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Zusammenfassung

Compressed Sensing ist ein neues Abtast-Paradigma der mathematischen Signalver-
arbeitung, das unter bestimmten Annahmen eine Rückgewinnung des Signals aus
stark unterabgetasteten Messungen ermöglicht. Die Erweiterung der mathematischen
Theorie und die Analyse und Entwicklung neuer Anwendungen in vielen Bereichen
sind Gegenstand zahlreicher internationaler Forschungsaktivitäten.

In dieser Arbeit wird ein industrielles Problem aus der experimentellen Fluiddynamik
exemplarisch betrachtet. Nach aktuellem Stand der Technik wird das Problem in
zwei unabhängigen Schritten gelöst: Erst werden Partikelbilder durch eine weniger
verbreitete Art der Tomographie wiederhergestellt, woraufhin die Bewegung zwischen
zwei vorgegebenen Zeitpunkten abgeschätzt wird. Dies motiviert das Problem der
gleichzeitigen Signal- und Bewegungsschätzung und wirft theoretische Fragen im
Bereich Compressed Sensing in Zusammenhang mit der Wiederherstellung von dünn
besetzten und zeitlicher veränderlichen Signalen auf.

Insbesondere werden zwei verschiedene Ansätze zur Gewinnung eines sich über die
Zeit verändernden Signals und dessen Bewegung aus unterabgetasteten, linearen
Messungen zu zwei verschiedenen Zeitpunkten vorgestellt. Der erste Ansatz for-
muliert das vorliegendes Problem als optimalen Transport zwischen zwei indirekt
beobachteten Dichteverteilungen mit physikalischen Einschränkungen. Es werden
mehrere Methoden vorgeschlagen, um die Projektionsbeschränkungen in das konvexe
Optimierungsframework von Benamou und Brenier zu integrieren.

Im zweiten Ansatz wird das Signal so modelliert, als ob es von einem realen Sensor
erfasst wird, der durch den Versuchsaufbau festgelegt ist, und einem zusätzlichen,
virtuellen Sensor, der durch die Bewegung entsteht. Die Kombination dieser beiden
Sensoren wird Compressed Motion Sensor genannt, dessen Eigenschaften aus der
Sichtweise von Compressed Sensing untersucht werden. Es wird gezeigt, dass in
Compressed Motion Sensing (CMS) neben dem Grad der Dünnbesetztheit eine ausrei-
chende Signaländerung zu Rekonstruktionsgarantien führt und dass der Compressed
Motion Sensor die Performance des realen Sensors mindestens verdoppelt. Darüber
hinaus kann bei bestimmten Dünnbesetztheitsgraden ebenfalls die Signalbewegung
ermittelt werden.

v





Abstract

Compressed sensing is a new sampling paradigm of mathematical signal processing
which, under certain assumptions, allows signal recovery from highly undersampled
measurements. The extension of the mathematical theory and the analysis and deve-
lopment of new applications in many fields are the subject of numerous international
research activities.

In this thesis an industrial problem from experimental fluid dynamics is consider,
exemplarily. The current state of the art methodology solves the problem in two
independent stages: First it recovers particle images by nonstandard tomography,
and secondly it estimates the motion between two given time points. This moti-
vates the problem of joint signal and motion estimation while raising theoretical
questions in compressed sensing related to the recovery of sparse time-varying signals.

In particular, two different approaches are presented for recovering a time-varying
signal and its motion from undersampled linear measurements taken at two different
points in time. The first approach formulates a problem at hand as optimal transport
between two indirectly observed densities with a physical constraint. Several methods
are proposed to integrate the projection constraints into the convex optimization
framework of Benamou and Brenier.

In the second approach, the signal is modeled as if observed by the real sensor
specified by the experimental setup and an additional virtual sensor due to motion.
The combination of these two sensors is called compressed motion sensor and its
properties are examined from the viewpoint of compressed sensing. It is shown that
in compressed motion sensing (CMS), besides sparsity, a sufficient change of signal
leads to recovery guarantees and it is demonstrated that the compressed motion
sensor at least doubles the performance of the real sensor. Moreover, for certain
sparsity levels the signal motion can be established, too.
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1 Introduction

Estimating fluid motion by image sequence analysis is an active research field
[Adr05, RWWK13] with a high industrial impact [LaV] due to its wide range of
applications from calculating forces and moments on aircraft to combustion chamber
design in engines.

A prevailing method for the quantitative investigation of fluids by imaging techniques
is Particle Image Velocimetry (PIV), that is since many years a very important
and active research field in experimental fluid mechanics. New PIV methods that
are applied in real-world scenarios e.g. wind-tunnels, complement numerical results
from direct simulations of the Navier-Stokes equation and continuously lead to the
understanding of the complex nature of turbulent flows.

A now established technique and a prominent example of PIV for imaging turbu-
lent fluids with high speed cameras is a 3D technique called Tomographic Parti-
cle Image Velocimetry (Tomo-PIV) developed by Elsinga, Scarano and Wieneke
[ESWvO06, Sca13, Wie08, Wie13]. The image measurement process proceeds as
follows: First, the flow medium is seeded with small tracer particles that are designed
such that they accurately follow the motion of the fluid. Advanced imaging devices
(lasers, high-speed cameras, control logic etc.) illuminate and record fully time-
resolved 2D image sequences of particle distributions at high resolutions. Next, 3D
reconstructions of particle volume functions are obtained by tomographic inversion
from few and simultaneous projections (2D images) of the tracer particles within the
fluid. Finally, entire velocity fields are measured by taking two or more 3D particle
volume functions within short time intervals, and by estimating and interpolating
the displacements of individual particles from frame to frame.

To put it in a nutshell, Tomo-PIV consists of two computational steps:

• the image recovery or reconstruction problem of 3D particle volume functions
from simultaneously recorded 2D images from few different angles corresponding
to one time point.

• the actual motion estimation procedure of calculating the particle displacement
based on at least two subsequent 3D particle volume functions that yields a
3D velocity field.

The essential new step of Tomo-PIV related to other PIV methods is the 3D particle
reconstruction problem from 2D images. These 2D images can be interpreted as
projections of the 3D particle distribution and the physical measurement process is
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1 Introduction

closely related to the forward problem of optical tomography. This also explains the
word “tomo” in Tomo-PIV. The reconstruction problem, can be formulated as an
underdetermined system of linear equations of the form

Ax = b with A ∈ Rm×n, b ∈ Rm and m� n . (1.0.1)

Tomo-PIV adopts a simple discretization scheme known as the algebraic image
reconstruction model (ART) which assumes that the image consists of an array
of unknowns (voxels), and sets up algebraic equations for the unknowns in terms
of measured projection data. The latter are the pixel entries in the recorded 2D
images. State of the art reconstruction methods for underdetermined systems above
are multiplicative ART (MART) and simultaneous MART (SMART) [HK99, Her09,
CZ97] which both solve a linearly constrained entropy-like problem

min
n∑
i=1

xi log(xi) subject to Ax = b and x ≥ 0 . (1.0.2)

The negative of the objective function above E(x) := −∑n
i=1 xi log(xi) is the

Boltzmann-Shannon entropy measure. Entropy maximization is providing good
results for sparse enough particle distributions. The reason is that for such sparse
solutions the feasible set of problem (1.0.2) is a singleton [PS14]. As a consequence
minimizing any other function would also make sense. Increasing the seeding density,
however, will lead for the approach in (1.0.2) to dense solutions with strictly positive
entries in the solution vector, except for those entries that can be fixed a priori to
zero (conform section 2.5.4.2). But higher densities are desirable since they ease
subsequent motion estimation.

Another disadvantage is that MART and SMART exhibit slow convergence after
an initial phase of rapid progress towards the solution. As a consequence engineers
interrupt the iteration process after few runs [ESWvO06]. This results in artifacts
commonly called ghost particles. On the positive side, it is to be emphasized that
both MART and SMART are row action methods [CZ97] and capable of dealing
with very large systems as encountered in practice. In general, one has to deal with
millions of unknowns n and thousands of measurements m resulting in matrices A
that may be much too big to be stored in computer memory.

Commonly in Tomo-PIV, ART techniques are combined with cross correlation
[RWWK13], a well-proven method for estimating the fluid motion from correspon-
ding image pairs based on the correlation of local interrogation volumes in subsequent
3D reconstructions. This method heuristically splits the volume into small regions
and estimates motion by searching for corresponding ones in subsequent steps in time.
It also involves a local averaging process which is fast but empirically derived and
error-prone. In cross correlation motion estimation is carried out regardless of spatial
context. As a consequence, prior knowledge about spatial flow structures cannot be
exploited during estimation, and missing motion estimates in image regions where a
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1.1 Related Work

correlation analysis yields no reliable estimates, have to be heuristically inferred in a
post-processing step. As a consequence engineers start tuning away from the classic
cross correlation method and have started imposing physical priors on the particle
motion [SGS16].

The main motivation for this work is the development of a well-founded approach
that in contrast to solving the problem in two independent stages, i.e. image recon-
struction and motion estimation, performs these two steps jointly. Compared to the
current approach of Tomo-PIV, a joint approach has the potential to enable synerge-
tic effects: image reconstruction benefits from simultaneously considering previous
reconstructions and available correspondence information. Motion estimation on the
other hand benefits from the improved reconstruction quality.

1.1 Related Work

The classic theory of compressed sensing (CS) [FR13] focuses on properties of un-
derdetermined linear systems (1.0.1) that guarantee the accurate recovery of sparse
solutions x from observed measurements b. Theoretical assertions are based on
random ensembles of measurement matrices A and are in general not subject to
design. Sensor matrices A, as they occur in Tomo-PIV, do not meet the theoretical
conditions that compressed sensing relies on [PS09]. Nevertheless, the image recon-
struction problem in Tomo-PIV is an instance of a compressed sensing problem. It can
be guaranteed that uniformly sparse vectors x can be provably recovered with high
probability from deterministic sensors that are based on real Tomo-PIV measurement
setups [PSS13, PS14]. Motivated by the average case analysis of recovery conditions
for such static Tomo-PIV sensors, this thesis considers the extension to more realis-
tic dynamic scenarios and includes, in particular, the two-frame analysis of Tomo-PIV.

Related work in the framework of the L2 optimal transport (OT) problem, also known
as the L2 Monge-Kantorovich problem [Vil08], is [BB00, AABC15, SKA15a, SKA15b].
In OT the goal is to find the most efficient way of redistributing an initial density to
a target density such that the total L2 distance is minimized. The Benamou-Brenier
algorithm [BB00] is not only a popular improvement to the numerical resolution of
the L2 OT problem, but is also capable of incorporating physical constraints into OT
by solving a space-time convex variational problem. The work in [SKA15a, SKA15b],
with a focus on PIV methods, was published recently. The authors adopt a conti-
nuous PDE-based approach (iteratively linearized Monge-Ampère equation) that
leads to a more economical problem parametrization and enables, in particular,
to take into account additional physical fluid flow models. On the other hand, a
performance analysis is only provided for simple 1D settings or a single particle in
2D, and additional rectifying filters are needed if the approach is not discretized
on a sufficiently fine grid. In contrast to the problem considered in this thesis, the
above works [BB00, SKA15a, SKA15b] do not consider distributions that are only
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1 Introduction

indirectly observed by an undersampling operation. This however is the case studied
in [AABC15]. The authors consider a variational approach based on continuous OT
to object recovery with a predefined shape from multiple tomographic measurements.
The numerical implementation of the approach seems to suffer from severe issues
of numerical sensitivity and stability, and has only been applied to solid bodies of
simple shapes.

The “discretize-then-optimize” strategy adopted in the second part of this thesis
relates to discrete optimal transport [Vil08], that has already been used in image
processing. In connection with color transfer between natural images, the authors of
[FPPA14] study regularized discrete optimal transport that enforces spatially smooth
displacements.

Beyond the field of mathematics, in experimental fluid dynamics, highly engineered
approaches to joint particle recovery and motion estimation have starting emerging,
that require parameter tuning but do not provide any recovery guarantees. This
works include [NBS10, LS15, SGS16].

1.2 Contribution and Organization

In this thesis two fundamentally distinct approaches are developed, that combine the
two independent steps in Tomo-PIV, image reconstruction and motion estimation, in
a single step.

The first approach builds on continuous optimal transport between two particle
distributions and incorporates into the Benamou and Brenier OT framework [BB00]
the linear constraint (1.0.1) corresponding to one image pair. Three different optimi-
zation strategies are derived to handle the additional projection constraints. These
are validated in experiments.

The second approach builds on discrete optimal transport and considers the joint
problem of signal as well as signal correspondence recovery. Uniqueness of both
recovery of binary sparse signals (particles) and signal correspondence (displacements
between particles) is established under conditions that, besides sparsity, involve a
sufficient change of signal transformation. The approach can be seen as an extension
of the CS framework to a temporally changing signal which is computed in parallel
to the signal reconstruction. Thus, it extends the static perspective of the CS
framework in [PS14] to realistic dynamic situations and leads to compressed motion
sensing (CMS). CMS is the main contribution of this thesis. Computationally the
joint problem of reconstruction and transformation estimation can be addressed by a
large-scale linear program. Numerical experiments validate theoretical results and
illustrate the performance of CMS.
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1.2 Contribution and Organization

Chapter 2 introduces basic material being used in later chapters. Besides compressed
sensing and different approaches for estimating motion which build the basis of sub-
sequent methods, results from convex optimization together with useful algorithms,
properties of permutations and separate smaller tools are recalled.

The aforementioned two distinct approaches combining image recovery and motion
follow in separate chapters. The methods presented in chapter 3 are based on
Benamou and Brenier’s OT framework for motion estimation. These differ in
the specific representation of the target function and algorithms used for solving.
Chapter 4 includes the main contribution, namely compressed motion sensing, a
theoretical extension of compressed sensing, and investigations related to make
computation practical via linear programming relaxation. Finally, a conclusion is
given in chapter 5.
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2 Preliminaries

2.1 Linear Subspace Angles

The dimension of the intersection of two linear subspaces of the same vector space
can vary between just one and the dimension of the vector space itself. Sometimes it
is useful to further determine how distant two subspaces are by computing specific
angles between them. The derivation starts with the following definition.
Definition 2.1 (Stiefel manifold):
The Stiefel manifold

Vm,n := {X ∈ Rn×m | X>X = Im}

is the set of real orthogonal n×m matrices with normalized columns.
Naturally, the columns of each element of Vm,n are basis vectors of a linear subspace
of Rn. Thus, the mapping of each element of Vm,n to the set of m-dimensional
subspaces is merely surjective since the elements columns have a fixed order. That
subspace is the Grassmann space.
Definition 2.2 (Grassmann space):
The Grassmann space

Gm,n := {X ⊆ Rn | X is a linear space, dim(X) = m}

is the manifold of m-dimensional linear subspaces of Rn.
The aforementioned concept for measuring the distance between two elements of the
Grassmann space are the principal angles.
Definition 2.3 (principal angles):
Let X ,Y ∈ Gm,n and let the columns of X,Y ∈ Vm,n form an orthogonal basis for X
and Y, respectively. The i-th principal angles θi between X and Y is defined as

θi(X ,Y) = arccos
(
σi
(
X>Y

))
∈ [0, π2 ]

where σi is the i-th largest singular value (see definition 2.6), and θ(X ,Y) := θ1(X ,Y).
Definition 2.3 implies an order of the principal angles being

θ(X ,Y) = θ1(X ,Y) ≤ . . . ≤ θm(X ,Y)

where the smallest principal angle θ is of specific importance. It determines whether
the two subspaces have only zero in common as the following lemma shows.

7
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Lemma 2.4 ([Dix49, Deu95]):
Let X ,Y ∈ Gm,n. Then

θ(X ,Y) > 0 ⇔ X ∩ Y = {0}
and θ(X ,Y) = π

2 ⇔ X ⊥ Y .

In particular this implies

Corollary 2.5:
Let X ,Y ∈ Gm,n. Then

θ(X ,Y) = 0 ⇔ dim (X ∩ Y) ≥ 1 .

2.2 Matrix Decompositions

There are many matrix decompositions which are usually used to implement efficient
algorithms or to help investigating a problem analytically. This section introduces
the decompositions of real matrices that are used in the following chapters.

Definition 2.6 (Singular Value Decomposition (SVD), [TBI97, Section I.4]):
Let M ∈ Rn×m. Then there are orthogonal matrices U ∈ Rn×n, V ∈ Rm×m and a
diagonal matrix Σ ∈ Rn×m with

diag(Σ) = (σ1, . . . , σk) , σ1 ≥ · · · ≥ σk ≥ 0, k = min(m,n)

such that
M = UΣV > .

σ1, . . . , σk are the singular values ofM and the columns of U and V are called the left
and right singular vectors, respectively. The singular values are uniquely determined
whereas the singular vectors can only be uniquely determined up to a factor of ±1,
if the singular values are distinct and M is a square matrix. [TBI97, Theorem 4.1].

Definition 2.7 (Polar Decomposition, [Chi12, Section 1.5.1]):
Let M ∈ Rn×m, n ≥ m, with rank(M) = m. Then the unique polar decomposition
of M is given by

M = HMT
1/2
M with HM = M(M>M)−1/2 ∈ Vm,n, TM = M>M, (2.2.1)

where Vm,n is the Stiefel manifold (see definition 2.1).

The columns ofHM form an orthonormal basis for the rangeR(M) = {Mx | x ∈ Rm}
of M .

8



2.3 Permutations

2.3 Permutations

The rearrangement of n elements can be seen as a bijective function mapping from
the finite set X with n elements to itself and is referred to as permutation. No
matter how often and how heavy the elements of X are permuted, the result can
always be described by a single permutation function p : [n]→ [n] which uses the set
[n] := {1, . . . , n} representatively for an arbitrary set with n elements. This makes
the set of all possible permutations a group.

Definition 2.8 (symmetric group):
The group consisting of the set

Sn := {p : [n]→ [n] | p is bijective}

with n ∈ N and the function composition as group operation is called symmetric
group.

Each of the |Sn| = n! different elements of Sn is a permutation. Matrices implementing
this kind of permutations on the positions of vector entries by a matrix-vector
multiplication are referred to as permutation matrices.

Definition 2.9 (permutation matrix):
Each element of the set

Pn :=
{
P ∈ {0, 1}n×n

∣∣ (Pij = 1⇔ p(i) = j) , p ∈ Sn
}

forming a group together with the matrix multiplication is a permutation matrix of
size n.

