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1 INTRODUCTION 

1.1 Multimodality imaging 

In the last decade, the field of multimodality imaging that combines the varying 

capabilities of multiple sensor types has become of crucial significance to clinical 

in vivo research and practice [1]. Commonly used anatomical imaging technologies 

such as computed tomography (CT) and magnetic resonance imaging (MRI) provide 

structural detail in the order of 0.5-1 mm [2]; whereas functional modalities such as 

positron emission tomography (PET) and single-photon emission computed 

tomography (SPECT) provide insight into the biochemical and physiological functions 

(i.e. metabolism and perfusion) of an organ or tissue. Consequentially, spatial 

co-localization of complementary information (i.e. structure and function) provided by 

two or more modalities ensures a better elucidation of physiological mechanisms at 

molecular and cellular levels. The benefits of integrating different sensory capabilities 

such as contrast, sensitivity, spatial and temporal resolution in relationship to diseases 

while overcoming individual limitations led to the development of many 

instrumentations, such as PET-MRI, SPECT-CT or optical PET. The original concept 

of scanning an object from many angles was presented for the first time by Allan 

Cormack in 1963 [3], and a first prototype of diagnostic CT-SPECT imaging was 

developed in 1966 [4]. However, the need to combine functional and anatomical 

imaging was overlooked until Hasegawa et al. placed a clinical CT in tandem with a 

SPECT camera in the early 1990s [5, 6]. At the same time, a similar concept of 

combining PET and CT was suggested in 1991 [7], although a prototype was not 

completed until 1998. Following several years of obvious concerns with operational 

issues, cost, complexity and reliability, the first PET-CT designs appeared in medical 

centers by early 2001, followed by SPECT-CT designs in 2004 [8]. Since then, their 

use has grown exponentially.  

 

In a similar fashion, multimodal ex vivo tissue analyses that utilize technologies of high 

chemical specificity such as mass spectrometry (MS) for a more detailed 

characterization of the molecular makeup have recently been presented [9-13]. Mass 

spectrometry imaging (MSI) in particular has proven its clinical value, as it can record 

the spatial distribution of hundreds of biomolecules without the need of prior labeling. 
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The acquisition of proteins, metabolites, lipids, peptides and pharmaceuticals directly 

from tissues has been used to examine, among other things, disease-related 

alterations in multiple neurological disorders (i.e. Alzheimer) and cancer types. 

Although the usage of hyperspectral yet slow sensors impedes synchronous 

acquisition as performed during clinical diagnosis, it provides structural and chemical 

information of unparalleled detail in the order of 10-50 μm lateral resolution. 

Concomitantly, asynchronous multimodal tissue diagnoses of unprecedented data 

volumes and acquisition times have been fueling the need for complex post-processing 

transformations to ensure proper image alignment [14-17]. MS, while providing 

chemical-rich information is insufficient to reveal the microscopic structures that are 

observed in established histopathological examinations at a manageable data level. 

Conversely, microscopy-based tissue histology provides precise structural information 

but lacks chemical specificity. Hence, opposing to the conventional approach of fusing 

complementary information into a single hyperspectral plane, an alternate usage of 

multimodality capabilities has emerged. Thereby, spatial dependencies derived from 

one technology are utilized to guide data acquisition and interpretation of one or more 

follow-up modalities [18-20]. Although this extension has seen rapid progress, with its 

positive impact on data load and acquisition time having been demonstrated in 

numerous studies [21], the clinical transfer is still in development.  

 

1.2 FTIR and Raman microscopy 

Vibrational micro-spectroscopic imaging techniques have gained acceptance in many 

fields such as cell biology and nanoscience [22]. The two most common techniques to 

date are imaging Fourier transform infrared spectroscopy (FTIR) and Raman 

spectroscopy. In both of these techniques, the inherent vibrational fingerprint spectra 

of biomolecules are observed.  

1.2.1 History of vibrational spectroscopy in the field of biomedicine 

Although infrared light was discovered as early as 1800 by Sir Frederick William 

Herschel [23], its analytical worth was considered to be irrelevant for many decades. 

In 1928, Sir Chandrasekhara Venkata Raman firstly observed the inelastic scattering 

of a photon by molecules which are excited to higher energy [24]. The effect was 

named after him and Raman spectroscopy was later used to provide the first catalog 
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of molecular vibrational frequencies. However, when IR spectroscopy was revived in 

the 1940s and commercial IR-spectrophotometers became available, Raman 

spectroscopy lost relevance as it needed much higher sample concentration and 

volume in order to maximize sensitivity. The first spectroscopic efforts to analyze 

disease related effects in tissues were described by Blout and Mellors in 1949 [25], 

and Woernley in 1952 [26], who utilized single beam IR spectroscopy for the analysis 

of tissue homogenates. Due to instrumental deficiencies and a lack of methods for the 

interpretation of vibrational spectra at that time, the field was not pursued until the 

1960s. In that time, the advent of laser technology resulted in simplified and more 

sensitive Raman instruments and thousands of studies regarding structure-spectra 

correlation of biomolecules were reported for both infrared and Raman 

spectroscopy [27, 28]. In the 1980s, the acceptance of Fourier transform methodology 

into the field of IR spectroscopy fueled the investigation of bacterial and fungal 

pathogens [29]. Since then, vibrational spectroscopy research aimed at detecting 

diseases in human cells and tissues on the basis of cell pellet experiments until the 

development of micro-spectroscopic methods utilizing a microscope in the 1990s. 

Nowadays, both techniques have gained recognition, among other things, as 

diagnostic tools revealing histopathological features in various disease types [30-34].  

 

1.2.2 Basic principles of vibrational spectroscopy 

Imaging FTIR and Raman microscopy are analytical methods that determine the 

radiation response of matter in a spatially resolved fashion. Whereas FTIR 

spectroscopy measures the absorption of energy at different wavelengths, Raman 

spectroscopy measures the exchange of energy with electromagnetic radiation of a 

particular wavelength, usually mitigated from a near-infrared (NIR) range laser. From 

the exchange in electromagnetic energy a measureable shift in the wavelength of 

incident laser light occurs. This inelastic light scattering effect, known as Raman 

scattering, is complementary to the absorption of infrared radiation.  

 

In imaging FTIR, a screening process is applied in order to construct a spectral map 

that consists of spectra collected from multiple pixels. At each (x,y)-coordinate, multiple 

beams that each consist of complex light frequencies are pointed onto the observed 

specimen and the wavelength-specific absorbance/transmission is recorded. The 
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beams originate from a broadband light source (containing the full measured 

wavelength range) whose light is transmitted into a Michelson interferometer [35]. The 

interferometer consists of a configuration of two mirrors of which one is constantly 

moving and one is fixed, and a beam splitter (Fig 1). The incoming light beam is split 

and in equal parts forwarded to the fixed and moving mirror. Depending on the distance 

between beam splitter and the moving mirror, each wavelength of the reflected and 

recombined light beam is periodically blocked and transmitted due to wave 

interference. The rate at which wavelengths are modulated differs, so that at each 

moment a different excitation spectrum is applied onto the sample. The resulting 

absorption values at many discrete positions of the moving mirror form an 

interferogram that is converted by the eponymous Fourier transform algorithm to 

receive the actual spectrum.  

 

 

Figure 1 Optical arrangement and light path of a Michelson 

interferometer Light of a broadband light source is split and partially 

blocked by a constantly moving mirror to periodically transmit a 

recombined beam consisting of different wavelengths onto a sample. 

In FTIR, the resulting interferogram is converted by Fourier transform.  

 

The recorded absorption pattern allows for conclusions to be made on the specimen’s 

chemical composition as molecules absorb frequencies characteristic of their structure. 

Molecular bonds with an electric dipole moment that can change by atomic 

displacement owing to natural vibrations are IR-active [36]. An IR-active molecule’s 

absorption behavior can differ which results in different vibrational modes (Fig 2). For 

molecules with N atoms, linear molecules feature 3*N-5 different vibrational modes 
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and nonlinear molecules have 3*N-6. The resonant frequencies of each bond are 

related to the masses of the atoms as well as the strength of the bond. Lighter atoms 

and stronger bonds result in higher frequencies, when compared to heavier atoms and 

weaker bonds. Simple diatomic molecules have only one bond and vibrational band 

whereas larger molecules are correspondingly more complex. 

 

 

Figure 2 Vibrational modes of a methylene (-CH2) group. In order for a 

vibrational mode to be “IR-active”, it must be associated with changes in 

the dipole moment. Six vibrations caused by the CH2 moiety, commonly 

found in organic compounds, are displayed (Figure adapted from [37]). 

 

Similar to imaging FTIR, Raman micro-spectroscopy can be applied in a screening 

process. A monochromatic laser is utilized in order to apply light of a specific 

wavelength onto the examined specimen. In biomedical applications, a AlGaAs diode 

with a wavelength of 785 nm is typically utilized, as the use of a lower energy 

wavelengths reduces the risk of damaging the sample [34]. The laser light leads to an 

excitation of (bio)molecular bonds resulting in a red-shift (Raman shift) of some of the 

applied initial radiation that forms a unique fingerprint of peaks. In order to assess the 

Raman shift, the electromagnetic radiation from the illuminated spot is passed through 

a spectrometer, which disperses the light into a spectrum that can be recorded by a 

cooled charge-coupled device (CCD)-camera.  

 

When examining biological materials, imaging vibrational spectroscopy provides the 

ability to visualize the distribution of molecular bonds that are characteristic to 

biochemical classes. Qualitative acquisition of a specimen’s composition occurs in a 
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rapid, label-free and non-destructive manner which makes vibrational spectroscopy a 

powerful technique for in situ analyses. FTIR examination of biological materials 

typically focusses on measuring stretching vibrations such as C-H, S-H, N-H and O-H 

(2550-3500 cm-1), of which for example C-H2 is associated with the fatty acid chains of 

lipids. Other regions of interests are the amide I&II region (1500-1700 cm-1) which 

comprises of protein-associated bond vibrations and the fingerprint region 

(600-1450 cm-1) which comprises of nucleic acid-characteristic P-O and 

carbohydrate-associated stretching vibrations [38]. Together, these regions comprise 

a biochemical signature of interrogated cellular specimen (Fig. 3). 

 

 

Figure 3 Biological infrared fingerprint spectrum showing biomolecular peak assignment.  

Transmission-spectrum of a cryosectioned ductal breast carcinoma in situ. Typical peaks are highlighted, 

where ν = stretching vibrations, δ = bending vibrations, s = symmetric vibrations and as = asymmetric 

vibrations. (Figure adapted from [39]). 

 

Similarly, the Raman spectrum also comprise of vibrational bonds that are associated 

to biochemical classes, as Raman scattering and IR absorption are complementary 

effects [40]. Typical regions of interest are associated to proteins (1500-1700 cm-1), 

carbohydrates (470-1200 cm-1) and phosphate groups of DNA (980, 1080 

and 1240 cm-1). At higher wavenumbers (2700-3500 cm-1), higher-frequency C-H, N-H 

and O-H stretching bonds that are associated with lipids and proteins can be 

recorded [41]. 
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1.2.3 Diagnostic applications of vibrational spectroscopy 

One excellent application field of vibrational spectroscopy imaging is the discrimination 

of specific cell types on the basis of their protein, lipid and carbohydrate profile. Since 

only light is used to record the necessary data, both technologies are entirely non-

perturbing and can be performed complementary to the current practice in 

histopathology. In comparison, each technology has its distinct advantages. Whereas, 

mid-infrared spectroscopy is very sensitive to water interferences that strongly absorb 

radiation, Raman spectroscopy is mostly unaffected, as water is concurrently a weak 

scatterer [42]. For clinical applications, this enables the direct collection in vivo of 

Raman spectra. Moreover, Raman spectroscopy can achieve sub-cellular lateral 

resolution (~300 nm) that is superior compared to FTIR imaging (~10 μm). However, 

the collection of Raman spectra is comparatively more time consuming (1-10 s per 

spectrum), as the Raman effect is relatively weak and only one in ~108 photons 

typically undergoes inelastic light scattering events [34]. For this reason, it is often 

necessary to average a large number of acquired spectra to keep the acquisition time 

manageable. In addition, Raman spectroscopy is very sensitive to fluorescence 

mitigated from biological samples depending on the chosen excitation wavelength.  

 

In the past decade FTIR imaging has been reported as a promising tool for the 

diagnosis of several diseases [43-45], especially for the classification of cancer in 

various tissues (i.e. breast [46-48], colon [49-51], lung [52-54] and prostate [55, 56]). 

Furthermore, the possibility to monitor susceptibility to therapy was recently 

demonstrated in a study from Zawlik et al. who reported discriminatory FTIR features 

for triple-negative breast cancer patients undergoing chemotherapy [57]. In a similar 

fashion, Raman spectroscopy has been used to in vivo investigate cancerous and 

normal cells of skin [58], brain [59] and other tissues (reviewed in [60, 61]).  

 

In addition to its identification and classification capabilities, the non-perturbing nature 

of vibrational imaging spectroscopy makes it particularly interesting for multimodality 

imaging purposes. In that regard, Jermyn et al. recently reported in situ cancer 

detection in brain, lung and colon samples by combining Raman spectroscopy, diffuse 

reflectance spectroscopy and intrinsic fluorescence spectroscopy [62]. Moreover, 

multimodality imaging of frozen head and neck cancer sections by combined Raman, 

fluorescence and second-harmonic generation microscopy imaging was presented by 
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Heuke et al. [63]. In order to assess molecular cancer heterogeneity of a larynx 

carcinoma sample, Bocklitz et al. demonstrated the positive impact of combining 

vibrational Raman spectroscopy and MALDI-MSI [12].  

 

In the case of FTIR, only few multimodal studies have been performed to date. Le 

Naour et al. reported the combination of synchrotron FTIR and synchrotron X-ray 

fluorescence micro-spectroscopy for in situ analysis of a single tissue slide [64]. 

Furthermore, Passot et al. investigated cryotolerance of lactic acid bacteria by 

combined synchrotron FTIR and synchrotron fluorescence microscopy [65]. Following 

the recent trend of predictive multimodality imaging, Großerueschkamp et al. 

presented FTIR-guided laser capture microdissection (LCMD) for subsequent 

proteomic analysis using liquid chromatography – tandem mass spectrometry 

(LC-MS/MS) [20]. This study reflects the high potential and positive impact of guided 

multimodality imaging.  

 

1.3 Mass spectrometry  

In mass spectrometry (MS), the mass of pure chemical species as well as complex 

mixtures is determined by ionization and separate recording of the created ions based 

on their mass-to-charge ratio (m/z). To date, a multitude of techniques for the 

generation of detectable ions as well as for the disaggregation and the measurement 

of m/z-values exist. The most prominent technique for the ionization of biomolecules 

is matrix-assisted laser desorption/ionization (MALDI) that uses laser energy absorbing 

reagents in order to create stable ions from large molecules. The created ion’s 

m/z-values are commonly determined by time-of-flight mass spectrometry (TOF-MS) 

or Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) that 

provides substantially improved mass resolving power for ultrahigh-resolution MS.  

 

1.3.1 History of mass spectrometry 

The technique was first presented in the early 1910s by Joseph John Thomson and 

Francis William Aston [66, 67] who discovered the existence of isotopes by means of 

elemental MS. In 1919, Aston also constructed the first velocity focusing mass 

spectrometer with a resolving power of 130 [68]. Due to the high energy ionization, 
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initial MS experiments were restricted to elemental and small molecule analyses until 

the development of soft ionization techniques. First attempts to enhance the detectable 

mass range were reported by William Stephens in 1946 who demonstrated pulsed 

ionization which formed the basis for the development of TOF-MS in 1948 [69, 70]. 

Decades later, in 1974, FTICR-MS with superior mass resolution was demonstrated 

by Melvin Comisarow [71]. However, a major breakthrough for the analysis of larger 

molecules was the development of chemical ionization in the 1960s [72]. Thereby, 

ionization was achieved by means of ion-transfer reactions of a sample’s molecules 

and reagent ions. This less energetic procedure was proven to reduce fragmentation 

and resulted in more stable ions when compared to electron ionization methods. To 

date, the most frequently used soft ionization technique used for the analysis of 

biomolecules (i.e. proteins, peptides, lipids, sugars) is MALDI, which was first reported 

by Franz Hillenkamp and Michael Karas in 1985 [73, 74]. By using tryptophan for 

ionization and a pulsed 266nm laser they demonstrated the ionization of peptide 

molecules up to 2843 Da. Desorption ionization of larger molecules (up to 34472 Da) 

by combining 30 nm cobalt particles in glycerol and a 337nm nitrogen laser was 

reported by Koichi Tanaka in 1987 [75]. The low cost of 337nm nitrogen lasers led to 

the first commercially available MALDI-MS instruments in the early 1990s. Nowadays, 

355nm neodymium-doped yttrium aluminium garnet (Nd:YAG) laser are commonly 

used.  

 

1.3.2 Basic principles of mass spectrometry used in biomedical science 

A mass spectrometry experiment can be divided into two major steps for which multiple 

techniques exist. Firstly, the elements or molecules of interest are ionized. Secondly, 

the generated ions are separated based on their m/z-value and the intensity pattern is 

measured. In biomedical science, MALDI is the most commonly used ionization 

techniques to date. During MALDI-MS, a layer of matrix solution that typically consists 

of a small organic acid is either applied onto a tissue or mixed with extracted cells. The 

matrix incorporates the sample’s analytes into matrix crystals formed upon solvent 

evaporation. Molecular ions are then generated upon radiation by a pulsed and 

focused laser aimed at the sample surface (Fig. 4).  
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Figure 4 Schematic illustration of MALDI-MS soft ionization.  Samples are 

mounted on conductive slides and matrix is applied across the specimen to 

incorporate analytes into crystals. Upon radiation by a pulsed laser beam, molecular 

ions are generated by means of ion-transfer reactions between analyte and matrix. 

Mass spectra are generated by separating the ions based on their m/z-value. 

 

The precise and standardized application of matrix is of crucial importance to ensure 

optimal extraction and to avoid diffusion and delocalization effects [76]. Moreover, the 

choice of matrix is of importance, as several different matrixes allow for an array of 

biomolecular classes to be analyzed [77]. For example, super-2,5-dihydrobenzoic acid 

(sDHB), a mixture that consists of 2,5-Dihydrobenzoic Acid (DHB) and 

2-Hydroxy-5-Methodybenzoic Acid is highly effective for the analysis of proteins, 

whereas 4-Phenyl-α-Cyanocinnamic acid amide (PhCCA) is better suited to analyze 

(negatively) charged peptides [78]. In order to avoid potential artifacts that may arise 

due to matrix application, it is important to apply the substance homogeneously [79]. 

For the reproducible production of analyte-ion signals, automated application systems 

that spray-coat or sublime matrix are often utilized in modern MALDI-MSI. Apart from 

MALDI, alternative ionization techniques like desorption electrospray ionization (DESI) 

and rapid evaporative ionization mass spectrometry (REIMS) have recently shown 

their potential to classify clinical tissues [80, 81]. DESI enables ambient ion generation 

by employing a fast-moving charged solvent stream onto the sample surface. After 

ionization, the ions travel through air into an atmospheric pressure interface that is 

connected to a mass spectrometer. In contrast, REIMS is a unique technique that can 

be utilized intra-operatively. A specialized tissue-cutting tool (i.e. a surgical laser) leads 
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to the formation of an aerosol that contains tissue-specific ionized cell constructs. This 

flue gas is then analyzed by means of mass spectrometry. However, MALDI-MSI is to 

date the most popular method for clinical applications [82].  

