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Abstract 

Geodata is missing to populate maps for usage of local communities. Efforts for filling gaps 

(automatically) by deriving data on human settlements using aerial or satellite imagery is 

of current concern (Esch et al., 2013; Pesaresi et al., 2013; Voigt et al., 2007). Among semi-

automated methods and pre-processed data products, crowdsourcing is another tool which 

can help to collect information on human settlements and complement existing data, yet 

it’s accuracy is  debated (Goodchild and Li, 2012; Haklay, 2010; Senaratne et al., 2016). 

Here the quality of data produced by volunteers using the MapSwipe app was investigated. 

Three different intrinsic parameters of crowdsourced data and their impact on data quality 

were examined: agreement, user characteristics and spatial characteristics. Additionally, a 

novel mechanism based on machine learning techniques was presented to aggregate data 

provided from multiple users. The results have shown that a random forest based 

aggregation of crowdsourced classifications from MapSwipe can produce high quality data 

in comparison to state-of-the-art products derived from satellite imagery. High agreement 

serves as an indicator for correct classifications. Intrinsic user characteristics can be utilized 

to identify consistently incorrect classifications. Classifications that are spatial outliers 

show a higher error rate. The findings pronounce that the integration of machine learning 

techniques into existing crowdsourcing workflows can become a key point for the future 

development of crowdsourcing applications. 
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1 Introduction 

Nowadays, geographical data is everywhere. You’re creating millions of data chunks when 

using your smartphone or browsing on a website. Your consumption habits will be analysed 

regarding your home location, and free time activities will be suggested based on your work 

journey. We use Google Maps or OpenStreetMap and in most western countries these maps 

offer us what we are looking for: street names, building footprints, restaurants and other 

points of interest. Nevertheless, this is only one part to the story. Indeed, there are many 

places in the world where people live but the maps are still empty and geodata is missing. 

This work will focus on these “forgotten” places that don’t appear in the official maps yet. 

Information on human settlements and spatial distribution of population are important for 

several use cases, but especially for emergency management and in response to 

humanitarian disasters (Dobson et al., 2000; Pesaresi et al., 2013). When Doctors Without 

Borders and other humanitarian organisations responded to the Ebola outbreak in 2014 

detailed information on human settlements for the affected areas was hardly available 

(Lüge, 2014). Also, recent catastrophes like hurricane Irma and the Mexican earthquake, 

which happened both in September 2017, have emphasized the importance of up to date 

map data on buildings for disaster response activities (Yin, 2017). 

Human settlements can be mapped either directly on the ground or using aerial or satellite 

imagery. While on the ground mapping can offer high precision, the main disadvantage is 

that it is expensive and time consuming. Especially in disaster situations the affected area 

may also be inaccessible. With the rise of new sensors which offer a higher resolution 

satellite imagery has become a unique source to capture geographic information on human 

settlements (Voigt et al., 2007). There are several global products based on remote sensing 

which offer information on human settlements. These products are available at several 

spatial and temporal resolutions. The Global Human Settlement Layer is produced at 

regional scale with 50 metre resolution (Pesaresi et al., 2013). The German Aerospace 

Centre (DLR) provides Global Urban Footprint data derived from global synthetic-aperture 

radar (SAR) datasets (Esch et al., 2013). Furthermore, companies like Facebook are 

providing data on human settlements based on optical satellite imagery (Zhang et al., 2016). 

However, these global products also have disadvantages such as the under-representation 

of low density built-up areas (Klotz et al., 2016). For land cover maps in general, Schultz 

et al. (2017) identify another issue regarding the long updates cycles of traditional satellite 

based products which negatively affects the temporal accuracy and fitness for purpose of 

the data generated. Today, existing human settlement data products offer a great benefit for 

many use cases, however data quality issues can hamper their application in disaster 
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scenarios or humanitarian aid. Thus, further methods and tools to enrich and complement 

the existing datasets are needed to address the known shortcomings. 

Despite the usage of semi-automated methods and pre-processed data products, 

crowdsourcing is another tool which can help to collect information on human settlements 

and complement the data produced using satellite imagery analysis. Since the rise of the 

Web 2.0 in the early 2000’s crowdsourced data has already complemented official 

information in several disaster situations. In 2010, crowdsourced data from OpenStreetMap 

and other crowdsourcing platforms supported disaster response efforts in Haiti (Zook et al., 

2010). Text messages from social networks like Twitter have been used to find and model 

on the ground information for flood events (de Albuquerque et al., 2015; Vieweg et al., 

2010) and earthquakes (Crooks et al., 2013; Earle et al., 2011). Many researchers have 

highlighted the potential of these new data sources to provide up-to-date data and an in-situ 

view in disaster situations (de Albuquerque et al., 2016; Meier, 2012; Zook et al., 2010). 

However, there is also a wide range of research studies investigating and questioning the 

reliability of the crowdsourced data (Flanagin and Metzger, 2008; Goodchild and Li, 2012; 

Haklay, 2010). These heterogeneous results and conclusions on data quality of volunteered 

geographic information demand for further research that focuses on improving specific 

applications and aspects of data quality. 

This recent evolution of crowdsourcing platforms such as OpenStreetMap and the still 

pressing need for up-to-date and valid map data is also addressed by humanitarian 

organizations themselves in the scope of the Missing Maps Project, which was founded in 

November 2014 by American Red Cross (ARC), British Red Cross (BRC), Doctors 

Without Borders UK (MSF) and the Humanitarian OpenStreetMap Team (HOT). Within 

the collaboration of humanitarian organizations and together with research institutes a 

mobile application called MapSwipe was developed. MapSwipe is designed towards 

crowdsourcing information on the spatial distribution of human settlements in places where 

other datasets show poor quality or are entirely missing. The app has already supported to 

map around 400,000 square kilometres and has been used by more than 15,000 individuals. 

Given this successful evolution since the launch in July 2016, future development of the 

app, scaling up the crowdsourcing approach and further integration of the data into the 

existing Missing Maps workflows require a better understanding of the quality of the data 

produced. This will enable to make better use of each volunteered contribution and directly 

serves the purpose to fill the blank spots in the global OpenStreetMap. 

Therefore, in respect to the existing work on approaches and quality analysis of volunteered 

geographic information, it is the purpose of this study to investigate the quality of the 
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geodata produced by MapSwipe volunteers regarding its ability to correctly represent the 

spatial distribution of human settlements. The approach utilized in this work will examine 

three different parameters of crowdsourced data and their impact on data quality: 

agreement, user characteristics and spatial characteristics. Additionally, a novel mechanism 

based on machine learning techniques will be presented to aggregate data from multiple 

users. 

The remainder of this thesis is structured as follows. In the next section an overview on 

research towards crowdsourcing geographic information approaches is provided. This 

section will concentrate on the quality of volunteered geographic information and 

approaches for combining crowdsourced data and data derived using automated methods. 

Section 3 covers a description of the datasets used in this study and provides additional 

information towards the design and fundamental principles of the MapSwipe app. In section 

4 the quality analysis methods based on reference datasets and intrinsic data characteristics 

will be explained in detail. Results and Discussion are presented in section 5. Finally, 

section 6 concludes the paper and makes recommendations for future research and the 

design of the MapSwipe app. 
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2 Related Works 

In the past ten years, many researchers analysed what Goodchild (2007) coined 

“volunteered geographic information” in 2007. The research on these new datasets that are 

created by volunteers instead of experts is embedded in a wider field of study towards 

crowdsourcing, a term already introduced in 2006 by Howe (2006). In this part of the thesis 

approaches to crowdsource geographic information are presented in the first step. Secondly, 

quality assurance mechanisms will be described. Afterwards, the potential of crowdsourced 

datasets to support automated information extraction using machine learning techniques is 

explored. Finally, the section concludes with the identification of research gaps which will 

be addressed in the next parts of the thesis.  

2.1 Crowdsourcing Geographic Information 

When Goodchild (2007) introduced the concept of volunteered geographic information he 

pointed out the dramatic changes to the production of geographic information induced by 

the widespread engagement of large numbers of private citizens, often with little 

professional experience or formal qualifications. A long tradition of volunteered 

geographic data collection can be found in the work of citizen scientists (Haklay, 2013), 

but in the last ten years OpenStreetMap has become one of the major communities 

attracting several thousands of active volunteers every day (Neis et al., 2013). 

Since 2007 many different crowdsourcing campaigns or tools have been addressing various 

problems which require different user skills and knowledge. Barrington et al. (2011) 

highlight three stages of a successful crowdsourcing campaign: (1) Split overall problem 

into many manageable components (micro task), (2) motivate many contributors to solve 

the tasks (crowdsource) and (3) combining multiple answers into a single result 

(aggregation). Micro task crowdsourcing tasks can not only be found in the domain of 

geography but in many different discipline and cover problems such as information finding 

or verification and validation (Gadiraju and Demartini, 2015). However, in this work the 

focus will be on projects incorporating geodata. Albuquerque et al. (2016) differentiate 

three different types of geographic information crowdsourcing approaches: 

“Classification”, “Digitization” and “Conflation”. In the following examples for each type 

will be presented. 

2.1.1 Classification 

Classification tasks can be seen as the easiest form of crowdsourcing since most of the time 

they require only little knowledge by the users (Albuquerque et al., 2016). For the 

geographic domain Albuquerque et al. (2016) define this category of as follows: 
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“In a classification task, the volunteer recognises features/objects in an 

existing piece of geographic information and then enriches this by 

adding an extra attribute that represents a value or category.” 

Classification tasks have been deployed for several purposes. The Geo Wiki project aims 

at classifying satellite imagery to derive land use/land cover information (Fritz et al., 2009). 

Ali et al. (2016) propose a guided classification system for conceptual overlapping classes 

in OpenStreetMap. In the past several projects used crowdsourced classification tasks in a 

humanitarian context. In the aftermath of hurricane Sandy hitting the US coast in 2012 

volunteers analysed aerial imagery to classify damaged infrastructures (Chan et al., 2013). 

The GEO-CAN Initiative coordinated damage mapping efforts after the 2010 Haiti 

earthquake and the 2011 earthquake in Christchurch, New Zealand (Barrington et al., 

2011). The MapSwipe app too incorporates a crowdsourcing approach that builds upon 

classification tasks (Herfort et al., 2017).  

Additionally, there are approaches to classify content derived from social media networks. 

For instance, the Micro Mappers platform was used by Imran and Elbassuoni (2013) to 

classify social media messages in regard whether they can provide useful information for 

disaster response purposes. Damage classification from twitter data for road network 

assessment is investigated by Schnebele et al. (2014). 

2.1.2 Digitization 

Digitization is the second type of crowdsourcing tasks. Likewise the automated object-

based image analysis in the field of remote sensing, the product of digitization tasks is the 

delineation of readily usable objects mostly from satellite imagery (Blaschke, 2010). 

Following Albuquerque et al. (2016) digitization can be defined as: 

“In a digitisation task, a volunteer also starts with the recognition of a 

real-world object/feature in an existing piece of information, but then 

goes further to produce a corresponding digital representation (i.e., 

usually a vector geographic object).” 

OpenStreetMap is the major project which collects crowdsourced digitisations of 

topographic map features. Since 2007 a remarkable growth both in data entries and number 

of documented map features is observed (Mocnik et al., 2017). In the foundation phase of 

the project mapping the street network gained prime attention (Haklay, 2010; Neis et al., 

2011), whereas nowadays also several sophisticated features such as damaged buildings 

are part of the global OpenStreetMap (Westrope et al., 2014). 
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However, digitisation tasks are also applied by other crowdsourcing projects. For instance, 

Wikimapia provides a crowdsourced dataset of georeferenced features annotated with rich 

descriptions. This kind of dataset can function as crowdsourced place name index and offers 

an alternative to traditional gazetteers (Goodchild and Glennon, 2010). The Forest Watcher 

citizen science project crowdsources data on deforestation in Brazil. In this project 

volunteers digitize areas on satellite imagery which have been cleared due to human activity 

(Arcanjo et al., 2016). Hillen and Höfle (2015) propose a crowdsourcing approach to 

digitise building footprints from earth observation data incorporating the reCAPTCHA 

concept. 

In disaster situations and for humanitarian purposes OpenStreetMap provides a unique set 

of tools combined with an active community and therefore already supported response and 

preparedness activities in several countries. The Humanitarian OpenStreetMap Team 

created a crowdsourcing project management tool, the HOT Tasking Manager, which 

improved the ability to coordinate the mapping activity of hundreds of people. After the 

Haiti earthquake 2010 more than 490 mappers worked together, and following typhoon 

Yolanda in November 2013 more than 1,500 volunteers mapped the affected areas in the 

Philippines (Palen et al., 2015). Since 2014, the Missing Maps Project aims at proactively 

mapping regions vulnerable to crises and motivated more than 6,000 new volunteers to 

contribute to OpenStreetMap (Dittus et al., 2017). 

2.1.3 Conflation 

Conflation is proposed as the third type of crowdsourcing geographic information. The term 

is related to the fields of spatial data integration and data fusion and describes the process 

of combining geographic information from overlapping sources to retain accurate data, 

minimize redundancy, and reconcile data conflicts (Longley, 2005). Albuquerque et 

al. (2016) provide the following definition: 

“In a conflation task, volunteers interpret more than one source of 

geographic information, identify matching objects/features and bring 

them in relation to produce new geographic information.” 

