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Summary:  

N-terminal acetylation is a conserved co-translational protein modification that is highly abundant among 

eukaryotes. In Saccharomyces cerevisiae, at least five enzymes with distinct substrate specificities (N-

terminal acetyl transferase Nat A to E) act to acetylate 50–70% of the yeast proteins. Despite being one 

of the most common protein modifications, its biological significance remains largely ambiguous. I set out 

to study the role of N-terminal acetylation in yeast cells by employing quantitative proteomics and 

ribosome profiling for analysis of the consequences of failure of N-terminal acetylation in strains lacking 

specific N-terminal acetyl transferases. My results revealed a multi-faceted stress response in natB 

deletion mutant that modulates protein quality control machinery, protein biogenesis capacity, and energy 

regeneration pathways in order to establish protein homeostasis. Systematic analysis of proteome 

stability in the natB deletion mutant suggests no global effect of the loss of N-terminal acetylation on the 

turnover of NatB substrates, but an increase in the level of global protein aggregation. SILAC-based mass 

spectrometry analysis of aggregated proteins isolated from the natB deletion mutant shows no significant 

enrichment of NatB substrates, indicating that protein aggregation in the natB deletion mutant cannot be 

solely explained as a direct consequence of the loss of N-terminal acetylation. In contrast, these protein 

aggregates show strong enrichment for components of specific biological pathways, in particular of the 

translation apparatus, suggesting an underlying selective sequestration mechanism. Consistently, 

quantitative proteomics revealed that, on average, approximately 40% of each of the quantified ribosomal 

proteins is sequestered into protein aggregates in the natB deletion mutant. Moreover, the aggregated 

proteins showed significantly higher interaction between each other and overlapped with aggregated 

proteins generated upon environmental stress, suggesting a common mode of sequestration of proteins 

into aggregates. Interestingly, the aggregated proteins in the natB deletion mutant strongly overlap with 

those identified upon deletion of the genes encoding the ribosome-associated Hsp70 chaperone Ssb. In 

addition, deletion of SSB in the natB deletion mutant leads to synthetic growth defects. Moreover, 

isolation of radiolabeled protein aggregates after 5 min 
35

S pulse labeling showed that a fraction of the 

newly synthesized proteins is readily sequestered into aggregates. These findings together suggest a 

new link between N-terminal acetylation by NatB and co-translational protein folding activity by Ssb. 

Parallel analysis of natA deletion mutant revealed similar protein aggregation patterns, suggesting a 

general role of N-terminal acetylation in the maintenance of proteome integrity.  
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 Introduction 1

1.1 Maintenance of proteome homeostasis in the eukaryotic model 

organism S. cerevisiae  

The yeast proteome is the result of continuous protein biogenesis by mRNA translation, and protein 

degradation. Ultimately, the balance between the two pathways optimizes protein steady state levels. 

Under nutrient availability, a yeast cell is predicted to produce as many as 13,000 proteins per second 

(Haar, 2008). The massive influx of proteins from the translation machinery demands efficient systems 

supporting protein folding, protein targeting to subcellular compartments, as well as enzymatic processing 

to ensure proper functionality of the newly synthesized proteins. Under challenging environmental 

conditions, yeast cells can mount an environmental stress response that aims to modulate proteome 

homoeostasis pathways by down-regulating protein biogenesis, while up-regulating the protein quality 

control machinery. Global analysis of the effects of genetic and environmental perturbations on proteome 

homoeostasis has become possible by recent developments in the field of deep sequencing and 

proteomics, as well as the power of yeast genetics. 

1.1.1 Protein biogenesis  

1.1.1.1 The yeast translation machinery 

At the core of the yeast translation machinery is the ribosome. The core function of the ribosome is to 

translate the genetic code of the messenger RNA (mRNA) into a protein. On average, a yeast cell 

contains as many as 200,000 ribosomes (Warner, 1999). Translation of mRNA into protein by the 

ribosome is accomplished in coordination with specialized transfer RNA or tRNA. tRNAs are non-coding 

RNAs that act as adapter molecules that specifically recognize the triplet genetic code on the mRNA by 

their anticoding loop, while bearing the corresponding amino acid covalently attached to their 3’ end. 

Twenty different aminoacyl tRNA synthetases (corresponding to the 20 different amino acids) catalyze the 

covalent modification of tRNAs with their corresponding amino acids depending of the anti-codon as well 

as other recognition elements of each tRNA (Pang et al., 2014). In addition, a group of proteins named 

“Translation Factors” act together with the translation apparatus to coordinate the different steps of the 

translation of the mRNA sequence into a polypeptide chain. 

The ribosome is a ribonucleoprotein complex composed of one small subunit (40S), and one large 

subunit (60S). The yeast small subunit consists of 33 proteins as well as the18S RNA (Figure 1A), while 

the yeast large subunit is composed of 46 proteins and three RNA molecules: 5S RNA, 5.8S RNA and 

25S RNA (Figure 1B). Recent reports revealed heterogeneous composition of ribosomes, suggesting 

potential functional specializations (Xue and Barna, 2012). The small subunit harbors the decoding 
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activity needed for tRNA selection based on the mRNA sequence (Figure 1C), and its major functional 

sites are the mRNA path, as well as the decoding site where the codon-anticodon base pairing takes 

place, together establishing the fidelity of the translation process (Figure 1C). On the other hand, the 

large subunit is responsible for peptide bond formation, and its major structural features are the peptidyl 

transferase center (PTC) which catalyzes peptide bond formation, as well as a 10-20°A wide peptide exit 

tunnel that spans the entire body of the 60S, where the nascent chain emerges during synthesis (Figure 

1D-E). At the interface side of the two ribosomal subunits exist the tRNA binding sites: A-site (where the 

amoinoacyl tRNA binds), P-site (where the peptidyl tRNA binds) and E-site (where the de-acylated tRNA 

leaves the ribosome) (Figure 1C). The two subunits assemble together through multiple contact points 

called “Bridges”, leading to the formation of the 80S ribosome (Ben-Shem et al., 2011; Jenner et al., 

2012; Melnikov et al., 2012; Wilson and Doudna Cate, 2012; Yusupova and Yusupov, 2014).  
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Figure 1: Structure and function of the yeast 80S ribosome. 

A. Structure of the 40S subunit: Small subunit ribosomal proteins are colored blue, cyan and teal. 
Ribosomal RNA is colored in grey (Yusupova and Yusupov, 2014). 

B. Structure of the 60S subunit: Large subunit ribosomal proteins are colored red, orange and yellow. 
Ribosomal RNA is colored in grey (Yusupova and Yusupov, 2014). 

C. The functional centers of the ribosome: The small subunit harbors the decoding center of the 
ribosome and the mRNA tunnel. The large subunit harbors the PTC and the peptide exit tunnel 
(Melnikov et al., 2012). 

D. The peptide exit tunnel viewed in a slice of the large ribosomal subunit (Yusupova and Yusupov, 
2014). 

E. Ribosomal proteins surrounding the outer rim of the peptide exit tunnel (Yusupova and Yusupov, 
2014). 

 

1.1.1.2 The mechanism of protein synthesis 

Translation is multi-step process that can be divided into four major phases: Initiation, elongation, 

termination and recycling (Figure 2). Translation initiation is the process during which the 40S bound to 

the initiator methionine tRNA scans along the mRNA starting at the 5' cap structure until it finds the start 

codon, and it is completed by the assembly of the 60S and 40S to form the 80S. Translation elongation is 

the process where the extension of the polypeptide takes places based on the genetic code of the mRNA. 

Translation termination starts when the ribosome encounters a stop codon, and it ends by the release of 

the polypeptide from the ribosome, followed by the dis-assembly of the 80S into 40S and 60S (ribosome 

recycling) (Dever et al., 2016; Dever and Green, 2012). 

 

Translation initiation: Translation initiation starts with the binding of the initiation factors: eIF1, eIF1A, 

eIF3, and eIF5 to the 40S, followed by association with the ternary complex (TC) composed of GTP-

bound eIF2 heterotrimeric complex and the initiator methionine tRNA, to form the 43S pre-initiation 

complex (PIC). On the other hand, initiation factors: eIF4G, eIF4E, and eIF4B, together with the poly-A 

binding protein “Pab1” bind to the mRNA thereby mediating its circularization and facilitating the PIC 

binding. The association of the PIC to the mRNA leads to the formation of the 48S complex. The 48S 

complex scans through the mRNA until it finds the start codon, which is mainly established by the correct 

base pairing between the initiator methionine anticodon and the AUG start codon, triggering GTP 

hydrolysis and release of eIF2. Eventually, eIF5B promotes the association of the 60S to the 40S leading 

to the formation of the 80S. Before elongation, most of the initiation factors are released from the 

ribosome. Recycling of GDP-bound eIF2 is mediated by eIF2B which allows regeneration of GTP-bound 

eIF2 for the next cycle of translation initiation. At the end of translation initiation, the ribosome P-site is 

occupied by the initiator methionine tRNA, while the A-site is vacant awaiting the first elongator tRNA. 

 

Translation elongation: GTP-bound eEF1 associates with the aminoacyl-tRNA and facilitates its binding 

to an empty ribosome A-site. Base pairing between the anticodon of the aminoacyl-tRNA with the 
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corresponding code on the mRNA triggers GTP hydrolysis followed by release of the eEF1, which allows 

proper positioning of the aminoacyl-tRNA into the A-site. Recycling of the GDP-bound eEF1 into the GTP-

bound eEF1 requires eEF1B, allowing repeated elongation cycles. Catalyzed by the peptidyl transferase 

center of the ribosome, peptide bond is formed between the two amino acids in the A and P site. 

Following peptide bond formation, the association and hydrolysis of the GTP-bound eEF2 facilitate the 

translocation of the peptidyl-tRNA into the P site, and the de-acylated tRNA into the E-site by re-

positioning of the anticodon loops, followed by its release from the ribosome. eEF3 is a fungal specific 

elongation factor that presumably facilitates the release of the de-acylated tRNA from the exit site. 

Multiple ribosomes can translate a single mRNA simultaneously leading to the formation of large 

complexes called “Polysomes”. The cycle continues till the ribosome encounters one of the stop codons. 

 

Translation termination and recycling: When the translating ribosome encounters a stop codon, eRF1 

binds to the stop codon in association with GTP-bound eRF3, followed by GTP hydrolysis and release of 

eRF3 while eRF1 stays bound to the A-site. The association of eRF3 with eRF1 facilitates the stop codon 

selection. Following eRF3 release, Ril1 associates with eRF1 triggering hydrolysis of the peptidyl-tRNA 

and release of the polypeptide chain. Following termination of translation, dissociation of the 80S takes 

place mediated by Ril2, followed by tRNA and mRNA disassembly mediated by recycling factors, allowing 

recycling of the translation machinery for further rounds of translation. 
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Figure 2: The mechanism of protein synthesis. 

Translation is a multistep process that can be divided into four major phases: translation initiation (steps 
0-3), translation elongation (step 4), termination and recycling (step 5 and 6) adapted from (Melnikov et 
al., 2012).    
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1.1.2 Maturation of nascent chains 

As soon as the nascent chain starts to emerge from the ribosome exit tunnel, it undergoes different 

processing steps to ensure its proper folding, sorting, as well as enzymatic processing (Figure 3). Protein 

folding is ensured by a network of ribosome associated chaperones that mainly guide co-translational 

folding steps of the nascent chain, as well as a network of chaperones acting independent of ribosome 

association and control both, de novo folding as well as re-folding of the misfolded proteins. In addition, 

both co-translational and post-translational pathways allow proper targeting of proteins to their 

corresponding compartments such as the endoplasmic reticulum (ER) and mitochondria. Furthermore, 

enzymatic processing of the nascent chains is accomplished co-translationally by a set of ribosome-

associated enzymes, as a part of the nascent chain maturation process. Ultimately, proteins can be 

targeted for degradation via co/post-translational pathways (Pechmann et al., 2013). 

 

 

 

 

 

Figure 3: Maturation of nascnet chains into functional proteins. 

Emerging nascent chains from the peptide exit tunnel undergo enzymatic proecessing, folding, 
translocation, and ultimately degradation either cotranslationally by ribosome associated factors or post-
translationaly (Pechmann et al., 2013). 

 

1.1.2.1 Enzymatic processing of the nascent chains 

1.1.2.1.1 Methionine excision 

Yeast encodes two methionine aminopeptidases (MAPs): Map1 and Map2 share 22% sequence identity, 

and show functional redundancy where Map1 is the dominant form. Both Map1 and Map2 interact with 
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the ribosome and target the nascent chains as they emerge from the ribosome exit tunnel. MAPs cleave 

the N-terminal methionine based on the identity of the N-terminal penultimate amino acid. MAPs cleave 

methionine followed by a small, uncharged amino acid with a gyration radius less than 1.29°A, while large 

hydrophobic or positively charged residues at the N-terminal penultimate position prevent MAP cleavage. 

Deletion of the genes encoding Map1 and Map2 in S. cerevisiae is lethal indicating an essential function 

for methionine excision (Chen et al., 2002; Li and Chang, 1995).  

1.1.2.1.2 N-terminal acetylation 

N-terminal acetylation of proteins is the process by which an acetyl group from “Acetyl-Coenzyme A” is 

transferred to the α-amino group of the N-terminal amino acid of a protein, catalyzed by a set of enzymes 

named N-terminal acetyl transferases (NATs) (Aksnes et al., 2016). NATs associate with the ribosome to 

co-translationally acetylate the nascent chains at their N-terminus, as they emerge from the ribosome exit 

tunnel (Gautschi et al., 2003a; Polevoda et al., 2008a). S. cerevisiae has five distinct NATs, NatA to E, 

which differ in their protein complex composition and substrate specificity (Figure 4A), and together 

catalyze the N-terminal acetylation of the majority of yeast proteins (Figure 4B) (Aksnes et al., 2016; 

Starheim et al., 2012b).  

 

The NatA complex consists of the catalytic subunit Naa10, and the auxiliary subunit Naa15 (Park and 

Szostak, 1992). NatA acetylates N-termini starting with Ser-, Ala-, Thr-, Gly-, Val- and Cys- following 

initiator methionine excision (Perrot et al., 2008). The NatB complex consists of the catalytic subunit 

Naa20 and the auxiliary subunit Naa25 (Polevoda et al., 2003), and acetylates the N-terminal methionine 

of substrates with Met-Asp-, Met-Glu-, Met-Asn- or Met-Gln- (Perrot et al., 2008; Van Damme et al., 

2012). The NatC complex is composed of the catalytic subunit Naa30 and the auxiliary subunits Naa35 

and Naa38 (Polevoda and Sherman, 2001), and acetylates the N-terminal methionine of substrates 

starting with Met-Leu-, Met-Phe-, Met-Ile and Met-Trp (Perrot et al., 2008). NatD consists of one protein: 

Naa40. The in vivo substrate specificity of NatD lies within the first 30-50 amino-acid residues (Polevoda 

et al., 2009; Song et al., 2003). The NatE complex consists of Naa50, and the “NatA” subunits Naa10 and 

Naa15, yet its substrate specificity is not well characterized (Gautschi et al., 2003a). In principle, N-termini 

that can be N-terminally acetylated by NatA are most prevalent in the proteome, followed by N-termini 

acetylated by NatB, and N-termini acetylated by NatC. NatD has only two verified substrates: the histones 

H2A and H4. Taken together, 50-70% of all yeast proteins are N-terminally acetylated, making N-terminal 

acetylation one of the most abundant protein modifications in the yeast proteome ((Aksnes et al., 2016; 

Perrot et al., 2008; Starheim et al., 2012a; Van Damme et al., 2011). 
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Figure 4: N-terminal acetylation by N-terminal acetyl transferases in yeast. 

A. The yeast N-terminal acetyl transferase machinery consists of five distinct NATs (NatA-E) which 
differ in their protein composition, as well as substrate specificities (Starheim et al., 2012a). 

B. The extent of N-terminal acetylation by different NATs (adapted from Starheim et al., 2012a) 
 

 

N-terminal acetylation is conserved across all kingdoms of life, and it has been linked to diverse biological 

pathways such as signaling proteins for degradation (Hwang et al., 2010a), establishment of protein 

localization (Behnia et al., 2004a; Forte et al., 2011), as well as mediating protein-protein interactions 

(Scott et al., 2011). Despite recent advances in our understanding of the role of N-terminal acetylation, its 
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exact molecular function is still missing. The proposed roles of N-terminal acetylation are discussed in 

greater detail in section 1.3. 

1.1.2.2 Protein folding 

The yeast protein folding machinery encompasses two spatially and functionally distinct chaperones 

networks that work together to ensure proper folding of proteins in vivio (Albanese et al., 2006) (Figure 

5). The first network is formed by “CLIPS”: Chaperones Linked to Protein Synthesis, a group of 

chaperones that are functionally and physically connected to the ribosome. CLIPS bind to nascent chains 

co-translationally to establish de novo folding, and are transcriptionally co-regulated with the translation 

apparatus (Figure 5A). Another network includes the “HSPs”: Heat Shock Proteins, representing 

chaperones that act post-translationally to establish protein quality control and refolding, and their 

expression is dramatically increased under stress (Figure 5B).  
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Figure 5: The eukaryotic chaperone network. 

Two functionally and spatially distinct chaperone networks that coordinate protein folding  
A. Co-translational folding of newly syntheized proteins is mediated by ribosome associated factors 

(Pechmann et al., 2013). 
B. Post-translational folding is mediated by a network of cytosolic chaperones (Pechmann et al., 

2013). 

 
 

1.1.2.3 The co-translational network of chaperones  

CLIPS comprise a group of mechanistically diverse chaperones that together coordinate co-translational 

folding (Figure 5A): 

 

The Nascent chain associated complex (NAC): NAC is a complex of two subunits named α and β. The 

N-terminal part of the β subunit mediates the interaction of the complex with the ribosome, close to L31, 

near the ribosome exit tunnel (Pech et al., 2010). Global profiling of the NAC-associated nascent chains 

revealed the broad selectivity of NAC, highlighting the role of NAC as a general chaperone for most of the 

nascent chains, including nascent chains that are destined for secretion or mitochondrial targeting (Del 
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Alamo et al., 2011). In addition, NAC was shown to regulate co-translational targeting of proteins by 

modulating SRP binding (Zhang et al., 2012).  

 

The co-translationally acting Hsp70 (Ssb): The family of Hsp70 chaperones plays central roles in 

protein quality control (Morano et al., 2012; Verghese et al., 2012). In general, Hsp70s consist a of a C-

terminal substrate binding domain whose affinity to the substrate is allosterically regulated by an N-

terminal nucleotide binding domain. ADP-bound Hsp70 has high affinity for its substrate, while ATP-

bound Hsp70 has low affinity for its substrate. Protein folding is mediated by iterative cycles of substrate 

binding and release until a protein is properly folded. Two classes of Hsp70 co-chaperones regulate this 

cycle namely J-proteins which stimulate ATP hydrolysis, and nucleotide exchange factors “NEFs”” which 

replace ADP by ATP in Hsp70. Hsp70s show broad substrates specificity, and in general bind to 

hydrophobic segments of a protein. J-proteins are also thought to facilitate substrate recruitment to Hsp70 

(Verghese et al., 2012). The yeast co-translationally acting Hsp70 is comprised of two functional isoforms 

of Ssb: Ssb1 and Ssb2. Ssb is directly associated with the ribosome (Hanebuth et al., 2016). ATP 

hydrolysis by Ssb is stimulated by the ribosome associated complex (RAC) composed of the non-

canonical Hsp70 “Ssz” and the J-protein “Zuotin” (Gautschi et al., 2001; Huang et al., 2005) that 

associates with the ribosome independent of the nascent chain, close to L31, near the exit tunnel (Leidig 

et al., 2013), and modulates Ssb interaction with its substrates (Willmund et al., 2013; Döring et al., 

2017). The nucleotide exchange factor “Sse1” further regulates Ssb function by facilitating exchanging 

ADP with ATP (Shaner et al., 2005; Yam et al., 2005). Global profiling of the pool of nascent chains that 

are engaged with Ssb revealed the broad specificity of Ssb, yet specific enrichment for large proteins, 

proteins with high aggregation propensity, and intrinsically disordered regions, together suggesting that 

Ssb plays a role in the folding of nascent chains that are challenging to fold (Willmund et al., 2013). Most 

recently, profiling of Ssb interaction with translating ribosomes suggested Ssb also engages ER and 

mitochondrial targeted nascent chains, suggesting a role of Ssb in protein targeting (Döring et al., 2017).  

 

1.1.2.4 The post-translational network of chaperones 

HSPs comprise a group of diverse, yet highly interdependent chaperones, and together they mediate 

both de novo folding and refolding of misfolded/aggregated proteins (Figure 5B) (Morano et al., 2012; 

Verghese et al., 2012). 

