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Chapter 1
Purpose and Significance

1.1 Introduction

In this thesis, we develop techniques for fast, efficient cell based operator
evaluation of Raviart-Thomas finite elements and thereby extend the exist-
ing implementation of matrix free framework in deal.ii. The extensions allow
the matrix free framework to also support anisotropic vector-valued finite
elements in addition to existing isotropic Lagrangian finite elements.

Tests on finite element operators in divergence conforming spaces for Mixed
diffusion equation and Stokes equations show that the method is sufficiently
accurate (relative error 10e-16) and for RT2 is already twice as fast as corre-
sponding sparse matrix based solution.

1.2 Motivation

A typical finite element solver can be divided in at least 3 steps:

• Preprocessing (mesh generation, boundary conditions, initial data)
• Processing (Picard/Newton iteration, matrix assembly, solving the linear

system,etc)
• Postprocessing (graphical output, computing values of interest (drag, lift,

energy, etc)

In particular, in a typical finite element program matrix generation and solv-
ing the linear system are two separate steps. Traditional approaches in FEM
simulation try to achieve computational efficiency with sparse system matrix
and sophisticated solver techniques.
Looking at current trends, the modern processor architectures are hit by
three walls
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2 1 Purpose and Significance

• power
• ILP (instruction level parallelism)
• memory

Therefore, new hardware favor large parallel computation with reduced mem-
ory footprint. For computationally intensive applications like FEM, the im-
plementations should focus on explicit parallelism and improved memory
efficiency.

The Sparse Matrix-vector multiplication are fundamentally limited by
memory bandwidth rather than compute bandwidth ( [12]). However, if we
consider iterative solvers, we realize that we actually don’t need the whole
matrix but only a matrix-vector product. This operation can in fact be done
on-the-fly. By an optimal balance between memory access and at the cost of
extra computations, once the problem size is sufficiently big then generat-
ing the matrix-vector on-the-fly from the weak form wins over the classical
approach ( [10]).

Further, the finite elements we deal with often have tensor product struc-
ture at least for quadrilaterals on the reference element. For example, the
degrees of freedom for a Lagrangian nodal finite element or Raviart-Thomas
element are the tensor product of the 1d degrees of freedom in each direction.
By using quadrature rules which are themselves tensor product of 1-D rules,
then the evaluation of a finite element function on quadrature points can
benefit from sum-factorization in terms of computational complexity.
The ideas of on-the-fly matrix-vector product and utilizing tensor product
structure have been implemented in deal.ii as matrix free framework ( [8])
and presented in dealii step 37
The current implementation of matrix free supports Lagrangian finite ele-
ments where we are limited to having the same ansatz space in each coordi-
nate direction.

On the other hand, the div-conforming Raviart-Thomas elements use a
polynomial space of form Qk+1,k,k ×Qk,k+1,k ×Qk,k,k+1 and can not be
evaluated in the current framework of matrix free. Hence, we are currently
quite limited for using the high performance implementation. In this thesis,
we develop techniques to lift this restriction.

1.3 Outline

In 2, we define finite elements and provide those concepts which we will use
in our study.
in 3, we develop mathematical foundations for cell based operator evaluation
(matrix free) approach. We list down those operators which we will consider
in our study.

https://www.dealii.org/8.5.0/doxygen/deal.II/step_37.html
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In 4, we provide overview of existing matrix free framework and what exten-
sions we did in accordance with 3.
in 5, we analyze results, followed by conclusion in 6.

Throughput this thesis, the term "matrix free" is used to refer to cell based
finite element operator approach which is also the framework implemented
under the same name in deal.ii. "MatrixFree" instead refers to a C++ class for
data cache used in this framework.





Chapter 2
Mathematical Preliminaries

The following definitions mainly follow [2] and [4]

2.1 Finite Elements

Definition 1.1.1 Following, a finite Element consists of a triplet {K,P,Σ}
where:

• K is a compact, connected, Lipschitz subset of Rd with non-empty interior
• P is vector space of functions p : K → Rm for some positive integer m

(typically m = 1 or d)
• Σ is a set of nsh unisolvent linear functionals σ1, ...,σnsh acting on the

elements of P, and such that the following linear mapping is bijective:

P 3 p 7→ (σ1(p), ...σnsh(p)) ∈ Rnsh (2.1)

Remark 1.1.2

• The vector space P is a space of ansatz functions on K
• The linear forms in Σ are also referred to as node functionals
• As a consequence of bijectivity of mapping (2.1) , there exists a basis
{Φ1, ...,Φnsh} satisfying:

σi(Φj) = δij (2.2)

Such a basis is commonly known as local shape functions or just shape
functions

5



6 2 Mathematical Preliminaries

2.2 Domain and mesh

Following [5] we define domain and mesh as follows.

Definition 1.2.1 (Domain)

• In dimension 1, a domain is an open, bounded interval
• In dimension ≥ 2, a domain is an open, bounded, connected set in Rd with

Lipschitz continuous boundary ∂Ω.

This implies that for every point x ∈ ∂Ω, there is a neighborhood Ux with a
Lipschitz-continuous mapping Πx : Ux→ Rd such that

Πx(Ux ⊂ ∂Ω)⊂ {x ∈ Rd|x0 = 0} and
Πx(Ux ⊂Ω)⊂ {x ∈ Rd|x > 0}

Definition 1.2.1 (Mesh) A mesh is defined as a subdivision of a domain
Ω into a finite number Nel of non-overlapping cells which are triangles or
quadrilaterals in two dimensions and tetrahedron or hexahedron in three
dimensions.

• A mesh {Km}1≤m≤Nel is denoted by Th. The subscript h refers to level
of refinement of the mesh

• The diameter of a cell Γ is denoted by hΓ , and the mesh size is h =
max(hΓ )

Remark 1.2.2 A mesh is:

• conforming if a face/an edge of a cell is either on the boundary or a
face/an edge of another cell

• Uniform if all cells are congruent
• Consider family of meshes Th for h→ 0. Such a family is quasi-uniform,

if there is a constant c such that

∀h, ∀T ∈ Th, hT ≥ c.h ,c > 0

In practice, a mesh is generated from a reference cell, K̂ and a set of ge-
ometric transformations mapping K̂ to real cell, the actual mesh cells.

Definition 1.2.3 (Reference cell) The triplet {K̂, P̂, Σ̂} is called the ref-
erence Finite Element. In particular, the basis functions {Φ̂1, ..., ˆΦnsh} are
called reference shape functions

• For simplicity, we assume that all mesh cells are generated using the same
geometric reference finite element
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Definition 1.2.4 (Affine meshes) For K ∈ Th, denote by Tk : K̂ → K
the corresponding transformation. If the transformations {Tm}1≤m≤Nel are
affine, the mesh is said to be affine.

