3). It shows that the number of 

dysregulated genes is different between the compounds and the top 100 genes were 

dysregulated by 112 of 131 compounds. Some of the well-known toxic compounds such 

as carbon tetrachloride weakly dysregulated a few genes in TG-GATEs. In the 
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comparisons of the high versus middle concentration for the exposure periods of 2h, 8h, 

and 24h, giving number of compounds ratios of fewer regulated to more regulated genes 

of 1/20, 1/77, and 1/95, respectively, showing overall greater changes in response to a 

higher dose. These ratios are 3/3, 3/23, and 2/42 when comparing the middle to low 

concentration, also showing generally a stronger effect for a higher dose. The data in 

which the genes dysregulated at a low concentration remain unaltered at a higher 

concentration should be treated with caution. 

3.4.1.4 Concentration-response relationship 

We then investigated the concentration-response relationship for individual genes (Table 

S3.5). All upregulated genes with at least 2-fold change at any dose level (low, middle, or 

high) after 24h treatment with 131 compounds were determined (Figure 3.4). Of the 42 

compounds which induced significant upregulation of a minimum of ten genes, 16 show 

that genes become upregulated from the low to the middle and from the middle to the high 

concentrations (e.g., tannic acid, clofibrate, naproxen and colchicine). For 22 compounds 

we see differences between high and middle, but not middle and low (e.g., cephalothin, 

paraverine, ibuprofen and sulpiride). Two compounds (phenobarbital and acetaminophen) 

upregulated most genes from the low to the middle but downregulated from the middle to 

the high concentration. For two others (puromycin aminonucleotide and WY-14643), 

genes are upregulated at low, but not at middle or high doses. There is no obvious 

explanation for these exceptions, though it is possible that higher doses lead to drastic 

alterations in physiology (possibly leading to death of the animal) that are not captured in 

the expression set. Nevertheless, the majority of compounds show an expected drug-

concentration-response relationship. 
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Figure 3.3 Number of dysregulated genes per compounds. The X axes lists 112 compounds that were tested 

at the indicated time point and concentration and the Y axes illustrates the number of genes affected among 

the 100 strongest dysregulated genes.  
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Figure 3.4 Expression levels of the most affected genes upregulated at three concentrations after 24h 

exposure 

3.4.2 Gene expression profiles reflect common pharmacology  

We clustered compounds according to an overall measure of gene expression similarity 

(considering all genes dysregulated at any dose or time point equally) and inspected the 

resulting groups for similarities in action of drug, toxicity, or drug target.  
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3.4.2.1 In vivo gene expression clusters 

The dendrogram of in vivo gene expression data includes 98 out of 131 compounds that 

had signatures with at least ten and at most 200 significantly changed genes (Figure 3.5). 

Compounds are in three main clusters with multiple sub-clusters. Several sub-clusters 

(enclosed by boxes in Figure 3.5) show similar ATC classifications or drug targets and 

suggesting that drug action is a major determinate of gene expression. Only two sub-

groups show a clear clustering according to toxicity (hepatotoxicity). 

 
Figure 3.5 Dendrogram showing the clustering of 98 compounds based on gene regulation in vivo rat liver. 

The enriched biological features are labeled on the tree. The exact black color displays highest value of 

pathology classes and the colors gradually fading towards white representing the lower values. 
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Figure 3.6 Networks of genes changed by chemicals. Nodes are distinguished by different shapes and colors 

including compounds represented by 2D structures (round rectangles), drug targets (green ellipses), drug 

metabolizing genes (triangles), genes (ellipses), up-regulated genes (red ellipses), down-regulated genes 

(blue ellipses), and drug targets (green ellipses) and edges includes drug-target association, target-pathway 

association and gene-gene association. (a) network of genes changed by cardiovascular drugs (e.g. 
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benzbromarone, clofibrate, fenofibrate, gemfibrozil, ibuprofen and simvastatin) (b) network of genes 

changed by musculoskeletal drugs (e.g. naproxen, meloxicam, penicillamine, lornoxicam, mefenamic acid 

and sulindac) (c) network of genes changed by one group of CNS drugs (e.g. trimethadione, diazepam, 

carbamazepine and hydroxyzine) (d) network of genes changed by another group of CNS drugs (e.g. 

amitriptyline, imipramine, phenobarbital, haloperidol and iproniazid) (e) network of genes changed by one 

group of hepatotoxicants (e.g. acetamidofluerene, monocrotaline, carbo tetrachloride, naphthyl 

isothiocyanate, acetaminophen and bromobenzene) (f) network of genes changed by another group of 

hepatotoxicants (e.g. hexachlorobenzene, cisplatin, methapyrilene, nitrosodiethylamine, disulfiram, 

flutamide, phenytoin and omeprazole) 

There is one large sub-group of predominantly cardiovascular agents (ATC code: C): 

ibuprofen, fenofibrate, clofibrate, benziodarone, simvastatin and gemfibrozil. These drugs 

target either PPARA or PPARG, and nine of the common dysregulated genes are likely 

altered by PPAR transcriptional activation/suppression events. Twelve of 29 of the genes 

changed by at least four agents in this cluster are involved in peroxisome proliferation 

events (Cd36, Ehhadh, Pex11a, Me1, Acaa1, Angptl4, Crat, Cyp4a1, Ech1, Aqp7, Cpt1b 

and Lpl), together with fatty acid metabolism, including genes for fatty acid 

elongation/degradation and lipid metabolism (e.g., Acot1, Acot2, Acot3, Acot4, Dci, Eci1 

and Apoa4) (Table S3.6, Figure 3.6(a)). 

The sub-cluster of musculoskeletal drugs (ATC code: M) comprises six anti-inflammatory 

drugs (naproxen, meloxicam, penicillamine, lornoxicam, mefenamic acid and sulindac), 

with similar expression patterns. 14 genes were changed by at least five of those 

compounds (Table S3.7). The mechanism of anti-inflammatory drugs is mainly driven by 

Ptgs1 and Ptgs2, and genes centering around the pathway of anti-inflammatory were up- 

or down-regulated by all the six compounds, such as Cxcl1, Cd36, Mt1a, Mt2A, Lbp and 

Spink3 (Figure 3.6(b)). Another sub-cluster contains three additional anti-inflammatory 

drugs, phenylbutazone, bendazac and chlormezanone, with eight common up-regulated 

genes affecting retinol metabolism, glutathione depletion and drug metabolism (Abcc3, 

Aldh1a1, Aldh1a7, Cyp2b1, Cyp2b2, Gadd45b, Gsta5, and Rgd1562844; Table S3.7).  

A group of central nervous system (CNS) drugs (ATC code: N) lie in two subclasses. The 

first group includes trimethadione, diazepam, hydroxyzine and carbamazepine that all 

have been demonstrated to enhance the expression of drug-metabolizing genes, such as 

aldehyde dehydrogenase (Aldh1a1 and Aldh1a7), cytochrome P450 (Cyp2b1 and Cyp2b2), 

UDP glucuronosyltransferase (Ugt2b and Ugt2b1), glutathione S-transferase alpha 5 
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(Gsta5) and carboxylesterase 2 (Ces2c and Ces2l) (Table S3.8, Figure 3.6(c)). Two of 

those compounds, trimethadione and carbamazepine, commonly affected all 15 genes in 

the network, while others affected nine. Compounds in the other CNS drugs cluster 

containing imipramine, amitriptyline, phenobarbital, iproniazid and haloperidol ) often (at 

least three) dysregulated Cdc2, Cdkn3, Rrm2, Ccna2, Ccnb1, Ccnb2, Ckap2, Ns5atp9 and 

Ect2, which are related to the cell cycle, and up-regulated genes for neuroactive ligand-

receptors, such as Prlr, in addition to drug-metabolizing enzymes (Table S3.8, Figure 

3.6(d)). One of the similarities between the two networks (Figure 3.6(c) and Figure 

3.6(d)) is that genes dysregulated by all CNS drugs interact with protein kinase A (PKA), 

suggesting that their therapeutic mode of action is at least, in part, linked to the 

cAMP/PKA signaling pathway.  

There are also some compound clusters where common differentially expressed genes 

correlated roughly with a similarity in toxicity. For instance, bromobenzene, 

acetaminophen, carbon tetrachloride, monocrotaline, acetamidofluorene and naphthyl 

isothioxyanale are all hepatotoxic and at least four of them affected genes strongly 

associated with liver toxicities (Table S3.9). These include several genes encoding drug 

metabolizing enzymes and transporters (Aldh1a1, Akr7a3, Asns, Gpx2, Aldh1a7, Gsta5, 

Abcb1a, Abcb1b and Abcc3; Figure 3.6(e)). These principally work as protective enzymes 

responding to oxidant stress in phase II or III drug metabolism (Tanaka et al., 2007). 

Similarly, in the cluster including disulfiram, flutamide, methapyrilene, 

nitrosodiethylamine, cisplatin, hexachlorobenzene, omeprazole and phenytoin, both affect 

the genes for the first group in addition to down-regulating genes related to lipoprotein 

secretion (Apoa4, Scd and Scd1) (Figure 3.6(f)). The inhibition of lipoprotein secretion is 

known to play a role in hepatocellular necrosis and steatosis (Gao et al., 2010). Aside from 

these examples, the grouping of compounds according to gene-expression similarity 

shows little overall overlap with observed pathology outcomes (black boxes in Figure 3.5). 