For the OpenStreetMap community, conflation tasks are often performed by users with 

higher level of experience and for tasks that require specific editors such as JOSM, which 

are capable of visualising geographic information in several layers. In this manner street 

level photography derived from Mapillary data (Juhász and Hochmair, 2016), GPS traces 

and satellite imagery can be combined to map features such as sidewalks or kerbsides 

(Voigt et al., 2016). 
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Although the conflation of crowdsourced geographic information with other (authoritative 

or commercial) data sources has already been proposed and is a promising avenue for future 

research (See et al., 2016), only few projects have incorporated these tasks in their 

workflows. In the context of disaster response, Anhorn et al. (2016) present an approach to 

crowdsource the validation and updating of spontaneous shelter camps in Kathmandu, 

which evolved after the 2015 Nepal earthquake. The Geo-Wiki platform is another 

example, in which volunteers use visualisations from multiple land cover datasets which 

are conflated with geo-tagged pictures to decide which land cover type is found on the 

ground (Fritz et al., 2009). 
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2.2 Quality Assurance for Crowdsourced Geographic Information 

The emergence of volunteered geographic information and crowdsourcing as a tool to 

produce new datasets was accompanied by discussions on data quality and credibility right 

from its beginning (Flanagin and Metzger, 2008; Goodchild, 2007).  

The heterogeneity of volunteered geographic information regarding completeness, 

thematic accuracy or fitness for purpose is stressed by many researchers (Ali et al., 2016; 

Ballatore and Zipf, 2015; Fonte et al., 2015; Girres and Touya, 2010). In early research 

quality was often measured in comparison to a reference dataset (Girres and Touya, 2010; 

Neis et al., 2013). Recent research has extended the quantitative description of data quality 

of volunteered geographic information by integrating intrinsic characteristics of the 

datasets and its producers and the spatial context of the data created (Barron et al., 2014). 

These indicators allow a prediction of the data quality even if no reference dataset exists. 

Furthermore, these intrinsic indicators also reveal the impact of different quality assurance 

strategies in the field of crowdsourcing geographic information. Goodchild and Li (2012) 

have perceived three different mechanism for assuring data quality. The “crowdsourcing 

approach” relies on the validation of individual contributions by a larger group of 

volunteers that mutually reviews their edits. The reputation of individuals to produce 

reliable data functions as the basis for the “social approach”. Spatial relationships between 

individual contributions and geographical plausibility are central to the “geographic 

approach”. In each case, these approaches put a single aspect of the dataset and the 

underlying crowdsourced contributions at its core. The crowdsourcing approach highlights 

the importance of agreement among volunteers for data quality. User characteristics are the 

main driver regarding the social approach and spatial characteristics are condensed by the 

geographic approach. In the following, research results towards these three aspects of 

crowdsourced data and the associated quality assurance mechanism will be summarized. 

2.2.1 Agreement 

Goodchild and Li (2012) describe this approach as the crowdsourcing approach referring 

to the solution of problem by incorporating several people without respect to their 

individual qualification. The authors also accentuate the role of Linus’s Law for data quality 

assurance. In principal the law hypothesizes an increase in data quality if a larger number 

of volunteers contributes data. 

Haklay et al. (2010) have examined the validity of Linus Law for the positional accuracy 

of OpenStreetMap data in England in comparison to authoritative data from Ordnance 

Survey. Their results confirm that a higher number of contributors is associated with higher 
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positional accuracy. However, the authors also show that this relationship is not linear. In 

their study, data quality remains at a high level for 15 or more contributors per square 

kilometre, whereas the increase in quality is highest for the first five contributors to an area. 

The completeness of the street network in Germany can be estimated by the growth in 

length for individual street categories in combination with the number of active contributors 

for a specific region (Barron et al., 2014). For the digitisation of deforested areas, Arcanjo 

et al. (2016) utilize intensity maps together with agreement indices to aggregate multiple 

contributions. Their results further underline the non-linear relationship between overall 

accuracy and number of contributors. For their study, the overall accuracy increased with 

higher number of contributors, but then peaked and started to decrease. The results 

emphasize the importance of agreement among users for crowdsourcing digitization tasks. 

The concept of agreement is even more adopted for the analysis of crowdsourcing 

classification tasks. Given the nature of this type of tasks, a major challenge lies in the 

aggregation of multiple answers from different users into a single consistent results 

(Barrington et al., 2011). Many projects using a classification approach aggregate data 

based on majority agreement among different contributors. Albuquerque et al. (2016) 

aggregate classifications if at least 50 % of all contributors agree on the presence of roads 

or settlements in satellite imagery in a selected task area. Salk et al. (2013) use majority 

agreement for crowdsourced cropland mapping. 

The studies reviewed so far used majority agreement as a mechanism to obtain a single 

answer from multiple inputs, nevertheless there are also authors who point out the 

disadvantages of such aggregation methods (Salk et al., 2016). A problem of majority 

agreement is that it assumes that all experts are equally good. Nevertheless, given a scenario 

with one expert and several beginners which tend to give incorrect answers, majority 

agreement leads to a wrong aggregated result (Raykar et al., 2010). The problem is also 

addressed by Simpson et al. (2012), who use a Bayesian approach to combine multiple 

ratings from users with varying performance due to radically different expertise and domain 

knowledge. 

2.2.2 User Characteristics 

Since volunteered geographic information or crowdsourced data is not produced by experts 

with known credibility and reputation, but by volunteers with varying levels of experience 

and skills, user characteristics and their implications for quality have attracted many 

researchers. This is also addressed by Goodchild and Li (2012) and their description of the 

social approach. 
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A central aspect for most crowdsourcing applications lies in a vast contribution inequality 

amongst different users. In general, for many projects most data is produced by very few 

contributors. For the OpenStreetMap project several researchers have proved that a 

minority of less than 5 % of all users accounts for more than 90 % of all contributions 

(Haklay, 2016; Neis and Zipf, 2012; Yang et al., 2016). High contribution inequality is also 

observed for crowdsourced classification tasks (Albuquerque et al., 2016). Accordingly, 

some researchers differentiated volunteers using their number of total contributions. For 

instance, Neis et al. (2013) group OpenStreetMap users into “Nonrecurring Mapper”, 

“Junior Mapper” and “Senior Mapper”. 

Additionally, the origin of the contributors and its relationship to the edits have been 

identified as important aspects of user characteristics. Regarding crowdsourced land cover 

classification Comber et al. (2016b) show that differences between user groups have an 

impact on the quality of the crowdsourced data and thus may provide a potential source of 

error and uncertainty. The impact of local and remote mapping on OpenStreetMap data 

quality is analysed by Eckle and de Albuquerque (2015). The authors discuss the quality of 

remote mapping. The distinction between local and remote mapping may be important, 

since local OSM contributors know their area of interest and rely upon local knowledge, 

whereas the sole basis for remote mapping is often satellite imagery. Furthermore, cultural 

differences may affect the semantic representation of features within the global 

OpenStreetMap database and the activity and mapping practices of the contributors 

(Ballatore and Zipf, 2015; Quattrone et al., 2014). 

Expertise and domain knowledge are important user characteristics as well. Exel 

et al. (2010) identify local knowledge, experience and recognition as important dimension 

to assess user quality. Its importance is also highlighted by Dittus et al. (2016). The authors 

show that initial project experience of contributors can be crucial, especially when the 

crowdsourcing task requires some degree of expertise. In their study, Dittus et al. (2016) 

quantified each user’s degree of prior OSM experience utilizing the number of days on 

which they had contributed to OSM before they joined their first HOT project.  

2.2.3 Spatial Characteristics 

When researchers refer to the diverse quality of crowdsourced data, they often emphasize 

spatial disparities.  Furthermore, geographic laws are applied and investigated to measure 

and understand these heterogeneities. This research stream has been characterized by 

Goodchild and Li (2012) as the geographical approach towards assuring the quality of 

volunteered geographic information. 
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In general, for projects such as OpenStreetMap data quality may vary a lot regarding which 

regions will be considered. Hagenauer and Helbich (2012) analyse urban areas in 

OpenStreetMap and propose a machine-learning approach to assess unmapped or only 

partially mapped areas. Their results show the spatial heterogeneity of data completeness 

on the one hand, but on the other they also reveal that the applicability of the proposed 

solution itself is highly dependent on location. Touya and Antoniou (2016) assess the 

quality of points of interest from OpenStreetMap intrinsically by utilizing their spatial 

relations to nearby features such as buildings or streets. 

Towards the analysis and filtering of social media data Herfort et al. (2014) propose an 

approach that combines hydrological data and digital elevation models to prioritize crisis 

relevant text messages. Yan et al. (2017) use digital elevation models and tourism related 

POIs from OpenStreetMap to apply a viewshed analysis to differentiate Flickr contribution 

from locals and tourists. 

For a crowdsourcing classification task Albuquerque et al. (2016) show, that geographical 

features such as the size of a building have significant influence on the likelihood of a 

correct classification by a volunteer. These results are extended by Herfort et al. (2017) 

who confirm that disagreement among volunteers is not randomly distributed in space but 

caused by specific characteristics of the underlying geographical features. For 

crowdsourced land cover classifications Comber et al. (2016a) use a geographically 

weighted average approach to infer land cover present at locations on a 50 kilometres grid. 

Their approach obtains higher correspondence to a reference dataset in comparison to 

traditional non-spatial aggregation methods. 

Citizen science projects dealing with biodiversity monitoring incorporate spatial 

characteristics of the data produced to assess the plausibility of observations (Jacobs, 2016). 

Especially for projects with an increasing amount of incoming data, the traditional approach 

based on expert validation is not feasible anymore. The analysis of the spatial and temporal 

context of user contributions using existing observation data or information on 

environmental context can assist to validate new contributions. 



2 Related Works 

13 
 

2.3 Interplay of Crowdsourcing and Machine Learning 

Beside the works that focus solely on crowdsourcing and the analysis of the corresponding 

data quality, many researchers have highlighted the potential of crowdsourcing to support 

automated information extraction and thus analysed how crowdsourcing and machine 

learning can be combined. This nexus will be the focus of the following. 

One of the first large scale crowdsourcing approaches to support image classification tasks 

was the online game Peekaboom (von Ahn et al., 2006). Through the online game users 

helped to annotate information about what type of object is present in an image, where each 

object is located, and how much of the image is necessary to recognize it. The data derived 

function as training samples for a computer vision algorithm. Hara et al. (2014) present 

another approach that incorporates machine learning, computer vision and crowdsourcing 

to extract information on curb ramps from google street view images. The results of this 

study show that the combined approach can achieve results with the same quality as 

manually labelled datasets, but is able to reduce the time costs by 13 %. Russakovsky et 

al. (2015) developed a system that collects bounding box annotations through 

crowdsourcing using imageNet data for learning object detectors, whereas Deng et al. 

(2013) introduced an online game to crowdsource discriminative features from photographs 

to train a classifier to distinguish bird types. 

Also in the domain of social media research crowdsourcing is applied for the supervision 

of machine learning tasks. Imran et al. (2014) developed the AIDR (artificial intelligence 

for disaster response) platform, which collects human annotations of text-based social 

media messages and then automatically classifies new text messages as either informative 

or non-informative. 

In the field of earth observation Gueguen et al. (2017) present a system which was 

developed at Digital Globe for village boundary detection at 50-meter resolution. The 

system combines machine learning for identifying potential villages from very high-

resolution satellite imagery and uses a crowdsourcing classification approach to validate 

the generated polygons. Chen and Zipf (2017) use data generated by MapSwipe volunteers 

to classify chunks of satellite imagery. Their study demonstrates that volunteered 

geographic information can be successfully incorporated for building detection for 

humanitarian mapping in rural African areas.  

OpenStreetMap data has attracted the interest of several researchers as well, since the 

database contains a myriad of training samples for image interpretation and computer 

vision algorithms. Keller et al. (2016) generated a training sample from OpenStreetMap to 
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detect crosswalks on satellite imagery. Additionally, their approach utilizes the 

crowdsourcing application MapRoulette to validate the generated results and to directly 

add the detected features into the OpenStreetMap database. Hagenauer and Helbich (2012) 

use a machine learning approach to model unmapped residential areas in OSM. Their 

approach uses OSM data for training purposes. 

In addition to the research projects presented, there are further applications which integrate 

crowdsourced data. The DeepOSM project (Johnson, n.d.) aims to identify road features in 

satellite imagery by training neural networks with OSM data. The Terrapattern team (Levin 

et al., 2016) provides a visual search tool for satellite imagery. Their approach utilizes a 

deep convolutional neural network using areas where satellite images have been labelled 

in OpenStreetMap.  
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2.4 Research Gaps 

The previous sections have shown, that different types of crowdsourcing can be applied to 

generate geographic information. Crowdsourced classification tasks enable large numbers 

of volunteers to contribute, even if they have little or no experience. The MapSwipe app 

takes advantage of this fact. However, it has also been shown, that the quality of VGI data 

is still in question and that heterogeneity can be assumed for most datasets. Furthermore, 

different strategies to assure quality and influencing parameters have been presented. This 

affirms the conclusion that agreement, user characteristics and spatial characteristics need 

to be considered. Finally, there is a growing field of applications which use crowdsourcing 

in combination with machine learning techniques. 

The review of the recent research reveals that there are still gaps that need to be addressed 

to gain further insights about the quality of crowdsourced geographic information. Whereas 

crowdsourcing classification tasks have been applied to many different research domains, 

the quality of the MapSwipe dataset and the controlling variables are still underexplored. 

Furthermore, there are many studies which incorporate crowdsourced datasets to train 

machine learning models. However, only few work has been done towards utilizing 

machine learning techniques to improve the crowdsourcing workflow itself. It is still not 

fully understood how automated classifiers could help to aggregate crowdsourced 

classifications in respect to agreement, user characteristics and spatial characteristics. This 

work will therefore focus on the following research questions (RQ), each addressing a 

specific information need towards better understanding the quality of crowdsourced data. 

