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Abstract 

Abstract 

 

Recycling of the cofactor tetrahydrobiopterin (BH4) via dihydropteridine reductase (DHPR) is 

required for the synthesis of tyrosine from phenylalanine, as well as dopamine and serotonin 

precursors, L-Dopa and 5-HT, respectively. Patients with DHPR deficiency have severe 

neurological symptoms, including brain atrophy, dystonia and epilepsy. The pathophysiology 

remains mostly unknown. 

In order to model the disorder to better understand its pathophysiology we characterized all 

three homologs of the zebrafish (Danio rerio), Qdpra, Qdprb1 and Qdprb2 in the developing 

embryo. We analyzed the genes’ temporal expression during development using whole mount 

in situ hybridization and qRT-PCR and investigated their functional relevance using 

morpholino mediated knockdown. We further used a diagnostic approach to examine amino 

acid levels in both wildtype and morphant embryos.  

We were able to identify the homolog Qdpra to be involved in the production of melanin in the 

early embryo, likely due to its conserved BH4 recycling function. Morphants showed 

hyperphenylalaninemia and significantly depleted melanin levels. We could show that qdpra is 

co-expressed with the BH4 dependent enzyme Phenylalanine hydroxylase and is active in the 

liver post 3 days of development. Qdprb2 was found to be not required, nor expressed in the 

early embryo. qdprb1 was detected in the early proliferative regions of the eye and midbrain. 

We could show that Qdprb1 influences glial development, while neuronal development was 

unaffected. Intriguingly, Qdprb1 inhibits glutamine production. We discovered that similar to 

Qdprb1 morphant embryos exposed to high levels of glutamine, exhibit a depletion of astroglial 

markers in eye and midbrain. We could not detect any involvement in BH4 and therefore 

conclude glia differentiation by regulating glutamine as a novel function. Although the 

underlying mechanisms remain to be explored, we were able to observe high glutamine levels 

in a severe DHPR patient, just as we observed in Qdprb1 morphants. 

Our study is the first to give insights into the pathophysiology of DHPR deficiency, by modeling 

the disorder in zebrafish and unraveling a novel role for the homolog Qdprb1 in regulating 

gliogenesis. 
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Abstract - Deutsch 

Abstract - Deutsch 

 

Der Kofaktor Tetrahydrobiopterin (BH4) wird recycled durch die Dihydrobiopteridin 

Reduktase (DHPR). BH4 wird benötigt für die Synthese von Tyrosin von Phenylalanin sowie 

für die Vorstufen der Neurotransmitter Dopamin und Serotonin: L-Dopa und 5-HT. Eine 

DHPR-Defizienz geht zumeist einher mit schweren neurologischen Symptomen. Diese 

beinhalten unter anderem: Hirnatrophie, Dystonie und Epilepsie. Die Pathophysiologie ist 

weitestgehend unbekannt. 

Mit dem Zebrabärbling (Danio rerio) als Modellorganismus, charakterisieren wir die drei 

Homologe Qdpra, Qdprb1 und Qdprb2, mit Hilfe von Morpholinos, in situ Hybridisierungen 

und qRT-PCR. Mit diagnostischen Methoden haben wir die Aminosäuren bestimmt und die 

Wildtypen mit Defizienten Fischen verglichen. Wir haben die Embryos hohen Konzentrationen 

von Glutamin ausgesetzt um den Phänotypen zu reproduzieren und haben Transgene, sowie 

Antikörperfärbungen als visuelles Ergebnis.  

Es ist uns gelungen, den Homolog Qdpra der Produktion von Melanin im frühen Embryo 

zuzuweisen, durch die Supplementierung von BH4 für das Enzym Pah. Eine Defizienz führte 

zu einer Hyperphenylalaninämie und signifikant erniedrigtem Melanin-Spiegel. Nach 3 Tagen 

der Entwicklung konnten wir qdpra Ko-lokalisiert zur Pah in der Leber aufzeigen. Für Qdprb2 

wurde keine relevante Funktion in der frühen Embryonalentwicklung erkannt. qdprb1 wurde 

detektiert in den frühen proliferativen Zonen des Auges und Mittelhirns. Es beeinflusst die 

Gliazell Entwicklung, während neuronale Entwicklung unbeeinflusst war. Qdprb1 reguliert 

Glutamin, welches bei hoher Exposition die Gliazellmarker des Auges und Mittelhirn runter 

reguliert. Wir konnten keine Verbindung zur traditionellen Funktion und BH4 bestimmen und 

folgern daher die Regulation von Glutamin und der Gliazell-differenzierung als neue, bisher 

unbeschriebene, Funktion der Qdprb1. Des Weiteren konnten wir, wie bei Qdprb1 in 

Zebrafisch, erhöhte Glutamin-Spiegel in einem Patienten mit schwerer DHPR-Defizienz 

nachweisen 

Unsere Ergebnisse sind die ersten, die Einblicke in die Pathophysiologie der DHPR-Defizienz 

ermöglichen, durch die erfolgreiche Charakterisierung der Qdpr im Zebrabärbling, sowie die 

Bestimmung einer neuen Funktion des Homologes Qdprb1 in der Gliogenese. 
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Abbreviations 

Abbreviations 

Table 1. Abbreviations 

Abbreviation Full Name 

°C Degrees Celsius 

µ Micro 

3-OMD 3-O-Methyldopa 

5-HT 5-Hydroxytryptophan 

AP Alkaline phosphatase 

BCAA Branched chain amino acids 

BCIP 5-bromo-4-chloro-3-indoyl-phosphate 

BH2 Dihydrobiopterin 

BH4 Tetrahydrobiopterin 

bp Base pairs 

BSA Bovine serum albumin 

CMZ Ciliary marginal zone 

CNS Central nervous system 

CRISPR Clustered regularly interspaced short 

palindromic repeats 

CSF Cerebrospinal fluid 

Da Dalton 

DAPI 4,6-Diamidin-2-phenylindol 

DHKA Dihydrokainic acid 

DMEM Dulbecco modified eagle medium 

DMSO Dimethylsulfoxide 

DNA Deoxyribonucleic acid 

DOB Date of birth 

dpf days post fertilization 

ECL Enhanced chemiluminescence 

ECM Extracellular matrix 

EDTA Ethylenediaminetetraacetic acid 

ETBR Ethidium bromide 

FCS Fetal calf serum 

Fig. Figure 
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Abbreviations 

g Gram / g-force 

GCL Ganglion cell layer 

GFP Green fluorescent protein 

GTP Guanosine triphosphate 

HIAA 5-hydroxyindolacetic acid 

HPA Hyperphenylalaninemia 

Hpf Hours post fertilization 

HPLC High performance liquid chromatography 

HRP Horseradish peroxidase 

HVA Homovanillic acid 

INL Inner nuclear layer 

IP Immunoprecipitation 

IPL Inner peripheral layer 

(W)ISH (Whole mount) In situ hybridization 

kb Kilobases 

l Liter 

L-Dopa Levodopa 

LMSO L-methionine S-sulphoximine 

m Meter 

M Molar 

m Milli 

MBT Mid-blastula transition 

MHB Mid-hindbrain boundary 

min Minutes 

MO Morpholino 

MOPS 3-(N-Morpholino)propansulfonic acid 

mRNA Messenger RNA 

n Nano 

NADH Nicotinamide adenine dinucleotide 

NBT Nitro blue tetrazolium chloride 

NCC Neural crest cells 

NO Nitric oxide 

ONL Outer nuclear layer 
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Abbreviations 

ONL Outer nuclear layer 

OPC Oligodendrocyte precursor cell 

p p-value 

PAGE Polyacrylamide gel electrophoresis 

PBS Phosphate buffered saline 

PBST Phosphate buffered Saline with Tween 

PBTr Phosphate buffered Saline with Triton 

PCR Polymerase chain reaction 

PFA Paraformaldehyde 

pH3 Phoshpo-histone 3 

PKU Phenylketonuria 

PNK Polynucleotide kinase 

PTR Proliferative tectum region 

PVDF Polyvinylidenfluorid 

q-BH2 Quinoid dihydrobiopterin 

qRT-PCR Quantitative real time - polymerase chain 

reaction 

RBP RNA binding protein 

RNA Ribonucleic acid 

rpm Rounds per minute 

RT-PCR Reverse transcription polymerase chain 

reaction 

S Siemens (Conductance) 

SDS Sodium dodecyl sulfate 

Som Somites 

siRNA Silencing RNA 

TAE Tris-acetate-EDTA buffer 

TALEN Transcription activator-like effector nuclease 

TEMED N,N,N,N-Tetramethylethylendiamine 

tg Transgene 

Tris Tris(hydroxymethyl)-aminomethane 

V Volt 

wt Wildtype 
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Nomenclature 

Nomenclature 

Considering the comparisons between gene expression and protein function between human, 

mouse and zebrafish in this study, nomenclature is based on Trends in Genetics "Genetic 

Nomenclature Guide"; Hester et al., 2002; the committee of standardized genetic nomenclature 

of mice (1962) and the zebrafish nomenclature committee (zfin.org; accessed 9.1.2017; Howe 

et al., 2013). 

e.g. QDPR 

Species Gene  Protein                   

Human  QDPR  DHPR 

Mouse  Qdpr  QDPR 

Zebrafish qdpra  Qdpra 
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1. Introduction 

1. Introduction 

1.1 BH4 pathway 

The proper homeostasis of neurotransmitters, cofactors and gene expression in a neuron are of 

the utmost important for proper functioning of the cell. Neurons, neuronal network, 

development and structure have been in the focus of science for many years, especially since 

the works of Santiago Ramon y Cajal (1852-1934), who has set the basis for identifying the 

morphology of the nervous system (Cajal 1899). The knowledge about this field has rapidly 

accumulated to the understanding and function of neurons. Two major neuronal subtypes, that 

have been focus of these studies, are dopaminergic and serotonergic neurons. While serotonin 

is majorly expressed in the periphery of the gut and acts as a hormone (Walther et al., 2003), it 

is also a strong neurotransmitter that is present in a variety of neurological networks of the brain 

and spinal cord (Alanina et al., 2006). Depletion of serotonin is associated with epilepsy and 

seizures (Tripathi and Bozzi, 2015). Dopaminergic neurons however are majorly found in the 

midbrain, more specifically in the substantia nigra, which was named due to the present 

neuromelanin in these cells (Zucca et al., 2014). Dopaminergic neurons are required for many 

functions such as addiction, mood and stress (Chinta and Andersen., 2004). On one hand, loss 

of these neurons is associated with the extensively studied Parkinson’s disease (German et al., 

1989), first described 200 years ago (Parkinson, 1817). On the other hand, overproduction of 

dopamine is associated with schizophrenia (Seeman and Kapur, 2000). It is therefore essential 

to tightly control neurotransmitter synthesis. 

The cofactor tetrahydrobiopterin (BH4) is a heterocyclic compound (Fig. 1) which is necessary 

for the enzymatic reactions that are required to produce the neurotransmitter precursors of 

dopamine and serotonin, as well as for nitric oxide synthase (NOS) activity. As presented in 

Fig. 2, BH4 is involved in numerous pathways. The BH4 pathway consists of a 3-step de novo 

pathway and a 2-step recycling pathway. During de novo synthesis, BH4 is produced from GTP 

via the enzyme GTP-cyclohydrolase 1 (GTPCH), 6-pyruvoyl-tetrahydropterin synthase (PTPS) 

and sepiapterin reductase (SPR) resulting in 7,8 Dihydroneopterin phosphate, 6-

pyruvoyltetrahydropterin and BH4, respectively. BH4 is then used up in the hydrolysis reactions 

of tyrosine hydroxylase (TH), tryptophan hydroxylase (TPH) and phenylalanine hydroxylase 

(PAH) producing Levodopa (L-Dopa), 5-hydroxytryptophan (5-HT) and tyrosine, respectively. 

For NOS activity it is required in the direct generation of citrulline and NO from arginine (Fig 

2.) 



 

8 
 

1. Introduction 

 

Figure 1. Chemical structure of BH4 

Chemical Structure of BH4 made with ChemDraw© 

 

The level of phenylalanine can also regulate a feedback mechanism via GTP cyclohydrolase 

feedback regulator (GFRP), which regulates the activity of GTPCH via direct binding (Werner 

et al. 2011; Ponzone et al. 2004). Increased Phenylalanine supports synthesis of BH4, while 

reduced phenylalanine slows down synthesis (Maita et al., 2002).   

After the hydrolysis BH2 is then turned to q-BH2 by pterin-4-alpha-carbinolamine dehydratase 

(PCD) and finally recycled back to BH4 via dihydropteridine reductase (DHPR) (Gross et al. 

1992, Thöny et al., 2000). BH4 can then be used again as cofactor. It is to note that from the 

closely related folate pathway, the dihydrofolate reductase (DHFR) can perform the same 

enzymatic reaction in the salvage pathway with q-BH2 and the tetrahydrofolate reductase from 

BH2 (Ponzone et al., 1993; Matthews et al., 1980; Scriver et al., 2001, Pollock et al., 1978).  

As shown in Fig. 2, the pathway is directly required for the production of tyrosine from 

phenylalanine. Furthermore, it is directly involved in the generation of L-Dopa and 5-HT, the 

precursors of dopamine and serotonin, respectively. Therefore, neurotransmission is indirectly 

dependent on BH4. Additionally, NOS generate nitric oxide for various important functions 

including neurotransmission, antimicrobial agent and reproduction (Roselli et al., 1998; Gross 

et al., 1992). BH4 misregulation has even been linked to autism (Schnetz-Boutad et al., 2009) 

and cardiovascular disease (Bendall et al., 2014).  During de novo synthesis a sidetrack via Spr 

can produce pteridines that serve as yellow pigments, i.e. xantophores, in zebrafish (Odenthal 

et al., 1996, Ziegler et al., 2000). Since BH4 is required in such a variety of mechanisms, 

deficiencies have been associated with the regulation of neurotransmitter levels, pigmentation, 

immune response, liver function and cell metabolism. 
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1. Introduction 

 

Figure 2. BH4 synthesis and related pathways  

Overview of the BH4 de novo, recycling and Nos pathway. De novo synthesis shown in green, neurotransmitter 

related pathway in orange, recycling pathway in pale brown, NOS pathway in blue. Related pathways for 

pigmentation in zebrafish shown in pale blue and feedback mechanism in grey. Enzymes are shown in blue while 

compounds are shown in green. All reactions that require BH4 as a cofactor are shown by a blue arrow, all related 

steps by red arrows. 
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1. Introduction 

1.2 Most prevalent BH4 deficiencies 

The first described defect related to the BH4 pathway and the most common inborn error of 

metabolism is phenylketonuria (PKU) (Camp et al., 2014). Even though not directly a 

deficiency of the cofactor BH4, it pathed the way for the diagnosis of BH4 related deficiencies. 

PKU classically presents as a PAH deficiency resulting in a severe increase in phenylalanine 

(hyperphenylalaninemia (HPA)) (Blau., 2015). It is often diagnosed during diagnostic newborn 

screening (Blau et al. 2014). It has a prevalence of 1:10’000 to 1:15’000 in Caucasians and East 

Asians (Williams et al., 2008). In Turkey and Northern Ireland however, the prevalence is 

1:4000 births (Ozalp et al., 2001). PKU needs to be treated with reduced phenylalanine uptake 

to prevent toxic levels to accumulate, which has been linked to the neuropsychological defects 

in patients (Fölling, 1934). This low-phenylalanine diet treatment was pioneered by Horst 

Bickel in the 1950’s (Bickel et al., 1953) and today has led to a wide variety of low-

phenylalanine products (van Calcar and Ney, 2012; Ney et al., 2014). 

The diagnosis of HPA also led to the discovery of PAH related disorders involving BH4 (Blau 

et al., 2014). BH4 deficiencies present a rare inborn error of neurotransmitter metabolism. Of 

all HPAs diagnosed only 2% are caused by BH4 deficiencies (Blau 2006; Thöny and Blau 

2006). Worldwide, the highest diagnosis and incident rate is observed in Turkey (Fig. 3). The 

most common case is a deficiency in the enzyme PTPS (Fig. 3.; Opladen et al, 2012). As this 

is a defect in the de novo synthesis pathway it causes a loss in BH4 and in turn an increase in 

neopterin, the compound produced by GTPCH (Fig 2.). In parallel, the lack of BH4 causes a 

lack of TH, TPH and PAH function. Therewith results a drop of dopamine and serotonin 

precursors, and a sharp increase in phenylalanine. Additionally, the downstream compounds 

such as homovanillic acid (HVA) and 5-hydroxyindolacetic acid (HIAA) are depleted in the 

cerebrospinal fluid (CSF) (Blau, 2006). Similar to PKU, this symptom can be treated by reduced 

phenylalanine uptake and BH4 given as treatment (Blau et al., 2001). BH4 responsiveness is 

analyzed by a loading test, in which BH4 is supplemented and the phenylalanine levels are 

screened. A drop in phenylalanine indicates BH4 responsiveness (Bernegger and Blau, 2002). 

Furthermore, the supplementation of neurotransmitter precursors was shown to improve 

neurological symptoms (Longo., 2009; Porta et al., 2009; Burlina and Blau, 2014). Gene 

therapy has been recently advancing as treatment option for inborn errors of metabolism. Most 

recently iPSCs from patients of PTPS and DHPR were rescued using CRISPR/Cas9 and showed 

improvement of phenotype and corrected BH4 and TH protein levels in the then differentiated 

cells (Ishikawa et al., 2016). 
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1.2.1 Least prevalent BH4 Deficiencies  

Mutations in the genes of GTPCH, termed GCH1, and SPR deficiencies also cause a de novo 

synthesis defect. GTPCH and SPR deficiencies however do not cause HPA, can be difficult to 

diagnose (Thöny and Blau, 2001) and make up less than 10% of worldwide diagnoses BH4 

deficiency cases (Fig. 3). In newborn screening, SPR deficiency diagnosis can be done by an 

increase in total biopterin and depletion of HIAA and HVA in the CSF (Blau, 2006). SPR 

deficiency results in a dopa-responsive movement disorder and can present with growth 

hormone deficiency and hypothyroidism, which improve upon treatment (Zielonka et al., 2015). 

GTPCH deficiency has previously been diagnosed as Segawa disease (Segawa et al., 1976; 

Ichinose et al., 1994). Similar to SPR deficiency, mutations in GCH1 also present without HPA 

and are dopa-responsive (Thöny and Blau, 2006). Additionally, a depletion in neopterin, 

biopterin, HIAA and HVA can be detected in the CSF. GTPCH deficiency has been previously 

been linked to disorders such as Parkinson’s (Menacci et al., 2014). 

 

 

Figure 3. BH4 deficiencies 

Adapted from Opladen et al., 2012. A. Statistical analysis of BH4 deficiencies as piechart and total case numbers 

worldwide. B. Statistical representation of BH4 deficiencies linked to country of origin, Right: MRI top left and 

right (left liquor: white; right liquor: black) shows brain atrophy of 3 year old female DHPR patient. Bottom shows 

textbook example of a CT scan of calcification of basal ganglia 

CCT 
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PCBD mutations set a special class of mutations due to its function. PCBD deficiency causes 

primapterinuria and a similar pattern of pterins as PTPS, with an increased level of 7-biopterin 

(Thöny et al., 1998a, Thöny et al., 1998b, Blau, 2006). PCBD also has been shown to have 

other functions, i.e. a moonlighting function that involves the dimerization of the hepatic 

nuclear factor 1 (HNF-1) and therefore termed dimerization cofactor of HNF-1 (DCoH) (Ficner 

et al 1995, Lei et al., 1999). In multiple studies it has been shown to act as a transcriptional 

activator (Johnen et al., 1997). Furthermore, a role on pigment cell development has been 

suggested in xenopus (Pogge v. Strandmann et al., 2000). It has later been found to be expressed 

in human melanocytes and affect tyrosinase transcription (Schallreuter et al., 2003). The same 

research group suggested before that the accumulation of 7-BH4 due to lack of PCBD activity 

causes an inhibition of PAH activity and therefore can cause vitiligo (Schallreuter et al., 1994). 

Recently, computational reconstruction of the structure of PAH, also suggests BH4 as 

pharmacological chaperones for the resting-state PAH, this would make recycling and BH4/BH2 

homeostasis even more relevant (Jaffe., 2017).  

1.3 QDPR/DHPR deficiency 

 

 

Figure 4. DHPR protein structure 

Taken from Varughese et al., 1992. Three-dimensional protein structure of Qdpr from rat liver with NADH binding 

site. Alpha helices are shown in blue and beta sheets in yellow. 
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DHPR is a 26kDA large enzyme that acts in form of a homodimer to turn BH2 into BH4, by the 

use of NADH. The gene is located on 4p15.3 and contains 7 exons (Dianzani et al., 1998). The 

protein structure was resolved first in rat liver (Fig. 4) and confirms the binding site for NADH, 

as well as four-helix bundle motif for dimerization (Varughese et al., 1992). Its role has been 

linked to keeping BH4/BH2 homeostasis for BH4 dependent reactions in the CNS and liver. 

DHPR mediates the reaction as cofactor by resupplying the two lost hydrogen atoms via NADH 

(Fig. 5). It contains a conserved short chain dehydrogenase sequence, a NAD binding site at 

position 14-38 and a conserved tyrosine (Y150) in the proton acceptor active site.  

 

Figure 5. Chemical reaction of BH4 

Chemical structure and reaction of BH4 to q-7,8 BH2, which is performed by the amino hydroxylases and is 

reversed by DHPR with the use of NADH. The hydrogen from two nitrogens are removed by the hydrolysis and 

replaced by DHPR in recycling. Structure drawn with ChemDraw©. 

As shown before the BH4 deficiencies are divided into two major groups: synthesis and 

recycling. The major representative of the recycling defects is the DHPR deficiency and second 

largest cohort overall (Fig. 2; Opladen et al., 2012; Blau, 2006). Most cases have been identified 

in Turkey and very few in China (Fig. 2). The numbers of identified mutations have steadily 

increased in time with rapid improvement and standardization of newborn screening. While 34 

different mutations had been detected in 2006 (Thöny and Blau, 2006 (a,b)), a total of 82 

mutations have been identified for DHPR deficiency today (<<BioPKU Database>> accessed 

23.8.2017) 
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The patients present with decreased neurotransmitters, depleted HIAA, HVA and a strong 

increase in BH2 levels (Longo., 2008, Blau, 2006). BH4 itself may be normal or close to, as 

synthesis is unaffected, yet folate levels are significantly reduced (Ponzone et al., 2004). 