 

Hsp70 Chaperones: In addition to the co-translationally acting Hsp70s Ssb1 and Ssb2, four cytosolic 

Hsp70s exist in yeast, with high degree of functional redundancy. Two of them are constitutively 

expressed (Ssa1 and Ssa2), and two are stress inducible (Ssa3 and Saa4). Hsp70s are also found in the 

ER (Kar2) and mitochondria (Ssc1 and Ssq1). The family of Hsp70 chaperones plays central roles in 

posttranslational folding/refolding, protein targeting, as well as protein degradation.  
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Hsp90 Chaperones: Hsp90 is an ATP dependent chaperone whose function is established by nucleotide 

cycling, and is regulated by co-chaperones. Both Hsp70 and Hsp90 are interlinked, where substrates are 

typically first engaged by the Hsp70 then handed over to the Hsp90 for final maturation. In contrast to the 

Hsp70, Hsp90 are selective in terms of its substrates and it is mainly engaged in the late maturation steps 

of its client proteins. To date, only specific endogenous proteins are known to require Hsp90 for folding. 

 

Chaperonin TRiC/CCT (TCP1-Ring Complex or Chaperonin Containing TCP1): TriC/CCT is a hetero-

oligomeric complex composed of 8 subunits that together form a double ring structure. TriC/CCT folds its 

substrates in its central cavity, in a nucleotide-dependent manner, and plays a central role under stress. 

Additional co-factors modulate TriC/CCT activity such as GimC/Prefoldin, which facilities targeting of 

substrates into TriC. 

 

Disaggregases (Hsp104 and Hsp78): Hsp104 is a member of the AAA+ ATPase family. It forms a 

hexameric ring with a central channel that has a diameter of roughly 15°A. Hsp104 is capable of 

extracting proteins from aggregates, and threading them through its central channel. Hsp104 is interlinked 

to the Hsp70 system, where Hsp70 can facilitate the recruitment of Hsp104 to its substrates, as well as 

refolding of proteins back to their native conformation. Hsp104 refolding activity is strictly required for 

thermo-tolerance. In addition to Hsp104, yeast mitochondria comprise Hsp78, which is 65% similar to 

Hsp104. Hsp78 works together with the mitochondrial Hsp70 Ssc1. 

 

Small heat shock proteins (sHSP): small heat shock proteins are a group of small proteins that tend to 

form oligomers. sHSP are ATP-independent and they co-aggregate with substrates in order to facilitate 

subsequent disaggregation by other chaperones such as Hsp70 and Hsp104. Yeast possesses two 

members of the small heat shock proteins: Hsp42 (constitutively expressed), and Hsp26 (stress-

inducible).  

 

1.1.2.5 Targeting of nascent chains  

With the exception of mitochondrial encoded proteins, protein biosynthesis is exclusively cytosolic, 

therefore proteins of others cellular compartments have to be targeted to their corresponding cellular 

localization. An intricate network of targeting factors ensures proper sorting of proteins into their 

corresponding cellular compartments either co- or post-translationally.  

1.1.2.5.1 Targeting of proteins to the ER 

Different pathways exist for targeting proteins to the ER (Barlowe and Miller, 2013). A major pathway is 

the co-translational targeting of secretory proteins via the signal recognition particle (SRP) (Figure 6A). 

SRP recognizes N-terminal hydrophobic signal sequences, as well as transmembrane domains. The 



 Introduction 

 

20 |  P a g e

 

complex of SRP engaged with the translating ribosome interacts with the ER membrane through the SRP 

receptor (SR). Subsequently, SRP-ribosome-nascent chain complex bound to SR transfers the nascent 

chain to the Sec61 translocon, where co-translational translocation takes place. Unlike the core 

translocation pore component Sec61, SRP is not essential in yeast, indicating that other SRP-

independent pathways exist. In fact, proteins can also be translocated post-translationally via the Hsp70 

family, which maintains the targeted proteins in a translocation competent state after complete synthesis. 

Subsequently, proteins are targeted to the ER membrane via Sec63, followed by translocation through 

the Sec61 translocon, in coordination with the ER resident Hsp70: Kar2 (Figure 6B). On the other hand, 

a specific pathway exists for targeting of the tail-anchored (TA) proteins: The Guided Entry of TA proteins 

(GET) (Figure 6C). First, the Sgt1-Get4-Get5 complex mediates the binding of the C-terminal anchor to 

the targeting factor: Get3. Get3 delivers the targeted protein to the integral membrane proteins: Get1 and 

Get2 at the ER membrane, where they facilitate the insertion of the C-terminal tail into the lipid bilayer in 

an ATP dependent manner. 

 

 

 

 

Figure 6: Different pathways for targeting of secretory proteins. 

A. Co-translational targeting of proteins into the ER by SRP (Barlowe and Miller, 2013) 
B. Post-translational targeting of proteins to the ER (Barlowe and Miller, 2013) 
C. Translocation of tail anchored proteins by the GET pathway (Barlowe and Miller, 2013).  

 

1.1.2.5.2 Targeting of mitochondrial proteins 

To date, the predominant view is that the targeting of mitochondrial proteins occurs post-translationally, 

where chaperones play a key role in targeting proteins to the mitochondrial outer membrane proteins for 

translocation by keeping them in a translocation-competent state and preventing their aggregation (Fox, 
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2012). However, there is increasing evidence for co-translational targeting of nascent chains to 

mitochondria, such as localization and translation of mRNA encoding mitochondrial proteins at the 

mitochondrial outer membrane (Garcia et al., 2007; Marc et al., 2002; Williams et al., 2014), presumably 

to facilitate the subsequent import of those proteins into the mitochondria.   

1.1.2.6 Protein complex assembly 

A large number of proteins assemble into complexes which is essential for their molecular function. Until 

recently the dominant view was that protein complex assembly occurs post-transitionally. However 

recently accumulating evidence (Duncan and Mata, 2011; Shieh et al., 2015) suggests that protein 

complex assembly can already occur co-translationally i.e. before full synthesis of at least of one the 

protein-complex subunits. In principle, co-translational assembly can minimize protein aggregation by 

decreasing the exposure time of the interaction interface of protein subunits which could be aggregation 

prone. In addition, co-translational assembly provides a faster and more efficient pathway by localizing 

protein complex assembly to the sites of protein synthesis (Wells and Bergendahl, 2015). On the 

contrary, post-translational complex assembly is driven by diffusion which is limited by molecular 

crowding. 

1.1.3 Protein degradation 

Protein degradation is an essential process to clear damaged or terminally misfolded proteins, as well as 

regulating protein concentration in the cell. Protein degradation is mediated by two major pathways: 

Autophagy and the ubiquitin-proteasome system. Autophagy is the process by which proteins are 

targeted for intracellular hydrolysis inside the vacuole, and it is responsible for the degradation of whole 

organelles such as mitochondria and peroxisomes, or large protein assemblies such as ribosomes 

(Reggiori and Klionsky, 2013). In contrast to autophagy, the ubiquitin proteasome system is a rapid and 

more selective degradation system for specific proteins in the cytoplasm and the nucleus (Finley et al., 

2012).  

1.1.3.1 The ubiquitin-proteasome system 

Ubiquitin: Ubiquitin is a small protein with β-grasp fold that can modify proteins with its C-terminal 

Glycine, typically by conjugation to a Lysine residue of the target proteins via an iso-peptide bond. The 

ubiquitination reaction is catalyzed by a cascade of enzymes: E1-E2-E3. E1 is a ubiquitin activating 

enzyme that forms a high energy thioester bond with the main chain carboxyl group of the c-terminal 

Glycine of ubiquitin, in an ATP-dependent manner. Yeast has only one E1, the essential Uba1. The 

activated ubiquitin is then transferred by one of the 11 yeast Ubiquitin conjugating enzymes (E2s) to E3-

ligases. Eventually, E3-ligases catalyze the iso-peptide bond formation between the ε-amino group of the 

Lysine residue of targeted proteins, and the activated carboxyl group of ubiquitin. E3-Ubiquitin ligases 
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play a central role in substrates selection, and represent the largest group of proteins involved in 

ubiquitination, comprising 60-100 putative E3-ligases encoded in the yeast genome. Ubiquitin itself has 

seven lysine residues; each can be conjugated to another ubiquitin molecule leading to poly-

ubiquitination. The poly-ubiquitin chains can have different topologies depending on the position of the 

Lysine residues that mediate ubiquitin conjugation. Depending on the poly-ubiquitin chain topology, poly-

ubiquitination can target proteins for proteasome-mediated degradation. Ubiquitination is a reversible 

protein modification, and it can undergo de-ubiquitination by a group of enzymes “Deubiquitylases” with 

diverse functional roles (Finley et al., 2012) (Figure 7). 

  

Proteasome: The main function of the proteasome is to degrade ubiquitin protein conjugates. The 

proteasome is an ATP dependent protease that is composed of 33 subunits. The proteasome is 

organized into two major assemblies: the regulatory particle (RP) that mediates recognition of the 

ubiquitin protein conjugates as well as the unfolding by the hetero-hexameric ATPase assembly, and the 

core particle (CP) which harbors the proteolytically active center inside its core and mediates protein 

degradation in a highly regulated fashion. Substrates are transported from the RP to the CP through a 

translocation channel that opens and closes in a regulated manner. Proteasome assembly is mediated by 

a set of dedicated chaperones. 

 

 

 

 

Figure 7: The ubiquitin proteasome system. 

Ubiquitination of a target protein is mediated by a cascade of enzymes: E1, E2 and E3. Successive 
ubiquitination of ubiquitin leads to polyubiquitin chain formation. Polyubiquinated proteins are degradaed 
by the proteasome. Ubiquitination is a reversible modification that can be removed by deubiquitylases 
(Varshavsky, 2011).   

 

1.1.3.2 Co-translational ubiquitination of the nascent chains  

Recent reports indicate that 10-15% of the nascent chains are co-translationally targeted for degradation 

(Duttler et al., 2013). At least part of the co-translational ubiquitination is mediated by Ltn1/Rkr1, an E3 

ligase that can associate with the ribosome (Bengtson and Joazeiro, 2010). Ribosome stalling during 

translation triggers the disassembly of the ribosome subunits. The disassembled 60S carrying unreleased 
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nascent chain is recognized by Ltn1 for ubiquitination (Shao and Hegde, 2014; Shao et al., 2013). Ltn1 

acts together with other components such as Cdc48, that ultimately releases the nascent chain from the 

60S and targets it for proteasome-mediated degradation (Brandman et al., 2012; Verma et al., 2013).  

1.1.3.3 Substrate recognition in the ubiquitin-proteasome system 

A fundamental question concerning the ubiquitin-proteasome system is how ubiquitin ligases select target 

proteins for ubiquitination. Although the mechanisms for substrate selection can be diverse, it is generally 

classified into two major mechanisms (Finley et al., 2012; Ravid and Hochstrasser, 2008). One 

mechanism is determined by the folding state of the protein, where E3-ligases recognize its substrates by 

interaction with hydrophobic patches that are aberrantly exposed by misfolded proteins, typically in 

coordination with molecular chaperones. The other mechanism is defined by degradation signals that act 

as recognition elements on the target proteins for E3-ligase recruitment and ubiquitination. Degradation 

signals can also be diverse and include phosphorylation, ubiquitin like modification such as SUMO, or 

surface exposed hydrophobic patches. One of the well-studied pathways for targeting proteins for 

degradation by degradation signals relevant also in the context of N-terminal acetylation is the N-end rule.  

 

The N-end rule links the in vivo half-life of a protein to the identity of its N-terminal residues. Based on the 

N-end rule, specific N-terminal amino acids act as degradation signals (N-degrons) that are recognized by 

E3-ligases together with its cognate E2 (N-recognins) thereby targeting proteins for ubiquitination and 

downstream degradation by the proteasome. The N-end rule pathway is composed of two major 

branches: The Ac/N-end rule, and the Arg/N-end rule (Varshavsky, 2011) (Figure 8). 

 

The Ac/N-end rule pathway is based on the finding that N-terminal acetylation of proteins can act as a N-

terminal degradation signal (Ac/N-degron) that is recognized by specific E3-ligases (Ac/N-recognins): 

Doa10 (Hwang et al., 2010a) and Not4 (Shemorry et al., 2013), thereby targeting proteins for degradation 

in a regulated manner  (Figure 8A). The Ac/N-end rule is discussed in greater detail in section 1.3. 

 

On the other hand, the Arg/N-end rule pathway targets specific non N-terminally acetylated N-termini for 

degradation (Varshavsky, 2011) (Figure 8B). N-terminal Arg, Lys, His, Leu, Phe, Tyr, Trp, Ile, Asp, Glu, 

Asn, Gln, and Cys represent the N-degrons of the Arg/N-end rule pathway that are recognized by the N-

recognins: Ubr1-Rad6 and Ufd4-ubc4. N-terminal basic (Arg, Lys, His) and hydrophobic (Leu, Phe, Tyr, 

Trp, Ile) amino acids can be directly recognized by their cognate N-recognin, therefore they are called 

“primary destabilizing residues”. In contrast, Asp- and Glu-, and oxidized cysteine cannot be directly 

recognized by N-recognins unless they undergo an arginylation reaction catalyzed by Arg-tRNA 

transferase encoded by the Ate1 gene, therefore they are called “secondary destabilizing residues”. N-

terminal Asn- and Gln- cannot directly undergo arginylation, yet they are substrates of the N-terminal 

amidases Nta1 that convert Asn- and Gln- to Asp- and Glu- which can be subsequently arginylated, 
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therefore they are named “tertiary destabilizing residues”. The specificity of the Arg/N-end rule is 

complementary to that of MAPs, therefore regular proteins normally do not present N-degrons. However, 

destabilizing N-degrons can be exposed through post-translational mechanisms such as proteolytic 

cleavage. In addition to the aforementioned N-degrons, it was recently shown that Ubr1 can target N-

terminal methionine, if followed by a hydrophobic amino acid, further expanding the Arg/N-end rule 

pathway (Kim et al., 2014). 

 

 

Figure 8: The N-end rule pathway in S. cerevisiae. 

The N-end rule links the half life of a protein to the identitiy of its N-terminal amino acid. The N-end rule 
pathway can be divided into two major pathways:  
A. The Ac/N-end rule pathway: N-terminal acetylated amino acid acts as a degradation signal that can 

be recognized by specific E3-ubiquitn ligases for poly-ubiquitination followed by proteasomal 
degradation (Chen et al., 2017). 

B. The Arg/N-end rule pathway: Specific N-terminal amino acids can act as a primary, secondary, or 
tertiary degradation signal that can be recognized by N-recognins, followed by poly-ubiquitination and  
proteasome-mediated degradation (Chen et al., 2017). 
 

1.2 Modulation of proteome homeostasis under stress 

1.2.1 Transcriptional response upon environmental stress 

 

Perturbation of the yeast proteome homeostasis, for instance due to unfavorable environmental 

conditions, triggers an integrated transcriptional stress response program that aims to modulate the 

proteome homeostasis pathways. Although different types of stress can trigger different stress-specific 

responses, a number of fundamental features are shared by the different stress responses, together 

representing a general stress response mechanism (Gasch et al., 2000). The common features of the 

transcriptional response upon environmental stress include induced transcription of genes with cyto-

protective functions. A set of molecular chaperones are induced under different environmental stress 

conditions: Hsp104, Hsp78, small Heat shock proteins (Hsp26 and Hsp42), as well as members of the 

cytosolic Hsp70s: Ssa4, Sse2. In addition, specific components of the protein degradation machinery are 
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up-regulated which may indicate elevated levels of protein degradation as consequence of irreversible 

protein damage upon stress. On the other hand, upregulation of particular metabolic pathways takes 

place, such as transcription of genes involved in trehalose metabolism, which plays a cyto-protective 

function, as well as specific components of the glycolysis and respiration machinery, presumably to 

increase ATP levels. In parallel to the induction of the cyto-protective gene products, repression of genes 

encoding protein biogenesis factors including ribosomal proteins, translation factors, and aminoacyl-

transferases takes place. The transcriptional response upon environmental stress response is mediated 

by transcription factors that stimulate/repress transcription, in addition to other factors such as chromatin 

remodeling and regulated mRNA turnover. In general, the changes at the transcriptional level correlate 

with protein synthesis levels despite the overall translation attenuation upon stress, indicating selective 

mechanisms for translation under stress. 

 

1.2.2 Translation attenuation 

One of common features of yeast stress response is translational attenuation. In addition to the repressed 

transcription of the genes encoding the translation machinery upon stress, different stress conditions can 

 

 

 

Figure 9: Translation attenuatuin under stress. 

Attenuation of translation is one of the common features across the different stress reponses. 
Translational attenuation can be established by different mechanisms that target different components 
of the translation initation pathway (Simpson and Ashe, 2012). 
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directly attenuate translation through different mechanisms (Simpson and Ashe, 2012). These include 

regulation of eIF2B in eIF2α phosphorylation dependent or independent manner. Phosphorylation of 

eIF2α (by Gcn2 protein kinase) inhibits GTP recycling by eIF2B thereby trapping eIF2 in the GDP bound 

state, which eventually blocks TC formation. Alternative mechanisms include direct inhibition of eIF2B, 

independent of eIF2α phosphorylation. In addition, translation attenuation can be established by 

regulation of the closed loop formation via modulation of eIF4E binding proteins (Eap1 and Caf20) 

thereby inhibiting eIF4E-eIF4G interaction, or via inhibition of eIF4A. Despite the different mechanisms, 

the ultimate outcome is down regulation of translation initiation, resulting in global down regulation of 

translation (Figure 9).   

1.2.3 Stress granule formation 

The inhibition of translation initiation upon stress leads to the accumulation of mRNA molecules that are 

stalled in the process of translation initiation, which triggers the assembly of ribonucleoprotein assemblies 

called “Stress Granules” (Jain et al., 2016; Protter and Parker, 2016). Consistently, stress granules in 

yeast contain mRNA as well as translation initiation factors such as eIF4E and eIF4G, in addition to the 

poly-A binding protein Pab1. Stress granules consist of a diverse proteome which reflects the complexity 

and diversity underlying its assembly. Several factors contribute to the assembly of stress granules 

including RNA-protein and protein-protein interactions, some of which may involve intrinsically disordered 

domains. The sequestration of mRNA into stress granules can affect its translation and/or degradation, 

however the exact mechanism is not yet known.  

 

1.3 The role of N-terminal acetylation in proteome homeostasis 

Despite being one of the most common protein modifications, the exact biological significance of N-

terminal acetylation remains largely ambiguous. Interestingly, mutations that affect N-terminal acetylation 

in humans have been linked to specific diseases, underscoring its potential functional implications 

(Myklebust et al., 2014; Popp et al., 2015). The yeast natB deletion mutant shows the most pronounced 

phenotype compared to deletion mutants lacking other N-terminal acetyl transferases, which includes 

slow growth under physiological growth conditions, and a more pronounced growth defect under stress 

conditions especially heat (e.g. 37°C (Caesar et al., 2006a)). The natA deletion mutant displays similar 

yet less severe phenotypes, together suggesting that N-terminal acetylation of proteins has important 

functional implications in yeast cells (Gautschi et al., 2003b). Recent studies have pointed to diverse 

molecular functions for N-terminal acetylation of proteins, which further reflects its functional complexity 

(Figure 10). 
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Interestingly, N-terminal acetylation can act as a signal for targeting proteins to proteasome-mediated 

degradation through the so-called Ac/N-end rule pathway (Hwang et al., 2010b). According to the Ac/N-

end rule, proteins bearing N-terminally acetylated amino acid (Ac/N-degron) are targeted for degradation 

by specific E3-ubiquitin ligases (Ac/N-recognins). Two of them have been identified so far: The ER-

membrane associated E3 ubiquitin ligase Doa10 (Hwang et al., 2010a), and Not4 (Shemorry et al., 2013). 

The fact that the majority of proteins are N-terminally acetylated during their biogenesis possibly expands 

the substrate pool of the N-end rule, and raises the question about the regulation of this pathway. The 

current model is that Ac/N-end rule is a conditional pathway. Presumably, functional proteins do not 

expose their Ac/N-degrons under normal conditions, as those signals are shielded from the Ac/N-

recognins by being buried in the folded structure of the proteins, or within the interface of a protein 

complex. With this in mind, the Ac/N-end rule can maintain protein quality control by targeting misfolded 

proteins that aberrantly expose their Ac/N-degrons, or maintain protein-stoichiometry balance by selective 

targeting of unassembled subunits that have failed to shield its Ac/N-degrons in protein complexes. 

Indeed, a recent study (Shemorry et al., 2013) has shown that Hcn1 a subunit of the APC/C ubiquitin 

ligase, contains an Ac/N-degron that is normally repressed by binding of Hcn1 to Cut9. Hcn1 can be 

targeted for degradation via the Ac/N-end rule only when overexpressed to levels higher than Cut9. 

