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Summary 

 

Cells have an amazing ability to monitor complex extracellular environment, constantly deciding 

whether they, for example, migrate, survive, proliferate or differentiate. This ability is achieved 

through extremely dynamic cellular signaling networks that use the limited number of signaling 

components. Despite signaling networks of individual receptors are characterized in details, it is 

not fully understood how cells, employing shared signaling pathways, process and encode 

information from multiple cues that are physiologically common scenario. 

 

In this study, I have first established a quantitative high-throughput FRET-based multi-parameter 

imaging platform (FMIP) which allows monitoring activity of multiple signaling pathways in 

living cells with high spatial and temporal resolution. The general applicability of this method 

was proven by profiling epidermal growth factor (EGF)-induced signaling network activity. 

FMIP was further employed in investigations of: (i) fatty acid dependent DAG signaling, (ii) the 

perturbation of EGF-induced signaling caused by the EGFR mutations; and (iii) the effects of an 

MEK inhibitor on EGF network activity. This platform will be a useful tool for investigating 

diverse signaling networks including growth factors, cytokines, hormones and GPCRs. 

 

To understand the mechanisms underlying the signal integration and processing from multiple 

extracellular cues by living cells, I have further focused on receptor tyrosine kinases. Using 

FMIP I identified the dynamic signaling interactions (synergy, additivity, antagonism) between 

growth factors and cytokines at the system level. We find that those concentration dependent 

dynamic signaling interactions tune signaling network in the order of seconds or minutes to 

achieve specific activity state. While the signaling network state specifies unique gene 
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expression the gene expression profile shapes signaling network state in the order of hours. We 

further showed the potentiation and the tuning of dynamic EGF signaling under quasi-

physiological concentration in non-starved cells. Overall the results suggest that under 

physiological conditions, in the presence of multiple signaling cues of low concentrations, the 

cellular signaling network is pre-activated and tuned to achieve specific strong responses to low 

concentrations of ligands. Thus, we provide mechanistic understanding of specific cell 

adaptation to the extracellular environment in the presence of multiple cues. 
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Zusammenfassung 

Zellen haben die verblüffende Fähigkeit, komplexe extrazelluläre Umgebungen zu überwachen, 

konstant auf Stimuli zu reagieren und dabei zu bestimmen, ob sie sich zum Beispiel fortbewegen, 

teilen oder differenzieren sollen. Diese Fähigkeit wird durch ein höchst dynamisches zelluläres 

Signalnetzwerk ermöglicht, das mit einer begrenzten Anzahl von Komponenten auskommt. 

Obwohl die Netzwerke einzelner Rezeptoren bereits detailliert charakterisiert wurden, konnte 

noch nicht vollständig geklärt werden, wie Zellen mit Hilfe von gemeinsamen Signalwegen die 

Informationen von mehreren verschiedenen Botenstoffen verarbeiten und kodieren, wie es in 

einem physiologischen Szenario die Regel ist. 

 

In im Rahmen dieser Arbeit wurde zunächst eine Hochdurchsatz, FRET-basierte Multi-

Parameter-Bildgebungsplattform (FRET-based multi-parameter imaging platform; FMIP) 

etabliert, die es erlaubt, die Aktivität mehrerer Signalwege in lebenden Zellen mit hoher 

räumlicher und zeitlicher Auflösung zu beobachten. Die generelle Anwendbarkeit dieser 

Methode wurde anhand der Messung EGF-induzierter Aktivität im Signalnetzwerk gezeigt. 

Weiterhin wurde FMIP angewendet für die Untersuchung von: (i) Fettsäure-abhängiger DAG-

Signalweitergabe, (ii) der Störung EGF-induzierter Signalweiterleitung aufgrund von EGFR-

Mutationen und (iii) den Effekten eines MEK-Inhibitors auf die EGF-Netzwerkaktivität. Diese 

Plattform ist daher ein nützliches Werkzeug zur Untersuchung von vielfältigen 

Signalnetzwerken, darunter Wachstumsfaktoren, Hormonen und GPCRs. 

 

Um den Mechanismus zu verstehen, der der Integration und Verarbeitung von mehreren 

gleichzeitigen extrazellulären Signalen zugrunde liegt, wurde im Weiteren der Schwerpunkt auf 

Rezeptor-Tyrosinkinasen gelegt. Mit Hilfe von FMIP konnten die dynamischen 

Signalwechselwirkungen (Synergie, Additivität und Antagonismus) zwischen 
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Wachstumsfaktoren und Zytokinen auf einer systemischen Ebene untersucht werden. Dabei 

wurde entdeckt, dass konzentrationsabhängige, dynamische Signalwechselwirkungen das 

Signalnetzwerk auf einer Zeitskala von Sekunden bis Minuten einstellen, um einen spezifischen 

Aktivitätszustand zu erreichen. Während der Zustand des Signalnetzwerks die Expression von 

bestimmten Genen reguliert, formt das Genexpressionsprofil den Zustand des Netzwerks im 

Zeitraum von Stunden. Weiterhin konnte in nicht ausgehungerten Zellen gezeigt werden, wie das 

dynamische EGF-Signal unter quasi-physiologischen Konzentrationen potenziert und eingestellt 

wird. Insgesamt deuten die Resultate darauf hin, dass das zelluläre Signalnetzwerk unter 

physiologischen Bedingungen und in Gegenwart von mehreren niedrig konzentrierten 

Botenstoffen voraktiviert und so eingestellt ist, dass starke Reaktionen auf niedrige 

Ligandenkonzentrationen erzielt werden können. Dies liefert das mechanistische Verständnis der 

Anpassung von Zellen an ihre extrazelluläre Umgebung in der Gegenwart von unterschiedlichen 

Signalen. 
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Chapter 1 - Introduction 

1.1 RTKs are crucial regulators of cellular processes 

 

Receptor tyrosine kinases (RTKs) are crucial for cell-to-cell communication in multicellular 

organisms. Being able to regulate critical cellular processes such as proliferation, differentiation, 

survival, metabolism and migration, it is not surprising that RTKs are involved in embryogenesis 

and the development of many diseases including cancer. In humans, RTKs comprise 58 members  

distributed in 20 families based on their sequence homology and structure (Figure 1.1) (Lemmon 

and Schlessinger, 2010). All RTKs are manufactured as a single polypeptide chain with the 

highly conserved architecture composed of an extracellular domain (ECD), a single 

transmembrane domain and intracellular region (van der Geer et al., 1994). The latter contains a 

juxtamembrane domain, the catalytic domain with kinase activity, and the C-terminal tail that 

varies from few to 200 residues (van der Geer et al., 1994). Interestingly, the most variable part 

is localized in ECD, the major function of which is to bind to a specific ligand. The major 

principle of RTK activation is dimerization or oligomerization upon the binding of ECD to a 

secreted ligand (Honegger et al., 1989). Subsequent conformational change induces RTK 

autophosphorylation of critical intracellular docking sites to initiate the assembly of multiple 

signaling complexes. In turn, these complexes trigger several parallel intracellular signaling 

pathways in vertebrates including Ras/MAPK, PI3K/AKT PLC/PKC, STATs pathways (Kolch 

and Pitt, 2010; Zheng et al., 2013). Newly emerging data suggest that there are notable 

differences among RTKs in the mechanisms of activation. Moreover, RTK-induced signaling 

was shown to be much more complex due to the network-like architecture formed by signaling 

pathways having feedback and feed-forward loops (Lemmon and Schlessinger, 2010).  
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Figure 1.1 Family members are listed under receptor representations. Figure is adapted 

from (Lemmon and Schlessinger, 2010). 

 

The dysregulation of RTK-activated pathways due to, for example, gene amplification and 

genetic mutations often underlies numerous diseases including cancer. U.S. Food and Drug 

Administration therefore approved many anticancer therapies targeting aberrant RTKs signaling. 

However, substantial improvement in survival rate by newly developed anti-cancer therapies is 

often compromised by primary or acquired drug resistance. Over the past few decades, many 

diverse mechanisms of drug resistance have been discovered. They could be classified in at least 

three different groups: (i) Competing with drug binding (Yonesaka et al., 2011; Yun et al., 

2008); (ii) Masking or loss of the drug-binding site (Anido et al., 2006; Nagy et al., 2005); (iii) 

Pharmacodynamic and pharmacokinetic mechanisms (Burger et al., 2005; Illmer et al., 2004). 

Although huge progress has been made in the exploration of major principles underling drug 

resistance mechanisms, the emerging complexity and plasticity of signaling networks suggests 



Chapter 1 - Introduction 

______________________________________________________________________________ 

3 

 

that additional mechanisms are involved in the development of drug resistance. For example, by 

exploiting signaling network plasticity cancer cells are able to remodel signaling network activity 

by the dysregulation of feed-forward and feedback loops to overcome drug potency (Chaturvedi 

et al., 2009; Duncan et al., 2012; Lai et al., 2014). Moreover, redundancy of RTK signaling is 

also involved in the development of drug resistance (Liu et al., 2009; Wilson et al., 2012). 

Therefore, the deeper understanding of the basic principles of RTK signaling as well as its 

plasticity in normal and diseased tissues will facilitate the development of effective therapeutic 

approaches to prevent cancer progression. 

 

1.2 RTKs signaling initiation and termination 

 

RTKs control of important cellular processes and aberrant signaling as well as its duration might 

lead to the failure in embryo development or to the development of various diseases. Therefore 

cells have evolved complex mechanisms to precisely control the initiation, duration and 

termination of RTKs signaling on the receptor level. 

 

1.2.1 RTKs signaling initiation 

 

The general model of RTK activation, as previously mentioned, proposes ligand-induced 

receptor dimerization or oligomerization. In support of this model, it was shown that EGFR 

(epidermal growth factor receptor, ErbB1) expressed at physiological levels exists as a monomer 

on the cell membrane whereas dimerization and clustering of EGFR was detected upon 

stimulation with EGF (epidermal growth factor) (Nagy et al., 2010). Interestingly, the 

overexpression of EGFR induced ligand-independent formation of clusters that are promoted by 

membrane-mediated interactions (Nagy et al., 2010). Although the functional role of these 

clusters is not clear, the cluster formation might be involved in the aberrant signaling upon 

overexpression of receptor in various tumors. However, it is important to note that the insulin 

receptor and its closely related member, insulin-like growth factor-1 receptor (IGFR-1), are 

expressed as dimers linked with disulfide bonds in the absence of their ligand (Ward et al., 
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2007). Ligand binding by those dimers induces structural changes leading to the increase of 

kinase activities. Regardless of initial state of the receptor (monomeric, dimeric or oligomeric) 

the binding to the ligand is an essential prerequisite to effectively stabilize the active 

configuration of the dimeric/oligomeric receptor and initiate signal transduction.  

 

Figure 1.2 Schematic representations of four modes of receptor tyrosine kinase 

dimerization. (A) Ligand-mediated dimerization without receptor contacts. Interaction between 

neural growth factor and TrkA is depicted as an example. (B) Ligand-mediated dimerization with 

receptor contacts illustrated through the interaction of stem cell factor with the KIT receptor. (C) 

Dimerization by forming < ternary complex with an accessory molecule. As an example, the 

complex is illustrated via FGFR, heparin and FGF interaction. (D) Receptor-mediated 

dimerization. The formation of EGFR homodimer upon EGF binding is illustrated. Receptors are 

represented as protein domains in form of colored cylinders.  Figure is adapted from (Heldin et 

al., 2016). 

 

The extracellular region of RTKs, enabling the recognition of specific ligands, is mainly made of 

the varying set of specific domains such as fibronectin type III (FNIII) and immunoglobulin-like 

(Ig) domains (Figure 1.1). Combinatorial domain architecture allows the multimodal strategy of 

ligand binding and signaling initiation. In general, four modes of RTK-ligand binding and 

dimerization are described (Figure 1.2). For example, nerve growth factor (NGF), a homodimeric 

ligand, acts as a cross-bridge between two monomers of TrkA (tropomyosin receptor kinase A) 

(Wehrman et al., 2007). This dimerization is induced without receptor monomers interaction 

(Figure 1.2 A.). The second mode is also a symmetric binding of dimeric stem cell factor (SCF) 

to an RTK kit but the receptor dimer forms homotypic contacts additionally stabilizing receptor-

receptor interaction (Yuzawa et al., 2007) (Figure 1.2 B.). Another mode is demonstrated by the 

fibroblast growth factor receptor (FGFR) that forms a dimer upon biding to its ligand, fibroblast 

growth factor (FGF), and an accessory molecule, heparin or heparin sulfate (Stauber et al., 2000) 

(Figure 1.2 C.). Receptor-ligand, receptor-heparin/heparin sulfate and ligand-heparin interactions 
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are cooperatively involved into the stabilization of the receptor dimer. The last mode is 

represented by the EGFR family where each molecule of monomeric EGF binds to a single 

receptor causing a conformational change. The latter initiates direct binding of two EGF-bound 

receptors and their activation (Figure 1.2 D.). Considering the unique modular composition of 

ECD, it is very likely that further investigation of the 58 RTKs in humans will lead to the 

discovery of new RTK dimerization mechanisms. 

 

Regardless of the dimerization mechanism, RTKs have evolved effective ligand-dependent 

activation mechanisms requiring coordinated changes in the surfaces of ECDs and intracellular 

domains (ICDs) in order to induce the kinase domain association between the two receptors. 

Although crystal structures of activated tyrosine kinase domains (TKDs) are very similar, the 

activation mechanisms are extremely different among RTKs due to a wide diversity in the 

structures of inactive TKDs. These inactivated structures are defined by a receptor-specific set of 

cis-autoinhibitory intermolecular interactions to precisely control the TKD activity of the 

receptor (Hubbard, 2004; Niu et al., 2002; Zhang et al., 2006). Thus, phosphorylation that 

regulates kinase activity occurs on RTK specific residues in various regions of the intracellular 

domain. As the most common scenario, RTKs are auto-phosphorylated in the activation loop of 

the kinases that leads to the stabilization of the open conformation and the subsequent binding of 

ATP as well as the protein substrate to the kinase domain of RTK (Hubbard and Till, 2000). The 

fully activated kinase domain then catalyzes auto-phosphorylation of tyrosine residues that serve 

as docking sites for Src homology 2 (SH2) and pTyr-binding (PTB) domain-containing proteins 

and causes the formation of multiprotein signaling complexes activating signaling pathways 

(Pawson, 2004; Ronan et al., 2016). 

 

1.2.2 RTKs signaling duration and termination 

 

RTK initiation induces massive phosphorylation of the receptors and associated adaptor proteins. 

The maximum level of phosphorylation is achieved within 10 min and gradually decreases to the 

basal level in about 2 hours. Surprisingly, the phosphotyrosine turnover on activated RTKs is 

extremely rapid with the half-life time of 10-30 seconds (Kleiman et al., 2011). Such rapid cycle 
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of phosphorylation/dephosphorylation implies several important properties of this dynamic 

system. First, it enables integration of positive feedback loops through production of reactive 

oxygen species that in turn transiently inhibit protein tyrosine phosphatases (PTPs) activity. As a 

result of this positive regulation, a switch-like response can be achieved (Tischer and Bastiaens, 

2003). Second, it was suggested as a mechanism of proofreading that effectively terminates the 

signal upon the binding of a receptor to a non-specific ligand (McKeithan, 1995). Finally, it was 

also reported that the rapid turnover of phosphorylation sites might be an important mechanism 

damping the signals from SH2 domains with high dwell times and low specificity (Oh et al., 

2012).  

 

The signal termination occurs by ligand-induced endocytosis that subsequently leads to a first 

step in the receptor deactivation, the dephosphorylation (Goh and Sorkin, 2013). It was proposed 

that endocytosis is needed to transport an active RTK to the internal membranes, the location of 

protein tyrosine phosphatases (PTPs), in order to dephosphorylate and inactivate the receptor 

(Haj et al., 2002). However, it was also noticed that RTK internalization may maintain or even 

amplify the signaling activity of a receptor supporting the concept of endosomal RTK signaling 

(Grecco et al., 2011; Kermorgant and Parker, 2008; Murphy et al., 2009). Moreover, the 

endosomal RTK signaling may differ from plasma membrane signaling suggesting unique 

regulatory mechanisms that are not fully understood (Murphy et al., 2009). Thus, the future 

challenge is to prove the relevance and mechanistic regulation of endosomal signaling in various 

cell types under physiological conditions.  

1.3 Intracellular signaling of RTKs 

 

After the activation of an RTK, its main task is to diffuse information from the plasma 

membrane through the cytoplasm to the correct cellular location and at the right time. In order to 

adjust the cellular state the information is transmitted to the nucleus to start the transcriptional 

program enabling the adaptation of the cell to the environmental changes. This is achieved 

through several general processes of information propagation in a cell: (i) the signal-dependent 

activation or assembly of multiprotein complexes; (ii) temporal control of signaling activity and 

(iii) the precise control of protein activity by subcellular localization (Kholodenko et al., 2010; 
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Lee and Yaffe, 2016; Pawson, 2004). In order to fulfill those complex processes cells have 

evolved modular organization of signaling proteins comprising domains with diverse functions 

such as binding and/or catalytic properties (Figure 1.3). Cells also employ clever ways to 

dynamically regulate the functionality of those domains by posttranscriptional modifications 

(Deribe et al., 2010) and binding to small molecules and/or ions (GTP, cAMP, Ca
2+

) (Ni et al., 

2011). Thus, the multi-domain protein architecture and the diverse mechanisms regulating the 

domain functionality result in the formation of an interconnected network forming a protein 

machinery that is able to reliably transmit extracellular information and adapt to the external and 

internal perturbations, a property of the signaling network that is often called plasticity.  

 

Figure 1.3 Multidomain architecture of signaling proteins. Schematic representations of  

selected adaptor and scaffolding proteins (Grb2, Nck, Shc); the serine/threonine (S/T) kinases 

(PDK1 and Akt/PKB); the tyrosine kinases (FPS/FES and Abl); the protein tyrosine phosphatase 

(Shp2); a membrane-targeted Rho guanine nucleotide exchange factor (FGDI); and 

phospholipase C–gamma (PLC-γ). Protein domains are also shown: Src homology 2 (SH2); Src 

homology 3 (SH3); phosphotyrosine binding (PTB); FCHo2-Bin/Amphiphysin/Rvs domain (F-

BAR); Fab-1, YGL023, Vps27, and EEA1 domain (FYVE); and Ca2+-dependent membrane-

targeting (C2) domain. Enzymatic domains in each protein are named. Figure is adapted from 

(Deribe et al., 2010). 
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1.3.1 Signal-induced assembly of multiprotein complexes and signaling 

network 

 

The autophosphorylation of active RTKs, as mentioned above, leads to the recruitment of 

proteins containing SH2 and PTB domains that enables the signal-dependent activation of 

downstream signaling proteins. While PTB domain-containing proteins typically serve as 

scaffold proteins (Shc, FRS2), SH2 domain-containing proteins might have at least three distinct 

functions such as an adaptor/scaffold (Grb2, Nck), an enzyme (Shp2, Abl1, Vav1) and a 

transcription factor (STAT1-6) (Liu et al., 2006) (Figure 1.3). The recruitment of signaling 

proteins may be initiated through direct binding to the autophosphorylated receptor or indirect by 

enrolling additional proteins, called adaptor proteins. These adaptor proteins form complexes 

with the activated receptor and are phosphorylated by RTKs with which they are associated. In 

turn, the phosphorylated sites of adaptors serve as docking sites for a distinct repertoire of 

downstream signaling molecules. For simplicity, the signaling events at the level of the receptor 

and downstream signaling are often separated into the different steps of information 

transduction. Therefore two main questions are raised and discussed below: (1) how does a 

single receptor achieve specificity in the regulation diverse cellular processes and (2) how are 

different RTKs using the same set of signaling pathways but induce different responses. 

 

Two possible mechanisms of specificity and information integration by a RTK were proposed: 

the individual binding of a specific effector molecule could trigger distinct signaling outcome or 

alternatively, the binding of multiple effectors is combinatorially decoded to drive the desired 

signaling and physiological response. The examination of embryos expressing a PDGFRα 

(platelet-derived growth factor receptor, alpha polypeptide) bearing a mutation in one 

autophosphorylation site to impair binding to specific effector identified unique phenotypes 

suggesting that each effector regulates a distinct biological response (Klinghoffer et al., 2002). In 

contrast, the combination of effectors binding to PDGFRβ (platelet-derived growth factor 

receptor, beta polypeptide) determined the total number of vascular smooth muscle 

cells/pericytes indicating that combinatorial input from several effectors is also able to induce 

specific physiological response (Tallquist et al., 2003). Thus using point mutations at tyrosine 
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residues abrogating the recruitment of specific effectors by PDGF receptor α and PDGF receptor 

β highlighted that both mechanisms occur at least during mouse development. 