3.4.2.2 In vitro gene expression clusters 

The dendrogram (64 compounds) for in vitro rat liver (Figure 3.7) also shows clusters 

more evidently related to drug action than toxicity. Some clusters resemble the in vivo 

conditions, such as that for cardiovascular drugs (simvastatin, benziodarone and 

clofibrate), CNS drugs (imipramine, iproniazid and amitriptyline), and alkylating agents 

(cisplatin and carboplatin). 
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Figure 3.7 Dendrogram showing the clustering of 64 compounds based on gene regulation in vitro rat 

hepatocytes. The enriched biological features are labeled on the tree. 

In In vitro array system only three genes related to the PPAR signaling pathway (Acot1, 

Ehhadh, and Angptl4) were also induced by cardiovascular drugs in vivo. Aldh1a1, Acot3, 

Apoa4, Crat and Pklr were only modified in vivo but not in vitro, while PPAR related 

genes Hmgcs2, Cyp4a2, Cyp4a3 were induced in vitro only (Table S3.6). The clustered 

CNS drugs, imipramine, iproniazid and amitriptyline did not share any common 

dysregulated genes in vivo and in vitro (Table S3.8).  

Additional clusters also reflect common drug targets. For instance, caffeine and 

theophylline target adenosine receptor antagonists; diclofenac, ibuprofen and naproxen 

target Ptgs1/Ptgs2; enalapril and captopril interact with angiotensin I converting enzyme 

(Ace); clomipramine and amitriptyline share multiple targets such as neurotransmitter 

transporter (Slc6a2 and Slc6a4) and 5-hydroxytryptamine receptor 2A (Htr2a); and 

clofibrate, benzbromarone and fenofibrate target PPARA. 

There are also some sub-clusters reflecting common hepatotoxicity as for the in vivo data, 
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such as the clusters of indomethacin and clofibrate, of disulfiram and quinidine, and of 

carbon tetrachloride and naphthyl isothiocyanate. The first cluster shows increased some 

of the same gene expressions of PPAR signaling pathway as the in vivo data (e.g. Acot1, 

Acot2, Angptl4, Cyp4a2, Cyp4a3, Ehhadh and Pdk4). The second cluster also shows 

dysregulation of Crct1, Cyp1a1 and Tcp11l2, and the last cluster also induced genes 

associated with MAPK signaling pathway such as Hspa1a, Hspa1b, Hspb1 and Il6 (Table 

S3.9).  

3.4.3 Comparison of in vivo and in vitro gene expression 

In in vivo assay system, all 131 compounds changed expression of at least one gene at 

each dose level and time point while in in vitro rat hepatocytes 28 compounds changed 

none. In some instances, this could have a profound impact on interpretation of results. 

For example, considering genes modified by PPARA ligands (Table S3.6), seven of the 

fatty acid beta oxidation-related genes were commonly induced in vivo rat liver and in 

vitro rat hepatocytes by at least five agents, whereas genes responsible for cell 

communication (Acta1) and cytochrome P450 (Cyp1a1, Cyp4a2 and Cyp4a3) and PPAR 

signaling pathways (Hmgcs2, Mmp1) were altered in vitro rat hepatocytes but not in vivo 

rat liver. There are no overlapping genes dysregulated by three drugs of the clustered CNS 

drugs, imipramine, iproniazid and amitriptyline between in vitro rat hepatocytes and in 

vivo rat liver (Table S3.8). With the treatments of cisplatin and carboplatin from the 

alkylating cluster, Aldh1a1, Ccng1, and the selenium pathway genes HbaA2, Hba1, Hba2, 

and Lox, Rt1Ce5, Rt1Ec2 were commonly changed in vivo rat liver but not in vitro rat 

hepatocytes, while Aif1, C1qa, Cd48, Cxcr4, Gja1, Marcks, Rgs4 and Slc4a11 were 

exclusively changed in vitro rat hepatocytes (Table S3.10). 

Expression changes in vitro thus might not always reflect the situation in vivo. To quantify 

this, we computed a simple measure of gene expression similarity and studied the 

differences between the in vitro rat hepatocytes and in vivo rat liver expression signatures 

(Figure 3.8). The most similar signatures were those for clofibrate where twelve genes 

show a similar behavior out of 105 genes changed in vivo rat liver and 29 in vitro rat 

hepatocytes, of which ten are clearly involved in PPAR signaling and fatty acid 

metabolism. 

Similarities between the same compound when compared across in vivo rat liver and in 
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vitro rat hepatocytes (Figure 3.8 (a)) are higher than between different compounds and 

this is also generally true when comparing signatures (at different time points) within in 

vivo rat liver (Figure 3.8 (b)) and within in vitro rat hepatocytes (Figure 3.8 (c)) 

separately. However, there are many compounds for which similarity when comparing 

signatures with themselves (in vivo versus in vitro) is as low as that when comparing with 

other compounds. 

All of these plots suggest that there is a limited general correlation between gene 

expression alterations induced by rat liver in vivo and in cultivated hepatocytes. However, 

certain key genes modified in vitro might be reliably used to predict the changes in vivo. 

For example, numerous pathways such as focal adhesion, adipocytokine/PI3K-Akt/NF-кB 

signaling, cell cycle related to inflammatory responses and cell growth were initiated by 

penicillamine stimulation at 29 days in vivo (Figure 3.9(a)). Among those, adipocytokine 

and PI3K-Akt signaling pathway were activated by genes of Cd36 and Cxcl1, respectively. 

These pathways lead to inflammatory responses and accordingly the detoxification gene of 

metallothionein (Mt2A) induced and genes of Onecut1 and Rrm2 involved with cell cycle 

reduced. Interestingly, all genes associated with the inflammatory state significantly 

changed by penicillamine at 24 hours in vitro were contained in those pathways although 

such genes (Ccna2, Ccnb1, Igfbp3, Dusp9, and Rrm2) were all suppressed, which may 

reflect the similar mechanism but a different cell responses possibly because of dose 

differences, i.e., high concentration penicillamine might already induce toxicity in vitro 

(Figure 3.9(b)). 
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Figure 3.8 Histogram of gene expression similarities from all-by-all compound comparison. The column 

highlighted in red shows the frequency which counts for gene expression values are at least 2 fold changed 
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induced by any two same compounds, and the blue column shows the frequency of that induced by any two 

different compounds. (a) occurrence of the gene expression similarities between in vivo and in vitro (b) 

occurrence of gene expression similarities between in vivo and in vivo (c) occurrence of the gene expression 

similarities between in vitro and in vitro 

 
Figure 3.9 Network structure presentation of fold change. (a) The fold change data of rat liver at 29 days 

after penicillamine treatment are presented, where red and blue indicate up (fold change > 2, p < 0.01) and 

down (fold change < -2, p < 0.01), respectively. (b) The fold change data of rat hepatocytes at 24 hours after 

penicillamine treatment are presented, where red and blue indicate up (fold change > 2, p < 0.01) and down 
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(fold change < -2, p < 0.01), respectively. 

3.4.4 Comparison between Rat & Human data 

We studied microarray data for drug-treated human and rat hepatocytes in vitro with the 

purpose of understanding how well human cell responses to chemicals can be inferred 

from rat. The cluster tree of gene expression also indicates that several chemicals with 

similar ATC code gather into small subclasses (Figure 3.10). However, only 9.8% of 

these genes were common for human and rat hepatocytes and 11% were conserved 

between in vitro human hepatocyte and in vivo rat liver.  

None of the genes related to the beta oxidation of fatty acids were changed in human 

hepatocytes (Table S3.6), which agreed with the previous observations that PPARα 

ligands do not cause peroxisome proliferation in humans (Harmon et al., 2011). Similarly, 

the changes of genes treated with compounds belonging to CNS agents, musculoskeletal 

drugs, antineoplastic and immunomodulating  

 
Figure 3.10 Dendrogram showing the clustering of 38 compounds based on gene regulation in vitro human 

hepatocytes. The enriched biological features are labeled on the tree. 

agents were not apparent in human hepatocytes (Table S3.8, S3.7, S3.10), but genes 

ANLN, CDC2, NCAPG, RRM2 and TOP2A involved in the cell cycle were consistently 

down-regulated by alimentary tract drugs in human hepatocytes (Table S3.11), which 

might indicate that these chemicals have induced toxicity in human hepatocytes. 
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3.4.5 Liver and kidney gene expression comparison in vivo 

To test how tissue selection affects the gene expression patterns of chemicals, we 

compared gene expression data obtained from liver and kidney.  Unsurprisingly, 

compound administration resulted in relatively few gene expression changes at any time 

point in the kidney compared with the liver. Increases in the expression levels of 

numerous genes related to immune response were more pronounced in rat kidney than 

liver in vivo for allopurinol, gentamicin, cephalothin, enalapril or triamterene. Elsewhere, 

the class of antineoplastic and immunomodulating agents occupies a large part in the 

cluster tree of gene expression (Figure 3.11) which universally elevated expression of 

renal damage genes, e.g., Snca, Cdkn1a and Havcr1 (Table S3.12). These differences 

suggest that gene expression profiling involving multiple tissues might be helpful in 

identifying the target tissues of chemicals with unknown mechanisms of therapy and 

toxicity. 

 
Figure 3.11 Dendrogram showing the clustering of 20 compounds based on gene regulation in vivo rat 

kidney. The enriched biological features are labeled on the tree. 