It can be deduced from the definition that each permutation matrix P ∈ Pn cor-
responds to exactly one bijective function p ∈ Sn and vice versa. The inverse
permutation matrix P−1 changing vector entries of some x ∈ Rn back to the position
before calculating Px is naturally

P−1 = P> leading to P>P = PP> = I

and multiplying x ∈ Rn to P from the right and left gives

(Px)i = xp(i) and (x>P )i =
(
(P>x)>

)
i

= xp−1(i) .

Every permutation p decomposes into k disjoint cycles. Those can be separated into
f fixed points and c cycles of length at least 2, hence k = c + f . The notation of
cycles Cj having lengths lj ≥ 2 for j ∈ [c] and lj = 1 for j ∈ {c+ 1, . . . , k} so that

p =
{

(i1,1 · · · i1,l1)︸ ︷︷ ︸
=:C1

· · · (ic,1 · · · ic,lc)︸ ︷︷ ︸
=:Cc

(ic+1,lc+1)︸ ︷︷ ︸
=:Cc+1

· · · (ik,lk)︸ ︷︷ ︸
=:Ck

}
(2.3.1)
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in the sense of cyclic permutations

p(ij,t) = ij,t+1 with ij,lj+1 := ij,1 for t ∈ [lj ]

is called cycle notation of p. It is common practice not to list the cycles of length
lj = 1 for j ∈ {c + 1, . . . , k} since those are said fixed points of the permutation
function p, i.e. p(ij) = ij , and do not change their position. A given permutation p
partitions the set [n] into

Ip :=
⋃
j∈[c]
{i | i ∈ Cj}

which is the set of elements belonging to a cycle of length 2 or greater and its
complement

Fp := [n] \ Ip = {i ∈ [n] | p(i) = i}
being the set of fixed points. Consequently,

[n] = Ip ∪̇ Fp and n = r + f

with cardinalities
r := |Ip| and f := |Fp| .

The following definition and the subsequent lemma deal with the number of permu-
tations without fixed points known as derangements.
Definition 2.10 (derangement):
A derangement is a permutation p ∈ Sn with cycle structure (2.3.1) without a fixed
points, i.e. f = 0 so that k = c. It is said that the elements are deranged.
Lemma 2.11 (counting derangements [Has03]):
The number of derangements in Sn is equal to the subfactorial

!n := n!
n∑
i=0

(−1)i
i! =

⌊
n!
e

⌉
,

where b·e is the rounding towards the nearest integer number.
Probabilistic results for the number of cycles of a random permutation are already
known for a long time.
Lemma 2.12 (expected value and variance of number of cycles [SL66, Gon42]):
Let p ∈ Sn be a random permutation drawn uniformly from Sn. The expected value
of the number of cycles k of p and its corresponding variance are

En[k] =
∑
i∈[n]

1
i

= log(n) +O(1)

and Vn[k] =
∑
i∈[n]

i− 1
i2

= log(n) +O(1) .

Permutations and permutation matrices can further be partitioned into conjugation

10
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classes. Each class consists of the same cycle structure and has the same spectrum
and similar eigenvectors. These results can be found in the work of Stuart and
Weaver [SW91] and is summarized in the following lemma and its corollaries.

Lemma 2.13 (conjugate classes of permutations [SW91, section 3]):
Let Q ∈ Pn be a permutation matrix whose corresponding permutation decomposes
into disjoint cycles as in (2.3.1). This is conjugate to the block permutation matrix
P ∈ Pn with

P =


Pl1

. . .
Plk


having the cycle structure

p =
{

(1 · · · l1) ((l1 + 1) · · · (l1 + l2)) · · · ((n− lk + 1) · · · (n))
}

where Pj is the circulant permutation matrix

Pj :=
[
0 Ilj−1
1 0

]
∈ Plj . (2.3.3)

A third permutation R ∈ Pn exists such that Q = RPR>.

Corollary 2.14 (spectrum of permutation matrices [SW91, section 3]):
Let P ∈ Pn be a permutation matrix with cycle structure (2.3.1). The spectrum of
P is

spec(P ) =
k⋃
j=1

{
ϕilj

∣∣∣ i ∈ [lj ]
}

, (2.3.4)

where ϕlj ∈ C is a primitive lj-th root of unity, that is ϕllj 6= 1 for l ∈ [lj − 1] and
ϕ
lj
lj

= 1.

Corollary 2.15 (eigenvectors of permutation matrices [SW91, section 3]):
Let P ∈ Pn be a permutation matrix with cycle structure (2.3.1). Then P has n
linear independent complex eigenvectors. For each j ∈ [n], the eigenvector entries
at indexes Cj can be obtained from the eigenvectors of the submatrix Pj in (2.3.3).
The remaining entries at indexes [n] \ Cj must be set to 0.

2.4 Convex Optimization

The aim of mathematical optimization is the search for a global minimum in the
domain C ⊆ Rn of a function f : C → R, regardless of whether it is achievable or
not. That means an optimal value x∗ is desired, so that there is no other value x
which yields a smaller function value, i.e. f(x∗) ≤ f(x) for all x ∈ C. Often there
are feasibility constraints involved acting on the functions variable x which have the
form of equalities and inequalities, e.g. g(x) ≥ h(x), or equivalently h(x)− g(x) ≤ 0.

11
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Every (in-)equality can be rewritten in a similar way, so that the general non-linear
optimization problem can be formulated as

Problem 2.16 (general nonlinear optimization problem):

minimize
x∈S

f(x)

where
S :=

{
x ∈ C

∣∣∣∣∣ fi(x) ≤ 0 for i = 1, . . . , p
fj(x) = 0 for j = p+ 1, . . . ,m

}
.

is the feasible set.

In this generality, a realistic goal is to find a local minimum of f(x) using existing
methods. Many algorithms are iterative, start at any location x and then improve
the value f(x) step by step with the help of derivatives, such as the gradient descent
algorithm. In every step it computes the gradient, takes a step in the opposite di-
rection, and repeats until either the improvement of the function value or the gradient
becomes too small, which are sufficient criteria in many practical applications. If that
is the case a local optimum is assumed to be found. There are lots of other methods
which extend gradient descent e.g. by more sophisticated choices for computing step
direction and length. More detailed information about algorithms can be found in
section 2.4.3.

In this respect a convex setting is a big advantage. Convexity is a property of a
function or a set, which is beneficial for finding a global minimum. The global
optimization of a convex function reduces to the search for one minimum, since every
minimum of a convex function is a global minimum. Thus, convexity is a desirable
property.

Definition 2.17 (convex set):
Let S be a subset of a vector space. S is called convex if

tx1 + (1− t)x2 ∈ S for all t ∈ [0, 1]

and any two points x1, x2 ∈ S.
In other words a set S is convex if the entire connecting line between x1 and x2 lies
in S and does not cross the boundaries of the set. Moreover, a function f : C → R,
C ⊆ Rn is convex, if (and only if) its so called epigraph is a convex set.

Definition 2.18 (epigraph):
The epigraph of a function f : Rn → R := [−∞,∞] is the set

epi f := {(x, y) ∈ Rn × R | f(x) ≤ y} ∈ Rn+1 .

The epigraph contains all points on or above the graph of a function illustrated in
figure 2.1. Thus, if there is more than one minimum of a convex function, all of them
have the same function value and the set of all minima is also a convex set.

12
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Figure 2.1 - The epigraph of a function is the set of all points on or above the functions graph.

The properties which make a general optimization problem 2.16 a convex optimization
problem are the following.
Assumption 2.19 (convexity assumptions for problem 2.16, [JS03, Section 8.1]):

1. The domain C ⊆ Rn of f is convex and C ⊂ domfi for i = 1, . . . ,m

2. Functions f and fi : Rn → R ∪ {∞} are convex for i = 1, . . . , p

3. Function fj are affine for j = p+ 1, . . . ,m

The last property means that the constraint functions fj are nothing else than linear
equations ajx = bj . Compared to a general optimization setting the additional pro-
perty assumptions 2.19 allow the application of duality theory (see section 2.4.1) on
the one hand, which leads to reliable and more sophisticated methods in order to find
a global minimum of the target function f . On the other hand, existing and especially
gradient based methods, like the aforementioned gradient descent algorithm, con-
verge to a global minimum instead of possibly getting stuck in a non-optimal local one.

An important concept for dealing with convex optimization problems of the form 2.16
together with the convexity assumptions 2.19 is the Lagrangian function.
Definition 2.20 (Lagrangian function [JS03, Section 8.3]):
Let D := {y ∈ Rm | yi ≥ 0 for i ∈ [p], yj ∈ R for j ∈ {p+ 1, . . . ,m}}. Then the
function L : C ×D → R defined by

L(x, y) := f(x) +
m∑
i=1

yifi(x)

is called Lagrange function of the problem 2.16. Every yi is called Lagrange multiplier.
This transforms the constrained optimization problem into a so called saddle-point
problem. In the context of the Lagrangian function a saddle-point is defined in the
following way.

13
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Definition 2.21 (saddle-point [JS03, Section 8.3]):
The point (x̄, ȳ) ∈ C ×D is a saddle-point of L on C ×D, if

L(x, ȳ) ≤ L(x̄, ȳ) ≤ L(x̄, y)

for all x ∈ C and y ∈ D.
The aim of the corresponding saddle-point problem is to find x̄ and ȳ satisfying these
inequalities which amounts in the search for the optimum of

max
y∈D

min
x∈C

L(x, y) . (2.4.1)

The precise formulation (theorem 2.23) of the relationship between the target function
f(x), the Lagrangian L(x, y) and the saddle-point problem goes back to Karush,
Kuhn and Tucker (KKT). An important role plays the condition by Slater.
Definition 2.22 (Slater’s constraint qualification [JS03, Section 8.1]):
The condition

∃ x ∈ int(C) ∩ S : fi(x) < 0 for all non-affine fi with i ≤ p

is called Slater’s constraint qualification or in short Slater condition, where int(C) is
the interior of C.
Together with the so called KKT conditions representing conditions for a point being a
minimum of the target function of problem 2.16 with respect to the assumptions 2.19,
they form the basis for Karush, Kuhn and Tucker’s statements. The following
theorem describes the relations.
Theorem 2.23 (Karush, Kuhn & Tucker [JS03, Section 8.3]):
Let the convexity assumptions 2.19 be fulfilled for problem 2.16. Then:

1. If (x̄, ȳ) is a saddle-point of L on C ×D, then x̄ is an optimal solution for the
problem 2.16 and ȳifi(x̄) = 0 for i = 1, . . . ,m, i.e.

L(x̄, ȳ) = f(x̄)

2. If x̄ is an optimal solution of problem 2.16 and the Slater condition is fulfilled,
then there exists ȳ ∈ D, so that (x̄, ȳ) is a saddle-point of L.

3. If the optimal value α of 2.16 is finite,

α = inf{f(x) | x ∈ S} ∈ R ,

and the Slater condition is fulfilled, then there exists ȳ ∈ D, so that

α = inf
x∈C

L(x, ȳ) = max
y∈D

inf
x∈C

L(x, y) .

This means solving the original problem 2.16 is equivalent to finding a saddle-point
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for the Lagrangian function. For differentiable functions, the properties of such a
saddle-point are summarized in the following definition.
Definition 2.24 (KKT point):
Let f(x) and fi(x) for i ∈ [m] be differentiable. The point (x̄, ȳ) ∈ C ×D fulfilling
the conditions

1. fi(x̄) ≤ 0, ȳi ≥ 0 and fi(x̄) · ȳi = 0 for i ∈ [p],

2. fj(x̄) = 0 for j = p+ 1, . . . ,m and

3. DxL(x̄, ȳ) = 0
is called Karush-Kuhn-Tucker point or in short KKT point of problem 2.16.
Sophisticated algorithms often use the derivative of f(x) or L(x, y) for finding the
desired minimum or saddle point, respectively. If x̄ is a minimum of an unconstrained
function, its derivative is naturally zero at this point. In general, this is not true for
a constrained function f(x) and a KKT point (x̄, ȳ) of the corresponding Lagrangian
in ȳ direction, but is desired for algorithm design. The augmented Lagrangian is an
extension to the Lagrangian function having this additional numerical advantage
whereas the underlying optimization problem remains the same.
Definition 2.25 (augmented Lagrangian [JS03, Section 11.2]):
The function

Lρ(x, y) := f(x) +
p∑
i=1

ρi
2

((
fi(x) + yi

ρi

)+
)2

+
m∑

j=p+1

ρj
2

(
fj(x) + yj

ρj

)2

− 1
2

m∑
k=1

y2
k

ρk

with fixed penalty parameters ρ = (ρ1, . . . , ρm) > 0 and (·)+ := max{0, ·}, is called
augmented Lagrangian.
Theorem 2.26 (derivative of Lρ at KKT point [JS03, Section 11.2]):
Let (x̄, ȳ) ∈ C ×D be a KKT point of problem 2.16. Then

DxLρ(x̄, ȳ) = 0 and DyLρ(x̄, ȳ) = 0

for all ρ = (ρ1, . . . , ρm) > 0. Vice versa, if DLρ(x̄, ȳ) = 0 for one ρ > 0, then (x̄, ȳ) is
a KKT point of problem 2.16.
It turns out that a point (x̄, ȳ) with the properties of theorem 2.26 is not necessarily
a saddle-point of the augmented Lagrangian. However, it can be shown that this is
the case under further assumptions, which can be found together with more details
in [JS03, Section 11.2].

At first sight the adjective “augmented” is not really justified, but it becomes
understandable when looking at the case with no inequality constraints. When p = 0,
then the augmented Lagrangian reduces to

Lρ(x, y) = L(x, y) +
m∑
j=1

ρj
2 f

2
j (x) ,
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that is the standard Lagrangian function augmented by an additional term. In
practise all penalty parameters are often set to one single value ρ > 0 so that

Lρ(x, y) = L(x, y) + ρ

2

m∑
j=1

f2
j (x) (2.4.2)

is the form which is most often used, in cases when there are just equality constraints.
This is the form which is used in the following chapters, as well.

2.4.1 Fenchel Duality

The concept of duality allows to investigate many mathematical objects such as
functions from another points of view. This new viewpoint has the form of another
object, called the dual object, which properties are often much easier to handle.
Especially in optimization, looking at the dual function of a problem’s target function,
that is the dual problem, can make the search for a minimum much easier. Roughly
speaking, the applied transformations “convexify” the original problem yielding the
dual one.

The basic operation to define dual functions is the Legendre-Fenchel transform, also
called (Fenchel) conjugation. It is a natural generalization of the Legendre transform
which is constrained to so-called Legendre functions.

Definition 2.27 (Fenchel conjugate [Roc97, §12]):
Let f : Rn → R be an arbitrary function. The Fenchel conjugate, or in short just
conjugate, f∗ : Rn → R is

f∗(y) := sup
x∈Rn

{〈y, x〉 − f(x)} .

If f(x) is proper, i.e. f(x) > −∞ for all x and there exists at least one x with
f(x) <∞, then the conjugation yields a convenient function. Otherwise, the conju-
gate is a constant function f∗(y) = −∞.

The Fenchel conjugate can be interpreted as a representation of a function in terms
of supporting hyperplanes. Every hyperplane can be expressed as an affine function
〈y, x〉− a with a vector y ∈ Rn of directional slopes and a ∈ R representing the offset
from the origin. The supporting hyperplanes are those where a takes the smallest
possible value depending on y, so that the hyperplanes do not intersect the graph
of f(x). Formally this means

f(x) ≥ 〈y, x〉 − a for all x

⇔ a ≥ 〈y, x〉 − f(x) for all x

⇔ a ≥ sup
x
{〈y, x〉 − f(x)} .
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Figure 2.2 - A 1-dimensional function f(x) and its conjugate f∗(x) and biconjugate f∗∗

together with a few supporting affine functions, i.e. lines. The dotted lines illustrate the
connection between the hyperplanes and the conjugate f∗(x).

Thus, the best choice for the smallest possible offset is a = supx {〈y, x〉 − f(x)} which
defines the conjugate depending on given directional slopes y.

The conjugate f∗(x) is always convex even for non-convex functions f(x). Exciting
facts reveal when considering the biconjugate of a function f , denoted by f∗∗ := (f∗)∗.
Of course it is a convex function, too, but more interestingly it is the greatest convex
function which is majorized by f(x) so that f∗∗(x) ≤ f(x) for all x. Thus, the
unique minimum of the biconjugate of a function is also a global minimum of the
function itself. Equality holds if f(x) is already convex. Figure 2.2 illustrates the
connection between a function and its conjugates in one dimension. The function
shown is differentiable resulting in one possible supporting hyperplane for every
x ∈ R with f∗∗(x) = f(x) in the direction of the gradient. It might happen that
there are more directions at an x0 if f is not differentiable. In this case all possible
directions of supporting hyperplanes are so called subgradients which are collected in
the subdifferential at x0.

Definition 2.28 (subdifferential, subgradient [Roc97, §23]):
Let f : Rn → R be a function and f(x0) ∈ R for a point x0 ∈ Rn. The set

∂f(x0) :=
{
y ∈ Rn

∣∣∣ f(x)− f(x0) ≥ y>(x− x0) for all x ∈ Rn
}

17
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is called the subdifferential of f at x0. Each element is called a subgradient of f
at x0.

If f is convex and differentiable at x0 then the only element of ∂f(x0) is the gradient
∇f(x0). Closely related is the normal cone

NC(x0) :=
{
y ∈ Rn

∣∣∣ y>(x− x0) ≤ 0 for all x ∈ C
}

containing {0} and all normals of hyperplanes supporting the convex set C ⊂ Rn
at x0 ∈ C. It holds that

∂δC(x0) = NC(x0) (2.4.3)

where δX is the indicator function

δX (x) :=
{

0 if x ∈ X
∞ if x /∈ X (2.4.4)

for a set X . Further details on conjugate functions and subdifferentials can be found
in [Roc97] and [BV04].