In this thesis, we only consider:

• domains with polygonal boundary
• cartesian mesh cells which are quadrilaterals or hexahedron in two and

three dimensions respectively
• quasi-uniform families of conforming mesh, with affine transformation (bi-

linear mapping)

Reasons for this choice will be made explicit in 3.2.4

2.3 Polynomial spaces

Definition 1.3.1 (Polynomial space) Consider a domain K ∈ Rd We de-
note by Pk(K) the set of all polynomials on K of degree at most k
Definition 1.3.2 (Tensor product polynomial space) The space of
(isotropic) tensor product polynomials Qk(K) is the product of polynomi-
als of degree at most equal to k in each single variable

Qk(K) = Pk(R1)⊗ ...⊗Pk(R1)

q(x1, ...,xd) =
d∏
i=1

pi(xi) pi ∈ Pk(R1) (2.3)

Definition 1.3.2 (Anisotropic Tensor product polynomials) Similarly,
the space of anisotropic tensor product polynomials is defined as

Qk1,..kd(K) = Pk1(R1)⊗ ...⊗Pkd(R1)

q(x1, ...,xd) =
d∏
i=1

pi(xi) pi ∈ Pki(R
1) (2.4)

2.4 Parametric Finite Elements

In practice, the finite elements are defined on a reference cell and mapped
to the real cell by a suitable transformation. We assume an isoparametric
mapping.

Let us assume that for all K ∈ Th there exists

• a Banach space V (K) of functions v :K→ Rm, such that P ⊂ V (K)
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• a suitable mapping

ΠK : V (K)→ V (K̂)

then, a set of finite elements in Th can be defined as as follows:

Definition 1.4.1 For K ∈ Th, the triplet {K,P,Σ} defined by:

K = Tk(K̂)
PK = {Π−1

K (p̂); p̂ ∈ P̂}
ΣK = {σK,i(p) = σ̂i(ΠK(p)), ∀p ∈ PK}

is a finite element. The local shape functions are ΦK,i =Π−1
K (Φ̂i)

Choice of mapping Denote by J(x̂) and |J(x̂)|, the jacobi matrix of trans-
formation from reference to real cell, and the jacobian determinant respec-
tively. x ∈K and x̂ ∈ K̂ such that x =Π(x̂)

• For Lagrange nodal Finite Elements, linear bijective mapping is used

Φ(x) = Φ̂(x̂) ∇Φ(x) =∇Φ̂(x̂)J(x̂)−T (2.5)

• For Raviart-Thomas Finite Elements, Piola transform or contravariant
transformation is used

Φ(x) = 1
|J(x̂)|J(x̂)Φ̂(x̂) ∇Φ(x) = 1

|J(x̂)|J(x̂)[∇̂Φ̂(x̂)]J−1(x̂) (2.6)

2.5 Raviart-Thomas Finite Element

Definition 1.5.1 Define the function spaces

Hdiv(Ω) = {v ∈ L2(Ω;Rd)|∇ ·v ∈ L2}
Hdiv
ΓN

(Ω) = {v ∈Hdiv(Ω)|v ·n = vN ·n on ΓN ⊂ ∂Ω}

Hdiv
0 (Ω) = {v ∈Hdiv(Ω)|v ·n = 0 on ∂Ω} (2.7)

Definition 1.5.2 The Raviart-Thomas element of degree l ≥ 0 on the
reference cell K̂ = [−1,1]d consists of the polynomial space

RTk(K̂) = Qdl (K̂)+xQl(K̂) (2.8)



Chapter 3
Mixed Finite Element Operators and
Cell-based evaluation scheme
(Matrix Free)

3.1 Saddle point problems

3.1.1 Operator notation

Definition 2.1.1 Following [6] and [3], the abstract saddle point prob-
lem in weak form reads:
Find a pair (u,p) ∈ V ×Q such that

a(u,v)+ b(v,p) = f(v) ∀v ∈ V,
b(u, q)− c(p,q) = g(q) ∀q ∈Q (3.1)

Definition 2.1.2 Operator Notation : The bilinear forms in Definition
2.1.1 can also be written in operator notation as:

Au+BT p= f in V ∗,

Bu−Cp= g in Q∗ (3.2)

where the corresponding operators map to dual space:

A : V → V ∗

B : V →Q∗

BT :Q→ V ∗

C :Q→Q∗

9



10 3 Mixed Finite Element Operators and Cell-based evaluation scheme (Matrix Free)

3.1.2 Reference problems

Since we focus exclusively on Raviart Thomas polynomial spaces, (2.8), we
select two reference mixed finite element problems to develop the further
analysis.

Definition 2.2.1 The mixed diffusion problem : Several different trans-
port phenomena with conservation properties can be modeled as a diffusion
problem. Notable examples are Darcy’s porous media flow, heat conduction
etc.
Mathematically, the weak form is set up in dual mixed formulation ( [6])
which reads as:
Find (u,p) ∈ V ×Q such that ∀v ∈ V and ∀q ∈Q holds such that

(K−1u,v)− (p,∇·v) = 〈pD,v ·n〉ΓD
(∇·u, q) = (f,q) (3.3)

• The spaces are

V =Hdiv
ΓN

(Ω) Q= L2(Ω)

• ΓD = Dirichlet boundary, ΓN = Neumann boundary and ΓD ∩ΓN = ∂Ω
• p= pD on ΓD, u= uN on ΓN
• K denotes the permeability tensor

Remark 2.2.2 For discretization on mesh Th, we choose conforming sub-
spaces:

Vh = {v ∈Hdiv
ΓN

(Ω)|∀K ∈ Th : v|K ∈RTl}
Qh = {q ∈ L2(Ω)|∀K ∈ Th : q|K ∈Ql} (3.4)

Definition 2.2.3 The simplified Stokes equations : The weak form with
Dirichlet boundary reads :
Find (u,p) ∈ V ×Q such that ∀v ∈ V and ∀q ∈Q holds

ν(∇u,∇v)− (∇·v,p) = (f,v) ∀v ∈ V
−(∇·u, q) = 0 ∀q ∈Q (3.5)

The spaces are:
V =H1

0 (Ω,Rd) Q= L2
0(Ω)
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Remark 2.2.4 For discretization on mesh Th, we are again interested in
H(div) conforming spaces:

Vh = {v ∈Hdiv
0 (Ω)|∀K ∈ Th : v|K ∈RTl}

Qh = {q ∈ L2
0(Ω)|∀K ∈ Th : q|K ∈Ql} (3.6)

However, this will only ensure continuity of the normal component of the
functions across interfaces between cells. For the solution u ∈H1

0 (Ω,Rd), we
also need continuity of tangential components. This can be achieved by Dis-
continuous Galerkin discretization.
Without going into details, we refer to ( [7], chapter 2.1) and highlight that
such a discretization will lead to elliptic bilinear form as:

ah(u,v) = (∇u,∇v)+ interior penalty terms

In this thesis, we limit our work to evaluation of (∇u,∇v) and leave the
rest for future work.
Further on, any reference to operator A in the context of Stokes equations
will mean evaluation of bilinear form (∇u,∇v) only.