Similarly, Cog1 Ac/N-degron is repressed by binding to Cog2 and Cog3, while overexpression of Cog1 

over Cog2/Cog3 leads to its Ac/N-end rule mediated degradation. However, to date, only a few 

endogenous substrates have been shown to undergo N-acetyl mediated degradation, therefore the 

general functional relevance of this pathway remains poorly understood. 

 

In addition to the role of N-terminal acetylation in controlling protein complex stoichiometry, N-terminal 

acetylation can increase the affinity of protein complex subunits. Structural analysis of the interaction 

between the E2 enzyme (Ubc12), and the E3-ligase (Dcn1) revealed a significant role of the N-terminal 

acetylation of the N-terminal methionine of Ubc12 in mediating its interaction with Dcn1, where the N-

terminal acetyl group is completely buried in a hydrophobic pocket in Dcn1 (Scott et al., 2011). Later 

studies suggested that the N-terminal acetyl mediated recognition of E2 and E3 is structurally conserved 

and extends to other members of the mammalian E2/E3 family, further highlighting the role of N-terminal 

acetylation as mediator of protein complexes assembly (Monda et al., 2013). Consistently, several studies 

have reported that N-terminal acetylation augments protein-protein interactions. These include actin-

tropomyosin, which explains the impaired actin filaments in the deletion mutants lacking NatB (Abe et al., 

2000; Caesar et al., 2006b; Van Damme et al., 2012), as well as interaction of the silencing factor Sir3 

with the nucleosome core particle, which explains the mating deficiency of a NatA deletion mutant (Park 

and Szostak, 1992; Wang, 2004). In addition, the inhibitory activity of the carboxypeptidase inhibitor Tfs1 

was decreased upon lack of its N-terminal acetylation by NatB, presumably by directly inhibiting its 

physical interaction with CPY (Caesar and Blomberg, 2004). 
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Furthermore, N-terminal acetylation has been implicated in establishment of protein localization. N-

terminal acetylation was suggested to inhibit post-translational targeting of proteins to the ER (Forte et al., 

2011). With this in mind, N-terminal acetylation may represent a quality control mechanism that prevents 

mistargeting of cytosolic proteins into the ER. On the other hand, targeting of the GTPase Arl3 to the 

Golgi requires its N-terminal acetylation by NatC, which mediates its interaction with the membrane 

protein Sys1. Thus, N-terminal acetylation may provide an alternative mechanism to N-terminal 

myristoylation for targeting proteins to the Golgi (Behnia et al., 2004b; Setty et al., 2004). 

Interestingly, early studies have linked N-terminal acetylation to protein folding. N-terminal acetylation 

changes the electrostatic nature of the N-terminus of proteins by transferring an acetyl group to the 

primary amino-group at the N-terminus, preventing its subsequent protonation. In vitro studies showed 

that N-terminal acetylation increases α-helical stability of peptides and proteins (Chakrabartty et al., 1993; 

Fairman et al., 1989). Indeed, N-terminal acetylation increases the α-helical stability of several proteins 

including the N-terminal peptide of the mitochondrial matrix protein chaperonin 10 (Cpn10) (Jarvis et al., 

1995), and the N-terminal peptide of tropomyosin (Greenfield et al., 1994). Interestingly, N-terminal 

acetylation of α-synuclein increases its α-helical propensity, slows down its fibrillation rate, and increases 

its resistance to aggregation (Bartels et al., 2014). Furthermore, a recent study suggests that lack of N-

terminal acetylation by NatA triggers general protein misfolding upon Sup35 amyloid formation (Holmes et 

al., 2014). Together, these studies suggest a potential function of N-terminal acetylation in protein folding.  
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Figure 10: Potential functions of proteins N-terminal acetylation.  

N-terminal acetylation can signal proteins for degradation (1) , mediate complex formation (2), establish 
protein localization (3,4), and prevents protein aggregation (5) (Aksnes et al., 2016). 

 

 

1.4 Methods for global analysis of proteome dynamics  

1.4.1 Ribosome profiling for global analysis of translation 

Ribosome profiling is a deep-sequencing based tool that allows global monitoring of translation in vivo. 

The method is based on the fact that ribosomes protect the bound fragment of mRNA from nuclease 

digestion, allowing selective isolation of ribosome footprints (Ingolia et al., 2009). Subsequently, a deep 

sequencing library is generated form the extracted ribosomal footprints, followed by deep sequencing and 

mapping of the reads to the reference genome (Figure 11). Recent advances in high throughput 

sequencing allow sequencing of millions of reads making ribosome profiling superior in terms of the 

precision and the sensitivity of quantification. Measuring the density of the ribosome footprints over 

mRNA allows quantitative measurements of protein synthesis. Furthermore, ribosome profiling allows 

precise determination of translation start and stop sites which has led to the identification of new coding 
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regions of the genome, and alternative translation start sites (Brar et al., 2012). In addition, the 

distribution of ribosome footprints over a given mRNA can provide insights into its translation mechanism, 

such as revealing stalling events (Guydosh and Green, 2014). Taken together, ribosome profiling is a 

powerful technique to study translation. Moreover, ribosome profiling is a versatile technique that can be 

adapted for various purposes. For instance, combining affinity purification of mitochondrial ribosome to 

ribosome profiling allowed specific analysis of mitochondrial translation (Couvillion et al., 2016). 

 

Interestingly, ribosome profiling can be adapted to study co-translational interactions of any factor 

selected with nascent chains using “Selective Ribosome Profiling” (Oh et al., 2011, Becker et al 2013). 

The strategy is centered on purification of translating ribosomes in complex with the factor of interest, 

followed by ribosome profiling. Based on the identity and the distribution of the isolated ribosome 

footprints, global and mechanistic analysis of the association of the different factors with nascent chains 

can be performed. 
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Figure 11: Ribosome profiling outline. 

Ribosome profiling is centered around sequencing of ribosome footprints following degradation of the 
mRNA that is not protected by the ribosome (Brar and Weissman, 2015). 
  

 

1.4.2 Tandem fluorescent timer for the analysis of proteome turnover 

A fluorescent timer is a protein that changes its color by time thereby allowing relative estimation of 

protein age. The technique exploits the different maturation kinetics of fluorescent proteins: Super folder 

green fluorescent protein (sfGFP) and mCherry. While sfGFP becomes fluorescent within minutes after its 

synthesis, mCherry matures with a half-life of 40 min (Khmelinskii et al., 2012). The ratio of mCherry to 

GFP fluorescence intensity reflects protein age, where the ratio of mCherry to GFP fluorescence 

increases by increasing protein age. The kinetics of the maturation of the timer allows analysis of protein 

turnover in the range from 10 min to several hours (Figure 12). 

 



 Introduction 

 

32 |  P a g e

 

A genome wide library composed of 4044 tagged genes with the tandem fluorescent timer (tFT) allows 

global systematic protein turnover analysis upon environmental and/or genetic  perturbations (Khmelinskii 

et al., 2014). High throughput double mutant strain construction using a synthetic genetic array (SGA) 

(Baryshnikova et al., 2010) enables studying the effects of specific gene deletions on proteome turnover 

measured by tFT fluorescence.  

 

 

 

 

Figure 12: Tandem fluroescent timer as a tool for monitoring proteins turnover. 

sfGFP becomes fluroesecnt within minutes of its synthesis, while mCherry matures with a half-time of 40 
min, thereby mCherry/GFP ratio can be used as a proxy for protein half life (Khmelinskii et al., 2012). 
  

 

1.4.3 Quantitative proteomics  

 

Quantitative proteomics has become a pivotal tool applied to the investigation of many different biological 

processes. Stable isotope labeling techniques have facilitated the quantitation of changes in protein 

abundance by mass spectrometry, between different genetic and environmental conditions. Stable 

isotope labeling by amino acids in cell culture (SILAC) is an easy and reliable method for in vivo 

incorporation of a label into proteins for mass spectrometry (MS)-based quantitative proteomics (Mann, 

2006). SILAC relies on metabolic incorporation of amino-acids with substituted stable isotopic nuclei (e.g. 

13
C 

15
N). Thus in such an experiment, two cell populations (e.g. wild type and gene deletion mutant) are 

grown in culture media that are identical except that one contains a 'light' and the other a 'heavy' form of a 

particular amino acid (e.g. 
13

C 
15

N labeled L-Lysine and L-Arginine). The heavy amino acid that is 

supplied to cells in culture gets incorporated into all proteins after a number of cell divisions. There is 
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hardly any chemical difference between the heavy and light amino acid. Both the unlabeled and labeled 

samples can be combined prior to cell harvest, and then be treated as a single sample in all subsequent 

steps, which include preparation of cell lysate, as well as preparation of the sample for mass spectrometry 

analysis. The intensity differences of the MS signal between heavy and light peptides reveals the relative 

abundance of any protein in both cells populations. Recent developments in the field of quantitative 

proteomics led to the development of new techniques that allow more consistent and reproducible label-

free quantifications such as “SWATH” (Selevsek et al., 2015).  
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 Aims of the study 2

 

Despite recent advances in our understanding of the role of N-terminal acetylation of proteins in 

eukaryotes, its precise molecular functions remain obscure. The general aim of the study is to understand 

the physiological function of N-terminal acetylation in yeast as a simple model of eukaryotic cells. Since 

N-terminal acetylation is a highly prevalent protein modification, I aimed to understand the global effects 

of the lack of N-terminal acetylation on the yeast proteome dynamics. Toward this aim, I employed 

unbiased high throughput approaches that together allow multi-dimensional proteome-wide analysis of 

the functional consequences of lacking N-terminal acetylation. Using this approach, I aimed to dissect the 

key steps of proteome homeostasis: protein synthesis analysis using ribosome profiling, protein steady-

state levels analysis using quantitative proteomics, as well as protein turnover analysis using the tandem 

fluorescent timer. Furthermore, I complemented our approach with quantitative proteomics of isolated 

protein aggregates to investigate the effect of N-terminal acetylation on protein solubility. In addition, I 

aimed to analyze the genetic interaction network of the N-terminal acetyl transferase genes by performing 

an unbiased genetic screening for synthetic growth defects using the yeast deletion library. The 

combination of the different methods provided an integrated approach for a systematic and global 

analysis of the functional relevance of N-terminal acetylation. The project was performed in collaboration 

with Ulrike Friedrich, a PhD student in Bukau lab. All experiments presented here were performed by me 

unless mentioned otherwise.  
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 Results 3

3.1 Translatome/proteome analysis under lack of N-terminal 

acetylation by NatB 

Understanding global proteome dynamics upon loss of N-terminal acetylation can provide insights into its 

functional implications. With this in mind, we performed a combined translatome/proteome analysis of the 

consequences of loss of N-terminal acetylation by employing ribosome profiling, as well as quantitative 

proteomics in deletion mutants of specific NATs, in comparison to the wild type. Since deletion of natB 

leads to the most pronounced phenotype when compared to deletion of other N-terminal acetyl 

transferases (Caesar et al., 2006a; Gautschi et al., 2003c), we aimed to first analyze the consequences of 

loss of N-terminal acetylation by NatB in strains where the gene encoding the catalytic subunit of NatB is 

deleted (hereafter natBΔ). 

3.1.1 Verification of natBΔ phenotypes 

Consistent with earlier reports (Caesar et al., 2006a; Gautschi et al., 2003c), natBΔ cells showed slow 

growth at physiological growth conditions (30°C). In addition, natBΔ confers higher sensitivity to different 

stress conditions such as heat stress (37°C), DNA damage induced by Methyl Methanesulfonate (MMS) 

(alkylating agent), as well as osmotic stress induced by high concentration of NaCl. Deletion of the gene 

encoding the catalytic subunit of NatA (hereafter natAΔ) showed more subtle effects compared to natBΔ 

(Figure 13). 

 

 

 

Figure 13: natA and natB deletion mutant growth phenotypes. 

Spot test showing the growth behavior of wild type, natAΔ and natBΔ at 30°C, or under stress 
conditions such as heat (37°C), DNA-damage (MMS: alkylating agent), and osmotic stress (1 M NaCl). 

  

3.1.2 Establishment of the labeling conditions for SILAC-based proteomics 

A prerequisite for SILAC-based quantitative proteomics analysis is near to complete labeling of proteins 

with heavy amino-acids during cell culture. To maximize the labeling efficiency, we constructed a strain 
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auxotrophic for Arginine and Lysine (ARG4Δ LYS1Δ) where two genes encoding proteins that are critical 

for Arginine and the Lysine biosynthesis are deleted. Furthermore, the labeling rate of proteins by 

incorporation of heavy amino acids was determined by growing the auxotrophic strain in Lysine and 

Arginine synthetic dropout medium supplied with 
13

C 
15

N labeled Lysine, and 
13

C 
15

N labeled Arginine for 

three different doubling times (6, 7, and 8 doublings) followed by protein extraction and mass 

spectrometry analysis. The labeling efficiency was calculated based on the identified peptides at each of 

the tested doubling time. The incorporation efficiency of Arginine and Lysine was over 95% in all tested 

conditions (Table 1). Based on the incorporation rate test, we have verified that 6 doublings in the 

labeling media is sufficient for both heavy Arginine and Lysine to get incorporated with an efficiency that 

exceeds 95%.  

 

Table 1: Incorporation efficiency of 
13

C 
15

N labeled Arginine and Lysine. 

Yeast cells deficient in Lysine and Arginine biosynthesis were grown in the presence of heavy Arginine 
and Lysine in the absence of its light counterpart. Protein extracts prepared from cells grown for 6, 7, and 
8 doubling times were analyzed by MS and the incorporation efficiency of the heavy amino acids were 
calculated.  

 

Doubling times 6 7 8 

Incorporation efficiency of Arginine (%) 0.97 0.99 0.97 

Incorporation efficiency of Lysine (%) 0.98 0.98 0.97 
 

3.1.3 Correlation between replicates 

In summary, steady state levels of 2909 proteins were reproducibly quantified in natBΔ relative to the wild 

type using SILAC-based quantitative proteomics in two label-swap replicates (Pearson correlation 

coefficient (r) = 0.74) (Figure 14B). This compares to 4030 genes that were consistently quantified in 

natBΔ relative to the wild type at the translation level, in two replicates ( r = 0.91) using ribosome profiling 

(Figure 14A). Furthermore, in complementation to the SILAC-based proteomics, we employed SWATH-

based quantitative proteomics which allows reproducible and consistent label-free quantification (in 

collaboration with Prof. Dr. Ruedi Aebersold lab at ETH-Zurich) where 1483 proteins were reproducibly 

quantified in natBΔ relative to wild type consistently across three replicates, at FDR<0.05.  
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Figure 14: Correlation between replicates. 

A. Correlation of fold-change (log2) of protein synthesis levels between natBΔ and wild type measured 
by ribosome profiling from two replicates. Pearson correlation coefficient equals 0.918 based on the 
analysis of 4030 genes. 

B. Correlation of fold change (log2) of protein steady state levels in natBΔ versus wild type measured by 
SILAC-based quantitative proteomics from two label-swap replicates. Pearson correlation coefficient 
equals 0.74 based on 2909 proteins.  

 

3.1.4 Quantification of N-terminally acetylated peptides 

To verify that natBΔ indeed causes the loss of N-terminal acetylation of predicted NatB substrates, we 

analyzed N-terminal acetylation by SILAC-based quantitative proteomics of N-terminally acetylated 

peptides in natBΔ relative to the wild type. Interestingly, 198 unique N-terminally acetylated peptides were 

consistently quantified in wild type relative to natBΔ in two label swapped replicates. Confirmatory to the 

predicted NatB substrate specificity, N-terminally acetylated peptides starting with MD-, ME-, MQ-, MN- 

showed consistently higher abundance in the wild type compared to natBΔ indicating deficient N-terminal 

acetylation of those proteins in the absence of NatB (Figure 15A). This is not due to decreased steady 

state level of those proteins in natBΔ compared to wild type (Figure 15B). 
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Figure 15: SILAC-based quantification of N-terminal acetylation in natBΔ relative to the wild 

type. 

A. Correlation of fold change (log2) between wild type and natBΔ for N-terminally acetylated peptides 
from two label-swap replicates. Peptides starting with MD-, ME-, MQ-, and MN- are highlighted. 

B. Steady state levels fold change (log2) between wild type and natBΔ for proteins starting with MD-, 
ME-, MQ-, and MN-, and their corresponding N-terminally acetylated peptide. 
  

 

When both the N-terminally acetylated and non-acetylated forms of the same peptide were quantified, the 

percentage of N-terminal acetylation for the corresponding protein was calculated for wild type as well as 

in natBΔ. Consistently, proteins starting with MD-, ME-, and MN- showed close to full N-terminal 

acetylation in wild type (in contrast to MQ-), versus minimal N-terminal acetylation levels in natBΔ. On the 
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contrary, proteins starting with N-termini other than MD-, ME- , MQ-, and MN- (including MS-, MA-, MT-) 

are acetylated to comparable levels in wild type and natBΔ confirming the highly distinct substrate 

specificities of NatB under the tested experimental conditions (Figure 16). 

 

 

Figure 16: SILAC-based quantification of the degree of N-terminal acetylation in natBΔ relative 

to the wild type. 

A. The percentage of N-terminal acetylation in wild type for proteins where both N-terminally 
acetylated and non N-terminally acetylated forms of the same peptides were quantified. The 
sequence of the first two N-terminal amino-acids is listed in brackets.  

B. The percentage of N-terminal acetylation in natBΔ for proteins where both N-terminally acetylated 
and non N-terminally acetylated forms of the same peptides were quantified. The sequence of the 
first two N-terminal amino acids is listed in brackets.  
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3.1.5 Gene ontology (GO) enrichment analysis of the changes at the translatome 

and proteome level in natBΔ 

To further elucidate the biological significance of the proteome dynamics in natBΔ, we performed gene 

ontology (GO) enrichment analysis of the changes at the translatome (based on ribosome profiling) and 

proteome level (based on quantitative proteomics) in natBΔ relative to the wild type. We employed two-

dimensional statistical analysis that systematically tests whether changes in natBΔ, both at the 

translatome or proteome level, for proteins annotated to every GO term, significantly deviates from the 

overall distribution of all proteins (Cox and Mann, 2012). A major advantage of this analysis is that it is not 

restricted to predefined proteins based on arbitrary thresholds. Statistically significant GO terms are 

assigned a directional score, where a score>0 means the particular GO term is elevated in natBΔ relative 

to the wild type (1 is the maximum score), while a score<0 means the particular GO term is reduced in 

natBΔ relative to the wild type (-1 is the minimum score). Interestingly, the 2D-GO enrichment analysis 

revealed modulation of specific biological processes in natBΔ (Figure 17). 

 

 

Figure 17: Gene ontology (GO) enrichment analysis of the changes at the translatome and 

proteome level for natBΔ versus wild type. 
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Two-dimensional annotation analysis of all quantified genes at the translation level (analyzed by  
ribosome profiling) or protein level (quantitative proteomics) in natBΔ relative to wild type. Analysis was 
done at threshold FDR = 0.05. Only significant GO terms with a score>0.4 or <-0.4 at the translation or 
protein level are shown. GO terms that have less than 10 genes are not shown. 

 

3.1.6 Elevated protein refolding capacity in natBΔ 

Remarkably, both translatome and proteome analyses indicated that the protein refolding machinery is 

significantly elevated in natBΔ cells (Figure 17). Specifically, the stress inducible small heat shock protein 

(Hsp26), the stress inducible Hsp70 (Ssa4), as well as the cytosolic and mitochondrial disaggregase 

(Hsp104, Hsp78) are >2 fold elevated in natBΔ at the translation and steady state protein level (Figure 

18A). Consistent with this finding, the capacity to refold plasmid-encoded firefly luciferase after heat 

denaturation (Gupta et al., 2011) is higher in natBΔ cells compared to the wild type, suggesting higher 

chaperone content in natBΔ cells (Figure 18B).  

 

 

Figure 18: Elevated protein refolding capacity in natBΔ. 

A. Comparison of the levels of molecular chaperones that are involved in protein refolding between 
natBΔ and wild type at the translation level (ribosome profiling) and protein level (quantitative 
proteomics). 

B. Comparison of the refolding kintetics of heat denatured luciferase refolding between natBΔ and 
wild type. 

 

3.1.7 Compartment-specific translation modulation in natBΔ cells 

Interestingly, proteins annotated to mitochondrial translation and electron transport chain are elevated in 

natBΔ suggesting elevated mitochondrial respiration in natBΔ (Figure 17). In contrast to the mitochondrial 

ribosomal proteins elevation, cytoplasmic ribosomal proteins are significantly repressed in natBΔ at both 

translation/steady-state levels, together indicating a compartment specific translation modulation in natBΔ 
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(Figure 19A). Cytoplasmic translation repression in natBΔ is not limited to repressed levels of ribosomal 

proteins but also comprises proteins annotated to ribosome biogenesis, tRNA aminoacylation, as well as 

translation factors, suggesting an orchestrated mechanism for translation repression (Figure 17), 

analogous to the stress response mediated transcriptional repression of the protein biosynthesis 

machinery (Gasch et al., 2000). In line with the reduced levels of the cytoplasmic translation proteins, 

natBΔ cells showed ~2-fold less incorporation of radiolabeled 
35

S Methionine compared to the wild type, 

indicating reduced translation efficiency in natBΔ cells (Figure 19B). In addition, polysome profiling 

shows higher monosome to polysome ratio in natBΔ cells, indicating less active global translation (Figure 

19C).  