3.4.6 Agreement between gene expression profiles and chemical features 

3.4.6.1 Correlation of gene expression patterns and molecular descriptors 

We studied the impact of a set of basic chemical descriptors of its structure and function 

across 98 compounds on the in vivo gene expression. The key assumption is that the 

chemical properties as encoded in the descriptors representing the lipophilicity of 

compounds impacts on the specific patterns of gene expression. In more specific terms, 
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the drug metabolizing genes Aldh1a1, Aldh1a7, Cyp2b1, Abcc3, Akr7a3 and Ces2l were 

the top six genes most often up-regulated by the 80 lipophilic agents in vivo, whereas the 

top six cell proliferation genes (Cdk1, Cdkn3, Rrm2, Onecut1, Stac3 and Cish) were 

mostly up-regulated in expression by 15 hydrophilic compounds and are all involved in 

the anti-inflammatory pathway (Table S3.13). This agrees broadly with the notion that 

lipophilic and hydrophilic drugs differ in their clinical capabilities. For example, lipophilic 

xenobiotic compounds are typically converted/activated by drug metabolizing enzymes in 

phase I (Hodgson and Goldstein, 2001; Iyanagi, 2007) and then conjugated with 

endogenous hydrophilic molecules (sugars, glutathione) resulting in hydrophilic forms by 

Phase II enzymes (Iyanagi, 2007), while the hydrophilic xenobiotic containing functional 

groups can directly enter Phase II (Eapen et al., 2007). 

3.4.6.2 Correlation of gene expression similarity and molecular similarity 

We computed the pairwise correlation between Jaccard coefficient of the gene expression 

fold change in vivo or in vitro and their corresponding molecular similarity, separately. 

We then fit linear model with the similarity of the gene expression as the independent 

variable and the similarity of the chemical structures as the dependent variable. 

Interestingly, the molecular similarity (Tanimoto, which is also a Jaccard index) of the 

chemicals is not correlated well with similarity in gene expression (Figure 3.12), though 

most points correspond to low similarities of both gene expression and molecular structure. 

There are individual instances showing higher gene expression similarity with lower 

molecular similarity and higher molecular similarity with lower gene expression similarity 

(Table S14). Virtually all instances of highly similar gene expression with no molecular 

similarity correspond to PPARα ligands (with increased lipid metabolizing genes). It is 

well known that PPARα ligands can lack any apparent molecular similarity (Harmon et al., 

2011), and only the fibrates have clearly similar molecular features (Figure 3.13). 
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Figure 3.12 Correlation of similarity between gene expression and molecular structure. 

 

 

Figure 3.13 Some common fragments found in compounds with very similar gene expression patterns in rat 

liver. 

3.4.6.7 Correlation of gene expression and chemical fragments 

The fragment matrix (98 compounds x 1332 fragment identifiers (> 8 non-hydrogen 

atoms)) shows a projection of fragments into a reduced chemical space. We used PCA to 

reduce these 1332 fragments to 135 loadings on the first two principal components. The 

plot of the first two components (Figure 3.14) shows a separation of cardiovascular, 

musculoskeletal, and CNS drugs and a cluster of antineoplastic and immunomodulating 

agents.  
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The most prevalent fragments in each class are listed in Figure 3.15. Acetanilide 

substructure containing compounds (first cluster), including diazepam, diltiazem, 

acetaminophen, acetamidoflurorene and phenylbutazone, commonly induced drug 

transporters (Abcb1a, Abcc3) and drug metabolizing genes (Akr7a3, Aldh1a1, Cyp2b1, 

Sult2al1 and Ugt2b1). Another two acetanilide containing compounds, bucetin and 

phenacetin, induced (in addition to these drug-metabolising genes) L-serine biosynthesis 

genes such as Phgdh (phosphoglycerate dehydrogenase) and Psat1 (phosphoserine 

aminotransferase), which were reported to be related to cell proliferation (Sun et al., 2015). 

Compounds containing the 2-(2-methylphenoxy) moiety (ethanamine, mexiletine and 

moxisylyte), all up-regulated genes in the estrogen and PI3K-Akt signaling pathways. 

Chlormezanone, ketoconazole, chlorpheniramine, haloperidol and furosemide contain a 

scaffold of 4-chlorotoluene (second cluster) and commonly dysregulated cell proliferation 

related genes, including Cish and Gadd45b. Furan-2-carbaldehyde-hydrazone containing 

compounds (dantrolene, nitrofurazone and nitrofurantoin) (third cluster) all increased drug 

transport and metabolism genes Abcc3 and Akr7a3 and decreased the cell proliferation 

gene Rrm2. 

 
Figure 3.14 Fragment space of chemicals defined by the first two factors from an analysis of 1332 

substructures. Colors highlight different clusters of drugs (red - first cluster – cardiovascular drugs; yellow - 

second cluster – musculoskeletal drugs; green – third cluster – CNS drugs; blue – fourth cluster - 

antineoplastic and immunomodulating drugs)  
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                       acetanilide                      4-chlorotoluene             furan-2-carbaldehyde 

Figure 3.15 Most prevalent fragments found in three clusters of chemicals. 

3.4.7 Predicting pathology signatures based on chemical fragments and gene 

expression data 

3.4.7.1 Correlation analysis between gene expression and pathology signatures 

We used TG-GATES histopathology data of liver and kidney to build matrices containing 

131 compounds and 31 pathological terms for in vivo rat liver, 24 for in vivo kidney, and 

31 for rat hepatocytes (mapped from in vivo data). Each compound profile has elements of 

1 or 0 denoting whether or not it is associated with each pathological term. To encode the 

gene expression profiles of 131 compounds, genes dysregulated by at least four 

compounds at any time points and any dose levels were considered (FC > 2, or FC < -2, 

and p < 0.01). Each compound was thus represented by 853, 396 and 966 binary values for 

liver, kidney and hepatocytes.  

Gene expression and histopathological records were randomly split into a training set 

(80%) and a test set (20%). SCCA was trained by 5-fold cross-validation using R 

(Pauwels et al, 2011). The performance was evaluated by ROC curves (Figure 3.16 all 

predictions merged into one curve). SCCA was computed using parameters of c1 = c2 = 

0.04 (penalty) and m = 20 (number of components). The resulting AUC scores are 0.7883, 

0.731, and 0.7545. The curves suggest that there is capable predictive power of using these 

data.  
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Figure 3.16 ROC curves for the 5-fold cross-validation comparing the performance of SCCA on in vivo rat 

liver, kidney and in vitro rat hepatocytes 

We examined the weight vectors for chemical fragments and pathological outcomes in 

SCCA to extract the relationship between two datasets. Table S3.15 shows the weight 

vectors of canonical components in SCCA and most of the elements in the weight vectors 

are zero, implying that SCCA can select a small number of gene-sets or pathologies as 

informative. A few sets of genes and pathological records in the canonical component with 

correlation coefficient larger than 0.6 were extracted using SCCA. Each component 

consists of an association of a set of genes and one pathological term. For each component, 

two lists of compounds are provided, one containing compounds with a high score for the 

associated genes, and the other containing compounds with a high score for the associated 

pathological observations. Table S3.16, S3.17, S3.18 show the selected correlations 

between genes and pathological observations for liver, kidney and hepatocyte experiments, 

separately. 

Several of these components show plausible biological mechanisms. For instance, 

component 2 corresponds to “inflammation” and includes a set of up-regulated genes, 

such as Il7, Ccl21, Stat3, Dsc2 and Slc13a5 that are involved in inflammation pathways in 
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the liver dataset. The top ten compounds scored by this cluster belong to the same ATC 

inflammation category (Table S3.16). This finding agrees with our earlier conclusion that 

gene expression patterns tend to reflect the MoA of drugs rather than toxicity per se. 

3.4.7.2 Correlation analysis between chemical fragments and pathological signatures 

for in vivo liver 

31 histopathological terms for 52 compounds were extracted from TG-GATEs and 25 

chemical fragment contained by those compounds were defined by the CCQ 

fragmentation method (ChemAxon, https://www.chemaxon.com), which leaves functional 

groups of molecules intact so that they are better reflections of potential mechanism. Each 

compound was represented by a 31 dimensional binary profile and a 25 dimensional 

binary profile whose elements encode for the presence or absence of each of the 

pathological terms or chemical fragments. Data were randomly split into a training set 

(80%) and a test set (20%). SCCA was trained by 5-fold cross-validation. The resulting 

AUC score is 0.6108 using parameters of c1 = c2 = 0.04 (penalty) and m = 20 (number of 

components).  

A set of fragments and pathological records in the canonical components with a 

correlation coefficient larger than 0.7 were extracted (Table S3.15). For instance, 

component 1, with highest canonical correlation (0.771), associates the substructure 2-

aminopyridine to a list of pathological indications of hepatotoxicity such as alteration, 

anisonucleosis, hemorrhage and vacuolization. The 2-aminopyridine moiety, defined as 

structural alert of hepatotoxicity in some antibacterial drugs due to its ability to form 

reactive metabolite (Stepan et al., 2011). This cluster shows alterations in genes related to 

anisonucleosis, including Id1 (inhibitor of DNA binding 1), Tp53inp1 (tumor protein p53 

inducible nuclear protein 1) and Unc5b (unc-5 homolog B), which are all involved in 

apoptosis and cell death.  