 

RTKs are complex and dynamic multiprotein hubs that are able to activate multiple signaling 

pathways including Ras/MAPK, PI3K/AKT/mTOR, PLC-γ/PKC, STAT, and Src/FAK that are 

shared among various RTKs.  Therefore, a physiologically relevant question is how different 

RTKs induce distinct cellular responses. For example, PDGF and FGF that are required for 

craniofacial mouse development elicit divergent transcriptional programs (Vasudevan et al., 

2015). These two programs seem to result from differential usage of signaling pathways. PDGF 

regulates PI3K-dependent differentiation whereas FGF promotes ERK-dependent cell 

proliferation. Nevertheless, both of these growth factors are able to activate ERK although with 

significantly different dynamics. FGF-induced ERK activation is greater in magnitude and longer 

in duration in comparison to PDGF-dependent ERK activation indicating the complex 

mechanisms of information processing by RTK signaling networks. However, the purpose and 

regulation of the PDGF-induced ERK signaling dynamics remain unclear. Further studies are 

needed to elucidate the role of signaling dynamics in the multi-pathway information integration 

by RTK, but strong hints (chapter 1.3.2) point towards the importance of temporal patterns 

within the signal transduction network. 

 

1.3.1.1 Ras/MAPK signaling pathway 

 

The Rat sarcoma (Ras)/Mitogen-activated protein kinase (MAPK) signaling pathway is 

important for proliferation, differentiation and survival programs. MAPKs are a highly 

conserved family including 15 members, the best characterized being ERK1/2. A simple view of 

ERK1/2 activation is usually initiated by translocation of the growth factor receptor-bound 

protein 2/Son of sevenless (Grb2/Sos) protein complex to an autophosphorylated RTK by direct 

binding to the activated receptor or through interaction with SHC-adaptor protein (Shc) that is 

also phosphorylated by the receptor (Figure 1.4) (Salcini et al., 1994). Grb2/Sos protein complex 

is formed through an interaction mediated by SH3 domain of Grb2 and the proline rich region of 

Sos.  On the plasma membrane Sos, a small GTP binding protein, forces prenylated Ras (H-Ras, 
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K-Ras, N-Ras) to release bound GDP and to bind GTP. This GDP/GTP exchange results in Ras 

activation.  

 

Ras activation is followed by sequential activation of cytoplasmic protein kinases (Figure 1.4). It 

is well known that Ras is responsible for the recruitment of Raf1 to the plasma membrane where 

Raf1 is activated (Stokoe et al., 1994). Then the activated Raf1 phosphorylates MAPK kinases 

(MAPKKs), MEK1 and MEK2, at two serine residues (Ser217 and Ser221) triggering their 

activation (Alessi et al., 1994). In turn, activated MAPKKs initiate phosphorylation of two 

adjacent threonine and tyrosine residues of ERK1/2 (Haystead et al., 1992) resulting in 

substantial conformational changes and subsequent ERK catalytic activation. MAPK has a wide 

variety of downstream targets including protein kinases (RSK) and transcription factors (CREB, 

FOXO and MYC). The aforementioned complex mechanism of MAPK signaling is tightly 

regulated by scaffold proteins. MAPK scaffold proteins contain several domains and serve as a 

platform for multiprotein complex assembly. By bringing specific players of a MAPK cascade in 

close proximity, scaffold proteins facilitate activation of a particular MAPK providing increased 

specificity and the mechanism to regulate compartmentalized signaling. For example, in 

response to the activation of RTK, kinase suppressor of Ras 1 (KSR1) interacts with Raf, MEK 

and ERK bringing effectors and their upstream activator into close proximity (Therrien et al., 

1996). 

 

In the past, the Ras/MAPK signaling pathway was considered as a simple linear cascade of 

biochemical reactions. However, it became apparent in the scientific community that signal 

attenuation and reversion to the basal state via negative feedback loops are crucial for most 

Ras/MAPK-dependent biological processes. One of the key attenuation mechanisms of Raf 

activity is direct phosphorylation of Raf by ERK on several specific residues (Dougherty et al., 

2005). It was also suggested that ERK can control Ras activity through a RSK2-dependent 

mechanism (Douville and Downward, 1997). Another important feedback loop involves the 

ERK-induced expression of genes encoding Sprouty and MAPK phosphatases that negatively 

regulate the signaling of this pathway. Such complex regulatory mechanisms of Ras/MAPK 

signaling allow achieving distinct signaling dynamics after activation of specific RTKs. 
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Figure 1.4 Schematic representation of Ras/ERK signaling pathway. Figure is adapted from 

(Mendoza et al., 2011). 

 

1.3.1.2 PI3K/AKT/mTOR signaling pathway 

 

The phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway 

controls distinct cellular functions including cell survival, metabolism and division and is 

triggered by PI3K a lipid kinase, and its recruitment to the active RTK. The recruitment of PI3K 

is achieved through the direct binding of PI3K to the receptor or indirect association of active 

PI3K with docking proteins such as insulin receptor substrate (IRS) or GRB2-assiciated binder 

(GAB) (figure 1.5). The translocation of PI3K to the plasma membrane leads to the generation of 

phosphatidylinositol 3,4,5-trisphosphate (PIP3) by the phosphorylation of phosphatidylinositol 

4,5-bisphosphate (PIP2). In turn, the increased concentration of PIP3 on the plasma membrane 

initiates the recruitment of AKT through pleckstrin homology (PH) domains that recognizes 

PIP3. AKT, being in close proximity, is activated by 3-phosphoinositide-dependent kinase 1 

(PDK1). Subsequently, AKT phosphorylates tuberous sclerosis complex 2 (TSC2) at multiple 
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sites to suppress the GAP activity of the TSC1-TSC-TBC1D7 complex (Inoki et al., 2002). The 

later leads to the activation of the small GTPase RAS homologue enriched in brain (Rheb) that 

directly activates mTORC1 (figure 1.5). It is well known that mTOR can be associated with two 

distinct complexes, mTOR complex 1 (mTORC1) or complex 2 (mTORC2), and both of these 

complexes are activated by growth factors. While regulation of mTORC1 kinase activity is 

described in detail, the regulation of mTORC2 is poorly understood. AKT and mTORC1 are 

essential signaling hubs to integrate multiple signals and control distinct cellular processes. For 

instance, AKT is able to modulate distinct cellular process by phosphorylation of GSK3β, 

regulating cell-cycle entry, and Bcl-2-associated death promoter (BAD) inhibiting apoptosis. 

Active mTORC1 phosphorylates the translational regulator eukaryotic translation initiation 

factor 4E (eIF4E) binding protein 1 (4E-BP1) and S6 kinase 1 (p70S6K1) promoting protein 

synthesis. Importantly, mTORC1 also phosphorylates and stimulates growth factor receptor-

bound protein 10 (GRB10) which is a negative regulator of insulin/PI3K signaling providing 

mechanism for the temporal control of PI3K/AKT/mTOR signaling  (Yu et al., 2011).  

Moreover, mTORC1 can prevent autophagy by direct phosphorylation of UNK-51-like kinase 1 

(ULK1) Ser758 (Ganley et al., 2009). The mTORC1 activity is not only regulated by RTK 

signaling but also by many signaling cues such as lipids, amino acids and the ATP/AMP ratio 

(Long et al., 2005). Recently, it was also shown that mTORC2 can phosphorylate AKT at Ser473 

to potentiate lipogenesis in liver (Hagiwara et al., 2012). Thus, the ability of the 

PI3K/AKT/mTOR signaling pathway to regulate numerous cellular process and phenotypes is 

achieved through complex non-liner topology of this pathway, illustrating the complexity of the 

cellular signaling machinery. 

 

The PI3K/AKT/mTOR signaling is tightly controlled by multiple mechanisms attenuating the 

activity of the pathway. For example, several inositol phosphatases such as PTEN and SHIP are 

known to decrease amount of PIP3 on the plasma membrane (Yuan and Cantley, 2008). AKT 

can also be directly inactivated by protein phosphatase 2A (PP2A) and PH domain and leucine-

rich repeat protein phosphatases (PHLPP) that dephosphorylate the kinase. Several feedback 

loops are engaged in the regulation of AKT activity at the pathway and transcriptional level. S6K 

phosphorylates IRS and rapamycin-insensitive companion of mammalian target of rapamycin 
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Figure 1.5 Schematic representation of the PI3K/AKT/mTOR signaling pathway. Figure is 

adapted from (Shimobayashi and Hall, 2014). 

 

(RICTOR) damping AKT activity and mTORC1 signaling. Moreover, AKT negatively regulates 

Forkhead box protein O (FOXO)-mediated RTK transcription as well as IRS1 transcription 

through mTORC1 (Chandarlapaty et al., 2011). Collectively, multiple mechanisms of 

PI3K/AKT/mTOR signaling inactivation allow the differential activation of signaling 

components and hypothetically diversify the combinatorial signaling code regulating cellular 

responses.     

 

1.3.1.3 PLC-γ/PKC signaling pathway 

 

Phospholipase C gamma (PLCγ) was characterized as the first substrate directly interacting with 

activated EGFR in 1989 (Margolis et al., 1989) (figure 1.6). This binding to the active EGFR 
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Figure 1.6 Schematic representation of PLC-γ/PKC signaling pathway. 

 

occurs through the N-terminal and C-termimal Src homology 2 (SH2) domains of PLC-γ and 

releases its catalytic activity. After activation, PLC-γ hydrolyses phosphatidylinositol 4,5-

bisphosphate (PIP2) producing two second messengers: inositol 1,4,5-trisphosphate (IP3) and 

diacylglycerol (DAG). The soluble IP3 diffuses to the surface of endoplasmic reticulum (ER) 

and binds with the IP3 receptor (IP3R) inducing the release of calcium ions (Ca
2+

) to the 

cytoplasm. This leads to the activation of Ca
2+

/calmodulin dependent protein kinases (for 

example, CaMKII). Concurrently, the increase of cytoplasmic Ca
2+

 ions and production of DAG 

on the plasma membrane contributes to the activation of classical and novel isoforms of PKC, a 

central hub of this signaling pathway. The in vivo relevance of this pathway was explicitly 

demonstrated in transgenic and knockout mice suggesting the involvement of PLC-γ/PKC 

signaling pathway into tumor-related phenotypes. 

 

1.3.1.4 Src/FAK signaling pathway 

 

The Src/FAK signaling pathway is involved in the regulation of cell migration and the promotion 

of anchorage-independent growth as well as cell survival. It was shown that Src can be activated 

via direct association with RTKs including EGFR, c-Met (or HGFR) and platelet-derived growth 

factor (PDGFR) by binding its SH2 domain to RTK phosphorylated site (Bromann et al., 2004). 

This interaction releases the inhibitory effect of the SH2 domain bound to the tail of the protein 

in the auto-inhibited state (Boggon and Eck, 2004). Subsequently, activated Src phosphorylates 

FAK at Tyr576 and Tyr577 that leads to the Src-dependent FAK activation (Frame et al., 2010). 
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Figure 1.7 Schematic representation of p130CAS signal integration. Figure is adapted from 

(Cabodi et al., 2010a). 

 

The following phosphorylation of the p130Cas adaptor protein that has multiple protein-protein 

interaction domains including an SH3 domain, a large tyrosine kinase substrate binding domain  

(SD) and a Src binding domain (SBD), can result in the formation of the p130Cas-Src-FAK 

complex (Cabodi et al., 2010a). This complex mediates the integration of Src/FAK signaling 

with multiple signaling pathways such as PI3K/AKT and Ras/ERK producing the high density 

network of cross-talk. Moreover, p130Cas-Src-FAK complex is able to couple RTK signaling to 

integrin signaling (Sieg et al., 2000) (figure 1.7). The relevance of such signaling integration by 

the p130Cas protein was illustrated in the preclinical studies suggesting that p130Cas/ ERBB2-

transformed cells facilitate invasive properties and strengthening PI3K/AKT and 

ERK/mTOR/S6K signaling (Cabodi et al., 2010b; Tornillo et al., 2011). The latter in turn cause 

increased MMP9 secretion whereas PI3K/AKT promoted RAC1 signaling. Thus, Src/FAK 

signaling pathway serves as a platform integrating multiple extracellular signals with diverse 

downstream signaling pathways that are able to control various aspects of cell behavior (figure 

1.7). This example vividly illustrates one of the difficulties in studying basic principles of signal 

transduction which is originated in the high interconnectivity of the network, where many 

pathways come together to induce distinct cellular responses. 
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1.3.1.5 Mechanisms of signaling pathway cross-talk 

 

RTKs are able to activate multiple signaling pathways that, in turn, intertwine together forming a 

densely interconnected network. Describing specific pathways I have partially demonstrated the 

complexity of this signaling machinery by illustrating cross-talk between distinct pathways. 

Pathways are able to antagonize, enhance, or complement each other leading to synergistic, 

additive or inhibitory effects. These signaling principles allow context-dependent changing the 

nature of responses to a stimulus, encoding vast variety of cellular responses with relatively few 

signaling pathways and, most importantly, adapting to an external and an internal perturbation. 

The latter is often an inevitable obstacle in drug efficacy of the targeted therapeutics for cancer 

patients (Pazarentzos and Bivona, 2015). Understanding basic principles of signal transduction 

and operation of signaling machinery at the system level will help to develop new therapeutic 

strategies for the disease prevention or intervention. In this chapter, I would like to introduce 

general regulatory mechanisms used by cells to integrate several pathways employed 

downstream of activated RTKs. 

 

In the past two decades many mechanisms and modes of cross-talk have been discovered. An 

abstract view on these seemingly diverse and complex regulatory mechanisms leads to 

highlighting common patterns achieving particular functions and properties (Alon, 2007; Buchler 

et al., 2003; Kolch et al., 2015; Sneppen et al., 2010). These patterns can be separated into 

regulatory functional units (or motifs, see figure 1.8) such as feedback and feedforward loops 

and serve as elemental building blocks to integrate information not only within a pathway but 

also between distinct pathways.  

 

One of the common regulatory units of biochemical networks is a feedback loop that can be both 

positive OR negative. A negative feedback loop was illustrated within the Ras/MAPK signaling 

pathways (1.3.1.1) when phosphorylation and deactivation of Raf by ERK limits the duration of 

ERK activity in response to the RTK stimulation. The negative feedback loop presents important 

properties to signaling networks such as the filtering and smoothing out fluctuations generated 

by the varying input strength or the stochastic activation of upstream signaling (Fritsche-

Guenther et al., 2011; Sauro and Kholodenko, 2004). The positive feedback loop is involved in 
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PKC regulation through the indirect activation of PLA2 by ERK leading to the increased 

production of arachidonic acid (AA). In turn, AA and DAG together are able to facilitate the 

activity of PKC resulting in the prolonged activation of ERK. Such positive-feedback loop can 

function as a bistable system allowing to switch from inactive to a constitutively active state. 

 

 

Figure 1.8 Schematic representation of motifs featured in biological networks. Figure is 

adapted from (Azeloglu and Iyengar, 2015). 

 

A cross-inhibition mechanism involves the component of one signaling pathway that negatively 

regulates the upstream component of another pathway inhibiting its activity. A good example is 

the signal from the MAP kinase ERK that phosphorylates Grb2-associated binder1 (Gab1) and 

subsequently inhibits recruitment of PI3K to the EGF receptor (Lehr et al., 2004; Yu et al., 

2002). The similar mechanism of pathway cross-inhibition is also induced by IGF-1 stimulation. 

In this case, AKT negatively regulates ERK activity by phosphorylating inhibitory sites in RAF 

(Guan et al., 2000; Zimmermann and Moelling, 1999). It was shown that cross-inhibition 

mechanism might be involved in emerging resistance to the target therapy indicating therapeutic 

relevance in the clinics. 

 

Cross-activation is another cross-talk mechanism found in signaling networks. In this case the 

signaling molecule of one pathway regulates the activity of the upstream component of another 
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pathway, facilitating its activity. It was, for example, shown that Ras is able to potentiate the 

activity of PI3K by direct binding (Rodriguez-Viciana et al., 1994). As mentioned in 1.3.1.2, 

TSC2 that integrates information from different growth factors, stress as well as metabolic 

signals, is a heavily phosphorylated protein. The strong activation of ERK and RSK upon 

stimulation with EGF leads to phosphorylation of TSC2 inhibiting the GAP function of the 

TSC1-TSC-TBC1D7 complex. The latter increases the activity of mTORC1, another example of 

the cross-activation (Ma et al., 2005). Moreover, ERK and RSK are able to directly 

phosphorylate Raptor, the component of mTOR complex 1, and promote the phosphorylation of 

4E-BP by mTORC1 (Carriere et al., 2011). Thus, a crosstalk between two distinct pathways 

employs negative as well as positive regulation, illustrating the complexity of signaling 

interaction modes. 

 

A wide variety of signaling pathways can often positively or negatively act on the same protein 

or complex that is called pathway convergence. A good example is the c-Myc transcription 

factor accumulation that is regulated by Ras/ERK and PI3K/mTOR pathways independently. 

While ERK stabilizes c-Myc via its phosphorylation on Ser62 (Sears et al., 2000), RSK and S6K 

phosphorylate Mad1, a repressor of c-Myc, facilitating its degradation (Zhu et al., 2008). Mad1 

degradation results in the c-Myc-Max dimerization and the initiation of survival transcriptional 

programs (Mendoza et al., 2011). The transcription factor FOXO is another crucial hub of 

pathway convergence. ERK-mediated phosphorylation of FOXO3A induces its degradation. 

FOXO1 and FOXO3A can also be phosphorylated by AKT. Phosphorylation induced association 

with 14-3-3 proteins sequester FOXOs in the cytosol preventing the induction of pro-survival 

gene expression. 

 

The experimental observation that the same signaling molecules are able to participate in distinct 

pathways raises broad questions: what are the molecular mechanisms that couple components 

from different pathways. Although it is just the beginning of a long journey, a common 

mechanism was identified across many signaling pathways (Good et al., 2011; Langeberg and 

Scott, 2015; Zheng et al., 2013). For example, cells have evolved a clever mechanism to bring 

components of different signaling pathways in close proximity using scaffold proteins that 

compose of multiple distinct domains. The modular structure of the scaffold proteins allows the 
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interaction with multiple signaling components and shaping signaling network architecture on 

the molecular level. Bringing distinct signaling components to close proximity determines the 

specificity of information flow within intracellular networks. As mentioned in 1.3.1.1 and 1.3.1.4 

chapters, the examples of scaffold proteins are KSR and p130Cas that coordinates MAPK 

pathway and couples Src/FAK signaling with other pathways in mammals, respectively (Cabodi 

et al., 2010a; Therrien et al., 1996). In general, scaffold proteins are able to regulate subcellular 

pathway activation (Brennan et al., 2002; Garrenton et al., 2006), provide additional means to 

control pathway activity by competing with distinct inputs of different functionality (Patterson et 

al., 2010) and efficiently promote downstream signaling (Good et al., 2009). Importantly, 

scaffold proteins can also coordinate negative and positive feedback loops shaping downstream 

responses (chapter 1.1.3.1). Overall, those functions can be tuned by inputs directly modifying 

scaffold proteins that often make scaffold proteins a direct target for pathway activity regulation. 

Thus, scaffold proteins increase plasticity of the signaling network that allows encoding wide 

range of cellular responses by the relatively limited number of signaling components. 

1.3.2 Spatiotemporal control of signaling activity 

 

Cellular signaling networks are able to transmit information through the temporal dynamics of 

network components that is described by the signal delay, the frequency, the fold change, the 

amplitude and the duration. The first attention has been given to distinct dynamics of ERK 

emerging after stimulation with separate growth factors. For example, epidermal growth factor 

(EGF) induces transient ERK activation resulting in the proliferation of PC12 cells whereas 

nerve growth factor (NGF) stimulation induced sustained ERK activation causing cell 

differentiation (Heasley and Johnson, 1992; Nguyen et al., 1993). These observations spiked 

subsequent extensive work linking the signaling molecule dynamics to the identity of an 

upstream stimulus and cellular outcomes in distinct cell types (McCawley et al., 1999; 

Nagashima et al., 2007).  

 

To a big surprise for a scientific community, it was shown that single cells within a cellular 

population respond with high heterogeneity. The measurement of signaling activity at the 

population level may mask the real single-cell patterns due to averaging (Ferrell and Machleder, 

1998).  Modern technologies including optogenetics and biosensors allowing the manipulation of 
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signaling activity and the instantaneous measurement of cellular response at the single cell level 

facilitated numerous studies that are focused on whether signaling dynamics is driving cellular 

responses. The use of a FRET biosensor enables monitoring ERK activity at the single live cell 

level. A recent study has demonstrated that different EGF concentrations are able to modulate 

the frequency and duration of ERK activity pulses in MCF-10A cells (Albeck et al., 2013). At 

the same time it was illustrated that oscillatory ERK activity resulted in a greater proliferative 

response than continuous ERK signaling (Aoki et al., 2013). Although single-cell responses are 

highly heterogeneous (Frechin et al., 2015; Hiratsuka et al., 2015; Kumagai et al., 2015), it was 

demonstrated that the dynamic nature of the ERK, Ca
2+

 and nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-kβ) signaling provided high fidelity of information processing 

in an individual cell (Selimkhanov et al., 2014). By utilizing optogenetics, Toettcher et al. were  

 

Figure 1.9 Schematic representation of signaling dynamics processing by Ras/ERK module. 