3.2 Cell-based Operator Evaluation

The general approach of cell-based operator evaluation follows from [8]
Consider for example, the mixed diffusion problem (3.3) for which we are
interested in solution on discrete space (3.3) using finite element Galerkin
approximation. As a standard approach, we will first assemble the full system
matrix (S). For iterative solvers, we will multiply the system matrix with
intermediate vectors (x = [u;p]). Assuming that the degrees of freedom are
ordered for velocity followed by pressure, the system matrix in our case will
look like:

S =
[
A BT
B 0

]
Sx = y

With an appropriate choice of solution spaces, this can be written as a
sum of cell-wise operations as:

y = Sx =
Nel∑
k=1

PTk Sk(Pkx)

=
Nel∑
k=1

PTk Skxk (3.7)
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By using the structure of Sk and denoting degrees of freedom on the cell as
xk = [ukpk], the cell specific matrix-vector product can be written

Skxk =
[
Akuk+BT p
Buk

]
(3.8)

Thus, it is clear that we can replace full system matrix operation with
small cell based operators.

For the evaluation of small cell based operators, an efficient and general
scheme has been described in [8] and implemented for tensor product La-
grangian Finite Elements under the name matrix free framework in the
deal.ii software. The key idea :

• Compute Akuk (or other operator-vector products) by quadrature on cell
K through evaluating the FE function uk and/or its derivatives on all
quadrature point and testing by all test functions related to the cell

We aim to extend this technique to support Raviart Thomas finite element
which has an anisotropic tensor product structure.
We now study several operators which are important constituents of the
problems which we want to tackle. In every subsection, we briefly discuss
the operator evaluation as already used in matrix free framework and then
develop ideas for Raviart-Thomas elements.

3.2.1 Notations

• Φi denotes vector valued shape functions for velocity on real cell and Φ̂i
on reference cell

• Ψi denotes scalar valued shape functions for pressure on real cell and Ψ̂i
on reference cell

• n_comp = number of vector components. dim = space dimensions. In this
report, n_comp = dim. For clarity, they will be referred as such

• nQ = number of quadrature points on on real/reference cell, nsh = number
of shape functions on real/reference cell

• The letter c, whether in subscript or superscript denotes component num-
ber

• Whenever there is no confusion about component number:

– Φi
c is replaced with Φi

– Ack is replaced with A. Similarly for operator B. These letters are ex-
clusively reserved throughout the thesis
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• N = matrix of shape function values evaluated on all quadrature points
of real cell

• D = matrix of shape function derivatives evaluated on all quadrature
points of real cell

• W = matrix of jacobians times quadrature weights

3.2.2 Operator A (Stokes)

The first operator which we study is cell-based operator Ak from (3.5) cor-
responding to weak form:

a(u,v) = (∇u,∇v)

If we consider

u(x) =
n∑
i=1

Φi(x)ui

then the operator Ak evaluates (∇Φj)Ω ,∇u), j = 1, ...,n
In matrix form, this can be written as:

Ak =


(∇Φ1,∇Φ1) (∇Φ1,∇Φ2) ... (∇Φ1,∇Φn)
(∇Φ2,∇Φ1) (∇Φ2,∇Φ2) ... (∇Φ2,∇Φn)

... ... ... ...

... ... ... ...
(∇Φn,∇Φ1) (∇Φn,∇Φ2) ... (∇Φn,∇Φn)


An element in row i and column j of this matrix is given by:

Ak(i, j) = (∇Φi,∇Φj)

=
∫
∇Φi :∇Φjdx

where : denotes the Frobenius product of the two tensors.
Then, by the definition of Frobenius product, we can write:

Ak(i, j) =
n_comp∑
c=1

(∇Φi
c.∇Φj

c)

where . denotes the vector inner product.
Consequently, we can write:

Ak =
n_comp∑
c=1

Ack (3.9)
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i.e., the cell wise operator evaluation for vector valued Finite elements can
be factorized into evaluation of individual vector components.
This SOP (sum if products) form has important implications for implemen-
tation as we will see later.

Let us turn our attention to a single component Ack. For simplicity of
notation, we remove the superscript and k to indicate operator evaluation on
a component as follows:

Ack =A=


(∇Φ1,∇Φ1) (∇Φ1,∇Φ2) ... (∇Φ1,∇Φn)
(∇Φ2,∇Φ1) (∇Φ2,∇Φ2) ... (∇Φ2,∇Φn)

... ... ... ...

... ... ... ...
(∇Φn,∇Φ1) (∇Φn,∇Φ2) ... (∇Φn,∇Φn)


It has been explained in detail in [8] and dealii step 37 that the matrix form
A can be factorized as:

A=DTWD (3.10)

where D = derivatives evaluated on all quadrature points on real cell, is a
matrix of dimensions (nQ×dim)×nsh. as:

D =


∇Φ1(x1) ∇Φ2(x1) ... ∇Φnsh(x1)
∇Φ1(x2) ∇Φ2(x2) ... ∇Φnsh(x2)

... ... ... ...

... ... ... ...
∇Φ1(xQ) ∇Φ2(xQ) ... ∇Φnsh(xQ)

 (3.11)

and W = is a matrix of dimensions (nQ×dim)× (nQ×dim) as:

W =



|J(x̂1)|w1
|J(x̂1)|w1

..
|J(x̂2)|w2

..
..
|J(x̂Q)|wQ

|J(x̂Q)|wQ


(3.12)

For operator evaluation, transformation from real cell to reference cell is
needed.

https://www.dealii.org/8.5.0/doxygen/deal.II/step_37.html
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3.2.3 Mapping : Lagrangian Finite elements

We use linear mapping as defined earlier (2.5).
On closer examination, we see that this form allows us to obtain component
wise separation of gradients. Using our previous notation, this is:

∇Φ(x) =∇Φc(x)
= J(x̂)−1∇Φ̂(x̂)

Note that Φ and Φ̂ are treated as column vectors. As already explained in
dealii step 37, such a component wise separation allows us to obtain:

D = J−TDref
=⇒ A= Ac

= (DTrefJ−1)W (J−TDref ) (3.13)

where Dref is similar in structure to D but gradients are evaluated on unit
cell instead of real cell.
J is a block diagonal matrix of dimensions (nQ×dim)× (nQ×dim) as:

J−1 =


J−1(x̂1)

J−1(x̂2)
..
..
J−1(x̂Q)



3.2.4 Mapping : Raviart Thomas elements

We use Piola transformation mapping as defined earlier (2.6).
However, now we see that there is a coupling between different components
of unit cell gradient evaluation. In general, we do not get a well separated
form as we would desire (3.9) for the matrix free framework. It is for this
reason that we choose cartesian mesh cells in our current work. With such a
condition, the jacobian transformation is diagonal matrix and we are again
able to obtain a component wise separation.

To see this, let us consider a case where dim=3. Then J(x̂) is a 3× 3
matrix.
Denote the diagonal coefficient as ji = ji(x̂) 1

|J(x̂)| , i = 1,2,3. Then we can
see:

∇Φ(x) =

 ∂x̂Φ̂1(x̂) j1
j2
∂ŷΦ̂1(x̂) j1

j3
∂ẑΦ̂1(x̂)

j2
j1
∂x̂Φ̂2(x̂) ∂ŷΦ̂2(x̂) j2

j3
∂ẑΦ̂2(x̂)

j3
j1
∂x̂Φ̂3(x̂) j3

j2
∂ŷΦ̂3(x̂) ∂ẑΦ̂3(x̂)



https://www.dealii.org/8.5.0/doxygen/deal.II/step_37.html
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Using such a form, we obtain the transformation matrix from real to reference
cell as:

D =Dref �H

where � denotes Hadamard product (point-wise). H has a repetitive struc-
ture and its elements depends on the component as in:

H(c1) =



1 1 1 ...
j1
j2

j1
j2

j1
j2
...

j1
j3

j1
j3

j1
j3
...