 

Just like with the generation of ions, a multitude of techniques to disaggregate and 

determine the ion’s m/z ratio are available. Commonly used techniques are TOF-MS 

and FTICR-MS for ultrahigh-resolution MS. In TOF-MS, ions are accelerated by an 

electric field of known strength and directed through an evacuated flight tube. Velocity 

and consequently drift time t of every ion depends on its m/z ratio (t2 ~ m/z), as heavier 

ions are slower than lighter ions and a higher charge results in increased velocity. Mass 

resolution and accuracy in TOF-MS can be improved by an ion mirror (reflectron) at 

the opposing end of the flight tube that reverts the ions travel direction (Fig. 5A). 

Thereby, the spread in kinetic energy of ions with the same m/z at the exit from the ion 

source gets corrected [83]. The separated masses of ions in the reflectron can range 

from a few Daltons to a few million Daltons.  

 

In FTICR, the m/z of an ion is determined based on its cyclotron frequency in a fixed 

magnetic field. Generated ions are retained in a magnetic field with electric trapping 

plates (Penning trap) where they are excited by an oscillating electric field orthogonal 

to the magnetic field. After excitation, the ions rotate at their cyclotron frequency and 

induce a charge when passing a pair of electrodes (Fig. 5B). The resulting 

interferogram can be converted to give a mass spectrum by means of Fourier transform 

calculation.  
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Figure 5 Schematic outline of a time-of-flight (TOF) and Fourier transform ion cyclotron 

resonance (FTICR) mass analyzer.  (A) During a MALDI-TOF-MS measurement, the 

molecules of the examined sample are ionized, vaporized and directed through an evacuated 

flight tube. Ions are accelerated by an electric field depending on their m/z-value. Low mass 

molecules reach the detector in a shorter time than heavier ones and are thus separated. A 

reflectron may correct the spread in kinetic energy of ions with the same m/z to improve mass 

resolution and accuracy for smaller molecules. (B) During a FTICR-MS measurement, the 

generated ions enter a Penning trap in which they are excited at their resonant cyclotron 

frequencies orthogonal to the magnetic field. Each ion cycles at characteristic radius and 

frequency and induces an electric signal as it passes the detection plates. The resulting signal 

is converted to a time-domain frequency spectrum that converts into a mass spectrum by 

Fourier transform. 

 

1.3.3 Mass spectrometry imaging 

Mass spectrometry imaging (MSI) is an ex vivo imaging technology that extends 

conventional MS with a screening process. It enables the assessment of molecular 

information in a spatially resolved area and was first described by Helmut Liebl in 

1967 [84]. The first imaging experiments that utilized MALDI were performed by 

Richard Caprioli in the late 1990s [85]. In a spatially resolved screening process, ions 

are created at any given (x/y)-coordinate of a matrix-coated specimen placed on a 

conductive object carrier (i.e. organ or biopsy sections) by applying laser radiation. 

Thereby, the precise and standardized preparation of tissue sections as well as a 
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homogeneous application of matrix substance are of crucial importance. Subsequently 

to ion production, a spectrum containing the abundance of molecules within a given 

m/z-range is recorded. The entirety of recorded spectra is used to construct a 

hyperspectral map in which the prevalence of each acquired m/z-value can be 

translated into a false-color distribution image (Fig. 6).  

 

 

Figure 6 Principle of MALDI-MSI  In a screening process, mass spectra are recorded after laser 

irradiation in a grid-like manner for multiple (x,y)-coordinates. At each spot, m/z-values of abundant 

ions are recorded and stored within a given range. The prevalence of each m/z can be presented 

as a false-color distribution map and registered to the tissue’s histology. (Figure source [86]). 

 

1.3.4 Diagnostic and pharmacological applications of MSI 

The ability of MSI to localize chemical compounds like pharmaceuticals as well as 

uncover disease-related biomolecular changes has led to a rapid and substantial 

impact on clinical and pharmacological research (reviewed in [87]). In comparison to 

conventional in vivo imaging techniques and stains, MSI provides unparalleled 

label-free chemical insight into the distribution pattern of hundreds of biomolecules. 

Several key studies have demonstrated its ability to uncover disease-related 

biomolecular shifts, even if highly localized or invisible to established histopathology. 

For this reason, one of the most prevalent applications for MSI is the identification and 

localization of disease-associated biomarker profiles that have been demonstrated to 
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complement classical histopathology (reviewed in [88]). In addition, MSI also plays a 

vital role in drug discovery as it provides imaging of pharmaceuticals and their 

metabolites in two-dimensional sections [89] and 3D tissue models that combine 

multiple subsequently acquired images [90]. In recent publications, MALDI-MSI-

derived mass profiles were used to distinguish between transformed cells in formalin-

fixed paraffin-embedded (FFPE) and fresh frozen cancer tissues [91, 92]. Moreover, 

marker proteins identified by means of MALDI-MSI were used to predict survival rates 

in gastric cancer [93] as well as therapy response in breast cancer [94] and esophageal 

carcinoma [95]. These studies reflect the high potential of MALDI-MSI in identifying 

and visualizing transformed cells in tissues as well as the molecular changes linked to 

their aberration [96]. However, cell heterogeneity impedes the identification of true 

molecular biomarkers, as it becomes uncertain which mass signature belongs to which 

subpopulation. For this, the prior selection of “pure” cell groups of similar molecular 

makeup is necessary, which emphasizes the need for prior histological specification. 

In this regard, the ability to apply tissue staining after MSI acquisition [97] without the 

loss of histopathological features has fueled the integration of MSI and classical 

histology [21, 98]. However, particular limitations still impede the applicability of 

MALDI-MSI in clinical practice, as the acquisition time needed per section makes 

especially ultrahigh-resolution MSI impractical for the analysis of larger tissue cohorts. 

The high amount of created data and the lack of standardized workflow represents 

additional challenges. In order to contradict these limitations, first attempts to utilize 

guiding modalities like FTIR or polarimetry that provide fast in-depth characterization 

of a tissue’s structural composition were recently reported [18, 20]. 

 

1.4 Neuronal disorders and cancer  

MSI experiments provide spectral information that further elucidates the molecular 

shifts that differentiate between tissue types in different disease states. It has therefore 

been the analytical technique of choice to distinguish between alternated cell 

populations and retrieve potential biomarkers in many cancer studies [99, 100]. Cancer 

remains the major cause of death in economically developed countries. In 2015, a 

study [101] reported that in 2012 about 14.1 million new cases occurred worldwide and 

8.2 million deaths were caused by the disease. Two cancer types of particular interest, 

namely gastrointestinal stromal tumors (GIST) and glioblastoma, will be described in 
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greater detail. Apart from cancer, MALDI-MSI’s capabilities to spatially resolve the 

distribution of proteins, metabolites, lipids, peptides and pharmaceuticals have made 

the technique especially useful to examine structural organs. In this sense, MSI has 

extensively been used to investigate biomolecular shifts in neurological disorders. The 

potential to differentiate between biomolecule species makes it especially useful for 

the examination of brain lipid accumulations caused by lysosomal storage diseases, 

i.e. Niemann-Pick type C.  

 

1.4.1 Gastrointestinal stromal tumors 

Among the various phenotypes of cancer, sarcoma that arise from transformed cells 

of mesenchymal origin are quite rare and account for less than 1% of all adult solid 

malignant tumors [102]. About 90% of diagnosed sarcomas are soft tissue sarcomas, 

among which gastrointestinal stromal tumors are the most common. Unlike most 

gastrointestinal tumors, GIST arises from connective tissue instead of epithelial tissue. 

The aberrant cells typically originate from the stomach (70%), but can later on 

disseminate to the liver, omentum and peritoneal cavity. GIST is thought to arise from 

dispersed interstitial Cajal-like cells that have the potential for bidirectional 

differentiation towards neural lines and myoid cells. In most cases, the cellular 

aberration is driven by a mutation of the KIT or PDGFRα gene (80-90%), but wild-types 

that feature multiple or deviating mutations have also been reported [103]. For this 

reason, the genetic characterization of GIST is important as it denotes the 

effectiveness of targeted drug therapies. In cases for which resection is anatomically 

and physiologically feasible, complete surgical excision of the localized tumor region 

is the treatment of choice [104]. For the treatment of metastatic and unresectable GIST, 

Imatinib (Gleevec®) and other tyrosine kinase inhibitors (Sunitinib, Regorafenib) are 

approved by the United States Food and Drug Administration (U.S. FDA) [105]. 

Imatinib inhibits, among other targets, c-KIT and PDGFR tyrosine kinase activity by 

binding close to its ATP binding site, thus locking it in a closed or self-inhibited 

conformation and ultimately inducing cell death. Although Imatinib also binds to non-

cancer cells, these cells typically possess additional redundant tyrosine kinases that 

secure their function. Imatinib is also considered for adjuvant treatment in order to 

minimize the risk of tumor resurgence. However, the drug’s efficacy highly depends on 

the respective genotype, as multiple forms of c-KIT- and PDGFRα- mutation-negative 
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GIST as well as the PDGFRα D842V mutant subtype are considered to be 

Imatinib-resistant.  

 

1.4.2 Glioblastoma multiforme 

Glioblastoma multiforme is the most common and aggressive primary brain cancer 

found in humans. It is usually rapidly fatal, with a short median overall survival rate of 

15 months only [106], although in 3-5% of cases, long-term survival that exceeds three 

years has been reported [107]. The cellular origin of glioblastoma is unknown, but most 

likely includes glial type cells, astrocytes, oligodendrocytes progenitor cells and neural 

stem cells [108]. In contrast to other astrocytoma grades, glioblastoma multiforme is 

characterized by the presence of necrotic lesions that are surrounded by anaplastic 

cells and hyperplastic blood vessels. For diagnosis, a combination of CT, MRI and 

tissue biopsy taking is typically utilized. The standard treatment, if feasible, is gross 

resection, followed by radiotherapy and administration of Temozolamide, a 

chemotherapy drug [109]. Temozolamide is an alkylating agent that is toxic to cancer 

cells due to inhibition of tumor cell DNA replication. Alkylation typically occurs at the N-

7 or O-6 position of DNA guanine residues.  

 

1.4.3 Niemann-Pick disease, type C 

The group of Niemann-Pick diseases includes multiple severe metabolic disorders that 

result in sphingomyelin accumulation. Unlike type A and B, for which the cause of 

disease is complete or partial enzymatic deficiency of acid sphingomyelinase, type C 

disease is associated with mutations in the NPC1 and/or NPC2 gene that encode 

endosomal-lysosomal transporter proteins. The mutations lead to impaired intracellular 

lipid trafficking and accumulation of unesterified cholesterol and glycosphingolipids in 

the brain and other tissues [110]. The age at onset may vary from the perinatal period 

(< 3 months) to adult age. The disease has manifold symptoms, including liver and 

spleen enlargement as well as a variety of neurological disorders, such as epilepsy, 

cerebellar ataxia, dysarthria, dysphagia, spasticity, psychosis and progressive 

dementia. To date, treatment options are limited and no known cure exists. Since 

glycolipid storage appears to contribute to the neuropathological features of the 

disease [111], Miglustat (Zavesca®), an iminosugar inhibitor, has been approved in 



Introduction 

17 

Europe, Japan and Canada for treating progressive neurological complications in 

patients that suffer from Niemann-Pick disease, type C. Miglustat is a glucose-

analogue that irreversibly inhibits the activity of the glycosylceramide synthase 

enzyme, thus reducing the production and accumulation of glycosylceramide in cells. 
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2 AIMS 

MSI, encompassing all modes and methods can bring informative in-depth molecular 

insight into the pathology and chemical biology of (pre)clinical tissue samples. The 

implementation of MSI into the (pre)clinical setting holds great promise in the 

enhancement of personalized medicine and biomarker detection. However, key 

limitations of MALDI-MSI are sample throughput, data load, the availability of 

validated/standardized technical routine’s and the integration with conventional 

pathology or other medical imaging techniques. The analysis of large tissue series is 

impractical, as established approaches acquire MSI data of whole tissue sections prior 

to histopathological annotation. In contrast, optical imaging techniques like vibrational 

spectroscopy can assess the structural composition of tissues with relative ease, but 

lack the chemical specificity needed for biomarker retrieval. A multimodality approach 

that combines both technologies capabilities might have substantial impact on clinical 

practice.  

 

For this reason, the study at hand focused on the following objectives:  

 

1) Determination of each modality’s capabilities to segment and classify divergent 

cell populations. In this context, the influence of different slide-coating materials 

was investigated.  

 

2) Development and technical evaluation of an automated and robust workflow 

that enables combined, multimodal imaging of tissues using FTIR and 

MALDI-MS imaging techniques.  

 

3) Evaluation of the routine’s capability to correctly distinguish between normal and 

diseased cell populations in tissues. For this task, various mouse models as 

well as human cancer tissues were examined.  

 

4) Evaluation of the routine’s capability to enable unbiased targeting for 

MALDI-FTICR-MS, thus addressing computational and practical challenges that 

restrict the transition of ultrahigh-resolution MS to clinical practice.  
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3 DATA ANALYSIS BACKGROUND  

Extracting significant features out of complex data sets is a major challenge in 

biomedical imaging. In that regard, the high dimensionality of i.e. FTIR and particularly 

MS images introduces profound restrictions. Apart from introducing practical and 

computational limitations regarding data processing, the concept of distance between 

data points becomes very imprecise as dimensionality grows [112]. This problem 

referred to as the “Curse of Dimensionality” degrades the predictive power of 

classification models and the efficacy of segmentation. Multimodality imaging 

introduces additional challenges as joint interpretation and visualization are impossible 

without alignment of all images into a common coordinate system. In this section, 

multivariate statistical tools that tackle the challenges associated with multimodality 

imaging and high dimensionality will be examined. Moreover, methods that extract 

spatial and spectral features will be demonstrated.  

 

3.1 Dimensionality reduction 

Collection of FTIR and MS spectra results in high-dimensional data, with FTICR 

spectra typically featuring intensities of around one million m/z-values. This introduces 

some practical and computational restrictions, as the produced image size becomes 

very large and the computation time to process the data is drastically increased [113]. 

Especially for MSI, the collected data is very sparse and contains many dimensions 

more than it contains information. Dimensionality reduction aims to project the data 

onto a smaller subspace that preserves its information by combining redundant 

measures and discarding unsubstantial dimensions. Prominent examples of 

dimensionality reduction tools are principal component analysis (PCA) and t-distributed 

stochastic neighbor embedding (t-SNE) [114, 115].  

 

3.1.1 Principal Component Analysis 

PCA is a widespread factorization method that reduces dimensionality while retaining 

most of the data variance. The algorithm reorients the original data onto a new space 

that is defined by a number of orthogonal axes (principal components) equivalent to 

the original data’s dimensionality. The principal components are sorted in descending 
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order by the amount of variance they preserve. For that reason, the first few principal 

components (PC) describe the majority of data variance, thus dimensionality reduction 

can be achieved by discarding later components (Fig. 7). Typically, the subset of 

retained PCs is chosen so that at least 95% of the original data’s variance are 

preserved. 

 

 

Figure 7 Dimensionality reductions by means of principal component analysis.  A reduced two-

dimensional component space is defined by the first two principal components (PC1, PC2) and used for 

transformation of the whole data set (red and green data points). Thereby, the PCs preserve the original data 

variance in descending order. Transformation of data into a smaller component space allows for dimensionality 

reduction while preserving most of the original data’s variance. 

 

PCs can be located through singular value decomposition (1) in which the mean 

centered data 𝑋̃ gives [116]:.  

 

𝑋̃ = 𝑈𝛴𝑊𝑇
 (1) 

 

where 𝛴 is an n-by-p diagonal matrix of the singular values of 𝑋̃, U is an n-by-n matrix 

of orthogonal unit vectors of length n (the left singular vectors of 𝑋̃) and W is a 

p-by-p matrix of orthogonal unit vectors of length p (the right singular vectors of 𝑋̃). The 

right singular vectors W are equivalent to the eigenvectors of 𝑋𝑇𝑋, while the singular 

values of 𝛴 are equal to the square roots of the eigenvalues λ. Using singular value 

decomposition, the new projection of data TL (called scores) that considers only the 

first L largest singular values and their singular vectors is given by (2): 
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𝑇𝐿 = 𝑈𝐿𝛴𝐿 = 𝑋̃𝑊𝐿  (2) 

 

3.1.2 t-distributed stochastic neighbor embedding 

PCA is a linear dimensionality reduction technique and thus highlights the major 

variance while minimizing subtle changes. For this reason, the similarities of 

highly-dimensional data can often not be faithfully represented. Recently emerging 

nonlinear methods like t-SNE have proven their capability to preserve local detail and 

global data structure in life-science applications by emphasizing similarities between 

data points [117, 118]. The algorithm starts by calculating the distance d(xi,xj) between 

each pair of data points xi and xj of the input data X consisting of N objects. Different 

metrics can be applied for distance calculation, i. e. Euclidean metric (3) that defines 

d(xi,xj) as follows: 

 

𝑑(𝑥𝑖 , 𝑥𝑗) = √∑ (𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)
2

𝑛

𝑘=1
 (3) 

 

Then, t-SNE constructs a probability distribution over pairs of xi and xj in terms of a 

Gaussian distribution, so that similar objects have a high conditional probability p j/i (4) 

of being picked as neighbors, whereas this probability to pick dissimilar points is 

extremely small.  

 

 
𝑝𝑗/𝑖 =

exp (−𝑑(𝑥𝑖 , 𝑥𝑗)
2
/(2𝜎𝑖

2))

∑ exp⁡(𝑘≠𝑖 − 𝑑(𝑥𝑖 , 𝑥𝑘)
2/(2𝜎𝑖

2))
 

𝑝𝑖/𝑖 = 0 

(4) 

 

Based on this probability, t-SNE then aims to learn a d-dimensional map that reflects 

the joint probability pij (5) as precise as possible.  
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𝑝𝑖𝑗 =
𝑝𝑗/𝑖 + 𝑝𝑖/𝑗

2𝑁
 (5) 

 

This minimization procedure begins with an initial set Y of random Gaussian-distributed 

points for which the probability model qij of the distribution of the distances between 

points yi and yj is calculated (6).  

 

 
𝑞𝑖𝑗 =

(1 + ‖𝑦𝑖 − 𝑦𝑗‖
2
)
−1

∑ ∑ (1 + ‖𝑦𝑘 − 𝑦𝑙‖
2)−1𝑙≠𝑘𝑘

 

𝑞𝑖𝑖 = 0 

(6) 

 

This initial model is then iteratively updated to minimize the Kullback-Leibler 

divergence KL(P\\Q) between a Gaussian distribution in the high-dimensional space P 

and a t-distribution in the low-dimensional space Q [119]. For optimization, the 

algorithm uses a modified gradient descent procedure to reach a good local 

minimum (7). 

 

𝐾𝐿(𝑃\\𝑄) =∑∑𝑝𝑖𝑗 ⁡𝑙𝑜𝑔
𝑝𝑖𝑗

𝑞𝑖𝑗
𝑖≠𝑗𝑗

 
(7) 

 

3.2 Information extraction 

Common biomedical experiments focus either on the identification of discriminatory 

features used to differentiate between disease states, or segmentation of the image 

into sub-regions of spectral similarity used for exploratory analysis [120]. In that 

context, information extraction aims to present the user with spectra or images that 

represent important features of the data.  

