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SUMMARY 

 

The mucin-like sialoglycoprotein podoplanin (PDPN) is widely expressed throughout the human 

and rodent body. Although numerous studies have revealed its essential function in development, 

especially of the lymphatic system, the lungs and heart, the overall picture of its physiologic 

function is still incomplete. Emerging evidence of the past decade has associated PDPN de novo or 

overexpression with numerous cancer entities including glioblastoma, and in particular with the 

invasive behavior of tumor cells. As the infiltrative growth of tumor cells is one major challenge in 

glioblastoma therapy, the identification of novel candidates in tumor cell migration remains an 

essential pre-requisite for the development of new and effective therapeutic means. However, 

the postulated pro-tumorigenic and pro-invasive function of PDPN in glioblastoma has never been 

validated in vivo. Moreover, the underlying mechanism of a potential malignant effect of PDPN 

has not been addressed. Thus, the aim of this study was to close this gap of knowledge by the 

combination of correlative and functional assays. Descriptive in vivo approaches involving patient-

derived xenografts were primarily taken to confirm the previous correlations of PDPN expression 

and malignant progression and to establish a model that enables the investigation of underlying 

mechanisms. For the functional validation of the hypothesis that PDPN is a major driver of 

glioblastoma progression and especially invasion, the gene was deleted by the novel CRISPR/Cas9 

technology. Xenotransplantations of control and knockout cells indicated the dispensability of 

PDPN for glioblastoma growth and progression. The reliable analysis of the postulated pro-

invasive function of PDPN required the optimization of a three-dimensional invasion assay based 

on organotypic brain slice cultures. The usage of adult murine brain slices and a red emitting 

fluorescent membrane dye significantly improved the assay quality. The application of this 

advanced technique identified PDPN as a non-rate limiting component in glioblastoma cell 

invasion. These data and the detailed analysis of further malignant features including 

proliferation, apoptosis and angiogenesis have rebutted the previous assumption of a tumor 

promoting effect of PDPN. Despite the dispensability of PDPN for tumor development and tumor 

cell invasion, the obtained results suggest PDPN as a marker for malignant glioblastoma cells. In 

conclusion, this study represents an important contribution in the process of preclinical drug 

development, as the results object the frequently suggested development of a PDPN blocking 

therapeutic agent. Instead, this work suggests PDPN as a marker for prognosis or targeted 

delivery of cytotoxic compounds into glioblastoma tumor cells. 
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ZUSAMMENFASSUNG 

 

Das transmembrane Glykoprotein Podoplanin (PDPN) wird in zahlreichen Organen und Zelltypen 

des menschlichen und murinen Organismus exprimiert. Obwohl man PDPN eine essentielle Rolle 

in der Entwicklung, insbesondere des lymphatischen Gefäßsystems, Herz und Lunge, zuschreiben 

konnte, ist seine physiologische Funktion noch nicht vollständig entschlüsselt. PDPN ist auch 

Gegenstand pathologischer Untersuchungen, da vielfach eine de novo- bzw. Überexpression im 

Glioblastom und zahlreichen weiteren Krebsentitäten beobachtet werden konnte. Es gibt zudem 

zunehmende Hinweise auf eine migrationsfördernde Rolle des Oberflächenproteins. Aktuelle 

Glioblastomtherapien scheitern meist an Therapieresistenzen in Kombination mit stark invasivem 

Wachstumsverhalten der Zellen, die in umliegendes gesundes Gehirngewebe streuen und so eine 

chirurgische Entfernung verhindern. Im Fokus der Glioblastomforschung steht daher u.a. die 

Tumorzellinvasion, da ein Unterbinden der Infiltration die Heilungschancen drastisch erhöhen 

würde. Ob PDPN die pro-invasive Eigenschaft der Glioblastomzellen in vivo vermittelt und daher 

ein geeigneter Kandidat in der Therapieentwicklung darstellen würde, wurde bislang nicht 

bewiesen. Zudem ist unbekannt, wie PDPN die Glioblastomzellinvasion und –proliferation 

mechanistisch begünstigen könnte. Um potentiell tumorförderderne Eigenschaften von PDPN zu 

belegen und mechanistisch zu erläutern, wurden im Rahmen dieser Studie verschiedene 

deskriptive und funktionale Experimente durchgeführt. Ein deskriptives Modell der 

Xenotransplantation von primären humanen Glioblastomzellen diente zur Validierung der bereits 

publizierten negativen Korrelation von starker PDPN Expression und Überleben, was die Wahl des 

Modells für weitere mechanistische Untersuchungen bestätigte. Um zu zeigen, dass das maligne 

Verhalten der Tumorzellen auf der Expression von PDPN beruht, wurde PDPN mittels neuester 

Gentechnologie (CRISPR/Cas9) in Glioblastom-Primärkulturen und etablierten Glioblastomzelllinien 

deletiert. Die darauf folgende orthotope Injektion der PDPN Knockout-  und Kontrollzellen ergab 

keinen Unterschied im Tumorwachstum oder Überleben der Rezipienten, was einer malignen 

Funktion von PDPN im Glioblastom widerspricht. Die Untersuchung der postulierten pro-invasiven 

Funktion von PDPN im Glioblastom setzte die Optimisierung eines dreidimensionalen 

Invasionsassays voraus, das auf organotypischen Hirnschnitten basiert. Die Verwendung von 

adulten Mäusehirnen sowie der Einsatz eines rot emittierenden fluoreszenten Farbstoffes 

verbesserte die Qualtität des Assays erheblich. Die Anwendung des optimierten Assays ergab, 

dass PDPN nicht zum Invasionsvermögen der Glioblastomzellen beiträgt. Auch die Analyse 

weiterer Tumorcharakteristika, wie Proliferation, Apoptose, oder Tumorvaskularisation, deutete 

auf eine fehlende maligne Funtion von PDPN im Glioblastom hin. Somit konnte diese Studie die 

Hypothese, dass PDPN eine tumor-, und insbesondere eine invasionsfördernde Rolle im 
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Glioblastom einnimmt, nicht bestätigen. Dennoch weisen die Ergbnisse darauf hin, dass die 

Expression von PDPN mit der Aggressivität der Gliomzellen korreliert, was den Einsatz von PDPN 

als klinischen Marker nahelegt. Die Erkenntnis dieser Studie ist daher ein wichtiges Puzzlestück in 

der Entwicklung neuer Glioblastomtherapien. Die bisherige Annahme, die funktionelle 

Inaktivierung von PDPN könnte als therapeutisches Mittel eingesetzt werden, wurde in dieser 

Studie zwar widerlegt, stattdessen könnte PDPN aber als Marker zur Prognose oder zur gezielten 

Einbringung von Zytostatika in Tumorzellen dienen. 
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1 INTRODUCTION 

 

1.1 Glioblastoma – the most malignant primary brain tumor 

 

1.1.1 Classification, characteristics and therapeutic interventions 

According to the International Agency for Research on Cancer (IARC) database, estimated 57.000 

Europeans were newly diagnosed with central nervous system (CNS) tumors in 2012 (Ferlay et al., 

2015). Tumors of the brain and CNS are categorized as either primary or secondary brain tumors. 

Primary brain tumors arise from tissue of the CNS whereas secondary brain tumors are defined as 

tumors that metastasized from a primary tumor outside the CNS into the brain. With more than 

130 different subtypes, primary brain tumors comprise a large multitude of tumors (Figure 1.1) 

that differ in many phenotypic and, as recently introduced by the 2016 World Health Organization 

Classification, more objective molecular parameters (Louis et al., 2016). The introduction of 

genotypic parameters has particularly simplified the sub-classification of diffuse gliomas, the 

largest primary brain tumor group, into oligodendrogliomas (IDH mutation in combination with 

1p/19q co-deletion) and astrocytomas (IDH wild-type or mutant) (Louis et al., 2016). Further sub-

classification is mostly based on cytological and histological parameters and will assign the tumor 

to the group of oligodendroglioma, anaplastic oligodrendroglioma, diffuse astrocytoma, 

anaplastic astrocytoma, the new diagnostic entity diffuse midline glioma or glioblastoma. 

 

Glioblastoma is the most malignant glioma subtype (grade IV). Furthermore, it represents the 

most frequent malignant brain tumor affecting nearly half of all adult primary brain tumor 

patients (Visser et al., 2015). Glioblastoma is characterized by an extremely poor prognosis. The 

five year relative survival of glioblastoma patients in Europe is below 10% (Stupp et al., 2009, 

Visser et al., 2015) and median survival of patients that have received current standard-of-care 

treatment has been reported to be 14.6 months (Stupp et al., 2009). The disease affects slightly 

more men than women (1.6 : 1) and a median age of diagnosis around 65 years makes glioblastoma 

an age-related pathology (Ostrom et al., 2013). A difference in the age distribution of patients has 

been reported for patients with primary and secondary glioblastoma. Patients with secondary 

glioblastoma are on average diagnosed significantly younger, at the age of 45 years (Ohgaki and 

Kleihues, 2005). This form of glioblastoma accounts for only approximately 10% of all 

glioblastomas and is termed secondary as it develops from lower grade glioma. 

 



 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 (A) Classification of brain tumors according to WHO 2016 (Louis et al., 2016) and (B) composition of neuro-epithelial tumors diagnosed in 2007 and 2011 (Visser et al., 2015). 

A 

B 
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In contrast, the vast majority of glioblastoma tumors develops de novo and is therefore called 

primary glioblastoma (Louis et al., 2016). In general, primary glioblastomas show a more rapid 

progression and confer a worse prognosis compared to secondary glioblastomas.  

 

Histologically, glioblastoma distinguishes from all other grades primarily by a high mitotic index, 

hypervascularization and facultatively by the presence of necrosis and pseudopalisades, fencelike 

hypercellular arrangements of tumor cells that actively migrate from necrotic foci (Aldape et al., 

2015, Brat et al., 2004). Although the histological class of glioblastoma consists of molecularly 

heterogeneous tumor types, they share some common aberrations in various molecular 

pathways. Oncogenic events such as amplification of the EGFR gene (40%), often accompanied 

with the constitutively active EGFRvIII mutation, activation or loss of suppression of the PI3K-AKT 

(50%) and/or RAS-MAPK signaling pathways are found in the majority of glioblastomas (Cancer 

Genome Atlas Research, 2008, Parsons et al., 2008). Concomitantly, tumor suppressor pathways 

such as NF1- (15%), PTEN- (30%), p53- (64%) and Rb-pathways (68%) are frequently disrupted 

(Cancer Genome Atlas Research, 2008, Parsons et al., 2008). The presence and activity of the 

tumor suppressors p53 and Rb is not only directly affected by mutations and deletions of their 

corresponding genes, but additionally by the deletion of upstream activators (p19 and p16 

encoded by the INK4A/ARF locus) or by gene amplifications and transcriptional upregulation of 

their upstream repressors (Mdm2 and, respectively, Cdk4). The intention of sub-classifying 

glioblastoma tumors according to their genetic profiles has emerged as difficult challenge. In 2006 

and 2010 three or respectively four major molecular signatures were identified: proneural, 

proliferative and mesenchymal (Phillips et al., 2006); or proneural, neural, classical and 

mesenchymal, respectively (Verhaak et al., 2010). The molecular sub-classification of glioblastoma 

tumors was intended to define a specific set of markers within each group that predict the 

response to different therapies. However, the specific subtypes could not be matched to efficient 

therapeutic options yet and thus have not been incorporated into clinical decision making. 

 

One of the most clinically relevant discoveries in the past decade was the identification of 

mutations in the genes encoding for isocitrate dehydrogenase (IDH) 1 or 2 in the vast majority of 

gliomas (Parsons et al., 2008, Yan et al., 2009). IDH1 (R132) and IDH2 (R172) gain of function 

mutations are early oncogenic events, which shift the balance from the physiologic metabolite α-

2-ketoglutarate to the oncometabolite 2-hydroxyglutarate (2-HG) (Dang et al., 2009). Elevated 2-

HG levels result in the inhibition of various enzymes that are involved in the methylation and 

demethylation process of DNA presumably causing the Glioma CpG Island Methylation Phenotype 

(G-CIMP) (Christensen et al., 2011, Noushmehr et al., 2010). The discovery of this oncogenic gain  
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Figure 1.2 Histological features of glioblastoma. 
Hematoxylin and eosin staining of human glioblastoma tumors that show characteristic (A) 

hypervascularization, (B) high mitotic activity (arrows indicate mitotic cells) and (C) pseudopalisades indicated 

by arrows. (D) Magnification of marked area in (C). Scale bars (A; B; C) 100 µm; (D) 50 µm. 

 

 

of function mutation enables the development of novel therapeutic means such as a vaccine 

against the R132H neoantigen (Schumacher et al., 2014) or small molecular inhibitors that 

specifically target the mutated IDH protein (Rohle et al., 2013). 

Importantly, although IDH mutations affect almost 70% of all gliomas, it is less abundant in grade 

IV glioblastomas. Here, IDH mutant tumors closely correspond to secondary glioblastoma (10% of 

all glioblastomas) which are, despite the oncogenic effects of mutant IDH, characterized by a 

significant better prognosis (Parsons et al., 2008, Yan et al., 2009, Sanson et al., 2009). This 

illustrates that, although histologically similar, primary and secondary glioblastomas are molecular 

distinct diseases that differ in progression, prognosis and therapeutic response (Wick et al., 2013). 

 

In addition to the IDH status, the promoter methylation of the O-6-methylguanine-DNA 

methyltransferase (MGMT) is used as a prognostic and predictive marker for glioblastoma 

patients (Stupp et al., 2009, Wick et al., 2013). MGMT is involved in DNA repair where it removes 

alkyl groups from O6-position of guanine preventing base damage, subsequent mutations and 

double strand breaks. Glioma cells with a methylated MGMT promoter show decreased levels of 

MGMT protein, which in turn hampers the repair of alkylated DNA and results in the accumulation 

of DNA damages. This is exploited in glioma therapy where the alkylating agent temozolomide 

(TMZ), in combination with radiotherapy, is applied to introduce an intolerable level of DNA 

damage and thus cell death. As the accumulation of DNA damage by alkylating agents relies on 

C 

A B 

D 
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the decreased levels of MGMT, TMZ therapy is generally more effective in glioblastoma patients 

who exhibit hypermethylation of the MGMT promoter (approx. 40% of all glioblastoma patients) 

(Hegi et al., 2005). Importantly, it has been shown that the MGMT promoter methylation alone is 

not enough to predict a positive response to temozolomide treatment, but additionally requires 

the IDH wild type status, a fact that has mechanistically not been understood yet (Wick et al., 

2013). 

 

 

1.1.2 Glioblastoma cell invasion – one major hurdle in glioblastoma therapy 

The standard-of-care treatment that comprises surgery and radiotherapy was extended by 

temozolomide treatment in 2005 in Europe and the United States. This change in therapy has 

improved median survival time from 12.1 to 14.6 months and increased the five year relative 

survival from 1.9% to 9.8% (Stupp et al., 2009). Despite this significant prolongation in survival, 

the absolute survival time for glioblastoma remains very dismal. This is a result of multiple causes, 

including the challenge of delivering chemotherapeutics in effective doses across the blood-brain 

barrier (BBB) and the intrinsic and acquired resistances against current standard therapies (Oberoi 

et al., 2016). Furthermore, the infiltrative growth of glioblastoma tumor cells impedes complete 

surgical resection and the continuance of remaining therapy resistant tumor cells results 

inevitably in recurrences. The ability of glioblastoma cells to extensively infiltrate the brain was 

already described in 1938 by the German neuropathologist Hans Joachim Scherer (Scherer, 1938). 

He reported that glioma cells migrate along pre-existing structures of the brain, including 

meninges and the subjacent subarachnoid space, blood vessels, myelinated nerve fibers and the 

extracellular space between neuronal or glial processes in the brain parenchyma. Furthermore, it 

has been described that glioma cells of one tumor are not restricted to the migration along one 

structure (Scherer, 1938). However, whether and how subpopulations of glioma cells prefer 

certain structures remains to be determined.  These structures could provide the path of least 

resistance in the condensed mesh of extracellular matrix  (ECM) and densely packed neuronal and 

glial cells in the brain; or tumor cells could be attracted by certain structures as their surfaces and 

microenvironment provide distinct advantages in the process of invasion (Cuddapah et al., 2014). 

 

The fact that the invasive growth of glioblastoma results in recurrences has already been 

experienced early in history of glioblastoma therapy, when surgeons radically resected the entire 

tumor bearing hemisphere only to witness recurrences on the contralateral hemisphere (Dandy, 

1928). Today the application of modern microsurgical techniques and gross-total resection has 
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improved the survival of glioblastoma patients (Stummer et al., 2008), however, recurrence at the 

contralateral hemisphere or even in close proximity to the resection cavity cannot be prevented. 

This highlights the urgent need of new and innovative therapeutic means that inhibit tumor cell 

invasion.  Anti-invasive therapies are conceptually meant to contain the disease in order to 

improve the efficacy of local treatments. As glioblastoma cells have most likely invaded the brain 

at the time of diagnosis, anti-invasive therapies might first seem of limited value. However, 

targeting invading tumor cells remains an interesting approach for several reasons. Firstly, 

although the dissemination of glioblastoma cells within the brain tissue had most probably 

already commenced before diagnosis and treatment, it is of strong importance to restrain the 

continuous colonization of the brain reducing the number of potential recurrent lesions that can 

then be tackled by a combination of surgery and radiochemotherapy. Secondly, invasiveness 

unifies all glioblastoma cells that remain in the brain and escaped surgical resection and local 

radiotherapy. Hence, proteins involved in invasion could represent a common denominator and 

therapeutic targets e.g. for the delivery of cytotoxic compounds or as immunogenic targets. 

Thirdly, migrating glioblastoma cells that use blood vessels as preferred route of invasion have 

been reported to focally breach the BBB by disrupting astrocytic endfeet and degrading the 

basement membrane and tight junctions of endothelial cells (Watkins et al., 2014). Damaged BBB 

leads to uncontrolled leakage of serum components into the parenchyma resulting in edemas. 

This process that represents a strong burden to glioblastoma patients could be prevented by the 

inhibition of tumor cell invasion. And lastly, an inverse correlation of proliferation and invasion 

has been suggested, also referred to as the “go or grow hypothesis” which implies the reduced 

proliferation rate of invading tumor cells (Giese et al., 1996, Horing et al., 2012, Mariani et al., 

2001). Since standard anti-cancer chemotherapy primarily targets dividing cells, therapy 

resistance of glioblastoma cells could be partially caused by their high invasiveness. The inhibition 

of invasion could thus restore susceptibility to chemotherapeutic approaches.  

 

The development of novel anti-invasive therapies is a crucial step in the combat of glioblastoma 

and requires mechanistic insight into the biology of glioblastoma invasion. Most studies dealing 

with glioblastoma cell invasion involve easy-to-handle and inexpensive two-dimensional cell-

based methods like in vitro wound healing assays. However, recent studies have shown striking 

differences in the function of proteins between two- and three-dimensional migration conditions 

(Khatau et al., 2012, Madsen et al., 2015, Skau et al., 2016). The alternative approach to assess 

invasion in a three-dimensional matrix of matrigel or collagen is unsatisfactory as these reagents 

do not reflect the complex composition of the brain ECM (for review see Barros et al., 2011). 

Furthermore, in vivo tumor cells are embedded in a three-dimensional environment that does not 
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only contain components of the ECM, but also other cell types that have been reported to 

substantially impact on tumor cell invasion (reviewed in Joyce and Pollard, 2009). Additionally, 

glioma cells encounter secondary structures, introduced above as the Scherer’s structures, that 

serve as migration routes. Thus, the most reliable analysis of glioma cell migration is the 

monitoring of invasive cells in their natural environment in a living organism. This, however, 

requires the cutting-edge technique of intravital imaging. For this procedure, the cranial bone of a 

living animal is replaced by a glass coverslip (Askoxylakis et al., 2017). This chronic cranial window 

enables the live imaging of single fluorescently labeled tumor cells that leave the implanted tumor 

and invade the surrounding tissue (Osswald et al., 2015, Winkler et al., 2009). Intravital imaging 

however, is not the assay of first choice to analyze glioma cell invasion, as it is a very laborious 

and time consuming technique that requires the approval of in vivo experiments by local 

authorities and specialized equipment to install the cranial window and to perform subsequent 

high resolution imaging. This highlights the need of an invasion assay that unites advantages of 

both approaches in an easy and inexpensive assay that provides the environment glioma cells 

encounter in vivo. Obviously, the complex organization of brain tissue cannot simply be mimicked 

by co-cultivation of involved cell types and ECM components. Thus, inspired by the field of 

electrophysiology, glioma research has exploited the organotypic ex vivo cultivation of murine 

brain slices (for reviews see Huang et al., 2012, Lossi et al., 2009). The well-preserved tissue of 

these brain slice cultures is used as a three-dimensional invasion matrix in which fluorescently 

labeled tumor cells are implanted and imaged (Aaberg-Jessen et al., 2013, Jung et al., 2002, Xu et 

al., 2016). However, the reported methods were based on human brain slices or could not 

accurately reflect the high infiltration capacity of glioblastoma cells in vivo. Thus, further 

optimization is required in order to obtain an invasion assay that enables the reliable and 

quantitative measurement of glioma cell migration using the standard laboratory equipment. 