1 1 1 ...
j1
j2

j1
j2

j1
j2
...

j1
j3

j1
j3

j1
j3
...

.. .. .. ..

.. .. .. ..


H(c2) =



j2
j1

j2
j1

j2
j1
...

1 1 1 ...
j2
j3

j2
j3

j2
j3
...

j2
j1

j2
j1

j2
j1
...

1 1 1 ...
j2
j3

j2
j3

j2
j3
...

.. .. .. ..

.. .. .. ..


H(c3) =



j3
j1

j3
j1

j3
j1
...

j3
j2

j3
j2

j3
j2
...

1 1 1 ...
j3
j1

j3
j1

j3
j1
...

j3
j2

j3
j2

j3
j2
...

1 1 1 ...
.. .. .. ..
.. .. .. ..


and finally we get

A=Ack
= (Dref �H)TW (Dref �H)

=DTrefW̃ (Dref �H) (3.14)

where W̃ = (HT �W )

3.2.5 Operator A (Mixed diffusion)

The first operator which we study is cell-based operator Ak from (3.6) cor-
responding to weak form:

a(uh,vh) = (K−1uh,vh)

The operator Ak now evaluates (Φj,K
−1u)Ω , j = 1, ...,n

As earlier, the cell operator can be written in matrix form:

Ak =


(Φ1,K

−1Φ1) (Φ1,K
−1Φ2) ... (Φ1,K

−1Φn)
(Φ2,K

−1Φ1) (Φ2,K
−1Φ2) ... (Φ2,K

−1Φn)
... ... ... ...
... ... ... ...

(Φn,K
−1Φ1) (Φn,K

−1Φ2) ... (Φn,K
−1Φn)





3.2 Cell-based Operator Evaluation 17

An element in row i and column j of this matrix is given by:

A‖(i, j) = (Φi,K
−1Φj)

=
∫

Φi :K−1Φjdx

where : denotes the Frobenius product of the two tensors.
For a general permeability tensor K where the elements are unique, such a
Frobenius product does not allow us to obtain the desired SOP form (3.9)
as we would like. However for the special case where K is unit matrix (or
proportional to unit matrix), we can again obtain an SOP form.
So we continue our analysis by assuming that K is unit matrix.
We immediately obtain:

Ak =
n_comp∑
c=1

Ack

where

Ak =A=


(Φ1,Φ1) (Φ1,Φ2) .. (Φ1,Φn)
(Φ2,Φ1) (Φ2,Φ2) .. (Φ2,Φn)

... ... ... ...
(Φn,Φ1) (Φn,Φ2) .. (Φn,Φn)


Such a form can be easily factorized as:

A=NTWN (3.15)

where N = shape functions evaluated on all quadrature points on real cell, is
a matrix of dimensions nQ×nsh. as:

N =


Φ1(x1) Φ2(x1) ... Φn(x1)
Φ1(x2) Φ2(x2) ... Φn(x2)
... ... ... ...
... ... ... ...

Φ1(xQ) Φ2(xQ) ... Φn(xQ)


while W = is a diagonal matrix of dimensions nQ×nQ as:

W =


|J(x̂1)|w1

|J(x̂2)|w2
..
..
|J(x̂Q)|wQ


For operator evaluation, transformation from real cell to reference cell is
needed.
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3.2.6 Mapping : Lagrangian Finite elements

We use linear mapping as defined earlier (2.5).
The covariant transformation is very simple:

Φ(x) = Φ̂(x̂)

and we simply obtain:

A‖ =A

=NT
refWNref (3.16)

where Nref is similar in structure to N but shape functions are evaluated on
unit cell instead of real cell

3.2.7 Mapping : Raviart Thomas elements

We use Piola transformation mapping as defined earlier (2.6).

Once again, we find that there is a coupling between different components
of unit cell gradient evaluation. In general, we do not get a well separated
form as we would desire (3.9) for the matrix free framework. We use cartesian
mesh cells as mentioned in (3.2.4) and are again able to obtain a component
wise separation.
To see this, let us consider a case where dim=3. Denoting ji = ji(x̂), i =
1,2,3, the Jacobian matrix is J(x̂) = 1

|J(x̂)|diag(j1, j2, j3). Clearly:

Φ(x) =

j1Φ̂1(x̂)
j2Φ̂2(x̂)
j3Φ̂3(x̂)


Using such a form, we obtain the transformation matrix from real to reference
cell as:

N =Nref �H (3.17)

where � denotes Hadamard product (point-wise). H has a repetitive structure
and its elements depends on the component as in:

H(c1) =


j1(x̂1) j1(x̂2) .. j1(x̂Q)
j1(x̂1) j1(x̂2) .. j1(x̂Q)
... ... ...

j1(x̂1) j1(x̂2) .. j1(x̂Q)

H(c2) =


j2(x̂1) j2(x̂2) .. j2(x̂Q)
j2(x̂1) j2(x̂2) .. j2(x̂Q)
... ... ...

j2(x̂1) j2(x̂2) .. j2(x̂Q)


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H(c3) =


j3(x̂1) j3(x̂2) .. j3(x̂Q)
j3(x̂1) j3(x̂2) .. j3(x̂Q)
... ... ...

j3(x̂1) j3(x̂2) .. j3(x̂Q)


It is this form which will be helpful for us.

3.2.8 Operator B

Next we consider cell based operator Bk which corresponds to the weak form:

b(u, q) =−(∇·u, q)

Denoting by Ψi, i = 1, ...NΨ the basis functions for space Qh, then the
operator Bk evaluates (∇·u,Ψj), j = 1, ...NΨ .
For simplicity, we denote Bk as B. Then, in matrix form, this can be written
as:

B =


(∇·Φ1,Ψ1) (∇·Φ2,Ψ1) ... (∇·ΦNΦ ,Ψ1)
(∇·Φ1,Ψ2) (∇·Φ2,Ψ2) ... (∇·ΦNΦ ,Ψ2)

... ... ... ...

... ... ... ...
(∇·Φ1,ΨNΨ ) (∇·Φ2,ΨNΨ ) ... (∇·ΦNΦ ,ΨNΨ )


An element in row i and column j of the matrix Bk is given by:

B(i, j) = (∇·Φj,Ψi)

=
∫
K
∇·Φj.Ψi

=
∫
K
trace(∇Φj).Ψi =

x_Q∑
q=1

trace(∇Φj).Ψi|J(x̂q)|wq

where . denotes the usual product of two scalar values. The last form is
obtained by transformation of integral to unit cell and replacing with ap-
propriate quadrature rule. using this, the operator matrix can be factorized
as:

B =NTWS

where N and D are as earlier. S is a matrix which contains divergence eval-
uation for each shape function at all quadrature points on real cell.