2.4.2 Lagrangian Duality

In order to formulate the dual problem a common way is to perturb the original pro-
blem and then consider the corresponding inf-projection. For a function f : Rn → R,
the perturbation function is a function ϕ(x, u) : Rn × Rm → R where ϕ(x, 0) = f(x).
If the infimum of f(x) is of current interest, the inf-projection of ϕ defined by

ν(u) := inf
x∈Rn

ϕ(x, u)

can be evaluated at u = 0 instead. Given the general optimization problem 2.16,
a reformulation provides great insights into the connection to the saddle-point
problem 2.21. In the case of the search for a minimum in the whole Rn, problem 2.16
can be written with the help of a perturbed function as

min
x
g(x, 0) where g(x, u) :=

f(x) if fi(x) + ui ≤ 0 ∀ i, fj(x) + uj = 0 ∀ j
∞ otherwise.

By considering the inf-projection ν(u) := infx g(x, u), the conjugate can be derived
as
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ν∗(y) = sup
u

{
〈y, u〉 − inf

x
g(x, y)

}
= sup

u

{
〈y, u〉 − inf

x
{f(x) | fi(x) + ui ≤ 0, fj(x) + uj = 0}

}
= sup

u

{
〈y, u〉+ sup

x
{−f(x) | fi(x) + ui ≤ 0, fj(x) + uj = 0}

}
= sup

x,u
{〈y, u〉 − f(x) | fi(x) + ui ≤ 0, fj(x) + uj = 0}

= sup
x,v
{〈y, v − f(x)〉 − f(x) | vi ≤ 0, vj = 0} (v substituting f(x) + u)

= sup
x,v
{〈yi,−vi − fi(x)〉+ 〈yj ,−fj(x)〉 − f(x) | vi ≥ 0}

= sup
x,v
{− 〈yi, vi〉 − 〈yi, fi(x)〉 − 〈yj , fj(x)〉 − f(x) | vi ≥ 0}

= − inf
x,v
{f(x) + 〈yi, fi(x)〉+ 〈yj , fj(x)〉+ 〈yi, vi〉 | vi ≥ 0} .

This infimum does not exist if there is at least one i with yi < 0, since the last term
〈yi, vi〉 could get arbitrary small. Thus, for yi ≥ 0, the best choice is trivially vi = 0
for all i and the derivations continues

ν∗(y) =

− infx {f(x) + 〈yi, fi(x)〉+ 〈yj , fj(x)〉} if yi ≥ 0
∞ otherwise

=

− infx L(x, y) if yi ≥ 0
∞ otherwise

where L is the Lagrangian function as defined in definition 2.20. This leads to

Definition 2.29 (Lagrangian dual function [Roc97, Section 36]):
The function L̄ : Rm → R defined by

L̄(y) := inf
x
L(x, y)

is called the Lagrange dual function of the problem 2.16.

This is the reason why the Lagrangian multipliers are often referred to as dual
variables, as well. As every conjugate ν∗(y) is convex, every Lagrangian dual function
is always concave where the sign is omitted for convenience. This is essential for
algorithms solving constrained optimization problems (section 2.4.3).

As a prerequisite for the existence of a finite biconjugate

ν∗∗(z) = sup
y
{〈z, y〉 − ν∗(y)} = sup

y

{
〈z, y〉+ inf

x
L(x, y)

∣∣∣ yi ≥ 0
}

of ν∗(y), it is necessary that a finite conjugate ν∗(y) exists such that
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ν∗∗(0) = sup
y

inf
x
{L(x, y) | yi ≥ 0} .

This is exactly the saddle point problem (2.4.1) and is essentially the maximization
of the Lagrangian dual function, i.e.

sup
y

{
L̄(y)

∣∣∣ yi ≥ 0
}

.

This problem is known as the dual problem of the original problem, or in this context
primal problem 2.16. Summing up, the saddle point problem and the dual problem
are nothing but the biconjuguate of the perturbed function of the primal problem
evaluated at 0.

2.4.3 Algorithms

The previous sections deal with the formulation of constraint optimization problems
and only gives rather vague information about how to solve them on a computer.
Algorithms for doing so are the subject of this section.

Assume a strictly convex function f(x) : Rn → R has to be minimized without
constraints. Presuming the differentiability of the function, a standard algorithm is
to start with some x0 ∈ Rn, to compute the gradient ∇f(x0) either analytically or
by finite difference approximations and to “move” in the direction of the negative
gradient scaled by some step size s0 > 0. This new location x1 := x0 − s0∇f(x0)
has a smaller value than x0, i.e. f(x1) < f(x0) as long as the step size s0 for this
step was not chosen too large. Otherwise, the step size has to be reduced. When
taking x1 as a starting point for a new step and repeating this procedure over and
over again, the sequence x0, x1, x2, . . . will converge to the optimal x∗. In practice
the iterative process is stopped as soon as the desired accuracy necessary for the
corresponding application is reached. This algorithm is known as gradient descent or
the method of steepest descent.

The dual ascent algorithm transfers this idea to the solution of saddle-point pro-
blems (2.4.1). Assume for introductory reasons a saddle-point problem involves only
linear equality constraints on the variables x, that is

min
x
{f(x) | Ax− b = 0} .

As the name suggests, dual ascent uses the Lagrangian dual function (definition 2.29)
and takes advantage of its concavity. Since the Lagrangian dual function has to be
maximized, steps are taken in “uphill” direction, that is the positive gradient direction.
Due to the simple problem the gradient of the dual variables is ∇yL̄(y) = Ax − b
where x minimizes the primal direction, i.e. x = arg minx L(x, y). The primal and
dual variables are updated alternatingly [BPC+10]:
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Algorithm 2.1. - Dual Ascent

Fix y0 ∈ Rm
1: for k = 0, 1, . . . do
2: xk+1 = arg minx∈Rn L(x, yk)
3: yk+1 = yk + sk

(
Axk+1 − b

)
4: end for

The step size sk > 0 can be chosen arbitrary as long as L̄(yk+1) < L̄(yk). In practice,
methods aim for a maximal improvement in each step.

A very similar method to dual ascent is known as method of multipliers. It was
developed to make dual ascent more robust and to allow less strict assumptions on
the actual target function f according to [BPC+10]. Compared to dual ascent, it
differs in the use of the augmented Lagrangian (2.4.2) in the minimization step of x
and the step size sk being set to the penalty parameter ρ. The price for convergence
under far more general conditions is the loss of separability of the x-minimization
step, so that parallel computation is not possible any more [BPC+10]. This issue is
addressed by the method introduced next.

2.4.3.1 Alternating Direction Method of Multipliers

The alternating direction method of multipliers, or in short ADMM, recovers the
decomposability of the method of multipliers. It can solve problems of the form

min
x,z
{f(x) + g(z) | Ax+Bz − c = 0}

with x ∈ Rn, z ∈ Rm, A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp given the epigraphs of f
and g are nonempty closed convex sets and a saddle-point of the (unaugmented)
Lagrangian function exists [BPC+10]. The corresponding augmented Lagrangian is

Lρ(x, z, y) =L(x, z, y) + ρ

2‖Ax+Bz − c‖22
=f(x) + g(z) + y>(Ax+Bz − c) + ρ

2‖Ax+Bz − c‖22 .

Applying the method of multipliers to the problem, the first iterative step would be
to minimize with respect to x and z at the same time. In ADMM this step is split
i.e. variables are optimized consecutively.
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Algorithm 2.2. - Alternating Direction Method of Multipliers (ADMM)

Fix z0 ∈ Rm, y0 ∈ Rp, ρ > 0
1: for k = 0, 1, . . . do
2: xk+1 = arg minx∈Rn Lρ(x, zk, yk)
3: zk+1 = arg minz∈Rm Lρ(xk+1, z, yk)
4: yk+1 = yk + ρ

(
Axk+1 +Bzk+1 − c

)
5: end for

Practically more relevant is a modified form called scaled ADMM which combines
the linear and the quadratic term of the augmented Lagrangian by introducing a new
scaled dual variable w := 1

ρy. This can be an advantage for the inner optimization
steps in x and z direction. By reformulating the last two terms of the augmented
Lagrangian as

y>r + ρ

2‖r‖
2
2 = ρ

2

∥∥∥∥r + 1
ρ
y

∥∥∥∥2

2
− 1

2ρ‖y‖
2
2 = ρ

2 ‖r + w‖22 −
ρ

2‖w‖
2
2

with r := Ax+Bz − c the equivalence between the two formulations can be shown
[BPC+10] and leads to the following algorithm.

Algorithm 2.3. - Scaled ADMM

Fix z0 ∈ Rm, w0 ∈ Rp, ρ > 0
1: for k = 0, 1, . . . do
2: xk+1 = arg minx∈Rn

{
f(x) + ρ

2

∥∥∥Ax+Bzk − c+ wk
∥∥∥2

2

}
3: zk+1 = arg minz∈Rm

{
g(z) + ρ

2

∥∥∥Axk+1 +Bz − c+ wk
∥∥∥2

2

}
4: wk+1 = wk +Axk+1 +Bzk+1 − c
5: end for

In practice the convergence to high accuracy turned out to be very slow. Boyd writes
further “However, it is often the case that ADMM converges to modest accuracy
- sufficient for many application - within a few tens of iterations”. More details about
ADMM can be found in his work [BPC+10].

2.4.3.2 Weak Coupling

Here, weak coupling is understood as the search for an solution to the problem

min
x,y

f(x) + g(y) + ‖Ax−By‖2 (2.4.5)

with x ∈ Rn, y ∈ Rm, A ∈ Rp×n, B ∈ Rp×m and the epigraphs of f and g are
nonempty closed convex sets. The last term is called coupling term and induces
dependencies between x and y. The probably most straight forward algorithm for
solving it is the following.
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Algorithm 2.4. - Weak Coupling Algorithm

Fix x0 ∈ Rn, y0 ∈ Rm, ρ, ζ, η > 0
1: for k = 0, 1, . . . do
2: xk+1 = arg minx∈Rn f(x) + ρ

2‖Ax−Byk‖2 + ζ
2‖x− xk‖2

3: yk+1 = arg miny∈Rm g(y) + ρ
2‖Axk+1 −By‖2 + η

2‖y − yk‖2
4: end for

Attouch et al. [ABRS08] investigated the algorithm in detail and proved its conver-
gence to a minimum of the target function. The additional quadratic terms ‖x−xk‖2
and ‖y−yk‖2 enforcing movement costs of the variables between subsequent iterations
are essential for the convergence.

2.4.3.3 Chambolle and Pock’s Algorithm

The first-order primal-dual algorithm investigated by Chambolle and Pock [CP11a]
can solve saddle-point problems having the special form

min
x∈Rn

max
y∈Rm

{〈Kx, y〉+ g(x)− f∗(y)}

with x ∈ Rn, y ∈ Rm and a continuous linear operator K : Rn → Rm, presuming that
the functions f and g take values in R+ ∪ {∞}. Furthermore, their epigraphs must
be nonempty closed convex sets and a saddle-point is required to exist. Chambolle
and Pock show that the algorithm

Algorithm 2.5. - Chambolle’s and Pock’s first-order primal-dual algorithm (CP)

Fix x0 ∈ Rn, y0 ∈ Rm, θ ∈ [0, 1], τ > 0, σ > 0, x̄0 = x0

1: for k = 0, 1, . . . do
2: yk+1 = arg miny∈Rm

{‖y−(yk+σKx̄k)‖2

2σ + f∗(y)
}

3: xk+1 = arg minx∈Rn
{‖x−(xk−τK∗yk+1)‖2

2τ + g(x)
}

4: x̄k+1 = xk+1 + θ
(
xk+1 − xk

)
5: end for

converges to a saddle-point in the case θ = 1 where τ, σ are chosen such that
τσ‖K‖2 < 1 with norm ‖K‖ = maxx∈Rn{‖Kx‖ | ‖x‖ ≤ 1} [CP11a].

2.4.3.4 Parallel Proximal Algorithm

The Algorithm introduced in this section was first derived by Combettes and Pesquet
[CP08, CP11b]. It is based on a special case of the Douglas-Rachford algorithm
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[LM79] transformed into a product space and can solve problems of the form

min
x∈Rn

N∑
i=1

fi(x) (2.4.6)

with functions fi having nonempty closed convex sets as epigraphs for all i ∈ [N ].
Combettes and Pesquet’s algorithm is called parallel proximal algorithm (PPXA) with
reference to the proximal operator defined below and since most of the computation
can be done in parallel.
Definition 2.30 (proximal operator):
The function prox f : Rn → Rn defined by

prox f(x) := arg min
y∈Rn

f(x) + 1
2‖x− y‖

2
2

is called proximal operator or proximity operator.

Algorithm 2.6. - Parallel Proximal Algorithm (PPXA)

Fix y0
1, . . . , y

0
m ∈ Rn, ε ∈]0, 1[, γ > 0 and ω ∈]0, 1]N such that ∑N

i=1 ωi = 1
1: x0 = ∑N

i=1 ωiy
0
i

2: for k = 0, 1, . . . do
3: for i = 1, . . . , N do
4: pki = prox γ

ωi
fi(yki )

5: end for
6: pk = ∑N

i=1 ωip
k
i

7: Choose λk ∈ [ε, 2− ε]
8: for i = 1, . . . , N do
9: yk+1

i = yki + λk(2pk − xk − pki )
10: end for
11: xk+1 = xk + λk(pk − xk)
12: end for

The parallel proximal algorithm 2.6 converges to a solution of (2.4.6) as long as

N⋂
i=1

(ri dom fi) 6= ∅ and lim
‖x‖→∞

N∑
i=1

fi →∞

where ri dom fi is the relative interior of fi’s domain [CP11b].
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2.5 Compressed Sensing

Compressed sensing, or in short CS, is a recent sampling theory extending classical
results developed in the first half of the 20th century. The classical sampling theory
is concerned with the recovery of continuous time signals from a discrete sequence
of samples. The central result connects the sampling rate to the size of support
(bandwidth) of the signal in some transformed domain, e.g. the Fourier domain.

The most famous names regarding sampling theory of this time are Claude Shannon
and Harry Nyquist. In Shannon’s work from 1949 [Sha49] that includes his famous
sampling theorem, he generalized Nyquist’s results from 1928 [Nyq28]. Today the
two are considered parents of the classical sampling theory in the majority of the
literature. However, there were others who discovered the same results in parallel or
even earlier, such as Edmund Taylor Whittaker and his son John Macnaghten Whit-
taker. Vladimir Kotelnikov published similar results in 1933 for which he received
the Eduard Rhein price late in 1999.

Nevertheless, the main result of classical sampling is the Shannon-Nyquist sampling
theorem stating that the sampling rate is required to be greater than the bandwidth
of a bandlimited signal that is a signal with a compact support in the Fourier domain.
In compressed sensing, signals rather than being compactly supported have a small i.e.
sparse support in some transformed domain. Compressed sensing was established by
Candes, Tao [CT05, CRT06] and Donoho [Don06] in 2006 and connects the sampling
rate to the signal sparsity.

The classical CS theory is concerned with the reconstruction of finite dimensional
signals that is of vectors in Rn with large n. This defines also the current setting. The
main constraint to the signal x ∈ Rn is the sparsity of x or at least of an alternative
representation of x in a different domain, e.g. the Fourier domain.

Definition 2.31 (sparsity):
A vector x ∈ Rn is called s-sparse, if it has at most s� n non-zero entries, i.e. if

‖x‖0 := |{i | xi 6= 0, i ∈ [n]}| ≤ s ∈ N . (2.5.1)

For convenience it is assumed that the signal itself is sparse in the current domain.
The recovery problem can be expressed as a linear equation system

Ax∗ = b

with A ∈ Rm×n, b ∈ Rm, m < n which is usually highly underdetermined, i.e. m� n.
Matrix A is called sensor matrix or just sensor and the right hand side b are the
observations or measurements of the unknown signal x∗.
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The basic recovery problem seeks for the sparsest solution of the linear system

x̂ = arg min
x

{‖x‖0 | Ax = b} . (2.5.2)

This is a combinatorial NP-hard problem [Nat95] but it is known to yield the same
sufficiently sparse solution as the `1-problem

x̂ = arg min
x

{‖x‖1 | Ax = b} (2.5.3)

which is the convex relaxation of the `0-problem (2.5.2) [DH01]. In this form it can
be solved by established solvers for linear programs. In more realistic scenarios when
noisy observations are involved, it is reasonable to relax the strict equality constraint
so that the recovery problem becomes

x̂ = arg min
x

{‖x‖1 | ‖Ax− b‖2 ≤ η} (2.5.4)

with an error η > 0. Here, the observations are assumed to be afflicted with an error
‖z‖2 ≤ η corresponding to Ax∗ = b+ z.

2.5.1 Uniform Recovery

A fundamental result of compressed sensing concerns the stable recovery of any
s-sparse signal provided the sensor A satisfies certain conditions. These conditions
ensure that any s-sparse signal can be recovered with one and the same sensor A.
This kind of recovery is called uniform recovery. Compressed sensing can answer the
question how accurate the uniform recovery of the true but unknown s-sparse signal
x∗ is using the formulations above.

The common way is to estimate bounds for the recovery error of the form

‖x− x∗‖2 ≤ c1

∥∥x∗maxs=0
∥∥
p√

s
+ c2η (2.5.5)

depending on two constants c1, c2 > 0, sparsity s ∈ N, measurement error η > 0 and a
term ‖x∗maxs=0‖p estimating how distinct x∗ is compared to an s-sparse signal. Here,
x∗maxs=0 denotes the vector similar to x but with the s largest entries in absolute
value set to 0, i.e.

(xmaxs=0)i =

0 if i ∈ arg maxS
{∑

j∈S |xj |
∣∣∣ |S| ≤ s}

xi otherwise
.

There is ongoing research about reducing the constants c1 and c2 in (2.5.5) and
improving the bound tightness. An example is the result in (2.5.7) and below. In
general, there are three different approaches to derive the aforementioned results, all
depending on the nature of the sensor matrix A: Via the null space property, the
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restricted isometry property or the mutual coherence. Regarding subsequent notation,
Sc = [n] \ S means the complement of a set S ⊂ [n] and vS ∈ R|S| denotes the vector
containing the entries of a vector v ∈ Rn with indexes in S equally ordered.
Definition 2.32 (null space property (NSP)):
Let A ∈ Rm×n, S ⊂ [n] and s ∈ [n]. If

‖vS‖1 < ‖vSc‖1 for all v ∈ N (A) \ {0}
then A is said to have the null space property (NSP) relative to the set S. A is said
to have the null space property of order s if

‖vS‖1 < ‖vSc‖1 for all v ∈ N (A) \ {0} and all S ⊂ [n] with |S| ≤ s .