 

 

1.1.3 Models of glioblastoma 

In order to identify and validate novel key players in glioblastoma development and progression 

we depend on models that mimic the disease of the patient. The variety of in vitro and in vivo 

glioblastoma models is large and strengths and weaknesses of the different models have to be 

evaluated in order to choose the most suitable model for the respective research question. In 

general, glioma models can be categorized as (i) in vitro glioma cell cultures derived from human 

or animal gliomas, (ii) animal models, mostly rodents, in which gliomas are induced by 

carcinogens, (iii) genetically engineered mouse models (GEMMs) in which gliomas arise due to 
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genetic deletions or transgene expression, (iv) immunocompetent allograft models that serve as 

recipients for murine- or rat glioma cell lines or (v) xenograft models, again mostly rodents, that 

serve as recipients for patient-derived glioma cell transplants (patient-derived xenografts, PDX).  

 

This chapter will focus on in vivo techniques involving rodents. As these models certainly confer 

disadvantages, more and more ‘exotic’ glioma models dealing with zebra fish and drosophila are 

emerging. Elaborating these rather novel models would go beyond the scope of this work, 

however, detailed information is provided here (Read, 2011, Vittori et al., 2015). 

The carcinogen-based method of glioma formation has been developed in the 1970s and includes 

the intracranial injection of the alkylating agent 3-methylcholantrene or intravenous injection of 

pregnant animals with a single dose of N-ethyl-nitrosourea (Ausman et al., 1970, Russell et al., 

1979). Although this model reflects the genetic heterogeneity of human glioma tumors and also 

involves an intact immune system, it is rarely used nowadays due to its poor reproducibility and 

thus costly and time-consuming studies with high numbers of animals (Lenting et al., 2017). Still, 

these models have been a valuable tool in glioma research since their unpredictable character of 

glioma formation has stimulated researchers to generate in vitro cell cultures, such as the murine 

cell line GL261 (Ausman et al., 1970) and its rat counterpart C6 (Benda et al., 1968). These murine 

and rat glioma cell lines have been established as a common tool for orthotopic transplantations 

into syngeneic and thus immunocompetent animals making them indispensable for the study of 

the glioma microenvironment or immunology.  

 

GEMMs and PDX represent the two major state-of-the-art in vivo models in glioma research. 

GEMMs comprise a large amount of models that are predominantly based on the global or brain-

specific inactivation of one tumor suppressor either in combination with the overexpression of an 

oncogene or with the additional deletion of other tumor suppressors (reviewed in 

Hambardzumyan et al., 2011, Miyai et al., 2017). In general, GEMMs are suitable models to study 

many aspects in glioma biology, in particular glioma immunology and the influence of the stromal 

contribution to glioma formation by crossing in the respective genetic background. However, 

many of these models confer disadvantages like the lack of intratumor heterogeneity observed in 

human patients (Patel et al., 2014) since the tumors consist of cells with a number of specific 

homogeneous genetic aberrations. Furthermore, specific combinations of target genes and the 

target cell can result in an inefficient penetrance and latency (Costa et al., Xiao et al., 2002). 

Generally, latency represents one obstacle in the application of GEMMs for example in 

therapeutic studies, as the time point of tumor initiation cannot be controlled unless tumor cell 

isolates derived from these models are used in allotransplantations.  
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Besides allotransplantations, the xenotransplantation of human glioma cells into immunodeficient 

mice is a common tool in glioma research. This approach resulted from the attempt to work with 

glioma cells that more closely reflect the tumor in patients. The transplantation of established 

glioblastoma cell lines results in reproducible tumor growth with high engraftment rates. However, 

the usage of human cell lines can also be disadvantageous as some hallmarks of glioblastoma 

including hypervascularization and diffuse infiltrative growth cannot be achieved (Huszthy et al., 

2012, Mahesparan et al., 2003). Moreover, the adaptation to the adherent growth conditions in 

serum-containing media can induce gene expression alterations, clonal selection, and genetic drift 

(Clark et al., 2010) resulting in immense differences between established cell lines and primary 

glioblastoma tumors on genomic and transcriptional level (Ernst et al., 2009, Li et al., 2008). The 

approach to simply switch from established cell lines that have been cultivated for several decades 

to short-term cultivated patient material has not completely resolved the issue. As previously 

shown, even short cultivation times in the presence of serum alters the gene expression profile and 

reduces heterogeneity of the cells (Ernst et al., 2009, Hamer et al., 2008, Lee et al., 2006). This can 

be circumvented by the immediate implantation of feshly obtained surgical glioma specimens into 

the recipient mouse (Claes et al., 2008) – which rules out any experimental manipulation of the cells 

before intracranial injection. Thus, to overcome the disadvantages accompanying cultivation in the 

presence of serum, alternative cultivation methods have been developed. The application of serum-

free growth media supplemented with epidermal growth factor (EGF), fibroblast growth factor 

(FGFb), and insulin or the serum substitute B27 induces sphere growth, the enrichment of tumor-

initiating cells and has proven to be a very successful cultivation method for a variety of brain 

tumors, including glioblastoma (Ernst et al., 2009, Lee et al., 2006). Importantly, these glioblastoma 

spheroid cultures of human primary material were found to retain the characteristic profile of the 

original tumor on a genomic and transcriptional level (Ernst et al., 2009, Hamer et al., 2008, Lee et 

al., 2006). Besides the genomic and translational conservation of glioblastoma spheroids, they 

possess the great advantage of forming tumors that display hallmarks of primary glioblastoma 

tumors, especially strong infiltrative growth (Huszthy et al., 2012). Thus, cell-based assays as well as 

patient-derived xenotransplantations involving spheroid cultures of primary glioblastoma material 

represent a promising tool to identify novel candidates that are involved in glioblastoma cell 

invasion and progression. One candidate that has been associated with glioblastoma cell migration 

is the transmembrane protein podoplanin (Grau et al., 2015, Peterziel et al., 2012). Noteworthy, this 

protein has also been found to be overexpressed in the mesenchymal signature of primary 

glioblastoma tumors, a signature that correlates with a poor outcome (Phillips et al., 2006). Further 

information on this protein and preliminary data that indicates its involvement in glioblastoma 

progression and tumor cell invasion is presented in the following chapter. 
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1.2 Podoplanin 

 

1.2.1 Podoplanin – a glycoprotein with many functions 

Podoplanin (PDPN) is a type-I integral membrane protein with diverse distribution in human and 

rodent tissues (see Table 1.1). PDPN was named according to its function in shaping kidney 

podocytes (Breiteneder-Geleff et al., 1997), however, as the protein has simultaneously been 

described in a variety of biological contexts it has received multiple names: T1α as it is expressed 

in type I alveolar cells (Rishi et al., 1995), gp40/gp36 derived from the fact that it is a 40kDa large 

glycoprotein with a 36kDa murine homolog (Zimmer et al., 1995, Zimmer et al., 1997), PA2.26 

according to an antibody that targeted the protein in epidermal keratinocytes during chemical 

carcinogenesis and wound healing (Gandarillas et al., 1997); and aggrus due to its platelet 

aggregation-inducing function (Kato et al., 2003). The function of PDPN in physiology and 

pathology has not been fully understood, however, knockout studies in mice have discovered an 

essential role for PDPN in development. Pdpn knockout mice suffer from multiple developmental 

defects, including malformation of the lungs due to dysregulated proliferation and differentiation 

of type I alveolar cells. This hampers the correct inflation of lungs, which results in respiratory 

failure and perinatal lethality (Ramirez et al., 2003). Aberrations in cardiac development, in 

particular hyperplasia of several cardiac components, have been proposed to result from the 

abnormal epithelial-to-mesenchymal transition (EMT), a critical process in cardiac development 

that is possibly regulated by PDPN (Douglas et al., 2009). Furthermore, the constitutive knockout 

of Pdpn induces hemorrhages in the embryonic brain (Lowe et al., 2015) and impairs the 

separation of the lymphatic and blood vascular system (Bertozzi et al., 2010, Fu et al., 2008, Uhrin 

et al., 2010). Interestingly, although the loss of PDPN in a rat nephrosis model has been described 

to cause an aberrant morphology of kidney podocytes (Breiteneder-Geleff et al., 1997), no 

anomalies in kidney morphology or function have been reported for the murine knockout model.  

The molecular mechanism of PDPN within above described developmental processes has largely 

remained unclear, however, as PDPN lacks a catalytical domain, it has to mechanistically function by 

protein-protein interactions (for described interaction partners see Table 1.2 and Figure 1.3). These 

interactions can occur via the three different domains of the protein; the large extracellular 

domain which is followed by a membrane spanning domain and a short cytoplasmic tail of 9 

amino acids. The ectodomains of the human 162-amino acids large protein and its corresponding 

172-amino acids mouse homolog (Martin-Villar et al., 2005) are highly glycosylated, with sialic 

acid, α-2,3 linked to galactose being the most prominent post-translational modification 

(Breiteneder-Geleff et al., 1999). Due to this extensively glycosylated mucin-like domain, PDPN  
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Table 1.1 Podoplanin expression in human and/or rodent tissue  

Tissue Cell type Reference 
   

Heart Myocardial cells Gittenberger-de Groot et al. (2007) 

Lymphoid organs Lymphatic endothelial cells (LECs) Wetterwald et al. (1996), Scholl et al. 
(1999), Breiteneder-Geleff et al. (1999) 

 Fibroblastic reticular cells (FRCs) Schacht et al. (2005) 
 Follicular dendritic cells Schacht et al. (2005) 
 Thymic epithelial cells Farr et al. (1992) 
 Macrophages (subpopulation) Hou et al. (2010), Kerrigan et al. (2012) 
 Th17 cells Peters et al. (2011) 
Angiosarcoma Angiosarcoma cells Breiteneder-Geleff et al. (1999) 

Kidney Podocytes Breiteneder-Geleff et al. (1997), Scholl et 
al. (1999) 

 Parietal epithelial cells of Bowman’s 
capsule 

Scholl et al. (1999) 

Renal carcinoma Clear cell renal cell carcinoma cells Xia et al. (2016) 

Bone Mature osteoblasts and newly formed 
osteocytes 

Wetterwald et al. (1996) 

Osteosarcoma Osteosarcoma cells Wetterwald et al. (1996) 

Cartilage Chondrocytes Smith and Melrose (2011) 
Chondrosarcomas Chondrosarcoma cells Huse et al. (2007) 

Brain Cells of the ependyme and 
choroid plexus 

Wetterwald et al. (1996), Scholl et al. 
(1999) 

 Neural stem cells Kotani et al. (2003) 
 Glutamatergic neurons Kotani et al. (2003) 
 Reactive astrocytes Kolar et al. (2015) 
Brain cancer Glioma, ependymal tumor, and  

meningioma cells 
Mishima et al. (2006), Shibahara et al. 
(2006), Peterziel et al. (2012) 

Lung Alveolar type I cells Rishi et al. (1995), Dobbs et al. (1988), 
Wetterwald et al. (1996), Scholl et al. 
(1999) 

Lung cancer Lung squamous cell carinoma cells Kato et al. (2005) 

Skin Basal keratinocytes during cutaneous 
wound healing 

Gandarillas et al. (1997) 

 Dermal fibroblasts during cutaneous 
wound healing 

Gandarillas et al. (1997) 

 basal cells of sebaceous glands  Honma et al. (2012) 
 hair follicles Honma et al. (2012) 
Skin cancer differentiated papillomas and skin 

carcinomas 
Gandarillas et al. (1997) 

 Skin squamous cell carcinoma Schacht et al. (2005), Martin-Villar et al. 
(2005) 

Mesothelium Pleural, pericardial and peritoneal 
mesothelial cells 

Scholl et al. (1999), Ordonez (2005) 

Mesothelioma Epithelioid mesothelioma cells Ordonez (2005), Kimura and Kimura 
(2005) 

Others Germ cell tumors Schacht et al. (2005) 
 Head and neck squamous cell carcinoma Martin-Villar et al. (2005) 
 Cancer associated fibroblasts Kawase et al. (2008), Kitano et al. (2010) 
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has early been suggested to act as a receptor for selectins and lectins mediating anchoring of the 

cell in the ECM (Breiteneder-Geleff et al., 1999). In fact, one decade later PDPN has been 

identified to interact with galectin-8 facilitating the adhesion of lymphatic endothelial cells (LECs) 

to the ECM (Cueni and Detmar, 2009). Recently in a mouse model of corneal allogeneic 

transplantation, the interaction between PDPN and galectin-8 has been reported to induce 

pathological lymphangiogenesis in a complex interplay with vascular endothelial growth factor c 

(VEGFc) and integrins (Chen et al., 2016). Another lectin that has been identified to interact with 

PDPN is the C-type lectin-like receptor CLEC-2. This interaction is probably the best described 

one and revealed a function for PDPN in platelet aggregation and the development of the 

lymphatic vascular system. CLEC-2 is a type II transmembrane receptor that has originally been 

identified in immune cells (Colonna et al., 2000, Sobanov et al., 2001) and subsequently found to 

be expressed in platelets where it acts as the receptor for rhodocytin and PDPN (Suzuki-Inoue et 

al., 2006, Suzuki-Inoue et al., 2007). Binding between CLEC-2 and PDPN is facilitated by the 

sialylated platelet aggregation-stimulating (PLAG) domain, a conserved amino acid sequence 

(EDxxVTPG) in the extracellular domain of PDPN. In particular, it has been shown that the 

sialylation at Thr52 within the PLAG domain is critical for CLEC-2 and PDPN interaction and 

subsequent signaling events (Kaneko et al., 2007). The intercellular binding of platelet CLEC-2 and 

its ligand PDPN on the surface of LECs induces CLEC-2 multimerization and a subsequent 

phosphorylation cascade by SRC and SYK kinases that results in the activation of phospholipase C 

(PLC)γ2 and aggregation of platelets (Hughes et al., 2010, Suzuki-Inoue et al., 2006). The induction 

of platelet aggregation upon contact with LECs is a critical step in the separation of the lymphatic 

from the blood circulatory system during embryonic development. Mice harboring a global 

knockout of Pdpn, Clec-2 or a hematopoietic-specific knockout of Slp7 (involved in the 

downstream cascade of activated CLEC-2) have been reported to exhibit defects in lymphatic 

vessel patterning, lymphedema and disorganized and blood-filled lymphatic vessels at birth 

(Bertozzi et al., 2010, Fu et al., 2008, Uhrin et al., 2010). Furthermore, mice deficient for Pdpn 

exhibit neurovascular hemorrhages which are presumably unrelated to the defective lymphatic 

development because the lymphatic system is absent in the brain parenchyma (Louveau et al., 

2015) and the cerebrovascular defects are observed before the manifestation of the global 

vascular separation failure (Lowe et al., 2015). Still, the correct maturation and integrity of the 

developing neurovasculature is based on the interaction of CLEC-2 and PDPN, as the authors have 

observed the same indistinguishable phenotype of cerebral hemorrhaging in both knockout 

animal models. Pdpn is widely expressed on neuro-epithelial cells in the developing neural tube 

and presumed to activate CLEC-2-dependent platelet aggregation during initial vascularization of 

the neural tube, which plugs the newly formed vessel walls and prevents hemorrhages. In 
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addition, the authors proposed that platelets-derived secreted molecules recruit pericytes and 

matrix components to stabilize and mature developing vessels (Lowe et al., 2015). Furthermore, 

the interaction between CLEC-2 and PDPN has been reported to play an important role in 

immunity, in particular in the interaction of dendritic cells and the lymph node microarchitecture. 

The interplay of CLEC-2 on activated dendritic cells and PDPN on LECs and fibroblastic reticular 

cells (FRCs) that are central elements of the lymph node, has been reported to promote dendritic 

cell migration and to decrease PDPN-mediated contractility in FRCs resulting in FRC relaxation and 

reduced tissue stiffness in favor of efficient T-cell trafficking (Acton et al., 2012, Astarita et al., 

2015). In this respect, this finding revealed the novel and interesting fact that the CLEC-2-PDPN 

interaction also induces signaling in the Pdpn expressing cell and does not only impact on the 

Clec-2 expressing compartment. Mechanistically, CLEC-2 has been proposed to compete with a 

lateral interaction partner for binding the extracellular domain of PDPN, which inhibits signaling 

activation of key contractility regulators in the Pdpn expressing cell (Astarita et al., 2015). 

Although the lateral binding partner that induces contractility in absence of CLEC-2 has not been 

identified, the authors suggested the transmembrane proteins CD9 and CD44 that have previously 

been described to interact with PDPN (Astarita et al., 2015).  

 

CD9, a tetraspanin protein, has been shown to form multimeric complexes with intergrins, and 

other proteins including PDPN, acting context- and cell type- dependent on intergrin signaling, cell 

adhesion and cell migration (for review see Zoller, 2009). In a tail vein injection model, ectopic 

expression of CD9 in PDPN positive HT1080 fibrosarcoma cells has been shown to decrease the 

formation of pulmonary metastases (Nakazawa et al., 2008). Although CD9 has been reported to 

not directly affect the binding between PDPN and CLEC-2, CD9 expression clearly decreased the 

platelet aggregation capacity of the tumor cells, presumably by the inhibition of CLEC-2 

multimerization. As coverage by aggregated platelets protects circulating tumor cells from shear 

stress and facilitates adhesion of cancer cell clusters to the vascular endothelium for 

extravasation, the suppression of the metastatic growth is most likely based on the decreased 

platelet aggregation capacity of the CD9 and PDPN co-expressing tumor cells.  

 

The standard isoform of CD44, which is expressed in a great variety of cell types in physiology and 

pathology, has been reported to interact with the ectodomain of PDPN (Martin-Villar et al., 2010). 

This interaction has furthermore been shown to promote directional migration of MDCK cells, 

however, the underlying molecular mechanisms have not been unraveled. 
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Table 1.2 Interaction partners of podoplanin 

Interaction PDPN
+
 cell Interacting cell Interaction partner Reported function  Reference 

      

trans LECs Platelets CLEC-2 Platelet activation 
Suzuki-Inoue et al. 
(2006), Suzuki-Inoue 
et al. (2007) 

  
  Separation of blood 

and lymphatic 
endothelial system 

Uhrin et al. (2010), 
Bertozzi et al. (2010)  

trans LECs Neuro-epithelium CLEC-2 Cerebrovascular 
integrity 

Lowe et al. (2015) 

trans FRCs, LECs Dendritic cells CLEC-2 Motility and homing of 
dendritic cells, 

Acton et al. (2012) 

  
  Relaxation of lymph 

node 
Astarita et al. (2015) 

trans LECs Unknown, ECM Galectin-8 LECs anchoring into 
the surrounding ECM 

Cueni and Detmar 
(2009) 

  
  Pathological 

lymphangiogenesis 
Chen et al. (2016) 

cis LECs - CCL21 Perilymphovascular 
CCL21 gradient 
formation required for 
the directed migration 
of CCR7+ cells 

Kerjaschki et al. 
(2004) 

cis MDCK  
(ectopic expr.) 

- CD44 Directional cell 
migration 

Martin-Villar et al. 
(2010) 

cis HT1080 
fibrosarcoma  
cell line 

- CD9  
(ectopic expr.) 

Inhibition of platelet 
aggregation and 
metastasis formation 

Nakazawa et al. 
(2008) 

cis MDCK  
(ectopic expr.) 

-  ERM Connection to 
cytoskeleton/EMT 

Martin-Villar et al. 
(2006) 

      

 

 

 

Figure 1.3 Schematic illustration of 
podoplanin and its interaction 
partners. 
PDPN has been shown to interact 

via different domains with several 

proteins including CLEC-2, galectin-8, 

CD44, CD9, CCL21 and ERM 

proteins. Depending on the cell type 

and interaction partner, the binding 

can occur in a cis- or trans-acting 

manner presumably affecting both 

involved cell types. 

 

 

 
 

Adapted from Astarita et al. (2012). 
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The chemokine CCL21 has been reported as another interaction partner of PDPN. In the rejection 

process of human kidney transplants, PDPN has been shown to form complexes with CCL21 on 

the basal cell membrane of LECs that are shed into the perivascular stroma forming a 

perilymphovascular CCL21 gradient for the attraction of CCR7 positive immune cells (Kerjaschki et 

al., 2004). The authors have not elaborated on the mechanism of shedding, however, the 

extracellular domain of PDPN has predicted cleavage sites for trypsin, elastase, calpain-2, and 

metalloproteases (MMPs), most of which are protected by O-glycans from proteolytic 

degradation (Pan et al., 2014, Yurrita et al., 2014). In addition to the ectodomain, the 

transmembrane domain of PDPN has been reported as a proteolytic target (Yurrita et al., 2014). 

The metalloprotease-mediated cleavage of the extracellular domain generates a truncated 

membrane-bound fraction that is further cleaved by the presenilin-1/γ-secretase within the 

transmembrane domain (Yurrita et al., 2014). As the intracellular domain of PDPN is released into 

the cytosol it has been speculated to act as a signaling molecule, like notch or CD44, whose 

intracellular domains function as co-transcription factors, when released by γ-secretase cleavage 

(Thorne et al., 2004). However, this process would be expected to be a highly regulated event. 