For operator evaluation, transformation from real cell to reference cell is
needed.
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Ψ(x) = Ψ̂(x̂)

For Lagrangian Finite elements, this allows us to simply replace N with
Nref . For S, we note that ∇·Φj = trace(∇Φj), and therefore we use covari-
ant transformation or Piola transformation depending on the Finite element
space we are dealing with.

3.2.9 Operator BT

The last operator which we study is cell-based operator BT which evaluates
the weak form:

b(v,p) =−(∇·v,p)

Denote

p(x) =
NΨ∑
i=1

Ψi(x)pi

then the operator BT evaluates (∇·Φi,ph), i= 1, ...NΦ
Going by this way it turns out that the resulting factorization will be quite

complex. We instead note that the weak form can be written as:

b(v,p) =−(∇·v,p)
=−(∇v,I.p)

This allows us to combine bilinear forms a(u,v) and b(v,p) as:

a(u,v)+ b(v,p) = (∇u,∇v)+−(∇v,I.p)
= (∇u− I.p,∇v)

This is what we will make use of in our work.

3.3 Tensorial evaluation of shape functions

The finite elements which we consider in this work have a tensor product form
in each component. Further the quadrature points also show tensor product
structure. We want to utilize this information in the evaluation of Nref and
Dref matrices.

Denoting by r, s and t the individual space dimensions.
Let us first consider in 2-dimensions.
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From one-dimensional Gauss quadrature rule, we construct multi-dimensional
rule by a tensor product as:

• quadrature point x̂q = (rq1,sq2)
• quadrature weight wq = wq1wq2

Denote by Φ̂ := Φ̂c the per component evaluation of a shape function, we
notice that:

{Φ̂1, Φ̂2, ..., Φ̂nsh}= {φs⊗φr}

where
φr = {φr1, ...,φrl} φs = {φs1, ...,φsm}

are the 1-D shape functions and l×m= nsh
With this result, we have the factorization of Nref as:

Nref (2D) =Ns
1D⊗Nr

1D

Nref (3D) =N t
1D⊗Ns

1D⊗Nr
1D

This also helps to find out factorization of Dref .
Mref can be written as Dref = [Drref Dsref ]

Drref (2D) =Ns
1D⊗Mr

1D

Dsref (2D) =Ds1D⊗Nr
1D

and

Mr
ref (3D) =N t

1D⊗Ns
1D⊗Mr

1D

Ms
ref (3D) =N t

1D⊗Ms
1D⊗Nr

1D

M t
ref (3D) =M t

1D⊗Ns
1D⊗Nr

1D

3.3.1 Tensorial evaluation for Lagrangian Finite
elements

In this case, we have simply

Ns
1D =Nr

1D =N t
1D

Ds1D =Dr1D =Dt1D
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3.3.2 Tensorial evaluation for Raviart Thomas Finite
elements

In this case, because of the structure of Raviart-Thomas polynomial, we have:

• 1-D shape function matrices and 1-D shape gradient matrices are different
in two space dimensions

• Because of a certain symmetry, these 1-D matrices are identically used in
different component. Although they are used in different space dimensions
in each component

There is another point which is specific to the manner in which Raviart
Thomas basis functions are implemented in the dealii library. This is men-
tioned in dealii documentation of compute_node_matrix and Generalized
support points

The basis of Raviart Thomas shape functions on the reference cell is chosen
in such a way that the node functional evaluation on this basis is equal to
Kronecker delta function. If Ni denotes node functionals, we want to have
the property:

Ni(Φ̂j) = δij

For practical reasons we use a basis which is tensor product of Lagrange
polynomials. Let us call this as "raw" basis consistent with the terminology
of dealii. Note that the node functionals do not evaluate to kronecker delta on
this raw basis. Therefore we need to transform from raw basis to the actual
basis.

Φ̂i =
Nc∑
j=1

cij ˆΦrawj

where cij are expansion coefficients in the basis transformation matrix C
Recall that Raviart-Thomas polynomials have a tensor product structure

in each component. This has implication that every shape function (in any
chosen basis) will be strictly zero in all but one component. This implies that
the matrix C will be block diagonal. A small visualization for 3-dimensions
case will help here: 

Φ̂1
...

Φ̂n
Φ̂n+1
...

Φ̂2n
Φ̂2n+1
...

Φ̂3n


=

https://www.dealii.org/8.5.0/doxygen/deal.II/namespaceFETools.html#aec3d342cc4d853430f07ad49d8bf2eab
https://www.dealii.org/8.5.0/doxygen/deal.II/DEALGlossary.html#GlossGeneralizedSupport
https://www.dealii.org/8.5.0/doxygen/deal.II/DEALGlossary.html#GlossGeneralizedSupport
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c1,1 c1,2 ... c1,n
.. .. .. ..
cn,1 cn,2 ... cn,n

cn+1,n+1 cn+1,n+2 ... cn+1,2n
.. .. .. ..

c2n,n+1 c2n,n+2 ... c2n,2n
c2n+1,2n+1 c2n+1,2n+2...c2n+1,3n

.. .......
c3n,2n+1 c3n,2n+2...c3n,3n




Φ̂1,raw
...

Φ̂n,raw
Φ̂n+1,raw

...

Φ̂2n,raw
Φ̂2n+1,raw

...

Φ̂3n,raw


with

C =

C1
C2

C3


Such a block-diagonal structure allows us to work on component wise manner
as we would like to. For any component, we have:

Nref = CcNref,raw

Ns
1D⊗Nr

1D = Cc(Ns
1D,raw⊗Nr

1D,raw)
= (X ⊗Y)(Ns

1D,raw⊗Nr
1D,raw)

= (X ⊗Ns
1D,raw)(Y)⊗Nr

1D,raw)

where the last two equalities follows from the mixed-product property of the
Kronecker product of matrices. From this we get that:

Ns
1D = XNs

1D,raw

Nr
1D = YNr

1D,raw

where X and Y are of appropriate dimensions.
Using similar arguments, we also obtain that:

Ms
1D = XMs

1D,raw

Mr
1D = YMr

1D,raw
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This can be naturally extended in 3-dimensions.

3.4 Sum Factorization

For efficient tensor product evaluations, a technique called sum-factorization
is used. We refer the reader to [1] and briefly mention the concept here.
Consider the product

z = (Y ⊗X)u

where matrices X, Y and vector u are of compatible dimensions.
Such a computation can be factored out as the product of the three matrices:

Z =XUY T

where UT is a matrix in which elements from u have been laid out in fortran
style column major order. The number of columns of U is equal to number
of columns of Y.
Finally, the matrix Z contains elements from z which have been laid out
in fortran style column major order. The number of rows of Z is equal to
number of rows of X.
Benefits:

• Reduced cost. For square matrices, cost reduces from O(m4) to O(m3)
• For matrix free operator evaluation examples, this is directly applicable

and is used in the implementation



Chapter 4
Software implementation
Methodology

4.1 Components of Matrix Free framework

We begin this section by providing a component diagram of the Matrix Free
framework as already implemented in dealii library for Lagrangian Tensor
product Finite Elements.

Fig. 4.1 Architecture for MatrixFree Data cache

In our work, we retain the same architecture and extend the design of dif-
ferent components to support Raviart Thomas elements. The design choices
were made to allow future support of any other anisotropic Tensor Product
Finite elements with minimal changes.

