
Aus dem
Deutschen Krebsforschungszentrum in Heidelberg

Abteilung Biostatistik
(Abteilungsleiter/in: Prof. Dr. Annette Kopp-Schneider)

Strategies for cancer clinical trials with multiple biomarkers.

Inauguraldissertation
zur Erlangung des Doctor scientiarum humanarum (Dr.sc.hum)

an der
Medizinischen Fakultät Heidelberg

der
Ruprecht-Karls-Universität

vorgelegt von

Christina Habermehl geb. Beisel

aus
Darmstadt

2017



Dekan: Prof. Dr. Wolfgang Herzog
Doktormutter: Prof. Dr. Annette Kopp-Schneider



In memory of my father.



Contents

List of Tables iv

List of Figures vii

List of Abbreviations viii

1 Introduction 1

1.1 Incorporation of biomarkers into clinical trial design . . . . . . . . . . . 1

1.1.1 What is a `biomarker'? . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Recent design approaches . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Clinical trial designs with multiple biomarkers . . . . . . . . . . 7

2 Fundamental Methods 15

2.1 Survival analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Cox proportional hazards model . . . . . . . . . . . . . . . . . 16

2.1.2 Signi�cance tests . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3 Sample size calculation for survival trials . . . . . . . . . . . . 21

2.2 Data generation for simulation studies . . . . . . . . . . . . . . . . . . 26

2.2.1 Generating survival time data . . . . . . . . . . . . . . . . . . 26

2.2.2 Generating missing at random data . . . . . . . . . . . . . . . 27

i



ii CONTENTS

3 Results 28

3.1 Development of a trial concept . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Biomarker-negative patients . . . . . . . . . . . . . . . . . . . 29

3.1.2 Design choices . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Strati�ed randomize-all design . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Data modeling and analysis . . . . . . . . . . . . . . . . . . . 33

3.2.2 Sample size calculation . . . . . . . . . . . . . . . . . . . . . 35

3.2.3 Simulation study: Heterogeneous treatment e�ects . . . . . . . 38

3.2.4 Data example . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Multiple biomarker hybrid design . . . . . . . . . . . . . . . . . . . . 58

3.3.1 Data modeling and analysis . . . . . . . . . . . . . . . . . . . 59

3.3.2 Simulation study: Small sample size bias . . . . . . . . . . . . 61

3.4 Flexible study designs . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4.1 Inclusion of a new biomarker-group . . . . . . . . . . . . . . . 73

3.4.2 Extension of the study design . . . . . . . . . . . . . . . . . . 74

3.4.3 Approaches for data analysis after adding a new biomarker-group 80

3.4.4 Simulation study: Comparison of models . . . . . . . . . . . . 81

3.4.5 What if B2 is not determinable retrospectively? . . . . . . . . . 84

3.4.6 Simulation study: Missing biomarker status . . . . . . . . . . . 88

3.5 Choice of strategy for subgroup analyses . . . . . . . . . . . . . . . . 99

3.5.1 Options for main focus �Proof of concept� . . . . . . . . . . . 101

3.5.2 Options for main focus �Individual biomarkers� . . . . . . . . . 106

4 Discussion 110

4.1 Sample size and overall treatment strategy . . . . . . . . . . . . . . . 111

4.2 Biomarker-negative patients and small sample bias . . . . . . . . . . . 113

4.3 Adding a new biomarker-group . . . . . . . . . . . . . . . . . . . . . 116



CONTENTS iii

4.4 Overall conclusion and outlook . . . . . . . . . . . . . . . . . . . . . 118

5 Summary 121

References 127

6 Appendix 129

Curriculum Vitae 148

Acknowledgement 149



List of Tables

3.1 Parameters for simulation study . . . . . . . . . . . . . . . . . . . . . 39

3.2 Numerical results for empirical sample size calculation . . . . . . . . . 41

3.3 Numerical results for the power comparison . . . . . . . . . . . . . . . 47

3.4 Check of asymptotic properties . . . . . . . . . . . . . . . . . . . . . 50

3.5 Hazard ratios with corresponding p-values for data example . . . . . . 57

3.6 Parameters for simulation study . . . . . . . . . . . . . . . . . . . . . 62

3.7 Mean number of events . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 Parameters for simulation study . . . . . . . . . . . . . . . . . . . . . 82

3.9 Overview of testing strategies for proof of concept . . . . . . . . . . . 105

3.10 Analysis options for main focus on individual biomarkers . . . . . . . . 109

A.1 Comparison of sample size . . . . . . . . . . . . . . . . . . . . . . . . 134

A.2 Numerical results for the power comparison using Schoenfeld . . . . . . 135

A.3 Numerical results for the power comparison using Lachin and Foulkes . 136

A.4 Numerical results for the power comparison using Lachin and Foulkes
(with sample proportion weights) . . . . . . . . . . . . . . . . . . . . 137

A.5 Type I error for the di�erent approaches and di�erent scenarios . . . . 138

A.6 Type I error for the di�erent approaches and di�erent scenarios with
Firth correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

iv



List of Figures

1.1 Randomized design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Enrichment design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Biomarker-based strategy design . . . . . . . . . . . . . . . . . . . . . 5

1.4 Biomarker by treatment interaction design . . . . . . . . . . . . . . . 6

1.5 Hybrid design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Basket trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Umbrella trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.8 Proposed biomarker-guided study design . . . . . . . . . . . . . . . . 14

3.1 Schematic study designs for multiple-biomarker trials . . . . . . . . . . 31

3.2 Schematic study design . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Comparison of sample size formulas . . . . . . . . . . . . . . . . . . . 40

3.4 Power of the exact log-rank test . . . . . . . . . . . . . . . . . . . . . 42

3.5 Power of the two-step approach . . . . . . . . . . . . . . . . . . . . . 43

3.6 Power of the lognormal shared frailty model . . . . . . . . . . . . . . . 44

3.7 Power of the strati�ed Cox PH model . . . . . . . . . . . . . . . . . . 45

3.8 Power of models for Palta and Amini's sample size formula . . . . . . . 46

3.9 Power of models for Schoenfeld's sample size formula . . . . . . . . . 48

3.10 Power of models for Lachin and Foulkes' sample size formula . . . . . 49

v



vi LIST OF FIGURES

3.11 Power of models for Lachin and Foulkes' sample size formula (with
sample proportions as weights) . . . . . . . . . . . . . . . . . . . . . 49

3.12 Role of hazard ratios exchanged . . . . . . . . . . . . . . . . . . . . . 51

3.13 Power of models for stronger strati�cation . . . . . . . . . . . . . . . 52

3.14 Power of models for minor random e�ect in data . . . . . . . . . . . . 52

3.15 Power of models for moderate random e�ect in data . . . . . . . . . . 53

3.16 Power of models for strong random e�ect in data . . . . . . . . . . . . 54

3.17 Sensitivity to misspeci�ed censoring distribution . . . . . . . . . . . . 54

3.18 Sensitivity to non-independent censoring . . . . . . . . . . . . . . . . 55

3.19 Sensitivity to misspeci�ed survival distribution . . . . . . . . . . . . . 55

3.20 Kaplan-Meier plots for event-free survival for AMLSG data . . . . . . . 56

3.21 Bias and standard deviation of β̂1 . . . . . . . . . . . . . . . . . . . . 64

3.22 Bias and standard deviation of β̂2 . . . . . . . . . . . . . . . . . . . . 65

3.23 Comparison of bias for di�erent baseline hazards . . . . . . . . . . . . 67

3.24 Comparison of bias and standard deviation of γ̂1 and γ̂2 . . . . . . . . 67

3.25 Bias and standard deviation of β̂1 for di�erent patient proportions . . . 68

3.26 Bias and standard deviation of β̂2 for di�erent patient proportions . . . 69

3.27 Survival distributions for di�erent shape parameters of Weibull distribution 70

3.28 Bias of β̂1 for Weibull distributed hazard function . . . . . . . . . . . . 71

3.29 Bias of β̂2 for Weibull distributed hazard function . . . . . . . . . . . . 72

3.30 Adding a new biomarker to an ongoing clinical trial . . . . . . . . . . . 74

3.31 Approach for strong evidence for negative e�ect on the response . . . . 76

3.32 Approach for weak or no evidence for e�ect on response . . . . . . . . 77

3.33 Approach for strong evidence for positive e�ect on the response . . . . 77

3.34 Considerations for biomarker-negative patients. . . . . . . . . . . . . . 78

3.35 Bias and standard deviation of β̂1, β̂2, and β̂1,2 for di�erent models . . 83

3.36 Bias for multiple imputation methods ignoring interactions . . . . . . . 90



List of Figures vii

3.37 Bias for multiple imputation methods using stratify approach . . . . . 91

3.38 Bias for multiple imputation methods using JAV . . . . . . . . . . . . 92

3.39 Standard deviation for multiple imputation methods using JAV . . . . . 93

3.40 Bias for multiple imputation methods with m=percentage of missing . 94

3.41 Bias for multiple imputation methods using JAV with data MAR . . . . 95

3.42 Bias for multiple imputation methods using JAV for tb=6 months . . . 97

3.43 Bias for multiple imputation methods using JAV when B2 is priority . . 98

3.44 Cyclical chain procedure . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.45 Proof of concept: Mixed chain procedure . . . . . . . . . . . . . . . . 102

3.46 Proof of concept: Serial chain procedure . . . . . . . . . . . . . . . . 103

3.47 Proof of concept: Multi-stage serial gatekeeping procedure . . . . . . . 104

3.48 Proof of concept: Testing group of subgroups . . . . . . . . . . . . . 105

3.49 Proof of concept: At-least-one strategy . . . . . . . . . . . . . . . . . 105

3.50 Focus on individual biomarkers: Mixed chain procedure . . . . . . . . . 106

3.51 Focus on individual biomarkers: Serial chain procedure . . . . . . . . . 107

3.52 Focus on individual biomarkers: Multi-stage serial gatekeeping procedure108

3.53 Focus on individual biomarkers: Testing group of subgroups . . . . . . 108

3.54 Focus on individual biomarkers: At-least-one strategy . . . . . . . . . . 109

A.1 RMSE of β̂1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.2 RMSE of β̂2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.3 Bias, standard deviation and RMSE of γ̂1 and γ̂2 . . . . . . . . . . . . 130

A.4 Comparison of standard deviation for di�erent baseline hazards . . . . 131

A.5 Bias for multiple imputation methods using JAV with τ=0.75 . . . . . 132

A.6 Bias for multiple imputation methods using JAV with τ = 2 . . . . . . 133



List of Abbreviations

AMLSG German-Austrian Acute Myeloid Leukemia Study Group
CC complete case
cf. confer
DKFZ Deutsches Krebsforschungszentrum (German Cancer Re-

search Center)
EGFR epidermal growth factor receptor
Exp experimental treatment
FLT3 �bromyalgia syndrome-like tyrosine kinase 3
HR hazard ratio
i.i.d. independent identically distributed
ITD internal tandem duplication
JAV just-another-variable
LR logistic regression
MAR missing at random
MCAR missing completely at random
MNAR missing not at random
MSE mean squared error
NPM1 Nucleophosmin-1
pdf probability density function
PH proportional hazards
PI passive imputation
PMM predictive mean matching
PLR polytomous logistic regression
RCT randomized controlled trial
RMSE root mean squared error
Std standard-of-care
vs. versus

viii



Chapter 1

Introduction

Molecular characterization of tumor tissue by omics technologies has been extensively

used to unravel the underlying biological mechanisms of cancer and to identify novel

predictive biological markers (`biomarkers'), expecting that biomarker-guided treat-

ment decisions for individual patients improve the e�ectiveness of these treatments.

This development imposes the need for new design and analysis concepts of clinical

trials that test multiple experimental medical interventions according to the molecular

phenotype of a patient in parallel.

1.1 Incorporation of biomarkers into clinical trial

design

Traditionally, clinical trials are subdivided into phases I, II, and III. After each phase a

decision is made whether the experimental treatment performed well enough to move

on to the next phase or, after phase III, if it can be approved for clinical use. However,

during the past decade the requirements for clinical trials have started to expand, indu-

cing a development away from the traditional trial setups such as a simple randomized

design (Fig. 1.1). New design concepts are being developed that aim to keep up with

the rapidly increasing number of potential biomarker-guided medical interventions that

1



2 CHAPTER 1. INTRODUCTION

need to be evaluated. This poses several challenges and di�culties for the design of

clinical trials. The traditional study designs require long time lines and usually only

evaluate one experimental treatment at a time. To evaluate the increasing amount

of potential medical interventions more e�ciently, various modi�ed trial designs have

been proposed that also address issues that can arise when incorporating biomarkers

into clinical trials.

Patients R

Exp

Std

Figure 1.1: Standard randomized design

1.1.1 What is a `biomarker'?

A biomarker is, as de�ned by the National Institutes of Health Biomarkers De�nitions

Working Group, �a characteristic that is objectively measured and evaluated as an indi-

cator of normal biological processes, pathogenic processes, or pharmacologic responses

to a therapeutic intervention� (Downing 2001). A biomarker can be something as sim-

ple as a patient's blood pressure or it can be more complex, like a certain mutation in

a cancer cell, or other characteristics which need elaborate laboratory testing (Strimbu

and Tavel 2010). A distinction is made between prognostic and predictive biomarkers.

Both are baseline characteristics, but while a prognostic biomarker categorizes patients

by the degree of the outcome of interest, a predictive biomarker categorizes patients

by the degree of response to a certain treatment or therapy (Gosho et al. 2012).

Prognostic biomarkers are associated with the outcome of a disease regardless of

the therapy which was used. While they make it possible to group patients by likely

outcome after treatment with standard therapy, they cannot be used to guide the

choice of treatment for a particular patient (Gosho et al. 2012). The validation of

prognostic biomarkers is rather straightforward and can usually be done retrospectively

(Mandrekar and Sargent 2009a). Predictive biomarkers, on the other hand, should

be validated through a prospective study. They are associated with the response to



1.1. INCORPORATION OF BIOMARKERS INTO CLINICAL TRIAL DESIGN 3

a certain treatment and hence, ideally, o�er the possibility to prospectively identify

patients who are likely to bene�t from a certain treatment (Mandrekar and Sargent

2009b). The goal of validating predictive biomarkers is to ultimately be able to select

an optimal therapy from several options (Mandrekar and Sargent 2009a).

Mandrekar and Sargent (2009b) state that if time and money are sparse, a retrospective

validation of a predictive biomarker can be considered. However, it is crucial to use

data from a randomized controlled trial (RCT) to ensure comparability of biomarker-

positive and biomarker-negative patients. Data from a non-randomized trial (e.g.

cohort or single-arm studies) are not suitable for this purpose, since causal e�ects

of the biomarker of interest on the treatment e�ect cannot be isolated from other

potentially confounding factors (Mandrekar and Sargent 2009b). The focus in this

thesis will be on prospective validation of predictive biomarkers.

1.1.2 Recent design approaches

Various design approaches have been proposed for predictive biomarker validation and

oftentimes, there is more than one term for a speci�c study design. For consistency

purposes, the following sections will use the terminology and de�nitions used by Mand-

rekar and Sargent (2009b).

One possibility to incorporate biomarkers into a clinical trial design and to investigate

a biomarker-guided therapeutic intervention are so-called enrichment designs. In

this type of design patients are screened for their biomarker pro�le as they enter the

study. If they test positive for the biomarker of interest they are included in the study,

otherwise they are excluded (cf. Figure 1.2). After this screening and selection step,

the study proceeds with the biomarker-positive patients only, who are then randomized

between an experimental therapy and standard of care. Hence, enrichment designs are

essentially simple randomized designs within a subpopulation with an added screening

step in the beginning of the study to identify patients belonging to the subpopulation

of interest.

The primary hypothesis of enrichment designs typically tests the clinical bene�t of

the investigated treatment in the biomarker-positive subpopulation only. Hence, this
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design should only be used if there is reliable evidence that only a subgroup of patients

will bene�t from the experimental treatment. Otherwise, a bene�t for the remainder

of the patient population may go undetected. An enrichment design is appropriate

Patients
Biomarker

assessment

B+

B−

R

Exp

Std

o�-study

Figure 1.2: Enrichment design

and ethical if an experimental therapy only has a moderate bene�t for the entire

population but a high toxicity or if inclusion of biomarker-negative patients is ethically

impossible based on �ndings of previous studies. Additionally, the assay reproducibility

and accuracy should be well established, i.e. the determination of a patient's biomarker

status should be reliable and reproducible (Mandrekar and Sargent 2009b).

Besides enrichment designs, there are also all-comers designs, where all patients

meeting the (non biomarker related) eligibility criteria are included in the study, in-

dependent of their biomarker status. There are di�erent types of all-comers designs,

including the biomarker-based strategy design, biomarker-by-treatment interaction de-

sign, hybrid design, and sequential testing strategy design (Mandrekar and Sargent

2009b).

Just as the name biomarker-based strategy design suggests, this type of design

aims to compare the strategy of a biomarker-guided treatment against randomizing

between experimental therapy and standard of care, independent of biomarker status

(cf. Figure 1.3). For this purpose, patients are randomized between biomarker-guided

and non-biomarker-guided strategy in the beginning of the study. Here, biomarker-

guided treatment strategy means that biomarker-positive patients are treated with the

experimental therapy and biomarker-negative patients with standard of care. This is

based on the assumption that only biomarker-positive patients bene�t from the expe-

rimental treatment under investigation. Patients in the non-biomarker-guided group

are randomized between experimental therapy and standard of care, without assessing
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their biomarker status.

Patients R

Marker-based

Non-marker-based

Biomarker

assessment

B+

B−

R

Exp

Std

Exp

Std

Figure 1.3: Biomarker-based strategy design

The biomarker-based strategy design primarily tests the di�erence in treatment out-

come between the two treatment strategies. There are some discussions regarding

the drawbacks of this type of design. In both arms there are biomarker-positive and

biomarker-negative patients receiving one of the two on-study treatments. This causes

an overlap of patient groups receiving the same treatment within the biomarker-guided

and non-biomarker-guided arms. Thus, this type of design is usually less e�cient than

other randomized designs (Mandrekar and Sargent 2009b). Additionally, the treatment

e�ect of the therapy and the prognostic e�ect of the biomarker cannot be distinguished

(Gosho et al. 2012).

An alternative design, which does not have this overlap issue, is the biomarker-

by-treatment interaction design, also called biomarker-strati�ed design. This

design compares the bene�t of the experimental therapy in the biomarker-positive

population against the bene�t in the biomarker-negative population. Just as for an

enrichment design, the patients are screened for their biomarker status upon entering

the study and are assigned to a biomarker-positive or a biomarker-negative group ac-

cordingly. Within these groups, patients are randomized between experimental therapy

and standard of care.

This type of design can be used if there is not enough evidence that the investigated

therapy only bene�ts the biomarker-positive population, as it investigates the experi-

mental therapy within the entire population, strati�ed by biomarker status (Mandrekar
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and Sargent 2010). The primary hypothesis of the biomarker-by-treatment interaction

Patients
Biomarker

assessment

B+

B−

R

R

Exp

Std

Exp

Std

Figure 1.4: Biomarker by treatment interaction design

design usually either tests the interaction between biomarker and treatment, or alter-

natively, it tests the treatment bene�t separately in each biomarker-group (An et al.

2012).

If it is not possible to treat biomarker-negative patients with the experimental therapy

due to ethical constraints, but one still wishes to collect data for these patients, one

could use a hybrid design, which is a mixture of the enrichment design and the

biomarker-by-treatment interaction design. This hybrid design randomizes biomarker-

positive patients between treatments, but rather than excluding the biomarker-negative

patients, they are kept in the study and treated with standard of care (cf. Figure 1.5).

Patients
Biomarker

assessment

B+ R

B−

Exp

Std

Std

Figure 1.5: Hybrid design

Mandrekar and Sargent (2009b) describe this design as similar to an enrichment design,

but providing additional value by including and collecting specimens and follow-up from

all patients. This allows using the collected data for retrospective testing for other

prognostic biomarkers later on. However, like the enrichment design, the primary



1.1. INCORPORATION OF BIOMARKERS INTO CLINICAL TRIAL DESIGN 7

hypothesis of the hybrid design only tests the bene�t of the investigated treatment in

the biomarker-positive population, and hence it is only powered to detect di�erences

in outcomes in this subpopulation (Mandrekar and Sargent 2009b).

In their paper, Mandrekar and Sargent (2009b) discuss another type of design to

investigate the treatment e�ect within the entire population as well as the biomarker-

positive subpopulation: the sequential testing strategy design. Its general design

is similar to a biomarker-by-treatment interaction design, but it allows testing in the

overall population as well as in the subpopulation and it is usually based on one of

two di�erent testing strategy options. If the experimental treatment is expected to be

broadly e�ective, it is tested in the entire population �rst and afterwards in the (pro-

spectively de�ned) biomarker-positive subpopulation. If there is strong prior evidence

that the e�ect of the experimental treatment is much stronger in the biomarker-positive

population, the treatment is tested in the subpopulation �rst (given that the investi-

gated biomarker has a su�cient prevalence). If the analysis within the subpopulation

yields signi�cant results, the entire population is tested as well (Mandrekar and Sargent

2009b). These strategies for testing in the overall as well as the subpopulation can

help to avoid that a subpopulation that bene�ts from a new treatment may go un-

identi�ed. This could happen when a new treatment is tested in the overall population

but only the biomarker-positive patients bene�t from the treatment, or if the treat-

ment is only tested in the biomarker-positive subpopulation but it would also bene�t the

biomarker-negative patients. For analysis strategies where two (or more) hypotheses

are tested, the issue of multiple testing can be addressed by utilizing so-called closed

testing procedures (Mandrekar and Sargent 2009b, Millen and Dmitrienko 2012).

1.1.3 Clinical trial designs with multiple biomarkers

The next step after incorporating a single biomarker into a clinical trial is to incor-

porate multiple biomarkers. The motivation behind trials testing multiple biomarkers

simultaneously is saving resources compared to running separate trials for each of the

biomarkers. Additionally, multiple biomarker trials o�er treatment options to a larger

percentage of patients who undergo a biomarker-screening, which makes the trial more

attractive to potential participants.
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Renfro and Sargent (2016) describe three di�erent approaches to multiple biomarker

trials, which they refer to as master protocols: trials that view biomarkers as a re�ne-

ment of a certain tumor type (umbrella trials) and trials that understand biomarkers

as a replacement of the tumor type and which therefore recruit patients independent

of histology (basket trials). Master protocols that �t neither of these descriptions are

referred to as platform trials. The detailed de�nitions of these three trial concepts can

slightly di�er, sometimes leading to a certain trial being classi�ed di�erently, depending

on the author. For consistency purposes, the following sections will use the de�nitions

of Renfro and Sargent (2016).

In their paper, Renfro and Sargent (2016) de�ne basket trials as trials which are

based on the hypothesis that certain biomarkers predict the response to a corresponding

treatment better than the tumor type. Therefore, patient eligibility is independent of

histology and the `baskets' patients are assigned to are de�ned solely by biomarkers

(Figure 1.6). Nevertheless, basket trials are typically not entirely independent of tumor

type - they can, for example, be restricted to solid tumor types.

Tumor A

Tumor B

Tumor C

Tumor D

Biomarker 1

Biomarker 2

Biomarker 3

Biomarker 4

Patients screened

Drug 1

Drug 2

1
Figure 1.6: Study scheme for a basket trial 1.

1
Adapted from https://www.bhdsyndrome.org/forum/bhd-research-blog/genetic-sequencing-approaches-to-cancer-clinical-trials
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Due to di�erent standard treatments across tumor types, basket trials usually do not

include randomization to a standard arm. Examples for basket trials are NCI MATCH

(Mullard 2015) and SIGNATURE (Kang et al. 2015), which are both still ongoing

(Renfro and Sargent 2016).

Basket trials can be described as �an e�cient way of screening experimental therapeu-

tics across multiple patient populations in early-phase drug development� (Mandrekar

et al. 2015). Hence, one advantage discussed by Renfro and Sargent (2016) is that

these trials o�er biomarker-guided treatment for a great variety of tumor types, often

even for rare tumor types for which a standalone (randomized) clinical trial would not

be possible.

While these advantages sound compelling, Mandrekar et al. (2015) criticize the un-

certainty that prevails regarding the statistical planning and analysis of basket trials.

Their main point of criticism is the lack of justi�cation of sample sizes, but they also

demand taking more measures to take into account the inter-patient and inter-tumor

heterogeneity. Additionally, they call for more awareness regarding multiple testing

issues. However, above all there is the major limitation as pointed out by Renfro and

Sargent (2016): The underlying assumption that biomarkers can predict response to a

targeted therapy independent of the tumor type is still just a hypothesis; not a proven

concept.

Umbrella trials on the other hand do not rely on this hypothesis, as enrollment is

generally restricted to one tumor type (Figure 1.7). Patients are centrally screened

and assigned to one of several biomarker-de�ned subtrials, which can be randomized

or single-arm. Examples for umbrella trials include FOCUS4 (Kaplan et al. 2013),

ALCHEMIST (Gerber et al. 2015), and LUNG-MAP (Ferrarotto et al. 2015). Again,

all of these studies are still ongoing (Renfro and Sargent 2016).

An advantage over basket trials that Renfro and Sargent (2016) point out is that

the restriction to a speci�c tumor type makes umbrella trials less susceptible to inter-

tumor heterogeneity. Additionally, inference regarding the considered tumor type can

be drawn more easily and, given there is randomization between the experimental

and standard treatments, prognostic and predictive e�ects of the biomarkers can be

investigated.
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Tumor A

Tumor B
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Biomarker 2

Biomarker 3

Biomarker 4

Patients screened

Tumor B
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Drug 2

Drug 3

Trial 1

Trial 2

Tumor C Drug 1

Drug 3

Drug 4

1Figure 1.7: Study scheme for an umbrella trial 2.

However, the restriction to a single tumor type can also be a disadvantage: if a rare

tumor is subdivided into even smaller biomarker-groups, there could be issues with

su�cient accrual and overall progress of the trial (Renfro and Sargent 2016).

Master protocols that do not �t either the basket or the umbrella type trials are referred

to as platform trials by Renfro and Sargent (2016). According to their de�nition,

platform trials typically comprise a randomized study design with common control arm

and many experimental treatment arms that are dynamically added to the study and

which can be closed again based on futility or e�cacy. Examples for platform trials are

SHIVA (Le Tourneau et al. 2015), NCI-MPACT (Do et al. 2015), the BATTLE trials

(Liu and Lee 2015), I-SPY2 (Park et al. 2016), and CUSTOM (Lopez-Chavez et al.

2015).

Unlike the aforementioned basket and umbrella trials, some of the listed platform trials

have already been completed. One of these trials is the SHIVA trial, whose design was

similar to a basket trial, i.e. patient accrual across di�erent tumor types, but it addi-

tionally included a randomized comparison between targeted therapy and physician's

2
Adapted from https://www.bhdsyndrome.org/forum/bhd-research-blog/genetic-sequencing-approaches-to-cancer-clinical-trials
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choice. The results of the SHIVA trial were published in 2015 by Le Tourneau et al.

(2015). They reported that they were not able to detect a signi�cant di�erence in

progression free survival of the targeted treatment strategy versus treatment with phy-

sician's choice. In their paper, they identify four key issues of their trial. Three are of

a more logistical nature: usage only of targeted agents marketed in France, treatment

with mostly single agents instead of combination therapy, and �nally, not being able

to revise the assigned therapy (to react to developments/mutations within a patients'

tumor). Beyond these three issues, they criticize that the treatment algorithm used was

`unidimensional', meaning that it did not take into account the potential interaction

of coexisting biomarkers with the assigned treatment (Le Tourneau et al. 2015).

Another completed platform trial is the CUSTOM trial, again with recruitment across

tumor types, where patients were assigned to one of several experimental therapies

according to their basket (Lopez-Chavez et al. 2015). Patients that could not be

assigned to one of the baskets were treated with standard of care and followed up until

death. Each basket was treated as an independent phase II trial, with at least 40%

response rate as primary endpoint. Lopez-Chavez et al. (2015) reported that one of

the investigated drugs achieved its primary endpoint, one other did not. For all other

drugs, completion of accrual was deemed unfeasible. According to the authors, the

main weaknesses of the CUSTOM study were the low patient numbers due to the low

prevalence of the chosen biomarkers and the lack of an adaptive design. In particular,

they would have liked to be able to react to the latest developments by adding new

biomarker-arms and/or new treatments to the ongoing study (Lopez-Chavez et al.

2015).

All types of master protocols discussed in this section are quite challenging to plan

and execute, since they require a close collaboration between �multiple industry, aca-

demic, regulatory, and community oncology stakeholders, often including participation

by multiple pharmaceutical companies providing drugs to the same trial� (Renfro and

Sargent 2016). The results of the screening need to be su�ciently reliable and the

screening process should be �nancially feasible. Still, the overall number of patients

that can be screened is usually limited, simultaneously limiting the number of patients

in the individual biomarker-groups. Therefore, it is advantageous to be able to o�er

experimental treatment to as many patients as possible. If available, o�ering an ex-
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perimental therapy to the biomarker-negative patients may help with accrual (Renfro

and Sargent 2016).

In summary, attention should be paid to expected sample sizes in the biomarker-

positive groups and inclusion of biomarker-negative patients should be considered when

appropriate. Another issue with master protocols, as discussed by Le Tourneau et al.

(2015) regarding the SHIVA trial, is that patients may qualify for more than one of the

biomarker-groups. Therefore, for these cases there should be clear rules regarding the

allocation to the biomarker-groups, possibly taking into consideration known interacti-

ons between biomarkers and treatments. Finally, due to the rapid developments in the

area of biomarkers and targeted therapies, master protocols should be �exible enough

to react accordingly, as Lopez-Chavez et al. (2015) concluded from their CUSTOM

study.
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Aims of this PhD Thesis

The goal of this thesis is to develop and examine the design and analysis of an umbrella-

type cancer clinical trial with a time-to-event outcome as primary endpoint. This

trial should comprise multiple biomarker-de�ned subgroups, each testing a distinct

experimental therapy versus standard-of care. The design should be �exible enough

to accommodate new biomarker-based subgroups as new information (from internal or

external data as well as from expert knowledge) emerges. Of primary interest is a proof

of e�cacy of the biomarker guided strategy versus standard of care, and evaluation

of speci�c multi-arm subgroups, which may be de�ned by prognostic risk or biological

functioning. The focus will be on three issues which arise in multiple biomarker trials.