In practice, signals are rarely sparse but most often close to that and it is sufficient to
recover an s-sparse approximation of the original signal. For handling this situation
a slightly modified version of the NSP ensures stable recovery.
Definition 2.33 (stable null space property):
Let A ∈ Rm×n, S ⊂ [n], s ∈ [n] and 0 < ρ < 1. If

‖vS‖1 < ρ‖vSc‖1 for all v ∈ N (A)

then A is said to have the stable null space property (stable NSP) with constant ρ
relative to the set S. A is said to have the stable null space property of order s with
constant ρ if

‖vS‖1 < ρ‖vSc‖1 for all v ∈ N (A) and all S ⊂ [n] with |S| ≤ s .

In the case of the recovery of an arbitrary s-sparse vector x∗ ∈ Rn by (2.5.3) from
measurements b = Ax∗ ∈ Rm the NSP is both a necessary and sufficient condition
for exact recovery [FR13, section 4.1]. Finding matrices fulfilling the NSP is rather
difficult. An alternative and sufficient condition for guaranteed recovery is the RIP
condition.

Definition 2.34 (restricted isometry constant and property):
Let A ∈ Rm×n and s ∈ [n]. The restricted isometry constant δs = δs(A) of order s is
the smallest δs ≥ 0 such that

(1− δs) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs) ‖x‖22 (2.5.6)

for all s-sparse vectors x ∈ Rn. If δs ∈ [0, 1[ then A satisfies the restricted isometry
property (RIP condition) of order s with constant δs.
Essentially the RIP condition means that every set of s or less columns of the sensor
A behaves approximately like an orthonormal system [CRT06, FR13]. For a matrix
with RIP condition the NSP is satisfied at the same time [CT05]. In this regard, a
notable result is given by Cai [CWX10] stating that the reconstruction error for an
s-sparse signal is bounded by
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‖x− x∗‖2 ≤
η

0.307− δs
(2.5.7)

with x∗ being the optimal solution to (2.5.4) under the condition

δs < 0.307 .

In particular this means perfect recovery without an error z as long as the restricted
isometry property (2.5.6) is fulfilled. If x is not s-sparse then the recovery error is
bounded by

‖x− x∗‖2 ≤
1

0.307− δs
‖x∗maxs=0‖1√

s
+ η

0.307− δs
.

The third approach to derive recovery error bound constants is the mutual coherence.
In general, checking whether a sensor matrix has the NSP or RIP condition requires
lots of combinatorial computation. The mutual coherence is aimed at reducing this
effort to a certain degree.

Definition 2.35 (mutual coherence):
Let A ∈ Rm×n. The mutual coherence of A is the largest absolute inner product

µ(A) = max
1≤i<j≤n

|〈Ai, Aj〉|
‖Ai‖2 ‖Aj‖2

between any two columns Ai and Aj of A.

Roughly speaking, the smaller µ(A), the less sparsity of a signal is required for correct
recovery. On the one hand µ(A) is relatively easy to compute, but on the other hand
it yields larger constants in (2.5.5) compared to derivations using the NSP or the
RIP condition. Good examples that fulfill above conditions with comparably large s
are submatrices of the Vandermonde matrix or Gaussian random matrices which
have optimal properties in this regard [FR13, Chapter 9].

2.5.2 Individual Recovery

The `1-problem (2.5.3) can have multiple solutions of the same sparsity s and
the previous section mentions tool for deriving recovery error bounds. Often an
efficient verification is required which checks whether a given solution is unique. The
uniqueness can be verified with the help of so called dual certificates which can be
derived from the dual problem to (2.5.3).

Theorem 2.36 (dual certificates [FR13, Theorem 4.26.(b)]):
Let x∗ ∈ Rn with Ax∗ = b, S = supp(x∗) ⊂ [n] and s = sign(x∗S). Then

arg min
x

{‖x‖1 | Ax = b} = {x∗}
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if and only if the following two conditions (dual certificates) hold:

1. There exists y ∈ Rm such that A>S y = s and ‖A>Scy‖∞ < 1,

2. AS is injective.

Due to the strict inequality constraint in condition 1 it requires some reformulation
to get a simple linear programming test that can be used together with standard
rank computation for verifying uniqueness of a solution to the `1-problem [KP18,
Theorem 2.3].

2.5.3 Probabilistic Recovery

In practice, the recovery of signals often succeeds even though no guarantee can be
given a priori. While uniform recovery guarantees require very strong assumptions
on the sensor matrix, guaranteeing that an s-sparse solution is most likely unique is
often equally desirable and often succeeds under weaker conditions on the sensor A.
For simplicity, however, the Gaussian case is considered.

In the following, let X ∈ Rn be a Gaussian random vector with independent and
identical standard normally distributed entries, that is X ∼ N (0, In). Further,
Sn−1 := {x ∈ Rn | ‖x‖2 = 1} is the unit spere centered at 0 ∈ Rn and the polar cone
of a cone K is denoted by K◦ :=

{
y ∈ Rn

∣∣∣ y>x ≤ 0 for all x ∈ K
}
.

The recovery guarantees from this section are expressed in terms of two related
measures, the Gaussian width and the statistical dimension.

Definition 2.37 (conic Gaussian width [FR13, Section 9.2]):
The conic Gaussian width of a cone K ⊂ Rn is defined as

ω(K) = E
(

sup
y∈K∩Sn−1

X>y

)
.

Definition 2.38 (statistical dimension [ALMT14, Section 3.1.]):
The statistical dimension of a convex cone K ⊂ Rn is defined as1

δ(K) = E
(
dist2 (X,K◦)

)
where dist(x, S) := infy∈S ‖x− y‖2.
Both the conic Gaussian width and the statistical dimension are approximately equal
as the following theorem shows and can thus be used interchangeable [Tro15].

1The missing subscript distinguishes the statistical dimension from the indicator function (2.4.4).
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Theorem 2.39 (relation between conic Gaussian width and statistical dimension
[ALMT14, Proposition 10.2]):
Let K ⊂ Rn be a convex cone. Then

ω2(K) ≤ δ(K) ≤ ω2(K) + 1 .

Estimating the Gaussian width - or the statistical dimension - of the descent cone
comprising all descent directions will turn out utterly important for signal recovery
guarantees.

Definition 2.40 (descent cone [Tro15, Definition 2.4]):
Let f : Rn → R be a proper convex function. The set

D(f, x) =
⋃
τ>0
{y ∈ Rn | f(x+ τy) ≤ f(x)}

is called the descent cone of the function f at a point x ∈ Rn.

Theorem 2.41 (optimality condition [FR13, Theorem 4.35.]):
Let f : Rn → R be a proper convex function and A ∈ Rm×n. The vector x∗ ∈ Rn is
the unique optimal solution to the convex program

x∗ = arg min
x

{f(x) |Ax = b} (2.5.8)

with measurements b = Ax∗ ∈ Rm if and only if

D(f, x∗) ∩N (A) = {0} (2.5.9)

where N (A) denotes the nullspace of A.

The probability for (2.5.9) can be estimated with respect to the problem size n and
the number of measurements m by utilizing the two measures above. The smaller the
descent cone D(f, x∗), the more unlikely an intersection with the nullspace N (A).

Theorem 2.42 (phase transition for random measurements [ALMT14, Theorem II]):
Fix a tolerance p ∈]0, 1[ and let f : Rn → R be a proper convex function. Further, let
the sensor matrix A ∈ Rm×n have independent standard normal entries and sample
a signal x∗ ∈ Rn so that the measurements are b = Ax∗ ∈ Rm. Then, the signal
recovery via (2.5.8) succeeds with probability at least 1− p if

m ≥ δ(D(f, x∗)) + cp
√
n

and fails with probability at least 1− p if

m ≤ δ(D(f, x∗))− cp
√
n

where cp :=
√

8 log
(

4
p

)
.
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Note that theorem 2.42 does not give a statement about the situation when

m ∈ Tp :=
]
δ(D(f, x∗))− cp

√
n, δ(D(f, x∗)) + cp

√
n
[
.

On average, achieving a successful recovery of the signal turns from unlikely to likely
at m = δ(D(f, x∗)) measurements. This phenomenon is known as phase transition.
The transition zone is Tp, the interval where the shift from failure to success happens.
Outside the transition zone the statement about the recovery success is relatively
secure. Therefore, x∗ can typically be recovered if there are

m ≥ δ(D(f, x∗)) (2.5.10)

measurements available [ALMT14].

Naturally, exact recovery cannot be expected in the case of measurement errors. A
result for the probability of a bounded recovery error is the following.

Theorem 2.43 (recovery from random measurements [Tro15, Corollary 3.5]):
Let x∗ ∈ Rn the desired signal and let the columns of the sensor matrix A ∈ Rm×n be
independent Gaussian random vectors drawn from the standard normal distribution
N (0, In). Further, let the measurements b = Ax+ z ∈ Rm be afflicted with an error
z with ‖z‖2 ≤ η and let xη be any solution the problem

min
x
{f(x) | ‖Ax− b‖2 ≤ η} .

Then it holds for the recovery error

P
(
‖x− x∗‖2 ≤

2η(√
m− 1− ω(D(f, x∗))− t)+

)
≤ 1− e− t

2
2

with (·)+ := max{0, ·}.

Theorem 2.43 provides stable recovery for x∗ if the number of measurements m is
lower bounded by

m ≥ ω2 (D(f, x∗)) + c ω (D(f, x∗)) (2.5.11)

with a constant c > 0 [Tro15].

In general it is impossible to calculate the Gaussian width or statistical dimension
exactly. However, upper bounds can be derived which are sufficient for the estimation
of probabilistic recovery guarantees in terms of (2.5.10) and (2.5.11). Those bounds
utilize the subdifferential (definition 2.28).

Theorem 2.44 (upper bound for the Gaussian width and statistical dimension of a
descent cone [ALMT14, Proposition 4.1][Tro15, Proposition 4.5]):
Let f : Rn → R be a proper convex function and x ∈ Rn. Assume that the
subdifferential ∂f(x) is nonempty, compact and does not contain the origin. The

31



2 Preliminaries

Gaussian width and the statistical dimension, respectively, are upper bounded by

ω2 (D(f, x)) ≤ inf
τ≥0

J(τ) and δ (D(f, x)) ≤ inf
τ≥0

J(τ)

where
J(τ) := J(τ, ∂f(x)) := E

(
dist2 (X, τ∂f(x))

)
for τ ≥ 0.

The function J is strictly convex, continuous at τ = 0, differentiable for τ ≥ 0 and
thus achieves its minimum at a unique point.

2.5.3.1 Statistical Dimension Bound Estimations

When recovering an s-sparse signal x∗ via (2.5.8), equation (2.5.10) gives a lower
bound on the required number of measurements m for a likely success, which is in
turn upper bounded by theorem 2.44. In particular, the aim is to recover an s-sparse
and nonnegative signal or an s-sparse and binary signal. Hence, in this section the
upper bound infτ≥0 J(τ) is derived for the corresponding relaxed convex models that
are the `1-recovery with nonnegative constraints

x∗ = arg min
x

{‖x‖1 |Ax = b, x ≥ 0} (2.5.12)

and with box constraints

x∗ = arg min
x

{‖x‖1 |Ax = b, x ∈ [0, 1]n} . (2.5.13)

`1-Recovery of Nonnegative s-Sparse Signals

With the help of the indicator function (2.4.4) problem (2.5.12) can be reformulated
as

x∗ = arg min
x

{
‖x‖1 + δRn+(x)

∣∣∣Ax = b
}

in order to agree with (2.5.8) so that f(x) := ‖x‖1 +δRn+(x). The first step is to derive
∂f(x) where the subdifferential sum rule applies [Roc97, Theorem 23.8.] leading to

∂f(x) = ∂
(
‖ · ‖1 + δRn+

)
(x) = ∂‖ · ‖1(x) + ∂δRn+(x) .

Each component of ∂‖ · ‖1 equals the subdifferential of the absolute value, i.e.

(∂‖ · ‖1(x))i = ∂| · |(x) =

 sign(x) if x 6= 0
[−1, 1] if x = 0

with the sign function

sign(x) :=


−1 if x < 0
0 if x = 0
1 if x > 0

.
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Applying the sign function componentwise to xS leads to

∂‖ · ‖1(x) = {y ∈ Rn | yS = sign(xS), ‖ySc‖∞ ≤ 1}

and since x∗ is assumed to be positive, it is sufficient to consider

∂‖ · ‖1(x∗) =
{
y ∈ Rn

∣∣∣ yS = 1|S|, ‖ySc‖∞ ≤ 1
}

=
{
y ∈ Rn

∣∣∣ yS = 1|S|, ySc ∈ [−1, 1]|Sc|
}

.
(2.5.14)

Because of (2.4.3) every component of ∂δRn+(x∗) equals

(∂δRn+(x∗))i = NR+(x∗i ) =

 0 if x∗ > 0
]−∞, 0] if x∗ = 0

so that

∂δRn+(x∗) = {0}|S| × R|Sc|− = {y ∈ Rn | yS = 0, ySc ≤ 0} . (2.5.15)

Summing the two subdifferentials (2.5.14) and (2.5.15) yields

∂f(x∗) = ∂‖ · ‖1(x∗) + ∂δRn+(x∗) =
{
y ∈ Rn

∣∣∣ yS = 1|S|, ySc ≤ 1|Sc|
}

and its scaled version

τ∂f(x∗) =
{
y ∈ Rn

∣∣∣ yS = τ1|S|, ySc ≤ τ1|Sc|
}

.

Further it holds

dist2(X, τ∂f(x∗)) = inf
y

{
‖X − y‖22

∣∣∣ y ∈ τ∂f(x∗)
}

=
∥∥∥X −Πτ∂f(x∗)(X)

∥∥∥2

2
(2.5.16)

where every component of the projection is

(
Πτ∂f(x∗)(X)

)
i

=


τ if i ∈ S
Xi if i ∈ Sc, Xi ≤ τ
τ if i ∈ Sc, Xi > τ

so that

(
X −Πτ∂f(x∗)(X)

)
i

=


Xi − τ if i ∈ S
0 if i ∈ Sc, Xi ≤ τ
Xi − τ if i ∈ Sc, Xi > τ

=

 Xi − τ if i ∈ S
max{Xi − τ, 0} if i ∈ Sc

are the entries of the difference. Now, it is possible to compute the expected squared
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Euclidean distance of a normal vector to the scaled subdifferential of theorem 2.44 as

Js(τ) = E
(
dist2 (X, τ∂f(x∗))

)
= E

(∑
i∈S

(Xi − τ)2 +
∑
i∈Sc

max{Xi − τ, 0}2
)

=
∑
i∈S

E
(
(Xi − τ)2

)
+
∑
i∈Sc

E
(
max{Xi − τ, 0}2

)
=
∑
i∈S

1√
2π

∫ ∞
−∞

(xi − τ)2e−
x2
i

2 dxi +
∑
i∈Sc

1√
2π

∫ ∞
τ

(xi − τ)2e−
x2
i

2 dxi

= s√
2π

∫ ∞
−∞

(x− τ)2e−
x2
2 dx+ n− s√

2π

∫ ∞
τ

(x− τ)2e−
x2
2 dx

= s(1 + τ2) + n− s√
2π

∫ ∞
τ

(x− τ)2e−
x2
2 dx .

(2.5.17)

In order to apply theorem 2.44 the infimum infτ≥0 Js(τ) is required. However, this
cannot be computed explicitly but it is possible to derive an upper bound. In this
regard, integration by parts gives∫ ∞

τ
(x− τ)2e−

x2
2 dx =

∫ ∞
τ

(x2 − 2xτ + τ2)e−
x2
2 dx

=−
∫ ∞
τ

x

(
−xe−x

2
2

)
dx+ 2τ

∫ ∞
τ
−xe−x

2
2 dx+ τ2

∫ ∞
τ

e−
x2
2 dx

=−
([
xe−

x2
2

]∞
τ
−
∫ ∞
τ

e−
x2
2 dx

)
+ 2τ

[
e−

x2
2

]∞
τ

+ τ2
∫ ∞
τ

e−
x2
2 dx

=− τe− τ
2

2 + (1 + τ2)
∫ ∞
τ

e−
x2
2 dx

(2.5.18)

yielding

Js(τ) = s(1 + τ2) + n− s√
2π

(
−τe− τ

2
2 + (1 + τ2)

∫ ∞
τ

e−
x2
2 dx

)

= s(1 + τ2)− τ(n− s)√
2π

e−
τ2
2 + (n− s)(1 + τ2)√

2π

∫ ∞
τ

e
−
(

x√
2

)2

dx

= s(1 + τ2)− τ(n− s)√
2π

e−
τ2
2 + (n− s)(1 + τ2)

2
2√
π

∫ ∞
τ√
2

e−u
2 du︸ ︷︷ ︸

=erfc
(

τ√
2

)
(2.5.19)

after insertion into (2.5.17) and substitution in the integral by u := x√
2 and, con-

sequently, dx =
√

2 du. The last integral can be expressed in terms of the comple-
mentary error function erfc

(
τ√
2

)
= 1− erf

(
τ√
2

)
commonly available in numerical

software so that infτ≥0 Js(τ) can be computed easily. Moreover, the Gaussian upper

34



2.5 Compressed Sensing

0 0.02 0.04 0.06 0.08 0.1
0

0.1
0.2
0.3
0.4
0.5
0.6

s
n

m
n

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1
1.2

s
n

m
n

infτ>0 Js(τ)
upper bound of Js(τ)

Figure 2.3 - Exact upper bound infτ≥0 Js(τ) of the Gaussian width and statistical dimension
(2.5.19) together with the estimate of an upper bound according to (2.5.20) for the `1-recovery
of nonnegative s-sparse signals. If the relative undersampling ration m

n lies on the continuous
curve or above then recovery from Gaussian measurements of an s-sparse nonnegative signal is
guaranteed.

tail bound [FR13, Lemma C.7.] allows to estimate

Js(τ) ≤ s(1 + τ2) + n− s√
2π

(
−τe− τ

2
2 + 1 + τ2

τ
e−

τ2
2

)

= s(1 + τ2) + n− s
τ
√

2π
e−

τ2
2 .