Patients also show calcification of the basal ganglia and dystonia (Fig. 2.; Longhi et al., 1985; 

Woody et al., 1989). Hair may appear light coloured and some show muscular hypotonia. Many 

patients also have a microcephaly, while few, mostly untreated patients, show general brain 

atrophy (Fig. 2; Longo., 2008, Opladen et al., 2012). Deficiency can only be confirmed via an 

enzymatic assay, as the patient may present with normal pterin levels (Blau, 2006). Mutations 

can cause severe and mild phenotypes. In fact, DHPR deficiency presents with such great 

variety that some patients do not show any morphological phenotype and have exclusively an 

influence on the serotonergic pathway (Blau et al., 1992), while others are not responsive to 

any treatment and have severe brain atrophy, epilepsy and dystonia (Thöny and Blau, 2006). 

Yet others have a very mild phenotype with some remaining enzymatic activity (Blau, 2006). 

Often complete loss of enzymatic function leads to severe phenotype, while remaining activity 

correlates with a mild phenotype (Dianzanie et al., 1998). Treatment involves neurotransmitter 

precursors L-Dopa and 5-HT, as well as dopadecarboxylase blocker and folinic acid 

supplementation (Thöny et al., 2006). Although some patients receive BH4 with some 

improvement (Coughlin et al., 2013) patients are in general BH4 unresponsive and treatment 

does not improve neurotransmitter levels or symptoms (Coughlin et al., 2013, Jäggi et al., 

2007). Therefore, phenylalanine levels are commonly regulated by a controlled diet (Jäggi et 

al., 2007). This genotype-phenotype correlation has been partially described for several 

mutations (de Sanctis et al., 2000). However, the pathophysiology of this deficiency is not fully 

explained as the phenotype is more severe than a complete lack of BH4 as in PTPS deficiency 

and devises a worse outcome than PTPS deficiencies (Jäggi et al., 2007). It is proposed that 

BH2 may be causative as neurotoxic agent by interfering with NOS and hydroxylase activity, 

although the direct link has never been shown (Longo., 2008; Opladen et al. 2012). 

To unravel the pathophysiology, studies have attempted to find a matching animal model. The 

homolog QDPR in mouse has been previously studied to determine the pathophysiology (Xu et 

al. 2014). The Qdpr knockout mouse shows all biochemical features of the DHPR deficient 

patients including a sharp increase in BH2 and increase in phenylalanine. However, the mouse 

has no morphological or neurological phenotype. The hypothesis proposes that due to the 

conserved function of DHFR, which commonly regulates folate homeostasis, the BH4 pool is 

maintained in the brain. However, this compensation may be inefficient in humans, due to low 
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DHFR activity and consequently cannot compensate the loss of DHPR (Whitsett et al., 2013). 

Therefore, the lack of a phenotype in mice was accredited to the function of DHFR to link the 

folate and pterin pathways and take over the QDPR function (Xu et al., 2014). Although the 

mouse shows the biochemical features of DHPR deficiency and could convincingly connect 

DHFR and QDPR function, it does not serve as a model for elucidating the pathophysiology of 

the disorder. 

 

1.4 Zebrafish as model organism 

 

 

Figure 6. Adult zebrafish 

Image taken from Zebrafish atlas (zfatlas.pdu.edu) 

 

Thanks to the works of George Streisinger (1927-1984), who was among the first to work with 

zebrafish in a laboratory and has revolutionized the analysis of mutants and cloning of 

vertebrates (Streisinger et al., 1981, Kimmel et al., 1985), the zebrafish has evolved as an 

indispensable vertebrate model system. Zebrafish have been used in developmental biology as 

a very useful tool to observe embryonic development. The development occurs ex utero and as 

the embryo is translucent, the early developmental and morphological changes can be observed 

with use of a microscope. Large clutches of up to 300 embryos and the rapid development of 

1-cell stage to early larvae at 5 days post fertilization (dpf) allow for excellent comparative 

studies. Developmental stages have been clearly described (Kimmel et al., 1995) and most 

processes of gastrulation to somitogenesis and neurogenesis are well studied. The organism has 

become an excellent tool in pharmacological drug discovery, in describing affectivity and 

toxicity of small molecules and chemicals (Lieschke et al.2007). By simple exposure to these 

compounds one can screen for developmental changes or genetic and biological responses. 

For the last decades the zebrafish model organism has proven very useful in the fields of 

developmental biology and embryology. Especially metabolic disorders profit from the easy 

manipulation and readouts (Seth et al., 2013). The use of simple manipulation methods such as 
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morpholinos that can be injected into the 1-cell stage makes for straight-forward modeling of 

genetic deficiencies. Morpholinos are short oligonucleotides with an uncharged backbone. As 

morpholinos specifically target the mRNA at either the start codon or a splice site, it results in 

a lack of translation or a lack of properly spliced mRNA, respectively, therewith resulting in a 

drop of protein levels (Eisen et al., 2008). Specificity of these effects is tested by rescuing the 

developmental phenotypes with injection of mRNA of e.g. humans or mice, which will 

additionally confirm functional conservation between species. As off-targets have been a 

concern for morpholinos, one must consider a set of controls and tests to exclude such risks 

(Eisen et al., 2008). 

Advances of genome editing via TALENs (Kawahara et al., 2016) and more recently the 

CRISPR/Cas9 method (Doudna et al., 2014) has enabled us to specifically knock-out or knock-

in genes of interest and look at the developmental effects.  Zebrafish have also the great 

advantage of transgenic lines. These lines express a fluorescent protein under a specific 

promotor, which allow for a visual readout of specific cell types or change in gene expression. 

Most commonly the new fish lines are generated via the GATEWAY system that makes use of 

the proficient Tol2 mechanism (Kwan et al., 2007). The plasmid containing the Tol2 sites, 

promotor, fluorescent protein and sometimes a second readout fluorescent protein, is co-

injected with a transposase which randomly integrates the plasmid into the genome. This 

method can create a large variety of useful readouts for experiments that have become of great 

use for the study of neurodegenerative disorders (Don et al., 2016). 

D.rerio is of great advantage to characterize genetic functions and related disorders. In fact, 

most recently our working group used data from zebrafish, yeast and calf to identify a novel 

mutation in the human isoleucyl-tRNA synthetase (IARS), which causes growth retardation, 

intellectual developmental disorder, hypotonia and hepatopathy (Kopaijtich et al., 2016).  
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1.5 BH4 pathway in zebrafish (Pigmentation) 

 

 

Figure 7. Overview of pterin dependent pigment synthesis of xantophores 

Overview of xantophore pigment synthesis dependent on de novo synthesis of BH4 (adapted from Braasch et al., 

2007). Red pigment drosopterin shown in orange and yellow pigments shown in yellow. Required genes in grey 

and compounds in black. 

 

The BH4 pathway has been extensively studied in zebrafish in association with the pterin 

pathway and the production of all pigments in the embryo (Fig. 7). Pterins are connected to 

pigments and named after the colourful wings of butterflies (pteron = wing) (Schöpf 1964). 

Pterins account for the yellow and red pigments in zebrafish and are dependent on sepiapterin 

(Odenthal et al. 1996, Ziegler et al. 2000) and are therefore dependent on the de novo pathway 

of BH4. This was also shown for the red pigments in the eye of drosophila (Kim et al. 2013). 

Melanin on the other hand is produced from tyrosine via L-Dopa and is therewith indirectly 

dependent on BH4 recycling. Melanophores, which arise from the neural crest (Braasch et al, 

2007), require sufficient BH4 levels, which were previously shown to express the second 

recycling enzyme Pcbd (Schallreuter et al., 2003). If one would only consider pigmentation, 

then one would expect only the production of melanin to be reduced by a deficiency in recycling 

enzymes, which is seen in the reduced pigmentation in DHPR patients (Blau et al., 2005). 
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1.6 Neurological advantage 

A major topic of zebrafish research concentrates on neuronal development. Its unparalleled 

advantages for neural imaging and cell tracking in the living embryo under physiological 

conditions has been widely exploited (Pan et al., 2011; Gerlai., 2012; Beretta et al., 2017). 

Transgenic lines such as the brainbow zebrafish (Fig. 8) allow for single cell fate tracking, by 

integrating different fluorescence cassettes into each neuron, allowing the identification of 

single neurons from others (Pan et al., 2011). The mapping of neuronal pathways has become 

additionally interesting for understanding of behavioral genetics (Parker et al., 2013). The 

developing zebrafish contains highly conserved neuronal networks in its CNS, which develop 

rapidly. For instance, already at 72 hpf (hours post fertilization), dopaminergic neurons cluster 

in the diencephalon and noradrenergic neurons mature in the locus coeruleus of the 

metencephalon (Kastenhuber et al., 2010).  

 

 

Figure 8. Brainbow zebrafish 

Taken from Pan et al., 2011. Dorsal image and close up of fluorescing neurons in a brainbow zebrafish 

The neuronal development of the embryo has been extensively studied and described. Along 

the anterior-posterior axis of the developing embryo, key organizing centers such as the 

midhindbrain boundary (MHB) pattern the brain and influence neuronal development. The 

underlying genetic network has been unraveled mainly by the study of mutants such as the 

acerebellar/fgf8 (Reifers et al., 1998), MHB gone (Shima et al., 2009) and no isthmus/pax2 

(Brand et al. 1996). Cells at the MHB are often proliferative and a network of transcription 

factors and secreted molecules influence the early neurogenesis in this region, which 

commences as early as 10 hpf as judged by marker gene expression (Geling et al., 2003; 

Stigloher et al., 2008). Two other proliferative regions in which neurons are born are the 

proliferative tectum region (PTR) of the midbrain in close vicinity of the MHB and the ciliary 
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marginal zone (CMZ) in the eye (Fig. 9.). These regions have been extensively studied in teleost 

fish and other vertebrates (Avanesov and Malicki, 2010; Chow and Lang, 2001; Dyer an Cepko 

et al., 2001; Jean et al., 1998; Pujic and Malicki, 2004) and have been defined as conserved 

sister regions (Aldiri et al., 2013; Alunni et al., 2010; Cerveny et al., 2010; Imai et al., 2014; 

Malo et al., 2017; Recher et al., 2013). Here, for instance tightly controlled gene expression can 

distinguish between different areas such as a stem cell region, a cell cycle exit region and a 

differentiation zone (Cerveny et al., 2010; Wehman et al., 2005). Mutations in genes expressed 

in these regions can severely influence the proliferation and differentiation of neuronal and glia 

cells (Cerveny et al., 2015; Hu et al., 2015; Kubo et al., 2003; Reinhardt et al., 2015) 

 

Figure 9. Proliferative regions of the zebrafish 

Left: Presentation of zebrafish proliferative regions in 3dpf zebrafish (dorsal view). Proliferative regions marked 

in red in the midbrain and CMZ of the eye; Right: Presentation of the eye at 3dpf. Proliferative region from left 

(CMZ), marked in red. A: CMZ, B: Lens; C: Ganglion cell layer (GCL); D: Inner peripheral layer (IPL); E: inner 

nuclear layer (INL), F: Outer nuclear layer (ONL) 

 

1.7 Glial cells of the zebrafish brain 

Apart from neurons, the main cell lineage, composing the mass of the brain, are glial cells. Glial 

cells were originally named after the term “glue”, since they have been first considered 

supportive cells for neurons. They now have been determined as major regulators of neuronal 

networks and have become one of the major focuses for disease and neuronal development 

(Taber et al., 2012). In mammals, the majority of glial cells belong to the cell line of astrocytes, 

which are named after their shape “star-like”. They have a distinct order of gene expression 

patterns during their development and are shown to influence the extracellular matrix (ECM) 
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(Wiese et al., 2012). The second major type of glial cells are oligodendrocytes, which act as 

myelinating cells for neurons and are positive for the expression of Olig2 (Park et al., 2002). 

Oligodendrocytes also arise from the same precursors as motor neurons (Wiese et al., 2012; 

Lyons et al., 2015). The third cell line termed glia are microglial cells, although these arise from 

the hematopoietic lineage and not the neuronal lineage (Chan et al., 2007).   

In teleost fish, the astrocyte-like cells are termed radial glia, because of their extended shape, 

rather than the star-like appearance (Kalman et al., 1998). They share many commonalities to 

the mammalian astrocytes (Grupp et al., 2010), which include conservation of typical astrocyte 

markers: glutamine synthetase (Glul), glial fibrillary acidic protein (Gfap) and Aquaporin 

(Aqp4) (Grupp et al., 2010). Furthermore, radial glia cells and the eye specific Müller glia cells 

have regenerative capacity and are capable to generate and replace lost cells after injury 

(Bernardos et al., 2007; Nagashina et al., 2013). Upon injury to the CNS, these glial cells 

therefore act as neuronal stem cells (Kroehne et al., 2011). For continuity in this study we will 

refer to these zebrafish astrocyte-like, glula positive cells, as astroglial cells. 

Astroglial cells in zebrafish, as in mammals, are necessary for the functional ionic and 

metabolic homeostasis in the brain and within neuronal networks. One of the most studied 

mechanisms involves uptake of glutamate (Bacci et al., 1999; Bringmann et al, 2013). 

Astrocytes at the glutamatergic synapse are required for rapidly clearing the synapse of the 

neurotransmitter to prevent neuronal toxicity and glutamate accumulation. Glutamate is taken 

up via the transporters EEAT1/SLC1a3 and EAAT2/SLC1a2, from which the latter is necessary 

for 95% of the rapid uptake (Haugeto et al., 1996). The cell then metabolizes the glutamate to 

glutamine by GLUL and the glutamine then in turn gets transported back to the neurons. The 

neurons then complete the cycle by metabolizing glutamine back to glutamate for 

neurotransmission. Both glutamate transporters are conserved in the teleost midbrain 

(Gesemann et al., 2010) and have been linked to a conserved function (McKeown et al., 2012). 

Alterations of astrocytes and their function have been linked to numerous disorders, including 

epilepsy and early death, due to neurotoxic extracellular glutamate in case of a loss in GLT-1 

(Tanaka et al., 1997). More specifically a knockout of Glt-1 in Gfap+ astrocytes was shown 

linked to high lethality in mice and a neuron specific knockout of Glt-1 to have none (Petr et 

al., 2015). High levels of glutamate are neurotoxic and therefore proper astrocyte uptake and 

transport is extremely important (Choi., 1988). Glutamate and ammonia overload the synapse 

and become neurotoxic. One of our recent studies models this effect in zebrafish and shows that 
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high levels of glutamate are the pathophysiological source and that inhibition of the ornithine 

amino transferase (OAT) is highly effective as protective remedy (Zielonka et al. 2018, 

unpublished). In the “Trojan horse theory” high levels of glutamine are taken up by the cell and 

turned into ammonia and glutamate in mitochondria. This in turn results in dysfunction and 

swelling of mitochondria (Rao et al., 2003; Zieminska et al., 2000; Albrecht and Norenberg, 

2007). 

In zebrafish many genes have been linked to gliogenesis, glia patterning and axon guidance 

(Barresi et al., 2010). Many of these genes are related to diseases. For example, mutations in 

GFAP are correlated to Alexander’s disease, which affects astrocyte development and causes 

severe neurological symptoms (Brenner et al., 2010). Alexander’s disease is also listed as 

differential diagnosis for DHPR deficiency (Orphanet <<accessed 20.9.2017>>; Ng et al., 

2015). 

1.8 RNA binding proteins 

Beside the function of BH4 recycling, large-scale screens for RNA binding proteins, detected 

DHPR as an RNA-binding enzyme (Castello et al., 2013). The protein function of binding 

RNAs has been described for numerous proteins and is required for the regulation of cell 

metabolism and regulation of RNA fate (Castello et al., 2012). Expression of these RNA-

binding proteins (RBPs) may give insight into the state of the cell (Castello et al., 2016). Large 

scale screens have identified a large number of proteins capable of this function (Castello et al., 

2013). An extensively analyzed protein, the human nuclear ribonucleoprotein particle C 

(hnRNPC), has been shown to form complexes, regulate splicing and change conformation 

when bound to heterogeneous nuclear RNAs (Swanson et al., 1987). Commonly RBPs make 

use of specific RNA binding domains (RBD), but even non-canonical RBDs have been 

described (Lee and Hong 2004). Many RBPs are conserved among species and are highly 

important for RNA regulation (Beckmann et al., 2015). 

In addition to RNA binding proteins that have this function as their main role, other enzymes 

have been detected that can bind RNA. Since many proteins contain unknown mode of function 

for their RNA binding and its role (Castello et al., 2016), it offers the opportunity of studying 

the role of RNA binding as supportive role, regulatory or novel function for the enzyme and 

possible insight into the unknown pathophysiology. 
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1.9 Unraveling the pathophysiology 

This thesis focuses on the unknown pathophysiology of DHPR deficiency modeled in zebrafish 

that presents with an atypical severity of BH4 deficiencies including brain atrophy and 

microcephaly. It characterizes all three homologs Qdpra, Qdprb1 and Qdprb2. Our data defines 

the role of Qdpra in early pigment synthesis and Pah activity, while Qdprb1 activity influences 

the gliogenesis in the proliferative regions of midbrain and eye. We find that Qdprb1 functions 

in regulating glutamine production in this process. Intriguingly, our studies of human patients 

implicate the evolutionary conservation of this mechanism. This study is the first to explain, at 

least in part, the pathophysiology of DHPR deficiency via a novel function for Qdpr, linking it 

to neuronal differentiation in the proliferation zones of the eye and midbrain. 
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2. Materials and Methods 

2a. Chemicals 

Table 2. Chemicals 

Company Chemical 

Carl Roth, Karlsruhe 

(Germany) 

Acetic acid 100%  

Chloroform > 99%,  

 Denatured ethanol > 99.8% + 1% MEK 

Ethanol > 99.8%,  

Ethylenediaminetetraacetic acid Dihydrate > 99%,  

 Methanol > 99%,  

 Milkpowder 

 D+ sucrose >99.5,  

 Tris-(hydroxymethyl)-amniomethan > 99.5% 

 Triton 

 Tween® 20,Ph.Eur. 

 Sulfosalicyclic acid >99% 

  

Roche, Basel (Switzerland) 10x Dig-RNA labeling Mix 

Complete, EDTA free protease inhibitor 

 DNAse 1 

 NBT/BCIP solution 

 RNAse inhibitor 

 SP6 polymerase 

 T7 polymerase 

  

SIGMA, St. Louis, Missouri 

(United States) 

10X Dulbecco’s phosphate buffered saline 

20X SSC Buffer concentrate 

 Agarose for molecular biology 

 Bacteriological agar 

Bovine serum albumin (BSA) >98% 

 Citric acid monohydrate >99% ACS 

 Diethyl pyrocarbonate (DEPC) >97% 
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Dimethylsulfoxide (DMSO) >99% 

 Eukitt 

Ethidium bromide solution 10mg/ml 

 Formamide >99.5% 

 Heparin sodium salt from porcine 

 Hydrochloric acid solution (37%) 

 Isopropanol >99.7% 

 Lithium chloride >99.0% 

 Magnesium chloride hexahydrate >98% 

 Magnesium sulfate 

 Methyl cellulose 

 Methylene blue, dye >82% 

 Paraformaldehyde, reagent grade 

 1-phenyl-2-thiourea (PTU) >98% 

 Potassium chloride >99% 

 Proteinase K 

 RNAseAway® 

 Sodium chloride >99.5% 

 Sodium hydroxide 

 Tricholaracetic acid 

 TRI Reagent® 

 tRNA from wheat germ Type V 
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2b. Antibodies 

Table 3. Antibodies 

Company Chemical 

Jackson Immuno Research Laboratories 

Inc., West Grove, Pennsylvania (United 

States) 

Cy™2 Affinipure donkey anti rabbit IgG 

(H+L) 

 Cy™3 Affinipure goat anti mouse IgG 

(H+L) 

  

Roche, Basel (Switzerland) Anti-Dig-AP Fragments 

  

Merck Millipore, Billerica, Massachusetts 

(United States) 

Polyclonal anti- GFP (rabbit) 

 Polyclonal anti-pH3 (rabbit) 

  

Proteintech Group, Manchsester (United 

Kingdom) 

Polyclonal anti- QDPR (rabbit) 

  

Santa Cruz Biotechnologies, Heidelberg 

(Germany) 

Monoclonal anti-QDPR (mouse) 

  

SIGMA, St. Louis, Missouri (United States) Monoclonal anti- acetylated-tubulin (rabbit) 

 Monoclonal anti-FLAG® M2 (mouse) 
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2c. Kits  

Table 4. Kits 

Company Kit or Component 

QIAGEN, Hilden (Germany) QIAprep® Spin Midiprep kit 

 QIAprep® Spin Miniprep kit 

 One-Step RT-PCR kit 

 RNeasy® Mini Extraction kit 

  

Bioline, London (United Kingdom) MyTaq® 2x HS Red Mix 

 SensiFast SYBR® Hi-Rox 2x 

  

New England Biolabs, Frankfurt (Germany) GeneRuler DNA 1kb Ladder 

 GeneRuler DNA 100bp Ladder 

 Quick-load® Purple DNA 2-log Ladder 

 Quick-load® Purple DNA loading dye 

 High-Fidelity® Restriction endonucleases: 

BamH1, Not1, XbaI, XhoI, Spe1, EcoR1 

 Q5® High- fidelity polymerase 

  

SIGMA, St. Louis, Missouri (United States) GenElute™ Gel extraction kit 

  

Bio-Rad Laboratories, Inc., Hercules, 

California (United States) 

Protein Reagent A&B 

  

Invitrogen, Carlsbad, California (United 

States) 

mMessage mMachine® SP6 

  

Thermo Fisher Scientific, Waltham, 

Massachusetts (United States) 

Maxima first strand cDNA synthesis for RT-

qPCR 

 SuperSignal™ West Pico Chemiluminscent 

Substrate 
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2d. Equipment and materials 

Table 5. Equipment and materials 

Company Equipment 

Ansell, Richmond (Australia) Gloves L (Touch’nTuff) 

  

Beckman Coulter GmbH, Sinsheim 

(Germany) 

