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Photoacoustic image reconstruction to solve the acoustic inverse

problem with deep learning

Photoacoustic (PA) imaging is a promising and emerging technique for detection and characterization of diseases,

such as superficial tumors. It combines the strengths of optical imaging and ultrasound: high optical contrast as well

as high imaging depth and spatial resolution. Handheld PA devices, which are popular due to their versatility and

ease of use, only provide a limited field of view caused by their sensor geometry. This restrain in hardware as well

as the optical and acoustical attenuation in tissue limit the ability to reconstruct the initial pressure distribution,

which is necessary for quantification of the underlying tissue. Today only approximations can be reconstructed with

state-of-the-art methods. In this master thesis a novel approach for reconstructing the initial pressure distribution

in tissue from limited view PA data is presented. It is based on machine learning, using a fully convolutional deep

neural network with a U-Net-like architecture. The data necessary to train this network and validate the approach

was generated in silico. The Initial pressure distribution of single and multiple blood vessels and the propagation

of ultrasound was simulated in tissue. The results show a promising path to solve the acoustic inverse problem and

offer a quantitative and qualitative improvement over state-of-the-art techniques. The method developed in this

thesis can be a further step on the road towards clinical quantitative photoacoustic imaging.

Rekonstruktion photoakustischer Bilder zur Lösung des akustisch

inversen Problems mit maschinellen Lernverfahren

Die photoakustische (PA) Bildgebung ist eine neuartige und vielversprechende Technologie für die Detektion und

Charakterisierung von Krankheiten, wie beispielsweise oberflächennahen Tumoren. Sie kombiniert die Vorteile

von optischer Bildgebung und Ultraschall: hohen optischen Kontrast mit großer Bildtiefe und hoher räumliche

Auflösung. Herkömmliche Ultraschall-Sonden, die wegen ihrer Vielseitigkeit und Benutzerfreundlichkeit populär

sind, können aufgrund ihrer Sensorgeometrie nur Bilder mit einem limitierten Blickwinkel aufnehmen. Wegen dieser

Beschränkung und der optischen und akustischen Abschwächung im Gewebe ist aktuell keine genaue Rekonstruktion

der initialen Druckverteilung möglich. In dieser Masterarbeit wird ein Lösungsansatz für die Rekonstruktion der

initialen Druckverteilung im Gewebe aus PA Bilddaten mit limitiertem Blickwinkel präsentiert. Dieser basiert auf

einem maschinellem Lernverfahren mit einer U-Net Architektur. Um das Netzwerk zu trainieren und um unseren

Ansatz zu validieren wurden in silico Bilddaten von Blutgefäßen in Gewebe generiert. Die Ergebnisse dieser Arbeit

zeigen eine qualitative und quantitative Verbesserung gegenüber aktuell eingesetzter Technik. Damit wurde in dieser

Masterarbeit ein weiterer Schritt gemacht, um die quantitative Photoakustik klinisch anzuwenden.
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Chapter 1. Introduction

1 Introduction

Innovations in life and health sciences are often driven by imaging technologies, which connect microscopic discoveries

with macroscopic observation [Wang and Yao, 2016] as the recently awarded Nobel prices show. They were awarded

for the invention of the super-resolved fluorescence microscopy in 2014 and for the development of cryoelectron

microscopy in 2017, which opened research areas for numerous scientists [Hell and Wichmann, 1994, Nobelprize,

2017]. Imaging technologies are key to investigate biological systems with consistent steps of improvement in

resolution, imaging speed, contrast, penetration depth and detection sensitivity as well as reducing hazard for the

living being of investigation. Especially in medical oncology, innovations in early detection, characterization and

monitoring of cancer are driven by imaging techniques. These innovations result in an improved treatment for

patients.

Photoacoustic Imaging

For optimal patient care the trend in medical imaging devices is going towards multimodal systems [Cherry, 2009].

These are able to simultaneously deliver diverse information, for example structural and functional information.

A combined ultrasound (US) and photoacoustic imaging (PAI) application could be such a multimodal device

[Harrison and Zemp, 2011, Talukdar et al., 2013, Merčep et al., 2015]. Advantages of US and PAI in contrast to

modalities of similar capabilities are the absence of ionizing radiation, low costs, real-time imaging and portability.

These are important factors for clinical application. While US is a fundamental modality in preclinical and clinical

practice, PAI is an emerging technique. It is a modality for imaging high optical absorption contrast over a wide

range of spatial scales with the possibility of measuring in real time. By the measurement of differences in optical

absorption in tissue components such as hemoglobin, lipids, melanin, collagen and water among others, PAI is

able to reveal the tissues anatomical, functional, metabolic and histologic properties [Valluru and Willmann, 2016].

Exogenous contrast agents such as dyes, nanoparticles, carbon nanotubes and others can provide molecular and

cellular specificity by binding on certain molecules and thereby enhancing optical contrast in PAI [Valluru and

Willmann, 2016]. Like US it is a non-invasive method. The spacial scale of PAI can cover organelles, cells, tissues

and organs.

In the last decade, photoacoustic tomography (PAT) has been proven to be capable of multiscale imaging with

10



a consistent contrast mechanism. Thus, it is well suited to bridge the microscopic and macroscopic domains in

the life sciences [Wang, 2008]. It is an imaging modality that acoustically detects optical absorption contrast via

the photoacoustic effect (PAE), a physical phenomenon that converts absorbed optical energy into acoustic energy

[Wang and Yao, 2016]. Biological tissue is orders of magnitude more transparent to sound than to light, when

comparing the scattering mean free path. This enables PAI to achieve greater penetration depth than sole optical

imaging with a high spatial resolution [Wang and Yao, 2016]. This is especially useful for cancer detection as cancer

hallmarks like angiogenesis and oxygenation can be imaged with multispectral PAI. Although the PA phenomena

was first reported by Bell in 1880 [Bell, 1880] a century passed before Bowen proposed to use this phenomena for

imaging, using ionizing radiation for excitation in 1983 [Bowen, 1983]. Seven years later laser induced excitation

was proved to work [Kruger, 1994]. In recent years the development of PAT has accelerated as exemplary shown

by [Wang et al., 2003, Razansky et al., 2009, Cox et al., 2012, Wang and Gao, 2014, Xia et al., 2014, Valluru and

Willmann, 2016, Arridge et al., 2016, Hauptmann et al., 2017, Wang et al., 2017, Antholzer et al., 2017].

One of the unsolved problems in PAI is the reconstruction of PA raw sensor data for limited view sensor geometries.

Linear US transducer in a handheld PA devices, in contrast to 360 degrees scans with PAT, can only provide data

from a limited field of view. Therefore established, direct reconstruction algorithms like DAS beamforming [Veen

and Buckley, 1988] can only be applied to the acoustic inverse problem with limitations because the reconstruction

typically suffers from circular artefacts and systematic loss of contrast with depth [Hauptmann et al., 2017].

In this master thesis the application of novel machine learning algorithms on the PA limited view problem is

investigated. Machine learning algorithms are used in many aspects of modern society: In web search [Agichtein

et al., 2006], content filtering on social networks [Lops et al., 2011] and autonomous driving [Chen et al., 2015] as

well as in medical image analysis [Cruz and Wishart, 2007, Nasrabadi, 2007, Cruz-Roa et al., 2013, Wang et al.,

2016, Sun et al., 2016, Shen et al., 2017, Hauptmann et al., 2017, Isensee et al., 2017a, Isensee et al., 2017b, Jaeger

et al., 2017, Litjens et al., 2017, Wirkert et al., 2017]. Due to increased computing power, a new class of intelligent

algorithms has emerged in recent years: the deep learning algorithms [LeCun et al., 2015]. They have opened up

new possibilities for researchers in life sciences because they often outperform classical machine learning algorithms.

The acoustic inverse problem is one major challenge for limited view PA, which must be overcome for quantitative

photoacoustics. Utilizing deep learning algorithms could be one key element on the path to clinical application of

PAI.
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Chapter 1. Introduction

Objectives

Looking at the breakthrough success of machine learning algorithms, it seems to be a logical next step to use

deep learning algorithms for tackling the limited view problem in PAT. In this master thesis a novel approach to

reconstruct limited view PA raw sensor data using an established deep learning neural network, the so-called U-Net

[Ronneberger et al., 2015], is presented and compared to another state-of-the-art technique.

Outline

In order to tackle the PA limited view problem, two approaches have been pursued. The basic principles of pho-

toacoustic imaging and machine learning are explained in chapter 2. The state-of-the-art is summarized in chapter

3, in which among other methods Delay-and-Sum beamforming is explained, to which the developed methods are

compared. Using the mcxyz Monte Carlo simulation framework by Steve Jacques [Jacques, 2014] initial pressure

distributions of in silico tissue models with several blood vessels were simulated for training and testing our recon-

struction approach. This is described in chapter 4. These initial pressure distributions were then used to simulate

US waves in tissue and to simulate the raw sensor data with k-Wave. This is described in chapter 5. The two

approaches are:

1. Deep learning post processing: Delay-and-Sum beamforming was used to reconstruct images from the

space-and-time domain to the spacial domain. Deep learning was used to post process these images. This

is described in section 4.4.

2. Direct Deep learning reconstruction: In this approach only one fully convolutional deep learning

network was used to reconstruct the initial pressure distribution directly from the PA raw sensor data. In

this approach no prior knowledge was used for the reconstruction. This approach is described in section 4.4.

The conducted experiments and the results for both approaches are shown in chapter 5.3 and they are discussed in

chapter 6

Some of the results presented in this master thesis have been published beforehand in the SPIE Proceedings,

Photons plus Ultrasound [Waibel et al., 2018a] and at the conference ’Bildverarbeitung für die Medizin 2018’ in

Erlangen [Waibel et al., 2018b].
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2 Principles

To explore the possibilities the photoacoustic effect offers for imaging it is essential to understand the optic and

acoustic properties of tissue, since the ability of light and sound to penetrate tissue are the basis of photoacoustic

imaging. If photons are absorbed in the tissue they can trigger an acoustic wave in the US regime which can

then be recorded with a standard US transducer [Wang and Yao, 2016]. Optic and acoustic tissue properties vary

depending on several factors such as the wavelength of light and on the acoustical properties, variations in blood

content, water content, collagen content and fibre development [Wang and Gao, 2014]. Since US scatters much less

than light in tissue PAI is able to provide higher contrast and resolution images than US [Xia et al., 2014] therefore

PAI is a desirable technique for medical and biological applications having all the advantages like US, such as not

using ionizing radiation and easy transport. It is cheaper than Computed Tomography (CT) or Magnetic Resonance

Imaging (MRI) or Positron Emission Tomography (PET) [Wang, 2008]. And it does not utilize ionizing radiation

such as CT and PET imaging. Although optical-imaging modalities can detect optical absorption by measuring the

intensity variation in transmitted or reflected light, they can not measure signals from deep regions in tissue due to

the diffusion limit for photons [Hordvik, 1977]. As a rule of thumb in PAT, the achievable spatial resolution is on

the order of ≈ 1
200

of the desired imaging depth, which can be up to 7cm in tissue [Wang and Hu, 2012].

2.1 Historical Abstract of the Photoacoustic effect
"I have heard articulate speech by sunlight! I have heard a ray of the sun laugh

and cough and sing! ... I have been able to hear a shadow and I have even

perceived by ear the passage of a cloud across the sun’s disk."

Alexander G. Bell, in a letter to his father, dated 26 February 1880

Alexander Graham Bell first described the PAE in 1880 [Bell, 1880]. As he interrupted focused sun light with a

fast spinning shutter wheel he heard faint sounds from substances hit by those light pulses. He correctly reasoned

that these sounds are caused by heating of the material, because the sounds were louder if the light hit dark

material. He hoped the "photophone" to be his greatest invention. Although the PA phenomena was first reported

by Bell a century passed before Bowen proposed to use this phenomena for imaging with ionizing radiation for
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Chapter 2. Principles

excitation [Bowen, 1983]. In the 1990s laser induced excitation was proved to work [Kruger, 1994] which was

another breakthrough for PAI. A short history of PAI is sketched in 2.1

Dominik	Waibel 1

1880 1960 1970 1980 1990 2006 2012 2016

First	description	of	the	

photoacoustic	effect	by	

Bell

Laser	are	emerging

PA	spectroscopy	on

solids,	gases,

and	tissue

Studies	on	PA	in	

soft	tissue	(Bowen	

et	al.)

The	theoretical	

fundaments	of	PAI	in	

medicine	are	

developed

PA	microscopy

(Wang	et	al.)

PA	flow	

cytometry

First	commercially	

available	ultrasound	

and	PA	device

Figure 2.1: A short history of photoacoustic imaging: It took several decades from Bell’s first description of the
photoacoustic effect to the development of clinical applications.