Though, the authors have shown that the proteolytic processing of PDPN is not induced by an 

external signal, but occurs instead constitutively in HEK293T and MDCK cells. This suggests that γ-

secretase-dependent proteolysis is involved in regulating the stability and half-life of PDPN rather 

than in generating an intracellular/intranuclear signaling peptide. Comprising nine amino acids, 

the intracellular domain of PDPN is rather short, still it contains a basic recognition pattern that 

has been shown to play an essential role in the recruitment of ezrin and radixin, members of the 

ezrin, radixin and moesin (ERM) protein family (Martin-Villar et al., 2006). The recruitment of 

ezrin and moesin is followed by the local increase and activation of RhoA. The increased RhoA 

activity and concomitant activation of the RhoA-associated kinase (Rock) has been reported to 

induce the phosphorylation and stabilization of PDPN attached ERM proteins in an open and 

active conformation. Activated ERM proteins remodel the actin cytoskeleton by linking it to the 

membrane-bound PDPN protein preparing the cell for migration. Besides the impact on the actin 

cytoskeleton, the binding of ERM proteins to PDPN has been shown to be essential for the RhoA-

mediated induction of EMT in MDCK cells, which further accelerates cell migration (Martin-Villar 

et al., 2006). However, the intracellular domain of PDPN has also been shown to inhibit cell 

migration. Results from recent studies have indicated that phosphorylation of serine residues in 

the cytoplasmatic tail by cyclin dependent kinase 5 (CDK5) and protein kinase A (PKA) inhibit cell 

motility (Krishnan et al., 2013, Krishnan et al., 2015). Whether these phosphorylation events 

interfere with the recruitment of ERM proteins or whether migration is suppressed by another 

mechanism has not been explored. 
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1.2.2 Transcriptional regulation of podoplanin 

As PDPN is present in a variety of cell types, its expression is expected to be regulated by multiple 

tissue- and context-specific signaling pathways and transcription factors. Indeed, studies on the 

human, rat and murine promoter of podoplanin revealed binding sites for numerous transcription 

factors (as reviewed in Renart et al., 2015). In vitro, multiple factors have been found to be 

involved in the transcriptional control of podoplanin, including normal differentiation 

transcription factors as well as pro-tumorigenic signaling pathways and pro-inflammatory 

cytokines.  

 

Under physiological conditions, PROX1, a master regulator in the program of lymphatic 

endothelial cell differentiation, has been shown to induce Pdpn expression in LECs (Hong et al., 

2002). The discovery of PROX1 positive, but PDPN negative endothelial cells of a lymphatic-like 

drainage canal in the eye (Schlemm’s canal) however questioned whether PROX1 is sufficient for 

Pdpn expression (Kizhatil et al., 2014).  

In malignant conditions, Pdpn seems to be primarily regulated by the activator protein 1 (AP-1) 

transcription factor (Durchdewald et al., 2008, Kunita et al., 2011, Peterziel et al., 2012). Pdpn 

upregulation in src-transformed murine brain cells has been reported to result most likely from 

the activation of AP-1 downstream of the adapter protein cas (Shen et al., 2010). In human 

glioblastoma samples, it has been shown that the AP-1-mediated activation of PDPN expression is 

dependent on the loss of PTEN, which negatively regulates the PI3K-AKT-AP-1 axis (Peterziel et al., 

2012). Aberrant activation of PI3K as well as overexpression of PDPN signaling has been found in 

the majority of glioblastoma tumors (Cancer Genome Atlas Research, 2008, Ernst et al., 2009), 

which suggests that the transcriptional regulation of PDPN in glioblastomas largely occurs via the 

PI3K-mediated activation of AP-1. Alternatively, PDPN expression can be controlled on the 

epigenetic level as the hypermethylation of the PDPN promoter has been found to repress PDPN 

in glioblastoma (Peterziel et al., 2012). Studies on fibrosarcoma and human keratinocytes have 

showed a SMAD-mediated increase in PDPN expression upon TGF-β1 treatment (Honma et al., 

2012, Suzuki et al., 2008).  Furthermore, PDPN expression in keratinocytes (during wound healing 

or in psoriasis) has been shown to be controlled by the signal transducer and activator of 

transcription 3 (STAT3) that is activated in response to interferon γ (IFNγ). Similarly, STAT3 has 

been reported to induce Pdpn expression in glioblastoma (Priester et al., 2013). Considering the 

frequent aberrant activation of STAT3 in glioblastoma that contributes to tumor cell proliferation 

(Sherry et al., 2009) and TMZ resistance (Kohsaka et al., 2012), STAT3 appears together with AP-1 

transcription factors as a major regulator of PDPN in malignant glioma. 
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1.2.3 Podoplanin in the physiologic and neoplastic brain  

High PDPN protein levels have been detected in the developing nervous system of the mouse, 

particularly in the early neural tube, reaching its peak at about embryonic day 16. Subsequently, 

gene expression has been reported to be down regulated in neural tissue (Williams et al., 1996), 

with the exception of the choroid plexus, the ependyme (Tomooka et al., 2013, Williams et al., 

1996), neural stem cells and glutamatergic neurons (Kotani et al., 2003). The function of PDPN in 

the developing neural tissue has recently been identified as introduced above; the presence of 

PDPN in the embryonic neuro-epithelium induces CLEC-2-dependent platelet aggregation in newly 

formed vessels, which contributes to the sealing of the vessel walls and recruitment of pericytes 

(Lowe et al., 2015). However, the role of PDPN in the adult brain, specifically in the choroid 

plexus, the ependyme and neural stem cells, has not been unraveled yet. Ependymal cells are 

ciliated glial cells that line the ventricles of the brain and the central canal of the spinal cord, 

circulating the cerebrospinal fluid (CSF) within the ventricular system, subarachnoid space and 

spinal cord. Together with cells of the choroid plexus, a specialized ependymal tissue, they 

produce the CSF and regulate the intracranial pressure (for review see Jimenez et al., 2014). 

Interestingly, PDPN is also abundant in the ciliary epithelium of the rat eye and thus, PDPN has 

been speculated to modulate the process of active ion transport and water fluxes or cilia 

movement (Williams et al., 1996). Yet, no study has investigated the role of PDPN in ependymal or 

other ciliated cells. Similarly, the expression of Pdpn in neural stem cells has not been pursued 

further. However, preliminary results from our research group have shown that also the motile 

neural progenitor cells express Pdpn. These neuronal precursor cells migrate along the rostral 

migratory stream to the olfactory bulb in order to differentiate into GABAergic (PDPN negative) 

interneurons constituting the highly developed olfactory sense in rodents. Considering previous 

publications that associated PDPN with cell migration (Martin-Villar et al., 2006, Wicki et al., 2006, 

Scholl et al., 1999), PDPN could promote migration of the highly motile progenitor cells.  

 

Astrocytes have been reported to be negative for Pdpn expression (Kotani et al., 2003), unless 

they become activated by CNS insults like injury, ischemia or tumor growth (Kolar et al., 2015). 

The reactive state of astrocytes is characterized by changes in the morphology, metabolism and 

the repertoire of secreted messenger molecules. Together with activated microglia, reactive 

astrocytes are, dependent on the grade of the stimulus, frequently organized in a dense mesh 

around the insult. The function of this glial scar is context dependent and can have both beneficial 

and detrimental effects on the course of the disease (for reviews see Burda and Sofroniew, 2014, 

Pekny et al., 2016). How PDPN influences the reactive state and function of astrocytes has not 

been addressed yet and presents an interesting and relevant research topic, as reactive astrocytes 



INTRODUCTION 

20 
 

are involved in multiple CNS pathologies like stroke, migraine, neuroinflammation, epilepsy and 

brain tumors.  Reactive astrocytes are not the only cells in the brain tumor microenvironment that 

have been identified to express Pdpn. Tumor-associated myeloid cells have been shown to 

express podoplanin (Engler et al., 2012, Szulzewsky et al., 2015). In addition to tumor-associated 

myeloid cells also subsets of inflammatory myeloid cells have previously been shown to be PDPN 

positive (Hou et al., 2010, Kerrigan et al., 2012), however, the function has not been further 

investigated.  

 

Besides cells of the brain tumor microenvironment, CNS neoplasms themselves have been shown 

to express PDPN (Mishima et al., 2006, Scrideli et al., 2008, Shibahara et al., 2006)  – like multiple 

other cancer types (Table 1.1). We and others have recently shown a correlation between high 

PDPN expression, the grade of astrocytoma tumors and poor survival (Ernst et al., 2009, Mishima 

et al., 2006, Peterziel et al., 2012). Specifically, a strong PDPN expression has been detected in 

85% of primary glioblastomas, whereas secondary glioblastomas and the majority of grade II and 

III gliomas have shown weak or no expression (Ernst et al., 2009). Furthermore, the effect of RNA 

interference (RNAi)-mediated down-modulation (Ernst et al., 2009, Peterziel et al., 2012) or 

ectopic overexpression (Grau et al., 2015) of PDPN on invasion and proliferation has been 

examined. Although several publications have reported contrary or no effects on proliferation, 

they have consistently shown a pro-migratory effect of PDPN in glioblastoma cells using two-

dimensional-wound healing and three- dimensional collagen invasion assays (Ernst et al., 2009, 

Grau et al., 2015, Peterziel et al., 2012). This is in line with previous observations of other tumor 

entities like lobular breast cancer and squamous cell carcinomas, where up to 80 % have been 

reported to express PDPN predominantly at the invasive front (Martin-Villar et al., 2005, Wicki et 

al., 2006). Despite the fact that PDPN has been associated with in vitro migration of different cell 

lines (Grau et al., 2015, Li et al., 2015, Martin-Villar et al., 2010, Peterziel et al., 2012) and the 

correlation of high PDPN expression with poor survival in malignant glioma and oral squamous cell 

carcinoma (OSCC) (Mishima et al., 2006, Nakashima et al., 2013, Peterziel et al., 2012), no in vivo 

study has been conducted to ultimately proof the role of PDPN in invasion and malignant 

progression. The only published functional in vivo study has dealt with the ectopic expression of 

Pdpn in a pancreatic carcinoma model which has resulted in a higher incidence of invasive tumors 

(Wicki et al., 2006). However, the relevance of this study seems controversial since PDPN 

expression has not been reported for pancreatic carcinoma.  

 

To conclude, the function of PDPN in the adult brain, where it is expressed by specific cell types 

and neoplasms, has not been clarified yet. In vitro studies involving cell lines of glioblastoma and 
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other tumor entities have indicated a pro-migratory function for PDPN. Experimental animal work 

necessary for a clear statement about the pathological function of PDPN as well as its clinical 

suitability for cancer therapy is currently missing.  

 

 

1.3 Aim of the study 

 

Previous work of the past decades has revealed an indispensable role for PDPN in the embryonic 

and perinatal development and certainly provided mechanistic insight into the formation and 

function of lymphatic tissue. Still, the detailed function of PDPN remains unclear for many tissues 

and cancer entities including malignant glioma. As the correlation of PDPN expression with 

malignant progression of gliomas implies, the protein is especially abundant in high grade 

glioblastoma tumors. Few studies have investigated PDPN in glioblastoma and associated the 

protein with a migratory and proliferative cell behavior. As cell invasion remains a major hurdle in 

glioblastoma therapy, the interest in PDPN as a therapeutic target has raised. However, necessary 

in vivo validations of its proposed migratory function as well as mechanistic studies are still 

lacking. Recent efforts to unravel the molecular downstream processes in the PDPN expressing 

cell were mostly based on overexpression studies in tumor cells of other entities. However, it is 

important to critically evaluate whether the obtained data can be reliably extrapolated to other 

cell types and moreover to the in vivo situation. As we lack detailed insight into the biological and 

mechanistic function of PDPN in glioblastoma cells, this study aimed at closing this gap of 

knowledge.  

(i) For this purpose, serial xenotransplantations and fluorescence activated cell sorting 

experiments of primary human glioblastoma material were performed to validate the previously 

published correlation of PDPN and malignant progression and to identify underlying mechanisms. 

(ii) In a functional approach, this study pursued the question whether PDPN represents an 

attractive therapeutic target. Therefore, the impact of PDPN on survival, tumor growth and tumor 

cell invasion was investigated by the CRISPR/Cas9-mediated deletion of PDPN in human 

glioblastoma cells and subsequent orthotopic xenotransplantations.  

(iii) Moreover, due to the lack of a reliable and standardized invasion assay, this work optimized 

the co-cultivation of tumor cells and organotypic brain slices which represent an invasion matrix 

that closely mimics the in vivo situation and allows for a reliable assessment of glioblastoma cell 

invasion.      

 



INTRODUCTION 

22 
 

  



MATERIALS 

23 
 

 

 

 

 

 

 

 

MATERIALS 

 
EQUIPMENT                            25 

CONSUMABLES                          26 

SOFTWARE                            27 

CHEMICALS AND REAGENTS                     28 

BIOMOLECULAR REAGENTS AND ENZYMES               29 

BUFFERS AND SOLUTIONS                      30 

OLIGONUCLEOTIDES                         31 

PLASMIDS                             32 

ANTIBODIES                            32 

  - Primary Antibodies 

  - Secondary Antibodies 

CELL LINES AND PRIMARY CULTURES                 33 

CELL CULTURE MEDIA AND SUPPLEMENTS               34 

MOUSE STRAINS                          34 

 

 

 

  



MATERIALS 

24 
 

  

 

  



MATERIALS 

25 
 

2 MATERIALS 

 

2.1 Equipment  

 

Agilent 2100 Bioanalyzer              Agilent Technologies, Berlin 

Binocular M10                     Leica, Wetzlar 

Cell culture sterile hood                Hera Safe Thermo Fisher Scientific, USA 

Cell incubator                     Heraeus, Hanau; Binder, Tuttlingen 

Centrifuge Megafuge 1.0               Heraeus, Hanau 

Centrifuge Varifuge 3.0 R              Heraeus, Hanau 

Centrifuge Biofuge 13                 Heraeus, Hanau 

Centrifuge Heraeus Fresco17             Thermo Fisher Scientific, USA 

Centrifuge Megafuge 3.0R              Heraeus, Hanau 

Cold light source KL1500               Schott, Mainz  

Cryo freezing container               Nalgene; Thermo Fisher Scientific, USA 

Developer Classic E.O.S.               Agfa, USA 

Electrophoresis chamber for agarose gels       PeqLab, Erlangen 

Electrophoresis chamber for SDS-PAGE        Bio-Rad Laboratories, Munich 

Embedding machine                 Vogel, Gießen 

FACSAria™ I cell sorter                Becton Dickinson Biosciences, Heidelberg 

FACSAria™ II cell sorter               Becton Dickinson Biosciences, Heidelberg 

FACSAria™ Fusion cell sorter             Becton Dickinson Biosciences, Heidelberg 

FACS CaliburTM                    Becton Dickinson Biosciences, Heidelberg 

Fine scales                       Mettler Toledo, Gießen 

Gooseneck lamp                   Th. Geyer, Renningen 

Hamilton syringe Nanofil              World Precision Instruments, Berlin 

Hamilton syringe 701N, 10μl, 26s/51/3       Hamilton, USA 

Heating mat                     Conrad Electronic, Mannheim 

Magnetic stirrer/heat plate              Sigma-Aldrich, Munich 

Magnetic stirrer/heat plate MR 3001K        Heideloph, Schwabach 

Microplate reader Clario Star             BMG Labtech, Ortenberg 

Microscope Nikon Eclipse Ti              Nikon, Düsseldorf 

Microscope Olympus IX81               Olympus, UK 

Microscope Leica DMLB                Leica, Wetzlar 
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Microtome RM 2155                   Leica, Bensheim 

Minishaker Ika® Model MS1                Sigma-Aldrich, Munich 

NanoDrop 1000 Spectrophotometer            PeqLab, Erlangen 

Needle, 34 gauge beveled                World Precision Instruments, Berlin 

Orbital shaker, Minishaker MS1              Ika Labortechnik, Staufen 

pH-meter                         Knick, Berlin 

Pipets, Pipetman                     Gilson, USA 

Pipettor Pipetboy acu                   Integra Biosciences, Switzerland 

Pipettor accujet pro                    Brand, Wertheim 

Platform shaker Polymax 2040              Heidolph, Schwabach 

Power supply Power Pac 300/3000            Bio-Rad Laboratories, Munich 

Robot Stereotaxic                    Neurostar, Tübingen 

Rotator/Shaker                     Rotoshake Genie Scientific Industries, USA 

Scales                           Sartorius, Göttingen 

Shaker Multitron                     Infors, Bottmingen, Schweiz 

StepOnePlus Real-time PCR system            Applied Biosystems, UK 

Surgical tools                       Fine Science Tools, Heidelberg 

Thermocycler PTC-200                  MJ Research, USA 

Thermocycler MJ Mini                   Bio-Rad Laboratories, Munich 

Thermomixer 5437                    Eppendorf, Hamburg 

Water baths                        GFL, Burgwedel 

Wet blot transfer system                 Sigma, Deisenhofen  

 

 

2.2 Consumables 

 

Bone wax                        Braun, Melsungen 

Cell culture plates                     Corning, USA and Greiner, Frickenhausen 

Cell culture vessels                    Sigma Aldrich, USA 

Cell strainer (70 μm)                   Becton Dickinson Biosciences, Heidelberg 

Conical centrifuge tubes 15ml, 50ml           Corning, USA 

Cover glasses                      Menzel-Gläser, Braunschweig 

Cryo vials                        Thermo Fisher Scientific, USA 

Disposible scalpel                     Feather, Japan 
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Filter pipet tips 10 μl, 20 μl, 200 μl, 1000 μl     Neptune, USA; Nerbe plus, Winsen/Luhe 

Hydrophobic Barrier PAP Pen ImmEdge       Vector Laboratories, USA 

Insuline syringe U-100               Becton Dickinson Biosciences, Heidelberg 

MicroAmp 96-Well Optical Adhesive Film       Applied Biosystems, UK 

MicroAmp® fast optical 96-well reaction plate   Applied Biosystems, UK 

Millicell Cell Culture Insert, PTFE, 0.4 µm      Merck, Darmstadt 

Needles (23G, 25G, 26G, 27G)            Dispomed Witt oHG, Gelnhausen;  

Braun, Melsungen 

Object slides SuperFrost Plus             Thermo Fisher Scientific, USA 

Octenisept alcohol free disinfectant         Schülke, Nordersted 

Opitran BA-S83 Nitrocellulose membrane      GE Helthcare, Munich 

Parafilm PM996                    Bemis flexible packaging, USA 

Pasteur pipets                    WU, Mainz 

PCR reaction tubes (8-well stripes)          Nerbe plus, Winsen/Luhe 

Pipets plastic 5 ml, 1 ml,               Sigma Aldrich, USA 

Pipet tips 10 μl, 20 μl, 200 μl, 1000 μl         Steinbrenner, Wiesenbach 

Pre-cast SDS RunBlue protein gels 10%       Expedeon, USA 

Reaction tubes 1.5 ml, 2 ml              Eppendorf, Hamburg 

Round-bottom 96-well plates            Greiner Bio-one, Frickenhausen 

Sugi swabs                      Kettenbach, Eschenburg 

Surgical suture 3/8 circle, DS12mm, USP 6/0     SMI, Belgium 

Syringe filters 0.22 μm                Renner, Darmstadt 

Syringe filters 0.45 μm                TPP, Switzerland 

Western blot membrane Optitran BA-S83      Schleicher & Schüll, Dassel 

Whatman 3 MM paper                Whatman, Dassel 

X-ray films                       Fuji, Düsseldorf 

 

 

2.3 Software 

 

Adobe Illustrator                   Adobe Systems, USA 

BD CellQuest ProTM                 Becton Dickinson Biosciences, Heidelberg 

BD FACSDiva™ Software               Becton Dickinson Biosciences, Heidelberg 

CRISPR design tool, http://crispr.mit.edu/      Feng Zhang group at MIT Boston, USA 
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EndNote v.X7                      Adept Scientific GmbH, Frankfurt 

FlowJo v.10                       Tree Star, Inc., Ashland, USA 

Graphpad Prism                     GraphPad Software, Inc., La Jolla, USA 

ImageJ                          National Institutes of Health, USA 

NIS Elements AR 4.13.04                 Nikon, Darmstadt 

Office 2010                        Microsoft, USA 

Primer blast,  

https://www.ncbi.nlm.nih.gov/tools/primer-blast/   National Institutes of Health, USA  

StepOne Software v.2.2.2                Life Technologies, Darmstadt 

 

 

2.4 Chemicals and reagents 

 

Agarose                         Roth, Karlsruhe 

Bacto agar                         Roth, Kalsruhe 

Boric acid                         Sigma-Aldrich, Munich 

Bovine serum albumin fraction V             PAA, Austria 

-Mercaptoethanol                    Merck, Darmstadt 

Calcium chloride                     Merck, Darmstadt 

Citric acid                         Sigma-Aldrich, Munich 

Desoxynucleotide triphosphates             Bioron, Ludwigshafen 

Dimethylsulfoxide (DMSO)                Sigma-Aldrich, Munich 

Disodium phosphate (Na2HPO4)             Sigma-Aldrich, Munich 

Enhanced Chemiluminescence Substrate        PerkinElmer, USA 

Eosin B                          Merck, Darmstadt 

Ethanol (EtOH)                      Fisher Scientific, UK 

Ethanolamine                      Merck, Darmstadt 

Ethidiumbromide                     AppliChem, Darmstadt 

Ethylenediamine-tetraacetate (EDTA)           Roth, Karlsruhe 

Eukitt                           Kindler, Freiburg 

Gelatine                         Merck, Darmstadt 

Glycerol                          Roth, Karlsruhe 

Glycine                          AppliChem, Darmstadt 

Hematoxylin                        Roth, Kalsruhe 

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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HEPES                         Sigma-Aldrich, Munich 