 

3.2.1 k-means++ segmentation 

The k-means++ algorithm aims to partition the data into k subgroups of greatest 

internal similarity [121]. Based on a specific similarity measure, for example the L1-
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distance which is more suitable in high-dimensional space and defines the distance 

between two p-dimensional observations (i.e. spectra) x and y as follows (8), each 

spectrum is assigned to the closest of k centroids. 

 

𝑑(𝑥, 𝑦) =∑|𝑥𝑖 − 𝑦𝑖|

𝑝

𝑖=1

 (8) 

 

In contrast to the classic k-means approach (Lloyd’s algorithm) in which k initial 

centroids are placed randomly within the data space and assignment of spectra is 

achieved in an iterative refinement loop [122], k-means++ uses a heuristic process to 

improve run time and classification efficacy [121]. Thereby, a random observation of 

the data set X is chosen as the first centroid c1 and the distances d(Xm,c1) of all other 

observations m ∈ n are computed. Thereafter, the next centroid c2 is selected at 

random with probability defined as follows (9).  

 

𝑑2(𝑋𝑚 , 𝑐1)

∑ 𝑑2(𝑋𝑗 , 𝑐1)
𝑛
𝑗=1

 (9) 

 

Center j is chosen by computing the distances from each observation to each centroid 

and subsequent assignment of each observation to its closest centroid. Then, for 

m = 1,…,n and q = 1,…,j-1, the next centroid j is selected at random with probability 

defined as follows (10), with 𝐶̇𝑝 being the set of all observations closest to the centroid 

cp and Xm belonging to 𝐶̇𝑝. 

 

𝑑2(𝑋𝑚, 𝑐𝑝)

∑ 𝑑2(𝑋ℎ , 𝑐𝑝){ℎ;𝑋ℎ∈𝐶̇𝑝}

 (10) 

 

Distance calculation, assignment and centroid selection are repeated until k centroids 

are chosen. For segmentation purposes, it is possible to color-code each pixel of an 

image based on its allocation to a given centroid. 
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3.2.2 Feature extraction 

MS and FTIR spectra, though rich in biomolecular information contain high levels of 

redundancy, as many acquired m/z and cm-1 intensities either mitigate from correlated 

sources (i.e. isotopic peaks in MS) or refer to signal-free noise. By extracting 

informative features (i.e. peaks in MS or wavenumber ranges in FTIR) and discarding 

the rest, a dataset’s size and complexity can be reduced substantially [123]. Feature 

extraction can also be applied to screen for an optimal sub-feature space that better 

represents the differences between a pre-defined training set. A suitable technique for 

the selection of discriminatory features with respect to tissue classification is the 

receiver operating characteristic curve (ROC) criterion [124]. Thereby, the overlap 

between the probability distance functions describing each feature’s data distribution 

in two classes is calculated as a measure of discriminatory power. For complete 

overlap the area under the ROC curve (AUC) and the random classifier slope equals 

zero, whereas an AUC = 0.5 indicates complete separation. The monitored m/z- and 

cm-1-values obtained from tissues of different morphological makeup are then sorted 

in descending order based on their AUC.  

 

3.3 Quality measures 

Dimensionality reduction and information extraction techniques aim to present 

manageable and substantial data by reducing redundancy and noise. In order to 

evaluate the quality of the obtained results several techniques exist.  

3.3.1 Cluster evaluation 

The number of clusters (k) assumed during k-means++ segmentation is a freely 

chosen input parameter and a major drawback to the technique, as inappropriate 

k-values may yield poor results. For this reason, several criteria that serve as a 

diagnostic check in order to determine the number of anticipated groups in a data set 

consisting of N observations exist. One of the most common cluster evaluation criteria 

is the Calinski-Harabasz index published in 1974 [125]. For a given value of k, the 

Calinski-Harabasz criterion CHc is a measure of the between-cluster variance SSB to 

within-cluster variance SSW ratio (11).  
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𝐶𝐻𝑐 =
𝑆𝑆𝐵
𝑆𝑆𝑊

×
(𝑁 − 𝑘)

(𝑘 − 1)
 (11) 

 

Thereby, the overall between-cluster variance SSB is defined as follows (12), with m 

being the mean of all sample data, mi being the centroid of cluster i, and ||mi-m|| being 

the L2 norm between both vectors.  

 

𝑆𝑆𝐵 =∑𝑛𝑖‖𝑚𝑖 −𝑚‖2
𝑘

𝑖=1

 (12) 

 

In contrast, the overall within-cluster variance is defined as follows (13), with x being a 

data point, ci being the i-th cluster and ||x-mi|| being the L2 norm between the two 

vectors.  

 

𝑆𝑆𝑊 =∑∑‖𝑥 −𝑚𝑖‖
2

𝑥∈𝑐𝑖

𝑘

𝑖=1

 (13) 

 

Well-defined clusters have a large between-cluster variance and a small within-cluster 

variance, so a larger CHc resembles better data partition. In order to determine the 

optimal number of clusters k, the Calinski-Harabasz index can be calculated for 

multiple k-values. The highest computed CHc is then assumed to correspond to the 

optimal number of clusters.  

 

3.3.2 Measure of data dispersion  

Several measures can be applied in order to assess the consistency of 

dimensionality-reduced spectra of similar origin. In that regard, the mean absolute 

deviation (MAD) is a suitable technique to evaluate stability and technical 

reproducibility [126]. The MAD of a data set X consisting of x1, x2, …, xn is defined as 

follows (14):  
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1

𝑛
∑|𝑥𝑖 − 𝑥̅|

𝑛

𝑖=1

 (14) 

 

Thereby, 𝑥̅ denotes the mean of x. In terms of technical reproducibility, the calculated 

MAD-value should be as small as possible, as a high value indicates considerable data 

dispersion. 

 

3.3.3 Sample correlation and dependence 

One of the most common measures to determine similarity in scientific research is the 

sample Pearson correlation coefficient R, which expresses the degree of linear 

correlation between observations as a value between -1 and +1. Thereby, +1 and -1 

refer to a total positive or negative correlation, whereas R = 0 refers to no linear 

correlation. The sample correlation coefficient was developed by Karl Pearson in 1985 

and determines the dependence between two series of n observations X and Y [127], 

where X consists of x1, x2, …, xn and Y consists of y1, y2, …, yn, as follows (15):  

 

1

𝑛 − 1
∑(

𝑥𝑖 − 𝑥̅

𝜎𝑥
)

𝑛

𝑖=1

(
𝑦𝑖 − 𝑦̅

𝜎𝑦
) (15) 

 

Thereby, 𝑥̅ and 𝜎𝑥 denote the mean and standard deviation of X, and 𝑦̅ and 𝜎𝑦 denote 

the mean and standard deviation of Y.  

 

3.4 Image registration and evaluation 

Image registration is an indispensable tool for the integration of multimodality data sets, 

especially in medical and biological applications [128, 129]. The process aims to 

spatially align two or more images of the same object. Typically, one image is defined 

to be fixed and serves as a reference If to align the other moving image/images Im. In 

an optimization process, the moving image is then geometrically transformed to be 

spatially aligned with the fixed image. The optimized transformation parameters μ are 
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calculated according to the standard registration optimization problem (16), in which 

the cost function C is minimized with respect to the transformation model T. 

 

𝜇̂ = argmin
𝜇

𝐶[𝐼𝑓 , 𝑇(𝐼𝑚)] (16) 

 

The accuracy of transformation can be evaluated by calculating the Dice similarity 

coefficient (DSC) [130]. The DSC defines similarity as the intersection |𝑋 ∩ 𝑌| between 

Im and If divided by the numbers of elements (pixels) |𝐼𝑚| and |𝐼𝑓| in the two 

images (17). If DSC = 1, a perfect match between transformed and fixed image could 

be achieved, whereas DSC = 0 indicates two completely separated images.  

 

𝐷𝑆𝐶 =
2|𝐼𝑚 ∩ 𝐼𝑓|

|𝐼𝑚| + |𝐼𝑓|
 (17) 
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4 MATERIALS AND METHODS 

4.1 Materials  

4.1.1 Reagents 

NAME CATALOGUE COMPANY LOCATION 

Acetic Acid 6755.2 Merck Darmstadt, GER 

Acetone 20067.320 VWR Intern. Darmstadt, GER 

Acetonitrile 83640.320 VWR Intern. Darmstadt, GER 

Carboxymethyl Cellulose 6190.1 Carl Roth Gmbh 

+ Co. KG 

Karlsruhe, GER 

Chloroform 83626.320 VWR Intern.  Darmstadt, GER 

2,5-Dihydroxybenzoic Acid 8201346 Bruker Daltonics Bremen, GER 

Ethanole absolute 8.18760.2500 AppliChem Darmstadt, GER 

Eosin Y X883.2 Merck Darmstadt, GER 

Hematoxylin 1.09249.2500 Merck Darmstadt, GER 

n-Hexane 83991.320 VWR Intern.  Darmstadt, GER 

Magnesium sulfate A4837.1000 AppliChem Darmstadt, GER 

Methanol 83638.320 VWR Intern.  Darmstadt, GER 

4-Phenyl-α-Cyanocinnamic 

Acid Amide 

SC-1400 SiChem Bremen, GER 

sDHB MALDI Matrix 

(Mixture of 

2,5-Dihydrobenzoic Acid 

and 2-Hydroxy- 

5-Methodybenzoic Acid 

8209813 Bruker Daltonics Bremen, GER 

Sodium hydrogen 

carbonate 

1.06392.0500 Merck  Darmstadt, GER 

Trifluoroacetic Acid  1082620100 Merck Darmstadt, GER 
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4.1.2 Solutions  

 

NAME COMPOSITION 

Blueing Solution  2 g NaHCO3 

20 g MgSO4 

Add to 1 L with ddH2O 

Carnoy’s Fluid 60 mL EtOH 

30 mL CHCl3 

10 mL CH3COOH 

 

4.1.3 Consumables 

NAME COMPANY LOCATION 

Centrifuge Tubes  

0.5/1/2 mL 

Eppendorf Hamburg, GER 

Centrifuge Tubes  

15/50 mL 

VWR Intern.  Darmstadt, GER 

Gold-coated Slides Science Services München, GER 

MALDI ITO glass slides Bruker Daltonics Bremen, GER 

MirrIR slides Kevley Technologies Chesterland, USA 

Nitril examination gloves VWR Intern.  Darmstadt, GER 

Peptide calibration standard II  Bruker Daltonics Bremen, GER 

Pipet Tips  

10/200/1000 μL 

VWR Intern.  Darmstadt, GER 

Protein calibration standard I Bruker Daltonics Bremen, GER 

Starfrost adhesive slides R. Langenbrinck GmbH Emmendingen, 

GER 
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4.1.4 Equipment 

NAME COMPANY LOCATION 

Aperio CS2 Digital Pathology 

Slide Scanner 

Leica Biosystems Nussloch, GER 

Autoflex Speed MALDI-

TOF/TOF Mass Spectrometer 

Bruker Daltonics Bremen, GER 

CanoScan 9000F Mark II 

optical scanner 

Canon Deutschland GmbH Stuttgart, GER 

Cryostat Leica CM 1950 Leica Biosystems Nussloch, GER 

NalgeneTM Polycarbonate 

Desiccator 

Thermo Fisher Scientific Darmstadt, GER 

Frontier MIR system Perkin Elmer Germany Rodgau, GER 

Matrix application device Sun 

Collect 

SunChrom Friedrichsdorf, GER 

solariX XR 7T MALDI-FTICR 

Mass Spectrometer 

Bruker Daltonics Bremen, GER 

Sonic Bath VWR Intern Darmstadt, GER 

Spotlight 400 Infrared 

Microscope 

Perkin Elmer Germany Rodgau, GER 

Ultraflex MALDI-TOF/TOF 

Mass Spectrometer 

Bruker Daltonics Bremen, GER 

Vacuum Pump N726 FT.18 KNF Neuberger GmbH Freibug im 

Breisgau, GER 
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4.1.5 Software 

Adobe Photoshop CS6 Adobe San José, USA 

flexControl Bruker Daltonics Bremen, GER 

flexImaging 4.1 Bruker Daltonics Bremen, GER 

MATLAB R2017a The Mathworks Natick, USA 

R R Core Team 

(https://www.r-project.org) 

Vienna, Austria 

Tableau Tableau Software Inc. Seattle, USA 
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4.2 Methods 

4.2.1 Animal studies  

Animal studies on engrafted CD1 nu/nu mice were conducted at the German Cancer 

Research Center (DKFZ, Heidelberg) and supervised by institutional animal protection 

officials in accordance with the National Institute of Health’s guidelines Guide for the 

Care and Use of Laboratory Animals. The experiments were approved by 

governmental authorities (Regierungspräsidium Karlsruhe, Germany). Female 

6-12 week old mice were inoculated with 105 human U87-MG glioblastoma cells and 

sacrificed when the first mouse became symptomatic (5-6 weeks after inoculation). In 

addition, C57BL/6 mouse brain samples were provided for reference purposes. 

 

Brain samples of Niemann-Pick-C1 I1061T knock-in-mice and C57BL/6 control mice 

were provided by the Ory laboratory at Washington University in St. Louis, USA [131]. 

Animals were kept in a controlled animal facility and given standard chow and water 

ad libitum. Weaning occurred after 3-4 weeks. Experimental procedures were 

approved by the Washington University Animal Studies Committees and were 

conducted in accordance with the USDA Animal Welfare Act and the Public Health 

Service Policy for the Human Care and Use of Laboratory Animals.  

 

All provided animal organs and xenograft tissues were excised and immediately snap-

frozen in liquid nitrogen. Until further processing, samples were stored in a freezer 

at -80 °C.  

 

4.2.2 Human tissue specimen 

Patient-derived GIST and prostate cancer samples for the analysis of mid-infrared 

(MIR) and mass signatures were provided by the University Medical Centre Mannheim. 

Informed consent was obtained in all cases from patients whose tissues were used in 

this dissertation. FTIR and MS acquisition were performed in accordance with 

applicable laws and regulations, good clinical practices and approved by an 

independent ethics committee of Heidelberg University (“Medizinische Ethik-

Kommision II”; No. 2012-293N-MA).  
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4.2.3 Tissue section preparation  

Frozen organs and tissue specimen were cut using a CM1950 cryostat (Leica 

Biosystems, Nussloch). For all experiments, the cryostat chamber temperature was 

set to -20°C. First of all, the samples were mounted onto a cryostat metal plate by 

applying a drop of 2% (w/v) carboxymethyl cellulose (Merck, Darmstadt). 

Subsequently, the tissue was cut into sections of 8 μm thickness for an improved 

permeation of mid-infrared raditation [49]. Tissue slides designated for multimodal 

measurements on single sections were placed on gold-coated slides (Science 

Services, München). Sections designated for exclusive MALDI-MSI were mounted on 

indium tin oxide (ITO)-coated glass slides (Bruker Daltonics, Bremen). Sections 

designated for exclusive FTIR measurements were mounted on MirrIR object slides 

(Kevley Technologies, Chesterland). Sections prepared for pathological examination 

and annotation at the Pathology Institute of the University Medical Center Mannheim 

(UMM) were placed on Starfrost adhesive microscope slides (R. Langenbrinck GmbH, 

Emmendingen). After cutting, all slides were dried at room temperature (RT) in a 

NalgeneTM Polycarbonate Desiccator (Thermo Fisher Scientific, Darmstadt) connected 

to a vacuum pump N726 FT.18 (KNF Neuberger GmbH, Freiburg im Breisgau) for at 

least 3h. The samples were either measured immediately or stored at -80°C for later 

image acquisition.  

 

For protein MSI, a multi-step washing protocol was carried out on ice to minimize lipid 

interferences [132]. The protocol comprises the application of (1) 70% ethanol (EtOH; 

AppliChem, Darmstadt) for 30 sec, (2) 100% EtOH for 30 sec, (3) Carnoy’s fluid, a 

mixture consisting of 60% EtOH, 30% chloroform (VWR Intern., Darmstadt) and 10% 

acetic acid (Merck) for 2min [133, 134], (4) 100% EtOH for 30 sec, (5) purified water 

(ddH2O) for 30 sec and (6) 100% EtOH for 30 sec. Lipid washing was followed by an 

overnight drying step in the desiccator at RT.  

 

For the measurement of FFPE tissue samples, a de-waxing protocol was carried out 

by Malgorzata Muhm. The protocol comprises the application of (1) two times n-hexane 

(VWR Intern.) for 5min, (2) 100% EtOH for 5min and (3) ddH2O for 1min.  
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4.2.4 Multimodality imaging 

 FTIR imaging 

FTIR experiments were performed using a Spotlight 400 FTIR Imaging System (Perkin 

Elmer Germany, Rodgau). Before each image acquisition, the device was precooled 

by liquid nitrogen and detector check and aperture correction were performed using 

the Spectrum IMAGE (Perkin Elmer Germany) software. After calibration, tissue-

samples on metal-coated slides were placed onto the slide holder. Images used for 

virtual dissection experiments and feature extraction were taken in the range of 4000-

650 cm-1 with a spectral resolution of 8 cm-1 and a 25x25 μm pixel size. Images 

recorded for FTIR-guided, exclusive MALDI-FTICR MSI acquisition were recorded in 

the range of 3200-750 cm-1 with a spectral resolution of 12 cm-1 and spatial resolution 

of 6.25 μm. For all measurements, the reflection mode acquisition was specified in the 

Spectrum IMAGE software. During image recording, mirror velocity was set to 2.2 cm/s 

in order to reduce acquisition time. Furthermore, it was selected that the stored mean 

spectrum per pixel would be calculated based on two scans. For each experiment, a 

tissue-free reference point on the metal-coated slide surface was measured at identical 

parameters prior to FTIR image acquisition in order to enable automated background 

subtraction performed in Spectrum IMAGE. 

 

 Matrix application for MSI 

MALDI matrix was deposited on all tissue slides mounted on gold- or ITO-coated slides 

using the SunCollect automatic sprayer (SunChrom, Friedrichsdorf). Air pressure was 

set to 2.5 bar with a distance of 25.3 mm between spray head and tissue surface. 

Matrix substance and application workflow were adjusted with respect to the molecular 

features of interest during subsequent MS acquisition:  

 

Slides designated for reflector positive MS measurement of lipids and small 

molecules were coated with five layers of 60 mg/ml 2,5-dihydroxybenzoic acid 

(DHB; Bruker Daltonics) in acetonitrile (ACN; VWR Intern.)/ ddH2O/ trifluoroacetic 

acid (TFA; Merck) solution (50/49.5/0.5, v/v/v). The initial layer was applied at 

10 μL/min, followed by a second layer at 15 μL/min and three layers at 20 μL/min. All 

layers were deposited using the SunChrom slow spraying option (400 mm/min).  
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Slides designated for reflector negative MS measurement of lipids and small 

molecules were coated with nine layers of 5 mg/ml phenyl-α-cyanocinnamic acid amide 

(PhCCAA; SiChem, Bremen) in 90% acetone (VWR intern.). The first three layers were 

applied at 10/15/20 μL/min, followed by six layers at 25 μL/min. Matrix coating was 

performed using the fast spraying option (800 mm/min). 

 

Slides designated for subsequent linear detector positive MS measurement of 

protein signals were sprayed with five layers of 60mg/ml sDHB MALDI matrix (Bruker 

Daltonics) in ACN/ ddH2O/ TFA solution (40/59.5/0.5, v/v/v). The initial two layers were 

applied using a flow-rate of 10 μL/min followed by three layers at 15 μL/min. A drying 

step of 3 min at 37°C was introduced between each spraying step. Layers were spotted 

using the slow spraying option.  