3.5 Conclusion and discussion 

The first major finding in this chapter is that much of toxicogenomics results reflect the 

underlying mechanism of drug action, and indeed overall similarities in expression 

patterns seem to be more related to drug mechanism than underlying similarities in 

toxicology. This is somewhat surprising as the target tissues (liver, kidney) are not 
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traditionally considered to be targeted by many of the drugs considered (e.g. 

acetaminophen, etc.). For some compounds, we also find only a weak effect on gene 

expression, which could reflect dosing problems as was reported previously There are, of 

course, exceptions to this in our own analyses (Figure 3.1), and indeed in the general, well 

established utility of gene expression analyses to uncover new toxicity biomarkers. For 

instance, the gene kidney injury molecular 1 (Kim1 or HAVCR1 in humans) is highly 

evident in the TG-GATES (Table S3.12) and other expression datasets as an indicator of 

kidney toxicity (Ichimura et al., 1998; Kondo et al., 2009), and many other known and 

potentially novel biomarker candidates are present within these and other expression data. 

Nevertheless, our overall findings have some important implications for methods to 

predict toxicity, suggesting a need to account for (or remove) mechanistic contributions to 

expression profiles before deriving multi-gene predictors. 

The second major observation is that there is limited overlap between in vivo and in vitro 

studies when considered across this large set of compounds. The notion that cell lines are 

poor mimics of mammalian tissues is certainly not new, but our results provide a 

systematically derived degree of similarity for guidance. Additionally cell lines, such as 

3D cell cultures that are believed to be a better mimic of human organs that 2D cultures 

(Fey and Wrzesinski, 2012) will likely improve upon the general picture we have seen 

here. The overlap among different assay systems (rat in vivo, rat in vitro and human in 

vitro) is also endpoint dependent. For example, we found that PPARα ligands such as 

ibuprofen, fenofibrate, and clofibrate consistently influenced lipid metabolism in all three 

systems. When Liu et al. limited their analysis to specific hepatotoxic endpoints, the in 

vitro to in vivo extrapolation potential was improved (Liu et al., 2017). 

Overall, our results suggest that large scale evaluation of gene expression patterns is a 

useful tool for predicting mechanisms of chemotherapeutic agents and toxicity of 

unknown chemicals. It is apparent that each compound produces its own, unique 

expression profile and that similarities in profiles between compounds can indicate 

similarities in therapeutic and toxic mechanism. Almost certainly, a systematic analysis 

combined with biological and chemical features is essential to make accurate assessments 

of drug mechanism and toxicity based on similarity of gene expression profiles. Several 

studies have provided considerable sets of expression signatures to help decipher drug 

mechanism, toxicity or other biological features (e.g Gray, et al., 1998; Velculescu et al., 
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1999). The more challenging task is to relate chemical features with systemic responses. It 

is not always robust that chemicals with very similar structure have similar 

toxicogenomics profiles. However, some compounds containing the same specific 

substructures show similar outcomes. Therefore, combining chemical structure and 

toxicogenomics may improve the assessment (Low et al., 2011). Our results confirm the 

value of compound-centered view of phenotypes for identifying the effects of chemicals 

on phenotypic outcomes as suggested previously (Duran et al., 2014) and will accordingly 

help efforts to relate chemical structure to biological response. 
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CHAPTER IV: Common, functional mutations in human 

subpopulations potentially causing individual susceptibility to 

toxicities or other pathologies 

4.1 Abstract 

Genetic variants can determine both inter-individual and inter-ethnic differences in many 

physiological processes, including drug efficacy or toxicity, sensory perception, and dietary 

responses. Many differences are attributable to single nucleotide polymorphisms (SNPs) in 

key drug response, metabolism, and sensory receptor genes. In this chapter, we first study 

SNPs in all genes in 2 504 humans uncovered by the 1000 Genome Project to check what 

kinds of genes are frequently the subject of variations in healthy people. Variants are 

enriched in processing like the immune response, sensory perception and drug metabolism. 

We then explore how variants might affect these processes, particularly drug metabolism, 

where we find many common variants likely to alter how individuals react to xenobiotics. 

The results could be potentially used in personalized medicine to define different doses for 

discrete patient populations. 

4.2 Introduction 

Recent years have seen the birth of several additive/metabolite controversies. For example, 

the flavor enhancer monosodium glutamate (MSG) is thought to cause what was once called 

“Chinese restaurant syndrome” (Kwok, 1968). Tryptophan, which is high-content in turkeys 

and eggs, is believed to give rise to tiredness, which is an oft cited reason for fatigue after 

Thanksgiving dinner in the US (Hartmann and Spinweber, 1979). However, systematic 

studies have found nothing significant. One hypothesis is that there are small subsets of 

people that experience such chemical-induced syndromes, but that these fractions are not 

easily detected in trials involving small groups of randomly selected healthy individuals.  

With the increasing availability of “-omics” technologies on the back of the human genome 

project, more and more studies now focus on the study of genetic variation among 

individuals or human populations. The most common genetic variation studied in these 

contexts are single nucleotide polymorphisms (SNPs), defined as mutations changing single 

nucleotides in at least 1% of the human population. They have a key role in genetic changes 

associated with diseases and individual responses to certain chemicals, such as drugs and 
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toxins (Roses, 2000).  

Recent studies of polymorphisms have demonstrated the impact of genetic variation on a 

many common traits. For example, there is some evidence that variations in taste or odor-

perception are associated with polymorphisms in taste or olfactory receptors (Pronin et al., 

2007; Jiang and Matsunami, 2015). For instance, genetic studies have identified that 

variations (e.g., A5T, R247H, R757C) in TAS1R3 are related to the capability of tasting 

MSG (umami) (Chen et al., 2009). Another example is T2R43, where the W35 allele 

enables individuals to taste the bitterness of the plant toxins, aloin and saccharin (Pronin et 

al., 2007). The first clear link between odor perception and genotype was described in 

olfactory receptor OR7D4, where variants cause different responses and/or preferences for 

food (e.g. pork) containing androstenone (Lunde et al., 2012).  

Single nucleotide variations in genes encoding drug metabolizing enzymes (DMEs), drug 

targets, drug transporters and human-leukocyte antigen are considered to be responsible for 

inter-individual differences in drug response (e.g., efficacy, toxic effects) (McLeod and 

Evans, 2001). Many studies focus on the CYP450 gene family, where several variants are 

known to cause primary differences in drug-response (Puga et al., 1997). For example, for 

CYP2D6, there are four major phenotypes of metabolism: extensive metabolizers with two 

functional alleles, poor metabolizers with two non-functional alleles, intermediate 

metabolizers with one functional and one non-functional allele, ultra-sensitive metabolizers 

with one or more alleles improving enzyme activity above extensive metabolizers (Puga et 

al., 1997). Other variants within genes and their relevant substrates have also been studied to 

evaluate drug responses such as: L128R and Y139F in the warfarin resistance enzyme 

VKORC1 (Ma and Lu, 2011), and mutations in KRAS related to resistance to the anti-

EGFR monoclonal antibodies cetuximab and panitumumab (Fakih and Wong, 2010).  

Toxic effects can also result from genetic variants affecting drug 

pharmacokinetic/pharmacodynamic processes. For example, variations in the ryanodine 

receptor gene (e.g. protein change p.C614R) are found to account for susceptibility to 

malignant hyperthermia after anesthetic treatment in more than 50% of cases (Gillard et al., 

1991). The g.C3435T variant in the drug transporter gene ABCB1 produces an adverse 

reaction to anticancer agents and cardiac glycosides (Sheng et al., 2012). Analysis of 

variations in GSTT1 and GSTM1 shows that Alzheimer’s disease patients with deficiencies 

of both genes are more likely to experience hepatotoxicity when treated with tacrine (Roy et 
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al., 2001). Low-dose methotrexate toxicity is often found in patients with the g.C677T 

mutation in the drug target methylenetetrahydrofolate reductase (Spyridopoulou et al., 2012).  

These examples indicate the impact of a few common variants on a common trait. However, 

the entire genetic landscape of inter-individual differences of response to chemicals still 

remains to be systemically elucidated. High-throughput sequencing has contributed to the 

systematic unraveling of thousands of variants potentially disturbing biological systems or 

causing diseases (Kilpivaara and Aaltonen, 2013). However, understanding the genetic 

contribution also requires knowledge of the abundance and distribution of mutations in the 

general population. The 1000 Genomes (1000G) Project Phase 3 (May 2013) has explored 

the spectrum of common human genetic variation by sequencing 2504 individuals from 

various populations (The 1000 Genomes Project Consortium, 2015). An earlier study from 

GlaxoSmithKline provided a comprehensive description of rare variants (MAF ≤ 0.5%) in 

human population by applying sequencing to 202 drug target genes from 14002 individuals 

(Nelson et al., 2012). Meanwhile, several high-throughput computational approaches to 

determine the influence of mutations on protein-ligand interactions have been established 

(Pires et al., 2014; Reva et al., 2011). Recently, we presented Mechismo (Mechanistic 

Interpretation of Structural Modifications) to predict whether mutations are likely to 

enhance or diminish the interactions of protein-protein, protein-nucleic acid and a set of 

protein-ion by calculating the frequency of a given residue in protein-related ligand class, 

which can provide the mechanistic basis of how mutations lead to specific functional 

sequences (Betts et al., 2015). A newer study proposes mCSM-lig, a structure-guided 

strategy for quantifying the influences of mutations on binding of small molecules with 

proteins, which completed the assessment of the effects of mutations on protein-small 

molecule complexes (Pires et al., 2015; Pires et at., 2016). 