Whereas the questions are explored for the MapSwipe dataset, they are significant for the 

quality assurance of crowdsourcing geographic information in general. 

• RQ1: How do agreement and redundancy affect data quality? 

• RQ2: How do intrinsic user characteristics affect data quality? 

• RQ3: How do spatial characteristics of the crowdsourced classifications affect data 

quality? 

• RQ4: To what degree can automated classifiers considering agreement, user 

characteristics and spatial characteristics enhance the aggregation mechanism to 

improve data quality? 

The research questions identified will be addressed in a case study on 55 MapSwipe 

projects. The following sections of this work will further describe the methods applied and 

datasets used. 
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3 Case Study and Datasets 

This work focuses on crowdsourced data produced by volunteers using the MapSwipe app. 

For this study, data from 55 MapSwipe projects dealing with the task of building 

classification are considered. The geographic scope of these projects will be explained in 

the first part. The app and the data produced will be explained in the second step. Thirdly, 

reference datasets will be explained. These datasets are used to assess the quality of the 

MapSwipe data. All datasets used in this study are made available to the public through the 

research data repository at Heidelberg University (Herfort, 2017). 

3.1 Case Study 

MapSwipe project from different regions of the world are considered in this research.  

Figure 1 provides an overview where projects are located. Whereas most of the projects 

are designed to map buildings on the African continent, there are also projects in south 

east Asia and Latin America. The first project of our case study has been launched on 

July 30th, 2016. The last project has been finished on July 25th, 2017. Accordingly, this 

research covers about one year of MapSwipe contributions. 

The projects analysed in this work have a size ranging from very small ones, e.g. project 

“Bijagos Islands 6” to very big projects, e.g. “Nigeria for MSF 1”. In total all projects cover 

an area of more than 200,000 square kilometres. Furthermore, there are several projects 

which are part of bigger mapping activations coordinated by humanitarian organisations. 

The French NGO CartONG runs a large-scale mapping project in Madagascar which 

comprises of 11 projects. MSF UK manages projects in different regions but with a strong 

focus on sub-Saharan Africa including parts of Nigeria, South Sudan and Sierra Leone. A 

third group of projects is connected to the Malaria Elimination Campaign organized by the 

Clinton Health Access Initiative and supported by the Humanitarian OpenStreetMap Team. 

The projects in Guatemala, Botswana, Laos and Cambodia are part of this program. 

A more detailed perspective is chosen for a second study region containing four projects in 

south west Laos (“6807 - Eliminate Malaria Laos”, “6794 - Eliminate Malaria Laos 2”, 

“6930 - Eliminate Malaria Laos 3”, “7064 - Eliminate Malaria Laos 4”). These projects are 

part of the Malaria Elimination Campaign mentioned above. Within the extent of these 

projects all buildings have already been mapped and validated in OpenStreetMap after 

finishing the MapSwipe workflow. This provides the unique situation, that building 

footprint reference data can be extracted from the OpenStreetMap database. Figure 2 shows 

where these projects are located. 
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Figure 1 MapSwipe Projects 
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Figure 2 MapSwipe Projects in Laos 
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3.2 MapSwipe 

The MapSwipe app was developed by MSF as part of their support for the Missing Maps 

project, which was established in November 2014 by the American Red Cross (ARC), the 

British Red Cross (BRC), HOT and MSF. In this section, the app and the underlying data 

model will be explained. Data from 55 projects containing more than nine million tasks and 

more than 30 million individual classification results contributed by about 7,500 users are 

considered in this study (see Table 1). The selected projects in Laos cover about 10 % of 

the global dataset. 

Table 1 Size of the MapSwipe Dataset 

Projects Tasks Results Users 

All (55 projects) 9,081,290 31,932,500 7,518 

Laos Selection (4 projects) 941,589 3,275,380 1,534 

 

3.2.1 MapSwipe App 

MapSwipe is a mobile crowdsourcing application designed for smartphones and tablets to 

generate geographic information from satellite imagery. It can be downloaded from 

Google’s Playstore or Apple’s Appstore. The app incorporates a crowdsourcing 

classification task. MapSwipe users classify tiles of satellite imagery into four different 

categories (“No”, “Yes”, “Maybe”, “Bad Imagery”). For the projects analysed in this work 

users are always asked whether they can spot buildings in the satellite imagery. They can 

indicate this by tapping and swiping. 

The mapping interface consists of six squares, each square representing one tile of satellite 

imagery. Users can mark each of these squares individually. If no buildings are present in 

the shown imagery, swiping to the left will load six new squares to be classified. At the top 

of the interface (see Figure 3) users are instructed what features to look for, in our case this 

is always buildings. The projects analysed in this study use Bing satellite imagery as the 

basis for the crowdsourced classifications. Given the different locations of the projects, 

imagery is provided from different sensors and captured at various timestamps. 

At the bottom, a progress bars shows how many tasks the user already processed of the 

current mapping session. This session is also referred to as “group”. In section 3.2.2 the 

definition of a group will be explained in further detail. 
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Figure 3 MapSwipe App Interface 

3.2.2 MapSwipe Data Model 

The MapSwipe crowdsourcing workflow is designed following an approach already 

presented by Albuquerque et al. (2016). Four concepts are important in the following: 

projects, groups, tasks and results (Figure 4). 

A project in MapSwipe is primarily characterized by an area of interest, a set of satellite 

imagery tiles and a feature type to look for. In addition, each project defines the number of 

users that are requested to classify each individual satellite imagery tile. Furthermore, 

background information on the context of the mapping request is provided. The information 

is uploaded through a web form by project managers. Table 2 provides further details on 

each project parameter. 
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Figure 4 Data Model: Project, Groups, Tasks and Results for Project “Madagascar 9” 
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Table 2 Project Information 

Parameter Description 

Id Each project has a unique identifier. This Id will be generated 

automatically and cannot be chosen by the project manager. 

Name Each project has a name, which will be shown in the app. Often project 

in the same region have similar names, e.g. “Madagascar 1” and 

“Madagascar 2”.  

Geometry A project is characterized by its multi polygon geometry. Thus, projects 

can theoretically consist of several distinct regions. Nevertheless, most 

projects focus on a single area. 

Redundancy Project managers can define how often each individual task will be 

classified by MapSwipe volunteers at minimum. For most projects this 

redundancy is set to three. 

Imagery Provider This parameter refers to a provider of a tile map service. For projects of 

this study imagery is provided by Bing. Tiles of satellite imagery can be 

obtained from a tile map service endpoint. Each tile can be identified 

using a quad key representation of its x, y and z coordinates. Tiles are 

projected in WGS 84 Web Mercator (Auxiliary Sphere). This 

corresponds to the EPSG code 3857.  

Project Details The project details describe the goal and scope of the project. This is 

visualized in the app and is important to stir the volunteer’s motivations. 

In general, the project is described by five to ten sentences. 

Look For The parameter defines which type of features are mapped in the project. 

This will be visualized in the mapping interface of the app. For this study, 

volunteers are always asked to look for buildings only. 

 

To create a new mapping task, the overall project extent is split up into many single tasks. 

Tasks are the smallest unit in the MapSwipe data model. They are derived from the area of 

interest by gridding it into many small equal-sized rectangular polygons. Each task 

corresponds to a specific tile coordinate from a tile map service (TMS) using a web 

Mercator projection as its geographical reference system. Therefore, each task is 

characterized by a geometry and its tile coordinates, which describe its x, y and z position. 

For the projects analysed in this project, the tiles for all tasks are generated at zoom level 18. 

Taking the latitude of each task location into account the satellite imagery has a maximum 
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spatial resolution of ~ 0.6 meter at the equator. Table 3 describes each task parameter in 

greater detail.  

Table 3  Task Information 

Parameter Description 

Id Each task can be identified by its Id. The Id is a composition of its 

position in the corresponding tile map system, which can be described 

by the x, y and z coordinates. 

Tile Z The z coordinate of the tile defines the zoom level. Greater values for z 

will correspond to higher spatial resolution of the corresponding image. 

For most regions Bing provides images up to zoom level 18. For aerial 

imagery or images captured by UAVs even higher z values are valid.  

Tile X The x coordinate characterises the longitudinal position of the tile in the 

overall tile map system taken the zoom level into account. The x 

coordinates increase from west to east starting at a longitude of -180 

degrees.  

Tile Y The y coordinate characterises the latitudinal position of the tile in the 

overall tile map system taken the zoom level into account. The latitude 

is clipped to range from circa -85 to 85 degrees. The y coordinates 

increase from north to south starting at a latitude of around 85 degrees.  

Geometry Each task has a polygon geometry, which can be generated by its x, y 

and z coordinates. At the equator the task geometry is a square with an 

edge length of around 150 metres covering circa 0.0225 square 

kilometres. Due to the web Mercator projector the task geometry will be 

clinched with increasing distance to the equator. At the same time the 

area per task will decrease. 

Tile URL The tile URL points to the specific tile image described by the x, y, and 

z coordinates. Usually, the image has a resolution of 256 x 256 pixels. 

However, some providers also generate image tiles with higher 

resolution (e.g. 512 x 512 pixels). 

 

Single MapSwipe projects can contain up to several hundred thousand tasks. This can pose 

a challenge to fast and performant communication between clients and server if many 

volunteers contribute data at the same time. Therefore, groups have been introduced to 

reduce the amount of client requests on the backend server. Groups consists of several tasks, 

that will be shown to the user in one mapping session. The grouping algorithm uses the 
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extent of a project as an input and generates chunks of tasks lying next to each other. Each 

group has a height of three tasks and a width of approximately 70 tasks. Further details on 

each group parameter can be obtained from Table 4. 

Table 4 Group Information 

Parameter Description 

Id Each group can be identified by its Id. 

Tasks Each group contains several tasks. The information for all tasks (see 

Table 3) of the group will be stored in an array. 

Geometry The group geometry is defined by the union of all assigned task 

geometries. 

Completed Count Once a group has been completely mapped by a volunteer the completed 

count of the corresponding group will be raised by one. The completed 

count of the group is used to assess the overall progress of each project. 

For doing so the completed count is compared to the redundancy 

required (see Table 2). During the mapping process groups will be served 

in ascending completed count order. Thus, groups with low completed 

count will be served first. 

 

Results contain information on the user classifications. However, only “Yes”, “Maybe” and 

“Bad Imagery” classifications are stored as results. Whenever users indicate “No building” 

by just swiping to the next set of tasks, no data entry is created. “No Building” 

classifications can only be modelled retrospectively for groups where a user also submitted 

at least one “Yes”, “Maybe” or “Bad Imagery” classification. Figure 5 provides an 

overview on this workflow. Initially, for user A all groups are selected, where this user 

submitted at least one “Yes”, “Maybe” or “Bad Imagery” result. For these groups all 

intersecting tasks are selected in the second step. Finally, these tasks and the corresponding 

results are joined. All tasks where no classification result is obtained, will be marked as 

“No Building”. This way of processing the data bears one limitation. Groups where user A 

classified all tasks as “No Building” cannot be considered, since they are not stored as 

results in the MapSwipe database. Therefore, the workflow can only track “No Building” 

classifications for groups for which a user contributed at least one time differently. For each 

result task Id, timestamp and user Id are captured additionally. Table 5 describes these 

parameters in further detail. 
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Figure 5 Workflow to derive all results including "No Building Classifications" 

Table 5 Result Information 

Parameter Description 

Id Each result can be identified by its Id. The Id is a combination of task Id 

and user Id. 

Task Id Each result corresponds to a specific task, which can be described by its 

Id. 

User Id Each result is contributed by a specific user. Users can be identified by 

their Id. 

Timestamp The timestamp provides information on the time the user completed the 

group and uploaded the result data. Results within the same group are 

assigned the same timestamp. 

Result This parameter describes the given answer. 1 corresponds to “Yes”, 2 

corresponds to “Maybe” and 3 corresponds to “Bad Imagery”. Each user 

can only submit one result per task. 
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3.3 Reference Datasets 

In this study three reference datasets are deployed to validate the crowdsourced 

classifications. First a set of manually labelled data will be explained. In the second step, a 

reference dataset derived from the MapSwipe data itself will be introduced. Thirdly, a 

reference based on OpenStreetMap building data for four projects in Laos is described. 

3.3.1 Manually Labelled Reference Dataset 

Given the large size of the MapSwipe dataset, it is impossible to validate every single 

classification. Therefore, tasks were stratified according to the overall user agreement and 

afterwards selected randomly. The stratified random sampling approach applied in this 

study is well described by Card (1982) and will be further explained in section 4.1.2. For 

the sampling tasks with six or more contributors were selected to enable the analysis of the 

impact of redundancy on overall data quality. In total, the reference dataset consists of 

1,224 tasks (Table 6). The tasks of the reference sample have been labelled manually by 

two experts. For each task the experts were asked to classify into one of the following three 

classes: “no building”, “building”, “bad imagery”. Cases of disagreement between the 

experts were considered separately and discussed between both experts to reach a final 

decision. 

Table 6 Expert Reference Dataset 

Projects Tasks Results Users 

All (55 projects) 1,224 9,340 2,594 

 

3.3.2 Crowd Based Reference Dataset 

Since external reference datasets are not available for most of the regions analysed in this 

study, the decision was made to use the majority answer for each task as reference to assess 

user characteristics. Thus, this reference dataset contains 9,081,290 tasks. Nevertheless, 

this also limits the validity of the results to a certain degree, since the majority answer can 

lead to incorrect classifications as well. This needs to be considered when interpreting the 

results based on this reference dataset. 