Avanti J-26S XP Centrifuge 

Binder GmbH, Tuttlingen (Germany) “Series C” CO2 Incubator 

  

Biochrom GmbH, Berlin (Germany) Biochrom 30 + (Cation exchange 

Chromaography) 

  

Bio-Rad Laboratories, Inc., Hercules, 

California (United States) 

4-15% Mini-Protean® TGX™ Precast Gel 

Agarose gel Chamber Sub-Cell GT 

 C1000 Touch™ Thermal Cycler 

 CFX Connect™ Real-Time System 

 SDS Gel Chamber Criterion™ Cell 

 Trans-Blot® Turbo™ Mini PVDF Transfer 

 Western blotter Trans-Blot® Turbo™  

  

Brand GMBH & Co KG, Wertheim 

(Germany) 

Pasteurpipettes PE-LD 3ml 

  

Carl Roth, Karlsruhe (Germany) Petri dishes 

  

Carl Zeiss, Jena (Germany)  

 Stemi 305 Microscope 

  

Consort bvba, Turnhout (Belgium) Power Source E835 

  

Corning, Corning, New York (United 

States) 

Serological Pipettes (5ml, 10ml, 25m) 
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Emerson Electric Co., St.Louis, Missouri 

(United States) 

Branson Sonifier 450 

  

Eppendorf, Hamburg (Germany) Gelloader Tips (20µl) 

 Femtojet 4i 

 Pipettes (0.1-1,5µl, 0,5-10µl, 20-200µl, 100-

1000µl) 

  

Goebel, Au in der Hallertau (Germany) S5200 HPLC Autosampler 

  

Harvard Apaparatus, Holliston, 

Massachusetts (United States) 

Capillaries G-100F-3 

  

Heraeus GmbH, Hanau (Germany) Biofuge pico Centrifuge 

  

Knauer, Berlin (Germany) HPLC pump smartline pump 1050 

  

Leica Camera AG, Wetzlar (Germany) CM1900 Cryotome 

 Leica DMI 4000B Microscope 

  

Mettler Toledo, Columbus, Ohio (United 

States) 

Ph204L Fine Scale 

  

Molecular Devices, LLC, Sunnyvale, 

California (United States) 

Spectrophotometer SpectraMax Plus 

  

MWG Biotech, Ebersberg (germany) UV Transilluminator 

  

Narishige GROUP, Tokyo (Japan) Microinjector 

  

Neolab Laborbedarf, Heidelberg (Germany) Tweezers Dumont Dumoxel #5 
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Ohaus Europe GmbH, Greifensee 

(Switzerland) 

Precision Advanced Scale 

  

Sarstedt AG&Co, Nümbrecht (Germany) Tissue culture 24-well plate 

 1,5ml/2ml Eppendorf Tubes 

 Falcon tubes (15ml, 50ml) 

 Filter pipette tips (10µl, 200µl, 1000µl) 

 Pipette Tips (10µl, 200µl, 1000µl) 

  

SIGMA, St. Louis, Missouri (United States) Cover glasses 22mmx22mm 

  

Techlab, Braunschweig (Germany) Jetstream 2+ for HPLC 

  

Thermo Fisher Scientific, Waltham, 

Massachusetts (United States) 

Superfrost® Plus microscope slides 

 HeraSafe™ HS 12 Laminar flow hood 

  

Sutter Instruments, Novato, California 

(United States) 

Needle Puller P97 

  

Terumo, Tokyo (Japan) Butterfly needle 27G 
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2.1 Zebrafish maintenance 

Zebrafish were kept in a unit of the “Interfakultäre Biomedizinische Forschungseinrichtung” 

(IBF) of the University Heidelberg.  Animals were kept at 28.5 °C with a 14/10 light/dark cycle, 

~700µS osmolarity conductance and a pH of 6.8 - 7.5. All in accordance with Westerfield et al. 

(2000). Animals were kept in regulation with Regierungspräsidium Karlsruhe (Az. 35-

9185.81/G-85/16). Animals were fed daily with dry food in form of flakes and live artemia. 

Husbandry for experiments using wildtype embryos was done by outcrossing of AB/AB 

wildtype line. Husbandry of transgenic lines used for experiments was done by incrossing 

heterozygous animals of the respective lines.  

The lines used were: 

• AB/AB wildtype 

• Tg(HuC/D:GFP) 

• Tg(NBT/lyn:GFP) 

• Tg(mpeg:GFP) 

The lines were supplied from the Wittbrodt Lab (University Heidelberg) (AB/AB), Carl Lab 

(CBTM Mannheim) (HuC/D:GFP), Gilmour Lab (EMBL Heidelberg) (NBT/lyn:GFP) and Peri 

Lab (EMBL Heidelberg) (mpeg:GFP).  

2.2 MO knockdown 

MOs are short oligonucleotides that are used to bind specific regions of RNA to inhibit the 

correct splicing or translation entirely. The uncharged Morpholino backbone of these 

oligonucleotides makes them specifically stable and can last in embryos for up to 3 days. MOs 

are designed and distributed by “GeneTools, LLC” and are used at a range of concentration that 

need to be titrated for each MO before using it. 

Although MOs have been recently discussed to contain possible off target effects one has to use 

efficient controls to confirm the results. Every control to confirm the specificity was run, which 

included multiple morpholinos with different targets, multiple rescues with different species 

mRNA, p53 morpholino co-injections and RT-PCR or qRT-PCR analysis. 

2.2.1 Targeting 

Morpholinos are either designed as translation inhibiting (targeting the start codon) or splice 

blocking (targeting intron/exon boundary). I used both possible targets for qdpra and qdprb1. 
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Table 6. Qdpr MO sequences and working concentrations 

Mismatches in morpholino controls (MOCO) are labelled as lowercase letters, while matches are labelled as 

capital letters 

MO Sequence Target Used 

concentration 

Qdpra 1 ATGGCTTTTCTCCGCTGTGAGACGC ATG 0,3 mM 

Qdpra 2 CTTAGGTGTCCTAACCTTTCGAGCT Splice site 

exon3/intron3 

0,3 mM 

Qdprb1 1 TAGCTGCCATTCTGTCTTCACGAGC ATG 0,1 mM 

Qdprb1 2 TATTAGGCGAGTACCAACTTTTGGC Splice site 

exon4/intron4 

0,3 mM 

Qdprb2 1 CCAAAAGTAAGCATGATTCTGACAC ATG 0,3 mM 

Qdpra 1 

MOCO 

ATaGCTTTTaTCCGaTGTaAGACaC 5bp mismatch 0,3 mM 

Qdpra 2 

MOCO 

CTTAcGTcTCCTAAaCTTTCcAGaT 5bp mismatch 0,3 mM 

Qdprb1 

MOCO 

TAaCTGaCATTCTaTCTTaACGAaC 5bp mismatch 0,1 mM 

Qdprb1 2 

MOCO 

TATTAcGCcAGTAaCAAaTTTTGcC 5bp mismatch 0,3 mM 

Qdprb2 

MOCO 

CaAAAAaTAAGaATGATTaTGAaAC 5bp mismatch 0,3 mM 

 

2.2.2 Infections 

Embryos were injected at the 1-cell stage. Morpholinos and mRNAs were injected always into 

the yolk, as close as possible to the cell. Injection volume was adjusted to 1/5th of the cell 

volume which accounts to roughly 2 nl (Yuan and Sun, 2009).  

MOs were injected at a concentration gradient to determine the lowest concentration at which 

a stable morphological phenotype could be observed. The related control morpholinos were 

injected at the corresponding concentration. Embryos were placed in E3 Medium after 

injections and were incubated at 28.5 °C until the desired stage. Embryos that were to grow 

older than 24 hpf and analyzed via WISH, were placed in PTU containing E3 medium after 

gastrulation to inhibit pigment synthesis. 
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2.2.3 Phenotype determination 

The phenotype was analyzed by the correct concentration that caused no toxicity but a stable 

phenotype. Embryos were directly compared to wildtype and control injected embryos. To 

determine no unspecific effects, we used a p53 MO at 0,2 mM co-injected, which inhibits 

apoptosis. This is to account for unspecific cell death due to MO toxicity and will show if the 

morphological change is apoptosis dependent (Robu et al., 2007). Further controls were 

performed by direct rescues with zebrafish or mouse mRNA. 

2.2.4 Rescues 

Rescues were generated in a similar fashion as described in 2.2 with minor adjustments. 

Rescues were designed from mRNA of qdprb1(NM_001020698.1) from zebrafish, QDPR 

201(NM_024236.2) and 204 (ENSMUST00000120867.7) from mice. The sequences were 

amplified by PCR using Q5 polymerase and cloned into pCS2+ Vector. After sequence 

confirmation by sequencing the plasmids were linearized and in vitro transcription performed 

using the SP6 mMessageMachine transcription kit (Ambion) to produce 5’methylcapped 

mRNA.  

This mRNA was injected along with the morpholino and alone. Concentration was varied to 

find a non-toxic but rescue effective range of mRNA. Only mRNA was injected as a control. 

Table 7. Rescue mRNA concentration 

mRNA Concentration  

Qdpra MO 

Concentration  

Qdprb1 MO 

qdprb1 mRNA / 80 pg/µl 

Qdpr 201 mRNA 80 pg/µl 500pg/µl 

Qdpr 204 mRNA / 500pg/µl 

 

2.2.5 RT-PCR 

To determine, if splice morpholinos are acting specifically at the target side one can run an RT-

PCR to determine, if an intron remains in the mRNA or an exon is removed. RNA is isolated 

as previously described (2.2.1) and then specific primers that flank the binding site of the MO 

are used for One-Step RT-PCR kit (Qiagen). Samples are then run on an agarose gel and 

visualized to observe a single band in control-injected embryos and a secondary band in MO 

injected embryos. 
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2.3 In situ probe preparation 

Whole mount in situ hybridization (WISH) is a method that allows visualization of specific 

mRNAs in the whole mount embryo using sequence specific RNA probes. General procedure 

for preparing in situ probes is shown by Figure 10. 

 

Figure 10. Overview of cloning strategy during in situ probe synthesis 

Graphical step wise overview of in situ probe synthesis from PCR, to ligation and IVT 

 

2.3.1 RNA isolation 

RNA was isolated from embryos of the required stages. Embryos were washed in dH2O to 

remove leftover medium and placed on ice. Embryos were then lysed in 1ml of TRIzol (Sigma) 

and protocol run in accordance to manufacturer’s instructions. 

 

 



 

34 
 

2. Materials and Methods 

2.3.2 Polymerase chain reaction 

Polymerase chain reaction (PCR) was used to amplify the target sequences for both in situ 

probes, rescue mRNA and qPCR fragments. Specific primers (see tables in supplemental C), 

which were used to bind to the target and amplify it, were designed with PrimerBlast (Ye et al., 

2012). For in situ probes and colony PCR’s, the HS Red Mix (Qiagen) was used, for reduced 

errors, e.g. for rescue sequences, a Q5 polymerase (Thermo) was used. For complex sequences, 

the One-Step RT-PCR Kit (Qiagen) was used. A general protocol was as followed: 

Table 8. PCR protocol 

Step Temperature Time 

1. Initial denaturation 95 °C 3 min 

2. Denaturation 95 °C 30 sec 

3. Annealing 50-72 °C 30 sec 

4. Elongation 72 °C 1-3 min (1 min / kb)  

x34 cycles Step 2-4 

5. Final elongation 72 °C 10 min 

6. Storage 4 °C ∞ 

 

2.3.3 Agarose gel electrophoresis 

Agarose gel electrophoresis takes advantage of the negative charge of DNA or RNA to separate 

different size fragments of PCR amplified sequences in a 1-2% gel. Agarose is dissolved in 1X 

TAE and 0,5 µg/ml ETBR final concentration added for DNA or RNA visualization under UV 

light. The liquid agarose is poured into a model form with wells and left to polymerize. The gel 

can then be used for DNA separation and run in 1X TAE. 

2.3.4 Gel purification 

PCR was analyzed on 1% agarose gels run at 120V for 45 min in 1X TAE Buffer. Bands were 

then visualized under UV light and respective bands cut out of the gel. Gel pieces were then 

purified using GenElute Kit (Thermo Scientific) according to manufactures’ instructions.  

2.3.5 Ligation 

For ligation of rescue sequences, equimolar amounts of linearized plasmid and fragment were 

used in each ligation reaction. T4 Ligase (ThermoFisher) reaction was according to 

manufacturer’s instructions. Both plasmid and fragment were digested with the respective 

restriction enzyme at 37 °C for 10 min, previous to ligation. 



 

35 
 

2. Materials and Methods 

 

Figure 11. Plasmid map of pCRII TOPO dual promotor 

Map taken from ThermoFisher pcrII dual promotor manual 

 

For DNA fragments created for ISH probes, TA cloning into dual promotor pcrII vector, which 

allows for expression from T7 and SP6 promotor, (Fig.11) was done. A 6 µl ligation setup with 

4 µl PCR fragment, 1µl salt solution and 1 µl TA plasmid stock was done. 

2.3.6 Transfections 

For transfections, 5µl of the respective ligation setup or plasmid was added to 25µl DH5-α 

E.coli (NEB) and placed on ice for 30 min, a 30 sec heat shock was done by 42 °C, with 

following cooling on ice for 2 min. 250 µl SOC Medium was added to the bacteria and allowed 

to recover at 37 °C at 300rpm for 1 hour. 100 µl of the culture was streaked onto LB agar plates 

with antibiotic and grown overnight at 37 °C. 

2.3.7 Bacterial selection 

LB Agar plates were poured by adding 15g/l bacterial agar to 1X LB medium and autoclaving 

the solution. After cooling to 55 °C the selected antibiotic, either Ampicillin (100 µg/ml) or 

Kanamycin (50 µg/ml) was added, and 25 ml each poured into petri dishes. After cooling, the 

plates were coated with X-Gal and IPTG for blue white screening. Since the pcrII vector 

contains the lacZ operon one can screen for colonies that contain plasmids with DNA insert and 

ones without. If the lac operon is intact, the operon will be activated by IPTG and the X-gal 

sugar broken down to a blue compound. If the operon is disturbed by the DNA insert, it cannot 

break down the sugar. Therefore, colonies with plasmid and DNA insert remain white and 

without insert turn blue (Juers et al., 2012).  
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2.3.8 Colony PCR 

Colony PCR was performed by the previously mentioned protocol (2.3.2) by using HS Red 

Mix. Instead of a template, half of a picked colony was added to the reaction. Initial denaturation 

was increased to 5 min to fully lyse the cells. Primers were matching the insert only. Samples 

were run on a 1% gel and positive colonies identified by showing the insert band. 

2.3.9 Miniprep 

For plasmid isolations, miniprep cultures of 3 ml were grown overnight in LB medium with 

antibiotic, of the respective positive identified colonies. The Gold MiniPrep kit (PeqLab) was 

used to manufacturer’s instructions to isolate the plasmid DNA.   

2.3.10 Plasmid quality control 

To determine plasmid quality and concentration, we used a Nanodrop. Concentration was 

determined by absorbance at 260 nm with the equation of the Beer-Lambert Law:  

[DNA] = Absorbance 260 x 50ug. 

 

Quality was determined by 260 nm: 280 nm ratios and 260 nm: 230 nm ratios. A pure DNA 

sample has a 260:280 ratio of 1.8 and a change can indicate protein contamination. In case of 

260:230 a ratio of 2.0 is expected and a change may be caused by phenol contamination. 

2.3.11 Sequencing 

Isolated plasmids were sent for sequencing to SeqLab (Göttingen). Sequences showed both the 

sequence and orientation, which is required for determining sense and antisense of the in situ 

probes or producing the correct rescue mRNA. 

2.4 Sequence analysis 

The sequences obtained for the generated plasmids were analyzed via “Blastn” (Altschul et al., 

1990) and “Expasy translate tool” (Gasteiger et al., 2003). The sequence was compared to the 

database of NCBI in Blastn, to determine the sequence homology. Deleted bases were shown 

as Gaps, while incorrect bases are shown as mismatch. Furthermore, the location of the 

sequence is shown graphically. For in situ probes only sequences with 99% identity (maximum 

of 5 mismatches) and 0 Gaps were used. In case of rescue sequences of qdprb1 mRNA, the 

sequence was additionally tested in ExPASy, to determine if the sequence generates the correct 

amino acid sequence and no frameshifts or deletions. 
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2.5 In vitro transcription (IVT) 

IVT allows for the synthetic generation of mRNA. It uses the linearized plasmid and a promotor 

sequence form which it generates the complementary mRNA and adds a polyA with a 5’-

methylcap for stability. This mRNA can then be purified and injected into the zebrafish embryo 

to induce an overexpression or in case of a knockdown replenish the mRNA pool. 

2.5.1 IVT 

The IVT was done as shown in the following pipetting scheme:     

Table 9. IVT 

Ingredient Volume 

DEPC-H2O To final volume of 20 µl 

Transcription buffer 10X 2 µl 

Dig-RNA labeling Mix 2 µl 

Linearized Plasmid (1µg) __ 

RNAse inhibitor 1 µl 

RNA polymerase (SP6 or T7) 1 µl 

• Incubate at 37oC overnight 

• Add 1ul RNAse free DNAse 1 (Roche) and incubate at 37 °C for 15 min 

• Stop reaction by heating to 65°C for 10 min 

2.5.2 Lithium chloride precipitation 

To isolate the generated RNA, we used lithium chloride (LiCl) precipitation, which uses high 

concentration LiCl and Ethanol to saturate the RNA out of solution: 

• To 20 µl of IVT Mix (2.5.1) 

• 3 µl LiCl (4M) 

• 80 µl Ethanol (-20 °C) 

• Place in -20 °C for 30 minutes 

• Centrifuge frozen sample at 13000rpm for 10 minutes at 4 °C 

• Remove supernatant 

• Wash pellet with 100 µl Ethanol 70% in DEPC-H2O 

• Vortex 

• Centrifuge 13000 rpm for 10 min at 4 °C 

• Remove supernatant 
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• Let pellet dry in hood 

• Resuspend carefully in 20-80 µl DEPC-H2O 

• Aliquot and store at -80oC 

2.6 WISH 

WISH is the main method for analyzing gene expression in whole mount embryos. It uses the 

complementarity of the generated ISH RNA probes against the mRNA produced in vivo. As 

control we use RNA probes identical to the mRNA, which therefore will not bind. It then takes 

advantage of the Dig-incorporation in the probes, which serves as target for an antibody 

staining, which is then visualized via alkaline phosphatase linked secondary antibody and the 

NBT/BCIP reaction, which finally develops a dark blue dye near the bound antibody (Fig 11.). 

The reaction has to be performed RNAse free, to avoid digestion of the mRNA and/or the probes 

and unspecific results.  

 

Figure 12. NBT/BCIP reaction with alkaline phosphatase 

 

The 3-day protocol is as follows: 

Post development 

• Embryos fixed in 4% PFA        

• Dechorionate under microscope with sterile tweezers in PBS-DEPC   

• Fix in 4% PFA for 20 min       

• Incubate in 50% methanol for 5 min      

• Incubate in 100% methanol for 5 min     

• (Possible storage in -20 oC for months, at least overnight               
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Day 1 

• Incubate in 75% methanol (in PBST) 1x times for 5 min    

• Incubate in 50% methanol (in PBST) 1x times for 5 min     

• Incubate in 25% methanol (in PBST) 1 times for 5 min   

• Incubate in PBST  5x times for 5 min    

• Digest with 1X Proteinase K: 10 µg/ml in PBST (depending on stage:  

24hpf 10 min /48hpf up to 1 hour/72hpf with 2X Proteinase K for 1 hour)             

• Wash 3x in PBST for 3 min       

• Refix in 4% PFA/PBST for 20 min      

• Wash in PBST 3x times for 5 min      

• Prehybridze in hybridization buffer at 70 °C for 3-4 h     

• Hybridize in hybridization buffer with tRNA (250 mg/50 ml) and  

• Heparin (2,5 mg/50 ml) at 70 oC + 1 µl Probe overnight     

 

Day 2  

• Wash with 75% hybridization mix and 25% 2xSSC 

• 1x times for 10 min at 70 °C        

• Wash with 50% hybridization mix and 50% 2xSSC 

• 1x times for 10 min at 70 °C       

• Wash with 25% hybridization mix and 75% 2xSSC 

• 1x times for 10 min at 70 °C       

• Wash with 100% 2x SSC for 10 min at 70 °C      

• Wash with 0.2x SSC 2x times for 30 min at 70 °C     

• Step: 75% 0,2x SSC  + 25% PBST for 5 min 

• Step: 50% 0,2x SSC  + 50% PBST for 5 min 

• Step: 25% 0,2x SSC  + 75% PBST for 5 min 

• Step: 100% PBST for 5 min 

• Place in Blocking Solution (2% Sheep Serum 2mg/ml BSA) for at least 4 h  

• Add Ab in Blocking solution at 1:7500 overnight at 4 °C   
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Day 3 

• Wash with PBST 4x times for 25 min 

• Wash with Alkaline Phosphatase buffer (AP buffer) 3x times for 5 min  

  

• Stain with NBT/BCIP in AP buffer in dark until stained (observe under microscope) 

• Fix by washing in PBS 3x times for 10 min      

• Place in 70% Glyercol in PBS and store in dark in fridge   

 

Embryos were mounted in 100% glycerol and oriented between slide and coverslip, which 

allows for accurately orienting the specimen. For this setup, 4 small coverslips were stacked on 

each side of the slide to generate a space for the embryo to be completely coated in glycerol for 

imaging (Fig 12.). Embryos were imaged using a Leica light microscope.  

 

Figure 13. Embryo mounting setup 

Sketch presentation of mounting setup used for light microscopy of stained embryos   

  

2.7 Chemical exposure 

To determine phenotypic effects of chemicals and inhibitors in the developing embryo, fish can 

be simply exposed to the effector. The embryos were dechorionated (after gastrulation) and the 

respective inhibitor or chemical added to the medium. Embryos were placed in 6 well dishes 

and 3 ml of medium used per well per 20 embryos. Comparisons between control (unexposed) 

and exposure where from embryos of the same clutch and experiments done in duplicate each 

time. 

We used inhibitors LMSO and DHKA, as well as compounds L-glutamine and BH2. 

