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Abstract

Magnetic Resonance Imaging (MRI) is an important imaging modality in both the clinic and in
research. MRI technology has been trending toward increasing field strengths to improve the
signal-to-noise ratio of the MR signal and fast excitation/encoding strategies to more flexible
target anatomical regions during excitation to reduce the total imaging time. While largely
successful, both strategies rely on the application of increasingly strong and rapidly switched
magnetic fields: the radio frequency (RF) field for excitation and the gradient field for encoding.
The technology for generating these fields (and rapidly switching them) has advanced to the
point that we are limited by biological responses to the switching fields. For the gradient field, the
electric field generated in the tissue causes peripheral nerve stimulation (PNS) causing mild but
bothersome sensations at low levels, up to pain or cardiac malfunction at higher levels. The electric
fields created by the much faster time-varying RF cause heat deposition, ultimately denaturing
proteins and causing tissue damage. In this thesis, methods are presented to characterize and
minimize these two problems associated with the switched magnetic fields in MRI. The deposited
RF energy (Specific Absorption Rate, SAR) incurred during shaped excitations can be significantly
reduced by optimizing gradient and RF waveforms for inner-volume excitations that allow imaging
of a sub-volume of the body without wrapping artifacts. The adverse effects of the switching
gradient fields are addressed by designing time-optimal gradient encoding waveforms and by
developing a method to predict and characterize PNS using field simulations and a full-body
nerve model allowing these critical effects to be addressed at the gradient coil design stage. In
the first part, time-optimal gradient trajectories are demonstrated that use the gradient hardware
at the maximum available performance. The skeleton of the trajectory is defined by a set of
k-space control points. The method optimizes gradient waveforms that traverse the k-space
control points in the minimum possible amount of time. By using an analytic representation of
the gradients (piece-wise linear), the design process is fast and numerically robust. The resulting
trajectories sample k-space efficiently while using the gradient system at maximum performance.
Compared to the leading Optimal Control method, the proposed method generates gradient
waveforms that are 9.2% shorter. The computation process is ~100x faster and does not suffer
from numerical instabilities such as oscillations. In the second part, a method is developed
that jointly optimizes parallel transmission RF and gradient waveforms for fast and robust 3-D
inner-volume excitation of the MRI signal in minimal time and with minimal energy deposition.
The optimization of the k-space trajectories is based on a small number of shape parameters
that are well-suited for joint optimization with the RF waveforms. Within each iteration of
the trajectory optimization, a small tip-angle least-squares RF pulse design problem is solved.
Using optimized 3-D cross (shells) trajectories, a cube shape (brain shape) region was excited
with 3.4% (6.2%) NRMSE in less than 5ms using a 7 T scanner with 8 Tx channels and a
clinical gradient system (Gmax = 40 mT/m, Smax = 150 T/m/s). Incorporation of off-resonance
robustness in the pulse design significantly altered the k-space trajectory solutions and improved
the practical performance of the pulses. In the final part, a framework is presented that simulates
PNS thresholds for realistic gradient coil geometries and thus allows, for the first time, to directly
address PNS in the coil design process. The PNS framework consists of an accurate body model
for simulation of the induced electric fields, an atlas of peripheral nerves, and a neurodynamic
model to predict the nerve responses to imposed electric fields. With this model, measured PNS
thresholds of two leg/arm solenoid coils and three commercial actively-shielded MR gradient coils
could be reproduced with good accuracy. The proposed method can be used to assess the PNS
capability of gradient coils during the design phase, without building expensive prototype coils.



Vi



Kurzfassung

Die Magnetresonanztomographie (MRT) ist eine bedeutende Bildgebungsmodalitat in Klinik und
Forschung. Die MRT-Technologie strebt zu héheren Feldstarken zur Verbesserung des Signal-
Rausch-Verhaltnis sowie zu schnellen Anregungs-/Auslesetechniken mittels raumlich selektiver
Radiofrequenzpulse (RF), um anatomische Regionen flexibler anzuregen und die Signalakquise zu
beschleunigen. Beide Ansatze sind sehr erfolgreich, erfordern jedoch das immer schnellere Schal-
ten immer starkerer Magnetfelder, namentlich der RF-Felder (Anregung) und der Gradientenfelder
(Ortskodierung). Die Technologie zur Erzeugung/Modulation dieser Felder ist soweit fortgeschrit-
ten, dass deren Nutzbarkeit durch Interaktionen mit dem menschlichen Korper stark eingeschrankt
ist. Das schnelle Schalten der Gradientenfelder induziert elektrische Felder die periphere Nerven
stimulieren konnen (PNS), was zu leichten Empfindungen bis hin zu Schmerzen und Herzrhyth-
musstorungen fiihren kann. Die RF-Felder erzeugen hochfrequente elektrische Felder die das
Gewebe stark erwarmen und schadigen konnen. In dieser Arbeit werden Methoden entwickelt, um
die Effekte ungewiinschter elektrischer Felder in der MR zu modellieren, vorherzusagen und zu
reduzieren. Die Gewebeerwdarmung bei raumlich-selektiven Anregungen kann erheblich verringert
werden durch die Optimierung der Ortskodierung sowie der RF-Pulse. Die unerwiinschten Effekte
der Gradientenfelder konnen vermindert werden durch zeit-optimierte Gradientenverlaufe sowie
durch ein neuartiges Verfahren das mittels elektromagnetischer Feldsimulationen und neurody-
namischer Modelle PNS vorhersagen und charakterisieren kann. Im ersten Teil der Arbeit wird ein
Verfahren entwickelt zur Generierung zeit-optimaler Gradientenverlaufe, die die Leistungsfahigkeit
des Gradientensystems optimal ausnutzen. Die Gradientenverlaufe werden derart generiert, dass
die resultierenden Trajektorien vordefinierte Stiitzpunkte im k-Raum in moglichst kurzer Zeit
abtasten. Durch die Verwendung semi-analytischer Gradientenverlaufe (stiickweise linear) ist
das Verfahren sehr schnell und numerisch stabil. Die Trajektorien tasten den k-Raum sehr
effizient ab, ohne das Gradientensystem zu iiberlasten. Im Vergleich mit Standard-Verfahren sind
die erzeugten Gradientenverlaufe im Mittel 9.2% kiirzer. Das Berechnungsverfahren ist bis zu
500-fach schneller und nicht anfallig fiir numerischen Instabilitaten wie Gradientenoszillationen.
Im zweiten Teil der Arbeit wird eine Methode vorgestellt, die Gradientenverlaufe und RF-Pulse
simultan optimiert und dadurch sehr kurze, akkurate und robuste 3-D selektive Anregungspulse
mit minimaler Gewebeerwarmung generiert. Die Optimierung der Gradientenverlaufe basiert
auf einer effizienten Beschreibung der Trajektorien durch Formparameter die sich numerisch
sehr gut optimieren lassen. Wahrend jeder Iteration der Formparameter-Optimierung wird ein
Least-Squares RF-Puls berechnet. Mittels optimierter 3-D "Cross" ("Shells") Trajektorien
wurden wiirfelformige (bzw. hirnformige) Zielvolumen mit lediglich 3.4% (6.2%) NRMSE in
< 5 ms mit einem 7 Tesla Scanner, acht Sendekanalen sowie einem klinischen Gradientensystem
angeregt (Gmax = 40 mT/m, Smax = 150 T/m/s). Das Einbeziehen statischer Feldvariationen in
die Pulsoptimierung hatte einen grolen Einfluss auf die Trajektorien. Im letzten Teil der Arbeit
wird ein Verfahren entwickelt, das PNS Schwellwerte fiir realistische Spulengeometrien simuliert
und damit erstmals eine direkte Einbeziehung von PNS in den Designprozess der Spule ermdglicht.
Das Verfahren besteht aus einem detaillierten Korpermodell zur Simulation der induzierten
elektrischen Felder, einem Atlas der peripheren Nerven sowie einem neurodynamischen Modell
zur Vorhersage der Nervenreaktionen auf die elektrischen Felder. Mit diesem Modell konnten
gemessene PNS Schwellwerte von zwei Bein/Arm Solenoidspulen sowie von drei kommerziellen
aktiv-geschirmten Ganzkorper MR-Gradientenspulen mit guter Genauigkeit reproduziert werden.
Dieses Simulationsverfahren erlaubt es, mogliche PNS durch MR-Gradientenspulen wahrend der
Entwurfsphase zu evaluieren, ohne teure Prototypspulen zu bauen.
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Introduction

Magnetic resonance imaging (MRI) has become one of the most important radiographic methods
for diagnosing medical problems as well as planning and following their treatment. MRI starts
with the excitation of the nuclear spins in water using an applied resonant radiofrequency (RF)
pulse. The excitation phase is followed by the reception of the signal emitted by the spins
during their decaying precession. The resonance frequency of the spins is determined by the
strength of the total applied magnetic field as per the well-known Bloch relation [6]. Typically
the applied field consists of a static magnetic field (usually 1.5 to 7 Tesla) together with the brief
RF field pulse for excitation followed by a time-varying magnetic field gradient (in the kilohertz
frequency range). Spatial encoding is performed by superimposing this time varying field gradient
component to the magnetic field. The presence of this field alters the resonance frequency of the
spins as a function of space, linking its spatial position to its precession frequency. These linear
gradient field variations are created along the three spatial axes using three distinct gradient coils
in order to spatially encode the 3-D space.

Applying the linear field gradients for a certain amount of time will generate a 3-D phase pattern
in the nuclear spin magnetization. A single field gradient applied for a brief time period causes the
phase pattern to correspond to a harmonic wave whose spatial frequency and normal direction are
determined by the strength and direction of the imposed gradient field. The signal which survives
this modulation is a sample of the objects intensity variation at that spatial frequency. Therefore,
by varying the direction and strength of the MRI gradient coils, one can explore a signal space
called "k-space" [118]. If sufficiently sampled, the signal matrix is a Fourier representation
of the object’s intensity pattern and the image is simply reconstructed by an inverse Fourier
transform. The acquisition of k-space is performed along a path called k-space trajectory which
is determined by the time integral history of the gradient waveforms.

A similar mechanism holds for the excitation (at least in the small flip-angle excitation regime)
[86], where excitation k-space is sampled along a trajectory determined by the reversed time
integral history of the excitation gradients (although the two concepts are similar, excitation and
signal reception k-spaces are completely distinct and different). In both cases, it is preferable to
sample k-space very quickly in order to avoid magnetization decay. Indeed, magnetization decay
during excitation makes the excitation design and analysis much more complex as it introduces
non-uniform T4 and T» weighting across the image in a way that is difficult to predict. Although
often the magnetization is sampled after a controlled delay designed to induce a source of image
contrast, it is also generally not desirable to have contrast changes during the image readout.
Decay during the readout does occur in encoding intensive sequences such as echo-planar imaging
(EPI) and often it's desirable to speed up the readout as much as possible and to under-sample
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k-space and reconstruct with parallel imaging methods to shorten the encoding period. The speed
at which excitation and reception k-space can be fully sampled is dictated by the performance
limits of the gradient coils (namely the achievable strength of the gradient fields, Gmax, and the
maximum temporal rate of change for the gradient field called slew rate, Smax). But increasingly
the full capabilities of the gradient system cannot be used due to the physiological effects from
rapidly switching gradients on the human body, i.e., peripheral nerve stimulation (PNS).

In light of the increasing problems caused by the time-varying fields used in MRI, this thesis
focuses on the development of algorithms and methods to mitigate them through the design of
RF /gradient waveforms and the detailed study and quantification of the PNS effect in gradient
coils. Specifically, the following aspects of gradient encoding and coil engineering are presented:

(i) A method for the design of time-optimal (i.e., fastest achievable) gradient waveforms given
the gradient coil performance specifications [28], 26]

(ii) A framework for the design of optimal gradient and RF waveforms for robust excitation of
complex 3-D magnetization shapes within 5 ms using parallel transmission which limit the
deposited energy associated with the RF fields [27], 29, 30}, 32]

(iii) Development and validation of a simulation pipeline for prediction of PNS thresholds and
locations caused by rapidly switching magnetic fields in a realistic human body model
[31], 34, 33]

The First Part of this thesis investigates gradient waveform design approaches that make optimal
use of the gradient system constraints (Gmax and Smax). For simple types of k-space sampling
trajectories (like echo-planar trajectories or analytic spirals), analytic expressions of time-optimal
gradient waveforms have been known for decades. For more complex k-space sampling strategies
(such as 3-D trajectories), however, the gradient waveform design problem is more complex. The
main reason for this complexity are the gradient system strength and slew rate constraints which
render the optimal gradient design problem non-linear.

Several approaches have been proposed over the years in an attempt to solve the gradient
trajectory design problem. Simonetti et al. [L09] and Hargreaves et al. [55] used a discretization
of the gradient waveforms using fine time steps and performed a constrained optimization of
the gradient samples, subject to the gradient system constraints and k-space constraints (such
as traversal of certain control points in k-space). Such a discretization approach, however,
leads to a huge number of degrees-of-freedom to be optimized (especially for longer gradient
waveforms), resulting in large computation times and numerical perturbations (the resulting
problem is mathematically ill-conditioned). Dale et al. [22] used a Hamiltonian formulation of
the gradient design problem to derive analytic solutions for simple one-dimensional waveforms.
The Hamiltonian, however, becomes increasingly difficult to solve in multiple dimensions, which
very often does not permit to design 2-D or 3-D gradient waveforms. A Gold-Standard method
for the design of fast gradient waveforms is the Optimal Control method proposed by Lustig et
al. [71], [120], that computes time-optimal gradient waveforms along a pre-defined k-space path
constraint. The path constraint is usually obtained by interpolating a set of control points in
k-space. For very smooth path constraints this method works well, however, in regions where
the path constraints have sharp turns, this approach becomes extremely sensitive to numerical
errors. This causes significant distortions of the waveforms (in terms of oscillations), resulting in
violations of the gradient system constraints. Additionally, the method is computationally very
expensive and the k-space constraint is overly restrictive, i.e., the method disregards strictly
time-optimal solution.
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In this work a method is developed that generates time-optimal gradient waveforms subject to
gradient magnitude and slew rate constraints. The gradient waveform is designed such that the
associated trajectory passes through an ordered set of control points in k-space. The gradient
waveforms are assembled by piece-wise linear segments and are represented in a semi-analytic
manner. This strategy achieves significantly reduced computation times and very high numerical
stability and thus generates practically feasible gradient waveforms.

The Second Part analyzes the problem of the joint optimization of gradient and RF waveforms
for the excitation of complex 3-D magnetization shapes. In MRI, spin excitation is usually
performed using either spatially non-selective or slice- or slab-selective RF pulses. In some
applications, it may be beneficial, however, to excite more complex 3-D magnetization shapes
than slabs or slices. For example, excitation of cubic target regions may be used to reduce the
volume that needs to be encoded using gradients in order to form an image. This may result
in shorter acquisition times (TA) at constant resolution or, equivalently, improved resolution at
constant TA, as well as reduction of the echo train length [76], [111]. Other applications could
benefit from exciting volumes of magnetization that are not necessarily cubic. For example,
vessel-specific arterial spin labeling (ASL) could be performed by inversion of the spins flowing in
a specific artery to enhance existing ASL territory mapping techniques [57]. Another potential
application of non-cubic spatially selective excitations is fat suppression in spectroscopic imaging
by excitation of the brain only [64].

A simple approach for excitation of a cubic target region in spin-echo pulses is to excite the spins
(90° pulse) in one slice, followed by refocusing of an orthogonal slice [11]. This strategy is limited
to rectangular target profiles and spin-echo pulses (a significant exception is the STEAM pulse
that uses a series of slice-selective excitation pulses in orthogonal directions for 3-D rectangular
localization of the stimulated echoes [39, 50]). It has long been recognized that 2-D and 3-D
spatial excitations of arbitrary shapes can be achieved by design of the RF and gradient waveforms
used for excitation [53] 9, 65, 112]. However, the potential of these approaches has not yet
been realized clinically because of the long duration of the resulting waveforms.

Schneider et al. [106] designed fast (3.2 ms) 3-D shells and stack-of-spirals trajectories for
excitation of small target regions (rat brain and kidneys) using a powerful gradient system for small
animal imaging (Gmax = 660 mT/m, Smax = 5600 T/m/s). Malik et al. [72] attempted to extend
this approach to a clinical imaging system with lower gradient performance (Smax = 180 T/m/s),
and used pTx to accelerate the excitation pulse (8 channels). Using unoptimized 3-D shells
trajectories, they were able to excite cubic regions of reasonable quality in 12 ms. This pulse
duration is still relatively long despite the pTx acceleration, which makes the resulting pulse
sensitive to off-resonance effects (the authors minimized this problem by using the pulse in a
turbo spin-echo sequence with non-selective refocusing pulses).

This previous work shows that pTx can help reduce the duration of these complex pulse excitations,
but the problem of exciting arbitrary 3-D magnetization patterns is extremely demanding for
conventional 8-channel pTx systems and additional degrees-of-freedom are needed. Increasing
the number of transmit channels and using a gradient system with better performance can help,
but this is costly. Another source of degrees-of-freedom is the k-space trajectory itself. Chen
et al. [16] attempted to exploit the excitation degrees-of-freedom in the k-space trajectory by
parameterizing 2-D k-space trajectories with approximately 150 control points, the positions
of which were optimized using a greedy optimization approach. This process resulted in highly
convoluted trajectories with many turns that are not efficient from a k-space sampling and
gradient performance perspective. Deniz et al. [35] and Sun et al. [113] extended this approach
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to 3-D selection. Like in the 2-D work of Chen et al., the highly convoluted nature of the
resulting gradient waveforms limited the quality of the excitations (15% normalized root-mean-
square-error, NRMSE) achievable in a short time (3.8 ms). Additionally, no information about
the performance of such pulses in presence of off-resonance effects is given (the measurements
shown in [16], 35, [113] were performed in homogeneous spherical or cylindrical phantoms that
are easy to shim).

In this work, a framework is presented that allows designing ultra-short (less than 5ms) 3-D
spatially selective RF pulses with excellent spatial selection quality profiles, constrained peak
powers and intrinsic robustness to off-resonance effects. This latter constraint is essential for
clinical translation, as trajectories not robust to off-resonance effects are not useful in practice.
The proposed framework uses an efficient parameterization of k-space trajectories which greatly
reduces the dimensionality of the gradient optimization problem while preserving enough degrees-
of-freedom for the optimizer to dramatically improve the excitation quality. The framework is
demonstrated for two inner-volume excitation targets (cube and brain shaped targets) using
Bloch simulations and experiments at 7 Tesla. An extension of the framework is presented and
demonstrated that allows to design robust RF pulses for uniform slice-excitation in presence of
severe off-resonance effects.

The Third Part of this thesis is, to the authors knowledge, the first ever published simulation
pipeline for prediction of the physiological effects of rapidly switching gradient fields in a realistic
body model. Since MRI gradient coils must be switched rapidly (at 100-2000 Hz) to image quickly,
the time-varying magnetic field generates electric fields inside the body which can interact with
the nerves, causing peripheral nerve stimulation (PNS). The PNS sensations range from tingling
to, at extremely high switching speed that are not accessible to most clinical MRI scanners,
severe pain. In modern MRI scanners with fast switching gradient amplifiers, PNS typically limits
imaging speed [18, [43]. Most clinical MRI scanners have monitoring software and hardware to
ensure that the switching gradients will not cause painful PNS. These monitors are calibrated by
performing clinical stimulation studies in healthy subjects to measure the thresholds at which the
gradient coil design induces PNS. In these studies, gradient waveforms with different lengths
and shapes are used to obtain characteristics PNS thresholds curves. The time derivative of the
waveforms planned for use in a patient study is then analyzed in a number of different frequency
bands and compared to a similar analysis of the empirical curves to estimate the waveform's
potential for stimulation [56].

Despite the importance of PNS as the practical limitation to use of high-performance MR gradient
system in humans, the current "design-build-test" engineering cycle for gradient coils does not
allow PNS considerations to guide the design of the gradient coils. Instead, PNS is controlled
indirectly by controlling the size of the linear region of the gradient coil. It was found that
the PNS threshold parameters (i.e., field threshold amplitude and chronaxie of the stimulation
threshold curve) vary in an inverse linear manner with the size of the linear region [128]. The
development of a robust method for estimating magnetostimulation would potentially allow
PNS to be incorporated more directly into the coil design optimization phase. At present, MRI
gradient coils are optimized numerically by simulating the current distribution on the coil former
so as to achieve the target magnetic field (i.e., a linear gradient field pattern) [117]. Additional
penalty terms are included to reduce energy consumption [I00], improve heat dissipation [88],
and simplify the manufacturing process [51]. In this framework, a PNS threshold predictor or
"oracle" may be added as an additional penalty term in evaluating a design, potentially uncovering
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geometries with significantly increased PNS thresholds. In Magnetic Particle Imaging (MPI),
PNS is also a significant barrier that must be addressed to scale current scanner designs from the
small animal dimension to human scale. The ability to calculate PNS thresholds for any gradient
coil design might also be useful in evaluating specific situations where workers are exposed to
time-varying magnetic and electric fields. Finally note that there are applications where coils are
designed specifically to achieve stimulation of nerve fibers, for example transcranial magnetic
stimulation (TMS) [46] and nerve conduction studies (NCS) [24] to evaluate the viability of
motor and sensory nerves. These applications could also benefit from a realistic PNS threshold
simulation framework.

The phenomenon of PNS arises from the interaction of the electric fields created by the coil with
the nerve fibers in the human body [13] [19]. If an electric potential gradient is applied to a nerve,
the nerve membrane will be charged electrically (depolarization or hyperpolarization). In case of a
strong depolarization, an unwanted action potential (AP) will be initiated, that results in muscle
contractions and sensory perceptions. If the applied potential is increased beyond this initial
perception threshold, adverse effects can be generated such as pain, stimulation of the central
nervous system (possibly triggering seizures), and stimulation of the autonomic nerves which
might trigger adverse effects such as cardiac nerve stimulation (possibly causing arrhythmia).
The mechanisms behind action potential generation by applied voltage potentials have been well
understood for decades [75, [63, 42}, 94, (17, [1]. For the magnetostimulation problem, the applied
magnetic field is typically known. Based on this magnetic field, many approaches have used
analytic or semi-analytic methods in order to describe the induced electric field and its effect
on the nerve membrane [97), 25| 08, [15, [125], but analytic solutions are restricted to simple
geometries (like a cylindrical geometry) and not applicable to complex structures of differing
electrical properties such as those found in the body. Zhao et al., So et al., and Mao et al. studied
the electric field pattern in a body model with heterogeneous electrical properties and used the
electric field strength as a PNS threshold measure [129], 110, [77]. This is likely to mis-estimate
PNS thresholds since it does not account for the fiber orientation relative to the electric field
or the possible lack of nerve fibers in the peak E-field locations. A more accurate approach to
assess the electric fields in the body is to use heterogeneous tissue models in conjunction with
nerve membrane models to investigate the mechanism of magnetostimulation [67), 87, [01]. In
these works, the simulations have been performed based on simplified nerve segments which
does not allow for PNS threshold prediction unless it is a priori known that the analyzed segment
has the lowest threshold in the body. Very recently, functionalized anatomical models have been
introduced by Neufeld et al. [82] BI] where the nerve fibers were extended to study segments
of the ulnar and sciatic nerves. While providing valuable insights about different neurodynamic
model approaches and the effect of tissue heating on the excitability of nerve fibers, the limited
nature of the nerve model precluded the calculation of general PNS thresholds. Comparison to
experimental data was limited to these few nerve segments. In order to predict the stimulation
thresholds that a person would experience from the magnetic and electric fields created by
a specific coil winding pattern, a complete model of the peripheral nervous system is needed
together with the map of the time-varying E-fields created by the coil within the conductive
body model.

In this work, a framework is developed to predict magnetostimulation thresholds for realistic coil
geometries. A realistic depiction of the peripheral nervous system is utilized, labeled with the
relevant parameters of each segment’s equivalent circuit model. The PNS model is embedded
in a realistic body model of the body tissues, each labeled with its electrical properties. This
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allows for the calculation of the internal time-varying electric fields experienced by the nerves.
Knowing the relative geometry of the induced electric field to the nerve and the nerve's size
and membrane parameters enable to estimate the location and threshold for the first action
potentials generated by the applied fields. Increasing the strength of the electric field until an
action potential is observed provides a measure of the maximum drive current and voltage that
can be applied to the coil without causing PNS. Performing this simulation for different coil
designs allows for comparison of the design's PNS thresholds during the design/optimization
stage, prior to coil construction.



Theory

2.1 | Basics of MR Signals

2.1.1 Electromagnetic Spin and MRI Basics

The physical basis of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI)
is the electromagnetic spin — a quantum-mechanical entity of angular momentum inherent to
elementary particles, composite particles, and atomic nuclei. This entity is equivalent to the
force phenomenon that rotating bodies experience in presence of an external force field. A
precessing body reacts to an external force field (e.g., the gravitational field of the earth), in a
way that the rotation axis starts to rotate around an axis parallel to the gravitational field (i.e.,
the direction of the experienced force is given by the cross product of these two axes). This
holds, if the rotation axis of the body and the gravitational axis enclose an angle unequal to zero.
The enclosed angle induces a force pointing away from both the axis of the rotating body and
the axis perpendicular to the gravitational force field. Due to the inertia of the rotating body,
however, the body experiences a compensatory movement tangential to the circular movement
of the axis. As the axis reacts on this force with a finite movement that changes the axis itself,
the direction of the force rotates as the axis moves. The induced circular movement of the axis
around the direction of the gravitation is called precession.

An analogue of the mechanical precession of the inert body due to the gravitational force is
present for particles that possess the above mentioned quantum-mechanical spin. The spin is
associated with a magnetic dipole moment that induces a precession around an external magnetic
field. Two significant differences can be identified compared to the mechanical spin described
above that allow the electromagnetic spin to be employed for imaging purpose, as it is done in
MRI.

Contrarily to the mechanical spin, the quantum mechanical spin cannot take arbitrary values.
In fact, in presence of an external magnetic field, the spectrum of energies (each arising from
the magnetic dipole moment) is split into discrete components, each of which associated with
a different potential energy level. This phenomenon of discrete energy splitting is called the
Zeeman effect. The number N of valid energy levels depends on the particle’s spin [ and is given
by

N=2/+1. (2.1)
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Each energy state is associated with the magnetic quantum number m, given by
m=—/,—I+1,....1—1,1. (2.2)

For protons having a spin of / = 1/2, this results in N = 2 discrete energy levels with magnetic
quantum numbers m; = —1/2 and mp = +1/2 that the spin can take. The energy level itself is
linked to the quantum number via

Em = —yhimBy (2.3)

where h denotes the Planck constant and By denotes the external static magnetic field strength.
The gyromagnetic ratio v is defined as the ratio of a particle’s magnetic dipole moment to
its angular momentum and has, in the case of protons with a spin of /| = 1/2, a value of
v =42.6 MHz/T. For particles that populate the lower energy level E; the spin is aligned parallel
to the magnetic field; spins in the higher energy level E» are aligned anti-parallel.

The equilibrium distribution of these energy states in a macroscopic probe is determined by

Boltzmann statistics:
N1 —AE
Ny~ P ( kBT) (24)

In the above equation, N1 and N | denote the relative amount of spins populating the parallel
and anti-parallel energy level, respectively, AE denotes the difference between the respective
energy levels, kg denotes the Boltzmann constant and T denotes the temperature in Kelvin.
The relative difference is (in first approximation) proportional to the external field strength and
inversely proportional to the temperature [49]. The ratio between spins populating the parallel
and anti-parallel states, respectively, is very close to 1, but it is not 1. The difference between
the two energy levels is approx. 6.6 ppm at room temperature (37 °C) in presence of an external
magnetic field with Bo = 1 T. The overhead of spins populating the parallel state over the
anti-parallel state creates a measurable equilibrium magnetization which is aligned along the
external magnetic field, referred to as longitudinal magnetization.

Although, on a microscopic level, the precessing spins do possess a magnetization component
perpendicular to the static magnetic field, i.e., in the transverse plane, the macroscopic transverse
magnetization of the entire spin compartment remains zero as long as the individual spins precess
non-resonantly (i.e., the spins are out of phase). In this case the individual transverse magne-
tization components cancel each other statistically. If, on the other hand, an electromagnetic
field with a suitable frequency is applied to the probe, given by the precession frequency of the
proton, the Larmor frequency w = yBp, resonant absorption leads to an energy transfer to the
spin system. This energy transfer has two major effects on the macroscopic magnetization:

(i) The spin collective starts to precess resonantly, creating a non-zero macroscopic magneti-
zation component in the transverse plane that precesses around the static field axis by the
Larmor frequency.

(i) The distribution of the two energetic levels of the spin compartment (parallel and anti-
parallel) is changed, which alters the longitudinal magnetization component (i.e., the spin
collective is not in the equilibrium state as determined by the Boltzmann statistics).

The two distinct magnetization components (the rotating transverse vector component and
the longitudinal vector component) add up, yielding a macroscopic 3-D magnetization vector.
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Despite the 3-D nature of the probe’s magnetization, it is the transverse component (i.e., the
component in a 2-D plane) which is measurable by Faraday induction.

Over time, the excited probe returns to the equilibrium state via relaxation. In this equilibrium
state only a longitudinal magnetization component is present. Each component (transverse and
longitudinal component) experiences a temporally different relaxation phenomenon. Either of
these relaxation effects is a decisive characteristic of the probe and varies spatially with different
properties of the probe. Along with the locally varying magnitude of the 3-D magnetization
vector right after excitation (this magnitude is associated with the number of excitable spins,
i.e., the proton density), these characteristics are exploited in MRI to generate images with
exceptional contrast.

The processes in NMR and MRI that have been described phenomenologically — the precession
of the spin compartment, the effect of resonant electromagnetic radiation, the two distinct
magnetization components, as well as the relaxation effects — are described by a fundamental
differential equation that is introduced in the following section. This differential equation will be
characterized in detail, and a strong focus will be placed on the effect of MR gradient fields.

2.1.2 Bloch-Equation

On the microscopic scale (i.e., considering a single nuclei), the mechanisms of spin precession are
based on quantum mechanics and, therefore, need to be treated as such. On the macroscopic
scale, however, the large number of spins under consideration allows for a description via classical
physics. The basic formulation of this macroscopic description is the so called Bloch-equation
[6l, 149]

M =(M % B). (2.5)
where M = (M, My, M) denotes the vector of the macroscopic magnetization and B =
(Bx, By, B;) denotes the magnetic field strength. Equation 2.5 describes a system of coupled
linear differential equations that temporally links the magnetization vector M and the applied
magnetic field vector B. As was mentioned before, a static magnetic field By is used to create a
precessing spin collective along the static field. The orientation of the static magnetic field along
the spatial z-axis separates the three dimensional magnetization vector M into two components,
the longitudinal magnetization parallel to the By field and the transverse magnetization which is
oriented perpendicular to the Bg field. The longitudinal and transverse components experience
different relaxation effects that can be quantified by time constants 7; and T,, respectively.
These time constants 7; and 7T, can be incorporated into the Bloch equation, yielding

dM, ¢ 1 M, o 1 M,
el ¥ _M X B_X T = v _/\//yBZ MZBy_ T (2.6a)
dm, — 1M, : 1 M,
—Y —yMxB| -Z — y[M.By— MB,| - = 2
dt ry L S ly T2 ’Y L z Z_ 7—2 ( 6b)
dM : 1 M, —M : 1 M, — M,

Z —y|MxB| - = y|MB, - M,B,| - 2 (2.6¢)
dt . I; T, . | T,
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The transverse entities (i.e., those in the x-y-plane) in this system of equations are commonly
combined into a single complex formulation for the transverse magnetization M and the magnetic
field component B+ as

M; = My +iM, and B;=By+iB,. (2.7)

Using the complex notation, the Bloch equations reduce to

dM _ M

dtT = —iy [MTBZ — MZBT} — 7TT , (2-83)
2

M, . M, — Mo

= (M B} — MiB;| — — (2.8b)

where i denotes the complex number and (-)* denotes the complex conjugate. Assuming that
no magnetic field other than the static magnetic field is present (B, = By and By = 0) and
further neglecting any relaxation effects, i.e., T;, T, — oo, Eqgs. 2.8a and 2.8b become

dM5

el —iyM:By and (2.9a)
dM,

= 2.
9 0, (2.9b)

respectively. These are uncoupled linear differential equations that can be solved very easily,
yielding

My (t) = (My)g e 750t (2.10a)
M, (t) = (M;), = const.. (2.10b)

Equation 2.10a illustrates that the static magnetic field By gives rise to a precession of the
transverse magnetization component My around the z-axis. The rotation proceeds at an angular
velocity

w=1vBy, (2.11)

that is referred to as the Larmor frequency. This Bg-induced precession is constant over time
and complicates the mathematical treatment of the magnetization. Fortunately, the rotation
can be dropped from the Bloch equation without impairing its validity. This can be achieved by
introducing a rotating frame of reference, in which the transverse magnetization My is rotated
at an angular velocity of Q2 while the longitudinal magnetization M, is kept unaltered. In this
rotating coordinate system, the effect of the static field By on the magnetization vector M
vanishes if 2 = w. The transformed equations of the longitudinal and transverse magnetization
read

ML (t) := %My (t) | (2.12a)
ML (£) == M, (t) . (2.12b)

10
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The Bloch equation for the transverse magnetization component, complemented by the rotating
frame transformation (by substituting Eq. 2.12a into Eq. 2.8a) reads as

dM(8)  ordMy (1)
— =¢ - 7
dt dt

_oat| _ i’y(MT (t) B, (t) — M, (t) BT) _

+iQeS2EM, (1)

M (t)
T,

} +IQM. (t)

_ {_ w([eiﬂfMT(t)}sz(t) — M, (t) [eiQfBT(t)D - MTTZ(”} +iQM. (t)
= _iry(/\ﬁ(t) B, (t) — M, (t) B'T(t)) +iQM. (t) — MTTft) . (2.13)

In a similar way, the longitudinal magnetization in the rotating frame of reference becomes

(1) = (Mz)o
T, '

MeL8) 2@ 87 (0 - ) (B ()| -

(2.14)

The Bloch equations formulated in Egs. 2.13 and 2.14 illustrate the coupling between the
magnetization vector and the applied magnetic fields. The static magnetic field has already
been introduced as the first fundamental magnetic field component present in an MR scanner.
However, two additional magnetic field components are required in order to 1) achieve excitation
of the probe (i.e., to drive the magnetization away from the resting state) and 2) to achieve
spatial encoding.

Magnetic Field Components

The magnetic field B used in an MR scanner consists of a variety of different field components
required for excitation and signal acquisition:

1) a static magnetic field By needed for polarization of the probe and to induce the spin
precession,

2) a spatially and temporally varying linear gradient field B = (G (t),r) with G =
(Gx, Gy, Z,) where Gy, Gy, and G, have the unit [T/m]; these fields locally change
the precession frequency to achieve spatial encoding,

3) radio-frequency (RF) fields denoted by B; used to resonantly transfer energy to the spin
system.

These three components are limited to certain spatial dimensions, namely

By = [ o, 0 ., By ] , (2.15a)
B(;:[ o o <G(t),r>} , (2.15b)
B, = [ (Bi)x . (B1)y, 0 } : (2.15¢)

i.e., the static field is limited to the z-axis and the B field is restricted to the x-y-plane as the
(B1), component is not observed by the spin. This is due to the static field that exceeds its
strength by several orders of magnitude. The gradient fields Bgx, Bgy, Bg, (created by three

11
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distinct coils) produce a linear field variation of the z-component of the static field along the
different spatial axes:

d(BGX)Z -G d (BGJ/)Z

d (BGZ)Z
dx dy '

= Gy dz

=G, . (2.16)
Is is important to note that, although for the imaging process, only the z-components of the
gradient fields Bgx, Bgy,, Bg, are relevant, the gradient coils produce so-called concomitant
fields (i.e., fields not needed for image encoding) that are of significant strength. These
concomitant field terms can induce substantial levels of electric fields, that can cause stimulation
of nerve fibers in the human body. This mechanism will be investigated in detail in Sec. 3.4.
Assembling the effective magnetic field terms for each spatial dimension vyields

By (t, rc) = (B1), () =Re{B (1)}, (2.17a)
By (t, ry): (Bl)y(t) = Im{BT(t)} ' (2.17b)
B, (t,r;) ={(G(t),r)+ Bg+0Bo. (2.17¢)

where d By denotes static magnetic field inhomogeneities. These inhomogeneities partially arise
from system imperfections of the MR scanner and partially from susceptibility effects, e.g., those
caused by the metabolism of the human in the brain (cf. BOLD-contrast [115]). Substituting
these distinct field components into Eq. 2.13 and rearranging the terms yields

dM; (1) _ M (t)

iy (M () B (t) = M, (£) By () ) + iQM; (¢) - (2.18)
dt T,
. y . , . , o, M-~
=1(Q2 —wp) My (t) —ivdBoM; (t) — iy (G (t), ) M= (t) +iyB (t) M, (t) — -
2
——
Larmor Field inho- Spatial RF Relaxation
precession mogeneity encoding excitation effects

The second line of Eq. 2.18 combines all major effects of the applied magnetic field components
into a single equation: the first term describes the Larmor precession in the transverse plane
and illustrates that, due to the coordinate transformation into the rotating frame of reference,
the precession vanishes if 2 = wp. Potentially present field inhomogeneities § By of the static
magnetic field By influence the transverse magnetization, resulting in the so called T.*-relaxation
(second term). An RF pulse that is applied at time point t will only have an effect on the
transverse magnetization if the longitudinal magnetization M, (t) is unequal to zero.