Hoechst 33342                    Biomol, Hamburg 

Hydrogen peroxide                  Merck, Darmstadt 

Isopropanol (2-Propanol)               Sigma-Aldrich, Munich 

Jasplanikolide                    Cayman Chemicals, USA 

Lithium dodecyl sulfate sample buffer RunBlue 4x   Expedeon, USA 

Manganese(II) sulfate (MnSO4)           Sigma-Aldrich, München 

Methanol                       Merck, Darmstadt 

Milk powder                      Roth, Karlsruhe 

Monosodium phosphate (NaH2PO4)         Sigma-Aldrich, Munich 

Nuclease-free water                  Invitrogen, Kalsruhe; Qiagen, Hilden 

Paraffin                        Vogel, Giessen  

Paraformaldehyde                  Roth, Karlsruhe 

Polyethylenimin, linear, MW 25.000         Alfa Aesar, USA  

Potassium chloride (KCl)               Roth, Karlsruhe 

Qiagen RNeasy Mini-Kit                Qiagen, Hilden  

SDS Run Buffer RunBlue 20x             Expedeon, USA 

Sodium chloride (NaCl)                Fluka Chemicals, Switzerland 

Sodium dodecylsulfate (SDS)             Gerbu Biotechnik, Gaiberg 

Sodium deoxycholate                Sigma-Aldrich, Munich 

Sodium hydroxyde (NaOH)              VWR, Belgium 

Tris-base                       Roth, Karlsruhe 

Tris-hydrochloride (Tris-HCl)             Roth, Karlsruhe 

Triton-X-100                      AppliChem, Darmstadt 

Trypan blue                     Sigma-Aldrich, Munich 

Tween-20                       AppliChem, Darmstadt 

Vectastain Elite-ABC-Peroxidase           Vector Laboratories, USA 

Xylene                         AppliChem, Darmstadt 

 

 

2.5 Biomolecular reagents and enzymes 

 

Cyanase                       Serva GmbH, Heidelberg 

DNAse I                       Sigma-Aldrich, München 
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GeneRuler 100 bp DNA ladder              Thermo Fisher Scientific, USA 

GeneRuler DNA ladder mix                Thermo Fisher Scientific, USA 

Goat serum                       Vector Laboratories, USA 

Oligo(dT) primers                    Thermo Fisher Scientific 

PeqGOLD protein marker IV, pre-stained         PeqLab, Erlangen 

Phosphatase inhibitor mix II                Serva GmbH, Heidelberg 

Power SYBR Green PCR Master Mix            Applied Biosystems, UK 

Protease inhibitor cocktail                Roche, Mannheim 

Proteinase K                        Sigma-Aldrich, Munich 

Random hexamers                    Thermo Fisher Scientific, USA 

RNase ZAP                         Sigma-Aldrich, Munich 

Revertaid M-MuLV Reverse Transcriptase        Thermo Fisher Scientific, USA 

Revertaid M-MuLV buffer                 Thermo Fisher Scientific, USA 

Ribolock RNase inhibitor                 Thermo Fisher Scientific, USA 

RQ1 RNase-free DNase                  Promega, Mannheim 

RQ1 RNase-free DNase buffer               Promega, Mannheim 

Terminal deoxynucleotidyl transferase         New England Biolabs, USA 

 

 

2.6 Buffers and solutions 

Table 2.1 Composition of buffers 

Buffer Composition 
FACS buffer 1% BSA/PBS 

IHC blocking buffer  0.1% BSA/PBS  
5% goat serum 

IHC antigen retrieval citrate buffer  1.8 mM citric acid 
8.2 mM sodium citrate 

PBS, 10x (pH = 7.2) 1.5 M NaCl 
27 mM KCl 
82 mM Na2HPO4 x 2 H2O 
17 mM NaH2PO4 x H2O 

RIPA buffer 50 mM Tris-HCl, pH 8.0 
150 mM NaCl 
0.1 % SDS 
0.5%  sodium deoxylacid 
1% NP-40 

TBE, 10x 1 M Tris 
1 M Boric acid 
20 mM EDTA 

TBS, 10x  (pH = 7.6) 
 

61 g Tris base 
160 g NaCl 
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2.7 Oligonucleotides 

Table 2.2 Primers used for qRT-PCR 

Target Sequence Efficiency Reference  
PDPN_FW TGACTCCAGGAACCAGCGAAG 1.87 Inoue et al. (2012)  
PDPN_RV GCGAATGCCTGTTACACTGTTGA   

IPO8_FW TGCATATTGTAGCTCGGCTCT 1.87  
IPO8_RV AATGAACCACCCCTTGGTTG   

TBP_FW GAGCTGTGATGTGAAGTTTCC 2.02 Valente et al. (2009) 
TBP_RV TCTGGGTTTGATCATTCTGTAG   

APOE_FW CTTGAGTCCTACTCAGCCCC 1.75  
APOE_RV AATCCCAAAAGCGACCCAGT   

BNIP3_FW TGGACGGAGTAGCTCCAAGA 1.82  
BNIP3_RV AAAGAGGAACTCCTTGGGGG   

DKK3_FW ACAGCCACAGCCTGGTGTA 1.89 Gu et al. (2011) 
DKK3_RV CCTCCATGAAGCTGCCAAC   

H19_FW TGCTGCACTTTACAACCACTG 1.95 Matouk et al. (2007) 
H19_RV ATGGTGTCTTTGATGTTGGGC   

MGP_FW ATGAATCACATGAAAGCATGGAA 1.94  
MGP_RV GAGCGTTCTCGGATCCTCTC   

COL20a1_FW TGACCACCAAGAAAGCTCCC 1.76  
COL20a1_RV ATCTGGTAGACAAGCACGCC   

SPP1_FW CCCACAGACCCTTCCAAGTA 1.86  
SPP1_RV GCAGGTCCGTGGGAAAATCA   

CD44_FW TACAGCATCTCTCGGACGGA 1.90  
CD44_RV CACCCCTGTGTTGTTTGCTG     

NRCAM_FW TGAAGACTTGGTACAGCCTCC 1.74  
NRCAM_RV CTCAGCTTTCCCTTCGCTCA   

TIAM2_FW GAGCTTGTGGACACAGAGAAGT 1.95  
TIAM2_RV AGAGCCTCCAAGGGAAAACAG   

SNAI2_FW TGCGATGCCCAGTCTAGAAA 1.88 Schrader et al. (2015) 
SNAI2_RV AAAAGGCTTCTCCCCCGTGT   
    

 

 

Table 2.3 Sequences of guide RNAs 

 
 
 

Western Blot blocking buffer 5% milk/PBS 
0.5% Tween 

Western Blot transfer buffer 25 mM glycine 
0.15% ethanolamine 
25% methanol 

  

Target Sequence 5’ - 3’ 
PDPN exon 2  CACCGAGACTTATAGCGGTCTTCGC 

Renilla luciferase  CACCGGGTATAATACACCGCGCTAC 
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Table 2.4 Sequences of short hairpin RNAs 

 

 

2.8 Plasmids 

Table 2.5 List of plasmids 

 

 

2.9 Antibodies 

2.9.1 Primary antibodies 

Table 2.6 Antibodies used for flow cytometry 

Antigen Clone Concentration Company/catalog number 
PDPN NC-08 5 µl/million cells Biolegend; #337008 
HLA W6/32 5 µl/million cells Biolegend;  #311413; 311414 
CD11b M1/70 1:100 BD Pharmingen #5533121 

PDGFR 18A2 5 µl/million cells Biolegend #323608 
CD31 WM59 5 µl /million cells ebioscience #11-0319 
CD45 HI30 5 µl /million cells Biolegend #304018 
    

 

 

Table 2.7 Antibodies used for Western blotting 

Antigen Species Dilution Company/catalog number 
PDPN mouse 1:1000 Covance; #SIG-3730 
Cyclophilin A rabbit 1:1000 Cell signaling; #2175S 
    

 

 

Table 2.8 Antibodies used for immunohistochemistry and immunofluorescence 

Antigen Species Dilution Antigen retrieval Company/catalog number 
PDPN mouse 1:100 EDTA/citrate Covance; #SIG-3730 
Stem121 mouse 1:1000 EDTA Cellartis/Takara; #Y40410 
Ki67 rabbit 1:500 EDTA Abcam; #ab15580 
Laminin rabbit 1:100 Proteinase K Progen; #10765 
     

 Target Sequence 5’ - 3’ 
PDPN  (sh5αPDPN) 

(TRC-61926) 
CCGGCAACAACTCAACGGGAACGATCTCGAGATCGTTCCCGTTGAGTTGTTGTTTTTG 

Non-target  Sigma #SHC002V 
  

Name Company 
MISSION® pLKO.1-puro Sigma-Aldrich, USA 
lentiCRISPR v2 Addgene  #52961 
pCMV-VSV-G Addgene #8454 
psPAX2 Addgene #12260 
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2.9.2 Secondary antibodies 

Table 2.9  Secondary antibodies used for Western blotting 

 

 

Table 2.10 Secondary antibodies used for immunohistochemistry and immunofluoresence 

Antigen Species Dilution Conjugate Company/catalog number 
Mouse IgG goat 1:500 biotin Vector Laboratories; #BA-9200 
Rabbit IgG goat 1:500 biotin Vector Laboratories; #BA-1000 
     

 

 

2.10 Cell lines and primary cultures 

Table 2.11 Primary human glioblastoma cultures 

Name Provenience Comment 
NMA7 Martín-Villlalba lab, DKFZ Heidelberg Long-term primary culture 
NMA50 Martín-Villlalba lab, DKFZ Heidelberg Long-term primary culture 
NMA59 Martín-Villlalba lab, DKFZ Heidelberg Long-term primary culture 
NMA65 Martín-Villlalba lab, DKFZ Heidelberg Long-term primary culture 
GBM10 Martín-Villlalba lab, DKFZ Heidelberg Long-term primary culture 
GBM13 Martín-Villlalba lab, DKFZ Heidelberg Long-term primary culture 
GBM30 Martín-Villlalba lab, DKFZ Heidelberg Long-term primary culture 
T1132 Apogenix, Heidelberg Long-term primary culture 
MNOF1300 Mittelbronn lab, Edinger-Institute, Frankfurt Primary culture 
GBMF1 Angel lab, DKFZ Heidelberg Primary culture 
GBMF2 Angel lab, DKFZ Heidelberg Primary culture 
GBMF3 Angel lab, DKFZ Heidelberg Primary culture 
GBMF5 Angel lab, DKFZ Heidelberg Primary culture 
GBMF6 Angel lab, DKFZ Heidelberg Primary culture 
GBMF8 Angel lab, DKFZ Heidelberg Primary culture 
GBMF9 Angel lab, DKFZ Heidelberg Primary culture 
GBMF10 Angel lab, DKFZ Heidelberg Primary culture 
   

 

 

Table 2.12 Established cell lines 

Name Species Tissue 
HEK293T human Embryonic kidney 
U87MG human Glioma 
U251MG human Glioma 
LN308 human Glioma 
LN319 human Glioma 
   

 

 

Antigen Species Dilution Conjugate Company/catalog number 
Mouse IgG horse 1:5000 HRP Cell Signaling; #7076S 
Rabbit IgG goat 1:5000 HRP Cell signaling; #7074S  
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2.11 Cell culture media and supplements 

Table 2.13 Cell culture reagents 

Name Company/catalog number 
Accutase Sigma # A6964 
Papain Sigma #P3125 
ACK lysis buffer Lonza #10-548E 
Leibovitz medium Thermo Fisher Scientific #21083027 
DNase I Sigma #D4527-20KU 
  

 

 

Table 2.14 Cell culture conditions 

Cells Condition Medium Supplements Company/catalog number 
Cell lines 37°C, 8% CO2 DMEM  

10% FBS 
2 mM L-glutamine 
100 U/ml penicillin/ 
streptomycin (P/S) 

Sigma #D5671 
Sigma #F7524 
Sigma #G7513 
Sigma # P4333 

Primary 
cultures 

37°C, 5% CO2 Neurobasal   
1x B27 
20 ng/ml EGF 
20 ng/ml bFGF 
2 µg/ml heparin 
sodium salt 
2 mM L-glutamine 
100 U/ml P/S 

Thermo Fisher Scientific #10888022 
Thermo Fisher Scientific #17504044 
Promokine #C-60170 
Promokine #C-60240 
Sigma #H3149 
 
Sigma #G7513 
Sigma # P4333 

     

 

 

Table 2.15 Brain slice culture conditions 

Tissue Condition Medium Supplements Company/catalog number 
Brain 
slices 

37°C, 5% CO2 MEM  
25% horse serum 
25 mM HEPES  
5 mg/ml glucose  
1 mM L- glutamine  
100 U/ml P/S 

Sigma #M2279 
Life Technologies # 26050070  
Sigma # H0887 
Sigma #G8769 
Sigma #G7513 
Sigma # P4333 

     

 

 

2.12 Mouse strains 

Table 2.16 Immunocompromised mouse strain 

Name Abbreviation Full name Company 

Scid/beige CBSCBG C.B-Igh1<b>/GbmsTac-Prkdc
scid

-Lyst
bg

N7 Taconic 
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3 METHODS 

 

3.1 Gene expression profiling 

3.1.1 Isolation of RNA 

PDPNhigh and PDPNlow FAC-sorted glioblastoma cells of six samples each (NMA7; NMA50; NMA59; 

NMA65; GBM10; GBM30) were spun down and RNA isolated from cell pellet using the Qiagen 

RNeasy Mini Kit according to the manufacturer’s instruction. DNase digestion was directly 

performed on column as suggested by the manufacturer.  

 

3.1.2 Measurement of RNA quantity and RNA quality control  

RNA concentration was measured using a Nanodrop Spectophotometer (ND-1000 UV-VIS, 

PeqLab). Ratios of absorption 260/280 or 260/230 were used as indicators of contamination for 

proteins and aromatic compounds, respectively. In particular, preparations with 260/280 ratio of 

1.8 – 2.0 and 260/230 ratio greater than 2.0 were considered of good quality, and used for further 

analysis. RNA was stored at -80°C until further processing. For microarray analysis, RNA was 

delivered to the DKFZ Genomics and Proteomics core facility were RNA quality was validated 

using Agilent 2100 Bioanalyzer (Agilent Technologies) according to the manufacturer's 

instructions. 

 

3.1.3 Microarray analysis and data processing 

Gene expression was analyzed using an Illumina HumanHT-12v4 Expression BeadChip. RNA 

quality control, reverse transcription with labeling, chip hybridization and calculation of mean 

averages was conducted by the DKFZ Genomics and Proteomics core facility according to the 

manufacturer’s protocol. Chipster was used for quantile normalization of the raw microarray 

data. Differential gene expression was analyzed by Dr. Annette Kopp-Schneider, head of the 

biostatistics division, DKFZ. The ratios for the six samples were averaged and compared. Gene 

annotation enrichment analysis was performed using DAVID Bioinformatics Resources software 

(Huang et al., 2009). 
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3.2 Molecular biology methods 

3.2.1 Isolation of RNA 

As described in 3.1.1, RNA was isolated from FAC-sorted cells by Qiagen RNeasy Mini Kit (incl. on-

coloumn DNase treatment). 

 

3.2.2 Measurement of RNA quantity and RNA quality control  

As described in 3.1.2 RNA was measured and potential contamination assessed by Nanodrop 

Spectophotometer (ND-1000 UV-VIS, PeqLab). 

 

3.2.3 Reverse Transcription PCR (RT-PCR)  

For cDNA synthesis, 250 ng or 500 ng of RNA were pre-heated for 5 min at 65°C with a mixture of 

oligo-dT primers and random hexamers and then transcribed into cDNA (1 h; 42°C) using 

RevertAid M-MuLV reverse transcriptase (Thermo Fisher Scientific). Transcribed cDNA was stored 

at -20°C.  

   
Table 3.1 Composition of RT-PCR reaction mix 

Reagent Quantity 
RNA 500 ng 
5 ng/µl oligodT/random hexamers 1 µl 
H20 Fill up to 6.25 µl 

5x RT-Buffer 2 µl 
25 mM dNTPs 0.4 µl 
RiboLock RNase inhibitor 0.25 µl 
RevertAid enzyme 0.5 µl 
H20 0.6 µl 

Total 10 µl 
  

 

 

3.2.4 Quantitative real-time RT-PCR (qRT-PCR) 

For quantitative gene expression analysis, 40 cycles of real-time PCR was performed on the 

StepOnePlus real-time detection system (Applied Biosystems). Every PCR reaction was carried out 

in duplicates with 2.5 ng of cDNA in a final volume of 12.5 μl Power SYBR® Green PCR Master Mix 

(Applied Biosystem). Since AmpliTaq polymerase (present in Master Mix) is optimized to work at 

60°C, primers had been designed accordingly by using primerBlast.   
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Table 3.2 Composition of qRT-PCR reaction mix 

Reagent Quantity 
1 ng/µl  cDNA 2.5 µl 
Power SYBR® Green PCR Master Mix 6.25 µl 
5 µM forward Primer 0.75 µl 
5 µM reverse Primer 0.75 µl 
H20 2.25 µl 

Total 12.5 µl 
  

 

       Table 3.3 qRT-PCR program 

Step Temp. Time 
Activation of polymerase 95°C 10 min 

Denaturation 95°C 15 s 
Annealing 60°C 30 s 
Elongation 72°C 30 s 

Melt curve 95°C 15 s 
 60°C 1 min 
 +1°C (up to 95°C) 15 s 
   

 

 

StepOneTM Software v2.2 was used for data analysis. To calculate the relative expression of a 

gene of interest (GOI), the ΔΔCT method was used, which normalizes the cycle of threshold (CT) 

measured for the GOI to the CT measured for a housekeeping gene (HKG) taking into account the 

primer efficiency. Normalizing to a house keeping gene corrects variations in the initial amount of 

cDNA used. Importin-8 (IPO8) and TATA-Box binding protein (TBP) have been identified to 

exhibited high expression stability throughout all glioma grades (Kreth et al., 2010) and were thus 

used as HKG to normalize target gene expression. One of the cDNA samples was used as internal 

reference for the fold induction calculation of the transcript level of the other samples. The 

calculation can be summarized in the following formula (Pfaffl, 2001): 

 

Calculation of relative expression = 
E(GOI) ∆CT(GOI)  (mean(control) − mean (sample)) 

E(HKG)∆CT(HKG) (mean(control) − mean (sample))
 

 
 

E(GOI) = Real-time PCR efficiency of GOI transcript 

E(HKG) = Real-time PCR efficiency of HKG transcript 

ΔCT(GOI) = CT-deviation of GOI transcript between control and sample of interest 

ΔCT(HKG) = CT-deviation of HKG transcript between control and sample of interest 
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3.2.5 Validation of qRT-PCR primers 

Primer efficiency was measured performing a reaction with consecutive 1:10 dilution series 

ranging from 0.01 ng to 100 ng of a cDNA mixture of multiple glioblastoma samples. Primer 

efficiencies between 1.7 and 2.2 were considered of good quality. Primer specificity was 

evaluated by analysis of the melting curve and by separation on an agarose gel for fragment size 

determination. Primer sequences are provided in Table 2.2. Primer efficiency was calculated as 

follows: 

                                  Efficiency = E = 10
(

−1

slope
)
 

slope = derived from standard curve of CT vs. log(cDNA input) plot 

 

3.2.6 Agarose gel electrophoresis 

PCR amplicons were separated according to their size by electrophoresis using 2% agarose gels 

containing 5 μl ethidium bromide. Prior to loading, DNA samples were mixed with 6x loading 

buffer. 100 bp DNA Ladder (100 - 1000 bp, Thermo Fisher Scientific) was used as a reference for 

size estimation of separated DNA fragments. Electrophoresis was carried out at constant voltage 

of 120 V. 

 

 

3.3 Protein biochemistry methods 

3.3.1 Isolation of whole cell protein extracts  

Cells were washed with ice cold PBS and lysed in RIPA cell lysis buffer freshly supplemented with 

phosphatase and protease cocktail inhibitors (1:100; Serva/Roche), 25 U cyanase (Serva) and 6 

mM MnSO4. After 10 min incubation on ice, the extracts were centrifuged for 15 min at 13000 

rpm (Eppendorf) at 4°C. The supernatant was transferred to new Eppendorf reaction tubes and 

stored at -20°C. 

 

3.3.2 Determination of protein concentration 

The yield of isolated proteins was determined according to the Bradford assay. Protein lysates 

were diluted 1:5 in H20. A BSA standard was prepared with concentrations ranging from 0.125 

mg/ml to 2 mg/ml. 5 µl of each sample were pipetted in duplicates into a 96-well plate and 200 µl 

Bradford MX solution (expedeon) added. After 5 min incubation time, the resulting colorimetric 
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reaction was measured at 595 nm in a microplate reader (BMG). The BSA dilution series was used 

to create a standard curve and to quantify protein concentration. 

 

3.3.3 SDS polyacrylamide gel electrophoresis (SDS-PAGE)  

Sodiumdodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used to separate 

proteins according to their molecular weight. 15 μg or 25 μg protein lysates were mixed with 4x 

Loading buffer (expedeon), boiled for 10 min, cooled down for 5 min on ice, spun down and 

loaded onto the 10% SDS polyacrylamide gel (expedeon). SDS-PAGE was run in 1x SDS running 

buffer at 120 V for approximately 40 min until the running front reached the bottom of the gel. 

For protein size estimation, a prestained protein marker (Peqlab) was run in parallel. 