The Photoacoustic Effect

Due to the impact of thermal energy released by photons when scattered or absorbed in tissue, the tissue thermoelas-

tically expands which results in a pressure change. If the illumination pulse is much shorter than the stress relaxation

time τs this pressure change takes the form of a elastic shock wave which can be measured with a hydrophone or a

piezo-electric US transducers [Ku et al., 2004]. This effect is illustrated in figure 2.2. The photoacoustic effect can

be measured after illumination with a short laser pulse. The local fractional volume expansion dV
V

can be expressed

as:

dV

V
= −κ · p0 + β · T (2.1)

where κ is the isothermal compressibility and β is the thermal coefficient of volume expansion, p0 is the initial

pressure change and T the temperature change. The pulse of a laser in photoacoustic imaging is in the order

of nanoseconds while the thermal confinement time is in the order of milliseconds for 100µm spatial resolution.

Therefore the volume expansion is negligible and the initial acoustic pressure can be written as:

p0 =
β · T
κ

= Γ(T0) · µa · Φ (2.2)

Where µa is the absorption coefficient of the local absorber and Φ is the optical fluence or irradiance of the absorber,

Γ is the temperature dependent Grüneisen parameter:

Γw(T◦C) = 0.0043 + 0.0053 · T◦C (2.3)

At 37 ◦C body temperature the Grüneisen parameter is approximately Γw(37◦C) ≈ 0.2. Photoacoustic measure-

ments are typically induced with a pulsed laser in the infrared light range. The absorption coefficient at around
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2.1. Historical Abstract of the Photoacoustic effect

800nm for blood is approximately µa = 4cm−1. Assuming a fluence of I = ≈ 10mJcm−2 we get an initial pressure

change of:

∆p = 0.2 · 4cm−1 · 10mJcm−2 = 8kPa (2.4)

For estimating the temperature rise in tissue one can approximate κ ≈ 5× 10−10Pa−1 and β ≈ 4× 10−4K−1 using

equation 2.2 on finds that each rise in temperature of about 1mK generates a 800 Pa rise in pressure.

The time evolution of PA wave fields can be modelled using the equations of linear acoustics and it is in the

same order of magnitude as in US imaging which makes PAI with conventional US transducers possible [Cox et al.,

2012].

Figure 2.2: The Photoacoustic effect: If a pulsed laser illuminates the tissue, the photons are scattered and absorbed
which heats the tissue (top image). The resulting thermoelastic expansion results in a acoustic shock
wave in the US regime (image below).

Because the PA conversion is proportional to the optical absorption and individual tissue chromophores absorb

light at different wavelengths, they can be selectively imaged with PAI.
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Chapter 2. Principles

2.2 Photoacoustic Imaging

"Photoacoustic imaging is arguably the most exciting biomedical imaging

technique of the decade"

Professor Srirang Manohar, University of Twente and Professor Daniel

Razansky, Helmholtz Zentrum Munich, 2016 [Manohar and Razansky, 2016]

Making use of the PAE for a medical imaging device promises fine spatial resolution, high sensitivity and good

specificity, this has led to a rapid growth of interest in PA in the last decade. With an US transducer, the pressure

wave resulting from the initial pressure distribution in tissue can be measured. This could then be used to estimate

the absorption in tissue which is the property of interest for researches and physicians as it can indicate tissue

properties such as oxygenation saturation. There are several possibilities how the laser source and the transducers

can be constructed. Two commonly used geometries are shown in figure 2.3. For a handheld device a linear

transducer is used, which can only measure the US signal from a limited point of view, resulting in the limited

view problem, this is illustrated in figure 2.3 (a). A more advantageous geometry is shown in figure 2.3 (b) where

the transducers surround the tissue and the signal is measured from a 360 degrees scan. With this setup standard

algorithms such as a radon transformation or filtered back projection [Kruger, 1994, Webb and Kagadis, 2003, Zhao

and Zhang, 2011] can be used, but these are not applicable for PA handheld devices. Photoacoustic tomography

offers several advantages as compared to other medical imaging devices. It is faster and less expensive than Magnetic

Resonance Imaging. Compared to Optical Tomography, PAT offers a higher imaging depth while sustaining a high

spatial resolution within the entire field of view [Xia et al., 2014]. The imaging depth is limited by the distance

photons travel in tissue, typically imaging is possible in PAT for depths between 1 and 5 cm [Xia et al., 2014]. While

PAT is not limited by the optical diffusion limit, which is at about 1 mm in tissue. It is limited by dissipation to

a few centimeters in soft tissue, because the optical fluence is attenuated due to absorption and scattering. The

ultrasound attenuation in soft tissue is dominated by absorption instead of scattering. The resolution is limited to

about half the acoustic wavelength for US waves, which physically limits the acoustic resolution to about 0.1 mm,

not considering aperture. The acoustic attenuation is proportional to acoustic frequency, limiting the penetration

depth for higher frequencies. By choosing the transducers frequency, a trade-of between high resolution and high

penetration depth is made.

Light in Tissue

Photons are electromagnetic waves which interact with electromagnetic fields of atoms and molecules depending on

the photons wavelength and size of molecules and atoms.

16



2.2. Photoacoustic Imaging

Figure 2.3: Two different ways to construct the laser illumination and US transducers in a PA system. (a) The
PA imaging is performed with a conventional US transducer where the signal is measured with a linear
transducer leading to the necessity to overcome the acoustic inverse problem with a limited field of view.
(b) A ring of transducers is construced around the object of investigation.

In tissue photons experience scattering and absorption caused by interactions with the electromagnetic field of

atoms and molecules. Since the Eigenstates of photon energies are quantized, depending on their wavelength, these

interactions follow distinct rules described in the Jablonsky diagram shown in figure 2.4. The energy of a photon is:

Ephoton = h · ν = h ·
c

λ
(2.5)

Where h is the Planck constant, ν the frequency, c the speed of sound and λ the wavelength of light. Optical

properties of tissue are characterized by the absorption coefficient µa and the scattering coefficient µs.

Scattering of Photons

In tissue, photons can be scattered whereby two types of scattering can be distinguished: elastic scattering where

the photons energy is conserved and inelastic scattering where the photon loses or gains energy. Maxwell’s equations

describe the behaviour of electromagnetic waves. Gustav Mie was able to find an exact solution to these equations

for scattering [Mie, 1908]. Elastic Mie scattering is the dominant effect in tissue.

Elastic scattering can be described as the absorption and re-emission of a photon on a structure without loss of

photon energy but possible change of direction. For light in tissue scattering in forward direction dominates as the

anisotropy factor is close to 1. Accumulating multiple scattering events can randomize the propagation direction of

light in tissue, this can be calculated by looking at the anisotropy in scattered light distribution:

µ
′
s = µs · (1− g) (2.6)
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Chapter 2. Principles

Figure 2.4: Jablonski diagram of possible light tissue interactions. Absorption in a generic molecule, including
different relaxation mechanisms which are shown with associated energy levels. The states are arranged
vertically by energy and grouped horizontally by spin multiplicity. The ground states of each electronic
state are indicated by thick lines, the higher vibrational states with thinner lines.

The anisotropy factor g is defined as the average cosine of the scattering angle after a single scattering event. This

means that the closer g is to 1, the more photons are scattered in forward direction. Isotropic scattering is expressed

by g = 0.

Absorption of Photons

Tissue consists of molecules which interact with the photons optically. Absorbing molecules are called chromophores.

Different chromophores have different absorption spectra, which means that the absorption is wavelength dependent.

Molecules can store energy as internal energy in different forms, for example asrotational kinetic energy or vibrational

energy. This energy is quantized in energy levels which correspond to the eigenstates of the molecule, corresponding

to the absorption spectra of a molecule. The sum of all these types of molecular energy is the molecules internal

energy. The kinetic internal energy is associated with the thermal motion, which is related to the temperature on a

macroscopic level. Because the Eigenenergies of molecules are quantized only photons can be absorbed, which have

energy equal to these Eigenenergies. The energy then changes the Eigenzustand of the molecule.

The absorption wavelengths of molecules are not singular wavelengths but broadened due to two broadening

effects: Natural broadening is a consequence of Heisenberg’s uncertainty principle in quantum mechanics [Heisenberg,

1927]. Collision broadening occurs because collisions with other molecules can abruptly cause the excited state to

end, as the energy is transferred to the other molecule. Shortening the lifetime of the excited state in this way gives
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2.2. Photoacoustic Imaging

rise to a corresponding increase in the spectral line-width [Mukamel, 1982].

As most biological media contains several absorber (for example: blood, lipids, water, melanin), the total absorp-

tion coefficient of a material consisting of K chromophores is the sum of the molar absorption coefficients weighted

by their concentrations as a function of wavelength can be described by the linear mixture model:

µabsorption(λ) =

K∑
n=0

αn(λ) · Cn (2.7)

Where Cn is the concentration of the n-th chromophore.

When photons are attenuated in matter they increase the internal energy of the absorber. The attenuation is

related to the material properties by Lambert-Beers law [Beer, 1852].

The absorption coefficient µa inverse characterizes the mean free path la in tissue which corresponds to the

penetration depth. Both are usually given in units of cm−1. Therefore the probability that a photon is absorbed

travelling a distance of dz is µa·dz. With Φ being the light intensity it can be written as the differential equation:

dΦ

dz
= −µa · Φ (2.8)

with the solution:

Φ = Φ0 · exp(−µa · z) (2.9)

where Φ0 is the light intensity on the surface z = 0.

The wavelength dependent absorption of major endogenous contrast agents in biological tissue at normal concen-

trations are shown in figure 2.5. The photons energy can be transferred to the molecule and deposit their energy as

Figure 2.5: Absorption spectra of major endogenous contrast agents in biological tissue at normal concentrations.
HbO2 denotes Oxyhemoglobin and Hb deoxyhemoglobin. Data from: https://omlc.org/spectra/
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Chapter 2. Principles

heat. The light source can be described by the fluence rate Φ(~x, t), which is dependent on the position x and time t,

therefore it is possible to calculate the absorbed power density H(~x, t), which is the loss in fluence per unit length:

H(~x, t) = −∇ · Φ(~x, t) (2.10)

with Lambert-Beers law using the absorption coefficient µa can be derived:

H(~x, t) = µa(~x) · Φ(~x, t) (2.11)

The energy ∆E deposited in the absorber by a single laser pulse is the integral over time of the whole pulse:

∆E(~x) =

∫ ∞
0

H(~x, t) · dt = µa(~x) ·
∫ ∞
0

Φ(~x, t) · dt = µa(~x) · I(~x) (2.12)

(I~x) is the local irradiance in the absorber.

Sound in Tissue

Sound waves are mechanical oscillations in solids, liquids or gases. If the frequency is higher than 20 kHz, the waves

are referred to as US waves. Biological tissue such as muscles and fat is often modelled as a liquid in US imaging.

This approximation holds true because treating tissue as a fluid is equivalent to ignoring shear waves for which there

are good reasons: Shear waves are usually not generated by US transducers and are strongly absorbed by soft tissue.

This not true for solids, like bones.

Acoustic waves propagate in tissue by longitudinal motion, not by traverse motion [Millner and Cobet, 1987].

Acoustic waves in the compressible medium tissue are thermodynamic fluctuations in pressure, density, temperature,

particle velocity, etc. These can be described by three basic equations:

1. Conservation of mass:

∂ρ

∂t
= −∇ · (ρ~u) (2.13)

2. Conservation of momentum:

∂~u

∂t
= −

1

ρ0
· ∇(p) (2.14)

3. Pressure density relation:

p = c20 · ρ (2.15)

where ~u is the acoustic particle velocity, p is the acoustic pressure, ρ is the acoustic density and ρ0 is the ambient

density and c0 is the speed of sound.

These can be combined to the second order wave equation:

(
1

c20
·
∂2

∂t2
−∇2) · pa = 0 (2.16)
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2.2. Photoacoustic Imaging

Absorption of Acoustic Waves

Acoustic waves travel in a medium with a medium specific speed of sound dependent on a bulk modulus κ and the

mediums density ρ, the speed of sound is given by:

c =

√
κ

ρ
(2.17)

As an acoustic wave propagates, it generally looses energy to random thermal motion resulting in acoustic

absorption. This absorption can be described if the medium is treated as a sound-absorbing fluid [Bamber and (C.

R. Hill, 2004] by:

α = α0 · ωy (2.18)

The Intensity decreases with deph x as follows:

I = I0 · expα·x (2.19)

where α is the absorption coefficient, α0 is the power law prefactor and y is the power law exponent. In the following

tabular properties of typical tissue used in US are shown [Bamber and Hill, 1979].

Material Density (ρ) [kgm3] Speed of sound (c) [m
s
] Attenuation (α) [ dB

cmMHz
]

Water 1000 1484 0.0022

Air 1.2 330 1.7

Blood 1060 1570 0.18

Fat 920 1450 0.63

Muscle 1070 1570 1.3-3.3

Ultrasound Imaging

Ultrasound waves are referred to sound waves in the range from 20 kilohertz to gigahertz. In US imaging systems,

piezo-electric crystals are sensitive to US waves in the range of 2 to 18 megahertz. Either by the shape of the

transducer, by a lens in front of the transducer or electronically the US wave is arc-shaped shaped and can be

focused on a desired depth. Recent US devices use phased array techniques which enable a change of direction and

depth of focus. To generate a 3D image the US beam is swept by sweeping, swinging or rotating the transducer

manually or electronically [Carovac et al., 2011, Debus et al., 2012]. In tissue, these waves are reflected or scattered

on borders between tissues or structures of different acoustic impedance dependent on the wavelength of the US

wave. The absorption and reflection increases with frequency. These waves can be measured with piezo crystals

this data is then processed and used to reconstruct an image [Repacholi and Benwell, 1982, Carovac et al., 2011].