The �rst issue considered is low prevalence of the biomarkers. As more and more

biomarkers are discovered, patient populations are further and further subdivided into

biomarker-de�ned subpopulations. Hence, the biomarkers of interest may have a preva-

lence that is too low to analyze the data for these subpopulations individually. For this

situation, it is aimed to investigate the evaluation of the biomarker-guided treatment

strategy rather than evaluating each group separately.

As a consequence of the low prevalence of the biomarkers, a large number of biomarker-

negative patients should be expected at the screening stage, which is the second

issue considered in this thesis. It is aimed to investigate whether inclusion of these

patients in the trial and the analysis provides additional bene�t, such as improvement

of power or reduction of bias.

The third issue considered is the constant discovery of new biomarkers and corre-

sponding biomarker-guided experimental therapies. It is aimed to be able to react to

these continuous developments by investigating options to add new biomarkers and

corresponding therapies to an ongoing study.

For this purpose an umbrella-type study design is proposed, where enrollment is re-

stricted to a single tumor type. Upon entering the study, each patients' biomarker

status is assessed with regard to the biomarkers included in the study (cf. Figure

1.8). According to these results, the patients are assigned to the respective biomarker-

de�ned groups or to a biomarker-negative group, if they cannot be matched with any
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1
Figure 1.8: Proposed biomarker-guided study design

of the biomarker-groups. If a patient is matched with more than one of the biomarker-

de�ned groups, guidelines should be available on how to proceed, possibly by assigning

di�erent priorities to the biomarkers, e.g. based on their prevalence or expected treat-

ment outcomes. Within the biomarker-de�ned subgroups, patients are randomized

between an experimental, i.e. biomarker-guided, therapy and standard of care. The

experimental therapies can di�er for each group. Due to the restriction to one tumor

type, standard of care is assumed to be the same across the biomarker-groups. The

biomarker-negative group can either simply be assigned to standard of care or may also

be randomized between an experimental treatment and standard of care. During the

course of the study, biomarker-arms may be added as new information and biomarkers

become available.



Chapter 2

Fundamental Methods

2.1 Survival analysis

This Section is largely part of a paper that has already been published. The relevant

passages have been taken verbatim from Beisel et al. (2017). Section 2.1.1.4 has

already been published in Habermehl et al. (2017).

For data arising from oncological clinical trials, the endpoint of interest is commonly a

survival- or time-to-event endpoint, such as overall survival or progression free survival.

Hence, survival analysis is an often used tool. Time-to-event means that a time until

a certain event happens is observed. A key di�erence to other types of data is the

so-called `censoring'. Censoring occurs when the event of interest has not occurred

by the time the follow-up ends or if a patient leaves the study prematurely. A patient

who was censored at time t is known to not having had the event until time t, but it

is not known if or when the event occurred after time t. The survival function, i.e.

the probability that a patient survives longer than time t, is commonly denoted by

S(t) = P (T > t). The hazard function or hazard rate

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)

∆t

is the instantaneous rate of experiencing the event of interest at time t given that the

patient has survived until time t (e.g. see Kleinbaum and Klein 1996).

15
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2.1.1 Cox proportional hazards model

In 1972, Cox suggested a proportional hazards (PH) model which models the hazard

function as

λ(t) = λ0(t) exp(βx), (2.1)

where λ0 is the baseline hazard, β is the treatment e�ect, and x the treatment indicator

(Cox 1972). As the name suggests, this model relies on the proportional hazards

assumption, i.e. the assumption that the hazard ratio is constant over time. The Cox

PH model is a common choice to model survival data to estimate the treatment e�ect

of an experimental therapy compared to standard of care.

2.1.1.1 Strati�ed Cox proportional hazards model

To take into consideration that the biomarkers in the study might be prognostic, the

baseline hazards of the biomarker-groups should be allowed to di�er. Hence, a strati�ed

Cox PH model (Kalb�eisch and Prentice 1980) may be a more suitable choice, where

each biomarker-de�ned stratum is allowed to have an individual baseline hazard. In the

strati�ed Cox PH model with a single covariate the stratum-speci�c hazard function is

modeled as

λi(t) = λ0i(t) exp(βx), (2.2)

where i = 1, 2, ..., s is the stratum indicator and λ0i(t) is the baseline hazard for

stratum i.

For the simulation studies in Section 3, the Cox PH model and the strati�ed Cox PH

model were applied using the R function coxph{survival}.

2.1.1.2 Two-step procedure

Mehrotra et al. (2012) suggested an alternative to the strati�ed Cox PH model for

the case of unequal hazard ratios. They developed a two-step approach which �rst

estimates the treatment e�ects within the strata separately and then combines them

via a weighted average to an estimate for the overall treatment e�ect:
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1. Estimate treatment e�ect β̂i for each stratum i individually, using an unstrati�ed

Cox PH model, separately �tted to each stratum.

2. Combine the treatment e�ect estimates for the strata to an overall treatment

e�ect by a weighted mean

β̂ =
s∑
i=1

ωiβ̂i,

with weights ωi (
∑s

i=1 ωi = 1).

These weights can, for example, be de�ned by the proportion of patients in the strata,

i.e. ωi = gi, where gi is the proportion of total sample size in stratum i. Under the

assumption of homogeneous treatment e�ects, using these weights for the strata gives

similar results to the strati�ed Cox PH model. Allowing to adjust the weighting of the

strata makes this procedure more �exible and can reduce the bias of the estimator in

the case of heterogeneous treatment e�ects (cf. Mehrotra et al. 2012). Hence, the

usage of this two-step approach is a possibility to use the Cox PH model in situations

when the assumption of homogeneous treatment e�ects across strata, which is made

by the strati�ed Cox PH model, is violated.

Note that the overall treatment e�ect β can be considered as the average bene�t of a

random patient sampled from a mixture distribution with weights ωi.

To calculate a Wald test statistic (the Wald test will be discussed in more detail in

Section 2.1.2.3), one also needs a variance estimate:

V̂ (β̂) =
s∑
i=1

ω2
i V̂ (β̂i),

where V̂ (β̂i) is the variance estimate for β̂i from the Cox PH model �tted to stratum i.

2.1.1.3 Frailty model

Another alternative to the strati�ed Cox PH model is the shared frailty model, a

type of random e�ects model (e.g. see Duchateau and Janssen 2007). Instead of

considering di�erent baseline hazards for the strata, this model extends the Cox PH
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model by including an unobservable random variable W which acts multiplicatively on

the common baseline hazard across all strata, λ0. For each stratum i the random

variable W achieves an outcome wi, i.e. this model assumes homogeneity within the

strata but heterogeneity across strata. The stratum-speci�c hazard function is modeled

as

λi(t) = wiλ0(t) exp(βx). (2.3)

The most common distribution choices for the frailty variable W are the gamma dis-

tribution and the lognormal distribution. The probability density function for the log-

normal distribution with E(Y ) = exp(γ/2) and V ar(Y ) = exp(2γ)− exp(γ) is

f(y) =
1

y
√

2πγ
exp

(
−(log y)2

2γ

)
, (2.4)

with γ > 0.

The probability density function for the gamma distribution with E(Y ) = 1 and

V ar(Y ) = θ is

f(y) =
y

1
θ
−1e−

y
θ

Γ
(

1
θ

)
θ

1
θ

. (2.5)

The shape and scale parameters of this gamma distribution are 1
θ
and θ, respectively.

The popularity of the Gamma distribution is mainly due to mathematical and com-

putational convenience, as it is easy to derive closed-form expressions of the survival

and hazard functions. The lognormal frailty model is more computationally intensive.

It requires the solution of numerical integrals, because there exists no closed-form ex-

pression of the marginal likelihood. With increasing computer power, the lognormal

distribution has become a popular alternative due to its close connection to random

e�ects and mixed e�ects models (Wienke 2010).

For the simulation studies in Section 3, the shared frailty model was applied using the

R function coxme{coxme}.
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2.1.1.4 Firth correction

Firth (1993) addressed the issue of bias of maximum likelihood estimates caused by

small sample sizes and rare events. To reduce this bias, he suggested using a penalized

likelihood based on a modi�ed score function. Heinze and Schemper (2001) formulated

the modi�ed score function, which is oftentimes referred to as Firth correction or Firth

penalty, for Cox regression:

U(β)∗ = U(β) + 0.5 trace
[
I(β)−1 {∂I(β)/∂β}

]
, (2.6)

where U(·) is the score function and I(·) is the Fisher information matrix. This

modi�ed score function is related to the penalized log likelihood function logL(β)∗ =

logL(β) + 0.5 log |I(β)|.

For the simulation studies in Section 3, the Cox PH model with Firth correction was

applied using the R function coxphf{coxphf}.

2.1.2 Signi�cance tests

There are several tests available to test the signi�cance of the estimated treatment

e�ect, i.e. to test the null hypothesis H0: β = β0 against the alternative hypothesis

H1: β 6= β0. The coxph procedure from the R-package survival, which can be used

for all of the analysis methods discussed above, gives 3 di�erent test statistics and

corresponding p-values: the score test, the Wald test, and the likelihood ratio test. In

the following, the focus will be on the former two.

2.1.2.1 Asymptotic strati�ed log-rank test

The strati�ed log-rank test statistic is given by

Z =

s∑
i=1

Oi − Ei√
s∑
i=1

V (Oi − Ei)
∼ N(0, 1), (2.7)
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where i = 1, ..., s are the strata, and

Oi − Ei =
∑
j

∑
k

(oijk − eijk), (2.8)

where j and k are the treatment groups and failure times, respectively, and oijk and

eijk are the observed and expected events at time k in treatment group j and stratum i.

For the simulation studies in Section 3, the asymptotic log-rank test was applied using

the R function survdiff{survival}.

2.1.2.2 Score test

If no other covariates are included in the model, and the single covariate in the model

is categorical, the score test is identical to the log-rank test (Therneau and Grambsch

2000). Rao's score test (Rao 1948) tests the hypothesis H0 : β = β0 and its test

statistic is given by

Z =
U(β0)√
I(β0)

∼ N(0, 1), (2.9)

where U(β0) is the score function, i.e. the derivative of the log-likelihood function

with respect to β at β0, and I(β0) is the Fisher information.

The strati�ed version of the log-rank test is used to test the null hypothesis that there

is no di�erence between two populations with respect to the probability of a speci�c

event, controlling for a strati�cation variable. The test statistic of the strati�ed log-

rank test approximately follows a standard normal distribution (cf. Kleinbaum and

Klein 1996). However, just as for the unstrati�ed log-rank test, this assumption may

not apply for small sample situations, resulting in loss of power. For small samples,

the exact log-rank test by Mehta et al. (1992) is a suitable alternative, because it

is based on permutation. The downside of this test is that due to the permutation,

the exact log-rank test becomes computationally expensive quite fast as the sample

size increases. Alternatively, the approximate version of the exact log-rank test can be

used, which approximates the exact log-rank test via Monte Carlo resampling (Strasser

and Weber 1999).



2.1. SURVIVAL ANALYSIS 21

For the simulation studies in Section 3, the exact/approximate log-rank test was applied

using the R function logrank_test{coin}.

2.1.2.3 Wald test

The Wald test and the score test are asymptotically equivalent, however the Wald

test has been referred to as less reliable in �nite samples by several authors, such as

Therneau and Grambsch (2000) and Agresti (2007). The test statistic of the Wald

test is given by

Z =
β̂ − β0√
V ar(β̂)

. (2.10)

In contrast to the score test, the Wald test statistic not only depends on β0 (cf.

Equation 2.9), but also on the estimate β̂. Therefore, it can be used when comparing

the performance of Mehrotra's two-step procedure (cf. Section 2.1.1.2) to the regular

strati�ed Cox PH model. Note that the score test would give the same test statistic

for both cases, since it only depends on the treatment e�ect under the null, β0.

2.1.3 Sample size calculation for survival trials

2.1.3.1 Schoenfeld's formula

A well-known formula for sample size calculation for the Cox PH model is the Schoen-

feld formula (Schoenfeld 1983). In his paper, Schoenfeld showed that the sample size

n needed to compare two survival distributions is given by:

n =
(z1−α/2 + z1−β)2

r(1− r)(logHR)2 q
, (2.11)

where α and 1 − β are signi�cance level and required power of the test, respecti-

vely, z1−α/2 and z1−β are the 1 − α/2 and 1− β percentiles of the standard normal

distribution, respectively, r is the proportion of patients randomized to the standard

treatment arm, HR is the minimal detectable hazard ratio of the experimental and
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standard treatments, and q is the expected probability to experience the event of inte-

rest. An advantage of Schoenfeld's formula is that, beyond the proportional hazards

assumption, it does not rely on a speci�c survival distribution.

Note that Schoenfeld's formula neither allows strati�cation nor stratum speci�c hazard

ratios.

2.1.3.2 Palta and Amini's formula

A few years later, Palta and Amini (1985) extended Schoenfeld's formula to allow for

strati�cation. They generalized Equation 2.11 for m > 1 strata:

n =
(z1−α + z1−β)2

µ2
, (2.12)

where

µ =

s∑
i=1

gi

∫ ∞
0

logHRi(t) ri(1− ri)vi(t)dt√
s∑
i=1

gi

∫ ∞
0

vi(t)ri(1− ri)dt
, (2.13)

where gi is the proportion of total sample size in stratum i, ri is the proportion of

patients in stratum i randomized to standard of care, and the function vi(t) is the

density function of an observed event. In their paper, vi(t) is given for exponential

survival with hazard rate λji , for treatment j, and stratum i, accrual and follow-up

periods of length a and f , respectively, and uniform patient entry:

vi(t) =


riλ0i exp(−λ0it) + (1− ri)λ1i exp(−λ1it) t ≤ f
ri
a+f−t
a λ0i exp(−λ0it) + (1− ri)a+f−t

a λ1i exp(−λ1it) f < t ≤ a+ f

0 t > a+ f,

(2.14)

keeping in mind that for administrative censoring C the probability P(C > t) = a+f−t
a

for f < t ≤ a+ f . This integrates to
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Vi =

∫ a+f

0
vi(t)dt = ri

[
1− 1

aλ0i

(
exp [−λ0if ]− exp [−λ0i(a+ f)]

)]
+ (1− ri)

[
1− 1

aλ1i

(
exp [−λ1if ]− exp [−λ1i(a+ f)]

)]
.

(2.15)

Note that Equation 2.15 is the probability for a patient in stratum i to experience the

event of interest during follow-up: Consider a study with uniform accrual, an accrual

period [0, a], a follow-up time f , and no loss to follow-up. Then we have a uniform

distribution for administrative censoring, C, with density 1
a
1[f,a+f ](t). Assuming expo-

nentially distributed survival times T , the probability q for a patient to experience an

event of interest throughout the study is given by

q = P(T ≤ C) =

∫ ∞
0

P (T ≤ t)
1

a
1[f,a+f ](t)dt

=

∫ a+f

f

[1− exp(−λt)] 1

a
dt

= 1− 1

λa

(
exp [−λf ]− exp [−λ(a+ f)]

)
. (2.16)

Coming back to the formula by Palta and Amini (1985), they give a simpli�ed version

of their formula (Equation 2.13) assuming proportional hazards over time:

µ = logHR

√√√√ s∑
i=1

giri(1− ri)Vi, (2.17)

where HR is the hazard ratio, and Vi is the integral of vi(t) over the study length, i.e.

the probability of not being censored in stratum i (see Equation 2.15).

2.1.3.3 Lachin's formula

Schoenfeld's - and consequently Palta and Amini's - sample size formula is derived

using the score statistic, testing whether the hazard ratio is di�erent from 1. Another
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sample size formula, which in contrast is based on the Wald test, was introduced

by Lachin in 1981. It tests the di�erence in hazard rates between the standard and

experimental treatment arms for unstrati�ed, exponentially distributed survival time

data:

n =

z1−α/2

√
Φ(λ)

(
1
r

+ 1
1−r
)

+ z1−β
√

Φ(λ1) 1
1−r + Φ(λ0)1

r

λ1 − λ0


2

, (2.18)

where r is the proportion of patients randomized to the standard treatment arm, λj

is the hazard rate of treatment arm j (for the unstrati�ed case), λ = (λ1 + λ0)/2,

and, assuming exponential survival, uniform patient entry, and (only) administrative

censoring

Φ(λ) =
λ2

q
= λ2

[
1− 1

λa

(
exp [−λf ]− exp [−λ(a+ f)]

)]−1

, (2.19)

where a and f are the accrual and follow-up time, respectively. For details on the

probability for a patient to experience an event of interest throughout the study, q, see

Equation 2.16.

2.1.3.4 Lachin and Foulkes' formula

Later on, Lachin extended his sample size formula together with Foulkes, to allow for

nonuniform patient entry, loss to follow-up, noncompliance and strati�cation (Lachin

and Foulkes 1986). Note that Lachin's formula and the extension by Lachin and Foulkes

is based on the assumption of exponential survival, which makes it less �exible than

the other two formulas.

Their extension of the formula for strati�ed trials with two strata uses a pooled esti-

mator as test statistic, which is calculated as a weighted average over the strata of the

within-stratum di�erences in hazard rates:

λ̂0 − λ̂1 = ν1(λ̂11 − λ̂01) + ν2(λ̂12 − λ̂02) (2.20)
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where λ̂ji is the estimated hazard rate for treatment j in stratum i and νi are weights

that are inversely proportional to the variances of the within-stratum hazard rate dif-

ferences:

νi =
1

σ2
0,i

(
1

σ2
0,1

+
1

σ2
0,2

)−1

(2.21)

where

σ2
0,i =

ψ

Ni

, (2.22)

where Ni is the total sample size of stratum i, and

ψ = Φ(λi)

(
1

ri
+

1

1− ri

)
, (2.23)

with λi = (λ1i + λ0i)/2 and Φ as de�ned in Equation 2.19.

With the pooled estimator, the sample size can be calculated as:

n=


zα
√

Ω−1+zβ

√
Ω−2

2∑
i=1

gi
(
Φ(λ1i)

1
1−r+Φ(λ0i)

1
r

)(
Φ(λi)

(
1
r
+ 1

1−r
))−2

λ1 − λ0


2

, (2.24)

where λji is the hazard rate for treatment j ∈ {0, 1} in stratum i, λi = (λ1i + λ0i)/2,

and

Ω =
g1

Φ(λ1)
(

1
r

+ 1
1−r
) +

g2

Φ(λ2)
(

1
r

+ 1
1−r
).
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2.2 Data generation for simulation studies

2.2.1 Generating survival time data

For the generation of survival times, the baseline hazards, hazard ratios, proportion of

patients in each stratum, and the randomization probability are predetermined. Survival

is assumed to be exponential and the randomization probability between treatments is

set to 0.5 for all strata. Patients are assigned to biomarker-group i by drawing from

a multinomial distribution according to the prespeci�ed proportions of the strata, and

are then randomized equally to the treatment arms. For every patient k, three times

were generated:

The survival time for patient k in stratum i obtaining treatment x was generated

according to Bender et al. (2005):

tk = − log(Uk)

h0 exp(βi x)
, (2.25)

where x ∈ {0, 1} is the treatment indicator, Uk ∼ Unif(0, 1) and h0 = λ0 for the Cox

PH model, h0 = λ0i for the strati�ed Cox PH model, and h0 = wiλ0 for the shared

frailty model.

Times to administrative censoring, tad, k, were generated by drawing from a uniform

distribution Unif(f, a+ f) with accrual period a and follow-up time f .

A time for random censoring tcens, k for each patient k was generated from an expo-

nential distribution with hazard λcens, calculated by

λcens =
pcens λ̃

1− pcens
, (2.26)

where λ̃ =
∑s

i=1 gi(λ1i + λ0i)/2 is an �average� hazard rate, where λji is the hazard

rate for treatment j in stratum i, and pcens is the expected proportion of random

censoring among patients.

Realized �overall survival� (os) is then derived as the minimum of these three generated
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times, i.e. osk = min(tk, tad, k, tcens, k). If tk = osk, patient k is assigned status 1

(dead), and 0 (alive) otherwise. All simulation studies were carried out in R.

2.2.2 Generating missing at random data

To generate missing data that is missing at random (MAR), �rst a complete data set is

generated as described above. Then, the probability of missingness for variable y, i.e.

Pr(y = missing|x), can be modeled, e.g. using a logistical model. If the missingness

is modeled to depend on a single other observed variable, the probability is given by

Pr(yk = 1|xk) =
exp(c+ βxk)

1 + exp(c+ βxk)
, (2.27)

where y is the variable for which missing data shall be generated, and x is the variable

upon which the missingness depends. Now a binary variable can be generated which

indicates whether y is missing by drawing from a binomial distribution with proba-

bility pk. Whenever this variable is 1, the corresponding data point of y is deleted

(Van Buuren 2012).

If a certain proportion of missing data, pmiss, is targeted, c and β need to be determined

that satisfy f(c, β) = pmiss, where f(c, β) is the mean of the probabilities:

f(c, β) =
1

n

n∑
i=1

1

1 + exp(c+ βxi)
. (2.28)

This can, for example, be done by �xing β at some value, and then solving

f(c, β)− pmiss = 0 (2.29)

for c. Then, using c and the �xed value for β, the probabilities for missingness can be

obtained from Equation 2.27.



Chapter 3

Results

3.1 Development of a concept for a trial with

multiple biomarkers

Some sections of this chapter are part of papers that have already been published.

For Section 3.1 and Section 3.3, the relevant passages have been taken verbatim from

Habermehl et al. (2017), and for Section 3.2 the relevant passages have been taken

verbatim from Beisel et al. (2017).

The optimal choice of the trial design is an important step within the process of develop-

ing a trial. However, there is not a single answer which design is best - it depends on

various factors. One type of multiple-biomarker trials, which were introduced in Section

1.1.3, are the so-called umbrella trials, where enrollment is generally restricted to one

tumor type. The biomarker-de�ned subtrials of an umbrella trial are usually analyzed

individually, treating each subtrial as an independent trial, due to the heterogeneity

caused by the di�erent biomarkers and di�erent experimental therapies targeting these

biomarkers. Biomarkers can cause heterogeneity in the study population if they are

either prognostic, predictive, or both.

An example for an umbrella trial is the FOCUS4 trial (Kaplan et al. 2013), which

is aimed at patients with colorectal cancer. One of the biomarkers investigated in

28
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the trial is the BRAF-mutation, which is indicative of a poor prognosis in this tumor

type. The excessive signaling caused by this mutation can be targeted by an inhibitor

of the BRAF-protein. However, in colorectal cancer, signaling through the epidermal

growth factor receptor (EGFR) plays a role. Therefore, the treatment investigated in

FOCUS4 is a combination of BRAF-inhibitor and EGFR-inhibitor, with and without a

MEK-inhibitor. For more details see Kaplan et al. (2013).

Since colorectal cancer is one of the most common cancer types, recruitment of patients

should not be an issue. However, completion of accrual may become unfeasible when

this type of design is used for a less prevalent disease. In this case, small sample sizes

within the subtrials have to be expected, as well as many biomarker-negative patients at

the initial screening stage, i.e. patients which test negative for all biomarkers considered

in the trial. The small sample sizes may make it unfeasible to treat the subtrials as

independent and analyze them individually. Moreover, the small sample sizes can lead

to biased treatment e�ect estimates. This imposes the need to investigate alternative

approaches for the analysis of such a trial, and possibly for the study design itself.

The following sections will discuss several options for multiple-biomarker trials and

give examples for which situations the design option would be an appropriate choice.

Furthermore, the issue of whether or not biomarker-negative patients should be included

in the study will be discussed.

3.1.1 Biomarker-negative patients

Before considering speci�c design features, a decision should be made whether to use an

enrichment-type or an all-comers design, i.e. it should be decided if patients that cannot

be matched with one of the relevant biomarkers are excluded from the trial or if they are

included in a separate trial arm. Excluding biomarker-negative patients may seem like

the most cost-e�ective option at �rst. But it should be taken into consideration that the

initial step of determining a patient's biomarker pro�le already entails costs. Excluding

these patients after this step means spending resources on valuable information that is

not going to be used afterwards. Especially for trials with lower prevalence biomarkers,

where it is expected to encounter numerous biomarker-negative patients throughout
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the accrual period, it might be worth considering to at least include these patients for

follow-up purposes, if possible. This way, a valuable database of patients for which the

biomarker-pro�le has already been assessed can be obtained. This database can later

be utilized for retrospective analyses and identi�cation of new potential biomarkers.

3.1.2 Design choices

A popular strategy for designing a multiple-biomarker trial, such as an umbrella trial,

is to exclude biomarker-negative patients at the screening stage. This basically leads

to a multiple-biomarker enrichment design (Figure 3.1, Design 1). For less prevalent

biomarkers, this means disregarding many biomarker-negative patients for whom infor-

mation about their biomarker pro�le was already gathered during the screening process.

Alternatively, a study design could be used that includes the biomarker-negative pa-

tients in the study. There are several possibilities to do so.

A possibility that o�ers the most information about the biomarkers investigated in

the study is to randomize the biomarker-negative patients between all the experimen-

tal therapies targeting the biomarkers in the study and standard of care (Figure 3.1,

Design 2). This way, these experimental therapies can be investigated in the biomarker-

positive and the biomarker-negative population. Additionally, this design allows drawing

conclusions about prognostic, as well as predictive properties of the biomarkers. Essen-

tially, this design is a biomarker-strati�ed design (also called biomarker-by-treatment

interaction design) with more than one biomarker. While this design can supply useful

information about the properties biomarkers, it simultaneously limits the number of

biomarkers that can be investigated in the study, since each added biomarker adds

another treatment arm for the biomarker-negative patients. Furthermore, treating

biomarker-negative patients with an experimental therapy which targets a biomarker

that they do not have can be an issue. Based on prior evidence it needs to be decided

for each of these treatments whether this treatment strategy is ethically tenable.

Another option to include biomarker-negative patients in a multiple-biomarker trial is

a strati�ed randomize-all design, where biomarker-negative patients are randomized

between a (di�erent) experimental therapy and standard of care (Figure 3.1, Design
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Design 4: Multi-biomarker hybrid design

1Figure 3.1: Schematic study designs for a multiple-biomarker trial, simpli�ed to two

biomarkers, with di�erent options for biomarker-negative patients.

3). This way, the resulting study has multiple strata with two treatment arms each.

While the analysis of such a design is fairly straight forward, it is important to take

into consideration the heterogeneity within the study population. On the one hand,

this can be caused by prognostic and predictive biomarkers, and on the other hand

by the di�erent treatments with, most likely, di�erent treatment e�ects. For smaller

sample sizes, which is likely to be the case for lower prevalence biomarkers, the analysis

concept for the resulting data could be an evaluation of the overall biomarker-guided

treatment strategy, rather than performing separate analyses for each biomarker. This

will be discussed in more detail in Section 3.2. This evaluation of an overall treatment

strategy should be performed in conjunction with subsequent subgroup analyses to

avoid false conclusions about individual biomarkers. The subgroup analyses could

either be of exploratory nature or preplanned, utilizing multiple comparison strategies.

One option would be a serial chain procedure (Millen and Dmitrienko 2012) where the

primary hypothesis is �rst tested at a predetermined signi�cance level, α. If the null

hypothesis is rejected, the unspent α from the main hypothesis can be reallocated to

the remaining secondary hypotheses, since chain procedures are a class of closed testing
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procedures. The α can be split equally or weighted between the remaining hypotheses.

Multiple comparison procedures will be discussed in more detail in Section 3.5. In

practice, the usability of this strati�ed randomize-all design depends on availability of

a suitable experimental therapy for the biomarker-negative patients.

The remaining alternative to excluding biomarker-negative patients at the screening

stage is a `multi-biomarker hybrid design' where these patients are kept in the study

and treated with standard of care (Figure 3.1, Design 4). This allows gathering follow-

up data for the biomarker-negative patients as well as potentially using this data for

retrospective identi�cation of new biomarkers. Additionally, the prognostic properties

of the biomarkers can be investigated by comparing the standard of care arms. If the

biomarkers in the study are assumed to be non-prognostic, the data for the biomarker-

negative patients can be used in the analysis by pooling the three standard of care

arms. For prognostic biomarkers the inclusion of the biomarker-negative patients in the

analysis becomes more complicated. This will be discussed in more detail in Section

3.3. A practical drawback of this multi-biomarker hybrid design is that biomarker-

negative patients potentially have a larger risk of dropping out of the study if other

studies become available that o�er an experimental therapy.

3.2 Strati�ed randomize-all design

The categorization of cancer types into subtypes leads to a strati�cation of the study

population into multiple subtrials investigating di�erent experimental therapies. In

umbrella trials, these subtrials are usually analyzed individually, treating each subtrial

as an independent trial. While this is feasible for common cancer types, it may be

di�cult to recruit enough patients to each subtrial to obtain statistically meaningful

results within a reasonable time frame.

An alternative approach could be a proof of e�cacy of the overall treatment strategy

(e.g. a biomarker-guided treatment strategy) as primary hypothesis before looking

at the subtrials individually. However, this approach entails several di�culties. The

subpopulations cannot simply be assumed to be homogeneous across all subtrials, espe-

cially if various disease subtypes and di�erent treatments are investigated in the trial.
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Obviously, it cannot be assumed that di�erent treatments will have similar treatment

e�ects. Some of the factors de�ning the subtypes, such as targeted mutations, might

be prognostic or predictive and have an impact on the outcome or the treatment e�ect,

respectively. For this situation, the assumption that the treatment e�ect is the same

across all strata does not seem appropriate. However, the Cox PH model, its strati�ed

version, and most sample size formulas rely on this assumption and a violation may

result in deviation from the desired level of power.

In the following sections, the performance of di�erent methods for sample size calcu-

lation and data analysis under heterogeneous treatment e�ects will be investigated.

With regard to sample size calculation, the commonly used sample size formula by

Schoenfeld (1983) is compared to a formula by Lachin and Foulkes (1986), and an ex-

tension of Schoenfeld's formula by Palta and Amini (1985). Possibilities for statistical

modeling of heterogeneity are strati�cation by factors, the assumption of a probability

distribution of the inter-patient or inter-strata variation, or the inclusion of covariates

in the regression model. With a focus on the former two options, the widely used (stra-

ti�ed) Cox PH model (Kalb�eisch and Prentice 1980), a two-step analysis approach

by Mehrotra et al. (2012), and the lognormal shared frailty model (Duchateau and

Janssen 2007) will be considered as potential methods for data analysis which attempt

to adjust for inter-strata heterogeneity.