 

Prior to matrix application, 1 mL of the Bruker peptide calibration standard I was 

pipetted onto a free slide-spot to enable mass axis calibration during subsequent 

reflector MALDI-MS acquisition of lipids and smaller molecules. Similarly, 1 mL of the 

Bruker protein calibration standard II was applied prior to the subsequent analysis of 

linear detector MALDI-MS acquisition. 

 

 MALDI-TOF-MSI 

MALDI-MSI experiments were performed on an ultraflex MALDI-TOF/TOF mass 

spectrometer mass spectrometer (Bruker Daltonics). Data acquisition parameters, 

i.e. laser shots per pixel, pixel size and acquired mass range, were specified in the 

flexControl software (Bruker Daltonics) and varied between the experiments. For all 

experiments, an optical image of the tissue-bearing object carrier was recorded before 

placement into the mass spectrometer by using a CanoScan 9000F Mark II optical 

scanner (Canon Deutschland GmbH, Stuttgart). Reflector negative images of NPC1 

I1061T knock-in mice brain sections were measured in the range of 100-2000 m/z 

using 500 laser shots per pixel and a laser raster width of 50 μm. Single measurements 

on the previously applied Bruker peptide calibration standard I spot were used to 

enable mass axis calibration by auto-correlation to a pre-defined list of corresponding 

peaks. Thereby, the quadratic mass axis correction option was chosen in flexControl. 
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Single measurements were also used to manually define a suitable detector gain 

voltage and laser attenuation value. MS images of CD1 nu/nu mouse xenograft brain 

tissue sections were kindly measured on an Autoflex Speed MALDI-TOF/TOF mass 

spectrometer (Bruker Daltonics) by Dr. Sandra Schulz in reflector positive mode. The 

mass range of 4000-20000 m/z was recorded, using 500 laser shots per pixel and a 

laser raster width of 75 μm. After defining all necessary parameters in flexControl, the 

previously recorded optical image was used to define measurement areas in the 

acquisition software flexImaging 4.1 (Bruker Daltonics). Thereby, a point-based 

registration step, in which three image pixels and their corresponding MS motor axis 

positions are defined, is performed by the software to enable affine registration. Within 

the flexImaging software, measurement areas and/or ROI’s can then be manually 

defined.  

 

 MALDI-FTICR-MSI 

Ultrahigh-resolution MS images were acquired on a 7T SolariX XR MALDI-FTICR-MS 

(Bruker Daltonics) with the kind support of Dr. Bogdan Munteanu who defined all 

acquisition parameters needed in the ftmsControl software (Bruker Daltonics). The 

FTICR-MS device is equipped with an Apollo II dual MALDI/electrospray 

ionization (ESI) ion source and a 2 kHz Smartbeam II laser (Bruker Daltonics). 

Acquisition parameters were set in order to record in negative-ion mode within the m/z 

range 150-4000 using absorption mode and a 512 kB data point size. Data point lateral 

resolution was set to 20 μm and 40 laser shots were applied per measurement 

position. Single measurements on the previously applied Bruker peptide calibration 

standard I were used to perform mass axis correction and define a suitable laser 

attenuation value. Similarly to MALDI-TOF-MSI, measurement areas and ROIs were 

defined by using the flexImaging 4.1 software that performed three-point registration 

between manually selected motor axis positions and their corresponding pixels in an 

opical image of the object carrier.  

 

 H&E staining 

For the purpose of correlation between FTIR-segmentation, MS signal distribution and 

tissue morphology, cryosections were stained in a multi-step workflow with 
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hematoxylin and eosin (H&E), a standard histological procedure. The staining protocol 

included 5 major steps. First of all, potential matrix residues were removed by 

subsequently dipping the slide in (1) 50% methanol (MeOH) for 3 min, (2) 70% MeOH 

for 3 min, (3) 100% MeOH for 5 min and (4) 100% ACN for an additional 5 min. In a 

second step, the section got rehydrated by adding (5) tap water for 5 min, followed by 

(6) ddH2O for 5 min. After rehydration, cell nuclei were stained as follows: 

(7) hematoxylin for 2 min, (8) tap water for 3 min, (9) ddH2O for 10 sec, (10) 0.3% acid 

alcohol for 30 sec, (11) ddH2O for 10 sec, (12) blueing solution consisting of sodium 

hydrogen carbonate (Merck)/ magnesium sulfate (AppliChem)/ ddH2O 

(0.2/2/97.8, w/w/v) for 2 min. Eosinophilic compartments were stained with 

(13) 0.5% eosin Y for 2 min followed by (14) ddH2O for 1min. In the final step, the 

cryopreserved section got dehydrated by dipping the slide in (15) 80% EtOH for 2 min, 

(16) 96% EtOH for 2 min and finally (17) 100% EtOH for 2 min. H&E staining of GIST 

tissues was carried out by Maria Deligianni at the pathology institute of the University 

Medical Centre Mannheim . Optical images of H&E stained tissues were taken by using 

an Aperio CS2 slide scanner (Leica Biosystems).  

 

4.2.5 Image processing and multivariate statistical evaluation 

 FTIR image pre-processing 

In accordance with biomedical practice [39, 135], a script consisting of multiple steps 

was written in MATLAB (The Mathworks) for pre-processing. Initially, spectra were 

spatially smoothed by means of an edge-preserving denoising (EPD) function that was 

kindly provided by Dr. Markus Grasmaier [136, 137]. Spectra were then 

baseline-corrected using a self-written script that performs asymmetric least squares 

smoothing with a smoothing factor λ = 1000000 and a weighting factor p = 0.01, as 

suggested by Eilers and Boelens  [138, 139]. Corrected spectra were subjected to first 

derivative calculation using MATLAB’s diff function and a script that performs standard 

normal variate (SNV) normalization which consists of mean centering and division by 

the standard deviation over the spectral intensities, thus giving the resulting spectra a 

unit standard deviation of one [140]. Spectral windows within the ranges 3100-2900 

cm-1 and 1800-950 cm-1 were selected using MATLAB’s find function and the 

remaining wavenumbers that don’t comprise vibrations most relevant in biomolecules 

were discarded.  
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 MSI pre-processing 

Pre-processing of MS data was carried out in R programming language by utilizing a 

‘MALDIquant’ package-based workflow routine that was developed by Denis 

Abu-Sammour (unpublished) [141]. Spectra were corrected using total ion current 

(TIC) normalization, which divides the intensity of a spectrum by its TIC (sum of all ion 

intensities) and then multiplies by the median TIC of all spectra. Normalized spectra 

were subsequently subjected to Top Hat baseline correction [142], a morphological 

filter that combines a moving minimum (erosion filter) followed by a moving maximum 

(dilation filter). To further minimize dimensionality, peak picking using the Friedman’s 

Supersmoother was applied with a signal-to-noise (S/N) threshold of S/N > 3 [143]. In 

order to make the data accessible to MATLAB, the raw and preprocessed spectral 

information was converted to text file format (csv). 

 

 Dimensionality reduction and evaluation of FTIR and MS data 

Principal component analysis with the purpose of dimensionality reduction of FTIR and 

MS imaging data was carried out in MATLAB by utilizing the pca function. Thereby, 

default parameters were used with the exception of NumComponents, which was set 

to three in order to enable 3D-visualization of the transformed spectra.  

 

In a similar fashion, t-distributed stochastic neighbor embedding was performed by 

utilizing MATLAB’s tsne function. The function’s Distance parameter which defines the 

underlying metric was set to cityblock and the NumDimensions parameter was set to 3 

in order to enable 3D-visualization.  

 

Feature selection and MS peak selection using local maxima identification was 

achieved by using the findpeaks function in MATLAB with default parameters.  

 

The dispersion of transformed data points in tSNE or PCA space was evaluated by 

calculating the MAD. This was achieved in MATLAB by using the mad function and 

default parameters.  
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 Image segmentation and cluster evaluation 

FTIR images were segmented in MATLAB using the kmeans function with cityblock 

distance metric and 3 Replicates using new initial cluster centroid positions [121]. The 

needed value k that denotes the cluster’s number of allocation groups was pre-defined 

based on the examined tissue specimen. Evaluation of FTIR segmentation results for 

different k-values was done by using MATLAB’s evalclusters function with criterion 

being set to CalinskiHarabasz. Thereby, the respective kmeans algorithm was 

specified with a function handle. The highest computed criterion was then assumed to 

correspond to the optimal cluster number.  

 

Similar to FTIR segmentation, MS images for comparative analyses were dissected in 

R programming language by Denis Abu-Sammour. In this context, the ‘MALDIquant’ 

package was utilized to enable k-means++ segmentation as well as state-of-the-art 

spatially-aware clustering that enables a more stable segmentation of large and 

highly-dimensional data sets [144]. MSI-based segmentation results were converted 

to text file format (csv) in order to make the data accessible to MATLAB.  

 

 Registration of binary images and efficacy estimation 

Binary information depicting the presence and absence of tissue was extracted from 

images obtained with different sensors for registration purposes. This was achieved by 

means of k-means++ cluster analysis using the kmeans function in MATLAB and the 

cityblock distance metric. Segmentation of spectra obtained on tissue and plain surface 

by the use of (k = 2)-clustering was considered to separate between background and 

on-tissue signals, as they differentiate the most. Therefore, a binary image was created 

by setting all pixels belonging to the allocation group with less mean absorption to zero 

and the remaining pixels with higher mean absorption to one. Subsequently, the 

geometric transformation matrix needed for registration between the binary images 

was calculated in MATLAB by utilizing the imregtform function with transformType 

being set to affine. The function’s optimizer and metric parameter were given by the 

imregconfig function with modality being set to monomodal. The derived geometric 

transformation matrix could then be used to register the moving binary image’s original 

sources. This was done by using the imwarp function in MATLAB. In order to assess 
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registration efficacy, a self-written script that calculates the DSC between moving and 

fixed binary image was utilized.  

 

 Extraction of discriminatory features 

MS and FTIR features that are rich in discriminatory power with respect to tissue 

classification were extracted by using the rankfeatures function in MATLAB. The 

utilized Criterion was set to roc in order to enable ROC-based feature extraction. For 

the remaining parameters of rankfeatures, default values were used.  

 

 Evaluation of spectral similarity 

The degree of linear correlation between spectra was assessed by calculating the 

sample Pearson correlation coefficient. Thereby, the corrcoef function in MATLAB was 

utilized with default parameters.  
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5 RESULTS 

The results of this thesis will be subdivided into four major parts which revolve around 

its major objectives: 

 

1) The first part presents single modality capabilities of FTIR and MALDI-MS 

imaging with respect to segmentation and classification. In this context, the 

influence of different slide-coating materials and fixation is investigated.  

 

2) In the second part, the technical and computational development of a sensitive, 

robust and reproducible multimodality imaging workflow that utilizes the concept 

of guidance in order to combine FTIR micro-spectroscopy and MALDI-MSI is 

presented.  

 

3) The third and major part focusses on evaluation of the developed workflow for 

discriminatory purposes in animal and human tissue samples. The capability of 

identifying divergent cell populations (i.e. tumors) as well as extracting 

morphology-dependent marker signatures, is examined.  

 

4) Lastly, the computational and practical challenges related to high 

mass-resolution MSI are addressed by presenting a more integrated 

multimodality imaging workflow that enables unbiased targeting of tissue 

morphologies prior to MSI acquisition.  
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5.1 Exploration of single modality capabilities 

Single modality experiments were carried out in order to evaluate the multimodality 

capabilities of FTIR micro-spectroscopy and MALDI-MSI. The main focus was to 

demonstrate modality-dependent advantages of FTIR imaging that would provide the 

basis for its beneficial integration into a multimodality imaging workflow. In this context, 

the impact of technical parameters like slide-coating composition, fixation and storage 

was examined with respect to tissue segmentation and characterization.  

 

5.1.1 The influence of object slide coating on FTIR spectroscopy 

The substrate composition on which FTIR measurements are performed has a critical 

effect on image quality [145] and potentially influences tissue segmentation. In general, 

metal substrates like gold, aluminum or MirrIR, a reflective silver and tin 

oxide (Ag/SNO2) multilayer coating, are used for reflection measurements. In order to 

determine the optimal optical substrate for FTIR tissue imaging, these three different 

substrate composition slides were evaluated. Porcine 8 μm liver tissue sections were 

chosen due to their high cellular homogeneity and mounted on ITO-, MirrIR- and gold-

coated slides. Indium tin oxide slides were examined as they represent the standard 

material for MALDI-TOF MS [146, 147] that permits visible light transmission and good 

conductive properties [148]. For each slide’s substrate composition, the mean 

mid-infrared background absorption of 60 scans was recorded (Fig. 8A) prior to 

triplicate measurements (Fig. 8B) of rectangular on-tissue areas that consisted of 

1600 spectra each. All recorded spectra were computed in PCA space (Fig. 8C) in 

order to visualize each image’s dispersion. Thereby, 88.67% of the original data’s 

variance was preserved within the first three PCAs. 
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Figure 8 FTIR reflection measurements on different substrate composition slides (A) FTIR background 

absorption was acquired on gold-, ITO- and MirrIR-coated microscopy slides prior to subsequent 

measurement of 8 μm porcine liver tissue cryosections. For each liver section, three rectangular measurement 

areas consisting of 1600 positions with a pixel size of 25x25 μm were defined using the Spectrum IMAGE 

software. (B) Comparison of each acquisition area’s mean spectrum reveals a higher overall absorption (lower 

S/N) when using ITO-coated slides. The spectra acquired on gold- and MirrIR-coated object carriers appear 

comparable with a slightly higher mean absorption on gold. (C) By transforming all 14400 spectra into PCA 

space, the dispersion created by each carrier’s coating was visualized. It becomes apparent that FTIR spectra 

acquired on ITO are less stable when compared to gold or MirrIR.  
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The monitored background absorption on each coating material appeared comparable, 

though an increased absorption in the range of 1200-800 cm-1 was observed with 

ITO (Fig. 8A). Moreover, an increased mean absorption (65.99%) was observed for 

tissue spectra acquired on ITO when compared to on-tissue measurements using 

gold- (41.04%) or MirrIR-coated object slides (27.12%). This difference was found to 

be mainly caused by a comparatively increased base-intensity. As more than 40% of 

the incident light was absorbed in the range of 2550-1700 cm-1 that is considered 

devoid of biomolecular vibration signals (Fig. 8B), it can be assumed that the coating-

material itself absorbs mid-infrared radiation and therefore dilutes spectral information 

content. The negative influence of ITO coating can further be emphasized by 

transforming all recorded spectra into three-dimensional PCA space (Fig. 8C). 

Assuming that liver tissue is homogeneous, all recorded spectra should fall together 

after transformation. However, a considerably increased data spread could be 

observed for ITO-derived spectra. As a quantitative measure of spectral dispersion, 

the MAD-value was calculated for each sample set, confirming a higher stability for on-

MirrIR infrared acquisition (MAD = 3.51) when compared to ITO (MAD = 7.21) or 

gold (MAD = 4.32).  

 

However, spectral quality does not necessarily denote segmentation efficiency. In 

order to investigate the influence of different coating-composition materials on 

segmentation, subsequent murine C57BL/6 brain tissue cryosections of 8 μm 

thickness were mounted on gold-, ITO- and MirrIR-coated object slides. The brain was 

chosen as a suitable test model due to its heterogeneous morphological composition. 

In order to elucidate the accuracy of image dissection, the Allen Brain Reference 

Atlas [149], which summarizes publicly available data about the brain’s structural 

composition (Fig. 9A) was used as a reference. The derived contours obtained from 

dissecting each FTIR image into seven segments by means of (k = 7) k-means++ 

cluster analysis were color-coded by assigning a unique color to each pixel of a given 

index (Fig. 9B). Image dissection into seven segments was chosen based on the 

calculated Calinski-Harabasz criterion CHc for all k-values in the range of 5-10. The 

retrieved CHc suggested an optimal number of seven clusters for the acquired on-gold 

image as well as the acquired on-MirrIR image and five clusters for the acquired 

on-ITO image. In order to compare between segmentation results, all images were 

partitioned based on the highest retrieved cluster optimum and optically compared to 
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structural brain atlas regions (Fig. 9A). Thereby, matching colors were assigned to the 

pixels of each allocation group. As indices are randomly assigned during cluster 

analyses, comparable images were manually selected out of all 5040 possible 

color-coded maps (Fig. 9B). All retrieved segmentation images showed a rough 

division into morphological brain tissue regions, namely hippocampal region, fiber 

tracts, thalamus, hypothalamus and isocortex. In comparison, dissection of FTIR 

images recorded on ITO appeared noisy with less defined contours and poor rendering 

of the thalamus region (Fig. 9C). Interestingly, spectral dissection on gold-coated 

object slides additionally uncovered the granule cell layer of the dentate gyrus and 

cornu ammonis brain region (Fig. 9D). This granule cell layer is subject to multiple 

neurological disease studies i.e. on Alzheimer [150], epilepsy [151] and 

electroconvulsive therapy [152].  
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Figure 9 FTIR reflection based brain tissue segmentation on different substrate composition slides 

(A) The Allen Brain Reference Atlas (Image credit: Allen Institute Mouse Brain Atlas [149], P56, Coronal, 

Image 76 of 132) illustrates a mouse brain’s structural makeup that enables comparison to (B) the spatial 

contours derived by (k = 7) k-means++ clustering of FTIR images recorded on slides coated with different 

substrate materials (ITO, MirrIR, gold). Images were recorded on subsequent cryosections of the same 

C57BL/6 mouse brain sample. The obtained cluster results were used to express spectral grouping in a color-

coded image, revealing spectral differences linked to morphological regions, namely fiber tracts, thalamus, 

hypothalamus, isocortex and hippocampal region. (C) Exemplified comparison of the thalamus-section’s 

contours reveals poor rendering of the ITO-retrieved segmentation image. (D) Magnification of the 

hippocampal region and the yellow cluster of the on-gold acquired FTIR image demonstrates the identification 

of an additional region of interest, namely the granule cell layer of the dentate gyrus and cornu ammonis 

brain region  
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In summary, FTIR imaging on ITO-coated slides led to poorer spectral quality and less 

stability. Spatial contours after segmentation were blurry and revealed less 

morphological structures. The use of MirrIR-coated slides resulted in images of 

improved spectral quality with less dispersion and a good resolution of the amide I&II 

region (1500-1700 cm-1) and the fingerprint region (600-1450 cm-1). Spectral 

measurements on gold appeared slightly worse. However, segmentation results were 

of comparable quality and revealed additional morphological structures. 

 

5.1.2 The influence of object slide coating on MS quality  

The conductive properties of different substrate coatings and their interaction with the 

electronic states of matrix molecules have been proven to influence the ionization 

process of MALDI- [153], DESI- [154] and other MSI techniques [155]. In order to 

elucidate the influence of different substrate composition materials on spectral 

MALDI-MSI quality, subsequent porcine liver sections of 8 μm thickness were placed 

on ITO- and gold-coated slides. MirrIR-coated slides were not used as they didn’t fit 

into the Bruker target plate holder. Tissues were sprayed with DHB in 

ACN/ ddH2O/ TFA (50/49.5/0.5, v/v/v) using the SunChrome spraying system. To 

ensure comparability, both object slides were jointly put in the same plate holder, and 

reflector positive MS images were subsequently acquired with identical parameters. 