Handheld 2D array for real-time 3D imaging have become state-of-the-art in US imaging since in the last decade

[Fenster et al., 2001]. Therapeutic US can be sub-divided into firstly anatomical US which refers to imaging organs
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or other structures while secondly functional US combines imaging of information such as movement and velocity

of tissue or blood with anatomical US. Ultrasound devices can operate in different modes of which some are listed

here:

1. A-mode: In the amplitude mode the echoes are plotted on a screen as a function of depth.

2. B-mode: In the brightness mode (or 2D mode) a linear array of transducers scans a plane through the

body which can be viewed as a 2D image on screen.

3. M-mode: In the motion mode a rapid sequence of B-mode scans are measured which enables doctors to

see an measure motion as the organs move relative to the US probe.

4. Doppler-mode: Utilizing the Doppler-effect it is possible to measure if structures are moving, for example

blood. This is done by calculating the frequency shift of a particular sample volume.

Therapeutic US can be used to modify or destroy tissue with US waves, for example by moving or pushing tissue,

heating tissue, dissolving blood clots or delivering drugs [Carovac et al., 2011].

Possible Clinical Applications of Photoacoustic Imaging

PAI is a technique combining a laser and a US device. Therefore, a hardware unification of a clinical US scanner

with an appropriate laser source will essentially result in a combined US and PAI device [Niederhauser et al.,

2005, Harrison and Zemp, 2011, Merčep et al., 2015]. Because the PA conversion is proportional to the optical

absorption and dependent on the tissue absorption properties light at different wavelengths can be selectively imaged

with PAI. Emerging techniques such as US molecular imaging and US elastography which are currently available as

add-on features for US scanners have shown promising results in application for early and accurate cancer detection

as compared to standard anatomical US.

In-vivo imaging of optical properties with a non-invasive and safe method which combines the advantages of high

resolution of US with the large optical contrast of optical tissue properties is a desirable goal of researchers.

There is growing interest in the clinical community on PAI and its possible clinical applications. Advantages

are affordability, availability, and portability of US devices. Clinical US is used as a valuable diagnostic tool for

resource-limited settings by the ministries of health in low and middle-income countries, several nongovernmental

organizations and the World Health Organization [Sippel et al., 2011]. Combining the advantages of US imaging

with PAI, both technologies can potentially be adopted widely and more quickly compared to imaging technologies

that are costlier. Some promising applications of PAI are listed here:
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1. Monitoring of Cancer: One of the most promising features of PAI is its ability to characterize tissue

components such as hemoglobin, lipids, melanin, collagen and water among many others [Valluru and

Willmann, 2016]. In cancer research this is of interest for characterization and monitorization of cancer.

One of the hallmarks of cancer [Hanahan and Weinberg, 2011] is neoangiogenesis, which can be detected

based on the differences in the absorption of hemoglobin in cancerous tissue compared to the surrounding

normal tissue, which could be one of the applications for spectroscopic PAI [Wilson et al., 2014]. Another

approach is to use cancer biomarkers and molecular targeted contrast agents for early and accurate cancer

detection [Bernsen et al., 2015], these can also be applied with PAI.

2. Breast Cancer Imaging: Breast cancer is the most common cancer in women and the second leading

cause of cancer death in women. For cure and survival an early diagnose is crucial. Conventional screening

methods rely on X-ray mammography and ultrasonography. X-ray mammography’s disadvantages are the

use of ionizing hazard and insensitivity to tumours in dense breasts, while ultrasonography is insensitive to

breast cancer at an early stage owing to low acoustic contrast. There are three representative instruments,

the LOIS-64 PAT system, the Philips iU22 system and the Twente PA Mammoscope [Wang and Gao, 2014].

All three systems require patients to lie prone on a modified hospital bed with her breast pendant through

the aperture in the bed for imaging.

3. Sentinel Lymph Node: As lymph nodes play a central role in metastatic cancer spread they are of large

clinical interest. Abnormal node vascularization, morphology and size can be indicators of disease and may

be imaged with a PA system. Ex-vivo experiments showed that hemoglobin based contrast reveals nodal

vasculature and lipid-based contrast reveals the exterior node size, shape and boundary integrity. These two

sources of complementary contrast potentially allow indirect observation of cancer, which is one promising

application of PAI [Guggenheim et al., 2015].

4. Assessment of Crohn’s Disease Activity: Because it is possible to quantify hemoglobin-dependent

tissue perfusion and oxygenation with non-invasive PAT this modality is suited for monitoring chronic

inflammatory diseases [Knieling et al., 2017]. A study was performed on 108 patients with Crohn’s disease

and compared with endoscopic scoring, histologic scoring as reference tests and conventional US. In the

study it is stated that PAT assessment of hemoglobin levels in the intestinal wall can potentially be used

to distinguish active disease from remission patients with Crohn’s disease without the need for invasive

procedures [Knieling et al., 2017].

Quantitative photoacoustic tomography (qPAT) is a technique emerging to clinical appliance [Wang, 2008]. The

aim is to determine tissue quantities. Since contrast in PAI is due to chromophores, their concentration is a funda-

mental quantity to investigate with qPAT. Examples for chromophores which could be investigated are: endogenous
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molecules such as oxyhemoglobin or deoxygenated hemoglobin, melanin, lipids and water as well as exogenous con-

trast agents and absorbing enzymes or other proteins resulting from the expression of reporter genes linked to the

expression of a gene of interest [Cox et al., 2012].

Outlook: Other Clinical Applications of the Photoacoustic

Effect

The PAE is widely used in other applications. Because this is not the focus of this thesis only two examples are

listed here.

1. Photoacoustic Microscopy: US microscopes are limited in resolution by the high attenuation of acoustic

waves in soft tissue. Since a laser can be focused more tightly than ultrasound PA microscopy can achieve

higher resolution [Zhang et al., 2006]. To release the dependence of resolution on acoustic frequency, Optical-

Resolution Photoacoustic Microscopy (OR-PAM) utilizes focused light to spatially confine the excitation,

resulting in an optical diffraction-limited resolution in the lateral direction [Wang and Gao, 2014]. The

excitation laser is focused on an object to excite acoustic waves and the ultrasonic transducer is adopted

and aligned confocal with the optical lens. Normally the object is raster scanned in the traverse plane to

achieve volumetric imaging. The depth information is encoded by time of flight of the PA wave. Because

one laser pulse is send to tissue at each scanning position the imaging speed is limited to the laser pulse

rate. Compared to optical microscopy OR-PAM has an advantage in providing high contrast for endogenous

chromophores without staining, enabling label-free capability of OR-PAM at different scales [Wang and Gao,

2014]. Acoustic Resolution Photoacoustic Microscopy (AR-PAM) follows a similar principle but the laser

is used to illuminate the whole field of view of the acoustic detection volume, in this case the ultrasonic

focusing determines the lateral resolution.

2. PA flow cytometry: Flow cytometry is a technique which uses suspended cells in as stream of fluid passing

through a detector. It is routinely applied in diagnostics of health disorders, especially blood cancers and is

used for cell counting, cell sorting, biomarker detection and protein engineering. Commonly flow cytometry

is linked to a sorting device to physically separate particles. PA flow cytometry (PAFC) refers to the time-

resolved detection of circulating absorbing objects (e.g., tumour cells). Because for PAFC it is not necessary

to extract the cells from a living system long-term study of cells in their natural biological environments

are possible as compared to conventional flow cytometry. In vivo PAFC is using laser pulses on selected

vessels with for excitation, followed by the time-resolved measurement of PA signals with an ultrasonic

transducer. The blood or lymph vessel function as natural tubes with cell flow. The positive or negative
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contrast created by the irradiation of blood vessels can be used: The positive background PAFC can be used

to detect higher absorption targets, such as melanoma cells, or cells labelled with nanoparticles, whereas the

negative contrast can be used to sense lower absorption targets such as platelets or white blood cells [Wang

and Gao, 2014]. One possible application is the detection of circulating tumour cells which play a critical

role in evaluating metastasis.

2.3 Machine Learning
"If a typical person can do a mental task with less than one second of thought,

we can probably automate it using Artificial intelligence either now or in the

near future"

Professor Andrew Ng, Stanford University, 2016 [Andrew Ng, 2016]

Historical Background of Machine Learning

The idea that human abilities can be replicated by machines goes back to the ancient philosophers who developed

structured methods of formal deduction in the first millennium BCE. In the 17th century Gottfried Wilhelm Leibniz,

Thomas Hobbes and René Descartes investigated if all rational thought could be formulated as systematic as algebra

or geometry [McCorduck, 2004]. The foundation of modern mathematics was set by George Boole [Boole, 1854].

Inspired by Bool Bertrand Russel and Alfred North Whitehead presented a formal foundation of mathematics in

their Principia Mathematica in 1913 [Bertrand Russel and Alfred North Whitehead, 1913]. Alan Turing developed

a formalism with the concepts of algorithms and computation which he applied in the Turing machine, which is

considered as the first general computer. He also proposed a ’Learning Machine’ in 1950 that could learn and become

artificially intelligent. Research in neurology had shown that synapses worked like a network firing electric impulses,

Norbert Wiener’s cybernetics described control and stability in electrical networks and the information theory by

Claude Shannon’s described digital signals. Combining these ideas, the construction of an electronic brain was

suggested [McCorduck, 2004]. In 1951 Marvin Minsky and Dean Edmonds build the first neural network machine,

the Stochastic Neural Analog Reinforcement Calculator called SNARC [Daniel Crevier, 1993]. On the Dartmouth

Conference in 1956 Allen Newell and Herbert Simon presented the Logic Theorist, a program with which 38 of the

52 theorems of Russel and Whitehead’s Principia Mathematica were proofed or more elegant proofs were found.

Until the 80s a golden age of machine learning began, in which many ground-breaking discoveries were made but

further developments were not possible due to lacking computing power among other reasons, which lead to the

’first AI Winter’. In 1981 the Japanese government funded the ’fifth Generation project’ with the goal to develop
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machines which could carry on conversations, translate languages, interpret pictures and reason like human beings,

goals which are not achieved today. Some goals have been achieved in recent years however: In 1997 IBMs computer

’Deep Blue’ bet the world chess champion, Garry Kasparov and in 2005 a robot from Stanford was able to drive

autonomously for 131 miles. In 2011 IBMs Watson was able to win a quiz show against the two greatest quiz

champions. In 2016 Google DeepMinds AlphaGo was the first computer to beat professional Go players. There are

countless other examples of the success of deep learning approaches in numerous fields [Vinyals et al., 2014, Andrew

Ng, 2016, Samek et al., 2017, Andrew Ng, 2016, Chen et al., 2015, Wang et al., 2016, Isensee et al., 2017b, Isensee

et al., 2017a, Wirkert et al., 2017].

Basics of Machine Learning

Machine learning is essentially a statistical method that allows a machine to classify patterns or abstract a model

from data. They all work similar: First they are trained with data to find underlying structures or hidden models

in the data, secondly the model the machine has learned is evaluated on previously unseen data. With enough data

of good quality and machine learning algorithms which use several transformations and abstractions, very complex

functions can be learned [LeCun et al., 2015].

Typically, two types of learning algorithms can be distinguished:

1. Unsupervised learning is referred to machine learning algorithms which tries to learn structures from

data without corresponding labels.

2. Supervised learning is the most common form of machine learning, for supervised learning a large dataset

is required with corresponding labels. With this data, the algorithm is trained. Therefore, the algorithm

is trying to reproduce the label and a loss function is calculated which measures the error between the

machines output and the label, also called ground truth. This error is then used to modify the internal

adjustable parameters, often called weights, to reduce this error.

Crucial for a machine learning algorithms performance is how it performs on previously unseen data, this is

called generalization. This is evaluated with data which the algorithm has not seen in the training process. The

algorithms generalize well if he is able to predict the ground truth on data where he has not seen the ground truth,

meaning that the error in the generalization process is similar to the error in the training process. On the opposite,

a learning algorithm can perform very well on known data but poorly on previously unseen data, this indicates that

the algorithm does not generalize well but only memorizes known solutions without any abstraction, this is called

overfitting. Overfitting is a common problem and can be avoided by using more data, data augmentation or by

using a different neural network. Sometimes is occurs when the chosen networks architecture is too complex for the

problem.
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(a) Training the network: A Neuronal network starts with
randomly initialized weights and calculates a first output
image. This output image is compared to the ground truth
using a loss function. The loss is back propagated to up-
date the networks weights. This is done multiple times to
optimize the networks performance.

(b) When testing the networks performance no labels are
used. The network with the previously trained weights is
evaluated on data not seen by the network before. The
weights determine what the network predicts.

Figure 2.6: The training (a) of a supervised learning algorithm and its evaluation (b).