2.1.3 Relaxation Effects

The differential equations given by Egs. 2.13 and 2.14 indicate that, if both M, = My and M, /, =
0 hold (equilibrium magnetization) and if no RF field is applied (By = 0), the magnetization vector
M does not experience any temporal change, i.e. %M = 0 (the entire system is at resting state).
If the magnetization is not in the equilibrium state there are two separate physical effects that will
restore the equilibrium over time. The first effect recovers the initial longitudinal magnetization
M with a time constant T7, a second effect decreases the transverse magnetization My with
time constant T» (such that My will vanish eventually).

12
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The T,-relaxation formulation is derived from Eq. 2.18. Assuming that no gradient fields
(G (t) =0) and no RF fields (B’ (t) = 0) are applied, the differential equation of the transverse
magnetization simplifies to

dMy (t) M (1)

2.19

Equation 2.19 is a linear ordinary differential equation, whose solution is obtained via common
separation of variables and subsequent integration, written

1 1
dM. :/—dt
/l\/l4(t) T T,

S ML (t)=Ce T2, (2.20)

which, with respect to the initial conditions, yields
_t
M. () = (M), e /T . (2.21)

Here, (My), denotes the initial transverse magnetization at t = 0. An analogous approach is
used for the derivation of the T;-relaxation. Once again, under the assumption of no gradient
and RF fields being present, B} (t) = 0, the differential equation given by Eq. 2.14 becomes

dM, (t) _ _/\/lz (t) — Mpy
dt T, '

(2.22)
whose solution is given by

M. (£) = Mo + [ (Mo) — Mo e (223

2.1.4 Slice-selective Excitation

The previous subsection was dedicated to derive a general formulation for the coupling between
the magnetization vector and the applied magnetic fields. The magnetization components and
magnetic field components were separated into transverse and longitudinal entities which simplifies
the mathematical handling of the Bloch equations. Using this complex notation the differential
equation can be solved to design a B; pulse shape that when accompanied by appropriate gradient
fields achieve a certain excited state of the magnetization. The most commonly used type of
excitation pulses are slice-selective pulses. For this kind of pulse an analytic solution for the
required B; waveform can be derived. A commonly used simplification applied in the pulse design
problem is to neglect relaxation effects. This is a reasonable assumption as long as the RF pulses
to be designed are significantly shorter than the relaxation times (e.g., in the order of 5 ms which
compares to T, &~ 1000 ms and T, ~ 100 ms [49]).

In this case, Eq. 2.18 expressed with an explicit dependency on the spatial location r,, becomes

de(t”) = =Gz (8) =My (8) +iyBr (1) M (2) - (2.24)

In this formulation gradient fields are only present in z (Gx = G, = 0) and the spatial dependency
is limited the z-axis (r;), meaning that the selectivity of the slice-selective RF pulse is only

13
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achieved along the z-direction. Nonetheless, the same formulation holds when playing multiple
gradient axes simultaneously. In this case the first term on the right hand side remains as
—iy (G (t),r) M, (t). An RF pulse that is accompanied by more that a single gradient field axis
is referred to as a multi-dimensional RF pulse (see Sec. 2.2.1).

The differential equation stated in Eq. 2.24 can only be solved under the assumption that the
M, (t) magnetization component is not affected by the RF pulse. Although from the physical
perspective this assumption only holds for very small flip angles, accurate RF pulses can be
achieved for flip angles up to 90°. This assumption is referred to as small tip angle regime
(STA) and is widely used for the design of RF excitation pulses [86]. Using the small flip angle
assumption the right hand side simplifies to

dM. (t, ry)

G = MG (6) M (8) +ivBa () Mo . (2.25)

In the above equation, the term B~ is replaced by the more common term B; (very often the
notation Bf is used where the "+" superscript indicates that the Bi-field is transmitted; for the
receive case the field is denoted by B; ). Eq. 2.25 is an ordinary linear first order differential
equation. The generalized form of this kind of differential equations is written as

ECRCHOETION (2:26)

which can be solved by multiplication with an integrating factor

exp </Tf(t) dt) | (2.27)
leading to
9o ([ @0 dt) =y @en ([ r(0)de) +r Oy e ([ f d)
:ddt[y(t)exp (/Tf(t) dt>] (2.28)

where the right hand side was reformulated using the product rule of integration. Integrating
and solving for y (t) results in

y(t):exp(—a(t))(/Tg(t)exp(a(t)) dt—l—c) where a(t):/f(t)dt. (2.29)

which is the general solution for Eq. 2.26. Using this generalized form, the solution of Eq. 2.24
can be written as

M. (t, r;) = exp (—ify /t: G, (t) ert) . /t: 7By (1) Mg - exp (/t: ivGz (n) rz dn) dr (2.30)

with tp denoting the beginning of the RF pulse. In this case, the constant ¢ is associated with
the initial transverse magnetization M- (ty) = (M), that is assumed to be zero and, therefore,

14
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Figure 2.1: Slice-selective excitation, Left: RF waveform (top) and gradient waveform (bottom) applied within
the excitation (note the refocusing gradient at the end with negative polarity and half the length); Right: the

applied sinc waveform results in a rectangular excitation profile

was dropped. Assuming an RF pulse with duration denoted by T, with ty = —7»/2 and playing a
constant gradient G, (t) = G during the pulse, Eq. 2.30 further simplifies to

Tp
T2

M (To/2, r;) = exp (—ivG,r,Tp) - / iYB1 (1) Mo - exp (i7Gzrz (T + Tp/2)) dT

Tp
2

LT
= iyMo - exp (—ivGzr,Tp) - exp (ivG.r,Te/2) - / sz Bi(7)exp (i7G,r,T) dT
-7

Tp
T
= iyMp exp (—iyG,r;Tv/2) - /Tp Bi(T) - exp(ivG,r,T) dT. (2.31)
T2
——— ——— —
Phase dispersion Slice Fourier
after RF pulse profile harmonics

At this point a few important conclusions can be drawn from the above equation:

1) The magnetization M/ at the end of the RF pulse and the applied B; field are

linked by a Fourier transform.

2) The Fourier counterpart to the spatial location r; is given by the gradient strength
G, times the duration of the pulse 7 times the gyromagnetic ratio -y, or more
generally, by the gradient field induced phase accumulation. If variable gradient
waveforms are employed G,7 is replaced by the time integral of the gradient

waveform.

3) The gradient which is played during the pulse induces a phase dispersion of the
magnetization after the pulse; the strength of this dispersion corresponds to half
of the pulse duration T»/2 and needs to be compensated for by playing a so-called

refocusing gradient lobe after the slice-excitation.

The Fourier relation between magnetization in the spatial domain and the B field in time-domain
is very useful, because this often allows to design RF pulses "on-the-fly" using analytic Fourier
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transforms of desired magnetization profiles (like rectangular or Gaussian profiles). If, for example,
a slice with rectangular profile is to be excited along the z-axis, the RF waveform to be played
corresponds to a sinc function, depicted in Fig. 2.1 (the sinc function is the Fourier transform
of the box function). Mathematically, the sinc has an infinite extent which would require an
infinitely long RF pulse. In practice, only a few side lobes of the sinc are incorporated which
limits the accuracy of the excited profile. As a result of this limitation, so-called Gibbs artifacts
are present (cf. Fig. 2.1, right). To some extent, these artifacts can be diminished by multiplying
the RF waveform by a smooth window function (such as a Gaussian or a Hanning window). This
window function creates a smooth decay of pulse at the cut-off time which in turn eliminates
high-frequency components in the slice profile.

2.1.5 Image Acquisition

The slice-selective excitation pulse described above allows to generate a magnetization distribution
M-+ () in the probe which is spatially limited to a plane of certain thickness (slice thickness).
The exact shape and location of the excited slice are determined by the played RF waveform as
well as the gradient strength. Excitation of a magnetization profile with 1-D spatial selectivity
means that the remaining 2-D signal needs to be encoded and acquired via the readout phase in
order to form an image.

The spatial encoding during reception is based on the exact same mechanism that is used for
excitation which is the generation of phase patterns corresponding to 3-D Fourier harmonic waves
and acquiring the signal that the probe emits in this phase state. Assuming that the slice-selective
RF pulse created a refocused in-phase magnetization pattern in the x-y-plane: applying a gradient
field in a probe for a certain amount of time will change the precession frequency of the spin
system as a function of the respective axis coordinate, e.g., for the x-gradient as a function
of x. The different spins accumulate a phase which depends on the spatial location along the
x-axis. Due to the linearity of the gradient field, the global phase pattern in the image plane
corresponds to a 3-D harmonic wave. The normal direction and frequency of the harmonic wave
are determined by the time course of the gradient field that has been played until that time point.
Playing a certain gradient field strength for a long time will lead to a large phase accumulation
and thus to a high spatial-frequency harmonic wave, whereas playing the same gradient field
strength for only a short time will generate a harmonic wave phase pattern with a lower spatial
frequency. Note that the signals being emitted by the probe under a certain phase pattern are
unique, i.e., different 3-D harmonic phase patterns generated in the probe will induce different
signals to be emitted. The creation of 3-D harmonic waves as a result of the applied gradient
fields once again illustrates the relationship between magnetization pattern in spatial domain and
the emitted electromagnetic signals in time domain: these two entities are linked by the Fourier
transform.

The "collective" of all harmonic waves is usually denoted as k-space. Creating the different
harmonic waves by applying gradient fields and receiving the respective emitted RF signals
means: acquiring k-space. In order to be able to reconstruct the 2-D image k-space needs to be
sampled sufficiently dense. Since the measured information corresponds to the complex Fourier
coefficients of certain harmonic waves, the amount of information for image reconstruction is
determined by Fourier mathematics, particularly by the Nyquist sampling theorem [83]. This
theorem states that in order for a band-limited signal to be accurately discretized, the signal must
be sampled with a frequency greater than twice the maximum frequency component present in
the sampled signal. Otherwise high-frequency components are incorrectly estimated by the signal

16



Chapter 2 Theory

sampling, leading to aliasing artifacts in the reconstructed signal. Because the signal in MRl is
effectively sampled in frequency domain, and the image (in spatial domain) is reconstructed by
performing an inverse Fourier transform, these aliasing artifacts manifest themselves in image
domain as fold-over or "ghosting" artifacts, meaning that the image is periodically overlaid onto
the reconstructed image. In order to avoid this kind of artifact in MRI the sampling step size in
k-space, Ak,,,, and the size W, of the field-of-view (FOV) are linked by

1 1
Ak, < — and Ak, < — . 2.32
=W V= w, ( )
Equivalently, the minimum spatial feature (i.e., the pixel size Ax/y) that can be reconstructed
via the inverse Fourier transform is determined by the largest k-space components K,/ max. I.€.,
the maximum frequency harmonic wave that has been acquired in k-space along the respective
axis, namely

Ax > and Ay >

X, max ky,max

(2.33)

These two conditions determine the amount of k-space information required to correctly re-
construct an image. In the following the concept of k-space will be given a mathematical
foundation.

2.1.6 The k-Space Formalism

The derivation of slice-selective RF pulses revealed that there is a relation between the applied RF
pulse shape and the magnetization created by that pulse that corresponds to a Fourier transform
(at least for sufficiently small flip angles). The exponential term in the Fourier transform depends
on the time integral of the gradient waveform G, (t) (cf. Eq. 2.31). This integral defines the
transform variable in frequency domain, whereas the coordinate r, defines the respective variable
in spatial domain.

Neglecting relaxation effects, the total complex transverse magnetization My (t) is given by

/\//T(t):/Rm(r)exp (—i/(:w(t,r)dt> dr | (2.34)

with m (r) = m(x, y, z) denoting the spatial magnetization distribution right after the excitation.
The spatially and temporally varying exponential term describes a phase pattern accumulated
by the magnetization. This phase pattern is determined by the time course of the local angular
velocity w that in turn is proportional to the gradient fields G (t) (that change the Larmor
frequency as a function of space), namely

w(t,r) =v(G(t),r) . (2.35)
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Therefore, the integral in the exponential can be rewritten as a time integral of gradient fields
G (t) given by

Q(T.7) :—/Tw(t,fr)dt
0
.
:/0 V(G (1) ) dt

:x-fy/oTGX(t)dt+y~’y/OTGy(t)dt+z-'y/OTGZ(t)dt. (2.36)

Note that each gradient field produces an independent phase contribution to the entire phase
dispersion Q (T,r). This motivates the introduction of a coordinate space which is more
convenient when dealing with the spatial magnetization distribution (i.e., in spatial domain) and
the signals induced by the precessing magnetization (i.e., in time domain). This coordinate space
is referred to as k-space and is a central concept in MRI. The k-space coordinates k (t) are
defined via

.
ke (1) ::7/0 G (1) dt
T
k() =| k(1) ::’y/ G, (tH)dt | - (2.37)
OT
K () ::'y/o G, (t)dt

The time series of k-space coordinates is referred to as k-space trajectory. Substituting the
k-space coordinates back into Eq. 2.34 leads to

MT(t,r):/Rm(r)exp(—i<k(t),r>)dfr
:/Rm(r)exp (<ilke () x + Ky () y + ko (£) 2]) drv . (2.38)

This expression illustrates that the total transverse magnetization My (t) (that determines the
signal induced in receive coils via Faraday induction) can be expressed as a multi-dimensional
Fourier transform of the magnetization distribution m(r) from spatial to frequency domain
(similarly to the 1-D case for slice-selective excitation pulses). Note that there is a close
resemblance between the reception phase (where the electromagnetic field is emitted by the spins
and received by the coil) and the excitation phase (where an electromagnetic field is emitted by
a coil in order to excite the spin system). Both the receive and transmit mechanisms can be
simplified by making use of the k-space formalism.
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2.2 | State-of-the-Art RF Pulse Design

2.2.1 Multi-dimensional Excitation

In Sec. 2.1.4, the Bloch equation was solved to allow for the design of RF waveforms accompanied
by an encoding gradient such that a slice is excited in the probe, see Eq. 2.31. This solution of the
Bloch equation is computed based on the small flip angle approximation that assumes that the
longitudinal magnetization is not affected by the excitation (i.e., it stays at M, = 1, independently
of the flip angle). This allows for deriving analytic pulse shapes: in fact, the shape of the RF
pulse and the resulting slice profile are linked together by the Fourier transform. Accordingly a
sinc-pulse can be used to generate a rectangular slice profile, whereas a Gaussian-shaped RF
pulse excites a Gaussian slice profile. The term "slice-excitation" refers to the fact that spatial
selectivity is achieved along a single spatial axis (most commonly the z-axis) whereas no variation
of the magnetization along the other two spatial axes (x and y) is generated. The slice-selection
strategy only requires one MR gradient field to be applied along the slice selection axis (in this
case the G, gradient). Note that slices can be excited with arbitrary orientations, i.e., additionally
to orientations that correspond to the "pure" gradient axes x, y, and z, multiple gradient axes
can be combined in order to arbitrarily orient the slice in 3-D space.

In case of slice-selectivity along the spatial z-axis, the differential equation is given by

dMy (t, rz)

4 —iyGz (t) rzM5 () + ivB5 (£) M (1) (2.39)

whose solution (in the small tip angle regime M, (t) = My = const.) is given by

M. (t, r;) = exp (—ify/tt G, (t) rzdt) : /tt 7By (1) Mg exp ( /tT ivGz (n) 12 dn) dr.
i i i (2.40)

A detailed derivation of this expression is given above. Again, RF pulse and the resulting
magnetization pattern are linked via the Fourier transform, with the Fourier harmonics being
determined by the gradient waveform (i.e., by the k-space coordinates).

This Fourier relation can be extended to 2-D and 3-D, i.e., multi-dimensional gradient waveforms
can be employed in order to achieve multi-dimensional selectivity of the magnetization pattern
to be excited by the RF pulse. In this case the Bloch equation in Eq. 2.39 modifies towards

dMy (t,r)

T = S (G () ) My (8) + B (6) ML (2) (2.41)

where G (t) = (G« (t), G, (t), G, (t)) is the 3-D gradient waveform. Equivalently to the 1-D
case, the solution to the differential equation (using the small tip approximation) is given by

M. (t,r) = exp <i'y/t (G(t),r) dt> ' /t ivB1 (T) Mg exp <i’y/T (G(n),r) d'r)> dr

to to to

— iyMo exp (i'y/t<G(t),r> dt) -/t: B, (1) exp (—w/: (G (1) 7) dn) dr

to

w(t.r)
(2.42)
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The integration bounds were adjusted, assuming that the pulse duration is given by T. For the
sake of simplicity, the first exponential term on the right hand side is replaced by ¢ (t,7) in the
following. Again this term describes the phase dispersion at the end of the pulse arising from the
applied gradient fields; the phase dispersion needs to vanish in order to establish a refocused
magnetization after the excitation pulse. This requirement holds both for 1-D excitation pulses
(slice-selection) and multi-dimensional excitation pulses. Note that this requirement is intrinsically
satisfied if the associated k-space trajectory ends at the center of k-space, i.e., k(T) = 0. Using
the definition of k-space given in Sec. 2.1.6, Eq. 2.42 becomes

M (67) = iMoo (. 7) [ "Bi(r) - e (i (k (D). 7)) dr (2.43)
with
)
k() = — / G (n) dn. (2.44)

The coordinates in (k (t),r) define the Fourier pair in the multi-dimensional excitation case, i.e.,
the k-space formalism is extended to multiple dimensions. The time dependency of the k-space
term in the Fourier harmonic can be eluded using the three dimensional delta function 36 (k),
namely

M (6.7) = Mo (8.7) [ By () - exp (i (k (7). 7)) o7
:i'yMo-(p(t,r)/tt B, (’I’)/K35(k:(7')—k) dk - exp (i (k (1) 7)) dT

:i'yMo-(p(t,r)/K/ttBl(T)e’é(k:(T)—k) dr - exp (i, 7)) dk . (2.45)

= f (k)

The expression denoted by f (k) defines the k-space information pattern, i.e., the k-space path
weighted by the RF information as deposited by the Bi-field. Substituting t by k (t) results in

f(k):/ttBl(T)35(k(’r)—k)dT

_ [TBiR) p(k) 55y [dR ()]
- ew, =BT
_Bik) p(k) [fas dk (1)
= Bew L, 780k [T or (2.46)
W (k) P (k)
where
(ke (0)%0(k (1) — k) = 7 (k)6 (k — k(1)) (2.47)
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was used. The expression of the k-space information pattern was separated into two entities: the
term denoted by W (k) describes the RF energy that is deposited along the k-space sampling
pattern denoted by P (k). The local sampling density of the k-space trajectory is given by p (k).
The term ||¥G (k) ||, corresponds to the k-space velocity of the trajectory which inversely scales
the deposited energy. Mathematically, W (k) (neglecting the RF waveform B; (k)) represents
the Jacobian determinant which performs the variable substitution, namely

Bi (k) p (k)
|vG (k) H2

in Eq. 2.46. In the case of a 1-D RF pulse (e.g., slice-selective pulses), the sampling density
o (k) is equal to one and W (k) reduces to

dk — dt (2.48)

W)= B1 (k) (2.49)

VG (k) H2 .

This means that the RF energy deposited at the current k-space location is inversely weighted
by the velocity at which k-space is sampled. The same holds for multi-dimensional pulses, if the
gradient trajectory is designed such that excitation k-space is sampled uniformly.

If, on the other hand, non-uniform gradient trajectories are used, the sampling density p (k)
established by the trajectory is needed in order to correctly weight the coefficients for the RF
waveforms. For rather simple k-space sampling patterns (like spirals) analytic expressions of the
weighting function can be derived from the gradient waveforms. For more complex trajectories
(especially those for which no closed analytic expression exist), the Jacobian determinant and
thus the sampling density cannot be quantified analytically. In this case the sampling density can
be estimated, e.g. by performing a so-called Voronoi tessellation of the time series of k-space
samples [92]. Another more straight forward approach for solving the k-space sampling density
problem, is referred to as the Spatial Domain RF Pulse Design method proposed by Grissom
et al. [45]. This method makes use of the linearity of the Fourier transform to assemble the
full system matrix and directly solve for the RF waveforms, including the sampling density and
k-space velocity terms (this method will be described in detail in a following section).

Using the weighted k-space information pattern f (k) (i.e., the sampling pattern weighted by the
deposited RF energy), the transverse magnetization at the end of the RF pulse (at time point
T) can now be written as

Me (T, 7) = wMO/K F (k) - exp (i (k, 7)) dke . (2.50)

In the above equation it was assumed that the trajectory ends at the center of k-space,
k(T) = 0, and thus leaves a magnetization pattern which is refocused (i.e., ¢ (t,r) = 1). Using
the separation of f (k) into the RF deposition term W (k) and the k-space sampling term P (k),
Eqg. 2.50 can reformulated by
My (T, 7) = ifyMo/ W (k) P (k) - exp (i (k, 7)) dk
K
— o 5{W (1) P (k) |

= ivMo -S{W(k) } « S{P(k) } . (2.51)
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where F (- ) is used to denote the Fourier transform. The last row of Eq. 2.51 arises from the
property of Fourier transforms that a multiplication of two functions in frequency domain can
be expressed as a convolution of the respective Fourier transformed functions in spatial domain
(and vice versa).

Equation 2.51 illustrates an important property of MR imaging sequences: the Fourier transform
of the k-space sampling pattern specifies the so-called Point-Spread-Function of the imaging
system and, therefore, characterizes the resolution capabilities. Trajectories that achieve a
rather uniform k-space sampling pattern (like echo planar and spiral trajectories) establish a
point-spread-function that (in first approximation) corresponds to a periodic sequence of delta
peaks. This means that the excitation pulse accurately creates the target magnetization within
the field-of-excitation (FOX) with a periodic repetition of the target outside the FOX. Note
that in the excitation case, the sampling pattern can be non-uniform (creating a non-uniform
point-spread-function) as long as the target magnetization profile is not degraded by the point-
spread-function. In other words: different k-space trajectories may be designed specifically for
different target magnetization profiles to make efficient use of the spatial characteristics of the
target. This is an important degree-of-freedom that will be exploited in the methods (Sec. 3.2)
for the design of ultra-short 3-D spatially selective RF pulses.

2.2.2 Parallel Imaging and Sensitivity Encoding

In the previous section the idea of multi-dimensional RF excitation was described as the traversal
of excitation k-space following a trajectory (defined by the gradient waveforms) along which
information is deposited by an applied RF field. From Eq. 2.46 it is apparent that the location
k (t) of RF deposition can be written

36 (k (1) — k) (2.52)

i.e., by the three dimensional delta function. The mechanism of RF energy distribution in k-space
is illustrated in Fig. 2.2 A, where the Fourier harmonic k,,, = 25 m~! (left) and its Fourier
transform, i.e., the k-space kernel (right) are shown. The applied gradient fields created a
harmonic wave (top row) whose normal direction and spatial frequency correspond to the location
of the peak in k-space (bottom row). By transmission of RF power using a coil with uniform
sensitivity, RF energy is deposited at a single location in k-space at each time point t. In practice,
this only holds if the B field has a uniform sensitivity throughout the entire field-of-excitation. If
there is sensitivity variation present in the Bf field, the information is deposited in a neighborhood
of the k-space location: the size of the k-space neighborhood increases as the sensitivity of the
Bi" field becomes more non-uniform (see Fig. 2.2, B and C). This property — that a non-uniform
B field is associated with an extended neighborhood in k-space — holds both for the reception
case (By) and the transmission case (B;f"). In the reception case, the coil receives a signal
mixture arising from an extended region of k-space harmonics. In the transmission case, the coll
deposits the RF energy not at a single k-space location, but the information is smeared across a
k-space neighborhood.

What seems as an implication for MR imaging at first sight, has lead to one of the most important
inventions of MR imaging: Parallel Imaging [90]. The "imperfect" coil profiles can be used to
undersample k-space during the excitation and reception beyond the Nyquist sampling condition
(Eq. 2.32) to speed up the imaging protocol. The parallel imaging mechanism is applicable to
both reception (speeding up the signal acquisition) and transmission (speeding up the signal
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Figure 2.2: Top: Fourier harmonics (kx, = 25 m’l) in spatial domain, modulated by a perfectly homogeneous coil
profile (A) and coil profiles with mild (B) and strong (C) sensitivity variation. Bottom: for each Fourier harmonic,
the respective k-space kernels (i.e., the Fourier transform of the coil profiles) are shown.

excitation). With respect to the transmission case, the general idea is to use independent
transmit coils with different sensitivity profiles (i.e., different k-space kernels), where each coil
is driven by an independent transmit signal. Therefore, each coil deposits a different complex
information in k-space in a region determined by the k-space kernel. In order to ensure that RF
information in the entire k-space neighborhood is generated correctly, the individual complex
signals are designed such that, in summation, the anticipated information is restored in the
neighborhood. The advantage is that the sampling density can be reduced substantially, and the
missing k-space information can be recovered by the parallel imaging functionality. The drawback
is that the complex weights of the different channels need to be computed in advance which
requires knowledge about the coil sensitivity profiles, i.e., a Bf mapping (or similar) needs to be
performed to characterize the k-space kernels. The computation of the complex channel weights
— often referred to as unfolding problem —is a linear problem which can be solved very efficiently.
The unfolding process, however, causes a loss in the signal-to-noise ratio (SNR) that depends on
the suitability of the coil sensitivity profiles with respect to parallel imaging.

For example, if the sensitivity profile of a single coil is too homogeneous, the k-space kernel
approaches a delta peak that does not allow for energy deposition in the k-space neighborhood.
If, on the other hand, the coil sensitivity drops very quickly, the k-space kernel covers a large
k-space area, however, the peak amplitude of the kernel decreases. This decreases the efficiency
of energy deposition (i.e., the coil efficiency) and, therefore, increase the Specific Absorption
Rate (SAR). In short, a coil profile which is suited for parallel imaging establishes a feasible
balance between undersampling capabilities and the SAR penalty. The three situations are shown
in Fig. 2.3: for three coils with continuously decreased penetration depth (80 % for A, 60 %
for B, 30 % for C), the k-space kernels are shown. It can be observed that a reduction of the
sensitivity broadens the k-space kernel, but also decreases the peak of the kernel.

A third condition affects the pair-wise similarity of the sensitivity profiles produced by the different
transmit coils: as a rule of thumb a set of coils whose sensitivity profiles vary substantially between
the different coils is well suited for parallel imaging/parallel excitation, unlike a set of coils whose
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Figure 2.3: Top: Fourier harmonics (ky, = 25 m’l) in spatial domain, modulated by coil sensitivity profiles with
penetration depths of 80 % (A), 60 % (B), and 30 % (C). Bottom: for each Fourier harmonic, the respective
k-space kernels (i.e., the Fourier transform of the coil profiles) are shown.

sensitivity profiles are very similar. This is due to the fact that the reconstruction of k-space
neighborhood information (both for the receive and transmit case) can be formulated as a linear
system, whose columns are determined by the respective k-space kernels. If the k-space kernels
vary significantly between the different coils, the associated linear system is well-conditioned (the
columns are linearly independent). If, on the other hand, the k-space kernels are very similar,
the linear system becomes under-determined and the k-space neighborhood cannot be recovered
sufficiently well. An excellent and very illustrative overview about these properties, a more
detailed mathematical description of the effect of coil kernels onto the associated linear system,
and implementation details of the different parallel imaging approaches has been published by
Priissmann et al. [89].

2.2.3 Parallel Excitation: Transmit SENSE

In the derivation of multi-dimensional excitation pulses it was shown that the k-space trajectory
has to satisfy the Nyquist sampling theorem [83]. This generates a periodic point-spread-function
for which the different peaks are separated by at least the size of the FOX to ensure that
the anticipated target is accurately excited in the FOX without aliasing effects. Because the
pulse duration is usually limited to a few milliseconds, sufficiently dense sampling of excitation
k-space may not be feasible, especially for 3-D excitations of inner-volume targets where 3-D
excitation k-space needs to be sampled. A powerful method to overcome the pulse duration
constraint has been described in the previous section, referred to as parallel excitation (pTx),
where multiple independently driven transmit coils are used to undersample excitation k-space
beyond the Nyquist criterion.

A time varying RF waveform B (t) played along the k-space sampling pattern P (k) generates
a transverse magnetization given by

Bi (k) p (k)

My (1) = iryMo /K
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where p (k) specifies the sampling density of the k-space trajectory at k. If p(k (t)) is known,
the inverse Fourier transform can be used to design the RF waveform required to produce the
target magnetization pattern Mtr

e ) |
B1 (1) = L hop (o (0)

If the sampling density p(k (t)) exists (which is not the case for so-called "pathological"
self-crossing k-space trajectories), the By waveform is uniquely defined by the inverse Fourier
transform.

In the spirit of parallel imaging/excitation, multiple RF coils with superscript c =1,...,C can
be employed for RF energy deposition. The sensitivity profile of each transmit colil is denoted
by S© (r); for each coil an individual RF waveform B{?(t) is defined. Due to the linearity of
the Fourier transform, every transmit coil driven by the individual RF waveform creates its own
complex magnetization profile that in sum define the full magnetization My (r):

/R ME (1) - exp (=i (k7)) dr | (2.54)

¢ c
Mr(r)=>_59(r) 'i’Y/\/lo/ By (k) o (k)

=1 k |G (k)] P (k) - exp(i(k,r))dk. (2.55)

Equation 2.55 describes a system of linear equations. The channel specific RF waveforms
BY, ..., B{” can be designed such that — compared to the single-channel case — the exact
same k-space information is deposited. As opposed to the single-channel case where the RF
pulse is uniquely defined by the inverse Fourier transform of the target magnetization pattern,
using multiple transmit channels substantially increases the number of degrees-of-freedom with
respect to the RF waveform design. In other words: the system of equations (Eq. 2.55) is
wildly over-determined. The level of over-determination is characterized by the sensitivity profiles
S©(r) of the individual RF channels, especially by the pair-wise similarity of the sensitivity
profiles (as was motivated in the previous section).

As a consequence of the over-determination one can decrease the sampling density of the
k-space trajectory roughly by the level of over-determination of the system of equations. In this
case every single transmit channel will produce an aliased magnetization profile. However, the
degrees-of-freedom provided by the different RF waveforms can be chosen such that the aliasing
artifacts of the different transmit channels cancel each other. The "goodness" at which the
aliasing artifacts can be tailored to cancel each other depends on the pair-wise dissimilarity of the
sensitivity profiles (which improves the condition of the associated linear problem in Eq. 2.55).
The theoretical undersampling limit is defined by the number of transmit channels, i.e., excitation
k-space can (theoretically) be C-fold undersampled compared to Nyquist-conform sampling.
Since the RF coil design has physical and technical limitations that do not allow for designing
optimal coil setups in practice, the maximum level of undersampling that still allows for accurate
excitation of the target magnetization profile is usually smaller than the number of transmit
channels.

Nonetheless, significant undersampling factors can be achieved which directly translates to
accelerated RF excitation pulses. As a rule of thumb, in order for RF pulses to be practically
useful, the duration must be limited to approximately 5 ms (the RF pulses developed in this
work are developed to be shorter than this limit). Keeping in mind this pulse duration limit,
the acceleration capabilities provided by the parallel excitation functionality are an indispensable
technique (especially for 3-D target magnetization targets).
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2.2.4 RF Waveform Calculation

For single channel transmission, the RF waveform that achieves a desired transverse magnetization
profile is, according to Eq. 2.51, directly related to the sampling pattern of the k-space trajectory
and the Fourier transform of the magnetization target. The k-space sampling pattern incorporates
both the sampling density (i.e., the distance between the different turns of the k-space trajectory)
as well as the velocity at which k-space is traversed. The applied RF field strength must be
normalized to the k-space velocity in order to achieve a constant overall sampling density. This
RF pulse design approach provides valuable insights into the excitation mechanisms in MRI, but
the applicability to parallel transmission (pTx) RF pulses is limited (as the unfolding problem
cannot be directly solved in this frame). For parallel transmission RF pulses, the "unfolding"
problem must be solved as part of the RF waveform design based on

¢ ©
M (r) =" 59 (r) -iyMo /T Br (k) b (k)

=1 o WG, exp (i (k (t),r))dt . (2.56)

This formulation is similar to Eq. 2.55, however, an integral with time parameterization was used
instead of an integral with k-space parametrization.

A more straight-forward approach for solving the pTx RF design problem is the Spatial Domain
RF Pulse Design method proposed by Grissom et al. [45]. For a given transmit channel ¢ and
spatial location 7, the time continuous formulation can be discretized using a small time step T,
namely

C N c
iy Mo /OT BI (1) p(1), exp (i {k (£) . 7)) dt ~ iyMo = 3 By (n7) p(n7)

~exp (i(k (n7) 7))

G () [, T G|,
=ab® (2.57)
where
a= (al ..... aN) with a, =exp (i{k(nT),7)) (2.58)
T 1 BY(nt) p(nT)
b = (b9, ..., b with b9 = iyMo= - — . 2.59
( 1 N) n 07_ ||’YG(HT) ||2 ( )

The vector b incorporates the "theoretical" RF waveform B:(f) (t) as well as the density
compensation terms ||yG (t) ||, and p(t). Both of which are considered to be unknown in the
RF pulse design at this point. The vector a represents the value of the Fourier harmonic at
spatial location r for the time step series O, T, 27, . . ., nT. This discretion scheme is applied to
the entire spatial domain, i.e., for M Cartesian grid points

T, ryv with 7y, = (xm,ym,zm) ) (2.60)
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The Fourier encoding vectors a, (one vector per spatial location r,,) are assembled to generate
a matrix A given by

MxN
ai

“ | (2.61)

ay

where ap, denotes the Fourier encoding vector linked to the m-th spatial location r,,. Using the
matrix A, Eq. 2.57 can be written for all spatial locations for a single transmit channel ¢ as

m = Ab© . (2.62)

where m = (m(r1), m(r2),...,m(ry)) denotes the magnetization at the different spatial
locations. The matrix A is usually referred to as the Fourier encoding matrix and represents the
relationship between the RF waveform in time domain and the resulting transverse magnetization
in spatial domain. An equivalent formulation can be written for the parallel transmit case, i.e.,
when C separate transmit channels with sensitivity profile S (r,,) are employed, each of which

driven by an individual RF waveform &%, ..., b©. The system matrix is then extended to
5(1) (7’1) A 5(2) (7’1) A e S(C) (’I"l) A MxCN
SO (r2) rax SP(rz) a2 ... S9(r2)-a
A= . . _ . . (2.63)
SW(rm) -apm SP(rm) apm ... S9(rm) -am
The magnetization vector m for given channel-specific RF waveforms b®, ..., b is given by
b
m = Ab where b= : . (2.64)
b©

Assuming that the system matrix A is invertible, the solution of the system of equations in 2.64
for a given target magnetization m®" is given by

b=A"m (2.65)

For under-determined systems this can be approximated in a least-squares sense by the minimiza-
tion problem

argbmin {HAb —mtr

2} (2.66)

with reasonable computational effort. The problem in Eq. 2.66 is linear and thus convex; for this
problem type a number of efficient solvers such as conjugate gradient methods exist [58]. The
RF waveform is usually constrained by a maximum voltage V,,.x that can be fed to the RF caill,
namely

1B < Vinax (2.67)
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is satisfied for all channels c=1,2, ..., C and time pointsn=1,2, ..., N. This can be achieved
by incorporating a Tikhonov regularization in Eq. 2.66 [127]. The minimization then reads

argbmin {HAb —mtr

2
SNl ) (2:68)

where X is a non-negative regularization parameter. As X is increased, more weight is placed
upon reducing the energy deposition by the RF waveform rather than on achieving a high
excitation fidelity. The regularization parameter is usually initialized by a rather small value and
then iteratively increased (in a logarithmic manner) until the Vi .« constraint is satisfied. A
more accurate but computationally more expensive method is to use a non-linear constrained
optimization algorithm, written

2
arg min {HAb — mbr 2} subject to HbHOO < Vinax - (2.69)
b

This attempt directly incorporates the maximum voltage constraint and thus obtains better
results, however, at the cost of increased computation times.
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2.3 | Simulation of Electromagnetic Fields

In the previous sections it was shown that a number of different magnetic field components is
required in an MR scanner for image generation. The static magnetic field By produces a strong
uniform magnetic field with only B, field components without concomitant field terms B,/ .
Most often, the RF field B is designed to produce a field with uniform magnitude and negligible
spatial phase variation to achieve an in-phase magnetization pattern in the probe. Finally gradient
coils are required to locally vary the precession frequency of the spin and thus achieve spatial
encoding. This is achieved by creating Bgy, Bgy. Bg; fields (by the X, Y, and Z-gradient coil,
respectively) whose z-component varies linearly along the three spatial axes:

d(BGX)z -G d(BGY)z
dx T dy

d (BGZ)Z _

e 1 Gy . (2.70)

=G, ,
Note that only the z-component of the magnetic vector field is relevant for the image generation
whereas the concomitant field terms are negligible (at least for image generation). The quality
characteristics of each magnetic field component (such as linearity for the gradient fields)
determines the image quality that can be achieved by an MR system. It is, therefore, crucial
to be able to assess the field characteristics of these coils at the design stage, prior to building
expensive prototype coils. Another important aspect of the MRI coils are the imposed electric
fields that can interact with the human body. The electric fields created by the RF cause heat
deposition (SAR), that can denature proteins and damage tissue. Rapid switching of the gradient
fields generates electric fields in the tissue that can cause peripheral nerve stimulation (PNS),
leading to mild sensations at low levels, up to pain or cardiac malfunction at higher levels.