 

 

Figure 19: Compartment-specific translation modulation in natBΔ. 

A. Comparison of the levels of cytosolic and mitochondrial ribosomal proteins between natBΔ and wild 
type at the translation level (ribosome profiling) and protein level (quantitative proteomics). 

B. 
35

S Methionine incorporation in wild-type and natBΔ (measured in counts per million (CPM) 
normalized to cell density (OD600)) 

C. Polysome profile of natBΔ and wild type performed by fractionation of cell lysate in 10-50% sucrose 
gradient (polysome profiling was performed by Ulrike Friedrich). 

D. Comparison of colony size fold change (log2) for deletion mutants for genes encoding components 
of the mitochondrial translation machinery in the presence/absence of natB.  
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In complementation to the high-throughput analysis of proteome dynamic in natBΔ, we performed an 

unbiased genetic screen that aims to dissect the effect of single gene perturbation on the fitness of natBΔ 

cells, thereby highlighting biological processes that are critical for natBΔ viability. In summary, natBΔ was 

introduced into a library of non-essential yeast gene deletions using SGA (Baryshnikova et al., 2010), and 

the fitness of double mutants was compared to the single mutants based on average colony size 

measurements. Interestingly, genes involved in mitochondrial translation showed the strongest effect 

among genes whose deletion lead to significant synthetic growth defect in natBΔ based on enrichment 

analysis (score = -0.76, p-value= 4E-12) (Figure 19D). This observation underscores the critical role of 

mitochondrial translation for maintaining cellular fitness in natBΔ, in line with the elevated levels of 

mitochondrial translation proteins in natBΔ. 

3.1.8 Constitutive stress response in natBΔ 

In line with the aforementioned indications of stress response activation in natBΔ, we found that the heat 

shock transcription factor (Hsf1) is elevated in natBΔ cells at both translation and protein steady state 

level (Figure 20A), which is reminiscent to the increase of Hsf1 expression under heat stress (Gasch et 

al., 2000). We further asked whether the increased expression of genes in natBΔ is mediated by Hsf1, by 

analyzing the genes with >2-fold increase in natBΔ at the translation level or protein steady state levels 

using Yeastract database (Teixeira et al., 2006). We found that approximately 50% of the elevated genes 

in natBΔ at the translation or protein level are experimentally verified inducible targets of Hsf1. This is 

significantly higher than the percentage of genes that are targets of Hsf1 in a list of all genes quantified at 

the protein synthesis or protein steady state level (background) (Figure 20B).  

 

 



 Results 

 

44 |  P a g e

 

 

 

 

Figure 20:  Constitutive stress response in natBΔ. 

A. Hsf1 synthesis and abundance in wild-type and natBΔ cells determined by ribosome profiling and 
quantitative proteomics. 

B. The percentage of Hsf1 targets among genes that are more than two fold increased at the 
translation level or protein level in natBΔ, compared to the background of all quantified proteins at 
the translation or protein levels. Only experimentally verified targets are included in the analysis. *** 
p-value ≤ 0.001. Statistical significance was calculated based on Fisher exact test. 

 
 

3.2 Proteome turnover analysis in natBΔ 

N-terminal acetylation was recently described as a signal for protein degradation. With this in mind, we 

asked whether the constitutive stress response observed in natBΔ is triggered by perturbation of protein 

degradation of NatB substrates that have failed to be N-terminally acetylated.  If the model were true, the 

lack of N-terminal acetylation of NatB substrates in natBΔ would prevent their N-acetyl mediated 

degradation resulting in elevated steady-state levels of those proteins. 
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To address this possibility, we tested whether experimentally identified NatB substrates tend to be 

elevated in terms of steady state levels in natBΔ relative to the wild type, as measured by quantitative 

proteomics. Interestingly, the distribution of the protein steady state levels fold change between natBΔ 

and wild type for the verified NatB substrates showed no significant difference when compared to the 

distribution of all quantified proteins (background) (Figure 21A). 

 

Protein steady state levels measured by quantitative proteomics are the net outcome of both protein 

stability (degradation) and protein biogenesis (translation). Therefore, we normalized the relative protein 

levels to their corresponding relative translation levels, to specifically analyze the effects on proteins 

turnover. The distribution of the normalized protein steady state levels fold change between natBΔ and 

wild type for the verified NatB substrates showed no significant differences when compared to the 

distribution of all proteins (Figure 21B). 

 

Next, we aimed to directly measure protein stability in natBΔ relative to the wild type, by employing the 

newly developed tandem fluorescent timer analysis that allows relative estimation of protein stability, 

independent of protein abundance. We introduced natBΔ to the tFT library consisting of strains 

expressing 4,044 genome encoded tFT-tagged proteins using SGA, followed by high throughput 

fluorescence measurement of colonies. This allows for relative systematic stability profiling of proteins 

between wild type and natBΔ. Similarly, we asked whether experimentally verified NatB substrates tend 

to have different mCherry/GFP ratios in natBΔ cells relative to wild type. Confirming our previous analysis, 

the distribution of the mCherry/GFP fold change between natBΔ and wild type of the verified NatB 

substrates was not significantly different to the distribution of all measured proteins. Taken together, our 

data suggests no general effect of the loss of N-terminal acetylation on protein levels or protein stability 

under physiological conditions (Figure 21C). 

 

Since N-acetyl mediated degradation may represent a quality control mechanism that gets manifested 

only upon specific perturbations including stress conditions, we asked whether lack of N-terminal 

acetylation by NatB would lead to global stabilization of NatB substrates under stress that compromises 

proteome integrity and triggers protein quality control pathways. Since natBΔ cells have a strong growth 

defect at 37°C (Figure 13), we repeated the experiments under prolonged upshift to this elevated 

temperature. Therefore wild type and natBΔ cells were grown at 30°C, and then shifted to 37°C for two 

doubling time (for tFT analysis: plates were incubated at 30°C for 1 day then shifted to 37°C for 1 day) to 

allow enough time for re-establishing protein levels under stress. In line with the analysis at 30°C, our 

results suggest no general effect of loss of N-terminal acetylation on protein levels or protein stability 

under heat stress (Figure 21D-F). Our analysis does not exclude that N-acetyl mediated degradation can 

take place for specific substrates.  
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Figure 21: Loss of N-terminal acetylation by NatB has no global impact on substrate stability. 

A. Comparison of the distribution of protein levels fold change (log2) between natBΔ and wild type at 
30° (quantitative proteomics) for verified NatB substrates (n =110) and a background consisting 
of all proteins quantified at the protein level.  

B. Comparison of the distribution of protein levels (normalized to the translation levels) fold change 
(log2) between natBΔ and wild type at 30° (quantitative proteomics and ribosome profiling), for 
the verified NatB substrates (n =101) and a background consisting of all proteins quantified at 
both translation (ribosome profiling) and protein level (quantitative proteomics).  

C. Comparison of the distribution of the mCherry/GFP fold change (log2) between natBΔ and wild 
type at 30°, for verified NatB substrates (n =66)  and a background consisting of all measured tFT 
protein fusions.  

D. Comparison of the distribution of protein levels fold change (log2) between natBΔ and wild type 
(quantitative proteomics) upon shift from 30°C to 37°C for 2 doubling times for verified NatB 
substrates (n =41)  and a background consisting of all proteins quantified at the protein level.  

E. Comparison of the distribution of protein levels (normalized to the translation levels) fold change 
(log2) between natBΔ and wild type (quantitative proteomics and ribosome profiling) upon shift 
from 30°C to 37°C for 2 doubling times for the verified NatB substrates (n =40) and a background 
consisting of all proteins quantified at both translation (ribosome profiling) and protein level 
(quantitative proteomics).  

F. Comparison of the distribution of mCherry/GFP fold change (log2) between natBΔ and wild type 
upon shift from 30°C to 37°C for verified NatB substrates (n =106) and a background consisting 
of all measured tFT protein fusions.  

Statistical significance in (a-f) was calculated based on unpaired t-test. Whiskers in box plots in (a-f) 
represent 10%-90% interval. Verified NatB substrates were selected based on a manually curated list of 
all experimentally identified N-terminally acetylated proteins from literature, prepared by Ulrike Friedrich.  

 

3.3 Global aggregation of endogenous proteins in natBΔ 

The elevated levels of protein refolding machinery in natBΔ suggest that loss of N-terminal acetylation by 

NatB compromises protein integrity. To address this possibility, we isolated protein aggregates from 

natBΔ and wild type cells. Interestingly, natBΔ showed elevated protein aggregation as compared to the 

wild type (Figure 22A). To identify and quantify aggregated proteins enriched in natBΔ cells we employed 

SILAC-based quantitative proteomics analysis of the aggregate fraction. In summary, we quantified 849 

aggregated proteins that are more than 2-fold enriched in natBΔ relative to the wild type cells in each of 

two label-swap replicates. Increased aggregation of those proteins is not because of their increased 

protein steady state levels in natBΔ cells, when comparing protein level fold changes (natBΔ/Wild type) 

measured by quantitate proteomics of the aggregates fraction versus total lysate (Figure 22B). In line 

with the quantitative proteomics analysis of protein aggregates, the GFP tagged variant of Gsy2, the most 

enriched protein in the aggregate fractions of natBΔ compared to wild type, forms foci in natBΔ cells but a 

diffuse distribution in the wild type (Figure 22C).   
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Figure 22: Global endogenous proteins aggregation in natBΔ. 

A. Isolated protein aggregates from wild type and natBΔ followed by SDS-PAGE and coomassie-
staining. 

B. Comparison of the distribution of the protein level fold change (log2) between natBΔ and wild type, for 
aggregating proteins versus their corresponding levels in the total lysate (only proteins of >2-fold 
increase in natBΔ relative to the wild type, in the aggregates fraction, in each of the two replicates 
were included in the analysis). 

C. Live cell microscopy of GFP tagged Gsy2 in natBΔ compared the wild type. 
 

3.3.1 Protein aggregation in natBΔ cannot be solely explained as a direct 

consequence of the loss of N-terminal acetylation 

We next asked whether protein aggregates in natBΔ is enriched with proteins that have failed to be N-

terminally acetylated by NatB. Analysis of protein aggregates in natBΔ showed no significant enrichment 

of verified NatB substrates when compared to a background consisting of all the proteins quantified from 

the total lysate (Figure 23A). Moreover, verified NatB substrates among natBΔ aggregates show no 

significant difference in their protein level fold change (natBΔ/wild type) in the aggregates fraction, when 

compared to all aggregated proteins in natBΔ (Figure 23B). Taken together, protein aggregation in natBΔ 

cannot be explained only on the basis of aggregation of proteins that fail to be N-terminally acetylated in 

natBΔ, suggesting contribution of additional factors.  
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3.3.2 Analysis of protein aggregates in natBΔ suggests an underlying selective 

sequestration mechanism 

We next asked whether protein aggregates in natBΔ are enriched for specific pathways or cellular 

compartments. To address this question, we performed functional annotation clustering of protein 

aggregates in natBΔ using DAVID (Dennis et al., 2003). Interestingly, the most enriched group of proteins 

among the protein aggregates in natBΔ is the cytoplasmic translation machinery including cytosolic small 

and large ribosomal subunits, translation factors, ribosome biogenesis factors, as well as tRNA-

aminoacylation machinery, together representing more than 15% of all proteins aggregating in natBΔ 

(Figure 24A). Moreover, 65-85% of the proteins annotated to cytoplasmic translation that were quantified 

in the total lysate, were enriched in natBΔ aggregates, suggesting a global sequestration of the 

translation machinery into protein aggregates (Figure 24A). In addition, natBΔ protein aggregates show 

significant enrichment of mitochondrial and ER proteins (Figure 24B). Furthermore, natBΔ aggregates 

sequester chaperones including those known to associate with protein aggregates (Hsp26 and Hsp104), 

 

 

Figure 23:  Protein aggregation in natBΔ cannot be solely explained as direct consequence of 

the loss of N-terminal acetylation. 

A. The percentage of verified NatB substrates among quantified proteins in the total lysate, or 
aggregated proteins.  Statistical significance was calculated based on Fisher exact test. 

B. Comparison of the distribution of protein level (log2) fold change between natBΔ and wild type in 
the aggregates fraction for verified NatB substrates versus all aggregated proteins in natBΔ. 
Statistical significance was calculated based on unpaired two samples t-test. 
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as well as Hsp70, Hsp40s, and Hsp90, TriC/CCT, and ribosome associated chaperones (Figure 24C). In 

addition, ER and mitochondrial chaperones are also sequestered into aggregates in natBΔ aggregates 

(Figure 24C). Interestingly, proteins aggregating in natBΔ showed significantly higher interactions 

between each other compared to a randomized list with equal number of proteins (STRING database 

(Szklarczyk et al., 2010)) (Figure 24D), underscoring the role of protein-protein interactions in 

sequestration of proteins to aggregates in natBΔ. 
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Figure 24: Analysis of protein aggregates in natBΔ suggests an underlying coordinated 

sequestration mechanism for specific groups of proteins. 

A. Functional annotation clustering (DAVID) for biological processes of proteins aggregating in natBΔ. 
Clusters with enrichment score <2 are not shown. Background consists of all proteins quantified in the 
total lysate. %Aggregates: The percentage of all aggregated proteins that are annotated to a 
particular GO term. % Background: The percentages of proteins which are quantified in the total 
lysate that are also enriched in the aggregates, for a particular GO term. 

B. Functional annotation clustering (DAVID) for cellular compartments of proteins aggregating in natBΔ. 
Clusters with enrichment score <2 are not shown. %Aggregates: The percentage of aggregated 
proteins that are annotated to a particular GO term. % Background: The percentages of proteins 
which are quantified in the total lysate, that are also enriched in the aggregates, for a particular GO 
term. 

C. Protein level fold change (log2) between natBΔ and wild type of all quantified molecular chaperones 
in  natBΔ protein aggregates, and their corresponding steady state levels (quantitative proteomics), 
and translation levels (ribosome profiling). 

D. Comparison of total protein-protein interactions between proteins aggregating in natBΔ and a 
randomized list of proteins with equal number (analysis was performed by STRING database). *** P ≤ 
0.001 

 

3.3.3 The pattern of protein aggregation in natBΔ and ssb1,2Δ cells is highly 

similar 

To further understand the reasons for sequestration of protein aggregates in natBΔ, we asked whether 

proteins that aggregate in natBΔ, tend to aggregate under other conditions. Indeed, protein aggregates in 

natBΔ showed a substantial overlap with stress induced protein aggregation (De Laureto et al., 2014; 

Stoecklin et al., 2015; Wallace et al., 2015), suggesting that protein aggregates in natBΔ may comprise 

aggregation-prone proteins that are sensitive to changes in the cellular protein folding environment 

(Figure 25A). Interestingly, natBΔ aggregates show the largest overlap with protein aggregates present 

in cells lacking both isoforms of the ribosome associated Hsp70 Ssb (Koplin et al., 2010; Willmund et al., 

2013) (Figure 25A). Furthermore, deletion of SSB in natBΔ cells leads to a synthetic growth defect, 

suggesting that Ssb and NatB work in parallel pathways (Figure 25B).  

Given that N-terminal acetylation takes place co-translationally, it is likely that the loss of N-terminal 

acetylation can impact the integrity of nascent proteins. To address this possibility, we isolated 

radiolabeled protein aggregates after a short pulse with 
35

S Methionine. Indeed, natBΔ showed elevated 

35
S Methionine labeled aggregates compared to wild type indicating that a fraction of newly translated is 

readily sequestered into aggregates (Figure 25C).  

Specific components of the translation apparatus are known to aggregate under different stress condition 

thereby mediating translation repression (Stoecklin et al., 2015). On the contrary, ribosomal proteins do 

not globally aggregate under stress conditions, yet they aggregate in natBΔ and in SSBΔ (Figure 25D), 

which further underscores the overlap between NatB and Ssb functions. Interestingly, cytoplasmic 
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translation components that are enriched in protein aggregates in natBΔ also tend to be reduced at the 

translation/protein level underscoring a multilayered modulation of cytoplasmic translation in natBΔ  

(Figure 25D).  

 

 

 

Figure 25:  Protein aggregation in natBΔ overlap with aggregation upon deletion of SSB. 

 
A. The overlap between protein aggregates in natBΔ and protein aggregates in SSBΔ or under 

different stress conditions calculated as percentage of natBΔ protein aggregates. 
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We further aimed to quantify the proportion of a given protein that aggregates upon loss of N-terminal 

acetylation. Towards this aim, I quantified protein abundances in the soluble fraction versus the total 

lysate after dimethyl labeling (Wallace et al., 2015). The relative protein levels before and after aggregate 

isolation reflects the percentage of a given protein that gets sequestered into protein aggregates. 

Ribosomal proteins showed the strongest depletion from the soluble fraction in natBΔ. On average, 

approximately ~ 40% of each of the quantified ribosomal proteins is sequestered into protein aggregates 

upon loss of N-terminal acetylation by NatB (Figure 25E). 

 

3.4 Proteome-wide analysis of the effects of loss of N-terminal 

acetylation by NatA 

3.4.1 Analogous protein aggregation in natAΔ to natBΔ protein aggregation:  

Protein aggregation in natBΔ can be explained as a primary effect of the loss of N-terminal acetylation 

where lack of N-terminal acetylation of a specific set of proteins directly triggers protein aggregation. 

Alternatively, it can be explained by secondary effects where lack of N-terminal acetylation of one or more 

NatB substrates that are important to prevent protein aggregation, compromise its functionality thereby 

leading to protein aggregation. To distinguish between the two possibilities, we asked whether loss of N-

terminal acetylation of a distinct set of proteins (i.e. NatA substrates) may also lead to global protein 

aggregation. Towards this end, we isolated protein aggregates from natAΔ cells, and compared these to 

aggregates isolated from wild type and natBΔ cells. Interestingly, natAΔ caused elevated aggregation of 

proteins to a comparable level to the aggregated proteins in natBΔ (Figure 26A). To further characterize 

protein aggregation in natAΔ, we performed quantitative proteomic analysis of natAΔ protein aggregates. 

In summary, we quantified 707 proteins that are >2-fold elevated in the aggregate fraction in natAΔ 

relative to the wild type in each of the two replicates. Interestingly, protein aggregates in natAΔ and natBΔ 

strongly overlap (Figure 26B), and enriched for similar biological processes and compartments (Figure 

26C), further highlighting a unifying mechanism for organized protein sequestration into aggregates, in 

 
B. Growth behavior of SSB and natB double deletion mutant in comparison to single deletion mutants, 

and wild type.  
C. 

35
S labeled protein aggregates isolated from wild type and  natBΔ, after 5 min incorporation. 

D. The fold change (log2) of translation components between wild type and natBΔ in the protein 
aggregates (A), at the translation levels (B) and the protein steady state levels (C), and its 
aggregation behavior under other conditions (D: protein aggregation upon SSB deletion,  E: Protein 
aggregation upon heat stress, F: Protein aggregation upon ethanol treatment. G: Stress granules). 

E. Comparison of the percentage of a given protein that undergo aggregation in wild type versus 
natBΔ, using dimethyl labeling based quantitative proteomics of supernatant versus total lysate. 
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response to the loss of N-terminal acetylation of yet completely distinct sets of proteins. Notably, 

comparison of the protein aggregates in natAΔ and natBΔ based on the quantitative proteomics analysis 

showed a higher fold change in natBΔ compared to natAΔ cells (Figure 26D). 
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3.4.2 Protein aggregation in natAΔ is due to the lack of NatA catalytic activity 

Similar to co-translationally acting chaperones, N-terminal acetyl transferase complexes are ribosome 

associated and interact with the nascent chains co-translationally. With this in mind, we asked whether 

NATs - like chaperones - may mediate co-translational folding by directly interacting with the nascent 

chains independent of their enzymatic activity, which may then cause aggregation in NAT deletion 

mutants. To address this possibility, we complemented the natAΔ cells by either a plasmid-encoded wild 

type NatA catalytic subunit, or a catalytically dead mutant (Liszczak et al., 2013), followed by isolation of 

aggregates, as well as characterization of natAΔ growth phenotypes. Expression of wild type NatA 

catalytic subunit fully complemented natAΔ growth phenotypes (Figure 27A), and suppressed 

aggregates formation (Figure 27B). In contrast, the catalytic dead mutant neither suppressed the 

aggregation (Figure 27B) nor the growth phenotype (Figure 27A) indicating that the loss of the N-

terminal acetylation is the cause of protein aggregation. 