3.2.1 Data modeling and analysis

The study design considered in the following is a strati�ed design with s strata. The

strata are denoted by Bi, i ∈ {1, 2, ..., s}, and are de�ned by biomarkers which are

targeted by one of the stratum-speci�c experimental treatments investigated in the

study (see Figure 3.2). Upon entering the study, the patients' biomarker-status is

determined and they are assigned to the strata accordingly. Patients matched with

neither of the biomarkers are assigned to the biomarker-negative stratum. For the case

that a patient is matched with more than one biomarker, there should be prede�ned

priorities for the biomarkers, such that the patient can be distinctly allocated to one

of the biomarker-de�ned strata. These priorities could, for example, be de�ned by

biomarker prevalence or expected treatment outcomes.
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The proportion of patients in stratum Bi is denoted by gi ∈ [0, 1]. Within each stratum

i, patients are randomized between the stratum-speci�c experimental therapy (Expi)

and standard of care (Std), with probabilities 1− ri and ri, respectively. Patient entry
is assumed to be uniform throughout the accrual time a. Patients are then monitored

for the event of interest. Patients that are still in the study after follow-up time f are

subject to administrative censoring. It is assumed that additional random censoring

can occur. The hazards of death at time t for patients in stratum i receiving treatment

j are denoted by λji(t), where j = 1 for experimental treatment or j = 0 for standard

of care.

As mentioned in Section 2.1.1, a common choice for modeling data and estimating a

corresponding treatment e�ect is the Cox PH model, or, for a strati�ed study popula-

tion, the strati�ed Cox PH model. An alternative to the strati�ed Cox PH model is the

shared frailty model, which was introduced in Section 2.1.1.3. An advantage of this

model is that it is able to treat heterogeneity between strata without requiring speci�c

assumptions about stratum speci�c prognostic e�ects.

Patients
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Bs R

Exp1

Std

Exp2

Std

Exps

Std

g2

g1
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1− r1

r1

1− r2

r2

1− rs
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1Figure 3.2: Schematic study design.

Mehrotra et al. (2012) suggested another alternative to the strati�ed Cox PH model

for the case of unequal hazard ratios. They developed a two-step approach which �rst

estimates the treatment e�ects within the strata separately and then combines them via
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a weighted average to an estimate for the overall treatment e�ect (see Section 2.1.1.2).

Allowing to adjust the weighting of the strata makes this procedure more �exible and

can reduce the bias of the estimator in the case of heterogeneous treatment e�ects (cf.

Mehrotra et al. 2012). Hence, the usage of this two-step approach is a possibility to

use the Cox PH model in situations when the assumption of homogeneous treatment

e�ects across strata, which is made by the strati�ed Cox PH model, is violated. Note

that the overall treatment e�ect β can be considered as the average bene�t of a random

patient sampled from a mixture distribution with weights ωi.

Two commonly used tests for the treatment e�ect in Cox regression are the score test

and the Wald test. Since Mehrotra et al. (2012) use the Wald test in their two-step

approach, both tests are considered in the subsequent simulation study.

More details on the methods discussed in this section can be found in Section 2.1.1.

3.2.2 Sample size calculation

An advantage of the well-known Schoenfeld formula, which was introduced in Section

2.1.3.1, is that, beyond the proportional hazards assumption, it does not rely on a

speci�c survival distribution. But Schoenfeld's formula neither allows strati�cation nor

stratum speci�c hazard ratios. To be able to examine the performance of Schoenfeld's

formula in a scenario with heterogeneous treatment e�ects, an �average� hazard ratio

is calculated that can be used in the formula:

HR =

− log

( s∑
i=1

(1− ri)gi exp

[
− λ0i

(a
2

+ f
)
HRi

])
λ0

(
a
2

+ f
) , (3.1)

where i ∈ {1, ..., s} are the strata, λ0i is the baseline hazard for stratum i, HRi is the

hazard ratio for stratum i, gi is the proportion of patients in stratum i, and ri is the

randomization probability to the standard treatment in stratum i. For λ0 see Equation

3.4.

The �rst step in the derivation of Equation 3.1 is �nding the survival function of the
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patient population across all strata. An �average� survival function S̃(t|x) can then be

found by integrating over the strata given the treatment option:

S̃(t|x) =
s∑
i=1

ri
1−x(1− ri)x gi exp

[
− λ0i t exp(logHRi · x)

]
, (3.2)

where x ∈ {0, 1} is the treatment indicator.

Next, the observed survival function is considered, which contains an average baseline

hazard λ0 and an average hazard ratio HR:

S(t|x) = exp
[
− λ0 t exp(logHR · x)

]
. (3.3)

Now, HR can be found by equating the two survival functions (Equations 3.2 and 3.3),

i.e. S̃(t|x)
!

= S(t|x), at t = a
2

+ f , where a and f are accrual and follow-up time,

respectively, i.e. t is the average time a patient is under observation.

In a �rst step, it is necessary to solve Equation 3.3 for λ0 (for x = 0), which yields

λ0 =

− log

( s∑
i=1

rigi exp

[
− λ0i

(a
2

+ f
)])

a
2

+ f
. (3.4)

Equation 3.4 can then be used to solve Equation 3.3 for HR (for x = 1), which yields

Equation 3.1.

Palta and Amini (1985) extended Schoenfeld's formula to allow for strati�cation, tes-

ting the null hypothesis log(HRi) = 0 ∀i, where HRi is the stratum-speci�c hazard

ratio (see Equation 2.17). The formula by Palta and Amini does require an assump-

tion about the distribution of survival times, but it is not restricted to the exponential

distribution. To consider other survival distributions, one simply needs to adjust Vi

accordingly (see Equations 2.14 and 2.15).

In their paper, Palta and Amini give a simpli�ed version of their formula by assuming
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equal hazard ratios across strata. However, using their general formula (see Equation

2.17), and assuming unequal but constant hazard ratios over time, one can obtain a

sample size formula that allows for unequal hazard ratios across strata:

µ =

s∑
i=1

gi logHRi ri(1− ri)Vi√
s∑
i=1

giri(1− ri)Vi
, (3.5)

where HRi is the hazard ratio for stratum i, and Vi is the integral of vi(t) over the

study length, i.e. the probability of not being censored in stratum i (see Equation

2.15).

The extension of Lachin's formula by Lachin and Foulkes (1986), allowing for strati-

�cation (Equation 2.24), which was given for two strata, was generalized for a case

with s strata:

n=

zα
√

Ω−1+zβ

√
Ω−2

s∑
i=1

gi
(
Φ(λ1i)

1
1−r+Φ(λ0i)

1
r

)(
Φ(λi)

(
1
r
+ 1

1−r
))−2

λ1 − λ0


2

,

where λji is the hazard rate for treatment j ∈ {0, 1} in stratum i, λi = (λ1i + λ0i)/2,

Ω =

(
s∑
i=1

gi

Φ(λi)
(

1
r

+ 1
1−r
)),

and

λ1 − λ0 =
s∑
i=1

νi(λ1i − λ0i).

More details on the sample size formulas discussed in this section can be found in

Section 2.1.3.

Unfortunately, there is currently no closed sample size formula available for a shared

frailty model of the kind discussed in Section 2.1.1.3. Therefore, the required sample
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size was calculated empirically as follows: The �rst step for an empirical sample size

calculation is to choose the required power of the test (ρr), and to pick a starting

value for the sample size, e.g. from a sample size formula which is expected to provide

a reasonable initial estimate. Then, a su�cient number of data sets is simulated, e.g.

10, 000 data sets, under a speci�c alternative hypothesis, according to the planned

study design. Subsequently, these data sets are analyzed by the chosen data analysis

method, e.g. the lognormal shared frailty model. The actual power (ρa) is then

obtained from the percentage of rejected null hypotheses. If the actual power is

within the required accuracy range of the required power, i.e. if ρa = ρr ± 0.01, the

calculation is completed and no further iteration steps are needed. If the actual power

is outside this range, the sample size needs to be adjusted. This adjustment should be

a predetermined rule, e.g. nnew = nold(1 − (ρa − ρr)). The sample size is iteratively

adjusted until the actual power reaches the required power with the desired accuracy,

which was chosen here as 0.01.

3.2.3 Simulation study: Heterogeneous treatment e�ects

To compare the performance of the sample size formulas and the analysis methods

for the case of heterogeneous treatment e�ects a simulation study with three strata

is carried out. The following sections explain the study design, parameter setup and

data generation before presenting and discussing the results.

3.2.3.1 Study design

A scenario is considered with two biomarkers, each targeted by a corresponding ex-

perimental therapy, which is to be included in the study. Furthermore, patients that

cannot be matched with either biomarker should also be included in the study to test

another, more broadly aimed experimental therapy. This leads to a study design with

three strata, denoted by Bi, i ∈ {0, 1, 2}, where B1 and B2 are each comprised of

patients matched with biomarker 1 or 2, respectively. All other patients are allocated

to B0, the biomarker-negative patients. Patients in strata B1, B2, and B0 are rando-

mized between the corresponding stratum speci�c experimental therapy (Exp1, Exp2,
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and Exp0, respectively) and standard of care (Std).

3.2.3.2 Data generation

The data were generated as described in Section 2.2.1. For the baseline hazards,

initially a common baseline hazard was chosen (0.05) and then the baseline hazards for

B1 and B2 were multiplied by factors 0.8 and 1.2, respectively, to simulate strati�cation.

For the remaining simulation parameters see Table 3.1. Note that a rough correction

for loss to follow-up due to random censoring was made for all sample size formulas by

dividing the calculated sample size by 1− pcens, where pcens is the expected proportion

lost to follow-up. For this simulation, pcens was set to 0.05.

Table 3.1: Parameters for the simulation study using a design with three biomarker-

groups, denoted by Bi, i ∈ {0, 1, 2}.

Fixed simulation parameters

Accrual time (months), a 24

Follow-up time (months), f 36

Proportion random censoring, pcens 0.05

Treatment allocation ratio 1 : 1

Hazard ratio B1, exp(β1) 0.8, 0.7, 0.6, 0.5, 0.4, 0.3

Hazard ratio B2, exp(β2) 0.8, 0.7, 0.6, 0.5, 0.4

Number of simulations 10,000

Parameters for biomarker-groups (B0,B1,B2)

Proportion of patients, gi (0.5, 0.25, 0.25)

Baseline hazards, λ0i (0.05, 0.04, 0.6)

If one wishes to simulate a stratum speci�c random e�ect in the patient data, as is

assumed by the lognormal shared frailty model, the strati�cation factors for the baseline

hazard, mentioned in the beginning of this section, can be replaced by numbers drawn

from a lognormal distribution for each stratum. The choice of mean and variance of

the lognormal distribution determines the intensity of the random e�ect, e.g. using

a lognormal distribution with mean 0 and variance 0.15 on the log scale results in a

relatively minor random e�ect. The data used in the next section is simulated without
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a random e�ect present. Results for random e�ects data can be found in the sensitivity

analysis in Section 3.2.3.4. The simulation study was carried out in R (Version 3.2.2).

3.2.3.3 Results of the simulation study

In this section, the formulas for sample size calculation by Schoenfeld, Palta and Amini,

and Lachin and Foulkes are compared. Afterwards, the di�erent analysis methods are

evaluated with respect to the power to detect a signi�cant overall treatment e�ect,

given speci�c hazard ratio scenarios.

For each parameter constellation of the simulation study, the required sample size

for a power of 0.8 is determined with Schoenfeld's, Palta and Amini's and Lachin

and Foulkes' sample size formula. For each calculated sample size, 10,000 data sets

are simulated and then analyzed using the strati�ed Cox PH model, Mehrotra's two-

step approach, and the shared frailty model. The empirical power for each method is
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Figure 3.3: Comparison of sample size formulas for di�erent hazard ratio scenarios:

Sample sizes calculated from formulas by Schoenfeld, Palta and Amini, and Lachin

and Foulkes.

assessed as percentage of rejected null hypotheses. The sample size formulas as well as

the analysis methods, will be compared with respect to their compliance to the power

used at the planning stage.
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A comparison of the sample sizes calculated with the formulas by Schoenfeld, Palta

and Amini, and Lachin and Foulkes for di�erent hazard ratio scenarios can be seen in

Figure 3.3. The formula by Lachin and Foulkes yields the smallest sample size in all

cases. The sample size calculated by Palta and Amini's formula mostly lies between

the ones calculated by the other two formulas, except for the scenarios with the most

extreme di�erences in hazard ratios. For those scenarios, the sample size by Schoenfeld

is slightly smaller. The numerical results can be found in the Appendix.

The results of the empirical sample size calculation (see Section 3.2.2) are not shown

in Figure 3.3, because Palta and Amini's formula provided an adequate sample size

for the lognormal shared frailty model to reach the required power (see Table 3.2).

The empirically calculated sample size only di�ered in one case, but not by much (3

Table 3.2: Numerical results for the empirical sample size calculation for the lognor-

mal shared frailty model.

Input Power Sample size Iterations

HR Shared Empirical Palta Lachin Iteration

B0, B1, B2 Frailty estimate Amini Foulkes steps

0.8 0.8 0.8 0.805 763 763 627 1

0.8 0.8 0.7 0.798 574 574 465 1

0.8 0.8 0.6 0.796 437 437 357 1

0.8 0.8 0.5 0.800 336 336 280 1

0.8 0.8 0.4 0.803 259 259 224 1

0.8 0.8 0.3 0.802 197 200 182 2

0.8 0.7 0.7 0.800 461 461 378 1

0.8 0.7 0.6 0.797 360 360 295 1

0.8 0.7 0.5 0.792 282 282 235 1

0.8 0.7 0.4 0.796 222 222 191 1

0.8 0.7 0.3 0.801 174 174 157 1

0.8 0.6 0.6 0.807 297 297 246 1

0.8 0.6 0.5 0.798 238 238 199 1

0.8 0.6 0.4 0.799 190 190 163 1

0.8 0.6 0.3 0.806 152 152 135 1

0.8 0.5 0.5 0.805 200 200 168 1

0.8 0.5 0.4 0.801 163 163 140 1

0.8 0.5 0.3 0.803 131 131 117 1

0.8 0.4 0.4 0.797 138 138 120 1

0.8 0.4 0.3 0.799 113 113 101 1

patients less). Hence, it was decided that the (computationally expensive) empirical

calculation of the sample size for the shared frailty model is not necessary. Note that

this conclusion may not be valid for other scenarios, e.g. for more diverse baseline

hazards.
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Subsequently, the methods for sample size calculation were compared with respect to

compliance to the desired power level for each of the data analysis methods. Figure 3.4

shows the power for all three sample size calculation methods using the exact log-rank

test as reference analysis method which does not depend on asymptotic assumptions.

Equivalent comparisons were also made for the strati�ed Cox PH model, the two-step

approach, and the lognormal shared frailty model. Using these analysis methods yields

similar results (see Figures 3.5-3.7).
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Figure 3.4: Power of the exact log-rank test to detect a true treatment e�ect for

the di�erent sample size formulas and di�erent hazard ratios.

The sample size formula by Schoenfeld appears to overestimate the required sample

size when the hazard ratios are similar and then begins a downward trend as the

hazard ratios become more heterogeneous (see Figure 3.4). One has to keep in mind

though, that this formula does not take the strati�cation into consideration and an

averaged hazard ratio has to be used in the formula (see Equation 3.1). Therefore,

this behavior was not surprising. Note that even though hazard ratios in the �rst

scenario are homogeneous (HR1 = HR2 = HR0 = 0.8), the baseline hazards are still

heterogeneous due to strati�cation, which causes the non-compliance to the desired

power level.

For the case of a strati�ed population, the sample size formula by Lachin and Foulkes

uses a pooled estimator of the within-stratum di�erences in hazard rates. For this
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pooled estimator, they de�ne optimal weights for each within-stratum di�erence (see

Equations 2.20 - 2.23). However, the formula for these weights requires knowledge

of the stratum-speci�c sample sizes. To be able to calculate these weights, in a �rst

step the sample size was calculated empirically (analogous to the empirical sample size

calculation for the shared frailty model in Section 3.2.3.2) before using the formula

given by Lachin and Foulkes in the second step. This made the usage of this formula

computationally more expensive than the other two. Additionally, one might question

why one would use the formula at all if the required sample size was already calculated

empirically. The resulting sample size from Lachin and Foulkes' method is too small

to reach the desired power of 0.8. The power curve has a downward tendency as the

hazard ratios of B1 and B2 get smaller, i.e. Lachin and Foulkes' formula does not seem

to handle heterogeneous treatment e�ects well.
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Figure 3.5: Power of the two-step approach to detect a true treatment e�ect for

di�erent hazard ratios.

Two alternate attempts, both avoiding empirical calculation, were made to reduce

computation time and potentially improve the resulting power. The �rst attempt to

replace the empirical calculation in the �rst step was to use the original formula by

Lachin (1981) that does not account for strati�cation (see Equation 2.18). For the

hazard rates, weighted means of the stratum speci�c hazard rates were used, using the

expected sample proportion per stratum as weights. As before, the resulting sample size
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was then used to calculate the weights for the pooled estimator of the within stratum

di�erences. This did not change the sample size calculated with Lachin and Foulkes'

formula in the second step, even though the sample sizes used for the calculation of

the pooled estimator of the within stratum di�erences were quite di�erent: The former

(empirical) sample size from step 1 was always larger than the �nal sample size in step

2, while the latter (from Equation 2.18) was always smaller. Hence, the formula for the

weights seems to be rather robust regarding the stratum speci�c sample size. While

this did not improve the sample size with respect to power, this shows that empirical

calculation is not necessary, because it su�ces to use a very rough estimate of the

stratum speci�c sample size.

Another simulation was run where the weights used by Lachin and Foulkes were repla-

ced with sample size proportions, i.e. the pooled estimator of the overall di�erence in

hazard rates is a weighted average of the stratum speci�c hazard di�erences, weighted

by the expected sample proportions of the strata. For similar and moderately hete-

rogeneous treatment e�ects this sample size yields a lower power than the previous

one. But, surprisingly, the resulting power increases as the treatment e�ects diverge,

improving the power by up to 0.08 compared to using the original weights.
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Figure 3.6: Power of the lognormal shared frailty model to detect a true treatment

e�ect for the di�erent sample size formulas and di�erent hazard ratios.
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Figure 3.7: Power of the strati�ed Cox PH model to detect a true treatment e�ect

for the di�erent sample size formulas and di�erent hazard ratios.

Nevertheless, it is still more than 0.02 short of reaching the desired power of 0.8.

Hence, Lachin and Foulkes is an unreliable method for sample size calculation in the

case of heterogeneous treatment e�ects.

The formula by Palta and Amini, allowing for unequal hazard ratios, yields the most

reliable sample size: The actual power matches the expected power the closest. For

similar hazard ratios it neither over- nor underestimates the sample size. As the hazard

ratios become more heterogeneous, the power curve takes on a slight upwards trend (for

the exact log-rank test). This is a considerable improvement over the other sample

size formulas, which exceed or undercut the desired power level by up to 0.1. In

conclusion, Palta and Amini's sample size formula performs best for most scenarios

and was used to compare the di�erent analysis methods in the following sections. If

one is only interested in a rough number for the required sample size, the slightly easier

to compute method by Schoenfeld is also acceptable in most cases.

Prior to the comparison of the analysis methods, it was veri�ed that all methods control

the type I error rate. For a sample size of 10,000 subjects and 10,000 simulations, the

type I error rates ranged between 0.486 and 0.494.

The power to detect a signi�cant treatment e�ect when using the sample size calculated
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from Palta and Amini's formula is compared for the strati�ed Cox PH model, the

shared frailty model, and the two-step approach by Mehrotra et al. (see Figure 3.8).

Additional to these three methods, the strati�ed asymptotic log-rank test and the

exact log-rank test are included as well, to reveal potential failure of asymptotics.

The asymptotic properties are also investigated as part of the sensitivity analysis in

Section 3.2.3.4. Note that the approximate version of the exact log-rank test was used

(for details see Section 2.1.2.2). The di�erent analysis methods perform similarly for

large sample sizes and minor heterogeneity of hazard ratios. As the sample size gets

smaller and the hazard ratios become more heterogeneous, the power curves of the

methods increasingly diverge. As expected, the curves di�er the most for the most

extreme scenario, with a minimum of 0.748 (strati�ed Cox) and a maximum of 0.829

(approximate log-rank). For the complete numerical results see Table 3.3.

The strati�ed Cox regression and the asymptotic log-rank test perform the worst. In

the most extreme scenarios, the power is about 0.1 below the desired level of 0.8. Note

that since there are no other covariates included in the model, the score-statistic of

the strati�ed Cox regression would yield the same curve as the asymptotic strati�ed
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Figure 3.8: Power of the strati�ed Cox PH model, Mehrotra's two-step approach,

the lognormal shared frailty model, and strati�ed exact and asymptotic log-rank test

to detect a true treatment e�ect when using Palta and Amini's sample size formula

under di�erent hazard ratios.
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log-rank test. The di�erence between the two curves is caused by usage of the Wald-

statistic for the strati�ed Cox regression. Since Mehrotra et al. (2012) use the Wald

test in their two-step approach, the Wald test was also used for the strati�ed Cox PH

model for a fair comparison.

The shared frailty model, the two-step approach, and the approximate log-rank test

perform similarly for small to moderate di�erences in hazard ratios. For the most

extreme scenarios, the shared frailty model yields a slightly lower power than the other

two, but does not drop considerably below the desired power.

Mehrotra et al. (2012) suggested two di�erent weighting options for the second step

of their two-step approach: �sample size weights�, which use the sample proportions

of the strata as weights, and �minimum risk weights�, which are intended to minimize

the mean squared error when estimating β. Both weighting options were tested, but

Table 3.3: Numerical results for the power comparison of the strati�ed Cox PH mo-

del, Mehrotra's two-step approach, the lognormal shared frailty model, and strati�ed

exact and asymptotic log-rank test to detect a true treatment e�ect when using

Palta and Amini's sample size formula under di�erent hazard ratios.

Input Power

HR Sample Strat. Cox Two-step Frailty Frailty Exact Asympt.
B0, B1, B2 Size Wald Wald lognorm Gamma log-rank log-rank

0.8 0.8 0.8 763 0.802 0.803 0.805 0.804 0.802 0.802
0.8 0.8 0.7 574 0.796 0.794 0.796 0.795 0.785 0.796
0.8 0.8 0.6 437 0.794 0.796 0.796 0.795 0.788 0.795
0.8 0.8 0.5 336 0.790 0.802 0.798 0.797 0.795 0.792
0.8 0.8 0.4 259 0.777 0.808 0.803 0.805 0.806 0.778
0.8 0.8 0.3 200 0.764 0.827 0.810 0.816 0.825 0.766
0.8 0.7 0.7 461 0.796 0.803 0.798 0.797 0.799 0.798
0.8 0.7 0.6 360 0.792 0.801 0.798 0.797 0.795 0.793
0.8 0.7 0.5 282 0.776 0.794 0.790 0.790 0.791 0.778
0.8 0.7 0.4 222 0.771 0.802 0.796 0.799 0.802 0.773
0.8 0.7 0.3 174 0.756 0.813 0.800 0.805 0.814 0.758
0.8 0.6 0.6 297 0.795 0.812 0.804 0.805 0.812 0.795
0.8 0.6 0.5 238 0.783 0.804 0.795 0.795 0.803 0.785
0.8 0.6 0.4 190 0.773 0.806 0.800 0.802 0.805 0.775
0.8 0.6 0.3 152 0.758 0.819 0.804 0.809 0.821 0.761
0.8 0.5 0.5 200 0.782 0.817 0.804 0.805 0.820 0.784
0.8 0.5 0.4 163 0.768 0.813 0.800 0.802 0.816 0.771
0.8 0.5 0.3 131 0.755 0.815 0.801 0.806 0.820 0.759
0.8 0.4 0.4 138 0.758 0.817 0.796 0.803 0.824 0.761
0.8 0.4 0.3 113 0.744 0.819 0.798 0.804 0.827 0.748
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the resulting weights did not di�er by much. Therefore, the simpler weights, i.e. the

sample proportions, were used for the results presented here.

Overall, the shared frailty model, the two-step analysis, and the approximate log-rank

test do not su�er loss of power for any of the scenarios and are hence the preferable

choice over the asymptotic log-rank test and the strati�ed Cox PH model when dealing

with heterogeneous treatment e�ects.

A plot where the roles of the hazard ratios of B1 and B2 are interchanged shows similar

results and is shown in the sensitivity analysis in Section 3.2.3.4.

The results for the sample size formulas other than the formula by Palta and Amini

are shown in Figures 3.9 - 3.11. While Schoenfeld's sample size formula performs well

for all analysis methods for small to moderate di�erences in hazard ratios, the power
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Figure 3.9: Power of the strati�ed Cox PH model, Mehrotra's two-step approach,

the lognormal shared frailty model, and strati�ed exact and asymptotic log-rank test

to detect a true treatment e�ect when using Schoenfeld's sample size formula under

di�erent hazard ratios.

declines for all methods as the di�erence between the hazard ratios increases. For the

most extreme hazard ratio scenarios, all methods yield a power below 0.8.

With Lachin and Foulkes' sample size formula, all analysis methods have less than

0.8 power to detect a true treatment e�ect for all hazard ratio scenarios and for both
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weighting options for the sample size formulas (Figures 3.10 and 3.11).
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Figure 3.10: Power of the strati�ed Cox PH model, Mehrotra's two-step approach,

the lognormal shared frailty model, and strati�ed exact and asymptotic log-rank test

to detect a true treatment e�ect when using Lachin and Foulkes' sample size formula

under di�erent hazard ratios.
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Figure 3.11: Power of the strati�ed Cox PH model, Mehrotra's two-step approach,

the lognormal shared frailty model, and strati�ed exact and asymptotic log-rank test

to detect a true treatment e�ect when using Lachin and Foulkes' sample size formula

(with sample proportions as weights) under di�erent hazard ratios.
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3.2.3.4 Sensitivity analysis

Sensitivity analyses were performed to investigate the robustness of the results under

di�erent parameter settings and violations of assumptions.

Comparing the asymptotic and the exact log-rank test for the scenarios with the largest

di�erences in hazard ratios, and taking into consideration the calculated sample sizes,

an obvious question is whether the reason for the poorer performance of the log-rank

test and the strati�ed Cox PH model is that the assumptions regarding asymptotic

properties are not met. For the most extreme scenarios, the calculated sample size

is below 300, which, with prevalences of 0.5, 0.25, and 0.25 for B0, B1, and B2

respectively, results in stratum sizes of less than 75 patients for B1 and B2. Hence,

asymptotic assumptions are problematic in these cases. Another small simulation study

was carried out with equal hazard ratios across strata but smaller sample sizes. The

results in Table 3.4 show that there is indeed some loss of power, but for an overall

sample size of 115 patients (which is very close to the 113 patients in the most extreme

case considered), the loss of power is minor. E.g., the strati�ed Cox PH model has

a power of 0.77 as opposed to a power of 0.744 with heterogeneous hazard ratios

(see Table 3.3). For control of the type-I-error rate, the exact log-rank test should be

considered instead if the strata sizes are expected to be small, i.e. in the double digits,

and there is too little data available for reliable approximations. The shared frailty

Table 3.4: Check of asymptotic properties: Numerical results for the power compa-

rison of the strati�ed Cox PH model, Mehrotra's two-step approach, the lognormal

shared frailty model, and strati�ed exact and asymptotic log-rank test to detect

a true treatment e�ect when using Palta and Amini's sample size formula under

homogeneity of hazard ratios but under small sample sizes.

Input Power

HR Sample Strat. Cox Two-step Frailty Exact Asympt.
B0, B1, B2 Size Wald Wald Lognorm log-rank log-rank

0.70 0.70 0.70 306 0.801 0.806 0.809 0.804 0.802
0.65 0.65 0.65 213 0.792 0.796 0.800 0.794 0.794
0.60 0.60 0.60 154 0.787 0.793 0.797 0.791 0.790
0.55 0.55 0.55 115 0.779 0.788 0.796 0.789 0.784
0.50 0.50 0.50 87 0.770 0.777 0.794 0.786 0.776
0.45 0.45 0.45 67 0.756 0.745 0.784 0.772 0.762
0.40 0.40 0.40 53 0.759 0.683 0.789 0.778 0.769
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model also appears to be an appropriate choice and additionally o�ers the possibility

to include covariates in the model, which is an advantage over the exact log-rank test.

In Figure 3.12, the role of the hazard ratios for B1 and B2 was interchanged, i.e. within

each of the plot windows, the hazard ratio for B2 is �xed and the hazard ratio for B1

varies, rather than the other way around (as in Figure 3.8). The results shown in the

plot are similar to Figure 3.8. The minor di�erences that can be seen could be caused

by the di�erent baseline hazards of the two strata.
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Figure 3.12: Role of hazard ratios of B1 and B2 exchanged: Power of the strati�ed

Cox PH model, Mehrotra's two-step approach, the lognormal shared frailty model,

and strati�ed exact and asymptotic log-rank test to detect a true treatment e�ect

when using Schoenfeld's sample size formula under di�erent hazard ratios.

It was also investigated whether larger di�erences in baseline hazards, i.e. stronger

strati�cation, have an impact on the results. Strati�cation factors 1, 0.5, 1.5 were

used, leading to baseline hazards 0.05, 0.025, 0.075 for B0, B1, and B2, respectively.

Figure 3.13 shows that there is some impact, but especially for the more extreme

hazard ratio scenarios the two-step procedure and the approximate log-rank test still

have a power close to 0.8.

As discussed in section 3.2.3.2, it is possible to simulate a stratum speci�c random

e�ect in the data, as is assumed by the shared frailty model. The results for a minor, a

moderate, and a stronger random e�ect (with lognorm(0, 0.15), lognorm(0, 0.3), and
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lognorm(0, 0.5), respectively) can be seen in Figures 3.14, 3.15, and 3.16, respectively.