Even tough theorem 2.44 requires a compact subdifferential which is not the case here,
[KP18] show that it still holds. By exploiting the fact that δ (D(f, x∗)) ≤ infτ≥0 J(τ)
in theorem 2.44 implies δ (D(f, x∗)) ≤ J(τ) for all τ ≥ 0, the value of τ can be chosen
arbitrarily. Here, a bound with respect to the relative sparsity n

s is desired justifying
the choice τ =

√
2 log

(
n
s

)
. Thus,

δ (D(f, x∗)) ≤ s
(

1 + 2 log
(
n

s

))
+ n− s

2
√
π
√

log
(
n
s

) sn
= s

(
1 + 2 log

(
n

s

))
+ s

1− s
n

2
√
π log

(
n
s

)
and by (2.5.10) and since 1− s

n

2
√
π log(ns ) ≤ 0.1801 for 0 ≤ s ≤ n, the recovery via (2.5.12)

is likely to succeed if there are

m ≥ 2s log
(
n

s

)
+ 1.1801 s (2.5.20)

measurements available. Both infτ≥0 Js(τ) and the upper bound (2.5.20) of Js(τ)
are illustrated in figure 2.3.
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`1-Recovery of Binary s-Sparse Signals

In the case of binary constraints on the signal entries it is appropriate to consider
the convex relaxation

x∗ = arg min
x

{‖x‖1 |Ax = b, x ∈ [0, 1]n}

for recovering a binary signal x∗ ∈ {0, 1}n. The derivation is analogous to the positive
case. It starts with the derivation of the subdifferential

∂f(x∗) = ∂‖ · ‖1(x∗) + ∂δ[0,1]n(x∗) .

The first term is already given by (2.5.14) whereas each component of the second
term equals

(∂δ[0,1]n(x∗))i = N[0,1](x∗i ) =


0 if x∗ ∈]0, 1[
]−∞, 0] if x∗ = 0
[0,∞[ if x∗ = 1

.

Consequently,

∂δ[0,1]n(x∗) = R|S|+ × R|Sc|− = {y ∈ Rn | yS ≥ 0, ySc ≤ 0} (2.5.21)

and summing the two subdifferentials (2.5.14) and (2.5.21) yields

∂f(x∗) = ∂‖ · ‖1(x∗) + ∂δ[0,1]n(x∗) =
{
y ∈ Rn

∣∣∣ yS ≥ 1|S|, ySc ≤ 1|Sc|
}

and the corresponding scaled version

τ∂f(x∗) =
{
y ∈ Rn

∣∣∣ yS ≥ τ1|S|, ySc ≤ τ1|Sc|} .

In contrast to the projection (2.5.16) of X onto τ∂f(x∗) of the positive case this
results in an additional case for each component of the difference

(
X −Πτ∂f(x∗)(X)

)
i

=


0 if i ∈ S,Xi ≥ 0
τ −Xi if i ∈ S,Xi < 0
0 if i ∈ Sc, Xi ≤ τ
Xi − τ if i ∈ Sc, Xi > τ


=

 max{τ −Xi, 0} if i ∈ S
max{Xi − τ, 0} if i ∈ Sc

so that
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Js(τ) = E
(∑
i∈S

max{τ −Xi, 0}2 +
∑
i∈Sc

max{Xi − τ, 0}2
)

=
∑
i∈S

E
(
max{τ −Xi, 0}2

)
+
∑
i∈Sc

E
(
max{Xi − τ, 0}2

)
=
∑
i∈S

1√
2π

∫ τ

−∞
(xi − τ)2e−

x2
i

2 dxi +
∑
i∈Sc

1√
2π

∫ ∞
τ

(xi − τ)2e−
x2
i

2 dxi

= s√
2π

∫ τ

−∞
(x− τ)2e−

x2
2 dx+ n− s√

2π

∫ ∞
τ

(x− τ)2e−
x2
2 dx .

(2.5.22)

At this point it can already be seen that infτ≥0 Js(τ) ≤ n
2 since Xi ∼ N (0, 1) and

inserting τ = 0 yields

Js(0) = s√
2π

∫ 0

−∞
x2e−

x2
2 dx+ n− s√

2π

∫ ∞
0

x2e−
x2
2 dx = s

2 + n− s
2 = n

2 . (2.5.23)

Further reformulation of (2.5.22) leads to

Js(τ) = s√
2π

∫ ∞
−∞

(x− τ)2e−
x2
2 dx+ n− 2s√

2π

∫ ∞
τ

(x− τ)2e−
x2
2 dx

= s(1 + τ2) + n− 2s√
2π

∫ ∞
τ

(x− τ)2e−
x2
2 dx

(2.5.18)= s(1 + τ2) + n− 2s√
2π

(
−τe− τ

2
2 + (1 + τ2)

∫ ∞
τ

e−
x2
2 dx

)

= s(1 + τ2)− τ(n− 2s)√
2π

e−
τ2
2 + (n− 2s)(1 + τ2)√

2π

∫ ∞
τ

e
−
(

x√
2

)2

dx

= s(1 + τ2)− τ(n− 2s)√
2π

e−
τ2
2 + (n− 2s)(1 + τ2)

2
2√
π

∫ ∞
τ√
2

e−u
2 du︸ ︷︷ ︸

=erfc
(

τ√
2

)
.

(2.5.24)

Again, Js(τ) can be estimated with the help of the Gaussian upper tail bound [FR13,
Lemma C.7.] as

Js(τ) ≤ s(1 + τ2) + n− 2s√
2π

(
−τe− τ

2
2 + 1 + τ2

τ
e−

τ2
2

)

= s(1 + τ2) + n− 2s
τ
√

2π
e−

τ2
2
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Figure 2.4 - Exact upper bound infτ≥0 Js(τ) of the Gaussian width and statistical dimension
(2.5.24) together with the estimate of an upper bound according to (2.5.25) for the relaxed
`1-recovery of binary s-sparse signals. If the relative undersampling ration m

n lies on the continuous
curve or above then recovery from Gaussian measurements of an s-sparse binary signal is
guaranteed. In this case there are never more than m

n = 0.5 measurements required to achieve
perfect recovery for any sparsity s.

and similarly choosing τ =
√

2 log
(
n
s

)
yields

δ (D(f, x∗)) ≤ s
(

1 + 2 log
(
n

s

))
+ n− 2s

2
√
π
√

log
(
n
s

) sn
= s

(
1 + 2 log

(
n

s

))
+ s

1
2 − s

n√
π log

(
n
s

)
Estimating

1
2−

s
n√

π log(ns ) ≤ 0.1492 for 0 ≤ s ≤ n leads to a tighter bound for small

sparsity s than (2.5.23) so that the lower bound of measurements for a likely recovery
via (2.5.13) is given by

m ≥ min
{

2s log
(
n

s

)
+ 1.1492 s, n2

}
. (2.5.25)

The exact value infτ≥0 Js(τ) and its upper bound (2.5.25) of Js(τ) are illustrated
in figure 2.4. In this case a binary signal can always be recovered from Gaussian
measurements if m ≥ n

2 .

2.5.4 Nonstandard Tomography and Compressed Sensing

The pillars of the classical CS theory are sparsity of the signal in some basis or after
a transformation and nonadaptive random measurements. The later does not apply
to tomographic sensing since other kinds of sensors are used. Those are introduced in
section 2.5.4.1 and allow to reduce the dimension of the sensing system as described
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in section 2.5.4.2. However, tomographic sensors of this kind do not confirm with the
classical CS theory, but the interpretation as expander graphs presented in section
2.5.4.3 and further results in section 2.5.4.4 helps to close the gap.

2.5.4.1 Tomographic Sensors

In tomography the main concern is to reconstruct a d-dimensional volume from
projections of dimension d− 1. In general, the volume is subdivided into cells by a
regular grid. Given the projections as measurements, the aim of a tomographic recon-
struction is to compute a single value for each cell representing a physical property,
e.g. substance density. In Tomo-PIV (chapter 1), for example, these projections are
images recorded by a few cameras arranged around a volume of interest.

Speaking in terms of compressed sensing these images are the observations arranged
in vector b and the desired cell values of the volume are represented by the signal x.
The sensor A comprises the experimental setup, i.e. contains the information about
the formation process of every single image pixel being captured. Each entry of
a tomographic projection matrices typically equals the length of the intersection
segment of each projection ray with each pixel.

For simplicity binary matrices are considered below that arise by certain geometries,
e.g. orthogonal projecting directions as shown in figure 2.5 for dimension D = 3.
Such sensors have the form

ADd :=



1
>
d ⊗ IdD−1

Id ⊗ 1>d ⊗ IdD−2

...
Idi−1 ⊗ 1>d ⊗ IdD−i

...
IdD−2 ⊗ 1>d ⊗ Id
IdD−1 ⊗ 1>d


∈ {0, 1}DdD−1×dD = {0, 1}m×n (2.5.26)

where ⊗ denotes the Kronecker product, which are capable of acquiring measu-
rements from a D-dimensional volume discretized into a grid with side length d.
In this geometric interpretation of the sensor, the samples are obtained from D

orthogonal projections onto (D− 1)-dimensional grids having side length d and being
parallel to the grid axes of the D-volume. If one of the m = DdD−1 projection rays
intersects one of the n = dD voxels the corresponding entry in ADd is 1 and otherwise 0.

In these tomographic scenarios signals and sensor matrices are commonly nonnegative
leading to the recovery problem

x̂ = arg min
x

{‖x‖1 | Ax = b, x ≥ 0} (2.5.27)

with Ai,j ≥ 0 and bi ≥ 0.
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volume x̂ ∈ R43

projection ∈ R42
projection ∈ R42

projection ∈ R42

Figure 2.5 - Illustration of a d× d× d volume measured by the sensor ADd ∈ {0, 1}Dd
D−1×dD

with D = 3 and d = 4 in (2.5.26). The projections are concatenated forming the observations
b ∈ RDdD−1 . Ai,j = 1 if the j-th ray is incident to the i-th voxel, otherwise Ai,j = 0. This results
in observation bj being the sum of voxels incident to the corresponding ray so that Ax̂ = b.

2.5.4.2 Reduced Systems

A solution to a recovery problem known to be nonnegative in combination with a
sensor matrix A without negative entries is a huge advantage. On the one hand
it simplifies the investigation of recovery guarantees, and on the other hand it can
help to reduce computational costs, significantly. It is natural when looking at the
equation system Ax = b with A ∈ Rm×n+ , x ∈ Rn+ and b ∈ Rm+ that, if there is a
zero observation bi = 0, all signal entries that lead as part to this observation must
consequently be zero, as well. Formally, it is known a priori that

xj = 0 for all j ∈ J := {j | Ai,j > 0, i ∈ I} with I := {i | bi = 0} .
(2.5.28)

Let Ic := [m] \ I and Jc := [n] \ J be the set complements. The recovery is then
executed for the remaining entries of the signal x by removing redundant rows and
columns from the system. What remains is the reduced system.

Definition 2.45 (reduced system):
The reduced system of the equation system Ax = b with A ∈ Rm×n+ , x ∈ Rn+ and
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b ∈ Rm+ is

Aredxred = bred with Ared ∈ Rmred×nred
+ , xred ∈ Rnred

+ , bred ∈ Rmred
+ ,

mred = |Ic| = |{i | bi > 0}| and
nred = |Jc| = |{j | Ai,j = 0, i ∈ I}|

where Ared is composed of the rows and columns of A which indexes are in Ic and
Jc, respectively, ordered the same as in A. Correspondingly, this applies to bred, too.

Obviously, the solution to the original system Ax = b is given by xJc = xred while
all other entries are zero, xJ = 0.

When observing sparse signals, the size of the reduced system is usually much smaller
compared to the original one leading to only fractions of computational recovery
costs. In addition, this a priori knowledge of zero signal entries helps analyzing the
recovery guarantee. If the reduced system is overdetermined, i.e. mred ≥ nred, and
full rank, the original signal can be recovered perfectly. For adjacency matrices these
condition can be guaranteed under mild assumptions [PS14].

2.5.4.3 Unbalanced Expander Graphs

Unfortunately, the tomographic sensors described in section 2.5.4.1 do not satisfy
the usual CS conditions like the NSP (definition 2.32) and the RIP condition (defini-
tion 2.34) and standard results can not be applied [PS09, PS14]. For few tomographic
projections and high sparsity that is the highly underdetermined case [PS14] provides
provable guarantees. Therefore, sensor matrices implying orthogonal projections are
interpreted as adjacency matrices of unbalanced expander graphs that are the topic
of this section.

Definition 2.46 ((ν, δ)-unbalanced expander graph [FR13, Chapter 13]):
A (ν, δ)-unbalanced expander graph is a bipartite simple graph G = (L,R;E) having
constant left degree ` such that for any X ⊆ L with |X| ≤ ν, the set of neighbors of
X denoted by N (X) has δ`|X| or more elements and N (X) ⊆ R.

Thus, an adjacency matrix A ∈ {0, 1}m×n for an unbalanced expander graph is
binary (as for any graph) and has ` nonzero entries in each column. Related to
a recovery problem Ax = b it is enough to just consider a subgraph depending
on the given observations b. The corresponding right nodes of the subgraph are
denoted by Rb := supp(b) ⊆ R. Consequently, those left nodes which are neighbors
of zero observations can be disregarded so that the left nodes of the subgraph are
Lb := L \ N (Rcb). The resulting subgraph perfectly corresponds to the matrix Ared
of the reduced system which means mred = |Rb| and nred = |Lb|.

41



2 Preliminaries

For specific unbalanced expander graphs and sufficient sparse signals the following
theorem originating from [WXT11] holds.

Theorem 2.47 (solution set for given sparsity [PS14, Theorem 3.1.]):
Let A be the adjacency matrix of a (ν, δ)-unbalanced expander graph with
1 ≥ δ >

√
5−1
2 ≈ 0.618. Then for any s-sparse nonnegative vector x∗ with s ≤ ν

1+δ ,
the solution set {x | Ax = Ax∗, x ≥ 0} is a singleton.

Roughly speaking, this means that the diversity of the neighbors of the left node
must be sufficiently high. The conditions on matrix A required by theorem 2.47 are
generally met by tomographic sensors. Besides the sparsity, theorem 2.47 does not
take the given observations into account, however, this is done by the next theorem.

Theorem 2.48 (solution set for given observations [PS14, Theorem 3.5.]):
Let A be the adjacency matrix of a (ν, δ)-unbalanced expander graph G = (L,R;E)
and let X ⊂ L be a random subset of left nodes with Rb = N (X). If

|N (Y )| ≥ δ`|Y | with δ =
√

5− 1
2 for any Y ⊂ Lb ,

then the solution set {x | Aredx = Aredx
∗, x ≥ 0} is a singleton for any |Lb|1+δ -sparse

nonnegative vector x∗.

In particular, that means if |X| ≤ |Lb|
1+δ for X ⊂ Lb then a recovery supported on

X is successful. Furthermore, theorem 2.48 guarantees that the adjacency matrix
satisfying the condition |N (Y )| ≥ δ`|Y | has full rank. There was nothing said about
general recovery on Rn, yet. The following theorem is a combination of the two
theorems 2.47 and 2.48 and does exactly that for the specific case D = 3.

Theorem 2.49 (recovery with high probability for D = 3 [PS14, Proposition 5.9.]):
Let D = 3 and let A be a sensor matrix of the form (2.5.26). If

s ≤ NL(sδ)
1 + δ

= NR(sδ)
`

where sδ solves NR(sδ) = `δNL(sδ)

then the system Ax = b admits unique recovery of s-sparse nonnegative vectors x
with high probability. Here, δ =

√
5−1
2 ,

NR(s) := DdD−1
(

1−
(

1− 1
dD−1

)s)
(2.5.29)

and

NL(s) := d3
(

1− 3
(

1− 1
d2

)s
+ 3

(
1− 2d− 1

d3

)s
−
(

1− 3d− 2
d3

)s)
. (2.5.30)

The knowledge of the solution to a recovery problem being unique makes the search
for a solution with special properties obsolete. It is not necessary any more to
compute the sparsest solution via `0/`1-minimization. Instead it is sufficient to
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search for any solution by minimize the distance

arg min
x

{‖Ax− b‖ | x ≥ 0} (2.5.31)

in some norm or to solve Aredx = bred directly in the case of no involved errors.

2.5.4.4 Perturbed Expander

By Perturbation the full rank of a reduced system can be ensured and it helps to
improve the results from the previous section, significantly.
Definition 2.50 (perturbed matrix):
Let A be a matrix. A perturbed matrix Ã of A is obtained by first generating a
non-normalized perturbed sensor ˜̃A from A as

˜̃Ai,j :=

Ai,j + εi,j if Ai,j 6= 0
Ai,j if Ai,j = 0

where εi,j ∈ [−ε, ε] is uniformly random with a small 0 < ε < mini,j {Ai,j | Ai,j > 0}.
The perturbed matrix Ã is gained by normalizing the columns of ˜̃A so that they sum
up to the same constant (e.g. D).
That means a perturbed matrix Ã has the same structure as A that is its sparsity
and the constant left degree ` of the corresponding expander graph are preserved. A
more strict rank definition plays a central role in this approach.
Definition 2.51 (complete (Kruskal) rank):
The complete (Kruskal) rank r0 = r0(A) of a matrix A is the maximum integer r0
such that every subset of columns of A having size r0 is linearly independent.
The complete rank of a perturbed sensor matrix and the corresponding recovery
performance can be improved by investigating the connection to specific properties
of the related expander graph. The basis is formed by the next lemma.
Lemma 2.52 (existence of perturbed matrix and complete rank [PS14, Lemma 3.3.]):
Let A be a nonnegative matrix with ` nonzero entries in each column. If for any
submatrix formed by r̃0 columns of A holds |N (X)| ≥ |X| for each subset X ⊂ L

of columns with |L| ≤ r̃0, then there exists a perturbed matrix Ã with the same
structure as A so that its complete rank satisfies r0(Ã) ≥ r̃0.
This can be adapted to the previously considered scenario.
Theorem 2.53 (solution set for the perturbed case [PS14, Theorem 3.6.]):
Let A be the adjacency matrix of a (ν, δ)-unbalanced expander graph G = (L,R;E)
and let X ⊂ L be a random subset of left nodes with Rb = N (X). If

|N (Y )| ≥ |Y | for any Y ⊂ Lb ,

then there exists a perturbation Ãred of Ared such that the solution set
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{
x
∣∣∣ Ãredx = Ãredx

∗, x ≥ 0
}
is a singleton for any |Lb|-sparse nonnegative vector x∗.