 

Figure 26: Analogous protein aggregation in natAΔ to natBΔ protein aggregation. 

A. Comparison of protein aggregates between wild type, natAΔ and natBΔ by isolation of protein 
aggregates followed by SDS-PAGE and coomassie staining.  

B. The overlap between protein aggregates in natAΔ and natBΔ cells quantified by SILAC-based mass 
spectrometry. 

E. Functional annotation clustering (DAVID) of proteins aggregating in natAΔ (clusters with enrichment 
score <2 are not shown). Background consists of all proteins quantified in the total lysate. 
%Aggregates: The percentage of all aggregated proteins that are annotated to a particular GO term. 
% Background: The percentages of proteins which are quantified in the total lysate, that are also 
enriched in the aggregates, for a particular GO term. 

C. Comparison of the fold change (log2) of protein aggregates between natAΔ, natBΔ and wild type.  
(only proteins of >2-fold increase in natAΔ relative to the wild type, in the aggregates fraction,  in each of 
the two replicates were included in the analysis). 
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Figure 27: Protein aggregation in natAΔ is due to the lack of NatA catalytic activity. 
A. Growth behavior of wild type, natAΔ, and natAΔ expressing plasmid encoded wild type NatA 

catalytic subunit, or the catalytically dead mutant of the NatA catalytic subunit. 
B. Comparison of the levels of isolated protein aggregates from wild type, natAΔ, and natAΔ 

expressing plasmid encoded wild type NatA catalytic subunit, or the catalytically dead mutant of the 
NatA catalytic subunit. 

 

3.4.3 Translatome/proteome analysis of natAΔ 

To further understand the underlying mechanism/consequences of protein aggregation in natAΔ, we 

aimed to analyze changes at the protein synthesis (ribosome profiling), or protein levels (quantitative 

proteomics) in natAΔ cells in comparison to wild type, similar to the natBΔ translatome/proteome 

analyses described before (see section 3.1). 

3.4.3.1 Correlation between replicates 

In summary, expression of 3989 genes were consistently quantified in natAΔ relative to the wild type (r = 

0.88) based on ribosome profiling (Figure 28A), while the steady state levels of 2402 proteins were 
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reproducibly quantified in natAΔ relative to wild type cells (r = 0.77) based on quantitative proteomics 

(Figure 28B).  

 

 

 

 

Figure 28: Translatome/proteome analysis of natAΔ. 

A. Correlation between fold change (log2) of protein synthesis between natAΔ and wild type measured 
by ribosome profiling from two replicates. Pearson correlation coefficient (r) equals 0.88 based on 
3989 genes.  

B. Correlation between fold change (log2) of protein steady state levels between natAΔ and wild type 
measured by SILAC-based quantitative proteomics from two label-swap replicates. Pearson 
correlation coefficient (r) equals 0.77 for 2402 proteins.  

 
 

3.4.3.2 Quantification of N-terminally acetylated peptides 

To verify that NatA shows distinct substrate specificity under our experimental conditions, we analyzed N-

terminal acetylation by SILAC-based quantitative proteomic analysis of the total lysate in natAΔ and wild 

type cells. Interestingly, 123 unique N-terminally acetylated peptides were consistently quantified in natAΔ 

relative to wild type, in two label swapped replicates. Confirmatory to the predicted NatA substrate 

specificity, N-terminally acetylated peptides starting with MS-, MT-, MS-, MV- showed consistently higher 

abundance in the wild type compared to natAΔ indicating deficient N-terminal acetylation of those 

proteins in natAΔ (Figure 29A). This is not due to decreased steady state levels of those proteins in 

natAΔ compared to wild type (Figure 29B). 
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Figure 29: Quantification of N-terminal acetylation in natAΔ relative to the wild type. 

A. Correlation of fold change (log2) between wild type and natAΔ for N-terminally acetylated peptides 
from two label-swap replicates. Peptides starting with MA-, MS-, MT-, and MV- are highlighted. 

B. Steady state levels fold change (log2) between wild type and natAΔ for proteins starting with MA-, 
MS-, MT-, MV- and their corresponding N-terminally acetylated peptides. 

 
 

When both the N-terminally acetylated and non N-terminally acetylated forms of the same peptide were 

quantified, the percentage of N-terminal acetylation for the corresponding proteins was calculated for wild 

type as well as natAΔ.  
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Figure 30: Quantification of the degree of N-terminal acetylation in natAΔ relative to the wild 

type. 

A. The percentage of N-terminal acetylation in wild type for proteins where both N-terminally acetylated 
and non N-terminally acetylated forms of the same peptides were quantified. The sequence of the 
first two N-terminal amino-acids is listed between brackets.  

B. The percentage of N-terminal acetylation in natAΔ for proteins where both N-terminally acetylated 
and non N-terminally acetylated forms of the same peptides were quantified. The sequence of the 
first two N-terminal amino-acids is listed between brackets.  

 

Consistently, proteins starting with MS-, MA-, MT- and MV- were efficiently N-terminally acetylated in wild 

type, but not in natAΔ cells (Figure 30). On the contrary, proteins starting with N-termini other than MS-, 



 Results 

 

61 |  P a g e

 

MT-, MV-, and MA- (including MD-, ME-, or MQ-) show comparable levels of N-terminal acetylation 

between wild type and natAΔ cells (Figure 30). Taken together, NatA and NatB have highly distinct 

substrate specificities under the tested experimental conditions. 

3.4.3.3 natAΔ cells display a more subtle stress response when compared to natBΔ cells 

Given the elevated protein aggregation in natAΔ, we asked whether natAΔ cells show a constitutive 

stress response, similar to natBΔ (Figure 20). We analyzed the genes with >2-fold increase in natAΔ at 

the translation level or protein steady state levels using Yeastract database. We found that approximately 

10% of the elevated genes in natAΔ at the translation or protein level are experimentally verified inducible 

targets by Hsf1 (Figure 31). This is only slightly higher than the percentage of genes that are targets of 

Hsf1 among all quantified proteins (background). Similar analysis of natBΔ showed that 50% of the 

elevated genes in natBΔ at the translation or protein level are experimentally verified inducible targets by 

Hsf1 (Figure 20B, Figure 31). In summary, translatome/proteome analysis of natAΔ, suggests only a 

subtle stress response, when compared to natBΔ. 

 

 

 

Figure 31: Subtle stress response in natAΔ.  

The percentage of Hsf1 targets among genes that are more than two fold increased at the translation 
level or protein level between natAΔ, or natBΔ and wild type, versus background of all quantified protein 
at the translation or protein steady state levels. Only experimentally verified targets are included in the 
analysis.  
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3.5 Co-translational assembly of the NatB complex 

Recent studies have indicated that protein complexes can assemble co-translationally, and suggested 

that co-translational protein complex assembly may represent an effective strategy to minimize protein 

aggregation (see section 1.1.2.6). The crystal structure of the NatB complex was recently solved (Hong et 

al., 2017), and showed that the auxiliary subunit (Naa25) wraps around the catalytic subunit (Naa20) to 

form a stable dimeric complex (Figure 32A). Expression of the catalytic subunit in the absence of the 

auxiliary subunit leads to its aggregation, while no aggregation is observed when the auxiliary subunit 

was expressed in the absence of the catalytic subunit (Hong et al., 2017), suggesting that the catalytic 

subunit requires the auxiliary subunit for stable folding. With this in mind, we aimed to analyze whether 

NatB complex assembly takes place co-translationally.  

Towards this aim, we employed a selective ribosome profiling approach where one subunit of the NatB 

complex is C-terminally tagged with GFP, followed by GFP immunoprecipitation “IP” and sequencing of 

the ribosome footprints. If the NatB complex assembles co-translationally, the IP of one subunit should 

lead to the co-IP of the nascent chains of the interacting subunit, which can be identified by analysis of 

the corresponding ribosome footprints. Indeed IP of Naa25 leads to co-IP of nascent chains of Naa20 

(Figure 32B) indicating co-translational complex assembly, where Naa25 interacts with the nascent 

chains of Naa20. This correlates with the aggregation propensity of Naa20 in the absence of Naa25 

(Hong et al., 2017). Interestingly, fully synthesized auxiliary subunit can interact with nascent chains of 

the catalytic subunit only after exposure of approximately 100 amino acids outside the peptide exit tunnel 

(Figure 32B). Consistently, the crystal structure of the NatB complex shows that the interaction interface 

of the catalytic subunit is primarily located in the first 100 amino acids (Hong et al., 2017). Taken together, 

our data suggests that the NatB complex assemble co-translationally by co-translational interaction of the 

NatB auxiliary subunit with the nascent NatB auxiliary subunit, as soon as the interaction interface 

emerges from the ribosome.  
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Figure 32: Cotranslational assembly of the NatB complex. 

A. The crystal structure of the NatB complex showing the catalytic (light blue) and the auxiliary subunit 
(wheat).  

B. Mean enrichment of co-IP over total for nascent NatB catalytic subunit upon NatB auxiliary subunit 
IP. 
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 Discussion 4

Despite recent developments in our understanding of the biological significance of N-terminal acetylation, 

its function remains largely ambiguous. In this study, we employed unbiased high throughput approaches 

for multi-dimensional proteome-wide analysis of the functional consequences of lacking N-terminal 

acetylation. We analyzed key steps of proteome homeostasis:  protein synthesis using ribosome profiling, 

steady-state protein levels using quantitative-proteomics, as well as protein turnover using the tandem 

fluorescent timer. Our results revealed an integrative constitutive stress response in natBΔ that induces 

protein quality control pathways, while repressing protein biogenesis pathways. Systematic analysis of 

proteome stability in natBΔ suggests no global effect of the loss of N-terminal acetylation of NatB 

substrates on their stability. Further analysis revealed global endogenous protein aggregation upon loss 

of N-terminal acetylation that includes aggregation prone proteins, as well as networks of interacting 

proteins. In addition, our results suggest a so far unknown link between N-terminal acetylation and co-

translational protein folding by Ssb.   

4.1 Constitutive stress response upon lack of N-terminal acetylation 

Translatome/proteome analysis of natBΔ revealed elevated levels of specific molecular chaperones that 

are active in protein refolding such as Hsp78 and Hsp014 disaggregases, stress inducible Hsp70, and 

small heat shock proteins (Figure 18A), which can explain the more efficient refolding of heat denatured 

luciferase expressed in natBΔ (Figure 18B). In addition, multiple components of the cytoplasmic 

translation machinery were repressed in natBΔ including tRNA-aminoacylation enzymes, translation 

factors, as well as ribosomal proteins (Figure 17). The translation repression is further manifested by 

decreased incorporation of radiolabeled methionine (Figure 19B) and high monosome/polysome ratio 

(Figure 19C), together indicating decreased protein biogenesis. The coordinated elevation of protein 

quality control pathways and repression of the protein biogenesis capacity is reminiscent of the response 

of yeast cells to stress (Gasch et al., 2000), and consistent with elevated Hsf1 levels (Figure 20A) as well 

as enrichment of Hsf1 targets in the elevated genes in natBΔ (Figure 20B).  

Interestingly, metabolic pathways that are involved in energy regeneration are also elevated in natBΔ, in 

particular mitochondrial translation as well as components of the electron transport chain (Figure 17). 

This may reflect impaired energy generation by glycolysis, or impaired mitochondrial respiration in natBΔ. 

In both cases, inducing the levels of mitochondrial respiration machinery can provide a compensatory 

effect. Alternatively, elevated mitochondrial respiration can compensate for stress induced ATP depletion 

(Gasch et al., 2000), consistent with the aforementioned indications of stress response activation in 

natBΔ. Remarkably, deletion of the mitochondrial translation components dramatically reduced natBΔ 

fitness, further highlighting that mitochondrial respiration is critical for the cell viability in natBΔ (Figure 

19D).   
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Interestingly, parallel analysis of natAΔ indicated only a subtle activation of the stress response (Figure 

31). This might be explained by substrate-specific effects of loss of N-terminal acetylation by either NatA 

or NatB, where loss of N-terminal acetylation of one or more specific substrates may lead to deleterious 

loss or gain of function effects. Remarkably, the magnitude of the stress response activation in natAΔ and 

natBΔ correlates with the severity of their growth phenotypes (Figure 13, Figure 31). 

4.2 N-terminal acetylation is not a general major determinant of 

protein stability 

The stress response activation upon lack of N-terminal acetylation underscores its role in the 

maintenance of protein homeostasis. Interestingly, N-terminal acetylation was suggested to act as a 

degradation signal (Hwang et al., 2010a), that may mediate protein quality control and control protein 

stoichiometry (Shemorry et al., 2013). However, only a few endogenous substrates are known to date to 

undergo N-acetyl mediated degradation. Our systematic analysis of the effect of N-terminal acetylation on 

protein stability using quantitative proteomics combined with ribosome profiling, and tandem fluorescent 

timer analysis, showed that the experimentally identified substrates do not show a significant tendency to 

increase in steady state levels or half-lives upon loss of N-terminal acetylation (Figure 21A-C), as it would 

be expected if protein degradation of those substrates is blocked by failure of recognition into the Ac/N-

end rule pathway. N-acetyl mediated degradation was not more pronounced under heat stress, since 

similar analysis in cells grown at elevated temperatures showed again no significant global change of the 

substrates turnover (Figure 21D-F).  

The fact that substrates do not show global change in protein turnover upon loss of N-terminal acetylation 

argues against Ac/N-end rule as a general mechanism for substrates degradation. However, our results 

do not exclude that N-acetyl mediated degradation may take place for specific proteins that have 

additional features, or under specific perturbation conditions that can trigger their N-acetyl mediated 

degradation such as imbalanced protein complex stoichiometry. It is also likely that upon perturbation of 

the Ac/N-end rule pathway by preventing N-terminal acetylation, other degradation pathways can take 

over to target the non N-terminally acetylated proteins for degradation. In fact, N-terminally acetylated 

methionine was shown to act as a degradation signal for the Ac/N-end rule, while the non-acetylated 

methionine can still act as a degradation signal for the Arg/N-end rule if followed by hydrophobic amino-

acids (Kim et al., 2014). With this in mind, it is likely that the robustness of the protein degradation 

signaling pathways may mask the contribution of the individual pathways. In addition, the employed 

methods show only the average change in a population of proteins, therefore if N-acetyl mediated 

degradation only affects a minor fraction of the protein species, those changes will not be observable 

since they will be averaged by the major population that is probably not sensitive to the absence of N-

terminal acetylation. Further analysis of the role of Ac-N/end rule pathway under more specific 

perturbation conditions that systematically alter protein complex subunits stoichiometry may reveal more 
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profound role of the Ac/N-end rule pathway. In addition, analysis of the Ac/N-end rule upon perturbation 

of parallel degradation pathways may reveal its uncompensated contribution to protein degradation. 

Furthermore, new approaches need to be adopted to carefully analyze the fraction of a given protein that 

is susceptible to degradation. 

4.3 Protein aggregation upon lack of N-terminal acetylation 

The elevated levels of protein refolding machinery in natBΔ suggested compromised proteins integrity 

(Figure 18A). Consistently, isolation of protein aggregates revealed substantial protein aggregation upon 

loss of N-terminal acetylation (Figure 22A, Figure 26A), which we were able to identify and quantify by 

quantitative proteomics (Figure 26D).  

The observed protein aggregation can be explained by a primary effect of loss of N-terminal acetylation 

leading to aggregation of the non-acetylated proteins. Alternatively, it can also be explained on the basis 

of secondary substrate-specific effects where lack of N-terminal acetylation impairs the functions of 

specific proteins that are normally acetylated and important for the prevention of protein aggregation e.g. 

chaperones. Two lines of evidence suggest a direct effect of N-terminal acetylation on protein stability 

and folding. First, earlier studies suggest that N-terminal acetylation is important for maintaining structural 

integrity for at least a number of endogenous proteins (Bartels et al., 2014; Greenfield et al., 1994; Jarvis 

et al., 1995), while N-terminal acetylation of α-synuclein increases its resistance to aggregation (Bartels et 

al., 2014). Second, the accumulation of protein aggregates upon loss of N-terminal acetylation in 

natA/natB deletion mutants, despite their highly distinct substrate specificities, makes secondary 

substrate-specific effects less likely (Figure 26A).  

Interestingly, the lack of one specific NAT does not cause a significant enrichment of the specific 

substrates in the protein aggregates, indicating that protein aggregation upon loss of N-terminal 

acetylation is not necessarily only a result of an impairment of folding of the non-acetylated substrate 

(Figure 23). A potential explanation could be that failure of N-terminal acetylation for specific proteins 

may directly trigger their aggregation, while indirectly leading to co-aggregation of other proteins by other 

downstream effects. This “down-spiral” effect can eventually mask substrate-specific enrichment of 

proteins in the isolated aggregates. Consistently, the aggregated proteins have a substantial overlap with 

aggregates that form upon other stresses, e.g. heat stress (De Laureto et al., 2014; Stoecklin et al., 2015; 

Wallace et al., 2015). This may indicate that proteins that are sensitive to changes in the protein folding 

environment, for instance due to chaperones sequestration into aggregates, would also tend to aggregate 

upon loss of N-terminal acetylation (Figure 25A). Consistently, protein aggregation upon loss of N-

terminal acetylation sequesters molecular chaperones that are involved protein disaggregation such as 

Hsp26 and Hsp104, in addition to Hsp70/40/90 (Figure 24C). On the other hand, proteins found in 

aggregates of NAT mutants showed significantly higher interaction between each other (Figure 24D) 
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underscoring that protein interactions can drive co-aggregation of proteins regardless of its N-terminal 

acetylation status.  

N-terminal acetylation is a co-translational modification catalyzed by ribosome associated NATs 

(Polevoda et al., 2008b). If N-terminal acetylation plays a role in optimizing protein folding, it is likely that 

N-terminal acetylation exerts its effect co-translationally during the maturation of the nascent chains. 

Consistently, isolation of radiolabeled protein aggregates with 
35

S Methionine after a short labeling of 5 

min, showed accumulation of radiolabeled aggregated proteins in natBΔ (Figure 25C), indicating that a 

fraction of newly translated proteins gets sequestered into protein aggregates upon lack of N-terminal 

acetylation. Interestingly, protein aggregates in natBΔ revealed a strong overlap with protein aggregation 

upon deletion of the genes encoding the co-translational Hsp70 chaperones (Ssb1 and Ssb2) (Koplin et 

al., 2010; Willmund et al., 2013) (Figure 25A), while deletion of the genes encoding both Ssb1 and Ssb2 

in natBΔ led to synthetic growth defect (Figure 25B), together suggesting a functional overlap between 

co-translational N-terminal acetylation by NatB and co-translational folding by Ssb.  

Remarkably, the most enriched group of proteins among the protein aggregates in natBΔ is the 

cytoplasmic translation machinery, including most of the ribosomal proteins (Figure 24A). Furthermore, 

quantification of the total lysate versus the soluble protein revealed that a substantial fraction of each of 

the quantified ribosomal proteins gets sequestrated into protein aggregates upon loss of N-terminal 

acetylation (Figure 25E). While the sequestration of specific components of the translation machinery into 

protein aggregates is one of the common features of stress that may underlie stress granule formation 

(Stoecklin et al., 2015), stress granules do not contain ribosomes nor ribosomal proteins, except under 

very specific conditions (Jain et al., 2016). The observed ribosomal proteins aggregation upon loss of N-

terminal acetylation could be explained by a consequence of secondary substrate-specific effects that 

affect ribosome biogenesis or assembly for instance, or as a result of co-sequestration of ribosomes 

together with misfolded nascent chains upon loss of co-translational N-terminal acetylation. Several 

observations suggest the second possibility. First, the sequestration of the vast majority of the ribosomal 

proteins into the aggregates (Figure 24A) suggests sequestration of intact ribosomes. Second, similar 

patterns of aggregation of ribosomal proteins are observed upon deletion of the co-translational 

chaperone Hsp70 (Koplin et al., 2010; Willmund et al., 2013), which is directly implicated in the 

maturation of nascent chains (Figure 24D). Finally, ribosomal proteins aggregate both in the deletion 

mutant of natA or natB despite their highly distinct substrate specificities, which makes secondary 

substrate-specific effects less likely (Figure 26A). Interestingly, protein aggregates formed upon loss of 

N-terminal acetylation include several ER and mitochondrial chaperones (Figure 24C), and they are 

significantly enriched for mitochondrial and ER proteins (Figure 24B). These results may suggest protein 

misfolding in the mitochondria and ER, or protein import defects that hinder targeting of ER/mitochondrial 

proteins rendering them insoluble in the cytosol.  
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4.4 Working Model 
 

 

 

 

 

Figure 33: Working model for the function of proteins N-terminal acetylation. 