Note the di�erent scaling of the y-axes compared to the previous sections.
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Figure 3.13: Power of the strati�ed Cox PH model, Mehrotra's two-step approach,

the lognormal shared frailty model, and strati�ed exact and asymptotic log-rank test

to detect a true treatment e�ect when using Palta and Amini's sample size formula

under di�erent scenarios for stronger strati�cation (strati�cation factors 1, 0.5, 1.5

leading to baseline hazards 0.05, 0.025, 0.075 for B0, B1 and B2, respectively).
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Figure 3.14: Power of the strati�ed Cox PH model, Mehrotra's two-step approach,

the lognormal shared frailty model, and strati�ed exact and asymptotic log-rank test

to detect a true treatment e�ect when using Palta and Amini's sample size formula

under di�erent hazard ratio scenarios and data with minor random e�ect (lognorm(0,

0.15)).
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While the minor random e�ect does not have much of an impact compared to Figure

3.8, the analysis methods do su�er some power loss in the presence of a moderate

random e�ect. The largest power loss happens for the strong random e�ect. It can

also be observed that the shared frailty model loses less power than the other methods,

while the exact log-rank test does not appear to handle the random e�ect very well.

Finally, it was investigated how the analysis methods perform under a misspeci�ed

censoring distribution, under dependent censoring and under misspeci�cation of the

survival distribution.
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Figure 3.15: Power of the strati�ed Cox PH model, Mehrotra's two-step approach,

the lognormal shared frailty model, and strati�ed exact and asymptotic log-rank

test to detect a true treatment e�ect when using Palta and Amini's sample size

formula under di�erent hazard ratio scenarios and data with moderate random e�ect

(lognorm(0, 0.3)).

Figure 3.17 shows the results for Weibull distributed censoring when exponential cen-

soring is assumed and Figure 3.18 shows the results for dependent censoring when

independent censoring assumed. In both cases, there is only a minor impact on the

results compared to Figure 3.8. Figure 3.19, on the other hand, shows that the mo-

dels are sensitive to a misspeci�ed survival distribution. The data were simulated with

Weibull distributed survival times with a shape parameter of 0.8 while the methods

assume exponential survival.
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Figure 3.16: Power of the strati�ed Cox PH model, Mehrotra's two-step approach,

the lognormal shared frailty model, and strati�ed exact and asymptotic log-rank test

to detect a true treatment e�ect when using Palta and Amini's sample size formula

under di�erent hazard ratio scenarios and data with strong random e�ect (lognorm(0,

0.5)).
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Figure 3.17: Sensitivity to misspeci�ed censoring distribution: Weibull distributed

censoring with shape 0.8. Power of the strati�ed Cox PH model, Mehrotra's two-step

approach, the lognormal shared frailty model, and strati�ed exact and asymptotic

log-rank test to detect a true treatment e�ect when using Lachin and Foulkes' sample

size formula.
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Figure 3.18: Sensitivity to non-independent censoring. Power of the strati�ed Cox

PH model, Mehrotra's two-step approach, the lognormal shared frailty model, and

strati�ed exact and asymptotic log-rank test to detect a true treatment e�ect when

using Lachin and Foulkes' sample size formula.
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Figure 3.19: Sensitivity to misspeci�ed survival distribution: Weibull distributed

survival with shape 0.8. Power of the strati�ed Cox PH model, Mehrotra's two-step

approach, the lognormal shared frailty model, and strati�ed exact and asymptotic

log-rank test to detect a true treatment e�ect when using Lachin and Foulkes' sample

size formula.
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3.2.4 Data example

The approach of investigating several biomarker-de�ned groups with corresponding

stratum-speci�c experimental treatments within a single clinical trial has only just

emerged in recent years. Therefore, most trials of this kind are either still in the

planning or recruitment stage, making it di�cult to obtain data for a study design

as it is considered here. For illustration purposes, data were taken from three studies

carried out by the German-Austrian Acute Myeloid Leukemia Study Group (AMLSG)

and subsets of the data were combined to be used as example data set. For stratum

B1, patients from the 06-04 study (Tassara et al. 2014) with mutated Nucleophosmin-

1 (NPM1) were chosen (n=40). Stratum B2 is comprised of patients from the 07-04

study (Schlenk et al. 2016) with internal tandem duplication mutations of FMS-like

tyrosine kinase 3 (FLT3-ITD) (n=139). The data from the study HD98B (Schlenk

et al. 2004) were used for stratum B0, excluding patients with mutated NPM1 and

FLT3-ITD (n=144). This resulted in a data set with 323 patients. The survival curves

for the three strata can be seen in Figure 3.20.

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Kaplan−Meier Plot for Stratum B 0

(HD98B study)

Time (months)

S
u

rv
iv

a
l 
p

ro
b

a
b

ili
ty

0 12 24 36 48 60 72

Experimental, n = 75
Standard, n = 69

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Kaplan−Meier Plot for Stratum B 1

(06−04 Study, NPM1 mutation)

Time (months)

S
u

rv
iv

a
l 
p

ro
b

a
b

ili
ty

0 12 24 36 48 60 72

Experimental, n = 18
Standard, n = 22

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Kaplan−Meier Plot for Stratum B 2

(07−04 Study, FLT3−ITD mutation)

Time (months)

S
u

rv
iv

a
l 
p

ro
b

a
b

ili
ty

0 12 24 36 48 60 72

Experimental, n = 73
Standard, n = 66

1

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Kaplan−Meier Plot for Stratum B 0

(HD98B study)

Time (months)

S
u

rv
iv

a
l 
p

ro
b

a
b

ili
ty

0 12 24 36 48 60 72

Experimental, n = 75
Standard, n = 69

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Kaplan−Meier Plot for Stratum B 1

(06−04 Study, NPM1 mutation)

Time (months)

S
u

rv
iv

a
l 
p

ro
b

a
b

ili
ty

0 12 24 36 48 60 72

Experimental, n = 18
Standard, n = 22

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Kaplan−Meier Plot for Stratum B 2

(07−04 Study, FLT3−ITD mutation)

Time (months)

S
u

rv
iv

a
l 
p

ro
b

a
b

ili
ty

0 12 24 36 48 60 72

Experimental, n = 73
Standard, n = 66

1

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Kaplan−Meier Plot for Stratum B 0

(HD98B study)

Time (months)

S
u

rv
iv

a
l 
p

ro
b

a
b

ili
ty

0 12 24 36 48 60 72

Experimental, n = 75
Standard, n = 69

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Kaplan−Meier Plot for Stratum B 1

(06−04 Study, NPM1 mutation)

Time (months)
S

u
rv

iv
a

l 
p

ro
b

a
b

ili
ty

0 12 24 36 48 60 72

Experimental, n = 18
Standard, n = 22

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Kaplan−Meier Plot for Stratum B 2

(07−04 Study, FLT3−ITD mutation)

Time (months)

S
u

rv
iv

a
l 
p

ro
b

a
b

ili
ty

0 12 24 36 48 60 72

Experimental, n = 73
Standard, n = 66

1

Figure 3.20: Kaplan-Meier plots for event-free survival for the data from the German-

Austrian Acute Myeloid Leukemia Study Group (AMLSG). The x-axes were cut at 6

years.

Just like the simulated data, the data set was then analyzed using the asymptotic

and exact log-rank test, the strati�ed Cox PH model, the two-step approach, and the

shared frailty model. The resulting hazard ratio estimates for event-free survival were
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0.81 for the strati�ed Cox PH model, 0.82 for the two-step approach, and 0.83 for the

lognormal shared frailty model (Table 3.5). The hazard ratios for the individual strata

were also estimated with 0.74, 0.68, and 0.96 for B0, B1, and B2, respectively. Due to

the small sample sizes, especially in B1, one might consider using an unconventional α

of 0.1. Then, rejection of the null hypothesis in this example depends on the analysis

method used. While the null hypothesis would be rejected using the strati�ed Cox

PH model, the two-step approach, and the asymptotic log-rank test, it cannot be

rejected using the lognormal shared frailty model and the exact log-rank test. Note

that the performance of the shared frailty model could be in�uenced by more complex

underlying baseline hazards than the constant ones in the simulation study.

The performed overall analysis can be understood as assessing the bene�t of using

targeted therapies in the overall patient population. Such an overall analysis should

be performed in conjunction with subsequent subgroup analyses to avoid drawing false

conclusions, as it could have been the case for B2 in this example. But especially in

small sample situations, an evaluation of the overall targeted treatment strategy can

be a useful tool to guide further analysis and procedure.

Table 3.5: Hazard ratios with corresponding p-values for the data from the German-

Austrian Acute Myeloid Leukemia Study Group (AMLSG) estimated with the strati-

�ed Cox PH model, the two-step approach, and the shared frailty model. Additionally,

p-values are given for the strati�ed exact and asymptotic log-rank test.

Analysis Method HR 90% C.I. p-value

Strati�ed Cox 0.81 (0.67, 0.99) 0.08
Lognormal shared frailty 0.83 (0.68, 1.01) 0.11

Overall Two-step approach 0.82 (0.67, 0.99) 0.09
Exact log-rank 0.13
Asymptotic log-rank 0.08
Cox B0 0.74 (0.55, 0.98) 0.08

Individual Cox B1 0.68 (0.38, 1.20) 0.26
Cox B2 0.96 (0.71, 1.31) 0.83

From the results of this study, it can be concluded that the assumption of homogene-

ous treatment e�ects is not appropriate in this context. Hence, the heterogeneity of

treatment e�ects supports using the sample size formula by Palta and Amini instead

of the formula by Lachin and Foulkes, since the latter does not facilitate the option to
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use stratum-speci�c treatment e�ects within the formula. Furthermore, the two-step

analysis seems like a reasonable �rst step in a multi-stage analysis. Looking at stratum

2 with a hazard ratio of 0.96, one could also consider using an adaptive design for

future studies to be able to stop strata that perform poorly early in the study.

3.3 Multiple biomarker hybrid design

When a design with multiple biomarkers, such as the multiple biomarker hybrid design,

is used for a less prevalent disease, it may be di�cult to recruit enough patients to

each subtrial to obtain statistically meaningful results within a reasonable time frame.

In this case, small sample sizes within the subtrials have to be expected, as well as

many biomarker-negative patients at the initial screening stage, i.e. patients which test

negative for all relevant biomarkers. The small sample sizes may make it unfeasible to

analyze the subtrials individually. Moreover, the small sample sizes can lead to biased

treatment e�ect estimates. This imposes the need to investigate alternative approaches

for the analysis of such a trial, and possibly for the study design itself. Measures should

be taken to reduce the potential bias of the treatment e�ect estimates. Additionally,

with an expected large group of biomarker-negative patients, it seems reasonable to

explore options to include them in such a trial and potential bene�ts to the trial through

their inclusion, such as collection of additional data, improving power, or reducing bias.

For the following sections, Design 4 from Figure 3.1 will be considered. The biomarker-

groups are denoted by Bi, i = {0, 1, 2}, where B0 stands for biomarker-negative. Upon

entering the study, the patients' biomarker-pro�le is determined and they are assigned

to the biomarker-groups accordingly. The proportion of patients in biomarker-group i is

denoted by gi. With a total sample size of n patients, this results in a total number of

ni = gin patients in group i. Within B1 and B2, patients are randomized between the

biomarker-speci�c experimental therapy (Exp1 and Exp2, respectively) and standard of

care (Std), with probabilities 1−ri and ri, respectively. Patients in B0 are treated with

standard of care only. The baseline hazard for patients in biomarker-group i is denoted

by λ0i . The hazards of death at time t for biomarker-positive patients in biomarker-

group i receiving treatment j are denoted by λji(t), where j = 1 for experimental
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treatment or j = 0 for standard of care.

3.3.1 Data modeling and analysis

A prognostic biomarker can be modeled by allowing di�erent baseline hazards for the

biomarker-groups (strati�ed Cox PH model). If a biomarker is predictive on the other

hand, it causes the treatment e�ects for the biomarker-groups to be di�erent, which

cannot be modeled using the strati�ed Cox PH model, since it assumes homogeneous

treatment e�ects. The inclusion of a single treatment arm for biomarker-negative

patients in the regression model for the multi-biomarker hybrid design (Figure 3.1,

Design 4) adds the di�culty that data analysis methods for a strati�ed analysis, such

as the strati�ed Cox PH model, the shared frailty model, or the two-step approach by

Mehrotra et al. (2012), as used in Section 3.2 for the strati�ed randomize-all design,

are not applicable in this situation.

There are two possibilities to include the data from the biomarker-negative patients

in the analysis. For non-prognostic biomarkers the three standard of care arms could

simply be pooled. For prognostic biomarkers, however, this approach is not appropriate.

Since it is quite common for biomarkers to be prognostic, it was investigated to include

the biomarker status in the Cox PH model as a factor variable (with dummy variables

b1 and b2) to account for the prognostic e�ect, as an alternative to using a strati�ed

Cox PH model.

To evaluate the bene�t of this strategy and of including biomarker-negative patients

the following approaches were compared:

Approach 1: Separate models for both biomarkers, using data only from B1

patients or B2 patients, respectively:

λ1 = λ01 exp(β1x1) (sample size: n1, all patients in B1)

λ2 = λ02 exp(β2x2) (sample size: n2, all patients in B2)

The parameters β1 and β2 represent the treatment e�ects for Exp1 and Exp2, re-

spectively. This is equivalent to using an enrichment design with two biomarkers
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with separate analyses for the biomarkers.

Approach 2: A model performing a combined analysis, using data from B1 pa-

tients and B2 patients, but excluding biomarker-negative patients (B0):

λ = λ01 exp(γ2b2 + β1x1 + β2x2) (sample size: n1 + n2, all patients in B1 and B2)

The parameters β1 and β2 represent the treatment e�ects for Exp1 and Exp2,

respectively, and γ2 is the prognostic e�ect of B2 (with dummy variable b2)

with B1 as reference. This is equivalent to using an enrichment design with two

biomarkers with a combined analysis for the biomarkers.

Approach 3: A model performing a combined analysis, using the entire data set

(B1, B2, and B0)

λ = λ0 exp(γ1b1 + γ2b2 + β1x1 + β2x2) (sample size: n, all patients)

The parameters β1 and β2 represent the treatment e�ects for Exp1 and Exp2,

respectively, and γ1 and γ2 are the prognostic e�ects of B1 and B2 (with dummy

variables b1 and b2), respectively, with B0 as reference. This uses all data available

from the multi-biomarker hybrid design.

Note that these three approaches use di�erent sample sizes due to the exclusion of

biomarker-groups in Approaches 1 and 2.

For lower prevalence biomarkers, n1 and n2 have to be expected to be rather small

compared to n. While estimates of maximum-likelihood methods, such as Cox regres-

sion, are asymptotically unbiased, this is not necessarily the case for �nite samples (cf.

Cordeiro and McCullagh 1991). Hence, especially for small samples, the estimates of

the Cox regression can be biased. Langner et al. (2003) investigated the relationship

of bias to sample size for logistic and Cox regression. In their simulation study they

found that the bias from maximum likelihood methods depends on sample size, but

also on baseline hazard and treatment hazard ratio. They found a strong bias for

extreme baseline risks and extreme treatment hazards, and also for small numbers of



3.3. MULTIPLE BIOMARKER HYBRID DESIGN 61

events in the control group.

The bias of estimators due to small sample sizes and rare events can be reduced by

using a penalized likelihood based on a modi�ed score function proposed by Firth

(1993), the so-called Firth correction or Firth penalty (see Section 2.1.1.4). The bias

and root mean squared error (RMSE) of estimators when using the Firth penalty in

situations with a small number of events was investigated by Lin et al. (2013). They

reported that for a small number of events per variable, Firth's approach had less

absolute value of relative bias and a smaller mean squared error (MSE) compared to

the Cox PH model.

3.3.2 Simulation study: Small sample size bias

A simulation study was conducted to compare the performance of the three approaches

discussed in Section 3.3.1 with respect to bias, standard deviation and RMSE of the

di�erent parameter estimates, and to investigate whether there is a bene�t of including

biomarker-negative patients in the study. Moreover, it was examined to use the Firth

correction to reduce the small sample size bias of the parameter estimates.

3.3.2.1 Study design and data generation

The data were generated as described in Section 2.2.1. The hazard ratios of B1 and

B2, exp(β1) and exp(β2), were varied between 0.8 and 0.4. Note that, due to the

single treatment arm, no hazard ratio can be speci�ed for B0. For B0, the baseline

hazard λ0 was chosen to be 0.05 and then the baseline hazards for B1 and B2, λ01

and λ02 , were determined by multiplying 0.05 by factors 0.5 and 2, respectively, i.e.,

γ1 = log(0.5) and γ2 = log(2). This was done to simulate a biomarker indicative of

a favorable and a poor prognosis, respectively. Survival and random censoring were

assumed to be exponential and the allocation ratio between treatments for B1 and B2

was set to 1:1. Time will be measured in months. Accrual time a was chosen to be 24

months and follow-up time f 36 months. For the remaining simulation parameters see

Table 3.6. For this simulation study, the censoring proportion pcens was set to 0.05.
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The resulting mean overall censoring proportions over 10,000 simulation runs can be

found in Table 3.7.

Table 3.6: Parameters for the simulation study using a design with three biomarker-

groups. Note that due to the single treatment arm there is no hazard ratio for

B0.

Fixed simulation parameters

Accrual time (months), a 24

Follow-up time (months), f 36

Proportion random censoring, pcens 0.05

Treatment allocation ratio 1 : 1

Hazard ratio B1, exp(β1) 0.8, 0.7, 0.6, 0.5, 0.4

Hazard ratio B2, exp(β2) 0.8, 0.7, 0.6, 0.5, 0.4

exp(γ1) 0.5

exp(γ2) 2

Sample size, n 100, 150, 250, 1,000

Parameters for biomarker-groups (B0,B1,B2)

Proportion of patients, gi (0.5, 0.25, 0.25)

Baseline hazards, λ0i (0.05, 0.025, 0.1)

Di�erent sample sizes were considered in the simulation study: smaller sample sizes

with 100 and 150 patients in the study, a moderate sample size with 250 patients, and

a large sample size with 1,000 patients.

The three approaches discussed in section 3 were compared with respect to bias,

standard deviation and RMSE of the estimates β̂1, β̂2, γ̂1 and γ̂2 out of S = 10, 000

simulations. The bias and standard deviation of the estimates were calculated as

bias(β̂) =
1

S

S∑
l=1

β̂l − β and s(β̂) =

√√√√ 1

S − 1

S∑
l=1

(β̂l − ¯̂
β)2.

The MSE was then calculated as MSE(β̂) = bias(β̂)2 + s2(β̂) and the RMSE as

RMSE(β̂) =

√
MSE(β̂). As a result of the consideration of extreme scenarios, the

algorithm did not converge for some simulation runs due to lack of events in one group.
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These runs were excluded from the analyses (between 0 and 1% of the runs, depending

on the hazard ratios of B1 and B2).

To simulate a non-constant baseline hazard for the sensitivity analysis, data were simu-

lated where the hazard function is given by a Weibull distribution with shape parameters

0.4 and 5. A shape parameter of 1 corresponds to the exponential distribution. For

better comparability, λ0 was adjusted such that the same number of events is reached

at 60 months for all shape parameters, i.e. λ0 = 0.05 · 60/60shape. Additionally, the

simulations were run without censoring to ensure equal numbers of events.

Table 3.7: Mean number of events over 10,000 simulations for the individual treat-

ment arms and overall censoring proportion (both administrative and random) for

n = 100, 150, 250, and 1,000.

n = 100
HR of B1 Events B1 Exp Events B1 Std cens. prop. HR of B2 Events B2 Exp Events B2 Std cens. prop.

0.8 7.3 8.3 0.17 0.8 11.7 12.0 0.17
0.7 6.7 8.3 0.18 0.7 11.5 12.0 0.17
0.6 6.0 8.3 0.19 0.6 11.2 12.0 0.18
0.5 5.3 8.3 0.19 0.5 10.8 12.0 0.18
0.4 4.5 8.3 0.20 0.4 10.1 12.0 0.19

n = 150
HR of B1 Events B1 Exp Events B1 Std cens. prop. HR of B2 Events B2 Exp Events B2 Std cens. prop.

0.8 10.9 12.4 0.17 0.8 17.6 18.0 0.17
0.7 10.0 12.4 0.18 0.7 17.3 18.1 0.17
0.6 9.1 12.4 0.19 0.6 16.9 18.1 0.18
0.5 8.0 12.4 0.19 0.5 16.2 18.1 0.18
0.4 6.7 12.4 0.20 0.4 15.1 18.1 0.19

n = 250
HR of B1 Events B1 Exp Events B1 Std cens. prop. HR of B2 Events B2 Exp Events B2 Std cens. prop.

0.8 18.1 20.6 0.17 0.8 29.4 30.0 0.17
0.7 16.7 20.6 0.18 0.7 28.9 30.1 0.17
0.6 15.0 20.6 0.19 0.6 28.2 30.1 0.18
0.5 13.2 20.6 0.19 0.5 27.1 30.1 0.18
0.4 11.1 20.6 0.20 0.4 25.3 30.1 0.19

n = 1, 000
HR of B1 Events B1 Exp Events B1 Std cens. prop. HR of B2 Events B2 Exp Events B2 Std cens. prop.

0.8 72.5 82.3 0.17 0.8 118.1 120.4 0.17
0.7 66.7 82.3 0.18 0.7 116.1 120.4 0.17
0.6 60.3 82.3 0.19 0.6 113.1 120.5 0.18
0.5 52.9 82.4 0.19 0.5 108.6 120.6 0.18
0.4 44.7 82.4 0.20 0.4 101.6 120.7 0.19

3.3.2.2 Comparison of analysis approaches

The three approaches discussed in Section 3.3.1 were compared with respect to bias,

standard deviation and RMSE of the di�erent parameter estimates out of 10,000 simu-
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lations. The bias correction by Firth (1993) was applied in an additional analysis and

the bias, standard deviation, and RMSE were again compared for the three approaches.

For β1, the treatment e�ect for the biomarker indicative of a favorable prognosis (B1),

the bias and standard deviation of the estimate β̂1 for di�erent sample sizes are shown

in Figure 3.21. The Figures showing the RMSE of β̂1 (and also of the other estimates)

can be found in the Appendix, since there were only minor visible di�erences between

standard deviation and RMSE. For all approaches and sample sizes, it can be observed

that bias, standard deviation, and RMSE increase in absolute terms as the hazard ratio

for B1, exp(β1), gets smaller, i.e. as the treatment e�ect gets larger. Without Firth

correction, Approach 1 yields a slightly smaller bias than Approach 2 and 3, which

perform similarly. The di�erences between the approaches get smaller as the sample

size increases. For standard deviation and RMSE all three approaches perform similarly.
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Figure 3.21: Bias and standard deviation of the estimate of log hazard ratio β1, the

treatment e�ect estimate for the biomarker indicative of a favorable prognosis (B1),

using a Cox PH model without and with Firth correction for sample sizes 100, 150,

250, and 1,000.
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The Firth correction was applied to all three approaches. It is able to reduce the bias

for all three approaches but appears to over-correct the bias for Approach 1, and for

n = 100 also for Approach 2 and 3. The Firth correction o�ers a slight reduction in

standard deviation and RMSE for all three approaches, which all perform similarly.

For β2, the treatment e�ect for the biomarker indicative of a poor prognosis (B2), the

bias and standard deviation of the estimate β̂2 for di�erent sample sizes are shown in

Figure 3.22. For all approaches and sample sizes, it can be observed that the bias, as

well as standard deviation and RMSE, increases in absolute terms as the hazard ratio

for the treatment e�ect of biomarker 2, exp(β2), gets smaller.
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Figure 3.22: Bias and standard deviation of the estimate of log hazard ratio β2,

the treatment e�ect estimate for the biomarker indicative of a poor prognosis (B2),

using a Cox PH model without and with Firth correction for sample sizes 100, 150,

250, and 1,000.

Comparing the three approaches, it can be seen that for the small to moderate sample

sizes, the bias of β̂2 is approximately similar for Approach 1 and Approach 2, while

Approach 3 yields a smaller bias. This di�erence gets larger as the treatment e�ect

increases. With increasing sample size, the di�erences in bias of β̂2 between the three
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approaches get smaller. For n = 1, 000 there is no longer a visible di�erence. Approach

1 yields the largest standard deviation and RMSE, and Approach 3 the smallest. Again,

these di�erences get smaller with increasing sample size.

The Firth correction was applied to all three approaches. The results are also shown

in Figure 3.22. Just as before, for all approaches and sample sizes, the bias, standard

deviation, and RMSE increase in absolute terms as the hazard ratio for biomarker 2,

exp(β2), gets smaller.

For n = 100 and n = 150, a di�erence in bias between Approaches 1 and 2 can now

be observed. For the larger hazard ratios, Approach 2 yields a slightly smaller bias, but

as the hazard ratio decreases, the di�erences get smaller and for the smaller hazard

ratios, Approach 1 yields the smaller bias. For standard deviation and RMSE, there is

a similar situation for the estimates without Firth correction: Approach 1 yields the

largest and Approach 3 the smallest result, but the di�erences between the approaches

are now smaller and again get smaller with increasing sample size. Note that the true

value of β1 does not a�ect the bias and standard error for β̂2 and vice versa.

A comparison of bias, standard deviation, and RMSE of γ̂1 and γ̂2 for Approach 3

is shown in Figure A.3 in the Appendix. The estimates are almost constant for each

sample size and do not change with increasing bias of the treatment e�ect estimates.

Overall, the bias, standard deviation, and RMSE of γ̂1 and γ̂2 get smaller with increasing

sample size. Note that bias and standard deviation of γ̂1 and γ̂2 are not a�ected by

the values of β1 and β2. This allows the conclusion that, while bias and error for γ̂1

and γ̂2 do depend on the overall sample size, they do not depend on the number of

events in the treatment arms.

Figures 3.23 and 3.24 show the behavior of the bias of β̂1, β̂2, γ̂1, and γ̂2 for di�erent

baseline hazards. For both Figures, the baseline hazards for B2 correspond to multi-

plying λ00 = 0.05 with exp(γ2), where γ2 = log(2), γ2 = log(7/4), γ2 = log(3/2), and

γ2 = log(5/4), respectively. The baseline hazards for B1 correspond to multiplying λ00

with exp(γ1), where γ1 = log(1
2
), γ1 = log(4/7), γ1 = log(2/3), and γ1 = log(4/5),

respectively.
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Figure 3.23: Comparison of bias of the estimates of log hazard ratio β1 and log

hazard ratio β2 for di�erent baseline hazards for n = 100, using a Cox PH model

without and with Firth correction for di�erent baseline hazards.

Figure 3.23 shows that there is not much di�erence for the di�erent baseline hazards

looking at the bias of β̂1 for the three approaches without Firth correction. For the

model with Firth correction, the upwards bias that can be observed in the �rst plot

for λ01 = 0.025 gets smaller as the baseline hazard increases, i.e. as λ01 approaches

0.1 0.0875 0.075 0.0625

0.025 0.02865 0.034 0.04

λ0,2

λ0,1

−0
.1

5
−0

.1
0

−0
.0

5
 0

.0
0

 0
.0

5
 0

.1
0

 0
.1

5

bi
as

Approach 3, γ1
Approach 3, γ2
Approach 3, Firth, γ1
Approach 3, Firth, γ2

1

0.1 0.0875 0.075 0.0625

0.025 0.02865 0.034 0.04

λ0,2

λ0,1

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

S
ta

nd
ar

d 
de

vi
at

io
n

Approach 3, γ1
Approach 3, γ2
Approach 3, Firth, γ1
Approach 3, Firth, γ2

1
1

Figure 3.24: Comparison of bias and standard deviation of the estimates of γ1 and

γ2 for di�erent baseline hazards, using a Cox PH model without and with Firth

correction for Approach 3 and for di�erent baseline hazards.
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λ0. For the standard deviation of β̂1, there is not much of a di�erence between the

plots for the di�erent baseline hazards, but overall the standard deviation decreases as

the baseline hazard increases and it is smaller for the models with Firth correction (see

Figure A.4 in the Appendix).

For β̂2 there are also only slight di�erences between the plot for bias and standard

deviation of β̂2 for the di�erent baseline hazards. But for both models, with and

without Firth correction, Approach 1 improves in bias as λ02 decreases, i.e., approaches

λ0. The plots for the standard deviation of β̂2 look similar for all baseline hazards.

Figure 3.24 shows that the di�erence of bias and standard deviation between γ̂1 and

γ̂2 gets smaller as the di�erence between the baseline hazards gets smaller.

3.3.2.3 Sensitivity analysis

Further simulations were run to investigate the robustness of the estimators against

violations of model assumptions and change of parameters. Besides di�erent baseline
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Figure 3.25: Di�erent patient proportions: Bias and standard deviation of the es-

timate of log hazard ratio β1, the treatment e�ect estimate for B1, using a Cox

PH model without and with Firth correction when the patient proportions in the

biomarker-groups B0, B1, and B2 are 0.6, 0.3, and 0.1, respectively.
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hazards for the biomarkers, the bias and standard deviation were also investigated for

di�erent biomarker prevalences. Figures 3.25 and 3.26 show the bias and standard

deviation of β̂1 and β̂2 for patient proportions 0.6, 0.3, and 0.1 in biomarker-groups

B0, B1, and B2, respectively.

The di�erent prevalences do not seem to have much of an impact on bias and standard

deviation of β̂1. Both are a bit smaller, which would be expected, given the slightly

larger group size. For β̂2, the results di�er for n = 100 and n = 150. But given the

small numbers of patients in B2 (10 and 15, respectively), the upwards bias and larger

standard deviation that can be seen in those cases is most likely caused by the very

small sample size. So it seems that the small prevalence, rather than the di�erences

in prevalence, is the cause for the change in bias and standard deviation.
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Figure 3.26: Di�erent patient proportions: Bias and standard deviation of the es-

timate of log hazard ratio β2, the treatment e�ect estimate for B2, using a Cox

PH model without and with Firth correction when the patient proportions in the

biomarker-groups B0, B1, and B2 are 0.6, 0.3, and 0.1, respectively.

For the non-constant (Weibull distributed) hazard function, shape parameters of the

Weibull distribution were chosen to be 0.4, 1 and 5 (cf. Section 3.3.2.1). For the
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corresponding shape of the resulting survival distribution see Figure 3.27. For better

comparability, λ0 was adjusted such that the same number of events is reached at 60

months for all shape parameters, i.e. λ0 = 0.05 ·60/60shape. Shape parameters smaller

than 1 result in survival curves that are steeper at �rst and then �atter towards the end

of the trial, whereas shape parameters greater than 1 result in survival curves which

are �atter at �rst and get steeper towards the end.
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Figure 3.27: Kaplan-Meier plots showing survival distributions for di�erent shape

parameters of the Weibull distribution. The red curve shows survival of patients

receiving experimental therapy and black stands for standard of care.