In this chapter, we extracted information on genetic variants in the healthy individuals from 

1000 Genomes Project. We sought variations that would be expected to differentiate 

humans by their ability to process chemical molecules by linking the common variants (i.e. 

present in more than 1% population) to small molecules via chemical-protein interactions in 

the Mechismo system. This allowed us to predict/identify how small molecules bind to 

proteins and whether any common SNPs at the binding sites might impact these interactions. 

Some of the changes were predicted by mCSM-lig. We also linked several variants to 

potential individual susceptibility to toxicity for some withdrawn drugs by examining 
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chemical-protein complexes in Mechismo. This study will have applications in the 

understanding of drug response across subpopulations and thus implications for 

personalized or precision medicine. 

4.3 Methods 

4.3.1 Processing Data from 1000G 

1000 Genomes Project Phase 3 (May 2013 sequence freeze) data were mapped to Ensembl 

(Aken et al., 2016) proteins using Variant Effect Predictor (VEP) (McLaren et al., 2016) and 

version 79 of the human genome version GRCh37. This includes 2 504 samples from 26 

human sub-populations in five major population groups: Africa (AFR), the Americas 

(AMR), East Asia (EAS), Europe (EUR), and South Asia (SAS). Each of these populations 

has an associated minor-allele frequency (MAF) and there is a global value (GMAF) that 

spans the entire human population. The dataset also provides, for each individual, 

information about the zygosity of the variant (ie. whether it is absent/wild-type, 

heterozygous or homozygous). VEP provides predictions of the possible severity of a 

mutation according to SIFT version 5.2.2 (Sim et al., 2012) and PolyPhen version 2.2.2 

(Adzhubei et al., 2010). 

4.3.2 Deriving protein altering variants information 

The source of protein altering variants in human proteins imported from the Ensembl 

Variation database (Chen et al., 2010) was downloaded from UniProt (UniProt Consortium, 

2015). It included in total 1 271 699 unique variants. The description of GMAF for a variant 

was mapped from 1000G project. We defined a dataset of common missense (amino acid 

altering) SNPs as those with GMAF ≥ 1%. The frequency distribution of missense variants 

in a protein was defined as the total number of missense substitutions found within it 

divided by the protein length. 

4.3.3 Gene enrichment analysis 

For gene enrichment analysis we used GetGo (http://getgo.russelllab.org),  which performs 

fast enrichment analysis of human gene sets considering pre-computed gene lists of 

different classes (Gene Ontology (Ashburner et al, 2000), Pathways, UniProt diseases, 

Complexes, etc). Enrichment p-values are assigned to each list using a Fisher's exact test 
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and multiple testing corrections. 

4.3.4 Relating chemical molecules to genes 

We ran all the missense variants through Mechismo (mechismo.russellab.org), and 

chemicals at the variation sites were showed or predicted by Mechismo. Mechismo contains 

roughly one million connections between human proteins and connected with chemical 

identifiers in the protein databank (PDB) (Gutmanas et al., 2014) and the confidence of each 

match based on the sequence identity between the UniProt sequence and the protein of 

known structure. It also provided approximately 50000 protein-protein, protein-nucleic acid, 

protein-small-molecule interactions with known 3D structures and several million 

interactions identified by other methods. Since we previously benchmarked the prediction 

accuracy as a function of protein sequence similarity, we could use relatively low sequence 

similarities (Betts et al., 2015).  

4.3.5 Predicting the effects of missense variations 

We used mCSM-Lig to predict the impact of the missense substitutions upon the binding 

affinity of protein for the substrates. This method uses graph-based signature to represent 

the wild-type and chemical environment of a residue to predict the change upon variation in 

Gibb’s free energy of binding or stability (Pires et at., 2016). 

4.4 Results 

4.4.1 Gene function enrichment 

Table 4.1 shows the most enriched Gene Ontology terms and pathways for the set of 1 512 

genes that have (Number of common_SNPs/length) > 0.01. There are four main groups of 

genes, which can also be visualized as a network (Figure 4.1). 
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Table 4.1 The most enriched Gene Ontology terms and pathways 

Term/Pathway 
ID 

Term/Pathway Obs Exp P-value Genes 

Gene Ontology 

GO:0007608 sensory perception of 
smell 

28 10.6 0.01016 GJB4 GNAS OBP2A OBP2B OMP 
OR2D2 OR2S2 OR51B5 OR51B6 
OR51I1 OR51J1 OR51M1 OR5B3 
OR5D14 OR5H1 OR5H14 OR5H15 
OR5H6 OR5I1 OR5K3 OR5R1 
OR5W2 OR6B2 OR8D4 OR8H2 
OR8H3 OR8U1 UGT2A1  

GO:0001580 detection of chemical 
stimulus involved in 
sensory perception of 
bitter taste 

13 2.7 0.01693 CA6 CST1 CST2 CST4 RTP4 
TAS2R19 TAS2R31 TAS2R38 TAS2R4 
TAS2R42 TAS2R43 TAS2R5 TAS2R7  

GO:0045095 keratin filament 27 7.2 9.607x10
-06

 KRT74 KRTAP1-1 KRTAP10-1 
KRTAP10-10 KRTAP10-11 KRTAP10-
3 KRTAP10-5 KRTAP10-6 KRTAP10-
7 KRTAP10-9 KRTAP12-1 KRTAP12-
2 KRTAP12-3 KRTAP2-1 KRTAP2-2 
KRTAP2-3 KRTAP3-2 KRTAP4-1 
KRTAP4-11 KRTAP4-4 KRTAP4-5 
KRTAP4-7 KRTAP4-8 KRTAP4-9 
KRTAP5-5 KRTAP5-9 KRTAP9-6  

GO:0006955 immune response 42 20.0 0.00148 BPI C1QC C8A CCL11 CCL14 
CCL17 CCL25 CCL4L1 CD1E CD276 
CHIA CTSG FCAR FCGR1B 
FCGR3B GBP6 GZMA GZMB HLA-A 
HLA-B HLA-C HLA-DPA1 HLA-
DQA1 HLA-DQA2 HLA-DRB1 IFI44L 
IFITM2 IGHA1 IL1RL1 IL24 IL36A 
IL37 IL4R IL7R KIR2DL1 KIR2DL3 
KIR3DL1 LILRB2 LY75 MS4A2 PRG3 
SBSPON SECTM1 TINAG TLR1 
TLR10 TLR6 TNFRSF14 TRGV3 
TRIM22 XCL1 XCL2  

GO:0030574 collagen catabolic 
process 

20 5.5 0.00434 COL11A1 COL11A2 COL17A1 
COL18A1 COL19A1 COL23A1 
COL2A1 COL3A1 COL4A1 COL4A2 
COL4A3 COL4A4 COL4A5 COL4A6 
COL5A3 COL8A2 COL9A1 COL9A2 
COL9A3 MMP8  

REACTOME Pathway 
R-HSA- antimicrobial peptides 29 6.7 5.470x10

-07 ART1 BPI BPIFA2 BPIFB1 BPIFB4 
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6803157:2  BPIFB6 CHGA CTSG DEFA4 DEFA6 
DEFB108B DEFB116 DEFB119 
DEFB124 DEFB126 DEFB127 
DEFB128 DEFB129 GNLY HTN3 
PGLYRP2 PGLYRP3 PGLYRP4 PI3 
REG3G RNASE7 S100A7A SEMG1 
TLR1  

R-HSA-
211859:1 

biological oxidations 32 14 0.00961 ACSM2A ACSM5 AKR7A2 AKR7A3 
AKR7L CBR3 CES1 CYP1B1 CYP2A7 
CYP2F1 CYP2W1 CYP3A43 CYP4A22 
CYP4B1 CYP4F12 FMO2 GLYATL3 
GSTA2 GSTM1 GSTM4 GSTM5 
GSTZ1 MTRR NAT2 NQO2 SULT1A2 
TBXAS1 UGT1A5 UGT2A1 UGT2B10 
UGT2B11 UGT2B28 

R-HSA-
420499:3 

Class C/3 
(Metabotropic 
glutamate/pheromone 
receptors) 

12 2.6 0.01608 TAS1R1 TAS1R2 TAS2R19 TAS2R20 
TAS2R31 TAS2R38 TAS2R4 TAS2R42 
TAS2R43 TAS2R5 TAS2R7 TAS2R9 

 

As might be expected, many genes are enriched in mutations in healthy people. Olfactory 

and taste receptors, drug metabolism, immune response, skin, hair and nails constituent 

(collagen and keratinization) are the functions enriched in the gene set that has more SNPs. 

The most visible phenotypic variations in human - skin, hair and nails are remarkably 

variable. Pigmentation is a polygenic cause of this observation (Wilde et al., 2014). The 

high diversity might be a result of selection pressures associated with the adaption to an 

agriculturalist diet, and influence of UV radiation (UVR) (Wilde et al., 2014). 

Odorant receptors and taste receptors belong to a specific sub-class of GPCRs, with seven 

trans-membrane helices, and reside in the membranes of olfactory neurons, interestingly 

where one neuron expresses just one specific receptor (Mori and Sakano, 2011). It has been 

reported that olfactory receptor genes are diverse and rapidly evolving (Buck and Axel, 

1991). For example, Mainland et al. (Mainland et al., 2014) found that 63% of the odorant 

receptors had genetic polymorphisms that likely altered in vitro receptor functions. On 

average, 30% of odorant receptor alleles were functionally different in two individuals. 