 

3.3.4 Transfer of proteins to nitrocellulose membranes (Western Blot)  

Denatured proteins resolved by SDS-PAGE were transferred onto nitrocellulose membranes 

(Optitran BA-S83) using a wet blotting system (Bio-Rad; Sigma). The separation gel and 

nitrocellulose membrane were embedded in three sheets of Whatman 3MM paper on either side 

pre-incubated in Western blot transfer buffer. The assembled blot was inserted with the correct 

orientation in the blotting system containing the Western blot transfer buffer. Transfer was 

performed at 300 mA for 2 h at 4°C. After disassembling the apparatus, the membrane was 

washed in PBS and incubated in blocking buffer for 30 - 60 min at RT while shaking. Subsequently, 

the membrane was incubated with the diluted primary antibody in blocking buffer o/n at 4°C 

while shaking. The membrane was then washed three times in washing buffer at RT while shaking. 

After washing, the membrane was incubated with the diluted secondary antibody coupled with 

horse radish peroxidase (HRP) in blocking buffer for 30 – 60 min hour at RT. The membrane was 

washed as described before, and incubated for 1 min with enhanced chemiluminescence solution 

(PerkinElmer). Finally, signals were detected using x-ray films and the Developer Classic E.O.S 

(Agfa). All antibodies used for Western Blot analysis are listed in Table 2.7 and Table 2.9. 

 

 

3.4 Cell culture 

3.4.1 Isolation and cultivation of primary human glioblastoma cells 

Human glioblastoma biopsies were freshly obtained on ice from the operation room of the 

university hospital Frankfurt. All following preparation steps were conducted under sterile 

conditions. Tissue was minced in a cell culture dish using a scalpel. The tissue was then 
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transferred to a falcon containing 5 ml Leibovitz-L15 (Thermo Fisher Scientific) solution that had 

been pre-incubated with 60 U papain (Sigma) for 15 min at 37°C. 1000 U DNase I (Sigma) and 0.5 

mM EDTA were added, incubated for 25 min at 37°C and inverted every 5 - 10min. After the 

incubation time, the suspension was resuspended well with additional 10 ml neurobasal-A 

medium (Thermo Fisher Scientific) using 10 ml and 5 ml sterile pipettes. The suspension was then 

filtered using to a 70 µm cell strainer. After a centrifugation step at 1000 rpm for 4 min at RT, the 

pellet was incubated for 2 min at RT with ACK lysing buffer (Lonza) to eradicate erythrocytes. The 

solution was filled up with neurobasal medium to 15 ml and centrifuged like previously described. 

After two additional washing steps the pellet was resuspended in supplemented neurobasal 

culture medium, transferred to a T75 cell culture vessel and cultivated at 37°C and 5% CO2. The 

medium was refreshed the next day and then every 2 - 3 days.   

 

For cultivation of the primary human glioblastoma material, cells were grown as spheroids in 

neurobasal medium. When spheroids reached a diameter of approximately 500 µm, they were 

spun down and resuspended in 1 ml accutase. Thorough resuspension resulted in dissociation of 

the spheroids into single cell suspensions which were washed with neurobasal medium before 

subcultivation or further processing for cell-based experiments. 

 

3.4.2 Cultivation of cell lines 

Human glioma cell lines were cultivated in supplemented DMEM (Sigma) under adherent 

conditions. Medium was refreshed every 2 - 3 days and cells were split when confluency was 

reached. For passaging the cells were washed with PBS to remove serum-containing medium and 

detached using 0.25% trypsin/0.6 mM EDTA in PBS.  

 

3.4.3 Contamination control of primary cells 

To have the primary human cells tested for infections of human immunodeficiency virus (HIV) and 

human hepatitis C virus (HCV), 8 ml of cell culture supernatant that had been cultured for at least 

3 days were sent in to a diagnostic laboratory (Labor Limbach, Heidelberg). All tested samples 

were negative for HIV and HCV. 

 

3.4.4 Determination of doubling time 

To determine the proliferation rates of primary cells and cell lines, 2 x 106 cells were plated. After 

a specific time point (dependent on cell line), cells were dissociated or trypsinized, counted and 
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again 2 x 106 cells seeded. This process was repeated at least two times. Based on these numbers 

the doubling time was calculated. 

 

                                doubling time = 
duration (hours) × log(2)

log(finalcell number) −  log(initial cell number)
 

 

 

3.4.5 Viral transduction of cells  

Primary human glioblastoma cells were lentivirally transduced in order to stably transfer the 

desired RNAi or CRISPR/Cas9 construct. For the production of lentivirus that carried the transfer 

vectors given in Table 2.5; 4.5 x 106 HEK293T cells were seeded per 10 cm dish and transfer 

vector. After cells had firmly attached, the medium was exchanged to neurobasal medium. The 

medium was renewed after 24 h (10 ml medium/dish). The transfection was conducted mixing 4 

µg pPAX2; 2 µg pCMV-VSV-G and 8 µg transfer vector with 200 µl OPTIMEM medium, then 42 µl 

polyethyleneimine (PEI; 1 mg/ml) were added. After 10 - 15min incubation at RT the transfection 

mix was pipetted drop by drop to the cells while slowly swirling the culture dish. 12 h post 

transfection the medium was renewed (7 ml/dish) and 24 h later the virus particle-enriched 

supernatant collected. The supernatant was filtered through 0.45 µm filter in order to remove 

HEK293T cells and cell debris and stored at 4°C. New medium (7 ml/dish) was added to the virus 

producing HEK293T cells and the harvest repeated 24 h later. The filtered supernatant from both 

days was pooled and 2 ml used to resuspend a pellet of 0.5 x 106 target cells. 8 µg/mL polybrene 

was added to increase infection efficiency. The medium was renewed 24 h later.  

 

Established cell lines were transduced similarly, only HEK293T cells were continuously cultured in 

DMEM medium throughout the procedure. Cell lines were infected by transferring the filtered 

virus particle-containing supernatant to adherent cells of approximately 40% confluency. 8 µg/mL 

polybrene was added to increase infection efficiency; the medium was renewed 24 h later.  

 

3.4.6 Flow cytometry and fluorescence activated cells sorting 

Single cell suspensions were prepared as described above. Cells were manually counted using a 

Neubauer Chamber and trypan blue to exclude dead cells. For flow cytometry, 5 x 105 cells in 100 

µl 1% BSA/PBS were stained with the appropriate amount of antibody (given in Table 2.6). After 

an incubation time of 20 min at 4°C in the dark, cells were washed with PBS and resuspended in 

400 µl 1% BSA/PBS for analysis using BD FACSCalibur™.  
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For fluorescence activated cell sorting (FACS), single cell suspensions were additionally stained 

with 0.5 µg/ml propidium iodide (PI) to identify dead cells. Stained and washed cells were filtered 

through a 70 µm strainer and kept in high density (up to 10 x 106 cells/ml) in 1% BSA/PBS in order 

to ensure a fast sorting process. Cells were sorted into 15 ml falcons containing 2ml cultivation 

medium using a FACSAria™ I, FACSAria™ II or FACSAria™ Fusion cell sorter with 100 µm nossle. 

After the sorting process cells were spun down and lysed for RNA isolation or resuspended in 

fresh culture medium for subcultivation. In case of subsequent intracranial injection within the 

frame of serial transplantations cells were kept maximal 3 days in culture. Cells sorted for PDPNhigh 

and PDPNlow expression were for logistic reasons kept 1 day in culture before intracranial 

injection. 

 

 

3.5 Invasion assay using ex vivo organotypic brain slice cultures 

3.5.1 Preparation of brain slices 

After euthanizing a 6 - 8 weeks old C57BL/6 wild-type mouse, the brain was isolated and the 

cerebellum removed with a scalpel. Using insect forceps the brain was transferred to the 

vibratome (Leica) platform where it was stuck by a drop of superglue. The lateral short side of the 

brain was placed facing the blade, in order to reduce mechanical stress. 350 µm thick coronal 

slices were cut with a maximal speed of 0.2 mm/s. Up to three slices were gathered per filter 

(Millipore). The transfer of the slices was facilitated by a brush and addition of brain slice medium 

(for composition see Table 2.15) on top of the filter. For cultivation at 37°C and 5% CO2 the 

medium was removed from the filter and 1 ml of fresh brain slice medium was added to the well. 

The medium was refreshed after 18 - 24h and then every other day. Brain slices were cultivated 

air-exposed. To prevent dehydration the tissue was moistened with a drop of medium every day, 

and remaining excess medium removed. Although the brain slices can be cultivated for at least 

one week, experiments were performed at day 2 and, due to the high migratory capacity of 

glioma cells, terminated on day 4.  

 

3.5.2 Preparation of fluorescently labeled spheroids 

Glioma cell lines cultivated in serum-containing medium were trypsinized and counted. 1 x 106 

cells/ml PBS were incubated with 5 µl lipophilic dye DiD (1 mg/ml in DMSO, Biotium) or 5 µl DiI 

(Biotium) for 30 min at 37°C. After two washing steps 500 cells/well were seeded a flat-bottom 

96-well plate coated with 50 µl low melt agarose (1% in PBS; Genaxxon). Most glioma cell lines 
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formed spheroids under the described conditions. However, U251MG and LN319 were kept in 

neurobasal medium in order to obtain compact spheroid formation. Primary glioblastoma cells 

were cultivated as spheroids in serum-free neurobasal medium. After dissociation cells were 

labeled as described above and seeded into agarose-free U-bottom 96-well plates (Greiner). Due 

to the different growth rates of the tumor cells used in the experiments and the difficulty of 

precisely measuring the number of cells in an established spheroid, a fixed number of 500 cells 

were seeded and implanted when the spheroids reached a diameter of approximately 150 µm.  

 

3.5.3 Spheroid implantation 

Approximately ten spheroids per brain slice were manually implanted using a blunt Hamilton 

syringe (701N; 10 μl; 26s/51/3) and a binocular microscope. The proper implantation depth of the 

spheroid is essential to obtain maximal invasion. The spheroid must be implanted within the 

tissue, as release of the spheroid below or on top of the brain tissue will not result in tumor cell 

invasion but in proliferation or in some cases in collective migration along the tissue surface. 

Furthermore, tissue integrity is an essential factor for correct implantation. Dehydration of brain 

slices impedes penetration of the tissue with the needle tip, as the tissue surface becomes too 

rigid. Conversely, excessive immersion of the brain slice in medium results in tissue degeneration 

and disintegration upon penetration with the needle tip. Thus, brain slices were moistened every 

other day, followed by removal of excessive medium. Following implantation, medium was 

refreshed and the slices cultivated at 37°C and 5% CO2. Experiments were terminated 2 days after 

implantation unless otherwise stated. For fixation brain slice medium was removed and 1 - 2ml 

4% PFA added on top of the filter for 2 h at RT or o/n at 4°C. Fixed slices were transferred with a 

spatula from the filter into a new 6-well plate containing 2 ml PBS/well. Although the slices can be 

stored in the parafilm-sealed plate for at least three months in the dark at 4°C, slices were imaged 

by epi-fluorescence or confocal microscopy as soon as possible. 

 

3.5.4 Tumor cell and brain slice treatment with jasplakinolide 

500 DiD labeled SMA560 glioma cells were seeded in spheroid-forming conditions per well of a 

96-well plate. 18 h prior to implantation, spheroids or brain slices were treated with 1 μM 

jasplakinolide (Cayman) or DMSO (Sigma). 24 h after implantation, brain slices were fixed and 

imaged by confocal microscopy. Cell viability in vitro was measured with trypan blue staining 

(Sigma). To test whether the assessed invasion was significantly affected in the jasplakinolide-

treated groups, Welch’s t-test was performed. Differences in the grade of invasion were 
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considered significant if p < 0.05. Bonferroni correction (for multiple comparisons) of p-values was 

applied. 

 

3.5.5 Imaging and quantification of invasion 

For epi-fluorescence imaging the slices were kept in 6-well plates containing PBS. For confocal 

imaging slices were transferred with a spatula onto an object slide and loosely covered with a 

coverslip. Z-stack images were transformed to a maximum projection image by using ImageJ 

(Schneider et al., 2012). Image quality was optimized by adjusting brightness, contrast and 

gamma. Migratory cells were visible as spikes emerging from the bulk of the spheroids that had 

been formed by cells establishing an infiltration path. These invasion sprouts were traced from 

the center of the mass to the tip using the freehand tool. The radius of the spheroid body (if not 

determinable spheroid body radius from day 0) was subtracted from the measured sprout length. 

Subsequently, the average cumulative sprout length was calculated by adding up the length of all 

sprouts of a spheroid and dividing this sum by the number of analyzed spheroids. This statistic 

integrates sprout length and the number of sprouts to estimate the migratory capacity of the 

cells. Calculation of the cumulative sprout length is a common tool in angiogenesis research, 

where it is used as reliable quantification of cell movement and proliferation in a three-

dimensional environment (Heiss et al., 2015, Weber et al., 2008). Statistical analysis was 

performed using student’s t-test or Welch’s t-test in case of unequal standard deviations. 

 

 

3.6 Animal experiments 

3.6.1 Housing of animals 

Scid/beige animals were purchased from Taconic and kept in the experimental animal facility of 

the DKFZ under specific pathogen-free conditions and controlled temperature (21°C), light cycles 

and humidity (50 - 60 %). Food and drinking water were offered ad libitum. 

 

3.6.2 Intracranial injections 

Single cell suspensions were prepared as described above. Cells were manually counted using a 

Neubauer chamber and trypan blue to identify dead cells.  PBS cell suspensions of 1 x 107 primary 

cells/ml or 5 x 107 cells/ml of established cell lines were prepared and stored on ice until 

intracranial injection. 
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The 6 - 10 weeks old scid/beige mouse was given 200 mg/kg metamizol pain killer by 

subcutaneous injection. The animal was anesthetized by isoflurane (3 vol%, gradually decreased 

to 1.5 vol% ) and fixed with the head into the mounting brackets of the stereotaxic device 

(Neurostar). Eyes were protected from dehydration by application of eye ointment and the body 

temperature of the mouse was maintained using a 37°C warm heat map. A Hamilton nanofil 

syringe with 34 gauge needle (World Precision Instruments) was filled with the cell suspension 

and mounted to the device. The disinfection of the animal’s head was followed by a small incision 

of the skin. The syringe’s needle tip was aligned 2 mm lateral (right) of the bregma and inserted 3 

mm deep after manually drilling the skull with a 23 gauge needle. 2 µl cell suspension was 

injected with a speed of 0.2 µl/min. The needle was retracted after additional 5 min to allow the 

injected cell suspension to be resorbed by the tissue. The skull was sealed with bone wax and the 

skin closed using non-absorbable suture. The mouse was kept warm until recovery from 

anesthesia. 

All animal experiments were approved by the responsible authority for animal experiments 

(Regierungspräsidium Karlsruhe, Germany) and performed in conformity with the German Law for 

Animal Protection. 

Figure 3.1 Schematic representation of intracranial injection site. 
Using a stereotaxic device, tumor cells were injected in 3 mm depth, 2 mm lateral from the bregma (B).  

 

 

3.6.3 Magnetic resonance imaging 

Animals were measured by the small animal imaging core facility of the DKFZ. For this, animals 

were anaesthetized as described above and imaged in a 1 Tesla MRI scanner. Animal preparation, 

imaging and image analysis was conducted by the core facility. 
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3.6.4 Sacrificing mice and sample preparation 

Mice used for organ extraction or experimental mice that showed termination criteria were 

euthanized by CO2 inhalation, and death was determined by evaluation of the toe and the eye 

reflex. After sacrifice, brain was isolated and either processed for ex vivo brain slice cultures, fixed 

in 4% PFA/PBS for histological examinations or used for tumor cell isolation. 

 

 

3.7 Histological methods 

3.7.1 Fixation and embedding of tissue in paraffin 

Immediately after sacrificing the mouse, the brain was isolated and fixed in 4% paraformaldehyde 

in PBS at 4°C for at least 48 h. Samples were washed in PBS and transferred to 70% ethanol. 

Samples were then stored at 4°C until proceeding with the subsequent stages required for 

paraffin embedding. Therefore, the brains were transferred in tissue cassettes, and treated 

according to the program given in Table 3.4. For embedding in paraffin, the samples were 

transferred from the tissue cassette into a metal well, which was then filled with liquid paraffin 

and subsequently cooled down to 4°C. When the paraffin blocks were completely solid, they were 

removed from the metal wells and stored at RT until sectioning.  

 

       Table 3.4 Tissue preparation for paraffin embedding 

Step Temp. Time Cycles 
70% EtOH 35°C 45 min 1 
80% EtOH 35°C 90 min 1 
90% EtOH 35°C 90 min 2 
96% EtOH 35°C 90 min 2 
100% Isopropanol 35°C 90 min 2 
Xylene 40°C 150 min 2 
Paraffin 60°C 45 min 4 
    

 

 

3.7.2 Preparation of sections from paraffin-embedded samples 

Paraffin blocks were cut in 6 μm sections using the microtome RM2155, and transferred on 

SuperFrost object slides. The sections were dried at 42°C o/n, and stored at RT. This procedure 

was performed by Angelika Krischke and Sabrina Lohr. 
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3.7.3 Hematoxylin and eosin staining of paraffin-embedded tissue sections 

Tissue sections were incubated twice in xylene for 10 min to remove paraffin, and rehydrated by 

the application of a dilution series of ethanol (ranging from 100% - 50% EtOH). Slides were 

incubated in each dilution for 2 min, then stained in hematoxylin solution for 8 min and washed in 

distilled H2O twice for 2 min. Prior to eosin staining, the sections were washed in 70% EtOH/0.05% 

HCl for 20 s and in distilled H2O for 10 min. Staining in 0.1% eosin was conducted for 5 min. 

Stained sections were dehydrated by short incubations in 70%; 90%; 100% EtOH and xylene 

before mounting with Eukitt. The hematoxylin and eosin (H&E) staining was performed by 

Angelika Krischke. 

 

3.7.4 Immunohistochemistry staining of paraffin-embedded tissue sections  

 Sections were deparaffinized and rehydrated as described above. Depending on the applied 

antibody one of the antigen retrievals given in Table 3.5 was conducted. 

  

Table 3.5 Overview of different antigen retrieval methods 

Method Reagent Temp. Time 
Heat-mediated 1 mM EDTA, pH = 8 95°C 15 min 
Heat-mediated 10 mM citrate buffer, pH = 6 95°C 15 min 
Enzyme-mediated 1 mg/ml proteinase K RT 10 min 
 20 µ/ml proteinase K 37°C 15 min 
    

 

After antigen retrieval, sections were rinsed with PBS for 5 min, and incubated with 3% H2O2 in 

tap water in the dark for 10 min at RT. After washing in PBS, sections were incubated in blocking 

solution containing 5% goat serum (Vector Laboratories) and 0.1 % BSA in PBS for 30 min. 

Sections were subsequently incubated with primary antibody appropriately diluted (as indicated 

in Table 2.8 and Table 2.10) in blocking solution o/n at 4°C. After a washing step sections were 

incubated with the appropriate biotin-coupled secondary antibody diluted 1:500 in blocking 

buffer for 30 min at RT. In the meantime, an avidin/horse radish peroxidase containing solution 

(ABC kit, Vector Laboratories) was prepared in 0.1% BSA/PBS, and incubated for 30 min at RT. 

After the incubation with the secondary antibody sections were washed in PBS incubated in ABC 

solution for 30 min at RT. Subsequently, sections were washed in PBS. The staining was developed 

with DAB reagent (Vector Laboratories) until a brown signal of the desired intensity and 

localization appeared. To stop this colorimetric reaction, sections were immersed in tap water. 

Sections were then counterstained with hematoxylin solution for 4min, and rinsed in tap water 

for 6 min. 
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In case of laminin staining, no hematoxylin staining was performed in order to facilitate 

automated analysis of the stained area.  This analysis was conducted using image J software and a 

macro that was written by Dr. Barbara Costa and Dr. Damir Krunic.  

 

3.7.5 TUNEL assay on paraffin-embedded tissue sections  

Apoptotic cells on paraffin-embedded sections were detected by visualizing fragmented DNA, a 

key feature of (late) apoptotic cells. Therefore, sections were deparaffinized and rehydrated as 

described above. Antigen retrieval was performed by incubation of the slides with 20 µg/ml 

proteinase K for 15 min at 37°C. After washing and blocking steps (as described above), samples 

were incubated with TUNEL  labeling solution (Sigma) and 20 U terminal deoxynucleotidyl 

transferase (NEB) for 1 h at 37°C. During this incubation step the terminal transferase attaches 

fluorescently labeled nucleotides in a template-independent manner on free hydroxyl termini of 

damaged DNA (present in apoptotic cells). After a washing step the samples were counterstained 

with Hoechst and mounted. Samples treated with 10 U DNase I for 15min at 37°C served as a 

positive control. Samples incubated with labeling solution without terminal transferase were used 

as a negative control. 

  

 

3.8 Statistical analysis 

To identify a potential difference between the survival times of two groups, Kaplan-Meier curves 

were plotted and the two survival curves statistically compared by application of the log-rank test. 

To assess whether the difference between the means of two groups (knockout and control group) 

reached statistical significance, student’s t-test or Welch’s t-test in case of unequal variations was 

performed. In case of multiple comparisons, p-values were corrected according to Bonferroni. 