3.3.3 OpenStreetMap Reference Dataset 

The OpenStreetMap reference dataset covers the extent of four MapSwipe projects in Laos 

(“Eliminate Malaria Laos”, “Eliminate Malaria Laos 2”, “Eliminate Malaria Laos 3”, 

“Eliminate Malaria Laos 4”) depicted in Figure 2. In total, it contains 324,152 individual 

buildings. The data was obtained from bbbike’s planet.osm extracts in ESRI shapefile 
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format. The data is directly extracted from the OpenStreetMap planet file which contains 

all OpenStreetMap edits. 

To a great extent the OpenStreetMap data was captured by HOT volunteers. The mapping 

efforts have been organised using the HOT Tasking Manager tool. The area of interest 

corresponds to the following Tasking Manager project Ids: 3358, 3359, 3362, 3364, 3383, 

3391, 3392, 3393, 3399 and 3400. The mapping has been part of Clinton Health Access 

Initiative’s malaria program. All projects have been completely mapped and validated in 

the Tasking Manager. Thus, a first quality assurance was already applied. The HOT 

Tasking Manager projects rely on aggregated and processed MapSwipe data. Therefore, 

only built up areas that have been identified by the MapSwipe volunteers are considered 

for the detailed mapping in OpenStreetMap. Due to this fact, this dataset may be more 

suited to assess the precision of the MapSwipe dataset towards detecting buildings rather 

than to assess its completeness and sensitivity. The OpenStreetMap building data is 

intersected with the geometry of the MapSwipe tasks. For each MapSwipe task it is 

analysed whether the task contains at least one building. For task which contain a building, 

the number of buildings and the sum of the area of all buildings is generated additionally 

(Table 7).   

Table 7 Reference Dataset based on OpenStreetMap Building Information 

Parameter Description 

Task Id The reference dataset is computed for MapSwipe task geometries. The 

corresponding MapSwipe task Id is captured. 

Building Boolean value (0,1). All tasks which intersect with at least one building 

geometry from OpenStreetMap will be assigned 1. 

Building Count This parameter refers to the number of individual buildings that intersect 

with the task geometry. 

Building Area This parameter refers to the sum of the area of all buildings that intersect 

with the task geometry. 
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4 Methods 

In this section the overall methodology will be presented. The analysis is divided into four 

parts. In the first step the quality of the MapSwipe dataset will be evaluated using agreement 

amongst contributors. The second part investigates intrinsic user characteristics. In the third 

step spatial characteristics of the dataset are analysed. Finally, the performance of a 

machine learning approach to combine crowdsourced classifications from several users is 

assessed. 

4.1 Agreement Analysis 

Agreement is a central variable to aggregate multiple answers into a consistent single result. 

This section investigates the quality of the MapSwipe dataset in respect to different 

agreement-based aggregation methods and number of classifications per task in comparison 

to an expert reference dataset. The total number of classifications and the distinct count for 

each individual class are captured for each task to calculate agreement. In this study, three 

different variables are computed.  

4.1.1 Definition of Agreement 

Scott’s Pi is calculated using Equation 1, as the proportion of agreeing pairs of 

classifications out of all the possible pairs of assignment. In the following, this will be 

referred to as agreement. This is computed following Fleiss (1971). Accordingly, n is the 

number of ratings per task, k is the number of classes in which assignments are made, and 

nij is the number or users which assigned the i-th task to the j-th class. The building 

classification index is defined as described by Equation 2. The index indicates the 

proportion of building classifications on all classifications per task. Likewise, the no 

building classification index is calculated as the proportion of no building classifications 

on all classifications per task (Equation 3). 

Equation 1: Scott's Pi �� = 1� ∗ (� − 1) ∗ 
 ���� − ���



���  

Equation 2 Building 

Classification Index BI = ����������  

Equation 3 No Building 

Classification Index 
��� = ��� ���������  
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4.1.2 Analysis of Agreement for Correct and Incorrect Classifications 

The analysis starts with a description of the distribution of agreement, building index and 

no building index for the MapSwipe dataset. For doing so, violin plots are computed, which 

combine a density distribution visualization and boxplot. 

Furthermore, correct and incorrect user contributions are defined using the expert reference 

dataset. A user contribution is considered as correct, if it matches the expert answer. 

“Maybe” contributions by volunteers are considered as correct only if they contain a 

building. “Maybe” contributions for which the experts classified as “no building” or “bad 

imagery” are considered incorrect. For each agreement variable a conditional density plot 

is generated. These plots depict how the conditional distribution of the categorical variable 

y (in our case “correct”, “incorrect”) changes over a numerical variable x (in our case 

agreement, building index, no building index). 

4.1.3 Aggregation and Redundancy Analysis 

Majority agreement is a common method to aggregate multiple results into a single answer. 

Besides majority agreement several further aggregation rules can be defined considering 

different number of users per task and varying aggregation thresholds. The aggregation 

threshold defines the minimum number or proportion of classifications of type x (e.g. 

building), to aggregate the overall result into x (e.g. building). 

For example, given three contributions from different users, three possible aggregation 

methods regarding building classifications exist. A strong aggregation threshold would 

require that all users agree (consensus agreement) on a building classification to aggregate 

the final answer as building. Majority agreement would only require minimum 50 % of the 

users to choose building (two out of three users for our example). Additionally, aggregation 

can also incorporate building classifications from a minority. For our example, one building 

classification per task would be enough, to aggregate as building in the result. According 

to this logic the number of users per task determines how many different aggregation 

methods can be utilized. The higher the number of contributors, the more potential 

aggregation thresholds exist. In this research, tasks with six users are considered. Therefore, 

the analysis is conducted for up to six different aggregation methods. 

To evaluate the quality of the MapSwipe dataset depending on the aggregation threshold 

and number of users the expert reference dataset (see section 3.3.1) is utilized. A confusion 

matrix is generated using the aggregated answers and the answers from the expert reference 

dataset. The confusion matrix illustrates true positives (TP), false positives (FP), true 
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negatives (TN) and false negatives (FN). Since three different classes are investigated these 

FP, TN and FN split up into two groups for each class. 

True positives are features for which the aggregated classification result and the reference 

dataset coincide. For each class, features indicated in the reference dataset but not in the 

aggregated classification result are regarded as false negatives. For building classifications 

these false negatives split up into FNno building and FNbad image. Consequently, false positives 

are features that are indicated as such in the aggregated classification result, but not in the 

reference dataset. An incorrect building classification can therefore either be FPno building or 

FPbad image. For true negatives both datasets agree that the specific class is not present. 

Each field in the confusion matrix is further processed to account for the bias produced by 

the stratified sampling approach (Card, 1982). This approach is chosen due to the 

heterogeneous proportion of “No Building”, “Building” and “Bad Image” classifications 

and between “Consensus” and “Disagreement” tasks in the MapSwipe dataset. Figure 6 

provides an overview on these proportions for tasks with six classifications and considering 

the majority answer. A simple random sample would oversample classes with high 

frequency (e.g. “No Building Consensus”), but undersample categories of low frequency 

(e.g. “Building Consensus”). The proportions are also listed in Table 8. The table further 

depicts the number of samples selected for each stratum. 

 

Figure 6 Proportion of Disagreement and Consensus Tasks per Class 

 

Table 8 Distribution of Samples 

 Consensus Disagreement 

Class No Building Building Bad image No Building Building Bad image 

Proportion 67.9 % 3.6 % 1.5 % 15.7 % 7.9 % 3.3 % 

Samples  530 84 36 321 176 77 
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Table 9 Contingency Table Format (following (Card, 1982)) 

 M  

T 
 1 2 … r  1 n11 n12 … n1r n1. 2 n21 n22 … n2r n2. … … … … … … r nr1 nr2 … nrr nr.   n.1 n.2 … n.r n 

 

To evaluate the quality of the aggregated contributions we utilize the following metrics, 

commonly applied to measure the performance of machine learning and information 

retrieval approaches: accuracy, sensitivity, precision, f1 score. For doing so, the following 

variables are defined. The total number of tasks is referred to as n. Furthermore, ni. is 

defined as the total number of tasks in the i-th row (e.g. total number of building 

classifications in the reference dataset) and n.j is defined as the total number of tasks in j-

th column (e.g. total number of building classifications in the MapSwipe dataset, see Table 

9). The marginal distributions of T (true, “reference”) and M (map, “crowdsourced”) are 

defined as pi and πi. The joint probability distribution of T and M is described by pij.  
Accuracy is calculated for the whole dataset, whereas sensitivity, precision and f1 score are 

computed separately for each class (“no building”, “building”, “bad image”). The statistics 

are computed as depicted by Equation 4, Equation 6, Equation 8 and Equation 10 

(Card, 1982; Sokolova and Lapalme, 2009). The uncertainty of each parameter will be 

derived following Card (1982) as described in Equation 5, Equation 7 and Equation 9. The 

functions are implemented in the python programming language. 

The derived statistics will be interpreted and compared among the different aggregation 

methods. In total, 21 methods will be explored and visualized in the style of an annotated 

heatmap. Finally, rules for aggregation will be defined based on the results obtained. These 

rules consider different number of users per task and will be applied to all tasks of the 

dataset. In the following this aggregated answer will be referred to as “crowd answer”. 
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Equation 4 Accuracy �)* =  
 +�  ���  /�.� -
���  

Equation 5 Variance of 

accuracy 
V(�)*) = 
 /�� (+� −  /��)-

��� / �.� 

Equation 6 Precsion 01�� =  ���  / �.� 

Equation 7 Variance of 

Precision V(λ)��) = /�� (+� − /��)/(+�� �.� ) 

Equation 8 Sensitivity 3)ii =  +�/45  ����.� 

Equation 9 Variance of 

Sensitivity 
V63)ii7= pii pi-4 :pii 
 pij6πj-pij7n.j + (πi-pii)(pi-pii)2/n.ji  r

j≠i = 

Equation 10 F1 Score >1�� =  2?/�2?/� +  @/� +  @�� 

Equation 11 Standard 

deviation S(x) = CV(x) 
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4.2 User Characteristics Analysis 

Previous research has shown, that crowdsourcing results are influenced by the 

characteristics of individual users. The analysis of intrinsic user characteristics may 

therefore open new opportunities to understand and improve the quality of crowdsourced 

geographic information. This part investigates to what degree the probability of correct and 

incorrect classifications can be explained by characteristics of the users at the point in time 

they contributed the data. First, this section provides several definitions and variables of 

user activity and user performance. In the second part, the contribution quality of 

MapSwipe users is analysed towards their performance. Finally, it is tested whether users 

improve their performance with ongoing activity. 

4.2.1 Definition of User Activity and User Performance 

A characterization of users according to their contribution history is essential to estimate 

the quality for each user.  This understanding enables to generalize the results so that they 

can be used to improve mapping instructions or the aggregation procedure. Therefore, 

variables of user characteristics are defined towards intrinsically quantifying user activity 

and user performance. User activity describes the amount of data or time each individual 

volunteer contributed to MapSwipe (Table 10). A mapping session is defined as a 

continuous usage of the MapSwipe app without breaks longer than 12 hours. The concept 

of an edit session has been introduced by Geiger and Halfaker (2013) to measure 

participation in Wikipedia. Dittus et al. (2017) applied it to evaluate crowdsourcing in 

humanitarian mapping. User performance variables are defined by constructing a confusion 

matrix for each user’s classifications using the crowd answers as reference. They are 

computed cumulatively for each user and each completed group. Changes in the user 

performance over time can be captured following this approach. For example, for a user 

who contributed 15 groups, user performance variables are computed 15 times. First, a 

descriptive analysis of contribution inequality is performed. Furthermore, the distribution 

of user activity and user performance is examined using violin plots. Based on this analysis 

a group of variables will be selected for further use in the upcoming sections of this study. 

Table 10 User Activity and Performance Variables 

User Activity User Performance 

number of contributions accuracy 

number of completed groups (no building, building, bad image) sensitivity 

number of different projects (no building, building, bad image) precision 

number of mapping sessions (no building, building, bad image) f1 score.  
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4.2.2 Analysis of User Performance and Data Quality 

The impact of user performance on data quality is analysed using the expert reference 

dataset. All user classifications are grouped into either “correct” or “incorrect” as indicated 

by the reference. For no building classifications the impact of overall accuracy, no building 

precision and no building sensitivity are investigated. Likewise, accuracy, building 

precision and building sensitivity are explored for building classifications. Correct and 

incorrect bad image classifications are analysed towards potential influence of accuracy, 

bad image precision and bad image sensitivity. 

For each group, violin plots of the distribution of user performance variables are generated 

to investigate differences between correct and incorrect user classifications. In the next step 

mean values are compared by conducting a Mann-Whitney-U test. This nonparametric test 

is used to determine whether correct and incorrect classification are significantly different 

in respect to the central tendencies of user performance. Thirdly, conditional density plots 

are derived to visualize how the conditional distribution of correct and incorrect 

classifications changes with increased user performance. 

The same methods are applied to the Laos dataset. However, due to the limitations of the 

OSM reference dataset only building classifications are considered. The results for both 

reference datasets are compared and interpreted to identify user characteristics that are 

associated with high or low data quality.  

4.2.3 Analysis of Performance Improvement with Higher Activity 

It is assumed that by contributing more data users gain experience in solving mapping tasks. 

This section investigates whether this hypothesis can be validated and how the learning 

curve can be quantified. This analysis is conducted using the cumulative user performance 

variables defined in section 4.2.1. In total, this dataset contains information on 7,518 users 

and up to several hundred timestamps for each contributor.  

For every number of completed groups the mean performance off all users is computed. 