A powerful tool that has become more and more popular in the recent years due to affordable and
powerful computing resources are electromagnetic (EM) field simulations that can be used to
predict both the magnetic and electric fields imposed by arbitrary coil geometries. EM simulations
attempt to find approximate solutions of Maxwell's equations, which is a set of coupled differential
equations that describes the relationship between source entities (charges and currents) and
electromagnetic fields and fluxes. There is a large variety of problem types in the field of EM
simulations, including static problems (electrostatic and magnetostatic problems), low-frequency
problems (especially eddy current calculations) as well as high-frequency problems (and many
others). For each of these problem types, different approaches are used to represent and simplify
Maxwell’s equations. For example, different terms of the full set of Maxwell equations become
negligible for different frequency ranges, spatial dimensions or electromagnetic properties of the
simulated physical system. Additionally different problem types may require different strategies
how to handle the problem numerically in an accurate and efficient manner (e.g., some problem
types can be treated in different domains, such as time or frequency domain which can greatly
affect numerical aspects such as stability or convergence characteristics).

In this work, EM field simulations are an important tool to model the electromagnetic fields
induced by the MR gradient coils. Both the magnetic fields (to assess the accuracy of gradient
encoding) and the electric fields (to assess interactions with the human body) imposed by the
gradient coil will be investigated. The coils considered in this work (MRI gradient coils and MPI
drive coils) are operated in the low kilohertz frequency range (in the order of 500 Hz to 10 kHz),
i.e., these EM simulations are amenable to low-frequency approximations of Maxwell's equations.
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2.3.1 Maxwell’s Equations

Naturally, all methods for solving an EM field distribution are directly derived from Maxwell’s
equations (given here in differential formulation):

Poisson’s equations:  V-E = z—:ﬁ (2.71)
0
Gauss's law for magnetism: V-B =0 (2.72)
, : : oB
Faraday’s law of induction: V x E = 3t (2.73)
E
Ampere's circuital law: 'V x B = ug (J + EOZt) (2.74)

where E denotes the electric field strength, B denotes the magnetic flux density, J denotes
the electric current density, and p, €g, and u denote the electric charge density, the electric
permittivity, and the magnetic permeability, respectively. The two homogeneous equations — the
Poisson equation (Eq. 2.71) and Gauss's law for magnetism (Eq. 2.72) — prescribe how the
electric and magnetic fields circulate around their respective field sources (with the magnetic
field forming closed field lines). The two inhomogeneous differential equations — Faraday's law of
induction (Eq. 2.73) and Ampere’s law (Eq. 2.74) — describe how the fields vary spatially due to
their sources. The Faraday’'s law indicates that the electric field circulates around a temporally
changing magnetic field (this property becomes particularly important when the interactions of
the magnetic fields in MRI with the human body are investigated). Similarly, Ampere's law states
that the magnetic field circulates around electric current sources and around temporally varying
electric fields.

Further more, we have

B=uH (2.75)

that relates the magnetic flux density B with the magnetic field strength H via the magnetic
permeability and

D =c¢E (2.76)

that relates the electric displacement D with the electric field E via the electric permittivity.
Finally

J=0E (2.77)

links the electric current density J to the electric field E in electrically conductive media with
conductivity o.

The general approach for most EM field simulation methods is to translate Maxwell's equations
into a linear form, that is, to translate a small number of highly coupled differential equations
(that are hard to capture numerically) to a rather /arge number of linear equations (which are
efficiently processable using computer arithmetic). In order to do so, approximations need to be
applied to Maxwell's equations, especially to the differential operators, e.g., approximating the
curl or gradient operators on a finite neighborhood using finite difference methods.

In the following sections, the mathematical foundation of two common EM simulation approaches
will be derived: the Finite Difference Time Domain (FDTD) method and the Finite Element
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method (FEM). Although the FDTD method has only limited applicability to low-frequency
problems, the derivation provides excellent insights into the mechanisms behind Maxwell's
equations.

2.3.2 The Finite Difference Time Domain Method

A first popular approach for EM field simulations is the Finite Difference Time Domain method
(FDTD) that evaluates how the electromagnetic fields evolve over time [21], [84]. The time
evolution of the EM fields is approximated by applying finite difference methods both on a spatial
grid and on a temporal grid. The physical system under consideration is excited by feeding
an electromagnetic wave (excitation signal) to it and approximating the propagation of the
wave through the modeled domain. In order to fully prescribe the propagation of the EM fields,
Maxwell's equations can be reduced to a smaller set of differential equations which still correctly
captures all physical dependencies.

For example, taking the divergence of Ampere's law (given in terms of magnetic field strength
H and electric displacement D)

oD
VXH:J—I—E (2.78)
yields
0
V~VXH:V~J+EV-D (2.79)
ie., O:V~J+%V-D . (2.80)

Replacing the divergence of the electric current density, V - J, using the equation of electric
charge continuity

op

E—FV-J—O (2.81)
results in

op 0

which is nothing but the temporal derivative of Poisson’s equation. Therefore, as long the
initial EM fields satisfy Poisson’s equation, Ampere’s law in conjunction with the conservation of
electric charge can be used to correctly advance the EM fields over time. Similarly, taking the
divergence of Faraday’s law, i.e.,

o
V-VxE=-2V-B (2.83)
. 0
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shows that it is sufficient to ensure that the initial EM field satisfies V- B = 0. Accordingly, a
correct time evolution of the electromagnetic fields is completely specified by

OFE
OH

as long as the initial conditions V- D = p and V- B = 0 are fulfilled. Writing the two equations
in an element-wise manner yields

dE, OH, OH,

€5 = 5y oz (2.87a)

€ Gtz = axy — ayx (2.87c)
for Ampere's law and

uagix = aaiy - 681:;2 : (2.88a)

Maath = 8@% - 8;; : (2.88b)

.

for Faraday’'s law. These six equations are used in the FDTD method to compute the evolution
of E and H over time, as they can be implemented very efficiently.

Staggered Grids

For the FDTD method to achieve accurate results for the EM fields, it is crucial to implement
an efficient and numerically stable method to evaluate the finite differences. An approach that
is particularly suited for the system of equations (Egs. 2.87 and 2.88) is the use of so-called
staggered grids. This means that the electric and magnetic fields are evaluated on different grids,
shifted towards one another by half a cell size. The shift is applied both spatially (i.e., the spatial
grid points are shift by half a cell size in x, y, and z) and temporally (the finite differences are
evaluated at integer and half-integer time steps At). In other words, if a variable is located at an
integer point, its first-order derivative is best evaluated at the surrounding half-integer points.
To illustrate this approach, let's consider propagation of a plane wave along the z-axis given by
the following differential equations

OE,  0OH,

8H, OF,
“ot T bz (2.90)
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Figure 2.4: Staggered grid scheme both in space (x- Figure 2.5: Three-dimensional spatial grid according
axis) and in time (y-axis) to ensure accurate estimation to the Yee-Cell scheme with the respective E and H
of finite differences in the FDTD method. field components.

Applying the staggered grid approach of finite difference evaluation to these equations yields

ELT B 1A - A

. B r+1/2 r—1/2
Exlr 7B ' 2.91
- : i (2.91)
n+1/2 n—1/2
Hy|r+1/2 - HY|r+1/2 — _EM (2 92)
At W Az |

The index |, refers to the r-th spatial location and the index |” to the n-th time point, so that
fI7 = f (rAz, nAt). The finite difference in time for the electric field Ex is evaluated using the
magnetic field by shifting the spatial and temporal locations by half an integer step. Equivalently,
the finite difference in time for the magnetic field (at a half integer grid point) is evaluated
at integer spatial and time points based on the electric field. The "time"-"position" grid is
illustrated in Fig. 2.4, where the x-axis carries the spatial locations and the y-axis carries the
temporal locations for the both £ and H fields.

In 3-D an arrangement of the spatial points according to the so-called Yee-Cell [126] has proven
very favorable: again the spatial locations for the E-field (red grid lines) and the H-field (black
grid lines) are shifted against each other by half a spatial step.

Excitation Signal and Time Stepping

The FDTD simulation is excited by feeding an electromagnetic wave of limited length (excitation
signal) into the physical system (using so-called ports) and modeling the propagation of the
stimulus throughout the physical domain. The simulation continues until the wave in the physical
domain has decayed. The properties of the excitation signal are determined by the resonance
frequencies of the physical system that are of interest (e.g., for EM simulations in the frame
of MRI that often deal with RF receive or transmit coils, this is often the frequency of the
spin precession). A very short excitation signal covers a large variety of frequency components,
including very high-frequencies. Because the mesh size is determined by the highest frequency
component (i.e., the mesh needs to be chosen such that it can resolve the propagating waves), an
excessively short excitation signal will dramatically increase the number of cells in the simulation
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mesh. Furthermore, a sharp excitation signal will excite resonances which are not of interest.
In this case the energy is stored in the resonant structures, meaning that the decay of the
wave progresses very slowly and the simulation will not converge within reasonable runtime.
Additionally an excessively short pulse may lead to the fact the frequencies which are of interest,
are not resolved accurately. On the other hand an excessively long excitation signal (which in
turn has a rather sharp frequency spectrum) increases the number of time samples as the entire
signal needs to fit into the simulation time. In particular a requirement for accurate EM field
estimates is that the excitation signal has vanished by the end of the excitation phase to avoid
generation of high-frequency components during the cut-off of the excitation.

In short, the simulation time of the FDTD method is determined by the complexity of the grid
itself (i.e., the number of the mesh cells), the time step At and the number of time steps N,
determining the full simulation time. In order for the finite difference scheme to accurately model
the EM field propagation, the spatial steps Ax, Ay, and Az and the temporal step At must be
chosen according to the Courant-Friedrich-Levy condition

1
At < . (2.93)

(&) + (@) + (&)
This condition states that the wave must not travel more than a single cell per time step. If
this condition is not satisfied there is substantial numerical dispersion which leads to degenerate
solutions for the EM fields.
For the simulation of high-frequency problems (i.e., RF receive and transmit coils), the FDTD
method is a very powerful tool, as it covers a large range of resonance frequencies and is,
therefore, perfectly suited to investigate tuning and matching characteristics of RF coils in MRI.
The applicability of the FDTD method to low-frequency EM problems, however, is limited. In
order for the low-frequency to be resolved by the simulation, an extremely long excitation signal
must be used. The maximum time step, however, is in this case dictated by the physical model,
i.e., by the feature size that needs to be resolved. In short this means that the low-frequency
simulation requires a very long excitation signal (to resolve the low-frequency component) and
a very small time step (to resolve spatial properties of the model), resulting in an infeasible
computational effort.
An EM field simulation method, which is much more suited for the low-frequency range is the
finite element method that will be explained in the following.

2.3.3 The Finite Element Method

Another approach for simulating electromagnetic fields in highly heterogeneous models (like
human body models) is the finite element method (FEM). In the FEM, the domain at which
the electromagnetic fields are to be computed is divided into smaller elements, each of which
having homogeneous electromagnetic properties. The same approach is taken in the FDTD
method, where the domain is approximated by the Cartesian grid. The big advantage of the FEM
domain division (compared to the FDTD method), is that the elements must not necessarily
be hexahedral (i.e., cubical) regions, but other types of elements like tetrahedral elements (i.e.,
pyramids) can be chosen. This is an important and powerful feature, especially when dealing
with highly complex curved geometries (like human body models involving many tissue objects or
complex coil wire patterns), because the accurate representation of the model by using tetrahedral
elements requires substantially fewer elements (compared to using hexahedral elements). From
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the mathematical perspective, the FEM is more complex than the FDTD method. In the following
a brief introduction to the basic principle of the FEM will be given. In this explanation the FEM
concepts are formulated in the frame of Variational Problems which is an approach very close to
a physical interpretation in terms of energy conservation principles.

2.3.3.1 Variational Methods

The basic idea of applying variational methods to the problem of solving differential equations is
to find a solution that minimizes a certain integral (called functional). Very often, the integral
characterizes the energy stored in the modeled system. Hence, the solution that minimizes the
functional also minimizes the stored energy which closely resembles the real world phenomenon.
The general problem can be formulated in operator notation which is applicable to a wide range
of problem types. The so-called deterministic problem associated with an operator L can be
written as

Lu=f (2.94)

where f = f (r) is a function of space, L is the operator that defines the problem type and
u is the solution to be found. For example, for L = —(V? + k?) and f = 0 being a known
charge distribution, Eq. 2.94 represents one vector component of an inhomogeneous Helmholtz
equation.

The set of valid functions that u may be chosen from (i.e., the function space) belongs to
the field of definition of the operator L, i.e., u € D;. These functions are required to be
sufficiently differentiable and must obey the boundary condition of the differential equation under
consideration (although a central element in the handling of differential equations, the boundary
conditions will not be treated in detail here). Very often, a Hilbert space is a convenient choice
of a function space. A Hilbert function space is spanned by functions satisfying the following
conditions:

Symmetry:  (u,v) = (v, u)* (2.95a)
Linearity: (ai1u1 + ast, v) = a1{u1, v) + ax(uo, v) (2.95b)
Positive Definiteness:  (u, u) > 0 with (u, u) =0 if and only if u =0 (2.95¢)

where ()" denotes the conjugate transpose. As for the operator in Eq. 2.94, only so-called
self-adjoint operators L are considered, meaning that (Lu, v) = (u, Lv) where (u, v) denotes
the inner product of the function v and v given by

(u,v) = /Q uv*dQ . (2.96)

This formulation can be interpreted as the continuous extension of the dot-product, i.e., it
calculates the component of a function v along a second function v (or vice versa) and thus is a
measure of orthogonality.

Another important property in the frame of variational methods, especially when investigating
methods to obtain the solution u of the problem in Eq. 2.94, is positive definiteness, meaning
that

(Lu,uy >0 (2.97)
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holds for all u that are not identical to zero, and that the above term only vanishes for v = 0.
These two properties ensure the uniqueness of any u that solves Eq. 2.94. This can be proofed
easily by supposing two solutions denoted by uq and up, such that

LU1 = LU2 =f. (2.98)

Letting w = 1y — o, then the linearity of the operator L leads to (Lw,w) = 0. Since L is
required to be positive-definite, w must be equal to zero, meaning that u; = w,.

The solution to the differential equation in Eq. 2.94 corresponds to a stationary point of a
functional F in quadratic form, given by

F={(Lu,u)—2{u,f) (2.99)

where u and f are real-valued functions. In case of complex functions, the functional is slightly
modified by substituting 2(u, f) by (u, f) + (f, u). The minimum value Fn;, that the functional
takes for the solution g is given by

Fmin = —(Luo, uo) (2.100)

which is equal to the energy stored in the system. In other words, the field quantity u arranges
itself so as to minimize the stored energy, which very closely resembles the physical interpretation
of the problem.

The obvious question is how to obtain the solution of the differential equation, i.e., how to
determine the function ug that minimizes the functional F. A popular approach to solve this
problem is the Rayleigh-Ritz method (which is closely related to the Galerkin method). The
basic idea is to assemble the solution by a weighted sum of basis functions ¢, for j =1, ..., n
with coefficients a;, namely

n
un =Y ajp; . (2.101)
j=1

This means that instead of directly solving for a solution ug, the solution is approximated by a
weighted sum u, of basis functions, and the coefficients a;, rather than the solution function
itself is to be found. Incorporating Eq. 2.101 into the functional to be minimized, Eq. 2.99, yields

F= <Z Ly Y akd)k> -2 <Z ajd;, f>
j=1 k=1 j=1

= Y (Loj.dk) aja—2) (¢, F)a - (2.102)
Jik=1 Jj=1

The weighting coefficients a; are chosen such that the derivatives of the functional £ vanish,

oF =0 foral j=1,..., n (2.103)
Oaj
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i.e., that u, Is a stationary point. Eq. 2.102 is rearranged such that terms containing a; are
separated by power terms, i.e.,

F=(Loi,di)ar + > (Loj. dx) ajax + > (Loj, ¢i) aja; =2 (f, §iaj) + Fres (2.104)
ki i

=2 (api, ) ajax
pey

where Fres summarizes the functional terms that do not depend upon a;. The second and third
term have been combined by making use of self-adjointness of the operator L. Taking the partial
derivative of the function F with respect to a; leads to

F
% = 2L, ¢i)ai +2) (Loi bx) ax — 2(F, ¢i) (2.105)
! k#i
=23 (Lo k) ak —2{F, 1) - (2.106)
k=1

Setting the above equation to O results in

n

> (Ldi, d) ax = (F. ¢0) (2.107)

k=1

which can be conveniently written in matrix notation as

(Lp1,01) (L1, d2) ... (L1, ¢n) a (f. ¢1)
(Lq§2-,¢1> <L¢2-, $2) <L¢2-v¢n> 3_2 _ (f, ?2) | (2.108)
<L¢nv ¢1> <L¢nv ¢2> cee <L¢nv ¢n> dn <f, d)n)

The above system of equations can be readily solved for the coefficients a; that in turn determine
the approximate solution of the differential equation.

2.3.3.2 Application to EM Field Problem

In order to apply the basic framework derived above to the problem of EM field simulations, the

two equations from the first section will be used, that characterize the time evolution of the

electric field E depending on the magnetic field H (Eq. 2.85) and the evolution of the magnetic

field H depending on the electric field E (Eq. 2.86). These two first-order differential equations
can be combined into a single second-order equation given by
1 0°E oJ

VXEVXE%—GW——E : (2.109)

The above equation is referred to as the curl-curl equation or vector wave equation. Initial

conditions that need to be satisfied for this second-order differential equation are the electric

field and its time derivative at time tp = 0. An approach that is generally used for applying

FEM to electromagnetic field problems is to solve Eq. 2.109 in frequency domain. In this case
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time derivatives 9/at are replaced by a harmonic dependence given by exp (iwt) where w denotes
the angular frequency at which the physical system is solved. In frequency domain, Eq. 2.109
becomes

1
V x EVXE—esz:—in : (2.110)

In order find a solution for this problem, a weak formulation in the spirit of the variational
approach needs to be formulated. As was done above, this means multiplication by a "test
function" and integration over the physical domain €2, leading to

/Qi(VxE)-(VxF)—wz/QeE-F:—iw/QJ~F (2.111)

where 2 denotes the physical domain and F' is the "test function" which is to be approximated
in order to find the best solution of the differential equation.

2.3.3.3 Low-Frequency Approximation

A common modification which is usually applied to Eq. 2.110 is to neglect displacement currents
which is a reasonable assumption for low-frequencies where ohmic currents dominate the dis-
placement currents. In particular this kind of approximation can be employed if the worst case
diagonal of the physical domain d is much smaller than the wavelength A of electromagnetic
fields to be simulated, namely

(i)z <1 . (2.112)

Specifically, neglecting displacement currents in Maxwell's equations is achieved by setting the
permittivity € to zero. Separating the right hand side of Eq. 2.110 into a conductive current
density characterized by o E and an externally applied current density Jeyt leads to

1
V x ;V X E4+iwoE = —iwJeyx . (2.113)

Note that the external current density Jey: is often used to prescribe a current path, e.g., following
the wire pattern of MRI gradient coils. Physically speaking, the low-frequency approximation
avoids electromagnetic waves in the Maxwell equations, which allows to take time steps which
are significantly larger, e.g., compared to the steps required by the FDTD method. However,
neglecting this aspect of Maxwell’s equations renders mathematical treatment of the differential
equation more complex because in non-conductive regions (o = 0) the time derivative of the
electric field is unspecified, meaning that the field evolution cannot be modeled in this region
(for the investigations carried out in this work, this limitation is not significant as the method is
used to evaluate electromagnetic fields only in the conductive human body).

The differential equation given in Eq. 2.113 is usually solved by introducing the so-called magnetic
vector potential A () such that for the magnetic field

B=VxA (2.114)
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Figure 2.6: Hexahedral finite element (left) along with local basis functions to approximate scalar (top right) and
vector-valued quantities (bottom right) within the element.

holds. The electric field is given by
E=—-iwA-V¢ (2.115)

where ¢ denotes the electrostatic potential. Using these two definitions for the magnetic field B
and the electric field E, Ampere’s law (Eq. 2.113) can be rewritten as

1
Vx;VxA—ka(iwA%—V(p):Jext ) (2.116)

Additionally two constraints need to be defined based on the fact that setting € = 0 in Ampere’s
law means that both the excitation coil current Jey and the conduction currents determined by
—0 (iwA + V) have zero divergence. This means that both the coil currents and the conduction
currents form closed loops of current flow. This is enforced by the equations

V- Jext =0 (2.117)
V.o (iwA+ V) =0 (2.118)

which along with Eq. 2.116 represent a common formulation for handling low-frequency electro-
magnetic field problems.

2.3.3.4 Mesh Generation

One of the major advantages of the FEM over the FDTD approach is the flexibility with respect
to the choice of mesh cell types. In Sec. 2.3.2 it was illustrated that in order for the finite
difference scheme used in the FDTD method to be implemented and evaluated efficiently, the
FDTD method is based on hexahedral grids. When dealing with complex curved geometries (like
human body models or MR gradient coils) the number of hexahedral mesh cells needs to be
increased dramatically in order to preserve small geometric features of the model. In particular,
the FDTD method is generally not capable to locally adapt to the feature size of the body model,
i.e., if small local features need to be preserved, the entire grid needs to be refined (even if the
small features are only present in a few locations of the model).
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Figure 2.7: Tetrahedral finite element (left) along with local basis functions to approximate scalar (top right) and
vector-valued quantities (bottom right) within the element.

On the contrary, the FEM approach can be applied using a wide range of mesh cell types or
"element" types; the two most commonly used element types are hexahedral (i.e., cubical, see
Fig. 2.6) and tetrahedral (i.e., pyramidal, see Fig. 2.7) finite elements. Independently of the
finite element type, the elements are defined by nodes and edges (connecting two nodes). The
hexahedral element is defined by 8 nodes and 12 edges, the tetrahedral element consist of 4 nodes
and 6 edges. Especially tetrahedral elements are perfectly suited to approximate complex curved
structures. Due to the irregular shape of the tetrahedral elements, the size of the elements can
vary locally: in regions of fine geometric details, very small elements can be used, whereas other
regions (e.g., the background region) can be discretized by only few very large elements without
significant penalties in accuracy. Due to this local adaption feature, switching from hexahedral
to tetrahedral finite elements often allows to reduce the number of mesh cells by up to 50-fold.
The mesh generation, however, i.e., the process of discretizing a geometric object by tetrahedral
finite elements, is considerably more complex compared to hexahedral elements.

After a geometric object has been approximated by a finite element mesh, the basis functions
(see Eq. 2.101) are defined locally in the mesh cells. Most commonly the scope of each basis
functions is limited to a single mesh cell (referred to as local basis functions). The problem
of defining an appropriate (mathematically complete) set of basis functions is rather complex,
and its detailed handling is beyond the scope of this work. Instead a rather phenomenological
description will be given here, but the reader is referred to the very comprehensive literature (see
e.g. [123]).

There is a wide range of different approaches on how to select and define local basis functions.
The choice of an appropriate basis function type greatly depends on the type of differential
equation, the physical quantity to be approximated by the basis functions (e.g., scalar vs. vector
field quantities), as well as implementation details of the FEM solver architecture. Two common
types of basis functions for the two element types are illustrated on the right hand side of Fig. 2.6
(hexahedral element) and Fig. 2.7 (tetrahedral element). The basis functions are usually defined
as nodal basis functions or edge basis functions, hence the number of basis functions defined
in a single mesh cell is determined by the number of nodes or edges, respectively. Nodal basis
functions are usually defined as scalar functions that are linear within the cell. Given a weight
a; for the j-th node, the scalar basis function is specified such that it is equal to the weight a;
at the node j, and vanishes for all other nodes. Hence the FEM simulation using nodal basis
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functions implements the degrees-of-freedom via the mesh nodes. Because the weight a; affects
all neighboring cells (i.e., the respective basis functions) this formalism ensures that the entire
modeled scalar function (i.e., the sum of all weighted local basis functions) is continuous.

As opposed to nodal basis functions, edge basis functions are associated with the edges of
the mesh. These basis functions are commonly used to approximate vector field quantities.
The degrees-of-freedom of the FEM simulation (i.e., the weights) are assigned to the edges
of the mesh (rather than the nodes). A schematic depiction of edge basis functions is shown
in Figs. 2.6 and 2.7. These basis functions are defined such that the tangential component
of the locally described vector field is continuous along the edges of the element. The normal
component, however, can be discontinuous at the element boundary. Edge elements are so-called
curl-conform, meaning that the curl of the element does not induce delta functions at the
boundaries of the element. This ensures that a vector field which is expanded by edge elements is
square-integrable. Note that a large variety of other types of mesh elements and basis functions
exist that have been developed specifically for different FEM problem types.
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3.1 | Optimal Gradient Waveform Design

In this section, a mathematical framework will be derived to generate time-optimal 3-D gradient
waveforms subject to constraints on the gradient magnitude (Gmax) and slew rate (Smax) [28) 26].
In short this methods assembles the gradient waveforms in terms of piece-wise linear gradient
segments. This allows to generate triangular and trapezoidal wave shapes which are time-optimal
for the given set of constraints. The length and slope of each linear segment in each of the
three dimensions is then optimized in order to accelerate the entire gradient waveform while
ensuring that the anticipated shape of the k-space trajectory (spanned by an ordered set of
k-space control points) is maintained.

3.1.1 Problem Formulation

For a set of control points k™, ..., k™ in three-dimensional k-space with k@ = (k)((q), kS, ké‘”)
a gradient trajectory k (t) is to be generated that satisfies the following three constraints:

(1) k(t9)=k@and 0 =t® < t@ < ... <t™W =T, ie, the trajectory traverses the k-space
control points one after another in the specified order,

(2) H%k(t)H < Gmax and H%k(t)“ < Smax in t € [0, T], i.e., the gradient waveforms
(o] o0
underlying the k-space trajectory satisfy the gradient system constraints,

(3) the k-space trajectory minimizes the duration T.

Consequently, the exact shape of the trajectory in between two consecutive control points is
kept flexible in order to be optimized to generate a gradient waveform of minimal duration T,
subject to the gradient magnitude (Gmax) and slew rate constraints (Smax)-

The problem formulation is valid both in the reception [118] and transmission regime [9], with
the trajectories being specified by

kg (1) Z’Y/OtG(T) dr and k() = —’y/tTG(T) dr | (3.1)

Note that these formulations ensure that, in the reception case kg (t), the trajectory always
starts at the center of k-space (kg (0) = 0) whereas in the transmission case, the trajectory
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Figure 3.1: Gradient Basis Functions: Four basis functions can be used to establish the traversal between two
consecutive control points in one-dimensional k-space: a concave (A) and convex basis (B) as well as an increasing
(C) or decreasing one (D); for each basis the gradient magnitude (top) and slew rate (bottom) are shown. The
integral of the gradient waveform is equal to Ak = k® — k™. The solution of a basis function based on the
problem vector (G®, G®, Ak, T) is specified by the basis function parameters (P, n1, 12).

ends at the center of k-space (k1 (T) = 0) to ensure a refocused magnetization at the end of
the RF pulse. It is very straight forward to translate between these two cases by compensating
for the constant k-space distance when the integration bounds are changed:

kr(t) = —'Y/tTG('T)dT-l-’Y/OTG(T)dT : (3.2)

=kt (1) — kM _ kM

3.1.2 Gradient Basis Functions

Due to the complexity of designing time-optimal gradient waveforms in three-dimensional k-space
based on a large number of control points, the problem is first approached on a /ocal scale. In
this frame, local refers to a gradient trajectory segment connecting two consecutive control
points (denoted by k™ and k@) in a single dimension. In addition, it is assumed that the gradient
strengths in each control point, denoted by G® and G®, are known. The local one-dimensional
problem can then be formulated as defining a gradient waveform G (t) in the time interval [0, 7]
that accumulates the k-space distance

.
Ak = k@ — kI = 'y/o G (t) dt (3.3)
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and satisfies G (0) = G and G (1) = G® as well as the gradient magnitude and slew rate
constraints

G (£)] < Gmax and ddtG(t)‘—]S(t)\ < S (3.4)

for any t € [0, T]. Although, on the global scale (including all control points in three dimensions)
the aim is to eventually generate time-optimal trajectories, the local duration 7 (in a single
dimension) may also be chosen sub-optimally (because usually only one gradient axis is driven at
the performance limit whereas the other two axes do not reach the limits). In other words, the
local gradient design problem is solved for arbitrary but valid durations 7. Without exception,
time-optimal gradient waveforms are of triangular or trapezoidal shape. This fact motivates the
introduction of generalized so-called Gradient Basis Functions. Each gradient basis function
specifies a certain sequence of switching the slew rate (note that the introduced basis functions
are not basis functions in the common mathematical sense where they are used, e.g., in the
theory of approximating solutions of differential equations). Since a triangular gradient wave
shape can be represented by a trapezoidal wave shape having a plateau phase of zero length, two
basis functions are needed, a convex and a concave basis (cf. Fig. 3.1, A and B). For these basis
functions the gradient magnitude is always driven at £S5m.x at the ramps and possibly at £Gax
during the plateau phase, if the gradient strength reaches the G, constraint. Additionally to
these time-optimal basis functions, two sub-optimal bases are defined that generate wave shapes
that are monotonically increasing or decreasing. Again, the ramps of these gradient wave shapes
are driven at +Smax OF —Smax and have a plateau phase of constant gradient strength in between
the two ramps. These two sub-optimal basis functions are depicted in Fig. 3.1 (C and D). It can
be shown that this set of four basis functions is sufficient to assemble a time-optimal gradient
waveform that obeys the three conditions formulated above. In other words, if an arbitrarily
shaped gradient waveform can be found that is time-optimal, it is also possible to formulate a
gradient waveform using these gradient basis functions that has exactly the same duration.

In addition to the capability of handling strictly time-optimal gradient wave shapes of trapezoidal
and triangular shape, the definition of basis functions has to two advantages: Firstly, since the
basis functions are defined such that for every ramp the gradient magnitude is driven at the
slew rate constraint +S5max, this constraint must not be considered any further. Secondly, the
restriction to these waveform shapes also limits the accessible shapes of the resulting k-space
trajectories. This is important as generally no unique solution exists for the problem of finding
time-optimal k-space trajectories from a set of control points. On the contrary, for other
mathematical approaches that may also be used to solve the gradient design problem (such
as optimal control methods based on systems of ordinary differential equations or differential
algebraic equations), the non-uniqueness of the optima increases the complexity and, therefore,
the computation time and makes these methods more vulnerable to numerical instabilities. It
will be shown later that the restriction to these limited set of wave shapes allows for solving the
design problem in a time-efficient and numerically very robust manner.
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Each of the four basis functions can be assembled by concatenation of three piece-wise linear
gradient segments g1, g», and g3, namely

01 (t) i= £Smax - t + GV telom], (3.5)
go (t) := P = const. te {771,772} , (3.6)
93(t) = ismax' (f—ﬂ2)+P t e {772,7'} ) (37)

where P denotes the gradient strength at the plateau phase, and 17 and m» denote the boundaries
of the linear segments (i.e., the time points at which the slew rate is changed). Depending on the
polarity at which Spax is driven in g (t) and gs (t), one of the four gradient bases is generated:

concave convex increasing decreasing
g1, sign of Spmax +1 -1 +1 —1
g3, sign of Smax -1 +1 +1 -1

Each of the linear gradient segments g1, g2, and gs is associated with a distance in k-space that
is accumulated by the respective segment:

m

Ak, ::fy/gl(t)dt, (3.8)
0772

b= [ 2 (6)dt, (3.9)
m

;
Aks ::fy/g3(t)dt . (3.10)
m

Note that ultimately these three k-space portions need to sum up to the anticipated full distance
Ak between the two consecutive control points. From the definition of the gradient basis
functions, three linear equations can be formulated for the bases variables P, 11, and 1. These
equations ensure that the three gradient segments produce a continuous gradient wave shape
(Eqg. 3.11 and 3.12) and accumulate the desired distance in k-space (Eq. 3.13):

P=gi(m), (3.11)
G® = g3 (1), (3.12)
Ak = Aky + ko + Aks . (3.13)

Additionally, the basis functions need to satisfy two inequalities, that specify the sequence of
slew rate switching time points and the gradient magnitude constraint:

0<m<m<T, (3.14)
|P| < Gmax for te[0,7]. (3.15)
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Note that the gradient slew rate constraints Syax must not be considered anymore, as this
condition is directly implemented via the ramps of the gradient basis function. The generation of
valid gradient wave shapes that satisfy the linear and non-linear constraints, was realized by two
mappings, D and S. The first mapping is used to specify the set of valid durations T for a given
set of local problem parameters G®, G®, and Ak:

G
D:| G® — TCR, . (3.16)
Ak

The mapping D ensures that, as long as the duration 7 is chosen from T, one of the four basis
functions can be used in order to generate a valid gradient wave shape, according to the problem
parameters G, G®, and Ak, and the constraints (Eq. 3.11 to Eq. 3.15). The exact shape of
the gradient waveform (with duration 7 € T) is computed using a second mapping S, namely

GW
G® P
S: Ak — m (3.17)
T 72

where the shape of the local gradient waveform is defined by the parameters P, 11, and 1. Due
to the non-linearity of the gradient magnitude and slew rate constraints, the domain mapping D
and the solution mapping S are implemented by a variety of case differentiations.

3.1.3 The Domain Mapping D and the Solution Mapping S

The mapping D is used to specify the set T of durations for which a valid piece-wise linear
gradient waveform G (t) can be found that obeys the design parameters (G, G®, Ak) and the
system constraint Gmax. Without exception, for a set of design parameters, T itself consists of
three subsets; each of the subsets is associated with one of the four gradient basis functions.

As an example, let 0 < G® < G® and Ak > 0 (Fig. 3.2, top). The fastest possible way to
accumulate Ak by a gradient waveform is given either by a concave triangular wave shape or
a concave trapezoidal wave shape, if the plateau value P would exceed the Gpnax constraint.
To increase the duration of the gradient segment, the gradient strength at the plateau P is
decreased, until P = G®. At this point the basis function type changes from the concave to
the increasing wave shape. Durations 7 in this range define the domain of the concave wave
shape, Tcay. Decreasing the plateau gradient strength P even further within G® < P < G®
changes the shape of the increasing basis function. The set of durations defines the respective
domain Tj,c. As soon as the plateau gradient strength reaches GV, i.e, P < GW, the wave
shape changes again, from the increasing to the convex basis function. The last one of the three
sub-domains always has an infinite reach, meaning, that the trajectory segment can be arbitrarily
decelerated without any further change of the basis function type. Obviously, the full domain of
valid gradient durations T is given by the union of the three sub-domains, in this example by

T: =T U Tinc UTvex - (3-18)
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Figure 3.2: Evolution of Gradient Waveforms: for two different sets of problem parameters (top: G* = 6.5mT/m,
G® = 12.0mT/m, Ak = 100.0m™; bottom: G® = 125mT/m, G?® = 17.5mT/m, Ak = 55.0m™}), the
evolution of the gradient waveforms for different durations is shown. In addition, the valid domain of durations T
is illustrated at the bottom of each plot. Usually, three of the four basis functions are required to represent all
possible waveforms to connect the two control points in 1-D (in this example: concave, increasing, convex). The
example at the bottom exhibits a disjoint sub-set Tyex = T\‘,\ex UTE,.

The variation of the gradient waveforms for varying durations 7 is illustrated in Fig. 3.2, top row.
For each of the three basis functions, the respective domains Tcay, Tinc, Tvex of valid durations
are depicted underneath the gradient waveforms itself. Additionally, the k-space trajectories
associated with each gradient waveform are shown on right hand side (for better visibility, the
different trajectories are shifted against each other).

An important aspect, however, is that in certain cases the full domain T will not be of connected
nature, but will consist of two disjoint sub-sets. In this case — starting with the smallest valid
duration T — the gradient waveform cannot be arbitrarily decelerated. In other words, there are
certain 7 > T, for which the slew rate constraint Smax does not allow the gradient magnitude to
be switched rapidly enough to traverse the two control points in the requested duration 7. In this
case, the gradient magnitude G (t) has to switch its polarity in order to achieve the anticipated
distance in k-space, Ak. In other words an S-turn needs to be introduced to the trajectory. This
disjoint behavior is depicted in Fig. 3.2, bottom row: the invalid durations in the domain (red
dashed region) lead to a topological change of the associated gradient trajectory.