Additional details of statistical analysis are given in the methodology description of the respective 

experiment. Graphpad Prism 7 (Graphpad Software, Inc.) was used for plotting and analyzing 

data. Statistical advice was given by Dr. Anette Kopp-Schneider for the analysis of the brain slice 

invasion assay. Dr. Kopp-Schneider also performed the analysis of the microarray data. 
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4 RESULTS 

 

4.1 Optimization of a glioma cell invasion assay based on organotypic brain 

slice cultures1 

 

Previous publications have indicated a pro-migratory function for PDPN using standard migration 

assays (Grau et al., 2015, Martin-Villar et al., 2005, Peterziel et al., 2012, Wicki et al., 2006). 

However, false-positive and false-negative results have been reported for conventional two-

dimensional migration assays (Jensen et al., 2017, Scott et al., 2010), which might be due to 

discrepancies in protein function between two- and three-dimensional assays (Khatau et al., 2012, 

Skau et al., 2016), and the lack of the three-dimensional tumor microenvironment (Joyce and 

Pollard, 2009, Pampaloni et al., 2007). In order to assess the potential involvement of PDPN in 

tumor cell invasion most faithfully, this work devoted substantial effort to move from traditional 

two-dimensional migration assays to an elaborate three-dimensional system that more closely 

recapitulate the in vivo glioma microenvironment. Organotypic brain slice cultures, which have 

mainly been used to study developmental, structural and electrophysiological aspects of neuronal 

circuits (for reviews see Huang et al., 2012, Lossi et al., 2009), represent an optimal matrix to 

study tumor cell invasion as they preserve essential features of the host tissue. However, previous 

attempts to use organotypic brain slices in a novel ex vivo invasion assay were accompanied with 

certain disadvantages: Reported methods were based on human brain slices (Jung et al., 2002), 

included upright confocal imaging (Chadwick et al., 2015), which may both not be universally  

 

 

Figure 4.1 Schematic representation of the ex vivo invasion assay. 
DiD labeling of tumor cells is followed by seeding into 96-well plates for spheroid formation. Adult murine 

brain slices of 350 µm thickness are prepared by vibratome and cultivated air-exposed for 2 days until 

implantation. Tumor cell spheroids are then manually implanted into the cortex. Depending on the invasive 

capacity of the cells, the assay is terminated after 1 - 4 days by fixation. 

                                                           
1 The text of the following section has been taken and partially modified from Eisemann et al. (2017) which had 
originally been written by myself 
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available, or the extent of invasion observed was rather low (Aaberg-Jessen et al., 2013, Petterson 

et al., 2016, Xu et al., 2016), not reflecting the high infiltration capacity of glioblastoma cells in 

vivo. Thus, several optimization steps had to be established to meet the demands for a 

reproducible protocol of glioma cell invasion assay based on organotypic brain slice cultures. A 

schematic overview of the assay is presented in Figure 4.1. 

 

4.1.1 Adult slice cultures retain the cytoarchitecture of the brain 

The majority of previous publications utilized brain slices from perinatal donors that show a high 

degree of resistance to mechanical trauma during the slice preparation (Cho et al., 2007). 

However, high grade gliomas are most common among adult patients, and neonatal slices do not 

structurally reflect adult brains as in rodents the ECM is substantially remodeled starting from 2 

weeks after birth. This remodeled and thus significantly firmer ECM is subsequently maintained  

 

 

Figure 4.2 Organotypic brain slice cultures maintain characteristic features of adult brain tissue.  
Immunohistochemical stainings of murine brain and brain slices cultivated for four days show comparable 

patterns of blood vessels (laminin) and myelinating oligodendrocytes indicated by MBP staining. Astrocytes 

(GFAP) and microglia (Iba1) seem to be slightly activated in the brain slice. White scale bars 100 μm, black 

scale bars 1 mm. 
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throughout adulthood (Zimmermann and Dours-Zimmermann, 2008). Similarly, myelination of 

nerve fibers occurs predominantly postnatally and can be extended to adulthood (Semple et al., 

2013). Hence, absent or incomplete myelination and the immature and loose extracellular matrix 

are profound differences between neonatal and mature adult brain tissue. In order to reflect the 

age-related disease of adult glioma, adult brain slices were used that exhibit a mature myelination 

pattern and ECM composition. Immunohistochemical stainings were performed on adult brain 

slices embedded 4 days after preparation to determine the integrity of the cytoarchitecture.These 

stainings revealed that blood vessels and myelinated fiber tracts (indicated by laminin and myelin 

basic protein, MBP, respectively) were present and morphologically intact; astrocytes and 

microglia (indicated by glial fibrillary acidic protein, GFAP, and ionized calcium binding adaptor 

molecule 1, Iba1, respectively) were slightly activated within the brain slice, presumably induced 

by the mechanical trauma of cutting (Figure 4.2). In contrast to the survival of astrocytes, 

microglia and endothelial cells, neuronal survival in brain slices has been reported as a major 

challenge, especially for slices prepared from adult donors (Humpel, 2015). This is partly attributed 

to the fact that neuronal cell death is induced by axotomy during the process of tissue slicing. Yet, 

the structure of myelinated nerve tracts remains intact providing the same structural surfaces 

glioma cells encounter in vivo. Taken together, the cytoarchitecture of the brain slice closely 

resembles that of the adult murine brain, thus, providing an authentic surface for glioma cell 

migration. 

 

 

4.1.2 DiD labeling of tumor cells improves fluorescence imaging  

Although previous studies have used ectopic GFP expression or the carbocyanine dye DiI for 

membrane labeling and tracing of cell invasion (Aaberg-Jessen et al., 2013, Jung et al., 2002, Xu et 

al., 2016), I experienced high autofluorescence of the brain slice and a poor contrast between 

tissue and tumor cells when imaged with short excitation/emission wavelengths, especially at the 

epi-fluorescence microscope (Figure 4.3 A). In order to reduce autofluorescent background, the 

lipophilic carbocyanine dye DiD was used, an analog of DiI with markedly red-shifted fluorescence 

excitation and emission spectra. As autofluoresence decreases dramatically at longer wavelengths, 

DiD labeling resulted in strikingly sharper images compared to the usage of DiI (Figure 4.3) and is 

moreover preferable for live cell imaging applications due to reduced photodamaging effects. 

Thus, the application of DiD strongly improves the imaging of invaded fluorescent tumor cells and 

even enables epi-fluorescence microscopy as a good alternative to confocal imaging. 

 



RESULTS 

56 
 

 

Figure 4.3 Improved image quality by confocal imaging and DiD labeling. 
Representative pictures of epi-fluorescent (A,C) and confocal microscopy (B,D). Usage of DiD (C,D) improves 

picture quality compared to DiI labeling of SMA560 cells (A,B). Scale bars 100 μm, image quality was 

optimized by the adjustment of brightness, contrast and gamma.  

 

 

 

4.1.3 Human and murine glioblastoma cells extensively migrate in adult murine brain 

slices 

In order to show that this protocol for the ex vivo invasion assay allows glioma cells to invade to a 

high degree, a panel of DiD labeled human and murine glioma spheroids were manually 

implanted into adult brain slices that had been cultivated for 2 days. 48 h after implantation the 

slices were fixed and imaged by confocal microscopy. As illustrated in Figure 4.4 a strong invasion 

of all implanted glioma cells into the surrounding tissue could be observed. Thus, using this ex 

vivo invasion assay protocol the invasive capacity of different tumor cells can be reliably assessed 

and compared. 

 

 

Figure 4.4 Strong invasion of glioblastoma cells in organotypic brain slice cultures. 
Representative confocal images of DiD labeled primary glioma cells (human (A), murine (B)) and established 

glioma cell lines (murine SMA560 (C) and human LN319 (D), U87MG (E) and U251MG (F)) implanted in adult 

brain slice cultures. Images were acquired at day 0 (top) and day 2 (bottom). Scale bars 100 μm, image 

quality was optimized by adjustment of brightness, contrast and gamma. 

 

DiI DiD 
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4.1.4 The ex vivo invasion assay as a quantitative tool  

Furthermore it was evaluated whether this system enables the detection of differences in the 

extent of migration.  As a proof of principle, either tumor spheroids or brain slices were treated 

before implantation with the direct inhibitor of actin depolymerization and known inhibitor of 

migration, jasplakinolide (Ivkovic et al., 2012, Ponti et al., 2004). Indeed, tumor cell treatment 

with 1 µM jasplakinolide for 18 h significantly blocked tumor cell invasion (Figure 4.5 B) without 

inducing cell death (Figure 4.5 E). Moreover, similar results were obtained when treating the brain 

slice 18 h prior to implantation with 1 µM jasplakinolide (Figure 4.5 C). Observed invasion was 

quantified by the determination of the cumulative sprount length. The assessment of the 

cumulative sprout length is an established analysis method in angiogenesis research to quantify 

three-dimensional sprouting and tube formation of endothelial cells (Heiss et al., 2015, Korff and 

Augustin, 1999). This quantification implies the great advantage that not only spike length but 

also the number of spikes is considered. The quantifications given in Figure 4.5 reflect the extent 

of invasion visually observed in the brain slice (illustrated by given representative images). These 

results confirm that this ex vivo invasion assay facilitates the quantitative measurement and 

comparison of invasion between different groups. It furthermore highlights the suitability of this 

method for drug discovery and preclinical evaluation where it could permit the robust selection of 

compounds affecting tumor cell invasion before ultimate in vivo testing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 The ex vivo invasion assay as a tool to identify invasion modulating compounds.  
18 h prior to implantation SMA560 spheroids or brain slices were treated with 1 μM jasplakinolide. 24 h 

after implantation brain slices were fixed and imaged by confocal microscopy. In contrast to the highly 

invasive control-treated SMA560 (A), the treatment of the tumor cells (B) or brain slices (C) with 

jasplakinolide significantly reduced their ability to invade without inducing cell death as examined by trypan 

blue staining (E). (D) Quantification of invasion. Error bars show 95% confidence interval, (A)  n = 12; (B,C) n 

= 7; (E) n= 3; **p<0.001; ***p≤0.0001; Welch’s t-test, p-values Bonferroni corrected.  
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4.2 The role of podoplanin in glioblastoma progression 

 

Multiple models are available to study glioblastoma, as elaborated in the introduction section (see 

chapter 1.1.3; page 9). Although genetically engineered mouse models (GEMMs) confer many 

advantages in modeling glioblastoma, there are some drawbacks that were considered when 

choosing the appropriate model for this project. GEMMs involve numerous technical 

disadvantages including the long generation time of the genetic background (tissue-specific 

deletion of an established combination of tumor-suppressors and Pdpn), and the potentially long 

latency. Moreover, as all tumors are composed of cells with a number of specific homogeneous 

genetic changes, they cannot reflect the high intratumoral genomic and phenotypic heterogeneity 

found in human tumors. In contrast, patient-derived xenografts (PDX) retain the genetic and 

chromosomal makeup of the original tumor reflecting the biological properties and cellular 

heterogeneity of the patients’ tumors. Moreover, this xenotransplantation model results in strong 

invasion and other characteristic features of glioblastoma. Thus, although facing the disadvantage 

of neglecting the impact of the immune system by the required usage of immuodeficient mice, 

this project focused on the application of patient-derived xenotransplants to study the function of 

PDPN in glioblastoma progression and invasion.  

 

 

4.2.1 Podoplanin is expressed in primary glioblastoma 

As PDPN has been proposed as a major driver for glioblastoma progression and especially for 

glioblastoma cell invasion, this study aimed at investigating this hypothesis. As a first step, the 

expression of PDPN in primary human glioblastoma samples was validated. For this purpose, 

paraffin-embedded human glioblastoma biopsies were immunohistochemically stained for PDPN 

(Figure 4.6). Due to the lack of a unique glioblastoma or astrocyte marker, PDPN expression 

cannot be exclusively ascribed to tumor cells but could also derive from reactive (tumor-

associated) astrocytes. However, all tumor biopsies showed intermediate to high PDPN levels with 

an inter- as well as intratumoral variability of PDPN expression. Many samples showed foci of high 

PDPN expression (Figure 4.6 A, B, C, G), which were in most cases perivascularly located. Although 

few samples contained non-neoplastic tissue (determined by morphology), high levels of PDPN 

expression were not restricted to the invasive front of the tumor (Figure 4.6 F). Additionally, 

freshly isolated cells from eight human glioblastoma tumors were examined by flow cytometry. 

This served not only for the verification of PDPN expression in glioblastoma tumors, but was 

furthermore intended to determine the number of PDPN positive tumor cells. Detailed instructions 
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Figure 4.6 Podoplanin immunohistochemistry staining of primary human glioblastoma biopsies. 
Primary human glioblastoma sections show variable PDPN expression. Some biopsies show focal increase in 

PDPN expression (A, B, C, G), primarily in perivascular areas. Due to the lack of glioblastoma/astrocyte 

markers, PDPN cannot clearly be allocated to tumor cells or reactive astrocytes. (A) GBMF1; (B) GBMF2; (C) 

GBMF3; (D) GBMF9; (E) GBMF10; (F) 341/09; (G) 531/14; scale bars 1 mm. 

 

 

for tumor cell isolation are listed in the section 3.4.1, page 41. Briefly, after human glioblastoma 

biopsies had been obtained from the operating room on ice, the tissue was gently digested with 

papain, erythrocytes were lysed and residual cells cultivated in neurobasal medium. Importantly, 

in line with the report of PDPN beeing a substrate for calpain-1 (Martin-Villar et al., 2009), a 

cysteine proteases of the papain superfamily, I found the protein to be cleaved upon papain 

treatment (Figure 4.7). As the papain-based dissociation is a standard method to isolate 

glioblastoma cells (Bao et al., 2008, Eyler et al., 2011, Patel et al., 2014) and I experienced a good 

yield of tumor cells, we decided to follow the papain-based isolation protocol despite the 

cleavage of PDPN. Thus, to enable the reconstitution of the protein on the cell surface, isolated 

cells were cultivated for two days before flow cytometric analysis. Furthermore, this short 

cultivation period served to deplete non-neoplastic cells as the applied culture conditions are 

tailored for tumor cell cultivation. Yet, it could not be excluded that some undesired cells would 

survive and bias the flow cytometric analysis. Thus, as no glioblastoma cell marker exists, an  
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Figure 4.7 PDPN is a substrate for papain enzyme. 
Primary human glioblastoma tumorspheres (T1132) were dissociated with either (A) accutase or (C) papain 

and analysed for PDPN expression by flow cytometry. Mild treatment with accutase resulted in almost 

100% positive PDPN staining. PDPN protein levels and the number of PDPN positive cells were dramatically 

reduced after papain treatment. PDPN was gradually re-exposed on the cell surface over time (C) and fully 

reconstituted after two days. (B) Overview of PDPN positive cells per group. 

 

 

elimination strategy was applied to distinguish tumor cells from non-neoplastic cells. Stainings were 

performed to identify endothelial cells (CD31), pericytes (PDGFRβ) and immune cells (CD45). As 

the cultivation of neurons and oligodendrocytes is very challenging, a potential contamination of 

the tumor cell cultures by these cell types was excluded. With the exception of GBMF9, that 

harbored a great proportion of immune cells, the number of non-neoplastic cells was generally 

low (Figure 4.8 A), indicating that the isolation process and cultivation conditions resulted in 

cultures strongly enriched for tumor cells. However, due to the extensive overlap of astrocytes 

and tumor cells in their protein repertoires, it was not possible to determine the presence of 

astrocytes in the tumor cell isolates. The presence and numbers of non-neoplastic cells were 

considered when calculating the percentage of PDPN positive tumor cells (Figure 4.8 C). As 

subsets of immune cells have been reported to express PDPN, isolated cells of five tumor samples 

were co-stained for CD45 and PDPN in order to determine the non-neoplastic cell proportion 

within the PDPN positive cells. With the exception of GBMF6  (33%), immune cells constituted less 

than 5%, or in the case of GBMF9 8%, of all PDPN positive cells and were thus considered negligible 

(Figure 4.8 B). In summary, all examined human glioblastoma samples have shown PDPN 

expression and immune cell infiltration, albeit at variable extent.  
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Figure 4.8 Composition of primary human glioblastoma cultures 
Two days after tumor cell isolation, cultures were analysed by flow cytometry. (A) tumor cell cultures 

primarily consist of tumor cells. Major residual non-neoplastic cell types are immune cells. (B) Five primary 

cultures were co-stained for CD45 and PDPN. With the exception of GBMF6, PDPN positive immune cells 

represent a negligible population. (C) Primary human glioblastoma cultures express PDPN to various 

extents.  

 

 

4.2.2 High podoplanin expression is associated with a malignant gene signature 

In order to investigate whether glioma cells that express high levels of PDPN are enriched with 

tumor promoting properties, PDPNhigh and PDPNlow subpopulations of six long-term patient-

derived glioblastoma cultures were sorted, RNA isolated and a microarray analysis performed. 
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The microarray was validated by quantitative real-time (qRT-) PCR. The expression of selected 

genes that were either up- or downregulated in PDPNhigh cells was analysed by qRT-PCR and 

reflected the results obtained from the microarray analysis (Figure 4.9 B). Gene annotation 

enrichment analysis was performed to determine whether defined sets of genes associated with a 

specific biological or molecular function were differentially expressed between the two groups. 

The analysis revealed a significant higher expression of genes functionally associated with cell 

adhesion and cell motility, negative regulation of apoptosis and angiogenesis in PDPNhigh glioma 

cells compared to PDPNlow cells (Figure 4.9 A). As these gene ontologies are associated with tumor 

development and progression, obtained results indicate that high PDPN expression is part of the 

malignant gene signature in glioblastoma. 

 

 

 

Figure 4.9 Differential gene expression between PDPN
high

 and PDPDN
low 

glioblastoma cells. 
(A) Gene annotation enrichment analysis. DAVID-based functional annotation analysis of differentially 

expressed genes obtained by comparison of PDPN
high

 versus PDPN
low

 glioblastoma cells. Depicted gene 

ontologies were found to be significantly overrepresented in PDPN
high

 cells. (B) Genes differentially 

expressed in PDPN
high

 cells. Quantitative RT-PCR validated the microarray results of selected genes most of 

which are associated with malignancy or cell migration.  

 

 

 

4.2.3 Shortened survival correlates with increased podoplanin expression in serial 

xenotransplantations 

As serial transplantations of tumor material result in an increased tumor growth rate and 

enhanced invasion (Visvader and Lindeman, 2008, Yano et al., 2016), this experimental approach 

was used to model the malignant progression of glioblastoma. For this purpose, three serial 

transplantations of five human primary glioblastoma tumors into murine immunocompromised 

mice were conducted. To gain insight into the expression pattern of PDPN during the malignant 

progression, its expression level was monitored through the course of the disease by flow 



RESULTS 

63 
 

cytometry after every isolation step (for schematic overview see Figure 4.10 A). In addition to the 

analysis of PDPN expression, tumor cells isolated from murine recipients were sorted by flow 

cytometry for a human marker (human leukocyte antigen, HLA) to avoid re-transplantation of 

residual murine non-neoplastic cells. Although five human tumor samples had initially been used 

for serial transplantations, in only three cases (GBMF2; GBMF3; GBMF10) I could successfully 

isolate sufficient tumor cells for the next transplantation round. The survival of the recipents, 

which is negatively correlated with the aggressiveness of the tumor, was reduced with every stage 

of transplantation (Figure 4.10 B-D). Concomitant, glioblastoma tumors GBMF2 and GMF3 

showed an increased PDPN expression in the successive recipients (Figure 4.10 E, F). The number 

of PDPN positive cells in the tumor GBMF10 increased drastically in the first recipients reaching 

almost 100% (Figure 4.10 G). The proportion of PDPN expressing tumor cells settled close to this 

value and could thus not steadily increase as observed for the other tumors. 

Taken together, the decreased survival time of successive recipients and associated aggresiveness 

of the tumors was parralleled by an increased number of PDPN expressing tumor cells. These 

correlative data suggest the involvement of PDPN in the gain of tumor aggressiveness and thus in 

malignant progression of glioblastoma.  

 

 

4.2.4 Podoplaninlow sorted glioma cells regain PDPN expression in vivo 

In order to test whether the aggressiveness of glioma cells depends on their PDPN levels, PDPNhigh 

and PDPNlow tumor cells from three freshly isolated human primary glioblastoma cultures were 

sorted and intracranially injected into immunocompromised mice. According to the hypothesis 

PDPN drives malignant progression of glioblastoma, mice that received tumor cells with low PDPN 

expression levels were supposed to exhibit an extented survival time compared to mice that 

received tumor cells with a strong expression of PDPN. However, I did not observe differences in 

the survival time of the two groups (Figure 4.11 A). When animals had to be sacrificed, brains 

were either fixed and embedded in paraffin for histological examination or dissociated for flow 

cytometric analysis of PDPN levels. Interestingly, although sorting of PDPNhigh and PDPNlow cells 

was efficient (Figure 4.11 B), histological sections and flow cytometry analyses of re-isolated 

tumors revealed a strong increase in PDPN expression of initially PDPNlow cells (Figure 4.11 C, D). It 

seems likely that this assimilation of PDPN levels accounts for the similar survival times of both 

groups, which impedes a clear statement about the effect of high PDPN expression on survival. 

However, the upregulation of PDPN expression in all tumors that developed from PDPNlow cells 

suggests that high levels of PDPN are necessary for tumor outgrowth.   
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Figure 4.10 Serial transplantations of glioblastoma cells. 
(A) Schematic illustration of the transplantation and analysis process. (B-G) In vivo passaging of human 

glioblastoma cells results in shortened survival paralleled by an increase in PDPN expressing tumor cells. 