We now talk about the design extensions to different components to sup-
port Raviart-Thomas elements in 2-dimensions with the matrix free software
framework.

25
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Fig. 4.2 Architecture for Integration kernels

4.2 Matrix Free Data Cache

Class MatrixFree This class manages the computation and storage of data
which is needed for matrix free implementation. The data is stored in aggre-
gated classes. There is little impact to this class:

• The class now maintains the choice of mapping - covariant (for Lagrangian
FE) or Piola transformation (for Raviart-Thomas FE)

Class MappingInfo This class stores the geometry dependent data for
interior cells. No impact.

Class DoFInfo This class stores information related to degrees of freedom
on each component. No impact.
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4.2.1 Class ShapeInfo

This class stores the shape function values, gradients and Hessians evaluated
for the tensor product finite element and tensor product quadrature formula
on the unit cell. We only need to store 1-D data. The tensor product is per-
formed in integration kernels.

Storage of multi-dimensional, multi-component data The actual ten-
sorial evaluation is repetitively performed in the integration kernels by using
the data stored in ShapeInfo. Processor cache utilization is an important fac-
tor in such a case. Therefore, the storage of shape info should be optimized
as much as possible.
Lagrangian finite elements are isotropic and have same structure in all com-
ponents. So the storage of 1-D data along one coordinate direction is enough.
In contrast, the structure of Raviart-Thomas element (RTl with degree l)
poses several challenges.

• anisotropy along directions
• different tensor product structure in different components

However, if we observe carefully, we find that there is some symmetry in this
element:

• In any component, the degree of 1-D shape functions is equal (= l) for all
except one direction (= l+1)

• Across different components, the structure is simply rotated in coordinates

Using this knowledge it is clear that irrespective of dimension and degree
of Raviart-Thomas element, we only need 1-D shape info along these two
coordinate directions.
We define new data structures:

1. base_shape_values and base_shape_gradients: These store shape func-
tion values and gradients respectively for 1-D polynomial shape functions
in two coordinate directions

• one with degree l+1 evaluated for n_q_points_1d quadrature points
• second with degree l evaluated for n_q_points_1d quadrature points

2. shape_values_vec and shape_values_gradients : These store the knowl-
edge of anisotropy. The following diagram (4.3) illustrates the relation:

Generation of 1-D shape function values and gradients on unit in-
terval For practical reasons, we want to re-use the existing software mod-
ules as much as possible. The current implementation of Raviart-Thomas
Finite element in deal.ii is such that the shape functions on unit cell are
generated from raw basis functions after basis transformation. The raw basis
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Fig. 4.3 Shape info storage for Raviart-Thomas element in 2-dimensions

functions are tensor product of 1-D lagrange polynomials. As mentioned in
section 3.3.2, for generation of corresponding 1-D shape functions needed for
matrix free, the following high-level steps are needed:

• Evaluate raw basis functions
• Find out the basis transformation matrix C
• Identify tensorial structure in C and evaluate 1-D shape functions from

1-D raw shape functions

Each step will now be discussed in detail.

Evaluation of raw basis functions: Although deal.ii already provides
this functionality, but it was found that the resulting basis functions are
not indexed properly. In 2-dimensions, we expect a structure with ten-
sor product as [(Ql+1(r),Ql(s)),(Ql(r),Ql+1(s)]. Instead what we get is
[(Ql+1(r),Ql(s)),(Ql+1(s),Ql(r))
Algorithm 4.1 : Reorder Raviart-Thomas raw basis functions (2-dim) Pre-
condition: input polynomials are generated with tensor product such that
outer index runs fastest
{p1,p2,p3}⊗{q1, q2}= {p1q1,p2q1,p3q1,p1q2,p2q2,p3q2}

1. If (First component)

a. Polynomials corresponding to first component are already in expected
order

b. new index = current index

2. If (Second component)

a. Store the polynomials in (l+1)× l matrix in C-row major format
b. Transpose the matrix
c. new index = location in the transposed matrix
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Output: reordered index mapping for raw basis polynomials
This has been implemented in PolynomialsRaviartThomas<dim>::create_poly_mapping ()

Finding out basis transformation matrix C: Again, although deal.ii
already provides this functionality, yet it was found that the basis transfor-
mation matrix does not show the block diagonal structure as explained in
section 3.3.2. The task is to develop a procedure so that we can generate this
matrix with the required structure.

For this, we need to answer two questions:
1. How to evaluate shape functions in actual basis? - We can create basis
transformation matrix by clever use of linear node functionals. Since we de-
cided to choose shape functions with the property that πi(Φj(x̂)) = δij , we
have that:

Π(Φ) = I where Π(Φ)(i, j) = πi(Φj(x̂))

For more details, reader is referred to FETools::compute_node_matrix

2. In which order should node functionals be evaluated? - In general this is im-
material and therefore ignored in current implementation of dealii. However,
since we want that the transformation matrix with block diagonal structure,
this is required.
There is a natural ordering of node functionals (=the degrees of freedom)
for Hdiv elements which comes from the tensor product of constituent 1-D
functions. We refer the reader to [11] section 2.4.3 and 2.4.4 for details. A
visualization for RT1 in 2-dimensions will illustrate the concept (4.4):

• In first component (direction r), the tensor structure is (Q2⊗Q1). The
first 1-D basis will have 3 degrees of freedom associated with vertices and
interior. The second 1-D basis function will have 2 degrees of freedom,
both associated with interior.

• In second component (direction s), the tensor structure is (Q1⊗Q2). The
first 1-D basis will have 2 degrees of freedom, both associated with interior
while the second 1-D basis function will have 3 degrees of freedom associ-
ated with vertices and interior.

By following the rule that in a tensor product, the outer space runs fastest,
we get a natural indexing as shown here (4.4):

We are now ready to formulate the algorithm.

Algorithm 4.2 : Generate block diagonal basis transformation matrix (2-

https://www.dealii.org/8.5.0/doxygen/deal.II/namespaceFETools.html#aec3d342cc4d853430f07ad49d8bf2eab
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Fig. 4.4 Geometrical location and indexing of Raviart-Thomas degrees of
freedom in 2-dimensions

dim)
Precondition: raw basis functions in correct order as per (4.2.1)

1. Loop over components

a. Arrange the node functionals in natural tensor product order. This cor-
responds to column of Π matrix

b. The arrangement of raw basis functions should correspond to row of Π
matrix

c. Evaluate Π(Φraw)(i, j) = πi(Φraw
j (x̂))

d. We have that C = (Π(Φraw))−1

Output: C in block diagonal form with each block having kronecker product
structure
This has been implemented in ShapeInfo::internal_reinit_vector func-
tion. The functionality currently works for only for first three Raviart-Thomas
elements.

dof index renumbering for input and output vectors (lexicographic
renumbering) By using C, we will get the shape functions in tensor product
order. But this is not the natural order which is used for shape functions in
deal.ii. For the Operator-vector vmult operations using matrix free, the dof
values must be re-ordered from deal.ii ordering to tensor product order.
Such a concept is also used in matrix free framework for Lagrangian Finite
elements where it is (obviously) called lexicographic renumbering. We re-
tain the same terminology for Raviart-Thomas elements.
This has been implemented in ShapeInfo::raviart_thomas_lexicographic_renumber
function. The functionality currently works for only for first three Raviart-
Thomas elements.
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4.3 Integration Kernels