Concentrations for the inhibitors were previously published (Cox et al., 2016; McKeown et al., 

2012) and compounds were tested in a toxicity screen where exposure levels between 1 µM to 

50 mM were tested. Medium and effector were changed daily and dead embryos removed to 

avoid secondary effects.  
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2.8 Biochemical analysis 

For biochemical analysis samples were processed as whole embryo lysates. Embryos were 

sedated on ice previous to reaction preparation. 

2.8.1 Amino acids 

For amino acid analysis a lysate from approximately 15 embryos was generated in dH2O. The 

lysate was passed 30 times through a 27G gauge needles and furthermore 3x10 pulses by 

Branson Sonifier, 50% duty opened the cells. The lysates were used for deproteinization by 

precipitation with 20% sulfosalicylic acid. Samples were spun at 13’000rpm for 10 minutes and 

supernatant used to load into a “Biochrom 30+” for cation exchange chromatography. Detected 

levels were normalized to total protein concentration determined by Lowry assay. 

2.8.2 Pterins 

For pterins, samples were treated identical to amino acid tests, but placed in a DTE/DETAPAC 

buffer for lysis. Samples were then treated with trichloracetic acid (10% total volume) for 1 

hour on ice to precipitate proteins. Then 45 min, 13000 rpm centrifugation pelleted the proteins 

and the supernatant was filtered through centrifuge filer at 8000 rpm for 5 min. Treated sample 

was then run on HPLC to detect BH4, BH2 and biopterin.  

2.8.3 Melanin content 

Melanin content was determined by previously published method of Shin et al., 2013 and Wu 

et al., 2015. Exactly 50 embryos were lysed in 2N NaOH and boiled at 95 °C for 1 h. The 

sample was then centrifuged at 13000 rpm for 10 min to remove sediment. The samples were 

then measured at 495 nm to determine melanin level.   

2.8.4 Protein determination 

Protein levels were determined by the method of Lowry for biochemical measurements and 

Bradford for RNA binding experiments. The lowry kit from BioRad involves Reagent A and B 

mixed at a ratio of 8:1 and added sample which was diluted 1:1 in 1% SDS. All samples were 

measured at 750 nm. For Bradford 1 µl of lysate was mixed with 100 µl of water and 900µl of 

1:5 diluted Bradford reagent (BioRad) and incubated 10 min in the dark. Wavelength at 595 nm 

was measured. All samples were run in duplicates. Concentration was then calculated by 

measuring a set of BSA standards and generating a regression curve.  
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2.9. Whole mount antibody stainings 

For analysis of proliferation and differentiation, whole mount antibody stainings, will give 

insight into the pattern change and expression of certain proteins. Markers such as pH3 show 

mitotic cells. Protocol was established as previously shown by Verduzco et al. (2011). 

2.9.1 Protocol 

Day 1 

• Embryos at their respective stages are stopped in 4% PFA overnight 

• Wash in PBST 5x for 5 min 

• Digest in proteinase K  10µg/ml in PBST(for 24hpf 10min, 3dpf 1 hour) 

• Stop by 3 washes in PBST  

• Refix in 4% PFA for 20 min 

• Wash in PB-Tr 3x for 5 min 

• Incubate in Blocking buffer for at least 2 h 

Add Primary antibody in Blocking buffer (concentrations!) at 4 °C overnight in the dark 

Day 2 

• The next day wash embryos 6x in PB-Tr for 30 min 

• Incubate in Blocking buffer for at least 2 h 

• Add secondary antibody to blocking buffer (concentration) at 4 °C overnight in the dark 

(at this stage also add DAPI (1/1000) solution to the buffer) 

 

 

Day 3 

• The next day wash embryos 6x in PB-Tr for 30 min 

• Embryos can now be imaged. Store embryos in the dark for up to one week in PB-T. 

Afterwards the staining can lose strength. 

The stained embryos were mounted in low melting agarose and oriented as required. Embryos 

were imaged using a 2-photon microscope with 64x magnification. Z-stacks of half the retina 

for the eye and the PTR of the midbrain were generated and the positive cells counted in 

comparison to control embryos. 
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2.10 Quantitative RT –PCR (qRT-PCR) 

We performed qRT-PCR for quantitative analysis of gene expression levels by determining the 

mRNA levels in comparison to a housekeeping gene (in this case Elf1-alpha). Then the relative 

expression is determined by comparison to the expression of the same gene in a control. In the 

experiment a Ct value is determined, which identifies at which amplification cycle the mRNA 

level reached a previously determined threshold. The data is then calculated to identify the fold 

change of expression by the equation: 

ΔΔCT = (Ct target gene – Ct reference gene) sample – (Ct target gene – Ct reference gene) control 

Fold change = 2 ΔΔCT 

 

To determine specific results, individual qPCR primers were designed which had a size between 

150 and 250 bp. Additionally, at least one of the primers had to cover an exon/exon boundary, 

if possible. Primers were tested in by PCR before running a qRT-PCR. At the end of each run 

a melting curve or dissociation curve, was determined and analyzed for secondary peaks that 

could identify unspecific amplification or primer dimers.  

The reaction mix was set up as follows: 

Table 10. qRT-PCR reaction mix 

Ingredient Amount 

2x SensiFast SYBR Mix 10 µl 

Fwd Primer 1 µl 

Rev Primer 1 µl 

Water 7 µl 

cDNA 1 µl 
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The running protocol for qRT-PCR was as follows: 

Table 11. qRT-PCR protocol 

 Step °C Time 

1. Initial Denaturing 95 °C 25sec 

2. Denature 95 °C 3 sec 

3. Elongation 60 °C 30sec 

40x Step 2-3 

4. Initial Denaturing 95 °C 15sec 

5. Melt Curve 65-95 °C 1min / + 1degree each cycle 

6.  Final elongation 60 °C 15sec 

 

The experiment was run on a BioRad CFX Connect® qRT-PCR cycler. 

2.11   Cryosections 

Cryosections allow for a closer more detailed visualization of the respective tissues. In this 

study Cryosections were used to analyze which tissues or cell clusters were expressing the 

targeted RNAs after in situ hybridization. The embryos were treated in with sucrose as 

cryoprotectant after in situ hybridization and then frozen in mounting medium and sectioned.  

2.11.1 Protocol 

• If embryos stored in 4% PFA: Wash embryos twice in PBS 

• Add embryos to tube containing 15% sucrose in dH2O and wait until sunk to bottom 

(often overnight) 

• Add embryos to 30% sucrose until sunk to bottom 

• Place embryos in prepared blocks out of aluminum foil and fill with TissueTec® media. 

• Freeze carefully on dry ice or liquid nitrogen 

• Blocks can be stored at -20 °C for months 

• Retain cryostat at -20 °C 

• Cut sections at 10-20 µm of the sample 

• Mount section immediately onto a “superfrost” cover slide and air dry 

• Cover sections in mounting medium (Eukitt) and place coverslip on top. Let dry before 

imaging 
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2.12 RNA binding studies 

2.12.1 FLAG-Tag  

Proteins can be tagged with specific amino acid sequences, which in turn can be targeted by 

specific antibodies. This study used the FLAG-Tag to “tag” the Protein DHPR and test the 

protein for its RNA binding properties. The assay associated uses beads that are linked to 

FLAG-Ab to pull only the tagged protein out of a lysate.  

We added the FLAG tag by PCR extension. First the open reading frame of the mRNA of 

interest is amplified via PCR. Then a second PCR involves primers that bind to the N or C 

terminus and add the FLAG sequence. It is important that either the start codon is moved before 

the FLAG, or the stop codon after the FLAG.  

2.12.2 Cell culture of Huh7 cells 

Huh7 cells were used for the study, as a screen detected RNA binding of DHPR in these cells 

(Castello 2012). All work was performed sterile in a laminar hood. Huh7 cells were seeded in 

and passaged in T75 flasks and kept at 37 °C with 5% CO2 and 100% humidity. Cells were 

maintained in DMEM medium containing 10% FCS, penicillin/streptomycin, and 10mM L-

glutamine. Stocks of early passaged were frozen in liquid nitrogen for long term storage. Cells 

were treated with trypsin at 37°C for 5 min until loose from the flask. Medium was added to 

stop the reaction. The samples were then centrifuged 10 min at 8000 rpm and washed with 

DPBS. Cells were then resuspended in 45% FCS/45%DMEM/10%DMSO medium and 

gradually frozen and stored in liquid nitrogen. 

2.12.3 Transfection  

Plasmids containing the FLAG-tagged DHPR, and siRNA against DHPR were transfected into 

the cells via Lipofectamin 3000 (Invitrogen) according to manufacturer’s protocol. The plasmid 

or siRNA was incubated with lipofectamine (1:1 ratio) for 5 min and then added to the cell 

flask. Cells were grown for 24-48 h and then harvested. Harvest was done by direct removal of 

the cells with cell scratcher in 500P lysis buffer. As control cells were transfected without 

plasmid added to the lipofectamin.  

2.12.4 Crosslinking 

To study the interaction between protein and RNA, we cross-linked cells with UV light. Cells 

were grown in 15 cm petri dishes until 90% confluent. The petri dishes were placed on ice and 

crosslinked at 0.15 J/cm2. Cells were harvested immediately for further experiments.  
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2.12.5 Immunoprecipitation (IP) of DHPR 

For immunoprecipitation, magnetic beads (ThermoFisher) were used. The beads were washed 

5 times with 500P buffer and rotated 1 min each time. Magnetic beads were then incubated with 

primary DHPR antibody (ProteinTech) and rotated for 1 hour. The cell lysate was added to the 

beads and rotated overnight in 4 °C. For PNK assay the sample was then processed. In case of 

western blot analysis, the sample was boiled at 95 °C to remove the sample from the beads and 

then run on a gel. 

2.12.6 SDS-PAGE 

To analyze protein expression we ran protein lysates on an SDS-PAGE. The proteins were 

separated based on their size. Lysates were boiled at 95 °C in 1x Laemmli Buffer for 5 min to 

denature. Samples were then loaded into the wells of a 4-15% precast gel. Gels were run in 1X 

MOPS buffer for 1 hour at 140V.  

2.12.7 Westernblot 

SDS-PAGE gels were placed onto a PVDF mini membrane and sandwiched between Whatman 

paper layers. Blots were then run in a TurboBlotter at 14V for 7 min. Blots were washed twice 

in PBST and then blocked for 1 h in 15% Milk powder in PBST. Primary antibody was added 

to the blot in milk and the blot rotated at 4 °C overnight. The second day primary antibody was 

washed off with PBST 5 times for 30 min. Secondary antibody was added to the blot in milk 

and the blot rotated at 4 °C overnight. The next day secondary antibody was washed off with 

PBST 5times for 30 min. The blot was dried on Whatman paper and 3 ml ECL solution were 

used to cover the blot for 2 min. The blot was then exposed to X-Ray film in darkness for 

various times and then developed.  

2.12.8 Polynucleotide Kinase (PNK) assay 

The PNK assay is used to determine RNA bound to proteins. It radioactively labels the RNA 

with 32P, which can then be visualized by X-ray films. The experiments are performed in special 

“hot labs”, which are especially equipped for radioactivity experiments.  
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The protocol was as follows: 

A. Crosslinking and cell lysis 

• Place the (induced) cells on ice. Cells should be at 90% Confluency 

• Wash the cells 2x with ice cold PBS  

• Completely remove PBS 

• Place the cells in UV cross-linker and crosslink 0,15 J/cm2 (= 1500 Energy on 

crosslinker) 

Lyse cells immediately on plate with 1 ml 500P lysis buffer  

• Scrape down cells  

• Sonify on ice. Use 3 cycles of 10 pulses, level 4 each, with 15 sec pause in between.  

Check if the lysate is still viscous, if so apply one/two more cycles. 

• Centrifuge the lysate 10 min at 13’000 rpm at 4 °C. 

• Measure Concentration using Bradford assay (see 2.8.5) 

• Adjust input material for IPs to 1,5-2 mg per aliquot. 

• Continue with IP or snap freeze aliquots and store in -80 °C. 

B. Clearing, RNAse treatment and IP  

• Thaw lysates on ice 

• Save some of the input for later analysis 

• Prepare antibody containing beads. For FLAG M2 beads, use 15 µl/ml of lysate.   

Wash beads 3x 1ml with 500P lysis buffer      -

Resuspend the beads after last wash with 50% of initial volume of slurry with lysis 

buffer  

• Add DNAse Takara to new tube, use 50U per ml lysate final concentration  

• Dilute the RNAse A in water. For QDPR screen with 8 ng/ul, 2 ng/ul, 0,5 ng/ul and 

0 ng/ul RNAse A/lysate.  

• Add the lysates to the DNAse/RNase and mix by pipetting.  

• Incubate 15 min at 37 °C shaking at 1100 rpm 

• Place immediately on ice and cool for 5 min 

• Add the beads to the lysate and incubate 2 h with 13 rpm at 4 °C on orbital shaker  
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C. IP washes  

• Collect the beads on magnet after short spin on bench. Wash beads with 1ml of buffer 

and rotate 3 min with 13 rpm on orbital shaker at RT. Repeat washes as follow: 

- 500P 3x1ml          

- 100N 3x1ml          

- 100N 1x150 µl without rotation (to collect beads on bottom of tube)  

 

D. y-32-ATP labeling (in hot lab!) 

• Resuspend beads in 30 µl hot PNK mix 

• Incubate 15 min at 850 rpm at 37 °C (Carry eppis behind plexiglas to shaker and back) 

• Remove hot PNK mix  

• Wash with 4x 1ml PNK buffer  

• Check if the last flow through is hot, in case yes, continue washing (30-50cpm of wash 

is OK).  

• Do last wash with 150 µl PNK buffer to collect beads on the bottom. 

•  Elute: FLAG M2 beads use 3x Flag peptide at 2 mg/ml concentration. The volume is 

the same as beads slurry 15 µl/ml. Resuspend the beads and incubate 45 min on ice. 

• Throw out hot beads! 

• Mix supernatant with 4x sample buffer and incubate 10 min at 70 °C 

• Measure the CPM of eluates on small Geiger counter and record values. 

• Samples were run in an SDS-PAGE and Western blot as described before. Films were 

developed in various times to detect the best signal. 

2.13 Statistics 

Statistical analysis was done either by t-test for simple comparison and one-way ANOVA when 

comparing multiple variables with Bonferroni and Holm post hoc test to determine significance. 

Significance levels were set as follows: significant (*) = p<0.05; very significant (**) = p<0.01; 

extremely significant (***) = p<0.001). Every experiment was repeated a minimum of three 

times. 
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3. Results 

3.1 De novo pathway in D.rerio 

The BH4 pathway has been shown multiple times to be conserved in zebrafish and other species 

(Ziegler et al., 2000; Kim et al., 2013; Xu et al., 2013). Yet a full characterization of it in 

teleosts, with specific focus on BH4 recycling, has not been previously done. We analyzed both 

de novo synthesis and recycling in the whole developing embryo. Using an RT-PCR screen we 

could detect mRNA expression for the correlating homologs (Fig 14.).  

 

Figure 14. RT-PCR screen of BH4 pathway members 

RT-PCR Screen of BH4 de novo pathway, BH4 dependent enzymes. Each RT-PCR was run on a single gel in 

comparison to housekeeping gene gapdh and imaged at same UV intensity and focus. –ve controls are no reverse 

transcription and no template RT, +ve control is a mixture of all cDNAs used. 

The de novo pathway initiator gch1 was expressed during gastrulation and later reappears at 24 

hpf. At 24 hpf it is expressed in early dopaminergic neurons of the midbrain, in direct link to 

th. Th on the other hand was not expressed during gastrulation and is exclusively in 

dopaminergic neurons (Filippi et al., 2010). Ptps and spra have similar expression to gch1 

starting maternally and then increasing at 13 somites. Sprb, shows the same expression pattern 

as th. Similarly, pah is expressed from 24 hpf. The tph parologs, show a previously established 

pattern, with tph1b being expressed during gastrula and late, while tph2 had low expression in 

later stages. The BH4 related enzyme dhfr was expressed throughout development. These 



 

50 
 

3. Results 

expression patterns show that not all members of the pathway correlate directly to dopaminergic 

neurons and liver expression, which should arise from 24 hpf. Most members are expressed 

before that time, maybe linking a role to BH4 metabolism before neuronal and hepatic 

development. Overall the analysis shows a conservation of expression of these homologs in the 

developing embryo. 

As the focus of this study is the recycling enzyme DHPR and since it is the member of the BH4 

pathway that results in the most severe phenotype in patients, we extensively characterized all 

DHPR homologs. 

3.2 Homology 

The human DHPR protein is highly conserved and is present in most species from invertebrates 

to mammals. While it is extremely well conserved among mammals with 95% and 94% in rat 

and mouse, respectively, it is still highly conserved among vertebrates and teleost fish with 74% 

and 72% in medaka and zebrafish, respectively. Still in invertebrates such as drosophila and 

worms the conservation is above 50%.  

Table 12. Homology of protein sequence among species 

Species Homology to Human DHPR (Amino acids) 

Mus musclus (Qdpr) 94% 

Rattus norvegicus (Qdpr) 95% 

Oryzias latipes (Qdpra) 74% 

Danio rerio (Qdpra) 72% 

Danio rerio (Qdprb1) 72% 

Danio rerio (Qdprb2) 62% 

Drosophila melanogaster (DHPR-RA) 59% 

Caenorhabditis elegans (qdpr) 51% 
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3.3 Qdpra 

The first homolog in zebrafish we characterized was Qdpra. Compared to human, it has a 

conservation of 72% in the amino acid sequence (Table 12). The common domains for short 

chain dehydrogenases are conserved in this homolog. Further characterization of expression via 

WISH shows a very distinct expression pattern (Fig. 15). At 18 somites the expression locates 

to 3 major clusters, at the developing eye, neural crest cells (NCC) at the midbrain and back, 

which are likely melanophore precursors. We also observe expression near the Kupffer’s 

vesicle at the tailbud. At 24 hpf the expression is located to migrating cells of the neural crest 

along the body axis of the embryo and in the eye towards the arising pigment retinal epithelium. 

This is seen even more accurately in cryosections of 24 hpf embryos (Supplemental A. Fig 1), 

showing staining exclusively in the retinal pigment epithelium and NCC, without showing 

expression near neuronal regions. Continuing during development, at 48 hpf the expression 

remains in the neural crest pigment cells and the pigment retinal epithelium, with additional 

expression in the choroid fissure of the eye. At 72 hpf the first developing liver cells show 

expression. Besides the developing liver, expression remains in the retinal pigment epithelium 

and melanophores. At 4dpf the expression pattern remains, while the pigment cells have now 

migrated along the outer edges of the developing fins. At 5 dpf the liver is the strongest 

expression cell type for qdpra and the expression in pigments and retinal pigment epithelium is 

now lost. In agreement with this expression pattern, the relative mRNA expression levels during 

zebrafish development show very low expression during somitogenesis but a rapid increase in 

expression after 20 hpf, reaching over 3-fold the expression level detected during gastrulation 

(Fig. 16). This is in agreement with the mentioned expression pattern expression increasing 

with the number neural crest cells and again at the beginning of liver development. 

It is to note that we could not detect any expression of qdpra in dopaminergic or serotonergic 

neurons, nor in any other major neuronal population during the first 5 days of development. 
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Figure 15. qdpra expression pattern 

WISH of qdpra at various developmental stages. (A) WISH at 18-somites, lateral view, shows expression in eye, 

NCC and Kupffer’s vesicle, (B) 24 hpf, dorsal view, shows expression in NCC and eye (black arrows), (C) 30 hpf, 

lateral view, shows expression in eye and NCC along the body axis (black arrows), (D) 48 hpf, lateral view, shows 

expression in retinal pigment epithelium and NCC (black arrows), (E) 3 dpf, lateral view, shows expression in 

liver (red arrow), (F) 4 dpf, lateral view, shows expression in liver (red arrow) and pigments (black arrow), (G) 5 

dpf, lateral view, shows only expression in liver (red arrow) 
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Figure 16. Relative mRNA expression of qdpra during development 

Relative mRNA levels of qdpra determined by qRT-PCR of different developmental key stages in AB/AB 

wildtype embryos. Expression is relative to mRNA levels of 50% epiboly and y-axis shows fold change.  

This expression pattern in WISH that we see in qdpra is almost identical to the one we observe 

for pah. At 24 hpf pah is expressed in the NCC along the body axis. At 3 dpf pah is expressed 

in the retinal pigment epithelium, the fin buds and the liver (Fig 17). pah is also not detected in 

any neurons of the midbrain and remains colocalized with qdpra. As Qdpr and Pah are directly 

required for the production of melanin, the neural crest cells are likely melanophores. 

 

Figure 17. WISH of pah at 3 dpf 

Lateral view of WISH for pah at 3 dpf. Expression is seen in retinal pigment epithelium (blue arrow), fin bud 

(green arrow) and liver (red arrow). 
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3.4 Qdpra knockdown 

3.4.1 Qdpra - Morphology 

Since protein sequence and mRNA expression analysis let strongly assume that qdpra displays 

the homolog of human DHPR, we further attempted to mimic DHPR deficiency, we used 

morpholinos to knockdown the protein level of Qdpra. Injection with a splice targeting 

morpholino (MO Qdpra 2; 2.6.1) resulted in a specific exclusion of exon 3 which was shown 

by RT-PCR (Fig. 18).  

 

Figure 18. RT-PCR control for Qdpra knockdown 

RT-PCR Control of Qdpra splice MO targeting exon 3. 100bp Ladder in lane 1, control injected embryos lane 2 

and MO injected lane 3, shows removal of exon 3 in MO injected embryos. Only a faint band of wildtype mRNA 

remains. 

In correlation with the expression pattern observed in WISH, the knockdown phenotype did not 

influence the overall development of the embryo at the effectively used concentration of 

0,3mM. There were no morphological changes observed in the knockdown. The knockdown 

did however affect the melanophore intensity and melanin production.  Already at the onset of 

pigmentation around 24 hpf we can detect less melanin in the eye and no dark melanophores 

along the body axis (Fig. 19). At 3 dpf we observed a significant reduction in size of the 

pigments located in the head region. These are likely the cells that previously were qdpra 

positive in WISH experiments. Furthermore, we were able to determine the melanin content of 

3 dpf zebrafish which was significantly reduced by 20 % (Fig. 19). Control injections with 5bp-

mismatch MO showed no pigment related phenotype. All controls assist to confirm the 

specificity of the effect. 
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Figure 19. Qdpra knockdown morphology and pigment pattern 

 (A)Melanin dispersion and content in Qdpra knockdown is obersved at 24 hpf with reduced melanin content in 

the eye and melanophores arising from the neural crest (asterix), while morphology is unaffected (lateral view). 