Figure is adapted from (Toettcher et al., 2013). 

 

able to selectively control ERK activity and dissect the role of its frequency modulation in 

signaling (Toettcher et al., 2013). They proved that the ERK signaling pathway has properties of 

a low-pass, high-bandwidth filter that can transmit a broad range of signals, with the exception of 

high-frequency responses (Figure 1.9). By combining optogenetics with reverse phase protein 

arrays they were able to identify downstream effectors sensing different ERK dynamics. Overall, 

it was extensively shown that temporal dynamics are able to specify different cellular responses 

such as differentiation, proliferation and migration. Moreover, complex signaling dynamics 
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including oscillations and pulses can increase the accuracy of information propagation through 

signaling networks. 

 

The dynamic features of cellular networks are principally determined by the connectivity of 

signaling components along and/or between distinct pathways (chapter 1.3.1). Exploiting 

modular response analysis, it was demonstrated that EGF and NGF shape the topology of the 

signaling network to induce distinct temporal patterns of ERK activity in PC12 cells (Santos et 

al., 2007). The EGF stimulation induces negative feedback attenuating ERK signaling, whereas 

NGF elicits positive feedback potentiating ERK activity. The decoding of complex temporal 

patterns is also based on the network motifs (chapter 1.3.1.5) that are able to sense the dynamic 

change of an up-stream signal. For example, PC12 cells utilize a feedforward loop to distinguish 

transient and sustained ERK activity (Nakakuki et al., 2010). The transient ERK activation leads 

to the induction of immediate early gene (IEG) products expression including c-Fos and their 

rapid degradation. However, the sustained ERK activation in the cytoplasm induces direct c-Fos 

phosphorylation and its stabilization. Interestingly, the aforementioned two feedforward loops 

that interpret upstream signal duration are spatially separated and act in different cellular 

compartments: the fast nuclear arm induces transcription and slow cytosolic arm modulates 

protein degradation. Thus, the compartmentalized network topology not only programs the 

signaling patterns but also decodes signaling dynamics by downstream effectors. 

 

In many cases, the concentration of extracellular cues that cells are exposed to such as insulin is 

highly dynamic. Therefore, Kubota et. al. were puzzled by how a signaling network encodes and 

processes the dynamics of extracellular cues. They showed that temporal patterns of insulin 

stimulation are encoded by AKT dynamics (Kubota et al., 2012). The later employing network 

motifs can induce distinct activation of downstream effectors such as glycogen synthase kinase-

3β (GSK3β), glucose-6-phosphatase (G6Pase) and ribosomal protein S6 kinase (S6K) that 

regulates different cellular processes. For example, an incoherent feedforward loop enable S6K 

to adapt to the level of insulin assuring transient response upon change of insulin concentration 

whereas direct activation of GSK3β by AKT lead the detection of sustained insulin stimulation. 

Thus, their study provides an example of how dynamics of a ligand concentration can be 

encoded and decoded by signaling network topology. 
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With the development of new technologies it becomes obvious that signaling pathways form a 

highly dynamic and interconnected network transmitting information from an ocean of 

extracellular cues. In fact, recent studies have demonstrated that the spatio-temporal organization 

of signaling network architecture regulates specific cellular responses (Housden and Perrimon, 

2014; Nakakuki et al., 2010). Although the majority of signaling network studies illustrates the 

biological relevance of the signaling dynamics, the molecular mechanisms that encode and 

decode this dynamics still remain unclear. A better understanding of these mechanisms will 

allow manipulating key parameters in a highly controlled way and therefore stimulate the 

development of new pharmacological approaches. Therefore, further studies are needed to 

elucidate basic principles of signaling networks operation.  

1.4  RTKs cross-talk as an additional level of signaling complexity 

 

RTKs using largely overlapping downstream effectors to transmit information can often have 

distinct physiological functions. Although individual RTK signaling networks have been 

characterized in detail, the understanding how cells, using the limited number of signaling 

components, integrate and process information from many external cues is one of the major 

challenges of cell biology. The information from multiple RTKs is integrated at different 

signaling levels: physical interaction between different receptors, downstream pathways cross-

talk or transcriptional regulation. 

 

One of the well-studied mechanisms of RTKs cross-talk occurs at the level of receptors that 

involves physical interaction between different RTK and transactivation by downstream 

effectors. The direct dimerization of EGFR with ErbB-3, for instance, facilitates the signaling 

through PI3K/AKT pathway (Olayioye et al., 2000), whereas, EGFR interaction with ErbB-2 

potentiates MAPK signaling (Karunagaran et al., 1996). Moreover, RTK heterodimerization can 

occur not only within one but also between members of different protein families. For example, 

IGF-1R can result in the activation of EGFR (Ahmad et al., 2004) or ErbB-2 (Balana et al., 

2001) through physical interaction. It was also demonstrated that Src, downstream effectors of 

IGF-1R, can transactivate EGFR in MCF-7-derived tamoxifen-resistant breast cancer cells 
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(Knowlden et al., 2005) illustrating cross-activation via downstream signaling. These examples 

support a very attractive concept that explains the additional mechanism of signaling 

diversification based on RTK trans-activation. Importantly, the RTK transactivation has been 

suggested as one of the mechanisms of drug-resistance in cancer cells (Kim et al., 2016).   

 

An entirely different mechanism of RTK cross-talk is mediated by downstream effectors without 

affecting receptors themselves. This type of the interplay between RTKs can lead to unpredicted 

signaling behavior such as synergistic and antagonistic responses that are regulated by network 

topology (Volinsky and Kholodenko, 2013). Mathematical modeling proposed the mechanism of 

the synergistic ERK activation by EGF and insulin in HEK293 cells (Borisov et al., 2009). This 

study showed that EGFR and insulin signaling is linked by GRB2-associated binding protein 

(GAB). The insulin stimulation activates the production of PIP3 on the plasma membrane that in 

turn facilitates GAB1 translocation. Active EGFR stimulates GAB1 phosphorylation thereby 

recruiting multiple signaling molecules including PI3K, Grb2/SOS and SH2 domain-containing 

tyrosine phosphatase 2 (SHP2). In turn, PI3K recruitment generates a positive feedback loop for 

GAB1 translocation whereas the translocation of Grb2/SOS and SH2 potentiates the ERK 

activation. At the same time, another study also showed that IGF-1 potentiates the ability of EGF 

to activate ERK whereas the AKT phosphorylation was decreased upon dual stimulation in 

comparison with “IGF-1 only” stimulation in PC12 cells (Martin et al., 2009). Moreover, they 

demonstrated that pairwise RTK activation can induce time dependent signaling interaction 

effects on network components, differential gene expression and, most importantly, 

physiological responses such as cell survival and neurotransmitter production that are not 

predictable from individual treatments (Martin et al., 2009).  

 

The RTK receptor cross-talk can also occur via transcriptional induction of RTK or its signaling 

components by another RTK. For example, in breast cancer cells EGF treatment induces 

expression of insulin receptor substrate 1 and 2 (IRS1 and IRS2) that is diminished by the EGFR 

inhibitors (Cui et al., 2006). Another recent study revealed that blocking MEK signaling in triple 

negative breast cancer cells in which poor prognosis is often characterized by EGFR and c-Met 

phosphorylation, induced expression and activation of multiple RTKs including PDGFRβ, 

VEGFR2, and HER2/3 (Duncan et al., 2012). Moreover, this study showed that activation of the 
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RTKs is accompanied with increased expression of cytokines establishing positive 

paracrine/autocrine loops. In neuroblastoma cells lines, retinoic-induced activation of the RTK 

Ret leads to the increased expression of tropomyosin receptor kinase B (TrkB), an RTK, and its 

ligand brain derived neurotrophic factor (BDNF) (Esposito et al., 2008). Importantly, the 

knockdown of TrkB or ret proto-oncogene (Ret) by siRNAs impairs differentiation in 

neuroblastoma cells indicating an important role of TrkB/Ret cross-talk in this process. Overall, 

these examples reveal the clinical relevance of the RTK cross-talk at the transcription level.  

 

In conclusion, the comprehensive understanding of the basic principles of RTK signaling and the 

mechanisms of a complex RTK cross-talk is of major interest for fundamental and translational 

research. Recent discoveries revealed underappreciated complexity of the cellular signaling 

machinery that could be addressed only after the evolution of currently available experimental 

and computational tools enabling to study this complexity at the different regulatory levels and, 

most importantly, to link those levels of complexity in a single concept. 

1.5  Biosensors are useful tools for studying intracellular signaling in 

living cells 

 

Ideally, to study basic principles of the signaling network operation one would like to follow the 

localization, concentration and activity of the investigated signaling molecules in living cells 

with high accuracy and temporal resolution. Fluorescence microscopy of genetically encoded 

sensors (or biosensors) effectively satisfies these stringent requirements as an experimental 

approach. Typically, biosensors are composed of a sensing element that is associated with a 

reporting unit (Bolbat and Schultz, 2017; Newman et al., 2011). The sensing unit communicates 

the change of interest and can comprise of the whole protein or specific protein domain as well 

as the synthetic peptide sequence (Oldach and Zhang, 2014). Two or more components such as 

protein domains and synthetic peptide sequences are often used to engineer a modular sensing 

unit. 
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1.5.1 Fluorescent proteins as a reporting unit in biosensors 

 

Fluorescent proteins (FPs) are typically used as the reporting unit in biosensors. Over the past 20 

years a wide verity of FPs have been isolated from different biological species and optimized by 

introducing specific mutation in the protein to improve their photophysical properties such as 

brightness, contrast, photostability and spectral characteristics. The development of FPs with 

diverse spectral characteristics that are described by wavelengths of the excitation and emission 

resulted in multiplexing imaging (imaging several FPs). For example, cyan (Goedhart et al., 

2012), green (Shaner et al., 2013), red (Bajar et al., 2016) and near-infrared (Shcherbakova and 

Verkhusha, 2013) were recently developed with improved optical properties. Moreover, FPs with 

specialized optical characteristics such as large Stokes shifts that are highly desirable for 

multiplexing were also developed and utilized for dual FRET sensor imaging (Shcherbakova et 

al., 2012). Although researchers now have access to the large repertoire of FPs that meets diverse 

needs of experimental setup limitations of the FPs have been discovered by the long-term 

imaging and targeting subcellular compartments. For instance, it was shown that red FPs often 

tend to accumulate in lysosomal compartments, probably due to resistance to proteases 

(Costantini et al., 2015; Katayama et al., 2008). The dimerization or oligomerization of FPs 

fused to the protein of interest is another caveat that one should be cautious about. It was shown 

that FPs initially characterized as monomeric have residual tendency to oligomerize when fused 

with membrane proteins (Cranfill et al., 2016). Finally, thermodynamic stability such as the 

formation of intermolecular disulfide bonds is a crucial FP characteristic that may influence 

oligomeric state as well as chromophore establishment (Costantini et al., 2015). The wide range 

of FPs led to developing biosensors of diverse operating principles and design that can at least be 

divided into the two largest groups: single-fluorescent-protein- and fluorescence resonance 

energy transfer (FRET)-based biosensors.  

 

1.5.2 Single-fluorescent-protein-based biosensors 

 

The simplest single-fluorescent-protein-biosensor is a translocation reporter that consists of 

fusion of protein or protein domain of interest with a FP. Fluorescently labeled ERK (Cohen-
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Saidon et al., 2009) and FOXO3A (Zanella et al., 2008), for example, were used to monitor 

activity of upstream signaling pathways by quantifying their distribution between cytoplasm and 

nucleus. Alternatively, a biosensor can be engineered by fusion of FP with a protein domain 

specifically binding to the molecule of interest. This strategy is typically exploited to measure 

the lipid concentration at cellular membranes. However, one should employ this approach 

cautiously due to the failure of particular domains to recognize respective lipids at the organelles 

or plasma membrane (PM). For instance, PI(3,4,5)P3 and DAG on the PM can be observed by 

the PH domain of AKT (Laketa et al., 2014) and the C1 domain of PKC-γ (Wilke et al., 2014), 

respectively. The production of PI(3,4,5)P3 and DAG on the PM induces translocation of those 

sensors and can be measured as an increase in the fluorescence intensity.  

 

Another strategy to generate single-fluorescent-protein-biosensors involves complex protein 

engineering that exploits the photophysical properties of FPs. The majority of biosensors of this 

kind was based on the fact that FPs can tolerate certain structural modifications such as 

insertions of proteins or engineered sequence and still remain fluorescent (Baird et al., 1999). 

Importantly, the conformational change of the insertion strongly modulates optical 

characteristics of the FP including fluorescence intensity. This strategy was successfully used in 

the development of the Ca
2+

 (Chen et al., 2013; Inoue et al., 2015), hydrogen peroxide (Ermakova 

et al., 2014), ATP (Tantama et al., 2013), NADH (Hung et al., 2011), cAMP (Odaka et al., 2014), 

and DAG (Tewson et al., 2012) biosensors. Surprisingly, some FPs split into several fragments 

are able to restore the structure of ß-barrel and become fluorescent due to sufficient affinity of 

the fragments. A method that is called bimolecular fluorescence complementation (BiFC) is based 

on this unique principle and has been extensively used to monitor protein-protein interactions 

(Kodama and Hu, 2012). In this case the stimulus induced dimerization of the proteins or sensing 

elements fused with fragments of a FP lead to the assembly of the ß-barrel and appearance of 

fluorescence. 

1.5.3 Fluorescence resonance energy transfer-based biosensors 

 

The largest family of biosensors are based on the principle of fluorescence resonance energy 

transfer (FRET), a phenomenon that was first described in 1948 (Förster, 1948). FRET is the 

mechanism of energy transfer from a donor fluorophore to an acceptor fluorophore via non-
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radiative dipole-dipole coupling occurring in close proximity to each other (<10 nm). Another 

requirement for efficient energy transfer is the sufficient overlap of the emission donor spectra 

with the excitation (or absorption) acceptor spectra. FRET efficiency is extremely sensitive to the 

relative orientation of fluorophore dipoles as well as to the distance between fluorophores that 

makes it ideal to visualize protein-protein binding as well as changes in the protein conformation 

(Bolbat and Schultz, 2017).   

 

One of the typical FRET biosensor designs is generated by placing a protein domain or 

engineered molecular switch that undergoes conformational change upon binding to a specific 

ligand or enzymatic modification between a pair of fluorescent proteins that exhibits FRET 

(unimolecular FRET biosensors).  These sensors are expressed as a single protein containing all 

parts of the sensor: a donor, an acceptor and a molecular switch. For example, the molecular 

switch of biosensors measuring the activity of protein kinases and phosphatases is composed of 

two parts that are linked together: a kinase-specific substrate and phosphoamino-acid-binding 

domain (PAABD). The kinase-specific substrate phosphorylation by an activated kinase induces 

the interaction between substrate and PAABD and leads to the conformational change. The 

resulting conformational rearrangement in the sensing unit then produces a substantial changes in 

FRET. This design was employed to develop FRET biosensors for monitoring activity of 

numerous protein kinases including ERK (Harvey et al., 2008), PKA (Depry et al., 2011), PKC 

(Schleifenbaum et al., 2004), AKT (Miura et al., 2014), RSK (Komatsu et al., 2011), and many 

others. The modular architecture of FRET biosensors allows developing biosensors to measure 

not only the activity of protein kinases but also the activity of other enzymes and a variety of 

signalling process. Using the rationally designed switches led to the development of several 

biosensors measuring the activation of small G-proteins such as Ras (Mochizuki et al., 2001), 

Rac1 (Itoh et al., 2002), RhoA (Yoshizaki et al., 2003) by fusion the small G-protein of interest 

with effector domain that specifically recognizes active (GTP-bound) form of the small GTPase. 

Moreover, the similar modular architecture was employed to monitor dynamics of diverse range 

of post translational modifications including methylation (Lin et al., 2004), acetylation (Sasaki et 

al., 2009) and O-GlcNAcylation (Carrillo et al., 2006). More recently, Nakaoka et. al. have 

developed the sensor to detect histone 3 acetylation at the Lys 9 and Lys 14 (Nakaoka et al., 

2016). Thus, the rational design of modular molecular switches that undergo a substantial 
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conformational rearrangement will further broaden the spectrum of biosensors monitoring 

diverse biological processes and reactions including protein-protein interaction, the concentration 

of second messengers, post-transcriptional modifications and protein activities in living cells.  

 

Another way to engineer FRET biosensor is dividing FRET sensor into two separately expressed 

protein chains. Each part of such bimolecular FRET biosensor contains either donor or acceptor. 

Typically this approach is used for monitoring protein-protein interactions whereas bimolecular 

FRET sensors are useful to visualize a protein conformational change. However, additional 

differences between these designs have to be taken in consideration prior to the development and 

the use of a FRET biosensor (Miyawaki, 2011). Although bimolecular FRET biosensors have 

higher FRET change they are prone to the signal damping due to disruption of 

1(donor):1(acceptor) ratio and undesired interaction of biosensor’s parts with native cellular 

proteins (Miyawaki and Niino, 2015). In contrast, unimolecular FRET sensors are less apt to 

interact with native cellular proteins and assumed to have constant donor:acceptor ratio (1:1)  

resulting in a reliable signal (Miyawaki and Niino, 2015). Thus the use of unimolecular FRET 

biosensors is mostly restricted by the labour intensive optimization of the biosensor architecture 

and the low response.  

 

Overall, biosensors provide a unique ability to monitor diverse signaling events with high spatio-

temporal resolution in living cells which is of great relevance for basic and clinical research. 

Although the dozens of biosensors were developed only a minor portion of them is used in 

clinical and fundamental studies due to both labour and time intensive imaging. The further 

development of novel approaches allowing high-throughput biosensor imaging will accelerate 

studies of basic principles of signal transduction.  
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Aim of the thesis 

 

Due to the complexity of an intracellular signaling network, discussed in the introduction, it is 

not well known how cells dynamically interpret information from multiple extracellular cues. It 

was earlier proposed that the plausible mechanism of signal integration is through signaling 

interactions such as additivity, synergy and antagonism among pathways (Borisov et al., 2009; 

Hsueh et al., 2009; Natarajan et al., 2006). We therefore hypothesized that cells encode signals 

from multiple extracellular cues through dynamics of signaling network activity and finally 

decode this information into cell fate decisions. Thus, the aim of this thesis is to identify 

potential mechanisms of signal integration and processing from multiple cues in living cells that 

is a physiologically relevant scenario. 

 

In order to unravel the mechanisms underlying the signal integration from multiple cues it is 

crucial to be able monitoring multiple signaling pathways in living cells. FRET biosensors 

provide an elegant, non-invasive method to monitor different signaling events with high spatial 

and temporal precision, permitting the study of many signaling pathways such as Ras/ERK and 

PI3K/AKT/S6K pathways. However, FRET biosensor imaging is a labor intensive procedure per 

se. In the first part of the thesis, I therefore will establish the platform allowing imaging of 

hundreds FRET biosensors in a single experiment. This platform will be proved to be useful to 

monitor growth factor and lipid signaling as well as its perturbation by functional mutations or 

therapeutically relevant inhibitors in living cells. 
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Using the above mentioned high-throughput platform, further insights into mechanisms of signal 

integration from multiple cues in living cells are expected. To this end, I will focus on the 

signaling interactions between receptor tyrosine kinases as they signal through shared set of 

pathways yet can have distinct biological functions in vivo. In particular, we will directly 

compare a single stimulus with their pairwise combinations to reveal signaling interactions at the 

system level that are difficult to predict from a single treatment. This comprehensive map of 

dynamic signaling interactions between multiple growth factors and cytokines will help to 

further explore how gene expression profile depends on the concentration and the ratio of 

extracellular cues. 
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Chapter 2 – Experimental methods 

 

2.1 Materials 

 

EGF, TGF-α, IGF-1, PFGF-BB, TNF-α, Trypsin-EDTA and BSA were obtained from Sigma. 

MEM, fetal calf serum (FBS, Cat.-No. F7524), puromycin, glycerol, Laemmli sample buffer and 

gelatin from bovine skin were also supplied by Sigma. HGF, Wnt-5A and Gas6 were purchased 

from R&D systems. The ERK inhibitor (AZD6244, Selumetinib) and PI3K (PI-103) inhibitor 

were obtained from Selleck Chemicals. DMSO was obtained purchased from Merck KGaA. The 

β-tubulin (9F3, rabbit), phospho-Erk1/2 (Thr202/Tyr204) antibody, ERK1/2 antibody, phospho-

Akt (Ser473) antibody, AKT (pan, 40D4) antibody, anti-rabbit IgG antibody anti-mouse IgG 

antibody, DRAQ5 and RIPA buffer (10x) were ordered from Cell Signaling Technology. The 

cOmplete inhibitor cocktail was supplied by Roche. Primocin were purchased from InvivoGen. 