For both, β̂1 and β̂2, not much of a di�erence can be seen compared to the simulation

results in Figures 3.21 and 3.22. The results are shown in Figures 3.28 and 3.29.

The slight di�erences disappear when these simulations are also run without censoring.

Hence, it can be concluded that the di�erences seen between Figures 3.21 and 3.28,

and 3.22 and 3.29, respectively, were caused by the di�erent numbers of events, rather

than the time-dependent baseline-hazard. With censoring, and therefore with di�erent

numbers of events, there are di�erences in bias and standard deviation.

Additionally, it was veri�ed that all three approaches for β1 and β2 without and with

Firth correction for the di�erent biomarker prevalences and for the di�erent Weibull

shape parameters roughly control the type one error rate. The tables with the numerical

results can be found in Tables A.5 and A.6 in the Appendix.
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(a) Weibull shape parameter: 0.4
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(b) Weibull shape parameter: 1.
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(c) Weibull shape parameter: 5.

Figure 3.28: Bias with and without censoring of the estimate of log hazard ratio β1

for Weibull distributed hazard function using a Cox PH model without and with Firth

correction for sample sizes 100 and 150. Results for sample sizes 250 and 1,000 not

shown.
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(a) Weibull shape parameter: 0.4
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(b) Weibull shape parameter: 1.
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Figure 3.29: Bias with and without censoring of the estimate of log hazard ratio β2

for Weibull distributed hazard function using a Cox PH model without and with Firth

correction for sample sizes 100 and 150. Results for sample sizes 250 and 1,000 not

shown.
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3.4 Flexible study designs

The �eld of biomarker research is rapidly and constantly developing. With a typical trial

duration of up to several years, it is desirable to be able to react to the emergence of

new potential biomarkers and corresponding experimental therapies during the course

of the study, without having to conduct a new, separate clinical trial. Having the

�exibility of incorporating a new biomarker and corresponding treatment in an ongoing

clinical trial could make their investigation more time- and cost-e�cient.

However, adding a new biomarker-group to an ongoing trial needs careful considera-

tion and planning to ensure feasibility and statistical soundness. Note that so far,

the biomarker-groups were treated as mutually exclusive. While this is a convenient

simpli�cation, it is not necessarily realistic. Often times, patients have more than

one biomarker. This will be taken into consideration in the following sections, where

several possibilities for the modi�cation of the study design by adding a new biomar-

ker will be presented and statistical considerations and issues will be discussed. To

distinguish between biomarkers and biomarker-de�ned groups, in the following the bi-

omarkers themselves will be denoted as Bi. The biomarker-groups will be denoted as

Gi, de�ned by biomarker Bi. The di�erence between Bi and Gi is that patients are

distinctly allocated to one of the biomarker-groups Gi, but patients within group Gi

may also have other biomarkers, additional to Bi.

3.4.1 Inclusion of a new biomarker-group

In the following, a study design with two biomarker-groups is considered, denoted by

Gi, i ∈ {0, 1}, where G1 is comprised of patients matched with B1 (see Figure 3.30a).

Upon entering the study, the patients' biomarker-pro�le is determined and they are

assigned to the biomarker-groups accordingly. All patients that cannot be matched

with B1 are allocated to G0, the biomarker-negative patients. While patients in G1 are

randomized between an experimental therapy, targeting their biomarker, and standard

of care, patients in G0 are treated with standard of care only.

Beyond this initial study design, it is assumed that there is another biomarker, B2
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(see Figure 3.30b). This biomarker is not included at the beginning of the study, but

throughout the study, external information becomes available that patients with B2

could potentially bene�t from a new experimental treatment Exp2. It is aimed to be

able to react quickly to such developments in the �eld of targeted therapies without

going through the lengthy process of planning a new, separate trial for patients with

B2. Additionally, there could be concern that the coexistence of the ongoing and the
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Figure 3.30: Adding a new biomarker to an ongoing clinical trial

potential new study may impair recruitment rates. Instead, the study shall be planned

such that the study protocol allows adding a biomarker-group G2 with experimental

therapy Exp2 to the ongoing trial at some point throughout the trial, denoted as tb,

where 0 ≤ tb ≤ a (see Figure 3.30c). For this situation, the protocol should also

include guidelines for an algorithm that prioritizes the biomarkers, such that patients

with both biomarkers are distinctly allocated to either G1 or G2. The following sections

will discuss potential design options, and practical and statistical considerations and

challenges.

3.4.2 Extension of the study design

One important initial question is whether or not it is possible to retrospectively de-

termine the biomarker status of the patients included in the study up to time tb with

respect to B2. If it is possible to retrospectively determine the biomarker status with

respect to B2, it is possible to distinguish between patients with B1 and B2 in G1 and

patients with B1 without B2 in G1, i.e. patients within the already existing biomarker-

group can be subdivided into B1+B2 and B1−B2. With this information available, it
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could be considered excluding the patients with B1+B2 from the �nal analysis. This

exclusion could, for example, be based on known interactions between the two biomar-

kers regarding the treatment, i.e. if B2 is known to have a positive or negative e�ect

on the response to the given treatment Exp1. Alternatively, an interaction term could

be included in the �nal model to accommodate for and estimate this e�ect.

One option to exclude patients from the analysis could be with the goal of not having

a change in patient population within the biomarker-groups at time tb. If B2 was

assigned a higher priority in the allocation algorithm than B1, this would change the

population in group G1 from B1±B2 before tb to B1−B2 after tb, due to patients with

B1+B2 being assigned to group G2 instead. Then, in this option, all patients with B2

already assigned to G1 would be excluded from the analysis, maintaining consistency

in patient population before and after time tb with respect to B2.

Additional to the retrospective determination of B2, it is important to assess the re-

liability of the external information used. If there is strong evidence, e.g. a large

con�rmatory study has just revealed that patients with B1 and B2 do not bene�t

from treatment Exp1, exclusion of patients who �t this pro�le and have already been

randomized would be reasonable. Additionally, investigators should consider stopping

ongoing treatment for these patients. If, on the other hand, there is only weak evi-

dence, e.g. the information is merely a conjecture from an early phase study, the

patients should be kept in the study and treatment should be continued. After the

main analysis, an exploratory subgroup analysis should be performed comparing B1+B2

and B1−B2 patients to see if the collected data support the conjecture.

In the following, options for study design and analysis will be discussed, depending

on the reliability of the external evidence and the suspected interaction of the new

biomarker with the other biomarker or experimental therapy.

If there is strong evidence that B2 has a negative e�ect on the response of patients

with B1+B2 to the experimental therapy Exp1, it could be considered to exclude all

patients with B1+B2 already assigned to group G1 from the analysis and additionally

to stop ongoing treatment of these patients (see Fig. 3.31). The patients whose

treatment was stopped could possibly be given the new experimental therapy Exp2 o�-

protocol. Due to the negative e�ect of B2 on response, no new patients with B1+B2
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should be assigned to group G1 after tb. This can be achieved by giving a higher

priority to B2 than to B1 in the allocation algorithm.
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Figure 3.31: Potential approach if there is strong evidence that B2 has a negative

e�ect on the response of patients with B1+B2 to the experimental therapy Exp1

If the evidence of a negative e�ect of B2 on the response is weaker, it is advisable to

keep all patients in the analysis and rather aim for strengthening the evidence with the

data resulting from the study through an exploratory subgroup analysis, comparing the

treatment e�ect in subpopulation B1+B2 against the treatment e�ect in B1−B2 (see

Figure 3.32). A challenge here is the change in patient population at tb, given that B2

is assigned a higher priority in the allocation algorithm. It should be considered if and

how this change can be taken into consideration. If the suspicion is correct that B2

has a negative e�ect on the response, there would be two di�erent treatment e�ects

for the experimental therapy, the treatment e�ect after tb being larger than before.

Additionally, the two subpopulations could also di�er with respect to prognostic e�ects

of the biomarkers.

If there is no evidence that B2 has an e�ect on the response of patients with

B1+B2 to the experimental therapy Exp1, there is no necessity of excluding patients

from the analysis, since there is no expected di�erence in treatment e�ects between

patients with B1+B2 and patients with B1−B2 (see Figure 3.32). However, if B2 is

assigned a higher priority in the allocation algorithm, the population does change at

tb, since patients with B1+B2 are no longer assigned to group G1, but rather to group

G2. In that case, it should be considered accounting for this in the analysis. While

the treatment e�ect is not expected to be di�erent between the two subpopulations,

there can still be di�erences, e.g. due to prognostic factors. After performing the
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Figure 3.32: Potential approach if there is only weak or no evidence that B2 has a

(negative) e�ect on the response of patients with B1+B2 to the experimental therapy

Exp1

main analysis, exploratory subgroup analyses can be performed, comparing B1+B2 and

B1−B2.

If there is evidence that B2 has a positive e�ect on the response of patients with

B1+B2 to the experimental therapy Exp1, patients should not be excluded. If patients

with B1+B2 are expected to have a better response to Exp1 than to Exp2, it should

be considered assigning a higher priority to B1 than to B2 in the allocation algorithm.

Otherwise, it should be the other way around. Again, a subsequent exploratory sub-

group analysis can be performed to compare B1+B2 and B1−B2 to see if the collected

data support the existence of a positive e�ect of B2.
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Figure 3.33: Potential approach if there is evidence that B2 has a positive e�ect on

the response of patients with B1+B2 to the experimental therapy Exp1

When a new biomarker-group is added to an ongoing trial, several issues need to

be addressed. First of all, the study protocol should state up until which point of the

study a new biomarker-group with corresponding treatment can still be added, e.g.

until accrual is halfway completed. This already leads to the next issue. Since accrual

for this group begins later than for the other groups, it needs to be addressed how

this is compensated for. Assigning the highest allocation priority to B2 could help to

somewhat speed up accrual compared to the other groups. But depending on how long



78 CHAPTER 3. RESULTS

after initial begin of accrual G2 is added, this will probably not be enough. Additionally,

the accrual phase could be extended to ensure su�cient accrual to G2, but this will

automatically prolong the overall study duration.

Finally, the group of biomarker-negative patients should also be addressed. In this

group there is also a change in population, since patients with (only) B2 are no longer

considered 'biomarker-negative' after adding G2 to the study. This population change

should be considered in the analysis.
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Additional to practical aspects of the design modi�cations, it is important to look at the

options from a statistical point of view and address potential issues and challenges. If it

is considered to exclude some of the patients from the main �nal analysis, it should be

discussed whether it is acceptable to do so from a statistical point of view. Additionally,

the overall sample size needs to be adjusted since there is a new biomarker-group added

which was not included in the initial sample size calculation. Furthermore, it might

be necessary to adjust the sample size of the other biomarker-groups if some of the

patients in these groups are excluded from the analysis.

There can be many reasons why one might consider to exclude patients from a study

or an analysis, but in the following only the exclusion of patients after adding a new

biomarker-group will be discussed. Among other situations, Fergusson et al. (2002)

consider the case when ineligible patients are mistakenly included in a study who do not

meet inclusion criteria. This is not exactly equivalent to the situation considered here,

since the patients to be excluded do meet the inclusion criteria for their biomarker-

group in the beginning, but that may no longer be true after modi�cation of the study.

In their paper, Fergusson et al. (2002) discuss that investigators could avoid bias if

patients who were mistakenly included are removed from both treatment arms and the

decision to remove the patients is blinded to treatment and outcome, and independent
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from any events that occurred after randomization. Furthermore, they argue that,

if these patients are expected to have a reduced or no response to treatment, their

inclusion in the analysis could be a source of random error, reduced power of the study,

and a less precise estimate of the treatment e�ect. This reasoning could also be applied

in the situation considered here, especially if external evidence suggests that B2 has

a negative e�ect on the response to treatment with Exp1. Additionally, exclusion of

patients from the analysis would only depend on external information (e.g. potential

interaction with the new biomarker) and information obtained before randomization

(assessment of biomarker status).

In a situation where the new biomarker cannot be determined retrospectively,

it is not possible to exclude patients from the analysis or account for the e�ect by

including an interaction term. In this case it should be considered to perform an analysis

that factors in the heterogeneity within the biomarker-groups caused by B2. If the new

biomarker cannot be determined retrospectively for only part of the population (e.g.

due to insu�cient amounts of stored specimens for these patients), data imputation

methods could be considered. This will be discussed in more detail in Section 3.4.5.

If the biomarker status cannot be determined retrospectively for any of the patients, it

could be considered to treat the change in patient population as changes in inclusion

criteria for the a�ected biomarker-groups. Lösch and Neuhäuser (2008) discuss the

statistical analysis of a trial when an amendment has changed the inclusion criteria and

suggest using Fisher's combination test after performing separate statistical tests for

the patients recruited before and after the amendment. In their simulation study, they

compare the suggested combination test to simple pooling of data with respect to po-

wer. Following some simpler scenarios, they consider a case where the treatment e�ect

is di�erent for the two phases and compare the power of the tests for di�erent changes

in variance. But they only consider an in�ation of variance due to broadening of the

inclusion criteria, while in the case considered here, de�ation of the variance is more

likely, since the inclusion criteria are basically narrowed by no longer assigning patients

with B1+B2 to group G1. Hence, the behavior for variance de�ation would additionally

have to be investigated. There is a subsequent publication by Leuchs and Neuhäuser

(2013) who suggest a modi�ed Bauer and Köhne's test after an amendment has chan-

ged the inclusion criteria. They compare the performance - with respect to power - of
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their suggested test to the tests by Liptak, Fisher, Bauer and Köhne, and Edgington.

However, they �nd in their simulation study that their method is not advisable to use

in situations with changes in both, treatment e�ect and variance. In these situations,

they �nd that Fisher's test and Liptak's Z-score approach perform best. Note that

both papers compare the tests with respect to power, focusing on hypothesis testing.

For estimation of treatment e�ects, they refer the reader to a publication addressing

estimation in �exible two stage designs by Brannath et al. (2006).

In the following, the focus will be on situations where B2 can be fully or partially

determined retrospectively.

3.4.3 Approaches for data analysis after adding a new

biomarker-group

A study design was considered where the study initially includes one biomarker (B1)

that is investigated, with group G1 and the group of biomarker-negative patients, G0.

At time tb, a new, second biomarker, B2, and a corresponding group G2 are added to

the study (cf. Figure 3.30). It is assumed that there is evidence that B2 has a negative

e�ect on the response of patients with B1+B2 in G1 to the experimental therapy

Exp1. Within G1 and G2, patients are randomized between the biomarker-speci�c

experimental therapy (Exp1 and Exp2, respectively) and standard of care (Std), with

probabilities 1−ri and ri, respectively. Patients in G0 are treated with standard of care

only. The baseline hazard for patients in biomarker-group i is denoted by λ0i . Several

new parameters have to be considered:

• E�ect τ of B2 on Exp1: Factor by which hazard ratio for B2-patients treated

with Exp1 di�ers from hazard ratio for B1-patients treated with Exp1, e.g. if

e�ect= 1.5 and HR= 0.5 for B1, then HRB2,Exp1 = 1.5 ∗ 0.5 = 0.75.

• Overlap l: Proportion of the entire patient population which has both biomar-

kers (expected number of n·l patients), e.g. if both biomarkers have a prevalence

of 25% and an overlap of B1 and B2 within the entire population of l =12.5%,

50% of patients within G1 (or G2) have both biomarkers.

• Time tb: Time at which G2 is added to the study.
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Additionally, the priority for the treatment allocation algorithm needs to be chosen,

i.e. which biomarker-group patients are assigned to if they have both biomarkers.

Di�erent models are compared to evaluate whether excluding patients from the analysis

or including an interaction term for the e�ect of B2 on the treatment e�ect of Exp1 is

the better strategy with respect to bias and standard deviation of the treatment e�ect

estimates. Additionally, a combined model, analogous to Approach 3 in Section 3.3,

is compared to �tting models for the individual biomarker-groups.

Model 1: Exclude patients with B2

λ(t) = λ0 exp(β1x1)

Expected sample size: n1 − tb
a
n · l (G1 excluding patients with B2)

Model 2: Include interaction term for patients with B2

λ(t) = λ0 exp(β1x1 + β1,21{B2}x1,2)

Expected sample size: n1 (G1 including patients with B2)

Model 3: Combined model (as discussed in Section 3.3)

λ(t) = λ0 exp(γ1b1 + γ2b2 + β1x1 + β2x2 + β1,21{B2}x1,2)

Expected sample size: n (all patients)

The parameters β1 and β2 are representing the treatment e�ects for Exp1 and Exp2,

respectively and γ1 and γ2 are the prognostic e�ects of B1 and B2, respectively, with

B0 as reference. The biomarker status is included as a factor variable (with dummy va-

riables b1 and b2). Note that usage of all three models requires that B2 is determinable

retrospectively for all patients recruited before time tb.

3.4.4 Simulation study: Comparison of models

A simulation study was performed to compare bias and standard deviation for all three

models to determine if exclusion of patients or including an interaction term is the

better option and if using a combined model for all biomarkers can provide additional

bene�t.
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3.4.4.1 Study design and data generation

The data were generated as described in Section 2.2.1 with parameters according to

Table 3.8. The time tb at which G2 is added to the study was chosen to be 12

months, i.e. after half of the accrual time has passed. To take into account the

overlap of the biomarkers within the population, an overlap l between the biomarkers

was simulated. This overlap was set to be 12.5% out of the entire population. This

�xed overlap between the biomarkers can be simulated by drawing from a multinomial

distribution. But rather than having three possible outcomes (B1, B2, or B0), there is

a fourth possible outcome, which means that a patient has both biomarkers, B1 and

B2. If the expected proportions of the biomarkers B1 and B2 in the population are p1

Table 3.8: Parameters for the simulation study using a design with three biomarker-

groups, denoted by Gi, i ∈ {0, 1, 2}.

Fixed simulation parameters

Accrual time (months), a 24

Follow-up time (months), f 36

Time tb (months) 12

Proportion random censoring, pcens 0.05

Treatment allocation ratio 1 : 1

Prevalence p of biomarkers B1 and B2 0.25

Hazard ratio G1, exp(β1) 0.8, 0.7, 0.6, 0.5, 0.4

Hazard ratio G2, exp(β2) 0.8

Sample size, n 1,000

Number of simulations 10,000

Overlap l of biomarkers 0.125

E�ect τ 1.5

Parameters for biomarker-groups (G0,G1,G2)

Baseline hazards, λ0i (0.05, 0.025, 0.1)

and p2, respectively, then the sampling proportions for B0, B1, B2, and B1∩ B2 are

1 − (p1 + p2 − l), p1 − l, p2 − l, and l, respectively. The resulting proportions gi in

the groups Gi then depend on which biomarker was chosen as priority in the allocation

algorithm and at which time tb G2 was added to the study.

As mentioned before, it is also taken into consideration that a biomarker could have an

e�ect on the treatment e�ect of the experimental therapy targeting another biomarker.
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For data generation, it was assumed that B2 has an e�ect τ on the treatment outcome

of patients (that also have B1) treated with Exp1, while B1 has no e�ect on treatment

with Exp2. This e�ect was chosen to be τ = 1.5, which means that patients with

B1 and B2 treated with Exp1 have a hazard ratio that di�ers by a factor 1.5 from the

hazard ratio for patients with only B1 treated with Exp1. A large sample size case with

1,000 patients was considered to avoid small sample size bias (as observed in Section

3.3). Bias and standard deviation of the estimates were calculated as described in

Section 3.3.2.1.

3.4.4.2 Comparison of models

The three models discussed in Section 3.4.3 were compared with respect to bias and

standard deviation of the estimates β̂1, β̂2, and β̂1,2 out of 10,000 simulations. The

simulation results in Figure 3.35 show that the three models do not di�er by much
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Figure 3.35: Bias and standard deviation of β̂1, β̂2, and β̂1,2, using models 1, 2, and

3 with �xed sample size 1,000. Note that for β̂2, Model 1 was used with data from

G2.
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when it comes to bias of β̂1 and β̂1,2. Model 3, i.e. the combined model, yields

a slightly smaller standard deviation for β̂1 compared to models 1 and 2. For β̂1,2,

not much of a di�erence can be seen for the standard deviation. Note that Model

1 cannot be included in the comparison for β̂1,2. It does not provide an estimate for

β1,2, since it does not include an interaction term. If Model 1 is used for G2, i.e.

λ(t) = λ0 exp(β2x2), bias and standard deviation of β̂2 are larger than for Model 3.

Note that Model 2 was not applied and compared for β2, since there is no biomarker-

treatment interaction that can be estimated. Additionally, for this simulation B1 was

given priority, i.e. patients with both biomarkers are allocated to G1. Thus, there are

no patients with B1 in G2 and Model 1 and Model 2 would yield similar results. Overall,

Model 3 appears to be slightly advantageous over the other two models. It yields a

smaller bias and standard deviation for β̂2 and facilitates estimating β1, β2, and β1,2

simultaneously in one model.

3.4.5 What if B2 is not determinable retrospectively?

In clinical trials missing data is a common issue. There are a multitude of reasons

why there may be certain data points missing for a certain patient. When it comes

to determining the biomarker status of a patient, common reasons are insu�cient

amounts of collected specimens, or technical di�culties of the screening procedure.

As previously mentioned, usage of all three models discussed int he previous section

requires that B2 is retrospectively determinable for all patients recruited before time

tb.

If B2 is not retrospectively determinable for any of the patients, it will not be possible to

incorporate this in the model. However, if B2 is only missing for part of the population,

data imputation methods can be applied to be able to use data for patients with missing

B2 status in the analysis.

In the context of missing data, Rubin (1976) distinguished between missing at random

(MAR) and missing completely at random (MCAR). If the data are MCAR, the mis-

singness depends on neither the missing values nor the observed values. In the weaker
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case, MAR, the missingness does not depend on the missing values but may depend

on the observed values. If neither is the case, the data are referred to as missing not

at random (MNAR) (Van Buuren 2012). Hereafter, missing data will be assumed to

be MCAR or MAR.

3.4.5.1 Data imputation

A common approach to handling missing data is to simply delete all cases with missing

data and only include the complete cases (CC) in the analysis. While CC analysis still

produces unbiased estimates for data that is MCAR, Van Buuren (2012) argues that

if the data is not MCAR, this approach may produce severely biased estimates. In

the case of missing B2 status, it is not unlikely that the data are MAR rather than

MCAR, i.e. that the missingness depends on one or more of the observed variables.

The missingness could for example depend on the time at which a patient entered

the study: The probability of missing B2 status could be higher the earlier a patient

entered the study, e.g. due to decrease of amount or quality of stored specimens over

time.

Instead of CC analysis, Van Buuren (2012) recommends using regression imputation,

where a regression model is �t using the complete cases to predict the missing values

with the resulting equation. One of the advantages of (single) regression imputation

over CC analysis pointed out by Van Buuren is that, additional to producing unbiased

estimates under MCAR, regression imputation produces unbiased regression weights

under MAR, given that the regression model contains the factors in�uencing the mis-

singness. The variance, however, is underestimated since the estimates do not include

an error term and therefore do not provide information about the uncertainty of the

imputed values. The extent of underestimation depends on the explained variance and

the proportion of missing values in the data (Van Buuren 2012).

Creating several data sets with imputed values including a random component is re-

ferred to as multiple imputation and is utilized to account for the uncertainty in the

imputed data. There are several di�erent methods to do so. Van Buuren (2012) uses

multiple imputation by chained equations, which uses a series of conditional distribu-
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tions. For each variable, regression models are �tted successively, using the already

imputed values for the following regressions. This is done iteratively until the model

converges. Each of the resulting complete data sets from the multiple imputation is

analyzed separately and afterwards the overall estimate is obtained by averaging the

estimates from the individual data sets (Van Buuren 2012). The standard error for

this pooled estimate can be obtained from a formula suggested by Rubin (1987):

s( ˆ̄β) =

√√√√ 1

M

M∑
k=1

s2
k +

(
1 +

1

M

)(
1

M − 1

) M∑
k=1

(β̂k − ˆ̄β)2, (3.6)

where k = 1, 2, ...,M is the kth imputation, β̂k is the estimate from the kth imputed

data set, and ˆ̄β is the pooled estimate out of the M imputations.

In the past, there have been some discussions about the number of imputations to

use, M . For quite a while, a common recommendation was to use low numbers, such

as M = 5 or M = 10 imputations (Van Buuren 2012). In 2008, Bodner recommen-

ded to use approximately the percentage of missing data as number of imputations.

This rule of thumb was later also recommended by White et al. (2011). Regarding

subsequent analysis with a Cox PH model, White and Royston (2009) recommend

using the Nelson-Aalen estimate of the cumulative hazard function as predictor in the

imputation model rather than simply using time. Furthermore, White et al. (2011)

caution their readers that although multiple imputation gives asymptotically unbiased

estimates under MCAR/MAR and a correctly speci�ed model, departures from the

MAR assumption and model misspeci�cation may lead to substantial bias.

3.4.5.2 Multiple imputation with interactions

As mentioned in the previous section, the unbiasedness of estimates obtained from

multiple imputation depends on the regression model containing all the factors in�u-

encing the missingness. White et al. (2011) recommend that the imputation model

should include all variables that will later be used in the analysis model, as well as the

outcome variable, to avoid bias. Additionally, they state that caution is required when
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it is intended to include non-linear or interaction terms in the analysis model. Their

advice is to include these terms in the imputation model in the correct functional form.

There are several suggestions for imputation with non-linear terms or interaction terms.

Seaman et al. (2012) compared di�erent approaches in several simulation studies:

passive imputation (PI), predictive mean matching (PMM), and `just another variable'

(JAV). PI only imputes the main e�ects and then uses these imputed values to calculate

the interaction term. PMM on the other hand calculates a predicted value and then

draws from a set of actually observed values which are close to the prediction. PMM

may be problematic in small sample size cases, because of the limited number of

observed values to sample from (White et al. 2011). For JAV the interaction term is

treated as `just another variable' in the imputation model, ignoring its relationship to

the main e�ects. Another option, which is referred to as a `simple congenial approach'

by White et al. (2011), can be used if one of the variables in the interaction term is

categorical and completely observed. In that case, it is also possible to split the data

into several data sets, one for each level of the categorical variable, and recombine the

data after imputation. This method is also referred to as stratify-approach.

Each of these methods has its advantages and disadvantages, which have been in-

vestigated and discussed by several authors, such as Von Hippel (2009), White et al.

(2011), and Seaman et al. (2012). Von Hippel (2009) applied several methods to a

real data example and found that, while PI may yield plausible data but biased esti-

mates, JAV may yield implausible data but unbiased estimates. The biased estimates

resulting from the PI approach can be caused by using a linear model for the imputa-

tion, which is not suitable for non-linear terms. Hence the estimate for the non-linear

term would be biased towards zero (White et al. 2011). Seaman et al. (2012) per-

formed a series of simulation studies and concluded that �JAV is the best of a set of

imperfect methods� (Seaman et al. 2012) when it is applied for linear regression with

quadratic or interaction terms, but they do not recommend it for logistic regression

and caution that JAV may yield biased estimates under MAR. White et al. (2011)

point out that the proof of unbiasedness of JAV relies on the MCAR assumption and

refer to a simulation study that shows bias for JAV under an extreme MAR mechanism.

They also conclude from their simulation studies that it is di�cult to recommend one

single method, since all methods have their pitfalls. Note that simulation studies in
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this section use linear or logistic regression as analysis model. They do not investigate

the behavior when the analysis model is a Cox PH model.

3.4.6 Simulation study: Missing biomarker status

A simulation study was conducted to compare the performance of the di�erent appro-

aches for handling missing data imputation with respect to bias and standard deviation

of the di�erent parameter estimates resulting from the combined model (Model 3 from

Section 3.4.3). Data was generated according to Section 3.4.4.1, except that the ha-

zard ratios for B1 and B2, exp(β1) and exp(β2), were �xed at 0.7 to ensure su�cient

numbers of events in both groups to minimize bias due to small numbers of events.

Missing data was either generated as MCAR or MAR and missing data proportions of

0.1, 0.2, ..., 0.8 were considered. MCAR data can be generated rather straight forward

by using random sampling to delete a given proportion of data points. Generating MAR

data is a bit more complex. One or more variables should be determined on which the

missingness depends. For this simulation study, the entry time of a patient was chosen.

Then MAR data can be generated according to Section 2.2.2. For the data imputation

the R functions mice and with from the package mice were used. Time as a predictor

was replaced by the Nelson-Aalen estimator (Aalen 1978) as suggested by White and

Royston (2009).

The bias of the estimates of β1, β2, and β1,2 when using PI, the JAV-approach or the

stratify-approach was compared to the bias resulting from CC analysis and from the

analysis of the full data set. Three imputation methods to predict the missing values

were used and compared for the three imputation approaches: logistic regression (LR),

polytomous logistic regression (PLR), and predictive mean matching (PMM). Unless

otherwise indicated, missing data are MCAR. The bias of the estimates of γ1 and γ2 is

not shown in the following �gures. Since they are linear terms, there was no notable

bias for any of the approaches.

Note that strictly speaking, x1, x2 and x1,2 in Model 3 (see Section 3.4.3) are all

interaction terms. They are created by multiplying biomarker status and treatment
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variable. If biomarker status and treatment are coded as dummy variables, x1 is

obtained by multiplying dummy variables for B1 and Exp1, x2 is obtained by multiplying

B2 and Exp2, and �nally x1,2 is obtained by multiplying B2 and Exp1. Usually, all main

e�ects that are part of the interaction are also included in the model. Note that this

would not be meaningful in this situation, since there is no general treatment e�ect

that can be estimated. Hence, this may be somewhat of an unconventional model

speci�cation, which requires additional care when specifying the imputation and the

analysis method.

For the �rst simulation PI was used, i.e. interactions were not included in the imputa-

tion model. In this case, the interactions are created by multiplication of the imputed

main e�ects (as described in Section 3.4.5.2). The results in the �rst row of Figure

3.36 show that the bias of the estimate of β1,2 linearly increases in absolute terms

for all three imputation methods as the proportion of missing data increases. While

there is some bias for the estimate of β1 when using PMM, which linearly increases

for increasing proportions of missing data (see middle plot of Figure 3.36c), there is

substantial bias for both, LR and PLR (middle plots of Figures 3.36a and 3.36b). This

is similar for the estimate of β2. While there is no visible bias for β̂2 when using PMM,

there is a constant, substantial bias for all proportions of missing data when using LR

or PLR.