Training of the Algorithm

One possible visualization of the machine learning algorithms function is a hilly landscape in high dimensional space

as shown in 2.10. The optimal solution is the minima of this landscape. The gradient vector indicates the direction

of the steepest decent as shown in figure 2.11, following this gradient vector leads to the minimum where the loss is

minimal and the solution is to the problem is optimal.

In the first layer’s features of the of the neural network typically represent the edges in an image, these edges

with their orientation or position in an image. The second layer typically detects motifs by spotting particular

arrangements of edges. The third layer can assemble motifs into larger combinations which then correspond to parts

of familiar objects, and subsequent layers would detect objects as combinations of these parts. The key aspect of

deep learning is that these layers of features are not designed by human engineers: they are learned from data using

a general-purpose learning procedure [LeCun et al., 2015].
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Figure 2.7: The training and validation losses are plotted over the epochs for the training of a U-Net. The training
loss is calculated while training the algorithm and the validation loss during validation. One expects the
validation loss to be generally higher than the training loss because the algorithm optimizes itself on the
training images. The training and validation loss decreases over the epochs. An early split in the curves
of the training and validation loss can indicate overfitting.

Sigmoid Neurons

A neuron is a computational unit that takes an input and (Xi) and gives an output (f(z)) as shown in figure 2.8.

Neurons can be seen as an activation function which can be On and Off, this then is described by a heavy side

function. More advanced neuron, such as the sigmoid neuron can take any number between 0 and 1, they are

described by the sigmoid function visualized in figure 2.9. They can take multiple inputs (xi) and have a weight for

each input (wi) and an overall bias b. The output of a sigmoid neuron is defined as:

σ(z) =
1

1 + exp(−
∑
j wj · xj − b)

:=
1

1 + e−z
(2.20)

(a) The sigmoid neuron has the inputs (Xi),
these can take any values between 0 and 1. The
neuron has weights (wi) for each input indi-
cated with the arrows.

(b) Several sigmoid neurons form a neural net-
work. This one has three input layers (Xi),
four hidden layers (Ai) and one output layer.

Figure 2.8: The neuron is the basic structure in a machine learning algorithm. It can be understood as an activation
function for artificial neurons. Several parallel neurons form a layer and several layers form a neural
network.

Using the sigmoid function, it is possible to vary the neuron by small changes of the input. This makes it possible
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Figure 2.9: Visualization of a heavy side function, a sigmoid function, a ReLu function and a Leaky-ReLu function.
The heavy side and sigmoid functions can take any number as input and output a number between 0 and
1. Sigmoid functions, ReLu functions and Leaky-ReLu functions are used in state-of-the-art machine
learning algorithms. The exact formula is described in 2.20 and 2.21 and 2.22.

to gradually change the networks behaviour. For deep learning, recent research [LeCun et al., 2015] has shown that

rectified linear functions often work better in practice than sigmoid functions for deep neural networks, they can

take numbers from a larger range than sigmoid neurons. The basic rectified linear function is described by:

σ(z) = max(0, x) (2.21)

A development of the ReLu is the Leaky ReLu (LReLu) function [Andrew L Maas et al., 2013]. A small leak of

size α is introduced, which improves the neurons performance.

σ(z) = max(0, x) + α ·min(0, x) (2.22)

Cost Function

The goal in machine learning is to find the best parameters with which a mathematical problem can be represented.

In order to quantify how good these parameters are the cost function which describes the loss is minimized:

Minimize : C =
1

2 ·m

m∑
i=1

(P (i)−GT (i))2 (2.23)

Where P is the algorithms prediction, GT the ground truth and i denotes an image.
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Figure 2.10: The Cost function describing the loss can be imaged as a minimum problem, here displayed with two
variables (X1 and X2). In practice, it is a high dimensional problem which cannot easily be visualized.

Gradient Descent

The Cost functions minimum is searched and an easy way to find a minimum is using gradient descent. Therefore,

the Cost function has to be differentiable. In order to adjust the weights which are calculated by the gradient

descent the learning algorithm computes a gradient vector that, for each weight, indicates by what amount the error

would increase or decrease if the weight were increased or decreased by a tiny amount. By updating the weights

step-by-step the Cost functions minimum is approached.

θi,j = θi−1,j − α ·
∂

∂θj
· C(θ0, ..., θm) (2.24)

Figure 2.11: A visualization of the Gradient descent: The Gradient at one point of the cost function points in
direction of the steepest descent, which is indicated with the black arrow. Like a ball in a sink rolling
down to the lowest point, gradient descent is trying to find the global minima of the cost function. The
minima of the cost function is the lowest possible loss and therefore the best solution to the task.
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A learning rate is introduced to make the algorithm work more efficient. This learning rate is multiplied to cost

function and thereby determines the step size for each iteration. If the learning rate is chosen too low the algorithms

will take a long time to converge to the minima, if it is chosen to large there is a possibility to overshoot the minima.

In state-of-the-art algorithms, a flexible learning rate is used which adapts [Jacobs, 1988]. A lot has been done

to optimize gradient descent algorithms in recent years [Ruder, 2016]. One state-of-the-art algorithm called Adam

[Kingma and Ba, 2014] which is based on adaptive estimates of lower order moments, it is computationally efficient

and can deal with large datasets [Kingma and Ba, 2014]. The step size in which the gradient is descending can be

calculated as:

∆C = ∇C ·∆x (2.25)

Where the learning rate η defines the stepsize for each iteration.

∆x = −η ·∆C (2.26)

Iterating this will give a minimum of the Costfunction. This results in the update rules for the learning algorithms,

which updates the weights and biases:

wk → w
′
k = wk − η ·

∂C

∂wk
(2.27)

bl → b
′
l = bl − η ·

∂C

∂bl
(2.28)

By repeatedly applying this update rule the optimal weights and biases can be found, which means that the

Costfunction is minimized.

Backpropagation

Backpropagation is a method used to calculate how much each neuron has contributed to the error after a batch

of data was processed. With backpropagation, the weights of neurons can be adjusted after calculating the loss

function and by propagating the error backwards. The backpropagation algorithm was originally introduced in the

1970s, but its importance wasn’t fully appreciated until 1986 [Rumelhart et al., 1986]. In this paper, several neural

networks using backpropagation are described. They are faster than earlier approaches, making it possible to use

neural networks to solve problems which had previously been unsolvable. Today, the backpropagation algorithm is

the most used optimization approach in neural networks [LeCun et al., 2015]. During backpropagation, the networks

weights are adapted and thereby the network learns the best parameters [LeCun et al., 2015]. Recent advances by

intelligent algorithms applied on data show a great potential for clinical appliance. Especially deep learning is a

rapidly emerging to a state-of-the-art technique in medical information [Hauptmann et al., 2017].
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Deep Learning

Deep learning is a method in the family of machine learning algorithms, which has evolved in recent years. Enabled

by increasing computational power larger neural networks can now be used [LeCun et al., 2015]. Deep learning

algorithms combine multiple layers in a network for feature extraction and transformation, the more layers such a

network has, the deeper it is said to be. Like neuronal networks deep neuronal networks have an input and an output

layer but deep neuronal networks have several hidden layers in between. Deep learning algorithms are characterized

by using a cascade of many layers of nonlinear processing units for feature extraction and transformation. Each

successive layer uses the previous layers output as input. Different levels of abstraction are used by Deep learning

algorithms to abstract models from data.

Layers in a Neural Networks

A convolutional neural network consists of an input, output and several hidden layers. Layers which have been used

in this implementation of the U-Net are listed below:

1. Convolutional layers are inspired by biological processes, the connectivity pattern between neurons in-

spired by the organization of the visual cortex. Convolutional layers apply a convolution operation to the

input.

2. Batch norm layer performs a normalization of the whole image batch. The mean and standard deviation

are calculated over the batch, while γ and β are learnable parameters. The formula is given by:

Y =
x−mean(x)√
var(x) + ε

· γ + β (2.29)

3. Rectified linear units (ReLu) are activation functions. Leaky ReLus allow a small, non-zero gradient

when the unit is not active as described in section 2.3.

4. Pooling layers combine the outputs of neuron clusters at one layer to a single neuron in the next layer.

Max Pooling for example uses the maximum value from each cluster of neurons at a prior layer.

5. Upsampling layers performs an upsampling using nearest neighbour, linear, bi-linear and tri-linear inter-

polation.

6. Fully connected layers connect every neuron in one layer to every neuron in another layer.

Improving the Networks Performance

1. Batch computing is used to increase computational performance. A set of data is consolidated to a batch

which improves computational performance since most libraries are optimized for array computing.
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2. Data Augmentation is used to increase the data on which the algorithms is learning. An increase in data

on which the algorithms learns leads to an increase in prediction accuracy. Therefore, data augmentation

can improve an algorithms performance [Perez and Wang, 2017]. Due to the special geometry of PA images

the only reasonable data augmentation for PA US data is mirroring along the z-axis, which is doubling the

dataset size on which the algorithm learns.

3. GPU Computing is a technique to increase computational speed by using the graphics processing unit

(GPU), which typically only handles computations only for computer graphics but can be used to compute

tasks normally executed by the central processing unit (CPU). Because GPU’s normally have more cores

than CPU’s they and can process far more graphical data per second than CPU’s can. Therefore, transferring

the data to the GPU and processing it there can lead to a significant speedup.

The U-Net

The U-Net is a deep neural network and a state-of-the-art deep learning method. It consists of the same number of

contracting and expansive layers. Where the number of feature channels is the same in the first and last layer, the

number of feature channels is doubled in the second and second-last layer and so forth while halving the resolution

in each contraction step while doubling it in each expansion step. All layers have a large number of feature channels

which allows the network to propagate context information to higher resolution layers. This symmetry makes the

network look symmetrical and yields the U-shape architecture. Contracting layer consist of unpadded convolutions

followed by a rectified linear unit and a pooling operation for down sampling. At each down sampling step the

number of feature channels is doubled [Ronneberger et al., 2015]. The expansive layers consist of up sampling

feature map followed by an up-convolution which halves the number of feature channels, each is followed by a

rectified linear unit. The architecture of the used U-Net is shown in figure 2.12 as presented in the U-Nets first

publication.
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Figure 2.12: Architecture of the U-Net as published by Ronneberger [Ronneberger et al., 2015]. The blue boxes
correspond to multi-channel feature maps. Their number of channels is denoted on top of the box. The
x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The
arrows denote the different operations [Ronneberger et al., 2015] [reprinted with permission].
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Due to the similarities in PA and US image reconstruction, algorithms from US imaging are applied in PA imaging

with some modifications [Wei et al., 2015]. In clinical practice the established, technical state-of-the-art method

for reconstruction of PA images from raw sensor data is Delay-and-Sum (DAS) beamforming and advancements of

it [Thomenius, 1996]. For a given initial pressure distribution the acoustic wave travel at the speed of sound in

tissue and reach the sensor at different sensor locations depending on their origin. This leads to delays in time and

phase which correspond to the distance the wave has travelled from their origin. In DAS beamforming the signals,

measured at different locations of the linear sensor, are delayed according to their position and then summed. This

results in a beamformed image. DAS beamforming has the purpose to yield the origins of the measured sound waves

[Mozaffarzadeh et al., 2017]. It is a simple and fast algorithm but not able to provide quantitative estimations of

the initial pressure distribution [Veen and Buckley, 1988]. Caused by the geometry of the photoacoustic US probe

and the arising limited view problem, they give rise to artefacts [Thomenius, 1996] [Treeby and Cox, 2010]. One

advancement of DAS beamforming is Delay-Multiply-and-Sum (DMAS) beamforming [Matrone et al., 2015] and

Double-Stage Delay-Multiply-and-Sum (DS-DMAS) beamforming [Mozaffarzadeh et al., 2018].

From corresponding elements of an array DAS and DMAS beamformers calculate delays and sums. DMAS was

first used in confocal microwave imaging for breast cancer detection [Lim et al., 2008] and was then applied to PAI.

The DMAS algorithms calculates combinatorically samples which are coupled and multiplied before summation.

This algorithm is able to enhance the PA images in terms of side lobe levels and resolution [Park et al., 2016].

DS-DMAS is a recently introduced algorithm which is a modified version of the DMAS beamformer by using the

summation of the DAS terms which can lead to noise reduction and artefact suppression [Mozaffarzadeh et al., 2018].

These established reconstruction algorithms which are based on DAS beamforming are not optimal to obtain high

quality reconstructions as they can give rise to artefacts or adverse noise amplification [Thomenius, 1996, Treeby

and Cox, 2010, Hauptmann et al., 2017]. Advances in these algorithms have been made [Huang et al., 2013, Arridge

et al., 2016] but a drawback of these is their high computational complexity and the difficulty to handcraft prior

constraints that capture the spatial structure of the target accurately [Hauptmann et al., 2017]. All beamforming

algorithms assume ideal point-like US transducers with a large acceptance angle and an infinite temporal-frequency

bandwidth, which is in in practice not achievable [Xia et al., 2014], it was found that the bandwidth limits both axial
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and lateral resolution, while the detector aperture mainly affects the lateral resolution. The transducer response

acts as an additional filter to the original pressure [Wang et al., 2003].