Lipofectamine 2000, Lipofectamine 3000, L-glutamine and Penicillin Streptomycin (Pen Strep) 

were supplied by invitrogen. The FuGENE HD transfection reagent was obtained from Promega. 

The K2, Effectene, ScreenFect A, GenJet and PeqFECT transfection regents were supplied by 

BionTex, Qiagen, InCella, SIgnaGen and Peqlab, respectively. The low glucose DMEM was 

purchased from Life Technologies. The high glucose DMEM with and without phenol red was 

supplied by Lonza. Sucrose ultrapure was obtained from Affymetrix. The NuPAGE MES SDS 

running buffer was purchased from Novagen.  
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Table 2.1: FRET biosensors used in this work 

Target Local

izatio

n 

Provided 

by 

Proteins/protein domains Named 

in this 

work 

Ref 

ERK Cyto Matsuda 

laboratory 

WW (phosphopeptide binding 

domain)-Substrate domain 

(PDVPRTPVDKAKLSFQFP) 

ERK (Komat

su et 

al., 

2011) 

ERK Cyto Pertz 

laboratory 

WW (phosphopeptide binding 

domain) - Substrate domain 

(PDVPRTPVDKAKLSFQFP) 

ERK2G1 (Fritz et 

al., 

2013) 

RhoA Cyto Pertz 

laboratory 

RhoA-binding domain (RBD) of 

rhotekin)– RhoA 

RhoA2G1 (Fritz et 

al., 

2013) 

Ras PM Matsuda 

laboratory 

H-Ras domain RafRBD – Ras-

binding domain of Raf 1 

Ras (Komat

su et 

al., 

2011) 

Rac1 PM Matsuda 

laboratory 

PAK CRIB domain - Cdc42/Rac-

interactive binding Rac1 

K-Ras CT domain – targeting to 

plasma membrane 

Rac (Komat

su et 

al., 

2011) 

RSK Cyto Matsuda 

laboratory 

FHA1 domain (phosphopeptide 

binding Ser-1798 of TSC2) - 

Substrate domain 

(GQRKRLITSVDDFTE) 

NES 

RSK (Komat

su et 

al., 

2011) 

S6K Cyto Matsuda 

laboratory 

FHA1 domain (phosphopeptide 

binding 

Thr-1135 of Rictor) - Substrate 

domain (NRRIRTLTEPDVDFN) 

NES 

S6K (Komat

su et 

al., 

2011) 

Akt Cyto Matsuda 

laboratory 

Akt PH domain - FHA1 domain 

(phosphopeptide binding) - Substrate 

domain (RKRDRLGTLGD) 

Akt substrate 

NES 

Akt (Komat

su et 

al., 

2011) 

PKC Cyto Matsuda 

laboratory 

PKCβ C1 domain - FHA1 domain 

(phosphopeptide binding) - Substrate 

domain (KKKKKRFTFKDSFKL) 

NES 

PKC EV (Komat

su et 

al., 

2011) 
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JNK Cyto Matsuda 

laboratory 

FHA1-EV- Substrate domain 

(DSVKTPEDEGNPLLEQLEKK) 

JNK (Komat

su et 

al., 

2011) 

EGFR/

abl 

Cyto Matsuda 

laboratory 

CrkII-SH2-SH3 domain- 

217–225 residues of CrkII 

(EPGPYAQPS) 

EGFR (Komat

su et 

al., 

2011) 

PIP3/P

I(3,4)P

2 

Cyto 

PM 

Matsuda 

laboratory 

PH AKT -pseudoligand PIP3 (Anant

hanaray

anan et 

al., 

2005) 

Src Cyto Wang 

laboratory 

CFP-SH2 (Src)- Substrate (synthetic) Src (Ouyan

g et al., 

2008) 

Cdc42 PM Matsuda 

laboratory 

PAK1-Cdc42 

(EV linker was cloned in between 

PAK1 and Cdc42) 

Cdc42 (Itoh et 

al., 

2002) 

PAK1 PM 

Cyto 

Parrini 

laboratory 

human PAK1, 

Pakabix carries the C-terminal region 

of Ki-Ras4B 

PAK (PM) 

PAK 

 

(Parrini 

et al., 

2009) 

Calcine

urin 

Cyto Zhang 

laboratory 

domain of NFAT1 Calcineurin (Newm

an and 

Zhang, 

2008) 

FAK Cyto Wang 

laboratory 

SH2(c-Srk) -substrate FAK (Seong 

et al., 

2011) 

cRaf Cyto Matsuda 

laboratory 

cRaf cRaf (Terai 

and 

Matsud

a, 

2005) 

bRaf Cyto Matsuda 

laboratory 

bRaf bRaf (Terai 

and 

Matsud

a, 

2006) 

Histon

e H3-

K9 

methyl

Cyto Ting 

laboratory 

HP1 Chromodomain-histone H3 Histone K9 

Me 

(Lin et 

al., 

2004) 
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ation 

Histon

e H3-

K27 

methyl

ation 

Cyto Ting 

laboratory 

Polycomb (Pc) Chromodomain-

histone H3 

Histone 

K27 Me 

(Lin et 

al., 

2004) 

Histon

e H3-

S28 

phosph

orylati

on 

Nuc Ting 

laboratory 

14-3-3t – 615-644 residues of Cbl Histone P (Lin 

and 

Ting, 

2004) 

Cdk1 Cyto Pines 

laboratory 

Polo-Box Domain of Plk1-(GGT)5 

linker-Cyclin B1 containing the 

Ser126 autophosphorylation site 

Cdk1 (Gavet 

and 

Pines, 

2010) 

PDK1 PM Zhang 

laboratory 

PDK1 PDK1 (Gao et 

al., 

2011) 

Caspas

e-3 

Cyto Sorger 

laboratory 

DEVDR Caspase-3 (Albeck 

et al., 

2008) 

Caspas

e-8/10 

Cyto Sorger 

laboratory 

IETD2x Caspase-

8/10 

(Albeck 

et al., 

2008) 

PKA Cyto Matsuda 

laboratory 

FHA1 domain - PKA substrate 

(LRRATLVD) - NES 

PKA (Komat

su et 

al., 

2011) 

PKC ER Newton 

laboratory 

FHA2 (Rad53P)-Substrate(synthetic) PKC (ER) (Violin 

et al., 

2003) 

Rap1 PM Matsuda 

laboratory 

Rap1A-Raf Rap1 (Mochi

zuki et 

al., 

2001) 

RalA PM Matsuda 

laboratory 

RalA-RalBP1 RalA (Takay

a et al., 

2004) 

RhoA PM Matsuda 

laboratory 

PKN -RhoA RhoA (Yoshiz

aki et 

al., 

2003) 
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Ca
2+

 Cyto Griesbeck 

laboratory 

chicken skeletal muscle TnC Ca
2+

 

(TNXL) 

(Mank 

et al., 

2006) 

CaMK

II 

Cyto Schultz 

laboratory 

CaMK2α Ca
2+

 (Piljic 

et al., 

2011) 

Ca2+ Cyto Griesbeck 

laboratory 

TnC domain Ca2+ 

(Twitch) 

(Thestr

up et 

al., 

2014) 

Pickles Cyto Ohba 

laboratory 

CrkL Abl (Mizuta

ni et al., 

2010) 

Aurora 

B 

Nuc 

Cyto 

Cent 

Lampson 

laboratory 

FHA2-substrate(Kif2 57-70) Aurora B 

H2B 

 

Aurora B 

 

Aurora B 

centro 

 

(Fuller 

et al., 

2008) 

Contro

l 

Cyto Vogel 

laboratory 

32 amino acids linker control (Koushi

k et al., 

2006) 

Contro

l 2 

Cyto Sorger 

laboratory 

DEVDR mutated to DEVG DEVG (Albeck 

et al., 

2008) 

Pyruva

-te 

Cyto Barros 

laboratory 

PdhR protein Pyruvate (San 

Martin 

et al., 

2014) 

Glucos

e 

Cyto Frommer 

laboratory 

Glucose binding domain of MglB 

protein 

Glucose (Takan

aga et 

al., 

2008) 

AMPK PM Inoue 

laboratory 

FHA (phosphopeptide binding 

domain)-Substrate domain 

(GSGEGSTKMRRVATLVDLGTG

GSEL) 

AMPK (Miyam

oto et 

al., 

2015) 

Lactate Cyto Barros 

laboratory 

LldR transcription factor from E. coli Lactate (San 

Martin 

et al., 
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2013) 

Zn
2+

 Cyto Merkx 

laboratory 

Metal binding domains (Atox1 and 

domain 4 of ATP7B (WD4)) 

Zn
2+

 () 

DAG PM Schultz 

laboratory 

C1Bβ domain of PKC DAG unpubli

shed 

Abbreviations: Cyto – Cytosole, PM – Plasma Membrane, Cent – Centromere, Nuc - Nucleus 

 

2.2 Buffers and Media 

2.2.1 Western Blot Buffers 

 

2x Laemmli buffer 

 4% SDS 

 10% β-mercaptoethanol 

 190 mM glycine 

 20% (v/v)  glycerol 

 0.004 % (v/v)  

Once prepared, 2x Laemmli buffer was stored at -20 °C. 

 

Transfer buffer 

 25 mM Tris-Cl 

 190 mM glycine 

 20% (v/v)  methanol 

The transfer buffer was prepared immediately prior use. 

 

10x Tris-Buffered Saline 

 500 mM Tris-Cl 

 1500 mM NaCl 

Afterwards, the pH was adjusted to 7.6 using HCl. Once prepared, TBST was stored at 4°C for 3 

months. 
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Tris-Buffered Saline with Tween 20 buffer 

TBS buffer supplemented with 0.1% Tween-20. Once prepared, TBST was stared at 4°C for one 

week. 

 

2.2.2 Bacterial Culture media 

 

LB medium 

Autoclaved Luria-Bertani (LB) medium was prepared by the media kitchen at EMBL according 

to following composition and stored at room temperature.  

 

 1 % (w/v) bacto trypton 

 0.5 % (w/v) bacto yeast extract 

 170 mM NaCl 

 

Afterwards, the pH was adjusted to 7.6 using NaOH and the medium was supplemented with 

antibiotics (100 μg/mL ampicillin or 30 μg/mL kanamycin) immediately prior to use. 

 

LB agarose plates 

LB agarose plates were prepared by the media kitchen with 1.5 % (w/v) bacto agar in LB, 

supplemented with antibiotics (100 μg/mL ampicillin or 30 μg/mL kanamycin) and stored at 4 

°C. 

 

SOC medium 

Super Optimal broth with Catabolite repression (SOC) medium was prepared by the media 

kitchen according to following composition, pH adjusted to 7.0, autoclaved and stored at 4°C. 

 

 20 mM glucose 

 10 mM MgCl2 

 10 mM MgSO
4
 

 2.5 mM KCl 

 10 mM NaCl 
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 2 % (w/v) bactotryptone 

 0.5 % (w/v) bacto yeast extract 

 

2.2.3 Eukaryotic cell media and solutions 

PBS 

 137 mM NaCl 

 2.7 mM KCl 

 2 mM KH2PO4 

 10 mM Na2PO4 

 1 mM EDTA 

 

PBS was prepared by the media kitchen at EMBL. It was adjusted to pH 7.4 using HCl and 

sterile filtered. PBS was stored at room temperature. 

 

HeLa cell culture medium 

 DMEM (1 g/L glucose, Gibco/Life Technologies) 

 10 % fetal calf serum (Sigma-Aldrich, Lot.-No. 032M3395/ Lot.-No. 014M3395) 

 1 % primocin (InvivoGen) 

 

H838/H1975 cell culture medium 

 DMEM (4.5 g/L glucose, Lonza) 

 10 % fetal calf serum (Gibco, Lot.-No. 41965-039) 

 1 % penicillin/streptomycin (Gibco/ Life Technologies) 

 

Min6 cell culture medium 

 DMEM (4.5 g/L glucose, w/o pyuvate, Lonza) 

 15 % fetal calf serum (Gibco, Lot.-No. 41965-039) 

 1 % penicillin/streptomycin (Gibco/ Life Technologies) 

 70 mM 2-mercaptoethanol (Pan) 
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C2BBe1 cell culture medium 

 DMEM/F-12 (4.5 g/L glucose, w/o pyuvate, Gibco/ Life Technologies) 

 10 % fetal calf serum (Sigma-Aldrich, Lot.-No. 032M3395/ Lot.-No. 014M3395) 

 1 % penicillin/streptomycin (Gibco/ Life Technologies) 

 

H838-EGFRmut (L858R and resistant T790M) cell culture medium 

 DMEM (4.5 g/L glucose, w/o pyuvate, Lonza) 

 10 % fetal calf serum (Sigma-Aldrich, Lot.-No. 032M3395/ Lot.-No. 014M3395) 

 1 % penicillin/streptomycin (Gibco/ Life Technologies) 

 1.5 µg/ml Puromicin  

 

All media were sterile filtered and stored at 4 °C. 

 

2.2.4 Starvation media 

 

 HeLa cell starvation medium 

 DMEM (1 g/L glucose, Gibco/Life Technologies) 

 1 % primocin (InvivoGen) 

 

H838/H1975/H838-mutEGFR cell starvation medium 

 DMEM (w/o phenol red, Lonza)  

 Pen/Strep (dilute stock 1:100)  

 1 mg/ml BSA  

 2 mM L-Glutamin  

 

C2BBe1 cell starvation medium 

 DMEM (4.5 g/L glucose, Gibco/Life Technologies) 

 1 % penicillin/streptomycin (Gibco/ Life Technologies) 
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2.2.5 Imaging media and buffers 

Cell imaging medium 

 MEM (w/o phenol red, Sigma Aldrich)  

 30 mM HEPES 

HEPES was added by the media kitchen according to the following concentration, pH adjusted to 

7.4, autoclaved and stored at 4°C. 

 

MIN6 cell imaging buffer  

 20 mM HEPES 

 115 mM NaCl 

 1.2 mM MgCl2 

 1.2 mM K2HPO4 

 1.8 mM CaCl2  

The pH of the imaging buffer was adjusted to 7.4 using 1 M NaOH or 1 M HCl solution. 

 

2.3 Cell culture 

 

HeLa (human cervical adenocarcinoma cells, No. Kyoto) 

Dr. Rainer Pepperkok (Advanced Light Microscopy Facility, EMBL, Heidelberg, Germany) 

 

MIN6 (mouse pancreatic β-cells) 

Dr. Jun-ichi Miyazaki (Department of Stem Cell Regulation Research, Graduate School of 

Medicine, Osaka University, Japan) 

 

H838 (human lung adenocarcinoma cells derived from metastatic lymph node) 

H1975 (human lung adenocarcinoma cells) 

H838-mutEGFR (human lung adenocarcinoma cells derived from metastatic lymph 

node and exogenously expressed EGFR that carries the activating mutation L858R and the 

resistance mutation T790M) 

Prof. Dr. Ursula Klingmueller (Department of Pharmacology, DKFZ, Germany) 
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C2BBe1 (human colorectal adenocarcinoma cells) 

Dr Ultan McDermott (Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK) 

 

HeLa, H838, H1975, H838-mutEGFR and C2BBe1 cells were kept in appropriate growth 

medium in a humidified incubator at 37 °C with 5 % CO2 and were passaged 2 – 3 times per 

week. Min6 cells were maintained in a humidified incubator at 37 °C with 8 % CO2. For live-cell 

imaging experiments, cells were seeded in 8-well Labtek or Mattek dishes (Nunc/Thermo 

Scientific or Mattek, respectively) 48 h prior to the experiment. 

 

2.4 Methods 

2.4.1 Molecular work 
 

Plasmid DNA extraction and concentration determination  

Plasmid DNA was isolated from bacteria cultured overnight in LB medium supplemented with 

suitable antibiotic at 37°C and 230 rpm using the QIAprep Spin Miniprep Kit (Qiagen) or the 

QIAfilter Plasmid Maxi Kit (Qiagen), depending on the required amount and concentration, 

according to manufacturer’s protocol. DNA concentration was determined by measuring 

absorption of ultraviolet light of a 260 nm wavelength using a spectrophotometer (Life 

Technologies, NanoDrop 8000). 1 absorbance unit of light at a wavelength of 260 nm 

corresponds to a concentration of 50 μg/mL for double-stranded DNA. The ratio of absorbance at 

260 nm and 280 nm was used to assess the purity of DNA. The ratio of ~1.8 was accepted as 

“pure” for DNA. Plasmids for reverse transfection were isolated from E. coli using the QIAfilter 

Plasmid Maxi Kit and diluted to the concentration of 1 mg/mL. 

 

Sequencing of DNA 

DNA sequencing was performed by GATC Biotech (Konstanz, Germany). 

 

E. coli transformation 

One μg of plasmid DNA or 20 μl of a ligation reaction were added to 50 μl competent E. coli 

DH5α (Life Technologies, 18265-017). After 30 min incubation on ice, samples were heat-

shocked at 42°C for 45 sec (Eppendorf, Thermomixer comfort) and then cooled down on ice for 
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2 min. Afterwards, 1000 μl of SOC medium was added to bacteria and samples were further 

incubated at 37°C and 500 rpm for 1 h (Eppendorf, Thermomixer comfort). Then cells were 

centrifuged for at 13000 rpm for 1 min and subsequently supernatant was discarded. The pallet 

were resuspended in 50 μl of SOC medium followed by plating on LB-agar plates supplemented 

with suitable antibiotic and overnight incubation at 37°C. 

 

Agarose gel electrophoresis and gel extraction of DNA 

DNA fragments after PCR or restriction reaction were mixed with loading dye (Thermo 

Scientific) and separated by electrophoresis in 1-1.5% (w/v) agarose (Lonza, 50004) gel 

supplemented with of Redsafe (Intron, 1:2000 dilution) in the TAE buffer (Life Technologies), 

applying 5 V/cm. DNA fragments were visualized with ultraviolet light on video-based gel 

documentation system (Intas, GEL Stick "Touch"). As standards for fragment size and DNA 

amount 100 base pairs (bp) or 1000 bp DNA ladder (Life Technologies, SM0323, SM0313) were 

used, depending on the expected size of the DNA fragments. When required, DNA fragments 

were extracted from agarose gels using a gel extraction kit (Qiagen, 28704) according to the 

manufacturer’s protocol. 

 

Molecular cloning 

To construct specific plasmids, standard cloning technique employing restriction enzymes was 

used. All restriction enzymes were purchased from Thermo Scientific. Whenever available, high-

fidelity versions of the restriction enzymes were used. Insert was cut out from the donor plasmid 

or produced by PCR. PCR was conducted with Phusion High-Fidelity DNA Polymerase (Life 

Technologies, F-530S) according to the enzyme manufacturer’s protocol. After each restriction 

digest and PCR, DNA fragments were isolated by agarose gel electrophoresis and subsequent gel 

extraction. Ligation of the DNA fragments was performed using T4 DNA ligase (New England 

Biolabs, M0202S) at 16°C for 16 h, followed by heat shock transformation of E. coli and 

subsequent culturing to obtain the desired plasmid. 

 

RaichuEV-Cdc42: DNA sequence coding for EV linker in pRaichuEV-Ras plasmid was cut out 

with XhoI and NotI and inserted into the Raichu-Cdc42 sequence that was cut with the same 

restriction enzymes. 
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2.4.2 Live-cell microscopy 
2.4.2.1 Forward transfection and imaging 

 

For single FRET biosensor imaging experiments, FuGENE HD Transfection reagent (Promega), 

DMEM and cDNA encoding FRET biosensor was used to transfect cells with following the 

slightly modified manufacturer’s protocol. In this protocol OPTIMEM medium was replaced by 

DMEM to avoid the influence of cytokines contained in OPTIMEM medium and decrease basal 

activity of the signaling network. Cells were grown in 8-well LabTek or 1-well Mattek dishes 

and transfected 16 to 20 hours before imaging. In order to prepare the transfection mixture for a 

1-well Mattek, the corresponding amount of cDNA solution (1000 ng of total DNA) was diluted 

with 50 μL of FCS free DMEM in an Eppendorf tube. Subsequently, (4 μL per 1000 ng of total 

DNA amount) was diluted with 50 μL of FCS free DMEM in another Eppendorf tube. Then the 

DNA and FuGENE HD solutions were vortexed for at least 15 seconds and incubated for 10min. 

In the meantime, cell culture medium was replaced with FCS free DMEM (2 ml). After 

incubation, transfection mix (100 μL) was added into a Mattek dish equally distributed and cells 

were kept growing at 37 
◦
C in the incubator. The response of FRET biosensors was monitored on 

a Leica AF7000 microscope using a 40x objective with CFP/YFP dual-band beam splitter and 

two emission filters (470/30 for CFP and 535/50 for YFP) that were controlled by a filter wheel 

at an interval of 30 s – 2 min per frame. A baseline of at least 10 frames was captured before 

adding of a stimulus using the Leica software.  