Theorem 2.53 is the equivalent of theorem 2.48 for the perturbed case. Again, the
above results can be combined to a statement about the recovery in the specific case
D = 3.

Theorem 2.54 (recovery for the perturbed case, D = 3 [PS14, Proposition 5.10.]):
Let D = 3 and let A be a sensor matrix of the form (2.5.26). If

s ≤ scrit where scrit solves NR(scrit) = NL(scrit)

whereNR andNL are given by (2.5.29) and (2.5.30) then the perturbed system Ãx = b̃

admits unique recovery of s-sparse nonnegative vectors x with high probability.

Taking a look back at theorem 2.49, theorem 2.54 shows that perturbation improves
the recovery performance of a system, significantly. Further results [PS14, Proposi-
tions 5.2. and 5.8.] prove that the dimensions of the reduced system concentrates
on their expected values. Thus, the size of the reduced system does not deviate for
given sparsity.

2.6 Motion Estimation by Optimal Transport

Motion estimation is a term of wide comprehension, typically used in connection
with velocity estimation or object tracking. This section specifically concerns the
displacement estimation of density distributions over a period of time. Such pro-
blems of mass transport at minimal costs belong to the research area called optimal
transport [Vil03, Vil08]. The majority of approaches only considers two subsequent
points in time and calculates a motion between those two. The same procedure can
be repeated for each pair of subsequent time points yielding time dependent motion
information.

The optimal transport problem was introduced by Monge in 1781 in terms of two
measures supported on RD. The measure η1 is supposed to be transported to η2 by
a mapping T : RD → RD called transport plan which is optimal in the sense that it
solves

inf
T

{∫
RD

c(x, T (x)) dη1(x)
∣∣∣∣ T#η1 = η2

}
. (2.6.1)

Here T is assumed to be η1-measurable and # is the push-forward operator for
measures. The η1 ⊗ η2-measurable cost function c : RD × RD → R+ determines
the cost of transporting mass from x to T (x). Solving the Monge problem (2.6.1)
over all 1-to-1 mappings as feasible set constitutes a highly nonlinear problem, that
is difficult to analyze and to implement numerically. Therefore, one commonly
resorts to a convex relaxation, introduced by Kantorovich [Kan58] and known as
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Monge-Kantorovich problem, which reads

inf
η

{∫
RD×RD

c(x, y) dη(x, y)
∣∣∣∣ η ∈M(η1, η2)

}
(2.6.2)

whereM is the set of probability measures on RD ×RD with marginal distributions
η1 and η2, that is∫

RD
η(x, y)dy = η1(x) for (almost) all x ∈ RD and∫

RD
η(x, y)dx = η2(y) for (almost) all y ∈ RD .

(2.6.3)

The following sections present different approaches for solving either problem (2.6.1)
or (2.6.2), numerically.

2.6.1 Discrete Optimal Transport

Discrete optimal transport concerns the optimal transport of discrete measures of
the form

η1 =
n∑
i=1

δxi and η2 =
n∑
j=1

δyj ,

where δx is the Dirac measure located at x ∈ RD. That means the support of the
measures η1 and η2 are composed of n points xi ∈ Rd for i ∈ [n] and yj ∈ RD for
j ∈ [n], respectively, which all have the same unit mass 1.

Of particular interest is the scenario where the points are located on a D-dimensional
regular grid with grid positions indexed by xi, yj ∈ RD. With the help of a permuta-
tion p ∈ Sn, both the continuous coupling measure η and transport mapping T can
be represented by a permutation matrix P ∈ Pn (section 2.3) with

Pi,j =

1 if j = p(i)
0 otherwise

and P (xi) = yp(i). This leads to an 1-to-1 assignment between grid points which has
to be determined.

The cost function c is realized by a cost matrix Cn ∈ Rn×n+ with (Cn)i,j = c(xi, yj)
for all i, j ∈ [n]. Then, the permutation matrix Pn is the solution of the optimization
problem

min
P∈Pn

tr
(
C>n P

)
=

n∑
i=1

n∑
j=1

c(xi, yj)Pi,j . (2.6.4)

This is a non-convex NP-hard problem, but the binary constraints P ∈ {0, 1}n×n
of the feasible set P can be relaxed to the Birkhoff polytope of doubly stochastic
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matrices
Bn :=

{
P ∈ Rn×n+ : P1 = 1, P>1 = 1

}
,

which is also known as assignment polytope. The well-known Birkhoff-von-Neumann
theorem [KV08, Corollary 11.3] states that the assignment polytope is the convex
hull of all assignments and thus the vertices of the assignment polytope correspond
uniquely to permutation matrices. Consequently, the solution of the linear program

min
P∈Bn

tr
(
C>n P

)
(2.6.5)

is binary and a solution to the discrete problem (2.6.4). In a broader sense (2.6.5) is
a discrete version of (2.6.2) enabling the determination of the transport mapping T
by means of the permutation matrix P . Further details can be found in [Vil03, Vil08]
and [FPPA14].

2.6.2 The fluid mechanics framework of Benamou and Brenier

Benamou and Brenier [BB00] study the Monge-Kantorovich problem (2.6.2) together
with further constraints in order to connect optimal transport and physically valid
flows. First, the variational approach is sketched followed by studying algorithmic
realizations using convex analysis.

2.6.2.1 Variational Approach

The available data is given in the form of intensity fields, mass fields or, respectively,
images U0(x) ≥ 0 and UT (x) ≥ 0 with U0, UT : RD → R+

0 for the first and second
point in time 0 and T . A first assumption is that a mass preserving mapping
M : RD → RD transports the mass from U0 to UT , i.e.∫

M(x)∈S
U0(x) dx =

∫
x∈S

UT (x) dx

for all bounded subsets S ⊆ RD. This constraint is analogous to the constraint
(2.6.3) of the Monge-Kantorovich problem (2.6.2) where η1 corresponds to U0 and
η2 to UT . If such a mass preserving mapping M minimizes the so called Wasserstein
distance

W (U0, UT ) :=
√

inf
M

∫
RD
‖M(x)− x‖22U0(x) dx (2.6.6)

it realizes an optimal transport plan from U0 to UT and forms a solution to the Monge-
Kantorovich problem in the sense that W 2(U0, UT ) is equal to the infimum (2.6.2).

Benamou and Brenier studied time-variant realizations of the mass preserving map-
ping M(x) in terms of a velocity field v(t, x) : RD → RD, 0 ≤ t ≤ T that transports
the underlying domain in a physically plausible way. Specifically, they considered
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the continuity equation
∂tu+∇x · (uv) = 0 (2.6.7)

with the boundary conditions

u(0, x) = U0(x) and u(T, x) = UT (x) ∀ x ∈ RD . (2.6.8)

This introduces an additional time dependency of the density function u(t, x) ≥ 0
with 0 ≤ t ≤ T .

The most important result proven by Benamou and Brenier is the equation

(
W (U0, UT )

)2
= T inf

u,v

{∫
RD

∫ T

0
u(t, x)‖v(t, x)‖22 dtdx

∣∣∣∣∣ (2.6.7) and (2.6.8) hold
}

(2.6.9)
converting the problem from the evaluation of the Wasserstein distance (2.6.6) into a
continuum mechanics formulation with physical constraints and boundary conditions
[BB00, Proposition 1.1]. It is the basis of the next section.

2.6.2.2 Dynamic Optimal Transport by Convex Programming

The computational domain is chosen to be periodic, that is X := RD/ZD. In order
to obtain a formulation suitable for the application of algorithms, Benamou and
Brenier introduce the momentum w(t, x) := u(t, x)v(t, x) and reformulate (2.6.9) as
a (generalized2) saddle-point problem (2.4.1) with Lagrangian multipliers φ(t, x),
that is

inf
u,v

sup
φ

L(u, v, φ) (2.6.10)

with Lagrangian

L(u, v, φ) :=
∫
X

∫ T

0

1
2u‖v‖

2 dt dx+
∫
X

∫ T

0
φ (∂tu+∇x · (uv)) dt dx (2.6.11)

where the factor T is replaced by 1
2 for later convenience.

With the help of Green’s first identity for two scalar functions f and g on RD∫
X
∇g · ∇f + g∇2f dx =

∮
∂X

g(∇f · −→n ) ds (2.6.12)

2The initial problem is formulated in a continuous space, so that an extension to the ordinary
saddle point problem as described in chapter 2.4 is necessary, cf. [Roc97, Section 29]. Since the
problem is discretized later on anyway and the principle of Lagrangian functions and multipliers
is the same, the introduction to generalized saddle point problems is omitted.
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and the Hamilton-Jacobi equation

∂tφ+ ‖∇φ‖
2

2 = 0 with v = ∇xφ

⇔ ∂tφ+ ‖w‖
2

2u = 0 with w = u∇xφ
(2.6.13)

which is an optimality condition following from (2.6.9), the Lagrangian (2.6.11)
can be reformulated. By defining ∇g := v and ∇f := w and the assumption of
homogeneous Neumann boundary conditions in space, i.e. ∇xφ · −→n = 0, insertion of
(2.6.13) into (2.6.12) yields∫

X
(∇xφ) · w + φ(∇x · w) dx =

∮
∂X

φ(u∇xφ · −→n︸ ︷︷ ︸
=0

) ds

⇔
∫
X
φ(∇x · w) dx =−

∫
X

(∇xφ) · w dx .
(2.6.14)

Thus, the Lagrangian (2.6.11) can be expressed as

L(u, v, φ) =
∫
X

∫ T

0

‖w‖2
2u dt dx+

∫
X

∫ T

0
φ (∇x · w) dt dx+

∫
X

∫ T

0
φ (∂tu) dtdx

(2.6.14)=
∫
X

∫ T

0

‖w‖2
2u dtdx−

∫
X

∫ T

0
(∇xφ) · w dt dx+

∫
X

∫ T

0
φ (∂tu) dt dx

=
∫
X

∫ T

0

‖w‖2
2u − (∇xφ) · w dtdx+

∫
X

(
[φu]T0 −

∫ T

0
(∂tφ) u dt

)
dx

=
∫
X

∫ T

0

‖w‖2
2u − (∂tφ)u− (∇xφ) · w dt dx−

∫
X
φ(0, x)U0 − φ(T, x)UT dx

and it can be further transformed as follows in order to apply convex programming.

Consider the indicator function

δK(x) =
{

0 if x ∈ K
∞ if x /∈ K

of the convex set

K :=
{[
α(t, x)
β(t, x)

]
: R× RD → R× RD

∣∣∣∣∣ α+ ‖β‖
2

2 ≤ 0 ∀ t, x
}

, (2.6.15)

and its Legendre-Fenchel conjugate (definition 2.27)

δ∗K

([
u

w

])
= sup

α∈R,β∈RD

{[
α

β

]
·
[
u

w

]
− δK

([
α

β

])}
. (2.6.16)

Rewriting this in Lagrangian form using the inequality that defines K by (2.6.15),
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yields

δ∗K

([
u

w

])
= inf

α,β
sup
τ≥0

{
−αu− β · w + τ

(
α+ ‖β‖

2

2

)}

with Lagrange multiplier τ ≥ 0. This infimum can be obtained directly by setting
the gradient to zero:

∂α : −u+ τ = 0⇔ τ = u

∇β : −w + τβ = 0⇔ β = w

u

∂τ : α+ ‖β‖
2

2 = 0⇔ α = −‖w‖
2

2u2 .

(2.6.17)

Inserting the optimal values ᾱ and β̄ into (2.6.16) yields

sup
α,β

{[
α

β

]
·
[
u

w

]
− δK

([
α

β

])}
=
[
ᾱ

β̄

]
·
[
u

w

]

= ᾱu+ β̄ · w (2.6.17)= −‖w‖
2

2u2 u+ w

u
· w = −‖w‖

2

2u + ‖w‖
2

u
= ‖w‖

2

2u .

(2.6.18)

Now, using the compound variables µ :=
[
u

w

]
and q :=

[
α

β

]
and the function

F1(φ) :=
∫
X
φ(0, x)U0 − φ(T, x)UT dx ,

the saddle-point problem (2.6.10) can be reformulated with the help of identity
(2.6.18) to obtain

− inf
u,w

sup
φ

L(u,w, φ) = sup
u,w

inf
φ
−L(u,w, φ)

= sup
µ

inf
φ

∫ T

0

∫
X
∇t,xφ · µ− sup

q∈K
{µ · q} dx dt+ F1(φ)

= sup
µ

inf
φ,q

δK(q) +
∫ T

0

∫
X
∇t,xφ · µ− µ · q dx dt+ F1(φ)

= sup
µ

inf
φ,q

δK(q) + F1(φ) +
∫ T

0

∫
X
µ · (∇t,xφ− q) dx dt .

(2.6.19)

Here µ can be considered as a Lagrange multiplier of the new constraint ∇t,xφ−q = 0.
This saddle-point problem has to be solved numerically and, for this purpose, provides
a more convenient problem formulation than the original continuous formulation.
An established method for solving this saddle-point problem is to utilize the ADMM
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algorithm 2.2 together with the augmented Lagrangian

Lρ(φ, q, µ) :=δK(q) + F1(φ) +
∫ T

0

∫
X
µ · (∇t,xφ− q) dx dt

+ ρ

2

∫ T

0

∫
X

(∇t,xφ− q) · (∇t,xφ− q) dx dt
(2.6.20)

with penalty parameter ρ(t, x) > 0 for every t ∈ [0, T ] and every x ∈ D. Assuming
all variables are discretized in space and time on a regular grid with n vertices, this
leads to the following algorithm.

Algorithm 2.7. - ADMM for the Benamou and Brenier formulation

Fix q0 ∈ Rn(D+1), µ0 ∈ Rn(D+1), ρ > 0
1: for k = 0, 1, . . . do
2: φk+1 = arg minφ∈Rn Lρ(φ, qk, µk)
3: qk+1 = arg minq∈Rn(D+1) Lρ(φk+1, q, µk)
4: µk+1 = µk + ρ

(∇φn+1 − qn+1)
5: end for

In the following two sections, solutions to the subproblems of line 2 and line 3 are
elaborated.

2.6.2.3 First ADMM step

In this section a partial differential equation is derived that solutions φ(t, x) of
line 2 of algorithm 2.7 has to satisfy. The derivation starts with computing the first
variation of the functional Lρ with respect to φ as necessary optimality condition.
Let ϕ be a function with ϕ : R × RD → R and h > 0. The Gâteaux derivative of
(2.6.20) is

l(h) := Lρ(φ+ hϕ)

= δK(q) + F1(φ+ hϕ) +
∫ T

0

∫
X
µ · (∇t,x(φ+ hϕ)− q) dx dt

+ ρ

2

∫ T

0

∫
X

(∇t,x(φ+ hϕ)− q) · (φ+ hϕ)− q) dx dt

= δK(q) + F1(φ) + hF1(ϕ) +
∫ T

0

∫
X
µ · (∇t,xφ+ h∇t,xϕ− q) dx dt

+ ρ

2

∫ T

0

∫
X

(∇t,xφ+ h∇t,xϕ− q) · (∇t,xφ+ h∇t,xϕ− q) dx dt

leading to

l′(h) = F1(ϕ) +
∫ T

0

∫
X
µ ·∇t,xϕ dx dt+ ρ

∫ T

0

∫
X

(∇t,xφ+h∇t,xϕ− q) ·∇t,xϕ dx dt

and searching for the roots of l′(0) gives
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l′(0) = F1(ϕ) +
∫ T

0

∫
X

(µ+ ρ∇t,xφ− ρq) · ∇t,xϕ dx dt = 0 .

Now, splitting the compound variables µ(x, t) =
[
u(x, t) ∈ R
w(x, t) ∈ RD

]
and

q(x, t) =
[
α(x, t) ∈ R
β(x, t) ∈ RD

]
into their time and space components, again, yields by

partial integration

F1(ϕ) +
∫
X

∫ T

0
(u+ ρ∂tφ− ρα) ∂tϕ dt dx

+
∫ T

0

∫
X

(w + ρ∇xφ− ρβ) · ∇xϕdx dt = 0

⇔ F1(ϕ) +
∫
X

[(u+ ρ∂tφ− ρα)ϕ]T0 dx︸ ︷︷ ︸
=: F2(φ, ϕ)

−
∫
X

∫ T

0
∂t(u+ ρ∂tφ− ρα)ϕdt dx︸ ︷︷ ︸

=: F3(φ, ϕ)

+
∫ T

0
[(w + ρ∇xφ− ρβ)ϕ]X dt︸ ︷︷ ︸

=: F4(φ, ϕ)

−
∫ T

0

∫
X
∇x · (w + ρ∇xφ− ρβ)ϕ dx dt︸ ︷︷ ︸

=: F5(φ, ϕ)

= 0.

This holds for arbitrary ϕ if F1 + F2 = 0, F3 + F5 = 0 and F4 = 0. Reformulating
these conditions gives

F1 + F2 =0
⇒ UTϕ(T, x)− U0ϕ(0, x) = [(u+ ρ∂tφ− ρα)ϕ]T0 ∀ x ∈ D
⇔ UTϕ(T, x)− U0ϕ(0, x) =(u(T, x) + ρ∂tφ(T, x)− ρα(T, x))ϕ(T, x)

− (u(0, x) + ρ∂tφ(0, x)− ρα(0, x))ϕ(0, x)
⇒ utϕ(t, x) =(u(t, x) + ρ∂tφ(t, x)− ρα(t, x))ϕ(t, x) for t ∈ {0, T}
⇒ ρ∂tφ(t, x) =U t − u(t, x) + ρα(t, x) ∀ t ∈ {0, T}, x ∈ D ,

(2.6.21)

F3 + F5 =0
⇒ (−∇x · w − ρ∆xφ+ ρ∇x · β)ϕ =(∂tu+ ρ∂2

t φ− ρ∂tα)ϕ ∀ t ∈ ]0, T [ , x ∈ X
⇒ −ρ∂2

t φ− ρ∆xφ =∂tu+∇x · w − ρ∂tα− ρ∇x · β
⇔ −ρ∆t,xφ =∇t,x · (µ− ρq) ∀ t ∈ ]0, T [ , x ∈ X

(2.6.22)

and
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F4 =0
⇒ 0 = [(w + ρ∇xφ− ρβ)ϕ]X ∀ t ∈ ]0, T [

⇔ 0 =
D∑
i=1

[(wi + ρ∂xiφ− ρβi)ϕ]Xi0

⇒ 0 =[(wi + ρ∂xiφ− ρβi)ϕ]Xi0 for i ∈ [D]
⇔ 0 =(wi(t,Xi) + ρ∂xiφ(t,Xi)− ρβi(t,Xi))ϕ(t,Xi)

− (wi(t, 0) + ρ∂xiφ(t, 0)− ρβi(t, 0))ϕ(t, 0)
⇒ 0 =(wi(t, x) + ρ∂xiφ(t, x)− ρβi(t, x))ϕ(t, x) for x ∈ {0, Xi}

⇒ −ρ∂xiφ(t, x) =wi(t, x)− ρβi(t, x)
⇔ −ρ∂2

xiφ(t, x) =∂xi(wi(t, x)− ρβi(t, x)) ∀ t ∈ ]0, T [ , x ∈ {0, Xi}, i ∈ [D]
(2.6.23)

where the last equivalence after applying the ∂xi operator on both sides of the
equation holds up to constants.