Additionally, the standard deviation is derived to estimate variability for each step. A 

Mann-Kendall test is applied to test whether the mean performance increases with higher 

activity. The Mann-Kendall test investigates whether there is a statistically significant 

upward or downward trend of a variable over time.  
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4.3 Spatial Characteristics Analysis 

The geographic approach described by Goodchild and Li (2012) emphasizes that spatial 

relations can be used to estimate the quality of crowdsourced datasets. It is the goal of this 

part to quantify to what degree the probability of correct and incorrect classifications can 

be explained by the spatial distribution of all crowdsourced classifications. First, an 

analysis of the spatial distribution of the MapSwipe dataset is conducted. Spatial 

characteristics for each task are defined in the second part. Then, an analysis is performed 

to test for statistically significant differences between correct and incorrect classifications. 

4.3.1 Analysis of Spatial Distribution 

The spatial distribution of agreement and building index is analysed by performing 

Moran’s I statistics for spatial autocorrelation (Moran, 1950). The metrics are applied for 

all 55 projects considered in this study and provide a measure for the degree of clustering 

of tasks with high agreement. Differences among projects are investigated using boxplots. 

Additionally, an exemplary visual interpretation of the data is conducted for the project 

“Laos 6”. 

4.3.2 Definition of Spatial Characteristics per Task 

For the definition of the spatial context a kernel density estimation is calculated. The kernel 

density is computed using the algorithm proposed by Silverman (1986) and the 

implementation in ArcMap 10.4.1. For each task polygon the kernel density of the centre 

point is considered. The search radius of the function is set to 440 metres, which 

corresponds to a neighbourhood of 24 features for each task. The input value for the density 

estimation is a binary layer. Thus, the kernel density of building classifications in computed 

using all tasks as input where at least one user assigned the “building” class (hatched tasks 

in Figure 7). Accordingly, the kernel densities for “no building” and “bad image” 

classifications are calculated. In the following the kernel density for each class will be 

referred to as “no building class density”, “building class density” and “bad image class 

density”. Figure 7 provides an example for the distribution of building class density. Blue 

colours highlight a high kernel density. For example, task [11] is surrounded by 23 other 

tasks which have been classified as building and is characterized by a high kernel density 

of around 43 per square kilometre. On the contrary, for task [1] no building classification 

can be observed in the spatial surrounding. The kernel density for this task is zero. Spatial 

outlier tasks, e.g. task [5], are described by a kernel density greater than 0 and smaller 

than 10. Tasks at the edge of larger clusters of building classifications or with some further 

building classifications in their neighbourhood are characterized by density values ranging 

from 10 to 25. 
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Figure 7 Kernel Density for Building Classifications 

4.3.3 Analysis of Spatial Characteristics for Incorrect and Correct Classifications 

The impact of spatial characteristics on data quality is analysed using a random sample of 

1,000,000 classifications from the crowd reference dataset. All classifications are grouped 

into either “correct” or “incorrect” as indicated by the reference. For the analysis all 

contributions are further differentiated into “no building classifications”, “building 

classifications” and “bad image classifications”. For these groups the impact of no building 

class density, building class density and bad image class density on data quality is 

investigated. 

Violin plots are computed to investigate differences in kernel density for correct and 

incorrect classifications. The distributions are tested for statistically significant differences 

applying a Mann-Whitney-U test. The impact of kernel density on data quality is further 

analysed by computing conditional density plots. These plots show how the conditional 

densities of correct and incorrect classifications change when increasing kernel density 

variables. The same methods are applied to the Laos dataset. However, due to the 

limitations of the OSM reference dataset only building classifications are considered. The 

results for both reference datasets are compared and interpreted to identify spatial 

characteristics that are associated with high or low data quality.  
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4.4 Machine Learning Models 

The last part of the methodology section explores to what degree automated classifiers 

considering agreement, user characteristics and spatial characteristics can improve the 

performance of aggregating multiple classifications into a single result. The results are 

compared to the results of a simple agreement-based aggregation method. The goal of this 

section is to bring together “crowdsourcing”, “social” and “geographic” quality assurance 

approaches and characteristics of the dataset. 

4.4.1 Logistic Regression Analysis 

After the exploratory analysis of the factors that drive data quality a logistic regression 

model is utilized to assess how good task containing buildings can be predicted. The logistic 

regression model is performed on a task basis. The model incorporates agreement, building 

index and no building index. Furthermore, no building class density, building class density 

and bad image class density are considered. However, for each task several different users 

with varying user characteristics contributed data. Therefore, the individual user 

characteristics are aggregated into single variables per task. In the study, user 

characteristics of each task are defined as the average user characteristics of all individual 

contributions of the same class (“no building”, “building”, “bad image”).  For example, the 

average overall accuracy, no building precision and no building sensitivity are computed 

for each task using all no building classifications. Likewise, user characteristics are 

generated from building and bad image classifications. Table 11 depicts nine user 

characteristics considered for each task. Missing values are imputed using the overall mean 

of each variable. In the pre-processing variables are tested for independence and 

multicollinearity using a correlation matrix and by inspecting variance inflation factors 

(VIFs). The logistic regression analysis is performed for the Laos dataset. 

Table 11 User characteristics per task 

No building Building Bad Image 

Average accuracy Average accuracy Average accuracy 

Average no building precision Average building precision Average bad image precision 

Average no building sensitivity Average building sensitivity Average bad image sensitivity 

4.4.2 Performance of Machine Learning based Aggregation 

In the next step three different machine learning based aggregation methods are reviewed. 

In this study, random forest, logistic regression and neural network classifiers are applied 

to aggregate crowdsourced classifications from MapSwipe. The machine learning models 

classify each task into either “no building” or “building”. The analysis is performed for the 
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Laos dataset and implemented in the python programming language. Random forest and 

logistic regression functions are applied as provided by the open-source scikit-learn library. 

Neural network functionality is provided by the python deep learning library Keras. Keras 

is a high-level neural network API.  

In the initial phase the tasks of the Laos dataset are split up into training and testing samples. 

The fraction of the training sample is set to 0.3 which corresponds to circa 280,000 training 

samples. The samples are chosen randomly. Accordingly, about 660,000 tasks (70 %) of 

the Laos dataset are used for testing. The derived models are validated using the testing 

dataset. 

The performance of the machine learning based aggregation is investigated by constructing 

a confusion matrix. The data obtained from OSM functions as a reference. The derived 

information of true positives, true negatives, false positives and false negatives are the basis 

for the assessment of overall accuracy, building precision, building sensitivity and building 

f1 score. A confusion matrix is also constructed to assess the performance of the 

aggregation method proposed in section 4.1.3. This simple crowd answer aggregation is 

only based on agreement and provides a baseline to evaluate the performance of the 

machine learning based aggregation. 

Finally, the random forest based aggregation is analysed towards its performance in respect 

to decreasing training sample size. For doing so, accuracy, building precision, building 

sensitivity and building f1 score are examined for training sample sizes from 280,000 

samples (30 %) to about 500 samples (0.05 %). 
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5 Results and Discussion 

This section presents the results of the analysis towards investigating the research questions 

identified in section 2.4. The first part wraps up the agreement analysis (RQ1). In the next 

two sections the findings for user characteristics (RQ2) and spatial characteristics (RQ3) 

are presented. Finally, the performance of the machine learning classifiers is shown (RQ4). 

5.1 Agreement Analysis 

In the first step the distribution of agreement, building index and no building index are 

analysed. The violin plots (Figure 8) illustrate the distribution for all tasks of the MapSwipe 

dataset. The majority of all tasks shows a high agreement. Most of these tasks even reach 

consensus agreement. However, this distribution is dominated the high number of tasks, 

for which no building classifications have been assigned.  

   
Figure 8 Distribution of Agreement, No Building Index and Building Index 

5.1.1 Analysis of Agreement for Correct and Incorrect Classifications 

The impact on agreement, building index and no building index on classification accuracy 

is depicted by the conditional density plots (Figure 9). The figures confirm the hypothesis 

that tasks with a higher agreement contain fewer incorrect classifications. Vice versa, tasks 

with a considerable disagreement (e.g. building index of 0.5, or no building index of 0.5) 

are most likely to contain many incorrect classifications. Remarkably, for tasks with a 

building index greater than 0.8 almost perfect accuracy can be observed. A high agreement 

is strongly associated with good data quality. 

   
Figure 9 Conditional Density of Agreement, Building Index and No Building Index 
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5.1.2 Aggregation Threshold and Redundancy Analysis 

In the next step, the performance of different aggregation methods regarding aggregation 

threshold and number of contributors per task is investigated. The overall accuracy varies 

between 82 % and 95 % and shows a slight increase with higher number of users (left to 

right in Figure 10). At the same time the accuracy varies for different aggregation 

thresholds (from bottom to top in Figure 10). Whereas the lowest accuracy is always 

achieved for a soft aggregation method (e.g. a building count threshold of one), the 

differences in overall accuracy for higher thresholds are only marginal. Statistically 

significant differences cannot be obtained for the higher thresholds as indicated by the 95 % 

confidence interval. Due to the biased distribution of tasks regarding map classes in the 

MapSwipe dataset, the analysis of accuracy alone is not sufficient to judge the fitness for 

purpose of each aggregation method. 

Since the MapSwipe projects considered in this study are designed towards the 

identification of inhabited areas, the ability of each aggregation method to achieve a high 

quality for the building class is of prime importance. The analysis of the f1 scores for 

building classifications reveals greater distinctions among the different aggregation 

methods (Figure 13). However, likewise to the previous findings a low building count 

threshold always produces worst results. But, the results also indicate that with higher 

number of users data quality increases. This increase is not linear but rather stepped. There 

is considerable growth up to three users and when increasing the number of users from four 

to five. Hence, no differences in quality are obtained if three and four or five and six users 

classify each task. 

The insights from the analysis of the building classification f1 score can be reinforced by 

looking at the statistics for building precision and building sensitivity. Choosing a low 

building count threshold will always produce a low building precision regardless the 

number of users per task. Contrasting building precision and building sensitivity puts 

emphasize on another critical issue when analysing data quality. The correct choice of an 

aggregation method depends on the purpose the data should be utilized for. Almost perfect 

building precision (with high confidence) is obtained choosing three or more users and a 

very high building count threshold (Figure 11). For example, when using building 

consensus aggregation for five users an aggregated building classification will be correct 

with a probability of 99 % ± 1.2 %. At the same time, building precision will always 

decrease when choosing a lower building count threshold (e.g. 35 % ± 4.2 % for five users 

and building count threshold of one). 
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Figure 10 Overall Accuracy 

 

  
Figure 11 Building Classification Precision 

 

  
Figure 12 Building Classification Sensitivity 

 

 
Figure 13 Building Classification F1 Score 

 

 



5 Results and Discussion 

44 
 

When analysing building sensitivity, the opposite characteristics can be observed (Figure 

12). Highest sensitivity is obtained for a low building count threshold and a high number 

of users. For instance, a sensitivity of 97 % ± 5 % is reached for six users and a building 

count threshold of one. Crowdsourcing projects which require a very high completeness of 

a specific class may therefore prefer a higher number of users, although this also induce a 

higher workload. 

Nevertheless, the main challenge lies in finding a good compromise. The analysis reveals 

that for the MapSwipe dataset quality increases given a higher number of users. Soft 

majority agreement produces the best results regardless the number of users. The best 

results in respect to the trade-off between building precision and building sensitivity can be 

reached when choosing a minimum number of five contributors and a building count 

threshold of three. In the following of this study, the individual classifications per task will 

be aggregated using these findings. Thus, soft majority agreement will be applied. This 

aggregated result will be referred to as crowd answer from here on. 

5.1.3 Discussion 

The conditional densities of agreement and building index for correct and incorrect 

classifications show that majority agreement may lead to incorrect results for task with high 

disagreement. For these uncertain tasks using agreement as the only parameter to aggregate 

may not lead to the best solution. 

These initial findings confirm what has been shown by Albuquerque et al. (2016). The 

analysis of agreement and redundancy shows that the MapSwipe dataset provides 

information on human settlements with an accuracy of more than 90 % for most of the 

tested aggregation methods. These results show higher performance in comparison to the 

one of automated approaches to detect buildings from very high resolution remote sensing 

data. For instance, Vakalopoulou et al. (2015) achieved an average sensitivity of 80% and 

an average precision of 90%. Klotz et al. (2016) provide information on the accuracy of the 

global urban footprint data and global human settlement layer for central Europe. Their 

results show, that accuracy ranges between 0.8 and 0.9, and built-up areas can be identified 

with a sensitivity of 70 – 85 %. Gueguen et al. (2017) present an approach to detect village 

boundaries, which has an average sensitivity of 84 % and an average precision of 70 %. In 

comparison to these products the MapSwipe approach can provide a valuable source of 

information on human settlements. However, a limitation of the approach presented in this 

study is determined by the small size and geographic scope of the expert reference dataset. 

This is expressed in the large confidence intervals for building precision and building 

sensitivity. Furthermore, it is not fully understood how the agreement varies for different 
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regions. Future research should therefore dig deeper into potential spatial variations 

incorporating a larger expert reference dataset. 

Furthermore, it is important to notice that these results need to be set in context to the 

necessities of each individual project and managing organization. This includes the 

intended usage for the data and the related data quality requirements. Increasing the number 

of users per task manifolds the total number of classifications needed. This is a clear 

limitation of the crowdsourced approach in comparison to readily available datasets such 

as the global human settlement layer. In scenarios where timeliness is crucial, but it is not 

possible to motivate enough volunteers it may be wise to set the number of users required 

to three. Choosing this redundancy will still generate data with reasonable quality (e.g. 

building completeness of 80 %). On the other hand, in disaster response scenarios or other 

situations when many volunteers are keen to help increasing the number of users may be a 

good strategy. This is especially valid for cases where completeness (e.g. for mapping of 

damaged buildings) is important. 