 

2.4.2.2  Solid-phase reverse transfection 

 

In order to achieve better transfection efficacy previously described protocols (Erfle et al., 2007; 

Piljic et al., 2011) of the solid-phase reverse transection were optimized by varying a transfection 

reagent and plasmid/transfection reagent ratio in the transfection cocktail (Table 2.2 for details). 
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Table 2.2: The optimization of solid-phase reverse transection efficacy 

Transfection 

reagent (TR) 

name 

Amount 

of TR, 

µL 

DNA (ERK 

EV 

biosensor), µL 

(conc.= 1 μg/ 

μL) 

Supplement 

reagent 

(depending on 

the TR) 

Sucrose, 

Conc. (w/v)/ 

Volume 

Gelatine, 

Conc. (w/v)/ 

Volume 

Lipofectomine 

2000 

7 2 - 13.7%/3μL 0.2%/7.25μL 

Lipofectomine 

2000 

11 3 - 19.9%/3μL 0.29%/7.25μL 

Lipofectomine 

2000 

11 5 - 19.9%/3μL 0.29%/7.25μL 

Lipofectomine 

2000 

11 3 - 26.1%/3μL 0.38%/7.25μL 

Lipofectomine 

2000 

11 6 - 26.1%/3μL 0.38%/7.25μL 

Lipofectomine 

2000 

16 4 - 19.9%/3μL 0.29%/7.25μL 

Lipofectomine 

2000 

20 3 - 26.1%/3μL 0.38%/7.25μL 

Lipofectomine 

2000 

20 5 - 26.1%/3μL 0.38%/7.25μL 

Lipofectomine 

2000 

22 3 - 26.1%/3μL 0.38%/7.25μL 

Lipofectomine 

2000 

22 6 - 26.1%/3μL 0.38%/7.25μL 

Lipofectomine 

2000 

44 6 - 26.1%/3μL 0.38%/7.25μL 

Lipofectomine 

2000 

44 12 - 26.1%/3μL 0.38%/7.25μL 

Lipofectomine 

2000 

44 18 - 26.1%/3μL 0.38%/7.25μL 

Lipofectomine 

2000 

54 12 - 26.1%/3μL 0.38%/7.25μL 

Lipofectomine 

2000 

54 18 - 26.1%/3μL 0.38%/7.25μL 

Lipofectomine 

3000 

7 2 - 13.7%/3μL 0.2%/7.25μL 

Lipofectomine 

3000 

7 2 0.1 13.7%/3μL 0.2%/7.25μL 

Lipofectomine 7 2 0.5 13.7%/3μL 0.2%/7.25μL 
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3000 

Lipofectomine 

3000 

7 2 2 13.7%/3μL 0.2%/7.25μL 

Lipofectomine 

3000 

7 2 4 13.7%/3μL 0.2%/7.25μL 

Lipofectomine 

3000 

11 3 0.5 19.9%/3μL 0.29%/7.25μL 

Lipofectomine 

3000 

11 3 0.1 19.9%/3μL 0.29%/7.25μL 

K2 7 2 4 13.7%/3μL 0.2%/7.25μL 

K2 11 3 4 19.9%/3μL 0.29%/7.25μL 

K2 11 5 4 19.9%/3μL 0.29%/7.25μL 

K2 20 3 2 26.1%/3μL 0.38%/7.25μL 

K2 20 3 8 26.1%/3μL 0.38%/7.25μL 

K2 20 6 4 26.1%/3μL 0.38%/7.25μL 

K2 40 3 4 26.1%/3μL 0.38%/7.25μL 

K2 40 6 4 26.1%/3μL 0.38%/7.25μL 

K2 40 6 2 26.1%/3μL 0.38%/7.25μL 

K2 50 6 6 26.1%/3μL 0.38%/7.25μL 

K2 50 6 6 26.1%/3μL 0.38%/7.25μL 

K2 50 6 4 26.1%/3μL 0.38%/7.25μL 

K2 50 12 4 26.1%/3μL 0.38%/7.25μL 

Effectene 7 2 4 13.7%/3μL 0.2%/7.25μL 

ScreenFect A 11 3 - 26.1%/3μL 0.38%/7.25μL 

ScreenFect A 11 6 - 26.1%/3μL 0.38%/7.25μL 

ScreenFect A 22 3 - 26.1%/3μL 0.38%/7.25μL 

ScreenFect A 22 6 - 26.1%/3μL 0.38%/7.25μL 

ScreenFect A 22 12 - 26.1%/3μL 0.38%/7.25μL 

ScreenFect A 44 6 - 26.1%/3μL 0.38%/7.25μL 

ScreenFect A 44 12 - 26.1%/3μL 0.38%/7.25μL 

ScreenFect A 44 18 - 26.1%/3μL 0.38%/7.25μL 

ScreenFect A 54 12 - 26.1%/3μL 0.38%/7.25μL 

ScreenFect A 54 18 - 26.1%/3μL 0.38%/7.25μL 

GenJet 7 2 - 13.7%/3μL 0.2%/7.25μL 

PeqFECT 7 2 - 13.7%/3μL 0.2%/7.25μL 
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The following amounts refer to the transfection under conditions optimized for efficacy and 

toxicity. Briefly, plasmids for reverse transfection were diluted to concentration of 1 mg/mL.  

The transfection mixture were prepared by mixing 9 µl of a 0.4 M sucrose solution in DMEM, 9 

µl of DNA and 33µL of lipofectamine 2000 mixed in a 96-well plate and incubated for 20 min at 

room temperature. Subsequently, 21.75 µL of 0.29% gelatin solution in water was added to the 

transfection mixture. The transfection cocktail was distributed in 384-well plates (24 µL per 

well). The plates were stored at 4°C. In order to print Labteks the 384-well plate was thawed at 

room temperature and centrifuged briefly up to 54 g to straighten the surface of the samples. 

Afterwards, residual bubbles were removed by a 10 µL tip and placed immediately in the contact 

printer. Before printing, LabTek dishes were washed with 70% ethanol increasing 

hydrophobicity of the LabTek surface and, accordingly, improving the shape of the spots. 1-well 

LabTek dishes were printed with a “ChipWriter” contact printer equipped with solid pins. Using 

PTS 600 pins, the diameter of printed spots was about 400 µm and the spot-to-spot distance was 

1125 µm. Printed 1-well LabTek dishes were stored at room temperature in a gel drying box in 

the presence of drying pearls. 

 

2.4.2.3 Cell microarray imaging 

 

For live cell microarray imaging, 65x10
-4

 cells suspended in a culture media were seeded onto a 

printed glass coverslip 1-well LabTek chamber and kept growing at 37 
◦
C in an incubator for 24 

– 48 h. Afterwards, the culture media were changed to starvation media (see above) at least 12-

17 h prior to imaging. Prior to microscopy experiment, transfected cells were incubated with 7.5 

nM DRAQ5 according to manufacturer’s protocol to improve cellular segmentation. During 

imaging, cells were kept in imaging medium at 37
◦
C without CO2. All microscopy experiments 

were carried out on an Olympus IX83 microscope under constant conditions (at 37
◦
C without 

CO2) in the imaging medium. The imaging buffer was used for MIN6 cells. The microscope was 

equipped with a Hamamatsu Image EM CCD camera and an environmental chamber. Time-lapse 

imaging was performed with 20X 0.70 NA or 10X 0.40 NA and 436/20 excitation filter, a 

CFP/YFP dual-band beam splitter (51017bs; Chroma) and two emission filters (470/30 for CFP 

and 535/50 for YFP) that were controlled by a filter wheel. Before the time-lapse imaging, the 

DRAQ5-stained nuclei of the cells were imaged. Typically, ten frames were recorded as a 
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baseline before stimulation in order to estimate signal stability and to normalize single cell 

traces. The xCELLence software was used to carry out time-lapse imaging with 3 min interval 

over 5 hours. 

 

2.4.2.4 Cross-contamination assay 

 

In order to evaluate the cross-contamination between spots in close proximity that might be due 

to the diffusion of DNA-lipofectamin 2000 transfection complex or cell migration, microarrays 

were printed with two plasmids encoding ECFP and EGFP in an alternating pattern and dried in 

a gel drying box in the presence of drying pearls at room temperature. Afterwards, 65x10
-4

 cells 

suspended in a culture media were seeded onto a printed glass coverslip 1-well LabTek and kept 

growing at 37 
◦
C in an incubator for 48 h. Prior to microscopy experiment, transfected cells were 

incubated with 7.5 nM DRAQ5 according to manufacturer’s protocol to improve cellular 

segmentation. The transfected cells were monitored on an Olympus IX83 microscope using a 

10x objective, two excitation filter (436/20 for CFP and 492/18 for YFP), a CFP/YFP dual-band 

beam splitter (51017bs; Chroma) and two emission filters (470/30 for CFP and 535/50 for YFP). 

For DRAQ5-stained nuclei imaging I used the excitation filter 635/20 and emission filter 

6654LP. 

 

2.4.3 Image processing  
2.4.3.1 FRET quantification 

The single image of a nuclei channel and the time-lapse series of CFP and FRET channels 

acquired from different positions were exported as separate TIFF files. The images were 

analyzed with FIJI (Schindelin et al., 2012) and FluoQ (Stein et al., 2013). The FIJI-based macro 

developed in-house was used to preprocess and multiply nuclei image and subsequently 

concatenate all channels together. This macro produced a single tiff file containing three 

channels: binary mask of nuclei (repeated 100 times), FRET and CFP channels obtained from the 

same position. The file containing three channels was further analyzed with the FIJI-based macro 

FluoQ as illustrated in Figure 2.1. Although cells express different amount of FRET biosensors I 

used image analysis pipeline that automatically account for a low expressing cells that are close 

to background cellular fluorescence. In order to subtract background I used a histogram-based 

“Triangle” algorithm to calculate the mean of the thresholded background that was subsequently 
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subtracted from each pixel. Next, image smoothing with a median filter (radius size = 2) was 

applied and the images were transformed to a 32-bit float. Cells were automatically segmented 

by using binary mask created by Huang's fuzzy thresholding method. The signal intensity that 

was equal or close to intensity of the background was set as NaN value due to Huang's fuzzy 

thresholding. This image analysis pipeline automatically accounts for a very low expressing cells 

and avoided erroneous FRET ratios. The nuclear binary mask was used to for cell segmentation 

by the voronoi algorithm. In order to define ROIs the particle analyzer, a build-in FIJI plugin, 

was applied to the binary image of segmented cells. Although acquired images contain 

information of the subcellular activity I simplified image analysis pipeline in order be able to 

analyze 13900 images (more than 5000 cells) from a single experiment in a reasonable time 

window by averaging the intensity of FRET, CFP and FRET ratio over each ROI. However, 

significant compartmentalized signaling fluctuations might be averaged out. In all experiments, 

single-cell traces were normalized to the of the FRET ratio from before stimulation. The output 

file in a text format that was produced by FluoQ contained all measured parameters, statistical 

summaries. 

 

2.4.3.2 Automated cell counting 

 

In order to count transfected cells FIJI-based macro were developed. Briefly, All channels were 

smoothed applying the median filter (radius = 3). Subsequently, the local maxima in nuclear 

images were determined with output type set as a point selection (noise tolerance = 3). Next, the 

CFP and GFP channel images were thresholded (min = 33050, max = 36863) and converted to 

the binary mask. Afterwards, the build in command imageCalculator (“AND create”) was used to 

find the maxima in the nuclear channel corresponding to the area of transfected cells. Finally, the 

macro provided the text file that contained the number of detected cells in nuclear, CFP and GFP 

channels. The further data and statistical analysis were performed using the R software for 

statistical computing and graphics (Team, 2012). 

 

2.4.4 Western blotting 

 
To determine the phospho-AKT and phospho-ERK dynamics, I seeded the HeLa Kyoto cells on 

60 mm dishes (5x10
5
/dish). After 24 hours, the culture media were changed to starvation media  
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Figure 2.1 Image analysis pipeline of an in-house developed macro FluoQ. 
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(see above) at least 12-17 h prior to the beginning of the experiment. The cells were next treated 

with 100 ng/ml EGF. At the indicated time points, the plates were washed two times with ice 

cold PBS and the cells were lysed in RIPA buffer supplemented with protease inhibitors and 5 % 

(v/v) β-mercaptoethanol. The cell lysates were immediately boiled on a preheated block at 95 
◦
C 

for 5 min and cooled down at room temperature (RT). Afterwards, the cell lysate was treated 

with the Benzonase Nuclease (1:100 dilution) and incubate at RT for 20 min. The clarified 

lysates were diluted in Laemmli sample buffer and proteins were separated by sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE), using the Mini-Cell electrophoresis 

system (Thermo Fisher), 12% resolving gel (Novex/Thermo Fisher) and voltage of 50 V for 30 

min followed by 100V for 2h in SDS running buffer (Novex/Thermo Fisher). Separated proteins 

were transferred to a polyvinylidene fluoride (PVDF) membrane in mini trans-blot cell (BIO-

RAD) filled with ice-cold transfer buffer using voltage of 100 V for 90 min. The membrane was 

blocked in TBST buffer containing 5 % (w/v) skim milk for 1 h at RT. Subsequently the 

membrane was incubated with specific primary antibodies from rabbit or mouse overnight at 4 

°C and washed three times in TBST for 10 min. For detection, the membrane was then stained 

with respective secondary antibodies conjugated with horse peroxidase and washed again two 

times in TBST for 10 min and once in TBS for 10 min. The electrochemiluminescence (Pierce 

ECL Plus) method were used according to the manufacturer’s instructions to visualize the 

protein of interest. 

 

2.4.5 RNA extraction, evaluation and sequencing 

 
Hela cells were seeded in 60 mm dishes pre-coated with gelatin to reproduce conditions similar 

to microarrays. Prior to stimulation cells were starved in the absence of serum overnight.  

Afterwards, cells were incubated with GFs for four hours. I lysed cells by the direct addition of 3 

ml of TRIzol (Life Technologies) after media removal. For RNA extraction lysates were treated 

with 0.6 ml chloroform (Sigma-Aldrich) for 3 min and centrifuged at 12,500 g for 15 min at 4 

°C. Aqueous supernatant was collected and diluted 1:1 with 70% ethanol. Total RNA was 

extracted from solution using RNeasy Mini Kit (Qiagen), following the manufacturer’s 

instructions and quantified using a NanoDrop spectrophotometer. RNA was used with 

A(260/280) nm ≥ 1.8 and A(260/230) nm ≥ 2.0. RNA quality was assessed using RNA 6000 

Nano chips on the Agilent 2100 Bioanalyzer. The library preparation, RNA sequencing and 
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reads alignment were performed by a Genomics Core Facility at EMBL. Sequencing was 

performed on Illumina NextSeq-500 instruments. 

 

 

 

2.4.6 Statistical and data analysis 

 
2.4.6.1 Outliers removal 

 

In each independent experiment, single-cell traces were cautiously examined for artificial 

intensity spikes in the CFP and FRET channels. Those spikes were due to lamp intensity 

fluctuation, cell division, cell movement and, in rare cases, cell death. Therefore, we have 

developed the automated algorithm that detected artificial intensity spikes and removed cell 

traces containing those spikes from further data analysis. First, the baseline and response values 

were smoothed by running median (width of median window = 5). Subsequently, the difference 

between real values and smoothed values was used to calculated sample quantiles. The quantile 

mean and standard deviation for baseline and response was calculated from the values belonging 

to the interval lying between 5
th

 and 95
th

 quantiles. Afterward, the z-score was calculated for 

each value of the baseline and response using quantile mean and standard deviation. Single cell 

traces containing z-score in the experimentally defined range (z-score ≥ 40 or z-score ≤ -40) 

were automatically removed. After removal single cell traces containing spikes, the mean 

baseline (formula 2.1), the standard deviation of the baseline (formula 2.2), the slope of the 

baseline (formula 2.3), the mean (formula 2.4), maximum (formula 2.5) and minimum (formula 

2.6) response were calculated for each single-cell trace.  Those features were subjected to the  
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algorithm that classifies an outlier if it falls outside the interval defined in the following formula: 

 

[ ̃        ̃     ̃       ̃        ̃      ̃     ] 

 
Once any feature of a particular single-cell trace was detected as an outlier, the cell was excluded 

from the analysis. 

 

2.4.6.2 Synergy score  

 

In order to calculate an interaction mode between two stimuli for each signaling molecule (or 

FRET biosensor), single-cell traces first were normalized by dividing each time point with the 

mean baseline ( ̅        ) and with the mean value of untreated cells (x_mock) at each time 

point followed by a subtraction of 1. Afterwards, area under the curve (AUC) was computed for 

each single-cell trace (formula 2.7). In order to determine if the data is well modeled by a normal   

        ∑ (
 ̃ 

       
  )

      
    , where  ̃  

  

 ̅        
 (2.7) 

distribution this data normality was analyzed using Shapiro-Wilks test and Q-Q-plots. Then, the 

area under the curve was averaged for the corresponding sensor and stimulus. The error for 
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calculated additive response was estimated by computing standard error of the mean. The 

expected response upon co-stimulation was calculated by the simple addition of the AUC mean 

of individual treatments. The combined error was estimated by an error propagation of the 

individual standard errors of the mean applying a Variance formula (Ku, 1966). In order compare 

the experimental and expected (calculated) additivity the means of two groups were subjected to 

Student’s two sample t-test and subsequently obtained P-values were corrected for multiple 

testing (Benjamini and Hochberg, 1995). I defined the ‘synergy score’ as the difference between 

the experimental and expected (calculated) additivity. In order to simplify visualization, the 

synergy score was scaled to the maximum synergy score observed for a FRET biosensor, giving 

a value that ranges from −1 (antagonism) to +1 (synergy). 

 

2.4.6.3 Analysis of RNA-Seq data 

 

The count matrix was generated by a Genomics Core Facility at EMBL using STAR software 

(Dobin et al., 2013). Mapping rate was more than 70% for all samples. DESeq2 package (Love et 

al., 2014) was used to perform differential expression analysis of the treated cells vs. untreated 

cells comparison. A Wald test was used to determine the significance of fold change between 

experimental groups for the genes of interest. To analyze  KEGG pathway enrichment, the R 

packages org.Hs.eg.db (Carlson, 2017) and gage (Luo et al., 2009) were used. 

 

2.4.6.4 General statistical analyses and data visualization 

 

 

Unless otherwise stated, a FRET biosensor response is represented as normalized FRET ratio 

mean of all individual cells from identical conditions +/- SEM where the SEM is calculated from 

all cells in all experiments with identical conditions. In order to compare and cluster FRET 

biosensor dynamics the maximum observed FRET ratio value of each biosensor were 

additionally used for normalization. 

 

Data visualization 

The data was visualized using the R package ‘ggplot2’ (Wickham, 2009) or the heatmap2 

function of the R package ‘gplots’ (Warnes et al., 2012). 
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 Clustering 

Hierarchical clustering was performed using the heatmap2 function of the R package ‘gplots’. 

The R package ‘kml’ (Genolini et al., 2015) was utilized to perform k-means clustering with k =  

6 or 4. The synergy score matrix was hierarchically clustered with the Euclidean metric and the 

Ward linkage. 

 

Principal component analysis (PCA) 

The prcomp function with centering and scaling of the program R was used to perform PCA 

analysis. PCA was performed on X x Y matrix, where Y is different FRET biosensors each with 

X that included: a) time points and cell lines; b) time points, stimuli and stimuli doses.   
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Chapter 3 – Results and discussions 

 

3.1 FRET-based multi-parameter imaging platform (FMIP) as a tool to 

study intracellular signaling networks 

 

Intracellular signaling networks are formed by the interplay of hundreds of proteins and second 

messengers. They are able to reliably receive and process information from extracellular 

environment to adjust a cellular state appropriately. The investigation of signal encoding and 

decoding mechanisms by a signaling network is hampered by dynamic features of distinct 

signaling events, the diverse forms of signals (molecular interactions, post-translational 

modifications (PTMs), subcellular localization) and the complexity of signaling network 

architecture (chapter 1.3). Only the simultaneous quantitative monitoring of a large number of 

the signaling events in a single living cell with high temporal resolution will allow us to 

understand signal transduction mechanisms and the function of a living cell. Following this 

evident need, several high-throughput approaches have been developed to measure the diverse 

set of signals at a single-cell level including flow (Bendall et al., 2012) and mass cytometry 

(Giesen et al., 2014), microfluidics (Cheong et al., 2009), single-cell Western blot (Hughes et al., 

2014) and fluorescence lifetime imaging microscopy on cell arrays (CA-FLIM) (Grecco et al., 

2010). Although these single cell assays provide advantages including multiplexed 

quantification, most of the methods are based on endpoint measurement resulting in limited 

information on dynamic changes. Importantly, these assays are focused on a collection of signals 
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of a particular form such as the protein-protein interaction, the phosphorylation state or the 

subcellular localization. While powerful, such system-level methods require assumptions and 

approximations to interpret the acquired data. For example, a single phosphorylation state or 

another PTM approximation is used to estimate protein activity, which is not necessarily valid in 

every case (de la Cruz-Herrera et al., 2015; Liu et al., 2014). One way to overcome this problem 

would be to use several high-throughput approaches and combine different types of information 

together. However, such experimental design would dramatically increase the total cost of the 

experiments as well as raise the issue of data integration from diverse assays that is not always 

computationally trivial. 