For each liver section, three rectangular regions consisting of roughly 50 acquisition 

spots were defined in flexImaging. The mean spectra of 177 mass spectra acquired on 

ITO and 169 mass spectra acquired on gold were compared (Fig. 10).  
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The resulting tissue pattern was comparable between spectra acquired on gold and 

ITO. In general, peak intensities on gold were higher and no negative influence of 

on-gold MALDI-MSI was observed with respect to m/z-signals. On the contrary, peak 

selection using local maxima identification in MATLAB identified a higher number of 

peaks (992) within mass spectrometry data recorded on gold when compared to MS 

data recorded on ITO (740). However as this experiment was only carried out once, it 

is difficult to assume better spectral quality for on-gold measurements. In order to 

compare each data set’s dispersion, all recorded mass spectra were transformed by 

means of PCA and each spectrum’s position within the first 3 PC space was 

visualized (Fig. 11). Thereby, 89.86% of the original data’s variance was preserved. 

 

 

Figure 11 PCA transformation of MS data acquired on gold- and ITO-coated slides. 

Porcine liver tissue sections were mounted on different metal-coated object carrier and 

subsequently used for reflector positive MS measurements. Visualization of all 177 spectra 

acquired on ITO and 169 spectra acquired on gold within the first three PCs demonstrate 

distinct clustering based on the used coating material.  

 

The transformed mass spectra acquired on gold and ITO formed two distinct clusters 

which emphasizes the influence of substrate composition on MALDI-MSI. After 

normalization, the calculated MAD revealed an increased scattering of 6.1% for 
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on-gold MSI (MAD = 6.05*10-4) when compared to on-ITO measurements 

(MAD = 5.7*10-4). In comparison to FTIR imaging results (chapter 5.1.1) for which the 

dispersion on ITO was increased by 66.9% when compared to gold, this difference in 

dispersion appears less significant. In summary, the use of gold-coated object slides 

led to no observable major negative effects, although the obtained spectra were easily 

distinguishable in PCA space. As this experiment was carried out only once, it remains 

uncertain whether the distinct clusters indicate improved or worsened spectral quality 

when measuring on gold-coated object slides. Based on these observations and taking 

into account the results obtained in chapter 4.1.1, gold was chosen as the material of 

choice for multimodal acquisition in both systems.  

 

5.1.3 Tissue segmentation by FTIR and MS imaging 

The differences between FTIR segmentation for later MSI guidance and direct MS 

image segmentation were compared. Brain tissue sections of CD1 nu/nu mice 

inoculated with orthotopic U87-MG glioblastoma xenografts were chosen as a suitable 

test case with rather homogenous lesions. Subsequent sections of 8 μm thickness 

were mounted on gold- and ITO-coated slides for FTIR spectromicroscopy and MS 

imaging respectively. H&E stains of on-gold tissues (Fig. 12A) were prepared after 

FTIR image acquisition to serve as a reference for the evaluation of FTIR- and MS 

image segmentation results. FTIR- images were partitioned by means of k-means++ 

cluster analysis with an increasing number of centroids (k = 3, k = 4, k = 5). Thereby, 

the spatial coordinates of all spectra were color-coded based on their allocation to a 

given centroid. As indices were randomly assigned during each cluster analysis, each 

segmentation image received an independent color-code. The obtained segmentation 

images were compared to MSI–based segmentation results using k-means++ 

clustering as well as state-of-the-art spatially-aware clustering that were provided by 

Denis Abu-Sammour. In this context (Fig. 12B), dissection of MS images using 

spatially-aware clustering methods (MSspk) was found to be less noisy and featured 

sharper segment-contours when compared to k-means++ based MS segmentation 

(MSk++). Despite the lack of histopathological annotation which impedes quantification 

assessment of segmentation accuracy, the fit between tumor boundaries visible in 

H&E stains and the FTIR-based k-means++ segmentation image (IRk++) appeared to 

be significantly better when compared to MS-based segmentation results. Dissection 
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using five centroids (k = 5) added additional morphological information to FTIR 

segmentation images and revealed to some extend tumor boundaries in MSk++ which 

were not observable for lower k-values. In MSspk images, increasing k added no 

additional morphological information.  

 

 

Figure 12 FTIR- and MS-based segmentation of engrafted mouse brain sections.  Brain cryosections of 

CD1 nu/nu mice inoculated with human U87-MG glioblastoma cells were mounted on gold-coated slides. 

(A) After FTIR and MALDI MS image acquisition, H&E stains of the measured sections were prepared to 

visualize the spatial distribution of tumor cells. Based on this reference, (B) segmentation results based on 

the previously obtained FTIR- and MS images were evaluated. The recorded images were in-silico dissected 

into multiple areas (k = 3, k = 4, k = 5) of greatest possible data homogeneity. Each spectrums allocation was 

used to create a color-coded image in which identical colors represent spectral similarity. The resulting 

segmentation images derived from k-means++ clustering of FTIR- (IRk++) and MS images (MSk++) as well as 

spatially-aware clustering of MS images (MSspk) are compared.  

 

For the purpose of quantifying each modality’s potential to monitor tumors in tissues 

by means of segmentation analyses, images of resected human tissue samples 

containing GIST were recorded. For reference purposes, adjacent sections were 

prepared on Starfrost adhesive slides and subsequently H&E-stained (Fig. 13A). 

Histopathological annotation was provided by the Pathological Institute at the 

University Medical Center Mannheim (red marks). FTIR-images were dissected into 

three areas of greatest homogeneity using (k = 3) k-means++ cluster analysis and 

compared to MSI–based kmeans++ and spatially-aware image segmentation results 
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provided by Denis Abu-Sammour. The k-value needed for image partitioning was set 

to three based on the preceding U87-MG glioblastoma xenograft segmentation results 

for which k = 3 sufficed to visualize tumor contours. The obtained spectral allocation 

results were then used to form a color-coded segmentation image (Fig. 13B). Both the 

annotated tumor contours as well as the matching colored segments were converted 

to binary in order to quantify similarities. The segment-retrieved moving 

black-and-white images were registered to the fixed tumor annotation image by using 

automated intensity-based image registration tools in MATLAB (Fig. 13C). As a 

measure of precision, the DSC which quantifies the overlap between tumor contours 

and each modality’s segment binary was calculated. Disaggregation based on FTIR 

data (DSC = 0.881) was proven to better represent tumor contours when compared to 

MS-based segmentation using spatially-aware clustering (DSC = 0.505) or k-means++ 

cluster analysis (DSC = 0.383).  

 

 
Figure 13 FTIR and MS based segmentation for tumor recognition in human GIST tissue samples. (A) H&E 

stains of human patient-derived GIST tissues were pathologically annotated to localize tumor areas. (B) IR and 

MS images recorded on subsequent cryosections were in-silico dissected into three areas (k = 3) by performing 

k-means++ clustering of IR (IRk++) and MS data (MSk++). Additionally, MS images were dissected using 

spatially-aware clustering (MSspk). For visualization, the retrieved segments were color-coded (red, green, blue). 

(C) Evaluation of each segmentation’s efficacy was achieved by converting the pathologically annotated tissue 

area as well as the matching segment to binary. The retrieved images were overlaid by means of intensity-based 

registration, showing matching pixels (white) as well as areas unique to the pathological annotation (green) or 

segment (magenta). Calculation of the DSC demonstrates a more precise tumor identification (DSC = 0.881) for 

FTIR-based tissue disaggregation when compared to MS-based segmentation. Tissue dissection of MS data by 

means of spatially-aware clustering proved superior (DSC = 0.505) when compared to MSk++ (DSC = 0.383).  

 

In conclusion, segmentation of FTIR images proved to add critical information about a 

tissue’s morphological makeup when compared to MS image clustering. In addition, 

the technique operates comparatively fast and is less computationally expensive. FTIR 
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images of 25 μm spatial resolution were recorded in 65 min for both glioblastoma 

mouse brain sections and 8 min for the presented GIST section. In contrast, MS 

images of both glioblastoma brain sections featured a lower spatial resolution of 75 μm 

and recording took 6.1 h on the ultrafleXtreme MS instrument. The presented GIST 

MS image was recorded in 54 min at 50 μm resolution.  

 

5.1.4 Feasibility of FTIR imaging on FFPE tissues  

Tissue embedding is known to have a critical influence on spectral quality in both MS 

and FTIR imaging. It is therefore a major obstacle, as histopathological examination 

and storage is typically done using FFPE tissues. Although de-waxing protocols have 

been proposed for FTIR imaging, little is known about the effect of FFPE residues and 

de-waxing on spectral quality and segmentation. In order to evaluate FTIR’s capability 

to record and dissect FFPE tissues, embedded, de-waxed and cryopreserved porcine 

kidney samples were mounted on MirrIR-slides. The derived MIR-spectra recorded on 

two embedded, two de-waxed and two cryopreserved liver sections were 

compared (Fig. 14). Thereby, calculation of the sample Pearson correlation coefficient 

as a quantitative measure of spectral similarity revealed that de-waxing led to an 

increased linear correlation between MIR-spectra acquired on FFPE and 

cryopreserved tissues (R = 0.95) when compared to untreated FFPE 

tissues (R = 0.89). However, an increased mean absorption was observed for 

MIR-spectra acquired on FFPE (56.2%) and de-waxed (60.8%) tissues in comparison 

to measurements on cryopreserved material (25.9%).  
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Figure 14FTIR measurements on formalin-fixed paraffin-embedded tissues.  Comparison of MIR-

spectra acquired on FFPE and de-waxed tissues reveals a higher overall absorption when compared to 

cryopreserved materials. Spectral differences are mainly observed in the ranges of 3010-2850 cm-1 and 1460-

1470 cm-1 in which CH2-associated symmetrical (νs) and antisymmetrical stretch (νas) as well as symmetrical 

bending vibrations (δs) occur. Spectral correlation was quantified by calculating the smaple Pearson 

correlation coefficient which confirms a higher correlation of cryopreserved material to de-waxed 

tissues (R = 0.95) than to FFPE tissues (R = 0.89).  

 

The calculated differences were found to be caused by a comparatively increased 

base-intensity (2550-1700 cm-1) and an increase in the wavenumber-ranges 

3010-2850 cm-1 and 1460-1470 cm-1 that are associated to CH2-vibrations. For this, it 

can be concluded that the typically lipid-associated CH2-signals are overlaid by the 

CH2-bonds of paraffin (C20H42) which impairs spectral quality. Although de-waxed 

tissue samples also featured an increased base-intensity, no relative increase in the 

ranges 3010-2850 cm-1 and 1460-1470 cm-1 could be observed. In order to evaluate 

the segmentation of de-waxed tissue samples, a human derived prostate cancer 

FFPE-section was mounted on a MirrIR-coated tissue slide and de-waxed prior to FTIR 

image acquisition. The FTIR image was partitioned into five clusters by means of 

(k = 5) k-means++ segmentation in accordance to the optimal cluster number denoted 

by the Calinski-Harabsz criterion (Fig. 15). For comparison, histopathological 

annotation of a subsequent section was provided by the Pathological Institute at the 

University Medical Center Mannheim (black mark). In the derived segmentation image, 

no tumor-describing segment could be observed. Instead disperse clusters were 

obtained that might refer to other tissue morphologies, namely smooth muscles (blue), 

gland cells (green) collage-rich capsule (orange).  
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Figure 15 Comparison between H&E-stained human prostate cancer tissue and subsequent FTIR 

image segmentation. Two adjacent FFPE tissues of a prostate cancer quick section were designated 

to H&E staining and FTIR image acquisition after de-waxing. The tumor area was highlighted (black 

mark) after pathological examination at the University Medical Center Mannheim. In comparison to the 

color-coded image provided by (k = 5) k-means++ segmentation of the FTIR image, no segment could 

be linked to the occurrence of tumor. Instead, disperse segments that might refer to other tissue 

morphologies were observable.  

 

In summary, no correlation between the occurrence of prostate cancer and IR 

segmentation was observable. More comprehensive studies of different tissue types 

would be needed to evaluate the feasibility of on-FFPE measurements for tissue 

segmentation.  

 

5.1.5 Reproducibility of FTIR image segmentation  

Storage conditions could have a striking influence on the obtained infrared signals of 

tissue materials. To further elucidate the long-term effects of storage, subsequent 

sections of the murine brain samples with human U87-MG glioblastoma xenografts 

(presented in chapter 5.1.4) were mounted on gold-coated slides and kept in a 

desiccator at room temperature for three years. FTIR images were recorded and 

segmentation results of both the stored  image and the image that was recorded three 

years earlier were compared. Thereby, images were partitioned into seven segments 

by means of (k = 7) k-means++ cluster analysis, as denoted by the CHc of previous 

brain tissue experiments (presented in chapter 5.1.1).. Allocation-based color-coding 

of pixels revealed comparable morphological brain structures as well as the area of 
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infiltrating glioblastoma cells in both segmentation images (Fig. 16A).In order to 

quantify the structural similarities, both images were registered into a common 

coordinate system and the DSC was calculated for each corresponding segment-pair, 

revealing a mean overlap of 58.9% (DSC = 0.589 ± 0.211) between the identified 

structures. In this context, the individual DSC-values per segment-pair varied greatly, 

with the isocortex contours detected after three years being the least similar (DSC = 

0.134) to the original image’s contours and the infiltrating tumor zone (DSC = 0.908) 

and fiber tract contours (DSC = 0.746) being the most similar. In addition to structural 

similarities, the respective mean infrared spectra acquired for cerebellar fiber tracts 

and tumor cells were comparable in both images (Fig. 16B). This observation was 

quantified by calculating the Pearson correlation coefficient [127], as a measure of 

spectral similarity. Thereby, a high mean spectral correlation (R = 0.972 ± 0.004) 

between all identified segment-pairs was confirmed.  
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Figure 16 Long term reproducibility of FTIR image segmentation.  Brain tissue sections derived 

from CD1 nu/nu mice inoculated with U87-MG glioblastoma cells were stored in a desiccator at room 

temperature. FTIR images were recorded prior to storage and after three years for comparative cluster 

analysis. (A) Image dissection by means of (k = 7) k-means++ analysis leads to comparable color-

coded segmentation and reveals the spatial contours. Calculation of the Dice similarity coefficient 

between matching segments reveals structural similarity of fiber tracts (DSC = 0.746) and infiltrating 

glioblastoma cells (DSC = 0.908). (B) Comparison of the respective mean spectra for both spatial 

features also demonstrates spectral comparability. This was quantified by calculating the Pearson 

correlation coefficient which confirmes high similarity (R = 0.972 ± 0.004). 

 

In summary, the long-term stability of FTIR image structures appears to vary for 

different cell populations. Whereas the contours of infiltrating tumor cells and white 

matter were still observable after three years, grey matter structures, i.e. isocortex, 

were found to cluster differently. Despite these structural differences, mid-infrared 

spectra appeared long-term stable as the spectra recorded in 2014 and 2017 showed 

high linear correlation. More comprehensive studies of different tissue types would be 

needed to evaluate the influence of storage conditions on segmentation results.  
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5.2 Development of an automated multimodal imaging workflow 

An established routine in clinical MALDI-MSI is the analysis of serial whole-tissue 

samples. In order to extract valuable analytical information out of the resulting large 

data volumes, subsequent histological stains of the analyzed specimen are typically 

co-registered and used to manually define striking morphological regions. The 

respective mass information is then used to assess additional in-depth molecular 

characteristics, i.e. tumor-associated mass features. However, as shown in recent 

publications [21], only a small fraction of the recorded MSI data is used for later 

analyses. Moreover, the manual definition of striking areas constitutes an increased 

potential for errors.  

 

FTIR image segmentation can identify tissue substructures of morphological similarity 

in a more sensitive and robust manner when compared to direct MS clustering. 

Moreover, the acquisition of FTIR images is comparatively fast, which potentially 

facilitates their applicability within a clinical setting. Despite these advantages, the 

obtained MIR-information is insufficient to uncover the molecular coherences involved 

in disease formation. In order to combine the respective potentials of vibrational 

spectroscopy and mass spectrometry, a multimodal imaging workflow was developed 

that utilizes the FTIR-derived structural information in order to guide subsequent 

MALDI-MSI experiments. In this context, technical and computational developments 

were made with respect to registration in order to generate templates for MS guidance 

out of FTIR spectra. 

 

5.2.1 Image registration to enable FTIR-MS workflow development 

In order to jointly utilize the spatial information obtained from infrared-based 

segmentation as well as the molecular information provided by MALDI-MS, a two-step  

concept was developed (Fig. 17), in which FTIR images of tissue cryosections are 

acquired prior to MSI-data acquisition. The derived FTIR-based segments after image 

pre-processing and virtual micro-dissection are then used as a template to define 

distinct, divergent cell populations (i.e. tumors or functionally important tissue 

morphologies) for MALDI-MSI. 
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Figure 17 Multimodal FTIR-guided MALDI mass spectrometry imaging. FTIR imaging is utilized in order to 

record a variable (Var) set consisting of p vibrational bands that represent biomolecular features. By applying 

segmentation, the spectra at any given pixel are assigned to a defined number of subgroups based on similarity. 

The membership of each pixel is expressed by assigning an exclusive index-value (IDX). The spatial properties 

of a segment that consists of all pixels belonging to a given IDX (SIDX) are registered to the follow-up modality, 

MALDI-MSI, thus allowing to target the q-dimensional mass variables for predefined pixels. FTIR and MS 

imaging measure orthogonal properties, consequently complementing contours of spatial accuracy that exceed 

MALDI-MSI capabilities with chemically specific mass information.  

 

In order to convert the FTIR image into the same coordinate system as the MALDI-MSI, 

a routine for automated registration was developed in MATLAB. A multi-step script 

aligns the recorded moving FTIR images to their corresponding tissue objects within 

the optical reference image which is used for MSI acquisition (Fig. 18). This enables 

FTIR-based guidance and interpretation of MS images, as the flexImaging software 

automatically links the position of each mass spectrum to its corresponding optical 

image pixel by means of affine point set registration. In an initial step, the MATLAB 

script converts both the FTIR and optical image into binary files by applying (k = 2) k-

means++ cluster analysis. Thereby, the segment with lower mean intensity is set to 

zero, as it is considered to resemble background and the remaining tissue-pixel are 

set to one. The generated binary files are then forwarded to intensity-based automatic 

image registration which, in an iterative process, estimates the geometric 

transformation matrix that aligns both images (Fig. 18). The process applies affine 

registration of an internally determined transformation matrix to the moving 

FTIR-derived binary image with bilinear interpolation. Then, the mean squares image 

similarity metric is computed between the transformed moving image and the fixed 
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binary of the optical image. The metric assumes similar image intensities and is 

generally only suitable for mono-modal registration [156]. However, the previous 

conversion of both images to binary, bypasses this limitation. Finally, a regular step 

gradient optimizer [157] adjusts the transformation parameters so that the optimization 

follows the gradient of the image similarity metric in the direction of the extrema at a 

constant step length. However, when the gradient changes direction, the step length 

is halved until either 100 iterations were performed or the step length falls below 10-5.  

 

 

Figure 18: Affine intensity-based automatic registration of FTIR and optical image.  The moving binary 

image originating from a recorded FTIR image is initially transformed with bilinear interpolation. Subsequently, 

the similarity between the transformed image and a fixed binary image originating from an optical image of the 

same specimen is calculated by means of mean squares image similarity. If the computed metric doesn’t fulfill 

the condition specified by the regular step gradient descent optimizer, the transformation matrix is adjusted and 

reapplied to the moving image. If the condition is matched or if a certain count of iterations is reached, the 

resulting optimized transformation matrix can align the starting FTIR image and optical image.  
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5.2.2 Evaluation of FTIR-to-MSI registration 

For the evaluation of registration efficacy, a murine brain section was prepared on gold 

and designated to FTIR acquisition (Fig. 19A). Four additional sections were mounted 

on a subsequent object carrier and an optical image was recorded (Fig. 19B). 