Survival of primary, secondary and tertiary recipients of (B) GBMF2, (C) GBMF3 and (D) GBMF10. (E-G) The 

number of PDPN positive tumor cells (determined by human marker HLA) increases with every stage of 

transplantation of tumor (E) GBMF2 and (F) GBMF3 or reaches almost 100% with the first transplantation 

round as observed for (G) GBMF10.  
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Figure 4.11 PDPN
low

 sorted glioblastoma cells regain high PDPN expression. 
Three primary glioblastoma tumors were sorted into PDPN

high
 and PDPN

low
 subpopulations and injected i.c. 

into six recipients each. (A) Survival of recipients that received PDPN
low

 cells (grey) or PDPN
high

 cells (black) 

did not significantly differ. (B) PDPN expression level of PDPN
high

 and PDPN
low

 sorted cells. (C) Flow 

cytometric PDPN analysis of cells that had originally been sorted for low (grey) or high (black) PDPN 

expression and underwent in vivo passaging. (D) Relative change of PDPN expression before and after in 

vivo passaging illustrates the regain of PDPN expression in PDPN
low

 sorted cells. Data normalized to mean 

fluorescence intensity (MFI) values of PDPN
high

 cells. (E) PDPN immunohistochemistry staining of tumors 

originated from PDPN
low

 or PDPN
high

 cells. Scale bars 1 mm. 
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4.2.5 Deleting podoplanin in glioblastoma cells 

Above described results were based on descriptive and correlative approaches that showed the 

expression of PDPN throughout all examined glioblastoma tumors and furthermore, indicated a 

correlation of high PDPN levels and malignant progression of the disease. However, to conclude 

on the causality of PDPN expression and glioblastoma development functional experiments were 

required. For this purpose, a loss-of-function approach was taken. In an initial experiment, 

primary human glioblastoma cells were transduced with a leniviral vector to induce an RNA 

interference (RNAi)-based knockdown. The usage of only one short hairpin RNA directed against 

PDPN (sh5αPDPN) resulted in a satisfactory knockdown (Figure 4.12). A FACSort would have 

additionally been required to eradiacate residual PDPNhigh cells. To select for stable integration of 

the RNAi construct prior to a FACSort, cells were treated with puromycin for one week. After a 

short recovery period of one week cells were reanalysed by flow cytometry. This analysis of PDPN 

levels revealed a regain in PDPN expression, indicating the instable knockdown of the protein over 

time. The gradual loss of the PDPN knockdown, even in the presence of puromycin, was also 

observed in human glioblastomas cell lines (data generated by other group members).  

Thus, as the short hairpin-mediated knockdown turned out to be transient, especially in primary 

material, an alternative approach was taken and PDPN constitutively ablated by usage of the 

CRISPR/Cas9 system. Therefore, primary glioblastoma cultures, long-term glioblastoma cultures 

and established glioblastoma cell lines were transduced with the lentiviral vector lentiCRISPRv2 

that encodes the endonuclease Cas9 and a guide RNA that either specifically targets PDPN or, as a 

control, renilla luciferase. The CRISPR/Cas9-induced knockout strategy is based on generation of 

indels by the error-prone non-homologous end joining (NHEJ)-mediated repair of CRISPR/Cas9-

introduced double strand breaks (Ran et al., 2013). Although NHEJ repair is the principle means by 

which those breaks are repaired, it does not result in a pure knockout population due to in-frame 

indels, heterozygous deletions or due to the alternative and error-free homology-directed repair. 

To purify the PDPN knockout (PDPNKO) population, all cultures were FAC-sorted to avoid the 

generation of single cell clones and related clonal artifacts, and to moreover retain the 

heterogeneity of the primary glioblastoma cultures. Subsequent xenotransplantations of 

the four PDPNKO and control long-term glioblastoma cultures, revealed that long-term 

cultivation (> 20 passages) stongly affects tumorigenicity as only two out of 48 injected 

mice developed tumors (see supplementary Figure 7.1). Thus, long-term cultures were 

excluded from this and subsequent experiments. Importantly, for some primary (short-

term) glioblastoma cultures the viral transduction, FACSort, knockout validation, and 

especially recovery and propagation periods emerged as a very lengthy procedure. This does not  
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Figure 4.12 The short hairpin-mediated knockdown of PDPN declines over time. 
 (A) Flow cytometric analysis of primary human glioblastoma cells (MNOF1300) that express a non-target 

(shNT) or a PDPN-specific short hairpin RNA (sh5αPDPN). (B) After additional two weeks (including one 

week of puromycin treatment) reanalysis showed an increase in PDPN expression. (C) For better illustration 

PDPN expression levels of sh5αPDPN-cells at the two different time points are shown in one plot. (D) 

Percentages of PDPN negative and PDPN positive cells as analyzed by flow cytometry.  

 

 

only disagree with the idea of primary cultures (that should be exposed to in vitro culture 

conditions as briefly as possible), but moreover endangers the risk of loss of tumorigenicity as 

observed for long-term cultures. Thus, only the two primary knockout and control cultures with 

shortest cultivation times (GBMF2; GBMF3), and additionally two established human glioma cell 

lines (LN308; LN319) were used for subsequent loss-of-function studies.   

Sorted PDPNKO and control cells were analysed by flow cytometry and Western blotting in order 

to validate the absence or, respectivley, presence of the protein. In general, high levels of PDPN 

were expressed in nearly 100% of the control cells, wheras almost no (<1%) PDPN positive cells 

could be detected in the GBMF2 and LN308 knockout lines. GBMF3 PDPNKO cells contained a 

PDPN positive population of approxaimately 5%. Although this population could have been 

erradicated by an additional FACSort, this procedure was omitted to keep the cultivation period 

as short as possible. This residual small proportion of 5% PDPN positive cells was considered 

negligible, especially as they did not expand over time in vitro. Similary, the LN319 PDPNKO line 

retained a small population of approximately 6% PDPN positive cells. Taken together, using the 

CRISPR/Cas9 system PDPNKO cultures were generated that are deficient for PDPN protein. 
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Figure 4.13 PDPN knockout cultures generated by the CRISPR/Cas9 technology. 
(A) Flow cytometric analysis of PDPN levels of knockout and control cultures. (B) PDPN positive proportions 

of analyzed cultures. (C) PDPN levels assessed by Western blot. 

 

 

4.2.6 Podoplanin deletion in glioblastoma cells does not affect tumor growth 

The four control and knockout cell pairs (GBMF2; GBMF3; LN308; LN319) were intracranially 

injected into six immunocompromised mice per group in order to assess differences in tumor 

outgrowth and overall survival of the recipients. Tumor growth was regularly monitored by 

magnetic resonance imaging (MRI). Tissues and body structures are visualized by MRI due to 

differences in their proton densities and resonance properties in an applied magnetic field. In 

glioma patients, highest image quality of brain tumors is achieved by a T1-weighted imaging in 

combination with the intravenous administration of a contrast agent. The contrast agent, mostly 

gadolinium, enriches in the cancerous tissue due to disruption of the blood-brain barrier and 

helps to accurately determine the tumor volume. However, T1-weighted tumor volume 

determination of glioblastomas in mice failed here, presumably due to an intact blood-brain 

barrier and failure of contrast agent enrichment. Alternatively, brain tumors in mice were 

analyzed by a T2-weighted imaging, which allows for a gross visualization of the tumor. However, 

when used for volume determination, it has to be considered that glioblastomas are highly 

infiltrating and have poorly defined and irregular borders, which probably results in an 

underestimation of the overall tumor size. To compare the tumor growth of PDPNKO and control 
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groups, two to three animals per group were regulary anaylzed by MRI, and tumor volumes as 

determined by T2-weighted images were plotted over time. Figure 4.14 shows tumor growth of 

two groups (GBMF3; LN319) that could continously be analyzed despite challenging volume 

determination by T2-weighted images. LN319 PDPNKO and control tumor growth assessed  by MRI 

volume analysis showed no obvious differences (Figure 4.14 B), whereas GBMF3 PDPNKO may 

have a slight growth delay at later stages compared to the respective control tumors (Figure 4.14 

A). However, due to the low number of replicates and the imprecise T2-weighted volume 

determination, this trend requires validation by other parameter such as survival of the mice. 

Taken together, these data suggest that PDPN deletion in glioblastoma cells might slightly 

decelerate tumor growth in vivo, however PDPN may not be a major driver for tumor growth. 

 

 

 Figure 4.14 Podoplanin deletion has no major impact on tumor growth as analyzed by T2-weighted MRI. 
Tumor volume of (A) GBMF3 and (B) LN319 PDPN

KO
 and control groups over time, mean and standard 

deviation depicted. MR image of (C) GBMF3 or (D) LN319 PDPN
KO

 and control tumors. T indicates tumor 

area, the brain is marked by a dashed line, time point after tumor cell injection and determined tumor 

volume are given at the image bottom. 

 

 

4.2.7 Survival of glioblastoma bearing mice is not affected by podoplanin deletion 

The assessment of the median survival is a common tool to estimate the effect of a treatment or a 

genetic manipulation of the tumor cells. Thus, I determined the survival rates by the Kaplan-Meier 

method and analysed differences in the survival of the mice that received PDPNKO or control cells 
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by the log-rank test. Although the deletion of PDPN did not result in a significant prolongation of 

survival, all mice bearing PDPNKO tumors showed a slightly increased median survival (Figure 

4.15). In general, however, survival curves of PDPNKO and control tumor bearing mice were very 

similar, questioning the biologcial relevance of this marginal prolongation. Thus, the obtained 

data suggest that the deletion of PDPN in glioblastoma cells has no considerable impact on 

survival.  

After animals had to be sacrificed, brains were fixed and embedded in paraffin to perform 

immunohistochemistry stainings. Sections of PDPNKO and control tumors were stained for PDPN in 

order to validate the CRISPR/Cas9-induced kockout. As I was dealing with xenografts, namely 

human derived tumors that developed in rodent recipients, I could make use of a human-specific 

PDPN antibody that only recognizes human, and thus tumor cell-derived PDPN. As shown in 

Figure 4.16 B, all examined PDPNKO tumors were negative for PDPN, whereas control tumors 

derived from primary human glioblastoma cells uniformly expressed PDPN. The human glioma cell 

lines LN308 and LN319 showed a heterogenous expression pattern of PDPN as the largely PDPN 

positive tumors harbored areas with low or no PDPN expression. Considering that nearly 100% of 

LN308 and LN319 control cells express PDPN in vitro, the focal loss of PDPN in tumors in vivo 

indicates its dispensability as its endogenous silencing did not result in a selective disadvantage of 

the tumor cells. 

The high grade of invasion, especially in tumors generated from primary material, made the 

tumor mass (of PDPNKO tumors) difficult to precisely determine. Thus, sections of all groups were 

stained for a human marker (stem121), which served in this case as a tumor cell marker and 

revealed a large tumor volume and strong invasion into the contraleteral hemisphere in all groups 

(Figure 4.16). This result illustrates that the deletion of PDPN did not inhibit tumor outgrowth.  

 

 

4.2.8 The loss of podoplanin does neither affect tumor cell proliferation, nor apoptosis 

or tumor vascularization 

Previous results did not indicate a decisive role of PDPN in glioblastoma progression, as the 

deletion of PDPN did neither affect survival nor tumor outgrowth. However, PDPN could still have 

a mechanistic function in specific features of glioblastoma, which do not directly affect survival.  

Previously, high PDPN expression was associated with a malignant gene signature in glioblastoma 

(see chapter 4.2.2, page 61), in particular with a gene signature that favors angiogenesis, negative 

regulation of apoptosis and cell motility. Thus, I performed a number of stainings on PDPNKO and 

control tumors to dissect the involvement of PDPN in these typical malignant features in more 
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Figure 4.15 Survival is not significantly altered by deletion of PDPN in glioblastoma cells. 
Survival curves of mice injected with PDPN

KO
 and control cells, and overview of median survival times of all 

groups. Log-rank test showed no significant difference in median survival times. 

 

 

 

detail. Firstly, vascularization of the tumors was analyzed in order to identify changes in the  

angiogenic potential upon loss of PDPN. Blood vessel coverage of the tumors as determined by 

laminin staining was not altered between PDPNKO and control tumors (Figure 4.17 A, B). This 

result suggests that PDPN expression is not causal for the angiogenic capacity of glioblastoma 

cells. Secondly, the role of PDPN on apoptosis was investigated. TUNEL staining was performed to 

analyze whether the loss of PDPN in glioma cells  increases the number of apoptotic cells in the 

tumor. The rate of cell death within the tumor was generally low, and no significant increase in  
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Figure 4.16 Immunohistochemistry staining confirms absence of PDPN in PDPN
KO

 glioblastoma cells. 
(A) Control tumors stained for PDPN and stem121, a human marker. (B) Knockout tumors are present, as 

confirmed by stem121 staining, and remain negative for PDPN. Scale bars 1 mm. 

 

 

 

apoptosis in the PDPNKO group was observed (Figure 4.17 C, D). Additionally, cycling cells were 

identified by Ki67 staining. The staining did not reveal any alterations in tumor cell proliferation 

induced by the deletion of PDPN (Figure 4.17 E, F), which corresponds to the results of the in vitro 

doubling times of PDPNKO and control cells (Figure 4.17 G). These findings indicate that PDPN does 

neither influence tumor cell apoptosis nor tumor cell proliferation. Taken together, the 

examination of PDPNKO and control tumor sections has shown that PDPN is dispensable for tumor 

vascularization, regulation of apoptosis, and tumor cell proliferation in human glioblastoma. 
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Figure 4.17 The deletion of PDPN does not affect specific 
tumor features. 
(A) Tumor area covered by blood vessels (quantified by 

laminin staining, B) is not altered between control and 

PDPN
KO

 groups, 4 - 5 fields of each 3 tumors were analyzed. 

(C) Quantification of apoptotic cells per field showed no 

difference between control and knockout tumors, 5 fields 

per group were analyzed. (D) Representative pictures of 

TUNEL staining, apoptotic cells with fragmented DNA are 

indicated in green. (E) The deletion of PDPN did not 

influence tumor cell proliferation in vivo, 5 fields per group 

were analyzed. (F) Representative pictures of Ki67 staining. 

(G) In vitro doubling time was not altered by PDPN deletion. 

Black scale bars 100 µm, white scale bars 20 µm. 
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4.2.9 Glioblastoma cell invasion is podoplanin-independent 

Invasion is a key feature of glioblastoma tumors and has been hypothesized to be driven by PDPN. 

This assumption was based on several findings, including the above reported co-expression of 

PDPN and genes associated with cell migration and adhesion in glioblastoma cells (see chapter 

4.2.2, page 61) and several published in vitro studies that reported on the causality of PDPN and 

glioma cell migration (Ernst et al., 2009, Grau et al., 2015, Peterziel et al., 2012). These studies, 

however, used established cell lines, which due to their low invasive capacity may not constitute 

the best model to study glioblastoma cell invasion. Moreover, migration/invasion was examined 

using two-dimensional scratch or three-dimensional collagen invasion assays, which do not 

correctly reflect the in vivo situation. Thus, to investigate whether PDPN impacts on glioblastoma 

cell invasion, a three-dimensional invasion assay based on organotypic brain slices was 

performed. The advantages of this method and optimization steps that were established within 

the frame of this work were explained in more detailed in chapter 4.1, page 53. In this assay, only 

primary glioblastoma cultures were examined which exhibit highly invasive behavior in vivo. 

GBMF2 and GBMF3 PDPNKO and control cultures were fluorescently labeled and manually 

implanted into ex vivo cultured murine brain slices. After 2 days the assay was terminated by 

fixation of the brain slices. Fluorescently labeled glioblastoma cells within the slice were imaged 

by confocal microscopy. As depicted in Figure 4.18 A, PDPN deletion in the primary tumor cells did 

not influence their capacity to invade. This finding is in line with microscopic observations of 

tumor sections. Tumor cells engrafted in the murine brain could be visualized by 

immunohistochemistry staining using the human marker stem121. Representative pictures given 

in Figure 4.18 C-J indicated that both, control and knockout cells were able to migrate along 

common routes of migration, desribed as Scherer’s structures. Independent of their PDPN status, 

glioblastoma cells were found to invade the brain tissue through the brain parenchyma, below the 

meninges, along blood vessels, and nerve fibers of the corpus callosum. In combination with the 

quantitative assessment of the invasive capacity of PDPNKO and control cells in the ex vivo brain 

slice assay, these data suggest that PDPN is not required for glioblastoma cell invasion. 
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Figure 4.18 PDPN is not required for glioblastoma cell invasion. 
(A) Representative pictures of glioblastoma cell invasion assessed by the ex vivo brain slice assay. Both, 

implanted PDPN
KO

 and control cells showed strong invasion into the surrounding brain tissue. Scale bars 

100 µm, image quality was optimized by adjustment of brightness, contrast and gamma. (B) Quantification 

of invasion, represented as cumulative sprout length (CSL) in mm. (C)-(J) Stem121 immunohistochemistry 
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staining of control and knockout tumors. Stem121 marks human and thus tumor cells in the murine 

recipient brain. (D) and (H) show diffuse infiltration of the brain parenchyma, (E) depicts tumor cells that 

migration below the meninges (indicated by arrows). Migration along blood vessels is observed in (F) and 

(J), arrows indicate tumor cells, arrow heads indicate blood vessels. (I) shows infiltration of the contralateral 

hemisphere along the corpus callosum. Scale bars in (C) and (G) 1 mm, in (I) 100 µm. White scale bars 20 µm.  
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5 DISCUSSION 

 

 

The identification of novel therapeutic targets to improve current treatment measures continues 

to be a major focus in glioblastoma research. Genes that are mutated, inactivated or 

overexpressed in neoplastic compared to physiological tissue represent candidates that are 

potentially involved in the development or progression of cancer. PDPN has been identified as 

one gene that is overexpressed in high grade gliomas. Accordingly, high PDPN expression has 

been found to correlate with poor prognosis among all glioma patients (Ernst et al., 2009, 

Peterziel et al., 2012). Moreover, among all glioblastoma subtypes, PDPN has been reported to be 

the most expressed in the mesenchymal subtype of glioblastoma. The molecular subtyping of 

glioblastoma tumors was performed by The Cancer Genome Atlas Consortium (TCGA), with the 

intention to gain a detailed picture of the molecular setup of glioblastoma tumors. The 

unsupervised transcriptome analysis of nearly 600 glioblastoma tumors revealed four 

glioblastoma subtypes, referred to as classical, mesenchymal, neural and proneural signatures 

(Phillips et al., 2006, Verhaak et al., 2010). The mesenchymal sub-class of a glioblastoma is 

characterized by strong cellular invasion and poor outcome (Phillips et al., 2006, Verhaak et al., 

2010, Xie et al., 2014). These facts, the positive correlation of PDPN with tumor grade and its 

overexpression in invasive mesenchymal tumors have altogether led to the assumption that PDPN 

might drive the invasive and aggressive behavior of glioblastoma cells. This hypothesis was 

supported by publications that have shown decreased proliferation and migration of NCH421k 

and LN308 glioblastoma cells upon an RNAi-mediated knock down of PDPN (Ernst et al., 2009, 

Peterziel et al., 2012) or increased migration in response to PDPN overexpression in U373MG, 

U87MG cell lines (Grau et al., 2015). These results were in line with overexpression studies 

performed in cancer cell lines of other entities where PDPN was accordingly described as a 

migration-promoting protein (Martin-Villar et al., 2005, Wicki et al., 2006). These in vitro studies 

have further supported the idea of exploiting PDPN as therapeutic target. However, in vivo studies 

required to validate these in vitro findings as well as insight into the underlying mechanism were 

still lacking. Thus, I investigated the functional role of PDPN in human glioblastoma including 

strongly needed in vivo experiments. 

 

An initial point of this study was the validation of previous findings that correlated PDPN with 

malignancy in order to establish a model for detailed investigations of the underlying mechanism. 