In order to fully specify the set of valid gradient waveform durations, three bounds are necessary
for the set T to be fully specified:

T =Ly, U] U L2, 00) (3.19)

Note that U; < Lo only holds if the trajectory changes its topology when increasing the duration
of the gradient waveform. The three bounds L1, U;, and L, are computed based on an analytic
expression that depends on the gradient strengths G® and G®, the distance Ak of the two
control points and the gradient magnitude and slew rate constraints. Due to the complexity
of the analytic expressions for L1, U;, and L,, no mathematical equations are given at this
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point. The derivation, however, is straight forward: the solution can be obtained by solving the
Egs. 3.11 to 3.13 with respect to a number of case differentiations

a) 0<GW < G® d) 0<G® < GW

b) GM <0< G® e) G® <0< GW

c) GW <GP <O f) G® < GM <0
as well as

A) Ak <0 B) Ak >0,

including information for which durations the type of basis function changes. For a set of problem
parameters G, G®, and Ak, the smallest valid local duration 7 is hence given by

T = min {’]I‘} = min {D (G, G?, Ak) } : (3.20)

Eqg. 3.20 can be interpreted as a local objective function that depends on the gradient strengths
at the two control points. Accordingly, the local duration can be minimized by solving the
constrained optimization problem

Tmin :?;r(%rg:zr} (min {T})

subject to |GW|,|G?| < Gmax - (3.21)

In other words: the gradient strengths G® and G® at the control points k® and k@ are
optimized to allow for the fastest possible traversal of the control points. For a given set of
gradient design parameters GV, G®, Ak, and an arbitrary (but valid) gradient waveform duration
T € T, the mapping S is then used to define the exact shape of the gradient waveform, which
is specified by the parameters 11, 12, and P of the basis function. The derivation of the (less
complicated) mapping S is very similar to the mapping D. Considering the case differentiations
given by the inequalities in a) to f) as well as A) and B), the linear equations given in Eq. 3.11 to
3.13 are solved. As opposed to the domain mapping D, where the expressions are solved for the
duration T of the gradient waveform segment (these durations define T), the linear equations
are now solved for the gradient shape parameters 11, 12, and P, for a given duration 7.

3.1.4 Global Trajectory Design

Although the mapping D was derived on a local one-dimensional scale (i.e., only describing
the solution of a single gradient basis in a single dimension), it can be used to obtain time-
optimal gradient trajectories on the global scale (i.e., including multiple control points in multiple
dimensions). This can be achieved by first extending the domain mapping D to the local multi-
dimensional problem (two control points in three-dimensional k-space), and afterwards to the
global three-dimensional problem (N control points in three-dimensional k-space).
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For two consecutive control points k® and k® in three-dimensional k-space with the respective
gradient strength vectors G® and G® at these two k-space locations, the smallest possible
local duration is given by

T = min {Txmrymrz} (3.22)
where

T, =D (G, 6P, Aky) |

T, = D (G, G, Ak,) | (3.23)

T, =D (G, 6P Ak;) .
The expression in Eq. 3.22 states that the smallest valid duration 7 is equal to the smallest
duration contained by the union of the three valid domains Ty, T,, T,, meaning that for the

given duration, a solution must exist in each of the three gradient dimensions. In this local
example, the gradient vectors in the control points k® and k@, namely

GY = (GQ’, Gy, G;”) and (3.24)
G® — (Gf), G2, Gé”) , (3.25)

are only constrained by Gmax. Similarly to Eq. 3.21 these gradient strengths can be chosen so as
to minimize the duration of the segment that connects the two control points:

Tmin = arg min (min {TX NT, N Tz})
c.g®

= f® (G(l), G(2))
subject to |GV, |G|, < Gmax - (3.26)

Analogously, for the global multidimensional gradient waveform, the duration T of the entire
gradient waveform is given by the sum of the local durations 7@, namely

N-1 N—-1
T=3% 7= mn{T@ TP T} . (3.27)
g=1 qg=1

Obviously, the duration T of the gradient waveform highly depends on the gradient strength
vectors GV, ..., G™ in the control points. On the local scale, it is trivial to find a set of gradient
strengths G and GV that minimizes the g-th gradient segment. On the global scale, this is
not possible, because every gradient vector G'¥ influences two gradient segments, the g — 1-th
and the g-th segment. Therefore, the gradient strengths need to be chosen so as to accelerate
both affected gradient segments equally.
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Figure 3.3: Constrained Optimization: lllustration of the time-optimal gradient design scheme, for given control
points k", ..., k® the gradient vectors G®, .. _, G (arrows) are optimized within the control regions (gray
squares) to accelerate the gradient trajectory. The gradient vectors in the first and last control point, G® and
G®, are fixed at zero.

This is achieved by optimizing the gradient strengths numerically with respect to the constraint
|G|, < Gmax SO to avoid consecutive deceleration and acceleration of the trajectory k (t).
Hence, the optimal duration Tin IS given by

N—1
Tmin = argmin min { T A T@ A TW
min G(l),g...,G(N) (Z { X y z }

qg=1
= f(GY, ..., G™)
subject to |G|, < Gmax. . g=1,..., N . (3.28)
The above formulation generates a set of gradient vectors G, ..., G™ that minimizes the full

duration T (i.e., the sum of all local segments) rather than only a local segment.

As opposed to the Optimal Control method proposed by Lustig et al. [71], the Gradient Basis
Function method formulates the gradient design problem as a constrained optimization of the
gradient strength vectors in the control points, subject to the Gnax constraint. The general
idea is depicted in Fig. 3.3 where five control points are defined to span a k-space trajectory.
The gradient strengths of the three intermediate control points are optimized to accelerate the
trajectory; the respective valid regions of the gradient strength vectors are illustrated as grey
squares surrounding the control points. The first and last control points are not optimized, but
fixed to zero gradient strength.

The objective function f in Eq. 3.28 is derived in a straight forward manner, based on the
mapping D. Many of the commonly used numerical optimization methods make use of the
first (Jacobian) and possibly the second (Hessian) derivative of the objective function (i.e., the
duration) with respect to the optimization variables (i.e., the gradient strengths at the control
points) at each iteration to determine the search direction and the step size. Both the domain
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mapping D and the resulting objective function f are given in a semi-analytic manner. This fact
allows for direct computation of the derivatives with respect to the gradient strength vectors.
This does not only avoid computationally expensive numerical estimation of the derivatives (e.g.,
via finite differences) but also ensures accurate first and second derivatives and thus better
convergence of the optimization routine.

After the optimal gradient strength vectors at the control point locations are found, the resulting
gradient waveforms specified by the basis function parameters P, 11, and 1, are computed using
the mapping S via

PO (1), (m2)® = S(G&‘”, GEH AK@. T(q>>

P () (m) = S(G, G, Ak, 1)

PE (1) () = S(Gé“), GO AL T(q))

with ¢g=1,...,N—1. (3.29)

3.1.5 Further Constraints

Up to this point it was assumed that every control point in three-dimensional k-space possesses
overall three degrees-of-freedom in the optimization, given by the gradient strength vectors

GO — (G;‘”, G, ng) ' (3.30)
This means that every gradient strength vector from the cubical domain
G € [~Grmax, +Gmax]’ (3.31)

is accessible by the optimization routine in an attempt to shorten the duration of the gradient
waveform. An alternative strategy is to limit the number of degrees-of-freedom for a subset
of control points to impose a desired shape of the gradient trajectory. Two exemplary types of
control point constraints are described in the following:

1) The gradient strength vectors can be kept at a fixed value in the optimization. For example,
the first and last control point may be set to zero to reflect to the scanner’s resting state
(see Fig. 3.3).

2) Directional vectors can be defined in certain control points to prescribe the direction of the
resulting gradient trajectory. This is particularly useful to enforce the anticipated shape of
the gradient trajectory to be designed.

For the directional constraints, rather than providing three degrees of freedom G, G}(,“), and
G for the optimization, the gradient strength vector is defined by a single variable g and a
prescribed directional vector ¢ € R3 by

c@

G = g subject to [ < Gmax - (3.32)

1€]]o

With respect to Fig. 3.3 this means that the valid control region (grey square) reduces to a
single line with limited length pointing along ¢@.
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No directional constraints Directional constr. at k®@,... k33

~ k(@) K23)

Figure 3.4: EPI Control Points: two trajectories based on a set of EPI-like control points, without directional
constraints (A) and with directional constraints ¢ = (0, 1) for k®, ..., k® (B). The directional constraints
enforce the anticipated shape of the trajectory to ensure a uniform sampling density while slightly increasing the
duration.

A design example that utilizes both fixed and directional constraints of the control points is
depicted in Fig. 3.4 where a set of control points is arranged to design an EPI like k-space
trajectory. The trajectory in (A) does not utilize directional constraints, but only fixed constraints
on the first and last control point, k™ and k®¥. As a consequence the optimization procedure
designs a gradient trajectory that exploits the degrees of freedom to a maximum extent. A
typical result is the accumulation of velocity in phase encoding direction k,, as the trajectory
moves along the frequency encoding direction k. This feature allows for accelerating the blips
of the EPI trajectory. The resulting shape, however, deviates substantially from common EPI
trajectories, because the frequency encoding lines are not planar anymore. On the other hand,
directional constraints were defined in Fig. 3.4 (B) that enforce the gradient trajectory to traverse
the control points horizontally, namely

@ =(0,1),¢g=2...,23. (3.33)

Obviously, defining fixed and/or directional constraints for a gradient trajectory necessarily
disregards strictly time-optimal solutions, in favor of the anticipated shape. Other types of
constraints — beyond fixed gradient strengths and directional vectors — may also be defined, for
example those including multiple control points simultaneously.

3.1.6 Analytic Derivatives

According to Eq. 3.19, the sets Ty, Ty, and T, of the valid gradient segment durations are
characterized by three bounds for which analytic expressions — and thus analytic derivatives —
exist. The intersection of the three sets (whose minimum value determines the local duration )
is given by

T:=T,NT,NT, (3.34)
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with
Ty = L1 Unx] U L2 0) (3.35a)
Ty = [L1,,Ury| U|Lay, o) (3.35b)
T, = |L10 Urz] U[L2z,00) (3.35¢)
which means that
T=min{T} € {L1 Low, Liy Loy, L1z Loz} (3.36)

Therefore, the Jacobian and Hessian of 7 with respect to the gradient strength vectors is given
by the Jacobian and Hessian of the active bound in Eq. 3.36. In particular, only the derivatives
with respect to a single gradient dimension in the full Jacobian Vf® are non-zero, namely

of of
x: (VA = (GG(”' 0 azm 0.0 >
of of
y: (VAW = ( 0o , 76G§,1)' o , 0 , 7@6‘},2)' 0 >
of of
zZ. (Vf)(l) = ( 0 s 0 s aTg)’ 0 , 0 , %?)) (337)

for x, y, and z denoting the dimension of the active bound and

0 0 0 0 0 0
vy = ( ) , , , . ) . (3.38)
G 3Gy’ 8GY" 8GP " 6GY) ' HGY

The Jacobian of the full objective function f is then computed by combination of the Jacobian
vectors of the single segments (V£)", ..., (VF)NY.

Equivalently, an analytic expression of the Hessian matrix of the objective f with respect to the
gradient strength vectors G, H¢ (G) can be derived. In general, the Hessian of f reads

8°f 8°f 8°f 8°f 8°f

8GYaGY  aGLaGyY  aGaGY  aGlacy T GG
8°f 8°f o°f 8°f 8°f

0GMaG  8GYaGy 0GPaGY  oGraGY T 8GYaGYY
8°f 8°f o°f 8°f 8°f

He (@) = 8GYaGy  aGlaGyY  aGYeGY  aGlacy T aGlaGYY - (3.39)

8°f o°f o°f 8°f 8°f

8GYaGY  8GY0Gy  0GPaGY  aGPaGY T 9GaGY!
82f o°f o°f 8°f 8°f

aGLaGy G aGy  0GlMaGY  8GlNaGY T aGLYaGY)
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With m and n denoting one of the gradient dimensions x, y, z, respectively, the entries in Hr (G)
can be given a general form, namely

O°f (G) 0 a(m—n(Gg—n'Gg))+f<j>(Gg>’Gg+1>))

8G5 aGY — 8GYy 8GY

(3.40)

The second term on the right hand side only depends on the gradient strength components
superscripted by j — 1, j, and j + 1 as well as the gradient dimension n. If the right hand side
of Eq. 3.40 satisfies m # n (different gradient dimension) or i ¢ {j — 1,/,j + 1}, the derivative
vanishes. This leaves the Hessian matrix Hf (G) in a sparse form, namely

(He),, O 0 (M), O 0 ... 0
0 (Hf)2,2 0 0 (Hf)5,2 0 0
0 0 (He),, O 0  (Hf)ys ... O
(He),, O 0 (M), O 0 ... 0
He (GQ) = . (3.41)
0 (Hr),, O 0 (H)ee O ... O
0 0  (He),, O 0 (H)ey ... O
0 0 0 0 0 0 ... (He)yy

3.1.7 Continuity and Differentiability

In certain cases, the objective function f (G) exhibits discontinuities due to topological changes of
the gradient trajectory when applying finite changes of the gradient strength vectors. Additionally,
continuous differentiability is not present everywhere. If the associated dimension of the active
bound of a gradient segment changes, a kink occurs in the objective, meaning that no derivative
can be given at that point. A numerical approximation of the derivatives, e.g., via finite
differencing, in presence of these discontinuities usually results in quasi-infinite estimates of the
derivatives that lead to infeasible step sizes taken by the optimizer. Due to the fact that analytic
derivatives can be utilized by the optimization routine, the discontinuities did not impair the
optimization problem significantly. In contrast, most gradient-based solvers — such as gradient
descent or Newton-type methods — do exhibit problems in close vicinity to regions where the
objective function has non-continuous derivatives. In this case, the optimizer jumps back and
forth between the regions of continuous differentiability while only negligibly decreasing the
objective function, leading to very poor convergence or even divergence.

To improve the convergence characteristics, the objective function can be modified such that the
derivatives are smoothed artificially. As was shown before (Eq. 3.22) the objective function value
f@ of a single gradient segment, for a given set of gradient strength vectors G and GV,
is given by the smallest duration 7 contained by the union of the sets Ty, Ty, and T,. In any
case, this minimum duration is equal to one of the lower bounds that define the sets of valid
durations in the three gradient dimensions x, y, or z. The derivative of the objective function
with respect to G and GV is equal to the derivative of the associated (active) bound of
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Figure 3.5: Domain of valid durations: schematic illustration of how the full domain T (bottom) is composed
via the intersection of the sub-domains of each gradient dimension, Ty, Ty, and T, (top). Each sub-domain is
specified by a set of bounds given by (L1x), (L1,), and (L1,7, Uiz, L2 7) for the %, y, and z axis, respectively. In
this case, the x gradient is setting the limit 7 = L; x over the three gradient dimensions.

Ty, Ty, or T,. Accordingly, a discontinuity of the derivative occurs if the active bound switches
as G or G are varied. As a consequence, the distance of the current gradient segment
duration 7 to the lower bounds of the sets in the other gradient dimensions is a measure of
the distance to the non-differentiable kink in the objective function. In an attempt to smooth
the derivative at these locations, the derivative of the inactive bound with respect to G or
G is inversely weighted by this distance and added to the exact analytic derivative at 7. In
other words, the exact analytic derivatives are smoothed in a small neighborhood of G and
G where the level of smoothing is specified by the inverse weighting used in the derivative
summation.

As an example, it is assumed that 7 = L, < L, L, and, for simplicity, that the three sets of
valid durations are connected, namely

Te = |Lx,00) , Ty = [Ly,00) , T, = [Lz,00) . (3.42)

The expressions of the Jacobian of the objective function given in Eq. 3.37 are then modified,
yielding

. (0L g0l s 0L,
Vi (ac;”’ €7 aey ¢ aGh

oL -1 0L -1 0L
. aG<X”’ e oA laG({), e~0z2 1aG<Zl>> (3.43)
X y z
where
0y =L, —Lyand é,=L,—Ly. (3.44)

The derivative of the inactive bounds (i.e., the derivatives of L, and L) are inversely weighted
by the distances 4, and 4, of the active to the inactive bounds and used to assemble a smoothed
version of the Jacobian V*. A similar approach is used, if the sets are disjoint. In this case the
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Figure 3.6: Smoothed Gradient Field: for an exemplary local objective function f® the objective function values
OGP, GP) and the gradient field VF® (G, GV) are shown, for varying gradient vectors (G, G{") € G? =
[—Gmax, +Gmax]”. The alternating — and thus time-consuming — iteration path (left) is effectively avoided by
smoothing the underlying gradient field (right).

respective active bound (L1 x or Lo x in this example) and the closest of the two inactive bounds
in the two other dimensions (L1, or Lo, L1, or Ly ,) are chosen. The approach is depicted in
Fig. 3.5: for the three gradient dimensions, the domains Tx, T, and T, are shown as well as
their intersection T at the bottom. In this case the smallest valid gradient segment duration
T € T is equal to L x (active bound), leaving the x direction as the limiting dimension. The
inactive bounds L1, and L; , are weighted by 4, and §, to compose the smoothed derivative.

An equivalent approach is applied to the Hessian matrix H¢ (G) where the second derivatives of
the inactive bounds are inversely weighted by their distance to the active bound. Despite the
simplicity of this approach, the smoothed Jacobian and Hessian version proved very helpful in
supporting the solver during the minimization procedure, in particular avoiding undesired behavior
in the periphery of kinks in the objective and possibly premature termination. In Fig. 3.6 an
original (left) and smoothed (right) local two-dimensional objective f® (as a function of the
first gradient vector G® = (G§<1), Gf,”)) are shown. The gradient vector field (V£)™ <G§<1), Gf,”)
is superimposed to the objective function and an exemplary search path used by the gradient
descent solver is shown. The back-and-forth behavior (/eft) is substantially reduced by use of
the smoothed derivatives (right).

3.1.8 Convexity and Stationary Points

Unfortunately, the objective function f does not possess convexity, i.e., neither conventional
convexity nor pseudo- or quasi-convexity [74]. This is due to the fact that the duration 7 of
a single gradient segment does not necessarily vary continuously with respect to the gradient
magnitudes G® and G®. In Fig. 3.7, the objective function f with respect to the gradient
strengths G (x-axis) and G® (y-axis) is shown for varying Ak (decreasing from left to right).
The objective function clearly exhibits discontinuities, for Ak > 0 (B and C) in the top right
region, for Ak < 0 (E and F) at the bottom left. With respect to the associated gradient
trajectory, this means that the curve may change its topology at these discontinuities. This
property of the global objective function results from the non-linear constraint on the gradient
slew rate and cannot be overcome.
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Figure 3.7: Structure of the local objective function: minimum durations for a one-dimensional waveform depending
on the gradient strengths in the two control points for varying positive Ak (A,B,C) and negative Ak (D,E,F).

Despite the lack of convexity, the global minimum of the objective function can still be found
by gradient descent methods as long as every stationary point (or in a relaxed formulation: any
local minimum) of the objective function is a global minimum. In this case the convergence
rate cannot be quantified (unlike for convex functions), i.e., the optimization routine requires a
non-deterministic number of iterations until the global minimum is identified. This property is
referred to as invexity [52] and has been investigated in the frame of non-linear optimization as
a further generalization of convexity:

A differentiable function ¢ : R” — R is called invex if there exists a vector valued function n
such that

p(x) =) =n"(x.y) -Veol(y), (3.45)

for all x and y. Note that for n (x, y) = x — y, the definition of convexity arises naturally from
the invexity, meaning that every invex function is convex, but the opposite does not hold. Two
important properties of invex functions can be identified:

(1) A differentiable function ¢ is invex if and only if every stationary point is a global minimum.

(2) The sum of invex functions @1, ..., ©,, with respect to the same 7 is invex with respect
to 7.

Although invexity is only defined for differentiable functions ¢ it is assumed that numerically,
the objective function (using the analytically computed derivatives and the proposed smoothing
of the Jacobian and Hessian) behaves benign in that sense. The full objective function f is
composed as a sum of the local objective functions of each gradient segment,

@ (G(q), G(q+1)) with (G(Q), G(q+1)) c G6 ’ (3.46)

where G := [—Gmax, +Gmax] is the control region of the optimizer. In fact, the local objective
f@ is convex in the major part of G°. From the minimum of this convex region, however,
a "canyon"-like path may reach through the convex region to the true global minimum (see
Fig. 3.7, D and E). The reason for this canyon-feature are the topological changes that the
gradient trajectory may undergo in certain cases. The objective function f@ can be considered a
six-dimensional equivalent of the objective shown in Fig. 3.8. Note that from any point within
the control region G® a (strictly descending) search path leads towards the center and, from
that, through the "canyon" to the global minimum, i.e., there is only a single local minimum
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Figure 3.8: Structure of the objective function in 3-D: (A) shows the three-dimensional invex objective function of
a single segment @ (-,G(‘””) for an exemplary fixed GV as a simplification of the full six-dimensional objective
possessing the same structure, (B): objective function of a single segment utilizing a directional constraint that
maintains invexity (two solid lines in A).

of f@ in the domain G®. The control point constraints introduced in Sec. 3.1.5, however, may
impair the structure of the objective function (in a way that invexity does no longer exist), if the
constraints are not set cautiously. For a directional constraint set for the g-th control point k@,
the respective local objective function becomes

f(Q) (G(Q)’ G(q+1)) - f(Q) (g(q)c(q)' G(q+1)) , (3.47)

meaning that f@ (G@, GY) is sampled along the straight line defined by g@¢@. The depen-
dence of @ on g9 is pseudo-convex and thus invex [4], in particular because the line intersects
the point of origin. This can also be seen in Fig. 3.8 (B), where the three-dimensional objective
function @ (-, G@*) is shown for an exemplary G, The constraint ¢¥ is equivalent to
sampling the objective function along the straight line g@¢@, resulting in pseudo-convexity. On
the contrary, fixing the gradient strength at certain control points may render the local objective
function f@ (and thus the global objective ) non-invex, if the gradient strength in the control
point is chosen excessively large (i.e., the "zero" constraint G® = G™ = 0 = const. which is
usually used for the first and last control point is not affected by this degradation).

Invexity of the local objective functions f@ can be translated to invexity of the full objective
function f. In order to do so, a system of equations is formulated, using

©q (G) = f(q) (G(q), G(q+l)) (3.48)

forg=1...,N—=1land G :=[GY,...,G™] (i.e., G without subscript refers to the combination
of all gradient strength vectors, i.e., G € G3N). Using the definition of invexity given in Eq. 3.45
and inclusion of the vector valued function 7 results in a system of inequalities

01 (G2) — 1 (Gp) > n(Ga Gp)" Vi1 (Gp)
02 (G3) — 02 (Gp) = n(Ga Gp)" Vs (Gp)

on-1(Ga) —on-1(Gp) = (G2 Gb)" -Von_1(Gp) (3.49)

v
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for all G, G € G3N. In matrix notation, the system can be written as

Ap| > | J 1{77] (3.50)
where [ J] denotes the Jacobian matrix
V1 (Gb)
[J] = : : (3.51)
Vion-1(Gp)

Using Eq. 3.37 and 3.38 the Jacobian [ J] can be given in a sparse form, reducing the system of
inequalities to

v(l)(,Dl V(z)(pl 0 o 77(1)
0 V@ V9%, 0 ... |.|7n? | <|ap (3.52)
where at least one entry in
Op; Oyp; Oy,
(a) L ] ! I
Ve = (aG;q)' Gy’ 8GY (353)

is non-zero. In any case the system of N — 1 equations for N variables is under-determined, i.e.,
infinitely many valid solutions for 1 exist that satisfy the inequality. The same holds, if constraints
for the control points are included as depicted above. In case of directional constraints specified
by €@, the expressions in Eq. 3.52 change to

0y

V@i = Bg@ and 7' (G4, Gp) — 'V (Ga, Gp) , (3.54)

which reduces both the number of equations and number of variables by two. In case of a fixed
gradient strength constraint at the g-th control point, both the number of equations and the
number of variables reduce by three, because there is no degree-of-freedom associated with the
respective control point. The fact that the system of inequalities can be solved guarantees that
the sum of all local objective functions

N—1 N—1
Yo we(G) =) fGY,G") = (G) (3.55)
g=1 qg=1

is invex (as long as invexity holds for the local objective functions itself, as was stated above).
Therefore, every local minimum of f with respect to G is a global minimum. Note that due to
the fact that up to two of the three entries in Eq. 3.53 may vanish, different G5, G may result in
different gradient trajectories, however, with the same optimal duration Tmin = f (G3) = f (Gp).
For example, different optimization methods that use different strategies on how to handle the
derivatives and the estimation of the step size may result in different gradient trajectories with
the same duration.

60



Chapter 3 Methods

3.1.9 Formal Complexity

For the Optimal Control method proposed by Lustig et al. [71] a formal time complexity of O (L)
can be given where L denotes the number of samples of the path constraint k (a) with arc-length
parameterization a € [0, amax] along which the gradient waveforms are to be computed. For the
Gradient Basis Function method presented in this section, an evaluation of the objective function
has a time complexity of O (N — 1) where N denotes the number of control points. The number
of iterations required for convergence greatly depends on the arrangement of the control points —
particularly on the distance of subsequent control points in k-space — as well as on the gradient
hardware constraints. In general two types of control point arrangements can be differentiated:

1) If the absolute distance of subsequent control points in all gradient dimensions is sufficiently
large (e.g., |Ak| > 100 m~1!) the local objective function becomes quasi-convex (see
Fig. 3.7, A and B).

2) Decreasing the distance of consecutive control points creates a more complex invex objective
function that requires a non-deterministic runtime for convergence.

Because the effect of each gradient strength vector G@ on the k-space trajectory is limited
to only a few neighboring gradient segments, the situation may occur that the parts of the
trajectory with distant control points are quickly optimized while the parts with control points
that are placed more closely require additional iterations. Therefore, the expected computational
expense is mainly determined by the greatest (local) complexity of the control point arrangement,
i.e., only placing few of the control points close to one another may increase the runtime of the
entire gradient optimization process.

61



Chapter 3 Methods

3.2 | Joint Optimization of Gradient and RF Waveforms

The previous section was dedicated to the development of a method for the design of time-optimal
gradient waveforms. The design method is "guided" by an ordered set of control points that the
associated k-space trajectory must traverse. The strategy of how to place these control points
in k-space greatly depends on the problem type (transmission or reception), the FOV/FOX,
and the number of RF coils (that determines the level by which k-space can be undersampled
without degrading the reception or excitation quality). For transmission applications the optimal
control point locations are further determined by the spatial pattern of the excitation target and
off-resonance effects present in the FOX. In the following section, a framework for the design of
ultra-short RF pulses for 3-D spatially selective excitations is derived [27], [29] [30]. The gradient
waveform design method developed in the previous section is embedded in a joint RF and gradient
optimization framework. The problem of control point placement is approached by prescribing
the general arrangement of the control point sequence by simple shape parameters denoted by ¢
and optimizing the shape parameters instead of the control points itself.

3.2.1 Optimization Strategy

Formally, the joint RF and gradient design approach is stated as

rgip{HA(go)b—mtar z+aHbH§+f@(T(go))}, (3.56)

Y (e, b)

where A (¢) is the small tip-angle encoding matrix relating the RF waveform vector b (all channels
are concatenated to form a single column vector) to the transverse magnetization. The target
magnetization vector is denoted m'". The vector ¢ contains the shape parameters of the
k-space trajectory which are optimized along with the RF waveform (the encoding matrix A (¢)
incorporates these parameters via the resulting k-space trajectory). Two regularization terms are
added to the least-squares objective function to control the total RF power HbH; (regularization
strength controlled by a) and the duration of the RF/gradient pulse T (¢) (controlled by a
regularization function fg).

The RF power regularization parameter a was chosen so as to restrict the peak RF power below
the maximum amplifier peak power (150 V). This parameter was set by computing RF pulses
with values of o varying from 107> to 1072 in a logarithmic manner using the initial guess of the
k-space trajectory. In other words, the search for the regularization parameter o was performed
only once at the beginning of the optimization and kept constant during the optimization of the
shape parameters. For regularization of the pulse duration, the penalty function is given by

o (T) 0 for T < Tmax (3.57)
O T B + (T = Trac+ €2 for T = T |

where Tax denotes the pulse duration limit, G denotes the regularization strength, and ¢ denotes
the transition width between the two phases of the penalty function. For durations T < Tax
the function vanishes and the objective function is not penalized. For durations T > Tax the
function fg is roughly equal to BT . Therefore, the function fz is a smoothly varying increasing
function for pulse durations greater than Tmax with a transition width between the constraining
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and non-constraining phases controlled by €. In this work, it was found that a value of the
parameter € of 1.5 ms worked well for all pulses. On the other hand, the parameter G controls
the strength of the pulse duration penalty. Empirically, it was found that the optimization results
did not depend strongly on the specific value of 8 and that a value of 8 = 2 consistently yielded
pulses shorter than 5 ms for all trajectory types.

The problem stated in Eq. 3.56 is solved using a nested optimization approach, i.e., the joint
optimization is divided into an inner optimization loop (fast) over the RF waveform with a fixed
gradient waveform and an outer optimization loop (slow) over the k-space shape parameters

min{ min {4 (.0) } + BT() | | (3.58)

N————
Inner Loop: RF

Outer Loop: Shape Parameters

where 9 (¢, b) denotes the regularized flip angle error, as depicted in Eq. 3.56.
In the small flip angle regime, and for a fixed k-space trajectory k (t), the transverse magnetization
is given by [86], 45]

¢ T A ,
Mr(r) =iyMo ) s(r) / bO(t) eMABE=T) elth(Dr) g (3.59)
c=1 0

where s©(r) and b(t) denote the spatial sensitivity and the RF waveform of the c-th transmit
channel, respectively, and ABg () is the off-resonance map converted in Tesla. Discretization of
the continuous integral and concatenation of the spatial locations at which Eq. 3.59 is evaluated
yields a well-known system of linear equations between the RF pulse b and the magnetization m:

m=A(p)b (3.60)

where the elements of A(¢) are easily deduced from Eq. 3.59. For a given target magnetization
m' and a fixed gradient waveform (meaning that ¢ is constant), the RF design problem,
therefore, reads as

mbin{HA(cp)b—mtar

2
,+albl3} (3.61)

Note that Eq. 3.61 can be re-formulated as an unconstrained optimization problem using the
normal equations

C:=A(@)"A(e)+a? and d:=A(p)m™ (3.62)

with (-)" denoting the complex conjugate transpose and / denoting the identity matrix. This
problem is solved using the conjugate gradient algorithm as implemented in Matlab R2014b (The
Mathworks Inc., Natick, MA, USA).

To enforce robustness of the designed RF pulses with respect to off-resonance effects, the
gradient and RF waveforms are not only designed at the Larmor frequency but also at two
off-resonance frequencies (£50 Hz), referred to as spatio-spectral RF pulse design [I07]. This

63



Chapter 3 Methods

is implemented by stacking the respective encoding matrices computed at fixed off-resonance
deviations (which are added to the By map), namely

A_50 Hz m'er
A= Aonz and m:= | m®@ | . (3.63)
AL50 Hz m'er

The problem of optimization of the RF waveforms on a fixed k-space trajectory is a linear
least-squares problem that can be solved relatively quickly (using convex optimization methods).
In contrast, optimization of the gradient shape parameters is non-linear and, therefore, more
difficult and time-consuming. The outer optimization loop (over the k-space trajectory shape
parameters) of Eq. 3.58 is solved using a non-linear constrained sequential quadratic programming
(SQP) algorithm as implemented in Matlab (function fmincon). The derivatives of the outer
objective function with respect to ¢ are computed via finite differencing using a constant step
size (e = 2-1072). This optimization is performed subject to constraints on minimum (¢) and
maximum () values of the shape parameters ¢:

Pg < g <@g for q=1,2,... (3.64)

For positive shape parameters, such as the number of shells or the number of revolutions per shell,
an obvious choice for the respective constraint is ¢4 = 0 to impose that the shape parameters
are never set to negative values by the optimization process. For other parameters, the tolerated
upper and lower bounds were adjusted so as to avoid excessively long pulse durations (e.g.,
longer than 20 ms). In this work, which was focused on brain imaging, the extent of all k-space
trajectories was limited to a box in 3-D k-space with a maximum k-space extent of 100 m~1
in all dimensions (which corresponds to @;,5/3 = 100 m~! for all trajectories). On the other
hand, lower bound constraints on the k-space extent shape parameters were set to small values
to prevent the trajectory from collapsing on itself (values of (51/2/3 = 10 m~! were used). In
practice, the lower and upper bound constraints on k-space extent were never reached (i.e., these
were non-binding constraints).

3.2.2 Parameterization of 3-D k-space Trajectories

Given a set of shape parameters, control points are placed in 3-D k-space using simple geometry
rules outlined in Figs. 3.9, 3.11, and 3.13. These control points form the skeleton of the k-space
trajectory. Note that instead of optimizing the individual locations of the control points (which
would result in a large number of degrees-of-freedom to be optimized), the control points are
optimized via the shape parameters . In this work, overall three types of k-space trajectories
are studied: 3-D concentric shells, stack-of-spirals, and cross trajectories.

Shells Trajectory

The shells trajectory (Fig. 3.9) consists of a number of concentric shells (the number of shells is
optimized by the joint gradient and RF design routine) that are parameterized using seven shape
parameters. The first three shape parameters compress or stretch the entire trajectory in ky, ky,
and k; (1, @2, ©3). Two shape parameters vary the number of shells (¢4) and the number of
revolutions per shell (ps). The last two parameters control the local sampling density of the
k-space trajectory: g controls the number of revolutions of the centermost shells while @7
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Figure 3.9: Visual depiction of the effect of shape parameters on the shells k-space trajectory. The effect of each
parameter is shown by comparison with an "undeformed" trajectory at the top (the illustrated parameter changes
are relatively large in order to facilitate visualization of the effect of each parameter).

controls the relative distance between consecutive shells. For example, increasing (7 causes the
rate of variation of the radii of concentric shells (from inner to outer shell) to increase and thus
results in a decrease of the sampling density at the periphery of k-space compared to the center
(this is similar to the parameterization of variable-density spirals). Note that the parameters ¢4
and s are of integer type (in a following section we explain how these parameters are handled
in the optimization process without causes discontinuities in the objective function).

Mapping of Shape Parameters to Control Points

In detail, the number N of concentric shells is controlled by the shape parameter @4 via
N = WJ , (3.65)

where 4 is constrained to be in the range [2.0,7.5] (a.u.). The control points forming the n-th
shell are placed along a 3-D curve that is given by the following equations:

™ () — R . g )
k" (t) = R} - sin (2-c<">> cos (t)
t
™ () — RM . . Si
k)’ (t) = R}’ - cos (2-c<n>) sin (t)
t
™ () — RM .
ki (t) = RY - cos (2 : c<n)) (3.66)
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Figure 3.10: Dependence of the number of shells N (number of curves) and their radii r™ (function values of
the curves) as a function of the continuous number of shells shape parameter ¢4. Note that the shell radii vary
continuously with ¢4 to ensure that the shells do not overlap (no intersection of the curves). When (4 crosses an
integer quantity, a new shell is created with zero extent (new curve at r = 0).

where t is the parametric variable, ¢ denotes the number of revolutions for shell index n and
RY, R§,”), and RY are the radii of the shells along the three k-space dimensions (in m~1).
Control points are placed at a regular interval of the parameter t along this 3-D curve

3

™ T
t=0 -~ =,
IR

o, 2mec™ (3.67)
which yields four control points per shell revolution for each shell. The radii R™ of the shells
depend on two shape parameters, @4 (total number of shells) and @7 (rate of variation of the
radii of the shells when one moves away from the k-space center, this parameter is constrained
to be in the range [0.5,2.0] in a.u.). Note that these parameters control the radii of the shells
indirectly, as follows: first, normalized radii of all shells in the trajectory are computed (the first
shell has the greatest radius, the last shell the smallest):

©4 —n

_ (3.68)

)
r .
w4 —1

This formulation properly implements the handling of an integer parameter: As a new shell is
created, its normalized radius is automatically O (cf. Fig. 3.10). Note that the normalized radii
depend on @4 and not on N := |4, which means that as ¢4 increases (but does not cross a
new integer value which would indicate the creation of a new shell), the radii of the shells change
as well.

In the second step, the actual shell radii are computed using the normalized radii r™ as follows:

R = (r™)%7 .y
RD = (F)*7 - g,
RY == (r™)*" - @3, (3.69)

i.e., the normalized radii are first adjusted by @7 (non-uniformity of rate of variation of the radii)
and then multiplied by ¢;,5/3 (maximum extent in k,,,,,, range [10.0,100.0] in m~1) to yield
the final radii of the shells along the three k-space dimensions. A value of @7 > 1 indicates an
oversampling of the center of k-space (inner shells are closely spaced), whereas with a value
0 < @7 < 1 the opposite effect is achieved (imposes oversampling of the k-space periphery).
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Stack-of-Spirals
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Figure 3.11: Visual depiction of the effect of shape parameters on the stack-of-spirals k-space trajectory. The
effect of each parameter is shown by comparison with an "undeformed" trajectory at the top (the illustrated
parameter changes are relatively large in order to facilitate visualization of the effect of each parameter).

Finally, the number of revolutions per shell ¢™ is computed from s (controls number of
revolutions of the entire trajectory, and is constrained to be in the range [1.0,10.0] in a.u.), ©g
(rate of variation of number of revolutions as a function of the shell radius, range is [—8.0, +8.0]
in a.u.), and the normalized radii introduced in Eq. 3.68:

c™ = r"5"ps (3.70)
where

5™ — (1=r®) - pe+1 for vs >0 (3.71)
—rm. g+ 1 for g <0 - '

Note that the number of revolutions ¢™ for the n-th shell increases linearly with the radius of
that shell in order to maintain a uniform distance in k, between consecutive revolutions for all
shells. The quantity 6™ can be used to increase the sampling density of either the center or the
periphery of k-space. This quantity itself is computed from the shape parameter @g as shown
in Eq. 3.71. E.g., a value of the shape parameter g of +1 doubles the number of revolutions
for the inner shell compared to the outer shell whereas a value of —1 has opposite effect, as it
doubles the number of revolutions of the outer shells compared to the inner shell.