Residues likely altering functions were found all over the protein (i.e. not restricted to any 

domain). They also computed the odds that a residue changed function in their arrays did 

not associate with evolutionary conservation, but deviated from neutral evolution (Mainland 
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et al., 2014). Hoover et al. identified putative evolutionary adaptive trends of smell 

perception by analyzing the geographic distribution of variants in OR7D4 among 2224 

individuals from 43 populations. They concluded that the enormous functional variability 

among human sense of smell might be ascribed to the specific population selective pressure 

to local environments or diet (Hoover et al., 2015). Although the low Ka/Ks ratio showed 

that there were more synonymous than nonsynonymous substitutions, the high frequency of 

variants and high fixation scores for the deleterious alleles suggested positive selection 

(Hoover et al., 2015). Another explanation could be attributed relaxed functional constraints 

(for example in the specific example of OR7D4), which would result in the accumulation of 

mutations on odorant receptor genes, ultimately, leading to either loss of function or the 

emergence of new functions over time (Mainland et al., 2014). 

Taste receptors are also GPCRs, which are responsible for five main tastes (i.e., sour, sweet, 

bitter, salty, and umami). There are numerous differences in taste sensation across human 

populations, owing to rapid evolution and high polymorphism in taste receptors (Foster et 

al., 2014). Out of the five tastes, interestingly, 24 human T2R (taste 2 receptor) genes 

detecting the bitter taste have been found in our study, significantly more than the genes 

perceiving other tastes. This could be explained by the importance of the bitter perception 

which enables human to better avoid potentially harmful or toxic substances (Montmayeur 

and Matsunami, 2002; Shi et al., 2003). Furthermore, variations in human T2R genes are 

more prevalent in humans than in other mammals, suggesting that the relaxed selective 

constraint for the T2R genes has been working in human populations. Supporting this, it has 

been shown that the efficiency of perceiving bitter taste has been weakened in the human 

lineage (Niimura and Nei, 2006). In addition, the high-frequency genetic polymorphisms in 

odorant and taste receptors in the human genome are ascribed to their cooperation in flavor 

perception, suggesting they have evolved together in vertebrates (Hasin-Brumshtein et al., 

2009). 

Immune system genes such as HLAs (human leukocyte antigens), KIRs (Killer-cell Ig-like 

receptors), and TLRs (Toll-like receptors) are ranked among the most variable in the 

genome (Trowsdale and Parham, 2004). Most of the variations are associated with binding 

of peptides from pathogens to the grooves of MHC (major histocompatibility complex) I 

and II molecules (Trowsdale and Parham, 2004). Polymorphism is exploited by those genes 

in order to conflict with a large number of different pathogens. The wide variation is most 
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likely a result of a selection for highly increasing the defense potential and therefore reduces 

the risk that the whole population will be eliminated by a pathogen (Davis, 2014). 

Drug metabolizing enzymes (DMEs) metabolize a wide range of drugs and naturally 

generating toxins in the environment. The evolution of DMEs occurred after the animals 

moved to the land and encountered the plants there (Nebert, 1997). The new environmental 

chemicals might be responsible for shaping this high diversity of DMEs (Nebert, 1997). For 

example, the DME genes produced polymorphic enzymes that can enable or diminish the 

responses to plant diet (Ingelman-Sundberg et al., 1999). SNPs of enzyme metabolizing 

novel environmental chemicals caused changes in function of the enzyme to give an 

individual a positive or negative evolutionary selection (Janha et al., 2014). For example if 

the cytochrome P450 enzyme eliminated the toxic chemical, a gain-of-function allele might 

be positively selected. By contrast if the enzyme transformed a non-toxic precursor into a 

toxin, an allele with poor enzyme activity might be selected (Janha et al., 2014). 

4.4.2 Variants at the chemical binding sites 

Interestingly, many of these variants are at sites predicted or known to interact with 

chemicals. Such variants are likely to induce direct functional effects on these proteins. For 

example, the Y402H mutation in CFH/CFHR proteins was identified to increase the risk of 

age-related macular degeneration by altering the binding affinity to heparin sulphate (HS), a 

polysaccharide present on the cell surface (Langford-Smith et al., 2014). Several SNPs 

occurring within a distance of 5Å from their chemical ligands that might result from 

perturbations were identified by Mechismo system (Table 4.2).  
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Figure 4.1 Gene function enrichment map for genes with more variations. Node size represents the 

number of genes with many variations within the enriched gene-set. Edge size represents the number of genes 

that overlap between two gene-sets connected. Highly redundant gene-sets are grouped together as clusters, 

and groups of functional related gene-sets are manually circled. 
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Table 4.2 Variants at the chemical binding sites 

Uniprot 
entry/variant 

Protein Site Chemical 

Q31610/L133F HLA-B L133F fucose 
Q31610/E176V HLA-B E176V fucose 
Q29974/Q99E HLA-DRB1 Q99E fucose 
Q29974/V114A HLA-DRB1 V114A fucose 
O60449/E331D LY75 E331D fucose 
P04439/A174V HLA-A A174V 2-amino-4-ethyl sulfanyl butyric acid 

P01906/R87T HLA-DQA2 R87T acetamidomethylcysteine 
P15812/L182Q CD1E L182Q N-Glycoloylganglioside GM2 
P24071/D209N FCAR D209N Alpha-GalCer (C20:2) 
P04439/H175R HLA-A H175R N-hexacosanoylisoglobotriaosyl ceramide 
P30480/L133F HLA-B L133F C12:0-di-sulfatide 
P04439/G103R HLA-A G103R glucose monomycolate 
P23141/Y366C 
P23141/M361V 
P23141/A93V 

CES1 Y366C 
M361V 
A93V 

tamoxifen 

P09210/R13Q 
P09210/D42G 
P09210/V55L 
P09210/P110S 
P09210/S112T 

GSTA2 R13Q 
D42G 
V55L 
P110S 
S112T 

etacrynic acid 

 

Several variants at the binding sites of ligands and human MHC I and MHC II were 

predicted by Mechismo (Table 4.2). A study suggested that small carbohydrates (e.g. fucose) 

attach to the linkers (lipids, e.g. acetamidomethylcysteine, 2-amino-4-ethyl sulfanyl butyric 

acid) to fulfill the requirements of α/β and γ/δ TCR (T-cell receptor) antigen binding, as part 

of glycopeptide and carbohydrate-specific T cell responses (Speir et al., 1999).  

The four long chain glycolipids, N-Glycoloylganglioside GM2, Alpha-GalCer (C20:2), N-

hexacosanoylisoglobotriaosyl ceramide and C12:0-di-sulfatide are α-Galactosylceramide (α-

GalCer)-like antigens of type I natural killer T (NKT) cells which initiate immune responses 

during disease by modulating cell signal transduction events (Fujii et al., 2003). Most NKT 

cells are activated by CD1d-glycolipid complex through their CDR2β and CDR3α loops 

which recognize glycolipid antigens (López-Sagaseta et al., 2012). The other human MHC 
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class I-like protein CD1b shows the capability of accommodating broader range of 

differences in lengths (up to 80 carbons) of acyl chains of glycolipids. For example, the 

structure of CD1b complex reported in Batuwangala’s study presented longer acyl chain 

lipids (e.g., glucose monomycolate) occupying the whole part of interlinked channels 

(Batuwangala et al., 2004).  

SNPs at the drug binding sites are often essential determinants of inter individual 

differences in drug response (Langford-Smith et al., 2014), and we identified several of 

these. For example, the xenobiotic processing and metabolizing enzyme carboxylesterase 1 

(CES1) was found to bind to the breast cancer drug tamoxifen (Mésange et al., 2002). In 

Fleming’s drug-CES1 complex structure, tamoxifen bound with eight active site residues 

within the catalytic pocket via hydrophobic contacts (Fleming et al., 2005). The triphenyl 

moiety of tamoxifen fits well in the pocket, with two of the rings connecting with Leu388 

and Phe101 (Fleming et al., 2005). According to mCSM-lig, the mutations A93V, M361V, 

Y366C at the active site cavity are predicted to lead to a destabilizing in affinity for 

tamoxifen and the human CES1 ((PDB ID: 1YA4)) -0.117 log(fold change), -0.518 

log(affinity fold change) and -0.736 log(affinity fold change), respectively. 

Ethacrynic acid (EA) is a potent loop diuretic drug used to lower high blood pressure by 

inhibiting glutathione S-transferases (GSTs) (Somberg and Molnar, 2009). It is a 

phenoxyacetic acid derivative with a ketone moiety and a methylene group in the side chain. 