Equation (2.6.22) is a partial differential equation for φ, given the quantities q, µ
and ρ. Its Neumann time boundary conditions (2.6.21) and those regarding the
space boundary (2.6.23) are the natural boundary conditions when extending the
differential equation to the space boundary. In summary the differential equation
system which has to be solved in order to obtain φn+1 for the first ADMM step of
algorithm 2.7 is

−ρ∆t,xφ = ∇t,x · (µ− ρq) ∀ t ∈ ]0, T [ , x ∈ X

−ρ∂2
xiφ = ∂xi(wi − ρβi) ∀ t ∈ ]0, T [ , x ∈ {0, Xi}, i ∈ [D]

ρ∂tφ = U t − u+ ρα ∀ t ∈ {0, T}, x ∈ X .

The system is well posed since the mass U0 and UT are equal at both time points
and it can be solved numerically by approximating the differential operators by finite
differences.
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2.6.2.4 Second ADMM step

The goal is to minimize (2.6.20) with respect to q(t, x) whereas φ(t, x) and µ(t, x)
are fixed. Thus, (2.6.20) can be reformulated as

q = arg min
q∈RD+1

δK(q) +
∫ T

0

∫
X
µ · (∇t,xφ− q) dx dt

+ ρ

2

∫ T

0

∫
X

(∇t,xφ− q) · (∇t,xφ− q) dx dt

= arg min
q∈K

∫ T

0

∫
X
µ · (∇t,xφ− q) dx dt+ ρ

2

∫ T

0

∫
X

(∇t,xφ− q) · (∇t,xφ− q) dx dt

= arg min
q∈K

1
2ρ

∫ T

0

∫
X
µ · µ dx dt+

∫ T

0

∫
X
µ · (∇t,xφ− q) dx dt

+ ρ

2

∫ T

0

∫
X

(∇t,xφ− q) · (∇t,xφ− q) dx dt

= arg min
q∈K

∫ T

0

∫
X

µ

ρ
· µ
ρ

+ 2 µ
ρ
· (∇t,xφ− q) + (∇t,xφ− q) · (∇t,xφ− q) dx dt

= arg min
q∈K

∫ T

0

∫
X

(
µ

ρ
+∇t,xφ− q

)
·
(
µ

ρ
+∇t,xφ− q

)
dx dt .

(2.6.24)

with set K defined as in (2.6.15). Since q(x, t) =
[
α(x, t) ∈ R
β(x, t) ∈ RD

]
is a vector function

dependent on t and x the minimization problem (2.6.24) can be solved pointwise, i.e.
separately for every t ∈ [0, T ] and every x ∈ X. By splitting the compound variables

µ(x, t) =
[
u(x, t) ∈ R
w(x, t) ∈ RD

]
into their time and space components, as well, this yields

the least square problems

min
α∈R,β∈RD

{(
u

ρ
+ ∂tφ− α

)2
+
∥∥∥∥wρ +∇xφ− β

∥∥∥∥2

2

∣∣∣∣∣ α+ ‖β‖
2
2

2 ≤ 0
}
∀ t ∈ [0, T ], x ∈ X

which solutions constitute qn+1 in the second ADMM step of algorithm 2.7.
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3 Joint Tomographic Reconstruction and
Motion Recovery Using Dynamic
Optimal Transport

Consider an optimization problem which can be reformulated such that a solution
can be found by solving two smaller optimization problems where the second one
depends on the result of the first. A straightforward approach is to solve the two
problems consecutively such that the solution to the first problem defines the second
one. Depending on the accuracy of the first solution, however, the computed solution
to the overall problem might be poor, since the second problem is affected by errors
of the first one. In order to circumvent this error source a better approach is to
optimize both problems jointly.

This chapter describes an attempt to tackle the joint problem by combining tomo-
graphic reconstruction and dynamic optimal transport. More precisely, recovery of
nonnegative signals (section 2.5.4) is combined with the fluid mechanics framework of
Benamou and Brenier (section 2.6.2). These two concepts are chosen to replace the
inaccurate and empirically derived reconstruction and motion estimation routines
that are executed subsequently in Tomo-PIV (chapter 1). Three different approaches
for jointly solving them are presented and evaluated: weak coupling (section 2.4.3.2),
scaled ADMM (section 2.4.3.1) and the parallel proximal algorithm (section 2.4.3.4).

The weak coupling and scaled ADMM approaches are quite similar and both consists
of two nested optimization loops where the inner one is identical in terms of structure.
In contrast to that the PPXA approach just contains one single iteration. Section 3.1
gives details about the discretization used and introduces additional required notation
whereas section 3.2 states the reconstruction and transport problem supposed to be
combined. The three subsequent sections 3.3, 3.4 and 3.5 are devoted to problem
splitting methods from convex programming and derive the aforementioned approa-
ches with corresponding algorithms. This is followed by experiments in section 3.6
and a conclusion of this chapter in section 3.7.

3.1 Discretization and Notation

Let U0 ∈ Rn and UT ∈ Rn be two D-dimensional images rearranged as vectors. Both
are unknown a priori and build the ground truth of the joint problem. The two are
the connecting parts between the recovery of nonnegative signals (section 2.5.4) and
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the fluid mechanics framework of Benamou and Brenier (section 2.6.2). The task of
the former is the recovery of the two images and the latter aims for the estimation of
motion in between. In order to apply the images as time boundary conditions for
the motion estimation, the fluid mechanics framework has to be discretized in space
and time first.

Therefore, a grid is introduced with Xi points in the i-th dimension in space and
X0 points in time such that the total number of grid points is N := X0n with
n := ∏D

i=1Xi. Hereafter, single grid values are addressed either using an index
1, . . . , N whenever the ordering of grid nodes does not matter, or by a D-tupel
(i1, . . . , iD) or (1+D)-tupel (i0, i1, . . . , iD) where ij ∈ [Xj ] for every j ∈ {0, . . . , D} if
a distinction between different dimensions is necessary. Vector entries corresponding
to a grid node can be distinguished by an additional index placed in front of the grid
index or the tupel, e.g. µk,i or µk,(i0,...,iD), respectively.

Subsequent sections contain the derivation of the joint problem and will use the
following notation, frequently.

• Xj as the number of grid discretization steps of the j-th dimension for
j ∈ {0, . . . , D} where X0 corresponds to the time dimension

• U0 ∈ Rn and UT ∈ Rn as time boundary images

• µ =


µ1
...
µN

 ∈ RN(1+D) with µi =
[
ui
wi

]
∈ R1+D and ui ∈ R+ being a mass or

pixel brightness value at grid position i and the corresponding momentum
wi ∈ RD as primal variables

• ū :=
[
u(1,·,...,·)
u(X0,·,...,·)

]
=
[
µ0,(1,·,...,·)
µ0,(X0,·,...,·)

]
∈ R2n as simplified notation for the entries

of µ corresponding to the images of the first and last point in time, that are
the estimates for U0 and UT .

• q =


q1
...
qN

 ∈ RN(1+D) with qi =
[
αi
βi

]
∈ R1+D, αi ∈ R and βi ∈ RD at grid

position i as dual variables

• φ ∈ RN as former Lagrangian multipliers

• b̄ :=
[
b1
bX0

]
∈ R2m with b1, bX0 ∈ Rm being the given m observations at the

first and last point in time

• Ā =
[
A 0
0 A

]
∈ R2m×2n with the sensor matrix A ∈ Rm×n used to obtain the

observations
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3.2 The Two Subproblems

This section recalls the basic problems supposed to be combined in order to solve
tomographic reconstruction and dynamic optimal transport jointly.

Basically, for recovering U0 and UT the underdetermined linear system

Āū = b̄ (3.2.1)

has to be solved. This system has a unique solution if the sparsity of U0 and UT
is sufficiently small and the observations on the right hand side were acquired by a
sensors with special properties (section 2.5.4). Tomographic sensors usually fulfill
these requirements and A is chosen later as such, as well as U0 and UT will be
appropriate. If the aforementioned requirements are met it is sufficient to search for
any solution e.g. through

ū = arg min
x

{
‖Āx− b̄‖2

∣∣∣ x ≥ 0
}

. (3.2.2)

The estimation of the transport from U0 to UT is based on Benamou and Brenier’s
continuum mechanics formulation of the Wasserstein distance problem (section 2.6.2).
It was shown that the solution µ(t, x) can be obtained from solving

arg min
µ

max
φ

∫
X

∫ T

0

‖w‖2
2u dtdx+

∫
X

∫ T

0
φ (∂tu+∇x · w) dtdx (3.2.3)

which is equivalent to (compare (2.6.19))

arg max
µ

min
φ,q

δK(q) + F1(φ) +
∫ T

0

∫
X
µ · (∇t,xφ− q) dx dt (3.2.4)

with K as defined in (2.6.15) and

F1(φ) =
∫
X
φ(0, x)U0 − φ(T, x)UT dx .

The weak coupling and scaled ADMM approaches both combine (3.2.2) and (3.2.4),
whereas the PPXA approach uses (3.2.1) and (3.2.3). Each of the subsequent three
sections derives one of the mentioned approaches.

3.3 Weak Coupling Approach

The first optimization approach for solving the reconstruction and motion joint
problem is to utilize the weak coupling algorithm 2.4 as the main method. After
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3 Joint Tomographic Reconstruction and Motion Recovery

discretization and fixing an order of grid nodes the saddle-point problem (3.2.4) reads

max
µ∈RN(1+D)

min
q∈RN(1+D)

φ∈RN

δK(q) + F1(φ) +
N∑
i=1

µ>i (∇t,xφi − qi) (3.3.1)

where K and F1(φ) are reused for their discrete versions

K =
{
q ∈ RN(1+D)

∣∣∣∣∣ qi =
[
αi
βi

]
∈ R1+D, αi + ‖βi‖

2

2 ≤ 0 for all i ∈ [N ]
}

(3.3.2)

and

F1(φ) =
X1∑
i1=1
· · ·

XD∑
iD=1

φ(1,i1,...,iD)U
0
(i1,...,iD) − φ(X0,i1,...,iD)U

T
(i1,...,iD) ,

respectively. Now, a preliminary form of the joint problem can be formulated that is
the saddle-point problem

min
µ

max
φ,q

γ

2
∥∥∥Āū− b̄∥∥∥2

2
+ δR2n

+
(ū)− δK(q)− F1(φ, µ)−

N∑
i=1

µ>i (∇t,xφi − qi) (3.3.3)

achieved by summing the discretized target functions of the reconstruction problem
(3.2.2), the negative motion estimation problem (3.3.1) and additional constraints by
using indicator functions. Since the image reconstruction is supposed to be solved
jointly with the motion, the images U0 and UT representing the time boundary
conditions regarding the motion are not known a priori and thus must be substituted
by the corresponding variables µ0,(1,i1,...,iD) and µ0,(X0,i1,...,iD), respectively, leading
to

F1(φ, µ) =
X1∑
i1=1
· · ·

XD∑
iD=1

φ(1,i1,...,iD)µ0,(1,i1,...,iD) − φ(X0,i1,...,iD)µ0,(X0,i1,...,iD) .

Furthermore, a parameter γ > 0 is introduced weighting the first term responsible for
the reconstruction relative to the motion estimation terms. Now, the target function
in (3.3.3) is divided into the sum of

F (µ) := max
φ,q

{
−δK(q)− F1(φ, µ)−

N∑
i=1

µ>i (∇t,xφi − qi)
}

and G(ū) := γ

2
∥∥∥Āū− b̄∥∥∥2

2
+ δR2n

+
(ū)

where ū consists of specific entries of µ, namely ū =
[
µ1,(1,·,...,·)
µ1,(T,·,...,·)

]
. Moreover, let

M ∈ {0, 1}2n×(D+1)N be the matrix which selects the corresponding entries from µ

to form ū so that Mµ = ū. This natural dependency is incorporated in the coupling
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3.3 Weak Coupling Approach

term of the weak coupling problem (2.4.5) such that algorithm 2.4 can be applied to

min
µ,ū

F (µ) +G(ū) + ‖Mµ− ū‖22 (3.3.4)

leading to the preliminary algorithm 3.1.

Algorithm 3.1. - Prelininary Weak Coupling Algorithm for Joint Problem (3.3.4)

Fix µ0 ∈ R(1+D)N , ū0 = Mµ0 ∈ R2n, ρ, γ, ζ, η > 0
1: for k = 0, 1, . . . do
2: µk+1 = arg minµ∈R(1+D)N F (µ) + ρ

2‖Mµ− ūk‖22 + ζ
2‖µ− µk‖22

3: ūk+1 = arg minū∈R2n

{
γ
2

∥∥∥Āū− b̄∥∥∥2

2
+ ρ

2

∥∥∥ū−Mµk+1
∥∥∥2

2
+ η

2

∥∥∥ū− ūk∥∥∥2

2

∣∣∣∣ū ≥ 0
}

4: end for

The second iterative step in line 3 is a simple least square problem with constant bound
constraints and can be solved right away. But, since F (µ) is a maximization problem
itself, line 2 still is a saddle-point problem. Its solution is the topic of the next section.

3.3.1 Inner Saddle-Point Problem

Algorithm 3.1 contains an inner saddle-point problem in line 2 which has to be solved
in every iteration. This is achieved by applying Chambolle and Pock’s first-order
primal-dual algorithm 2.5 (section 2.4.3.3) which requires some reformulation first.
After defining

f̂(µ) := ρ

2
∥∥∥Mµ− ūk

∥∥∥2

2
+ ζ

2
∥∥∥µ− µk∥∥∥2

2
(3.3.5)

line 2 turns into

µk+1 = arg min
µ

F (µ) + f̂(µ)

= arg max
µ

min
φ,q

δK(q) + F1(φ, µ) +
N∑
i=1

µ>i (∇φi − qi)− f̂(µ)

= arg max
µ

min
φ,q

δK(q) + F1(φ, µ) +
D∑
j=0

N∑
i=1

µj,i(∂jφi − qj,i)− f̂(µ) .

(3.3.6)

The gradient operator ∇ is approximated by using first order central finite differences
with appropriate one-sided differences at grid boundaries in each dimension, i.e.

N∑
i=1

µj,i(∂jφi − qj,i) =
X0∑
i0=1
· · ·

XD∑
iD=1

µj,(i0,...,iD)(∂jφ(i0,...,iD) − qj,(i0,...,iD))
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3 Joint Tomographic Reconstruction and Motion Recovery

with

∂jφ(...,ij ,...) ≈


1
hj

(
φ(...,2,...) − φ(...,1,...)

)
for ij = 1

1
2hj

(
φ(...,ij+1,...) − φ(...,ij−1,...)

)
for ij ∈ {2, . . . , Xj − 1}

1
hj

(
φ(...,Xj ,...) − φ(...,Xj−1,...)

)
for ij = Xj

for every j ∈ {0, . . . , D} leading to

N∑
i=1

µj,i(∂jφi − qj,i) = µ>j

([
I N
Xj

⊗ Φj −IN
] [φ
qj

])

where

Φj :=



− 1
hj

1
hj

0 · · · 0

− 1
2hj 0 1

2hj
. . . ...

0 . . . . . . . . . 0
... . . . − 1

2hj 0 1
2hj

0 · · · 0 − 1
hj

1
hj


∈ RXj×Xj .

Here a reordering of the grid nodes takes place so that the new order of µ and q is

µ =


µ0
...
µD

 with µj = µj,i = µj,(·,...,·) for j ∈ {0, . . . , D} and i ∈ [N ]

and q correspondingly. Consequently, these approximations applied to (3.3.6) lead
to the saddle-point problem

max
µ

min
φ,q

δK(q) + F1(φ, µ) +
D∑
j=0

N∑
i=1

µj,i(∂jφi − qj,i)− f̂(µ)

≈max
µ

min
ψ
〈Φψ, µ〉+ δK̄(ψ)− f̂(µ)

(3.3.7)

with

Φ :=


I N
X0
⊗ Φ̄0

I N
X1
⊗ Φ1
...

I N
XD

⊗ ΦD

−IDN

 ∈ R(1+D)N×(2+D)N ,

ψ :=
[
φ

q

]
∈ R(2+D)N and K̄ :=

{[
φ

q

] ∣∣∣∣∣ q ∈ K
}
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3.3 Weak Coupling Approach

where

Φ̄0 := Φ0 +


1 0 · · · 0 0
0 0 · · · 0 0
...

... . . . ...
...

0 0 · · · 0 0
0 0 · · · 0 −1


obtained by combining F1(φ, µ) with ∑N

i=1 µ0,i(∂0φi − q0,i).

Finally, the form of (3.3.7) is the requirement for the application of Chambolle
and Pock’s first-order primal-dual algorithm 2.5 (CP). Thus, µk+1 in line 2 of the
preliminary weak coupling algorithm 3.1 can be computed through solving (3.3.7) by
algorithm 3.2.