Stack-of-Spirals Trajectory

Another type of k-space trajectory parameterized in this work are stack-of-spirals (Fig. 3.11)
using seven shape parameters. As with shells trajectories, ¢1, ©2, and @3 control the extent
of the entire trajectory in kx, k,, and k. @4 is the distance of consecutive spirals in k, which,
together with the k, extent (¢3), controls the number of spirals in the stack. s is the number
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of revolutions per spiral which, together with the extent in kx (¢1) and k, (¢2) controls the
in-plane sampling density. g controls the rate of variation of the distance between spirals in k,
(increasing g increases the distance between consecutive spirals as one moves away from the
k-space center, which in turn decreases the sampling density at high k, compared to k, = 0).
7 controls the rate of variation of the radial velocity of each spiral and, therefore, affects the
sampling density in the periphery of (k, k,) compared to the center (variable density spirals).
Because @3 and 4 can change the number of spirals in the stack they are considered integer
parameters.

Mapping of Shape Parameters to Control Points

The stack-of-spirals consists of a number of N spirals that are stacked on top of each other in
the k, direction. N is controlled via
Ni=2. L%J V1, (3.72)
P4
where @3 controls the maximum extent in k, (range is [10.0,100.0] in m~!) and ¢4 is the k,
distance between consecutive spirals (range is [1.0,30.0] in m~!). For a single spiral with index
n, the control points are placed on the following 3-D curve:

t p7+1 '
k() =R () (D)

tmax
t p7+1 .
KO (1) = RY - ( L ) - sin (1)
tmax
N+ 1—2n|¥etl
Control points are placed at values of the parameter
™ T 3
t:O,Z,E,T,...,tmaX (374)

yielding four control points per spiral revolution. RY and R§,”) denote the radii of the spirals in
kx and ky, and are indirectly controlled by the algorithm. Specifically they are computed from
©1/2 (maximum k-space extent in ky,, range is [10.0,100.0] in m~!) as:

RM — H™ -1

X
R = H™ ., (3.75)

(n
y

k" i
H®™ = <0.5 (1 + cos < Z(p ))) . (3.76)
3

In other words, the radii of the spirals in k,,, are proportional to the shape parameters ¢,
with the proportionality constant H™, where H™ is a window function shown in Fig. 3.12. As
shown on this figure, H™ ensures that spirals located away from the k-space center have a
smaller radius than those at the center of k-space, which is important for the algorithm to

where
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Figure 3.12: Parameterization of the radii of spirals in the stack-of-spirals trajectory. The window function H™
(dashed curve, in this plot the window function is scaled to 1 = kimax) ensures that spirals have a smaller radius
r™ at high k, and a radius of zero at kzmax.

properly sample the center of k-space even in the case of a very short pulse. Additionally, this
parameterization automatically handles properly the creation of a new spiral entity. Indeed, when
a new pair of spirals is created at £k, max, these are automatically assigned radii of 0 both in
the ky and k, direction thus ensuring a smooth variation of the objective function.

The spirals that we use in this work are variable density spirals (this can be seen on Fig. 3.11),
with a rate of variation in the transverse direction controlled by 7 (range is [0.5,2.0] in a.u.). In
the k, direction, the spacing between consecutive spirals is controlled by ¢4 and @g as shown in
the third line of Eq. 3.73. Specifically, k, depends on the index of the spiral n and is proportional
to (4, which controls the distance of subsequent spirals in the k, direction. As in the transverse
direction, the rate of variation of the distance between consecutive spirals may be non-linear and
is controlled by the "non-linearity parameter" g (range in [0.5,3.0] in a.u.). If s = 1, all the
spirals in the stack are spaced equally. Values of 0 < ¢g < 1 impose oversampling of the high k,
regions compared to the low k, region. Values of g > 1 imposes oversampling of the k-space
center compared to the k-space periphery.

Finally, the maximum value of the parametric variable for each spiral, t{i, depends on s
(number of revolutions of the entire trajectory, range is [1.0, 10.0] in a.u.) as well as the window
function H™ (since spirals with smaller radius need less revolutions to achieve the same sampling
density in the k, , plane), which leads to

tmax = c™ 21, ™ = 5 - H™ (3.77)

where ¢™ denotes the number of revolutions for the n-th spiral.
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Figure 3.13: Visual depiction of the effect of shape parameters on the cross k-space trajectory. The effect of
each parameter is shown by comparison with an "undeformed" trajectory at the top (the illustrated parameter
changes are relatively large in order to facilitate visualization of the effect of each parameter).

Cross Trajectory

The final type of sampling pattern studied in this work is the cross k-space trajectory (Fig. 3.13).
This trajectory densely samples k-space along the ky, k, and k, axes in a way that resembles
the Fourier transform of a cubic targets (the hypothesis is that this trajectory is well suited for
cubic target regions). The trajectory consists of three distinct segments covering the ki, k,
and k, axes. The segments themselves consist of concentric 2-D elliptic curves that sample a
roughly cylindrical region around each k-space axis. Each segment is parameterized by two shape
parameters. The first parameter (¢ for ky, @3 for k, and s for k,) controls the extent of the
trajectory along the axis under consideration while the second (> for ky, @4 for k, and g for
k) specifies the diameter of the segment in the direction perpendicular to the k-space axis. All
six parameters for this cross shape are continuous (no integer parameters).

Mapping of Shape Parameters to Control Points

For the cross trajectory, the control points are directly placed in 3-D k-space as the 3-D trajectory
itself has no closed-form expression. Each cross trajectory is composed of three segments, and
every segment is composed of a variable number or revolutions (in this work, two revolutions
were used for the k. and k, segments, and three revolutions for the k, segment). Revolutions
connect the minimum negative and the maximum positive extent of the trajectory along the
axis under consideration and then return to the minimum negative extent (see Fig. 3.13). Each
revolution is defined using four control point.

In the following example a single revolution of the k, segment of a cross trajectory is considered.
For this revolution, the first (k™) and third control point (k®) are placed on the ky axis at +1
and —¢1, where 7 is the shape parameter controlling the maximum extent kx of the entire
trajectory (range is [10.0,100.0] in m~!). The second (k®) and forth control point (k™) are
placed in the plane perpendicular to the ky axis at kx = 0. The distance of these control points
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to the k-space origin (and thus the diameter of the k., segment) is given by the product of ¢;
(maximum k-space extent) and ¢4 (this parameter controls the ratio of the diameter and the
maximum k-space extent of the ky segment, and its range is [0.05, 1.0] in a.u.). Subsequent
revolutions are then established by rotating this set of control points (and thus the associated
first revolution) around the ky axis. In summary, the four control points of a single revolution of
the ky segment are given by

kY = [ —p1, 0, 0 ]
k@ =] 0, +sin(8) w14, +cos(0) 14 | (3.78)
K = [ 41, 0, 0 )
E® =] 0, —sin(0)@ips, —cos(0)pi¢ps |

where 6 denotes the rotation angle of the revolution around the k, axis. Finally, control points
are added for each segment so as to exactly sample the ky, ky, and k; axis, which was found to
be important for cubic excitation targets.

3.2.3 Integer Shape Parameters

As explained in the previous sections, some shape parameters are of integer type. Because the
proposed optimization method uses a gradient-based solver for minimization of the objective
function in Eq. 3.59, which only handles continuous parameters, integer parameters are converted
into continuous parameters (for example, a value of the parameter ¢4 in a shells trajectory equal
to 3.9 means that the trajectory contains 3 shells). To avoid discontinuities of the objective
function as these parameters are varied by the optimizer, the following strategy was employed:
When an integer parameter is increased by the optimizer so that it crosses an integer quantity
(e.g., g4 in a shells trajectory increases from 3.9 to 4.1 which signifies that the number of shells
increases from 3 to 4), the additional entity created by this increase (e.g., the new shell in the
previous example) is associated with an infinitely small k-space extent. As a consequence, as this
new entity is created, the objective function and pulse duration do not vary in a discontinuous
manner. Alternatively, one might decide to remove such integer parameters from the optimization,
however, it was found that these are very powerful degrees-of-freedom used by the optimizer to
fine-tune the local sampling density of the trajectory to the magnetization pattern and Bf maps
at hand. For the stack-of-spirals trajectory, when changing @3 and ¢4 such that a new spiral
needs to be added to the stack, two spirals are added in a symmetric fashion at +kpax.

3.2.4 Gradient Trajectory Design

Depending on the anticipated pulse duration and the type of trajectory, up to ~ 50 control points
are placed in k-space. For the shells and stack-of-spirals trajectory four control points were used
per shell/spiral revolution positioned at 90° from each other. For the cross trajectory control
points were placed at the tips and at the center of each k-space axis segment, also resulting in
four control points per revolution along the axis of the segment.
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The shortest smooth gradient trajectory k(t) connecting these control points in the order
prescribed is computed in a way that satisfies the gradient amplitude (Gmax) and slew rate (Smax)
constraints, namely

d e
Hdtk(t)H < Gra and ||dt2k:(t) < S (3.79)

o0

using the Gradient Basis Function presented in Sec. 3.1 [28, [26]. In short, this approach stitches
together piece-wise linear gradient segments, which results in piece-wise quadratic k-space
segments. The duration and slope of the gradient segments are optimized using a minimization
algorithm subject to the gradient system performance constraints. Optimization of the individual
Gx. Gy, and G, segments is performed such that the k-space trajectory passes through all control
points in the shortest time (the trajectory shape between control points is not pre-determined and
is optimized by the algorithm). This semi-analytic optimization approach is fast (e.g., 5 seconds
on a single CPU for the design of a 10 ms 3-D k-space trajectory) and numerically highly stable.
In other words, small perturbations of the control points positions result in small perturbations of
the gradient waveforms without oscillations and divergence problems [28] [26] which can affect
other approaches such as optimal control techniques [109, 55, [71}, 120]. It was found that high
numerical stability of the gradient waveform design is crucial in the proposed joint gradient
and RF waveform optimization framework. Indeed, instabilities such as oscillations and small
violations of the gradient system performance constraints result in discontinuous variations of the
objective function in Eq. 3.58 and, therefore, cause premature termination of the optimization
process and poor excitation performance of the RF pulse.

3.2.5 Evaluation of the Proposed Method

The proposed optimization framework was evaluated for head imaging at 7 Tesla using an
8-channel pTx system ("Step 2" pTx system, Magnetom 7 T, Siemens, Erlangen) loaded with
a realistic 3-D-printed head phantom with three compartments (bone, brain, and everything
else) that was described elsewhere [47]. The B and By maps were measured using the
product saturated TurboFLASH Bi" mapping [38] and the gradient echo field mapping sequences,
respectively, at a matrix size of 128 x 128 x 20 in a field-of-view (FOV) of 20 x 20 x 12 cm?3
(Fig. 3.14). To reduce the computation time in the optimization process, the Bf and Bg maps
where undersampled by a factor of two in the x and y directions (no undersampling in the slice
direction), resulting in an effective voxel size of 3.0 x 3.0 x 6.0 mm3. The pulses studied in
this work were evaluated using Bloch simulation using these measured field maps as well as
experiments. All pulse optimizations were performed on a 64 bit Windows machine with an Intel
Xeon CPU W 3565 processor with 8 cores (3.2 GHz) and 16 GB of RAM.

Shells, stack-of-spirals, and cross trajectories were optimized for two 10° flip angle excitation
targets: Excitation of a 4 x 4 x 4 cm® cube for reduced FOV imaging and excitation of the brain
only for fat suppression (Fig. 3.14, bottom right). Both targets were blurred with a Gaussian
kernel with 0 = 3 mm and o = 1 mm for the cube and brain target, respectively. The initial shape
parameters of the three k-space trajectories were chosen so as to uniformly sample k-space up to
50 — 60 m~! in the three directions in less than 5 ms which corresponds to 6-fold undersampling.
This is done in two steps: First, the spacing between sampling points (i.e., the sampling density)
in 3-D k-space is chosen so as to roughly match the ratio of number of channels and the size of
the FOX. In other words, k-space is undersampled by a factor equal to the number of transmit
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Figure 3.14: Coil sensitivity (B]") and off-resonance maps (Bp) and target magnetization profiles used in this work
for evaluation of the proposed approach. A different slice is shown for the By map that shows the characteristic
By frontal lobe hot-spot (this slice is part of the stack being optimized). The cubic target has a dimension of
4 x 4 x 4cm®. The brain target covers the whole brain and excludes other tissues such as the skull, dura, fat,
muscle, etc. Both target flip angle distributions are uniform within the excited volumes and equal to 10°.

channels. Second, keeping this sampling density constant, the extent of the trajectory in ky, ky,
and k; is increased in a uniform manner (same extent in all three spatial directions) until the
pulse duration constraint is equal to the maximum duration tolerated (5 ms in this work).
Additionally, RF pulses were designed using so-called SPINS trajectories as proposed by Malik et
al. [73]. SPINS are analytic 3-D spherical spiral k-space trajectories with parameters controlling
the maximum extent, the radial velocity, and the sampling density of the trajectory at the center
and periphery of k-space. These SPINS trajectories as well as shells trajectories optimized by
the proposed method were used for flip angle uniformization (whole head) as well as excitation
of a cube target magnetization pattern. SPINS pulses were initially proposed only for flip angle
uniformization and, in their original implementation by Malik et al., were kept very short (less
than 1 ms). For the purpose of spatially selective excitation (e.g., excitation of the cube pattern),
the length of the SPINS pulses was increased to 5 ms in order to sample the periphery of k-space
as well.

All trajectories were designed using gradient system constraints of Gmax = 40mT/m and
Smax = 150 T/m/s. RF and gradient waveforms were designed with temporal sampling of 10 ps.
The RF power Tikhonov regularization strength (a in Eq. 3.56) was adjusted so as to limit
the peak voltage to 150V for all pulses per channel (this results in peak Bf field strengths of
6.2,6.2,5.3, 6.6, 6.2,6.2,5.8, 6.2 uT for transmit channels #1 to #8). The pulse duration
regularization parameters (Eq. 3.57) were adjusted so as to yield pulses with duration shorter than
5 ms. The performance of the RF pulses is characterized in terms of normalized root-mean-square
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error (NRMSE). Denoting the achieved and the target flip angle distributions as FA, and FA}Jar
(p denotes the pixel index), the RMSE and NRMSE [%]) are computed via

1 & 2
RMSE = J 5 1: (FAP - FA};“) (3.80)
p:
RMSE
NRMSE = ————— (3.81)
FARL — FAR
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3.3 Off-resonance Robust Slice Excitation

The joint gradient and RF pulse optimization framework presented in the previous section was
developed specifically for exciting 3-D spatially selective magnetization patterns. For this purpose,
trajectories were utilized that sampled 3-D excitation k-space rather uniformly, as dictated by
the 3-D energy pattern of the excitation targets (namely cubical and brain-shaped targets). It
was further demonstrated how ABg effects can be incorporated into the RF design optimization
in order to improve the practicability of the pulses. These ABy effects become more prominent
as the field strength increases (e.g., from 3 T to the latest 7 T MR technology). In presence of
large off-resonance effects, even the simplest tasks like slice-selective excitations become very
challenging. In this section, an extension of the joint gradient and RF optimization framework will
be derived that allows for computing RF pulses for uniform slice excitation in presence of both
B inhomogeneities and ABy effects (to achieve both uniform slice-excitation and off-resonance
robustness). The proposed method has been presented by Davids et al. [32].

3.3.1 Spokes Pulses

The most basic approach to reduce Bf—induced flip angle variations during slice-excitation is
RF-shimming. In this case the slice-selective RF-pulses played on the different transmit channels
are weighted differently, with the weights being tailored to the in-plane flip angle variation resulting
from the non-uniform Bf maps. In many cases, however, the degrees-of-freedom offered by the
RF-shimming approach (i.e., the level of spatial flip angle modulation that can be generated by
the different transmit channels) are insufficient to achieve acceptable uniformization of the flip
angle maps.

A commonly used approach to design slice-selective RF pulses with more degrees-of-freedom
with respect to the achievable in-plane flip angle variations (to achieve more uniform flip angle
maps) are so-called Spokes pulses [99]. These pulses utilize spokes trajectories that sample
excitation k-space along multiple straight lines oriented in parallel to the slice-selective axis
(most often the k; axis). On each spoke and each transmit channel, a sinc RF pulse is played
in order to achieve slice-selection. One spoke is usually placed at the center of the k/, plane
(k«/y = 0), i.e., this spoke corresponds to a regular slice-selective RF pulse. The remaining
spokes are shifted away from the center of the k,,, plane in order to generate an in-plane flip
angle modulation, depending on the location of the spoke in k,,, (i.e., the distance to the
k-space center). A spoke located very close to ky/y = 0 will excite a slice with a low-frequency
spatial flip angle modulation, whereas shifting the spoke further away from the center of the k,,
plane will increase the spatial modulation frequency of the flip angle map. If the positions of the
spokes are chosen appropriately (usually on the order of 5 m~! in both ky and ky), the spatial
flip-angle modulation can be tailored (by choosing different complex weights for each spoke and
each transmit channel, similar to RF-shimming) such that the Bf—induced flip angle variations
are compensated. Spokes pulses are very easy to design, since there is no need to perform a
full optimization of the RF waveforms (only a few degrees-of-freedom to be optimized, given by
"number of channels" x "number of spokes").

The good performance of spokes pulses, however, breaks down as soon as off-resonance effects
are present in the FOX. The capability of spokes pulses to achieve robustness against these ABg
effects is intrinsically limited by the k-space sampling structure of the spokes trajectory. This
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can be illustrated by means of the small tip angle solution of the Bloch equation (here given for
a single transmit channel for simplicity):

T . .
M (r) = iyMo / By (t,r) e*(Or) ¥ABo(r)(=T) gp (3.82)
0

—— —— ——
k-space Dephasing from
encoding  off-resonance

As was described before, the transverse magnetization My () is given by the Fourier transform of
the applied By -field, with the Fourier pair given by (k (t),r). Variations of the static magnetic
field denoted by ABg cause a spatially varying dephasing of the magnetization that leads to signal
dropouts. For the off-resonance term in Eq. 3.82, a Taylor expansion can be given, resulting in

ABo (r) = ABo (0) +rv(ABO (0)) +R(r) (3.83)

where R (7) is used to denote any off-resonance terms of order > 2. Using this Taylor expansion,
the dephasing term in Eq. 3.82 can be reformulated, yielding

exp <ifyABo (r) (t— T)> o
...=exp (i’yABo (0) (t — T)) -exp (ifyr -V (ABgy (19)) (t — T)) - exp (ifyi)‘i(r) (t— T))

— exp (ifyABO 0) (¢ — T)) - exp <i<r, kas (1) >> exp (wm(r) (t— T)> (3.84)

Oth-order: 1st-order: Higher order:
Constant offset Shift in k-space k-space blurring
where
kag (t) =7V (ABo(ro)) (t—=T) . (3.85)

The above rearrangement illustrates that the different ABg-order-terms can be associated with
different effects to the spatial encoding. The Oth-order term induces a global offset of the
resonance frequency, which usually can be accounted for very easily by By shimming. The
1st-order term of the ABg field mimics an additional unwanted gradient field and, therefore,
induces a time-dependent shift of the k-space coordinate by kag (t). The higher order terms
cannot be associated with a unique k-space shift but generate an non-linear uncertainty or
"blurring" of the k-space coordinate.

The k-space shift arising from the 1st-order ABp-term generates bending-like deformations of
the slice profile that are commonly referred to as the potato-chip effect. This bending effect is
most prominent if the different spokes are driven at an opposite gradient polarity. For a 2-spokes
pulse this means that the first spoke is traversed from —k, to +k, whereas the second spoke is
traversed from +k, to —k, (or vice versa), as depicted on the left side of Fig. 3.15. The k-space
error induced by the 1st-order ABp-term is illustrated as a blue shift in the k,,, plane. Note
that the k-space shift is largest at the beginning of the RF pulse and vanishes at the very end of
the pulse. This time dependence is due to the fact that k-space information deposited at the
beginning of the pulse accumulates ABy-induced phase errors throughout the full pulse duration,
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Figure 3.15: Depiction of 2-spokes trajectories where the spokes are played with opposite gradient polarity (left)
and the same polarity (right). Playing the spokes with the same polarity (meaning that the first spoke needs to be
refocused before playing the second spoke) ensures that the ABy-induced k-space errors (shown in blue) produce
more similar slice deformations which reduces the overall signal loss.

whereas information deposited at the very end of the pulse does not have time to accumulate
significant phase errors. As a result of the k-space error, the spokes are "tilted", creating the
common bending effect of the slice.

One approach to reduce the level of slice bending is to refocus the z-gradient of the first spoke
and playing the second spoke with the same gradient polarity (as shown in Fig. 3.15, right).
Although this does not reduce the k-space shift induced by the 1st-order ABg-terms (in fact, the
maximum shift increases due to the longer pulse duration), the two spokes are tilted in k-space
in a similar fashion (compared to the case of opposing gradient polarity). As a result, the two
spokes create a similar slice bending effect, leading to less signal dropouts. This technique can
partially recover signal loss arising from the 1st-order ABgp-term, but is not capable of recovering
signal loss arising from the higher-order ABgy-terms. These terms cannot be clearly associated
with a k-space shift (like the 1st-order term) and, therefore, create an uncertainty or "blurring"
effect at the k-space location. In theory these effects can be accounted for by performing a
full RF pulse optimization with enforced robustness to off-resonance effects (in an attempt to
restore the blurred k-space information), however, if and only if the k-space trajectory provides
enough degrees-of-freedom to recover the k-space information in the k,,, plane. Due to the
sparsity of the spokes trajectories in the k,,,-plane (every spoke samples exactly one location in
ky/y), this type of trajectory does not provide enough degrees-of-freedom to compensate for
these effects.

3.3.2 The Corkscrew Trajectory

In order to overcome the limitations of the spokes pulses — in particular the sparse sampling
density in the k,,, plane — a new type of k-space trajectory is proposed. In general, three
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Figure 3.16: Visual depiction of the effect of the shape parameters on the corkscrew k-space trajectory. The
effect of each parameter is shown by comparison with the "undeformed" trajectory on the left (the illustrated
parameter changes are relatively large in order to facilitate visualization of the effect of each parameter).

requirements of the gradient trajectory can be stated to achieve both flip angle mitigation and
off-resonance robustness:

1) A homogeneous sampling density along the k., axis in order to achieve accurate slice-
selection.

2) A flexible sampling density in the kysy plane in order to create degrees-of-freedom for

the RF pulse optimization to improve the flip-angle mitigation and the off-resonance
compensation capability.

3) A gradient trajectory that samples excitation k-space in a more structured way from +k,

to —k, (or alternatively from —k;, to +k,) without reversal of the k, direction. It was
found that this way of sampling the k, axis is intrinsically more robust to off-resonance
effects.

To realize these trajectory features, a so-called Corkscrew trajectory was designed (see Fig. 3.16)
that is parameterized by overall eight shape parameters ¢ = (¢1,...,¢s). The corkscrew
trajectory samples excitation k-space along a helical path following the slice-selection axis. The
distance of two subsequent helical revolutions is chosen so as to achieve a certain size of the
field-of-excitation. The base area of the helical path in the k,, -plane is defined by an ellipse

of

certain length, width, and rotation angle. Every revolution of the helical path is defined by

overall four control points in k-space. For the n-th revolution the control points are given by
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with

[(pa—w2), — (03— 1) ]
(s —@2), — (3 — 1) ]|,

’l":(l’l,l’2): |H (387)

The shape parameters and their respective bounds are defined as follows:

1 ky coordinate of first elliptical tip [—20,420] in m~1
>k, coordinate of first elliptical tip [—20,+20] in m~!
3 ky coordinate of second elliptical tip [—20,420] in m~!
w4k, coordinate of second elliptical tip [—20,4+20] in m~*
ws width of the helical revolutions in the k,, plane  [5,40] in m™*

@6 kmax along the k, axis [300,1000] in m~1!
7 distance Ak, of two subsequent revolutions [2,100] in m~1

g modulation strength of the k,,, sampling density [0,1]in a.u.

The last shape parameter g is used to slightly modify the scaling of subsequent revolutions in
the k,,,-plane, which was found to be helpful to improve the condition of the resulting system
matrix, and as a result to improve the fidelity of the slice-selective RF pulse. This modulation is
implemented by multiplication of the k. and k, control point coordinates by the following scaling
term W (k) (i.e., the scaling term varies with the k; location of the control points):

V (k) = 1—(p8-% (1+cos(\/g;7~27r)> . (3.88)

The kyx and ky, coordinates of the control points are then modulated via

kx — kx'w(kz)+%(‘pl+(ﬁ3) '(1_\U(kz)) and (3-89)
ky = Ky V(k:) + 5 (02 +9a) (1= (K)) - (3.90)

3.3.3 Slice-Selective RF Pulse Design

In order to improve the applicability of the joint gradient and RF optimization framework described
in Sec. 3.2 with respect to the design of slice-selective RF pulses, a few adjustments were made.
For the inner loop of Eq. 3.58 in which the RF waveforms are optimized on a constant k-space
trajectory, the least squares pulse optimization was replaced by a magnitude least squares (MLS)
optimization. The objective function of the MLS RF optimization reads

min {14 bl = [m]

S+l ) (3.91)

Note that although the system of equations is solved on complex variables, the residual error
between achieved magnetization A ()b and target magnetization m'" is evaluated in terms of
the magnitude | - | of the respective quantities. This means, that the phase of the magnetization
is not considered by the objective function, as this is not relevant for many imaging sequences.
However, releasing the phase constraint effectively divides the number of variables that the system
of equations is solved for by a factor of two, i.e., MLS RF pulses usually perform significantly
better than RF pulses which have been optimized in a conventional least squares sense. Note
that the objective function in Eq. 3.91 is non-linear which generally does not allow to use fast
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Figure 3.17: Effect of the outer volume regularization strength A on the flip angle fidelity in the entire field-of-
excitation, FOX (black squares), for the in-plane voxels (red triangles), and in the outer volume (blue circles).

convex optimization methods. To overcome this, the MLS optimization was performed using the
phase adoption method which reformulates the single non-linear optimization problem as a series
of linear optimization problems. Specifically, Eq. 3.91 is approached by solving multiple least
squares RF optimization problems kK =1,2,..., N given by

2 . _
ngikn{HC(so) b —dkH2} with d¥ = |d®r|. etAra(C(e)b ) (3.92)

where again normal equations were employed to use fast conjugate gradient solvers:
C=A(@)"A(p)+0a? and d:=A(e)m™ . (3.93)

Note that for each sub-problem with superscript k a magnetization target d* is used whose
phase was chosen according to the solution of the previous RF optimization k — 1. In other
words, the phase of the target magnetization is adjusted after each optimization in order to
iteratively release this constraint from the optimization.

A second modification has been implemented to improve the goodness of the slice-selectivity, i.e.,
to enforce signal suppression in the outer volume. This can be achieved by performing the pulse
optimization such that the evaluation of the total flip angle error (which is minimized by the
pulse optimization) uses different weights for voxels located in the slice and in the outer volume.
This weighting is applied both to the system matrix and the target magnetization. Let

tar
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Figure 3.18: Top left: Realistic head phantom [48] used for evaluation of the RF-shimming and spokes pulses as
well as the proposed corkscrew RF pulse. Top right: ABy, map showing the characteristic hot-spot in the frontal

lobe. This slice was used for evaluation of the different RF pulses. Bottom: By maps of the 8 channel transmit
coil array.

be sub-matrices and sub-vectors that only include the columns that are associated with in-plane

voxels ("inner") and outer volume voxels ("outer"). The normal equations given by Eq. 3.93 are
then adjusted towards

- - H

A . A .
¢ [ AP (hmer | 02 ang (3.95)
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d — A (So)inner mﬁ?r:er . (396)
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The weighting factor A is used to adjust the balance between enforcing Bf mitigation to improve
the in-plane flip angle fidelity (A < 1) and enforcing accurate slice-selection without residual
signals in the outer volume (A > 1). For A = 1 the problem to be solved is the same as stated in
Eqgs. 3.92 and 3.93. The effect of the outer-volume suppression regularization parameter X is
illustrated in Fig. 3.17. It can observed that the weighting parameter A can be adjusted so as to
remove residual signals in the outer-volume (blue dots) at the cost of reduced in-plane flip angle
fidelity (red triangles).
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3.3.4 Evaluation of the proposed Method

The proposed corkscrew RF pulse strategy was evaluated by exciting a slice in a head region in
which significant off-resonance frequencies are present. For this purpose, we used a realistic head
phantom consisting of four compartments: bone, brain, muscle, internal air cavities [48] (see
Fig. 3.18, top left). This phantom creates the characteristic ABy hot-spot in the frontal lobe due
to susceptibility effects, see Fig. 3.18 (top right). The corkscrew RF pulse was designed to excite
a slice exactly in this region. Additionally, a number of more common slice-excitation approaches
was used to design RF pulses, namely a simple Birdcage mode excitation (#1), RF-shimming
(#2), and 2-spokes pulses without and with enforcing robustness to ABy effects (#3 and #4).
The Bf and Bp maps were measured at 7 Tesla using a matrix size of 128 x 128 x 115 in a
FOV of 20.5 x 20.5 x 11.5cm? (Fig. 3.18), resulting in a voxel size of 1.6 x 1.6 x 1.0 mm3.
The gradient system constraints were set to Gmax = 40 mT/m and Spax = 150 T/m/s. The
RF power Tikhonov regularization strength (o in Eq. 3.91) was adjusted so as to limit the peak
voltage to 150 V. For the target magnetization, a slice with a thickness of 3 mm at a flip angle
of 10° was chosen. The flip angle mitigation was performed only in the brain (i.e., excluding the
dura from the optimization ROI).
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3.4 | Prediction of Magnetostimulation Thresholds

The previous sections investigated strategies to make optimal use of the gradient coils in the frame
of multi-dimensional pTx RF pulses for excitation of 3-D spatially selective target magnetization.
Constraining the gradient waveforms by maximum strength and slew rate (Gmax and Smax) and
the RF waveforms by the maximum voltage applied to the transmit coils (Vinax) is a rather
conservative but effective way to reduce electric fields and their undesired effects (PNS and SAR,
respectively). In the following section a more fundamental approach is used to reduce PNS: A
framework is developed that can predict PNS induced by realistic coil geometries using a realistic
body model for EM field simulation, a detailed atlas of human nerve fibers and a neurodynamic
model [3T], 34, [33].

3.4.1 Workflow

In order to model PNS in the body induced by the switching of electromagnetic fields created
by an external coil, we follow the workflow depicted in Fig. 3.19. The proposed framework has
three major components: A) a surface-based whole body tissue model used for calculation of
the internal electromagnetic (EM) fields, B) a detailed atlas of the nerve fibers in the human
body embedded in the same anatomical model, C) a numerical framework to model the nerve
dynamics in presence of external E-fields. In short, the following steps are performed to generate
the PNS threshold curves for a given coil geometry:

Step 1 We preprocess the surface body model to be compatible with finite element EM field
simulations and prepare the nerve atlas to be compatible with the neurodynamic model.
This preprocessing step is only required once and can be reused for the analysis of multiple
coil geometries.

Step 2 The magnetic and electric fields in the body model generated from a time-varying current
applied to the coil are simulated using commercial EM field simulation platforms such as
CST (Darmstadt, Germany) or Sim4Life (Zurich MedTech AG, Zurich, Switzerland).

Step 3 The atlas of human peripheral nerve fibers is superimposed on the fields. The simulated
electric fields are projected onto the nerves and integrated to obtain the effective electric
potential along the fiber. This provides the relevant electric entity that can lead to action
potential generation and is used as an input to the neurodynamic model.

Step 4 The neurodynamic model is evaluated providing the response of the nerve fiber to the
external electric potentials. The nerve fiber model returns the internal membrane potentials.
An action potential (AP) is recognized as a sudden membrane depolarization in response
to a small increase in the applied fields.

3.4.2 Surface Body Model

The realistic body model was based on the anatomical surface data developed by Zygote
(American Fork, UT, USA), which is shown in Fig. 3.20. The Zygote anatomical data includes 12
different tissue classes: skeleton, muscular system, respiratory system, digestive system, nervous
system, circulatory system, connective tissue, integumentary system, lymphatic system, urinary
system, and endocrine system. Each tissue class is described by a single surface mesh. Since the
Zygote model was initially developed for teaching and visualization purposes, further processing
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Figure 3.19: Flowchart of the PNS simulation process. Step 1: Preparation of the body model and nerve atlas
(only required once). Step 2: EM fields imposed by the coil are calculated. Step 3: The electric field for a given
coil current waveform is interpolated and projected onto the nerve fiber. Step 4: Nerves response is calculated to
determine if an AP has been initiated. If no AP is reached, steps 3 and 4 are repeated with a higher amplitude coil
current waveform until PNS is observed.

was required in order to guarantee that it can be used in conjunction with electromagnetic
simulation platforms. Specifically, the input surface mesh to the EM simulation platform requires
an orientable 2-manifold mesh without self-intersections and without intersections of the different
tissue classes. To achieve this, we first discretized the surface mesh data to obtain a voxel
model at 1 mm isotropic resolution for each tissue class (Fig. 3.21, Step 1 and 2). The voxels
of all tissue classes were combined into a single voxel model. Skin tissue voxels were added by
performing a morphological dilation algorithm of the outer body hull, assuming a skin thickness
of approx. 3mm (i.e., 3 voxels). Every interior voxel that was not assigned to any of the tissue
classes at this point was defined as fatty tissue (we found that this assumption yields distributions
of fatty tissue very similar to well-established body models like the Virtual Population 3.0 [44]).
This voxelized model guarantees a single label per voxel.

We performed a multi-domain surface segmentation of the 1 mm voxel model using the Computa-
tional Geometry Algorithms Library (CGAL, [114]). The output surface mesh of the segmentation
generates a non-intersecting closed surface mesh for each tissue class where all neighboring
tissues align perfectly (Fig. 3.21, Step 3), i.e., neighboring tissues share the exact same faces
without creating empty regions or overlaps. However, the resulting surface meshes do not
necessarily establish 2-manifold geometries. In the context of surface triangulations, this means
that every edge of a mesh is used by exactly two faces. Physically, 0O-manifold or 1-manifold
features of a mesh correspond to geometric structures that become infinitely thin or small.
Therefore, it is necessary to remove these invalid features from the surface mesh. For that
purpose a method was implemented (using Matlab, The MathWorks, Natick, MA, USA) to
repair any existing surface mesh error and thus prepare the surface meshes for usage in the
EM field simulations. This pre-processing includes elimination of O-manifold and 1-manifold
features, removal of excessively small faces/structures and low-quality faces (i.e., very long and
thin faces). In short, this surface mesh repair routine first deletes the faces that correspond
to a mesh error. In general this deletion creates holes in one or more of the tissue surfaces.
The routine then identifies possible face configurations to close these holes without causing new
surface mesh errors or empty regions. The process is repeated until all surface errors are repaired.
An important advantage of this approach over commonly used mesh repair tools is that all tissue
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Figure 3.20: Visual depiction of the Zygote anatomical surface data that was used to generate the body model.
The surface data was initially developed for visualization/teaching purposes and needed to be pre-processed in
order to generate a non-intersecting watertight surface model for each tissue class.
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Figure 3.21: Processing pipeline of an exemplary body model region (elbow region, including muscle, bone, articular
capsule): 1) Unprocessed anatomical surface data (provided by Zygote), 2) Discretized (voxel) body model with
1mm voxel size, 3) Watertight intersection-free surfaces (obtained via segmentation of the voxel model), 4)
Cross-section of an exemplary tetrahedral mesh (computed using CGAL [114]), similar to the mesh generated by
CST Microwave Studio for finite-element EM field simulations.

surfaces are processed simultaneously in order to ensure that a correction step that is applied to
one tissue surface does not introduce intersections or errors in any neighboring tissue surface.
Although the creation of the surface body model is computationally intensive (even starting
with a commercial meshed model), it only has to be done once per body model. The different
tissue classes were assigned electromagnetic properties (conductivity and permittivity) using the
frequency-dependent Gabriel database [41]. Note that the permittivity increases dramatically as
frequency becomes very low, and our simulations reflect this. The final surface body model is
shown in Fig. 3.22. It can then be used in an EM field simulation environment (such as CST or
Sim4Life) in order to generate a tetrahedral or hexahedral finite-element mesh for calculation of
the EM fields (an exemplary tetrahedral finite element mesh is shown in Fig. 3.21, Step 4).
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Figure 3.22: Surface-based whole body model used for the simulation of the electromagnetic fields.
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Figure 3.23: (A) Human nervous system model as surface data with skeletal system (transparent gray) for reference.
(B) Extracted nerve centerlines color coded by distance from the CNS.