GSTs catalyze the reaction of the methylene group with glutathione (GSH) to form the 

active form - glutathione conjugate (Ploemen et al., 1993). The complex structures of alpha-

class GSTA1-1 with EA and EA-GSH have been reported (Cameron et al., 1995). The EA 

moiety binds with GST via the dichlorophenoxy group in van der Waals contact with Gly14 

and Phe10, Leu107, Leu108, Val111, Met208 and Phe222. The carboxylate oxygens contact 

with three hydrogen interactions, one with Gly14 and two with water molecules. One has 

hydrogen bonds to the amino nitrogen of Arg13 and the carbonyl oxygen of Pro207. In the 

structure of EA-GSH complex, one of the carboxylate oxygens has two hydrogen bonds, 

one with the carbonyl oxygen of Val55 and the other one with the amino nitrogen of Val55 

through a water molecule (Cameron et al., 1995). Site-directed mutants of R13Q, V55L, 

P110S and S112T are within bonding distance may have effects on the catalytic properties 

of the enzyme. In mCSM-lig, V55L and P110S are predicted to destabilized by -0.715 

log(affinity fold change) and -0.047 log(affinity fold change), separately. 
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4.4.3 Influences of variations on toxicity responses 

Genetic variations in drug metabolizing genes could also lead to toxicity and thereby to drug 

withdrawal or discontinuation in specific populations. We extracted interactions of eight 

withdrawn drugs with their targets and metabolizing enzymes (or homologous proteins) 

from Mechismo to predict mechanistic consequences (e.g., toxicity) for variations (Figure 

4.2). 

Bromoergocryptine was one of the ergot alkaloids acting as the dopamine receptor agonist 

for treating prolactin secretion, type II diabetes, and Parkinson disease. In vivo experiments 

have found that bromoergocryptine is primarily oxidized by CYP3A4 near the heme iron 

with its tripeptide moiety. Two particular residues, Arg212 and Thr224, have been observed 

to sustain their binding conformation where Arg212 directs bromoergocryptine to approach 

to the heme and Thr224 binds to N1 atom of bromoergocryptine by an H-bond 

(Sevrioukova and Poulos, 2012). By searching Mechismo, an amino acid substitution, 

R246H in CYP4F22 with 26.53% sequence similarity to CYP3A4 was found at the interface 

that might influence the drug response. It was reported that bromoergocryptine was 

withdrawn from the market in the USA due to its neurological toxicity (Liu et al., 2013). 

Troglitazone was one of the bile salt export pump potent inhibitors, but troglitazone-induced 

hepatocellular injury led to its withdrawal from the market. It contained the structural alert 

4-ethylphenol which could be activated to form adducts with GSH and induced GSH 

depletion in hepatocytes (Lang et al., 2007). The co-crystallized structure of troglitazone-

CYP2C8 showed that the chromane ring approached to the heme iron, and the 

thiazolidinedione group was closer to the C’ end of chain B. Arg241 on helix G and Asn204 

on helix F donated two hydrogen bonds to the two carbonyl oxygens of the 

thiazolidinedione ring, and Val296 and Glu300 on helix I donated two hydrogen bonds to 

the phenolic oxygen. The ether oxygen of 4-ethyphonel at the middle part of troglitazone 

was hydrogen-bonded to Ser103 on helix B (Schoch et al., 2008). Mechismo identified a 

substitution T298M (in 0.7% of South Asians) at the interface of troglitazone and CYP2W1 

(with 24.26% sequence similarity to CYP2C8) which might impact catalytic activity. 
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Figure 4.2 Interactions of eight withdrawn drugs with their structural alerts and targets/metabolizing enzymes 

present how SNPs on the interface impact the binding activity, leading to drug toxicity 

Another substrate of CYP2C8, isotretinoin, was prescribed as severe acne treatment, 

binding to its enzyme by hydrogen bonds between acetic acid moiety and Asn204 and 

Arg241 (Schoch et al., 2008). The movement of Arg241 from outside of the cavity to inside 
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offered a strong and charge-stabilized hydrogen bond with the acetic acid of isotretinoin. 

The changes of I202M, with a frequency of 0.1% in European people and none in other 

populations, was seen in Mechismo might impact the binding event. Isotretinoin was 

withdrawn from the Italian market due to its effect on male reproduction (Alli and 

Yorulmaz, 2015).  

Tolrestat is one of the aldose reductase inhibitors which was approved for the control of 

diabetes but was withdrawn from the market due to its toxicity. Tolrestat bound crystal 

structure of AKR1B10 showed that the catalytic sites contained Tyr49, His111, NADP+, 

and Trp112, of which Tyr49 and Trp112 donated hydrogen bonds to acetic acid group of 

tolrestat. It was observed from Mechismo that near the active site, there was a substitution 

Q114Ter which could affect the conformational changes of AKR1B10 with ligand binding. 

This might result in the formation of induced cavity in AKR1B10, leading to a broad ligand 

specificity (Shah et al., 2012). 

Acetylsalicylic acid (aspirin) is a nonsteroidal anti-inflammatory drug, but was withdrawn 

from British marketplace due to hepatic and neurological toxicities (Aronson, 2004). 

Acetylsalicylic acid can be oxidized to acetylsalicylic acid free radical by peroxidase 

enzyme (e.g., eosinophil peroxidase (EPX)) (Singh et al., 2010). Acetylsalicylic acid bound 

to EPX by forming one hydrogen bond with a heme iron, which in turn generated two 

additional hydrogen bonds with Gln105 and His109. Two atoms of the acetic acid moiety 

formed other hydrogen bonds with Phe422 and Gln423. It is proposed that acetylsalicylic 

acid is balanced favorably at the active site of the peroxidase (Singh et al., 2010). Compared 

with other EPX inhibitors, the interactions of Phe422 and Gln423 with the acetic acid are 

unique, and suggest possible insights into the mechanism of acetylsalicylic acid toxicity 

(Singh et al., 2010). The substitution F237I (PDB: 2qqt) found in Mechismo could interrupt 

the interaction of acetylsalicylic acid and EPX. 

Indometacin is also a nonsteroidal anti-inflammatory agent used to reduce pain, fever and 

swelling from inflammation and was withdrawn in Germany due to gastrointestinal toxicity. 

The complex of indometacin bound human serum albumin (HSA) showed that the acetic 

acid group binded to Arg218 by a salt bridge, and chlorobenzoyl group lied at the bottom of 

the cavity, thereby the substitution of H222N (approximately 0.1% of the European 

populations) found in the binding sites of alpha-fetoprotein (AFP, 41.13% similarity to 

HSA) might generate protein causing drug binding defects (Ghuman et al., 2005).  
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Oxyphenbutazone and phenylbutazone are potent nonsteroidal anti-inflammatory drugs but 

are associated with liver damage (Kirkland and Fowler, 2010). The potential liver toxicity 

mechanism was illustrated in two studies (Stepan et al., 2011; Kim et al., 2016).  

Specifically, most drugs containing structural alert aniline can undergo metabolic activation 

leading to the generation of reactive oxygen species.  These activate the antioxidant 

response element and PPAR gamma signaling pathways, and disrupt human tyrosyl-DNA 

phosphodiesterase 1 and thyroid receptor signaling pathways (Kim et al., 2016). 

Oxyphenbutazone and phenylbutazone both interacted with HSA via a single hydrogen 

bond with Tyr150. The additional hydroxyl group near the mouth of the pocket possessed 

by oxyphenbutazone leads to a rotation of itself by 180 degrees compared with 

phenylbutazone. The phenolic hydroxyl of oxyphenbutazone interacts with Arg257 and the 

modification F50Y on the interface, highlighted by Mechismo, might have an effect drug 

binding. The phenyl moiety of phenylbutazone also made a hydrogen bond with Arg257 and 

the modification L258V next to it might modify the affinity of drug binding (Ghuman et al., 

2005). The frequencies are about 3.7% in South Asians, and 2.0% and 2.1% in Americans 

and Europeans, and only 0.1% in East Asians. Oxyphenbutazone has been withdrawn in 

three south Asian countries, seven European countries, and the USA. 

4.5 Conclusion and discussion 

Much of the enthusiasm advances in “-omics” have focused on their application to 

understanding human health and diseases. In this chapter, we investigated the distribution of 

single nucleotide polymorphisms in worldwide human population samples measured by 

1000 Genomes Project. Remarkably, some suspicious categories of genes related to 

environmental adaptation, such as those involved in sensory perception functions (e.g., 

odorant and taste receptors) and immunological functions and drug responses (e.g., action 

and toxicity) were found to be significantly enriched for nonsynonymous SNPs, hinting that 

those seem to be targets of human selection processes. Based on the observation that 

nonsynonymous SNPs in the ligand binding domain could change the ligand binding 

affinity to the receptor, we systematically investigated the effects of SNP variations in the 

ligand binding sites on biological processes. Identifying the relationships of genetic 

variations and chemical molecules might provide insights into the mechanisms of how SNPs 

affect sensory perception, diet metabolism, drug response and common diseases, such as 

hypertension, diabetes, and cancer. This study shows the potential of predicting inter-
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individual variability in drug toxicity response by integrating data from multiple datasets. A 

similar prediction was done in an open community challenge, where multiple groups 

developed algorithms for predicting the effects of toxic chemicals on different individuals 

based on genetic profiles and the structural attributes of chemicals (Eduati et al., 2015). 

Though initially promising, improving the accuracy of the predictions would require very 

large sample sizes, because the individual SNPs represented only a small part of overall 

variations in toxic response (Chatterje et al., 2013).  

Nevertheless, pharmacogenetics could provide easier and direct diagnostic applications by 

identifying the association between genotype and drug response, for example, to screen the 

drug with highest efficacy among several candidates or to avoid severe adverse drug 

reactions (Roses, 2002). It is noteworthy that pharmacogenetics prescribing is limited for a 

few drugs due to the problems in identifying replicated associations of phenotype and drug 

reaction, ethical and regulatory considerations (Lauschke 2016). Conquering these problems 

is of crucial importance to further personalize medicine, which could help to deduce 

morbidity and mortality for patients and provide a more rational distribution of health-care 

resources. 