The results of the agreement based aggregation show that a potential building sensitivity of 

97 % can be reached when asking six different users per task. Hence, most buildings are 

detected. Preserving this high sensitivity, but increasing the precision is therefore a main 

requirement for smarter aggregation methods. The results of the next two section will 

provide first insights whether intrinsic user characteristics and spatial characteristics can 

help to reach this milestone. 
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5.2 User Characteristics Analysis 

The analysis of user characteristics is performed to understand how data quality is 

influenced by individual users or groups of users showing similar mapping behaviour. 

Users have different levels of expertise and domain knowledge which may influence the 

quality of their contributions. Nevertheless, this kind of user related characteristics are 

difficult to measure and collect. Therefore, in this study only user characteristics which can 

be derived intrinsically from the MapSwipe dataset itself are analysed. 

5.2.1 Descriptive Statistics 

As for many crowdsourced datasets the contributions per volunteer in the MapSwipe data 

are highly diverse. Figure 14 depicts user contribution inequality from two different 

perspectives. On the one hand, the major amount of data (around 80 %) is produced by only 

a small fraction of all users (around 20 %). Hence, few very active users have a high 

influence on the overall data quality. However, on the other hand about 50 % of the data is 

also contributed by users which have not completed more than 25 groups in total at the 

point in time when they submitted their results. This may point out that a great portion of 

the users are still less experienced with the app itself or the crowdsourcing task. This two-

sided view on user contribution inequality already points out that both very active and 

novice users are central to understand data quality and asks for further measures of user 

characteristics. 

In the first step, user activity is investigated. User activity is defined using four different 

parameters: number of contributions, number of completed groups, number of projects 

worked on and number of mapping sessions. All parameters show the same relationship. 

Most users contribute only very little. Vice versa there are only few users with a high 

activity. Figure 15 further portrays that user activity may be an inappropriate parameter to 

model differences among users due to its narrow distribution. In respect to activity most 

users have very similar characteristics. 

Figure 14 Contribution inequality by users and user activity 
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Figure 15 Distribution of User Activity 

In the second part, user performance is assessed using the crowd answer as a reference. 

Figure 16 illustrates the distribution of overall accuracy and precision, sensitivity and f1 

score for each map class. As for user activity, there is only small variety regarding overall 

accuracy among users. The average MapSwipe user obtains an accuracy of about 90 %. 

Likewise, the values of f1 score, precision and sensitivity for no building classifications are 

distributed. This approves the findings of the agreement based analysis: there is a high 

agreement among users on no building classifications. Since most classifications are no 

building contributions, this class dominates the overall accuracy statistics. 

The distributions for building and bad image classes show considerable differences 

compared to the ones for the no building classifications. First, the distributions of f1 score, 

precision and sensitivity show a more dispersed shape. Thus, there is a greater diversity 

between users considering these parameters. Secondly, the averages are lower in 

comparison to the no building counterparts. These findings are backed by the agreement 

analysis conducted in section 5.1 as well. For tasks containing building or bad image 

classifications the agreement is considerably lower. Interestingly, for bad image 

classifications and to a certain degree for building classifications as well, there is a fraction 

of users with performance values close to zero. These outliers are an indicator for 

systematic misinterpretation of the crowdsourcing tasks. For example, users who mix up 

building and bad image classifications by tapping three times to (incorrectly) indicate that 

there is no building will obtain a very low bad image sensitivity score. Users who 

intendedly mark everything as building without checking the image are likely to get a 

building precision score close to zero. 
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Figure 16 Distribution of User Characteristics 

5.2.2 Global Analysis of User Quality using Expert Reference 

This part analyses to what degree correct and incorrect user classifications can be separated 

by the individual performance of each user. For doing so, the dataset is split into three 

groups. The first group consists of all contributions that have been assigned “no building”, 

the second group where users chose “building” and the third group contains “bad image” 

classifications. 

The violin plots for no building classifications show that correct and incorrect 

classifications have a very similar distribution of accuracy, no building precision and no 

building sensitivity (Figure 17). The visual impression suggests that mean accuracy for 

correct no building classifications is not higher compared to the mean accuracy for incorrect 

no building classifications. Furthermore, there are only very minor differences for the mean 

no building precision and no building sensitivity values as well. The violin plots indicate 

that incorrect classifications are hardly influenced by user characteristics. These initial 

findings are backed by the results of the Mann-Whitney-U test which prove statistical 

significance (Table 12). The test shows that there are no significant differences for accuracy 

and no building sensitivity. The difference for building precision is very small, albeit 

significant. The results are complemented by the conditional density plots. The 

interpretation of the figures reveals, that it is not possible to obtain any clear trend. No 

building classifications with lower user accuracy and lower building sensitivity seem to be 

more likely to be incorrect. However, regarding building precision the effect is very 

reduced or not observed. 
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Figure 17 User Characteristics for Correct and Incorrect No Building Classifications 

 

Table 12 Mann-Whitney Statistics of User Characteristics for Correct and Incorrect No Building Classifications 

 

Correct Wrong Mann-Whitney-U p 

count 5,524 537 - - 

mean accuracy 0.91 0.92 1479790.0 0.465 

mean no building precision 0.93 0.94 1357873.5 0.001 

mean no building sensitivity 0.97 0.96 1446765.0 0.173 

 

The analysis of building classifications allows more definite conclusions. The violin plots 

demonstrate that building precision is a good parameter to describe differences between 

correct and incorrect classifications. Correct building classifications are associated with a 

high building precision score, whereas incorrect classifications show the opposite 

characteristics. Furthermore, incorrect building classifications show lower overall 

accuracy. These correlations are also statistically significant as indicated by the results of 

the Mann-Whitney-U test (Table 13). The distributions of building sensitivity reveal no 

great difference for correct and incorrect classifications (Figure 18). The conditional 

density plots for overall accuracy and building precision show a similar trend. The 

probability of incorrect classifications is continuously increasing with lower user accuracy 

and user building precision. Especially for very low values of building precision of less 

than 0.4 there is a high probability, that a building classification will be incorrect. The 

probability of incorrect classifications does not change much with increased building 

sensitivity. 
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Figure 18 User Characteristics for Correct and Incorrect Building Classifications 

 

Table 13 Mann-Whitney Statistics of User Characteristics for Correct and Incorrect Building Classifications 

 

correct wrong Mann-Whitney-U p 

count 1,502 227 - - 

mean accuracy 0.92 0.78 99864.0 0.0 

mean building precision 0.80 0.58 94964.0 0.0 

mean building sensitivity 0.79 0.76 164255.5 0.187 

 

The visual interpretation of the violin plots for bad image classifications indicates that 

differences between correct and incorrect classifications can be observed regarding the 

characteristics of overall accuracy and bad image precision (Figure 19). The results of the 

Mann-Whitney-U test reveal, that statistically significance at 95 % confidence interval 

level is observed for overall user accuracy and bad image precision (Table 14). Correct 

classifications are characterized by higher mean overall accuracy. The association for bad 

image precision shows into the same direction. For bad image sensitivity a clear 

interpretation cannot be drawn. The results depicted by the violin plots are complemented 

by the conditional density plots. In contrast to the impression of the violin plots, the figures 

of conditional density show consistent characteristics for all three variables. The proportion 

of incorrect tasks gradually decreases with higher scores. This relationship is best 

pronounced for bad image precision. 
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Figure 19 User Characteristics for Correct and Incorrect Bad Image Classifications 

 

Table 14 Mann-Whitney Statistics of User Characteristics for Correct and Incorrect Bad Image Classifications 

 

correct wrong Mann-Whitney-U p 

count 30 275 - - 

mean accuracy 0.91 0.74 2221.5 0.0 

mean bad image precision 0.74 0.63 3233.0 0.026 

mean bad image sensitivity 0.89 0.83 3723.5 0.191 

 

The analysis of user characteristics for correct and incorrect classification using the expert 

reference dataset implies that unambiguous trends or correlations can be identified for 

building and bad image classifications. Therefore, the study results suggest that user 

characteristics can be a complementing factor to describe and understand the data quality 

of the MapSwipe dataset. However, the study of user characteristics for no building 

classifications reveals that they are less suited to differentiate correct and incorrect 

contributions of this class. Especially the high number of no building classifications with 

very high agreement make it difficult to evaluate how user characteristics influence data 

quality. 

5.2.3 Local Analysis of User Quality using OSM reference 

In this section the results of the previous part are reviewed for the selected projects in Laos. 

Given the limitations of the OSM reference dataset only building classifications are 
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considered in this part. Albeit, this offers the possibility to use a large sample of more than 

200,000 building classifications. 

The violin plots show only small differences between the distributions of overall accuracy 

and building sensitivity (Figure 20). For building precision, the visual interpretation 

indicates that incorrect classifications are associated with lower scores. These impressions 

are consistent with the findings of the global analysis using the expert reference dataset. 

Especially the stretched distribution of the study results suggest that user characteristics 

can be a complementing factor to describe and understand the quality of the MapSwipe 

dataset. The results of Mann-Whitney-U tests show statistical significance for all three 

variables (Table 15). Nevertheless, the difference between the mean values is highest for 

building precision. Also, the correlations depicted in the conditional density plots reinforce 

the findings of the global analysis. The probability of incorrect classifications decreases 

almost linear with higher building precision scores. To a certain degree this can also be 

observed for user accuracy and even for building sensitivity. 

The local analysis of the influence of user characteristics in Laos underlines the general 

findings of the previous sections. User characteristics are suited to model incorrect building 

classifications. Due to the limitations of the reference dataset the findings for no building 

classifications and bad image classifications could not be verified.  

 

   

   
Figure 20 User Characteristics for Correct and Incorrect Building Classifications in Laos 
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Table 15 Mann-Whitney Statistics of User Characteristics for Correct and Incorrect Building Classifications in Laos 

 

correct wrong Mann-Whitney-U p 

count 193,104 34,270 - - 

mean accuracy 0.94 0.89 2564827741.0 0.0 

mean building precision 0.81 0.68 2204083488.0 0.0 

mean building sensitivity 0.85 0.87 2697620231.0 0.0 

 

5.2.4 Analysis of Performance Improvement with Higher Activity 

Finally, in the last part of this section on user characteristics the relationship between user 

activity and user performance is investigated. The results of this analysis are important to 

understand whether users can learn directly in the process of using the MapSwipe app. For 

doing so, learning is understood as an increase in user performance. For example, if a user 

increases his building precision score with more and more completed groups, this is 

interpreted as positive learning process. Furthermore, the analysis provides information on 

differences between beginners and more active volunteers. 

Figure 21 visualizes the evolution of the average of the user performance variables per 

completed groups. The number of completed groups functions as an indicator of user 

activity. Users will increase their number of completed groups over time, however most 

users will drop out quickly. Therefore, the number of user contributing to each average 

value decreases with higher completed groups count. To limit the influence of individual 

users on the average this analysis is only performed up to 250 completed groups. Fewer 

than 1 % of all users contributed more.  

 

Figure 21 User Performance Evolution with higher Activity 
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The analysis demonstrates that user performance increases with higher activity. In general 

users with higher activity (in terms of completed groups) have a higher agreement with the 

crowd answer. Especially regarding building sensitivity, building precision, bad image 

sensitivity and bad imagery precision the users increase their performance within the first 

ten completed groups. This might be an indicator that users quickly learn to classify the 

images accordingly. On the other hand, this also shows, that beginners tend to do more 

incorrect classifications compared to user who have already contributed more. The overall 

trend, that user performance increases with activity, is confirmed by the Mann-Kendall test. 

All user performance variables show a statistically significant increase over the first 250 

completed groups (Table 16). 

Table 16 Results of Mann-Kendall-Test for Monotonic Trend 

User Dimension Trend h p z 

Accuracy increasing True < 0.005 10.078 

No Building Sensitivity increasing True < 0.005 9.006 

No Building Precision increasing True < 0.005 5.436 

Building Sensitivity increasing True < 0.005 4.71 

Building Precision increasing True < 0.005 10.199 

Bad Image Sensitivity increasing True < 0.005 3.295 

Bad Image Precision increasing True < 0.005 3.405 

5.2.5 Discussion 

The results of this section have shown that there is an association of probability of incorrect 

classifications and user performance variables. However, the effect of user characteristics 

is more pronounced for building and bad image classifications than for no building 

classifications. Consequently, for quality estimation of no building classifications the 

impact of user characteristics needs to be further evaluated. 

The MapSwipe projects examined in this study are designed towards the identification of 

buildings. A perfect crowdsourcing approach should be able generate high quality data in 

respect to sensitivity and precision. Sensitivity is affected by the ability of users to identify 

no building tasks. The uncertain impact of user characteristics on no building classifications 

constitutes a serious limitation to the analysis of building completeness. But, precision is 

shaped by the accuracy of building classifications. For this group, the analysis proved that 

quality can be estimated utilizing intrinsic user characteristics. This is backed by the 

findings of Salk et al. (2016), who assess user performance for the cropland capture game. 

The authors conclude that overall user performance can be used to model the quality of 
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their individual ratings. User performance characteristics are also incorporated by Gueguen 

et al. (2017) for village boundary detection. The authors model the reliability of each user 

in terms of a user score. In their study, users who consistently agree on a number of features 

form a consensus group and are considered reliable. 

Another limitation arises when looking at absolute numbers of incorrect classifications 

rather than considering probabilities. Although there is a strong association of incorrect 

classifications and low user performance characteristics (e.g. low building precision for 

incorrect building classifications), looking at the absolute numbers of incorrect 

classifications may lead to divergent results. The overall distribution of user performance 

scores shows that only very few users are characterized by low performance values (Figure 

16). At the same time, the large number of users with high performance scores will submit 

many incorrect classifications as well, although they have a lower probability. 