(B) At 3dpf (dorsal view) the melanophores of the head (orange box) are smaller in appearance. (C) Melanin 

content in Qdpra knockdown embryos is significantly lower by 20% (D) The average head pigment size is 

significantly reduced in head pigments (same as (B)) by ½. Units are arbitrary and measured via ImageJ. 

 

Co-injection of the embryos with 80 pg mouse Qdpr mRNA rescued the pigment size reduction 

and melanophores appeared normal in development (Fig. 20). This indicates that the function 

for BH4 recycling in melanophores is conserved in mice.  

 

Figure 20. Qdpra knockdown and rescue 

The figure shows the knockdown in lateral view of 3dpf Qdpra knockdown of Control MO injected (left), Qdpra 

knockdown (middle) and Qdpra knockdown with co-injected 80pg of mouse mRNA (right). Co-injection 

rescued the pigment depletion in the head. 
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3.4.2 Qdpra - Biochemistry 

Furthermore, to further characterize the knockdown we determined the biochemistry of amino 

acids and BH4 related neurotransmitters. Just like patients, the Qdpra morphants have a HPA 

i.e. significantly increased phenylalanine (wt: 34,05 +/- 3,92 µmol/mg; Qdpra MO: 47,48 +/- 

3,36 µmol/mg; p*=0.036). No significant decrease in tyrosine (wt: 31,47 +/- 1,23 µmol/mg; 

Qdpra MO: 31,38 +/- 4,68 µmol/mg) is also observed.  

 

Figure 21. BH4 related amino acids in Qdpra knockdown 

Total amount of amino acids (µmol/mg Protein) in 3 dpf zebrafish of wildtype (dark grey) and Qdpra knockdown 

embryos (light grey). Left: directly BH4 dependent amino acids tyrosine and phenylalanine, with significant HPA 

and no significant depletion of tyrosine, Right: In mice and Qdpra knockdown depleted taurine and unchanged 

NH3 

Just like the knockout mouse (Xu et al. 2011) we detected a significant decrease in taurine (wt: 

24,39 +/- 0,35 µmol/mg; Qdpra MO: 20,67 +/- 0,16 µmol/mg; p**<0,01)). Furthermore, we 

did not detect any increase in NH3 (Fig. 21). Other amino acids were not affected, which 

includes the BCAA. Also, other BH4 related amino acids such as arginine of the urea cycle were 

unchanged. Since the expression and knockdown link the function to melanin synthesis and 

later BH4 supplementation for Pah function in the liver, no relevance for neurotransmitter 

synthesis is likely during early development.  

Overall the knockdown of Qdpra showed an evolutionary conserved role for BH4 recycling for 

early melanin synthesis and later Pah related BH4 recycling in the liver. 
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3.5 Qdprb2 

The homolog Qdprb2 was characterized in analogy Qdpra. Qdprb2 has 62% homology with 

human on protein level (Table. 12), which is the lowest homology of all three homologs.  An 

expression screen for qdprb2 showed low levels of mRNA supplied maternally to the embryo 

but full depletion of expression after gastrulation (Fig. 22). On top of that we were not able to 

detect any expression via WISH in the developing embryo. Finally, knockdown with a specific 

ATG MO showed no effect on development and no morphological changes (data not shown).  

 

Figure 22. Relative mRNA expression of qdprb2 during development 

Relative mRNA levels of qdprb2 determined by qRT-PCR of different developmental key stages in AB/AB 

wildtype embryos. Expression is relative to mRNA levels of 50% epiboly and y-axis shows fold change.  
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3.6 Qdprb1 

Qdprb1 is conserved 72% to human on protein level, just as Qdpra, yet only contains 73% 

identity to Qdpra in amino acid sequence. Sequence analysis shows a lack of a “short chain 

dehydrogenase conserved sequence” which was conserved in Qdpra (Sigrist et al., 2012). In 

WISH experiments we determined a specific qdprb1 expression pattern (Fig. 23). It is expressed 

ubiquitously already before gastrulation. After gastrulation, at 18 somite stage the expression 

is still very broad but with a trend towards proliferative regions of the embryo. At this stage, 

already midbrain and eye show stronger expression. At 24 hpf the staining strongly localizes to 

the proliferative region of the developing midbrain, the MHB. Also, a defined expression in the 

rapidly proliferating eye is observed. At more developed stages around 48 hpf the expression 

localizes to the proliferative regions of the eye, midbrain and habenula region. The expression 

becomes more clustered toward the arising CMZ and more distinct to the PTR. It appears that 

cells migrating outwards from the midbrain are also qdprb1 positive. While at this stage distinct 

dopaminergic neuron clusters are present, the expression does not overlap with these clusters. 

At 72 hpf the expression is localized at the proliferation region of both midbrain and cerebellum, 

some expression is also seen along the hindbrain. Additionally, the staining is localized to the 

proliferation region of the eye in the CMZ and faint expression is seen in the glia rich inner 

nuclear layer (INL). At 4 dpf, also cells of the INL in the eye are qdprb1 positive. At 5 dpf the 

CMZ and inner retinal layer and the proliferative tectum region are the only defined expression 

regions (Supplemental A, Fig. 2). Yet again, even at 5dpf we could not observe any expression 

in dopaminergic or serotonergic neurons. Furthermore, qdprb1 is not localized to any other BH4 

dependent regions such as melanophores and liver, as was seen for qdpra. 

Expression screens for qdprb1 show a steady expression from early stages on throughout 

development, with a tendency to increase after 15 somites. Expression levels seem to vary more 

at later stages, as seen by the larger standard deviations (Fig. 24). 
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Figure 23. qdprb1 expression pattern 

WISH of qdprb1 at various developmental stages (A) 18 somites, lateral view, shows expression in eye and along 

body axis, (B) 24 hpf (left) lateral view, shows expression in proliferative tectum (red arrow) and eye (blue arrow), 

(right), dorsal view of same proliferative regions, (C) 48 hpf (left) lateral view, shows expression proliferative 

midbrain (red arrow), and habenula, (middle), dorsal view shows expression in proliferative tectum (red arrow) 

and in migrating cells in the tectum (black arrow), (right), dorsal view, shows expression in eye around the lense 

in the developing CMZ, (D) 72 hpf (left) lateral view, shows expression in midbrain (red arrow), (middle) dorsal 

view, expression in PTR (red arrow), (right) shows expression in CMZ (black arrow) and in INL (asterisk) 
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Figure 24. Relative mRNA expression of qdprb1 during development 

Relative mRNA levels of qdprb1 determined by qRT-PCR of different developmental key stages in AB/AB 

wildtype embryos. Expression is relative to mRNA levels of 50% epiboly and y-axis shows fold change.  

 

3.6.1 Qdprb1 - Morphology 

Knockdown of Qdprb1 was done by both splice targeting and ATG targeting morpholinos. The 

majority of experiments were done with splice MO and confirmed with the secondary ATG 

MO. Targeted knockdown showed an inclusion of intron 3 upon splice MO injection. In 

addition, qRT-PCR experiments showed an almost complete depletion of correctly spliced 

Qdprb1 mRNA, confirming a specific knockdown of Qdprb1 (Fig. 25). While injection of 5-bp 

mismatch MO led to a normal development of the embryo (Fig. 26). 

 

Figure 25. RT-PCR and qRT-PCR controls of Qdprb1 knockdown 

RT-PCR of Qdprb1 Splice MO injected mRNA, A: Lane 1 1kb ladder, Lane 2: 100bp ladder, Lane 3: control 

injected embryos, Lane 4: Qdprb1 Splice MO injected, shows inclusion if intron 3 and little wildtype mRNA 

remaining. B: qRT-PCR shows extremely significant depletion of correctly spliced mRNA in Qdprb1 MO injected 

embryos. 
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Qdprb1 knockdown resulted in a head specific phenotype (Fig 26). Already at early neuronal 

development at 17 somites we observed a smaller midbrain region and a “snubnose” phenotype, 

with distinctively smaller anterior region (Fig. 26). The other structures of the embryo along 

the body axis appear unaffected. During continuing development at 30 hpf we detect a now 

severely decreased midbrain size, but notably no effect on the tail or body axis development of 

the embryo. Overall the head and eyes appear smaller. At this stage the eyes are smaller, albeit 

no structure appears missing. At 72 hpf the embryo shows a smaller and flattened head, smaller 

tectum region, smaller eye, but notably no effect on the tail or body axis development.  

 

Figure 26. Qdprb1 knockdown morphology and rescue 

Top row shows control MO injected embryos at the key developmental stages of 17 somites, 30 hpf and 72 hpf. 

Middle rows present Qdprb1 splice MO knockdown at the onset of phenotype at 17 somites, with depleted 

midbrain and hindbrain (asterisk), at 30 hpf with depleted midbrain and constricted MHB (asterisk), and 72 hpf 

with flattened midbrain and depleted brain size (asterisk), as well as smaller eyes. Bottom row shows Qdprb1 

splice knockdowns co-injected with 80 pg of qdprb1 mRNA. Embryos of the stages are fully rescued and structure 

identical to control-injected embryos. 
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Additionally, co-injection with 80 pg of zebrafish qdprb1-mRNA fully rescued the phenotype, 

whereas co-injection with 500 pg mouse Qdpr-mRNA at least partially normalized the 

morphological phenotype (Supplemental A, Fig. 3). This shows again the specificity of the 

knockdown effect and a partial species conservation of function between zebrafish and mouse. 

Co-injections with 500 pg of a mouse Qdpr splice variant without amino acid 1-48, did not 

rescue the phenotype. 

Injections using the Qdprb1 morpholino targeting the ATG resulted in a generally more severe 

phenotype, showing the same phenotype when using the splice morpholino. At 26 hpf the 

injected embryos show a collapsed and smaller brain region. Subsequently, the brain remains 

small and at 72 hpf embryos have a smaller head, smaller eyes and little effect on tail and body 

axis (Fig. 27).  

Both morpholinos can be co-injected at low concentrations that show no phenotype and together 

result in the observed characteristic phenotype. This suggests a synergistic effect of the two 

morpholinos to interfere with Qdprb1. To assess whether the phenotype was caused by p53 

mediated apoptosis we co-injected the embryos with p53 MO (Robu et al., 2007). For both the 

ATG and splice MO, it did not rescue nor improve the phenotype (Fig. 27). 

 

 

 

Figure 27. Qdprb1 knockdown with p53 MO co-injection and ATG MO knockdown 

Morphology of wildtype, Qdprb1 splice MO + p53 MO and Qdprb1 ATG shows comparable phenotype as 

observed for Qdprb1 splice knockdown. 

 

 



 

63 
 

3. Results 

3.6.2 Qdprb1 - Biochemistry 

In analogy to Qdpra, we determined the amino acid pattern of Qdprb1 morphant embryos at 72 

hpf generated using the splice morpholino (Fig. 28) and the ATG morpholino (Fig.29), 

respectively. Contrary to Qdpra knockdown, we could not detect any changes in the typical 

DHPR related amino acids phenylalanine (wt: 34,05 +/- 3,92 µmol/mg; Qdprb1 MO: 35,46 +/- 

3,099 µmol/mg) and tyrosine (wt: 31,47 +/- 1,22 µmol/mg; Qdprb1 MO: 34,59 +/- 2,56 

µmol/mg) (Fig. 28). Furthermore, no change in arginine (wt: 15,52 +/- 0,41 µmol/mg; Qdprb1 

MO: 15,68 +/- 3,30 µmol/mg) or ornithine (wt: 9,22 +/- 1,47 µmol/mg; Qdprb1 MO: 6,74 +/- 

0,60 µmol/mg) as detected. Additionally, we did not observe the depletion of taurine (wt: 24,39 

+/- 0,35 µmol/mg; Qdprb1 MO: 20,04 +/- 2,63 µmol/mg; p=0,081) as was seen in Qdpra 

knockdown and mouse knockouts (Xu et al. 2011) (Fig. 28).  

We could also detect a general increase in BCAA, of which only valine (wt: 20,97 +/- 2,29 

µmol/mg; Qdprb1 MO: 30,45 +/- 0,48 µmol/mg; p**<0,01) was significantly increased in 

splice MO injected (Fig. 28). In ATG injected embryos leucine was significantly increased (wt: 

28,62 +/- 2,90 µmol/mg; Qdprb1 MO: 54,49 +/- 7,02 µmol/mg; p**<0,01) (Fig. 26). All other 

BCAA showed an increasing trend. This pattern was also observed in p53 co-injected embryos 

(Fig. 29). Along with the increase in BCAA we detected a significant depletion of the cytosolic 

bcat1 mRNA in qRT-PCR. bcat1 is the key mediator in the breakdown of BCAA. The 

mitochondrial homolog bcat2 was unaffected, and co-injection with Qdprb1-mRNA rescued 

the bcat1 expression level (Fig. 28). This shows that BCAA increase when bcat1 is depleted. 

Notably, we detected no change in NH3 (wt: 64,44 +/- 3,17 µmol/mg; Qdprb1 MO: 61,81 +/- 

6,32 µmol/mg) or glutamate (wt: 57,27 +/- 7,62 µmol/mg; Qdprb1 MO: 54,29 +/- 11,35 

µmol/mg) hinting at no neuronal toxicity via ammonia in the developing brain (Albrecht and 

Norenberg, 2007) (Fig. 28). This result indicates that Qdprb1 does not induce neural toxicity 

nor toxic hyperammonemia. 
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Figure 28. Amino acid analysis of Qdprb1 knockdown 

(A) Wildtype in dark grey and Qdprb1 splice knockdown in light grey at 3dpf; top: BH4 dependent amino acids 

tyrosine and phenylalanine are unchanged; (B) BH4 related amino acids ornithine, taurine and arginine all normal 

(C) Increased BCAA, with significant increase in valine and not significant increase in isoleucine and leucine,  (D) 

significant increase of glutamine levels in morphant embryos at 3 dpf (E) Normal NH3 and glutamate levels in 

morphant embryos at 3 dpf (F) bottom: relative mRNA down regulation of bcat1 which is restored after qdprb1 

mRNA injection and unchanged bcat2 (G) glutamine to glutamate ratio at significant developmental stages starting 

after gastrulation up to 3dpf, shows significant increase after 17 somites of development and in relation to 

neurogenesis 
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Most surprisingly we detected a significant increase in glutamine (Fig. 28). Glutamine 

concentrations doubled in comparison to wildtypes at 72 hpf, with 119,88 µmol/mg (+/- 13,22 

µmol/mg) protein in comparison to 54,57 µmol/mg (+/- 15,03 µmol/mg), respectively. In ATG 

injected embryos we observed levels at 162,85 µmol/mg (+/- 22,46 µmol/mg) protein (Fig 29). 

At the same time, we could not detect any significant change in glutamate (wt: 57,27 +/- 7,62 

µmol/mg; Qdprb1 MO: 51,44 +/- 30,08 µmol/mg), the directly with glutamine associated amino 

acid and neurotransmitter. 

 

Figure 29. Biochemical analysis of Qdprb1 ATG MO and p53 MO co-injected embryos 

Biochemical analysis of p53co-injected and Qdprb1 ATG injections, A: Biochemical screen for Qdprb1 MO + 

p53 MO injected embryos, shows very significant peak in glutamine and significant increase in isoleucine, B: 

Biochemical analysis for Qdprb1 ATG MO injected embryos, shows very significant glutamine peak and increased 

BCAA.  
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To detect the onset of the glutamine increase, we analyzed multiple key developmental stages 

for glutamine and glutamate (Fig. 28). Glutamine to glutamate ratio remains relatively stable at 

1:1 during development, with the exception of a rise in glutamate at 17 somites to 22 hpf, 

slightly reducing the ratio. During late gastrulation and onset of somitogenesis, where no 

phenotype is observed, no change in glutamine to glutamate ratios was detected in the 

knockdowns. Interestingly, the first trend towards an increase in glutamine is at 17 somites 

(Ratio Gln/Glu: wt: 0,68 +/- 0,10; Qdprb1 MO: 0,86 +/- 0,13; p=0,197), where we also detected 

the first onset of the phenotype. Glutamine then is steadily increased significantly at 22 hpf 

(Ratio Gln/Glu: wt: 0,58 +/- 0,14; Qdprb1 MO: 1,04 +/- 0,15; p*=0,02), 30 hpf (Ratio Gln/Glu: 

wt: 1,10 +/- 0,16; Qdprb1 MO: 1,81 +/- 0,26; p*=0,03), 48 hpf (Ratio Gln/Glu: wt: 0,99 +/- 

0,11; Qdprb1 MO: 1,93 +/- 0,25; p**<0,01 and 3 dpf (Ratio Gln/Glu: wt: 0,91 +/- 0,24; Qdprb1 

MO: 2,27 +/- 0,34; p**<0,01) reaching its maximum at 3 dpf. Therefore, the levels of glutamine 

temporally correlate to the onset and development of the knockdown phenotype. Yet again upon 

co-injection of qdprb1-mRNA we could rescue the biochemical phenotype and reduce the 

glutamine peak back to normal levels at 72 hpf.  

In this fundamental characterization of the three homologs Qdpra, Qdprb1 and Qdprb2 we were 

able to focus the following studies in zebrafish on a single gene. Firstly, Qdpra was 

characterized as the functional homolog to DHPR, with expression in melanophores and liver 

and with direct link to Pah and secondly, qdprb2 was not linked to any phenotype by the used 

methods, we thirdly found Qdprb1 morphants to develop a brain specific phenotype during 

early development without close link to BH4, but rather connected to glutamine metabolism. 

As this morphology closely resembled the morphological phenotype of patients and the 

biochemical data suggested a novel role for Qdprb1, further studies were focused exclusively 

on Qdprb1 morphants. 
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3.7 Neuron development in Qdprb1 knockdown embryos 

3.7.1 Qdprb1 - Neuronal development 

Along with the biochemical pattern, the severe phenotype of patients presents with severe brain 

atrophy and infantile parkinsonism, as well as dystonia and epilepsy (Opladen et al., 2012). 

This shifted our focus towards neuronal development of the embryo. Since Qdpra was likely to 

function in melanophores and possibly liver development we shifted our attention to the 

proliferative regions of eye and midbrain that showed qdprb1 expression.  

Analysis of neurons in morphants of transgenic lines and expression levels via qRT-PCR 

showed that Qdprb1 knockdown had no major effect on neuronal development. The transgenic 

lines that marks differentiated neurons, (tg(HuC/D:GFP)), showed no loss of neuronal  layers 

or patterning (Fig. 30). It did however corroborate the strong microcephaly, with 15% reduction 

to the wildtype brain size that could be fully restored by co-injection with qdprb1 mRNA. 

Finally, expression of the GFP in tg(HuC/D:GFP) in the eye confirms that retinal layering 

occurs, even though the eye is overall smaller. Screening for other neuronal systems in the 

embryo confirmed the specific effect to the head region (Fig. 31). Expression of neurons in the 

spinal cord and neuromast cells of the lateral line organ in tg(NBT/lyn:GFP) transgenic 

morphant embryos, remain their normal patterning. This suggests that neuronal patterning was 

overall unaffected. 
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Figure 30. Neuronal brain expression and microcephaly in Qdprb1 knockdown embryos 

Expression pattern of the midbrain and eye in tg(HuC/D:GFP) embryos (dorsal view) of wildtype (top left) show 

broad expression in the optic tectum and hindbrain. In the eye (magnified in right corner of each image) expression 

in the middle layers is detected. In Qdprb1 splice MO knockdowns (top right) the area of the optic tectum is smaller 

and constricted, as is the region of the hindbrain. Rescued embryos with qdprb1 mRNA (bottom left) show fully 

recovered brain area and strong GFP signal in midbrain and eye. Statistical analysis of the brain area (bottom right) 

show significant reduced brain size by 15% in the Qdprb1 knockdown and fully recovered brain area in rescued 

embryos.  
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Figure 31. Neuronal networks in transgenic lines of Qdprb1 knockdown embryos 

(A) Neuronal networks in tg(HuC/D:GFP) zebrafish (lateral view) of non-injected (top row) and Qdprb1 splice 

knockdowns (bottom row) show intact motor neurons of the tail (first column, red arrows) and (B) intact 

neuromasts of the lateral line organ (red arrows) in tg(NBT/lyn:GFP). (C) qRT-PCR expression levels of key 

neuronal markers: th (in dopaminergic neurons), glsa and glsb (in glutamatergic neurons) are unchanged. 

To further investigate a potential impact of Qdprb1 loss on neuronal networks, we analyzed the 

expression of dopaminergic and glutamatergic markers (Fig. 31). Strikingly, the key 

dopaminergic markers th remained unchanged in expression at 3 dpf, as are the markers for 

glutamatergic neurons glsa and glsb. Qdpr is shown to be required for the production of 

precursors for dopamine and serotonin. qRT-PCR data, however, shows no change in 

expression levels of BH4 pathway initiator gch1, which we detected in dopaminergic neurons. 

In WISH experiments we could show that gch1 remains unchanged in expression and pattern 

despite the morphological defect of the head region (Fig. 32).  Not only is gch1 unaffected, but 

the homolog Qdpra remains also unchanged in expression levels. This shows that the embryo 

neither compensates the lost function with increased de novo mRNA synthesis nor by 

overexpressing another homolog. This supports the idea of a BH4 pathway independent function 

of Qdprb1.  
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Figure 32. WISH and qRT-PCR of BH4 pathway genes in Qdprb1 knockdown 

Analysis of BH4 pathway in Qdprb1 knockdown embryos. A: WISH of de novo initiator gch1, shows patterning 

identical in wildtype (top) and knockdown (bottom) in dopaminergic neurons of the midbrain, B: qRT-PCR of 

qdpra and gch1 show no significant change in relative expression. 

 

3.7.2 BH2 Toxicity 

To assess whether BH2 may act as neurotoxic agent, as proposed may be the cause in patients 

(Opladen et al., 2012), we injected and exposed embryos with high concentration of BH2 (Table 

13). Even at high concentrations of 10 mM BH2, it was not lethal, nor did it affect development 

based on survival, motility and developmental stage in comparison to wildtypes. We therefore 

excluded BH2 as neurotoxic agent in early zebrafish development. 