Another approach to limited view PA reconstruction is time reversal. Time reversal is a method where a numerical

model of the forward problem is simulated backwards in time and delivers approximations of the initial pressure

distribution [Treeby and Cox, 2010]. This can be done by re-transmitting the measured PA raw sensor data in to

the domain in time-reversed order [Treeby and Cox, 2010]. This is done by solving the wave equation time-reversed

using the measured data as a boundary condition. This approach is able to compensate the acoustic absorption and

dispersion on the measured time domain signals by reversing the absorption coefficient and utilizing an absorbing

equation of state and regularizing it by filtering the absorption and dispersion terms in the spatial frequency domain

using a Turkey window. This approach was validated by Treeby and Cox et al. on a carbon fibre phantom and the

vasculature in the abdomen of a mouse. This algorithm is integrated in the k-Wave toolkit which is very versatile: It

is possible to tune all relevant tissue parameters, simulate different sensor geometries and experimental setups. One

disadvantage is the computational intensity [Xia et al., 2014]. Like for the beamforming approaches time reversal

assumes an idealized point-like sensor with a large acceptance angle which is not achievable.

While the vast majority of other methods in the field is model-based, first attempts have been made to apply deep

learning approaches - which have yielded breakthrough success in a number of medical image processing challenges

[Isensee et al., 2017b, Shen et al., 2017]. Hauptmann et al. have presented a novel approach using a deep learning

neural network trained layer-by-layer to reconstruct 3D photoacoustic images with high resolution [Hauptmann

et al., 2017]. Their network incorporates the physical model into the reconstruction procedure to iteratively reduce

artefacts. In on of their approaches they have used a U-Net to post process data from a direct reconstruction

but have come to the result that this approach is limited by the quality of the initial reconstruction [Hauptmann

et al., 2017]. It has been tested on in silico data and on 1200 volumes of vessels from segmented CT of the human

palm. Each volume had a size of 40 × 120 × 120 pixels. They come to the conclusion that in limited-view PA

reconstruction it is essential to incorporate the physical model to reduce artefacts. They state that incorporating

the gradient of the data fit and learning an iterative algorithm consisting of several convolutional neural networks

improves reconstruction performance and can lead to a speed up in computational time [Hauptmann et al., 2017].

As they have applied this approach at a human wrist they were not satisfied with their results and state that their

network had not learned to threshold noise-like artefacts in the low absorption regions. They want to tackle this

problem by adding Gaussian noise to the training data. They also want to acquire images of the human hand, wrist

and palm to train a transfer learning function which improved the results.

Reiter et al. have used a convolutional network with feed-forward fully connected layers to identify locations

of point sources such as brachytherapy seeds in 2 dimensions [Reiter and Bell, 2017]. They used pre-beamformed

data for their learning algorithm which they simulated with k-Wave. They used various medium speed of sounds
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(1440 - 1640 m
s
) and target locations between 5 and 10 mm in tissue and point sources of size 1 to 5 mm. On

2412 randomly selected images the mean axial error was 0.28 mm and the lateral error was 0.37 mm which is the

average imaging systems resolution, according to their paper. They were also able to identify the location of an

artefact in the simulated image with a axial error of 2.1 mm and an lateral error of 3.0 mm. In future, they aim at

detecting multiple point sources, partial wave fields and identification of artefacts for removal using convolutional

neural networks. They hope to replace traditional beamforming algorithms for identification of point sources in

future which could also lead to an elimination of reflection artefacts [Reiter and Bell, 2017].

Antholzer et al. have developed a deep learning algorithm based on the U-Net for a circular measurement

geometry in 2 dimensions. It uses a linear standard reconstruction algorithm, the filtered back projection, before

applying the deep learning algorithm on sparse sensor data to remove artefacts. They used two datasets with each

1000 images of size 128 × 128 pixels, one without noise and one with random noise. They simulated 1 to 5 ellipses in

each initial pressure images. Then they used k-Wave to simulate the PA raw sensor data with 30 detector positions.

In their paper, they state that their approach performs equally good on state-of-the-art iterative approaches for PAT

from sparse data but in less computation time. In future, they want to test their approach in real-world scenarios

including realistic phantoms and different measurement geometries [Antholzer et al., 2017].
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4 Methods

To evaluate the feasibility of this deep learning approach to the acoustic inverse problem for handheld PAI, it was

decided to work with in silico data for several reasons: Firstly this gives the possibility to simulate the ground

truth and the PA raw sensor data, which is essential for training the deep learning networks. Using in vitro data

would have meant to measure the phantom with a CT scanner or a 3 dimensional ultrasound. This approach would

have been costlier and it would have taken months to create a large dataset for deep learning. The optical forward

simulation which created the ground truth was done with the mcxyz toolkit [Jacques, 2014] implemented in the

Medical Imaging Interaction Toolkit (MITK) [Wolf et al., 2005]. The acoustical forward simulation which created

the PA raw sensor data was done with the k-Wave toolkit in Matlab [Treeby and Cox, 2010]. For reconstruction the

DAS beamforming algorithm in MITK was used. The deep learning approaches for reconstruction were implemented

in python. In total 3600 images with multiple vessels and 2000 images with singlevessels were simulated. The steps

we have taken in this approach are sketched in figure 4.1.
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Figure 4.1: The design of this experiment’s pipeline: First the initial pressure images of single and multiple blood
vessels were generated with mcxyz Monte Carlo simulations (top left). These images were used to
simulate pressure waves in tissue with k-Wave (middle left). This tool also allows to simulate a transducer
which can measure the simulated pressure wave using a simulated piezoelectric sensor. This gave the
PA raw sensor data, which is the data an US transducer measures. The third step was to beamform the
sensor data, this was done with the DAS beamforming plugin in Medical Imaging Interaction Toolkit
(bottom left). In the next step this data was used to train the deep learning neural network, for this step
the ground truth images are needed (top right). The state of the network was saved in the networks
weights. For testing the networks performance, the weights were used to predict the initial pressure
distribution from first the PA raw sensor data and secondly the DAS beamformed images (bottom
right).
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4.1 Optical Forward Simulation

Images of initial pressure distributions were simulated given a specific distribution of optical parameters using an

adaptation of the widely used Monte Carlo simulation framework mcxyz [Jacques, 2014]. The simulation pipeline

is integrated in the MITK [Wolf et al., 2005]. With this toolkit, it is possible to simulate photon fluence dependent

on optical absorption properties of tissue in 3 dimensional volumes. A context image was introduced, in which the

relevant information of the measured signal voxel with characteristics of the imaging system are combined in one

feature vector. Then a machine learning algorithm was trained to estimate the fluence in every voxel based on this

feature vector. With this method the fluence corresponding to an absorption was simulated [Kirchner et al., 2017].

As in this master thesis 2 dimensional images were used slices from these 3 dimensional volumes were taken out.

Multiplying the fluence and absorption one gets the initial pressure distribution.

4.2 Acoustical Forward Simulation

The k-Wave toolbox is a simulation framework for the time domain simulation of acoustic wave fields in Matlab. It

is an open source toolbox which can be used to simulate time domain acoustic waves in tissue [Mast et al., 2001].

This toolbox was used to simulate the sensor data, which is the data the sensor measures from an initial pressure

distribution in the media, resulting in simulated PA raw sensor data where one axis is corresponding to the number

of transducers and the other to the time resolved pressure measured by the transducer. k-Wave solves the system

of coupled acoustic equations described in the previous sections using the k-space pseudo-spectral method. This

combines the spectral calculation of spatial derivatives (in this case using the Fourier collocation method) with a

temporal propagator expressed in the spatial frequency domain or k-space [Bojarski, 1982, Mast et al., 2001].

Photoacoustic Wave Propagation

The k-Wave simulation of the propagation of acoustic waves in tissue is governed by these equations: The Wave

equation 2.16, the absorption equation 2.7, the conservation of mass 2.13, the conservation of momentum 2.14 and

the pressure density relation 2.15. These equations are numerically optimized for fast simulations in k-Wave.

Pseudo Spectral and k-Space Methods

For solving partial differential equations in acoustics, the finite-difference (FD), finite-element, and boundary-element

methods are most commonly used. Because of the high number of calculation steps for high frequencies this approach

is too slow for modelling ultrasonic waves with k-Wave. For calculating a FD scheme, the gradient of the field is
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4.2. Acoustical Forward Simulation

linearly interpolated between its values at the grid points. A better way to estimate the gradient could be to fit a

higher-order polynomial to a greater number of nodes and then calculating the derivative of the polynomial. The

higher the degree of polynomial, the more points can be used, which can improve the accuracy estimation of the

derivative. The Pseudo spectral (PS) method takes this further and fits a Fourier series to all of the data which

is efficient when using the fast Fourier transformation [Treeby and Cox, 2010]. While the PS method can improve

efficiency, conventional FD schemes are used to calculate the gradients in the time domain. The FD approximation

introduces instability into the numerical simulation that can only be controlled by limiting the size of the time-step,

which is done by the Courant-Friedrichs-Lewy (CFL) number 4.4 [Treeby and Cox, 2010].

Perfectly Matched Layer

The simulating of propagating wave fields requires an efficient numerical scheme to compute the derivatives near

the grid boundaries. For PS or k-space methods, using the FFT to compute the spatial derivatives causes waves

leaving one side of the domain to reappear at the opposite side. Implementing a perfectly matched layer (PML) can

reduce this [Treeby and Cox, 2010].

Including the PML the first-order acoustic equations given in 2.2 become:

∂u

∂t
= −

1

ρ0
· p− α · u (4.1)

∂px

∂t
= −ρ0 ·

∂ux

∂x
− αx · ρx (4.2)

p = c20 ·
∑

ρx,y,z (4.3)

Staggered Grids

The numerical solution of equation 4.3 is computed in iterations. First the pressure distribution within the compu-

tational domain is used to calculate the spatial deviates in each direction (∂x, ∂y, ∂z). These are used to compute

the corresponding velocity values using the first-order FD. In the next step the spatial derivatives of the velocity

for each Cartesian direction are computed. These are used to update the values of the acoustic density within the

domain, using a first-order FD. In the last step, the pressure is calculated using the appropriate equation of state.
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Parameters used in k-Wave

kGrid: The kGrid is an grid on which the individual wave fiels per time step are calculated at each grid point. It’s

size is naturally chosen to have the same dimensions as the image. The number of grid points therefore

corresponds to the number of pixels in the image.

Absorption: The Absorption is imported into Matlab as a .nrrd file

Fluence: The Fluence is imported into Matlab as a .nrrd file

Initial Pressure: The initial pressure is the absorption multiplied with the fluence.

CFL Number: A useful number when discussing stability of the simulation is the Courant-Friedrichs-Lewy (CFL)

number, which is defined as the ratio of the distance a wave can travel in one time step to the grid spacing

[Courant et al., 1928], it is defined as:

CFL =
c0 · ∂t
∂x

(4.4)

The CFL number can be thought of as a non-denationalized time step, and for that reason it is useful for

defining the maximum permissible time step without reference to a specific grid spacing, in this case 0.3.

Time steps: In order to guarantee stability of the simulation the CFL number is used to calculate the time steps:

∂t =
CFL · ∂x
cmax

(4.5)

4.3 Beamforming Approach

For reconstructing PA raw sensor data several algorithms have been published as mentioned in the state-of-the-art

section 3. Most medical US devices on the market use a Delay-and-Sum (DAS) beamforming [Thomenius, 1996]

algorithms to beamform B-mode images. Caused by the lack of complete information which is due to the limit in

aperture size and operating frequency these algorithms are limited in resolution and contrast [Matrone et al., 2015].

DAS beamforming was used to process the PA raw sensor data for the deep learning post processing approach and

as the state-of-the-art reconstruction method.

4.4 Deep Learning Approach

The huge success of deep learning methods in medical image processing described in previous chapters made it

feasible to apply deep learning to the acoustic inverse problem. Since the task of removing artefacts in images

42



4.4. Deep Learning Approach

Figure 4.2: Architecture of the U-Net used for post processing the DAS Beamformed data. This U-Net consists of
four layers. The contracting steps consist of the repeated application of two convolutional layers with
a kernel size of 3x3 and stride of 1x1, each followed by a Leaky ReLu layer and a batch normalization
layer.

requires simple processing steps and a general concept can be abstracted from the given data this seemed to be

a reasonable task for a deep learning algorithm. If the direct reconstruction from the PA raw sensor data was

equally learnable was an open question. The deep learning network was implemented in Python with the PyTorch

[Pytorch, 2018] toolbox which offers operations with a GPU acceleration using NVIDIA-CUDA [Cuda, 2013]. From

the PyTorch toolbox the tensor computation and the Adam optimizer has been used. For the neural network the

U-Net was chosen, which was published by Ronneberger et al. in 2015. It is a fully convolutional neural network. It

has the strength to work with few training data and is a state-of-the-art deep learning network [Ronneberger et al.,

2015].

Deep Learning Post Processing

Deep learning was used for post processing previously DAS beaformed PA raw sensor data. The input images had a

size of 128 × 128 pixels, the output images had the same size. Therefore, a standard U-Net was used. The U-Nets

architecture is shown in figure 4.2.