Consequently, the intrinsic analysis of user characteristics only allows to detect users with 

very low data quality. The results of Arcanjo et al. (2016) confirm these findings for the 

ForestWatcher citizen science project. In their study, the authors use the accuracy of the 

volunteer's contribution history to evaluate their future contributions. They show that this 

can be effective approach to filter out low-performance or malicious volunteers. Designing 

approaches that help to identify expert users remains a major challenge for future research.  

Taking this into account the results still help to understand the MapSwipe data quality and 

might be relevant for the design of future mapping projects. The analysis allows to 

differentiate types of classification errors. On the one hand, incorrect classifications by 

users with low user performance scores are very likely to have systematic causes. One 

reason for this might be, that users didn’t understand mapping instructions correctly. 

Therefore, user characteristics could be utilized to directly address users who do it 

consistently wrong. Assisting unexperienced users is an essential way to limit incorrect 

contributions and ensure high data quality right from the beginning. The importance of 

instant feedback is also highlighted by Salk et al. (2016) for crowdsourced cropland 

mapping. On the other hand, the analysis also reveals that some tasks are classified 

incorrectly although users show good performance in general. These cases, which are likely 

to be missed even by experienced users, could improve the guidance material. By 

highlighting difficult cases users could be trained specifically. This seems to offer a great 

potential for further data quality improvement. 
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5.3 Spatial Characteristics Analysis 

Agreement and user characteristics can explain the quality of the crowdsourced results to a 

certain degree. However, these characteristics are non-spatial and they can be generated for 

any kind of crowdsourced classification results. MapSwipe is designed towards geospatial 

applications on purpose. Projects, groups and tasks in MapSwipe are not only a set of 

features, they also refer to specific places on the earth and are interconnected by their spatial 

arrangement. The spatial characteristics are therefore in the focus of this section. 

5.3.1 Descriptive Statistics 

Spatial auto correlation was investigated for all 55 MapSwipe projects considered in this 

study. In Figure 23 boxplots show the distribution of Moran’s I index of spatial auto 

correlation of agreement and building index. For both variables an average Moran’s I of 

~ 0.35 can be found in the data. For all projects the p-value was smaller than 0.005, thus 

there is statistically significant positive spatial auto correlation of agreement and building 

index. This implies, that both variables are not distributed randomly in space, moreover 

they tend to cluster. 

Figure 22 visualizes the spatial distribution for agreement for the MapSwipe project 

“Laos 6”. This example shows how diverse agreement is distributed for a single project. 

There are large areas with relatively high agreement values, sometimes interspersed by 

single tasks with low agreement. In the central western part of the project a cluster of tasks 

with low agreement can be estimated. Furthermore, there are stripes of tasks from west to 

east, overlapping with the geometry of individual groups, with consistently lower 

agreement values. At the south-western border of the project a stripe ranging from north to 

south with lower agreement values is indicated as well. This visual interpretation confirms 

that MapSwipe data is spatially autocorrelated. Due to the fact, that building index is not 

distributed randomly in space, there are regions where no building classifications tend to 

cluster and other regions where building and bad image classifications are concentrated. 

But, there are also spatial outliers, e.g. tasks with a high building index surrounded by many 

tasks with very low building index and vice versa. These different spatial patterns are 

described by the kernel density of no building, building and bad image classifications and 

further investigated in the next section.  
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Figure 22 Spatial Autocorrelation of Agreement for Project Laos 6 
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Figure 23 Moran's I Index of spatial autocorrelation for agreement and building index 

5.3.2 Global Analysis of Spatial Characteristics using Crowd Reference 

The influence of kernel density on data quality is analysed in the next step. The violin plots 

show the different characteristics of kernel density for no building classifications (Figure 

24). Whereas, the mean values of no building density and bad image density are similar for 

correct and incorrect no building classifications, it is obvious that the mean values of 

building density aren’t. Correct no building classifications are characterised by low 

building density values. Incorrect no building classifications show significantly higher 

values. This indicates, that no building classifications which have many building 

classifications in their neighbourhood may have a higher probability of being incorrect. The 

Mann-Whitney-U test confirms these findings and shows that differences are statistically 

significant (Table 17).  

   

   
 

Figure 24 Spatial Characteristics for Correct and Incorrect No Building Classifications 
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Table 17 Mann-Whitney Statistics of Spatial Characteristics for Correct and Incorrect No Building Classifications 

 

correct wrong Mann-Whitney-U p 

count 845,576 21,188 - - 

mean no building class density 41.45 38.39 5961594562.0 0.0 

mean building class density 5.21 21.22 2508651511.0 0.0 

mean bad image class density 0.15 1.34 7636270285.5 0.0 

 

The conditional density plots extend these findings. For all three kernel density variables a 

trend can be estimated. Low no building class density is associated with higher probability 

of being incorrect. At the same time, higher building class density and higher bad image 

class density contribute to the probability of incorrect classifications. 

For building classifications differences among correct and incorrect classifications are 

easier to observe. As depicted by the violin plots in Figure 25 the mean values for no 

building density and building density vary considerably for correct and incorrect 

classifications. Correct classifications show lower no building class density and higher 

building class density on average compared to incorrect classifications. The differences for 

bad image class density cannot be quantified by the violin plots. For both groups the mean 

bad image density has a value close to zero. The results of the Mann-Whitney-U test proof 

the statistical significance of the results (Table 18). 

Especially very high no building class density is associated with a higher probability of 

incorrect classifications as depicted by the conditional density plots. Spatial outliers, 

building classifications that are surrounded by no building classifications and characterised 

by very high no building density values, are very probable of being incorrect. Likewise, the 

higher the building density, the higher is the probability of a classification to be correct. 

Finally, the conditional density of bad image class density reveals, that for density values 

greater than five there is a sharp increase in the probability of being incorrect. This indicates 

that building classification which are surrounded by bad image classifications are likely to 

be wrong. This may be caused by the spatial characteristics of the bad image class. Bad 

image classifications are either assigned to areas covered by clouds or areas where satellite 

imagery is missing completely. Both tend to be solid blocks and circular structures are 

hardly probable. Therefore, a building classification in the centre of a region covered totally 

by bad image classifications has a very little chance of being correct. 
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Figure 25 Spatial Characteristics for Correct and Incorrect Building Classifications 

 

Table 18 Mann-Whitney Statistics of Spatial Characteristics for Correct and Incorrect Building Classifications 

 

correct wrong Mann-Whitney-U p 

count 52,412 10,252 - - 

mean no building class density 27.9 38.75 100964296.5 0.0 

mean building class density 26.92 21.2 185591991.0 0.0 

mean bad image class density 0.1 0.8 255625999.0 0.0 

 

The interpretation of the violins plots for bad image classifications discloses that 

differences for correct and incorrect classifications can be explained by no building density, 

whereas the results for building density and bad image density are not as conclusive (Figure 

26). Correct bad image classifications have a lower mean no building density than incorrect 

ones. The means for building density and bad image density are very similar. The Mann-

Whitney-U test confirms that differences are statistically significant (Table 19). The 

conditional density plots underline these conclusions. There is a distinct increase in the 

probability of being incorrect for classifications with a no building density greater than 20. 

Since clouds and areas with missing imagery tend to cover multiple tasks in MapSwipe, 

task which are surrounded by no building classifications entirely are most likely not to show 

a cloud or missing satellite imagery. Furthermore, the plots show that building class density 

has negative influence on accuracy of bad image classifications. For higher bad image 

densities, the probability of being correct increases. 
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Figure 26 Spatial Characteristics for Correct and Incorrect Bad Image Classifications 

 

Table 19 Mann-Whitney Statistics of Spatial Characteristics for Correct and Incorrect Bad Image Classifications 

 

correct wrong Mann-Whitney-U p 

count 6,706 13,252 - - 

mean no building class density 34.68 39.06 5961594562.0 0.0 

mean building class density 21.86 19.69 2508651511.0 0.0 

mean bad image class density 0.5 1.25 7636270285.5 0.0 

5.3.3 Local Analysis of Spatial Characteristics using OSM reference 

In this section the impact of spatial characteristics on data quality is analysed for the 

selected MapSwipe projects in Laos to review the findings of the global analysis. Due to 

the constraints of the OSM reference dataset only building classifications are investigated. 

The violin plots (Figure 27) confirm, what has been shown for the spatial characteristics of 

building classifications in the previous section. Correct building classifications tend to have 

lower no building class density that incorrect classifications. Vice versa, a high building 

class density can be obtained for correct classifications and lower values for incorrect 

classifications. The mean values for the distributions of bad image class density are located 

close to zero. Visually no clear effect can be observed. Table 20 shows the results of the 

Whitney-Mann-U test. The conditional density plots verify, that the probability of incorrect 

classifications decreases with higher building class density. Also, the influence of bad 

image class density is described as for the global expert reference sample. 
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Figure 27 Spatial Characteristics for Correct and Incorrect Building Classifications in Laos 

 

Table 20 Mann-Whitney Statistics of Spatial Characteristics for Correct and Incorrect Building Classifications in Laos 

 

correct wrong Mann-Whitney-U p 

count 193,104 34,270 - - 

mean no building class density 29.55 37.1 1707282071.5 0.0 

mean building class density 23.9 19.4 2444575888.0 0.0 

mean bad image class density 0.05 0.79 3142532917.5 0.0 

 

  
Figure 28 Impact of Building Count and Building Area per Task on Accuracy 

 

In a second step it is analysed to what degree the number of buildings and the total building 

area per task relate to the probability of correct and incorrect classifications. Figure 28 

indicates a clear trend for both interrelated variables. A low number of buildings per task 

and thus a small building area are described with a higher probability of incorrect 

classifications. Tasks containing only one building are most likely to be classified 
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incorrectly. Additionally, the graphs show that the probability of incorrect classifications 

decreases rapidly for tasks with up to five buildings and remains constant for tasks which 

contain more than five buildings. This demonstrates, as one would expect, that difficult 

tasks are those which contain few and small buildings. 

5.3.4 Discussion 

The analysis of the spatial characteristics of the MapSwipe dataset has pointed out that 

spatial relationships are important to explain variations in the quality of the data. 

Consequently, spatial characteristics such as kernel density of classifications should be 

further investigated to model the uncertainty of crowdsourced classifications. This is also 

highly recommended due to the small size of the expert reference dataset and the limited 

validity of the OSM reference dataset. 

The results reveal that spatial outliers, e.g. building classifications surrounded by a bunch 

of no building classifications, are more likely to be incorrect. This underlines that users 

have problems to interpret the size, shape and appearance of features present in the satellite 

imagery if no other man-made objects are present in the surrounding. The effect is even 

stronger if buildings are small. By applying a logistic regression model Albuquerque et 

al. (2016) confirm that the size of geographical features is significantly associated with the 

likelihood of correct classifications. However, also the accuracy of global settlement 

products such as the global human settlement layer is affected by differences in building 

material, construction type, settlement structure and physical surrounding (Klotz et 

al., 2016). 

Other authors have investigated the influence of spatial resolution of the satellite imagery 

on crowdsourced data quality (e.g. Battersby et al. (2012)). It can be assumed that 

differences in satellite imagery data quality have an impact on the spatial distribution of 

incorrect classifications. However, in this study this was not further elaborated. Future 

research should therefore investigate properties of the satellite imagery in more detail to 

account for potential bias in the classification results.  

Furthermore, spatial characteristics might be influenced by the individual user 

characteristics as well. Comber et al. (2016b) show that the spatial distribution of land cover 

derived from crowdsourcing classifications may change significantly between different 

groups of users. For the MapSwipe dataset the high proportion of incorrect bad image 

classifications could be explained by the mapping behaviour of individual users. Some 

users tend to misunderstand the mapping instructions. These contributors tap three times to 

indicate no building classifications, although the tasks are annotated as bad image. 
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Therefore, incorrect bad image classifications are observed visualized as long stripes from 

east to west (Figure 22). For these tasks the calculated bad image density will be high, 

although the results are very likely to be incorrect. This limits the validity of using spatial 

characteristics for data quality assurance. Nevertheless, at the same time, this shows the 

potential of an integrated quality assessment considering both user characteristics and 

spatial characteristics. 

Therefore, further mechanisms should be considered to analyse the impact of spatial 

characteristics on data quality. Kernel Density is a simple method to characterize the spatial 

context of individual classifications with limited explanatory power. For instance, Lesiv et 

al. (2016) show that geographically weighted logistic regression can be applied 

successfully to develop a hybrid forest cover map incorporating crowdsourced 

classifications. Therefore, the applicability of further geography aware statistical methods 

should be evaluated to understand the spatial patterns of quality variations in the MapSwipe 

dataset. 
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5.4 Machine Learning Models 

The results of the first three parts of the analysis have shown how agreement, user 

characteristics and spatial characteristics affect data quality. However, most crowdsourcing 

workflows still rely on a simple majority aggregation to combine results from multiple 

users. Also, MapSwipe data is currently processed without considering user characteristics 

and spatial characteristics. To address this gap, machine learning models are applied in this 

section to enable the combinations of multiple dimensions of data characteristics which 

affect quality. The analysis is carried out for the selected MapSwipe projects in Laos and 

using the OSM reference dataset. In total this dataset contains 941,589 tasks. In the 

following the dataset is split up into a training dataset with 282,476 tasks and a validation 

dataset with 659,113 tasks (Table 21).  