Table 13. BH2 Exposure and injection 

Test Non-exposed Exposure 

10mM BH2 

Control-

injected (H2O) 

Injected 10mM 

BH2 

# of unaffected 

embryos 

50/50 50/50 45/50 45/50 

 



 

71 
 

3. Results 

3.7.3 Microglia 

Microglia arise from a different lineage than macroglia and act as macrophages of the brain 

(Chan et al., 2007). Microglia have a BH4 dependency due to NOS expression (Liu et al., 2002). 

From 60 hpf the macrophages of the embryo differentiate to microglia of the brain (Herbomel 

et al., 2001). The transgenic line tg(mpeg:GFP), displays a readout for macrophages and 

microglia. Interestingly, the knockdown of Qdprb1 in tg(mpeg:GFP) revealed a control-like 

microglia GFP expression at 72 hpf (Fig. 33). As the microglia specific transporter slc1a3a was 

also unchanged in qRT-PCR tests (Fig. 39), we excluded microglia from our focus.   

 

 

Figure 33. Tg(mpeg:GFP) microglial expression 

Microglial expression in 3dpf tg(mpeg:GFP) (lateral view), which marks macrophages and microglia cells shows 

no change in number or localization in Qdprb1 knockdowns 

3.7.4 Qdprb1 – proliferative regions 

When we analyzed the eyes of Qdprb1 morphants by immunofluorescence at 3 dpf, the DAPI 

staining indicated that they are smaller in size but had normally differentiated layers such as 

GCL, INL, IPL and ONL. Furthermore, it appears that the proliferative CMZ region was 

broadened due to the knockdown (Fig. 35). To investigate if this effect was due to 

differentiation or proliferation problems of cells from the proliferative regions, we next 

analyzed the mitosis specific marker phospho-histone 3 (pH3) (Fig. 35 and Fig. 36). 

Antibody staining with pH3 showed a 4-fold, significant increase in pH3 positive cells (wt: 

46,71 +/- 13,38 pH3 positive cells/half retina; n=7; Qdprb1 MO: 153,67 +/- 27,82 pH3 positive 

cells/half retina; n=6; p***<0.001). Rescue experiments also confirmed this effect to be 

specific, by reducing the number of pH3 positive cells to control-like levels (avg: 14,75 +/- 5,89 

pH3 positive cells/half retina; n=4) (Fig. 35 and Fig. 36). Unlike the wildtype, most of these 

cells in the eye are located outside the CMZ (Fig. 35 and Fig. 36) with a high number of positive 
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cells in the ONL. The 4-fold increase in pH3 positive cells is also seen in the second expression 

region of Qdprb1, the PTR (wt: 28,33 +/- 5,24 pH3 positive cells; n=3; Qdprb1 MO: 74,33 +/- 

17,46; n=3; p*=0,023) (Fig. 37). As control and to account if apoptosis plays a role in the 

observed phenotype we tested if co-injection of a p53 MO affected the phenotype. A similar 

increase in pH3 positive cells was observed in p53 co-injected embryos (Supplemental A, Fig. 

4) It is to note that no other region in the embryo showed a change in pH3 positive cells. In line 

with the increased pH3 positive cells we analyzed cell cycle markers of the retina via qRT-

PCR. We detected an increase in the proliferative cell cycle marker ccnd1(fold change: 1.62, 

SD +/- 0,27) (Das et al., 2009; Cerveny et al., 2010) and in the proliferation maker myca (fold 

change: 1,41, SD +/- 0,23) (Stephens et al., 2010) of the retina, while stem cell marker mz98 

remained unchanged (fold change: 1,14 SD +/- 0,37) (Cerveny et al., 2010). Two key eye 

development genes, rx1 (fold change: 0,50 +/- 0,24) and rx2 (fold change: 0,71 +/- 0,05) were 

also decreased. To analyze if an activation of the proliferative pathway causes increased 

proliferation we screened for purine and pyrimidine, which commonly increase, if more 

proliferative cells arise (Lane et al., 2015). As these patterns were unchanged, (Fig. 34) we 

deduced these additional cells are not proliferating, rather failing to differentiate and are 

arrested in the cell cycle. 

 

Figure 34. Purine and Pyrimidine levels in Qdprb1 morphants 

Purine and Pyrimidine measurements show no significant change in any measurement of adenine, xanthine, 

hypoxanthine, inosine, 2-deoxyinosin, adenosine, guanosine, uric acid, succinyladenosine and thymidine. 
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Figure 35. DAPI and pH3 antibody staining of Qdprb1 knockdown and rescue in the 

retina at 3 dpf 

Proliferation and structural analysis of the 3 dpf retina, (A) (left), wildtype structure of the retina stained with 

DAPI, (pink, left) pH3 antibody staining (green, right) and Z-stack of one half retina shows pH3 positive cells in 

the CMZ, (B) (left) Qdprb1 MO knockdown retinal structure, shows smaller retina and enlarged CMZ (asterisk), 

(right) pH3 antibody staining and z-stack of one half retina shows significant increase in pH3 positive cells over 

the retina, (C) (left) Rescue of Qdprb1 knockdown with qdprb1 mRNA retinal structure is wildtype-like, (right) 

pH3 antibody staining and z-stack of one half retina 
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Figure 36. pH3 positive cells in Qdprb1 morphant retina 

Statistical analysis of pH3 positive cells in the retina of wildtype (n=7), qdprb1 MO (n=6) and qdprb1 MO+ qdprb1 

mRNA (n=4) injected embryos at 3dpf. MO has 4-fold highly significant increase. Statistical analysis via one-way 

ANOVA and Bonferroni and Holm test shows significance between wildtype and MO, MO and rescue, but not 

wildtype and rescue. 

 

 

Figure 37. pH3 antibody staining in tectum of 3dpf Qdprb1 knockdown embryos 

Magnification of tectum proliferation region (dorsal view), (left) wildtype PTR with few pH3 positive cells, 

(middle) Qdprb1 knockdown PTR with many pH3 positive cells, (right) statistical analysis of pH3 positive cells 

shows significant increase in number (n=3). 
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3.8 Glial development in Qdprb1 knockdown embryos 

3.8.1 Qdprb1 - glial development 

Since we detected no effect on neuronal and microglial development we continued to analyze 

the second major cell type in brain networks: Glial cells. Glial cells in zebrafish are mainly 

present as radial glia and are present in midbrain and eye (Barresi et al. 2010; Bernardos et al., 

2007). Glial cells in the eye are termed “Müller glia”. The key markers for glia cells are 

glutamine synthetase (Glula and Glulb) and glial fibrillary acidic protein (Gfap). 

qRT-PCR shows a significant reduction of glial specific marker glula (fold change: 0,39 +/-

0,04) and gfap (fold change: 0,47 +/- 0,03) in the developing brain (Fig. 38). As internal control 

we also checked glulb, which is only expressed in the periphery. Here a control-like expression 

was found in the morphants. WISH experiments show the specific affect in the eye and midbrain 

glia. Glula is lost in the Müller glia of the eye, while the midbrain shows very little remaining 

expression (Fig. 38). qRT-PCR shows a twofold reduction in mRNA level. Little expression 

remains in the hindbrain glia. This matches the expression of Qdprb1 in the midbrain region 

and eye, where the strongest effect is seen. The second key marker gfap is also reduced two-

fold in qRT-PCR and is lost in the midbrain expression. The expression in the spinal cord for 

gfap remains unaffected, which again confirms the specific effect in the midbrain region and 

the areas corresponding with qdprb1.  
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Figure 38. WISH and qRT-PCR of glial markers glula, gfap at 3dpf 

(A) WISH of glial marker glula, expressed in midbrain proliferative region and in dorsal view of eye in inner 

retinal layer (dorsal view), Qdprb1 knockdown shows depletion of signal in midbrain and loss in inner retinal layer 

(asterisk) (B) qRT-PCR of glula shows highly significant depletion and return to normal levels upon rescue with 

Qdprb1 mRNA (C) WISH of glial marker gfap, expressed in midbrain proliferative region and in dorsal view of 

spinal cord, Qdprb1 knockdown shows loss of signal in midbrain (asterisk) and no change in spinal cord signal 

(D) qRT-PCR of gfap shows very significant depletion and return to normal levels upon rescue with qdprb1 mRNA 
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We also evaluated earlier stages of development in qRT-PCR and found that the expression 

levels for glula and gfap were already depleted at 26 hpf. Surprisingly only astroglial cells were 

affected by the Qdprb1 knockdown. qRT-PCR analysis for the oligodendrocyte specific marker 

olig2 showed a significant increase in expression. This indicates that precursors fail to 

differentiate into astroglia rather than oligodendrocytes. 

 

 

Figure 39. qRT-PCR of amino acid transporters 

Relative mRNA expression levels amino acid transporters, (left) significant depletion of slc1a2a with rescue to 

normal levels and slc1a3a expression, (right) Relative transporter expression shows significant depletion for 

slc1a5a and slc38a2 

 

To find the link between glia and glutamine we screened for alternative amino acid transporters 

in zebrafish (Fig. 39). We detected that most transporters are uninfluenced by the knockdown, 

which include slca7a (LAT1), the major amino acid transporter and Slc38a9 the activator of 

mTOR affected by glutamine levels (Lipton and Sahin 2014). The transporters slc38a2 

(SNAT2) and slc1a5a (ASCT2), were significantly depleted.  
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Figure 40. WISH of glutamate transporters slc1a2a, slc1a2b and slc1a3b 

Expression analysis of transporters, (A) (top) wildtype slc1a2a expression in ONL and (bottom) loss of slc1a2a 

expression in ONL, (B) (top) wildtype expression in midbrain and hindbrain and (bottom) remaining expression 

of slc1a3b in these region, (C) (top) wildtype expression of slc1a2b in midbrain/hindbrain and eye INL, (bottom) 

depletion of expression in midbrain and strongly reduced in INL (asterisk) 
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Upon investigation of amino acid transports, most notably the family of glutamate transporters 

slc1a2 and slc1a3 were affected by the knockdown. In qRT-PCR the expression of slc1a2a was 

abolished, while the homolog slc1a2b remains stable (Fig. 40). In WISH experiments we 

detected that slc1a2a in the rod and cone rich ONL of the eye was entirely lost, matching the 

qRT-PCR results (Fig. 40). slc1a2b expression was slightly affected in the midbrain, but was 

depleted in the eye. The marker slc1a3b is expressed in multiple brain regions and possible 

neurons remained stable in WISH experiments. slc1a3a on the other hand is expressed in 

microglia, which we have previously shown not to be affected by the knockdown (3.7.3).  

It is to note that the used nomenclature reverses the letter use of “a” and “b” for each gene 

slc1a2 and slc1a3 annotated in Gesemann et al 2010 vs the NCBI RefSeq database. This result 

is due to the contradictory nomenclature used in the Genbank used by Gesemann et al. (ID 

HM138691.1 for slc1a2a) and the RefSeq database used in this study (NM_001190305.1 for 

slc1a2a). The naming of slc1a2a in Genbank refers to the sequence of slc1a2b in the Refseq 

Database, and vice versa. The same is the case for slc1a3 (Data accessed 10.9.2017).  

With extensive analysis of the glia markers we could show a specific loss of these gene 

expressions in the midbrain and retina of the developing embryo, spatially linked to qdprb1. 

Although the link between increased glutamine levels and depletion of glia markers remains to 

be identified. 

3.8.2 Qdprb1 – glutamine relation to gliogenesis 

In an attempt to determine if the loss of Qdprb1 directly caused increased glutamine which in 

turn affects gliogenesis, or if altered gliogenesis causes increased glutamine, we tested the effect 

on embryological development by direct exposure to glutamine. We tested expression levels of 

markers that were affected by Qdprb1 knockdown, and Qdprb1 itself, by treating embryos with 

different concentrations (Fig. 41). Chronic exposure at low concentrations of 1mM L-glutamine 

caused no noticeable morphological effect. Under chronic exposure to extremely high 

concentration of 20mM L-glutamine we observed global development retardation and a similar 

phenotype observed in the Qdprb1 knockdown with smaller head and eye size. The analysis of 

mRNA expression levels revealed that low concentration of L-glutamine had little influence on 

glia markers. 20mM on the other hand did reveal a similar pattern observed in Qdprb1 

knockdown, including that gfap (fold change: 0,54 +/- 0,05, ***p<0,001) was significantly 

reduced and the transporter slc1a2a expression was nearly abolished (fold change: 0,27 +/- 

0,23, **p=0,003). However, we did not observe any effect on the glutamine synthetase 
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homologs glula, and glulb. Surprisingly also qdprb1(fold change: 0,65 +/-0,21, **p=0,004) was 

significantly depleted by the high levels of L-glutamine. Exposure to L-Glutamine to embryos 

injected with Qdprb1 MO showed a similar phenotype with smaller head and eyes and had no 

increased severity of the morphological effect. To test if this mRNA level is a direct response 

to the increase in L-glutamine or a developmental effect we tested acute exposure. Acute 

exposure starting at 48 hpf development showed normal development and morphology. 

Furthermore, the acute exposure did not affect mRNA levels of the selected markers. Even 

though this dataset has to interpreted carefully due to the extremely high concentrations and 

additional effects on the whole embryo due to the method, it implicates that high glutamine 

levels can interfere with gliogenesis in the early embryo and that it can deplete not only qdprb1, 

but also the glia marker gfap. 

 

Figure 41. Glutamine exposure morphology and qRT-PCR analysis of chronic 

glutamine, acute glutamine, LMSO exposure 

Exposure experiments and analysis, (A) wildtype morphology at 3 dpf (lateral view), (B) morphology after chronic 

exposure to 20mM L-glutamine shows smaller head and eye, (C) qRT-PCR analysis of early developmental 

(chronic) L-glutamine exposure shows relative expression change to control level at 1, with significant depletion 

in qdprb1, gfap and slc1a2a, as well as no change in glula and glulb; (middle, right) late developmental (acute) 

exposure to L-glutamine and glula inhibition did not affect relative mRNA levels. 
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3.8.3 Qdprb1 – glutamate transporter inhibition  

To further deduce the chain of events, we inhibited the activity of both the Glul and the Slc1a2 

transporter via LMSO and DHKA, respectively (Cox et al., 2016; McKeown et al., 2012). Both 

inhibitors showed no effect on developmental morphology at the previously published 

concentrations. We also detected no change in mRNA expression levels. We hypothesized that 

inhibition of Glula could deplete the glutamine pool and rescue the phenotype. Inhibition in 

Qdprb1 morphant embryos were not rescued by the inhibitors at any developmental stage. 

Control experiments with only LMSO did not deplete glutamine levels in wildtypes, therefore 

efficiency of the inhibitor must be confirmed before concluding these results. Although these 

results are intriguingly suggesting that Glula inhibition rescues the glutamine accumulation and 

in turn does not rescue the morphological changes therefore challenging the glutamine exposure 

experiments, it has to be confirmed by further experiments. 

3.9 Patient biochemistry 

We next assessed the translatability of the observed effects in zebrafish to the severe phenotype 

seen in patients. While traditionally patients are diagnosed based on HPA, pterin pattern change 

and DHPR enzyme activity test, we also looked for the amino acid pattern we observed in 

zebrafish.  

We were able to obtain data from two DHPR deficient patients for amino acids in both plasma 

and CSF before treatment. Table 14 summarizes the amino acids, with high levels shaded in 

red and low levels shaded in blue. Patient 1 presents with a very mild HPA and has very mild 

symptoms. Glutamine levels measured in liquor are normal and so are the BCAA levels, except 

for reduced valine. Patient 2 presents with HPA detected in plasma and CSF and has a severe 

phenotype with brain atrophy, dystonia and epilepsy. Patient 2 has normal glutamine in plasma, 

but has very high glutamine levels in CSF. Contrary to our data in zebrafish the BCAA levels 

were lower than normal. After treatment with neurotransmitters, folates and a phenylalanine 

restricted diet, the glutamine levels normalized. We could not observe any glutamine 

accumulation in other BH4 deficiency patients (GTPCH and PTS). 

The finding of a patient with highly increased glutamine in the CSF of a DHPR patient, suggests 

that our hypothesis may be connected to the patient’s phenotype. 
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Table 14. Amino acid analysis in plasma and CSF of two DHPR patients before 

treatment 

 Patient 1 Patient 2 

Phenylalanine (plasma) 

[normal-range] 

N.A. 861 µmol/l  

[23-75 µmol/l] 

Phenylalanine (CSF) 

[normal-range] 

34.0 µmol/l 

 [3.2-14.0µmol/l] 

287.2 µmol/l  

[7.0-12.3 µmol/l] 

Glutamine (plasma) 

 [normal-range] 

N.A. 499 µmol/l  

[247-900 µmol/l] 

Glutamine (CSF)  

[normal-range] 

509.22µmol/l  

[231.00-765.00 µmol/l] 

759.7 µmol/l  

[373.3-556.3µmol/l] 

Valine (CSF)  

[normal-range] 

7.4µmol/l 

[11.9-29.4 µmol/l] 

11.4 µmol/l  

[14.8-22.5µmol/l] 

Leucine (CSF)  

[normal-range] 

10.7 µmol/l  

[3.5-18.9 µmol/l] 

 9.9 µmol/l  

[11.0-18.7µmol/l] 

Isoleucine (CSF) 

 [normal-range] 

5.2 µmol/l  

[1.7-8.9 µmol/l] 

2.3  µmol/l  

[14.8-22.5 µmol/l] 
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3.10 Species conservation 

In consideration that we were able to hypothesize a link of qdprb1 to glutamine metabolism, as 

well as glia development, we analyzed expression data for human, mice and medaka to test 

possible conservation across species. 

 

Figure 42. ISH data of BH4 related genes in the P56 adult mouse brain 

Data and images taken from Allen Mouse brain atlas (Lein et al., 2007). ISH of mouse brain (P56) sections for 

the BH4 relevant genes, Gch, pts, spr, qdpr, pcbd and th. Strongest expressions are marked by blue box and qdpr 

shows ubiquitous expression 

Comparison of expression patterns retrieved from expression databases (Allen Brain Atlas << 

accessed February 17th, 2017>>; Lein et al., 2007) show a strong overall expression of qdpr 

throughout the adult mouse brain (Fig. 42). This holds true for human tissue (databases show 

cerebral cortex and visual cortex). The antibody staining of DHPR in human brain tissue 

(Protein Atlas << accessed February 17th, 2017>>; Uhlen et al., 2015) shows expression 

exclusively in glial cells and not neurons. Additionally, RNA-Seq data in the cerebral cortex of 

adult mice show intense levels of Qdpr in oligodendrocytes and oligodendrocyte precursor 

(OPC) (Zhang et al., 2014). 
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Furthermore, when comparing the expression patterns of Qdpr in mouse to the de novo pathway 

and BH4 dependent enzymes, we observed a lack of overlap in both in situ and microarray data 

(Fig 39). In direct comparison there seemed to be an expression overlap of Spr to Dhfr, as well 

as Gch1 to Pts (Lein et al., 2007). There was a lack of overlap to Qdpr. In fact, Dhfr and Qdpr 

hardly overlap at all. 

While the genes are distinctly expressed and confined to specific brain regions in ISH analysis, 

qdpr expression is not confined to a region. Although present in every region, qdpr is not 

expressed in every cell. The stained cells we can assume to be glial cells, as shown by Protein 

atlas (Uhlen et al., 2015). The lack of overlap is constant for the dopaminergic marker Th, 

serotonergic marker Tph and NOS marker nNOS1. 

As expected, the database for medaka expression (MEPD: Medaka Expression Pattern Database 

<<accessed February 17th,2017>>), show a conservation of the here identified pattern, with 

expression on CMZ, proliferative region of hind and midbrain, as well as liver expression. 

Mouse embryonic in situ hybridization also shows expression of Qdpr in the ventricular zones 

of the developing brain (Allen Brain Atlas << accessed February 17th, 2017>>; Lein et al., 

2007). 

We were able to find indications that qdpr is expressed separately from other BH4 pathway 

enzymes and that expression in glia cells rather than dopaminergic neurons is conserved across 

species. 

3.11 RNA Binding of DHPR 

To determine the possible mechanisms of DHPR function that involve more than the enzymatic 

function in BH4 recycling, we tested the capability of DHPR to bind RNA. A previous screen 

by Castello et al., 2012, detected DHPR as an RNA binder in Huh7 cells. We first overexpressed 

FLAG-tagged DHPR of wildtype sequence and of a patient sequence. As control 

overexpression of p62, a proven RNA binder, was done (Castello et al., 2012). IP of p62 showed 

a stable band at 62 kDa. IP of DHPR showed a band 26kDA and roughly 55 kDa. Since the 

samples were crosslinked by UV, which also interlinks protein-protein interaction, we assumed 

the higher band to be a DHPR dimer. The loading control confirmed the presence of these band 

before IP in widltypes but not in an overexpression of a patient DHPR (Fig. 43). 
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Figure 43. IP of FLAG-tagged p62 and DHPR 

FLAG-IP for p62, DHPR wt and DHPR patient transfected Huh7 cells. 2mg/ml sample were loaded into each well. 

Bands were detected with anti-Flag antibody. p62 shows a band at 62kDa, DHPR show a band at 26kDa and 

55kDa. Loading control (LC) are lysates previous to IP. Samples were digested with increasing RNAse 

concentrations for PNK. 

 

Figure 44. PNK assay of wildtype and patient DHPR 

Radioactive western blot shows ladder of blot (left), and radioactive signal of p62, DHPR wt and DHPR patient. 

Strong signal shown for p62, with increasing intensity related to increasing RNAse. Clear signal for DHPR wt at 

26kDA once digested with more than 2 ng RNAse. DHPR patient shows same pattern with reduced intensity. LC 

are not treated. 
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PNK assays determine the capability of binding RNA by radioactively labeling the RNA. We 

used p62 as confirmed RNA binder (Fig. 44). We observe a strong radioactive smear around 

62kDA at low RNAse concentrations and a signal along the whole lane once digested with more 

than 2ng RNAse. For DHPR, we observed a radioactive smear at the size of 26kDa, which 

becomes more discrete with increased RNAse digest and is more intense for the wildtype than 

the patient DHPR. This may indicate that the patient DHPR has reduced capability of binding 

RNA. The RNAs are too bulky to enter the gel and once digested with more than 2ng RNAse 

are capable to enter the gel and result in the radioactive smear at and above the protein band. 