4.3.1 Class FEEvaluationAni

This class has been added as a parallel to FEEvaluation class. It provides
functionality necessary to evaluate functions at quadrature points and cell
integrations for anisotropic tensor product Finite Element. By a judicious
combination of the interfaces provided by this class, several different Finite
element operators can be evaluated on the input vector. Currently it supports:
• Raviart-Thomas finite element in 2-dimensions
• For experimentation purposes, evaluation of isotropic Lagrangian FE in

2/3 dimensions
A small discussion on the design approach for this class now follows.
Policy based design :

The signature for FEEvaluation is:
template <int dim, int fe_degree, int n_q_points_1d,
int n_components_,typename Number > class FEEvaluation‘

The figure (4.5) shows how the template information is percolated for
isotropic vector valued Lagrangian finite elements

Fig. 4.5 FEEvaluation top-to-bottom view

In comparison, the figure (4.6) shows how the information is required for
anisotropic vector valued finite elements

Clearly, we need the information about different fe_degrees to be avail-
able to the deepest level. Further:
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Fig. 4.6 FEEvaluationAni top-to-bottom view

• it has been mentioned in the [8] that using fe_degree as compile time
parameter allows efficient loop unrolling and a huge performance impact

• we would like the new interface generic enough to be able to support other
anisotropic finite elements in future

For the above reasons, we have chosen policy based design where the type of
Finite Element is used as template policy to determine those compile time
characteristics which are needed for fast and efficient evaluation.

The signature for FEEvaluationAni is:
template <typename FEType, int dim, int base_fe_degree,
int n_q_points_1d, typename Number > class FEEvaluationAni

• FEType is provided as FE_RaviartThomas<dim> (or FE_Q<dim>)
• n_components and fe_degrees for each direction are derived from FEType

using traits

4.3.2 Sum Factorization

‘Class FEEvaluationImplAni‘ : This is where sum factorization is actu-
ally performed. This class is a parallel to FEEvaluationImpl. Notable differ-
ences are:
• Sum factorization for anisotropic tensor product using apply_anisotropic

function
• Operates on a single component. The component number is made template

parameter. Caller has to run compile time loop on components
• Currently supports evaluation of values and gradients in 1 and 2 dimen-

sions
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‘apply_anisotropic‘ : This is parallel to EvaluatorTensorProduct::apply
method. These methods provide fast matrix-matrix multiplication kernels.
They are used in conjunction with FEEvaluationImplAni for sum factoriza-
tion evaluation for tensor product form e.g. : z = (Y ⊗X)u

• apply method works on matrices of similar dimensions, in 1, 2 and 3-
dimensions

• apply_anisotropic method works on cases where col(A) = col(B) in 1
and 2-dimensions. This is sufficient since we use kronecker product of 1-D
shape matrices for which columns (= number of quadrature points in 1D)
are equal

There are two fundamental matrix-matrix multiplication operations which
are provided by these kernels:

• Evaluation of UX where U = UT

• Evaluation of Y TW

These operations provide facility to evaluate sum-factorization for all the
operators which we have considered.
The common forms from these operators is:

• Case 1:

Z =XTUY =XTUTY = (UX)TY = (Y TW )T

where W = UX

• Case 2:

Z =XUBT =XUTY T = (UX)TY T = (YW )T

where W = UXT

• Case 3:

Z =XUB =XUTY = (UXT )TY = (Y TW )T

where W = UXT

The last two operations in each case correspond to sum-factorization in di-
rection r and direction s.

Algorithm 4.3 : anisotropic matrix-matrix product kernel (2-dimensions)
Precondition: Matrices X,Y and vector u are available
We refer the reader to actual implementation of apply_anisotropic kernel
which is small and self explanatory. Here we talk about template parameters
and what they mean in the context of 3 cases above.

• dim - space dimensions
• fe_degree - Degree of 1-D shape functions. For Raviart-Thomas, it de-

pends on the direction in which sum-factorization is being performed
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• n_q_points_1d - Must be same for each 1-D shape element
• add - whether final result be added to existing values in output buffer
• direction - See table below
• dof_to_quad - See table below
• inter_dim - Provides compatibility between dir0 and dir1. See table

below

The following table provides the values for these template parameters for the
three cases defined above:

Case 1
dir dof_to_quad inter_dim
0 TRUE rows(Y) (= rows(U)
1 TRUE cols(X) (=cols(W))

Case 2
dir dof_to_quad inter_dim
0 FALSE cols(Y) (= rows(U)
1 FALSE rows(X) (=cols(W))

Case 3
dir dof_to_quad inter_dim
0 FALSE rows(B) (= rows(U)
1 TRUE rows(A) (=cols(W))

4.3.3 Others

Unit Cell evaluation :

• The interface in FEEvaluationAni remains the same as in FEEvaluation
as evaluate method

• Evaluation is performed using SelectEvaluatorAni instead of SelectEvaluator

Real cell evaluation :
The methods get_value and get_gradients apply Piola transformation if
operation is requested for Raviart-Thomas finite elements

Pre integration : No impact

Integration

• The interface in FEEvaluationAni remains the same as in FEEvaluation
as integrate method

• Evaluation is performed using SelectEvaluatorAni instead of SelectEvaluator
• Sum factorization is performed as explained in (4.3.2)
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Numerical results

In this section we investigate the numerical performance of our approach.
Finally, we collectively discuss the findings.

Results were taken on a machine with following specifications:

Quantity Rating

Processor Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz
CPU count 8 (4 core, 2 threads/core)
Hyperthreading On
System memory 7832 Mib
L1D cache 32K
L1I cache 32K
L2 cache 256K
L3 cache 8192K

5.1 Operator evaluation accuracy

Objective To compare the result of Operator-vector multiplication evalu-
ated using matrix free framework with the usual deal.ii Sparse Matrix-vector
multiplication.

Test specifications

• Raviart Thomas elements in 2 dimensions, RT0,RT1 and RT2
• square mesh (-1,1) refined 6 times, giving total of 4096 cells
• All the operators as described in section 3.2

Findings The following table shows the relative error accuracy for the op-
erators of Mixed diffusion problem.

35
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Operator RT0 RT1 RT1

A 3.19E-15 2.93E-16 7.23E-16
BT 1.46E-15 2.26E-16 6.68E-16
B 7.64E-17 2.71E-16 5.20E-16

The following table shows the relative error accuracy for the operators of
Stokes problem.

Operator RT0 RT1 RT1

A 6.14E-15 2.18E-16 7.44E-16
BT 6.15E-15 2.36E-16 7.53E-16
B 7.64E-17 2.26E-16 5.2E-16

5.2 Performance results

Objective To evaluate performance of operator evaluation and analyze
weaknesses.