Bringing about the health-care benefits of pharmacogenetics requires a close corporation 

between researchers and clinicians. However, so far only phenotyping for thiopurine 

methyltransferase (TPMT) has been substantially put into the clinical practical to 

prospectively identify TPMT-deficient and heterozygous TPMT patients (Relling et al., 

2011). Approximately 3-14% people of the population have heterozygous TPMT genotype 

and possess low enzyme activity. These patients are likely to experience severe 

myelosuppression with thiopurine drugs treatment, such as azathioprine, and thioguanine 

(Relling et al., 2011). Ideally, researchers and clinicians should be involved together in 

pharmacogenetics research involving patients to boost health-care. 

Overall, our study tested the ability of computational methods to provide understandable 

mechanistic insights about individual differences in sensory perception, diet, and drug 

response by using genetic variation data. Although the suggested methods would require 

further actions to verify, we hope that the analytics presented in this chapter would spark 

interest to other scientists and regulators to explore the data for the benefit of the entire 

community.
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CHAPTER V: General discussion and conclusions 

This dissertation presented a combined systems biology and chemical approach to assess the 

potential toxicities of drugs based on their chemical structures and biological features. The 

proposed framework integrated chemical space and pharmacological space to extract the 

associations of chemical fragments and toxicities, and predicted the potential toxic effects of 

unknown drugs based on the structural alerts (Chapter II). In efforts to offer biological 

interpretability of the outputs of the proposed approach and minimize the false positive of 

the predictions, mechanisms of toxicity have been investigated with gene expression data 

and pathways/networks that were perturbed by toxins (Chapter III). Additionally, the 

relationships of genetic variants and phenotype were extensively analyzed to provide 

insights into how genetic polymorphisms can be related to differences in drug response 

among individuals (Chapter IV). 

5.1 Summary of major findings 

5.1.1 Data-driven identification of structural alerts for predicting drug toxicity 

We developed a workflow that derived chemical substructures/fragments and toxicity 

information from current available public big data sources, and performed statistical 

analyses and machine learning methods to explore the fragment-toxicity relationships, and 

to identify substructures/fragments (structural alerts) that associated with toxic effects. 

Toxicity prediction models, using both traditional SVM and SCCA computational 

approaches, based on those structural alerts showed good overall accuracy in addition to a 

capability to extract associations between chemical fragments and toxicities. Predictions 

conducted for withdrawn drugs confirmed the practicability of the structural alerts dataset 

and computational methods we proposed. Overall, this workflow reduces a large potential 

chemical space to smaller dataset of structural alerts that can be manually curated by human 

experts to provide potentially more accurate and effective toxic predictions for unknown 

compounds. 

5.1.2 Gene expression analysis provided mechanisms of drug toxicity 

Toxicogenomics are valid assays to clarify the molecular pathways involved in drug activity. 

In chapter III, we found that toxicogenomics assays tended to more reflect the mechanism of 

drug action rather than its underlying toxicity. It seemed unanticipated since the target 
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tissues (e.g., liver and kidney) were not traditionally considered as targets of many drugs 

(e.g., acetaminophen). Nevertheless, many known and potentially novel biomarkers are 

evident in the toxicogenomics data, which further validates the power of toxicogenomics. 

Overall, the findings help interpret these toxicity prediction methods, suggesting a necessity 

to include (or exclude) mechanistic contributions to gene expression profiles before 

extracting (for example) multi-gene predictors. Furthermore, we found in vitro gene 

expression arrays were almost always in poor agreement with in vivo equivalents when 

considering data on large set of compounds, which argues for caution in the use of these 

approaches as a replacement for in vivo methods.  

5.1.3 Genetic polymorphisms analysis provided mechanisms of individual differences 

of drug toxicity 

We expanded the use of transcriptomic profiles to genetic profiles to help understand 

mechanisms underlying genetic variation in toxic response on the population level. These 

variants are often found in drug ADME genes, likely often changing the enzymatic activity 

of the gene products, which in turn could result in altered drug toxicity or efficacy. In 

addition, the higher frequency of variants was found in MHC genes, indicated that genetic 

variants could also modulate the risk of immune-mediated toxicity. Moreover, we found 

some chemical compounds containing the same scaffold were in conjunction with specific 

genotype associated with certain susceptibility, e.g., diabetes, suggesting that the combined 

chemical structural and genetic effect may contribute to the underlying risk factors. 

5.2 Contributions and practical implications 

5.2.1 Structural alert concept as applied in drug discovery 

The proposed approach of fragment-based toxicity prediction is thought to be practical at 

different stages of the drug discovery process (and related subjects). At the early stage, the 

structural alert concept would be advisable to screen the drug candidates that could might 

otherwise proceed further to the later stages at great cost. The approach could be also used 

in drug repurposing process to find new indications (i.e., new diseases) for existing drugs by 

detecting their potentially beneficial side effects. A well-known example is thalidomide, 

launched for treating morning sickness and later was withdrawn due to its teratogenicity, but 

then later redeveloped as a treatment for multiple myeloma (Ashburn and Thor, 2004). The 
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structural alerts could also be exploited in fragment-based drug discovery approaches where 

can filter toxicity-related fragments from the chemical space of drug-like molecules 

fragments (Siegel and Vieth, 2007).  

5.2.2 Integrative gene expression-chemical features for toxicity assessment 

Large scale analysis of gene expression profiles is a valuable tool for explaining 

mechanisms for chemotherapeutic drugs and predicting toxicity of unknown compounds. 

Apparently, different compounds generate particular expression profile and similarities of 

expression profiles among compounds can demonstrate similarities of their therapeutic and 

toxic mechanisms. We have found that a systematic approach, combined with information 

on biological and chemical features, is probably required to improve the accuracy of 

predictions of drug toxicity based on expression profiles. The challenge is to connect 

chemical features with biological responses. Our study in Chapter III confirmed the value of 

a chemical-centric perspective of phenotypes to identify the effects of chemicals on 

phenotypic outcomes as mentioned before (Duran et al., 2014) and will help to relate 

chemical features to systemic responses. 

5.2.3 Pharmacogenomic characterization of drug response enables personalized 

medicine 

The integrative genetic and systems biology analysis provides great potential for 

understanding the associations of genetic variants and drug responses (e.g., toxicity) as well 

as for personalization of treatments. The assessment of the changes in protein-ligand affinity 

upon variation may improve our understanding of binding mode and help us to choose more 

efficacious therapeutics. Genetic studies of single nucleotide polymorphisms in various gene 

classes across compounds and across individuals provide a potential strategy for real-world 

applications (e.g., population-specific sensory perception and diet). Chemical structural 

feature/genotype/phenotype can be considered as complementary patient-specific 

parameters to classical factors (e.g., age) to assess their susceptibility to the specific 

treatment response so as to provide clinical decision support to improve patient care. 
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5.3 Limitations and future solutions 

5.3.1 Chemical data limitations and future solutions 

The proposed method of systematically screening structural alerts highly depends on the 

pre-defined chemical fragments and toxicity terms. Future work could test the performance 

with other types of fingerprints and toxicity information. For example, the ECFP4 

fingerprint provided by ChemAxon (http://www.chemaxon.com) as well as chemical 

structure descriptors supplied by commercial software Dragon (https://chm.kode-

solutions.net/products_dragon.php) and toxicity keywords in PharmaPendium 

(https://www.pharmapendium.com/). Another way of getting chemical substructures is by 

directly fragmenting graph structures of chemical compounds into fragments based on the 

recap-rules (Lewell et al., 1998) and the principles of graph theory and depth-first 

algorithms.  

5.3.2 Biological data limitations and future solutions 

The toxicogenomic signatures used in this study were from in vitro, in vivo rodent and in 

vivo human models. The potential limitation is how to bridge species differences and the in 

vivo-in vitro gap in terms of drug efficacy. For that, significant validation is required to 

examine drug ADME processes. Another limitation is that patient-related factors 

contributing to the efficacy of drugs are not currently well understood. To consider these 

individual contributing factors, future work must incorporate larger sample sizes, which 

argues for large, multi-disciplinary national and international collaborations. In parallel, 

GWAS and large-scale genome sequencing data will help to characterize the associations of 

phenotypic outcomes and gene mutations. 

5.3.3 Methodological limitations and future solutions 

Structural alert-based prediction models currently have comparatively poor results when 

predicting toxicities. The best results rely on data normalization, which requires practical 

tests of the methods. The ideal models should integrate all potential mechanisms although 

currently, their performances suffer when predicting multiple toxic endpoints with complex 

mechanisms. Methods are also limited in detecting changes in protein-small molecules 

stability upon a genetic variation. Hence, a universal predictive tool including structure 

signatures related to changes in affinity (e.g determined by modelling the binding sites) 
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needs to be developed or improved. 

5.4 Epilogue 

Integrating chemical features with biological features, including gene expression, genetic 

data, and proteomics/metabonomics, is one of the next great challenges faced by 

biomedicine. Our studies assessing chemical toxic outcomes at systems and population 

levels in this thesis will help pave the way for new work on toxicology and disease. 

Methods like those presented in this thesis will be essential in developing new medicines 

and improving diagnostics in the new era of personalized medicine. 
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