3.4.3 Nerve Atlas

The Zygote anatomical model was used, as opposed to more commonly used body models such
as the Virtual Family [44] since the Zygote model includes a detailed atlas of the peripheral
nerves. However, like the organ surface mesh data in the model, some preprocessing was
necessary to use this nerve atlas information in conjunction with the PNS membrane dynamics
model. Specifically, from the original Zygote nerve atlas (Fig. 3.23 A), we extracted paths of
the peripheral nerve bundles as 3-D curves with labels at their three types of phylogenic points;
starting point, end-point, and any branching point as shown in Fig. 3.23. The starting point of
the peripheral nerve fibers was the central nervous system (CNS), most frequently the spinal
cord and the end-point was typically a distal extremity.
We define "nerve tracks" as individual nerve bundle segments between any of the phylogenic
points identified in the previous step. The model contains approximately 1600 nerve tracks. The
nerve tracks between the phylogenic points are represented in 3-D by centerline curves that follow
the center of the surface mesh of each nerve track. This was achieved by first applying a so-called
geodesic distance algorithm that computes the shortest path along the edges of the surface
mesh that connects the two phylogenic points. The resulting 3-D curve runs along the surface of
the mesh (i.e., on the surface of the "nerve tube"). In order to obtain the nerve centerline from
this (i.e., the curve running along the center of the "nerve tube"), we first voxelized the entire
nerve tree at 0.1 mm resolution and computed the distance measure of this voxelized nerve tree.
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The distance measure specifies, for each voxel, the distance to the nearest surface of the nerve
tracks. Note that the distance measure is greatest for the center points of the nerve tube. The
centerline curve was generated from these center points. Finally, a free-knots B-spline is fit to
the centerline curve for smoothing and to avoid excessively high (unrealistic) curvatures of the
nerve tracks. The final nerve atlas after this processing is shown in Fig. 3.23B, which has been
color-coded by the number of branch points between the nerve track and the CNS.

3.4.4 Integrity of Body Model and Nerve Atlas

The complexity of the surface based body model and the nerve atlas requires a further processing
step to ensure that the nerve fibers do not intersect with the bone surface or the outer hull of
the body model. The method that is used for generation of the surface body model is based on
a discretization (i.e., voxelization) of the Zygote anatomical data, followed by a resegmentation
of the voxel model using closed triangular surfaces. As was described in Sec. 3.4.2 this is an
effective way to generate a watertight manifold triangulation from arbitrary surface data (having
intersections, holes, non-manifold geometries, etc.) while simultaneously simplifying the surface
model to reduce the computation time of the EM field simulations (the level of simplification
is controlled via the surface segmentation algorithm). This model simplification, however, may
lead to intersections of some of the nerve fibers with the bones or the outer hull of the body
model (causing nerves being located outside the body). Although these intersections are usually
very mild (approx. 1 mm), the affected nerve tracks cannot be evaluated. In particular the
interpolation of the electric field along nerve fibers that intersect bone or air regions leads to a
sudden drop or peak of the electric field. This renders the nerve segment unrealistically sensitive,
i.e., the PNS threshold would be under-estimated.

To remove these bone/air-nerve-intersections from the surface body model, a repair routine was
developed that identifies and repairs these intersections. The different steps of the repair pipeline
are illustrated in Fig. 3.24, that shows an exemplary intersection of a nerve segment with the
bone surface. The repair pipeline is based on the following steps:

Step 1: The intersected surface is inflated by a value that corresponds to the minimum tolerated
distance between the nerve fiber and the bone surface, in this case 2 mm. This means that
whenever the distance between nerve fibers and the bone surface is less than 2 mm, this is
considered an intersection.

Step 2: The points of the nerve path are projected onto the inflated surface, i.e., for each point
of the 3-D path (blue), the closest point on the inflated surface is identified (red curve).
The distance between the nerve path (blue) and the projected path (red) is a measure of
the "intersection depth" (and thus a measure of the level of deformation that is required
to repair the intersection).

Step 3: For the projected points the closest nodes of the bone surface are identified. Note that
these nodes need to be shifted in order to remove the bone/air-nerve-intersections. A
distance threshold is used to control the number of nodes that are associated with each
projection point. A scattered interpolation is used to interpolate the "intersection depth"
onto the surface nodes. Each node is moved by this value along the inverse node normal in
an attempt to remove the intersection (note that by convention, node/face normals of
triangular surfaces are pointing outwards).

87



Chapter 3 Methods

Step 1: Step 2: Step 3:
Surface with Inflate Project nerve  Compute deformation Surface without
intersection surface onto surface  from projected nerve intersection

Bone
surface

/

path Inflated bone
surface nerve path

Figure 3.24: Processing pipeline to repair intersections of nerve fibers with the body model. Step 1: Inflate surface
to create safety margin between nerve and body model (2 mm), Step 2: project nerve onto inflated surface to
estimate "intersection depth", Step 3: use scattered interpolation to determine the shift of the surface nodes
from the "intersection depth". The nodes are shifted along the inverse node normal to remove the intersection.

3.4.5 Nerve Membrane Model

The electric fields calculated in the body model were projected onto the nerve fiber path and
integrated to obtain potential differences along the fibers. These spatially varying potentials Veyt
were modulated by the driving waveform of the coil and fed into the circuit model with myelin
and node of Ranvier parameters. The Mclntyre-Richardson-Grill model (MRG) [79, [78] was used
to simulate the response of the nerve to the voltage potentials induced along the fiber by the
external fields. The MRG electrical nerve model is based on a double-cable representation of the
myelinated axons (the inner cable models the axon, the outer cable models the myelin insulation
sheath). Electrically speaking, these cables are connected in parallel, as shown in Fig. 3.25. The
MRG model, unlike simpler models like the Hodgkin-Huxley Model [60, [40] or the SENN model
[96, [95, [80], explicitly models action potential (AP) initiation. The effect of the local myelin
insulation sheath on the excitability of the nerve is explicitly included, making this model more
appropriate for simulation of PNS, since peripheral nerves are heavily myelinated. Since the
myelin sheath insulates the axon, the nerve is most sensitive to the induced electric field at the
locations of the nodes of Ranvier where the axon is in direct contact with the extra-cellular space.
Each of the three nerve compartments (axon, myelin, and node of Ranvier) is modeled by RC-
circuits with capacitance and resistance properties specific to each compartment (for the exact
electrical parameters, see Mclintyre et al. [79]). In order to be able to simulate action potential
initiation, the RC-circuit model of the nodes of Ranvier compartments includes non-linear terms,
implemented as voltage-dependent resistances that model the sodium and potassium ion channels.
This means that once the nerve fiber is strongly depolarized, the membrane becomes permeable
for sodium and potassium ions (in the electric model this is represented as a small resistance),
which leads to a large current flowing through the membrane and thus to an action potential.
The different RC-circuits are connected via conductances that specify the transaxial and axial
conductivity of the nerve. This allows modeling of the propagation of action potentials along
the nerve fiber at realistic conduction velocities (approximately 25 m/s to more than 100 m/s,
depending on the axon diameter).

88



Chapter 3 Methods

@ Nerve segment and projected potential . Electrical circuit model of nerve segment
v v % External
) ext ® Vxt ext otential
Potential V,,; [mV] P
Cn Myelin
G, network
— ——
e p—p—— == G L—‘—_l Gox
f— — ;};};};}\_};}\_} N cé: ! C’ ! “ae AXOﬂ
T Ll 5 G @ network
Axon Node of Myelin E — =
Ranvier insulation Node of Ranvier

Figure 3.25: (A) Schematic of the discretization of the potential Vixe along the nerve segment with respect to the
nodes of Ranvier. Vi is determined from integrating the induced electric field calculated in Step 2. Node spacing
is assigned based on estimated fiber diameter. (B) Electrical equivalent circuit for the MRG nerve model on each
side of a node of Ranvier. Action potentials are created when the transmembrane potential change becomes
greater than approximately 20 mV.

The MRG electrical circuit is mathematically represented as a set of coupled differential equations.
The input to the model is the external electric potential changes Vet imposed by the external coll.
In this work, we compute these potentials using electromagnetic simulation and by interpolation
of the resulting electric fields along the nerve fiber paths. The output of the model is the resulting
transmembrane potential change over time at each compartment of the nerve fiber model. These
transmembrane potential changes are analyzed to decide whether or not an action potential has
been initiated. Each track of our nerve atlas was tagged with information about local nerve fiber
diameters that we obtained from the literature [36]. These fiber diameters were used to feed
the correct parameters into the MRG nerve membrane model. For example, in Table 1 of their
paper, MclIntyre et al. [79] provide the model parameters of the MRG model which vary with
axon diameter for 9 different diameters (ranging from 5.7 um to 16.0 um). This includes the
thickness of the myelin insulation sheath that increases with fiber diameter. Stated conversely,
the conductance of the myelin compartment decreases with fiber diameter. The spacing of
the nodes of Ranvier also increases with the fiber diameter, from 0.5 mm for a 5.7 um fiber to
1.5mm for a 16.0 um fiber. Together, the increase in both the myelin sheath thickness and node
of Ranvier spacing with nerve diameter results in much higher excitability for large diameter fibers
compared to smaller ones. Additionally MclIntyre et al. provide fixed parameters (non-varying with
diameter) in Table 2 of their paper [79]. To provide a full set of membrane model parameters
for each nerve track in our nerve tree, we assigned nerve diameters based on the type of nerve
fibers present in the nerve track. If any motor nerve fibers are present, we assumed large fiber
diameters of 16.0 um. For nerve tracks that only consist of sensory nerves (e.g., the digital
nerve branches in the fingers, the sural nerve in the calf, or the posterior cutaneous nerve in
the shoulder), we assigned smaller nerve fiber diameters (10.0 um). Autonomous nerve bundles
(e.g., those controlling the digestive or cardiovascular system) usually contain very small fibers
(in the order of 2 um diameter). Note that we are still refining the nerve fiber properties of our
nerve atlas, as more detailed information becomes available (e.g., via studies of nerve conduction
velocities that can be correlated with the fiber diameter).

3.4.6 Generation of PNS Threshold Curves

The PNS threshold is defined as the smallest external field modulation strength that initiates an
action potential. The PNS threshold depends on the frequency of the external electromagnetic
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excitation, the coil geometry, and the subject’s anatomy, which modulates both the strength of the
electric field and its orientation with respect to the nerve fiber. To compute the PNS threshold
curve, we modulated the spatial map of electric potentials (output of the electromagnetic
simulation) interpolated along the nerve fiber by a sinusoidal waveform of different frequencies
ramping the amplitude up for each frequency. We recorded the amplitude ABi, that initiated
an AP. This titration process is depicted in Fig. 4.16. After finding the threshold that initiates
an AP for a given coil and body position, the PNS threshold is plotted as a function of the
excitation frequency. Calculated PNS threshold curves are shown in Figs.4.17 and 4.18.

Processing the entire nerve tree at once is infeasible for a number of reasons. A single run of the
MRG model requires solving a large set of coupled differential equations and is computationally
expensive (simulation of the MRG model was performed within the NEURON environment [59]).
The computational complexity increases with the total length of nerves in the model (i.e., with
the number of nodes of Ranvier). For the leg coil, approximatively 8.6 meters of nerve fibers
need to be analyzed (resulting in approximatively 5700 nodes of Ranvier and 63000 electrical
compartments). For the arm simulation, there are 10.3 meters of nerve fibers resulting in 6900
nodes of Ranvier and 75900 electrical compartments. When solving the underlying differential
equation, we used a time step of 0.5 us for a 1 kHz coil current waveform and decreased this
value linearly for higher frequencies (i.e., independently from the frequency every bipolar pulse
is resolved by 2000 time points). Thus, a smaller time step was used than other nerve model
simulations. For example Mclintyre et al. suggested that (using a block pulse to stimulate the
model) a time step of 1 to 5 us would accurately solve the differential equation of the MRG
neurodynamic model. Our analysis of the convergence of the solution to the differential equations
underlying the MRG neurodynamic model suggested a smaller time-step was needed. We do not
know if this difference was derived from a more conservative convergence criterion or reflects a
more complicated temporal dynamics within the nerve model for our situation. The stimulus
consisted of 15 sinusoidal periods, resulting in durations of 32.6 ms to 1.5 ms for coil current
frequencies of 0.46 kHz to 10.3 kHz. Note that based on these parameters, calculation of PNS
threshold curves using the entire nerve tree would require at least a week of computation time
(assuming that no parallelization is used). Processing the entire nerve tree also results in a
high computational overhead. For example, if a nerve track branches into a major track and a
minor track, the part of the nerve prior to the branching point will be simulated twice: once as
being part of the major track and once as being part of the minor track (unless the nerve track
is divided appropriately). To increase computational efficiency, we divided the nerve tree into
smaller sub-segments without any branches, where each sub-segment has a reasonable length
(ideally less than 100 nodes of Ranvier). We refer in this work to these sub-segments of the
nerve tree as nerve segments. Dividing the nerve tree into smaller nerve segments also means
dividing the underlying differential equation, which may cause numerical instabilities and artefacts
at the boundaries of the nerve segments. Therefore, we implemented methods to identify the
locations of the nerve tree, where dividing the nerve fiber into multiple nerve segments only has
a mild effect on the model accuracy and, therefore, on the resulting PNS thresholds. Rattay
and others [93] 2] showed that the second spatial derivative of the extracellular potential along
the fiber can be considered the main determinant (also referred to as "activation function")
of nerve stimulation. This metric is often used to guide the development of electromagnetic
coils for neuro-stimulation or neuro-modulation devices [23]. As a consequence, an electric
potential pattern that varies only linear along the fiber does not generate an activation function
(no stimulation of the nerve). Instead the electric potential leads to a constant current flow
along the fiber without any current flowing through the membrane. This means that the external
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electric field is not effective at depolarizing the membrane and the nerve segment will not initiate
an action potential in this region. Thus these regions can be safely ignored when searching
for the PNS threshold. We found that dividing the nerve tree into nerve segments at these
locations only has negligible effects on the excitability of the nerves and, therefore, on the AP
thresholds. After defining the nerve segments (we simplified the nerve model to 304 and 359
nerve segments for the leg and arm stimulations, respectively) we further reduced computation
time by solving the MRG model only for those segments where the electric potential leads to a
substantial flow of current through the membrane (possibly leading to an AP). Note that the
definition of individual nerve segments also allows for a heavy computational parallelization since
every nerve segment can be excited and simulated independently.

3.4.7 Preliminary Sensitivity Analysis

In order to estimate the sensitivity of the PNS threshold curves to the nerve atlas (i.e., to the
path of the nerve segments relative to other tissue structures), we have conducted a preliminary
sensitivity analysis. The nerve segments are particularly sensitive to spatial deformations that
alter the curvature of the segments (e.g., only applying shifts to a nerve segment within a linearly
varying electric potential does not influence the stimulation threshold). In order to implement a
spatial uncertainty of the nerve segments path, we defined a tube of a certain radius (2 mm and
4 mm) following the nerve segment and allowed the nerve to traverse the tube along a flexible
path. This is achieved by using a 3-D Gaussian deformation field: for each spatial dimension
we randomly distributed 10 three-dimensional Gaussians within the bounding box of the nerve
segments (overall 30 Gaussians). The standard deviation of the Gaussians (2 cm in this example)
determines the smoothness of the deformation; the function value of the sum of Gaussians
determines the local deformation strength along the different axes. The weighting of the 30
Gaussians was chosen randomly such that 1) the deformed nerve segment remains within the
tube (this limits the maximum local deformation), and 2) the segment does not intersect the
bone tissue or outer hull of the body (for example for superficial nerve segments). We generated
20 deformed nerve segments for tube radii of 2 mm and 4 mm and computed PNS threshold
curves for each segment. We then use the standard deviation of the PNS thresholds over the 20
segments as means of the sensitivity of the predicted threshold curves to the path of the nerve
segment.

3.4.8 Validation against Experimentally Measured Thresholds

We compared our simulated PNS threshold curves with those measured experimentally using leg
and arm solenoid coils applied to healthy volunteers [101]. The two coils were simulated based
on their described dimensions and geometry using CST's frequency domain solver which uses a
low-frequency approximation of Maxwell's equations. The coils were modeled using infinitely thin,
perfect electrical conductor current paths. Boundaries were modeled as a box of perfect electrical
conductors (PEC) enclosing the entire simulation domain 50 cm away from the tissue model or
the coil (low-frequency FEM solvers usually require PEC boundary constraints). We found that
this PEC boundary spacing is reasonable for these two simulation setups and that increasing
the boundary spacing to 500 cm altered the tissue electric field maps by only about 1-2%. The
experimental comparison data was taken in an open setting (approximately "free space"). But
we note that MRI gradients are used within the more complex conducting environment of the
magnet and its cryostat, which might need to be taken into account for MRI gradient studies.
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The simulated leg coil consisted of 54 turns in a single layer (length of 24 cm, diameter of 19 cm);
the arm coil consisted of 72 turns in two layers (length of 17 cm, diameter of 11 cm). The body
model was placed inside the coils to mimic the experimental setup as closely as possible, although
only the photo in the published paper provided guiding information. In the simulations, only the
leg (until 30 cm above the hip joint) and the arm (including the shoulder joint) were simulated
as the effects of the coils are limited to these regions.

3.4.9 Sinusoidal vs. Trapezoidal Waveforms

MRI gradient encoding most often uses trapezoidal waveforms where electric field generation is
confined to well-defined pulses during the ramps of the trapezoid. It is well documented that for
a given peak B-field strength, the trapezoidal waveform has increased PNS thresholds compared
to a sinusoidal waveform [56l 62]. Furthermore, it has been observed that the PNS thresholds
increase linearly with the pulse duration (ramp rise-time) [18]. In order to determine if our model
captures these two observations, we applied both sinusoidal and trapezoidal waveforms using
ramp rise times relevant to MRI (from 0.1 to 1.0 ms). The PNS thresholds (applied solenoid
B-field amplitude) as a function of pulse duration were assessed in terms of linearity with a linear
fit and in terms of the chronaxie times (i.e., the slope of the linear fit).
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3.5 | PNS Simulations of Whole-Body Gradient Coils

In the previous section a framework was developed for the prediction of PNS thresholds based
on arbitrary coil geometries. The first evaluation of the framework was done based on leg/arm
solenoid coills, i.e., based on rather simple coil geometries. In this section, preliminary results
are shown, that illustrate the feasibility of the proposed PNS simulation framework to simulate
actively shielded whole-body gradient coils that have a substantially more complex wire pattern
(compared to solenoid coils). The simulated MRI gradient coil geometries were provided by
a major MR system manufacturer and are in clinical use. The gradient coil performance is
characterized by a maximum gradient strength of Gax =40 mT/m and a maximum slew rate
of Smax =200 T/m/s.

3.5.1 Electromagnetic Field Simulation

For simulation of EM fields imposed by the MR gradient coils, a surface-based body model
consisting of overall 19 different tissue classes was used:

- bladder - connective tissue - lung - spleen

- body fluid - fatty tissue - muscular tissue - stomach
- bone - glandular tissue - skin - trachea
- brain - heart - small intestine - uterus
- large intestine - liver - spinal cord

The body model was placed head-centered in the gradient coils and was cropped at about
z =T75cm (i.e., the legs at about 20 cm above the knee joints were excluded) to reduce the
computation time. The EM field simulations were based on a hexahedral rather than a tetrahedral
finite-element solver, Sim4Life (ZMT Zurich MedTech AG, Zurich, Switzerland). Although a
tetrahedral mesh provides superior performance in terms of geometric accuracy and convergence
of the EM solver, the generation of the mesh itself becomes increasingly complex for larger
surface-based models. In particular, the intersection check of the different tissue classes that
is routinely performed by most of the tetrahedral finite-element simulation platforms becomes
computationally very costly (runtime increases exponentially with the number of faces of the
body model and the number of tissue classes). This can be overcome by using a hexahedral
finite-element mesh which can be generated very efficiently from the surface-based models used
in this work.

For the mesh, an isotropic resolution (corresponding to the size of the hexahedral elements) of
1 x 1 x 1 mm?2 was used, resulting in about 130 million mesh cells. The EM fields were simulated
using a fast magneto-quasistatic (MQS) solver (see also Sec. 2.3.3.3). In this low-frequency
approximation, the electric fields are decoupled from the magnetic fields by first computing the
magneto-static vector potential denoted by A (7). The vector potential is solved such that the
resulting magnetic field satisfies B (r) = V x A (r), with the magnetic field being computed
using the Bio-Savart law, namely

o [ ldlx ¥

In the above equation C denotes the path of current flow (i.e, the path of the simulated wire
pattern, Fig. 3.26), and dI denotes a differential wire element. From the vector potential A (),
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Figure 3.26: Wire patterns of the three actively-shielded MRI gradient coils simulated in this work. The coils can
create a maximum gradient strength of 40 mT/m at a maximum slew rate of 200 T/m/s.

the electric fields E (7) are solved using the low-frequency approximation of Maxwell's equations,
given by

V-o(r)Ve(r)=—iwV-[o(r)A(r)] (3.98)

where ¢ () denotes the scalar electric potential, o () denotes the spatially varying conductivity
of the body model, and w denotes the simulated angular frequency. It was shown before that
this approximation holds ([12, [10]) as displacement currents are negligible at frequencies in
the low kilohertz range. Simulation of the electromagnetic fields was based on an excitation
frequency of 1 kHz. The electric fields are computed only in conductive media (i.e., excluding
the air) meaning that no boundary constraint needs to be defined (as opposed to the tetrahedral
mesh simulations using CST where the magnetic and electric fields were not decoupled using a
magneto-quasistatic approximation; in this case PEC boundaries were employed).

3.5.2 Experimental Data and PNS Simulations

During the federal approval process of the simulated MR gradient coils, healthy human subject
experiments have been conducted in order to assess the capability of the coils to generate PNS
[56]. These studies have been approved by the Ethics Board and supervised by a physician at all
times. The stimulation experiments have been conducted based on 65 healthy subjects (34 male,
31 female, age 27.7 £ 6.5). Two types of bipolar gradient waveforms were assessed: trapezoidal
and sinusoidal waves. The waveforms are characterized by the pulse duration 7, plateau time
(flat top) 0, and the gradient modulation strength AG (taken from zero to the maximum gradient
strength of the bipolar waveform), see Fig. 4.20. Note that the modulation strength of the
magnetic field (AB) and the modulation of gradient field (AG) are related by a scaling factor
(which is the gradient efficiency in [mT/m] per unit magnetic field in [mT]), but otherwise
interchangeable. The stimulation experiments were performed for pulse durations 7T varying
between 0.2 ms and 1.2 ms, using a constant plateau (flat top) time of § = 0.5 ms. The applied
trapezoidal and sinusoidal gradient waveforms consisted of 128 bipolar pulses, resulting in an
overall train length of 89.6 ms (for pulse durations of 0.2 ms) up to 217.6 ms (for pulse durations
of 1.2 ms). Additionally to simulating the X, Y, and Z-gradient coils separately, combinations of
multiple gradient axes, namely "X-Y" and "X-Y+Z", were assessed. The main motivation for
this was, that using the X and Z-gradient coils, only a few of the subjects experienced very mild
PNS sensations for the stimulation pulses that were achievable using the gradient system. Note
that for the combination of two gradient axes, both the available gradient magnitude and slew
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rate performance increase by a factor of v/2; for a combination of all three gradient axes, the
performance increases by a factor of /3.

The process for simulation of the PNS threshold curves is similar to the titration process performed
for the leg/arm solenoid coils. In the PNS simulations based on gradient coils, the titration process
(i.e., iteratively increasing the field modulation strength until PNS is observed) was performed
with respect to the smallest gradient modulation strength AGp,i, that created PNS. Because of
computational limitations, the simulations were performed using 16 bipolar pulses (instead of 128
bipolar pulses used in the experiments), and scaling the PNS thresholds to 128 bipolar pulses. The
scaling factor was derived from the experimental data that investigated the effect of the number of
bipolar pulses on the PNS threshold, namely that AG i, (128 pulses) = 93.53%AGyin (16 pulses)
[56].
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Results

4.1 | Design of Optimal Gradient Waveforms

The Gradient Basis Function method was implemented in Matlab R2013a (The MathWorks,
Natick, MA, USA), using the Optimization Toolbox (in particular the non-linear constraint
optimizaton, fmincon) and a number of openly available solvers to perform the minimization of
the objective function. The entire framework, including methods for two- and three-dimensional
gradient waveform design and visualization is available from the author via request.

4.1.1 Design of a 2-D Spiral Trajectory

A first example of the resulting gradient waveforms is depicted in Fig. 4.1: in this case, a simple
uniform spiral trajectory was designed using four control points per spiral revolution. The gradient
system constraints were set to Gmax = 25 mT for the magnitude and Spax = 150 T/m/s for the
slew rate constraint (a detailed description of the optimization solvers used in this work is given
in the next paragraph). Figure 4.1 shows both the k-space trajectory (left) and the associated
gradient waveforms (right) in k« and k,. Additionally, every odd time interval between two
subsequent control points is highlighted in grey. It can be observed that the gradient waveform
in between two control points and in single gradient dimension corresponds to one of the four
introduced gradient basis functions. The parameters of the bases (namely the length and strength
of each linear gradient segment) are directly related to the gradient strengths at the control
points. These are optimized by the design framework to globally accelerate the trajectory, thus

ky x102-w
10 ; E
\ 8 E E
N\ =
fr@ kKB = 2
] o =
S
z2 B8
_/ i 02 25
Kmax =+ 115 m™” Time t [ms]

Figure 4.1: Simple spiral k-space trajectory (left) and associated gradient waveforms (right) designed using the
Gradient Basis Function method. The time intervals in between two control points are highlighted in grey one every
other. Note that the gradient waveforms in each dimension are assembled by concatenating one basis function per
time interval and gradient axis.
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General Performance Numerical Stability
(A) (B) (©) (D) (E) (F) (G)
Dur. Dur. G S
Solver  Improv. Opti- Iterations Runtime Control Point Error max max
Error Error

to OC? mality

[%] [%] [s] [m™] [mT/m] [T/m/s]

Optimal Control method
oct - 0.0 - 161 £ 18 14-100' +£16-100Y 06 £ 25 4922 + 4665

oc? - 0.0 - 1378.6 + 122.6 5.6-1073 4 1.5-1073 0.01 4+ 0.03 1923 + 6763

Gradient Basis Function method

Ipt 8.4 +18 1.2 44 £ 32 354+ 1.7 55-10712 £ 3.7.10711 0.0 0.0
P2 85+ 1.7 1.2 41 + 31 244+ 10 65-10712 + 3.4.1071¢ 0.0 0.0
SPG 9.0 £ 1.7 7.6 238 £ 179 47+ 32 17-10012 +£67-10713 0.0 0.0
LNL 924+ 1.8 89.8 204 + 213 122 + 134 1.8-1072 £ 7.1-10713 0.0 0.0

Table 4.1: Comprehensive Evaluation Results: For 300 testing datasets the table summarizes the results for the
overall six methods and setups. For each method the general performance is evaluated based on the duration
benefit according to the Optimal Control method, the rate at which the respective method achieved the best
solution throughout all methods, the number of iterations required for convergence (does not apply to the Optimal
Control method), and the average runtime. Furthermore, the numerical stability is quantified based on the accuracy
in traversing the control points as well as the conformity with the gradient magnitude and slew rate constraints.

minimizing the duration of the gradient waveform. The fact that the trajectory consists of
piece-wise quadratic trajectory segments (due to the use of piece-wise linear gradient segments)
leads to a shape of the spiral that deviates from a conventional spiral. In particular, note that
slight edges are introduced (primarily at the center of k-space). These mild deformations,
however, allow the control points of the spiral to be traversed significantly faster compared to a
conventional spiral.

4.1.2 Comprehensive Evaluation using Random Trajectories

The performance of the proposed gradient design method was assessed using k-space trajectories
computed from 300 sets of randomly distributed control points (N = 40) in two-dimensional
k-space. For each set, time-optimal gradient waveforms were computed, firstly, using the
Optimal Control method proposed by Lustig et al. [71] using its updated version [120] and,
secondly, using the Gradient Basis Function method. The control points were distributed within
k@ € [—Kmax, +kmax]2 with kmax = 150 m™1, resulting in k-space trajectories of approximately
10 ms length (using Gmax = 25 MT, Smax = 150 T/m/s).

For the Optimal Control method, temporal sampling times of At = 2-1073ms (in the following
denoted as OC!) and At =2-10"* ms (denoted as OC?) were used. The objective function of
the Gradient Basis Function method (see Eq. 3.28) was minimized using a variety of different
constrained optimization algorithms, including convex and non-convex solvers, linear and non-
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linear solvers and methods utilizing the analytic Jacobian and Hessian of the objective function.
The solvers showing the most promising convergence characteristics were:

IP! the Matlab-intern Interior-Point solver [14] utilizing the analytic Jacobian only,
IP2 the same Interior-Point solver utilizing both the Jacobian and Hessian,

SPG a Spectral Projected Gradient methocE] [5, [105], utilizing the analytic Jacobian,
LNL a local non-linear solver from the Solvat—packageE], using the analytic Jacobian.

Global optimization methods (such as Simulated Annealing approaches) have been abandoned
relatively early due to their disproportionately high computational expense and bad convergence
properties for this particular problem type. Each optimization was initialized with G = 0 for
all control points, using fixed gradients G® = G™ = 0 = const. for the first and last control
point. The gradient strength vectors in all control points have been optimized without defining
directional constraints.

A performance summary of the Optimal Control methods (OC! and OC?) and the Gradient
Basis Function method using the four different solvers is given in Tab. 4.1. For each method
the average gain in terms of the achieved duration compared to the Optimal Control method
(column A), the rate at which the respective method achieved the shortest overall duration
(column B), and the average number of iterations and runtime (column C and D) are shown.
All results obtained using the Gradient Basis Function method (independently of the used
minimization solver) achieved a significant gain over the Optimal Control method in terms of
the duration of the gradient waveforms (at least 8.4%, IP!) while reducing the computation
time by at least 25% (IP! to OC') up to factors of up to 570 (IP? to OC?). The performance
of the different optimization solvers greatly varies in terms of the resulting duration and the
computation time. Taking advantage of both the analytic Hessian and Jacobian matrices in the
Interior-Point solver (IP?) compared to only using the Jacobian (IP1) only yields a small benefit in
terms of the achieved duration (0.1% gain) but reduces the computational runtime by 30% (from
3.5s5 to 2.4s). Both Interior-Point methods, however, failed to converge to the global minimum
in about 97.6% of the test cases. An improved performance was achieved using the Spectral
Projection Gradient method (SPG) that generated the overall shortest gradient waveforms in
7.6% of all test cases. The most promising solver, however, was the Local Non-Linear method
(LNL) that produced optimal results in 89.8% of all test cases, at the cost of a significant
increase in computation time (12.2's compared to 2.4 s - 4.7 s for the other solvers). In average,
the gradient waveforms obtained by the LNL method were 9.2% shorter than the ones computed
using the Optimal Control method. However, this evaluation reveals that — despite the benign
invex objective function that is free of local minima and despite the applied smoothing of the
derivatives — any minimization solver may fail to find the exact optimum if excessively complicated
sets of control points are used.

4.1.3 Numerical Stability I: Control Point Traversal

The Optimal Control method and the Gradient Basis Function method were evaluated in terms
of numerical stability: firstly, in terms of accurately traversing the set of control points and,
secondly, in terms of the conformity of the designed gradient waveforms with the gradient

Lywww.cs.ubc.ca/ schmidtm/Software/minConf .html
2yww.uni-graz.at/imawww/kuntsevich/solvopt/
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Numerical Stability: Control Points
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Figure 4.2: Accuracy of Control Point Traversal: for both the Optimal Control method (left) and Gradient Basis
Function method (right), the accuracy of the traversal of the anticipated control points within the random datasets
is shown. The accuracy is defined as the Euclidean distance € of the closest point on the trajectory k (t) to the
anticipated control point k. For each control point k9, g =1, ..., 40, the trimmed mean (excl. 5% outliners)
and the 95% confidence interval over all datasets are shown.

magnitude and slew rate constraints. For each of the control points k&, ... k™, the time
points 0 <t < @ < . < tM™ < T were determined at which the trajectory gets closest to

the anticipated control point:

t@ = argmin (Hk (t) — k9 = e(Q)||2) : (4.1)
te[ta-1,T]

The minimal distance €@ is taken as a measure of accuracy for the traversal of the control
points. For the Gradient Basis Function method, the analytic gradient waveforms obtained using
Eq. 3.29 were used in conjunction with a linear interpolation scheme to solve Eq. 4.1. Note that
due to the piece-wise linear gradient waveforms, a linear interpolation of the gradient waveform
results in accurate samples G (t) for arbitrary time points t. For the Optimal Control method,
a spline interpolation of the sampled k-space trajectory k(t) was used. To avoid that the
spline interpolation itself (which was used to compute the path constraint k (a), a € [0, amax])
introduces errors with respect to the control point traversal, the accuracy of this interpolation
scheme was evaluated. The path constraint traverses the control points with an effective error
of zero (€' less than the machine epsilon).

All sets of randomly placed control points along with the resulting k-space trajectories were
assessed. Figure 4.2 illustrates the error performance of both the Optimal Control method
(left) and the Gradient Basis Function method (left and right): for each control point index
KO . k™, g=1,...,40, the trimmed mean of the achieved control point accuracy (removing
1% outliners) as well as the 95% confidence interval over all datasets are shown. Additionally
the mean value and standard deviation of the control point error are given in Tab. 4.1, column E.
The k-space trajectories obtained using the Optimal Control method exhibit a rather constant
error over all control points. Apparently, the trajectory accumulates errors — particularly in
regions where the path constraint possesses a high curvature — in different directions. In most
cases, these errors remain acceptable due to cancellation. However, significant outliners occurred
on a regular basis: the average of the highest 1% error values is given by 0.27 £0.18 m~1,
with an overall maximum error of 0.93 m~!. The deviation of the k-space trajectory from the
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Figure 4.3: Concentric-Shells trajectories in 3-D k-space as well as gradient and slew rate waveforms design by the
Optimal Control method (left) and the Gradient Basis Function method (right). The gradient waveforms obtained
using Optimal Control are impaired by slew rate oscillations that cause violations of the respective constraint
(black arrows). The Gradient Basis Function method is free of significant numerical instabilities.

anticipated control points can be reduced by using a smaller time step when solving the differential
equation underlying the Optimal Control method. In the evaluation, reducing the time step from
At =2-10"3ms (OCY) to At = 2-10~* ms (OC?) improved the control point accuracy by
roughly two orders of magnitude, however, at the cost of an excessive increase in computation
time (factor of approx. 85).

In contrast, the Gradient Basis Function method accumulates error in a more systematic manner,
almost increasing linearly with the index g of the control point. Due to the semi-analytic objective
function and the semi-analytic representation of the gradient waveforms, the accumulated error is
insignificant: in comparison with the Optimal Control method, the error induced by the Gradient
Basis Function method is reduced by ten orders of magnitude, with an overall maximum error of
8.41-10710m=1).

4.1.4 Numerical Stability II: Gradient Constraints

A second aspect of the numerical accuracy of the proposed method, namely the strict compliance
of the generated gradient waveforms with the gradient magnitude (Gmax) and slew rate (Smax)
constraints, was assessed. The gradient waveforms obtained using the Optimal Control method
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Figure 4.4: Cross trajectories in 3-D k-space as well as gradient and slew rate waveforms design by the Optimal
Control method (left) and the Gradient Basis Function method (right). The gradient waveforms obtained using
Optimal Control are impaired by slew rate oscillations that cause violations of the respective constraint (black
arrows). The Gradient Basis Function method is free of significant numerical instabilities.

exhibit violations of these constraints — particularly of the slew rate constraint — for almost
every set of random control points. The average maximum slew rate violation over all test
cases was 4922 + 4665 T /m/s (overall maximum violation: 29627 T /m/s) which corresponds
to a violation of the slew rate constraint (Smax = 150 T/m/s) by a factor of 30 (cf. Tab. 4.1,
column F and G). These severe constraint violations predominantly occur at only few gradient
samples, but render the entire gradient waveforms useless if no post-processing is applied (such as
thresholding). Violations with respect to the gradient magnitude constraint (Gpax = 25 mT/m)
were less severe; the average maximum gradient magnitude violation was 0.6 2.5 mT /m (overall
maximum violation: 36.5 mT/m). During the analysis of the Optimal Control method it was
found that the underlying differential equation becomes particularly unstable if the path constraint
contains sharp edges. At these locations, the computation of the curvature is very sensitive
to numerical instabilities. The resulting oscillations in the gradient magnitude and slew rate
waveforms could not be avoided entirely, even if the sampling time was significantly reduced
(OC! to OC?): the Gmax constraint violation could be decreased by a factor of 60 (0.6 mT/m
to 0.01 mT/m) and the Spax violation by a factor of 2.5 (4922 T/m/s to 1923 T/m/s).

many cases, these numerical instabilities lead to an increased trajectory error (as depicted above)

102



Chapter 4 Results

Optimal Control Method Gradient Basis Functions
k, K,
dL\ X100, (S BN x10%
R ﬁ \ = ( 3 \ &
N Ky 8 £ l g K, 8 E
6.91 ms ~% Zj\é//\ . E 6.14 ms ~./_ >§// b . E
° = ] =X ;'/.a _ <] =
=i = AT~ s
: \ e \5 k, lW* £ x| 4 ky @* £
Control ! [3& ‘ ) 2 : ~ D, 2 2
int: H ' o H ' o
ST IVEEE & IS VN &
Kmax = = 100 m"" Kmax = = 100 m™!