 

Another way to rapidly measure signaling dynamics inside living cells is to use FRET 

biosensors. Since FRET efficiency strongly depends on the distance between and relative 

orientation of two fluorophores, the FRET biosensor methodology is very successful at 

monitoring conformational change of the protein under observation ( chapter 1.5). The synthetic 

design of a FRET biosensor is therefore able to report on different types of signaling events 

including protein-protein interactions, PTMs, concentration of second messengers and, most 

importantly, protein activities (not merely abundance at the single live cell level) in real-time 

(Newman et al., 2011). Additionally, a single FRET biosensor can be successfully used in high-

throughput experiments in combination with siRNA screening (Bakal et al., 2008). Thus, FRET 

biosensors are a toolset that in principle permits the activity of multiple signaling pathways to be 

followed over time at the single-cell level.  

 

However, the number of FRET biosensors that can be used in the same cell is limited by their 

extended occupation of the available spectral regions and cell tolerance to the expression of 

many exogenous genes that prohibits extensive multiplexing at the single cell level (Miyawaki, 

2003; Welch et al., 2011). To overcome those limitations and increase high-throughput capacity 

we have devised a method for imaging a large number of FRET biosensors in a single 

experiment. This platform described here is based on reverse transfection microarrays that allow 

collecting quantitative information in real time with high reliability and sensitivity (Kuchenov et 

al., 2016; Neumann et al., 2006; Ziauddin and Sabatini, 2001). The FRET-based multi-parameter 

imaging platform (FMIP) employs LabTek chambers printed with library of plasmids encoding 
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various FRET biosensors along with the transfection agent lipofectamine 2000 (Figure 3.1). All 

spots were equally spaced with a distance between spot centres of 1125 µm. Each spot contains a 

single plasmid encoding one FRET biosensor. Although seeded cells are able to attach to the 

whole surface of a glass slide only cells attached to the printed spots are transfected with a FRET 

biosensor. In principle this design allows fabricating a cell microarray transfected with up to 384 

plasmids encoding distinct FRET biosensors.  

 

 

Figure 3.1 FRET-based multi-parameter imaging platform (FMIP).  Figure is adapted from 

(Kuchenov et al., 2016) 

 

By combining microarray technology with time-lapse imaging of FRET biosensors I was able to 

analyze the dynamics of multiple signaling pathways in living HeLa, MIN6, H838 and H195 

cells. Use of an automated microscope equipped with a filter wheel allows images of the CFP 

and FRET channels to be aquired from one spot in about 1.3 s. Therefore the temporal resolution 

can be adjusted by the number of spots. Typically, 40 spots were imaged every 50 sec or 140 

spots were imaged every 3 min over 2 or 5 hours, respectively. However, various imaging and 

cellular parameters such as light intensity, exposure time, FRET biosensor expression, photo 

toxicity, cell type determine the temporal resolution and duration of imaging. Therefore imaging 

settings have to be optimized for each particular experimental design and cell line. Details of the 

optimization are described in the next sections. 

 

3.1.1 Transfection optimization  

 

The previously described transfection mixture for microarrays containing Opti-MEM (Piljic et 

al., 2011) might perturb the signaling network under observation due to the presence of 
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biologically active compounds such as insulin, transferrin, hypoxanthine, thymidine, and other 

trace elements. Therefore I first tested whether imaging buffer or DMEM that have a defined 

chemical composition are able to substitute Opti-MEM in the transfection mixes. Surprisingly, 

substitution of Opti-MEM with imaging medium or DMEM significantly increased the efficacy 

of reverse transfection that was observed after 24 hours (figure 3.2). These results indicate that 

DMEM is a very efficient Opti-MEM substitute suitable for reverse transfection. Therefore, 

DMEM was used as a substitute of Opti-MEM in the process of reverse transfection 

optimization. 

 

Figure 3.2 Substitution of Opti-MEM with DMEM or imaging buffer. (A) The reverse 

transfection efficacy in HeLa cells with the JNK and ERK FRET biosensors. Cells were 

observed 24 and 48 hours after transfection.  Data represent mean ± SEM (n = 4). (B)  

Representative images of HeLa cells transfected with the JNK FRET biosensor for 48 hours from 

(A). FRET biosensor is visualized with CFP channel (blue) and nuclei were stained with DRAQ5 

(red). 

 

Single-cell studies clearly indicate that cell-to-cell heterogeneity plays an important role in 

diverse biological processes such as early embryo development (Ohnishi et al., 2014) and cancer 

progression (Brock et al., 2009). Recently it was also suggested that signal transduction might 

not be uniform and coherent in cell populations, which also increases the complexity of the 
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system (Frechin et al., 2015; Tay et al., 2010; Yuan et al., 2011). In order to address this 

complexity by performing single cell variation analysis, large numbers of cell observations are 

needed in each experiment. Therefore I tested different spot surfaces such as gelatin, fibronectin, 

collagen and poly-L-lysine to define the best candidate for reverse transfection ( figure 3.3). This 

experiment showed that “collagen-only” and “Poly-L-lysine (PLL)-only” transfection mixtures 

were unable to form spots on the surface of a glass slide, leading to the absence of transfected 

cells. Although fibronectin has been reported as a potent accelerator of reverse transfection 

(Miyake et al., 2009) it only slightly facilitated the DNA delivery. Interestingly, gelatin mixed 

with collagen or fibronectin slightly decreased transfection efficacy. Overall, no considerable 

improvement of transfection efficacy was observed. Because gelatin is a mixture of different 

water-soluble proteins and other protein surfaces did not strongly increase transfection efficacy it 

was decided that gelatin would be the best matrix for a wide variety of cell types. 

 

Figure 3.3 The substitution of gelatin in transfection mixes. (A) Reverse transfection efficacy 

in HeLa cells expressing the JNK FRET biosensors. Cells were observed 48 hours after 

transfection. Data represent mean ± SEM (n = 4). (B)  Representative images of HeLa cells 

transfected with the JNK FRET biosensor for 48 hours from (A). Fret biosensor is visualized 

with YFP channel (yellow) and nuclei were stained with DRAQ5 (red). 
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As our final goal was to develop an assay that is suitable for distinct cell lines, reverse 

transfection efficacy was optimized by spotting transfection cocktails that contained different 

transfection reagents and plasmid/transfection reagent ratios in cell-imaging chambers (figure 

3.4).  

 

Figure 3.4 Transfection optimization. The reverse transfection efficacy in HeLa, H838, H1975 

and MIN6 cells expressing the ERK FRET biosensor. Cells were observed 48 h hours after 

transfection. Data represent mean ± SEM (n = 4).  

 

Although efficacy varied strongly between cell lines, the K2 and Lipofectamine 2000 

transfection agents showed the best transfection efficacy in all tested cell lines. Interestingly, 

increasing concentrations of both the K2 transfection agent and the plasmid encoding the ERK 

FRET sensor led to a decline in the transfection efficacy. In contrast, an important parameter for 

the lipofectamine 2000 is the transfection reagent/plasmid ratio. Overall, I did not observe a 
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significant difference between Lipofectamine 2000 and K2 transfection reagents whereas 

ScreenFect A demonstrated much less transfection efficacy. The combination of 11 µl of 

Lipofectamine 2000 with 3 µg of DNA demonstrated high transfection efficacy with moderate 

toxicity for most cell lines that were tested. Unexpectedly, I also noticed that transfection 

efficacy was 20 % - 30 % lower on cells that had been split earlier in comparison to other 

experiments when cell splitting was performed 24h before reverse transfection. I therefore tested 

whether splitting cells 24 hours before reverse transfection increases transfection efficacy. 

Indeed, I observed a significant increase in transfection efficacy if cells were trypsinized and 

seeded 24 hours before starting reverse transfection (figure 3.5). This step most probably helps to 

avoid cell aggregation (or clumps) and enriches cells that are in the active proliferative state.  

 

Figure 3.5 The influence of the splitting time before reverse transfection on efficacy. The 

reverse transfection efficacy in HeLa and H838 cells expressing the ERK FRET biosensor. Data 

represent mean ± SEM (n = 4).  

 

 

With this information in hand, I further determined the optimal transfection conditions when 

cells were split 24 hours before reverse transfection. Several liposomal-based reagents were 

compared for their transient transfection efficiency of H838 and HeLa cells (figure 3.6 A). 

Among these transfection reagents, lipofectamine 2000 achieved higher transfection efficiency 

than the other liposomal reagents tested. Although transfection efficacy using 20 µL of 

lipofectamine 2000 and 5 µg of DNA was slightly higher in HeLa cells, H838 cells did not show 

this improvement in comparison to transfection mixture containing 11 µL of lipofectamine 2000. 

Moreover, by using 11 µL of lipofectamine 2000 and 3 µg of DNA, I achieved the transfection 

rate that allowed monitoring an average of 27-150 cells (depending on the cell line and FRET 
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biosensor) in a single experiment (figure 3.6 C). Interestingly, counting the total number of cells 

indicated low variability in the number of attached H838 cells between conditions (figure 3.6 B). 

However, HeLa cells were more sensitive to reverse transfection conditions.  

 

Figure 3.6 Efficacy optimization when cells were split 24 hours before reverse transfection. 
(A) Transfection efficacy in HeLa and H838 cells expressing the ERK FRET biosensor. Data 

represent mean ± SEM (n = 4). (B) Total number of cells attached to a spot. Data from (A) 

represent mean ± SEM. (n = 4) (C) Images showing the compatibility of the chosen transfection 

conditions with a variety of adherent cells. Cells were transfected with the ERK FRET biosensor 

using 11 µL of lipofectamine 2000 and 3 µg of DNA. Scale bar, 200 µm. 

 

Thus, this method is applicable to various cultured cell lines and suitable to perform single cell 

variation analysis. Importantly, it is highly advisable to optimize reverse transfection for a 
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particular cell line by seeding cells on the microarrays with various transfection conditions. For 

these experiments, seeding cells 24 hours in advance of transfection, culturing on gelatin, using 

11 µL of lipofectamine 2000 and 3 µg of DNA and using DMEM instead of OptiMEM were 

considered the best conditions to achieve an adequate number of transfected cells. 

 
Figure 3.7 Cross-contamination analysis. (A) Microarray of HeLa cells printed with plasmids 

expressing either CFP (blue) or GFP (yellow) in an alternating pattern (scale bar, 500 µm.). 

Bottom, higher magnification image of four spots from the array (scale bar, 300 µm.). (B) 

Quantification of cells expressing CFP and/or YFP on a spot containing CFP plasmid from (A). 

Data represent mean of all spots ± SD. (180 spots, three independent experiments). Figure is 

adapted from (Kuchenov et al., 2016). 

 

Because printed spots in cell-microarrays are not physically separated, the microarrays may 

suffer from spot-to-spot contamination due to lateral diffusion of the spotted test compounds or 
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cell migration upon reverse transfection. By modifying the transfection protocol we might 

influence parameters facilitating cross-contamination. In order to examine whether cells within 

one spot would become contaminated with plasmids or cells from spots in vicinity, we printed 

imaging chambers with two plasmids encoding ECFP and EGFP in an alternating pattern (Figure 

3.7 A). 

Upon seeding HeLa cells on these microarrays we observed a high level of green fluorescence on 

EGFP-transfected spots and vice versa high level of cyan fluorescence on ECFP-transfected 

spots (Figure 3.7 A). The number of cells with blue fluorescence was eighteen times greater than 

the number of cells expressing EGFP on spots printed with the plasmid encoding ECFP (Figure 

3.7 B). Therefore, we demonstrated that under our optimized transfection conditions good local 

segregation of transfected cells to the original spot was achieved. 

 

3.1.2 Monitoring EGF signaling network activity and platform validation 

 

In order to validate whether the FMIP was able to reliably report the time-dependant activity of 

the signaling network under observation we focused on the well-characterized epidermal growth 

factor (EGF) signaling (Lemmon and Schlessinger, 2010; Wagner et al., 2013). In these 

experiments HeLa or H838 cells were seeded on Labteks printed with plasmids each encoding 

one of the 58 previously described FRET biosensors (table 2.1). The transfected cells were 

observed using a wide field microscope by acquiring sequential images of the CFP and FRET 

channels for 30 min (a baseline) before and for over 4 hours after stimulation with EGF. The 

microscope setup allowed capturing the fluorescence of both channels every three minutes from 

140 spots. As expected, treatment with EGF induced signaling through Ras/ERK and PI3K/Akt 

pathways in HeLa cells (Figure 3.8 A). Although we observed the activation of Ras/ERK and 

PI3K/Akt signaling pathways in H838 cells, the dynamics of RSK, PDK1 and S6K activity were 

altered in comparison to HeLa cells, most probably due to difference in the cell line specific gene 

expression (Figure 3.8 B). Upon subjecting dynamics of protein activity to hierarchical 

clustering, we identified at least 3 classes of response patterns: strong, moderate and weak 

(Figure 3.8 C). Interestingly, the dynamics of Ras, ERK and RSK (the Ras\ERK pathway) were 

clustered together whereas the PDK1, Akt and S6K (the PDK1/Akt/S6K pathway) dynamics 

belonged to clusters with weak, moderate and strong responses, respectively. These results show 
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that information within the same pathway may encode distinct dynamics. With our platform we 

also showed that EGF-induced signaling is concentration dependent (Figure 3.8 D). We observed 

that different doses of EGF influenced not only the amplitude but also the signaling dynamics. 

For example, 100 ng/mL EGF induced strong sustained activation of PKA whereas cells 

stimulated with 50 ng/mlL EGF responded with transient dynamics of PKA activity. In contrast, 

the RhoA 2G FRET biosensor showed different correlation to the concentration of EGF: a strong 

sustained response was induced by 100 ng/mL EGF whereas RhoA was transiently active after 

treatment with 50 ng/mL EGF (Figure 3.8 D). 

 

One of the key advantages of the FMIP is that it produces data with single cell resolution. 

Analysis of single cell trajectories revealed pulsatile activity of ERK (12.5 ng/mL EGF) and Src 

(100 ng/mL EGF) that would not be possible to observe using other methods measuring 

responses at the population level (Figure 3.9 A). In recent studies it was reported that ERK can 

show such pulsatile activity depending on the concentration of EGF or confluences from the 

environment (Albeck et al., 2013; Aoki et al., 2013). Also, it was shown that local mechanical 

forces induced a wave of Src activity in live cells (Wang et al., 2005). Moreover, a theoretical 

study suggests that under curtain parameters Src can have pulsatile and oscillatory activity, 

explaining the results observed by Wang et al. (Kaimachnikov and Kholodenko, 2009). In our 

study, we observed pulsatile activity of ERK and Src in a fraction of cells and under certain 

conditions, suggesting that the variations are of biological relevance and not due to technical 

reasons.  

 

In order to estimate the reproducibility of the data generated with our platform. we calculated the 

coefficient of variation. The average coefficient of variation (CV) of spots over all time points 

after stimulation was 5.5%; the average CV of replicate spots over time was 6.5%; and the 

average CV across replicate experiments over time was 7.3%. The low value of CV confirmed 

the very high data reproducibility between independent experiments. As expected, single cell 

responses have increased CV (CV < 30 %) due to heterogeneous responses of cells in the same 

experiment (Figure 3.9 B and C).   
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Figure 3.8 EGF-induced signaling in HeLa and H838 cells. (A) EGF activates Ras/ERK and 

PI3K/Akt signaling in HeLa cells. Cells were treated with 100 ng/mL EGF. (B) EGF induced 

Ras/ERK and PI3K/Akt signaling in H838 cells. Cells were treated with 50 ng/mL EGF.  Cells in 

(A) and (B) were stimulated at time 0. Data represent mean ± SEM of four (HeLa) and three 

(H838) independent experiments. C) Hierarchical clustering of EGF-induced signaling dynamics 

in HeLa cells. Dynamic responses are clustered into 3 groups: week (green), moderate (blue), 

and strong (red). Data from (A) is normalized to non-treated cells and represent a mean response. 

D) Concentration dependent EGF signaling in HeLa cells. Figure is adapted from (Kuchenov et 

al., 2016) 
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Figure 3.9 Heterogeneous cellular responses. (A) Pulsatile activity of ERK and Src after 

treatment with 12.5 ng/ml (left) and 100 ng/ml EGF (right), respectively. (B) Coefficient of 

variation of HeLa cell responses in a single experiment. Cells were stimulated with 100 ng/mL at 

time 0. (C) Single cell responses from (B). Figure is adapted from (Kuchenov et al., 2016). 
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The heterogeneous cellular response might be due to differential expression of FRET biosensors. 

I therefore estimated the changes in the expression by observing CFP intensity as the 

approximation of biosensor expression over the course of imaging. In most cases fluorescent 

intensity increased in both CFP and FRET channels, indicating changes in the expression of 

FRET biosensors (Figure 3.10 A). However, as previously described, the FRET/CFP ratio is 

more stable in comparison to CFP and FRET channels, demonstrating an advantage of using 

FRET biosensors that provide internal control for the expression level over translocation or 

intensiometric sensors (Thestrup et al., 2014). In order to estimate the influence of biosensor 

expression on the signaling responses I further compared maximum responses between 

individual cells that differently expressed the amount of a biosensor. The scatter plots and the 

Kendal’s tau correlation coefficient (Figure 3.10 B and C) strongly demonstrate a weak or no 

correlation between the maximum of FRET/CFP ratio value and expression of FRET biosensor 

after EGF stimulation, except the Ras FRET biosensor (Kendal’s tau correlation coefficient r = 

0.33, p <0.0001). Overall, the data suggest that the FMIP assay is able to monitor multiple 

signaling events without significant perturbation by FRET biosensor overexpression in a single 

experiment. 

 

3.1.3 FMIP applied to various experimental designs 

 

Potentially the FMIP allows monitoring of intracellular signaling with different experimental 

designs and under various conditions of physiological relevance. We also believe that our 

platform is suitable for the screening of therapeutic targets or drug candidates to profile and 

evaluate potency as well as off-target effects. Although we explicitly demonstrated the ability to 

monitor growth factor signaling network after stimulation with EGF, one might speculate this 

was possibly due to the downstream amplification of the signal. We therefore confirmed the 

ability of the platform: (i) to profile the perturbation of EGF signaling caused by constitutively 

active EGFR harbouring L858R/T790M double mutation and by the MEK inhibitor (AZD6244, 

Selumetinib); (ii) to monitor fatty acids dependent DAG signaling. 
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Figure 3.10 The impact of the FRET biosensor expression level on cellular signaling. (A) 

Examples of FRET biosensor expression dynamics. Color reflects the channel: CFP, red; FRET, 

green; and CFP/FRET ratio, blue. Cells were treated with imaging medium at time 0. Data 

represent mean ± SEM (n = 3) (B) Examples of scatter plots comparing the expression and 

maximum response in each cell. HeLa cells were stimulated with 100 ng/mL EGF (n > 65, 

depending on the FRET biosensor). Expression levels were approximated by averaging donor 

channels (CFP) before stimulation. r: Kendal’s correlation coefficient. p: p-value. (C) Kendal’s 

tau coefficients between FRET biosensor expressions and the maximum of normalized response 

to EGF in HeLa cells. Brackets show p-value. 
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3.1.3.1 Monitoring EGF signaling perturbations caused by EGFR mutations 

and a clinically relevant inhibitor 

 

The development of cancer involves protein mutations that cause aberrant signaling 

supporting the proliferation and survival of cancer cells. Proper therapeutic intervention into 

cancer cell signaling may reverse the course of the disease or prevent its further progression. 

Therefore measuring the signaling state across multiple disease settings will open the possibility 

to study aberrant signaling and to improve current as well as the development of novel therapies. 