Subsequently, two imputation approaches for handling interactions terms were imple-

mented and tested: the stratify-approach and the JAV-approach. When the stratify-

approach is used, the bias of β̂1,2 is drastically reduced for all three methods. While

there is only a small amount of bias for larger proportions of missing data when using

LR and PLR, there is some bias for PMM which increases in absolute terms with in-

creasing proportions of missing data (see �rst row of Figure 3.37). Note the di�erent

scaling of the y-axis for β̂1,2 compared to Figure 3.36. However, while PMM yields

approximately unbiased estimates for β1 and β2, there is still a substantial bias for the

estimates of β1 and β2 when using LR or PLR, and the bias is more or less constant

over all proportions of missing data (see second and third row of Figures 3.37a and

3.37b).
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(a) Logistic regression
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(b) Polytomous logistic regression
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(c) Predictive mean matching

Figure 3.36: Bias for imputation methods logistic regression, polytomous logistic

regression, and predictive mean matching for β̂1,2, β̂1, and β̂2 when imputation model

does not include interactions (naive imputation). B1 is the prioritized biomarker in

the allocation algorithm, data is MCAR, and m=10 imputations.

Using the JAV-approach results in considerable improvements for all three methods

and all estimates compared to PI. There is now only a small bias left for β̂1,2 and β̂2

when using LR for larger proportions of missing data (see Figure 3.38). There is hardly
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any visible bias for β̂1 for either method. PLR appears to perform slightly better than

regular LR for larger proportions of missing data. For PMM, there is no notable bias

for any of the three estimates. Note the di�erent scaling of the y-axes for β̂1 and β̂2

compared to the previous two �gures.
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(a) Logistic regression
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(b) Polytomous logistic regression
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(c) Predictive mean matching

Figure 3.37: Stratify: Bias for LR, PLR, and PMM for β̂1,2, β̂1, and β̂2 when data

is strati�ed by treatment before imputation. B1 is the prioritized biomarker in the

allocation algorithm, data is MCAR, and m=10 imputations.
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Regarding standard deviation, a small improvement can bee seen for β̂1 for all three

methods compared to CC analysis (see Figure 3.39). For β̂1,2 and β̂2, only minor

di�erences can be seen between imputation and CC analysis, and it varies which of the

two yields a slightly smaller standard deviation.
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[1] ”Sim: 10000 HR: 0.7 effect: 1.5 priority: B1 overlap: 0.125 basehaz: 0.05 0.025 0.1 missing: MCAR biom.prop.:
0.5 0.25 0.25 imp.: JAV imp. model: logreg m= 10”
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(a) Logistic regression
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(b) Polytomous logistic regression
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(c) Predictive mean matching

Figure 3.38: JAV: Bias for LR, PLR, and PMM for β̂1,2, β̂1, and β̂2 treating inte-

ractions as JAV in imputation model. B1 is the prioritized biomarker in the allocation

algorithm, data is MCAR, and m=10 imputations.



3.4. FLEXIBLE STUDY DESIGNS 93

Up to this point, only 10 imputations were used for the simulations. For Figure 3.40,

the recommendation of Bodner (2008) and White et al. (2011) was followed to use

the percentage of missing data as number of imputations. However, this only results

in minor visible improvements compared to Figure 3.38.
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(a) Logistic regression
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(b) Polytomous logistic regression
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(c) Predictive mean matching

Figure 3.39: JAV: Standard deviation for LR, PLR, and PMM for β̂1,2, β̂1, and β̂2

treating interactions as JAV in imputation model. B1 is the prioritized biomarker in

the allocation algorithm, data is MCAR, and m=10 imputations.
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[1] ”Sim: 10000 HR: 0.7 effect: 1.5 priority: B1 overlap: 0.125 basehaz: 0.05 0.025 0.1 missing: MCAR biom.prop.:
0.5 0.25 0.25 imp.: JAV imp. model: logreg m= 80”
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[1] ”Sim: 10000 HR: 0.7 effect: 1.5 priority: B1 overlap: 0.125 basehaz: 0.05 0.025 0.1 missing: MCAR biom.prop.:
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(a) Logistic regression
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(b) Polytomous logistic regression
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(c) Predictive mean matching

Figure 3.40: Bias for LR, PLR, and PMM for β̂1,2, β̂1, and β̂2 treating interactions

as JAV in imputation model when the number of imputations equal to percentage

of missing data. B1 is the prioritized biomarker in the allocation algorithm and data

is MCAR.
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[1] ”Sim: 10000 HR: 0.7 effect: 1.5 priority: B1 overlap: 0.125 basehaz: 0.05 0.025 0.1 missing: MAR biom.prop.:
0.5 0.25 0.25 imp.: JAV imp. model: logreg m= 10”
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(a) Logistic regression
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(b) Polytomous logistic regression
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(c) Predictive mean matching

Figure 3.41: Bias for LR, PLR, and PMM for β̂1,2, β̂1, and β̂2 treating interactions

as JAV in imputation model when data is MAR. B1 is the prioritized biomarker in

the allocation algorithm and m=10 imputations.

Additional to data that is MCAR, a case with data that is MAR was considered, where

the missingness of B2 depends on entry time such that the probability of missingness

is higher, the earlier a patient entered the study (cf. Section 3.4.6). Again, not much
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of a di�erence can be observed between the results for data that is MAR (Figure 3.41)

and for data that is MCAR (Figure 3.40). Note that this may be di�erent for other or

more extreme scenarios of data that is MAR.

3.4.6.1 Sensitivity analysis

Additional to the scenario with data that is MAR, it was also investigated whether

the results are sensitive to a change of parameters, focusing on the newly introduced

parameters in Section 3.4.3: The time at which G2 is added, tb, the priority of the

biomarkers, and the factor by which the hazard ratio for B2-patients treated with Exp1

di�ers from the hazard ratio for B1-patients treated with Exp1, i.e. the e�ect τ , and

the priority of the biomarkers, i.e. to which biomarker-group patients are assigned to

if they have both biomarkers.

For a scenario with tb = 6 months, Figure 3.42 shows that for all imputation methods

the bias of the estimates is reduced compared to Figure 3.38, for which tb = 12

months. This could be expected, since altering tb has an e�ect on the group sizes.

Choosing tb to be smaller means that G2 is added earlier and there is more time to

accrue patients to this group. Simultaneously, the number of patients in G1 which

were accrued before tb gets smaller, causing the number of patients with potentially

missing biomarker status for B2 to be smaller. Hence, with more complete cases in the

study data, the bias of the e�ect estimates obtained from the data imputation would

be expected to be smaller.

For a scenario where B2 is chosen as priority rather than B1, Figure 3.43 shows that

there is a larger bias for β̂1,2 and β̂1 for all methods compared to Figure 3.38. Again,

this could be expected, since giving priority to B2 would lead to a smaller number of

patients in G1 and especially to a smaller number of patients with both biomarkers in

G1, since patients with both biomarkers are allocated to G2 after tb.

Finally, when the e�ect τ is set to 2 instead of 1.5, there are barely any noticeable

di�erences compared to Figure 3.38. For τ = 0.75, the bias of β̂2 again shows no

visible di�erences. The bias of β̂1,2 and β̂1 behaves mostly similar for PLR and PMM

and is reduced for LR for larger proportions of missing data. The results are shown in
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Figures A.5 and A.6 in the Appendix.
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(a) Logistic regression
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(b) Polytomous logistic regression
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(c) Predictive mean matching

Figure 3.42: tb=6: Bias for LR, PLR, and PMM for β̂1,2, β̂1, and β̂2 treating

interactions as JAV in imputation model when G2 is added to the study after 6

months. B1 is the prioritized biomarker in the allocation algorithm, data is MCAR,

and m=10 imputations.



98 CHAPTER 3. RESULTS

β̂1,2

[1] ”Sim: 10000 HR: 0.7 effect: 1.5 priority: B2 overlap: 0.125 basehaz: 0.05 0.025 0.1 missing: MCAR biom.prop.:
0.5 0.25 0.25 imp.: JAV imp. model: logreg m= 10”

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

proportion of missing data

−
0.

20
−

0.
16

−
0.

12
−

0.
08

−
0.

04
0.

00
0.

04

bi
as

full data
imputation
complete case

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

proportion of missing data

0.
00

0.
15

0.
30

0.
45

0.
60

0.
75

0.
90

sd

full data
imputation
complete case

B2:treatment1

1

[1] ”Sim: 10000 HR: 0.7 effect: 1.5 priority: B2 overlap: 0.125 basehaz: 0.05 0.025 0.1 missing: MCAR biom.prop.:
0.5 0.25 0.25 imp.: JAV imp. model: polyreg m= 10”

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

proportion of missing data
−

0.
20

−
0.

16
−

0.
12

−
0.

08
−

0.
04

0.
00

0.
04

bi
as

full data
imputation
complete case

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

proportion of missing data

0.
00

0.
15

0.
30

0.
45

0.
60

0.
75

0.
90

sd

full data
imputation
complete case

B2:treatment1

1

[1] ”Sim: 10000 HR: 0.7 effect: 1.5 priority: B2 overlap: 0.125 basehaz: 0.05 0.025 0.1 missing: MCAR biom.prop.:
0.5 0.25 0.25 imp.: JAV imp. model: pmm m= 10”

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

proportion of missing data

−
0.

20
−

0.
16

−
0.

12
−

0.
08

−
0.

04
0.

00
0.

04

bi
as

full data
imputation
complete case

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

proportion of missing data

0.
00

0.
15

0.
30

0.
45

0.
60

0.
75

0.
90

sd

full data
imputation
complete case

B2:treatment1

1

β̂1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

proportion of missing data

−
0.

05
−

0.
03

−
0.

01
0.

01
0.

03
0.

05

bi
as

full data
imputation
complete case

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

proportion of missing data

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

sd

full data
imputation
complete case

B1:treatment1

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

proportion of missing data

−
0.

05
−

0.
03

−
0.

01
0.

01
0.

03
0.

05

bi
as

full data
imputation
complete case

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

proportion of missing data
0.

00
0.

10
0.

20
0.

30
0.

40
0.

50

sd

full data
imputation
complete case

B1:treatment1

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

proportion of missing data
−

0.
05

−
0.

03
−

0.
01

0.
01

0.
03

0.
05

bi
as

full data
imputation
complete case

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

proportion of missing data

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

sd

full data
imputation
complete case

B1:treatment1

2

β̂2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

proportion of missing data

−
0.

05
−

0.
03

−
0.

01
0.

01
0.

03
0.

05

bi
as

full data
imputation
complete case

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

proportion of missing data

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

sd

full data
imputation
complete case

B2:treatment2

3

(a) Logistic regression

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

proportion of missing data

−
0.

05
−

0.
03

−
0.

01
0.

01
0.

03
0.

05

bi
as

full data
imputation
complete case

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

proportion of missing data

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

sd

full data
imputation
complete case

B2:treatment2

3

(b) Polytomous logistic regression
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(c) Predictive mean matching

Figure 3.43: Priority=B2, JAV: Bias for LR, PLR, and PMM for β̂1,2, β̂1, and β̂2

treating interactions as JAV in imputation model. B2 is the prioritized biomarker in

the allocation algorithm, data is MCAR, and m=10 imputations.
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3.5 Choice of strategy for subgroup analyses

When analyzing survival data, there is often more than one hypothesis that is of

interest. During the planning stage of a clinical trial, it is important to formulate all

relevant hypotheses. Subsequently, it should be determined which one is the primary

hypothesis and which hypotheses are secondary. For multiple biomarker trials, there

are many potential hypotheses that could be investigated. In the following, the focus

will be on hypotheses regarding e�ectiveness of treatment. Besides testing within each

biomarker-group individually, an overall biomarker-guided treatment strategy could be

evaluated, as previously discussed for the strati�ed randomize-all design in Section

3.2. Alternatively, a group of subgroups could be tested (e.g. all biomarker-positive

patients), which could for example be used if not all biomarker-groups are randomized,

as discussed for the multiple-biomarker hybrid design in Section 3.3. If it is preferred to

test the biomarker-groups individually, but small sample sizes are expected, a hypothesis

could be chosen which tests if a treatment bene�t can be detected in at least one of the

biomarker-groups. For designs like the strati�ed randomize-all design (see Figure 3.1,

Design 3) or the multiple-biomarker hybrid design (see Figure 3.1, Design 4) and for a

case with two biomarker-positive groups and one biomarker-negative group, hypotheses

of interest could be, but are not limited to:

• H1: Overall strategy: Experimental therapy vs. standard,

i.e. β = 0 vs. β 6= 0

• H2 - H4: Individual hypotheses:

H2: Experimental therapy vs. standard within biomarker-group 1,

i.e. β1 = 0 vs. β1 6= 0

H3: Experimental therapy vs. standard within biomarker-group 2,

i.e. β2 = 0 vs. β2 6= 0

H4 (if applicable): Experimental therapy vs. standard within biomarker-

negative group, i.e. β0 = 0 vs. β0 6= 0

• H5: Group of subgroups: E.g. experimental therapy vs. standard for biomarker-

positive groups only, i.e. β+ = 0 vs. β+ 6= 0

• H6: At least one: H2 or H3 or H4
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where β is the overall treatment e�ect, βi is the treatment e�ect for biomarker-group

i, and β+ is the overall treatment e�ect for the biomarker-positive groups.

As main focus or primary hypothesis, one could either choose proof of con-

cept/treatment strategy (H1), or the individual biomarkers (H2 -H6). Decision criteria

to choose a primary hypothesis could be the prevalence of the biomarkers, or the ex-

tent of similarities between the biomarkers. To maintain an overall α-level, one option

to test these hypotheses is a multiple comparison procedure that adjusts for multi-

ple testing. If the sample size calculation is only based on the primary hypothesis

H1, the other hypotheses may be under-powered, especially those hypotheses which

only include a fraction of the patients included in the study. In this case, a classical

method like Bonferroni, where each of m hypotheses is tested at α/m level, would

be very restrictive. Instead, a procedure which allows reallocation of the unspent α

could be considered. A potential approach is a so-called chain procedure (Millen and

Dmitrienko 2012). Chain procedures are a class of closed testing procedures, which are

based on the closure principle, meaning that a hypothesis is only rejected if and only

if all intersection hypotheses that contain this hypothesis can be rejected. The advan-

H1

w1

H2

w2

H3

w3

H4

w4

g1,3 g1,4

g1,2

g2,3

g3,2

g3,4

g4,3

g2,4

g4,2

1

Figure 3.44: Cyclical chain procedure for testing four hypotheses incorporating logical

relationships for an example where H1 is the main hypothesis of interest. If w1 = 1
is chosen, H2-H4 are only tested if H1 is rejected. If w1 < 1 is chosen, then H2-

H4 can still be tested at the remaining α. (Adapted from Millen and Dmitrienko

(2012)).
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tage of a closed testing procedure is that, after a hypothesis is rejected, the unspent

α can be carried over to the remaining hypotheses. For a chain procedure, initially

all hypotheses are assigned weights wc, such that in the beginning, hypothesis Hc is

allocated a fraction of the overall α, αc = wcα. Additionally, transition parameters

gc,d are determined which, after testing Hc, are used to reallocate the unspent αc from

hypothesis c to hypothesis d, i.e. αd is updated such that αdnew = αd + gc,dαc.

Millen and Dmitrienko (2012) describe di�erent kinds of chain procedures. One type

are serial chain procedures, which test a family of ordered hypotheses, i.e. the order in

which the hypotheses are tested is prespeci�ed. Unlike serial chain procedures, cyclical

chain procedures do not assume an ordering of the hypotheses; the hypothesis tested

�rst is the one with the most signi�cant weighted p-value. If desired, a serial and a

cyclical chain procedure can be combined to incorporate a logical relationship, e.g. to

test the primary hypothesis �rst (see Fig. 3.44). If the weight of the primary hypothesis

is chosen to be one, i.e. if the secondary hypotheses are only tested if the primary

hypothesis can be rejected, this combination of cyclical and serial chain procedure can

also be classi�ed as a type of gatekeeping procedure. Here, the primary hypothesis

would be the `gatekeeper', which needs to be rejected in order to test the remaining

hypotheses.

The following sections will suggest several testing strategies for testing multiple hypot-

heses. These strategies are based on the approaches of Millen and Dmitrienko (2012)

and Bretz et al. (2009, 2011) for multiple comparison and closed testing procedures.

Note that the hypothesis weights and α transition weights in the following sections

were chosen to be equal among hypotheses of the same hierarchy (e.g. among all

secondary hypotheses). These weights can be adjusted as needed. The �gures shown

for the di�erent strategies were created using the gMCP package for R (Rohmeyer and

Klinglmueller 2015), which was developed based on Bretz et al. (2011).

3.5.1 Options for main focus �Proof of concept�

If proof of concept or proof of treatment strategy is the main point of interest, H1

could be chosen to be the primary hypothesis. A few of the many possible testing
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strategies are brie�y presented in this section. A conservative approach would be the

Bonferroni method, where α is split equally between the secondary hypotheses. Taking

advantage of the closure principle, the unspent α can be reallocated to the secondary

hypotheses if the primary hypothesis is rejected. The �rst option that is suggested

below is a combination of serial and cyclical chain procedure. It is a sensible strategy

if all secondary hypotheses are of similar interest and importance to the investigators.

If, on the other hand, the investigators would prefer the secondary hypotheses to be

tested in a speci�c order, a serial chain procedure could be used, where the hypotheses

are tested in a prespeci�ed order and the unspent α is split between the remaining

hypotheses. The way both these options are shown in Figures 3.45 and 3.46, with

w1 = 1, these testing strategies can also be categorized as two-stage gatekeeping

procedures, as mentioned in the previous section. If, additionally, the hypotheses can

be classi�ed as secondary, tertiary, and quaternary, a multi-stage serial gatekeeping

procedure can be considered instead, where the unspent α from a hypothesis is only

reallocated to the hypothesis that is next in line in the prespeci�ed order.

Option 1: Mixed chain procedure

Step 1: Test H1 (overall strategy) at level α.

H1

1

H3

0

H4

0

H2

0

1
3

1
3

1
3

1
2

1
2

1
2

1
2

1
2

1
2

1Figure 3.45: Mixed chain procedure for multiple testing when the main hypothesis

is the overall treatment strategy.

Step 2: If H1 is rejected, pass α on to H2 - H4 using the prespeci�ed transition
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parameters. In case of a rejection of Hc (where c = 2, 3, 4), αc can be

split equally between the remaining hypotheses to be tested (see Figure

3.45).

If H1 cannot be rejected, subgroup analyses could be performed on an exploratory

basis.

Option 2: Serial chain procedure

Step 1: De�ne order for H2 - H4 (individual biomarkers), e.g. based on prevalence

or expected outcome. Let H∗2 , H
∗
3 , H

∗
4 denote H2 - H4 ordered by this

hierarchy.

Step 2: Test H1 (overall strategy) at level α.

Step 3: If H1 is rejected, pass α on to H∗2 - H∗4 (individual biomarkers). In case

of a rejection of H∗c (where c = 2, 3, 4), αc can be split equally between

the remaining hypotheses to be tested (see Figure 3.46).

If a hypothesis in the sequence cannot be rejected, the remaining subgroup analyses

could be performed on an exploratory basis.

Figure 3.46: Serial chain procedure for multiple testing when the main hypothesis is

the overall treatment strategy.
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Option 3: Multi-stage serial gatekeeping procedure

Step 1: De�ne order for H2 - H4 (individual biomarkers), e.g. based on prevalence

or expected outcome. Let H∗2 , H
∗
3 , H

∗
4 denote H2 - H4 ordered by this

hierarchy.

Step 2: Test H1 (overall strategy) at level α.

Step 3: If H1 is rejected, pass α on to H∗2 (highest ranked individual biomarker,

according to prespeci�ed order).

Step 4: Test H∗2 at level α. If H∗2 cannot be rejected, stop. If H∗2 is rejected, pass

α on to next hypothesis in the sequence. Proceed the same way for H∗3
and H∗4 .

If a hypothesis in the sequence cannot be rejected, the remaining subgroup analyses

could be performed on an exploratory basis.

H1

1

H∗2
0

H∗3
0

H∗4
0

1 1 1

1
Figure 3.47: Multi-stage serial gatekeeping procedure for multiple testing when the

main hypothesis is the overall treatment strategy.

If the individual biomarker-groups are expected to be small and testing the individual

hypotheses seems unpromising, either H5 (group of subgroups) or H6 (at-least-one)

could be tested instead.

Option 4: Group of subgroups

Step 1: Test H1 (overall strategy) at level α.

Step 2: If H1 is rejected, pass α on to H5 (group of subgroups). If H1 cannot be

rejected, subgroup analyses could be performed on an exploratory basis.
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H1

1

H5

0
1

1
Figure 3.48: Testing strategy with hypothesis for group of subgroups instead of

separate hypotheses for individual biomarkers.

Option 5: At least one

Step 1: Test H1 (overall strategy) at level α.

Step 2: If H1 is rejected, pass α on to H6 (at least one). If H1 cannot be rejected,

subgroup analyses could be performed on an exploratory basis.

H1

1

H6

0
1

1
Figure 3.49: Testing strategy with �at-least-one� hypothesis instead of separate

hypotheses for individual biomarkers.

Option Overview

Table 3.9: Overview of testing strategies, when the main focus of the analysis is a

proof of concept.

Focus: Overall treatment strategy

Strategy Mixed chain

procedure

Serial chain

procedure

Serial

gatekeeping

Group of

subgroups

At least

one

Step 1 Test H1 at level α
Step 2 Split remaining

α equally
among H2 - H4

De�ne order for H2

- H4 and split
remaining α equally
among remaining
hypotheses

De�ne order for
H2 - H4 and
pass remaining α
down sequentially

Test H5 at
remaining α

Test H6 at
remaining α
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3.5.2 Options for main focus �Individual biomarkers�

If investigators believe that they will have su�ciently large biomarker-groups, but would

also like to evaluate the overall treatment strategy, they could choose the individual

biomarkers (H2 - H4) as main hypotheses and the treatment strategy as secondary

hypothesis. Similar to the previous section, a mixed chain procedure could be applied

where the primary hypotheses are tested �rst and the unspent α is split between

the remaining hypotheses to be tested. Or, if the hypotheses are to be tested in a

prespeci�ed order, a serial chain procedure or a multi-stage serial gatekeeping procedure

could be chosen instead. Again, if w1 = 1, as shown in Figures 3.50 and 3.51, both

chain procedures can also be categorized as two-stage gatekeeping procedures. Finally,

instead of testing H2 - H4, H5 or H6 could be chosen as primary hypotheses.

If some of the hypotheses cannot be tested, remaining analyses of interest could be

performed on an exploratory basis.

Option 1: Mixed chain procedure

Step 1: Test H2 - H4 (individual biomarkers). In case of a rejection of Hc (where

c = 2, 3, 4), its proportion of α can be split equally between the remaining

hypotheses to be tested (including H1; see Fig. 3.45).

H2
1
3

H3
1
3

H4
1
3

H1

0

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1Figure 3.50: Mixed chain procedure for multiple testing when the main hypothesis

are the individual biomarkers.
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Step 2: Test H1 (overall strategy) at the level resulting from Step 1, i.e. if one

hypothesis was rejected, test at 1
9
α, if two were rejected, test at 1

3
α, and

if all preceding hypotheses were rejected, test at full α.

Option 2: Serial chain procedure

Step 1: De�ne order for H2 - H4 (individual biomarkers), e.g. based on prevalence

or expected outcome. Let H∗2 , H
∗
3 , H

∗
4 denote H2 - H4 ordered by this

hierarchy.

Step 2: Test H∗2 at level α. If H∗2 cannot be rejected, stop. If H∗2 is rejected, pass

α on to next hypothesis in the sequence. Proceed the same way for H∗3
and H∗4 .

Step 3: Test H1 (overall strategy) at the level resulting from Step 1, i.e. if one

hypothesis was rejected, test at 1
9
α, if two were rejected, test at 1

3
α, and

if all preceding hypotheses were rejected, test at full α.

Figure 3.51: Serial chain procedure for multiple testing when the main hypothesis

are the individual biomarkers.
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Option 3: Multi-stage serial gatekeeping procedure

Step 1: De�ne order for H2 - H4 (individual biomarkers), e.g. based on prevalence

or expected outcome. Let H∗2 , H
∗
3 , H

∗
4 denote H2 - H4 ordered by this

hierarchy.

Step 2: Test H∗2 at level α. If H∗2 cannot be rejected, stop. If H∗2 is rejected, pass

α on to next hypothesis in the sequence. Proceed the same way for H∗3
and H∗4 .

Step 3: If H∗2 , H
∗
3 , H

∗
4 were all rejected, test H1 (overall strategy) at level α.

H∗2
1

H∗3
0

H∗4
0

H1

0
1 1 1

1
Figure 3.52: Multi-stage serial gatekeeping procedure for multiple testing when the

main hypothesis are the individual biomarkers.

Option 4: Group of subgroups

Step 1: Test H5 (group of subgroups) at level α.

Step 2: If H5 is rejected, pass α on to H1 (overall strategy).

H5

1

H1

0
1

1
Figure 3.53: Testing strategy with hypothesis for group of subgroups instead of

separate hypotheses for individual biomarkers when the main hypothesis are the

individual biomarkers.

Option 5: At least one

Step 1: Test H6 (at least one) at level α.
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Step 2: If H6 is rejected, pass α on to H1 (overall strategy) .

H6

1

H1

0
1

1
Figure 3.54: Testing strategy with �at-least-one� hypothesis instead of separate

hypotheses for individual biomarkers when the main hypothesis are the individual

biomarkers.

Option Overview

Table 3.10: Overview of testing strategies when the main focus of the analysis is on

the individual biomarkers.

Focus: Individual biomarkers

Strategy Mixed chain

procedure

Serial chain

procedure

Multi-stage serial

gatekeeping

Group of

subgroup

At least

one

Step 1 Test
H2 - H4

Test H2 - H4 se-
quentially, split α
equally among re-
maining hypotheses

Test H2 - H4 se-
quentially, allocate
unspent α to next
hypothesis

Test H5 at
level α

Test H6 at
level α

Step 2 Test H1 at
remaining α

Test H1 at
remaining α

Test H1 at
remaining α

Test H1 at
remaining α
(H2 - H4 ex-
ploratory?)

Test H1 at
remaining α
(H2 - H4 ex-
ploratory?)

The are many strategies to choose from for testing multiple hypotheses. The options

suggested here are just a selection and were chosen in consideration of the study

designs discussed in this thesis. The strategies in Section 3.5.1 can be utilized for the

strati�ed randomize-all design as discussed in Section 3.2, while Section 3.5.2 could

be useful for the multi-biomarker hybrid design as discussed in Section 3.3. Especially

for designs that evaluate an overall treatment strategy, secondary hypotheses that test

the individual biomarkers should be included, to avoid false conclusions. For further

reading on multiple comparison procedures refer to e.g. Dmitrienko et al. (2009).



Chapter 4

Discussion

Planning and analyzing a multiple biomarker trial is a challenging task comprising

various factors which have to be considered. It is an area of ongoing research and only

a limited number of multiple biomarker trials have already been completed and their

results published. Learning from these completed trials is an important part of the

planning process, which can help to avoid issues and pitfalls that these trials may have

encountered. Some of the issues which were reported by completed trials, such as low

prevalence of the biomarkers and not being able to react to the latest developments

regarding biomarkers and treatments, have been addressed in this thesis. Sample

size calculation and data analysis methods for testing an overall treatment strategy

were investigated for situations where biomarker prevalences make it unfeasible to test

within the individual biomarker-groups. The results will be discussed in Section 4.1.

Additionally, the issue of a large number of biomarker-negative patients was addressed,

which is a side e�ect in trials that investigate lower prevalence biomarkers. Di�erent

analysis approaches for a trial that includes biomarker-negative patients were compared

and it was examined whether inclusion of biomarker-negative patients in the analysis

can improve bias and standard deviation of the treatment e�ect estimates. Section 4.2

will discuss the results in more detail. Finally, a �exible study design was considered

that allows a new biomarker-group with corresponding experimental treatment to be

added to the study after accrual has already begun. Di�erent aspects of study design

modi�cation were discussed and di�erent models for analysis of such a study were

110
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compared. Furthermore, the issue of missing biomarker data was addressed. If the

initial biomarker screening did not include the new biomarker before it was added

to the study, the biomarker status regarding this biomarker has to be determined

retrospectively for patients that were included in the study before adding the new

biomarker. This may lead to missing biomarker data for some or all of the patients.

For cases where data is only partially missing, di�erent methods for missing data

imputation for models with interaction terms were investigated and compared. The

results for the di�erent analysis models and the missing data will be discussed in Section

4.3.

4.1 Sample size calculation and evaluation of

overall treatment strategy

Section 4.1 is largely part of a paper that has already been published. The relevant

passages have been taken verbatim from Beisel et al. (2017).

With regard to sample size calculation, the Schoenfeld method is acceptable to use

in situations with only minor heterogeneity of treatment e�ects. But for more hete-

rogeneous cases, which was the focus of Section 3.2, the formula by Palta and Amini

provides the most adequate sample size, in the sense that it delivers the level of po-

wer which was aimed for at the planning stage. This is true not just for the case of

equal hazard ratios, but also for minorly to moderately heterogeneous hazard ratios.

If the hazard ratios are extremely heterogeneous, the adherence to the level of power

depends on the analysis method used. It seems that in this case, the formula by Palta

and Amini cannot compensate for the loss of power of the strati�ed Cox PH model in

spite of taking into consideration the heterogeneous hazard ratios.

However, comparing the asymptotic and the exact log-rank test for these particular

scenarios, and taking into consideration the calculated sample sizes, an obvious que-

stion is whether the reason for the poorer performance of the log-rank test and the

strati�ed Cox PH model is that the assumptions regarding asymptotic properties are

not met. For the most extreme scenarios, the calculated sample size is below 300,
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which, with prevalences of 0.5, 0.25, and 0.25 for G0, G1, and G2 respectively, results

in stratum sizes of less than 75 patients for G1 and G2. Hence, asymptotic assumpti-

ons are problematic in these cases. A simulation study with equal hazard ratios across

strata but smaller sample sizes in Section 3.2.3.4 showed that there is indeed some loss

of power, but for an overall sample size of 115 patients (which is very close to the 113

patients in the most extreme case considered), the loss of power is minor (see Table

3.4). For control of the type-I-error rate, the exact log-rank test should be considered

instead if the strata sizes are expected to be small, i.e. in the double digits, and there

is too little data available for reliable approximations. The shared frailty model also

appears to be an appropriate choice and additionally o�ers the possibility to include

covariates in the model, which is an advantage over the exact log-rank test.