2 R ANAAANAA—] S AV AAA
[mT/m] —o0l ] [mT/m] —20l |
- - - - - N - - - - - - - -
st 19 ( \ Hm JM S0 1°°'HMH M IRl IJ\LIH | H H H\H !H\ ‘
[T/mis] 408% ‘ . ‘ %h ‘ ] [T/mis] —108——! | | ‘ ‘ : I T ‘H H | F
G,(t) 22" | | | | ‘ ‘ " G,(t) 20/ ‘ | ‘ ‘ | |

T/ i
[mT/m] -20 | [mT/m] —20l
] L

S BT S R

2 ' ] 20}
G G
[mT/m] [mT/m]
-20 1 -20} ;

i
T

I ek

T I I
0 2 3 4 5 6 7 0 1 3 4 5 6
Time t [ms] Time t [ms]

Figure 4.5: Random trajectories in 3-D k-space as well as gradient and slew rate waveforms design by the Optimal
Control method (left) and the Gradient Basis Function method (right). The gradient waveforms obtained using
Optimal Control are impaired by slew rate oscillations that cause violations of the respective constraint (black
arrows). The Gradient Basis Function method is free of significant numerical instabilities.

that cannot be easily corrected for. In contrast, the Gradient Basis Function method respects
the gradient magnitude and slew rate constraints without exception: all sets of random control
points resulted in gradient waveforms that are fully conform with the gradient system constraints.

4.1.5 Three-dimensional Examples

Finally three-dimensional k-space trajectories were designed using both the Optimal Control
method and the Gradient Basis Function method. The first set of control points was arranged
to define a concentric shells trajectory (based on a single shell), with four control points per shell
revolution. The k-space trajectory and associated gradient magnitude and slew rate waveforms
for the shells trajectory are shown in Fig. 4.3. A second set of control points was defined to
produce a cross-shaped k-space trajectory which is used for excitation of cube-shaped target
patterns (see next section). The results of the cross trajectory and gradient waveforms are
illustrated in Fig. 4.4. Finally, a 3-D version of a random trajectory was designed by randomly
placing control points in k-space, the results of which are shown in Fig. 4.5. This type of k-space
trajectory is commonly used in sparse receive and transmit approaches. For all three examples,
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fixed gradient strengths of G® = G™ = 0 have been defined, without incorporating directional
constraints for the Gradient Basis Function method.

It can be observed that the Optimal Control method (left column of Figs. 4.3, 4.4, and 4.5)
performs well as long as the underlying curve (obtained via spline interpolation of the control
points) is smooth and possesses a rather low curvature. Both the shells and cross trajectory,
however, have regions with relatively high curvature: right at the beginning and the end of the
shells trajectory (at t ~ 0.3 ms and t ~ 2.4ms in Fig. 4.3), and for the cross trajectory in
between the k, k,, and k, segments (at t ~ 2.6 ms and t =~ 5.4 ms in Fig. 4.4). These high
curvature parts induce slew rate oscillations that, in turn, cause violations of the respective slew
rate constraint (these parts are highlighted by black arrows). Note that for the random trajectory
(Fig. 4.5), these slew rate oscillations occur throughout the entire gradient waveform. On the
contrary, no oscillations or constraint violations occurred for the gradient waveforms that were
designed using the Gradient Basis Function method (right column of Figs. 4.3, 4.4, and 4.5).
Additionally, the Gradient Basis Function methods achieves a gain with respect to the duration of
the gradient waveforms of 11 % (2.53 ms to 2.28 ms) for the concentric shells trajectory, a gain
of 4% (8.41 ms to 8.10 ms) for the cross trajectory, and a gain of 13 % (6.91 ms to 6.14 ms)
for the random trajectory.

104



Chapter 4 Results

4.2 ‘ Three-Dimensional Spatially Selective Excitations

4.2.1 Convexity Analysis

Figure 4.6 shows the results of our analysis of the convexity of the optimization problem in
Eq. 3.58 for the shells, stack-of-spirals, and cross trajectories and the two different target
magnetizations (cube target in the top row, brain target in the bottom row). For all six pulses, we
show the flip angle NRMSE as a colormap and the pulse duration (iso-contour lines of constant
pulse duration) as functions of some of the shape parameters being optimized. These results
illustrate that the flip angle error and pulse duration metrics vary continuously as a function
of all parameters, even the integer parameters that control the number of shells (¢4) and the
number of spirals in the stack-of-spirals trajectories (¢4). The well-conditioned overall topology
of the flip angle error objective and pulse duration penalty make them well suited for optimization,
which is due to the careful handling of non-continuous integer shape parameters as well as
the numerical stability and robustness of the gradient trajectory design method [28, 26]. The
topology of the objective function (flip angle error plus pulse duration) clearly depends on the
target magnetization profile and the type of gradient trajectory. In general, we do not expect it to
be a convex function of the shape parameters, which is clearly visible for the cross trajectory/brain
target panel (bottom right) of Fig. 4.6. In this case, the objective function seems to show a slight
worsening of the non-convexity problem (i.e., the number of local minima seems to increase) at
long pulse durations.
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Figure 4.6: Topology of the objective function in Eq. 3.58 as a function of a subset of the shape parameters
for the shells, stack-of-spirals and cross k-space trajectories. The flip angle (FA) error (colormap) and pulse
duration (iso-contours) metrics, which are combined to form the total objective function used in our optimization
framework, are shown for both the cube and brain target magnetization patterns. Although these optimization
metrics are not convex with respect to the shape parameters, they vary continuously with respect to these variables
and are, therefore, well suited for optimization.
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Figure 4.7: Plot of the pulse duration and flip angle NRMSE metrics as a function of the integer shape parameters
for the shells and stack-of-spirals trajectories. These integer shape parameters control non-continuous features of
the trajectories such as the number of shells (¢4) and the number of spirals (¢4) in the shells and stack-of-spirals
trajectories, respectively. For each trajectory and optimization metric, we show two ways of computing the metrics.
In the first naive way, the integer parameters are varied in the same way as other continuous parameters. In
the second way, which is used in the proposed framework, every time the integer parameter crosses a value that
triggers the creation of a new "entity" (e.g., a new shell or a new spiral), the resulting new entity is created with
zero k-space extent. This simple strategy removes large discontinuities in the objective function and thus renders
it more suitable to optimization.

Figure 4.7 shows graphs of the pulse duration and flip angle error as a function of integer
parameters controlling the number of shells and number of spirals in the shells and stack-of-spirals
trajectories, respectively. The pulse duration and flip angle metrics are plotted as computed
with the proposed approach for handling integer-type parameters (see Sec. 3.2.3) and a "naive"
approach that does not handle integer shape parameters in any particular way (in this approach,
when a new "entity" is created, e.g., a shell or a spiral, it is not associated with zero k-space
extent). This figure shows that naive handling of integer parameters leads to discontinuities in
both the pulse duration and flip angle error metrics, a problem that is easily solved by using the
proposed approach.

4.2.2 Trajectory Optimization

Fig. 4.8, 4.9, and 4.10 show the results of our joint optimization approach applied to shells
(Fig. 4.8), stack-of-spirals (Fig. 4.9), and cross trajectories (Fig. 4.10). Each trajectory was
optimized for excitation of the cube (left) and brain (right) target patterns. For each type of
trajectory and each target pattern, we show results for the unoptimized trajectory (1st column),
the trajectory optimized at Larmor frequency (no off-resonance constraints other than the By
map, 2nd column), and the optimized trajectory using the spatio-spectral RF pulse design (with
off-resonance constraints at 50 Hz in addition to the By map, 3rd column). For each of the 18
pulses (3 trajectories x 2 targets x 3 optimization strategies), we show the k-space trajectory
(top), the achieved flip angle map (center), and the off-resonance performance in terms of flip
angle NRMSE as a function of the offset frequency (bottom). Table 4.2 summarizes these results
as well as computation times. In Fig. 4.11, the RF and gradient waveforms of the optimized
shells pulse for brain-only excitation are shown.
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Figure 4.8: k-space trajectories and flip angle profiles obtained with the shells trajectory for excitation of the
cube and brain-only target patterns (10°). For each target, three sets of results are shown corresponding to
optimization of the RF waveform alone (left), joint optimization of the RF and gradient waveforms (center), and
joint optimization with enforced off-resonance robustness (right). The two white numbers give the flip angle
NRMSE in the entire FOX and outside of the cubic/brain-only target region (in parentheses). For each set of
results, the off-resonance performance was evaluated in terms of the flip angle NRMSE as a function of the offset
frequency (bottom).

For both target magnetization patterns and all three types of trajectories, optimization of
the k-space trajectory resulted in a significant improvement of the flip angle pattern (the flip
angle performance improvement ranged from x1.4 to x2.3 for the cube target and x2.4 to
x6.6 for the brain target when optimizing the gradient waveforms at Larmor frequency, i.e.,
without off-resonance constraints). For the cube magnetization target (left-hand side of Fig. 4.8,
4.9, and 4.10), the overall best performance was achieved by the cross trajectory (NRMSE
3.4 %, performance improvement x1.4), followed by the shells (NRMSE 3.6 %, performance
improvement x2.3) and the stack-of-spirals trajectory (NRMSE 3.7 %, performance improvement
x2.1). The performance improvement was less pronounced for the cross trajectory (x1.4) and
the cube magnetization target, which is due to the acceptable performance of the unoptimized
pulse in this case. Although the three trajectory types generated similar flip angle patterns,
they have widely different k-space profiles which emphasizes the non-convexity of the gradient
optimization problem. For the brain magnetization target (right-hand side of Fig. 4.8, 4.9, and
4.10), the best performance after shape optimization at the Larmor frequency was achieved
by the shells trajectory which almost completely suppressed signal outside the brain in these
simulations (NRMSE 6.2 %, performance improvement x6.6). This followed by the cross
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Figure 4.9: k-space trajectories and flip angle profiles obtained with the stack-of-spirals trajectory for excitation
of the cube and brain-only target patterns (10°). For each target, three sets of results are shown corresponding
to optimization of the RF waveform alone (left), joint optimization of the RF and gradient waveforms (center),
and joint optimization with enforced off-resonance robustness (right). The two white numbers give the flip angle
NRMSE in the entire FOX and outside of the cubic/brain-only target region (in parentheses). For each set of
results, the off-resonance performance was evaluated in terms of the flip angle NRMSE as a function of the offset
frequency (bottom).

(NRMSE 9.8 %, performance improvement x4.6) and the stack-of-spirals trajectories (NRMSE
10.7 %, performance improvement x2.4).

Enforcing robustness to off-resonance effects during trajectory optimization (spatio-spectral
pulse design) reduced the accuracy of the achieved flip angle maps at the Larmor frequency
but improved the excitation quality over the [—50 Hz, +50 Hz] frequency range. Compared to
optimization at the Larmor frequency, the spatio-spectral design resulted in shorter trajectories
with increased sampling density in the center of k-space at the cost of decreased sampling density
at higher k-space frequencies, resulting in a slight blurring of the achieved magnetization pattern
compared to pulses optimized at the Larmor frequency alone.

In Fig. 4.13, we show a comparison of two SPINS pulses with 1 ms and 5 ms duration with
optimized shells trajectories. These three trajectories (1 ms SPINS, 5 ms SPINS, 5 ms Shells)
were used for two excitation scenarios: Flip angle uniformization in the whole head (A) and
excitation of a cube target pattern (B). The 1 ms SPINS pulse performs well for the flip angle
uniformization problem, but is obviously a poor choice for the spatially selective excitation problem.
On the other hand, the 5 ms SPINS pulse is able to sample k-space up to 60 m~! and has a
surprisingly good performance for excitation of the cube pattern (interestingly, the 5 ms SPINS
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Figure 4.10: k-space trajectories and flip angle profiles obtained with the cross trajectory for excitation of the
cube and brain-only target patterns (10°). For each target, three sets of results are shown corresponding to
optimization of the RF waveform alone (left), joint optimization of the RF and gradient waveforms (center), and
joint optimization with enforced off-resonance robustness (right). The two white numbers give the flip angle
NRMSE in the entire FOX and outside of the cubic/brain-only target region (in parentheses). For each set of
results, the off-resonance performance was evaluated in terms of the flip angle NRMSE as a function of the offset
frequency (bottom).

performs less well than the 1 ms SPINS pulse for flip angle uniformization due to its lower k-space
sampling density at the center of k-space. As a result of this trajectory not "spending" a lot
of time at the center of k-space, the RF power used at these locations is high and, therefore,
the pulse is strongly peak power limited, which explains its poor flip angle performance). For
the more challenging spatial selection problem (cube target), the use of optimized pulses proved
especially beneficial. This is shown by the histogram of flip angle values outside the cube mask
showing a much lower signal level with the optimized shells trajectory than with the unoptimized
5 ms SPINS pulse.

Finally, we evaluated our optimized RF pulses on our 7T 8-channels pTx system: Fig. 4.12 of the
Supporting Material shows two GRE images corresponding to RF pulses based on an unoptimized
k-space trajectory (shell trajectory) and a trajectory optimized using our approach. The target
excitation pattern is a cube of 1(° flip angle. We also show the Bloch simulation of the optimized
pulse. The trajectory shape optimization significantly reduces residual signals outside of the field
of excitation. Deviations between the GRE image and the Bloch simulation for this pulse (center
and right) are clearly visible, which are likely due to eddy current effects. As was suggested by
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Cube  Shells S SO% x23 3sh 22F 16 san
SOS Lo SR x21 23n 2R Lo asy
Cross (3'17;/;’) (3'04:;/:) x1.4 27h (366:;/:) x1.0 7.7h
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Table 4.2: Flip angle NRMSE, pulse duration, performance improvement factor (ratio of the flip angle NRMSE
with and without optimization of the gradient trajectory), and computation time for the 18 pulses designed in this
work (2 target magnetization profiles x 3 types of trajectories x 3 optimization strategies: RF alone, joint RF
and gradient at Larmor frequency, and joint RF and gradient spatio-spectral design).

the work of several authors [72], [124], this is due to the fact that we did not map the actual
gradient waveforms played on the system.

All pulses computed in this work were shorter than 5 ms, which shows that accurate excitation
of complex 3-D magnetization patterns is possible using eight pTx channels and a clinical
gradient system using reasonable excitation pulse duration, even when enforcing robustness to
off-resonance effects.

Because a number of RF pulses need to be computed at every iteration of the shape parameter
optimization loop, our joint RF and gradient optimization was rather time consuming. Com-
putation times ranged from 0.8 to 3.5 hours for the shape optimization at Larmor frequency
and from 1.3 to 7.7 hours for the spatio-spectral design. All computations were performed
without acceleration and could be significantly shortened using multi-threaded CPU or GPU
implementations.
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Figure 4.11: Gradient (top) and RF waveforms (bottom) for an optimized shells trajectory exciting the brain target
(this pulse corresponds to the results of Fig. 4.8). We show the concatenated RF magnitude and phase waveforms
for the 8-channel transmit coil (i.e., the intervals separated by red dashed vertical lines corresponds to a full pulse
duration of 4.5 ms). The piece-wise linear gradient segments yield piece-wise quadratic k-space segments.
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Figure 4.12: Experimental evaluation of two shell pulses (left: Unoptimized, right: Optimized) for excitation of
a cubic region of excitation in the realistic 3-D printed head phantom described in the Methods section. GRE
images were obtained using our 8-channel pTx head system (7 Tesla). Differences between the measured GRE
profile and the Bloch simulation of the optimized pulse (two rightmost columns) are likely due to the fact that we
did not map the actual gradient waveforms in this set of experiments.
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Figure 4.13: k-space trajectories and flip angle profiles for the 1 ms SPINS pulse, 5 ms SPINS pulse, and optimized
shells trajectories obtained using our approach. Results are shown for both a uniform excitation in the whole
head (A) and excitation of a cubic pattern (B). All pulses utilize the gradient system at maximum performance.
The two white numbers give the flip angle NRMSE in the entire FOX and outside of the cubic target region (in
parentheses, does not apply for the head target). The optimized shell trajectory shows improved performance
compared to the SPINS trajectories for the spatial selection problem, which is quantified by the histogram of
values outside the target mask shown in (C).
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4.3 | Off-resonance Robust Slice Excitation

Figure 4.14 illustrates the results of the five different slice-selective RF pulse strategies in terms
of the used gradient trajectory (top), the achieved in-plane flip angle maps on-resonance and at
off-resonance frequencies of 50 Hz and 150 Hz (center) and the achieved slice profiles (bottom).
The following types of RF pulses are depicted:

Column 1: RF coil driven in birdcage mode, no optimization of the RF waveforms (i.e., no
utilization of parallel transmission capabilities)

Column 2: RF-shimming pulse, MLS optimization of the complex weights for the sinc RF
waveform played on each transmit channel

Column 3: 2-spokes pulse, MLS optimization of the complex weight for the sinc RF waveforms
played on each channel/spoke

Column 4: 2-spokes pulse, MLS optimization of the complex weights for the sinc RF waveforms
played on each channel/spoke with enforced robustness to off-resonance effects

Column 5: Corkscrew pulse, full gradient and RF-MLS optimization with enforced robustness
to off-resonance effects

4.3.1 Spokes RF Pulses

Without any utilization of parallel transmission capabilities (birdcage mode RF pulse, column
1), the resulting in-plane flip angle map experiences significant variations and is, therefore, not
usable for imaging. On the other hand, optimizing the complex weights of the sinc pulse played
on each transmit channel using an MLS optimization (RF-shimming, column 2) significantly
reduces in-plane flip angle variations (reduction of the flip angle NRMSE from 27 % to 5.9 %) but
remaining inhomogeneities are present (variation up to +4°). Note that the RF-shimming pulse
has reasonable robustness to off-resonance effects: in presence of ABy frequencies of 150 Hz
the NRMSE increases from 5.9 % to 9.6 %.

The Bf mitigation performance can be improved by adding a second spoke to the gradient
trajectory, in this case placed at k,,, = 5 m~1 (2-spokes, column 3). The MLS optimized
2-spokes pulse reduces the in-plane flip angle NRMSE (compared to the RF-shimming pulse)
from 5.9 % to 4.0 %, at the cost of a substantial increase of the RF pulse duration (from
2.0ms to 4.4 ms). The good Bfr mitigation performance of the 2-spokes pulse, however, is
completely lost in presence of off-resonance effects: adding a ABy field dramatically reduces
the in-plane flip angle fidelity: the NRMSE increases from 4.0 % (at 0 Hz) to 20.0 % (at 50 Hz)
and 24 % (at 150 Hz), i.e., the RF pulse is extremely sensitive to these off-resonance effects. If
the 2-spokes pulse is optimized simultaneously at on- and off-resonance frequencies in order to
improve the robustness (2-spokes off-resonance robust, column 4), the gain in Bf mitigation
(from RF-shimming to 2-spokes) is lost: the performance of this RF pulse in terms of flip angle
uniformity and off-resonance robustness becomes essentially the same as the performance of
the RF-shimming pulse. This is due to the fact that spokes pulses in general do not allow for
off-resonance effects to be incorporated into the RF design problem. In other words, spokes pulses
(using 1 or 2 spokes in this example) allow either for good Bj" mitigation or ABg robustness,
but not both at the same time.
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Figure 4.14: Results of the five slice-excitation pulse strategies investigated in this work. For each RF pulse the
k-space trajectory (1st row), the flip angle maps on-resonant and off-resonant (2nd to 4th row), and the achieved
slice profiles are shown (5th row).

4.3.2 Corkscrew RF Pulse

Figure 4.14, column 5 shows the results of the corkscrew pulse for which the gradient and MLS
RF waveforms were optimized using the proposed joint optimization framework. It can be seen
that the shape optimizer shifted the corkscrew trajectory far away from the center of the k,,
plane (to about k., =20 mfl) while only mild modulations in the k,,,-plane were employed
(see zoomed view of the gradient trajectory). This mild modulation of the sampling density,
however, allows for the ABy induced k-space errors to be efficiently compensated, resulting
in a consistently good in-plane flip angle performance both on-resonant (2.8% NRMSE) and
off-resonant (3.2% and 5.3% NRMSE, respectively).

Figure 4.14, bottom row, shows the slice profiles of the five simulated RF pulses. The pulses
that are based on analytic sinc waveforms for slice-selection (column 1 to 4) achieve almost
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Figure 4.15: Off-resonance performance of the five slice-selective RF pulses in terms in-plane (left) and out-of-band
(right) flip angle NRMSE as a function of the off-resonance frequency.

perfect slice-selection (out-of-band NRMSE is 0.18 % in all four examples). The corkscrew pulse
achieves a slightly higher out-of-band NRMSE of 0.28 % which is still sufficiently good to be
used for imaging.

In Fig. 4.15, a full analysis of the off-resonance robustness is shown in terms of flip angle error as
a function of the off-resonance frequency, both for the in-plane uniformity (left) and out-of-band
ripples (right). As was already observed in the flip angle maps, the spokes pulses (black and blue
curves) achieve either flip angle mitigation or off-resonance robustness, but not both at the same
time. The corkscrew pulse (red curve) achieves a flip angle performance (both in-plane and in
the outer-band) which is consistently good in a wide range of off-resonance frequencies.
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4.4 | Prediction of Magnetostimulation Thresholds

4.4.1 Neurodynamic Model Stimulation

Figure 4.16 shows the time evolution of the membrane potential for a 16.0 um fiber diameter in
response to an applied external waveform. Figure 4.16 A shows the external electric potential
imposed by the coil at the different nodes of Ranvier. This spatially varying electric potential
pattern is modulated in time by the 1 kHz sinusoidal waveform shown in Fig. 4.16 B. The resulting
membrane dynamics are shown in Fig. 4.16 C: in this 2-D plot, the vertical axis specifies the
spatial location along the nerve segment and the horizontal axis specifies time. During the
first two sinusoidal half-lobes, the nerve segment is alternatively hyperpolarized (green) and
depolarized (red) but only the third half-lobe initiates an action potential (yellow) in the upper
part of the segment. This action potential then propagates along the nerve segment without
significant further perturbation by the external electric potential’'s waveform. After this first
action potential the nerve membrane recovers (this is the refractory period during which the
ion-channel pumps are active and no action potential can be evoked) and a second and third
action potential are initiated by the 7th and 11th sinusoidal half-lobe, respectively.

4.4.2 Effect of Fiber Diameter

Figure 4.17 A shows PNS threshold curves for a nerve segment in the leg for varying values of the
fiber diameter (5.7 um to 16.0 um). The field modulation strength (vertical axis) is normalized to
the PNS threshold for the largest fiber (16.0 um diameter) at the 10.4 kHz modulation frequency.
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Figure 4.16: Exemplary evaluation of the nerve membrane model. (A) Potential created by coil along the
nerve segment (Vext). (B) Time modulation of Vi (1 kHz sinusoid at 125% of the PNS threshold). (C) The
transmembrane potential as a function of space (position along the nerve, vertical axis) and time (horizontal axis)
showing the creation of an action potential which then travels with a fixed velocity in space.
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Figure 4.17: (A) PNS thresholds as a function of the frequency of the applied coil current (sinusoidal current) for
different fiber diameters. The largest fibers show the lowest threshold (i.e., they are easiest to stimulate). (B)
PNS thresholds as a function of fiber diameter, while keeping the frequency constant.

These PNS threshold curves coincide with experimental observations [121], 37] and theoretical
predictions [80], 3, [I5] that nerve fibers with a large diameter are more easily excited than smaller
fibers. The threshold for the smallest diameter fiber is about 3.5 fold that of the largest fiber
simulated (16.0 um). In Fig. 4.17 B, we show PNS thresholds as a function of fiber diameter,
for given constant frequencies of the applied fields. Note that the PNS thresholds change very
quickly for small fiber diameters and rather slowly for large fibers.

Figure 4.18 shows the PNS simulation thresholds as a function of applied field frequency for the
leg and arm coils. The electric field magnitude is shown overlaid on the anatomical model. Figure
4.18 also shows the resulting simulated PNS threshold curves as well as the measured thresholds
from Saritas et al. [I01]. The measured values represent the median over 26 subjects (error bars
indicate 25th and 75th percentile). The B-field generated by the modeled coil agrees well (within
1%) with the experimental value (measured values: 214 uT for the leg coil, 410 uT for the arm
coil, simulated values: 211.86 uT for the leg coil, 407.1 uT the arm coil). The electric field
maps show that the electric field patterns are significantly modulated by the anatomical details
of the model. Electric field hotspots occurred in tissues with low conductance, such as layers of
fatty tissues separating different muscle fiber bundles and in regions where the conductivity is
significant but the geometry narrows (e.g., the tibialis anterior muscle whose width becomes
very small close to the shin bone region, arrow in Fig. 4.18 B). Although the average measured
PNS thresholds (gray region) from the 26 subjects and the simulated PNS thresholds (red curve)
are in good overall good agreement, there is some deviation in the low-frequency region of the
PNS curves for both the leg and arm stimulations. However, the experimental values also exhibit
increased variance in this frequency range. We repeated the PNS simulations using a range of
spatial deformations applied to the most sensitive nerves, allowing the nerve segments to vary
freely within a tube surrounding the unaltered nerve segment. For a tube radius of 2 mm (4 mm)
the PNS thresholds computed for 20 deformed nerve segments in the arm showed a standard
deviation of 15% (30%). The leg example showed an uncertainty of 6% and 14% for the 2 mm
and 4 mm tube, respectively.
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Figure 4.18: Calculated PNS thresholds as a function of coil current frequency for a leg coil and an arm coil
compared to previously published experimentally measured thresholds [I01]. In C and F we plot the measured
and simulated PNS thresholds (amplitude of applied B-field which creates an action potential) as a function of
coil current frequency. The error bars in the simulated PNS thresholds (red boxes) derive from the nerve path
sensitivity analysis. Namely they represent the standard deviation of the thresholds over the 20 segments simulated
within the 4 mm tube around the atlas nerve center.

4.4.3 PNS Simulations in the Leg and Arm Solenoid Coils

In Fig. 4.19 we illustrate the coil configurations and E-field maps, overlaid by the simulated nerve
segments (red dots indicate boundaries of the individual nerve segments). In the zoomed images,
the nerve segments with lowest stimulation thresholds are shown (these segments determine
the PNS threshold curves shown in Fig. 4.18). The bottom row of Fig. 4.19 shows the electric
potential and its second derivative of these two nerve segments (this is proportional to the
amount of current entering of leaving the membrane [93, [2]). The kinks of these nerve segments
in high E-field regions (positions 2 and 3 at the left, position 2 at the right) cause a sudden
change in slope of the electric potential along the nerve segment, leading to a large inflow or
outflow of current (peaks in the second derivative of the electrical potential). In both the leg and
arm situation, the stimulated nerve segments pass through a rather high E-field region (maximum
E-field strengths along the excited segments were 66.6 mV/m in the leg and 47.7 mV/m in the
arm for 1 A applied coil current). However, it is the high curvature of these nerve segments that
plays a major factor in making these segments particularly sensitive to the applied E-field.
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Figure 4.19: Simulated nerve segments (red dots indicate end points of each nerve segment), superimposed onto
the coil configurations and E-field maps (A and C). In the zoomed images, the nerve segments with smallest
stimulation thresholds are depicted. In B and D, we show, for these nerve segments, the external electrical
potential and its second derivative (which is proportional to the current flow through the membrane).
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Figure 4.20: Trapezoidal and sinusoidal B-field waveforms and the resulting E-field pulses (plateau duration 1 ms,
pulse durations between 0.1 and 10 ms, overall 10 bipolar pulses) and the resulting PNS thresholds as a function
of pulse duration (i.e., in the linear regime).

4.4.4 Sinusoidal vs. Trapezoidal Waveforms

Figure 4.20 shows the trapezoidal and sinusoidal waveforms studied and the pulse durations during
which dB/dt (and thus an electric field) is present. Figure 4.20 also shows the PNS thresholds for
the arm coil as a function of pulse duration as well as the linear fit. The MRG neurodynamic model
used in this work reproduces the increase of the PNS thresholds for trapezoidal pulses. The linear
fit of the sinusoidal (R? = 0.9913) and trapezoidal thresholds (R? = 0.9947) reveals chronaxie
times of 504 us and 345 pus, respectively, which is in very good agreement with experimental
data [94].
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4.5 ‘ Simulated PNS Thresholds for Gradient Coils

4.5.1 Magnetic Fields

Figure 4.21 shows the simulated magnetic fields of the X, Y, and Z gradient coils (from left to
right); for each coil the B, component (required for spatial encoding) in the region-of-linearity
(ROL) produced by 1 A applied coil current is shown (top row). At the bottom of Fig. 4.21,
the maximum intensity projection (MIP) of the B-field magnitude is shown in coronal (left
sub-panel) and sagittal plane (right sub-panel). It can be observed that, although only the B,
field component in the ROL is needed for spatial encoding of the spins, the concomitant fields
(i.e, the field components not needed for encoding) are responsible for the highest magnetic
field strengths (especially in the region 0.1 m < z < 0.5m). The plot of the B, component at
the top of Fig. 4.21 illustrates that the gradient coils produce linearly varying B, components
along the x, y, and z axes (note that the plots of the B, field component use different spatial
axes). The shown iso-contour lines are spaced at 5 uT. The efficiency of the three gradient
coils in terms of achieved linear B, field gradient for 1 A applied to the gradient coil is given
by 0.093 mT/m (for the X-gradient), 0.098 mT /m (for the Y-gradient), and 0.091 mT/m (for

X-gradient Y-gradient Z-gradient
B, [uT] B, [uT]
-20 -10 0 +10  +20 -20 -10 0 +10 +20

2
ko] —
5 8
o = B,
o c [WT]
AR
o g

>

B-field magnitude
z [m]
B-field magnitude (MIP) [uT]

-01 0 +01 -01 0 +01 -01 0 +01 -01 0 +01 -01 0 +01 -01 0 +0.1
x[m] y[m] x[m] y[m] x[m] y[m]

Figure 4.21: Magnetic fields produced by the gradient coils at 1 A applied current: the top row shows the B,-field
produced in the region-of-linearity (dashed lines in the bottom plots). The iso-contour lines are spaced at 5 uT.
The bottom row shows the maximum intensity projection of the B-field magnitude in the coronal (left sub-panel)
and sagittal (right sub-panel) plane.
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Figure 4.22: Electric fields (maximum intensity projection) induced by the gradient coils for 1 A applied current
modulated with a 1 kHz sine wave (coronal plane in the left sub-panel, sagittal plane in the right sub-panel).

the Z-gradient). This means that in order for the X-gradient to produce the maximum nominal
gradient strength of Gax = 40 mT/m, a current of 430 A is needed.

4.5.2 Electric Fields

The electric field strength induced by the three gradient coils for an applied current of 1 A
modulated at 1 kHz is shown in Fig. 4.22. For each gradient coil the maximum intensity projection
(MIP) of the E-field magnitude is shown in the coronal (left sub-panel) and sagittal plane (right
sub-panel). The electric fields are heavily shaped by the conductive body model, creating a highly
heterogeneous field pattern (this is in contrast to the magnetic fields shown in Fig. 4.21 for
which the body model is mostly transparent). The regions of significant E-field strength are
predominantly located at the region of highest magnetic field strength (0.1 m < z < 0.5m).
The X-gradient produces high E-fields at the dorsal and ventral parts of the rip bones and close
to the hips. The Y-gradient caused high E-field magnitudes in the shoulder regions, at the
left /right regions of the rips, as well as close to the hip bones. The E-fields imposed by the
Z-coil are predominantly located close to the spine and to the sternum. Note that the overall
E-field strength produced by the Y-gradient coil is substantially higher, than the E-fields induced
by the X/Z-gradient axes due to the larger cross-section of the body in the coronal plane.

4.5.3 E-Fields along Nerve Fibers

In Fig. 4.23 (top row), the E-field magnitude interpolated at the locations of the nerve fibers is
depicted. The bottom row shows the magnitude of the E-field pointing along the direction of the
nerve fibers (i.e., the magnitude of the E-field projected onto the nerve paths). This projected
E-field component leads to an axial current flow along the nerve fiber path and, therefore, may
lead to generation of an AP. Note that the effective entity for generation of PNS (activation
function) is the spatial derivative of the E-field along the nerve fiber (i.e., the second spatial
derivative of the potential changes which are fed to the neurodynamic model). The X-gradient
(Fig. 4.23, left) produces the overall smallest axial current flow along the nerves. Some nerve
segments in the neck and the upper arm as well as some of the intercostal nerves are affected
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Figure 4.23: Top row: magnitude of the E-field interpolated at the locations of the nerve fibers in the human

body model. Bottom row: magnitude of the E-field pointing along the direction of the nerve fiber path, i.e., the

E-field as projected onto the nerve fiber. This field component determines the amount of current flowing in the

axial direction of the nerve fiber.
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Figure 4.24: Simulated (red) and experimental (blue) PNS threshold curves for the three gradient coils in terms
of the minimum gradient magnitude AGnin as a function of the pulse duration 7 that caused PNS. The top row
shows the Y-gradient results for trapezoidal (left) and sinusoidal waveforms (right). Bottom row shows PNS
threshold curves for the "X-Y" and "X-Y+Z" gradient combinations (both for trapezoidal waveforms).

4.5.4 Simulated vs. Measured PNS Thresholds

PNS threshold curves were generated for the three gradient coils, using both trapezoidal and
sinusoidal waveforms with varying pulse durations. Figure 4.24 shows the PNS threshold curves
obtained in the clinical study (blue, including the standard deviation over all subjects) and based
on the PNS simulation framework (red). The top row shows the results of the Y-gradient for
trapezoidal (left) and sinusoidal (right) waveforms, the bottom row shows the results for the coil
combinations "X-Y" (left) and "X-Y+Z" (right), both evaluated using trapezoidal waveforms
only. PNS thresholds are given in terms of smallest gradient modulation strength (AGin) for
a given pulse duration T (equal to the trapezoidal rise time) that lead to AP generation. The
grey area in the background illustrates the operational region of the gradient coil (determined
by the Gmax and Smax constraints). Note that the operational region is different for trapezoidal
and sinusoidal pulse shapes, since the sinusoidal ramp has a higher maximum slew rate than a
trapezoidal ramp (leading to a higher maximum pulse strength, see Fig. 4.20). Furthermore
note, that the operational region increases when multiple gradient coils are driven in parallel, i.e.,
for two simultaneous axes, Gmax and Smax of the combined gradient field increase by a factor of
V2 (and by a factor of /3 when using all three gradient axes simultaneously).

It can be observed that the PNS simulation framework is capable of reproducing experimentally
obtained threshold characteristics for highly complex wire patterns like the simulated MRI gradient
coils with reasonable accuracy. The simulated PNS threshold curves are right "on top" of the
standard deviation of the experimentally obtained data (the standard deviation over all subjects
was approx. 15% for all setups). The NRMSE of the four simulated PNS threshold curves
with respect to the experimental thresholds is given by 19.83% (Y-axis, trapezoidal), 16.51%
(Y-axis, sinusoidal), 21.09% ("X-Y" axes, trapezoidal), and 8.51% ("X-Y+Z" axes, trapezoidal).
Despite the generally good agreement between simulated and experimental PNS threshold curves,
these preliminary results indicate some systematic deviation that goes beyond the expected intra-
and inter-subject variation. The complex interference of the electric fields that occurs when
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Figure 4.25: Simulated PNS threshold curves for the X and Z-gradient coils in terms of the minimum gradient
magnitude AGnin as a function of the pulse duration 7 that caused PNS. Note that no experimental data was
available for these axes (PNS thresholds are beyond the operational region shown in grey).

combining multiple gradient axes seems to be well reproduced by the simulations: for the gradient
axes combinations "X-Y" and "X-Y+Z", the simulated and experimental PNS thresholds change
consistently (compared to the single axis experiments using only the Y-gradient coil). Note that
for some data points of the experimental PNS threshold curves, the gradient system performance
limits did not allow to accurately determine the PNS thresholds: in these cases, the respective
threshold value was set to the maximum gradient modulation strength achievable by the gradient
system to define a conservative estimate. In Fig. 4.24, this applies to the Y-axis using trapezoidal
waveforms (top left) and the "X-Y" axes combination (bottom left), in both case for pulse
durations of 1.2 ms.

In the simulations of the Y-axis and the "X-Y+Z" coil combination, a motor nerve of the
suprascapular nerve in the neck region was stimulated that innervates muscles attached to the
scapula, namely the infraspinatus and supraspinatus muscles. For the "X-Y" coil combination a
segment of the radial nerve was stimulated, that innervates triceps muscles as well as muscles
in the posterior osteofascial compartment in the forearm. This is in good agreement with
observations made during the experiments where some subjects felt sensations in the upper
arm/shoulder region.