In order to challenge our platform in such an application we first tested the ability of the FMIP to 

detect perturbations in EGFR signaling network activity caused by the clinically relevant MEK 

inhibitor (AZD6244) (Bekaii-Saab et al., 2011). In these experiments microarrays with HeLa 

cells were pre-stimulated with 100 ng/mL EGF and after 69 min of imaging the cells were 

treated with 5 µM AZD6244. As expected, we observed a strong decrease in ERK and RSK 

activity after the MEK inhibitor was added in comparison to DMSO-treated cells (Figure 3.11 

A). In contrast, we did not observe significant changes in the activity of EGFR, Ras, Cdc42, 

FAK, Rac or Abl between AZD6244 and DMSO treated cells (Figure 3.11 C). Unpredictably, we 

also observed a strong decrease in the activity of PKA activity and a significant increase in JNK 

activity after the MEK inhibitor AZD6244 was added to the cells (Figure 3.11 B). Whereas it 

was earlier shown that ERK inhibition causes activation of JNK (Monick et al., 2006), the 

decrease in PKA activity cannot be readily explained. Although we cannot rule out potential off-

target effects of the inhibitor, we found in the literature that RSK is able to interact with the 

catalytic subunit of PKA and decreases the ability of cAMP to activate PKA (Gao and Patel, 

2009). In contrast, our data suggest a more complex interplay between PKA and RSK such as 

mutual regulation of RSK and PKA by the Ras/ERK signaling pathway or potentiation of one 

signaling molecule by the other in the presence of EGF. 
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Figure 3.11 Perturbation of EGF signaling network by the MEK inhibitor AZD6244. 
Examples of (A) strong, (B) moderate and (C) no effect on the EGF signaling are shown. Cells 

were pre-stimulated with 100 ng/mL EGF at time 0 and treated with DMSO or MEK inhibitor (5 

μM) after 69 min. Data represent mean ± SEM (n = 3). Figure is adapted from (Kuchenov et al., 

2016) 

 

Activating RTK mutations are often associated with cancer development. To further test whether 

the FMIP is able to detect signaling perturbations caused by pathophysiologically relevant RTK 

mutations, we profiled EGF signaling in cell lines derived from adenocarcinoma (H1975) or its 

metastatic variety (H838) of patients with non-small cell lung cancer. H1975 cells express EGFR 

carrying the activating mutation L858R and the resistance mutation T790M. In order to 

characterize perturbations initiated by the EGF receptor carrying constitutively active (L858R) 

and erlotinib-resistant (T790M) mutations, we also profiled EGF signaling in H838-EGFRmut 

cells that exogenously express EGFR derived from H1975 cells. We observed that H838-

EGFRmut cells failed to activate Src, PKA, AKT and RSK in response to EGF stimulation 

whereas ERK, S6K, and Abl were activated with much lower amplitude compared to wild type 

H838 cells (Figure 3.12 A).  
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Figure 3.12 Changes of the EGF signaling network by constitutively active EGFR carrying 

L858R and T790M mutations. Examples of (A) strong, (B) moderate and (C) no effect on the 

EGF signaling are shown. Cells were stimulated with 50 ng/mL EGF at time 0. Data represent 

mean ± SEM (n = 3). Figure is adapted from (Kuchenov et al., 2016) 

 

Interestingly, exogenously expressed constitutively active EGFR altered the dynamics of PDK1, 

RhoA and JNK activation as well as the dynamics of histone phosphorylation (Figure 3.12 A and 

B). In contrast, the responses of Cdc42, FAK and Rac to EGF treatment were not significantly 

changed in H833-EGFRmut cells (Figure 3.12 C). By subjecting the generated signaling data to 

principal component analysis (PCA), we further compared the global response after 50 ng/mL 

EGF treatment in H838 and HeLa cells expressing wild type EGFR as well as in H1975 and 

H838-EGFRmut cells expressing constructively active EGFR (Figure 3.13). 
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Figure 3.13 Comparison of global signaling responses. H838, H838-EGFRmut, H1975 and 

HeLa cells were treated with 50ng/mL EGF. The matrix with 340 rows (85 time points, and 4 

cell lines) and 14 columns (FRET biosensors) was subjected to PCA. Each dot represents a time 

point and ovals indicate 90 % of time points of the same cell line. Figure is adapted from 

(Kuchenov et al., 2016) 

 

Interestingly, the PCA in figure 3.13 shows that global EGF signaling in HeLa cells is localized 

far apart from H838, H838-EGFRmut and H1975 cells, which indicates strong cell line 

dependent differences.  As expected, time points of EGF-stimulated H1975 and H838-EGFRmut 

cells were clearly clustered together suggesting that EGF signaling in exogenously (H838-

EGFRmut) and endogenously (H1975) expressing constitutively active EGFR cells have a high 

degree of similarity in comparison to H838 cells expressing wild type EGFR (Figure 3.13). 

Overall, the EGFR activation in H838-EGFRmut and H1975 cells after stimulation with 50 

ng/mL EGF gave rise to lower signaling amplitudes or much altered dynamics compared to 

control H838 cells expressing wild type EGFR. Although the same signaling molecules were 

activated in HeLa and H838 cells, their dynamics were significantly different most probably due 

to altered gene expression. In general, using the FMIP we demonstrated that unbiased profiling 

of global signaling network activity offers quantitative information to assess the degree of 

perturbation induced by clinically relevant mutations. 

 

 

 

 

 



Chapter 3 – Results and discussions 

______________________________________________________________________________ 

74 

 

3.1.3.2 Monitoring fatty acid dependent diacylglycerol induced signaling  

 

Diacylglycerols (DAGs) are second messengers consisting of two fatty acids that are covalently 

attached through an ester bond to glycerol. DAGs are important for the signaling of different 

RTK including EGFR (Crotty et al., 2006; Wang et al., 2006).  Recent studies in the Schultz 

group showed that the fatty acid composition in DAGs can modulate the local Ca
2+

 signaling 

response (Nadler et al., 2013). We therefore hypothesised that the fatty acid composition of DAG 

could also affect the downstream DAG signaling. Taking advantage of our platform, we profiled 

a large portion of the RTK signaling network upon treatment of HeLa cells with DAGs 

containing various fatty acids: stearyl-linoenyl glycerol (SLG), stearoyl-arachidonyl glycerol 

(SAG), and 1,2-di-O-octanoyl glycerol (1,2-DOG) (Figure 3.14 A).  

 

 

Figure 3.14 Fatty acid composition dependent DAG signaling. (A) Structures of DAGs used 

in this work. (B) Signaling dynamics induced by DAGs. 

 

Importantly, a FRET biosensor based on the C1β domain of PKCβ enables quantification of the 

amount of DAG on the inner leaflet of the plasma membrane (Stein, 2014). This sensor strongly 

responded to all DAGs albeit with distinct dynamics that were transient and dependent on the 

specific fatty acid composition. The DAG biosensor indicates the prolonged presence of 1,2-

DOG with short unnatural fatty acids in comparison to other DAGs containing long natural fatty 

acids (Figure 3.14 B). In contrast, SLG induced a highly transient response of the DAG 

biosensor (Figure 3.14 B).  
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The observed difference in the dynamics of the DAG biosensor could be caused by two 

scenarios: 1) fatty acid dependant membrane permeability of DAGs; or 2) differences in the 

metabolic rate of the different DAGs. Using the C1-GFP biosensor, previous studies 

demonstrated that responses induced by the uncaging of protected 1,2-DOG and SLG were 

slightly different from responses upon adding free 1,2-DOG and SLG to the medium (Stein, 

2014). Although slight differences between caged and free SAG were observed, aforementioned 

study suggests that there is an effect of fatty acid composition on the permeability of DAGs 

detected in the first 2 min. Indeed, Figure 3.14 shows that FRET/CFP-ratio maximum for all 

DAGs is achieved within a few minutes after free lipids were added to the medium, indicating 

quick diffusion and cell penetration for all DAGs, so scenario 1) above can be ruled out. Thus, 

use of the DAG FRET biosensor demonstrated that there is a different rate of metabolism 

depending on the fatty acid composition of diacylglycerols that is in a good agreement with a 

previous study from our group (Nadler et al., 2013). 

 

We also observed a strong difference between SAG, SLG and 1,2-DOG in downstream 

signaling. The most potent signaling was initiated by unnatural 1,2-DOG that strongly activated 

ERK, RSK, FAK and S6K (Figure 3.14 B). In contrast, while SLG concentration was clearly 

increased, we did not detect the activation of downstream signaling in HeLa cells treated with 

this diacylglycerol (Figure 3.14 B). Moreover, although SAG induced the most transient 

response of the DAG FRET biosensor among all DAGs tested, SAG treatment led to the stronger 

activation of ERK, FAK and S6K in comparison to SLG (Figure 3.14 B). Together, this data 

strongly suggest that the fatty acid composition of DAGs modulates the rate of metabolism and 

downstream signaling.  

 

3.1.4 Conclusions and Outlook 

 

A GF signaling network is one of the cellular machineries that constantly encode information 

from extracellular cues and decodes it into specific cellular responses (Lemmon and 

Schlessinger, 2010). In order to reliably perform this essential task, a signaling network that 

consists of chemically diverse molecules utilizes signals of a distinct nature such as 
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concentration, chemical modifications, binding, subcellular localization and enzymatic activity 

(Landry et al., 2015). Importantly, dynamic properties including delay, duration, amplitude or 

fold change of these signaling events are also employed to transmit information along signaling 

pathways (Purvis and Lahav, 2013). Understanding of signaling network operation is impeded by 

the lack of approaches enabling the simultaneous detection of chemically diverse molecules and 

signaling events at the systems level. In this work, we have developed a FRET-based multi-

parameter imaging platform (FMIP) that allows monitoring signaling events of diverse nature at 

the single cell level with high-temporal resolution in a single experiment. The unique 

combination of reverse transfection microarrays and FRET biosensor technologies allowed 

monitoring the activity of many signaling molecules in living cells that are under identical 

conditions. The latter led to higher reproducibility in comparison to a single FRET biosensor 

experiments. As a proof a principle we imaged 40 FRET biosensors over 5 hours with the help of 

this platform. To acquire the same data from a single FRET biosensor experiments it would take 

200 hours of imaging on a microscope, which is also labor-intensive. Although each FRET 

biosensor is expressed in different cells, we were able to perform multidimensional analysis of 

the signaling network activity in different cell lines with statistically significant cell numbers. 

We believe that this platform will prove to be a useful tool for investigating diverse signaling 

networks including growth factors, cytokines, hormones and GPCRs. 

 

To highlight the utility of the FMIP we experimentally demonstrated the potential application of 

the FMIP for the characterization of targets and off-targets of the clinically relevant MEK 

inhibitor (AZD6244). Our approach recapitulated known AZD6244 effects on EGF signaling and 

identified novel signaling interplay. For example, AZD6244 dramatically abrogated the ERK and 

RSK signaling as well as unexpectedly inhibiting PKA activity. One possible explanation is that 

the PKA activity is regulated by RSK.  In support of this notion, it was previously shown that 

RSK is able to directly bind to PKA (Chaturvedi et al., 2006). However, later the same research 

group reported that RSK attenuated PKA activity (Gao and Patel, 2009). Although we are not 

able to exclude effects due to the signaling network architecture and/or the level of gene 

expression between HeLa and B82L cells, we believe that the observed differences might be 

explained by the experimental design. Whereas we detected PKA activation upon EGF 

stimulation, in the aforementioned studies the PKA activity is observed in the presence of slowly 
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metabolized cAMP analogue (8-pCPT-cAMP) (Gao and Patel, 2009) suggesting a low sensitivity 

of the assay. We therefore suspect that the experimental design in our study is relevant to 

physiological conditions. Thus, our observation suggesting a complex interplay between RSK, 

ERK and PKA upon EGF stimulation raises two important questions: (1) how does RSK 

potentiate PKA activity, and (2) is this complex interplay between RSK and PKA common for 

other cell types. Such questions will be investigated in future experiments.  

 

Furthermore, using the FMIP we were able to profile perturbation caused by the constitutive 

active EGF receptor (EGFRmut) carrying clinically relevant mutations (L858R and T790M). We 

demonstrated much decreased responses in cells expressing EGFRmut in comparison to wild 

type cells, most probably due to increased basal activity. Our platform in combination with PCA 

allowed the multidimensional analysis of the signaling network activity. This analysis revealed 

the strong similarity between exogenously and endogenously EGFRmut-expressing cells. 

Surprisingly, the FMIP coupled to PCA could also visualize cell line dependent differences 

between non–small cell lung cancer cell lines and the cervical adenocarcinoma cell line. We 

believe that such largely unbiased profiling of signaling network activity in living cells will be a 

valuable approach to characterize and study disease-causing and network-perturbing mutations.     

 

Receptor activation leads to the multiple amplification steps of downstream signaling. One might 

argue that the platform would fail to detect immediate signaling events without an amplification 

step. To test the FMIP under such conditions we investigated how the fatty acid composition of 

diacylglycerols (DAGs) affected downstream signaling. The platform was able to detect not only 

different dynamics of DAG metabolism but also a dramatic diversity in downstream signaling 

response depending on the fatty acid composition. Our data suggest that fatty acid composition 

might modulate DAG signaling at three related yet conceptually different levels: 1) regulating 

the rate of metabolism; 2) tuning signaling by DAG metabolites such as free fatty acids and 3) 

tuning the affinity to direct DAG effectors including PKC. Further investigations and 

experiments are needed to decouple the relative contribution of each level into DAG signaling 

and to study their downstream effects on the signaling network activity. 
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In the future, this platform can be extended further by coupling it with any assay that can be 

detected by fluorescence microscopy. For example, FRET biosensors could be combined with 

translocation probes to multiplex the detection of several signaling events in the same cell (Regot 

et al., 2014). Additionally, the unique design of the FMIP enables its integration with recently 

developed techniques for signaling manipulation such as perfusion systems, optogenetics or 

caged molecules that allows precise control over extracellular environment and protein or lipid 

activity, respectively (Nadler et al., 2013; Toettcher et al., 2013). Moreover, our platform can be 

used in combination with siRNA libraries, which unlocks the possibility for kinome- or genome-

wide perturbation of the signaling network. Thus, further development of this platform by 

expanding its functionality will enable deeper insights into the basic principles of signal 

transduction.  

 

Our approach has several limitations. First, we expect low transfection efficacy for most primary 

cells that, generally, are difficult to transfect. However, the platform can be improved employing 

lentivirus-based plasmid delivery which has demonstrated high rates of transfection for hard-to-

transfect cells (Bailey et al., 2006). Second, all results in this platform rely on FRET biosensors; 

for this work, we utilized FRET biosensors that were previously published and characterized. We 

believe that novel biosensors covering additional signaling parameters as well as new 

generations of existing sensors with improved dynamic range, sensitivity and selectivity will 

further advance the overall performance of the FMIP in the near future. 

 

3.2 Signaling network integration and processing of multiple 

extracellular cues  

 

Cells have an amazing ability to monitor and adapt to environmental changes, continuously 

deciding whether they survive, differentiate, undergo apoptosis or migrate. Although individual 

cytokine, growth factor and hormone signaling networks have been characterized in detail, the 

understanding how cells, using a limited number of signaling components, integrate and process 

information from numerous external cues is one of the major challenges of cell biology. This 

question is also relevant for clinical research since overexpression or spontaneous activation of 

various receptors as well as perturbations of downstream signaling components due to mutations 
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are well-known mechanisms for the development of cancer and drug resistance (Arteaga and 

Engelman, 2014; Duncan et al., 2012; Pazarentzos and Bivona, 2015). Additionally, it has been 

shown that complex tumor micro-environments could influence therapeutic response (Junttila 

and de Sauvage, 2013; Straussman et al., 2012). Therefore, the understanding of basic principles 

of processing multiple extracellular cues and their dysregulation in diseases will expand and 

improve current therapeutic strategies for intervention in various diseases including cancer.   

 

We hypothesized that cells encode signals from multiple extracellular cues through the dynamics 

of signaling network activity and later decode this information into gene expression and, finally, 

cell fate decisions. It was earlier proposed that a plausible mechanism of signal transduction is 

through signaling interaction among pathways such as synergy and antagonism (Chatterjee et al., 

2010; Hsueh et al., 2009; Natarajan et al., 2006). Those regimes are unique and are not 

predictable from the individual components of a signaling network and/or the individual 

treatments with a single cue (Chatterjee et al., 2010). Only the combinatorial stimulation with 

simultaneous quantitative monitoring of signaling network events will allow us to understand the 

integration of information from multiple cues and the function of signaling networks in living 

cells. Such extended data sets will reflect the complexity of the cellular signaling networks, but 

are labor-intensive to generate in a comprehensive fashion by conventional approaches. 

 

 

 

3.2.1 Overview of the approach 

 

We sought to study the processing of multiple extracellular cues in a biologically relevant 

context. In this thesis, I considered the signaling interaction between RTK networks for the 

following reasons: (1) individual RTK signaling networks (or GF signaling networks) are 

relatively well-studied (Hill et al., 2016; Wagner et al., 2013), (2) RTKs signal through a shared 

set of signaling molecules yet can have distinct biological functions in vivo (Vasudevan et al., 

2015), and (3) aberrant RTK signaling is involved in various diseases including cancer 

(Verstraete and Savvides, 2012; Wilson et al., 2012). I applied the FRET-based multi-parameter 

imaging platform (FMIP, see chapter 3.1) to monitor key RTK signaling network components 
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with high temporal resolution in living cells. This unique experimental system is able to monitor 

multiple RTK-induced signaling pathways including survival (PI3K/AKT/S6K), mitogenic 

(EGFR/Ras/Raf/ERK), calcium (PKC, CaMKIIa, Calcineurin) and migratory (FAK, Src, Cdc42, 

Rac1, RhoA) signaling over 5 hours in a single experiment. As an experimental model we chose 

HeLa cells that are easily transfected and most importantly express the receptors of interest 

including EGFR, IGF-1R, c-Met, TNFR. We also believe that signaling characterization of HeLa 

cells will be valuable for the scientific community since these cells are relatively often utilized in 

signaling studies. In typical experiments HeLa cells were serum starved for 12-16 hours and then 

at time t = 0 min stimulated with one of 5 growth factor/cytokines or their combination. In order 

to study signaling network activity at the single cell level we typically identify four 

representative dynamic patterns for each FRET biosensor separately. To this end we pulled 

single cell traces from across all treatments together and subjected them to K-means clustering 

(Figure 3.15).  We used the cell proportions in those clusters as signatures of dynamic activity. 

 

 

Figure 3.15 K-means clustering of single cell S6K activation as representative example of 4 

clusters.  

 

 

Such a single-cell approach enables all-or-nothing or graduated responses to be distinguished. 

PCA was also used to decrease the dimensionality of the average data generated by the FMIP 

and to compare global signaling changes in an unbiased manner. One of the unique features of 

the PCA coordinate system is linearity that allows signaling interactions (synergy, additivity and 

antagonism) to be visualized. In addition, the unique combination of multi-parameter signaling 

data with PCA increases sensitivity to detect signaling perturbation in comparison to a single-

signaling event approaches. This is achieved because PCA coordinates are composed of linear 

combinations of multiple signaling network activity measurements. Thus, we were able to 
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characterize the signaling network activity at the single cell (K-means clustering) and population 

(PCA) levels.    

 

Figure 3.16 The identity of the extracellular cues specifies characteristic dynamic signaling 

responses in living HeLa cells. (A) Overview of GFs and cytokines signaling studied in this 

work. The Binding of EGF, TGFα, IGF-1, HGF, WNT5a, Gas6, PDGF and TNFα to their 

respective receptors is shown. (B) Distribution of FRET biosensors time series in response to 

various stimuli. HeLa cells were treated with 100 ng/ml EGF, 100 ng/ml TGFα, 100 ng/ml IGF-

1, 100 ng/ml HGF, 100 ng/ml WNT5a, 100 ng/ml Gas6, 100 ng/ml PDGF or 100 ng/ml TNFα. n 

> 50 cells for each sensor/stimulus pair. 

 

3.2.2 Single stimulus treatment experiments 

 

In order to select stimuli for combinatorial screening, we first performed single-stimulus 

experiments in which HeLa cells were stimulated with 100 ng/ml of PDGF, EGF, TGFα, IGF-1, 

HGF, Gas6 or WNT5a (Figure 3.16A). In order to verify that the signaling interaction is 

common mechanism of signal integration we also included TNFα which binds to the receptor of 

different protein family. Each of these signaling molecules binds to well-known receptors that 
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induce signaling that has been intensively characterized (Figure 3.16 A). Although PDGF, Gas6 

and WNT5a did not induce reliable signaling changes we detected strong responses upon 

stimulation with EGF, TGFα, IGF-1, HGF and TNFα (Figure 3.16 B). We observed a unique 

signaling network activity that was characteristic for each stimulus. For example, IGF-1 strongly 

activated the PI3K/AKT/S6K signaling pathway whereas EGF and TGFα induced stronger 

signaling through the Ras/ERK/RSK and Src/FAK pathways. Importantly, we could also detect 

dramatic signaling induced differences between EGF and TGFα that act through the same 

receptor, EGFR. In good agreement with previous studies, TGFα induced much stronger 

signaling responses in comparison to EGF (Ebner and Derynck, 1991; Francavilla et al., 2016; 

Scholler et al., 2017). Using PCA we were able to efficiently visualize the differential activation 

of signaling pathways as well as distinct signaling dynamics (Figure 3.17). The PCA clearly 

indicates that time points belonging to the same treatment are clustered together. Thus the GFs 

and cytokines are able to induce the specific responses that are efficiently visualized and 

distinguished in the PCA space. 

 

 

Figure 3.17 The identity of the extracellular cues specifies their location in PCA space.  

 

3.2.3 Pairwise treatment experiments 

 

We hypothesized that the cross-talk (signaling interaction) between GFs is not only dependent on 

identity of the GFs but most importantly on their concentration and/or ratio (relative amounts). 