 

Our working model (Figure 33) is that N-terminal acetylation, in line with the aforementioned reports, may 

facilitate protein folding and prevent certain protein species from aggregation. Given that N-terminal 

acetylation takes place co-translationally (Gautschi et al., 2003a), lack of N-terminal acetylation may 
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impose particular challenges for the co-translational folding of those proteins. Compromised folding of 

nascent chains that fail to be N-terminally acetylated may explain the sensitivity of natBΔ for the absence 

of the co-translational Hsp70 chaperone Ssb. In line with this view, misfolding of nascent chains may 

drive co-aggregation of the associated translational machinery, leading to the observed strong enrichment 

of translation components into the aggregates. The aggregation of misfolded nascent chains, together 

with the associated translation machinery, may trigger co-aggregation of other proteins through specific or 

unspecific protein-protein interactions. In addition, the disturbance of protein folding environment upon 

chaperones sequestration can eventually lead to the collapse of aggregation-prone proteins. The cellular 

response to protein aggregation is basal activation of stress response that induces protein refolding 

machinery to allow disaggregation, while decreasing protein influx by repressing protein biogenesis 

pathways. 

4.5 Assembly of the NatB complex co-translationally 

Selective ribosome profiling of NatB revealed that the NatB complex consisting of the catalytic subunit 

and the auxiliary subunit assemble co-translationally (Figure 32). IP of the auxiliary subunit followed by 

ribosome profiling analysis revealed co-IP of the nascent chains of the catalytic subunit (Figure 32B). 

Ribosome occupancy on the catalytic subunit after IP of the auxiliary subunit revealed the onset of co-

translational assembly. Exposure of the interaction interface residues (Hong et al., 2017) of the nascent 

chains of the catalytic subunit is required before co-translational assembly with the auxiliary subunit 

(Figure 32B). Co-translational assembly may represent a faster and more efficient assembly pathway for 

protein complexes by concentrating assembly to the synthesis sites. In addition, co-translational 

assembly may prevent protein aggregation by minimizing exposure of the interaction surface that may 

otherwise interact non-specifically with other proteins, or aggregate.  Consistently, the catalytic subunit of 

the NatB complex was shown to be aggregation prone when expressed in the absence of the auxiliary 

subunit (Hong et al., 2017). Key questions regarding the mechanism of co-translational assembly of NatB 

remains to be addressed. Since co-translational assembly of luciferase was shown to be facilitated by the 

operon structure (Shieh et al., 2015), it is therefore intriguing to analyze the contribution of the mRNA 

localization to the co-translational complex assembly process. Furthermore, it is still not known whether 

complex assembly is predominately co-translational or post-translational, or whether the two pathways 

are mutually exclusive, and whether additional factors play a role to favor one pathway over the other.  
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 Materials 5

5.1 Computer software 

 Adobe Acrobat Reader (Adobe Systems Inc.) 

 Bowtie2 ver. 2.2.5.0 (OSI Certified) 

 GIMP2  (Free and Open Source Software) 

 ImageJ  (National Institutes of Health) 

 ImageReader LAS-4000 (FUJIFILM Co.) 

 Inkscape 0.91 (Free and Open Source Software) 

 Microsoft Office 2011 (Microsoft Corp.) 

 Perseus (Max Planck Institute of Biochemistry) 

 Prism 6  (GraphPad Software, Inc.) 

 PyMOL  (Schrödinger) 

 Python ver. 2.7 (Python Software Foundation) 

 R ver. 3.1.1. (R Foundation for Statistical Computing) 

 RStudio ver. 0.98.1102  (RStudio, Inc.) 

 Samtools ver. 0.1.19 (GitHub Inc.)   

 Serial Cloner ver. 2.6  (Franck Perez [SerialBasics]) 

 Spyder ver. 2.3.8 (The Spyder Development Team) 

 Tophat2 ver. 2.0.13  (OSI Certified) 

5.2 Consumables 

 10% TBE-Urea polyacrylamid gel, 12 wells (Noves, Invitrogen) 

 15% TBE-Urea polyacrylamid gel, 10 wells (Noves, Invitrogen) 

 8% TB polyacrylamid gel, 10 wells (Noves, Invitrogen) 

 96/384/1536 Pins and Plates for SGA (Singer Instruments) 

 BD Falcon Round bottom polystyrene tube, 5 mL (BD) 

 Cellulose acetate filters, 0.2 μm (Sartorius AG) 

 Cover slides (Carl Roth GmbH + Co. KG) 

 Criterion™ TGX™ Precast Gels (Bio-Rad Laboratories, Inc.) 

 Cuvettes (Sarstedt AG & Co.) 

 Entsorgungsbeutel, 200mm*300mm (Roth) 

 Filter tips P10, P20, P200 and P1000 (Steinbrenner) 

 Gel breaker tubes (IST Engineering Inc.) 
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 Glass beads (500 μm diameter) 

 Lumat PP tubes, 5 ml (Greiner Bio-One International AG) 

 Microcentrifuge tubes, 1.5 ml, 2 ml (Sarstedt AG & Co.) 

 Nitrocellulose membrane, 0.2 μm (Roth) 

 Non-stick RNase free tubes, 1.5ml (Ambion) 

 Open-Top_polyclear centrifuge tubes 14x95 mm (Seton) 

 PCR tubes, 200 μl (Sarstedt AG & Co.) 

 Petri dishes (Greiner) 

 Polycarbonate centrifuge tubes 11x34 mm (Beckman Coulter) 

 Polypropylene conical centrifuge tubes, 15 ml, 50 ml (Sarstedt AG & Co.) 

 PVDF membrane, Roti-PVDF (Carl Roth GmbH + Co. KG) 

 Roti-NC membrane 0.45μm (Roth) 

 RunBlue SDS-PAGE Precast Gels 8x10 cm (Expedeon Ltd.) 

 Scalpel, 5518016 (Braun) 

 Scintillation vials (Fisher Scientific) 

 Spin-X-cellulose acetate columns, 2ml, 0.45μm (Sigma-Aldrich Co.) 

 Sterile bottle filters (Sarstedt AG & Co.) 

 Sterile filters Filtropur, 0.2 μM (Sarstedt AG & Co.) 

 Syringe filters, 0.22 μm (Sarstedt) 

 Syringe, 50 ml (BD, 300865) 

 UV-Star Microplate μClear (Greiner Bio-One) 

 Whatman Paper, 3 mm (Schleicher & Schuell BioScience GmbH) 

 

5.3 Equipment 

 2100 Bioanalyzer Instruments (Agilent Technologies, Inc) 

 Agarose gel chamber and trays (ZMBH workshop) 

 ÄKTA purifier system (Amersham Pharmacia Biotech/GE Healthcare) 

 Balances PG603-S and PB1502-S (Mettler-Toledo International, Inc.) 

 Centrifuge (Sorval RC6 Thermo Scientific Inc.) 

 Centrifuges 5424 and 5424R (Eppendorf AG) 

 Centrifuges Biofuge pico/ Multifuge 3SR (Heraeus Instruments GmbH) 

 Criterion™ Cell, electrophoresis chamber (Bio-Rad Laboratories, Inc.) 

 EM900 microscope (Zeiss) 

 FastPrep 24 (MP Biomedical). 
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 Filtering equipment: glass filter holder with glass funnel  1L (Millipore), ground joint flask 

1L (Millipore), stainless steel screen, gasket and spring, clamp, vacuum base and cap 

(ZMBH workshop). 

 FLA-3000 Fluorescent Image Analyzer (FUJIFILM Co.) 

 French Pressure Cell (SLM/Aminco) 

 Gel chamber, XCell SureLock Mini-Cell, EI0001 (Invitrogen) 

 GenoSmart gel documentation system (VWR) 

 Gradient station, 153 (BIO-COMP) 

 High-Throughput Screening: ROTOR HDA (Singer Instruments) 

 HiSeq 2000 (Illumina) 

 ImageQuant LAS-4000, biomolecular imager (FUJIFILM Co.) 

 Incubator MIR-254 SANYO Electric Biomedical Co. Ltd. 

 Infinite M1000 or Infinite M1000 Pro plate reader (TECAN) 

 Intelli-Mixer (Neolab) 

 ISF1-X/Climo-Shaker (Kuhner) 

 LS 55 Fluorescence Spectrometer (PerkinElmer) 

 Lumat LB 9507 (Berthold Technologies Gmbh & Co. KG) 

 Magnetic stir bar (Roth) 

 Magnetic stirrer MR 3001 K (Heidolph) 

 Microwave KOR 6D07 (Daewoo) 

 Mini Trans-Blot® Cell (Bio-Rad Laboratories, Inc.) 

 Mini-PROTEAN Cell, electrophoresis cell (Bio-Rad Laboratories, Inc.) 

 Mixer mill, MM400 (Retsch) 

 Multi-channel pipette, 20-200 μl (Gilson) 

 Nanodrop spectrophotometer, ND2000 (Thermo Scientific) 

 Novaspec Plus (GE Healthcare) 

 Overhead roller (Neolab)  

 Packard 1900 TR β Scintillation Counter 

 pH-Meter FE20 and pH-electrode LE438 (Metter-Toledo International, Inc.) 

 Power supply ST 606 T (Gibco BRL Life technologies, Inc.) 

 Radaiation imager  

 Rotor Type S120AT2 (Beckman) 

 Rotor Type SW 40 Ti (Beckman) 

 Scoopula, 14-357Q (Fisher Scientific) 

 Shaker 3018 (GFL) 

 Sonifier S-450 (BRANSON) 
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 Spectrophotometer SPECORD 205 (Analytik Jena AG) 

 Stainless steel grinding balls, 12 mm and 25 mm (Retsch) 

 Stainless steel jars, 10 ml and 50 ml (Retsch) 

 T-Gradient Thermocycler (Biometra GmbH) 

 Thermomixer comfort (Eppendorf AG) 

 Trans-Blot® Turbo™ (Bio-Rad Laboratories, Inc.) 

 Ultracentrifuge, Discovery 90SE (Sorvall) 

 Ultracentrifuge, Discovery M120SE (Sorvall) 

 Vortex-Genie 2 (NeoLab) 

 

5.4 Growth Media 

All media were sterilized by autoclaving prior to usage. To prepare agar plates, 2% (w/v) agar was added 

to the medium prior to autoclaving. 2% (w/v) glucose from a sterile-filtered glucose stock solution was 

added to the media after sterilization, except when alternative carbon sources were used. Antibiotics 

and/or additional reagents were added at the given concentrations, after allowing the media to cool down 

to approximately 55°C. Stock solutions were sterilized by filtration (0.2μm filter).  

 

 LB  medium (1L): 10 g tryptone, 5 g yeast extract, 5 g NaCl 

 YP medium (1L): 20 g yeast extract, 10 g peptone 

 SD (Synthetic Dropout) medium (1L):  6.7 g Yeast Nitrogen Base without amino acids, x g CSM 

mix (according to desired dropout)) 

 Specific media used in the synthetic genetic array procedure:  

 Amino-acids mixture: Thoroughly mixed 10 g of each of: Alanine, Asparagine, Aspartic acid, 

Cysteine, Glutamine, Monosodium Glutamic Acid (MSG), Glycine, Inositol, Isoleucine, 

Methionine, Phenylalanine, Proline, Serine, Threonine, Tryptophan, Tyrosine, Uracil, Valine, 

with 2.5g of Adenine, and 1g of 4-Aminobenzoic acid to get a mixture that has a  total of  

183.5 g. To prepare a Histidine/Lysine/Arginine dropout mixture of amino-acids, 36.7 g of 

the mixture were mixed with 4g of Leucine. Alternatively, to prepare a 

Leucine/Lysine/Arginine dropout mixture of amino-acids, 36.7 g of the mixture were mixed 

with 2g of Histidine. 2 g/l of the final amino-acids mixture was used for media preparation. 

 1000x Stocks solutions: Canavanine (50 mg/ml), Thialysine (50 mg/ml), Nourseothricin 

(clonNAT) (100 mg/ml,), and Geneticin (G418) (200 mg/ml) are all filtered-sterilized and 

stored in aliquots at 4ºC,  then added to the autoclaved medium at 55°C, at 1000x dilution of 

the indicated stock concentration. 

 Sporulation media: 2% agar, 2% potassium acetate. 
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 SD media, with Monosodium Glutamate (MSG): 1.7 g/l yeast nitrogen base without amino 

acids and ammonium sulfate, 1 g/l MSG, 2 g/l amino acid mixture, 20 g/l glucose. To 

prepare solid media 20 g/l agar was added. 

 SD His/Arg/Lys media (with MSG) with Canavanine and Thialysine: 1.7 g/l yeast nitrogen 

base without amino acids and ammonium sulfate, 1 g/l MSG, 2 g/l (amino-acids mixture 

minus His/Arg/Lys), 20 g/l glucose, plus standard concentrations of Canavanine and 

Thialysine (added at 55°C),  and 20 g/l agar. 

 SD His/Arg/Lys media (with MSG) with Canavanine, Thialysine, CloNAT and G418:  1.7 g/l 

yeast nitrogen base without amino acids and ammonium sulfate, 1 g/l MSG, 2 g/l (minus 

His/Arg/Lys) amino acid mixture, 20 g/l glucose, plus standard concentrations of 

Canavanine, Thialysine, and antibiotics (added at 55°C), and 20 g/l agar. 

 SD His with galactose and raffinose as an alternative carbon sources for glucose: 6.7 g/l 

yeast nitrogen base without amino acids, 2 g/l (minus His) amino acid mixture, 10 g/l 

galactose, 10 g/l raffinose, and 20 g/l agar to prepare solid media. 

 SD His with 5-FOA: 6.7 g/l yeast nitrogen base without amino acids, 2 g/l amino acid mix-

His, 20 g/l glucose, 1g/l 5-Fluoroorotic acid hydrate (5-FOA) (added as powder at 55°C), and 

20 g/l agar. 

 Imaging media: 6.7 g/l yeast nitrogen base without amino acids, 2 g/l complete amino acid 

mixture, 20 g/l glucose, 300 mg/l Adenine, and 20 g/l agar.  

 

5.5 Kits 

 Agilent High Sensitivity DNA kit (Agilent) 

 Agilent RNA 600 NANO kit (Agilent) 

 Agilent Small RNA kit (Agilent) 

 GenElute™ Gel Extraction Kit (Sigma-Aldrich Co.) 

 GenElute™ Miniprep Kit (Sigma-Aldrich Co.) 

 GenElute™ PCR purification Kit (Sigma-Aldrich Co.) 

 KAPA2G™ Robust und Robust 'Hot Start' PCR Kit (Peqlab) 

 QIAprep Spin Miniprep Kit (QIAGEN GmbH) 

 QIAquick Gel Extraction Kit (QIAGEN GmbH) 

 QIAquick PCR Purification Kit (QIAGEN GmbH) 

 Z-Competent E. coli Transformation Kit (Zymo Research Europe GmbH) 
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5.6 Reagents 

 10bp DNA ladder, 10821-015 (Invitrogen) 

 13C6,15N2-L-Lysine HCl (Silantes) 

 13C6,15N4-L-Arginine HCl (Silantes) 

 20% SDS (Ambion) 

 2x sample loading buffer for TBE-Urea gels (Invitrogen) 

 5-Fluoroorotic acid hydrate (Sigma-Aldrich Co.) 

 Acid-Phenol-Chloroform (Ambion) 

 Amino acids (Sigma-Aldrich Co.) 

 Ampicillin (Amp) 100 μg/ml Carl (Roth GmbH) 

 Aprotinin (AppliChem) 

 Bacto™Agar Becton (Dickinson and Company) 

 Bacto™Peptone Becton (Dickinson and Company) 

 Bacto™Yeast extract Becton (Dickinson and Company) 

 Bestatin hydrochlorid (Roth) 

 Bio-Rad Protein Assay Dye Reagent Concentrate (5 x Bradford reagent) (Bio-Rad 

Laboratories, Inc.) 

 Bromphenol Blue (Bio-Rad Laboratories, Inc.) 

 Canavanine (Sigma-Aldrich Co.) 

 Chloramphenicol (Cm) 25 μg/ml (Sigma-Aldrich Co.) 

 CircLigase, CL9025K (Epicentre) 

 Complete Supplement Mixture (CSM) (- amino acids for drop out media) (MP 

Biomedicals, LLC) 

 cOmplete, EDTA free protease inhibitor tablets (Roche Diagnostics GmbH) 

 Cycloheximide (CHX) 100 μg/ml in (Sigma-Aldrich Co.) 

 DEPC (Roth) 

 Difco™Yeast Nitrogen Base w/o amino acids Becton (Dickinson and Company) 

 DNase I (Sigma-Aldrich Co.) 

 dNTP set (Bioline) 

 E-64 (Roth) 

 ECF Substrate (GE Healthcare Life Sciences) 

 EDTA (Roth) 

 GeneRuler 1 kb DNA Ladder (#SM0312) (Thermo Scientific Inc.) 

 Geneticin (G418) 200 μg/ml (Sigma-Aldrich Co.) 

 Glycoblue (Ambion) 

 Hoechst 33442 Life Technologies Life Technologies 
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 Hygromycin B (Hyg) 250 μg/ml (InvivoGen) 

 Immersion Oil Immersol™ 518F (Carl Zeiss Microscopy GmbH) 

 Isopropyl β-D-1-thiogalactopyranoside (Sigma-Aldrich Co.) 

 Kanamycin (Kan) 50 μg/ml in (Carl Roth GmbH) 

 Leupeptin (AppliChem) 

 Luciferin (Synchem UG & Co. KG) 

 Methyl methanesulfonate “MMS” (Sigma-Aldrich Co.) 

 Nourseothricin (clonNAT) 100 μg/ml (Werner BioAgents) 

 PageRuler Prestained Protein Ladder (#26616) (Thermo Scientific Inc.) 

 Pepstatin A (AppliChem) 

 Phenylmethylsulfonyl Fluoride “PMSF” (Thermo Scientific Inc.) 

 Phusion®High-Fidelity DNA polymerase (New England Biolabs GmbH) 

 Restriction enzymes (New England Biolabs, Thermo Scientific Inc.) 

 RNase away (Roth) 

 RNase-free Dnase I, 4716728001 (Roche) 

 Superase-In (Ambion) 

 Superscript III, 18080-044 (Invitrogen) 

 SYBR gold (Invitrogen) 

 T4 DNA Ligase (Thermo Scientific Inc.) 

 T4 polynucleotide kinase, M0201L (NEB) 

 T4 RNA ligase 2, truncated, M0242L (NEB) 

 Taq DNA polymerase (Lab collection) 

 Thialysine/S-Aminoethyl-L-cysteine (Sigma-Aldrich Co.) 

 Trans-Blot® Turbo™ 5x Transfer Buffer (Bio-Rad Laboratories, Inc.) 