In this implementation, the U-Net consists of four layers. The contracting steps consist of the repeated application

of two convolutions with kernel size 3x3 and stride 1x1, each followed by a leaky rectified linear unit (LReLu) and a

batch normalization. The down sampling is performed by a 2x2 max pooling operation. The expansive units consist

43



Chapter 4. Methods

of an up-sampling followed by the same convolutions, ReLus and batch normalization steps as in the contracting units.

Information from the contracting units is concatenated via the skip connections to the corresponding expanding

units. The skip connections were introduced to maintain the high frequency information, which are otherwise lost

due to the contractions. For optimization PyTorch’s implementation of Adam with a base learning rate of 10−4 and

a weight decay of 10−5 as well as a L1 loss function for back propagation was chosen.

Deep Learning Reconstruction

A direct reconstruction approach of PA raw sensor data was performed with a modified U-Net architecture. In this

case, the PA raw sensor data was not pre-processed with DAS beamforming but the PA raw sensor data was directly

used. The major challenge was to transform the data from a space and a time domain to a 2-dimensional space

domain. In the chosen implementation, the modified U-Net consists of four layers. The contracting and expanding

units in the architecture is the same as described in the subsection above 4.4 and shown in figure 4.2 but the skip

connections were modified by introducing a layer in each skip connection, which reduces the image dimensions in

one direction by using an anisotropic kernel size of 20 × 3 and striding of 20 × 1. The modified U-Net maps the

information from the time axis to a spatial dimension and thereby reduces the resolution of the input PA raw sensor

data from 2560 × 128 pixels to the target output resolution of 128 × 128 pixels. The architecture of the modified

U-Net is shown in figure 4.3. This architecture was chosen because it is expected to loose less information when

transforming the image from the time and space domain the the spacial domain in the skip connections as compared

to doing it before or after the U-Net.
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4.4. Deep Learning Approach

Figure 4.3: Architecture of the direct reconstruction U-Net. This modified U-Net is trained to estimate the initial
pressure distribution directly from the PA raw sensor data. The skip connections of the U-Net include
a layer which reduces the image dimensions in one direction by using an anisotropic kernel size of 20 ×
3 and striding of 20 × 1. In each skip connection, the information is mapped from the time axis to a
spatial dimension and thereby the dimensions of the input PA raw sensor data are reduced from 2560 ×
128 pixels to the target output resolution of 128 × 128 pixels. The contracting and expansive layers are
the same as used in the post processing U-Net.

45



Chapter 5. Experiments and Results

5 Experiments and Results

Having decided which methods to use in this master thesis suitable experiments and datasets were created for

evaluating the approaches feasibility. This validation is crucial to investigate if further work should be invested in

applying deep learning for PA image reconstruction and to identify advantages and disadvantages of this approach

and possibly future challenges. The experiments were conducted to test if the state-of-the-art can be outperformed in

reconstruction accuracy with the deep learning networks. The first question was if deep learning can be used to post

process DAS beamformed data. The the second question was if a deep learning network could be used to directly

reconstruct the initial pressure distribution from the raw sensor data. In silico data was used to train and validate

these algorithms, which has several advantages: First and most importantly, a large dataset for training was needed

with corresponding initial pressure images as ground truth. Since the currently used methods beamforming and

time reversal have drawbacks in reconstructing the initial pressure distribution from limited view PA measurements

these are not suitable for creating a dataset. It was decided to use in silico data because the generation of simulated

data is fast and easy and the sources of noise and artefacts are limited and well known when compared to in vitro or

in vivo data. This approach has the additional benefit that it was possible to generate data with highly controllable

parameters and complexity. Two datasets were generated, one with only one singlevessel in each image and one

with multiple vessels per image. All parameters were chosen to be realistic for human tissue. The initial pressure

images were generated using mcxyz Monte Carlo simulations in C++. Using this data the k-Wave simulation gave

us the PA raw sensor data an ultrasound transducer would record. With MITK beamforming this sensor data was

beamformed. The initial pressure data, the PA raw sensor data and the beamformed data was then used for the

two deep learning approaches implemented in python.

5.1 Experimental datasets

Two experimental data sets were generated, one with a single vessel per image, containing 2000 images and one

with multiple vessels per image, containing 3600 images, all were created in 2 dimensions. Having two data sets

allows to perform a cross-validation between them, and the generalization capabilities of the algorithm trained on

the singlevessel data set can be evaluated on the mulitvessel data set. The initial pressure distributions of single and
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5.1. Experimental datasets

multiple vessels, which were generated with the mcxyz Monte Carlo simulation, used the settings for the simulation,

which are shown in table 5.1:

Property Value range Unit

Reduced Scattering 15 cm−1

Background Absorption 0.1 cm−1

Vessel Absorption U(2-8) cm−1

Vessel Radius U(0.5 - 4) cm
Number of Vessels U(1 - 7)

Table 5.1: Tissue properties used in the mcxyz Monte Carlo simulation. U denotes a uniform random distribution
between the stated limits.

The data given in table 5.1 was chosen in order to simulate realistic tissue data. The following assumptions

on tissue properties were chosen: The number of vessels in the singlevessel dataset was maximal one and it was

randomly chosen between 1 and 7 vessels for the multivessel dataset. The vessel radius was chosen to have a large

variation in radius but no vessel which is too small or too large. The vessel absorption was chosen to be in the range

of the absorption properties of blood as they are shown in figure 2.5. The reduced scattering coefficient was set to

15 cm−1 and the background absorption was set to 0.1 cm−1 as described in [Jacques, 2014].

The initial pressure distribution images were processed with k-Wave to generate PA raw sensor data. The k-Wave

framework with the k-Wave 2D FFT pseudo-spectral domain method for a line sensor was used for these simulations.

The properties set in the k-Wave simulation are listed in table 5.2.

Property Value Unit

Tissue Parameters:
Speed of sound in tissue 1500 m

s

Medium density 1000 kg
m3

Absorption 0 cm−1

Image properties:
Input image size 128 × 128 Pixel
Pixel spacing 0.3 mm

Simulation properties
Sensor recording time 3.84 ·10−5 s
Time spacing 1.5 · 10−8 s
Number of time steps 2560 Pixel
Simulation depth 57.6 mm
Number of transducer Elements 128
Transducer center frequency 7.5 ·106 Hz
Transducer bandwidth 80 %
Perfectly matched layer size x-direction 20 Pixel
Perfectly matched layer size y-direction 20 Pixel

Table 5.2: Properties used in the k-Wave simulation.

All properties were chosen in order to simulate human tissue as realistic as possible. The speed of sound in

tissue varies between 1450 m
s

for fat to 1580m
s

for muscle it was chosen to 1500m
s

for this simulation. The medium
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Figure 5.1: For simulating the PA raw sensor data with the k-Wave toolkit the aim was to simulate the tissue
properties as realistically as possible. Therefore, the image was embedded in a tissue realistic background
and added a thin layer of air above the sensor.

density was chosen to 1000 kg
m3 with fat being slightly lighter and muscle slightly heavier. Because the ultrasound

transducer, which was used for our laboratory system, has 128 transducer elements the images were chosen to be

128 × 128 pixels with a pixel spacing of 0.3 mm. This resulted in images of a width of 3.84 cm. The time spacing of

1.5 · 10−8s is equivalent to a sampling rate of about 67 MHz. This results in PA raw sensor data dimensions of 128

to 2560 pixels and therefore a simulation depth of 5.76 cm. The transducer center frequency was chosen to be 7.5

MHz with a bandwidth of 80 % in order to simulate the US transducer used for our PA system. In order to reduce

backscattering artefacts in the simulation a layer of 20 × 128 pixels of air above the sensor was simulated. In order

to reduce artefacts each initial pressure distribution image was embedded in a 319 × 418 pixel sized background

image so that on the left and right border of the image a background of 145 pixels and at the bottom of the image

was a background of 170 pixels, not including the 20 pixels of air which also had to be taken into account, which is

shown in 5.1.

The k-Wave simulation aims at simulating US waves as realistically as possible. This includes simulating sources

of artefacts at the border of an image, for example caused by the phantoms wall or artefacts by a bandwidth-limited

US transducer measurement. These artefacts were reduced by choosing an appropriate experimental setup, shown

in 5.1.
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(a) Visualization of the pressure wave in tissue
a few moments after the simulation started.

(b) Visualization of the pressure wave in tissue
at a later timestep.

Figure 5.2: Simulating the acoustic pressure in homogeneous tissue with k-Wave. The orange colour indicates
regimes of high pressure as it propagates through tissue at subsequent time steps. The waves spread
from the initial pressure distribution. The virtual US transducer is simulated in the upper part of the
image. The PA raw sensor data recorded by the US transducer.

5.2 Performance Assessment

Of both datasets 20% were used as test set, the rest was spitted in 80% training set and 20% validation set.

Random Gaussian noise was added with a standard deviation of 20% of the mean maximum pixel intensity over all

simulated image slices in each dataset to the PA raw sensor data. Images in the training set were mirrored for data

augmentation to increase the number training samples. Both models were trained with the same amount of data

presented. The results reported in the following section were calculated on the test set while the validation set was

used to supervise convergence of the training process and hyper-parameter optimization. These hyper-parameters

are show in table 5.3. The Number of epochs was set to 1000 since after about 400 epochs the cost function did not

decrease further, by learning for 1000 epochs it was made sure that the network had finished learning. The batch

size was set to 2, so in every batch were 2 images, considering the limited GPU capabilities and the large model

size. The number of batches per epoch was set to 400, in in every epoch the algorithm optimized its weights on 400

randomly chosen images from the training set and took 100 randomly chosen images from the validation set. The

base learning rate was set to 1 · 10−4 with a decay of 1 · 10−5. This was experimentally evaluated to be the most

suitable learning rate. The optimizer’s weight decay was chosen to 1 · 10−5 to prevent overfitting.

Property Value Unit

Number of Epochs 1000
Number of batches 200 per Epoch
Batchsize 2
Number of validation batches 50 per Epoch
Base Learning Rate 1 · 10−4

Learning Rate Decay 0.985
Optimizer weight decay 1 · 10−5

Table 5.3: Hyper-parameters setup for the deep learning algorithm.
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For reporting of the qualitative results the relative initial pressure estimation error was calculated to the ground

truth for each estimated image with this metric:

err =

∣∣∣∣∣ ˆIP − IP
IP

∣∣∣∣∣ (5.1)

where err is the calculated error, ˆIP is the initial pressure estimation and IP is the simulated ground truth initial

pressure.
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5.3 Results

Both, the singlevessel and the multivessel dataset were evaluated quantitatively and qualitatively in order to assess

the performance of both approaches. They have been evaluated on the corresponding test sets which contained

20% of the images of each dataset. To the test sets the same random Gaussian noise as in the training datasets

was added. The training and test sets were strictly split so the test sets contained images which were never used

before by the neural network. In order to investigate how the networks are able to generalize from the given training

data a crosswise validation was calculated where the network trained on the singlevessel data was tested on the

multivessel dataset and the network trained on the mulivessel dataset was evaluated on the singlevessel dataset. It

took longer than three months of running the simulations full time on three computers and four virtual machines

on an OpenStack Supercomputer clusters with a total of 160 cores running to generate the datasets, but only a few

minutes to evalute the test

Figure 5.4 and 5.9 show qualitative comparisons of DAS beamformend images, of post processed images, directly

reconstructed images and the ground truth simulated initial pressure distribution. The images were sorted by the

pixel wise relative error to the ground truth on the region of interest. The region of interest is defined by the intensity

of the initial pressure distribution, an intensity above a fixed threshold is defined as region of interest. Only images

which were not empty were taken into account. Qualitatively it is visible that the DAS beamforming approach is

performing worse in greater depth than near the sensor, this is especially visible in figure 5.9 (b). The direct deep

learning approach can reconstruct the position correctly but does not reconstruct the correct shape of the pressure

distribution.

Singlevessel

The quantitative comparison of the pixel wise mean difference on the whole singlevessel images is shown in Figure

5.3(b). The images have been normalized using z-score normalization over the whole dataset before the evaluation.

The median relative initial pressure estimation error changed from 47% with an interquartile range (IQR) of [15% -

102%] in case of the DAS beamforming to 64% with IQR [19% - 215%] using the proposed deep learning architecture

for correcting DAS beamformed images. The relative error of the direct deep learning approach was 60% with IQR

[32% - 143%]. In a direct comparison without prior image normalization, the median relative initial pressure

estimation error was 62% with IQR [33% - 140%] in case of the correction of DAS beamformed images and the

direct approach yields a median error of 53% with IQR [28% - 120%] as shown in figure 5.3(a).

For the reconstruction approaches of the image containing singlevessels the highest absolute errors occur in the

region of the vessel as it can be seen in figures 5.5 (b), 5.6 (b) and 5.7 (b). All three reconstructions also produce

errors in the background. For the relative errors as shown in figures 5.5 (b), 5.6 (b) and 5.7 (b) a halo-like structure

in the upper half of the image is visible. For the relative error images, larger error is made by the deep learning
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(a) Non-normalized images for direct comparison of the
two methods.