The protein band we observe for DHPR is specific as is lost when the protein is knocked down 

via siRNA, confirming that we detect the correct protein.  

Although this is a conclusive result, further experiments such as iCliP (Huppertz et al., 2014) 

are necessary to determine the bound RNA and its possible function. We concluded from these 

results that DHPR contains in deed a function that goes beyond its generic enzymatic function 

and is capable of RNA binding. Even though the role of this function remains unclear in this 

study it implies an intriguing mechanism for the severe phenotype associated with DHPR 

deficiency. 
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4. Discussion 

The thesis presents a detailed analysis of the expression pattern as well as, biochemical, genetic 

and developmental functions of the DHPR homologs in zebrafish. Our findings place the 

enzyme in a novel pathway for gliogenesis and glutamine household, sheds light on the 

mechanism underlying gliogenesis and may contribute to a better understanding and future 

therapeutic approaches for the treatment of human DHPR deficiencies. 

4.1 BH4 pathway in zebrafish 

The BH4 pathway was previously characterized for pigment synthesis in multiple model 

organisms (Ziegler et al. 2000; Kim et al., 2013; Xu et al., 2013). We identified all homologous 

members of the pathway in zebrafish, for an overall characterization with focus on the recycling 

pathway and more specifically the DHPR homologs.  

In an RT-PCR screen we could observe the expression of all genes and design expression 

clusters. A set of de novo pathway expression was seen during gastrulation for gch1, ptps and 

spra. These also cluster after 24 hpf. The second homolog sprb was only expressed with onset 

of neuronal expression at 24 hpf. This is the same pattern observed for pah and th. tph 

expression was unique and previously described with an arisal of tph1b during gastrulation and 

later in serotonergic neurons, while tph2 expression is only in late serotonergic neurons. This 

dataset links an early de novo expression to be required during gastrulation while the major 

hydroxylases are only expressed once the required neurons arise in the embryo after 24 hpf. 

In case of the recycling pathway we could show in more specific qRT-PCR screens that qdpra 

and qdprb1 are expressed upon melanin development and during entire development, 

respectively. Qdprb2 was not expressed after gastrulation. Along with this dhfr, was expressed 

during the entire development, similar to qdprb1. One can assume that the expression of qdprb1 

is necessary during development as the later data confirms, and qdpra only in pigment and liver 

expression. 

This pattern screen shows that not all BH4 pathway members are expressed at the same 

timelines. But we are able to cluster the expression of all de novo members and later all 

members required for dopamine or serotonin production. Overall the pathway homologs are 

conserved and expressed in the developing embryo as previously shown (Ziegler et al. 2000). 

The conservation is the basis for the zebrafish as model organism in our study. 
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4.2 DHPR homology 

As zebrafish had a “whole genome duplication” throughout development, many genes are 

present in multiple versions (Postlethwait et al., 1998). After this time, some genes perform the 

same function, others have developed unique functions and expression pattern, while yet others 

are just present as genome duplication leftovers that are without function (Kassahn et al., 2009). 

It therefore takes careful evaluation to determine the role of a homolog detected in fish.  

The high conservation of DHPR throughout species/phyla indicates an important function. 

While the mouse and rat protein homologs show the highest conservation, the teleost homologs 

are still highly conserved with around 72%. Qdpra shows conservation of all major domains, 

while Qdprb1 and Qdprb2 lack the short chain dehydrogenase conserved sequence (PROSITE; 

Sigrist et al., 2012). This genome duplication along with the variation in sequence conservation 

and exclusive expression patterns, subsequently led to the rare advantage to study the sub-

functionalization of the DHPR homologs in zebrafish. 

4.3 Morpholino knockdown approach 

MOs have been widely used to phenocopy diseases in zebrafish and frog (Brown et al., 2005; 

Himmelreich et al., 2015; Santorellio and Zon, 2012). In recent years, morpholinos have 

become questioned in their specificity and accuracy, since toxicity and off target effects were 

detected (Eisen et al., 2008). This must be countered by numerous controls and rescue 

experiments, which were performed in this study. Furthermore, morpholinos are of great 

advantage for disease model studies that involve reduced protein level and function and no 

complete loss-of-function or loss-of-protein diseases. In the case for DHPR most patients 

present with little leftover enzyme function (Arai et al., 1982; Smooker and Cotton, 1995, 

Zhang et al., 1996).  Additionally, in DHPR deficiency, a genotype-phenotype correlation 

between the severities of phenotype to enzyme activity seems to apparent (Dianzani et al., 1998; 

Smooker et al., 1999). As complete knockouts may evoke other pathways that may compensate 

for the lost function, a reduction of Protein level by MOs, may reflect certain diseases more 

accurately than knockouts (Rossi et al., 2015; El-Brosoly and Stanier 2017). This also offers a 

possible interpretation for the Qdpr -/- mouse that has a complete loss of protein but no 

morphological phenotype (Xu et al., 2013). It is unclear if this loss of mRNA and Protein may 

evoke alternative salvage pathways or just abolish the signaling cascade and the effect that may 

be observed by reduced levels. Since DHPR patients have such a great variety of phenotypes, 

which possibly result from differently severe DHPR hypomorphic conditions, the morpholino 
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approach may be a promising approach to reflect this (Arai et al., 1982; Smooker and Cotton, 

1995, Zhang et al., 1996). 

4.4 Qdpra function 

We collected strong evidences for Qdpra being the homolog connected to BH4 dependent 

mechanisms, implying the expected BH4 recycling function. Firstly, the expression pattern 

shows qdpra in the BH4 dependent melanophores that require sufficient levels for the activity 

of Pah and therefore the production of melanin. Other pigments are not BH4, but de novo 

synthesis dependent and therefore lack Qdpra (Ziegler 2003). The retinal pigment epithelium 

is also rich in melanophores (Burgoyne et al., 2015). All pterin dependent cells, including 

melanophores, express gch2 the second homolog of the pathway initiator (TeSlaa et al., 2013). 

If Qdpra is reduced there is insufficient BH4 and less melanin is produced, as observed by the 

20% reduction in melanin content. Furthermore, the significantly reduced melanophore size 

confirms this role. The observed effect is also a symptom in patients, which when untreated, 

present with lighter hair due to lack of pigments (Blau et al., 2005). This is also the case in 

classical PKU patients, that lack pigments due to impaired PAH function (Blau et al., 2005). 

The role for Qdpra is therefore required for the sufficient production of melanin in early 

melanophores, most likely involving its traditional enzymatic function in BH4 recycling. 

At later stages, at 5 dpf of development, the qdpra expression in melanophores is lost, hinting 

at BH4 or melanin being sufficient in later developmental stages and that qdpra expression is 

not required in maintenance. This difference of genetic requirement for early pigment 

development and later maintenance is known for numerous genes (Odenthal et al., 1996).  

Secondly, the expression of qdpra in the liver, similar to Pah and its activity, which exhibits the 

same expression pattern. Pah mainly functions in the liver and requires BH4 as a cofactor 

(Flydal and Martinez, 2013). The epistatic relation between Qdpra and Pah becomes apparent 

in the classical PKU amino acid pattern in Qdpra morphant embryos. The increased 

phenylalanine results due to reduced activity of Pah. The decrease in taurine however, that has 

also been observed in the knockout mouse (Xu et al., 2013), remains unexplained. 

The lack of expression of qdpra in dopaminergic or serotonergic neurons suggests no 

requirement for BH4 in early neurotransmitter synthesis. There is no overlap with gch1 and th, 

which are distinctively expressed in dopaminergic neurons (Yamamoto et al., 2010). It remains 

unclear if the observed effect at 72 hpf arises additionally from the increasing number of liver 

cells and early liver function of Pah or exclusively from the pigments requiring melanin. 
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However, as liver activity increases only after 72 hpf (Chu and Sadler, 2009; Tao and Peng, 

2009), the hyperphenylalaninemia is expected to become even more intensive during 

development.  

Overall this leads to the conclusion that Qdpra function as BH4 recycling enzyme for the 

cofactor supplementation in the production of melanin and Pah activity is conserved in teleosts 

and restricted to the Qdpra homolog. Yet our data confirms that it does not affect 

neurotransmitter production in the early developing embryo.  

4.5 Qdprb2 function 

Qdprb2 has the least homology to human DHPR and is the only homolog we could not link to 

a function. It has no detectable expression post gastrulation and MO knockdown generated no 

phenotype. Also WISH showed no expression during development. We therefore excluded 

Qdprb2 from further analysis. This does however not eliminate that Qdprb2 may function 

during maternal stages before zygotic expression, where we could detect mRNA levels, or be 

expressed after some stress event that we were not able to determine. 

4.6 Qdprb1 function 

Our findings represent a novel, previously unknown function of Qdprb1 in the regulation of 

glutamine during astrogliogenesis in the developing embryo independent of the BH4 pathway. 

Additional preliminary data obtained from DHPR patients, may imply that this Qdprb1 

mediated mechanism could be conserved from fish to man. 

4.6.1 Qdprb1 function 

The qdprb1 expression pattern we observe does not overlap with the expected BH4 dependent 

region of the dopaminergic and serotonergic regions, NOS in microglia and the liver. In fact, 

the expression of these markers such as th, gch1, pah are entirely unaffected by the knockdown 

of Qdprb1. Instead we observe the expression in proliferative rich regions of the developing 

embryo. These include the eye and the proliferative midbrain. While during early development 

the expression is broad in the regions i.e. the entire eye, it becomes more distinct after 48 hpf 

localizing to the CMZ and the PTR. In later stages we also observed expression in the inner 

retinal layer which is rich in Müller-glia cells. The Qdprb1 morphant phenotype becomes first 

visible at the onset of major neuro- and therewith gliogenesis (Schmidt et al., 2013). At 17 

somites we can already observe a smaller midbrain and affected hindbrain. At 30 hpf the 

midbrain and eye are considerably flattened. This phenotype is restricted to the regions where 

qdprb1 is expressed. 
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A moonlighting function for members of the BH4 pathway has been previously described. Gch1 

knockout mice are embryonically lethal and cannot be rescued with BH4 supplementation, 

while not having a morphological phenotype. This may link Gch1 independent of BH4 

synthesis, to early embryogenesis (Douglas et al. 2015). Similarly the Pts knockout mouse dies 

after 48 hours post birth (Sumi-Ichinose  et al., 2001). The most detailed study was shown for 

the second recycling enzyme Pcbd, which was identified to play a keyrole as cofactor in the 

dimerization of hepatic nuclear factor 1 (HNF-1) and was therefore renamed: dimerization 

cofactor of HNF-1 (DcoH) (Ficner et al. 1995, Lei et al. 1999). Like Qdpra in this study, it was 

also shown to play a keyrole in early pigmentation in Xenopus (Pogge v. Strandmann et al. 

2000). It may therefore not be farfetched that yet another member of the BH4 pathway may 

have a moonlighting function. 

4.6.2 Biochemistry 

In the classical diagnostic approach for BH4 deficiencies we determined the amino acid patterns. 

Amino acid measurements were intended to detect the hyperphenylalaninemia that is present in 

BH4 deficient patients, due to the lower function of Pah, as shown in Qdpra and patients (Blau 

et al., 2005; Opladen et al., 2012). Unlike in the Qdpra morphants, we did not observe any effect 

on the BH4 related amino acids phenylalanine and tyrosine. In fact, other related BH4 amino 

acids such as ornithine, arginine, from the NOS and urea cycle respectively, were unaffected. 

Furthermore, the amino acid taurine, which was depleted in the Qdpr deficient mouse was also 

unchanged (Xu et al., 2011). The change in taurine may therefore be connected to the BH4 

recycling function seen in mice (Xu et al., 2011) and Qdpra in this study. This is the next piece 

of evidence that, unlike Qdpra, Qdprb1 may act BH4 independent. 

In Qdprb1 morphants, the amino acid pattern showed a general increase in BCAA. Increased 

BCAA was already detected in Bcat deficient mice and gliomas, since the breakdown of valine, 

isoleucine and leucine is inhibited (Tönjes et al., 2013; She et al., 2007). In the Qdprb1 

knockdown, the cytosolic bcat1 is in fact depleted in qRT-PCR and therefore may account for 

the increased BCAA. Furthermore, since Bcat1 is expressed in gliomas (Tönjes et al., 2013), a 

tumour arising from glia cells, the depleted bcat1 expression may be caused by the depleted 

glia in Qdprb1 morphants. Finally, bcat1 shows a similar expression pattern at 24 hpf and 3 dpf 

as qdprb1, possibly connecting the two enzymes (Thisse and Thisse, 2004). We could rescue 

the bcat1 expression levels with qdprb1-mRNA. The second mitochondrial homolog bcat2 is 

unaffected and may therefore be not required at these developmental times or expressed in other 

regions of the embryo. 
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Most surprisingly is the significant increase in glutamine we detected upon Qdprb1 knockdown. 

At 3 dpf the glutamine concentrations are doubled in comparison to controls. We compared the 

morphological phenotype to the glutamine peak by screening the ratio of glutamine/glutamate 

during development. With the onset of the phenotype at 17 somites the first increase is seen. At 

22 hpf the increase is significant and rises continuously until 3 dpf. This occurrence is parallel 

to the increasing neuro- and gliogenesis in the developing embryo and the collectives of data 

spatially link the phenotype to the increased glutamine levels. 

4.6.3 BH4 and Qdprb1 

The data we obtained does not infer any link between Qdprb1 and the BH4 pathway. Firstly, 

our knockdown did not generate a DHPR deficiency typical HPA (Flydal and Martinez et al., 

2013). Secondly, qpdrb1 is not expressed in any BH4 dependent regions such as the 

dopaminergic or serotonergic neurons, Liver or melanophores. We also could not link the 

knockdown to any changes in NOS expression which is mostly present in microglia (Minghetti 

and Levi, 1998). 

Unfortunately, we failed to consistently measure BH4 and BH2 via HPLC. Although we could 

detect peaks at the expected times, there was an overlay of a major peak masking the result. 

When we treated the embryos with PTU, we were able to remove the covering peak. We 

therefore deduce the covering peak to be melanin or a compound after the tyrosinase step which 

is inhibited by PTU (Karlsson et al., 2001). Although this initially solved the readout problem, 

it induces the problem that PTU indirectly affects the BH4 pathway. Since it causes increased 

L-Dopa by blocking tyrosinase activity, it may therefore increase 3-OMD and may backtrack 

to tyrosine and phenylalanine levels, which in turn affect BH4 metabolism. Additionally, 

measurements of pteridines via HPLC identified multiple bands but lacked the direct correlation 

to the corresponding pteridines, as was previously attempted (Odenthal et al., 1996). These 

results could have further confirmed the moonlighting of qdprb1. Unfortunately, we could not 

underline our results with the evaluation of BH4, BH2, biopterin and neopterin levels in 

morphants, since the interpretability of these datasets was not ascertained. 

In consideration of the proposed hypothesis that the accumulation of BH2 acts toxic we studied 

the response of the developing embryo to BH2 (Opladen et al., 2012).  We did not however 

observe neurotoxicity of high levels of BH2, nor did we detect any effect on the developing 

embryo. In zebrafish we therefore excluded BH2 as pathomechanistic basis for the phenotype. 

Since we had no neurotoxicity and the uncertainty of pterin measurements, we decided to focus 



 

93 
 

4. Discussion 

on further advantages of the zebrafish embryo, including the developmental analysis of 

neuronal networks. 

4.6.4 Proliferation of CMZ and PTR 

As we expected Qdprb1 to influence proliferation based on expression and phenotype we 

looked for pH3 positive cells. In widltypes, at 72 hpf, few cells in the eye remain pH3 positive, 

of which most are confined to the CMZ. In contrast, we detected a massive increase in pH3 

positive cells in Qdprb1 knockdown embryos. These cells were not restricted to the CMZ, with 

a portion of them in the ONL. As we lose the expression of the glutamate transporter slc1a2a, 

which is present in the ONL (Gesemann et al., 2010), we propose that these cells stuck in 

mitosis in the ONL are the missing slc1a2a positive cells that fail to differentiate. The same 

pattern of increased mitotic cells is present in the PTR. This is consistent with qdprb1 

expression in both proliferative regions and both regions are genetically considered “sister” 

niches of proliferation (Recher et al., 2013). Along these lines the increase in proliferative 

markers of the retina and PRT, myca and ccnd1, as well as unchanged stem cell marker mz98 

of the retina, support the observed results. 

The DAPI staining shows a broadening of the CMZ, which may be induced by the misregulation 

in differentiation. We could rescue the phenotype by co-injection with qdprb1 mRNA. Since 

pH3 marks the cells in mitosis we concluded that these cells are slowed down in their cell cycle 

progression and indicate non- or delayed differentiating cells. This proposes a function for 

Qdprb1 as cell cycle/differentiation signal.  

4.6.5 Neuronal involvement 

The transgenic line for differentiated neurons, tg(HuC/D:GFP), showed no loss of signal in the 

brain and eye. We were however able to detect a microcephaly, which is a symptom of DHPR 

deficient patients and gives us a possible phenotype correlation to DHPR deficiency patients. 

Additionally, DHPR patients with severe symptoms do not present with a loss of dopaminergic 

neurons (Sedel et al. 2006; Furujo et al. 2014), therefore implying a different cell population to 

be affected. Tg(NBT/lyn:GFP) showed no effect on spinal cord neurons or lateral line 

neuromasts. Along with neurons we managed to exclude microglia cells from the focus as 

tg(mpeg:GFP) showed no change in number or localization of these cells. With these neuronal 

screens we excluded an effect on neurons by the knockdown. Contradictory to the exclusion, 

we detected a significant depletion of the neuronal differentiation maker neurod1 (fold change: 

0,47, SD +/- 0,12) in primary neurons (Lee et al., 1995; Lee et al., 1997). Neurod1 is believed 
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to regulate neuronal differentiation by promoting cell cycle exit of neuronal precursors, while 

inhibiting gliogenesis (Yan et al., 2005). It remains to be determined if this marker is indirectly 

affected due to the misregulated gliogenesis, since all neuronal networks we tested appear to 

develop normally. However, since gliogenesis and neurogenesis are tightly linked an overlap 

of effect appears likely (Lyons and Talbot, 2015). 

4.6.6 Astroglia involvement 

As neurons were unaffected we screened for the second largest group of cells in the brain. In 

both qRT-PCR and WISH studies we could show a strong depletion of glial marker glula and 

gfap, specifically in the midbrain and eye and not the spinal cord. Glula was entirely lost in the 

eye, therefore suggesting that the mitotic cells that fail to differentiate are glula positive cells. 

Furthermore, these cells arise from the CMZ were qdprb1 is expressed, therefore Qdprb1 may 

act as differentiating signal for glial cells. This data goes in concert with the pH3 antibody 

staining that shows cells failing to differentiate. The same holds true in the midbrain region. 

Most glula positive cells arise from the proliferative midbrain were qdprb1 is expressed and 

the signal is almost entirely lost. Gfap positive cells in the midbrain are entirely depleted. Since 

gfap remains in the spinal cord, we conclusively located the knockdown effect to these two 

proliferative regions. The glutamate transporter GLAST (slc1a3a) which in mammals is 

expressed in neurons, is unaffected by the knockdown. On one hand, the EAAT2 homolog 

slc1a2a fully depleted in the ONL, (Gesemann et al. 2010). On the other hand, the slc1a2b 

glutamate transporter (Gesemann et al., 2010), which is mostly in astrocytes, is depleted in the 

eye but little in the midbrain. Even though slc1a2b is used as glia marker, it is not depleted in 

qRT-PCR levels. This gives a hint at the stage of differentiation. In mammals proliferating 

precursors that have become restricted to the glia lineage are already EEAT2b/slc1a2b positive 

(Maragakis et al., 2003). Should this apply to the cells we see as pH3 positive and those lacking 

glula and gfap, it would account for the comparably high slc1a2b expression, but the complete 

loss of glula. However, the depleted expression in the eye recommends that not all precursor 

cells have managed to become slc1a2b positive. 

4.6.7 Glia and the role of glutamine 

The similar gene expression pattern seen in Qdprb1 morphants and after exposure to glutamine, 

suggests the reduced glia marker expression to be followed by glutamine increase in Qdprb1 

morphants. Furthermore, it suggests that high glutamine effects the development of glia cells 

in the zebrafish embryo, by the reduced levels of glula and gfap, as well as the depletion of 

slc1a2a. The effect of depleted Slc1a2 mRNA levels has been previously shown in hepatocytes 
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exposed to high glutamine concentrations (Ferrara et al., 2008). Even though the exposure 

affects the entire embryo rather than specific cells, it gives an intriguing suggestion that high 

glutamine concentrations interfere with proper gliogenesis. Additional, more specific 

experimental approaches, may confirm or improve on the observed results. 

Considering the very high concentrations of L-glutamine we must consider toxicity via the 

“Trojan horse” or hyperammonemia. The “trojan horse” theory hypothesizes that high 

glutamine results in high ammonia and glutamate in mitochondria and this in turn will act toxic, 

by interfering with mitochondrial functions due to swelling and increased permeability 

(Albrecht and Norenberg, 2007; Rao et al., 2003; Zieminska et al., 2000).). In L-glutamine 

exposed embryos we did observe an increase in NH3, which is expected by hyperammonemia. 

This could be accounted for by the high levels of L-glutamine and effect on the whole embryo. 

Strikingly and importantly we did not observe any increased glutamate or NH3 in Qdprb1 

morphants. Therefore, we have no evidence for ammonia toxification such as in 

hyperammonemia and likely exclude the “Trojan Horse” theory to be causative for the 

phenotype. However, as only few specific cells may be exposed to this mitochondrial stress in 

Qdprb1 morphants, that are not apparent in the amino acid screen of the whole embryo, a 

possible follow up on mitochondria dysfunction in astroglia may be necessary to fully exclude 

the “Trojan Horse” theory. 