 Ulp1 Sumo-protease (Lab collection) 

 UltraPure 10x TBE buffer (Invitrogen) 

 Yeastmaker™ Carrier DNA ‘(Clonetech Laboratories, Inc) 

 Zymolyase 20T (United States Biological)  

 

5.7 Strains 

Yeast strains: Gene deletions or tagging were performed by PCR targeting as described (Janke et al., 

2004). The genotypes of all strains used in this study are listed below. All strains are derivatives of 

BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) or BY4742 (MATα ura3Δ0 leu2Δ0 his3Δ1 lys2Δ0) 
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Genotype Background Experiment Source 

BY4741 ARG4Δ::hphMX LYS1Δ::kanMX BY4741 

Quantitative 

proteomics and 

ribosome profiling 

This 

Study 

BY4741 ARG4Δ::hphMX LYS1Δ::kanMX 

NAA10Δ::URA3 
BY4741 

Quantitative 

proteomics and 

ribosome profiling 

This 

Study 

BY4741 ARG4Δ::hphMX LYS1Δ::kanMX 

NAA20Δ::URA3 
BY4741 

Quantitative 

proteomics and 

ribosome profiling 

This 

Study 

BY4741 SSB1∆::LEU2 SSB2∆::natMX BY4741 Spot test 
Bukau 

lab  

BY4741 SSB1∆::LEU2 SSB2∆::natMX 

NAA20Δ::URA3 
BY4741 Spot test 

This 

Study 

BY4741 HIS3∆::kanMX BY4741 
Tandem fluorescent 

timer analysis 
Knop lab 

BY4741 NAA20∆::kanMX BY4741 
Tandem fluorescent 

timer analysis 

Ulrike 

Friedrich   

BY4741 pRS306-ADH-GFPLuciDM BY4741 
Luciferase activity 

test 

This 

Study 

BY4741 pRS306-ADH-GFPLuciDM 

NAA20Δ::URA3 
BY4741 

Luciferase activity 

test 

This 

Study 

MATα CAN1∆::STE2pr-HIS5 

LYP1∆::STE3pr-LEU2  LEU2∆0 HIS3∆1 

MET15∆0 ∆HML:hphMX NAA20Δ::URA3 

BY4742 
Synthetic growth 

defects screen 

This 

Study 

MATα CAN1∆::STE2pr-HIS5 

LYP1∆::STE3pr-LEU2  LEU2∆0 HIS3∆1 

MET15∆0 ∆HML::hphMX GSY2::GFP::HIS3 

BY4742 
Fluorescence 

microscopy 

Bukau 

lab 

MATα CAN1∆::STE2pr-HIS5 

LYP1∆::STE3pr-LEU2  LEU2∆0 HIS3∆1 

MET15∆0 ∆HML:hphMX GSY2::GFP::his3 

NAA20Δ::URA3 

BY4742 
Fluorescence 

microscopy 

This 

Study 

BY4741 NAA25::GFP::kanMX BY4741 
Selective ribosome 

profiling 

Ulrike 

Friedrich   
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E.coli Strains 

XL1-blue: recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac  (Stratagene) 

BL21 DE3 Rosetta: F
-
 ompT hsdSB(rB

-
 mB

-
) gal dcm (DE3) pRARE (Cam

R
)  (Novagen) 

 

5.8 Primers 

 

 

Target Gene 

 

Purpose 

 

Sequence 

 

Source 

ARG4 deletion 
gtaccagacctgatgaaattcttgcgcataacgtcgccatctgct

acggccgccagctgaagcttcg 

This 

study 

ARG4 deletion 
gagctcaaaagcaggtaactatataacaagactaaggcaaa

catgaaccgtattaccgcctttgagtgagc 

This 

study 

ARG4 verification cttatattcaaccatcacacacgtctttcc 
This 

study 

ARG4 verification tttgttcgttcttgtggtggttactcattgg 
This 

study 

HML deletion 
ttttcttattttcattttatttttttcgccttttatacagacttcaacacaat

cacggccgccagctgaagcttcg 

This 

study 

HML deletion 
gaaagaaagctcccgcttaattatatatatgcagctgttacgga

gatgcaaagctaaccgtattaccgcctttgagtgagc 

This 

study 

HML verification agctttcaatacattcatgaagtcattaggtac 
This 

study 

HML verification gatttataagaatgtgttccgtaataatcttccc 
This 

study 

LYS1 deletion 
gtaaatgtcagcgtaacgataatgtatatactttaaatgtaaact

aaagcttcgtacgctgcaggtc 

This 

study 

LYS1 deletion 
Cataagataacaacgaaaacgctttatttttcacacaaccgca

aaaatgcgcccaatacgcaaaccgcctctcc 

This 

study 

LYS1 verification gcaaagttcttgctgggaaatgaaagg 
This 

study 

LYS1 verification ttcagcgacaaagagtcataaagtcatcc 
This 

study 

NAA10 cloning in p413 
Ggatcgcccgggatgcctattaatattcgcagagcg 

 

This 

study 
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NAA10 cloning in p413 Gactgggtcgacttatacaatgatatcatttacgccttgc 
This 

study 

NAA10 Sequencing ttatacaatgatatcatttacgccttgc 
This 

study 

NAA10 Sequencing atgcctattaatattcgcagagcgac 
This 

study 

NAA10 
E25Q 

mutagenesis 

caaaatgccaaccttcataacctaccccagaattatatgatga

aatattatatgtatc 

This 

study 

NAA10 
E25Q 

mutagenesis 

gatacatataatatttcatcatataattctggggtaggttatgaag

gttggcattttg 

This 

study 

NAA10 
E26A 

mutagenesis 

catataatatttcatcatataatttgcgggtaggttatgaaggttgg

cat 

This 

study 

NAA10 
E26A 

mutagenesis 

atgccaaccttcataacctacccgcaaattatatgatgaaatatt

atatg 

This 

study 

 

NAA10 verification gggtctaattcaccaagtttctgcc 
This 

study 

NAA10 verification Atcaagaagcttgaatattatactgtagtcaaaaattag 
This 

study 

NAA10 deletion 
taaatacatacgatcaagctccaaaataaaacttcgtcaacca

tgcagctgaagcttcgtacgc 

Ulrike 

Friedrich   

NAA10 deletion 
agcctggatgaaaatatactacgtttatataggttgatttaattac

ataggccactagtggatctg 

Ulrike 

Friedrich   

NAA20 verification ctttggacaagcttctgccag 
This 

study 

NAA20 verification aaccttaccatcactaatagtatctcgatc 
This 

study 

NAA20 deletion 
acattgagaatattcaaggaaagagacaggaggattcgaga

aatgcagctgaagcttcgtacgc 

Ulrike 

Friedrich   

NAA20 deletion 
tcattattatgttctgagtatgaggacgaggtaatacataccttac

ataggccactagtggatctg 

Ulrike 

Friedrich   
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 Methods 6

6.1 SILAC-based quantitative proteomics 

First, we aimed to construct strains where Arginine and Lysine biosynthesis is abolished by deletion of the 

genes encoding specific biosynthetic enzymes to ensure efficient incorporation of heavy Arginine and 

Lysine.  Deletion mutants were generated as described (Janke et al., 2004). To generate a deletion of 

ARG4 gene in the wild type Saccharomyces cerevisiae BY4741 (MATa; his3Δ1; leu2Δ0; met15Δ0; 

ura3Δ0), the hphMX cassette was amplified from pUG75 (which has the hphMX cassette that confers 

resistance to Hygromycin) using the respective primer pair that targets the ARG4 gene. The purified 

disruption gene cassette was transformed into yeast cells by a heat shock procedure for in vivo 

homologous recombination. In brief, yeast cells were grown at 30°C in 45 ml YPD inoculated with 5 ml 

overnight culture so that the OD600 roughly equals (0.1). The cells were harvested at OD600 of (0.4-0.8) by 

centrifugation at 3000g for 5 min at room temperature, suspended in 5 ml of Li-Ac mix (10mM Lithium 

Acetate, 10 mM Tris HCl pH 7.5, 1mM EDTA), and centrifuged at 3000g for 5 min at room temperature. 

The cells were re-suspended in 250 µl of Li-Ac mix. 100 µl aliquots were then used for each 

transformation, followed by the addition of 10-20 µl of the PCR reaction of the relevant gene cassette, 2 

mg/ml of salmon sperm DNA, and 700 µl of PEG-mix (40% PEG 4000, 10 mM Lithium Acetate, 10 mM 

Tris HCl pH 7.5, 1 mM EDTA), then incubated on a rotating wheel for 30 min at room temperature. The 

cells were heat shocked at 42°C for 15 min, centrifuged at 3000 rpm for 1 min at room temperature, and 

re-suspended in 300 µL of YPD. The cells were incubated for 2 hours at 30°C, then spread on YPD plus 

Hygromycin (250 µg/ml) agar plates, and incubated for 2-4 days at 30°C. Colonies were re-streaked on 

YPD plus Hygromycin agar plates, and incubated for 2-4 days at 30°C. Single colonies were randomly 

picked for verification by colony PCR using the respective primers and phenol-chloroform extracted 

genomic DNA. The colony PCR reaction was performed by a primer pair where the forward primer 

anneals upstream of the gene in the non-coding region, and the reverse primer anneals downstream of 

the gene in the non-coding region. Gene deletion was confirmed based on the size of the PCR product. 

Once the correct recombination was verified, the colonies were grown to stationary phase in YPD plus 

Hygromycin, and stocked in YPD plus Hygromycin with 15% Glycerol at 80°C. To introduce the second 

deletion of LYS1 gene, the same transformation protocol was implemented; where the kanMX cassette 

was amplified from pUG6 (which have the kanMX cassette that confers resistance to Geneticin (G418)) 

using the respective primer pair which targets the LYS1 gene, then transformed into ARG4Δ strain. The 

transformed cells were plated on YPD agar plates plus G418 (200 µg/ml) and Hygromycin (250 µg/ml), 

followed by verification by colony PCR reactions using the respective primers.  Finally, NATs deletions 

were introduced using the same transformation protocol described earlier. The KIURA3 cassette which 

confers Uracil auxotrophy was amplified from pUG72 using the respective primer pairs which target the 
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NATs genes: NAA10, NAA20 individually, then transformed into ARG4ΔLYS1Δ cells. The transformed 

cells were plated on Uracil synthetic dropout media, in addition to G418 (200 µg/ml) and Hygromycin (250 

µg/ml). Colonies were re-streaked on the same media followed by verification using colony PCR with the 

respective primers.  

For the incorporation efficiency test, ARG4ΔLYS1Δ yeast cells were grown in 200 ml Lysine/Arginine 

synthetic dropout media adjusted to 20 mg/l (
13

C
15

N) Arginine, and 30 mg/l (
13

C
15

N) Lysine. Cells were 

grown for six, seven or eight doubling times at 30 °C to an OD600 of (0.8). Cells were harvested by 

centrifugation at 3000g for 5 min, then suspended in 1ml lysis buffer composed of (20mM Tris-HCL pH 

8.0, 500 mM NaCl, 10 mM MgCl2, 5 mM MnCl2, 5 mM CaCl2, 0.5% NP-40, 2x complete EDTA-free 

protease inhibitor tablets, 1 mM PMSF, 20 μg/ml Leupeptin, 20 μg/ml Aprotinin, 40 μg/ml Bestatin, 1 μg/ml 

E-64, 20 U/ml DNase). Frozen cells were mechanically lysed for 2 min at 30 Hz (Mixer mill, MM400 

(Retsch)). Cell lysates were thawed and centrifuged at 4 °C and 20,000g for 5 min, and the supernatant 

was transferred to a new tube. Protein concentration was quantified using Bradford (Biorad), followed by 

SDS-PAGE and mass spectrometry analysis. 

 

For SILAC-based quantitative proteomics of the total lysate, yeast cells were grown in synthetic media 

adjusted to 20 mg/l light (
12

C
14

N) or heavy (
13

C
15

N) Arginine, and 30 mg/l light (
12

C
14

N) or heavy (
13

C
15

N) 

Lysine. Cells were grown for six doubling times to an OD600 of (0.8). Wild type control and mutant cells 

were mixed 1:1 based on OD600. 200 OD600 (mixed cells) were suspended in 1ml lysis buffer composed of 

(20mM Tris-HCl pH 8.0, 500 mM NaCl, 10 mM MgCl2, 5 mM MnCl2, 5 mM CaCl2, 0.5% NP-40, 2x 

complete EDTA-free protease inhibitor tablets, 1 mM PMSF, 20 μg/ml Leupeptin, 20 μg/ml Aprotinin, 

40 μg/ml Bestatin, 1 μg/ml E-64, 20 U/ml DNase). Frozen cells were mechanically lysed for 2 min at 30 Hz 

(Mixer mill, MM400 (Retsch)). Cell lysates were thawed, followed by centrifugation at 4 °C and 20,000g 

for 5 min, and the supernatant was transferred to a new tube followed by protein concentration 

quantification using Bradford (Biorad). The experiment was repeated twice with a swap of heavy and light 

Arginine and Lysine between wild type and mutant. Protein extracts were analyzed by mass 

spectrometry. 

 

The following downstream procedure was performed by the ZMBH proteomics facility: 50 μg of proteins 

were loaded into SDS-PAGE. Each sample was fractionated into eight fractions by cutting the protein-

loaded gel into eight parts. Gel pieces were reduced with DTT, alkylated with iodoacetamid and digested 

with trypsin using the DigestPro MS platform (Intavis AG) following the protocol described by 

(Shevchenko et al., 2007). Peptides have then been analyzed by Liquid chromatography–mass 

spectrometry (LCMS) using an UltiMate 3000 LC (Thermo Scientific) coupled to either an Orbitrap Elite or 

a Q-Exactive mass spectrometer (Thermo Scientific). Peptides analyzed by the Orbitrap Elite have been 

loaded on a C18 Acclaim PepMap100 trap-column (Thermo Fisher Scientific) with a flow rate of 30μl/min 

0.1% TFA. Peptides were eluted and separated on an C18 Acclaim PepMap RSLC analytical column (75 
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µM x 250 mm) with a flow rate of 300 nl/min in a 2 h gradient of 3% buffer A (0.1% formic acid, 1 % 

acetonitril) to 40% buffer B (0.1% formic acid, 90 % acetonitrile). MS data were acquired with an 

automatic switch between a full scan and up to 30 data-dependent MS/MS scans. Peptides analyzed on 

the Q-Exactive have been directly injected to an analytical column (75µm x 300 mm), which was self-

packed with 3µm Reprosil Pur-AQ C18 material (Dr. Maisch HPLC GmbH) and separated using the same 

gradient as described before. MS data were acquired with an automatic switch between a full scan and 

up to 15 data-dependent MS/MS scans. Data analysis was carried out with MaxQuant version 1.5.3.30 

(Cox and Mann, 2008) using standard settings for each instrument type and searched against a yeast 

specific database extracted from UniProt (UniProt Consortium). Carbamidomethylation of cysteine was 

specified as fixed modification; Oxidation of methionine and acetylation of protein N-termini was set as 

variable modification. ‘Requantify’ as well as ‘Match Between Runs’ options were both enabled. Results 

for filtered for an 1% false discovery rate (FDR) on peptide spectrum match (PSM) and protein level. 

MaxQuant output files have been further processed and filtered using  Perseus (Tyanova et al., 2016)and 

self-compiled R-scripts. 

 

For SILAC-based quantitative proteomics of protein aggregates: Yeast cells were grown as described 

earlier, followed by isolation of protein aggregates from mutant and wild type control (see section 6.6). 

Re-suspended protein aggregates in SDS-sample buffer from wild type and mutant were mixed in 1:1 

ratio based on volume, followed by similar mass-spectrometry analysis. 

6.2 SWATH–based quantitative proteomics 

Yeast cells were grown in synthetic media adjusted to 20 mg/l Arginine and 30 mg/l Lysine for six 

doubling times at 30 °C to OD600 of (0.8). For quantitative proteomics under heat stress, cells were shifted 

from 30°C to 37°C for 2 doubling times, and harvested at OD600 of (0.8).  Before harvesting, cells were 

quenched by addition of Trichloroacetic Acid (TCA) to the culture to a final concentration of 6.25%, 

followed by incubation on ice for 10 min. The culture was centrifuged at 4°C, 1500g for 5 min. The pellet 

was washed twice with 10 ml ice-cold acetone.  For cell lysis, 1 volume of lysis buffer (8M Urea, 100 mM 

Ammonium Bicarbonate, 5 mM EDTA, adjusted to pH 8.0) was added to 1 volume of cell pellet, followed 

by vortexing to re-suspend the cell pellet. 1 volume of ice cold glass beads (500 μm diameter) was added 

to 1 volume of re-suspended pellet, followed by vortexing for 40 seconds at 6.0 m/s (FastPrep 24 (MP 

Biomedical)). The cell lysate was centrifuged at maximum speed for 5 min (4°C) and the supernatant was 

transferred to a new tube. The cell pellet was re-suspended in equal volume of fresh lysis buffer, followed 

by vortexing for 40 seconds at 6.0 m/s (FastPrep 24 (MP Biomedical)). The last step was repeated for five 

times to ensure efficient protein extraction, and the supernatant from each grinding cycle was pooled 

together, followed by Bradford quantification (Biorad) of protein concentration. Quantitative proteomics 

analysis was performed using SWATH-mass spectrometry as described earlier (Selevsek et al., 2015). 

The experiment was repeated three times for each of the mutant and wild type control. 
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6.3 Ribosome Profiling 

Yeast cells were grown in synthetic media adjusted to 20 mg/l Arginine and 30 mg/l Lysine for six 

doubling times at 30 °C to an optical density (OD600) of (0.8). For ribosome profiling under heat stress, 

cells were shifted from 30°C to 37°C for 2 doubling times, and harvested at OD600 of (0.8).  Cells were 

collected by fast filtration and immediately flash-frozen in liquid nitrogen. Frozen cells were mechanically 

lysed for 2 min at 30 Hz (Mixer mill, MM400 (Retsch)) in a lysis buffer composed of (20 mM Tris-HCl pH 

8.0, 140 mM KCl, 6 mM MgCl2, 0.1 mg/ml Cycloheximide, 0.1% NP-40, 2x complete EDTA-free protease 

inhibitor, 1 mM PMSF, 20 μg/ml Leupeptin, 20 μg/ml Aprotinin, 40 μg/ml Bestatin, 1 μg/ml E-64, 20 U/ml 

DNase). Lysates were thawed, followed by centrifugation at 30,000g for 5 min at 4 °C, and the 

supernatant was transferred to a new tube followed by RNA quantification (Nanodrop spectrophotometer, 

ND2000 (Thermo Scientific)). 1mg of RNA was digested using 125 U of RNAse I at 25 °C, 650  rpm, for 

1 h. Digestion was stopped by adding 200 U SUPERase·In. The digested RNA was overlaid on 10–50% 

sucrose gradient (20 mM Tris pH 8.0, 140 mM KCl, 6 mM MgCl2, 0.1 mg/ml Cycloheximide, 1x complete 

EDTA-free protease inhibitor tablets) followed by ultracentrifugation at 35,000 rpm for 2.5h at 4°C (Rotor 

Type SW 40 Ti (Beckman)). The sucrose gradient was fractionated (Gradient station, 153 (BIO-COMP)) 

and the monosome fractions were pooled. RNA was isolated from monosomes by hot-phenol extraction 

followed by deep sequencing library preparation (Becker et al., 2013). Analysis of the deep sequencing 

data was performed as described (Döring et al., 2017). In summary, adaptor sequence was first trimmed 

from the reads using Cutadapt, and reads that were mapped to the ribosomal RNA were filtered out 

(Bowtie2). Reads were mapped to the yeast genome (S. cerevisiae strain S288C) using Tophat2. Reads 

were processed according to center-weighing approach. In summary, for footprints between 22-42 

nucleotide long, 11 nucleotides were trimmed from each end and the remaining positons were given a 

score of 1/N in which N equals the length of the footprint after trimming. To quantify the expression for 

each gene in RPM (Reads Per Million base), the total reads aligned to each open reading frame (ORF) 

was normalized to the total number of reads aligned to all ORFs per sample after center-weighting, and 

multiplied by 1 million. Genes with less than 64 reads were excluded from the analysis. Experiment was 

done in 2 replicates. 

6.4 Polysome Profiling 

Yeast cells were grown in synthetic media at 30 °C to an optical density OD600 of (0.8). Cells were 

collected by fast filtration and immediately flash-frozen in liquid nitrogen. Frozen cells were mechanically 

lysed for 2 min at 30 Hz in a lysis buffer composed of (20 mM Tris-HCl pH 8.0, 140 mM KCl, 6 mM MgCl2, 

0.1 mg/ml Cycloheximide, 0.1% NP-40, 2x complete EDTA-free protease inhibitor tablets, 1 mM PMSF, 

20 μg/ml Leupeptin, 20 μg/ml Aprotinin, 40 μg/ml Bestatin, 1 μg/ml E-64, 20 U/ml DNase). Lysates were 

thawed, followed by centrifugation at 4 °C and 30,000g for 5 min, and the supernatant was transferred to 

a new tube followed by RNA quantification (Nanodrop spectrophotometer, ND2000 (Thermo Scientific)). 
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1mg of RNA was overlaid on 10–50% sucrose gradient (20 mM Tris pH 8.0, 140 mM KCl, 6 mM MgCl2, 

0.1 mg/ml Cyclohexamide, 1x complete EDTA-free protease inhibitor tablets, followed by 

ultracentrifugation at 4°C and 35,000rpm for 2.5h (Rotor Type SW 40 Ti (Beckman)), and fractionation 

(Gradient station, 153 (BIO-COMP)). 

6.5 Selective ribosome profiling of the NatB complex 

Yeast cells expressing C-terminally GFP tagged NatB auxiliary subunit were grown in 1L YPD for six 

doubling times at 30 °C to an OD600 of (0.8). Cells were collected by fast filtration and immediately flash-

frozen in liquid nitrogen. Frozen cells were mechanically lysed for 2 min at 30 Hz (Mixer mill, MM400 

(Retsch)) in a lysis buffer composed of (20mM Tris-HCl pH 8.0, 140 mM KCl, 6 mM MgCl2, 0.1 mg/ml 

Cycloheximide, 0.1% NP-40, 2x complete EDTA-free protease inhibitor tablets, 1 mM PMSF, 20 μg/ml 

Leupeptin, 20 μg/ml Aprotinin, 40 μg/ml Bestatin, 1 μg/ml E-64, 20 U/ml DNase). Lysates were thawed, 

followed by centrifugation at 4 °C and 30,000g for 5 min, and the supernatant was transferred to a new 

tube followed by RNA quantification (Nanodrop spectrophotometer, ND2000 (Thermo Scientific)). 