Test specifications

• All the operators as described in section 3.2
• 2 dimensions, degree 0,1 and 2 for Raviart Thomas elements and 1,2 and

3 for FE_Q elements
• Mesh refined until ≥ 106 degrees of freedom were obtained
• All calculations in double precision arithmetic
• Three set of results are taken:

– FE_Q(k) MF - FE_Q vector valued elements evaluated using existing
matrix free framework - basically isotropic evaluation

– FE_Q(k) anisotropic MF - FE_Q vector valued elements evaluated
using our extensions to matrix free framework - basically anisotropic
evaluation of isotropic elements

– RT(k-1) MF - Raviart-Thomas elements using our modifications to ma-
trix free framework

• Time measurements are given as average CPU time in seconds/million
degrees of freedom

• Cache utilization was simulated using Valgrind Cachegrind tool

Findings The measurements for time benchmarking are given in below table
and summarized in figures 5.1, 5.2, 5.3
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Operator A

Mixed diffusion equation Stokes equation
Degree, k 1 2 3 1 2 3

isotropic FE_Q(k) 0.01931 0.00934 0.01419 0.03148 0.01671 0.02531
anisotropic FE_Q(k) 0.04113 0.08114 0.13372 0.05829 0.12047 0.20151

Raviart-Thomas (k-1) 0.06281 0.04296 0.08234 0.10016 0.06381 0.12411

Operator BT

Mixed diffusion equation Stokes equation
Degree, k 1 2 3 1 2 3

isotropic FE_Q(k) 0.03895 0.01978 0.03138 0.03943 0.01957 0.03011
anisotropic FE_Q(k) 0.0736 0.15112 0.25416 0.06723 0.13545 0.22987

Raviart-Thomas (k-1) 0.11782 0.0735 0.147 0.11969 0.07253 0.13839

Operator B

Mixed diffusion equation Stokes equation
Degree, k 1 2 3 1 2 3

isotropic FE_Q(k) 0.02199 0.0105 0.01674 0.02199 0.0105 0.01674
anisotropic FE_Q(k) 0.0406 0.08481 0.14328 0.04031 0.08585 0.1428

Raviart-Thomas (k-1) 0.07098 0.04408 0.08423 0.06934 0.04455 0.08514

For impact analysis of differences in isotropic and anisotropic results, the
measurements for L1 and LLC (lowest layer cache) utilization efficiency were
taken. The results are summarized in the below table:

Results for Operator A (Stokes)
L1 miss rates LL miss rates

Instructions Instr Data Instr Data
isotropic FE_Q(k) 150971578 0.01% 2.20% 0.00% 1.00%

anisotropic FE_Q(k) 175757984 0.01% 1.90% 0.00% 0.80%

Branches Misprediction rate
isotropic FE_Q(k) 19876569 2.10%

anisotropic FE_Q(k) 23869311 2.70%
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Fig. 5.1 Time benchmarks for operator A

Fig. 5.2 Time benchmarks for operator BT

Results for Operator A (Diffusion)
L1 miss rate LL miss rate

Instruction references Instr Data Instr Data
isotropic FE_Q(k) 149269817 0.01% 2.2% 0.00% 1.0%

anisotropic FE_Q(k) 173448981 0.01% 2.0% 0.00% 0.8%

Branches Misprediction rate
isotropic FE_Q(k) 19842191 2.1%

anisotropic FE_Q(k) 23834922 2.7%
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Fig. 5.3 Time benchmarks for operator B

5.3 Discussion

1. Operator evaluation accuracy is good for all practical purposes. The rela-
tive error is close to machine accuracy

2. The comparison of isotropic and anisotropic evaluation of FE_Q elements
is helpful as:

• to analyze impact of changes we have done
• to get an estimate of lower bound for evaluation using Raviart-Thomas

3. The impact of extra calculations due to Piola transformation are visible in
(5.1). Since this is double precision arithmetic, we see significant difference

4. It seems that evaluation of Raviart-Thomas elements is ≈ 3 times slower
than using Lagrangian finite elements with comparable polynomial degree
But the x-axis range in our test is small, so this result is not conclusive

5. There is almost no degradation in cache utilization efficiency when using
anisotropic mode of matrix free

6. The increase in time can be attributed to ≈ 20% increase in instructions
and branches which are mostly double precision arithmetic Note that this
figure is for FE_Q elements. For Raviart-Thomas elements, increase is ex-
pected to be < 10%
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5.4 Application to mixed diffusion equation

Objective To apply the modified matrix free framework on a PDE problem.
We solve the mixed diffusion problem as specified in (3.3) using the modified
matrix free framework.

Test specifications

• Raviart Thomas elements in 2 dimensions, RT0,RT1 and RT2
• square mesh (-1,1) refined 6 times, giving total of 4096 cells
• Face evaluation is not supported. So, for simplicity the term 〈pD,v ·n〉ΓD

is treated as constant
• f is chosen as non-constant function
• Minimum residual solver SolverMinRes as available in deal.ii was used

Results The following table summarizes the results.

Degree 0 1 2
CPU time, Sparse MV 0.57302 9.24938 111.564
Wall time, Sparse MV 0.099 1.17765 14.04
CPU time, matrix free 1.38516 9.597 49.6304
Wall time, matrix free 0.21423 1.21478 6.38564
Convergence iterations 808 1515 4281

Solution accuracy 1.43E-14 1.51E-14 1.3E-13

We are able to achieve the desired solution accuracy using our software.
On the semilog plot (5.4), we can see beyond RT2 the benefits of using matrix
free approach are clearly visible. The wall clock time results are > 50% better
than using sparse matrix-vector product approach. The same trend is also
shown for total CPU time.
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Fig. 5.4 Solution of Mixed Diffusion problem





Chapter 6
Conclusion

6.0.1 Summary

We developed extensions to matrix free framework to support anisotropic
Raviart-Thomas Finite elements. After a brief review of operator notation
in chapter 3.1, we turned to two mixed finite element problems (3.3) and
(3.4) for theoretical development. This helped us to localize on the cell level
operators which are the fundamental building blocks of matrix free approach.
These included operators A,BT and B from both of these problems.
This was the first place where we found that we can not directly support
non-cartesian mesh for Raviart-Thomas elements in the the existing matrix
free framework. However, cartesian mesh can be supported and we used this
as our basic assumption to proceed.
In 4, we did an impact analysis of affected components in matrix free architec-
ture. We found that identifying tensor product form for basis transformation
matrix is a key point. It is at this point that we were limited to Raviart-
Thomas degrees 0,1 and 2 with our new implementation.
Finally we analyzed that the sum factorization kernels need significant
changes to support anisotropic elements.
Throughout the design, we strived for decisions which should permit addition
of other anisotropic elements easier in future.
In 5, we checked the performance and reliability of our implementation. We
were able to control the efficient usage of cache which is key to fast kernels
in this approach.
Finally we verified the implementation by solving mixed diffusion equation
and observing that the matrix-free approach is far more time efficient that
usual sparse matrix-vector based approach.

This report was generated using DocOnce tool ( [9])
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Suggestions for future:

1. Extension of Raviart-Thomas elements to degrees > 2
2. Extension of the current implementation to support 3-dimensions
3. Develop concepts for face evaluation to fully support discontinuous Galerkin

Stokes problem
4. Develop concepts for support of non-cartesian mesh
5. Identify scope for massively parallel architectures like CUDA
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