To evaluate the signaling interactions we carried out pairwise treatment experiments using  
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Figure 3.18 Crosstalk of two growth factors shapes signaling dynamics. (A) Cross-talk 

between EGF and IGF-1 signaling networks. (B) Cross-talk between EGF and HGF signaling 

networks. (C) PCA of the average EGF and IGF-1 signaling interaction. (D) PCA of the average 

EGF and HGF signaling interaction. (E) PCA of the average EGF, TGFα, and IGF-1 signaling 

interaction. (F) PCA of the average EGF and IGF-1 signaling interaction in H838 cells. Each dot 

in PCA represents a single time point while the ovals indicate 95 % of time points of the same 

treatment. 
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different concentrations of GFs. The co-stimulation of HeLa cells with two growth factors 

showed concentration dependent features that are the combination of the signatures characteristic 

for individual treatments (Figure 3.18 A and B).  

 

A concentration dependent interaction was observed between EGF and IGF-1 as well as between 

EGF and HGF, indicating that this mechanism of signaling network tuning is a general way of 

signal integration from multiple growth factors in HeLa cells. Moreover, using PCA it can been 

seen that condition-specific network activity occupies a unique position in the PCA space 

(Figure 3.18 C and D). Surprisingly, the PCA clearly illustrates that the shift of time points 

belonging to the same combinatorial treatment is not proportional to the concentration or to the 

ratio of GFs (Figure 3.18 C and D). Importantly, although EGF and TGFα bind to the same RTK, 

EGFR, they have slightly different profiles of signaling interaction with IGF-1 suggesting that 

the interaction is also tuned by the identity of the stimuli that have unique signaling 

characteristics (Figure 3.18 E).  We also demonstrated that signaling interaction between EGF 

and IGF-1 occurs in H838 cells (Figure 3.18 F). Overall, the data strongly suggest that signaling 

interactions (antagonism, additively and synergy) are a common mechanism of a single system 

integration from multiple extracellular cues. 

 

3.2.4 Signal integration from the pair of extracellular cues. 

 

We hypothesized that the observed signaling interaction between two stimuli might be due to 

receptor cross-reactivity, downstream signaling amplification and/or inhibition as well as 

autocrine signaling. To study the integration mechanisms from two extracellular cues on the 

molecular level we calculated a synergy score (Ss) according to the following equation:  

 

The synergy score demonstrates the relative difference between the area under the curve for the 

combined response to stimuli A and B versus the area under the curve for both individual stimuli 

responses added together, normalized to the maximum absolute Ss for each FRET sensor 
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(Chatterjee et al., 2010; Kuchenov et al., 2016). This means that the synergy score is able to 

detect non-additive signaling interactions: namely synergy and antagonism. A positive Ss value 

indicates synergistic behavior between stimuli A and B whereas a negative Ss value suggests 

antagonistic or saturating behavior. At the same time Ss = 0 represents a purely additive response 

or the absence of response.  

 

Figure 3.19 Composite interaction map reflecting antagonism, additivity and synergy due 

to GFs signaling interaction. The matrix of synergy scores was hierarchically clustered with the 

Euclidean metric and the Ward linkage. All insignificant values (P value ≥ 0.05) are colored 

white. 

 

We created a composite interaction map to visualize signaling interaction modes between two 

stimuli (Figure 3.19 B). Interestingly, we observed that the interaction between 100 ng/mL EGF 

and 6.25 ng/mL HGF induced the strongest synergy in our data set (Figure 3.19 B). The 

strongest antagonistic affect was achieved between 100 ng/mL EGF and 100 ng/mL TGFα, most 

probably due to saturation of the signaling network activity. The hierarchical clustering of the 

map suggests that the signaling events can be clearly segregated in to at least two groups by 

synergy properties: synergistic and antagonistic responses. Surprisingly, the signaling interaction 

mode was dependent on the concentration of two stimuli that clearly explains the non-

proportional shift in the PCA space (Figure 3.19 B, dashed line selected area). For example, 100 

ng/ml EGF and 100 ng/ml IGF-1 strongly activate S6K although with distinct dynamics, but the 



Chapter 3 – Results and discussions 

______________________________________________________________________________ 

86 

 

combined action of the two is lower than that expected for their additive effect (antagonism). 

However, a decrease of either EGF or IGF-1 concentration induces the additive or synergistic 

effect in the S6K activation, respectively. In contrast, the interaction between 12.5 ng/ml EGF 

and 12.5 ng/ml IGF-1 induced a slightly antagonistic effect in S6K activation.  Thus, the 

interaction modes shape the response of each signaling component individually that in turn 

allows tuning global signaling responses. 

 

Figure 3.20 The dynamics of signaling interactions. HeLa cells were stimulated at time 0. 

Synergy score was computed for each time point and normalized to the maximum observed 

absolute value for each sensor separately. 

 

It is well-known that one of the characteristic features of cellular signaling is dynamics. It is 

therefore plausible that a signaling interaction between two stimuli would be highly dynamic as 

well. Thus we were anxious to use our data to evaluate the dynamic properties of signaling 

interactions. We calculated a synergy score for each time point separately and plotted it over 

time (Figure 3.20). Indeed, we observed highly dynamic properties of the signaling interactions. 

Surprisingly, the synergy score may change interaction mode over time illustrating a new level 

of complexity that has to be taken under consideration in future studies. For example, JNK 

activated by 100 ng/ml EGF + 100 ng/ml IGF-1 shows gradual decrease from negative to 

positive interaction mode. In contrast, under the same conditions Abl changes the synergy score 

from positive to negative.  
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3.2.5 Signaling interactions tune gene expression profile 

 

We next explored how paired signaling interactions may change gene expression profile in cells 

by focusing on the interaction between EGF and IGF-1 because (1) EGF and IGF-1 differentially 

activated signaling pathways (chapter 3.2.2) and (2) strong synergistic as well as antagonistic 

signaling interactions were also identified (chapter 3.2.4). Figure 3.21 shows the workflow of the 

mRNA sequencing (mRNA-seq) screen as it was performed. Briefly, HeLa cells were seeded on 

6 cm dishes previously covered with gelatin. Prior to stimulation cells were starved in the 

absence of serum overnight. Afterwards, cells were incubated under ten different conditions for 4 

hours: (1) untreated (Mock), (2) 6.25 ng/ml EGF, (3) 6.25 ng/ml IGF-1, (4) 12.5 ng/ml EGF, (5) 

12.5 ng/ml IGF-1, (4) 100 ng/ml EGF, (5) 100 ng/ml IGF-1, (7) 12.5ng/ml EGF + 12.5ng/ml 

IGF-1, (8) 6.25 ng/ml EGF + 100 ng/ml IGF-1, (9) 100 ng/ml EGF + 6.25 ng/ml IGF-1, (10) 100 

ng/ml EGF + 100 ng/ml IGF-1 (figure 3.21). These conditions were used to profile signaling 

interactions between EGF and IGF-1 in chapter 3.2.4. Afterwards, the cells were harvest by the 

direct addition of Trizol to the cells after media removal. DNase digestion was followed by total 

RNA isolation using the RNeasy Mini Kit. The total mRNAs library were purified and then 

subjected to the next-generation sequencing pipeline. 

 

Figure 3.21 Schematic overview of the RNA-seq screen performed with GFs. 
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The mRNA-seq screen was performed in independent triplicates and yielded a total of 11787 

differentially expressed genes (DEGs) compared to untreated cells (Mock) that have adjusted P 

value <0.05. The reproducibility of the screens was visualized by subjecting of the data to the 

PCA. Replicates of the same condition were clearly clustered together suggesting a good 

reproducibility between independent screens (Figure 3.22 A). PCA of gene expression also 

revealed pronounced changes between cells treated with low and high concentration of growth 

factors. As expected, the tendencies depicted by PCA of gene expression data are similar to PCA 

of signaling data (Figure 3.22 A and B). For example, “100 ng/ml EGF only” and “100 ng/ml 

IGF-1 only” treatments are clearly separated whereas the combinatorial treatment, 100 ng/ml 

EGF + 100 ng/ml IGF-1, is placed in between. However, we did not observe clear segregation of 

“100 ng/ml EGF only” and “100 ng/ml EGF + 6.25 ng/ml IGF-1” as well as “100 ng/ml IGF-1 

only” and “6.25 ng/ml EGF + 100 ng/ml IGF-1” conditions, most probably, due to low number 

of unique and/or differentially expressed genes under those conditions. 

 

Figure 3.22 Gene and signaling response dynamics after single or pairwise stimulation. (A) 

Principal component analysis (PCA) of the HeLa cell transcriptomes. (B) PCA of the HeLa cell 

signaling response.  
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Table 3.1: The DEGs identified for each condition vs Mock cells 

Condition Up-

regulated 

Down-

regulated 

Unique up-

regulated 

Unique down-

regulated 

total 

100 ng/ml EGF + 

100 ng/ml IGF 

4895 4235 567 615 9130 

100 ng/ml EGF + 

6.25 ng/ml  IGF 

4196 3421 206 247 7617 

6.25 ng/ml EGF + 

100 ng/ml IGF 

3423 2617 88 73 6040 

100 ng/ml EGF 3945 3113 105 119 7058 

100 ng/ml IGF 3401 2589 254 212 5990 

12.5 ng/ml EGF + 

12.5 ng/ml IGF 

2707 1824 167 186 4531 

12.5 ng/ml EGF 701 293 8 1 964 

12.5 ng/ml IGF 380 218 5 2 598 

6.25 ng/ml EGF 58 52 0 0 110 

6.25 ng/ml IGF 123 36 0 0 159 

 

 

Figure 3.23 Volcano plots of differentially expressed genes (DEGs). Genes at p < 0.01 are 

colored with blue. 
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Figure 3.24 Signaling pathway enrichment analysis of DEGs. Pathways at p < 0.01 are 

depicted. 



Chapter 3 – Results and discussions 

______________________________________________________________________________ 

91 

 

In order to visualize the difference between those conditions we identified condition specific 

genes. Interestingly, I was not able to achieve significant enrichment of unique genes under 

“EGF only” and “IGF-1 only” conditions of low concentrations (≤ 12.5 ng/ml) (Table 3.1). 

However, “12.5 EGF ng/ml + 12.5 ng/ml IGF-1” condition increased the number of condition 

specific genes (Table 3.1). Importantly, we also observed the boost of total differentially 

expressed genes upon co-treatment with EGF and IGF-1 of suboptimal concentration (12.5 

ng/ml) in comparison to individual GFs of the same concentration (Figure 3.23) suggesting 

strong interaction of EGF and IGF-1 under sub-optimal concentrations on the level of gene 

expression. In addition, analysis of biological process enrichment for genes that are differentially 

expressed after stimulation showed overrepresentation of signaling pathways common for all 

experimental conditions such as MAPK, neurotrophin and Toll-like receptor signaling pathways. 

In contrast, we were able to identify overexpression of signaling pathways under few conditions, 

for example VEGF signaling pathway is overexpressed after stimulation with 100 ng/ml EGF or 

co-stimulation 100 ng/ml EGF + 100 ng/ml IGF-1. A unique signaling pathway overexpression 

was also identified under one condition (ECM-receptor interaction pathway, 100 ng/ml EGF + 

100 ng/ml IGF-1). The comparison of gene expression profiles of cells treated with single and 

combined growth factors allowed us to define genes poised for expression in a condition-specific 

manner. Moreover, our data indicate that concentration and/or ratio of growth factors tune 

signaling network state through differential expression of genes involved into specific signaling 

pathways and cellular processes. Overall, these data suggest that the signaling interactions 

between EGF and IGF-1 that are of sub-optimal physiologically relevant concentrations 

potentiate responsiveness of the cells on the level of gene expression and also shape the signaling 

network state. 

 

3.2.6 Signaling interactions shape signaling response under quasi-

physiological conditions 

 

The physiological levels of GFs are much lower than the concentrations that are typically used in 

cellular signaling studies (Francavilla et al., 2016; Hill et al., 2016; Sigismund et al., 2005). A 

potential reason might be that the protocol usually used by the scientific community implements 

non-physiological procedures potentially influencing cellular signaling. For example, in the 
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majority of signaling studies, cells are starved overnight in the absence of fetal bovine serum 

(FBS) (Francavilla et al., 2016; Hill et al., 2016). It is broadly believed that the starvation of cells 

reduces basal activity, supports uniform cellular responses and is also dissecting for cue-specific 

signaling. At the same time our data strongly suggest that depending on the extracellular 

environment, the signaling network activity is tuned and in turn specifies the responses of cells to 

the GF treatment. Notably, we observed stronger response induced by pairwise treatment 

indicating higher responsiveness under such conditions. The responding FRET biosensors in our 

library are sensitive enough to monitor signaling in a single cell. We therefore reasoned that our 

FRET biosensor-based platform is overall more sensitive to changes in the activity of a signaling 

network over time in comparison to standard end-point population approaches such Western Blot 

and mass spectrometry. Thus, we hypothesized that under physiological condition when cells are 

exposed to the many extracellular cues of low concentrations, we would observe dramatically 

different signaling responses.  

 

To study the signaling under quasi-physiological conditions we focused on a suboptimal 

concentration of EGF. We used our platform to monitor EGF signaling in overnight serum 

starved and non-starved HeLa cells. As expected, non-starved HeLa responded with dramatically 

distinct dynamics (Figure 3.25 A). Surprisingly, the signaling response was much stronger in the 

presence 10% of FBS in comparison to starved HeLa cells. For example, we observed stronger 

activation of AKT, Cdc42, EGFR, ERK, JNK, PDK1, PIP3, Rac1, Ras and Src in non-starved 

cells. In contrast, we observed inhibition of RhoA in the presence of 10% FBS. Although RSK 

and S6K did not show stronger activation, their overall dynamics were distinct between starved 

and non-starved cells. This experiment suggests that supplementing with 10% of FBS tunes the 

signaling network state to achieve higher responsiveness of the cells to physiological levels of 

EGF.   

 

Next, using PCA we analyzed the global signaling response in starved and non-starved cells. 

PCA showed a clear separation between starved cells treated with range of EGF concentrations 

and non-starved cells, indicating that the presence of 10% FBS results in unique features of EGF 

signaling (Figure 3.25 B). Collectively, these data suggest that the molecular composition of  
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Figure 3.25 Quasi-physiological condition shape EGFR response. (A) Signaling responses to 

6.25 ng/ml EGF in the presence or absence of 10% FBS. HeLa cells were stimulated at time 0. 

(B) PCA of the average EGF response in HeLa cells. Each dot represents a single time point. 
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10% FBS potentiates responsiveness of the cells and most importantly shapes the EGF-induced 

signaling response under sub-optimal physiologically relevant concentration. 

 

 

3.2.7 Conclusions and Outlook 

 

Under physiological conditions mammalian cells are constantly exposed to numerous 

extracellular signals such as growth factors, cytokines and hormones. They are able to constantly 

monitor the identity and the concentration of extracellular cues and adapt their cellular state to 

the sudden physiological changes accordingly. This adaptation to the environmental changes is 

achieved through an intertwined signaling network that is composed of a limited number of 

components. The dynamic interplay between components of this signaling machinery is able to 

encode the extracellular information and regulate the specific cellular responses. Although 

individual cytokine, growth factor and hormone signaling networks have been characterized in 

detail, the understanding how cells, using the limited number of signaling components, integrate 

and process information from the numerous extracellular cues is not completely understood. In 

this work, we investigated the tuning of signaling network activity by multiple growth factors in 

living cells. 

 

Using our FRET-based multi-parameter imaging platform we profiled temporal changes in 

signaling network activity induced by the five ligands EGF, TGFα, IGF-1, HGF and TNFα. As 

expected, monitoring distinct signaling pathways including those relevant for survival 

(PI3K/AKT/S6K), mitogenesis (EGFR/Ras/Raf/ERK/RSK) and migration (FAK/Src; Cdc42/ 

Rac1/RhoA), we detected unique signaling network activity dynamics that were characteristic to 

specific extracellular cues (Ronan et al., 2016; Wagner et al., 2013). We also confirmed that 

although EGF and TGFα bind to the same receptor, EGFR, they induce distinct dynamic 

signaling through a network (Francavilla et al., 2016). Importantly, we observed different 

signaling dynamics between different epithelial cancer cells, HeLa and H838, treated with the 

same stimuli and concentration. This is consistent with previous work in which it has been 

shown that different epithelial cells have distinct cellular outcomes to the same combinatorial 

treatment (Miller-Jensen et al., 2007). The data supports the concept that each ligand-receptor 



Chapter 3 – Results and discussions 

______________________________________________________________________________ 

95 

 

pair differently controls a dynamic signaling program. In addition, we illustrated that a signaling 

response is unique for each cell line and is adjusted by internal cellular parameters such as 

protein abundance and/or signaling network connectivity.   

 

We further showed signaling cross-talk between two extracellular stimuli in HeLa cells. To this 

end we treated cells with two stimuli simultaneously to reveal crosstalk. Similar non-additive 

interactions between pairwise combinations of ligands have previously been observed in distinct 

human cells (Beyer and MacBeath, 2012; Borisov et al., 2009; Natarajan et al., 2006). Those 

interactions are crucial for the regulation of distinct cellular process such as proliferation, 

apoptosis and cytokine secretion (Janes et al., 2005; Martin et al., 2009). As expected, pairwise 

treatment induced combinations of dynamic signaling features that were characteristic of each 

individual combination of stimuli. Importantly, by employing PCA we observed non-linear 

global signaling responses that were clearly explained by three signaling interactions modes: 

additivity, antagonism or synergy. Altogether we observed about 52% of non-additive signaling 

interactions within the whole landscape of measured signaling parameters. Closely related 

receptors had a higher order of interaction compared to receptors belonging to more distant 

families. For instance, in our data set 56% of interactions between RTKs were non-additive 

whereas unpredicted signaling interactions between RTKs and TNFRs were about 35% non-

additive indicating that evolutionary closely related receptors employ highly overlapped 

downstream signaling effectors. The combinatorial extracellular code raises distinct dynamic 

signaling responses through signaling interaction modes. The identification of these signaling 

interaction modes raises important questions such as what is their physiological significance and 

how is the signaling interaction code interpreted or decoded on the level of gene expression? 

 

In good agreement with a previous study focused on the interaction of the single protein kinase 

ERK (Borisov et al., 2009), we showed for the first time at the systems-level that those 

interaction modes were stimulus concentration and/or ratio dependent across many signaling 

nodes. We propose that those concentration- and ratio-dependent signaling interactions are 

crucial for signal transduction under physiological conditions when cells are exposed to many 

extracellular signaling cues. The extracellular environment that is defined by the identity of the 

cues and their concentrations specifies the signaling network activity state. In support of this 
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hypothesis we showed the potentiation and, most importantly, the tuning of dynamic EGF 

signaling under quasi-physiological concentration in non-starved cells. Overall the present 

results suggest that under physiological conditions, in the presence of multiple signaling cues of 

low concentrations, the cellular signaling network is pre-activated and tuned to achieve specific 

strong responses to low concentrations of ligands. This is in contrast to the common use of high 

ligand concentrations in cellular signaling studies that rely on long term serum starvation. The 

underlying mechanism controlling the signaling activity state by multiple cues is not fully clear 

but it is linked to two coupled but conceptually distinct levels working at the different time 

scales: (1) protein abundance and network topology is controlled by gene expression and/or 

protein degradation that works in the order of hours and (2) the signaling activity as well as 

network connectivity is regulated through signaling cross-talk emerging in the order of seconds 

or minutes (Figure 3.26).  

 

 

Figure 3.26 Intracellular information processing from multiple cues. Two feedback loops 

acting at different time scales are highlighted in red. (1) The expression of signaling network 

components is regulated in the order of hours. (2) Signaling network activity is regulated in the 

order of seconds and minutes. 

 

The former mechanism of signaling network state regulation is relatively well studied in the 

context of protein overexpression and/or mutational status (Adlung et al., 2017; Hill et al., 2016; 

Li et al., 2017; Lun et al., 2017). However, the molecular mechanisms of signaling network 
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tuning and pre-activation by multiple extracellular cues in the order of minutes have not been 

clearly identified yet. In all likelihood, the tuning of the signaling network state by cross-talk is 

determined by kinetic parameters of the reactions (or network activity) and network component 

interactions (or network topology) (Kolch et al., 2015; Kuchenov et al., 2016; Purvis and Lahav, 

2013). It was also proposed that high rates of activation/deactivation cycle may increase 

sensitivity and kinetic proofreading (Lemmon et al., 2016). It therefore is plausible that similar 

mechanisms of increased sensitivity may occur under exposure to multiple cues of low 

concentrations. Thus it will be enlightening to determine whether similar mechanisms of 

increased sensitivity and proof reading occurs under exposure to multiple cues of low 

concentrations and further, how the feedback loops work together to shape the cellular response. 

The better understanding of signaling response tuning under physiologically relevant conditions 

may lead to the development of new pharmacological strategies for altering cell fate. 
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