Registration was carried out in two subsequent steps. At first, both the FTIR and optical 

image were converted into binary images (background = 0, on-tissue signal = 1). 

Secondly, the geometric transformation matrix between the moving FTIR and the fixed 

optical binary image was calculated by means of intensity-based affine registration. 

Based on the retrieved geometric transformation matrix, the color-coded FTIR-based 

segmentation image (Fig. 19C) was aligned to match the contours of its subsequent 

section in the optical image (Fig. 19D).  

 

 

Figure 19 Registration of FTIR-derived segments to multiple subsequent sections used 

for MALDI-MSI. (A) A brain tissue section designated to FTIR image acquisition will be utilized 

to denote spatial properties in (B) subsequent sections designated to MALDI-MSI. (C) 

Morphological information is obtained by k-means++ (k = 3) segmentation of the acquired FTIR 

image. As a result, the image is getting partitioned into multiple color-coded areas of greatest 

spectral similarity. (D) After registration between the obtained moving FTIR and fixed optical 

MS image, the derived transformation matrix is used to adjust the segments spatial properties.  

 

For evaluation purposes, the transformation matrix was recalculated for each 

FTIR-to-subsequent brain tissue section pair, thus allowing the identical FTIR cluster 

image to be reoriented and rescaled to match all subsequent sections (Fig. 20A). The 

effectiveness of registration was quantified by calculating the DSC, which denotes the 
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percentage of overlap between the transformed moving FTIR and the fixed optical 

image (Fig. 20B). For this exemplary tissue series, a mean DSC of 0.975 ± 0.006 was 

calculated, which confirms the precise conversion of FTIR-derived segments.  

 

 

Figure 20 Evaluation of the automatic registration used for FTIR-guided MSI  (A) A single 

segmentation image (red-green) obtained from FTIR mouse brain image dissection by means of (k = 2) k-

means++ cluster analysis was registered to the optical image of four subsequent tissue sections. (B) 

Fusion of the binary masks that represent tissue contours in the FTIR- and optical image makes it possible 

to quantify registration efficiency. Calculation of the Dice similarity coefficient (DSC) is used as a measure 

of overlap (white) in relation to pixels that are only visible in the optical image binary (green) or FTIR 

derived binary (green).  

 

The established registration routine was incorporated into a multimodal workflow that 

makes use of the image acquisition file utilized to denote MALDI-MSI 

parameters (Fig. 21). Within the acquisition file, it becomes possible to define optical 

image pixel coordinates that frame the desired region of interest (ROI). In order to 

retrieve the optical pixels that resemble the spatial FTIR-based segmentation contours, 

the border pixels of each segment were automatically transformed according to the 

obtained geometrical transformation matrix. In this manner, the FTIR-derived spatial 

allocations are mapped onto the optical image used to define ROI’s that can be used 

to extract spatially defined mass spectra out of large and complex data volumes after 

whole-tissue measurements. 
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Figure 21 Schematic workflow diagram for FTIR-guided extraction of MSI data.  FTIR image acquisition of 

subsequent tissue sections on gold can be utilized to denote measurement regions and/or ROIs. The spatial 

contours are defined by segmentation of the FTIR image and subsequent registration to the optical image used 

for later MSI measurement. Modification of the MSI acquisition file enables targeted mass feature extraction and 

unbiased annotation. 
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5.3 Analytic applications of multimodality FTIR-MS imaging 

After developing a stable and versatile workflow for FTIR-MSI imaging, different case 

studies that exemplify the added benefit of the technique will be presented. In the 

following chapters, the workflow’s potency to target cell populations of high vibrational 

homogeneity for improved mass feature retrieval will be presented. Moreover, an 

untargeted approach that enables automated, morphology-dependent biomarker 

identification was examined. The proposed workflow was also utilized to assess tumor 

heterogeneity in human-derived cancer tissues. Lastly, slight adjustments to enable 

same-slice multimodality imaging were made, thus enabling targeted MALDI-MSI 

acquisition of pre-defined tissue regions.  

 

5.3.1 Automated FTIR-guided tumor-targeting and mass feature extraction 

The strength of FTIR image segmentation lies in its ability to partition the examined 

tissue into regions of the same or a similar profile. It can assess the divergent 

biomolecular composition between distinct tissue regions with more detail than 

established histochemical methods. Moreover, it can generate images of superior 

spatial resolution at a faster rate than MALDI-MSI.  

 

In that regard, the precise localization of tumor margins is a critical task in 

histopathology and, hence, serves as a relevant test case for the established 

multimodal workflow. As a suitable model, four female 6-12 weeks old CD1 nu/nu mice 

were inoculated with human U87-MG glioblastoma cells and organs were harvested 5-

6 weeks after inoculation. Adjacent coronal brain cryosections were mounted on gold- 

and ITO-coated slides for FTIR and MALDI-MSI respectively. MALDI-MS images were 

acquired in reflector positive mode using DHB matrix. For reference purposes, the 

gold-coated section used for FTIR measurement was stained with hematoxylin and 

eosin and a microscopy image was taken (Fig. 22A, left panel). As FTIR images 

feature comparatively small volumes of data, it became possible to partition the entirety 

of acquired infrared spectra into ten groups by virtue of a single (k = 10) k-means++ 

cluster analysis. In contrast to single-section segmentation, this process guarantees 

the identification of similar tissue areas across all four examined brain tissue samples. 

In this context, the cluster number k was empirically found to partition the tissue into 

additional morphology-related segments. By linking the obtained spatial properties that 
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represent inter- and intra-section dependencies between a single FTIR and H&E 

image, it became possible to locate similar cells within the other images as they share 

the same index-value. This enabled identification of the segment corresponding to 

tumor (Fig 22A, right panel) without the need of additional histochemical stains. By 

means of intensity-based registration, the spatial properties derived from FTIR image 

segmentation were used to automatically define regions of interest within the 

subsequently acquired MALDI-MSI dataset. For further analysis of tumor-related mass 

shifts, the previously identified segment that resembled tumor contours (S1) was used 

to extract region specific MS profiles.  

 

In addition, an adjoining segment (S2) which was not noticeable in the reference H&E 

image, was examined (Fig. 22A), as it may correspond to potential expansion of the 

tumor margin like an edema and/or an infiltration zone characteristic of glioma. The 

registration efficiency was quantified by calculating the DSC, which suggested an 

overlap of more than 97% (DSC = 0.982 ± 0.004) between the registered FTIR and 

fixed optical MS image (Fig. 22C). Targeted extraction of mass spectra that lie within 

the identified segments borders (Fig. 22D) was achieved by transforming the 

respective FTIR coordinates into MSI coordinates. For the identification of divergent 

mass signals that may represent segment-specific biomolecular signatures, feature 

extraction using the ROC criterion was calculated. For each segment, the ten 

m/z-values that are most suitable to distinguish between mass spectra within and 

outside the respective segment were identified (Fig. 22E). For instance, m/z 797.1 was 

identified as a signal specifically elevated in S1. The m/z feature 204.2 was linked to 

the extended tumor margin S2 and m/z 867.2 was identified as an ion that was 

symmetrically distributed across the brain.  
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Figure 22 FTIR-based targeting of tumor lesions in xenografted CD1 nu/nu mice.  Brains of four CD1 nu/nu 

mice (#1 to #4) were inoculated with 1 x 105 human U87-MG glioblastoma cells; organs were harvested 5-6 

weeks later. Subsequently, adjacent 8 µm coronal brain sections for FTIR and MALDI MS image acquisition were 

prepared. FTIR data acquired from cryosections of all four mouse brain samples were simultaneously 

disaggregated by (k = 10) k-means++ segmentation to identify intra- and inter-specimen relationships. (A) By 

comparing the depicted spatial contours belonging to a given index in a single brain section (right panel) to its 

corresponding H&E stain on gold (left panel), it becomes possible to identify tumor-associated segments in all 

four specimen because they share the same index. (B) Binary images derived from FTIR data and microscopic 

images of subsequent sections used for MS acquisition are automatically registered. The resulting fusion images 

(white = matching areas, magenta = non-matching areas) are overlaid by contours of two segments (S1, red 

& S2, green) present in all observed specimen. (C) The quality of registration is further evaluated by means of 

DSC calculation, which reveals a mean overlap of 98.2% (DSC = 0.982 ± 0.004) between all transformed binary 

FTIR images and the binary images used for MSI measurement (D). Extracting only mass spectra that lie within 

the transformed spatial contours of S1 and S2 enables identification of m/z-values with matching distribution 

patterns (m/z 797.1 tumor-specific signal in S1, m/z 204.2 as signal specific for the expanded tumor margin S2) 

by (E) means of feature selection using the area between the empirical receiver operating characteristic (ROC) 

curve and the random classifier slope. For both S1 and S2, ten conspicuous features (highlighted in red for S1 

and green for S2) were calculated. 

 

In order to verify the FTIR-denoted tumor contours that were assigned based on 

comparison to a single H&E stain, the remaining sections were also designated to 

histochemical staining (Fig. 23). Without prior knowledge about tumor occurrence, the 

calculated tumor segments were automatically registered to the corresponding 
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H&E image (DSC = 0.994 ± 0.001). In all sections, the predefined tumor contours 

precisely matched the tumor distribution of infiltrating glioblastoma cells. Moreover, the 

stain of section #2, for which nearly no (0.4%) infrared spectra were assigned to the 

tumor-associated allocation group, was proven to be cut off target and didn’t contain 

glioblastoma cells. It is uncertain whether the positively determined pixels refer to 

false-positives or small tumor residues, i.e. intra-tumor vessels. 

 

 

Figure 23 Correlation of tumor contours visible in H&E stained 

images and FTIR segments. Coronal brain sections of CD1 nu/nu 

mice engrafted with U87-MG glioblastoma cells were designated to 

subsequent FTIR image acquisition and histochemical staining. (A) 

The observed tumor cell infiltration could be linked to FTIR-derived 

image segments (B) that were automatically registered (DSC = 0.994 

± 0.001) and visualized within the respective H&E stained image, thus 

demonstrating precise FTIR-based tumor localization.  

 

After successful H&E evaluation, the intensity distribution patterns of all 20 peaks 

whose presence or absence was identified to correlate with either S1 or S2 were 

visualized in order to verify the segment contours by multiple sensor types. A match 

between the spatial properties from FTIR and all identified masses in complex MSI 

datasets could be observed, which emphasizes the authenticity of the identified tumor 

localization (Fig. 24). Moreover, FTIR-denoted segmentation was proven to add 

substantial value by identifying the tumor-related segment S2 that was not observable 
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in conventional H&E staining, but supported by multiple masses identified in 

MALDI-MSI. 

 

 

Figure 24 Distribution patterns of m/z features representing FTIR segment contours. 

Subsequent to MSI, FTIR images of four CD1 nu/nu mice brain sections inoculated with 

U87-MG glioblastoma cells were acquired and clustered for guided extraction of tumor-

associated masses that resemble tumor/margin-contours. For two segments, S1 and S2, ten 

discriminant mass peaks were identified by means of feature extraction using the empirical 

ROC curve criterion. The identified peaks not only show importance for the respective 

segment, but also resemble their spatial pattern.  

 



Results 

69 

In summary, the automated pipeline of segmentation and subsequent co-registration 

enabled precise targeting of glioma tumor areas. In comparison to conventional 

histopathology which comprises of histochemical tissue staining, FTIR-guided 

MALDI-MSI provided additional spatial tissue characterization and in-depth molecular 

profiling. In addition, the possibility to segment multiple tissues at once and thus 

circumventing the necessity of additional stains was demonstrated as linkage to a 

single H&E stain proved to be sufficient to enable tumor localization in multiple 

biological replicates. 

 

5.3.2 Automated MS marker signature retrieval for defined tissue morphologies 

Comparison of FTIR cluster images to H&E stains enables targeted annotation of 

pathologically important tissue areas such as tumor margins. However, the needed a 

priori information (i.e. the histopathological examination) is a limiting factor in clinical 

mass spectrometry. A different application of FTIR-guided MSI is the dissection and 

segment-wise comparison of mass signals. This allows for a spatially focused retrieval 

of disease-related marker signatures without the need for prior knowledge about the 

examined specimen’s structural makeup. As a suitable example, coronal cerebellum 

cryosections of NPC1 I1061T knock-in mice that resemble Niemann-Pick type C 

disease, a spatially restricted neuronal lipid disorder, were mounted on gold-coated 

object slides. In addition, sections of a C57BL/6 mouse brain were prepared at a similar 

region in order to serve as a control. FTIR images were recorded for both animals and 

subsequently portioned into five segments by means of k-means++ segmentation. In 

this context, the cluster number k was empirically found to result in comparable 

morphology-related segments in both brain tissue sections. Four segments were 

chosen in order to in-silico dissect subsequently acquired MSI datasets (Fig. 25A). 

The fifth segment was discarded as it represented each tissue’s contours. Sections 

designated to MALDI-TOF-MSI acquisition were coated with PhCCA matrix in 90% 

acetone solution to ensure optimal acquisition of negatively charged lipids and 

metabolites. In comparison to the Allen Brain Reference Atlas, the defined segments 

were linked to their morphological counterparts (Fig. 25B). Hence, (k = 5) k-means++ 

segmentation of the recorded FTIR images revealed the spatial contours of an 

unspecified microstructure (I), cerebellar granule layer (II), cerebellar fiber tracts (III) 

and molecular layer (IV). After automated intensity-based registration 
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(DSC = 0.992 ± 0.003) to the optical image used for MALDI-MSI acquisition, the mass 

signatures provided by MALDI-MSI were extracted for each individual index to allow 

for a segment-wise and therefore cerebellar substructure-wise comparison. By 

applying t-test based feature extraction, the ten m/z-values that differ the most between 

NPC1 I1061T knock-in and control mice were identified for each morphological 

structure (Fig. 25C-F).  

 

 
Figure 25 Comparison of MS lipid/metabolite signatures derived from FTIR-segmented NPC1 and Control 

mouse brains.  (A) FTIR images of coronal mouse cerebellar sections (NPC1 I1061T knock-in mice versus 

C57BL/6 control mice) were divided into four segments of maximum data similarity by k-means++ clustering. (B) 

Comparison to the Allen Brain Reference Atlas (Image credit: Allen Institute Mouse Brain Atlas [149], P56, 

Coronal, Image 121 of 132) suggests the morphological identity of three FTIR-derived segments, namely granule 

cell layer (II) fiber tracts (III) and molecular layer (IV). The remaining segment (I) represents an intermediate 

region between the outer edge of the arbor vitae and the granule cell layer. The spatial contours reflecting distinct 

cell morphologies were automatically registered to the optical image used for reflector negative MSI acquisition, 

thus enabling extraction of the respective mass signatures. Comparison between the MS lipid/metabolite profiles 

of NPC1 and C57BL/6 mice guided to the obtained infrared segments was achieved by means of t-test based 

feature extraction (C-F) The mean intensity of ten distinct masses allowing for discrimination between healthy 

and diseased mice was visualized for each predefined cerebellar substructure. 

 

Most of the received marker signals were found to differ between segments, which 

leads to the presumption of locally restricted lipid accumulation. The highest similarity 

was observable between the molecular layer and the observed unspecified 

microstructure that share five common features of which three are m/z 806.6 and its 
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potential isotopes m/z 807.6 and m/z 808.6. In NPC1 |1061T knock-in mice, the 

molecule of m/z feature 1136.9 was found to be up-regulated within the cerebellar fiber 

tract and concurrently down-regulated in the granule cell layer. In this context, the 

achieved morphological breakdown derived by FTIR segmentation enables the 

identification of local mass shifts that would otherwise balance out over the entire 

dataset. In this regard, by comparing the obtained results to the mouse model-

describing literature [131], the granule cell layer-specific accumulation of m/z 1382.9 

and its potential isotope m/z 1383.9 become particularly interesting (Fig. 26A), as it 

may refer to the previously reported disease-related ganglioside GM2 (d18:1/18:0). An 

argument against this hypothesis is the mass-difference of 0.2 Da when compared to 

previous mass spectrometry analyses of GM2 (d18:1/18:0) [158]. For further 

evaluation, the granule cell layer-specific increase of m/z 1382.9 was monitored in 

subsequent sagittal brain sections of NPC1 |1061T knock-in and C57BL/6 control 

mice. Fold change plots (Fig. 26B) of the mass features acquired within the sagittal 

cerebellar granule layer were created in Tableau (Tableau Software Inc., Seattle). The 

obtained data confirmed the identification of a locally-restrictive accumulation that is 

not noticeable without prior morphology-guided dissection.  

 



Results 

72 

 

Figure 26 FTIR-guided identification of NPC1-related locally-restricted GM2 accumulation  

(A) The distribution and accumulation of m/z 1382.9 was monitored within cerebellar brain sections of 

NPC1 |1061T knock-in and C57BL/6 control mice. The mass was previously identified as a potential 

discriminant marker in granule cell segments denoted by FTIR imaging. (B) Comparison of the fold 

change between mass spectra originating from the entire section and mass spectra exclusively 

originating from the granule cell layer demonstrates the added value of prior FTIR dissection. 

 

In conclusion, the obtained results suggest that, without the need for H&E staining, 

FTIR image-based tissue segmentation and segment-wise comparison of MS data 

allow for unbiased extraction of distinguishing features. The presented workflow is fully 

automatable.  
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5.3.3 Identification of GIST by means of FTIR cluster analysis 

An essential and challenging task for the identification of diagnostic markers in mass 

spectrometry imaging is the occurrence of histological heterogeneities. , as the cellular 

origin of acquired mass signatures is uncertain without annotation. For this reason, it 

has become common practice to utilize subsequent H&E stained sections and 

pathological guidance in order to define striking tissue regions of similar morphological 

makeup. However, the manual assignment in current praxis makes it impractical for 

the analysis of large tissue cohorts. In this context, recent publications have 

demonstrated direct cluster analysis of MSI data in order to de novo identify 

heterogeneities and tumor-subpopulations in breast and gastric cancer [159, 160]. 

Moreover, linkage between intra-tumor segments that are a priori not observable by 

conventional histopathology and disease outcome has been presented [118, 161]. The 

depicted studies reflect the high potential of unsupervised discovery of tissue 

heterogeneities. However, size and complexity of ultrahigh-resolution MALDI-MSI data 

(especially when using a FTICR detector) makes clustering of large sample cohorts 

impractical and demands for excessive pre-processing and dimensionality reduction. 

In contrast, FTIR images are of comparably small size which makes it possible to 

virtually micro-dissect a multitude of tissue sections in a faster and computationally 

less expensive fashion when compared to MALDI-MSI (chapter 4.1.4.). Moreover, the 

derived information about intra- and inter-sample dependencies can automatically be 

transferred to MSI in contrast to manual histopathological annotation. In order to 

examine histological heterogeneity in a suitable test case of clinical relevance, three 

series of 89 fresh-frozen tissue samples derived from 27 patients suffering from GIST 

were cut to 8 μm thickness and mounted on gold-coated object carrier slides. FTIR 

images of all specimens were acquired at 25 μm spatial and 8 cm-1 spectral resolution. 

Sectioning and infrared measurements were performed over the course of multiple 

days to balance out practical and technical variability. For later histopathological 

reference analytic, subsequent tissue sections were placed on Starfrost adhesive 

slides. H&E staining was performed by research assistants at the Pathology Institute 

of University Medical Center Mannheim, and optical reference images were acquired 

using an Aperio CS2 Scanner. In order to identify tissue heterogeneity in an 

unsupervised fashion, processed FTIR images were grouped by means of k-means++ 

cluster analysis. It was assumed that related morphologies would display similar 

vibrational properties across all patients. For this reason, segmentation was 
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simultaneously performed across sections on a total number of 1231560 MIR-spectra. 