(b) Normalized images using z-score normalization for com-
parison of the suggested methods.

Figure 5.3: Boxplots of the pixel-wise relative initial pressure distribution estimation errors. Both deep learning
(DL) methods do not yield superior results as compared to DAS Beamforming.

approaches at the borders of the vessel. This might be by either not constructing the size of the vessel or the position

correctly. The DAS beamforming approach makes large reconstruction errors in the vessel.
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(a) Singlevessel image with the smallest error. The deep learning correction fails in the reconstruction
and the direct deep learning estimates the position correctly but fails to reconstruct the exact shape and
size.

(b) Singlevessel image with a median error. The deep learning correction fails in the reconstruction and
the direct deep learning estimates the position correctly but fails to reconstruct the exact shape and size.

(c) Singlevessel image with the largest error. Both deep learning approaches fail to reconstruct the blood
vessel.

Figure 5.4: Sample images from the singlevessel test set. They are sorted by the relative pixel wise error on the
region of interest from the ground truth on the direct reconstruction test set. The region of interest was
defined by a threshold on the initial pressure image pixelvalues.
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(a) Absolute error images as sorted by the direct deep learning image with the smallest error. All
approaches make the highest error in the region of the initial pressure.

(b) Relative error images as sorted by the direct deep learning image with the smallest error. One can
see a halo-like structure in the upper half of the images. Both deep learing approaches make the largest
error in the halo-like structure and at the border of the blood vessel. The DAS beamforming approach
has the largest error in the vessel.

Figure 5.5: Singlevessel image with the smallest error as evaluated on the direct deep learning images as shown in fig-
ure 5.4. (a) shows the absolute error images and (b) the relative error images for the three reconstruction
methods.
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(a) Absolute error images for the direct deep learning image with the median error. All three approaches
make the largest error in the vessel structure.

(b) Relative error images as sorted by the direct deep learning image with the median error. The halo-
like structure in the upper half of the image is clearly visible in all three approaches. Both deep learning
approaches make an error around the vessel and the DAS beamforming approach and the deep learning
correction make errors inside the vessel.

Figure 5.6: Singlevessel image with the median error as evaluated on the direct deep learning images and as shown in
figure 5.4. (a) shows the absolute error image and (b) the relative error image for the three reconstruction
methods.
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(a) Absolute error images as sorted by the direct deep learning image with the largest error. All three
approaches make large errors in the region of the initial pressure distribution and in the background of
the image.

(b) Relative error images as sorted by the direct deep learning image with the largest error. The halo-like
structure in the upper half of the image is visible for all three approaches but is appearing brighter at
both deep learning approaches.

Figure 5.7: Singlevessel image with the largest error as evaluated on the direct deep learning images as shown in fig-
ure 5.4. (a) shows the absolute error images and (b) the relative error images for the three reconstruction
methods.
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Multivessel

The quantitative comparison of the pixel wise mean difference on the whole images is shown in Figure 5.8(b). The

images have been normalized using z-score normalization over the whole dataset before the evaluation. The median

relative initial pressure estimation error improved from 117% with an interquartile range (IQR) of [52% - 296%]

in case of the DAS beamforming to 12% with IQR [0.5% - 26%] using the proposed deep learning architecture for

correcting DAS beamformed images. The relative error of the direct deep learning approach was 14% with IQR [0.6%

- 32%]. In a direct comparison without prior image normalization, the median relative initial pressure estimation

error was 10% with IQR [0.4% - 31%] in case of the correction of DAS beamformed images and the direct approach

yields a median error of 14% with IQR [0.5% - 43%] as shown in Figure 5.8(a). These results have been published

before in [Waibel et al., 2018a, Waibel et al., 2018b].

(a) Non-normalized images for direct comparison of the
two methods.

(b) Normalized images using z-score normalization for com-
parison of the suggested methods.

Figure 5.8: Boxplots of the pixel-wise relative initial pressure distribution estimation errors. Both methods yield
huge advantages compared to DAS beamforming. A slightly lower relative error was achieved by using a
U-Net to correct DAS beamformed images compared to the direct approach. These have been published
before in [Waibel et al., 2018a, Waibel et al., 2018b].

In figure 5.10 (a), 5.11 (a) and 5.12 (a) the absolute error of the normalized images are shown to indicate where
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(a) Multivessel image with the smallest error. The signal is very close to the tissue surface and the shape
is preserved very well.

(b) Multivessel image with a median error. Even though both different shaped vessels were reconstructed,
the direct approach yields some inaccuracies especially in the lower parts.

(c) Multivessel image with the largest error. The signal is very deep inside the tissue hardly visible in
the DAS beamformed image and with large errors in the direct approach.

Figure 5.9: Sample images from the multivessel test set. They are sorted by the relative pixel wise error on the
region of interest from the ground truth on the direct reconstruction test set. The region of interest was
defined by a threshold on the initial pressure image pixelvalues. These have been published before in
[Waibel et al., 2018a, Waibel et al., 2018b].

the highest absolute errors in the images errors are. The image on the left is the ground truth and therefore the

ideal reconstruction. For all images, the largest errors occur in the area of the largest signal which could indicate a

wrong prediction of the signal intensity. The circular artefacts in the DAS beamforming images are clearly visible

in figure 5.10 (b), which is a known drawback of this method [Hauptmann et al., 2017], also there are errors on the

upper part of the image, which are not visible in the images of both deep learning approaches. These artefacts are

even larger than the signal of a vessel deep in tissue as can be seen in figure 5.12.

The relative errors or these images are plotted in figure 5.10 (b), 5.11 (b) and 5.12 (b). These images have been

normalized before computing the relative error. The relative error images have been rescaled to the same scale. On

the first look, it is obvious that the DAS beamforming approach makes the most relative errors throughout the
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image. At all three approaches have a halo-like structure in the upper half of the images. And all three approaches

have problems reconstructing the correct intensity in some images, especially if the vessel is covered by vessel with

most presumably absorb most photons as it is visible in figure 5.11 (b). Comparing both deep learning approaches it

is visible that both make similar errors on or around the borders of the vessels but the direct deep learning method

might do slightly less good on the vessels intensity as can be seen in figure 5.12 (b).

(a) Absolute error images as sorted by the direct deep learning image with the smallest error. For
both deep learning approaches the largest errors are at the reconstructed vessel. The DAS beamforming
approach does makes the largest error on the border of the vessel. The maximum absolute error is similar
high for both deep learning algorithms.

(b) Relative error images as sorted by the direct deep learning image with the smallest error as shown
in 5.9 (a). These images have been normalized before computing the relative error. The relative error
images have been rescaled to the same scale. All three approaches make errors at a halo-like structure in
the upper half of time image. Both deep learning approaches do make errors on the borders of the vessels.

Figure 5.10: Images with the smallest error, calculated as the pixelwise relative error to the ground truth as
shown in figure 5.9. (a) shows the absolute error image and (b) the relative error image for the three
reconstruction methods.

Absolute error image for the image with the largest error. The largest errors for the deep learning correction

approach occur on the borders of the vessels. The direct deep learning and the DAS beamforming algorithm both

do not correctly reconstruct the intensity in the vessel. The maximum absolute error is lowest for the deep learning

correction approach and similar in the direct deep learning approach and DAS beamforming.
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(a) Absolute error images as sorted by the direct deep learning image with a median error. The deep
learning correction algorithm does not reconstruct the vessel in great depth under the horizontal vessel
correctly. The direct deep learning and the DAS beamforming approach does recognize this vessel. The
maximum absolute error is increasing from deep learning correction to direct deep learning and then
approximately doubling for DAS beamforming.

(b) Relative error images as sorted by the direct deep learning image with the median error. Both deep
learning approaches do make errors on the borders of the vessel but correctly reconstruct the position of
the vessel. For the direct deep learning approach an artefact above the vessels is visible.

Figure 5.11: Images with the median error, calculated as the pixelwise relative error to the ground truth as shown
in figure 5.9. (a) shows the absolute error image and (b) the relative error image for the three recon-
struction methods.

60



5.3. Results

(a) Absolute error image as sorted by the direct deep learning image with the largest error. The largest
errors for the deep learning correction approach occur on the borders of the vessels. The direct deep
learning and the DAS beamforming algorithm both do not correctly reconstruct the intensity in the
vessel. The maximum absolute error is lowest for the deep learning correction approach and similar in
the direct deep learning approach and DAS beamforming.

(b) Relative error images as sorted by the direct deep learning image with the median error. All three
approaches miss to reconstruct the vessel deep in the tissue which is located below with the horizontal
vessel. The signal of this vessel might be very weak because the vessel is deep in tissue and the signal is
might be distracted by the signal from the vessel laying above.

Figure 5.12: Images with the largest error, calculated as the pixelwise relative error to the ground truth as shown
in figure 5.9. (a) shows the absolute error image and (b) the relative error image for the three recon-
struction methods.
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Crossevaluation

In order to assess how the deep learning networks, perform when they have to generalize from the learned task onto

another problem the networks which have been trained on singlevessel images was evaluated on multivessel images

and the networks which have been trained on multivessel images was evaluated on singlevessel. This was done for

both, the DAS beamforming correction and the direct deep learning approach.

The quantitative comparison of the pixel wise mean difference of the crosswise tested images is shown in Figure

5.13. The images have not been normalized before the evaluation. For the direct DAS Beamforming deep learning

approach the median relative errors from the reconstruction images to the ground truth with interquartile ranges

(IQR) are listed in table 5.4.

DAS Beamforming Correction Approach Median Interquartile Range

Trained on singlevessel dataset and tested on the singlevessel test set 61 [32 - 139]
Trained on singlevessel dataset and tested on the multivessel test set 34 [17 - 83]
Trained on multivessel dataset and tested on the singlevessel test set 20 [12 - 38]
Trained on multivessel dataset and tested on the multivessel test set 10 [0.5 - 30]

Table 5.4: Median relative errors of the cross tested images for the DAS Beamforming correction approach and their
interquartile ranges.

Direct Deep Learning Approach Median Interquartile Range

Trained on singlevessel dataset and tested on the singlevessel test set 53 [28 - 120]
Trained on singlevessel dataset and tested on the multivessel test set 38 [20 - 70]
Trained on multivessel dataset and tested on the singlevessel test set 12 [0.7 - 27]
Trained on multivessel dataset and tested on the multivessel test set 14 [0.5 - 43]

Table 5.5: Median relative errors of the cross tested images for the direct deep learning approach and their interquar-
tile ranges.
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(a) Boxplots of the relative errors of the four different DAS
Beamforming correction deep learning approaches.

(b) Boxplots of the relative errors of the four different di-
rect deep learning approaches.

Figure 5.13: Comparing the all approaches tested on all test sets available. The Networks which was trained on
the singlevessel dataset performs better if evaluated on the multivessel test set than on the singlevessel
test set for both approaches. The network trained on the multivessel dataset performs better on the
multivessel test set and in a similar quality on the singlevessel test set and it performs better than the
networks which was trained on the singlevessel data.
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6 Discussion and Conclusion

In limited view photoacoustic imaging (PAI), it is essential to develop accurate and fast reconstruction methods. In

this master thesis two methods are presented that can be used to either enhance reconstruction of Delay-and-Sum

(DAS) beamforming with a post processing step or provide a direct reconstruction of the initial pressure distribution

from PA raw sensor data. The results show high accuracy even with noisy raw data, and provide a qualitative

improvement compared to DAS beamforming. In future research this approach should be transfered to in vitro

and in vivo data. The two proposed approaches that can improve currently used PAI reconstruction algorithms in

limited view settings are:

1. Deep learning post processing of DAS beamformed images

2. Direct deep learning reconstruction of PA raw sensor data

The first method was used to post process Delay-and-Sum (DAS) beamformed PA raw sensor data. It was shown

that systematic errors and artefacts can be detected and corrected with state-of-the-art deep learning methods.

The relative error on the multivessel dataset was 12% with an interquartile range (IQR) of [0.5% - 26%]. This was

evaluated using the proposed deep learning architecture for correcting DAS beamformed images, where conventional

DAS beamforming fails with a relative error of 117% with an IQR of [52% - 296%]. For evaluation these images

have been normalized over the whole dataset. Qualitatively it is visible that for example the circular artefacts in the

DAS beamformed images can be reduced using deep learning as shown in figure 5.9. The presented post processing

method achieved qualitative and quantitative improvements compared to DAS beamforming and yielded highly

accurate results even under application of noise to the simulated raw data. DAS beamforming is a method whose

aim is to yield the origin of US waves and not to reconstruct the initial pressure distributions [Mozaffarzadeh et al.,

2017]. DAS beamforming fails at the reconstruction of initial pressure distributions.

It was shown that initial pressure distributions can also be directly reconstructed from the PA raw sensor data

with a modified U-Net without the use of any prior processing steps. This method needs one calculation step less

but gives slightly higher relative errors for the multivessel dataset than the deep learning correction method. For a

quantitative comparison, the relative error on the normalized multivessel dataset was 14% with IQR [0.6% - 32%].