To investigate whether glioma cells that express high levels of PDPN are enriched with tumor 

promoting properties, I determined the gene expression profile of six patient-derived 
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glioblastoma PDPNhigh and PDPNlow subpopulations. In PDPNhigh cells, the analysis showed a 

significant higher expression of genes functionally associated with malignant traits such as cell 

migration. Thus, it was assumed that high PDPN expression is part of the malignant gene 

signature in glioblastoma. In order to examine whether the association of PDPN and malignancy 

holds true in vivo, serial transplantations of patient-derived material were used as a model of 

malignant progression of the disease. Flow cytometry of the tumor cells at every transplantation 

step revealed a steady increase of PDPN levels paralleled by a shortened survival of the 

corresponding recipients. This result indicated a positive correlation of PDPN expression and 

aggressiveness. The hypothesis of a tumor driving effect of PDPN was further strengthened when 

PDPNlow sorted glioblastoma cells drastically increased the expression of PDPN after 

xenotransplantation. This regain of high PDPN expression was interpreted as another indication 

for the tumor-promoting effect of PDPN. The correlation of high PDPN expression and tumor 

progression appeared to be repeatedly confirmed by different approaches. To finally clarify the 

causal link between PDPN and malignancy, I performed intracranial injections of PDPN deleted 

primary human glioblastoma cells and established glioma cell lines. Contrary to expectations, I 

could not observe an effect of PDPN ablation on tumor development. The survival of PDPNKO 

tumor bearing mice was not significantly different to control mice. Subsequently, a more detailed 

analysis of malignant features was conducted, including tumor vascularization, apoptosis and 

proliferation. Concordantly with the result of unaffected survival, the analysis of these malignant 

features did not reveal any alterations in PDPNKO compared to control tumors. The glioblastoma 

characteristic that has been associated most frequently with PDPN overexpression is invasive 

growth of the tumor cells. To investigate the effect on glioblastoma cell invasion more precisely, 

not only tumor sections have been microscopically examined for infiltrative growth, but the 

invasive capacity of glioblastoma cells was also quantitatively assessed in the ex vivo invasion 

assay. The two approaches consistently showed no impaired invasion of PDPNKO cells. Hence, this 

study has validated the positive correlation of PDPN expression and malignancy. Concurrently, 

however, detailed in vitro, ex vivo and in vivo studies have shown the dispensability of PDPN for 

tumor cell invasion and tumor progression. The following section will discuss the obtained results 

in the context of recent literature to critically assess the value of the study and its limitations. 
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5.1 Technical limitations of the study 

 

5.1.1 A malignant function of podoplanin might be restricted to mesenchymal 

glioblastoma tumors 

A recent optimized transcriptome analysis of glioblastoma single cells, tumorspheres and tumor 

biopsies obtained from the TCGA portal (Wang et al., 2017) has validated three of the previous 

four molecular sub-classifications: classical, proneural and mesenchymal. The previously included 

neuronal subtype has emerged as non-tumor specific, presumably caused by high non-neoplastic 

cell contaminations in the initially investigated tumor samples. Although data generated by this 

recent study have validated the correlation of PDPN overexpression and poor outcome in glioma 

patients (Figure 5.1 A), it has also been shown that this correlation is absent in the glioblastoma 

patient cohort (Figure 5.1 B). Interestingly, when analyzing the individual molecular subtypes of 

glioblastoma, a correlation of high PDPN expression and poor overall survival is evident for the 

mesenchymal but not for the other glioblastoma subtypes (Figure 5.1 C). Considering that this 

correlation is restricted to the mesenchymal subtype, a potential malignant function of PDPN 

could depend on the signature of the tumor. An RNA-seq analysis, exome sequencing and 

subsequent biocomputational comparison with the previously defined subtypes would determine 

whether the mesenchymal subclass was covered by the here applied samples GBMF2; GBMF3 and 

cell lines LN308 and LN319. Without this information it cannot be excluded that PDPN has a pro-

tumorigenic function in only one specific subtype of glioblastoma, which was not represented by 

the samples used in this study. 

 

Figure 5.1 Correlations of PDPN expression and survival in different brain tumor subsets. 
(A) PDPN expression in glioma patients significantly correlates with poor outcome, n = 39; p = 0.0034; 

whereas (B) survival of glioblastoma patients is not significantly correlated with PDPN expression, n = 28; p 

= 0.9046. (C) Patients with a mesenchymal subtype of glioblastoma show a significant correlation of high 

PDPN expression and poor survival, n = 9; p= 0.0136. Data obtained from Wang et al. (2017), accessed via 

http://recur.bioinfo.cnio.es/ on November 2017. 

http://recur.bioinfo.cnio.es/
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5.1.2 A potential malignant function of podoplanin could be compensated by other 

proteins 

As noted, in this study the CRISPR/Cas9-based gene modification tool was used to induce the 

deletion of PDPN in glioblastoma cells, which has not revealed an impact on malignant features of 

the tumor cells. According to the here applied CRISPR/Cas9-edited knockout strategy, the cells 

may still translate an approximately 50 amino acid short truncated protein, as the applied guide 

RNA facilitates the double strand break within the second exon of the PDPN encoding gene. 

However, even if this peptide was transcribed and remained stable, it could not be positioned at 

the cell membrane, as it lacks, in addition to the cytoplasmic tail and large parts of the 

ectodomaine, the complete transmembrane domain, impeding the correct exposure and thus 

function of the protein on the cell surface.  Thus, the presence of a truncated, yet functional, 

PDPN protein in the here generated PDPNKO cells was considered unlikely. 

Previous studies that used an RNAi-mediated knock down of PDPN have in contrast attributed the 

protein with a pro-migratory and proliferative function (Ernst et al., 2009, Peterziel et al., 2012). 

The key difference between the two techniques is that the application of CRISPR/Cas9 results in 

true loss-of-function as the system interferes on the genetic level (Ran et al., 2013), whereas RNAi 

generally causes a reduced protein level (reviewed in Mohr et al., 2014). Divergent phenotypes in 

knockdown and knockout studies have frequently been reported and attributed, among other 

reasons, with changes in protein levels in the knockout cells that lead to the functional 

compensation of the deleted gene (Daude et al., 2012, Freudenberg et al., 2012, Rossi et al., 

2015). Thus, the complete ablation of PDPN by the CRISPR/Cas9-induced knockout could have 

provoked compensatory reactions of the cell which might not take place in cells with a reduced 

PDPN protein level and thus resulted in different phenotypes. A potential compensation in 

response to the loss of PDPN could occur on a transcriptional or post-transcriptional level, whose 

identification would have required a microarray or a mass spectrometry and subsequent analysis 

of differentially expressed genes/translated proteins between PDPNKO and control cells. Due to 

the lack of known isofunctional PDPN paralogues, which represent the most likely compensation 

candidates, the search for a compensatory protein would have to focus on other proteins with 

comparable location and functions. Tetraspanins, integrins, ICAMs and CD44 may represent 

potential candidates as they are cell surface proteins and, similar to PDPN (Martin-Villar et al., 

2006), have been reported to link the cell membrane with the cytoskeleton by members of the 

ezrin/radixin/moesin (ERM) protein family (Sala-Valdes et al., 2006, Tang et al., 2007, Yonemura 

et al., 1998). Similarly, the dispensability of PDPN in basal keratinocytes during skin development 

and wound healing has been proposed to result from the functional compensation by a yet 

undetermined ERM interaction partner (Baars et al., 2015). 
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The search for a PDPN-compensating protein, however, is a very laborious approach that would 

moreover not necessarily result in the identification of a potentially compensatory candidate as 

not only the transcriptional and post-transcriptional but also the spatial distribution of proteins 

affects their function (Perego et al., 2002). Finally, the identification of a compensating protein 

would still not provide insight into the mechanistic function of PDPN, as a potential compensation 

could depend on alternate pathways with different molecular mechanisms.  

 

5.1.3 The usage of immunodeficient mice may mask a potential malignant function of 

PDPN  

One technical limitation that could have masked a potential effect of PDPN on tumor progression 

is the usage of immunodeficient mice. In order to use tumor cells that have a genetic and 

epigenetic make up that resembles as closely as possible the situation in the patient (Lee et al., 

2006), this study has used patient-derived primary glioblastoma cultures. However, orthotopic 

transplantations require in this case immunocompromised recipients to prevent the immune 

system-mediated rejection of the tumor cells (Morton and Houghton, 2007). Therefore, it cannot 

be excluded that PDPN attributes the tumor cells with immune suppressive functions that would, 

in an immunocompetent background, result in a growth advantage compared to PDPN deficient 

tumors. Although PDPN - at least on lymphatic endothelial cells - has been shown to interact with 

CLEC-2 on dendritic cells (Acton et al., 2012), there was no evidence that supported the idea of an 

immune suppressive function of PDPN. Thus, we decided for immunodeficient mice that enabled 

the usage of primary human glioblastoma cells in favor of the great resemblance to the patient. 

 

 

5.2 Technical strengths of the study 

 

5.2.1 The application of a novel gene editing tool with low off-target rates results in a 

complete PDPN knockout 

The functional analysis of a protein requires either its overexpression or its ablation within the 

cell. Previous reports that associated PDPN with a pro-tumorigenic function in various cell lines 

were almost exclusively based on overexpression studies (Kunita et al., 2011, Martin-Villar et al., 

2010, Martin-Villar et al., 2006, Martin-Villar et al., 2005, Wicki et al., 2006). Although this is a 

common tool in biomolecular research to assess the function of a protein, it has also been shown 

to involve disadvantages. One publication focusing on overexpression screens in Saccharomyces 
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cerevisiae has found single gene overexpression to cause variable negative effects on the cell, 

including decrased growth rates and toxicity (Tomala et al., 2014).  These malfunctions were 

particularly pronounced when the overexpressed genes were transmembrane proteins (Osterberg 

et al., 2006, Tomala et al., 2014). The authors proposed two different mechanisms that could 

cause this effect. Firstly, the overexpression of the desired protein leads to an over-engagement 

of the translation and folding machinery which could result in metabolic stress of the cell. 

Furthermore, the overload of the cell with the transmembrane protein of interest could 

negatively affect the protein balance and thus function at the membrane. Secondly, the authors 

suggested that membrane proteins are, due to their transmembrane domains, prone to misfold 

and form aggregates, which tend to penetrate and damage cellular membranes (for review see 

Stefani, 2008). Thus, the overexpression of PDPN might not constitute the most appropriate 

approach to study its function. Instead, we decided to follow a loss-of function approach, which 

can be accomplished by numerous tools (Gaj et al., 2013). In this study, I used the novel RNA-

guided CRISPR-Cas9 genome editing system, which provides many advantages. In contrast to the 

RNAi-mediated knockdown approach that causes a decreased protein level, the CRIPR/Cas9-based 

method interferes on the genetic level and results, dependent on the strategy, in a complete loss 

of the protein. This excludes the possibility that a potential effect is masked by the presence of 

residual protein that remains sufficient to maintain its cellular function. Furthermore, the RNAi-

based knockdown approach has repeatedly been reported to induce off-target effects and 

variable on-target efficiencies (Jackson et al., 2003, Sigoillot et al., 2012). Conversely, a recent 

report has shown that the off-target effect of the CRISPR/Cas9 gene editing system is near the 

detection limit of targeted deep sequencing (Kim et al., 2015). Moreover, an experimental side-

by-side comparison of RNAi- and CRISPR/Cas9-based screening methods recently demonstrated a 

higher variability and more off-target activity in the RNAi- compared to the CRISPR/Cas9-based 

approach (Evers et al., 2016). Thus, the discrepancy of this and previous studies regarding the 

effect of PDPN on tumor proliferation and invasion could be based on the different gene silencing 

tools. The application of RNAi-mediated knockdown of PDPN in previous studies (using identical 

hairpin sequences) could have resulted in pro-invasive and pro-proliferative off-target effects. In 

the present study, potential shRNA-mediated off-target effects were avoided by the usage of the 

CRISPR/Cas9 system. 
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5.2.2 The application of the three-dimensional ex vivo invasion assay enables the 

reliable assessment of tumor cell invasion 

In the past decades tumor cell invasion has primarily been assessed by inexpensive and rapid two-

dimensional assays. However, these cell culture models are very limited in their power to 

accurately predict the effect of proteins or small molecules on cell invasion in vivo, probably due 

to functional differences of proteins between two- and three-dimensional migration and the 

absence of environmental influences (Jensen et al., 2017, Pampaloni et al., 2007). Although 

animal models are thought to represent the most reliable method of investigating cell invasion, 

they involve not only high cost but also ethical and technical concerns. This has resulted in 

attempts to bridge the gap between over-simplified cell culture approaches and the more 

meaningful but laborious in vivo models with reproducible ex vivo techniques. The current state of 

the art to mimic the natural environment of glioma cells are organotypic brain slice cultures that 

can be cultivated ex vivo for several days to weeks without considerable loss of their 

cytoarchitecture (for reviews see Huang et al., 2012, Lossi et al., 2009). Retaining their 

physiological structure, brain slices provide an optimal three-dimensional matrix for ex vivo 

invasion assays. Mostly perinatal donors have been used for the preparation of organotypic brain 

slices due to their high mechanical and ischemic resistance (Cho et al., 2007). However, in rodents 

the ECM is substantially remodeled starting from 2 weeks after birth. This remodeled and thus 

significantly firmer ECM is subsequently maintained throughout adulthood (Zimmermann and 

Dours-Zimmermann, 2008). Similarly, myelination of nerve fibers occurs predominantly 

postnatally and can be extended to adulthood (Semple et al., 2013). Hence, absent or incomplete 

myelination and the immature and loose extracellular matrix represent profound differences 

between neonatal and mature adult brain tissue. In order to reflect the age-related disease of 

adult glioma, I decided to use adult brain slices that exhibit a mature myelination pattern and 

ECM composition.  

While there are previous reports that used organotypic brain slices for tumor cell invasion 

assessment, we still lack a simple, standardized, and reproducible protocol that allows its 

application in basic and preclinical research. Various approaches for the co-cultivation of tumor 

cells and slices and the measurement of cell invasion have been published. For brain metastasis 

research, tumor cells have been seeded in a matrigel plug adjacent to the brain slice in order to 

investigate interactions between cancer and glial cells by fluorescence microscopy (Chuang et al., 

2013). However, this model is unsatisfactory when used to examine the invasion of primary brain 

tumor cells, as they arise and migrate within the brain tissue and moreover do not encounter an 

environment comparable to matrigel. Other publications have developed this approach by 

seeding single cells on top of the slices (Chadwick et al., 2015). However, this technique comprises 
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disadvantages, as it is disturbed by the diffusion of single cells after seeding and requires life cell 

imaging, preferably by an upright confocal microscope, which is not universally available. 

Moreover, reduced invasion is observed when the tumor cells are seeded on top instead of within 

the tissue, as the cells migrate on the slice surface instead of efficiently penetrating the tissue. In 

contrast, I implanted tumor cells as spheroids within the tissue in order to position them at a 

specific location of the brain slice and to provide a comparable starting point for the assay. 

Indeed, other publications have reported this approach; however, they show a low grade of 

invasion that does not reflect the aggressive infiltration observed in patients (Aaberg-Jessen et al., 

2013, Petterson et al., 2016, Xu et al., 2016). In contrast, the here established protocol resulted in 

strong invasion of a panel of human and murine glioma cell lines as well as primary cells. 

Moreover, imaging quality of implanted tumor cells could be improved by the usage of DiD, which 

drastically reduces autofluorescence compared to the commonly applied DiI or ectopic GFP 

expression. Thus, in the course of this work, the ex vivo invasion assay has been optimized in 

order to serve as a standardized protocol that allows for a variety of application options. The 

possibility of specifically manipulating either one or both compartments involved in tumor cell 

migration, the microenvironment and the tumor cells themselves, and to monitor the 

consequences of the manipulation on tumor cell invasion is a major advantage of this improved 

protocol. Besides the implantation of manipulated tumor cells, in this case PDPNKO and control 

cells, I demonstrated the flexibility of the protocol by manipulating the microenvironment with 

exogenous small molecule (jasplakinolide) treatment. Consequently, the ex vivo invasion assay is a 

powerful tool to identify critical factors in tumor cells and their putative interaction partners in 

the tumor microenvironment. 

Thus, the potential involvement of PDPN in tumor cell invasion was most faithfully assessed using 

the optimized ex vivo invasion assay. The conducted experiments have shown that the 

transmembrane protein PDPN is dispensable for glioblastoma cell migration. Considering previous 

publications that reported on false-positive anti-invasive candidate compounds identified by 

conventional in vitro assays (Jensen et al., 2017) and discrepancies in protein function between 

two- and three-dimensional assays (Skau et al., 2016), conventional migration assays used in 

previous publications might have led to a false-positive result indicating a pro-invasive role for 

PDPN. 
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5.3 Podoplanin as a marker for glioblastoma cells  

Although this study could validate previous findings on the correlation of PDPN expression and 

malignant progression of glioblastoma tumors, functional experiments have indicated that the 

progression of the disease is PDPN-independent.  These results were moreover confirmed by a 

genetic engineered mouse model of glioblastoma generated by Dr. Barbara Costa in a 

collaboration of Prof. Dr. Peter Angel and Dr. Hai-Kun Liu’s research groups, where Pdpn was 

deleted in combination with the tumor suppressors Pten and Tp53 in neural stem cells. When 

compared to control mice carrying the double knockout of Pten and Tp53, no difference in tumor 

incidence, tumor growth or survival was examined. 

The question remains why glioblastoma cells express PDPN, especially, if there is no selective 

advantage for PDPN positive tumor cells. In the course of this study, PDPN has been found to be 

part of a malignant signature. First, this has been interpreted as an indication for the malignant 

role of PDPN, however, due to the technical approach of using cells sorted for low or high PDPN 

levels and not PDPNKO and control cells, it cannot be concluded that the malignant nature of 

glioblastoma cells is caused by high PDPN expression. Instead, there is the opposite possibility 

that the malignant signature causes increased levels of PDPN. As noted in the introductory 

chapter, PDPN transcription has been shown to be powerfully regulated by AP-1 and STAT3 

transcription factors (Durchdewald et al., 2008, Peterziel et al., 2012, Priester et al., 2013). The 

hyperactivation of the PI3K-AKT signaling pathway has been reported for the majority of 

glioblastoma tumors (Parsons et al., 2008). This signaling axis has been shown to induce AP-1-

mediated PDPN expression in glioblastoma cells (Peterziel et al., 2012). Furthermore, TCGA 

sequencing data have revealed a transcriptional network regulated by STAT3 as a central 

malignant element in many glioblastoma tumors, and particularly in the mesenchymal subtype 

(Phillips et al., 2006, Verhaak et al., 2010). Thus, the constitutive activation of the PI3K/AKT and 

STAT3 signaling pathway in glioblastoma might be the cause for the broad overexpression of 

PDPN in glioblastoma. This, together with the results of the present study, indicates a great value 

of PDPN as a marker for aggressive glioblastoma cells but at the same time discourages the 

functional inactivation of PDPN as a novel therapeutic approach, due to the dispensability of 

PDPN for malignant behavior of glioblastoma cells. 
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5.4 Podoplanin expression – a common feature of tumor cells and reactive 

astrocytes 

Although this study has unexpectedly not identified a malignant role for PDPN in glioblastoma, 

the question about the constitutive expression of PDPN by tumor cells despite its dispensability 

remains unsolved. One possible explanation is that PDPN expression lies downstream of PI3K-AKT 

and STAT3 signaling pathways, which have frequently been shown to be hyperactivated in 

glioblastoma. Thus, PDPN expression could be a side effect of hyperactivated upstream signaling 

pathways that drive malignancy in glioblastoma cells. Alternatively, the presence of PDPN in 

glioblastoma cells could be explained by their great transcriptional resemblance with astrocytes. 

The transcriptional activation of PDPN in response to STAT3 activity in tumor cells shows a parallel 

to reactive astrocytes. This overlap in gene expression is not surprising, as previous publications 

have shown a strong astrocytic signature in glioblastoma tumors (Phillips et al., 2006, Verhaak et 

al., 2010) and it has furthermore been reported that glioblastoma can arise from mature 

astrocytes (Endersby et al., 2011, Radke et al., 2013). In astrocytes, STAT3 activity has been 

reported as a master regulator of astrocyte activation (Ben Haim et al., 2015, Herrmann et al., 

2008). Astrocytes have been shown to be activated in many CNS diseases, including stroke, injury 

and brain tumors (reviewed in Burda and Sofroniew, 2014, Pekny et al., 2016). A recent 

publication has shown that reactive astrocytes in the above mentioned settings do express PDPN 

(Kolar et al., 2015), presumably induced by pSTAT3. Although the function of PDPN de novo 

expression in reactive astrocytes has not been identified, it is conceivable that the protein is 

involved in the functions of reactive astrocytes including tissue regeneration and regulation of 

inflammatory responses – processes that could influence tumor growth and progression and 

could thus make PDPN expression by tumor cells dispensable. Hence, the physiological function of 

PDPN in reactive astrocytes and other cells of the glioma microenvironment remains an exciting 

open research topic, as well as the resulting question whether and how this affects tumor cells. 

 

 

5.5 Conclusion and perspectives 

 

Using correlative and descriptive approaches as well as the analysis of loss-of-function 

experiments, this study has concluded that PDPN is not rate-limiting for glioblastoma progression 

and invasion. This finding is important for further preclinical studies, as previous publications have 

indicated a tumor promoting role for PDPN and proposed the protein as a therapeutic target. 

However, this study suggests that the development and usage of compounds that functionally 
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inactivate PDPN would not result in the desired tumor suppressing effect. Instead, this study has 

validated PDPN as a valuable marker for clinical applications as PDPN has been found to be part of 

a malignant gene signature in glioblastoma, marking tumors with poor prognosis.  Thus, if glioma 

research will continue to focus on PDPN as a therapeutic target, I suggest using PDPN as a gate 

entry to mediate the targeted delivery of cytotoxic or immunogenic compounds into very 

malignant glioma cells, for instance by antibodies that target cancer-specific PDPN (Kato and 

Kaneko, 2014). 
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7 SUPPLEMENT 

 

7.1 Supplementary data 

 

Figure 7.1 Flow cytometry plots of long-term glioblastoma cultures. 
PDPN was successfully deleted in (A) T1132; (B) GBM41; (C) NMA59 and (D) NMA65; control cells in grey, 

PDPN
KO 

cells in black.  

 

 

 

 

Table 7.1 Overview of mouse numbers injected with long-term glioblastoma cultures. 

Cells Number of  
injected mice 

Number of 
Tumor bearing mice 

Termination 

T1132 control 6 0 d285 
T1132 PDPNKO 6 0 d285 

GBM41 control 6 0 d233 
GBM41 PDPNKO 6 0 d233 

NMA59 control 6 0 d427 
NMA59 PDPNKO 6 0 d427 

NMA65 control 6 2 d455 
NMA65 PDPNKO 6 0 d455 
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