Note that the shared frailty model performs superior to the strati�ed Cox PH model

for strata with di�erent treatment e�ects, even if there is no stratum-speci�c random

e�ect present in the data, which is assumed by the shared frailty model. So, even

though it is meant to model heterogeneity in baseline hazards, not hazard ratios, it

may be that it can handle heterogeneity better in general. Note that if one tries to

estimate a stratum e�ect that is not there, the less degrees of freedom are spent on

this attempt, the better. Hence the shared frailty model would perform better in this

case than the strati�ed model (with the simple non-strati�ed model being the best).

Additionally, since the shared frailty model assumes a certain functional shape causing

heterogeneity in treatment e�ects between strata, it is likely to perform better in terms

of power than a method making lesser assumptions, like the strati�ed Cox PH model,

which allows more general forms of baseline hazards than the constant baseline hazards

that are considered here.

Another observation worth mentioning is that the formula by Palta and Amini provides

a reasonable sample size for the lognormal shared frailty model in the case of minor

random e�ects. For stronger random e�ects, the shared frailty model does su�er some

loss of power, but less than the other methods (see Figures in Section 3.2.3.4). In

those cases, it may be that the shared frailty model is not able to compensate for both,

heterogeneity of baseline hazards and heterogeneity of treatment e�ects. If a strong

random e�ect is expected, an empirical calculation of the required sample size should

be considered instead (see Section 3.2.2).
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With regard to the di�erent analysis methods compared, the exact log-rank test,

Mehrotra's two-step approach, and the shared frailty model yield at least the level

of power which was aimed for, regardless of the heterogeneity of the treatment e�ects.

The exact log-rank test is only of use if one is not interested in including additional

covariates in the model. The two-step approach, as well as the shared frailty model,

does facilitate this option.

Note that using an overall analysis method as suggested should be understood as

assessing the bene�t of a certain treatment strategy for the overall population and

should be performed in conjecture with subsequent subgroup analyses to con�rm the

�ndings and to avoid false conclusions about treatments and subpopulations.

In consideration of the results in Section 3.2, the asymptotic log-rank test and the

strati�ed Cox PH model should not be used in case of small sample sizes and hetero-

geneous treatment e�ects. In this case, the exact log-rank test, Mehrotra's two-step

approach, or the shared frailty model appear to be suitable alternatives. For all models,

these results should be used with caution if one wishes to model a greater magnitude of

strati�cation or include a strong random e�ect in addition to heterogeneous treatment

e�ects. With respect to sample size calculation for a situation with strati�cation and

heterogeneous treatment e�ects, it is suggested to use the not widely recognized ex-

tension of Schoenfeld's formula by Palta and Amini rather than the formula by Lachin

and Foulkes.

4.2 Inclusion of biomarker-negative patients and

small sample size bias

Section 4.2 is largely part of a paper that has already been published. The relevant

passages have been taken verbatim from Habermehl et al. (2017).

While there already exists some literature on biomarker designs, the inclusion of

biomarker-negative patients is rarely addressed. Therefore, the focus of Section 3.3 was

a study design including biomarker-negative patients and possible analysis approaches

for the resulting data.
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If it is contemplated to include biomarker-negative patients in a trial, the pros and cons

should be carefully considered. The added expense of inclusion of biomarker-negative

patients should be weighed against potential gains in e�ciency for treatment e�ect

estimation. If it is possible, it might be a better option to recruit a larger number

of biomarker-positive patients instead of spending resources on following biomarker-

negative patients. If there is strong interest in gaining information about prognostic

e�ects, then it would be necessary to study biomarker-positive and -negative patients

under standard therapy. But, depending on availability, this might also be done retro-

spectively by subdividing a patient cohort from an already existing study using stored

specimens. For each trial it should be considered individually which goals are most

important and then resources can be allocated accordingly.

For the situation when biomarker-negative patients are to be included in the study,

the results of the simulation study in Section 3.3 show that for smaller sample sizes,

and especially for biomarkers indicative of a poor prognosis, using a combined model

and including the biomarker-negative patients in the analysis can reduce bias and

standard deviation of the estimates of the regression coe�cients compared to excluding

biomarker-negative patients from the analysis and to performing separate analyses for

the biomarkers, assuming proportional hazards. For larger sample sizes (n = 1, 000)

no noticeable reduction in bias and standard deviation can be observed. This leads to

the conclusion that the observed bene�t with respect to bias reduction could be due

to the reduction of the small sample size bias of the Cox PH model. The di�erent

results for biomarkers with di�erent prognoses are likely due to the smaller number

of events in the biomarker-group indicative of a favorable prognosis, which seems to

cause additional bias.

The increase of bias and standard deviation in absolute terms as the treatment e�ect

gets larger shows that the bias not only depends on the sample size but also on the

number of events. Hence, other factors in�uencing the bias of the treatment e�ect

estimates appear to be baseline hazard and hazard ratio, which agrees with the results

reported by Langner et al. (2003). The greatest bene�t with respect to reduction of

bias was observed for large treatment e�ects and for the biomarker indicative of a poor

prognosis relative to the biomarker-negative population. These results indicate that,

for small sample situations such as low prevalence biomarkers, using a Cox PH model
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with the biomarker status as factor variable and one variable for each biomarker-speci�c

treatment can help reduce bias and standard deviation of the estimates. Additionally,

this modeling approach facilitates the opportunity to estimate the treatment e�ects

and prognostic e�ects for all biomarkers in one model.

The simulation study also demonstrates the bene�t of the Firth correction in small to

moderate sample size situations with respect to reduction of bias and also standard de-

viation, which increases as the treatment e�ect for the biomarker-group increases. This

was observed for both biomarkers. The upwards bias that can be seen for β̂1 for small

sample sizes when the Firth correction is used could be caused by the small number of

events, a behavior which Elgmati et al. (2015) described for logistic regression.

As with all simulation studies, there are some limitations because of model assumptions.

The model assumptions, such as constant baseline hazards and proportional hazards,

were ful�lled by the simulated data set but that is not necessarily the case for real

data sets. The simulation results in Section 3.3.2.3 suggest that, while using di�erent

biomarker prevalence and time-dependent baseline hazards did not have much of an

impact on bias and standard deviation, one needs to be careful in the case of very

small numbers of events. Furthermore, the assumption of proportional hazards is a

key assumption of the Cox PH model. Therefore, it should always be checked if this

assumption is reasonable before applying the model. For mid to late phase trials, it

can be assumed that there is some knowledge available prior to the study that can

give guidance on whether proportional hazards are a reasonable assumption. If non-

proportional hazards are expected, the model(s) suggested in Section 3.3 may not

be an appropriate choice. A simulation study on the extent of bias of the hazard

ratio caused by non-proportional hazards, as well as censoring rate, type of censoring,

and sample size can be found in Persson and Khamis (2005). Depending on the

individual situation, alternatives or extensions to the Cox PH model that can handle

non-proportional hazards should be considered. Some literature on Cox regression

under non-proportional hazards can, e.g. be found in Schemper (1992). Alternative

models to the Cox PH model are, e.g. additive hazards models or accelerated failure

time models, which are, in the context of causal inference, suggested by Aalen et al.

(2015).
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Overall, based on the results of the simulation study, it can be concluded that the small

sample size bias of the Cox PH model should not be neglected. Additionally, attention

should be paid to the expected number of events, which also appears to in�uence

the bias. In the analysis of a multiple-biomarker trial with low prevalence biomarkers

and hence small sample sizes, a bias correction should be applied, such as the well-

known Firth correction. Moreover, the results of the simulation study demonstrate

that for biomarkers indicative of a poor prognosis, the inclusion of biomarker-negative

patients in the analysis can help to further reduce bias of the e�ect estimates and can

additionally lead to small improvements of the standard deviation of the estimates.

4.3 Adding a new biomarker-group: Interaction

e�ects and missing data

When it is intended to add a new biomarker-group to an ongoing clinical trial, many

factors need to be considered. The study protocol should facilitate this option from

the beginning and explicitly state the conditions under which a new biomarker-group

can be added throughout the trial. This should include the time point up to which it is

possible to add the new biomarker-group to the study, as well as guidelines regarding

allocation to the biomarker-groups for new patients with both biomarkers after the new

group is added, e.g. by assigning priorities to the biomarkers. Additionally, it should

be discussed how to adjust the �nal analysis for the belatedly added group and how to

address the potential overlap of biomarkers within the groups. While simply excluding

the patients with both biomarkers would be an acceptable option, with respect to bias of

the treatment e�ect estimates, the overlap of the biomarkers and a potential interaction

between therapy and additional biomarker could be accounted for by including an

interaction term in the model. Both approaches can help avoiding biased treatment

e�ect estimates but the interaction term o�ers the additional bene�t of quantifying

the interaction e�ect. Similar to Section 3.3, a combined model, which estimates the

treatment e�ect estimates for both biomarkers and additionally the interaction term

could be applied.

If the biomarker status with respect to the newly added biomarker cannot be determined
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retrospectively for all patients which were included prior to adding the new biomarker-

group, multiple imputation can be utilized. However, data imputation for models

that include interaction terms can be di�cult and the simulation study in Section

3.4.6 shows that it is rather sensitive to model misspeci�cation, such as omission of

interaction terms from the imputation model.

When the interaction terms are imputed passively, i.e. calculated from the imputed

main e�ects, the interaction terms are omitted from the imputation model. This results

in moderately to severely biased estimates for all considered imputation methods, which

were predictive mean matching, logistic regression, and polytomous logistic regression.

When the stratify-approach is used instead of PI, the bias of β̂1,2 is reduced, but both

logistic regression methods still yield biased estimates for β1 and β2. This may be due

to the speci�c model considered here, which only contains one of the main e�ects.

Since the two biomarker-groups receive a di�erent experimental treatment, a main

e�ect for treatment would not be meaningful in this context. Another aspect making

this a special case is that one of the three data sets into which the data is split for the

stratify-approach (one for each treatment group) does not contain any missing data.

This is due to the fact that Exp2 is added to the study at the same time when G2 is

added. Starting at this point, B2 is determined for all patients upon entering the study,

so the biomarker status for B2 can only be missing for patients treated with Exp1 or

with standard of care who entered the study prior to adding G2. It is possible that these

circumstances lead to the biased estimates for the stratify-approach. Hence, while the

stratify-approach may work well in general, it does not seem to be an appropriate

choice for the situation considered here.

The JAV-approach on the other hand is able to eliminate most of the bias of β̂1,2,

β̂1 and β̂2 for all three imputation methods, even for the MAR scenario considered

here. Thus, for this particular situation, the JAV-approach seems to be the most

appropriate choice. Using the percentage of missing data as number of imputations,

as suggested by Bodner (2008), only resulted in minimal improvements in bias. This

may not always be in proportion to the added computation time. PMM and PLR

perform quite well even for larger proportions of missing data. With regard to standard

deviation, PLR performs slightly better than PMM. The observed di�erences between

the two logistic regression based methods, LR and PLR, could be due to di�erences in
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implementation of these methods in the used R package mice. While the imputation

function for LR uses the function glm (generalized linear models) to �t a regression

model, the function for PLR uses multinom (multinomial log-linear models). These

two functions use di�erent methods for model �tting. While glm uses iteratively

reweighted least squares to �t the model, multinom �ts a single-hidden-layer neural

network via the function nnet, which is a machine learning technique for generalization

of linear regression functions.

As usual, the conclusions drawn from the simulation study may not necessarily apply

to other situations and di�erent models. The results may also di�er for more complex

scenarios of data that is MAR or for violations of model assumptions. For the di�erent

parameter settings considered in the sensitivity analysis, no unexpected behavior could

be observed.

Overall, an overlap in patient population and interaction of biomarker and treatment

could be accounted for by including an interaction term in the model. Furthermore, if

the biomarker status regarding the new biomarker is missing for some of the patients,

using the interaction terms as variables in the imputation model appears to be the best

way to avoid biased estimates for the situation considered here. PI should not be used

for imputation of interaction terms. The simulation study suggests that, compared

to PI and the stratify-approach, using the JAV-approach together with PLR yields the

least biased estimates along with the smallest standard deviation.

4.4 Overall conclusion and outlook

This thesis aimed to address several issues which can arise when planning and analyzing

a multiple biomarker trial, leading to several main conclusions that can be drawn from

the results. The �rst issue which was addressed in this thesis was low prevalence of the

biomarkers. It was aimed to investigate the evaluation of the biomarker-guided treat-

ment strategy for situations with lower prevalence biomarkers. For a study which tests

an overall biomarker-guided treatment strategy, the sample size calculation method

by Palta and Amini appears to be the most appropriate choice when heterogeneous

treatment e�ects are expected. The results from the simulation study suggest that the
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subsequent data analysis could be performed using the two-step approach suggested by

Mehrotra or a shared frailty model. If no other covariates are included in the model, an

exact log-rank test could also be used. The asymptotic log-rank test and the strati�ed

Cox PH model su�ered loss of power in the simulation study and therefore should not

be used for heterogeneous treatment e�ects. To test the individual biomarker-groups

as secondary hypotheses after testing the overall treatment strategy, some strategies

for multiple testing were suggested.

The second issue that was addressed was a large expected number of biomarker-

negative patients at the screening stage. It was aimed to investigate whether inclusion

of biomarker-negative patients in the trial and the analysis provides additional bene�t,

such as improvement of power or reduction of bias. For a situation where an overall

biomarker-guided treatment strategy is not desirable, a combined analysis model using

the data from the entire study, including biomarker-negative patients, was investigated.

This combined model estimates the treatment e�ects for both individual biomarkers.

Application of the Firth correction appeared to be a good method for reduction of

small sample size bias, which is likely to occur for low prevalence biomarkers. The

inclusion of biomarker-negative patients in the model can provide a small additional

bene�t with respect to reduction of bias and standard deviation.

The third issue considered were the rapid developments in the �eld of biomarker re-

search. It was aimed to be able to react to these continuous developments by in-

vestigating options to add new biomarkers and corresponding therapies to an ongoing

study. Di�erent models for data analysis were compared for a situation with a belatedly

added biomarker, an overlap of biomarkers within the population, and an e�ect of the

new biomarker on the response to the experimental treatment of the already existing

biomarker-group. Adding an interaction term to the combined analysis model can help

avoiding biased treatment e�ect estimates when there is overlap of the biomarkers

within the patient population, and when patients with both biomarkers respond di�e-

rently to the experimental therapy than patients with only one of the biomarkers. If

there is missing data regarding the biomarker status of the belatedly added biomarker,

data imputation can be utilized. However, the correct model speci�cation is crucial

to avoid biased estimates when interaction terms are part of the model for the �nal

analysis. These interaction terms should already be included in the imputation mo-
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del rather than imputing them passively. The simulation study suggests that for the

considered scenario, the JAV-approach with PLR is the best option to avoid obtaining

biased estimates after data imputation, and to reduce standard deviation compared to

CC analysis.

Points of future research based on the results of this thesis could be a comparison of

the performance of the suggested multiple comparison strategies when they are used

for the strati�ed randomize-all design. Furthermore, the Firth correction could be

applied to the models investigated in Section 3.4 when smaller sample sizes are used.

For all models considered, the behavior when covariates are added to the model could

be investigated, as well as di�erent parameter settings. For the �exible study design,

methods for sample size recalculation after adding the new biomarker group could be

investigated.

Due to the heterogeneity of biomarkers and treatments and the rapid developments

in this �eld, the planning phase of a multiple-biomarker trial is a complex process and

each trial has to be adjusted to the individual situation. This thesis can give guidance

in some of the aspects that need to be considered, but of course there are many more

aspects that need to be addressed. The study designs which were discussed could, for

example, be extended to include and interim analysis strategy to facilitate sample size

recalculation, early stopping, or stopping for futility.



Chapter 5

Summary

Planning and analyzing a multiple biomarker trial is a challenging task comprising va-
rious factors which have to be considered. It is an area of ongoing research and only
a limited number of multiple biomarker trials have already been completed and their
results published. Learning from these completed trials is an important part of the
planning process, which can help to avoid issues and pitfalls that these trials may have
encountered. Some of the issues which were reported by completed trials, such as low
prevalence of the biomarkers and not being able to react to the latest developments
regarding biomarkers and treatments, are addressed in this thesis.

Sample size calculation and data analysis methods for testing an overall treatment
strategy are investigated for situations where biomarker prevalences make it unfeasi-
ble to test within the individual biomarker-groups. Additionally, the issue of a large
number of biomarker-negative patients is addressed, which is a side e�ect in trials
that investigate lower prevalence biomarkers. Di�erent analysis approaches for a trial
that includes biomarker-negative patients are compared and it is examined whether
inclusion of biomarker-negative patients in the analysis can improve bias and standard
deviation of the treatment e�ect estimates. Finally, a �exible study design is conside-
red that allows a new biomarker-group with corresponding experimental treatment to
be included in the study after accrual has already begun. Di�erent aspects of study
design modi�cation are discussed and di�erent models for analysis of such a study
are compared. Furthermore, the issue of missing biomarker data is addressed. If the
initial biomarker screening did not include the new biomarker before it was added to
the study, the biomarker status regarding this biomarker has to be determined retro-
spectively for patients that are included in the study before adding the new biomarker.
This may lead to missing data for some or all of the patients. For cases where data is
only partially missing, di�erent methods for missing data imputation for models with
interaction terms are investigated and compared.

The �rst issue of three issues which are addressed in this thesis is low prevalence of the
biomarkers. For a study which tests an overall biomarker-guided treatment strategy,
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the sample size calculation method by Palta and Amini appears to be the most ap-
propriate choice when heterogeneous treatment e�ects are expected. The results from
the simulation study suggest that the subsequent data analysis could be performed
using the two-step approach suggested by Mehrotra or a shared frailty model. If no
other covariates are included in the model, an exact log-rank test could also be used.
The asymptotic log-rank test and the strati�ed Cox PH model su�ers loss of power
in the simulation study and therefore should not be used for heterogeneous treatment
e�ects. To test the individual biomarker-groups as secondary hypotheses after testing
the overall treatment strategy, some strategies for multiple testing are suggested.

The second issue that is addressed is a large expected number of biomarker-negative
patients at the screening stage. For a situation where an overall biomarker-guided
treatment strategy is not desirable, a combined analysis model using the data from
the entire study, including biomarker-negative patients, is investigated. This combined
model estimates the treatment e�ects for the individual biomarkers. Application of the
Firth correction appeared to be a good method for reduction of small sample size bias,
which is likely to occur for low prevalence biomarkers. The inclusion of biomarker-
negative patients in the model can provide a small additional bene�t with respect to
reduction of bias and standard deviation.

The third issue considered is the constant discovery of new biomarkers and correspon-
ding biomarker-guided experimental therapies. It is desirable for a clinical trial to be
able to react to these continuous developments by investigating options to add new
biomarkers and corresponding therapies to an ongoing study. Di�erent models for data
analysis are compared for a situation with a belatedly added biomarker, an overlap of
biomarkers within the population, and an e�ect of the new biomarker on the response
to the experimental treatment of an already existing biomarker-group. Adding an in-
teraction term to the combined analysis model can help avoiding biased treatment
e�ect estimates when there is overlap of the biomarkers within the patient popula-
tion, and when patients with both biomarkers respond di�erently to the experimental
therapy than patients with only one of the biomarkers. If there is missing data regar-
ding the biomarker status of the belatedly added biomarker, data imputation can be
utilized. However, the correct model speci�cation is crucial to avoid biased estimates
when interaction terms are part of the model for the �nal analysis. These interaction
terms should already be included in the imputation model rather than imputing them
passively. The simulation study suggests that for the considered scenario, the `just-
another-variable'-approach with polytomous logistic regression is the best option to
avoid obtaining biased estimates after data imputation.

Due to the heterogeneity of biomarkers and treatments and the rapid developments
in this �eld, the planning phase of a multiple-biomarker trial is a complex process and
each trial has to be adjusted to the individual situation. This thesis can give guidance
in some of the aspects that need to be considered, but of course there are many more
aspects that need to be addressed.
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Chapter 6

Appendix

A.1. Supplementary �gures

Figures for Section 3.3

A simulation study was conducted to compare the performance of the three approaches
discussed in Section 3.3.1 with respect to bias, standard deviation and RMSE of the
di�erent parameter estimates. It was investigated whether there is a bene�t of including
biomarker-negative patients in the study. Additionally it was investigated, whether
application of the Firth correction can further reduce the bias.

Figures A.1 and A.2 show the RMSE of β̂1 and β̂2 respectively. Figure A.3 shows bias,
standard deviation, and RMSE of γ̂1 and γ̂2. Figure A.4 shows the behavior of the
standard deviation of β̂1 and β̂2 for di�erent baseline hazards.
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Figure A.1: The RMSE of log hazard ratio β1, the treatment e�ect estimate for the

biomarker indicative of a favorable prognosis (B1), without and with Firth correction

for sample sizes 100, 150, 250, and 1,000.
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Figure A.2: The RMSE of log hazard ratio β2 without and with Firth correction for

sample sizes 100, 150, 250, and 1,000.
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Figure A.3: Bias and standard deviation of the estimates of γ1 and γ2, the prognostic

e�ects for biomarkers 1 and 2, respectively, using a Cox model without and with Firth

correction for Approach 3 and sample sizes 100, 150, 250, and 1,000.



1310.8 0.7 0.6 0.5 0.4exp(β1)

−
0.

10
−

0.
05

0.
00

0.
05

bi
as

Approach 3, β1
Approach 2, β1
Approach 1, β1
Approach 3, Firth, β1
Approach 2, Firth, β1
Approach 1, Firth, β1

0.8 0.7 0.6 0.5 0.4exp(β1)

−
0.

10
−

0.
05

0.
00

0.
05

bi
as

0.8 0.7 0.6 0.5 0.4exp(β1)

−
0.

10
−

0.
05

0.
00

0.
05

bi
as

0.8 0.7 0.6 0.5 0.4exp(β1)

−
0.

10
−

0.
05

0.
00

0.
05

bi
as

λ01 = 0.025 λ01 = 0.02865 λ01 = 0.034 λ01 = 0.04

0.8 0.7 0.6 0.5 0.4exp(β1)

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

st
an

da
rd

 d
ev

ia
tio

n

Approach 3, β1
Approach 2, β1
Approach 1, β1
Approach 3, Firth, β1
Approach 2, Firth, β1
Approach 1, Firth, β1

0.8 0.7 0.6 0.5 0.4exp(β1)

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

st
an

da
rd

 d
ev

ia
tio

n

0.8 0.7 0.6 0.5 0.4exp(β1)

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

st
an

da
rd

 d
ev

ia
tio

n

0.8 0.7 0.6 0.5 0.4exp(β1)

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

st
an

da
rd

 d
ev

ia
tio

n

λ01 = 0.025 λ01 = 0.02865 λ01 = 0.034 λ01 = 0.04

1

0.8 0.7 0.6 0.5 0.4exp(β2)

−
0.

10
−

0.
05

0.
00

0.
05

bi
as

Approach 3, β2
Approach 2, β2
Approach 1, β2
Approach 3, Firth, β2
Approach 2, Firth, β2
Approach 1, Firth, β2

0.8 0.7 0.6 0.5 0.4exp(β2)
−

0.
10

−
0.

05
0.

00
0.

05

bi
as

0.8 0.7 0.6 0.5 0.4exp(β2)

−
0.

10
−

0.
05

0.
00

0.
05

bi
as

0.8 0.7 0.6 0.5 0.4exp(β2)

−
0.

10
−

0.
05

0.
00

0.
05

bi
as

λ02 = 0.1 λ02 = 0.0875 λ02 = 0.075 λ02 = 0.0625

0.8 0.7 0.6 0.5 0.4exp(β2)

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

st
an

da
rd

 d
ev

ia
tio

n

Approach 3, β2
Approach 2, β2
Approach 1, β2
Approach 3, Firth, β2
Approach 2, Firth, β2
Approach 1, Firth, β2

0.8 0.7 0.6 0.5 0.4exp(β2)

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

st
an

da
rd

 d
ev

ia
tio

n

0.8 0.7 0.6 0.5 0.4exp(β2)

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

st
an

da
rd

 d
ev

ia
tio

n

0.8 0.7 0.6 0.5 0.4exp(β2)

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

st
an

da
rd

 d
ev

ia
tio

n

λ02 = 0.1 λ02 = 0.0875 λ02 = 0.075 λ02 = 0.0625

1
Figure A.4: Comparison of standard deviation for di�erent baseline hazards for n =
100: Standard deviation of the estimates of log hazard ratio β1 and log hazard

ratio β2, using a Cox model without and with Firth correction given baseline hazards

λ01 : 0.025, 0.02865, 0.034, 0.04 and λ02 : 0.1, 0.0875, 0.075, 0.0625, respectively.

The baseline hazards for B1 correspond to multiplying λ00 with exp(γ1), where

γ1 = log(1
2), γ1 = log(4/7), γ1 = log(2/3), and γ1 = log(4/5), respectively. The

baseline hazards for B2 correspond to multiplying λ00 = 0.05 with exp(γ2), where
γ2 = log(2), γ2 = log(7/4), γ2 = log(3/2), and γ2 = log(5/4), respectively.

For all Figures, bias, standard deviation, and RMSE were calculated from 10,000 Si-
mulations runs. Fixed parameters: exp(β2) = 0.8, λ00 = 0.05, γ1 = log(0.5) and
γ2 = log(2). The patient proportions in biomarker groups B0, B1, and B2 are 0.5,
0.25, and 0.25, respectively, and treatment allocation ratio between treatments for B1,
and B2 is 1:1.

Figures for Section 3.4

The bias of the estimates of β1, β2, and β1,2 when using PI, the JAV-approach or the
stratify-approach was compared to the bias resulting from CC analysis and from the
analysis of the full data set. Three imputation methods to predict the missing values
were used and compared for the three imputation approaches: logistic regression (LR),
polytomous logistic regression (PLR), and predictive mean matching (PMM). Unless
otherwise indicated, missing data are MCAR.
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It was investigated whether the results of the simulation study are sensitive to a change
of parameters, e.g. for a di�erent e�ect τ , i.e. the factor by which the hazard ratio
for B2-patients treated with Exp1 di�ers from the hazard ratio for B1-patients treated
with Exp1. Figures A.5 and A.6 show the results for τ = 0.75 and τ = 2, respectively.
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(b) Polytomous logistic regression
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(c) Predictive mean matching

Figure A.5: E�ect τ=0.75: Bias for LR, PLR, and PMM for β̂1,2, β̂1, and β̂2

treating interactions as JAV in imputation model. B1 is the prioritized biomarker in

the allocation algorithm, data is MCAR, and m=10 imputations.
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(a) Logistic regression
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(b) Polytomous logistic regression
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(c) Predictive mean matching

Figure A.6: E�ect τ = 2: Bias for LR, PLR, and PMM for β̂1,2, β̂1, and β̂2 treating

interactions as JAV in imputation model. B1 is the prioritized biomarker in the

allocation algorithm, data is MCAR, and m=10 imputations.
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A.2. Supplementary tables

Tables for Section 3.2

The formulas for sample size calculation by Schoenfeld, Palta and Amini, and Lachin
and Foulkes were compared (Table A.1). For each hazard ratio constellation of the
simulation study, the required sample size for a power of 0.8 is determined with each
of the sample size formulas.

Afterwards, the di�erent analysis methods were evaluated with respect to the power
to detect a signi�cant overall treatment e�ect, given speci�c hazard ratio scenarios.
The numerical results for the sample size obtained from the formulas by Schoenfeld
and Lachin and Foulkes are shown in Tables A.2-A.4.

For all following tables, the hazard ratios of B1 and B2 are varied between 0.8 and 0.4,
and 0.8 and 0.3, respectively; the hazard ratio for B0 is held constant at 0.8. 10,000
simulations.

Table A.1: Comparison of sample sizes calculated from formulas by Schoenfeld, Palta

and Amini, and Lachin and Foulkes for di�erent scenarios.

HR Sample size

B0, B1, B2 Schoenfeld Palta Amini Lachin Foulkes

0.8 0.8 0.8 831 763 686
0.8 0.8 0.7 652 574 540
0.8 0.8 0.6 495 437 417
0.8 0.8 0.5 365 336 316
0.8 0.8 0.4 263 259 236
0.8 0.8 0.3 185 200 172
0.8 0.7 0.7 492 461 404
0.8 0.7 0.6 390 360 325
0.8 0.7 0.5 300 282 256
0.8 0.7 0.4 224 222 197
0.8 0.7 0.3 163 174 149
0.8 0.6 0.6 305 297 249
0.8 0.6 0.5 243 238 204
0.8 0.6 0.4 188 190 163
0.8 0.6 0.3 141 152 127
0.8 0.5 0.5 195 200 160
0.8 0.5 0.4 156 163 132
0.8 0.5 0.3 121 131 106
0.8 0.4 0.4 128 138 105
0.8 0.4 0.3 102 113 87
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Table A.2: Numerical results for the power comparison of the strati�ed Cox model,

Mehrotra's two-step approach, the lognormal shared frailty model, and strati�ed

exact and asymptotic log-rank test to detect a true treatment e�ect when using

Schoenfeld's sample size formula under di�erent scenarios.

Input Power

HR Sample Strat.Cox Twostep Frailty Exact Asympt.
B0, B1, B2 Size Wald Wald lognorm log-rank log-rank

0.8 0.8 0.8 831 0.833 0.833 0.832 0.828 0.833
0.8 0.8 0.7 652 0.841 0.839 0.841 0.831 0.842
0.8 0.8 0.6 495 0.842 0.843 0.842 0.834 0.842
0.8 0.8 0.5 365 0.818 0.830 0.826 0.826 0.819
0.8 0.8 0.4 263 0.781 0.812 0.808 0.809 0.783
0.8 0.8 0.3 185 0.722 0.789 0.773 0.787 0.725
0.8 0.7 0.7 492 0.817 0.823 0.822 0.822 0.817
0.8 0.7 0.6 390 0.824 0.830 0.829 0.828 0.825
0.8 0.7 0.5 300 0.815 0.834 0.827 0.828 0.816
0.8 0.7 0.4 224 0.774 0.807 0.798 0.806 0.776
0.8 0.7 0.3 163 0.725 0.791 0.774 0.790 0.727
0.8 0.6 0.6 305 0.809 0.824 0.817 0.823 0.811
0.8 0.6 0.5 243 0.795 0.816 0.810 0.814 0.796
0.8 0.6 0.4 188 0.767 0.804 0.798 0.804 0.769
0.8 0.6 0.3 141 0.730 0.795 0.778 0.796 0.735
0.8 0.5 0.5 195 0.770 0.805 0.792 0.809 0.772
0.8 0.5 0.4 156 0.750 0.795 0.780 0.796 0.753
0.8 0.5 0.3 121 0.713 0.778 0.765 0.785 0.717
0.8 0.4 0.4 128 0.723 0.787 0.762 0.790 0.727
0.8 0.4 0.3 102 0.689 0.764 0.747 0.773 0.695
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Table A.3: Numerical results for the power comparison of the strati�ed Cox model,

Mehrotra's two-step approach, the lognormal shared frailty model, and strati�ed

exact and asymptotic log-rank test to detect a true treatment e�ect when using

Lachin and Foulkes' sample size formula under di�erent scenarios.