For the not-normalized multivessel images an error of 10% with an IQR of [0.4% - 31%] was achieved for the deep

64



learning post processing approach and 14% with an IQR of [0.5% - 43%] for the direct deep learning approach. The

higher relative error may be due to the increased model size which is caused by the enlarged input space of 2560

pixels as compared to 128 pixels in axial direction. The main challenge was to transform the image dimensions from

the PA raw sensor data to the image dimensions of the initial pressure distribution. This was solved by introducing

additional convolutional layers in the skip connections of the U-Net as shown in figure 4.3. The skip connections

were originally introduced to retain the entire range of high frequency information. Without skip connections the

information contained in high frequencies in the time domain would be lost by a large perceptive field along the time

axis. With the modified U-Net the problem of loosing high-frequency information might be re-introduced because

the skip connections were modified in order to transfer the image from the time to the space dimension. One future

step could be to investigate how the neural network’s architecture can be modified in order to improve the direct

reconstruction from PA raw sensor data. With an advanced architecture the reconstruction of the deep learning

post processing approach might in future be outperformed.

When comparing the qualitative results to the quantitative results the error metric used to calculate the quan-

titative results plays an important role. For the evaluation the relative pixelwise error over the whole image to

the ground truth was used, as shown in equation 5.1. This metric considers all pixels of the image, therefore also

errors in image regions with low signal are accounted for. For the evaluation of the algorithms performance the

reconstruction accuracy on low signal regions in the image is important, therefore these regions were taken equally

into account. For the evaluation of the qualitative results a region of interest was defined which only included regions

above a threshold of intensities on the initial pressure images. This was done because the aim was to evaluate the

algorithms qualitative performance on the task to reconstruct the blood vessels.

For a qualitative comparison the absolute errors to the ground truth are plotted in figures: 5.5 (a), 5.6 (a) and

5.7 (a) for the singlevessel images and in figures: 5.10 (a), 5.11 (a) and 5.12 a) for the multivessel images. In all

cases it becomes clear that the largest errors are made in the region of the largest signal amplitude.

The relative errors to the ground truth pressure distribution on the singlevessel dataset are plotted in the figures:

5.5 (b), 5.6 (b) and 5.7 (b). When evaluating the deep learning correction on the singlevessel dataset it becomes clear,

that this method fails to reconstruct the initial pressure distribution. One reason could be the small dataset used.

The direct deep learning approach on the singlevessel dataset sometimes is able to reconstruct the position of the

initial pressure distribution, but often fails to reconstruct the exact shape or size of the blood vessel. For horizontal

blood vessels as one can be seen in figure 5.7 from the singlevessel dataset, the DAS beamforming approach delivers

the best results in this example. Both deep learning approaches fail to reconstruct shape and position of the vessel.

Relative errors for multivessel images are plotted in the figures: 5.10 (b), 5.11 (b) and 5.12 (b). While both deep

learning approaches are generally able to reconstruct the position of the blood vessel, they make errors at the border

of the blood vessels. This might be caused by not getting the size of the vessels correctly. Figure 5.12 (b) shows the

65



Chapter 6. Discussion and Conclusion

largest errors which the deep learning approaches make when approximating the initial pressure distribution. These

approaches show the ability to reconstruct the inner part of the vessels with a low error but large errors occur at the

borders of the vessels. The DAS beamforming algorithm estimates the vessel position well but does not reconstruct

the intensity in the vessel correctly which can be seen on the wave-like artefacts around the reconstructed initial

pressure distribution in figure 5.9.

When evaluating both deep learning approaches on the singlevessel and multivessel test set, one recognizes

that both approaches generally perform better on the multivessel test set than on the singlevessel test set. The

deep learning correction on the singlevessel test set fails completely and the direct reconstruction has problems

reconstructing the exact position, shape and size of the blood vessels. One possible reason is the size of the dataset

used for training the algorithms.

The size of the dataset is important for deep learning algorithm to generalize. It was estimated that in the

singlevessel dataset every second image showed no vessel whereas in the multivessel dataset about one in ten images

showed no vessel. In the simulation of the vessel structures with the mcxyz Monte Carlo simulation, a limited

number of vessels, one for the singlevessel images and multiple for the multivessel images were simulated in three

dimensions. Slices from these three-dimensional volumes were cut, which by chance contained one, multiple or no

vessels. This means that the neural network which was trained on the multivessel dataset, was trained on about

1900 images, which containing relevant information. The network which was trained on the singlevessel dataset,

was trained on about 600 images, which contained relavent information for abstracting a model. Additionally the

multivessel dataset contained more information per image, since there are multiple vessels in most images. These

images have a greater variability and thus the algorithm is more competent in generalizing and therefore predicts

the initial pressure distribution with less errors. The importance for deep learning methods to train on a large

dataset with a large amount information is shown thereby. It is especially visible when comparing the results of the

singlevessel and the multivessel dataset. In future, the possibility to use unsupervised learning could be explored

as no ground truth data is needed for this approach and therefore large datasets are more easily available. But

since in unsupervised learning no ground truth is available, the assessment of performance is difficult and there is

no evidence that this approach is suitable for tackling the acoustic inverse problem.

In all images at the same position in the upper half of the image, an artefact in the shape of a halo-like structure

is visible as shown in figure 6.1 and in the figures: 5.5 (b), 5.6 (b) and 5.7 (b) of the singlevessel images and in 5.10

(b), 5.11 (b) and 5.12 (b) of the multivessel images. Both deep learning approaches learn an average of this halo-like

structure which they compensate for. As this structure is not the same for all images, due to different fluence rates,

the deep learning approaches may produce this errors. To compensate for this artefact more training data could

improve the networks performance.
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Figure 6.1: The halo-like structure in the relative error images in the upper half of the image. This might be be an
artefact which is not correctly compensated in the deep learning approaches.

Generally it is visible that the performance of all presented approaches decreases with increased depth in tissue.

A reason is the measurement angle of the US transducer, which decreases with depth. Thereby the limitation of

the view increases, as visualized in figure 6.2. The wave front reaching the sensor from a deeper origin in tissue is

also flatter than a wave front originating closer to the sensor. Because the shape of a wave contains information

about the shape of the signal origin, this information is relevant for the reconstruction. If the wave is originating

from a deeper section of the tissue less information is measured by the sensor about the shape of the signal origin.

Therefore, it is easier for an algorithm to reconstruct the exact position of the origin, if the vessel is closer to the

sensor. Another possible reason is that the initial pressure can be described with spherical waves. The intensity

decreases with distance from the origin quadratically. And a signal which travels a longer distance in tissue also

experiences stronger attenuation, therefore the resolution decreases with imaging depth. Also, the possibility of

artefacts being created, increases with a longer distance travelled. This is difficult to improve because the physical

properties of the US transducer can only be changed by the manufacturer.

Figure 6.2: Visualization of the angle dependency of the measured signal from the imaging depth. The deeper the
imaged blood vessel is located in the tissue, the smaller is the angle under which the signal is detected
by the sensor. Therefore the limitation of the sensor’s field of view increases.

For evaluating how these approaches generalize on data from another dataset crossevaluations have been per-

formed. In Figure 5.13 it can be seen that the algorithm trained on multivessel data is generally performing better

than the algorithm trained on singlevessel data. This could be due to the fact that the number of training data
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was larger in the multivessel dataset which contained 3600 images whereas the singlevessel dataset only contained

2000 images. While it is no surprise that the algorithm trained on multivessels is performing well on the singlevessel

dataset, since in the multivessel dataset there are images with only one vessel, it is a surprise that the algorithm

trained on the singlevessel dataset is performing better on the multivessel dataset than on the singlevessel dataset.

The singlevessel test sets contained 400 images, while the multivessel test sets contained 720 images. If the size of

the test set and the number of not-empty images contained in it makes a significant difference when evaluating the

approaches performances was not tested, but this seems unlikely for large enough test sets.

The proposed methods were not yet applied to in vivo or in vitro data. Starting directly with in vivo or in vitro

data, presumably much more training images would have been needed and a lot of time would have been spent for

denoising and artefact removal before it would have been possible to start training these deep learning algorithms.

In future, the deep learning algorithms should be able to remove artefacts and noise automatically. The transfer

step from in silico to in vitro and in vivo data could be done by pre-training the neural network on in silico data

and then generalize it to in vitro data. By doing so, one has to save the weights from the network trained on the in

silico data and then apply these weights to initialize a network which trains on more complex in vitro data. This

was done in this master thesis with the network trained on singlevessel data, which was applied on multivessel data

and vice versa. In future this could be applied to data with a realistic noise model and realistic artefacts. This could

iteratively be done while improving the network’s ability to generalize with each iteration. For this domain transfer,

several specific factors have to be considered such as calibration, correct modelling of noise, angular sensitivity of

the US transducer, the presence of artefacts and local variations of speed of sound and acoustic attenuation leading

to a generally lower contrast-to-noise-ratio. As such, the next challenge is to generalize the proposed methods to

be applicable to realistic data. Improving the deep learning approaches, other state-of-the-art solutions such as

[Hauptmann et al., 2017, Antholzer et al., 2017] can be implemented to indicate best practices and to find the most

reliable solution.

Especially in medicine, where reliable and accountable diagnoses and treatments are needed, deep learning

approaches are sometimes viewed with scepticism, because they appear as ’black boxes’ [noa, 2018, Samek et al.,

2017, Ribeiro et al., 2016] and because these algorithms can suffer from significant difficulties [Shalev-Shwartz et al.,

2017]. Therefore, their application at medical tasks is a matter of ongoing debate. Several strategies have been

developed to understand what happens in intermediate levels of neural networks [Karpathy and Fei-Fei, 2014, Zeiler

and Fergus, 2014, Springenberg et al., 2014, Nguyen et al., 2016, Montavon et al., 2017, Shalev-Shwartz et al.,

2017] but it still remains unclear how the networks’ mechanisms work because the underlying mechanisms cannot

be directly influenced. This can lead to problems as it is not clear which features or details of an image influence

the algorithms’ predictions. It was also shown that this opacity can lead to issues of bias [Cathy O’Neil, 2016].

Consequently, the ability of the algorithms to generalize is limited [Marcus, 2018]. It is an ongoing discussion to
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what extend these algorithms can be applied to problems, similar to the problems that they were trained for [Kim

and Hwang, 2016, Andrew Ng, 2016, Antony et al., 2016, Litjens et al., 2017]. Another limitation of deep learning

are tasks where insufficient information in the gradients about the underlying target function is available. A low

signal-to-noise ratio, bad conditioning, or flatness of the activation functions are at hand [Shalev-Shwartz et al.,

2017]. The huge amount of data, which deep neural networks need to generalize is a problem for many researchers.

Several strategies, such as data augmentation [Isensee et al., 2017b, Perez and Wang, 2017] have been developed to

address this issue. But for many tasks the amount of medical data in good quality is limited. Another drawback

of machine learning is the difficulty to integrate prior knowledge, such as the speed of sound in tissue into the

model. Partly this knowledge is represented in the networks features but not in quantified statements [Marcus,

2018]. And deep learning networks can be fooled [Vinyals et al., 2014, Nguyen et al., 2014] as recent real world

examples show [Evtimov et al., 2017, Athalye et al., 2017]. Therefore, it is not certain that predictions of the neural

network are correct and it is not understandable by what the networks predictions are determined. It is important

not to misunderstand the misleading word deep learning, where ’deep’ refers to a technical property and not to

a conceptual. While human intelligence, even in new-borns [Gervain and Werker, 2008], is able to learn through

abstract explicit definition, and implicit means from very little samples in minutes, artificial intelligence currently

fails at the same task [Marcus, 2018].

Considering the advantages and disadvantages of using neural networks, one has to decide on the given task if

neural networks are suitable for the problem or not. Looking at the overwhelming success of neural networks on some

medical imaging tasks, the possible advantages are apparent. But one has to bear in mind that the development

of artificial intelligence is nowhere near the human-like ability in solving unfamiliar problems because their abilities

are highly specialized while the human intelligence is very general.

In this master thesis it was shown that the application of deep learning on the photoacoustic inverse problem

on in silico data leads to promising results. Two approaches have been presented: The first utilized Delay-and-Sum

beamforming and deep learning for post processing. The second approach shows that it is possible to solve the

acoustic inverse problem for limited view PA directly with a single modified deep neural network. The modified

U-Net has learned to transfer the PA raw sensor data from the time and space domain to a two dimensional spacial

domain, abstracting and learning the underlying physical model. Both approaches were able to detect and remove

artefacts and compensate noise. The qualitative and quantitative evaluation of both approaches show promising

results and outperform DAS beamforming. In future this approach can be transferred to in vitro and in vivo data,

which is a possible next step on the road to clinical quantitative photoacoustic imaging.
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to beamform the sensor data, this was done with the DAS beamforming plugin in Medical Imaging
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4.3 Architecture of the direct reconstruction U-Net. This modified U-Net is trained to estimate the initial

pressure distribution directly from the PA raw sensor data. The skip connections of the U-Net include

a layer which reduces the image dimensions in one direction by using an anisotropic kernel size of 20

× 3 and striding of 20 × 1. In each skip connection, the information is mapped from the time axis
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