As the true number of occurring tissue morphologies was unknown, segmentation was 

performed with different k-values in the range of 3-10 (k = 5 exemplified in Fig. 27A). 

Thereby, calculation and spectral allocation was rapidly performed in ~90 seconds 

resulting in a color-coded pattern of inter- and intra-tumor dependencies. In this 

context, heterogeneities could be observed in almost all examined tissue sections. 

However grouping was possible, as the prevalent color remained mostly consistent 

within section series of the same patient recorded on different days. Hence, sections 

of patient A, AA, AB, C, G, J, M, N, O, U, W and Z were assigned to belong to the 

same allocation group “red” and patient E, L, Q, R, S and Y were assigned to “purple”. 

Similarly, patient D, G, X and T who underwent surgery an additional time after tumor 

relapse were assigned to “blue”, patient I, K, P and V to “green” and patient B and Lto 

“yellow”. Differences between sections derived from the same patient were observed 

in AA, E, J, W and Y for which allocation changed between the red and purple segment 

and V for which two section was assigned to “green” and one section was assigned to 

“yellow”. In order to assess the corresponding morphological characteristics, the 

respective samples were linked to clinical metadata (Supplement Table) and 

annotated subsequent H&E stains (exemplified in Fig. 27B). It turned out that the red- 

and purple-colored segments represent tumor areas, whereas the blue-colored 

segment corresponds to the occurrence of fibrosis and edema. The green allocation 

group could be correlated to adipose tissue in patient I and necrosis in patient P and 

K. In patient A, the green-allocated residue represented normal liver tissue. The 

remaining yellow-colored segment was found to correspond to sectioning artifacts like 

folds and freezing damage.  
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Moreover, it turned out that the tumor origin might influence segmentation, as the tissue 

sections of the blue-coded patients B, D, F, T and X were all resected out of the colon. 

However, no such correlation was observable for sections derived from other organs. 

Furthermore, a hematoma observed in the liver section of patient G also perfectly 

matched the blue-allocated pixels in that section. (Fig. 27B). Although the red- and 

purple-colored segment resemble the annotated tumor regions in all samples, a 

relation to different mutation subtypes of GIST was not observable, as all red and 

purple sections were genetically distinct.  For example the spectra derived from patient 

C and Z were clustered similarly, although the tumor of patient C features a mutation 

of c-KIT in exon 9, whereas the tumor in patient Z features mutations in exon 11 and 

13 as well as a mutation in exon 18 of the PDGFRα gene. It can therefore be concluded 

that FTIR image segmentation is suitable to identify dense tumors in large sample 

cohorts in a fast and computationally inexpensive fashion. The presented subgrouping 

of patient-derived tissues could serve as a prescreening in order to guide subsequent 

MALDI-MSI examination. As the prior selection of “pure” cell groups of similar 

molecular makeup is a necessary condition for the identification of biomarkers, the 

method can be used to boost classification efficacy [162]. Moreover, differentiation and 

segmentation can be performed without the need of any a priori information, except 

the number of expected tumor subpopulations k. In that regard, the depicted example 

of k = 5 segmentation appears inappropriate, as the resulting red and purple segment 

do not correspond to divergent histological features. In order to identify diagnostic 

features that reflect tumor subpopulations and patient outcome, an increased chemical 

specificity as provided by mass spectrometry would be necessary.  
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5.4 Same-slice targeted FTIR-guided FTICR-MS acquisition 

Extraction of mass features targeted to pre-defined tissue morphologies and/or 

divergent cell populations by means of FTIR segmentation improves the interpretation 

and characterization of MALDI-MSI data in an unbiased and histopathology-

independent manner. As a negative side effect, the integration of FTIR images 

prolongs the experimental acquisition time and induces additional data load. This is 

especially unfavorable in a clinical setting in which speed and ease of a technique are 

necessary for its applicability. For this, the analysis of large tissue series typically 

demands a compromise between resolution and throughput in order to keep data load, 

acquisition time and computational cost manageable. In addition, only a small, 

manually-defined fraction of the recorded MSI data is actually used for later 

characterization [21]. To this end, it becomes obvious that the pre-definition of spatially 

restricted morphological structures for target-exclusive MALDI-MSI measurements has 

the potential to drastically increase throughput. FTIR images are beneficial as their 

acquisition only takes a fraction of time when compared to MSI, especially ultra-high 

resolution MSI. Moreover, segmentation of FTIR images provides guidance to 

predefined tissue morphologies without the introduction of user bias. In order to 

overcome the computational and practical challenges related to ultrahigh-resolution 

MS, the developed workflow was modified to allow for automated acquisition of FTIR 

and ultrahigh-resolution MALDI-MSI images using a FTICR-MS (Fig. 28). Moreover, 

the use of gold-coated object slides enables multimodality imaging on the same tissue 

section and thus guarantees the needed precision for high-resolute registration and 

morphology definition.  
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Figure 28 Schematic workflow diagram for FTIR-guided single-slice acquisition of MSI data. FTIR image 

acquisition on gold can be utilized to denote measurement regions and/or ROIs prior to MALDI-MSI acquisition 
from the same slide. The spatial contours are defined by segmentation of the FTIR image and subsequent 
registration to the optical image used for later MSI measurement. By choosing a particular segment, its respective 
MSI contour points can be calculated in order to modify the MSI acquisition file. The presented workflow enables 
unbiased targeted mass feature extraction and multimodal acquisition of the same tissue specimen, thus 
guaranteeing optimal registration. 

 

Most importantly, transfer of FTIR-derived spatial information to the FTICR mass 

spectrometer before MSI acquisition enables the exclusive measurement of a pre-

defined number of segments in subsequent MALDI-FTICR-MSI. In order to examine 

the capabilities of this new workflow, coronal and sagittal brain sections of C57BL/6 

wildtype mice were prepared for FTIR- and subsequent MALDI-FTICR-MSI 

measurement. PhCCA in 90% acetone solution was used as a matrix to enable optimal 

crystallization and recording of lipid and metabolite signals in reflector negative mode. 

Utilizing FTIR image-based k-means++ segmentation, MALDI-FTICR-MSI 

measurements were directed at morphological structures of interest, namely the 

dentate gyrus of the hippocampus in the sagittal mouse brain section and the 

cerebellar fiber tracts in the coronal section. Targeted MALDI-FTICR measurement of 

the dentate gyrus was achieved by partitioning the respective FTIR image into eight 

segments (Fig. 29A). After successful registration (DSC = 0.99), masses were 
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recorded using a common 512kB data point size (Fig. 29B). The resulting image was 

acquired in 24 min, which indicates a reduction of 97.8% compared to an acquisition 

time of 18.2 h for the whole tissue section (Fig. 29C). Accordingly, the data volume of 

the whole tissue section was reduced from 35.3 GB to 0.7 GB. MALDI-FTICR 

measurement of the fiber tracts in coronal brain sections was achieved by subdividing 

the respective FTIR image into five segments (Fig. 29D). After registration to the 

optical image used for MSI (DSC = 0.992), cerebellar fiber tracts were exclusively 

measured using a more excessive 4M data point size (Fig. 29E) that resulted in a total 

data load of 189.5 GB. This implies a reduction of 79.3% when compared to 

whole-tissue image acquisition that would have resulted in a total data load of 

915.3 GB (Fig. 29F). Similarly, the data acquisition time was reduced to 15.4% from 

25.4 hours down to 3.9 hours. In both test cases, the cluster number k was gradually 

increased until the desired morphological sub-region became observable. 
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Figure 29 FTIR-guided, spatially restricted data acquisition by ultrahigh-resolution 

MALDI-FTICR-MSI (A) Based on a FTIR-image of a sagittal CB57BL/6 brain tissue section, 

segments were calculated by means of (k = 8) k-means++ cluster analysis. (B) The segment 

that represents the spatial contours of hippocampal dentate gyrus was picked and registered to 

the optical image used for subsequent ultrahigh-resolution MALDI-FTICR-MSI, thus enabling 

targeted segment-exclusive recording of mass features. The depicted example image of 

m/z 1133.64 (± 0.05) was acquired in reflector negative mode after matrix coating with PhCCA 

in 90% acetone solution. (C) Targeting of the dentate gyrus region using a common 512k data 

point size drastically decreases (97.8%) data load and admission time. (D) In a similar fashion, 

the coronal brain tissue section of a CB57BL/6 mouse was dissected into five segments to 

enable targeted acquisition of the cerebellar fiber tracts. (E) The depicted intensity distribution 

of m/z 906.61 (± 0.05) was acquired in reflector negative mode using a more excessive 4M data 

point size, thus (F) reducing data load and acquisition time by 79.3%. 

 

Ultimately, time saving and data load decrease are determined by the size of the 

respective segment used for acquisition. In conclusion, the potency of FTIR-guidance 

to drastically improve throughput and data handling of ultrahigh-resolution MSI was 

demonstrated using a Bruker Daltonics MALDI-FTICR-MSI system.  
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6 DISCUSSION 

In this thesis, a robust workflow that combines the speed and ease of vibrational 

spectromicroscopy with the in-depth chemo-analytical capabilities of mass 

spectrometry imaging was developed. Instead of combining the obtained spectral 

features in order to potentially discriminate between different cell populations with 

higher accuracy, a multimodal guidance approach was investigated in which FTIR 

imaging guides the interpretation and acquisition of subsequent MSI experiments. In 

this context, a variety of (semi-)automated methods for the targeted extraction and 

acquisition of mass signatures was evaluated.  

 

6.1 Technical evaluation of FTIR and MS imaging 

A major part of this work focused on the development and evaluation of an automated 

workflow that enables combinatory FTIR-MS multimodality imaging. With respect to 

the work of Wehbe et al. [145], the first challenge during development was the 

evaluation of different coating-materials and their influence on MS and FTIR imaging. 

In case of FTIR, imaging of homogeneous porcine liver sections use using ITO-coated 

slides that represent state-of-the-art material for MS image acquisition was proven to 

significantly impair spectral quality and dispersion when compared to slides coated 

with gold or Ag/SNO2 [146, 147].. For this reason, ITO was considered impractical for 

vibrational imaging, although FTIR-based segmentation results were comparable. In 

case of MSI, no critical differences between gold- and ITO-coated object carriers were 

observable. In comparison to ITO, signal intensity of mass spectra acquired on porcine 

liver sections was slightly increased when obtained on gold. However, as the improved 

signal was accompanied by increased scattering, the influence of different conductive 

slide-coating materials on MS imaging remains uncertain. MS imaging on MirrIR-slides 

was not evaluated, as the slides didn’t fit into the target plate holder of the mass 

spectrometer and no compatible replacement was found. Taken together, these 

findings don’t impede the usage of ITO-coated object slides for parallel acquisition of 

FTIR and MS images, but same-slide measurements appear unfavorable. In 

comparison to gold-coated carriers, ITO- and MirrIR-slides hold the advantage of being 

transparent and thus allow for histopathological staining following MALDI-MSI and 

FTIR imaging measurements. By contrast, gold can be utilized for both imaging 
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modalities and thus enables subsequent FTIR- and MS-image acquisition on the same 

specimen. This represents a significant advantage for multimodality imaging purposes 

by further improving registration efficiency [19, 21].  

 

Besides practical considerations necessary for the realization of combinatory MS-FTIR 

imaging, a conceptual strategy had to be thoroughly investigated. In this sense, two 

major strategies for multimodal imaging exist. The former combines the orthogonal 

information obtained from different sensor types or acquisition modes to create 

hyperspectral data that allows for joint analysis and a deeper insight into the chemistry 

of complex samples [13, 163]. The later utilizes the sensor-dependent capabilities of 

one modality for the purpose of improving or guiding another downstream modality [14, 

20, 164]. In this work, the segmentation and classification capabilities of MS and FTIR 

imaging were investigated. In this context, FTIR-based segmentation of glioblastoma 

xenograft tissues and human-derived GIST was proven superior when compared to 

MALDI-MSI, as the respective tumor contours were depicted with higher accuracy. 

Advanced state-of-the-art clustering algorithms improved the dissection of MSI data 

sets when compared to the k-means++ method and thus indicate that proper clustering 

of MSI is possible [144]. However, the FTIR-derived structural information connote a 

significant improvement. In order to extend the capabilities of MSI-segmentation, a 

variety of segmentation pipelines have been presented in recent publications 

(reviewed in [165]). In a comparative study of Sarkari et al., enhanced MSI 

segmentation was presented by applying prior dimensionality reduction and alternating 

distance metrics [166]. Widlak et al. demonstrated unsupervised iterative k-means 

clustering of squamous cell carcinoma by including a Gaussian mixture model in order 

to detect spectral components [167] and Bemis et al. examined the potency of 

probabilistic segmentation by applying spatial shrunken centroids [168]. Moreover, the 

applicability of dimensionality reduction techniques such as PCA and t-SNE to 

visualize structures in MSI data was examined [169]. Despite these findings, 

FTIR-based tissue segmentation holds major advantages. The technique is unaffected 

by ion suppression, analyte-diffusion or other effects that may suppress the 

identification of morphology-dependent differences. Moreover, the technique operates 

comparatively fast at higher spatial resolution and demands for no excessive 

processing. The feasibility to record FFPE tissue materials was also demonstrated, 

although segmentation failed to identify tumor areas in human-derived prostate cancer 
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sections. It is uncertain, if this is due to the noise increase caused by embedding 

medium residues or if FTIR segmentation is in general not able to visualize cancer in 

this particular tumor type, as more comprehensive studies of different tissue types 

would be needed. The presented long-term experiments demonstrated high stability 

and technical reproducibility of FTIR-denoted tissue segmentation. In that sense, the 

establishment of a tissue databases for quality control purposes appears to be 

possible. The non-destructive nature of FTIR microscopy makes it also applicable prior 

to MSI, thus providing structural information prior to MSI acquisition. However, FTIR 

lacks the ability to directly visualize individual molecules in a multiplex manner which 

makes its combination with mass spectrometry expedient. Taken together, these 

considerations indicate for the potency of guided multimodality imaging that utilizes the 

rapid virtual dissection of tissues obtained from FTIR imaging to define homogeneous 

cell populations in subsequent MSI experiments.  

 

6.2 Development of FTIR-guided MSI 

According to the depicted single modality results, a workflow for FTIR-guided, 

ultrahigh-resolution MSI was developed that offers interpretation and data acquisition 

focused on defined tissue sub-compartments independent of histopathological 

staining. This represents a substantial advance when compared to previous image 

fusion approaches that rely on H&E images acquired on adjacent sections for 

interpretation [14, 18, 21]. The ability of infrared spectroscopy to visualize different 

classes of biomolecules provides a particularly powerful tool for the analysis of tissue 

samples as traditional histology is only able to visualize a few molecules 

simultaneously [170]. The presented concept for multimodal imaging can be easily 

transferred to any other non-destructive optical upstream modality (i.e. Raman 

imaging), thus providing guidance in cases where FTIR imaging is incapable of 

identifying tissue regions of interest. Spatially guided imaging is applicable to MSI data 

obtained using any ionization method and mass spectrometer (i.e. DESI-MSI). The 

only requirement is the alignment of both imaging planes onto the same coordinate 

system for which a registration routine was developed in MATLAB. Thereby, the 

acquired FTIR image and the optical image used for MSI acquisition are transferred to 

binary and subsequently registered. 
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6.3 Tumor targeting and spatially restrictive mass feature identification 

Integration of the molecular information provided by MALDI-MSI and tissue anatomical 

structures that can be resolved by microscopy is mandatory for its clinical 

implementation. Utilizing spatial features derived from FTIR imaging, the precise 

identification of tumor-associated contours was presented in mouse brain sections 

inoculated with human U87-MG glioblastoma cells. This was achieved by joint 

clustering of all acquired mid-infrared images at once, as it reveals cellular intra- and 

inter-section dependencies. For this reason, the linkage between a single 

segmentation image and its corresponding H&E stain sufficed to enable tumor 

localization in all biological replicates. In contrast to MSI, clustering of FTIR data 

acquired for multiple sections was easily performed without the need of excessive 

preprocessing. In order to extract tumor-specific mass signatures with increased 

precision, regions of interest were defined by registering the retrieved tumor-segments 

to MSI space. The registration quality was quantified by calculating the DSC that 

suggested a precise alignment between FTIR image and MSI data set 

(DSC = 0.982 ± 0.004). Whereas the capability to visualize sparse tumor populations 

might represent a challenging task, automated segmentation and registration of tumor-

lesions was readily performed. In addition to tumor-contours, molecular differences 

were observed in an expansion of the tumor margin (referred to as the ‘S2 segment’). 

Both the retrieved distribution pattern of glioblastoma and altered surrounding tissue 

were backed up with chemical mass features. These observations emphasize the 

potency of FTIR-imaging to reveal molecularly substantially altered cell populations 

that are invisible to conventional H&E staining. In order to further characterize the 

segment, additional histopathological and/or in-depth mass spectrometry techniques 

such as tandem mass spectrometry may be considered. Without further knowledge, 

the hypothetical origin of the S2 contour might be a brain edema caused by the 

inoculation and/or a glioma-characteristic infiltration zone. It is also possible that S1 

and S2 refer to the glioblastoma-characteristic necrotic tumor center and surrounding 

anaplastic cells. 

 

It is noteworthy that the identification of U87-MG xenograft patterns in mice represents 

a simplified test case in comparison to clinical human-derived glioblastoma biopsy 

analysis. On top of this, the origin of U87-MG was critically scrutinized by Allen et al. 

in a recently presented study [171]. Based on genetic profiling and transcriptome 
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analysis, they discovered that the DNA profile differed from the cells originally isolated 

by J. Ponten and associates from 1966 to 1969. However, the automatic alignment 

between FTIR and MSI holds great promise as the mapping of data from different 

sensors to the same coordinate space allows for an improved biomolecular profiling of 

the examined specimen. Moreover, the structural annotation provided by FTIR 

segmentation enables the extraction of mass features in context of their anatomical 

localization and mitigates the lack of a priori information that mass spectrometry 

laboratories often deal with.  

 

6.4 Automated screening for local mass biomarker signatures 

In the course of this work, a method that utilizes segmentation of FTIR images in order 

to explore tissue morphologies in MSI data was developed. Serving as a suitable 

example, lipid disorders were examined in mouse brain, arguably one of the most-used 

models to investigate human neurological diseases [172]. The technique was able to 

identify spatially restrictive mass signature shifts between NPC1 and wild-type mice by 

using the FTIR-denoted anatomical structures as a template for pairwise feature 

extraction. This way, disease-related effects could be associated to distinct brain 

regions without any a priori information about their spatial occurrence. In comparison 

to the ABA the origin of three segments could be identified, namely cerebellar fiber 

tracts as well as granule and molecular cell layer. In addition, an intermediate region 

between white and grey matter was identified. Although the morphological origin of this 

structure is unknown, it was repeatedly observed in FTIR images acquired throughout 

the course of this thesis. The most likely reason for its occurrence is the partly 

acquisition of granule cells and myelinated axons in a single pixel. As the infrared 

signatures of the granule cell layer and the cerebellar fiber tract differ considerably, 

mixed signals have the potential to form a distinct cluster during segmentation. This 

hypothesis is supported by two observations. First of all, the structure’s calculated 

thickness mostly amounts to a single pixel (25x25 μm) which could account for the 

fuzzy intersection between grey and white matter. Secondly, a similar border region 

was obtained at the outer edge of the tissue. The respective segment was discarded 

prior to the analysis, as it is conceivable that it represents the intersection of spectra 

acquired on- and off-tissue.  
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Notwithstanding the above, the presented technique substantially improves MSI 

analysis by predefining cerebellar sub-sections. This way, the local accumulation of 

distinct masses, such as m/z 1382.9, which was insignificant over the entire dataset 

became detectable. This particular mass might refer to the previously reported 

accumulation of GM2(d18:1/18:0) although the reported mass differs [131, 158]. This 

allows for two possible explanations: Either the depicted m/z 1382.9 refers to a different 

molecule that has not been reported in the mouse model-describing literature or the 

mass axis was misaligned during the presented MS experiment. Future 

ultrahigh-resolution MSI experiments will further investigate the origin chemical identity 

of m/z 1382.9. 