Table 21 Sample Sizes for Training and Validation Data 

total training validation 

941,589 (100%) 282,476 (30%) 659,113 (70%) 

 

5.4.1 Logistic Regression Analysis of MapSwipe Data Quality 

In the first step, a logistic regression model is applied to test the impact of individual 

parameters. Initially, 15 different parameters describing agreement, user characteristics and 

spatial characteristics have been considered for the logistic regression analysis. After 

checking variables for multi collinearity and investigating variance inflation factors (VIFs) 

seven variables have been chosen as an input for the analysis. The correlation matrix plot 

(Figure 29) shows that no critical correlation between variables is observed. This is 

confirmed by the small VIFs close to 1.0.  

  
Figure 29 Correlation Matrix (left) and Variance Inflation Factors (right) for Logistic Regression Input Variables 
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The results for the whole reference dataset containing 941,589 observations are presented 

in Table 22. The logistic regression model performed was statistically significant with 

χ2(6) = 940,640 and p < 0.005. The model explains 71.5 % of the variance in the 

crowdsourcing performance (Nagelkerke pseudo R2). As already indicated by the previous 

analysis, increases in the building index and average building precision for building 

classifications are associated with a strong and significant increased likelihood of presence 

of buildings within the MapSwipe task. Less pronounced but still significant was the effect 

of building classification density. On the contrary, increases in the average no building 

average accuracy, average bad image precision, no building classification density and bad 

image classification density are associated with a significant decreased likelihood of 

presence of buildings within the MapSwipe task. 

Table 22 Results of the Logistic Regression Analysis 

 Coefficients Std. Error Significance Odds Ratio 

Building Index 78.735 0.027 0.000 2626.8337 

Average Accuracy 

(No Building Results) -84.139 0.076 0.000 0.0002 

Average Building Precision 

(Building Results) 62.469 0.051 0.000 516.406 

Average Bad Image Precision 

(Bad Image Results) -14.723 0.059 0.000 0.2294 

No Building Class Density -0.0148 0.001 0.000 0.9853 

Building Class Density 0.0919 0.001 0.000 1.0962 

Bad Image Class Density -0.2360 0.005 0.000 0.7897 

 

5.4.2 Performance of Machine Learning based Aggregation 

The results of the logistic regression analysis show that the various intrinsic parameters on 

agreement, user characteristics and spatial characteristics can be used to estimate which 

tasks will contain buildings. The next step is conducted to evaluate the performance of three 

different machine learning classifiers and the naïve agreement based method (proposed in 

section 5.1.2) towards their ability to correctly depict which tasks contain buildings. 
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Table 23 Confusion Matrix for Crowd Answer 

 

  Crowd Answer 

  No Bui Bui 

Ref 
No Bui 584,735 5,262 

Bui 14,943 54,173 
 

Table 24 Confusion Matrix for Random Forest 

Classifier 

 Random Forest Classifier 

  No Bui Bui 

Ref 
No Bui 589,114 883 

Bui 4,467 64,649 
 

Table 25 Confusion Matrix for Logit Classifier 

  Logit Classifier 

  No Bui Bui 

Ref 
No Bui 588,483 1,514 

Bui 4,662 64,454 
 

Table 26 Confusion Matrix for Keras Classifier 

  Keras Classifier 

  No Bui Bui 

Ref 
No Bui 588,653 1,344 

Bui 4,457 64,659 
 

The performance of each classifier can be interpreted by looking at the corresponding 

confusion matrixes (Table 23, Table 24, Table 25, Table 26). Given the unbalanced 

distribution of building tasks in the dataset, it is no surprise that all aggregation methods 

classify most tasks as “no building”. About 90 % of all tasks are assigned to this category. 

The high proportion of correct no building classifications on the overall number of tasks is 

the main reason for the very high accuracy values obtained by all classifiers (Table 27). 

Using the crowd answer an accuracy of 96.7 % is reached, for the machine learning based 

aggregation methods even higher values greater than 99% are observed. 

When looking at the building classifications greater heterogeneity for the different 

approaches is revealed. The crowd answer shows a considerable higher number of false 

positive classifications in comparison to the other classifiers. 5,262 tasks are incorrectly 

classified as building using the crowd answer, whereas only 883 to 1,514 false positives 

are recorded for the machine learning based aggregation. This fact is also captured by 

differences in the building precision score for each method. The best building precision 

could be achieved for the random forest classifier (98.6 %). The building precision for the 

crowd answer aggregation only reaches 91.1 %. Differences between the aggregation 

methods are also reflected in the number of tasks incorrectly classified as “no building”. 

False negatives are again most dominant for the crowd answer aggregation. 14,943 tasks 

were aggregated as no building, although a building was mapped in the OSM reference. 

For the machine learning based aggregation less than a third of this number is achieved. 

For instance, only 4,457 tasks with buildings are missed applying the deep learning 

classifier. These characteristics are also described by the building sensitivity score. The 

score reaches only 78.4 % for the crowd answer aggregation, but up to 93.5 % for the 

machine learning based aggregations. 
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Table 27 Performance of Crowd Answer and Machine Learning Classifiers 

 Crowd Answer Random Forest Logit Keras 

Overall Accuracy 0.9693 0.9919 0.9906 0.9912 

Building Sensitivity 0.7838 0.9354 0.9325 0.9355 

Building Precision 0.9115 0.9865 0.9770 0.9796 

Building F1 Score 0.8428 0.9603 0.9543 0.9571 

 

The results for building precision and building sensitivity show that machine learning based 

aggregation outperforms crowd answer aggregation in both directions. Aggregation based 

on a random forest, logit or deep learning classification method generate data with a better 

quality. This is expressed by the high values for f1 score, which is the harmonic mean of 

building sensitivity and building precision. For the crowd answer aggregation 84.3 % are 

obtained, whereas the random forest method derives a value of 96 %. Based on this metric 

the random forest classifier generates results with the highest quality. 

The dissimilarity between crowd answer aggregation and random forest based aggregation 

are visualized in Figure 30 and Figure 31 which show the spatial distribution of false 

negatives, false positives, true negatives and true positives. The maps depict that larger 

settlement structures are well captured by both approaches. The white vertical stripes within 

the project extent are characterized by complete consensus of no building classifications. 

However, due to the limitations of the MapSwipe data model (see section 3.2.2) for these 

tasks no user information was obtained and thus these areas are not subject of this study. 

As described already by the confusion matrixes 90 % of the study area are uninhabited. For 

crowd answer aggregation bands from east to west marked as false positive are present, e.g. 

in the northern part of the study area. These incorrect classifications could be successfully 

removed using the random forest based approach which also incorporates intrinsic user 

characteristics. Additionally, the high number of false negatives for the crowd answer 

aggregation is depicted in the map, for example in the mid-western part of the study area. 

Also in these regions the random forest based approach showed a better performance. 
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Figure 30 Spatial Distribution of Classification Results using Crowd Answer 
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Figure 31 Spatial Distribution of Random Forest Classification Results 
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Figure 32 Performance of Random Forest Aggregation regarding Training Sample Size 

 

Finally, the analysis of the performance of the random forest based aggregation regarding 

training sample size shows that even for small training samples high data quality can be 

obtained (Figure 32). The performance of the random forest classifiers starts to decrease 

rapidly for training sample proportions smaller than 0.1%. This corresponds to a total 

number of about 950 training samples. 

5.4.3 Discussion 

Machine learning based aggregation methods have potential to generate a high-quality 

settlement layer from crowdsourced MapSwipe data. The logistic regression model proved 

that the intrinsic characteristics of the dataset can be used to explain the probability of 

correct building classifications. Nevertheless, the validity of the results of the logistic 

regression model need to be further evaluated towards a bias introduced by the imputation 

of missing values. Several authors (e.g. Donders et al. (2006), Greenland and Finkle (1995)) 

point out that simple techniques for handling missing data such as overall mean imputation 

used in this study can produce biased results. Future research should therefore consider 

more sophisticated replacement techniques for missing values such as multiple imputation 

or maximum likelihood. 

Characteristics of the satellite imagery are not considered in this study. However, Chen and 

Zipf (2017) show recent advances of computer vision approaches for building detection 

from satellite imagery using neural networks. The potential of image analysis based on 

deconvolutional neural networks for human settlement mapping is also explored by Zhang 

et al. (2016). Including the characteristics of the satellite imagery opens further potential to 

improve the performance of the machine learning models and resulting data quality. 

The lack of reference data of sufficient quality limits the findings of this study. Since the 

reference dataset used in this study was derived from OpenStreetMap, the data quality 

might vary given the large size of the examined area. The quality of OpenStreetMap data 
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has been investigated by many authors and spatial variations in data quality are well 

described (Ali et al., 2016; Ballatore and Zipf, 2015; Fonte et al., 2015; Girres and 

Touya, 2010). Although the OSM reference dataset was validated through the HOT 

mapping workflow, it cannot be guaranteed that all buildings are mapped, especially 

because MapSwipe data was already used to design the mapping projects. 

The random forest based aggregation outperformed the naïve aggregation method applied 

so far significantly regarding building precision and building sensitivity. The results 

describe the performance for four selected MapSwipe projects. Given the global 

distribution of MapSwipe projects further validation of the automated classification and its 

transferability is needed. 
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6 Conclusion 

In this study, crowdsourced classifications contributed by volunteers using the MapSwipe 

app were analysed regarding data quality. The work focused on the impact of agreement 

and redundancy on data quality (RQ1). Results have shown that high agreement on building 

classifications serves as an indicator for correct contributions. User characteristics were 

analysed towards their effect on data quality (RQ2) where it was revealed that he analysis 

of intrinsic user characteristics can be utilized to identify consistently incorrect 

classifications. Inaccurate users can be identified by low user performance values. The 

impact of spatial characteristics on data quality was examined (RQ3) and the results proof 

that the kernel density of classifications can explain incorrect contributions. Spatial outliers 

are probable of being incorrect. This work aimed at analysing the performance of machine 

learning based aggregation of crowdsourcing classifications (RQ4). A proposed random 

forest based aggregation of MapSwipe data to generate settlement information produces 

high quality data in comparison to state-of-the-art products derived from satellite imagery. 

Low temporal resolution and old capture dates of available very high-resolution satellite 

imagery (e.g. provided by Bing) for some regions limit the applicability of MapSwipe data 

on the ground. In situations where populations are highly dynamic such as in parts of sub-

Saharan Africa as recent remote sensing data as possible should be utilised. Whereas in 

disaster situations high-resolution satellite imagery is made available for free, this is rarely 

the case for ongoing and lingering crises. Accessibility to remote sensing data still poses 

serious limitations to crowdsourcing approaches. By solving this issue, time-aware 

crowdsourcing approaches could also support continuous land use monitoring (Schultz et 

al., 2017; Zhu and Woodcock, 2014). Therefore, the potential of crowdsourcing 

applications like MapSwipe for updating existing geographic information should be 

evaluated. 

The integration of machine learning methods into the aggregation of individual 

classifications has shown great potential to improve data quality. MapSwipe and other 

crowdsourcing applications should therefore build upon these initial findings. Thus, an 

integration of the explored machine learning techniques into the crowdsourcing workflow 

becomes a key point for the future development of crowdsourcing applications. Especially 

the implementation of dynamic user characteristics should be addressed to provide instant 

feedback (Salk et al., 2016). Initial testing of the user’s performance and characterisation 

of each user’s personal difficulties may provide a novel approach towards personalised 

mapping guidance material. 



6 Conclusion 

74 
 

Intelligent crowdsourcing approaches can dynamically derive data quality indicators to 

improve the task allocation process. For instance, for tasks reaching a high credibility no 

further classification should be obtained, whereas uncertain tasks should be repeated. This 

could reduce the amount of required crowdsourced classifications while maintaining high 

quality. The setting bears great potential for features where fully automated techniques still 

fail to produce reasonable data quality. For example, slum mapping and slum type 

classification from satellite imagery still face many challenges (Kuffer et al., 2016). 

MapSwipe data is used to derive geographical information on human settlements. 

Currently, it has been used by humanitarian organisations such as MSF, CartONG or HOT 

to delineate inhabited areas.  The Current crowdsourcing approach provided only a binary 

settlement layer. More detailed information is added through the detailed mapping of 

buildings in OpenStreetMap. This setting offers further potential to generate detailed 

information on population distribution and population density. In many natural disasters or 

humanitarian catastrophes information on affected populations has been crucial for disaster 

response activities (Pesaresi et al., 2013; Voigt et al., 2007). Preventive risk assessment or 

the implementation of disaster risk reduction strategies require detailed information on the 

spatial-temporal population distribution. The potential of MapSwipe data as an input for 

population mapping should therefore be a focus for future research. 

It is important to notice, that MapSwipe is more than just geographical data. MapSwipe 

also builds a community of volunteers that want to support humanitarian organizations by 

using their free time to map. The motivation of MapSwipe volunteers is still underexplored. 

Finding out more about the MapSwipe community and fostering discussions within the 

community could provide great benefits for the future development of the application. 

Building sustainable communities is a major topic for crowdsourcing projects (Dittus et 

al., 2016). Tools that visualize the data produced by volunteers are crucial in this manner. 

Projects like “MapSwipe Analytics” already provide first views on MapSwipe data. 

However, in the future more efforts should be put into user centric visualizations. 

Using MapSwipe each volunteer helps to fill the gaps in the missing maps, that are urgently 

needed to tackle global inequalities and support the United Nation’s sustainable 

development goals to transform our world. MapSwipe was launched in July 2016 and one 

year of swiping and tapping have shown how an easy to use applications can directly affect 

the work of humanitarian organisations. Let’s build upon the achieved and bring MapSwipe 

and its community to the next level. 
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