Figure 4.25 shows the simulated PNS thresholds for the X and Z-gradient coils for both trapezoidal
and sinusoidal waveforms. For these gradient axes, no experimental data could be obtained due to
limitations of the power amplifiers, that only permitted generation of sub-threshold pulses. The
simulated PNS threshold curves, however, are in agreement with this result, in that all simulated
thresholds are located beyond the operational region of the gradient system (i.e., outside of the
grey area).
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Discussion

5.1 | Optimal Gradient Waveform Design

In the first part of this work, a novel method for the design of time-optimal gradient trajectories
defined by a set of k-space control points was developed and evaluated. A set of four Gradient
Basis Functions was defined that represent low-level gradient wave shapes (like triangular or
trapezoidal shapes). Each gradient basis function consists of three piece-wise linear gradient
segments. The entire gradient waveform in each dimension is assembled by concatenating these
basis functions. The free parameters of the basis functions — given by the gradient strength
vectors in each control point — are optimized using a constrained minimization algorithm, subject
to the gradient magnitude constraints (the gradient slew rate constraint is incorporated in the
definition of the basis functions; i.e., there is no need to further consider this constraint during the
numerical optimization). Note that the Gradient Basis Function does not require a pre-defined
path constraint. Instead, the shape of the trajectory in between subsequent control points serves
as an additional degree-of-freedom to further accelerate traversal of the control points (resulting
in an acceleration of ~ 9 % compared to standard methods). Due to the closed-form objective
function and semi-analytic expressions for the Jacobian and Hessian, the Gradient Basis Function
method can generate time-optimal gradient waveforms within few seconds without any significant
numerical perturbations (no error in exact traversal of the control points and no violations of the
gradient system constraints).

A comprehensive comparison of the Gradient Basis Function method with the Optimal Control
method was performed using gradient waveforms that were computed based on sets of randomly
distributed k-space control points. Furthermore, examples for more practical 3-D gradient
trajectories (concentric shells and cross trajectories) were given. The question of how to sample
k-space efficiently greatly depends on the application. For example, several frameworks for
designing short spatially selective excitation pulses have been proposed that compute a set of
control points with great impact on the excitation fidelity [16], 35] using an orthogonal matching
pursuit [7]. In this approach, the requirement of accurately traversing the control points outweighs
other aspects like uniform sampling density. In other applications that utilize uniform gradient
trajectories, the selection of feasible control points may be more complex. If control points
are chosen to design common 3-D trajectories like concentric shells or stacks-of-spirals, the
utilization of additional constraints (like fixed gradient strengths, directional constraints, etc.)
proved very effective in enforcing the anticipated shape (and thus the k-space sampling pattern)
of the trajectory.
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The Gradient Basis Functions were defined such that every piece-wise linear gradient segment
is driven at the slew rate constraint (e.g., at the ramps of a trapezoid) or kept at a constant
gradient strength (e.g., at the trapezoidal flat top phase). This is an important property of the
proposed method, because during the numerical optimization of the gradient strengths in the
control points, the slew rate constraint (Smax) is not considered any further (the optimization is
only constrained by the gradient magnitude constraint (Gmax). However, for certain types of
trajectories, this fact makes the resulting gradient waveforms rather challenging for the scanner’s
gradient system. In fact, the proposed gradient design method often creates rather short phases
at which the gradient magnitude is changed at the maximum slew rate, causing short "spikes" in
the slew rate waveforms (see. Figs. 4.3, 4.4, and 4.5). In most case, however, these spikes can
be removed in a very simple post-processing step. For example, if an exemplary 1 ms gradient
waveform in between two control points is only switched for a 0.1 ms phase at +Smax, While
being constant during the remaining 0.9 ms, this section of the gradient can be modified such
that the gradient is switched at 10% of +Smax during the entire 1 ms phase. This simple step
does not change the total integral of the gradient waveform (i.e., traversal of the control points
is maintained), but creates a smoother trajectory that is less challenging for the gradient system
amplifiers.

Another aspect to improve the practicability of the resulting gradient waveforms might be to
smooth the waveforms to reduce the level of eddy currents created by the rapid switching of the
fields. Since modifications applied to a time-optimal gradient waveform necessarily introduce
constraint violations, the gradient waveform need to be decelerated mildly to ensure that the
smoothed gradients are conform with the gradient system specifications. Promising results
were achieved using a gradient waveform smoothing based on an adjusted radial basis function
approximation [103, [102]. This smoothing approach guarantees that the integral of the gradient
waveforms (and thus the traversal of the control points) is maintained and the gradient system
constraints are satisfied. Additionally, the impulse response function of the gradient system
may be useful to predistort the generated waveforms in a way that eddy current effects are
compensated. A powerful approach called the Gradient Impulse Response Function (GIRF)
method has been proposed by Vannesjo et al. [119].

Vaziri et al. published an extension of the Optimal Control method [120]. For simple spiral
trajectories, deformations were applied to the k-space path constraint that shortened the duration
by up to 10 %, referred to as Rounded Diamond Trajectories. These deformed spiral trajectories
are very similar to those designed by the Gradient Basis Function method proposed in this work,
using four control points per spiral revolution (cf. Fig. 4.1). Note that the proposed diamond
spirals represent a special solution of the time-optimal trajectory design problem. As opposed to
that, the Gradient Basis Function method is capable of designing k-space trajectories based on
an arbitrary set of control points (i.e., with an arbitrary shape), beyond spiral trajectories.
Additionally to the ability of designing strictly time-optimal gradient waveforms, the proposed
method can be used to design gradient waveforms tailored to specific applications. For example,
with respect to parallel transmission applications, the gradient waveforms can be decelerated
locally in order to reduce the SAR (similar to the VERSE principle [54]). This can be achieved
by scaling down the gradient strength vectors in the control points and by choosing sub-optimal
durations for the gradient segments that connect two subsequent control points (sub-optimal
durations can be chosen very easily, because the domain mapping D defines the set of all valid
durations, for which the solution mapping S can generate a valid gradient waveform). Both
approaches can reduce the k-space velocity locally, which results in reduced RF power deposition
and thus lower SAR.
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5.2 | Joint Gradient and RF Optimization

In the second part of this work a joint optimization of gradient and pTx RF waveforms for
improved excitation of arbitrary 3-D excitation patterns was presented. The gradient trajectories
are parameterized using a small number of shape parameters that are optimized numerically
using a nested optimization process (the inner optimization loop is the RF design on a constant
k-space trajectory, the outer loop is the k-space trajectory optimization). It was found that
reducing the dimensionality of the gradient optimization problem by optimization of global shape
parameters as opposed to the position of individual control points (there are ~ 50 control points
in a typical trajectory) was critical to yield smooth trajectories with few sharp turns. This
yielded fast trajectories that used the gradient system at maximum performance and, in turn,
accurate excitations using RF pulses shorter than 5 ms using a conventional clinical gradient
system (Gmax = 40 mT/m and Spyax = 150 T/m/s).

Although the k-space trajectories are parameterized using a small number of shape parameters,
the precise contour of these trajectories in 3-D k-space is defined using control points (there is a
one-to-one mapping between a given set of shape parameters and the position of the individual
control points in 3-D k-space). Therefore, a key ingredient of the proposed approach is a
gradient trajectory design tool that is able to compute trajectories passing through the control
points at maximum speed while satisfying the gradient magnitude and slew rate constraints of
the gradient system. For this, the method presented in Sec. 3.1 was used [28, [26]. A major
advantage of this approach is its high numerical stability. In other words, small perturbations of
the position of the control points yield only small changes in the optimal gradient waveforms in
this method, which is not always the case with other gradient waveform design strategies such
as optimal control methods [109] 55, [71], 120]. Advantages of the proposed approach include
its high numerical stability, the fact that gradient performance limits are exactly satisfied (i.e.,
No Gmax/Smax Violations) and that the k-space trajectory is guaranteed to exactly traverse the
prescribed control points (for an extensive comparison between this gradient trajectory design
approach and optimal control, see Fig. 4.2 and Tab. 4.1 which show better performance of the
proposed semi-analytic approach in these three metrics compared to optimal control). Because
a numerical minimization is used for optimization of the trajectory shape parameters, excellent
numerical stability of the gradient waveform design method must be guaranteed for a large class
of possible trajectories, including complex non-smooth trajectories that may not be optimal
but still need to be explored by the optimization process to converge to the final solution. It
was found in this work that the presence of small oscillations, numerical instabilities, and small
violations of the gradient system constraints in the gradient waveform design step, which are
very hard to avoid when using optimal control methods, prevented convergence of the k-space
trajectory optimization process.

The simulations and experiments performed in this work showed that optimization of the shape
parameters had a profound effect on the k-space trajectories. The optimization process resulted
in trajectories that sampled 3-D k-space in a highly heterogeneous manner in an apparent effort
to focus the RF energy to k-space regions that maximally impact the flip angle distribution.
For the shells and stack-of-spirals trajectories, the result of the trajectory optimization was a
compression of the overall trajectory compared to the unoptimized case. This is likely due to the
fact that the coil used in this work has only one row of eight transmit channels and, therefore,
creates only mild variations of Bf in the z-direction, which in turn prevents the algorithm
from under-sampling k-space in this direction. Under the constraint of limited pulse duration,
increasing the sampling density along the z-direction causes k; max to decrease for the shells
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and stack-of-spirals trajectories. This result was also observed when using a cross trajectory
to excite the brain target pattern (Fig. 4.10) but not when using the cross to excite a cubic
magnetization target. This is probably due to the fact that the cross trajectory almost perfectly
matches the energy deposition pattern of a cube in 3-D k-space, and the algorithm does not
change the initial cross trajectory significantly in this case. When robustness to off-resonance
effects is enforced, the shape optimization procedure concentrated the energy of the trajectory
to the center of k-space. This reduced the resolution of the achieved excitation profile, but
significantly improved the off-resonance performance due to the shorter pulse duration.

The parameterized trajectories studied in this work allow the optimizer to adjust the k-space
sampling density in a way that is highly non-uniform and tailored to the Bf maps as well as
the target magnetization pattern. However, an unwanted property of the optimization problem
stated in Eq. 3.56 is the dependence of the optimized result on the initial value of the trajectory
shape parameters. It was found that properly setting up the initial values of the shape parameters
is crucial. This is related to the fact that the optimization problem that is attempted to be
solved is highly non-convex (see Fig. 4.6). In order to initialize the optimization process, the
shape parameters were chosen so as to sample the k-space volume defined by the outer portion
of the 3-D trajectory more or less uniformly. A choice of initial shape parameters that should be
avoided is one associated with a level of k-space undersampling that is beyond the acceleration
capability of the transmission coil array (e.g., for an 8-channel transmit array the initial level of
undersampling must not exceed a value of 8). Another important consideration is to choose
an initial trajectory with a duration that is below the maximum tolerated duration (5 ms in this
case). Otherwise early iterations are used to reduce the pulse duration without improvement in
the flip angle error which unnecessarily increases computation time.

During the development of the joint gradient and RF pulse optimization framework, it was found
that implementation details were important to ensure fast convergence of the proposed method.
As discussed previously, a robust and numerically highly stable gradient trajectory design algorithm
is crucial. Additionally, shape parameters that were of integer type warranted special treatment
in the optimization process. Indeed, the shape parameters control non-continuous features of
the trajectory such as the number of shells or the number of spirals per stack. As was shown
in Fig. 4.7, a "nalve" implementation of the optimization of these parameters leads to large
discontinuities in the optimization metrics (both the flip angle NRMSE and the pulse duration,
which is penalized in the objective function), which would cause the algorithm to diverge or stop
prematurely. A simple solution to this problem is to vary these integer parameters in a way that
the creation of a new "entity" (such as a new shell or new spiral) does not cause discontinuities
in the objective function. This is achieved by initializing newly created entities with infinitely
small k-space extent (see Sec. 3.2.3).

The topology of the least-squares objective function optimized in this work as a function of
the shape parameters depends heavily on the type of gradient trajectory and the target flip
angle pattern (see Fig. 4.6). It is clear from these investigations that the objective function is
continuous but not convex and has several local minima. Therefore, convergence of the proposed
approach is limited to local minima (i.e., it cannot be guaranteed that the best of all possible
gradient waveforms satisfying the maximum pulse duration constraint of 5 ms can be found in
every case). At any rate, the local pulse solutions found by the proposed algorithm seem to be
"good enough" as they yield significantly improved flip angle profiles compared to unoptimized
gradient waveforms.

In Sec. 3.3 an extension of the RF pulse design framework is presented to allow the design of
pulses for uniform slice excitation in presence of severe off-resonance effects (like those present
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close to the frontal lobe). In such regions uniform slice excitation is an open problem. The
commonly used Spokes pulses that achieve very good performance with respect to flip angle
uniformization are extremely sensitive to off-resonance effects. If these effects are incorporated
in the design of the spokes pulses, the solver usually chooses to only use one of the spokes (the
one centered in the k,/, plane) which then results in a common RF shimming pulse. Expressed
differently, common spokes pulses can only achieve good flip angle uniformity or robustness
to off-resonance effects, but not both at the same time. The preliminary results presented in
this work illustrate that the proposed shape optimization applied to Corkscrew trajectories may
overcome these limitations. This was illustrated by designing an RF pulse that achieves uniform
slice excitation in the head (close to the frontal lobe) in a wide range of off-resonance frequencies.
However, the question whether or not this observation can be confirmed in an experimental setup
needs to be addressed. Additionally, an effect that has not yet been investigated is through-slice
dephasing from intra-voxel ABg gradients. However, this effect can easily be incorporated in the
design problem stated by Eq. 3.91.

A significant limitation of the proposed trajectory shape optimization approach is its rather long
computation time: For the shape optimization at the Larmor frequency computation times
ranged from 0.8 to 3.5 hours in the examples studied in this work. Enforcing robustness to
off-resonance effects further increased runtime (ranges from 1.3 to 7.7 hours), because of the
increased complexity of the RF design problem. In its present form, the technique is, therefore,
not usable for patient-specific joint optimization of RF and gradient trajectories. However,
computation time could be easily decreased by using multi-threaded implementations, especially
using graphical processing units (GPU). For example, an acceleration factor of 100, which is
common for applications amenable to GPU acceleration, would yield computation times between
0.5 and 2.1 minutes. Note that matrix operations (like those employed in this work) are highly
parallelizable, therefore, optimization of the RF waveform on a constant gradient trajectory, which
is the computational bottleneck of the proposed approach, could probably be widely accelerated
in this way.

5.3 | Prediction of Magnetostimulation Thresholds

In the last part of this work, a simulation framework was presented for estimating the PNS
thresholds for electromagnetic coils such as MRI gradient coils or MPI drive coils operating in
the low kHz-range. In the first step, the electromagnetic fields created by the coil are calculated
in a realistic body model, as has been reported in numerous previous studies. The effect of
these fields on realistic nerve models is predicted, including the relative geometry between field
and nerve. The full body peripheral nerve model incorporates the properties of the myelinated
fibers allowing the non-linear effect of the fields on membrane potentials to be calculated. The
modeled time-dependent waveform is increased in steps to identify the lowest applied field (and
thus current amplitude) which initiates an action potential. The location of the stimulation can
also be recorded. This process is evaluated by comparing to the published experimental PNS
threshold curves for two MPI solenoid coil geometries and three actively-shielded commercial
MRI gradient coils.

The PNS simulation method achieved a reasonable agreement with the experimental leg/arm
PNS threshold curves, although the lower frequencies studied (0.5 kHz to 1 kHz) had some
deviation from the experiments. In this frequency range the threshold is changing very rapidly
with frequency and the experimental data has a relatively high inter-individual variance, suggesting
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increased variance with patient anatomy. For the MPI applications, the relevant frequency range
will likely be above this range (e.g. above 10 kHz), suggesting a good possibility for accurately
predicting thresholds. For MRI, frequencies from 0.5 kHz to 2 kHz are relevant for stimulation
by the readout gradient. For example, EPI gradient readouts are generally in the 0.75 kHz to
1.5 kHz range. Nonetheless, even a relative prediction between two coil design models can inform
the gradient coil optimization process. Furthermore, it is expected that the accuracy of the
predicted PNS thresholds in the low kHz-range can be improved by using multiple body models
(with matching nerve atlases) of different ages, body-mass indices, and genders. At this stage,
the calculations of the PNS threshold was performed for a single female body model and does not
yet include estimation of the uncertainty due to the normal biological and anatomical variability of
patients undergoing MRI and MPI scans. Experimental results show that the standard deviation
across individuals for PNS can be on order of 40% [128] [101], which requires the generation of
additional body models, ideally capturing the anatomical variability of the subject population as
well as slight differences in placement of the subject within the coil. Current use of experimentally
determined thresholds is limited to population average thresholds for a given MRI gradient coil
design in setting regulatory limits [20]. The simulation determined PNS thresholds can initially be
used in a similar way; to mimic population averages with a small number of body models to allow
comparison between MRI gradient designs during an iterative optimization. Full characterization
of the population variance will require extensive work and patient-specific modeling of PNS is
likely even further off in the future.

The experimental data obtained by Saritas et al. [1I0I] to which the simulated PNS thresholds of
the two solenoid coils are compared, possessed a threshold variation over the studied individuals
(25th to 75th percentile) of about 30% to 40% for the arm stimulation case and 20% to 28%
for the leg stimulation. The results of the preliminary sensitivity analysis to deformations of the
nerves relative to other tissues in the model indicate that the model is sensitive to the nerve shape
and location relative to other tissues to a level similar to the variability of the experimental data.
Note that there are other sources of variability expected for the estimation of PNS thresholds such
as variations in the placement of patients in the coil (non-biological), as well as electromagnetic
tissue properties in-vivo (biological). Another deviation between the simulated and experimental
PNS threshold curves are their slightly different shapes (when plotted as a function of frequency).
This is likely due to the fact that there are aspects of action potential initiation and propagation
that are not yet fully captured by the MRG neurodynamic model. The MRG model is, however,
currently one of the most sophisticated nerve models available. The PNS simulation procedure
can be updated when more detailed membrane models become available, and might also prove a
useful tool for refining these models.

Recordings made by Saritas et al. during the stimulation experiments indicate that the most
prominent sites were the proximal forearm and the proximal tibia region, i.e., roughly at the
proximal ends of the two stimulation coils (personal communication with Emine Saritas, March 12,
2017). Both motor and sensory sensations occurred in the experiments. In the arm simulations
performed in this work, stimulations originated in a branch of the radial nerve that (among
others) innervates several muscles at the proximal forearm close to the elbow joint (including
extensor carpi radialis longus muscle, extensor carpi radialis brevis muscle, supinator muscle
muscle and others). For the leg simulation, the AP first occurred in a sensory nerve: a branch
of the saphenous nerve in the proximal tibia region. Although there is reasonable agreement
between the site of stimulation reported in the experimental study and simulation results, it is
difficult to be sure that the model identified the same nerve segment experienced by the human
subjects.
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Only modest experimental data is available on the quantitative relationship between the excitability
of a nerve fiber and its axon diameter, making it very hard to verify whether the used MRG
neurodynamic model correctly describes this relationship. However, from the neurodynamic
modelling perspective it is well established that for very small fiber diameters (in the order of
1 um) the stimulation threshold is proportional to the "inverse square" fiber diameter. When
increasing the fiber diameter up to 20 um this relationship progressively approaches an "inverse
square root" relationship [80]. This behavior can be verified by a logarithmic plot of the threshold
curves shown in Fig. 4.17 B and evaluating the slope of these curves at different fiber diameter
points (for example, in the logarithmic plot a slope of —2.0 indicates an "inverse square"
relationship, a slope of —0.5 an "inverse square root" relationship). In the simulations carried out
in this work, a slope of —1.4 at 5 um and —1.1 for 16 um were found which is consistent with
previous observations (a slope of —2.0 at 2 um and a slope of —0.5 at 20 um, with a continuous
progression for intermediate diameters). However, some deviation is expected due to the effect
of the myelin insulation which is not explicitly modeled in the other neurodynamic models. These
previously published results indicate that the MRG neurodynamic model satisfactorily describes
the dependence of the PNS thresholds on axon diameter.

In this work the PNS threshold is defined as the field modulation strength where the first AP
is initiated in any of the nerve segments in the simulated part of the body model. In fact for
very sensitive areas of the human body (skin, lips) it is well known that even a single AP in
a single sensory nerve fiber already produces a sensible perception [85]. However, for motor
nerves (which are the nerves that are first stimulated in the arm solenoid), a single AP in a
single nerve fiber may not produce a sensible muscle contraction. Nonetheless it is expected
that the PNS threshold for single AP generation is very close to the threshold for a perceivable
sensation for two reasons. Firstly, motor nerves possess a rather short refractory period in
the order of 2 ms, allowing for a repetition frequency of about 500 Hz (the refractory period
decreases when increasing the fiber diameter, meaning that motor nerves achieve a higher AP
repetition frequency than sensory nerves [8]). Since the stimulation pulses used in this work
usually have the same or higher frequencies (460 Hz to 10.6 kHz), the stimulation pulse at the
PNS thresholds will generate multiple APs, one after each recovery cycle (roughly every 2 to 3 ms
[66], cf. Fig. 4.16). Secondly, for healthy subjects the fiber diameter distribution of motor nerves
in a single nerve fiber is rather sharp meaning that the different nerve fibers possess very similar
stimulation thresholds [36] (as opposed, e.g., to patients suffering from Multiple Sclerosis, where
demyelination of the nerve fibers causes of broader distribution of the stimulation thresholds).
Along with the fact that the entire nerve fiber bundle can be considered to experience the same
local electric field, this means that the threshold for the very first AP in a single fiber (which may
not be perceivable, especially for motor nerves) and the threshold for initiation of a larger number
of APs in various fibers of the same nerve bundle (causing a perceivable sensation) should only
differ very mildly.

It was found that accurate modeling of the PNS threshold curves required very careful definition
of the "nerve segments", which are used in this work to split the whole-body nerve tree into
computationally manageable sections. For example if an external electric field stimulates the
nerve segment at the periphery of the nerve (as opposed to the central nodes of Ranvier of the
segment), this often leads to an underestimation of PNS thresholds. On the other hand, if nerve
segments are defined with knowledge of the electric field in order to guarantee that the strongest
electric potential change always occurs at the center of a segment, accurate prediction of AP
initiation is possible. This approach was validated by comparison of PNS stimulation of very long
nerve segments.
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The results obtained in this work indicate that the nerve membrane dynamics are rather sensitive
to even small anatomical details of the body model. In fact, small structures, especially bottle-
necking structures, may have a more prominent impact on the electric field hotspots than large,
uniform structures. In the simulations presented in this work, the largest E-field hotspots often
occurred in regions where a well-conducting tissue geometry narrows (as highlighted in Fig. 4.18
B and 4.18 E). Additionally it was found that thin layers of low conductivity tissues (like fatty
tissue) enclosed by high conductivity tissues (like muscles) may act as a capacitance creating high
E-fields in the insulating layer. If a nerve fiber passes through these regions, this might facilitate
stimulation. However, the effect of the level of detail of the body model on the accuracy of the
PNS threshold curves has not yet been quantified. Ideally the body model should be simplified as
much as possible (to decrease computation time of the EM field simulations), while ensuring
accurate PNS threshold curves. Additional investigations are needed to determine the most
important properties of the body model such as the required number of tissue classes, distribution
of fatty tissue, or spatial properties of the tissue objects (note that a rather large thickness of
3 mm was used for the skin, which significantly simplified meshing).

The detailed nerve atlas was, of course, central to the PNS simulations in this work. PNS
is modulated by the relative angle of the imposed electric field to the nerve fiber. Thus the
PNS effect is different from scalar parameters such as Specific Absorption Rate (SAR) which
quantifies energy deposition from the much faster oscillations of the applied radio frequency
(RF) field which are in the MHz range. The electric fields responsible for SAR are too fast for
the nerve membranes to respond to, and simply cause heating of the electrically lossy tissue.
Thus SAR is determined by the strength and duration of the applied RF fields, the magnitude of
the induced E-fields and the conductivity of the tissue. SAR is relevant at considerably higher
frequencies than considered in the PNS simulations performed in this work. Roughly speaking,
SAR becomes the dominant concern for applied fields above 5 MHz. In contrast, PNS is the
dominant concern for the oscillation frequencies of approx. 500 Hz to 10 kHz studied here. Unlike
SAR where only the magnitude of the E-field matters both the strength and direction relative
to the nerve segment determine the local PNS threshold. This, together with the observed
electric field hot-spots, means that it is critical to know the exact locations and orientations
of the nerves with respect to the rest of the body model. The information about location and
orientation of the major nerve fibers is encoded by the developed nerve atlas and no manual
user input of the nerve fiber properties or location/orientation is required beyond classifying the
segment as motor, sensory or autonomous for which a diameter assignment of 16 um, 10 um
or 2 um was made (another source of fiber diameter information is measurement of the nerve
conduction velocity that depends linearly on the fiber diameter, however, these studies are limited
to a few major nerve tracks like radial, sural, tibia nerves [24]). The detailed nerve properties for
each of these diameters are then dictated by Mclintyre et al. [79]. Nonetheless, experimental
threshold measurements show variance across individuals suggesting that the use of multiple
body models may be useful to get a more complete simulation of the range of responses. The
experimental variance might also result from variations in body position within the coil. The
relative importance of these two sources of variance could be assessed from studies re-positioning
an individual subject and noting the variance of the PNS thresholds. Finally, while the magnetic
field produced by the modeled coils is uniform, the E-field pattern is far from uniform. This
underscores the importance of the geometry of the conductive tissues in shaping the current
flow, thus the electric field is in contrast to the near transparency of the body to the magnetic
field at the studied frequencies. It also suggests the importance of the nerve model accurately
reflecting nerve locations within the tissue.
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The simulations carried out in this work (Fig. 4.17) are consistent with previous physiological
experiments [121], [37] and theoretical investigations [80, [3, [I5] showing that nerves with larger
fiber diameters are excited more easily than smaller ones and, therefore, tend to determine
the PNS threshold. This is fortunate for the efforts made in this work since it means that it
may not be necessary to model the smallest fibers. In the human body, the largest fibers are
those that innervate the neuromuscular spindles, so-called A-a fibers, with fiber diameters of
about 10-20 um and conduction velocities of up to 120 m/s [108]. Muscular spindles are motor
receptors that detect information about length changes of a muscle. The associated nerves
transmit this information to the CNS that initiates a reflex in terms of a muscle contraction (such
as the patellar reflex or "knee reflex"). This phenomenon is often observed in MRI experiments
where PNS sensations in the extremities are experienced as reflex-like muscle contractions. It
seems to be a reasonable assumption, that any nerve bundle that contains motor nerves also
contains at least a small fraction of these large nerve fibers. The AP generation observed at the
PNS threshold for the arm case (Fig. 4.18 F) resulted from stimulation of this kind of motor nerve
fibers with 16 um diameter. For nerve bundles that solely contain sensory nerves (such as in the
fingers that do not contain muscle tissue), the largest nerve fibers are so-called A-3 fibers whose
diameter is in the range of 7-15 um with conduction velocities of up to 70 m/s (in the leg case
shown in Fig. 4.18 C, a sensory nerve fiber was stimulated first). Unmyelinated nerve fibers such
as the ones controlling the digestive system (so-called C-fibers, in the order of 1 um diameter,
up to 2 m/s conduction velocity) are hard to stimulate by external E-fields and, therefore, may
be ignored in this context. The same holds for cardiac nerves, that possess an up to 200-fold
higher stimulation threshold compared to motor fibers [61]. However, there is evidence [104]
that the thresholds for PNS and cardiac stimulation converge for long pulse durations. It would
be interesting to see if an extension of the proposed PNS simulation framework could validate
this effect, however, several changes to this model would be needed. The MRG neurodynamic
model used in this work was designed for fiber diameters ranging from 5 um to 16 um and may
not be suitable for simulation of cardiac nerves (having fiber diameters of approx. 1 um). Thus
other neurodynamic model approaches that are more appropriate to autonomous nerve fibers
are needed [70], 116]. Another possibility is to extrapolate the MRG model parameters to these
fiber diameters, however, it needs to be ensured that these extrapolated parameters model the
associated nerve fibers reasonably well. An updated neurodynamic model, together with a more
complete depiction of cardiac nerves than found in the Zygote model may allow the expansion of
the simulation approach beyond motor and sensory nerves, and shed light on the relationship
between cardiac and peripheral nerve thresholds.

In Sec. 4.5, preliminary PNS simulation results based on three actively-shielded MRI gradient
coils are shown. The experimental and simulated PNS threshold curves were obtained for both
trapezoidal and sinusoidal gradient waveforms using single gradient axis stimulation ("X","Y" and
"Z") and combined gradient axes stimulation (in particular "X—=Y" and "X—Y+Z"). There was
reasonable agreement between the experimental and simulated PNS threshold curves, although
the PNS simulations overestimated the experimental threshold curves. The simulated thresholds
were 10 — 20% higher than the measured thresholds and thus right "on top" of the experimental
standard deviation of 15%. We believe that this overestimation may be ascribed to different
aspects: Firstly, it has often been observed that women tolerate higher magnetic field strengths
before experiencing PNS. Most certainly, this is due to the combination of (on average) higher
body fat percentage and smaller body cross-section (compared to men) which both decrease
the strength of the electric fields imposed by the gradient coils. Hopefully, this gender-specific
threshold dependence can be reproduced in the future work by development of a second male
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body model. A second reason for overestimation of the experimental PNS thresholds might be
the spatial resolution of the EM field simulation which was limited to 1 mm for the gradient
coil simulations due to the hexahedral simulation mesh used in this case (tetrahedral simulation
meshes which were used for simulation of the leg/arm solenoid coils allow for much higher spatial
resolution of the body model and the induced EM fields). Other aspects like the level of detail of
the surface body model required for accurate PNS prediction (especially with respect to crucial
features like thin layers of fatty tissue that often induce electric field hot-spots due to capacitance
effects) are subject to future investigations. We are currently improving the processing pipeline of
the body model generation to preserve anatomical features which we have found to be important
in order to accurately reproduce PNS thresholds. Despite the slight overestimation of the PNS
thresholds, we believe that these preliminary gradient coil results demonstrate the applicability of
our PNS simulation framework to highly complex wire patterns (especially given the complexity
of the entire PNS prediction pipeline).

In this work, we concentrate on introducing and validating our modeling framework. The degree
to which this framework can improve MRI gradient or MPI coil design is an important open
question. The introduced methods are, at best, necessary, but not sufficient for improving design
and may not be better than existing approaches which note that PNS correlates well with volume
of the linear region of the gradient for conventional designs [128]. It is, therefore, likely that
simply modulating existing designs, such as scaling or mildly altering wire density will result in
PNS threshold changes that are already described by the current PNS scaling arguments. To
go beyond this, unconventional design approaches will likely be needed, especially those that
introduce degrees-of-freedom which can be exploited in an optimization framework. To this end,
we note that new approaches are starting to emerge, such as the recent PatlLoc coil comprising 84
independently drivable loops [68], that perhaps offer both the degrees-of-freedom and necessary
departure from standard design, but currently this observation is unproven.

Despite the role PNS plays in limiting the application of kHz-range magnetic fields in MRI and
MPI methods, relatively few tools exist to predict PNS thresholds based on a specific coil wire
pattern. Instead proxies for direct prediction, such as the volume or length [128] [69, [122] of the
linear gradient region are used to inform the design. In this work, we build on previous work
simulating the relevant E-fields in the human body to attempt to predict stimulation thresholds
and locations based on nerve and tissue geometry rather than coil metrics such as length or
volume of the linear gradient region. We also build on previous work assessing how E-fields
induced in the human body interact with a nerve segment, informed from dynamic nerve models.
We add a general nerve atlas, labeled with the relevant nerve model parameters and in registration
with the predicted local E-fields to be able to accurately predict PNS thresholds for experimental
coil configurations.
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This thesis presents methods to characterize and minimize the effect of electric fields arising
from rapid switching of the gradient and RF fields to accelerate spatial encoding and signal
excitation in MRI.

In the first part of this work, a robust method for the design of time-optimal gradient waveforms
subject to Gmax and Smax constraints was developed. The shape of the gradient trajectory is
specified by an ordered set of control points in k-space. This means that unlike most previously
proposed methods, this approach does not require a path constraint in k-space. Instead the exact
shape between control points is chosen by the optimizer so as to minimize the total duration.
The gradient waveforms are assembled by concatenation of piece-wise linear gradient segments
(vielding piece-wise quadratic trajectory segments). The exact length and slope of each linear
gradient segment is optimized via a numerical optimization. The number of degrees-of-freedom
to be optimized is reduced by formulating semi-analytic Gradient Basis Functions (that define a
general arrangement of the linear gradient segments like triangular or trapezoidal shapes). As
a result of this semi-analytic waveform representation, the optimization can be performed very
quickly (within a few seconds) and is not prone to numerical perturbations. Compared to the
leading competing Optimal Control approach, significant improvements were achieved in terms
of duration of the trajectory (in average 9.2% acceleration), computation time (acceleration by
at least 25% up to factors of 500), and robustness (no significant numerical instabilities).

In the second part of this work, the previously described Gradient Basis Function method was
used to design 3-D spatially selective excitation pulses using multiple transmit channels (parallel
transmission or pTx). A method is proposed for the joint optimization of gradient and pTx RF
waveforms. The method derives solutions that equally exploit the gradient system (constrained by
maximum strength and slew rate) and the RF system (characterized by sensitivity profiles, number
of transmit channels, peak power and off-resonance characteristics). The joint optimization
framework was implemented as a nested optimization problem: the inner optimization loop
optimizes the RF waveforms for a given gradient trajectory, and the outer loop optimizes the
shape of the trajectory. This shape optimization is performed by defining a small set of shape
parameters of the k-space trajectory. The shape parameters define simple geometric properties
of the k-space trajectory like the sampling density along different k-space axes or the maximum
k-space frequency to be covered by the trajectory. The shape parameters were carefully defined
to ensure that the trajectory (and thus the flip angle error) vary smoothly. The definition of
shape parameters effectively reduces the number of degrees-of-freedom from several hundreds to
less than ten. The framework was demonstrated for overall four trajectory types: Concentric
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Shells, Stack-of-Spirals, Cross trajectories (these were used to excite 3-D magnetization targets)
as well as Corkscrew trajectories for uniform slice-excitation in presence of severe off-resonance
effects. It was demonstrated that the proposed joint optimization framework yields ultra-short
3-D selective RF pulses (less than 5 ms) with excellent flip angle performance (cubic target with
3.4% NRMSE, brain-shaped target with 6.2% NRMSE). Additionally, it was shown that using
a spatial-spectral pulse design to improve robustness to off-resonance frequencies significantly
alters the k-space trajectory solutions and improves the practical performance of the pulses. The
framework was further applied to the problem of designing RF pulses for uniform slice-excitation
in presence of off-resonance frequencies. It was demonstrated that the proposed Corkscrew
RF pulses might overcome the limitations of the commonly used Spokes pulses, which either
achieve uniform slice-profiles or robustness to off-resonance effects, but not both at the same
time. The first results obtained using Corkscrew RF pulses indicate that the slice uniformity was
improved by at least a factor of two, while maintaining this level of uniformity in a wide range of
off-resonance frequencies (+/- 200 Hz). A major limitation of the proposed gradient and pTx RF
design method is the computation time (up to a few hours per RF pulse), however, this can be
significantly shortened by using GPU computations (which usually achieves acceleration factors
of 100 and more).

The last part of this thesis investigated a more fundamental approach to overcoming gradient
switching limitations. Since current gradient systems can be constructed that can operate with
performance limits (Gnax and Smax) that cannot be applied to humans due to PNS, tools are
needed to study the origins of these biological limitations. Ultimately a method is needed that
allows PNS thresholds to be included in the gradient coil optimization process as an additional
penalty term, in a similar way that field generation efficiency, linearity and heating are currently
incorporated. Despite being a major constraint, PNS is only considered indirectly in the coll
design process, mainly through limiting the size of the linear gradient region; a poor proxy for
the actual PNS thresholds. In this work, a method was proposed that allows prediction of PNS
thresholds for realistic coil geometries for the first time. With this method, the PNS threshold of
a gradient wire pattern can be evaluated in the design stage, allowing iterative improvements of
performance with respect to this metric in a similar fashion to what is currently done for electrical
efficiency and heating metrics. For these simulations, a novel high-resolution body model for
use in electromagnetic field simulations was developed. A pre-processing pipeline was developed
that generates a watertight non-intersecting surface-based representation of the body model.
This type of body model can be processed by tetrahedral and hexahedral finite-element methods
to simulate the magnetic and electric fields induced by the coil geometry under consideration.
To evaluate the capability of the electric fields to cause PNS, a nerve atlas was developed that
exactly matches the body model used for the field simulations. The nerve atlas encodes the path
of the major peripheral nerve tracks in the human body (about 1800 nerve tracks are included).
Each single nerve track is labeled with properties of the nerve fibers, including the axon diameter
which affects the excitability of the nerves. The simulated electric fields are superimposed to
the nerve atlas, projected onto the path of the nerves and then integrated to obtain electric
potential changes along the nerve fibers. The effect of these electric potential changes (including
possible action potentials) is simulated using a double-cable electrical circuit model of mammalian
nerve fibers, referred to as the Mclntyre-Richardson-Grill model. The potential changes along
the nerve fiber are modulated in time by the coils driving waveform and increased in strength
until an action potential is predicted by the neurodynamic model in one of the nerves (an action
potential is taken as an indicator for PNS). This stimulation process is performed for different
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frequencies, pulse lengths, and pulse shapes yielding characteristic PNS threshold curves. These
threshold curves are usually obtained experimentally (using clinical studies based on healthy
human subjects) and thus can only be assessed after the design process (after construction of
the coil). The proposed simulation framework was evaluated based on simple leg/arm solenoid
coils as well as commercial actively-shielded MR gradient coils. It was shown — for the very
first time — that clinically obtained PNS threshold curves can be reproduced using a realistic
body model in conjunction with a nerve atlas and a neurodynamic model. This is the first tool
that allows to assess the PNS capability of gradient coils at the design phase, without building
expensive prototype coils.
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