 

Biomedical MSI is typically not feasible for intraoperative applications and therefore 

carried out in analytical laboratories for which tissue annotation is a major bottleneck. 

The automatic alignment and dissection of MS data into subsections facilitates 

comparative studies of structured organs (e.g. brain, kidney) or infiltrating tumors of 

different origin. On the negative side, it doesn’t improve comparative analysis of 

homogeneous specimen (e.g. liver sections). It is noteworthy that the presented spatial 

decomposition occurs solely at data level and can therefore be adjusted should the 

initial experiment fail to detect sub-structures of interest. For this reason, FTIR-guided 

dissection holds decisive advantages when compared to disruptive procedural steps 

such as laser-capture microdissection that are irreversible [20, 164]. In addition, joint 

segmentation of multiple images would guarantee the comparative analysis of inter-

section compartments with a similar morphological composition, thus circumventing 

the need for atlas linkage [173]. 

 

6.5 Assessment of histological heterogeneity  

A major challenge in (pre)clinical mass spectrometry imaging is the occurrence of 

histological heterogeneities. The occurrence of morphological differences impedes 

true molecular marker identification by introducing variability and mixed class data 

sets. Without precise information regarding the identity of each acquired signature, it 

is highly possible that tumor-related signals are overlooked. For mass spectrometry, 

the conventional approach of integrating histopathological tissue stains can prove to 

be insufficient [21, 97, 174, 175], as they demand for manual annotation and are thus 
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not automatable. Moreover, the unbiased exploration of alterations demands for an 

untargeted analysis technique that accounts for the spatial tumor environment. In order 

to solve the issue, direct segmentation as well as t-SNE dimensionality reduction and 

color-coding of MSI data have been presented [118, 159, 176]. Thereby, 

heterogeneities and subpopulations were identified de novo in breast and gastric 

cancer and tumor-types that were not distinguishable by conventional histopathology 

could be linked to disease outcome prognoses [118, 159-161]. Despite the reported 

potential of direct MSI dissection, this method has major disadvantages. In a practical 

sense, size and complexity of MALDI-MSI data (especially ultrahigh-resolution MSI 

using a FTICR detector) makes unsupervised clustering of large sample cohorts 

impractical and time consuming as it demands for excessive pre-processing. 

Moreover, the high information content of MSI data is not necessarily beneficial for 

segmentation purposes as the high dimensionality introduces multiple challenges. 

Although some dimensions (mass features) are characteristic of a given subgroup, a 

larger number of attributes will usually not be meaningful and can mask existing 

clusters in high-dimensional data sets [177, 178]. Furthermore, it is likely that the 

disease-related effects are depicted in multiple mass features. This presents a 

challenge as samples should only be grouped together if they exhibit a common 

correlation among the respective set of m/z-values. The phenomenon that different 

features or correlations may be relevant for varying clusters is called local feature 

relevance. Lastly, pattern recognition from a finite number of data samples in high-

dimensional feature space suffers from what is called “Curse of Dimensionality”, where 

the concept of distance substantially loses precision and consequently degrades the 

predictive power of the classification models [112].  

 

In comparison to MSI data, FTIR images are of comparably small size which allows for 

the joint segmentation of a multitude of tissue sections in a faster and computationally 

less extensive fashion. For example, FTIR-based segmentation of 89 GIST-patient 

derived tissue samples was carried out in ~90 seconds on a standard desktop 

computer. In that regard, the technique may hold great potential as a supporting tool 

in clinical MSI rather than a contender, as the identified group’s origin was mostly linked 

to the occurrence of tumor or fibrosis. In order to identify diagnostic features that reflect 

the tumor’s genetic variance and patient outcome, the chemical specificity of mass 

spectrometry would be necessary. Nevertheless, joint FTIR-segmentation of tissues 



Discussion 

88 

offers fast initial subgrouping of large tissue cohorts and can pre-select tumorous areas 

prior to MSI acquisition and mostly independent of H&E staining. The obtained 

allocation information can contribute to in-depth mass feature analysis in two ways. 

First and foremost, it becomes possible to pre-select samples of similar morphological 

composition, thus reducing the locale feature relevance and boosting subtype 

identification in MSI [162]. Secondly, FTIR-based dissection can be utilized to identify 

tissue inhomogeneity prior to MSI, thus minimizing subgroup-irrelevant spectra that 

reduce classification efficacy.  

 

6.6 Targeted spatially-restrictive high-resolution MSI acquisition 

Lastly, FTIR-denoted, segment-exclusive MALDI-FTICR-MSI was showcased as a 

way to overcome the compromise between spatial and spectral resolution needed for 

high-throughput measurements. The technique also enables the exclusive processing 

of similar cell populations, thus reducing data variance when compared to whole-organ 

images. These aspects are beneficial for very specific analyses of tissue structures, as 

time and data savings are achieved by discarding the pixels of all remaining sections 

before acquisition. Although the selection of an appropriate segment for further in-

depth mass spectrometry experiments requires knowledge regarding its location, 

shape or spectral composition, the presented workflow is independent of conventional 

histopathological staining. This represents a substantial advance when compared to 

previously reported solutions [19, 21], as the acquisition of spatially-restrictive regions 

solely relies on unbiased FTIR image segmentation results. In addition, the results of 

this thesis have emphasized the advantages of FTIR-based image dissection when 

compared to conventional histopathological stains. First and foremost, MIR-spectra 

contain additional biomolecular information that enables a more detailed differentiation 

of cells. Secondly, the use of gold-coated object slides enables FTIR image acquisition 

of the same tissue specimen prior to the MSI experiment. Same-slice acquisition 

represents a significant upgrade by further improving registration efficiency when 

compared to consecutive section registration. Moreover, same-slice measurements 

minimize practical deficiencies that can be caused by sectioning artifacts such as tears, 

strains and folds. This is essential for the exclusive acquisition of smaller tissue 

compartments, i.e. the granule cell layer of the dentate gyrus, as small misalignments 

can cause the subsequent MSI acquisition to miss the desired region. However, 
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preparation and acquisition on gold-coated slides also produces disadvantages, as the 

opaque surface limits the applicability of subsequent same-slice stains and 

microscopy. Moreover, the use of gold introduces additional costs when compared to 

ITO. For these reasons, MirrIR-slides of MS-compatible size might be better suited for 

multimodal FTIR-guided MSI depending on their conductive property. Although 

Ag/SNO2 has been reported to possess excellent electrical and mechanical qualities 

[179, 180], the exact coating-composition of MirrIR-slides is unknown and its effect on 

MSI has not been evaluated in the course of this thesis.  

 

The capability to automatically identify and exclusively acquire small-sized tissue 

compartments is ultimately denoted by the guiding optical modality and cluster 

algorithm. In this work, FTIR-guided high-resolution MSI was demonstrated using a 

Bruker Daltonics MALDI-FTICR-MSI system. However, the presented workflow is 

vendor-neutral and applicable to any subsequent imaging technique that allows to 

define measurement regions prior to recoding – be it by courtesy of an optical image 

or point definition within a vendor-specific acquisition file. The presented concept for 

multimodal imaging can be easily transferred to any other non-destructive optical 

modality (i.e. Raman imaging), thus providing guidance in cases where FTIR imaging 

is incapable of identifying the structure of interest. In addition, the workflow is 

applicable to MSI data obtained using different ionization methods and/or mass 

analyzer (i.e. DESI-MSI). The only requirement is the alignment of both imaging planes 

onto the same coordinate system. In summary, the presented technique for 

multimodality imaging bypasses computational and practical challenges in cases 

where either the region of interest only represents a comparatively small tissue fraction 

or the acquisition of whole-tissue sections is not feasible. In a similar fashion, the 

technique can be utilized to better focus high spatial and mass resolution analyses by 

limiting acquisition to morphological structures of high spectral homogeneity. 

Multimodality imaging of the same tissue slide is especially advantageous as it 

circumvents structural dissimilarities between subsequent sections and artifacts 

caused by tissue handling, such as stretches, tears or folds. In addition, it renders the 

need for additional tissue preparation steps unnecessary, which speeds up the 

workflow. On the negative side, the region-specific recording of mass data limits 

retrospective analyses and requires the region of interest to be known in advance.  
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6.7 Different cluster approaches 

The current work has focused on k-means++ clustering for its potential to rapidly 

segment complex data and therefore increase the throughput of subsequent 

ultrahigh-resolution mass spectrometry analysis. Although k-means++ represents an 

advantageous technique that can partition big data sets at a low cost of central 

processing unit (CPU) load, it also features several disadvantages. The specified 

number of computed segments k needed for clustering represents a remaining source 

of user-bias. In most experiments, the true number of identifiable tissue sub-structures 

is unknown and it is therefore up to the experimenter to determine a fitting value. 

However, this process creates two particular risks, as k-means++ represents a hard 

cluster technique that strictly allocates each pixel to one group only. If k is chosen too 

low, structures of importance might be overlooked. If k is chosen too high, the image 

is forcefully partitioned into sub-compartments that do not represent real structures, 

thus creating noise. This issue is reinforced by the fact that tissues of identical origin 

do not necessarily share a common number of mid-infrared sub-structures, which limits 

the applicability of organ-specific k-values. There are two specific reasons for this 

problem. First, tissues of the same organ can still vary in their composition, depending 

on the cutting side and disease-related effects. Second, folds and other sectioning 

artifacts typically represent separate segments, as the increased tissue thickness 

substantially alters the acquired mid-infrared spectrum. In this work, a possible solution 

that might mitigate the k-bias was proposed by applying cluster evaluation methods, 

i.e. the presented Calinski-Harabasz criterion [125] or the Davies-Bouldin index [181]. 

However, the CHC was found to be sometimes inappropriate to define a k-value that 

represents the true number of within-tissue morphologies. In multiple cases throughout 

this study, the most stable number of allocation groups was too low and cell 

populations that could be verified in H&E were only visible for manually increased k-

values. For this reason, multiple k-values were tested in many of the depicted studies 

and empirically evaluated. It is up to additional experimental testing to verify the 

accuracy of cluster evaluation techniques in order to pre-define a suitable k-value for 

tissue segmentation. 

 

An additional limitation of k-means++ is the strict partitioning of the acquired image. 

Each obtained spectrum is assigned to exactly one cluster without overlapping. In 

biology however, it is conceivable that a given cell or cell population is representing 
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multiple characteristics simultaneously. In that sense, alternative segmentation tools, 

i.e. agglomerative hierarchical cluster analysis [182, 183] that is independent of the 

value k or fuzzy c-means [184, 185] that allows each data point to belong to multiple 

clusters, could enable a more detailed and independent coverage of tissue areas. 

However, hard clustering is essential for segment-exclusive MSI acquisition. For the 

technical implementation, it is of importance to denote the exact coordinates of all 

acquired pixels, as partial recording is not possible. Moreover, the depicted alternate 

algorithms demand for additional CPU load which minimizes throughput.  
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7 SUMMARY AND OUTLOOK 

Mass spectrometry imaging provides ultrahigh-resolution mass information needed to 

uncover molecular features and heterogeneities related to the disease-state of tissues. 

The technique holds great potential in cancer research and patient personalized 

medicine, as it has demonstrated its ability to uncover tumorous cell populations and 

disease-related effects. Modern ultrahigh-resolution mass analyzers (i.e. FTICR) have 

greatly increased cell-profiling accuracy at the cost of ever increasing data load. For 

this reason, a major challenge that impedes routine clinical implementation to date has 

been the identification of regions of interests within the highly complex datasets. 

Analysis of large tissue cohorts typically demands prior histopathological annotation, 

in order to keep data load and acquisition time manageable. In contrast, the speed, 

simplicity and non-perturbing nature of vibrational microscopy has made it a valuable 

tool to complement current histopathological practice. The technique provides a rough 

overview of biomolecular distribution patterns under native conditions, but lacks MSI’s 

potential to identify specific molecules. Therefore, the development of a multimodal 

imaging workflow that combines both technique’s capabilities while overcoming 

modality-dependent restraints would have substantial impact on future research and 

perhaps clinical practice.  

 

For these reasons, this thesis focused on the following four objectives:  

1.) Evaluation of suitability of different slide-coating materials for FTIR and MS 

single modality imaging. 

2.) Development and technical evaluation of an automated workflow that 

enables combined FTIR and MALDI-MSI tissue analysis. 

3.) Application of this technique for the discrimination of healthy and diseased 

tissues in various disease models. 

4.) Use of FTIR-guidance in order to pre-define acquisition regions in 

subsequent MALDI-MSI experiments, thus reducing data load and 

acquisition time.  

 

In the first part of this study, different coating materials were tested for their applicability 

in FTIR and MS imaging. Thereby, it could be shown that the respective composition 

had a substantial influence on spectral quality in both modalities. For FTIR imaging, 
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gold- and Ag/SNO2 (MirrIR)-coating provided superior spectral quality and less 

dispersion on homogeneous liver tissue samples when compared to ITO. For MSI, the 

use of gold- and ITO-coated slides resulted in comparable mass signatures and 

dispersion. MirrIR-slides could not be used for mass spectrometry as they didn’t fit into 

the Bruker instrument. For these reasons, multimodal experiments were carried out on 

gold-coated slides. Moreover, the feasibility of long-term FTIR studies and 

measurements of FFPE tissues was briefly evaluated.  

 

In the second part of this study, a concepts for guided multimodality imaging was 

developed. In this context, FTIR image segmentation was able to identify tissue 

structures and cancerous lesions in human primary GIST and murine glioblastoma 

xenograft tissues with higher precision when compared to MSI. These findings 

emphasized the benefits of a guidance approach and a multistep workflow with the 

purpose of defining homogeneous tissue structures based on FTIR images in order to 

partition complex MSI data was developed. By registering the FTIR-derived cluster 

contours to the optical image used for MSI acquisition and interpretation, it became 

possible to identify and define molecularly distinct tissue morphologies for MALDI MSI 

guidance.  

 

In the third part of this study, the utility of the developed multimodality imaging workflow 

was exemplified in multiple disease models. Based on FTIR imaging, tumor-related 

contours that were partially invisible to conventional histopathological staining could 

be visualized in murine glioblastoma xenograft models. By registration to MSI that was 

acquired in parallel, it became possible to screen for tumor-associated mass 

signatures. For each of two tumor-segments, ten masses were identified by means of 

feature extraction using the empirical ROC curve criterion. The distribution pattern of 

all 20 masses matched the respective FTIR-segment, thus emphasizing its authenticity 

and the advantages of the developed workflow. In cases for which no a priori 

information about the spatial occurrence of disease-specific effects is available, 

automated segment-wise mass signature exploration was presented. Without user-

bias or the need of stains, specific mass shifts could be detected and linked to 

cerebellar subsections in a murine Niemann-Pick Disease, type C1 model that were 

not striking in whole-tissue fold change plots. In another approach, human derived 

GIST tissue sections of multiple patients were simultaneously clustered in order to 
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identify tumor subpopulations. Although the pathological relevance of the depicted 

groups could not be assessed conclusively, allocation results of technical replicates 

were proven consistent. Future comparison to the respective MSI imaging results may 

clarify the observed subgroup-identities.  

 

In the last part of this thesis, FTIR-guided acquisition was presented as a suitable tool 

to overcome computational challenges related to ultrahigh-resolution FTICR-MSI. The 

adjusted workflow for single-slice multimodality imaging ensures the exclusive analysis 

of pre-defined tissue structures of similar morphological makeup. In coronal and 

sagittal murine brain tissue sections, a registration efficacy of ~99% and a reduction of 

acquisition time and data load of up to 97.8% were demonstrated, thus enabling high 

resolution FTICR-MSI in cases for which the slow scan speed impedes the analysis of 

complete tissue sections or large patient cohorts. 

 

In conclusion, an automated registration pipeline that enables FTIR guidance for 

targeted acquisition or mass feature extraction in subsequent MSI experiments was 

demonstrated. Future work on the subject will likely be extended to alternate vibrational 

microscopy techniques, i.e. Raman spectroscopy that potentially discover yet unseen 

tissue morphologies, i.e. cerebellar Purkinje cells. In addition, the applicability of cluster 

evaluation techniques in order to automatically define a suitable k-value will be 

examined. Moreover, t-SNE dimensionality reduction [176] and varying cluster 

algorithms will be tested for their potential to provide better segmentation results. 

Furthermore, ultrahigh-resolution experiments of I1061T NPC1 mice will be carried out 

in ordert o verify the chemical identity of m/z 1382.9. Finally, it is noteworthy that the 

depicted registration pipeline would also enable FTIR-MSI image fusion as reported by 

van de Plas et al. [14]. It is conceivable that the additional biomolecular information of 

FTIR images greatly improves the workflow and enables forecasting distribution 

patterns of additional mass features.  
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9 SUPPLEMENT 

Table: GIST Patient metadata including tissue type, necrosis rate, sex, risk factor and mutations 

ID tissue type Nekrose (%) Sex 
Risk 

assessment 
Mutation 

A Liver 0 F High - 

AA GIST DD 0 M - cKIT exon9 

AB GIST 50 M High 
cKIT exon 9,11,17 
PDGFRA exon 12,14,18 

B Small intestine jejunum 70 M  cKIT exon 13 

C Liver 0 M  cKIT exon 9 

D Stomach / Colon 99 F  cKIT exon 11 

E Thoraxwand 5 M  
cKIT exon 11,17 
PDGFRA exon 12,14,18 

F Stomach 40 M  cKIT exon 11 

G Liver - F  
cKIT exon 9,11,13,17 
PDGFRA exon 18 

H Liver 30 M  cKIT exon 11 

I GIST 99 F  cKIT exon 11 

J Liver 30 M  
cKIT exon 11,17 
PDGFRA exon 18 

K Liver 20 M  cKIT exon 11,13 

L Liver 40 F High cKIT exon 11 

M Liver 40 M High - 

N GIST 5 M  cKIT exon 13 

O Colon 30 F High cKIT exon 9,11,13,17 

P GIST 90 M  PDGFRA exon 12 

Q Metastasis 5 M  cKIT exon 11 

R Pelvis peritoneum 0 M  cKIT exon 9,11,13,17 

S Lung - M  cKIT exon 11 

T Stomach 99 M  
cKIT wt 
PDGFRA wt 

U Liver 0 M  - 

V Peritoneum 10 F High cKIT exon 9,11,13,17 

W Liver 0 M  
cKIT exon 9,13,17 
PDGFRA exon 18 

X Stomach 20 F High cKIT exon 9,13,17,18 

Y Abdomen 30 M High cKIT exon 15 

Z Peritoneum 5 M High 
cKIT exon 11,13 
PDGFRA exon 18 
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