Input Power

HR Sample Strat.Cox Twostep Frailty Exact Asympt.
B0, B1, B2 Size Wald Wald lognorm log-rank log-rank

0.8 0.8 0.8 686 0.760 0.761 0.762 0.759 0.761
0.8 0.8 0.7 540 0.768 0.767 0.769 0.760 0.769
0.8 0.8 0.6 417 0.775 0.777 0.778 0.767 0.776
0.8 0.8 0.5 316 0.761 0.774 0.773 0.767 0.763
0.8 0.8 0.4 236 0.734 0.767 0.759 0.764 0.736
0.8 0.8 0.3 172 0.680 0.751 0.733 0.751 0.683
0.8 0.7 0.7 404 0.735 0.744 0.741 0.740 0.737
0.8 0.7 0.6 325 0.751 0.760 0.756 0.754 0.752
0.8 0.7 0.5 256 0.742 0.759 0.754 0.754 0.744
0.8 0.7 0.4 197 0.726 0.762 0.757 0.763 0.728
0.8 0.7 0.3 149 0.681 0.748 0.731 0.748 0.684
0.8 0.6 0.6 249 0.717 0.735 0.729 0.733 0.719
0.8 0.6 0.5 204 0.712 0.739 0.733 0.739 0.714
0.8 0.6 0.4 163 0.700 0.741 0.734 0.744 0.703
0.8 0.6 0.3 127 0.675 0.741 0.727 0.740 0.678
0.8 0.5 0.5 160 0.677 0.717 0.707 0.720 0.680
0.8 0.5 0.4 132 0.670 0.726 0.713 0.725 0.674
0.8 0.5 0.3 106 0.649 0.725 0.710 0.731 0.655
0.8 0.4 0.4 105 0.629 0.698 0.679 0.700 0.635
0.8 0.4 0.3 87 0.627 0.695 0.691 0.714 0.634



137

Table A.4: Numerical results for the power comparison of the strati�ed Cox model,

Mehrotra's two-step approach, the lognormal shared frailty model, and strati�ed

exact and asymptotic log-rank test to detect a true treatment e�ect when using

Lachin and Foulkes' sample size formula (with sample proportion weights) under

di�erent scenarios.

Input Power

HR Sample Strat.Cox Twostep Frailty Exact Asympt.
B0, B1, B2 Size Wald Wald lognorm log-rank log-rank

0.8 0.8 0.8 632 0.721 0.719 0.720 0.714 0.722
0.8 0.8 0.7 469 0.711 0.712 0.713 0.703 0.712
0.8 0.8 0.6 360 0.715 0.718 0.716 0.706 0.716
0.8 0.8 0.5 282 0.701 0.717 0.715 0.710 0.703
0.8 0.8 0.4 226 0.705 0.739 0.733 0.740 0.707
0.8 0.8 0.3 184 0.722 0.786 0.770 0.788 0.724
0.8 0.7 0.7 381 0.716 0.724 0.724 0.725 0.718
0.8 0.7 0.6 298 0.712 0.720 0.719 0.711 0.713
0.8 0.7 0.5 238 0.706 0.723 0.723 0.720 0.708
0.8 0.7 0.4 193 0.711 0.746 0.739 0.745 0.713
0.8 0.7 0.3 159 0.714 0.779 0.762 0.780 0.718
0.8 0.6 0.6 249 0.717 0.735 0.729 0.733 0.719
0.8 0.6 0.5 201 0.707 0.735 0.730 0.733 0.710
0.8 0.6 0.4 165 0.705 0.748 0.739 0.745 0.708
0.8 0.6 0.3 137 0.707 0.772 0.756 0.771 0.710
0.8 0.5 0.5 171 0.706 0.743 0.733 0.746 0.709
0.8 0.5 0.4 142 0.708 0.760 0.746 0.761 0.712
0.8 0.5 0.3 119 0.703 0.772 0.757 0.779 0.708
0.8 0.4 0.4 122 0.699 0.765 0.740 0.768 0.703
0.8 0.4 0.3 103 0.695 0.769 0.752 0.782 0.701
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Tables for Section 3.3

Simulations were run to investigate the robustness of the estimators for the approaches
in Section 3.3 against violations of model assumptions and change of parameters. The
bias and standard deviation were investigated for di�erent biomarker prevalences and
for a non-constant (Weibull distributed) hazard function, with Weibull shape parame-
ters 0.4, 1 and 5. For better comparability, λ0 was adjusted such that the same number
of events is reached at 60 months for all shape parameters, i.e. λ0 = 0.05 · 60/60shape.
Tables A.5 and A.6 show the type I error rates for these scenarios for all three appro-
aches for β1 and β2 without and with Firth correction.

Table A.5: Type I error for the di�erent approaches and di�erent scenarios. Simula-

tions: 10,000. Sample size: 10,000.

Approach 1 Approach 2 Approach 3 Mean no. Scenario
β1 β2 β1 β2 β1 β2 events

0.050 0.048 0.050 0.048 0.050 0.048 8371
0.048 0.049 0.048 0.048 0.048 0.048 8176 di�erent biomarker prevalences
0.052 0.050 0.052 0.051 0.052 0.050 9189 Weibull shape 0.4 (no censoring)
0.050 0.048 0.050 0.048 0.050 0.048 9189 Weibull shape 1 (no censoring)
0.052 0.049 0.051 0.049 0.052 0.049 9189 Weibull shape 5 (no censoring)
0.052 0.050 0.052 0.051 0.052 0.050 7848 Weibull shape 0.4 (with censoring)
0.052 0.049 0.051 0.049 0.052 0.049 6053 Weibull shape 5 (with censoring)

Table A.6: Type I error for the di�erent approaches and di�erent scenarios with Firth

correction. Simulations: 10,000. Sample size: 10,000.

Approach 1 Approach 2 Approach 3 Mean no. Scenario
β1 β2 β1 β2 β1 β2 events

0.050 0.048 0.050 0.048 0.050 0.048 8371
0.048 0.049 0.048 0.048 0.048 0.048 8176 di�erent biomarker prevalences
0.052 0.050 0.052 0.051 0.052 0.050 9189 Weibull shape 0.4 (no censoring)
0.050 0.048 0.050 0.048 0.050 0.048 9189 Weibull shape 1 (no censoring)
0.052 0.049 0.051 0.049 0.052 0.049 9189 Weibull shape 5 (no censoring)
0.052 0.050 0.052 0.051 0.052 0.050 7848 Weibull shape 0.4 (with censoring)
0.052 0.049 0.051 0.049 0.052 0.049 6053 Weibull shape 5 (with censoring)
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A.3. Selected R-Code

Sample size calculation for 3.2.

#######################################################################################
### estimate survival probabilities ###

t <- (accrual / 2) + followup
study_length <- accrual + followup

surv_prob_std <- sum((bio_prop * (1-rand.prob) / p_std) * exp(-lambda0 * t))
surv_prob_exp <- sum((bio_prop * rand.prob / p_exp) * exp(-lambda1 * t))

#######################################################################################
### estimate average hazard ratio and hazard rates ###

### for Z=0 ###
lambda_std <- -log(surv_prob_std) / t

### for Z=1 ###

HR_avg <- log(surv_prob_exp) / log(surv_prob_std)
lambda_exp <- HR_avg * lambda_std

lambda_star_std <- lambda_cens + lambda_std
lambda_star_exp <- lambda_cens + lambda_exp

eventrate_std <- (lambda_std/lambda_star_std) * (1 + (1/(accrual * lambda_star_std)) *
exp(-lambda_star_std * (study_length)) -
(1/(accrual * lambda_star_std)) * exp(-lambda_star_std * followup))

eventrate_exp <- (lambda_exp/lambda_star_exp) * (1 + (1/(accrual * lambda_star_exp)) *
exp(-lambda_star_exp * (study_length)) -
(1/(accrual * lambda_star_exp))*exp(-lambda_star_exp*followup))

eventrate <- p_std * eventrate_std + p_exp * eventrate_exp

#######################################################################################
### Schoenfeld ###

n_schoenfeld <- ceiling((qnorm(1 - beta) + qnorm(1 - alpha/2))^2 /
(p_std * p_exp * log(HR)^2 * eventrate))

#######################################################################################
### Palta & Amini ###

V_s <- rand.prob * (1 - (exp(-lambda1 * followup) -
exp(-lambda1 * study_length)) / (lambda1 * accrual)) +
(1-rand.prob) * (1-(exp(-lambda0 * followup) -
exp(-lambda0 * study_length)) / (lambda0 * accrual))

mu <- (sum(log(HR) * bio_prop * rand.prob * (1 - rand.prob) * V_s)) /
(sqrt(sum(bio_prop * rand.prob) * (1 - rand.prob) * V_s)))

n_palta <- ceiling((qnorm(1 - beta) + qnorm(1 - alpha/2))^2 / mu^2)

#######################################################################################
### Lachin & Foulkes ###

Phi <- function(lambda){
phi <- lambda^2 * ((lambda + lambda_cens * (1-(1/(accrual * (lambda+lambda_cens))) *

exp(-(lambda + lambda_cens) * followup) -
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exp(-(lambda + lambda_cens) * (accrual + followup)))) / lambda)
return(phi)
}

lambda_bar <- rand.prob * lambda1 + (1 - rand.prob) * lambda0
lambda0_bar <- sum(lambda0 * bio_prop)
lambda1_bar <- sum(lambda1 * bio_prop)
lambda_bar_mean <- sum(lambda_bar * bio_prop)

### initial sample size for sigma weights from Lachin formula ###

n_init <- ceiling(((qnorm(1-alpha/2) * sqrt(Phi(lambda_bar_mean) * ((1/rand.prob) +
(1/(1-rand.prob)))) + qnorm(1-beta) * sqrt(Phi(lambda1_bar) *
(1/rand.prob) + Phi(lambda0_bar) * (1/(1-rand.prob)))) /
mean(lambda1-lambda0))^2)

Psi0 <- Phi(lambda_bar) * (1/rand.prob + 1/(1 - rand.prob))
Psi1 <- Phi(lambda1) / rand.prob + Phi(lambda0) / (1 - rand.prob)
Sigma <- sum((bio_prop * Psi1) / (Psi0^2))
Omega <- sum(bio_prop / Psi0)

###sigma weights###

sigma0 <- Psi0 / (n_init * bio_prop)
w <- (1/sigma0) / ((1/sigma0[1]) + (1/sigma0[2]) + (1/sigma0[3]))

lambda_diff <- sum(w * (lambda1 - lambda0))

n_lachinfoulkes <- ceiling(((qnorm(1-alpha/2) * sqrt(Omega^(-1)) + qnorm(1-beta) *
sqrt(Omega^(-2) * Sigma)) / lambda_diff)^2)

#######################################################################################
###Lachin & Foulkes with sample size weigths###

w_ssize <- bio_prop
lambda_diff_ssize <- sum(w_ssize * (lambda1 - lambda0))

n_lachinfoulkes_ssize <- ceiling(((qnorm(1 - alpha/2) * sqrt(Omega^(-1)) +
qnorm(1 - beta) * sqrt(Omega^(-2) * Sigma)) /
lambda_diff_ssize)^2)

Data generation for Sections 3.2 and 3.3.

data <- data.frame(patientID=rep(NA, n), adm_cens_time=rep(NA, n),
biomarker_status=rep(NA, n), biomarker=rep(NA, n),
survival_time=rep(NA, n), cens_time=rep(NA, n), group=rep(NA, n),
arm=rep(NA, n), status=rep(NA, n), os=rep(NA, n))

### patients ###
data$patientID <- c(1:n)

#######################################################################################
### Draw biomarker status for each patient ###

data$biomarker_status <- sample(c(0:2), n, replace = T, prob = bio_prop)

nB0 <- length(data$biomarker_status[data$biomarker_status == 0])
nB1 <- length(data$biomarker_status[data$biomarker_status == 1])
nB2 <- length(data$biomarker_status[data$biomarker_status == 2])

#######################################################################################
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### Randomize within arms ###

Z0 <- rbinom(nB0, 1, rand.prob[[1]])
Z1 <- rbinom(nB1, 1, rand.prob[[2]])
Z2 <- rbinom(nB2, 1, rand.prob[[3]])

data$biomarker[data$biomarker_status == 0] <- 'B0'
data$group[data$biomarker_status == 0] <- Z0
data$biomarker[data$biomarker_status == 1] <- 'B1'
data$group[data$biomarker_status == 1] <- Z1
data$biomarker[data$biomarker_status == 2] <- 'B2'
data$group[data$biomarker_status == 2] <- Z2

data$arm[data$biomarker_status == 0 & data$group == 0] <- 'B00'
data$arm[data$biomarker_status == 0 & data$group == 1] <- 'B01'
data$arm[data$biomarker_status == 1 & data$group == 1] <- 'B11'
data$arm[data$biomarker_status == 2 & data$group == 0] <- 'B20'
data$arm[data$biomarker_status == 2 & data$group == 1] <- 'B21'

#######################################################################################
### Survival times ###

nB10 <- length(data$arm[data$arm == "B10"])
nB11 <- length(data$arm[data$arm == "B11"])
nB20 <- length(data$arm[data$arm == "B20"])
nB21 <- length(data$arm[data$arm == "B21"])

U1 <- runif(nB0, min = 0, max = 1)
U2 <- runif(nB10, min = 0, max = 1)
U3 <- runif(nB11, min = 0, max = 1)
U4 <- runif(nB20, min = 0, max = 1)
U5 <- runif(nB21, min = 0, max = 1)

data$survival_time[data$arm == 'B00'] <- (-(log(U1)/(lambda0[[1]])))^(1/shape)
data$survival_time[data$arm == 'B01'] <- (-(log(U2)/(lambda1[[1]])))^(1/shape)
data$survival_time[data$arm == 'B10'] <- (-(log(U2)/(lambda0[[2]])))^(1/shape)
data$survival_time[data$arm == 'B11'] <- (-(log(U3)/(lambda1[[2]])))^(1/shape)
data$survival_time[data$arm == 'B20'] <- (-(log(U4)/(lambda0[[3]])))^(1/shape)
data$survival_time[data$arm == 'B21'] <- (-(log(U5)/(lambda1[[3]])))^(1/shape)

#######################################################################################
### random censoring ###

if(p.rand.cens > 0 & p.rand.cens <= 1){
lambda.cens <- (p.rand.cens*sum(bio_prop*((lambda0+lambda1)/2)))/

(1-p.rand.cens)
data$cens_time <- rexp(n, rate = lambda.cens)

} else{
data$cens_time <- rep(Inf, n)

}

#######################################################################################
### staggered entry/administrative censoring ###

if(accrual > 0){
data$adm_cens_time <- runif(n, min = followup, max = accrual+followup)
} else{
data$adm_cens_time <- rep(Inf, n)
}

#######################################################################################
### overall survival ###
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data$os <- pmin(data$survival_time, data$cens_time, data$adm_cens_time)

#######################################################################################
### status 1=dead 0=alive ###

data$status[data$survival_time <= data$os] <- 1
data$status[data$survival_time > data$os] <- 0

Data analysis for Section 3.2

### Surv objects ###

Surv <- Surv(data$os, data$status)
SurvB0 <- Surv(data$os[data$biomarker_status==0], data$status[data$biomarker_status==0])
SurvB1 <- Surv(data$os[data$biomarker_status==1], data$status[data$biomarker_status==1])
SurvB2 <- Surv(data$os[data$biomarker_status==2], data$status[data$biomarker_status==2])

#######################################################################################
### (Stratified) asymptotic log-rank test ###

diff <- survdiff(Surv ~ group + strata(biomarker_status), data=data)
diffB0 <- survdiff(SurvB0 ~ group[data$biomarker_status==0], data=data)
diffB1 <- survdiff(SurvB1 ~ group[data$biomarker_status==1], data=data)
diffB2 <- survdiff(SurvB2 ~ group[data$biomarker_status==2], data=data)

#######################################################################################
### Log-rank pvalues ###

p.val <- (1 - pchisq(diff$chisq, length(diff$n) - 1))
p.valB0 <- (1 - pchisq(diffB0$chisq, length(diffB0$n) - 1))
p.valB1 <- (1 - pchisq(diffB1$chisq, length(diffB1$n) - 1))
p.valB2 <- (1 - pchisq(diffB2$chisq, length(diffB2$n) - 1))

nB0 <- length(data$biomarker_status[data$biomarker_status==0])
nB1 <- length(data$biomarker_status[data$biomarker_status==1])
nB2 <- length(data$biomarker_status[data$biomarker_status==2])
n <- nB0 + nB1 + nB2

#######################################################################################
### Stratified exact/approximate log-rank test ###

diff.exactLR <- logrank_test(Surv ~ factor(group)|factor(biomarker_status),
data=data, distribution=approximate(B=10000))

p.val.exactLR <- pvalue(diff.exactLR)[1]

#######################################################################################
### Frailty coxph (Gamma) ###

frail.coxph <- coxph(Surv ~ group + frailty.gamma(biomarker_status), data=data)

p.val.frail.coxph <- coef(summary(frail.coxph))[1,6]

#######################################################################################
### Frailty coxme (Gaussian) ###

frail.coxme <- coxme(Surv ~ group + (1|biomarker_status), data=data)
chisq.frail.coxme <- (fixef(frail.coxme))^2 / vcov(frail.coxme)
p.val.frail.coxme <- 1 - pchisq(chisq.frail.coxme, 1)



143

#######################################################################################
### Stratified Cox ###

strat.cox <- coxph(Surv ~ group + strata(biomarker_status), data=data)
p.val.strat.cox <- coef(summary(strat.cox))[,5]

#######################################################################################
### Two-step procedure ###

fitB0 <- coxph(SurvB0 ~ group[data$biomarker_status==0], data=data)
fitB1 <- coxph(SurvB1 ~ group[data$biomarker_status==1], data=data)
fitB2 <- coxph(SurvB2 ~ group[data$biomarker_status==2], data=data)

fit_vec <- c(unname(fitB0$coefficients), unname(fitB1$coefficients),
unname(fitB2$coefficients))

HR_vec <- exp(fit_vec)
var_vec <- c(fitB0$var, fitB1$var, fitB2$var)

### ssize weigths ###

weights_ssize <- c(nB0/n, nB1/n, nB2/n)

### test statistic ###

twostep_HR <- exp(sum(fit_vec * weights_ssize))
twostep_coef <- sum(fit_vec * weights_ssize)
twostep_var <- sum(var_vec * weights_ssize^2)
twostep_wald <- (twostep_coef)^2 / twostep_var
p.val.twostep <- 1 - pchisq(twostep_wald, 1)

Data analysis for Section 3.3

### Surv objects ###

Surv <- Surv(data$os, data$status)
SurvB1 <- Surv(data$os[data$biomarker_status==1], data$status[data$biomarker_status==1])
SurvB2 <- Surv(data$os[data$biomarker_status==2], data$status[data$biomarker_status==2])

SurvB1B2 <- Surv(data$os[data$biomarker_status!=0],
data$status[data$biomarker_status!=0])

data$treatment <- data$biomarker_status * data$group
data$treatment1 <- as.numeric(data$treatment == 1)
data$treatment2 <- as.numeric(data$treatment == 2)

#######################################################################################
### Approach 3 (full model) ###

cox_full <- coxph(Surv ~ factor(biomarker_status) + treatment1 + treatment2, data=data)

beta.cox_full_gamma1 <- coef(summary(cox_full))[,1][1]
beta.cox_full_gamma2 <- coef(summary(cox_full))[,1][2]
beta.cox_full_trt1 <- coef(summary(cox_full))[,1][3]
beta.cox_full_trt2 <- coef(summary(cox_full))[,1][4]

#######################################################################################
### Approach 2 (no biomarker-negative patients) ###

cox_B1B2 <- coxph(SurvB1B2 ~ factor(biomarker_status) +treatment1 +treatment2,
data=data[data$biomarker_status!=0,])
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beta.cox_B1B2_gamma2 <- unname(coef(summary(cox_B1B2))[,1][1])
beta.cox_B1B2_trt1 <- unname(coef(summary(cox_B1B2))[,1][2])
beta.cox_B1B2_trt2 <- unname(coef(summary(cox_B1B2))[,1][3])

#######################################################################################
### Approach 1 (individual models) ###

cox_B1 <- coxph(SurvB1 ~ group, data=data[data$biomarker_status==1,])

beta.cox_B1 <- coef(summary(cox_B1))[,1]

cox_B2 <- coxph(SurvB2 ~ group, data=data[data$biomarker_status==2,])

beta.cox_B2 <- coef(summary(cox_B2))[,1]

#######################################################################################
### Approach 3 with Firth (full model) ###

cox_full_firth <- coxphf(Surv ~ factor(biomarker_status) + treatment1 + treatment2,
data=data, firth=T)

beta.cox_full_firth_gamma1 <- unname(cox_full_firth$coefficients[1])
beta.cox_full_firth_gamma2 <- unname(cox_full_firth$coefficients[2])
beta.cox_full_firth_trt1 <- unname(cox_full_firth$coefficients[3])
beta.cox_full_firth_trt2 <- unname(cox_full_firth$coefficients[4])

#######################################################################################
### Approach 2 with Firth (no biomarker-negatives) ###

cox_B1B2_firth <- coxphf(SurvB1B2 ~ factor(biomarker_status) + treatment1 + treatment2,
data=data[data$biomarker_status!=0,], firth=T)

beta.cox_B1B2_firth_gamma2 <- unname(cox_B1B2_firth$coefficients[1])
beta.cox_B1B2_firth_trt1 <- unname(cox_B1B2_firth$coefficients[2])
beta.cox_B1B2_firth_trt2 <- unname(cox_B1B2_firth$coefficients[3])

#######################################################################################
### Approach 1 with Firth (individual models) ###

cox_B1_firth <- coxphf(SurvB1 ~ group, data=data[data$biomarker_status==1,], firth=T)

beta.cox_B1_firth <- unname(coef(cox_B1_firth))

cox_B2_firth <- coxphf(SurvB2 ~ group, data=data[data$biomarker_status==2,], firth=T)

beta.cox_B2_firth <- unname(coef(cox_B2_firth))

Data imputation and analysis for Section 3.4

### Surv object ###
Surv <- Surv(sim.data$os, sim.data$status)

### additional variables ###
sim.data$biomarkergroup[sim.data$biomarker=="B0"] <- 0
sim.data$biomarkergroup[sim.data$biomarker=="B1"] <- 1
sim.data$biomarkergroup[sim.data$biomarker=="B2"] <- 2

sim.data$treatment <- sim.data$biomarkergroup*sim.data$group
sim.data$treatment1 <- as.numeric(sim.data$treatment==1)
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sim.data$treatment2 <- as.numeric(sim.data$treatment==2)

#######################################################################################
### data analysis for Section 3.4.4.2 ###

sim.dataB1 <- sim.data$os[sim.data$biomarker == 'B1'],
sim.data$status[sim.data$biomarker == 'B1']

sim.dataB1_noB2 <- sim.data$os[sim.data$biomarker == 'B1' & sim.data$B2= = 0],
sim.data$status[sim.data$biomarker == 'B1' & sim.data$B2 == 0]

SurvB1 <- Surv(sim.dataB1$os, sim.dataB1$status)
SurvB1_noB2 <- Surv(sim.dataB1_noB2$os, sim.dataB1_noB2$status)

#######################################################################################
### Model 1 ###

cox_B1_noB2 <- coxph(SurvB1_noB2 ~ group, data=sim.dataB1_noB2)

beta.cox_B1_noB2 <- coef(summary(cox_B1_noB2))[1,1]

#######################################################################################
### Model 2 ###

cox_B1 <- coxph(SurvB1 ~ group + B2:group, data=sim.dataB1)

beta.cox_B1 <- coef(summary(cox_B1))[1,1]
beta.cox_B1_int <- coef(summary(cox_B1))[2,1]

#######################################################################################
### Model 3 ###

cox_full_true <- coxph(Surv(os, status) ~ factor(biomarkergroup) + B1:treatment1 +
B2:treatment2 + B2:treatment1, data=sim.data)

beta.cox_full_true_gamma1 <- coef(summary(cox_full_true))[,1][1]
beta.cox_full_true_gamma2 <- coef(summary(cox_full_true))[,1][2]
beta.cox_full_true_trt1 <- coef(summary(cox_full_true))[,1][3]
beta.cox_full_true_trt2 <- coef(summary(cox_full_true))[,1][4]
beta.cox_full_true_int <- coef(summary(cox_full_true))[,1][5]

#######################################################################################
### Data imputation for Section 3.4.5.3

### data frames ###
data_true <- subset(sim.data, select=c(-B2_true))
data_true$B2 <- sim.data$B2_true
sim.data_miss <- subset(sim.data, select=c(-B2_true))
sim.data_imp <- subset(sim.data, select=c(-B2_true))

model <- imp.method[1]
method <- imp.method[2]
prop.miss <- as.numeric(imp.method[3])

sim.data_imp$nelsaal <- nelsonaalen(sim.data_imp, os, status)

#######################################################################################
### naive imputation ###
if(model == 'naive'){

sim.data_imp$B2 <- as.factor(sim.data_imp$B2)

ini <- mice(sim.data_imp, max=0, print=FALSE)
pred <- ini$pred
meth <- ini$meth
pred[c("B2"), c("treatment","os")] <- 0
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pred[c("B2"), c("nelsaal")] <- 1
meth["B2"] <- method

imp <- mice(sim.data_imp, meth=meth, predictorMatrix=pred, seed=1, m=prop.miss,
print=F, maxit=10)

cox_full_imp <- with(imp, {coxph(Surv(os, status) ~ factor(biomarkergroup) +
B1:treatment1 + as.numeric(B2):treatment2 +
as.numeric(B2):treatment1)})

cox_full_imputed <- summary(pool(cox_full_imp))

#######################################################################################
### JAV apporach ###
}else if(model == 'JAV'){

## create variables for interactions ###
sim.data_imp$B1trt1 <- as.factor(sim.data_imp$B1*sim.data_imp$treatment1)
sim.data_imp$B2trt2 <- as.factor(sim.data_imp$B2*sim.data_imp$treatment2)
sim.data_imp$B2trt1 <- as.factor(sim.data_imp$B2*sim.data_imp$treatment1)

sim.data_imp$B2 <- as.factor(sim.data_imp$B2)

ini <- mice(sim.data_imp, max=0, print=FALSE)
pred <- ini$pred
meth <- ini$meth
pred[c("B2", "B2trt1", "B2trt2"),c("treatment","os")] <- 0
pred[c("B2", "B2trt1", "B2trt2"),c("nelsaal")] <- 1
pred[c("B2trt2"),] <- pred[c("B2trt1"),]
pred[c("B2"), c("B2trt1")] <- 0
pred[c("B2trt1"), c("B2")] <- 0
pred[c("B2trt2"), c("B2")] <- 0
meth[c("B2", "B2trt1", "B2trt2")] <- method

imp <- mice(sim.data_imp, meth=meth, predictorMatrix=pred, seed=1, m=prop.miss,
print=F, maxit=10)

cox_full_imp <- with(imp, {coxph(Surv(os, status) ~ factor(biomarkergroup) +
as.numeric(B1trt1)+as.numeric(B2trt2)+as.numeric(B2trt1))})

cox_full_imputed <- summary(pool(cox_full_imp))

#######################################################################################
### stratify approach ###
}else if(model == 'stratify'){

sim.data_imp$B2 <- as.factor(sim.data_imp$B2)

### stratify data set variable 'treatment' ###
sim.data_imp_trt <- split(sim.data_imp, sim.data_imp$treatment)
sim.data_imp_trt0 <- sim.data_imp_trt[[1]]
sim.data_imp_trt1 <- sim.data_imp_trt[[2]]
sim.data_imp_trt2 <- sim.data_imp_trt[[3]]

ini <- mice(sim.data_imp, max=0, print=FALSE)
pred <- ini$pred
pred[c("B2"),c("treatment","os")] <- 0
pred[c("B2"),c("nelsaal")] <- 1
pred[c("B2"),c("B1")] <- 1
meth <- ini$meth
meth["B2"] <- method

imp1 <- mice(sim.data_imp_trt1, meth = meth, predictorMatrix = pred, seed = 1,
m = prop.miss, print = F, maxit = 10)

imp0 <- mice(sim.data_imp_trt0, meth = meth, predictorMatrix = pred, seed = 1,
m = prop.miss, print = F, maxit = 10)
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imp <- rbind(imp0, imp1)

### load modified 'with' function to add complete data set (sim.data_imp_trt2)
source('with_addcomplete.R')
cox_full_imp <- with_addcomplete(imp, {coxph(Surv(os, status) ~

factor(biomarkergroup) + B1:treatment1 +
as.numeric(B2):treatment2 +
as.numeric(B2):treatment1)},
data.complete = sim.data_imp_trt2)

cox_full_imputed <- summary(pool(cox_full_imp))
}

beta.cox_full_imputed_gamma1 <- cox_full_imputed[1, 1]
vamd.cox_full_imputed_gamma1 <- cox_full_imputed[1,10]

beta.cox_full_imputed_gamma2 <- cox_full_imputed[2, 1]
vamd.cox_full_imputed_gamma2 <- cox_full_imputed[2,10]

beta.cox_full_imputed_trt1 <- cox_full_imputed[3, 1]
vamd.cox_full_imputed_trt1 <- cox_full_imputed[3,10]

beta.cox_full_imputed_trt2 <- cox_full_imputed[4, 1]
vamd.cox_full_imputed_trt2 <- cox_full_imputed[4,10]

beta.cox_full_imputed_int <- cox_full_imputed[5, 1]
vamd.cox_full_imputed_int <- cox_full_imputed[5,10]
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