A very recent publication manages to tie Qdpr function to mTor activity. Qdpr overexpression 

decreased mTOR expression and in turn the mutation of Qdpr function affects mTOR and 

results in dysregulation of autophagy (Si et al., 2017). Considering this fact, the dysregulation 

of autophagy and the misexpression of a master regulator of multiple pathways, mTOR, has 

been linked to neurological disorders including epilepsy and Parkinson’s (Litpon and Sahini 

2014). Furthermore, mTOR is highly regulated by amino acids including glutamine (Altman et 

al., 2016). Although we did not observe expression change in the transporters lat1 and slc38a9, 

which are linked to mTOR, the increased glutamine may still affect the amino acid homeostasis 

and deregulate mTOR. We did observe reduction in the transporter levels of SNAT2 and 

ASCT1. This however has been shown already in intestinal epithelial cells exposed to high 

glutamine (Li et al. 2015). It remains therefore unclear how the knockdown regulates the 

glutamine levels. It may be a direct effect of the enzymatic activity of Glul. 

Considering the role of mTOR could be an opening focus of future studies. Along with the 

amino acid homeostasis we also observed an increase in BCAA and depletion of bcat1. Proper 
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expression of bcat1 is required for regulated proliferation to produce the molecules required for 

cell division (Tönjes et al., 2016). Since BCAT1 has previously been connected to mTOR 

(Zhang and Han, 2017), the lack of bcat1 in zebrafish may inhibit the dividing cells during 

mitosis and play a significant role in the observed phenotype. 

4.7 Glula vs Glutamine peak 

One of the unknown mechanistic results in this study remains the link between the glutamine 

synthetase and the highly significant increase in glutamine. If we consider glula exclusively as 

a glia marker in the midbrain and eye the results can be implied as previously discussed. It 

remains, however, the question how reduced glula levels link to the increased glutamine in the 

whole embryo, considering Glul is the major source of glutamine and main protection against 

excitotoxicity of glutamate and ammonia (Suárez et al., 2002).  

There are multiple considerations for this cause, which include overactivity of the enzyme, 

activity of the secondary homolog, failure to remove glutamine and an alternative pathway. In 

one scenario it may be that Qdprb1 is involved in activity of Glula and therefore on protein 

level induces production of glutamine. This can still be the case even when mRNA levels are 

reduced, possibly as compensatory effect. Another option is an activity of the secondary 

homolog Glulb, which is unchanged in qRT-PCR. Yet it is expressed in the periphery and may 

therefore be unlikely. Nonetheless, another option involves the fact that early glia precursors, 

that do express glula, produce glutamine at a high rate but fail to remove these high levels from 

the cell or break them down within it. This could account for low levels of glula and high levels 

of glutamine and may be most likely. We did screen for glutamate transporters of the slc1a2 

family and have shown a severe effect of slc1a2a, but not slc1a2b. Yet glutamine related 

transporters snat2 and asct1 have been significantly downregulated in the embryo and may 

leave early glia progenitors with high glutamine content.  

Finally, there could be an alternative glutamine pathway that is involved in early embryogenesis 

that has not yet been shown. Since we have no evidence at this point, the mechanistic basis for 

this effect needs to be further unraveled in future studies. To this point the data however shows 

a temporal correlation between increasing glutamine and the onset of the phenotype, as well as 

intriguingly similar consequences of Qdprb1 knockdown and glutamine exposure. 
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4.8 Conservation in teleosts and mammals 

Along with the roles determined for the Qdpr homologs in zebrafish, we were interested in the 

conservation of this glia specific role, using the databases for medaka, mice and human. During 

embryological development in teleosts, we see that medaka have conserved expression of qdpra 

in the proliferative regions of eye and midbrain (Medaka Database; Alonso-Barba et al., 2015). 

Also, mice show expression during E13, in proliferative regions of the midbrain (Allen mouse 

brain Atlas, Lein et al., 2007). In adult stages we see expression only in glia cells and expressed 

all over the adult brain. There is no clear localization to dopaminergic or serotonergic neurons 

as we see for other members of the BH4 pathway. Additionally, RNA-Seq shows highest 

expression in glia cells (Zhang et al., 2014). Also in adult humans, the expression localizes to 

glia cells and not neurons (Protein Atlas; Uhlen et al., 2015). 

This set of data connects DHPR strongly to a role in glial cells. If recycling were the key 

function, one would expect high levels of Qdpr to be found in BH4 dependent neurons. While 

shuttling of BH4/BH2 between neurons and glia is unknown, we therefore propose a glia specific 

role for the glutamine household. Furthermore, the lack of BH2 toxicity which was previously 

proposed (Opladen et al., 2012) could not be confirmed by our study in zebrafish and could be 

confirmed in human cells in future studies.  

4.9 RNA binding 

One mechanistic target for the function we determined may be the RNA binding capability of 

DHPR. Our study is the first to show that DHPR does in fact bind RNA in a close focus study 

and not in a large-scale screen as done by Castello et al., 2012. We analyzed both DHPR in its 

wildtype sequence and a patient mutation. The PNK assay showed that FLAG-DHPR 

transfected cells have the capability of RNA binding in Huh7 cells. Patients showed a lesser 

binding efficiency to RNA. Yet both are had very low efficiency than compared to the p62 

control. This links DHPR as a weak RNA binder. In more recent experiments we could detect 

RNA binding of endogenous DHPR in an IP. In this case, radioactivity was much more intense, 

showing a more sensitive and specific detection mode than transfection based. Finally, the band 

at 25 kDa was knocked down with siRNA, showing that we are pulling down DHPR protein. 

As this confirms that DHPR binds RNA and patients may be affected by mutations one needs 

to continue experiments to determine which RNA is bound and which function is correlated 

with it. Additionally, we need to perform RNA binding experiments in cells that are more 

representative for the phenotype we observed. This data may provide the mechanistic basis for 

the severe phenotype and iPSC cells may be of great profit for this study in the future.  
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4. Discussion 

4.10 Translation 

Considering the conservation of expression in glia cells, apart from dopaminergic and 

serotonergic neurons, as well as RNA binding capability, implies a moonlighting function of 

Qdpr in the metabolism of glia cells. The results we obtained may be translatable to the patient’s 

phenotype. We detected an increase in the CSF of a severe DHPR patient with brain atrophy, 

dystonia and epilepsies. Matching we did not detect any increase in glutamine in the plasma of 

the patient. After treatment with neurotransmitter precursors and folates the glutamine peak 

depleted. This may have multiple reasons. First, the role of DHPR involves multiple pathways 

and secondly the next sample was measured after 2 years of age, in which the glutamine peak 

may already disappear due to advanced development. A link between improved development 

and treatment due to normalized glutamine may be proposed. Since we detect the glutamine 

peak during early gliogenesis in the embryo, it was fortunate to detect a change in the newborn 

patient. Furthermore, the glutamine peak may have a connection to the severity of symptoms, 

since a patient with mild DHPR phenotype i.e. no brain atrophy and only light dystonia in the 

hands, showed no increase in glutamine in the CSF. This however requires a larger cohort study. 

Considering the wide appearance of the phenotype, varying from extremely mild to extremely 

severe, as shown by genotype-phenotype correlation (de Sanctis et al., 2000), glutamine may 

be a focus in future studies as a potential biomarker. 

If we attempt to translate our data to the patient, then we have to conclude that DHPR in human 

involves multiple roles and pathways. As we know DHPR affects BH4 recycling, therefore 

affecting the activity of Pah and creating a hyperphenylalaninemia. This in turn affects the 

production neurotransmitters dopamine and serotonin (Blau et al., 2005). Furthermore, we 

know that DHPR affects the folate pathway in link to DHFR (Xu et al., 2013). Finally, we know 

that patients, even with severe phenotype, have no loss in dopaminergic neurons (Sedel et al. 

2006; Furujo et al. 2014). We were able to show that the homolog Qdprb1 rapidly increases 

glutamine levels in the developing zebrafish embryo. This in turn affects the glia development 

in the midbrain and eye. In adult mice and adult humans, databases show that DHPR is 

expressed majorly in glia cells, which may indicate that the major role of DHPR lies within glia 

cells and not BH4 related neurons. 

Since many disorders that somewhat resemble DHPR deficiency, such as Parkinson’s disease 

(Sofroniew et al., 2010) and Alexander’s disease (Orphanet <<accessed 20.10.2017>>; Brenner 

et al., 2001), are caused by glia cell deficits or loss, we can link that the severe phenotype to a 

glia cell defect, more precisely to the lack of differentiation caused by high glutamine levels. 
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5. Future research 

We were able to detect these high glutamine levels and brain atrophy in a DHPR patient. 

Targeting astrocytes has become a promising treatment option (Finsterwald et al., 2015) and 

future research may shift a focus on the astrocyte role in DHPR deficiency. 

 

5. Future research 

Our work is the first to show a novel function for Qdprb1 in zebrafish, which in the light of our 

patient studies may well hold true to function also in humans. We anticipate that the results we 

obtained help substantially to better understand the pathophysiology of DHPR. With the recent 

and rapid advances in Parkinson’s and degenerative disorder and their focus on glia cells, 

DHPR studies will benefit greatly from it (Sofroniew et al., 2010). Induced pluripotent stem 

cells from patients that can be differentiated into neurons and glia cells, can be the basis for 

future studies in the role of DHPR. Possible focus on glia differentiation and the role of 

glutamine should be of great importance. Comparing our zebrafish findings with the data from 

the knockout mouse may help unravel, why the mouse does not develop a severe phenotype 

and in turn help developing therapeutic treatments for DHPR patients. Uncovering the 

glutamine development in severe and mild patient may help to diagnose severity of the 

phenotype. Further studies on the RNA binding capacity of DHPR will help understand the 

multiple functions of this enzyme. Finally, future studies focusing on the early development of 

glia cells in patients will fully unravel the pathophysiology of DHPR deficiency. 
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6. Conclusion 

6. Conclusion 

This thesis is the first detailed scientific study analyzing roles and functions of all zebrafish 

DHPR homologs Qdpra, Qdprb1 and Qdprb2. It is first to propose and support a novel function 

for the enzyme Qdpr, by showing a morphological, neurological and embryological phenotype 

in the zebrafish model organism.  

Our data confirms Qdpra as the major BH4 recycling enzyme in early melanophores and later 

liver cells in direct link to the BH4 dependent enzyme Pah.  

Qdprb2 appears not to play a major role during embryonic development and lacks expression 

after maternal expression. 

Qdprb1 was identified with a previously unknown function, by regulating the glutamine 

household in astroglial cells of the developing eye and midbrain. Increased levels of glutamine 

altered proper gliogenesis, affecting glia specific markers gfap, glula and slc1a2a. The majority 

of glia precursors fails to exit mitosis in time and to differentiate into glula positive cells. 

Additional to the zebrafish characterization, RNA binding studies imply a novel mechanism of 

DHPR and furthermore, analysis of a severe young DHPR patient with brain atrophy and 

epilepsy identified elevated levels of glutamine. This finding intriguingly connects our study to 

the severe patient phenotype and may therefore be an excellent entry point for the unraveling 

of the pathophysiology of human DHPR deficiency. 
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Appendices 

Supplemental A. Figures 

 

Supplemental Figure 1. WISH for qdpra at 24 hpf cryosection 

Cryosection of 24 hpf zebrafish after WISH for qdpra shows exclusive expression in retinal pigment epithelium 

(red arrow) and NCC near the MHB (yellow arrow). 

 

 

Supplemental Figure 2. WISH of 4 dpf Qdprb1 retina and Cryosection of 5dpf retina 

WISH of 4 dpf retina stained for qdprb1 (lateral view), shows expression near CMZ and INL (asterisk). 

Cryosection of WISH for qdprb1, correlated to DAPI stain of 5 dpf retina, shows expression in CMZ and INL 

(asterisk) 
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Supplemental Figure 3. Qdprb1 MO mouse rescue and ATG rescue 

Morphology of 72 hpf embryos of wildtype (top left), Qdprb1 splice MO + mouse Qdpr mRNA (top right, showing 

partial rescue of the phenotype), Qdprb1 ATG MO (bottom left. Showing identical phenotype to Qdprb1 splice) 

and Qdprb1 ATG MO + qdprb1 mRNA (bottom right, showing complete morphological rescue) 

 

 

Supplemental Figure 4. pH3 antibody staining in retina of Qdprb1 MO + p53 MO 

injected embryos 

pH3 antibody staining of wildtype (left) and Qdprb1 splice MO + p53 (middle), showing identical pattern observed 

in only Qdprb1 MO knockdown. Statistics (right) shows a significant increase in pH3 cells in half the retina 
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Supplemental B. Recipes  

B.1 Recipes - ISH 

 

4% PFA 

• 20 g PFA to 500 ml DEPC-PBS 

• Heat to 59 °C until dissolved 

• Store in 50 ml Aliquots at -20 °C 

 

DEPC H2O 

• Add 1ml DEPC per 1L H2O into autoclaved bottle. Stir for at least 2 h (best overnight) 

• Autoclave to degrade DEPC 

• Store RNAse free 

DEPC-PBS 

• 8.7g NaCl  

• 0.272g KH2PO4  

• 1.14g NA2HPO4  

• Add 1000ml dH2O and 1ml DEPC 

• Stir for at least 2 h 

• Autoclave to degrade DEPC 

• Store RNAse free 

 

PBST 

• 0,1% Tween 20 in PBS 

 

Hybridization buffer 

• 50% Formamide 

• 5x SSC 

• 0,1% Tween 

• Add 5mg/ml tRNA and 50ug/ml Heparin for overnight hybridization 
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Blocking Buffer 

• 2% Sheep Serum 

• 10 mg/ml BSA 

• In PBST 

 

AP Buffer (50ml) 

• 2ml NaCl (5M) 

• 5ml MgCl2 (1M) 

• 10ml Tris (1M), ph 9.5 

• 100µl Tween 20 

• In DEPC-H2O 

Staining solution 

• 10 ml AP buffer 

• 200 µl NBT/BCIP solution (Roche) 

B.2 Recipes - Cloning 

 

10X LB (1L) 

• 100 g Tryptone 

• 50 g Yeast Extract 

• 100 g NaCl 

• Adjust to ph 7.5 

• Autoclave 

Dilute 1 in 10 for 1X LB 

 

LB Agar (1L) 

• 15 g Agar in 1X LB 
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B.3 Recipes – Antibody staining 

 

PBS-Tr 

• 1% Triton 1X PBS 

 

Incubation Buffer 

• 1% Triton 

• 10% sheep serum 

• 1% DMSO 

• In 1X PBS 

 

B.4 Recipes - Agarose Gel 

 

1% gel 

• 4g Agarose 

• 400ml 1xTAE 

• 20ul EtBr (10mg/ml) 

 

10X TAE (1L) 

• 48.4g Tris base 

• 11.4ml glacial acetic acid 

• 3.7g EDTA 

• 1L H2O 

 

B.5 Recipes – RNA binding 

 

10X MOPS (1L) 

• 41.9g MOPS 

• 8.2g Sodium acetate  

• 3.72g EDTA 

• Adjust to pH 7.0 with NaOH 
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500P lysis buffer 

• 20mM Tris-HCl pH 7.5 

• 500mM LiCl  

• 0,5% NP-40 

• 1mM EDTA 

• 5mM DTT 

100N buffer 

• 20mM Tris-HCl pH 7.5 

• 200mM LiCl 

• 1mM EDTA 

• 5mM DTT 

 

PNK buffer 

• 10mM Tris-HCl pH 7.5 

• 50mM NaCl 

 

PNK hot mix (1rxn) 

• 27 µl PNK buffer  

• +5 mM DTT 

• 1 U/µl PN Kinase – 3 µl (of undiluted) 

• 0,1 µCi/µl y-32-ATP – 0,3 µl when 250 µCi stock 
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Supplemental C. Primer 

C.1 Primer - ISH 

 

Table 15. Supplemental – Primer ISH 

Name Primer FW Primer RW Size 

fragment 

(bp) 

Gch1 CTATTCTTCGGGGTCTCGGG ACACCTAACATGGTGCTGGT 469 

Gchfr CACAGATCCGCCTGGAGACA CAAACGTAAGACTGATGCAC

G 

563 

Gfap TCCCAGCGTTCCTTCTCATC TCAAATAGCACCGCTGACCA 1900 

Pah CGTGAGGACAACATCCCACA GGGCTGAAGTTTAGGCTCGT 441 

Qdpra TGCGAACCGTGTCCTTGTTT AACCATACCTGGAGTGGCGT 418 

Qdprb1 GGTGAAGAGAAGGTTGACG

C 

TACCTGAAGGCGGTCTGCTT 451 

Qdprb2 AGACAGTTTGTGTCAGAATC

A 

CCACTGTTCTGCCATTAGCG 771 

Slc1a2a CTCATCCACCCTGGAAACCC GAAGCTGTTCCTAAGGCGGT 635 

Slc1a2b AATGCAGCACGATGAGGGA

A 

CCATAACCCCGGTGTATCCG 962 

Slc1a3b CCTTTGCCTGGGTGGATGAT ACGTGAAGGGCTTTCTGAGG 331 

Spra CTCGTCAGTCCTTGGGGAAT GAGCGTAGTTCAGCACTCGG 613 

Sprb CATCATCCGAGAGCGTGTGA TGATGTTGACCACCGTCCTG 522 

Th TGAGGAGGAGAAGACTGGC

A 

TGTAAACCTCCCATGTGGCA

T 

494 

Tph1a CGAGATGGAGAATGTGCCGT GCATTTCCTGACAGTGCGTG 747 

Tph1b TGCGGATCTTGCCATGAGTT CCAGCCCCGTATGCTCTTAG 555 

Tph2 TCTACGCAGCGACTAACCAC ATTGGCATCGGAACAATGCG 461 
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C.2 Primer – qRT-PCR 

Table 16. Supplemental - Primer for qRT-PCR 

Name Primer Fw Primer Rv 

Aqp4 TGGACACATTCAGGAGGTGC GGACAAGCCAAAGCAAAGGG 

Bcat1 CCATCATCTCACAAGGAAAACG

G 

GATGCATGGACAGGTTCCCA 

Bcat2 GGAACCGAACTTCACTAGGT TGCCGCCCATTTTGTACTCT 

Ef1-α TCCTCTTGGTCGCTTTGCTA AAGAACACGCCGCAACCTT 

Gch1 GGCCGGGTGCATATAGGTTA TGGTGCTGGTCACAGTCTTG 

Gfap GTGTCCATGCTGGTGTCTCT ATGCTGAAGGAGGAGATGGC 

Gls2b CGACTACTCGGGACAGTTCG CCAGTTCCTGACAGAAGCGA 

Glsa ATGACAAGAGAAGGAAGGCAG GCACCGTCTGAAGTGGTTTTC 

Glula CAACCTGGAACTCCCACTGAG TACTGACGGACACCCCTTTG 

Glulb AGCCCTTCTTTTCCTGACCC CGAGGAAGGAGGTTTGAAGCAT

A 

Olig2 CACTGAACGCCATGGACTCT CCATTGAGTCCTCCTCAGCG 

Qdpra GTCATTCACCGATCAAGCCG CTGCGATGTACTCCAGTGGT 

Qdprb1 GGTGAAGAGAAGGTTGACGC GAGGAAGACCACTGTTCGGC 

Qdprb2 TCTAGCAATCCTTCCGGAAACT CACTGTTCTGCCATTAGCGG 

Slc1a2a GACTGGCTTCTGGATCGCTT ATCGGCTGACAGGAGTTGTG 

Slc1a2b CCAGCCTGACAGTTGTGGAT TTGTCATCGATGGGAGACGC 

Slc1a3a TGATACCCGTGTGTTGCTGT AGGATTATTCCCACGATGACGG 

Slc1a5a CTGCATGTTTCCAGTGCGTC CATGTGCGATCAACAAGCCA 

Slc38a2 CTCCGTTAGTGTACCACGCA GGCCAATGAAGGAGGGTCTC 

Slc38a6 ACCACAGCATACAGACGGTG CCATGGCATACGAGAGACCC 

Slc38a7 GCATCACAGCTGGAGTGACA TATTGCGCCCGATCAGCTTGT 

Slc38a9 TCAAGAGAACAACGTCCGGG AACAGAAGGAAGGTCCTCGC 

Slc7a5 CAGGGGGTGACTACGCTTAC TGACAGCGGTCAACAACAGTAT 

Th AGTAGCCAGCGTGACTTGTT GTGCGCTGCAGGAATAGAGA 

Vimenti

n 

CCTGCGAGAGTCCATGAAGG ATCTTCAGTGCCTCGGGTTC 
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C.3 Primer – Rescue 

Table 17. Supplemental – Primer for Rescue mRNA 

Name Primer Fw Primer Rv 

Mouse 

001 +RE 

sites 

AGCGGATCCCTTTGGGGGCGGG

GCACAGGCAGGGGCGGGTGTTC 

AGCCTCGAGAGACATGAAGTGTG

TTTATTAGGAAGAACACT 

Qdprb1 

mRNA 

ACGACGGGATCCTGCATAACAC

GGTCTCGTGCTCGTGAAGACAGA

ATGGCAGC 

CGTCGTTCTAGAATTAAAGTACGC

TATATTTAATAGTCAGAATATAAC

AGTACTCCAATTT 

 

C.4 Primer – RT-PCR 

Table 18. Supplemental – Primer for RT-PCR MO control 

Name Primer Fw Primer Rv 

Qdpra-

splice 

Control 

GTTGCCAGTATTGACATCGGAGC TGGAGTGGCGTCCAGTGAAG 

Qdprb1 

splice 

Control 

TGGGTTGCCTCTATTGATCT TACAAATAGTGGAGGTCCATA 

 

C.5 Primer – FLAG-Plasmid 

Table 19. Supplemental – Primer for FLAG-DHPR generation 

Name Primer Fw Primer Rv 

DHPR Amplify TGGCAGGAGCAGGATGGCG CTAAAAATATGCTGGGGTGAGT

TC 

DHPR C-

Terminus 

FLAG + 

Restriction site 

ACGGGATCCATGGCGGCGG

CGGCGGCTGCAGGCGAGGC

GCGC 

CGCGCGGCCGCCTACTTGTCGT

CATCGTCTTTGTAGTCAAAATAT

GCTGGGGTGAGTTCCGTCCTTCC

TTC 

DHPR N-

Terminus 

FLAG + 

Restriction site 

ACGGGATCCGCCACCATGGA

CTACAAAGACGATGACGAC

AAGGCGGCGGCGGCGGCTG

CAGGCGAGGCGCGCCGG 

CGCGCGCCGCCTAAAAATATGC

TGGGGTGAGTTCCGTCCTTCCTT

C 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

“Life is ours, we live it our way!” 

(Metallica, 1991) 

 