 

For total translatome analysis:  200 µg RNA from the total lysates was digested using RNase I (10 

U/A260, for 30 min at 4°C). The digested RNA was layered on top a sucrose-cushion (25% sucrose in 20 

mM Tris-HCl pH 8.0, 140 mM KCl, 10 mM MgCl2, 0.1 mg/mL Cycloheximide, 1x protease inhibitor tablet) 

followed by centrifugation for 90 min at 75k RPM and 4°C. Supernatant was removed quickly with 

vacuum pump and the pellets were re-suspended in 500 µl lysis buffer.  

 

For IP:  200 µl of GFP-binder slurry was washed three times with 1 ml of lysis buffer for 5-10 min, rotating 

at room temperature, where 1 min centrifugation at 450g was used to pellet the beads. 5 mg of RNA from 

the total lysate were added to the beads, followed by digestion using RNaseI (10 U/A260) for 30 min at 

4°C. Beads were incubated with rotation for 25-30 min at 4°C. Beads were washed twice in 1 ml of the 

lysis buffer for 1 min, followed by washing twice in 1 ml of wash buffer (0.1 mg/ml Cycloheximide, 20 mM 

Tris-HCl pH 8.0, 140 mM KCl, 10 mM MgCl2, 1 mM PMSF, 0.01 % NP-40, 2x protease inhibitor tablets, 

10% glycerol) for 1 min, then one time in 1 ml of wash buffer for 5 min while rotating. During washing 

procedure, the tubes were changed two twice.  

 

RNA for either total translatome analysis or IP was isolated by hot-phenol extraction followed by deep 

sequencing library preparation. Analysis of the deep sequencing data was performed as described earlier 

(Döring et al., 2017), and as discussed as in section 6.4. Experiment was done in 2 replicates. 
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6.6 Isolation of aggregated proteins 

Experiments were done as described (Koplin et al., 2010). In summary, cell pellet from 50 OD600 units of 

logarithmically growing cells were suspended in 100 µl lysis buffer ((20 mM Sodium Phosphate pH 6.8, 10 

mM DTT, 1 mM EDTA, 0.1% Tween, 1 mM PMSF, protease inhibitor cocktail, 3 mg/ml Zymolyase T20)) 

and incubated at 25°C for 20 min, while shaking at 750 rpm. The suspended cells were kept on ice, 

followed by tip sonication (Branson; eight times at level 4 and duty cycle 50%) then centrifuged for 20 min 

at 200g at 4°C. The supernatant was transferred to a new tube. Supernatants were adjusted to identical 

protein concentrations using Bradford (Biorad). Aggregated proteins were pelleted at 16,000g for 20 min 

at 4°C. After removing supernatants, aggregated proteins were washed twice with 600 µl of 2% NP-40 in 

(20 mM Sodium Phosphate pH 6.8, 1 mM PMSF, and protease inhibitor cocktail) by sonication (six times 

at level 4 and duty cycle 50%), and collected by centrifugation at 16,000g for 20 min at 4°C.  Aggregated 

proteins were washed in 600 µl NP-40 deficient buffer (20 mM sodium phosphate, pH 6.8, 1 mM PMSF, 

and protease inhibitor cocktail) by sonication (four times at level 2 and duty cycle 65%), boiled in SDS 

sample buffer, and separated by SDS-PAGE (14%). 

6.7 Quantitative proteomics of the total lysate versus the soluble 

fraction 

Analysis was adapted from (Wallace et al., 2015). In brief, protein aggregates from the wild type and 

deletion mutant was isolated as described (section 6.6). Equal volume of the cell lysate before (total cell 

lysate) and after aggregate isolation (soluble fraction) were loaded into SDS-PAGE followed by trypsin 

digestion, and dimethyl labeling. Peptides from soluble and total lysate were mixed and quantified by 

mass-spectrometry analysis. 

6.8 Tandem fluorescent timer analysis 

The general strategy for introducing natB deletion to the tandem fluorescent timer library involves mating 

of haploid natBΔ or the wild type control with the tFT library (Khmelinskii et al., 2014) consisting of 4044 

tFT tagged proteins (Knop lab collection, at the ZMBH), followed by diploids selection, sporulation, and 

selection of double mutant haploids (Tong and Boone, 2007). The design of the library strains adopts a 

strategy for chromosomal gene tagging that allows generating clones in which only the desired tag 

sequence is inserted into a specified genomic locus. The strategy is based on a tagging module in which 

the selection marker URA3, flanked by specific endonuclease cleavage sites, is placed between two 

copies of the tag sequence such that the marker can be excised by inducing expression of a site-specific 

endonuclease under galactose inducible promoter. The resulting double-strand break can then be 

repaired by homologous recombination between the two copies of the tag sequence leaving a single copy 

of the tag in the genome free from any auxiliary sequences. Seamless tagging is compatible with high-
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throughput strain construction using SGA, where the procedure includes two steps: Pining the cells on a 

media which have galactose as an alternative carbon to induce the expression of the genetically encoded 

endonuclease, followed by counter selection of the URA3 marker by pinning the cells onto synthetic 

medium containing 5-fluoroorotic acid (5-FOA) to select for cells that had lost the URA3 marker. 

 

The screen was done in 1536 format using pinning robotics (Singer instruments) with three biological 

replicates per clone, as follows: 

 

 Library preparation: The tFT library was spotted from glycerol-stock (96-wells) with long pins onto 

YPD+NAT agar plates and condensed it at the same time to 384-format. The cells were grown at 

30°C for 1-2 days. The library was further replicated to yield 1536-format and the cells were left to 

grow at 30°C for 1-2 days. 

 Query preparation: The query strains were spotted onto YPD+G418 agar plates in 384-format, and 

later condensed into one plate of 1536-format. In addition to natB deletion mutant, wild type was used 

as a reference. 

 Mating: The library was mated with the query strains by pinning both to the same YPD plate, free 

from antibiotic markers, where the library was spotted first for two times (rotor setting: pairs option on, 

revisit source, recycle, 0.2 mm mix on source, 70% pinning pressure, 0.2 mm mix on target, default 

pressure) then spotted the query strains on top, for two times using the same settings. The cells were 

left to grow for 1-2 days at 30°C. 

 Diploid selection: The resulting zygotes were pinned onto YPD+G418+NAT agar plates (rotor 

settings: 0.3 mm mix on source, 70% pinning pressure, 0.2 mm mix on target, default pressure) and 

left to grow at 30°C for 2 days. The selection was repeated to obtain enough material for sporulation, 

if necessary. 

 Sporulation: Diploid cells were pinned to sporulation medium, where it was stamped two times (rotor 

settings: pairs option on, revisit source, recycle, 0.3 mm mix on source, 70% pinning pressure, 0.2 

mm mix on target, default pressure) and the plates were incubated at 23°C for 5 days. 

 Haploid selection 1: As many cells as possible were stamped from the sporulation plates onto SD 

His/Arg/Lys + Canavanine/Thialysine plates to select for MATa haploids (rotor settings:  0.2 mm mix 

on source, 70% pinning pressure, 0.2 mm mix on target, default pressure). The cells were left to grow 

at 30°C for (1-2) days. 

 Haploid selection 2: Cells from (haploid selection 1) were pinned onto SD His/Arg/Lys +Canavanine 

+Thialysine+G418+NAT (with MSG) plates to select for MATa cells which have both the query strains 

deletion, as well as the tFT tag. 

 Endonuclease induction: Cells from (haploid selection 2) plates were pinned onto SD His which has 

galactose and raffinose as an alternative carbon source for glucose. 
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 URA3 marker counter-selection: Cells were pinned onto SD His containing 5-FOA to select for cells 

that have lost the URA3 marker.  

 Stamping on imaging plates: For imaging, the cells were finally pinned onto syntheti media agar 

plates, in the presence of excess Adenine (300 mg/l). The cells were incubated at 30°C for exactly 20 

hours before proceeding with the imaging. The plates were imaged using infinite M1000 or Infinite 

M1000 Pro plate reader (TECAN). To test the effect of heat stress, plates were incubated at 30°C for 

1 day then shifted to 37°C for 1 day followed by high throughput fluorescence measurement of 

colonies in custom temperature control chambers.  

Data analysis was performed by Dr. Joseph Barry form the EMBL as described (Khmelinskii et al., 2014). 

In summary, the fluorescence intensity of sfGFP and mCherry was measured for each colony using 

infinite M1000 or Infinite M1000 Pro plate reader (TECAN). The median of the fluorescence intensity of 

sfGFP and mCherry were calculated out of the three replicates per each tFT-tagged protein. Based on 

the median fluorescence intensities, the ratio of sfGFP and mCherry fluorescence intensity was 

calculated for each of the tFT tagged proteins. Since colony size can impact the fluorescence intensity, 

screening plates were also imaged to measure the size of each colony. Fluorescence intensities were 

normalized to the colony size, and colonies that are smaller/bigger than a preset threshold was filtered 

out from the analysis. Moreover, screening plates at the second haploid selection stage were also imaged 

to measure the size of each colony, and colonies that were slowly growing/not growing at the second 

haploid selection stage, but later showed a better growth in downstream stages were discarded from the 

analysis. The mCherry/sfGFP values from the natB deletion mutant were compared to the corresponding 

values in the wild type strain.   

6.9 Screen for synthetic growth defects in natBΔ 

Haploid natBΔ and wild type control were mated with the yeast non-essential genes deletion library 

(Bukau lab collection) followed by diploids selection, sporulation, and selection of haploid double mutant 

(natBΔ and gene deletion) (Tong and Boone, 2007). The screen was done in 1536 format using pinning 

robotics (Singer instruments) with four biological replicates per clone.  

 

 Library preparation: The non-essential genes deletion diploid library was spotted from glycerol-stock 

(96-wells) with long pins onto YPD+G418 agar plates and condensed it at the same time to 384-

format. The cells were grown at 30°C for 1-2 days. The library was further replicated to 1536-format 

and the cells were left to grow at 30°C for 1-2 days. Diploid cells were pinned to poor sporulation 

medium, where it was stamped two times (rotor settings: pairs option on, revisit source, recycle, 0.3 

mm mix on source, 70% pinning pressure, 0.2 mm mix on target, default pressure) and the plates 

were incubated at 23°C (or room temperature) for 5 days or longer. 
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 Query preparation: The query strain was spotted onto SD URA agar plates in 384-format, then 

condensed into 1536-format. In addition to natB deletion mutant, wild type was also used as a 

reference. 

 Mating: The library was mated with the query strains by pinning both to the same YPD plate, free 

from antibiotic markers, where the library was spotted first for two times (rotor setting: pairs option on, 

revisit source, recycle, 0.2 mm mix on source, 70% pinning pressure, 0.2 mm mix on target, default 

pressure) then spotted the query strains on top for two times using the same settings. The cells were 

left to grow for 1-2 days at 30°C.  

 Diploid selection: The resulting zygotes were pinned onto SD (MSG) URA+G418 agar plates (rotor 

settings: 0.3 mm mix on source, 70% pinning pressure, 0.2 mm mix on target, default pressure) and 

left to grow at 30°C for 2 days. The selection was repeated to obtain enough material for sporulation, 

if necessary. 

 Sporulation: Diploid cells were pinned to poor sporulation medium, where it was stamped two times 

(rotor settings: pairs option on, revisit source, recycle, 0.3 mm mix on source, 70% pinning pressure, 

0.2 mm mix on target, default pressure) and the plates were incubated at 23°C (or room temperature) 

for 5 days or longer. 

 Haploid selection 1: Stamping as many cells as possible from the sporulation plates onto SD 

Leu/Arg/Lys + Canavanine/Thialysine plates to select for MATα (rotor settings:  0.2 mm mix on 

source, 70% pinning pressure, 0.2 mm mix on target, default pressure). The cells were left to grow at 

30°C for (1-2) days. 

 Haploid selection 2: Cells from (haploid selection 1) were pinned onto SD Leu/Ura/Arg/Lys 

+Canavanine+Thialysine+G418 (with MSG) plates to select for double mutant MATα. 

 

Double mutants were grown on synthetic media without leucine (for haploid selection) for 2 days. The 

plates were imaged for colony size measurement. The ratio of colony size between double mutant and 

single mutants was used as a proxy for double mutant fitness relative to single mutants. Screen was 

repeated twice, and only significant changes of (double/single) mutant colony size based on one sample 

t-test (p-value<0.05) were included for further analysis. 

 

6.10 Measuring yeast growth by spotting serial dilutions 

Yeast cells were grown to stationary phase, serially diluted (1:10:100:1000:10000:100000), then stamped 

into YPD or synthetic media plus 2% agar. The plates were first left to dry, then incubated for three days, 

then imaged. 
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6.11 Luciferase activity assay 

Yeast cells expressing mutant luciferase (Gupta et al., 2011) were grown in synthetic medium to an OD600 

of (0.8) at 30°C. Cells were treated with 0.1 mg/ml Cycloheximide, and then shifted to 37°C for 90 min, 

followed by shifting to 45°C for 20 min to heat denature luciferase. Cells were finally shifted to 30°C to 

allow luciferase refolding. Luciferase activity was measured at specific time points (before heat shock, 

after 37°C incubation, after 45°C incubation, during refolding: 15 min, 30 min, 60 min, and 120 min after 

shifting to 30°C). To measure luciferase activity, 100 µl of cells in medium were mixed with 100 µl of 125 

µM luciferin and luciferase activity was measured for 10s (Lumat LB 9507 (Berthold Technologies Gmbh 

& Co. KG)). Measurements were normalized to the optical density OD600. Experiment was done in two 

replicates. 

6.12 Cloning of the NAA10 gene and mutants 

The coding sequence of Naa10 was amplified from phenol-chloroform extracted yeast genome using a 

primer pair that anneals at the start and end of the coding sequence of the gene, and contain short 

overhang that contain the restriction sites for SmaI and SalI. The PCR product (insert), and the vector 

p413CYC1 (Mumberg et al., 1995) were doubled digested with SmaI and SalI according to the supplier 

instructions. The digested insert and vector were ligated using T4-DNA ligase according to the supplier 

instructions, followed by transformation into XL1 chemical competent cells, and plated into Ampicillin 

containing LB-agar plates. Five colonies were used for inoculation of 5 ml LB overnight cultures followed 

by plasmid purification. The purified plasmids were further sequenced using the respective primers to 

confirm the sequence identity. Mutants of NAA10 genes were generated by amplification of the generated 

plasmid using mismatch primers, followed by digestion of the template DNA using Dpn1, transformation, 

plasmid purification, and sequencing as described earlier. Wild type and mutant Naa10 were transformed 

to yeast as described (Section 6.1), and plated on SD His plates. 

6.13 Live cell microscopy 

Cells were grown at 30 °C in Synthetic media to an OD600 of (0.5 – 0.6). After harvesting by centrifugation, 

cells were re-suspended in phosphate buffered saline (PBS), and layered on agarose coated slides. 

Images were acquired using a wide field system (Xcellence IX81, Olympus). All further processing of 

digital images was performed with ImageJ. 

6.14 Purification of GFP-binder 

BL21 DE3 Rosetta cells were transformed with a plasmid encoding GFP binder under Isopropyl β-D-1-

thiogalactopyranoside (IPTG)-inducible promotor (p2666). In summary, 50 μl of BL21 DE3 Rosetta cells 

were thawed on ice, followed by addition of at least 5 ng of p2666, followed by incubation on ice for 30 



 Methods  

 

90 |  P a g e

 

min. The cells were heat shocked at 42°C for 45 sec, and immediately incubated on ice for 2 min. 800 µl 

of LB media was added to the cells, followed by incubation at 37°C for 1 hour. Cells were plated on LB 

agar plus 50 μg/ml Kanamycin. Overnight culture (LB plus 50 μg/ml Kanamycin) of the transformed cells 

was used for inoculation of 10L of LB containing 50 μg/ml Kanamycin at an OD600 of (0.05) and grown to 

an OD600 of (0.5) at 37 °C. The culture was shifted to 25 °C followed by addition of IPTG to a final 

concentration of 1 mM to induce the expression of the GFP-binder. Cells were grown overnight then 

harvested by centrifugation (4000 rpm, 20 min, 4°C). The cell pellet was re-suspended in 50 mL binding 

buffer (1x PBS pH 8.0, 0.5 M NaCl, 20 mM Imidazole, 150 μL 5 mg/ml DNaseI, 1 mM PMSF, 20 μg/ml 

Leupeptin, 20 μg/ml Aprotinin) then lysed twice using the french pressure cell (SLM/Aminco) at 1000 psi, 

followed by centrifugation for 20 min at 4 °C and 20,000g. The supernatant was applied to an equilibrated 

5 ml HisTrap crude column (GE Healthcare Life Sciences) followed by washing with binding buffer. The 

GFP-binder protein was eluted with binding buffer containing 300 mM Imidazole. Fractions containing the 

GFP-antibody were pooled, and then concentrated to 5 ml and loaded onto a HiLoad 16/60 Superdex 

S75 gel filtration column (GE Healthcare Life Sciences). PBS was used as a running buffer, followed by 1 

ml fractions collection. Peak fractions were tested for the presence and purity of the GFP-binder by SDS-

PAGE and the relevant fractions were pooled. The purified protein was coupled to NHS-activated 

Sepharose 4 FAST Flow beads (Amersham) according to the manufacturer’s protocol and the rest of the 

protein was kept frozen at -80 °C. 

6.15 35S -Methionine incorporation 

Experiment was performed as described (Nillegoda et al., 2010), with a few modifications.  In brief, yeast 

cells were grown in synthetic medium to an OD600 of (0.8), washed twice in water, and re-suspended in 

synthetic dropout medium lacking methionine at a concentration OD600 = 6/ml, followed by addition of 
35

S 

methionine to a final concentration of 100 μCi/ml. Pulse-labeling was conducted for 10 min at 30°C with 

shaking. Incorporation of 
35

S methionine was measured by taking 400 μl of 
35

S methionine-labeled culture 

and adding it to an equal volume of ice-cold 20% TCA. Cells were pelleted, washed twice in ice-cold 

acetone then re-suspended in 200 μl ice-cold extraction buffer (50 mM Tris-HCl pH 7.5, 1 mM EDTA, and 

complete protease inhibitors). Equal volume of glass beads (500 μm diameter) was added to the cells, 

followed by vortexing for 40 seconds at 6.0 m/s using (FastPrep 24 (MP Biomedical)). The extracts were 

quantified for 
35

S incorporation using Scintillation Counter (Packard 1900 TR β). 
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 Abbreviations  8
 

 °A: Angstrom 

 5-FOA: 5-Fluoroorotic acid hydrate 

 ADP: Adenosine diphosphate 

 A-site: Amoinoacyl-tRNA site 

 ATP: Adenosine triphosphate 

 CLPS: Chaperones linked to protein synthesis 

 CRP: Core particle  

 ER:  Endoplasmic reticulum  

 E-site: Exit-site 

 GDP: Guanosine diphosphate 

 GET: Guided entry of TA proteins  

 GO: gene ontology 

 GTP: Guanosine triphosphate 

 HSF1: Heat shock transcription factor  

 HSP: Heat shock protein 

 IP: Immunoprecipitation 

 IPTG: Isopropyl β-D-1-thiogalactopyranoside 

 MAP: Methionine aminopeptidase 

 MMS: Methyl methanesulfonate  

 mRNA: Messenger RNA 

 MS:  Mass spectrometry  

 MSG: Monosodium Glutamata 

 NAC: Nascent chain associated complex 

 NAT: N-terminal acetyltransferases 

 NEF: Nucleotide exchange factor 

 OD600: optical density (OD600) 

 PBS: Phosphate buffered saline 

 PIC: 43S pre-initiation complex  

 P-site: Peptidyl-tRNA site 

 PTC: Peptidyl transferase center  

 RAC: Ribosome associated complex  

 RNA: Ribonucleic acid 

 RP: Regulatory particle  

 RPM: Reads per Million 
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 S.cerevisiae: Saccharomyces cerevisiae 

 SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

 sfGFP: Superfolder green fluorescent protein 

 SILAC: Stable isotope labeling by amino acids in cell culture  

 SPR: Signal recognition particle 

 SR: SRP receptor  

 TC : Ternary complex  

 tFT: Tandem Fluorescent timer  

 TRiC/CCT: TCP1-Ring Complex or Chaperonin Containing TCP1 

 Trichloroacetic acid “TCA 

 tRNA: Transfer RNA 

 

Amino-acids abbreviations: 

Full Name 
Abbreviation 

(3 Letter) 
Abbreviation 

(1 Letter) 

Alanine Ala A 

Arginine Arg R 

Asparagine Asn N 

Aspartic acid Asp D 

Cysteine Cys C 

Glutamic acid Glu E 

Glutamine Gln Q 

Glycine Gly G 

Histidine His H 

Isoleucine Ile I 

Leucine Leu L 

Lysine Lys K 

Methionine Met M 

Phenylalanine Phe F 

Proline Pro P 

Serine Ser S 

Threonine Thr T 

Tryptophan Trp W 

Tyrosine Tyr Y 

Valine Val V 
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