Algorithm 3.2. - CP Algorithm Applied to Joint Problem (3.3.7), CP(µ0, f̂)

Input µ0 ∈ RN(D+1)

Fix ψ0 ∈ RN(D+2), ψ̄0 = ψ0, θ ∈ [0, 1], τ > 0, σ > 0
1: for k = 0, 1, . . . do

2: µk+1 = arg minµ∈RN(1+D)

{
‖µ−µk−σΦψ̄k)‖2

2
2σ + f̂(µ)

}

3: ψk+1 = arg minψ∈RN(D+2)

{
‖ψ−ψk+τΦ>µk+1‖2

2
2τ

∣∣∣∣∣ ψ ∈ K̄
}

4: ψ̄k+1 = ψk+1 + θ
(
ψk+1 − ψk

)
5: end for

The final weak coupling algorithm 3.3 that is supposed to reconstruct images and
compute the transport jointly thus uses algorithm 3.2 as an inner loop in the first
iterative step.

Algorithm 3.3. - Weak Coupling Algorithm for Joint Problem (3.3.4)

Fix µ0 ∈ R(1+D)N , ū0 = Mµ0 ∈ R2n, ρ, γ, ζ, η > 0
1: for k = 0, 1, . . . do
2: µk+1 = CP

(
µk, µ→ ρ

2

∥∥∥Mµ− ūk
∥∥∥2

2
+ ζ

2

∥∥∥µ− µk∥∥∥2

2

)
(algorithm 3.2)

3: ūk+1 = arg minū∈R2n

{
γ
2

∥∥∥Āū− b̄∥∥∥2

2
+ ρ

2

∥∥∥ū−Mµk+1
∥∥∥2

2
+ η

2

∥∥∥ū− ūk∥∥∥2

2

∣∣∣∣ū ≥ 0
}

4: end for

3.3.1.1 Implementation Details

This section describes the implementation details of algorithm 3.2. The function
f̂(µ) in (3.3.5) is a least square term and can be rearranged as
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3 Joint Tomographic Reconstruction and Motion Recovery

f̂(µ) = λ

2 ‖Lµ− l‖
2
2

with L ∈ Rp×N(D+1), l ∈ Rp and λ > 0. By merging both terms in line 2 of algo-
rithm 3.2, this turns the minimization with respect to µ into the simple unconstrained
linear least squares problem

µk+1 = arg min
µ∈RN(1+D)

1
2

∥∥∥∥∥∥
 1√

σ
IN(1+D)
√
λL

µ− [ 1√
σ

(
µk + σΦψ̄k

)
√
λl

]∥∥∥∥∥∥
2

2

.

The minimization with respect to ψ in line 3 is a least square problem, as well, but
it requires reformulation due to the nonlinear constraint ψ ∈ K̄. The set

K̄ =

ψ ∈ R(2+D)N

∣∣∣∣∣∣∣ ψi =

φiαi
βi

 ∈ R2+D, αi + ‖βi‖
2
2

2 ≤ 0 for all i ∈ [N ]


induces a natural separation of the problem. Since the inequality constraint is
required for every i ∈ [N ], it is equivalent to the pointwise problem

φ
k+1
i

αk+1
i

βk+1
i

 = arg min
φi∈R, αi∈R, βi∈RD

1
2

∥∥∥∥∥∥∥
φiαi
βi

− (ψk − τΦ>µk+1
)
i

∥∥∥∥∥∥∥
2

2

∣∣∣∣∣∣∣ αi + ‖βi‖
2
2

2 ≤ 0


which can be solved for each i ∈ [N ], separately. Because φi is not affected by the
constraint, the optimal solution is the corresponding entry of

(
ψk − τΦ>µk+1

)
i
. The

remaining minimization problems have the form

min
x∈R1+D

{
1
2 ‖x− z‖

2
2

∣∣∣∣∣ x1 + 1
2

1+D∑
i=2

x2
i ≤ 0

}
(3.3.8)

where x :=
[
αi
βi

]
∈ R1+D and z ∈ R1+D is the given vector with corresponding entries

of
(
ψk − τΦ>µk+1

)
i
. Hereafter, each of those problems is solved analytically. If

x = z does not violate the constraints, then it is the optimal solution and the problem
is solved. If it does, the optimal solution is located on the boundary of the feasible
set, because the target function ‖x− z‖2 is convex. In this case the problem changes
to (3.3.8) with equality constraint and the corresponding Lagrangian

L(x, y) = 1
2

1+D∑
j=1

(
(xj − zj)2

)
+ y

(
x1 + 1

2

1+D∑
i=2

x2
i

)

minimized by the same variable values is used to search for this minimum (section 2.4).
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Requiring the derivatives

∇xL(x, y) =


x1 − z1 + y

x2 − z2 + yx2
...

x1+D − z1+D + yx1+D

 ∈ R1+D and ∂yL(x, y) = x1 + 1
2

1+D∑
i=2

x2
i

to vanish leads to

x1 = z1 − y , xj = zj
1 + y

for j ∈ {2, . . . , 1 +D} and x1 = −1
2

1+D∑
i=2

x2
i (3.3.9)

and the elimination of xi to

y3 + (2− z1)y2 + (1− 2z1)y − z1 −
1
2

1+D∑
i=2

z2
i = 0 .

In order to obtain x from (3.3.9) the roots of this cubic polynomial in y are required.
Those are calculated analytically with the help of the classical formulas of Cardano’s
method. A real solution ŷ is desired here as of which there is at least one and three
at most. If there is only one real solution, there is nothing more to do. If there are
more, ŷ1, ŷ2, ŷ3, then the one which yields the smallest value of the target function
in (3.3.8) is chosen, i.e.

ŷ = arg min
y∈{ŷ1,ŷ2,ŷ3}

1
2

∥∥∥∥∥∥∥∥∥∥


z1 − y
z2

1+y
...

z1+D
1+y

− z
∥∥∥∥∥∥∥∥∥∥

2

2

.

3.4 Scaled ADMM Approach

The basis of the second approach for solving the reconstruction and motion joint
problem is scaled ADMM (section 2.4.3.1). In contrast to plain ADMM (algorithm 2.2)
having two appended terms originating from the constraint, there is a linear part
only in scaled ADMM (algorithm 2.3) which is an advantage here. In order to meet
the requirements, the target function of the saddle-point problem (3.3.3) is divided
in the same way as the weak coupling approach (section 3.3) into the sum of

F (µ) := max
φ,q

{
−δK(q)− F1(φ, µ)−

N∑
i=1

µ>i (∇t,xφi − qi)
}

and G(ū) := γ

2
∥∥∥Āū− b̄∥∥∥2

2
+ δR2n

+
(ū) .
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Again, let M ∈ {0, 1}2n×(D+1)N be the matrix with Mµ = ū leading to the problem

min
µ,ū
{F (µ) +G(ū) |Mµ− ū = 0} (3.4.1)

which is the form scaled ADMM can handle. Thus, scaled ADMM applied to problem
(3.4.1) yields algorithm 3.4.

Algorithm 3.4. - Scaled ADMM for Joint Problem (3.3.3)

Fix ū0 ∈ R2n, r0 ∈ R2n, ρ, γ > 0
1: for k = 0, 1, . . . do
2: µk+1 = CP

(
µk, µ→ ρ

2

∥∥∥Mµ− ūk + rk
∥∥∥2

2

)
(algorithm 3.2)

3: ūk+1 = arg minū∈R2n

{
γ
2

∥∥∥Āū− b̄∥∥∥2

2
+ ρ

2

∥∥∥Mµk+1 − ū+ rk
∥∥∥2

2

∣∣∣∣ ū ≥ 0
}

4: rk+1 = rk +Mµk+1 − ūk+1

5: end for

The first iterative step in line 2 is obtained from (3.3.6), as well, by just setting

f̂(µ) := ρ

2
∥∥∥Mµ− ūk + rk

∥∥∥2

2

such that µk+1 can be computed by algorithm 3.2. Since f̂(µ) is a least squares term
the implementation details (section 3.3.1.1) are valid, too. As in the weak coupling
approach, the second iterative step in line 3 is a least square problem with constant
bound constraints not requiring any reformulation effort.

3.5 Parallel Proximal Algorithm Approach

The basis for the third approach to solve the reconstruction and motion estimation
joint problem is the parallel proximal algorithm 2.6. The motion part of the objective
function to which the algorithm is applied to, originates from Benamou and Brenier’s
continuum mechanics formulation (3.2.3) slightly rewritten as

min
µ

∫
X

∫ T

0

‖w‖2
2u dt dx+

∫
X

∫ T

0
δ{∇·µ=0}(µ) dt dx (3.5.1)

where the Lagrangian multiplier φ is replaced by an indicator function in order to
add the constraint. As shown in (2.6.18) the first term can be written as a supremum
equal to the support function, i.e. ‖w‖

2

2u = σK(µ) with the same set K as in (2.6.15).
Thus, after discretization of (3.5.1) and K to (3.3.2), another version of the joint
problem

min
µ∈RN(1+D)

F1(µ) + F2(µ) + F3(µ) + F4(µ) (3.5.2)

64



3.5 Parallel Proximal Algorithm Approach

with

F1(µ) :=σK(µ), F2(µ) :=
N∑
i=1

δ{∇·µi=0}(µi),

F3(µ) :=δ{Āū=b̄}(ū) and F4(µ) :=δR2n
+

(ū)

is formed by adding the constraint of the recovery system and the positivity con-
straint as indicator function in form of F3(µ) and F4(µ) in order to bring in the
reconstruction (3.2.1). In this form the PPXA is immediately applicable yielding
algorithm 3.5 which, however, requires the proximal operators (definition 2.30) for
F1, F2, F3 and F4 to be available. Those are derived next.

Algorithm 3.5. - PPXA for Joint Problem (3.5.2)

Fix y0
1, y

0
2, y

0
3, y

0
4 ∈ R(1+D)N , ε ∈]0, 1[, γ > 0

and ω1, ω2, ω3, ω4 ∈]0, 1] such that ω1 + ω2 + ω3 + ω4 = 1
1: µ0 = ω1y0

1 + ω2y0
2 + ω3y0

3 + ω4y0
4

2: for k = 0, 1, . . . do
3: pk1 = prox γ

ω1
F1(yk1 )

4: pk2 = prox γ
ω2
F2(yk2 )

5: pk3 = prox γ
ω3
F3(yk3 )

6: pk4 = prox γ
ω4
F4(yk4 )

7: pk = ω1pk1 + ω2pk2 + ω3pk3 + ω4pk4
8: Choose λk ∈ [ε, 2− ε]
9: yk+1

1 = yk1 + λk(2pk − µk − pk1)
10: yk+1

2 = yk2 + λk(2pk − µk − pk2)
11: yk+1

3 = yk3 + λk(2pk − µk − pk3)
12: yk+1

4 = yk4 + λk(2pk − µk − pk4)
13: µk+1 = µk + λk(pk − µk)
14: end for

3.5.1 Derivation of the Proximal Operators

Following [CP11b], the proximal operator of the scaled support function cσK(µ) with
c > 0 is µ− cPK(µc ) where PK is the projection onto set K such that

prox γ

ω1
F1(µ) = µ1 −

γ

ω1
PK

(
ω1
γ
µ

)
= µ− γ

ω1
arg min
q∈K

{
1
2

∥∥∥∥q − ω1
γ
µ

∥∥∥∥2

2

}
.

The minimization is the same as in (3.3.8) and is solved identically.

Both F2 and F3 have the form δ{Mx=ν} yielding the proximal operator

prox c δ{Mx=ν}(x0) = arg min
x

{
c δ{Mx=ν}(x) + 1

2‖x− x0‖22
}

= arg min
x

{1
2‖x− x0‖22

∣∣∣∣Mx = ν

} (3.5.3)
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with any factor c > 0. The saddle-point formulation with a Lagrangian target
function of (3.5.3) is, consequently,

max
y

min
x

1
2‖x− x0‖22 + 〈y,Mx− ν〉 = max

y

(
min
x

1
2‖x− x0‖22 + 〈y,Mx〉

)
− 〈y, ν〉 .

(3.5.4)
The solution to the inner minimization problem is obtained by calculating the roots
of the derivatives with respect to x leading to

x = x0 −M>y (3.5.5)

which can be substituted into (3.5.4) yielding

max
x

1
2
∥∥∥x0 −M>y − x0

∥∥∥2

2
+
〈
y,M(x0 −M>y)

〉
− 〈y, ν〉

= max
x

1
2
∥∥∥M>y∥∥∥2

2
−
〈
y,MM>y

〉
+ 〈y,Mx0〉 − 〈y, ν〉

= max
x
−1

2
∥∥∥M>y∥∥∥2

2
+ 〈y,Mx0〉 − 〈y, ν〉 .

Again, solving for y such that the derivatives in y vanish gives

y =
(
MM>

)−1
(Mx0 − ν) .

This can either be inserted into (3.5.5) directly by using the pseudo inverse matrix
of
(
MMT

)−1
or the linear equation system

(
MM>

)
y = Mx0 − ν

can be solved first. It may be necessary to regularize MMT by MMT + εI with a
small ε > 0 in order to compute the pseudo inverse matrix or to solve the equation
system. Either way, the optimal solution to (3.5.3) and thus the desired value of the
proximal operator is

prox c δ{Mx=ν}(x0) = x0 −M>
(
MM>

)−1
(Mx0 − ν) . (3.5.6)

This is based on the constraint Mx = ν being fulfilled strictly. Relaxing it together
with its indicator function to c

2 ‖Mx− ν‖22 yields the proximal operator

prox c

2 ‖Mx− ν‖22 (x0) = arg min
x

{
c

2 ‖Mx− ν‖22 + 1
2‖x− x0‖22

}

= arg min
x

1
2

∥∥∥∥∥
[√

cM

I

]
x−

[√
cν

x0

]∥∥∥∥∥
2

2


(3.5.7)

which is a simple unconstrained least squares problem. After these derivations the
proximal operators for γ

ω2
F2 and γ

ω3
F3 can be formulated.
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In F2(µ) = ∑N
i=1 δ{∇·µi=0}(µi) the scalar products with the nabla operator for each

µi are discretized and represented as a matrix vector multiplication of a matrix R
with µ taking the sum into account, as well, i.e.

F2(µ) = δ{Rµ=0}(µ) .

Matrix R is chosen to impose one-sided first order differences along each dimension
and symmetric boundaries in the space dimensions such that

∂jµj,(...,ij ,...) ≈


1
hj

(
µj,(...,ij+1,...) − µj,(...,ij ,...)

)
for ij ∈ {1, . . . , Xj − 1}

1
hj

(
µj,(...,1,...) − µj,(...,Xj ,...)

)
for ij = Xj and j ∈ [D]

0 for i0 = X0

(3.5.8)

for every j ∈ {0, . . . , D}. The finite differences are intentionally chosen this simple,
as it turns out that a more complicated R strongly increases computation time. With
M = R and ν = 0 in (3.5.6) this leads to the proximal operator

prox γ

ω2
F2(µ) = µ−R>

(
RR>

)−1
Rµ .

The indicator function F3(µ) = δ{Āū=b̄}(ū) only acts on specific entries of µ namely
u(1,...) = µ0,(1,...) and u(X0,...) = µ0,(X0,...). Since Ā is a block diagonal matrix with
blocks of A corresponding to u(1,...) and u(X0,...), respectively, the computation can
be split. Together with the fact that the proximal operator of the zero function is
the identity, applied to the remaining entries of µ, the desired proximal operator is

prox γ

w3
δ{Āū=b̄}(µ) =



µ0,(1,...) −A>
(
AA>

)−1 (
Aµ0,(1,...) − b0

)
µ0,(2,...)

...
µ0,(X0−1,...)

µ0,(X0,...) −A>
(
AA>

)−1 (
Aµ0,(X0,...) − bT

)
µ1,(...)

...
µD,(...)


.

Likewise, F4(µ) = δR2n
+

(ū) only acts on the same entries of µ as F3. But, since
positive pixel intensities are favored at intermediate frames in between the start and
end images anyway, the positivity constraint is extended to all entries of µ0,(...) so
that the required proximal operator is
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prox γ

w4
δ{ū∈R2n

+ }(µ) =


max

{
0, µ0,(...)

}
µ1,(...)

...
µD,(...)


where the maximum is meant pointwise.

3.6 Experiments

In order to evaluate the performance of the weak coupling, the scaled ADMM and
the PPXA algorithm derived in sections 3.3, 3.4 and 3.5 experiments are carried out
in this section. Those are set up with start and end images which are easy to recover
and a primitive transport in between so that the solution to image reconstruction or
transport estimation performed separately is simple and the focus lies on the joint
computation.

The experimental scenario is chosen to be images with d = X1 = X2 = 64 pixels in
each of the D = 2 dimensions. The time is discretized in X0 = 32 steps and the start
image U0 shows s = 40 nonzero pixels with value 1 making it s-sparse. Referencing
to a real application, these nonzero pixels are called particles here. The particles
are randomly distributed inside a square shaped region, tendentially located in the
upper left corner. A constant shift of all particles towards the bottom right generates
the end image UT . Both images are shown in figure 3.1.

A tomographic sensor matrix A ∈ {0, 1}d2×(6d−2) is chosen to generate the obser-
vations b1, bT ∈ R6d−2 from the time boundary images U0, UT ∈ Rd2 by b1 = AU0

and bT = AUT . The sensor utilizes 4 projections onto 1-dimensional subspaces at
different angles. It is positive and can be interpreted as adjacency matrix of an
unbalanced expander graph. Finally, the time boundary images are nonnegative
which allows to apply theorem 2.47. Thus, the solutions U0 and UT of AU0 = b1
and AUT = bT , respectively, are unique meaning it is enough to search for positive
solutions like in (2.5.31) in order to reconstruct. Details about the sensor are illus-
trated in figure 3.2 whereas figure 3.1 shows the corresponding projections used as
input for the following experiments.

In order to obtain a reference solution for the joint reconstruction and motion problem,
each task is computed separately. The image recoveries via (2.5.31)

min
u
{‖Au− b1‖ | u ≥ 0} and min

u
{‖Au− bT ‖ | u ≥ 0}

yield perfect reconstructions of the original images U0 and UT already shown in
figure 3.1, whereas the separate execution of algorithm 2.7 based on Benamou and
Brenier’s fluid mechanics formulation without reconstruction yields the result shown
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U0 UT
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127−45◦

Figure 3.1 - The image vectors U0 and UT rearranged as 64× 64 images used as the ground
truth for the first and last point in time. 40 particles are randomly distributed inside a certain
region and shifted towards the lower right corner. 4 projections of each serve as input for
algorithms designed for solving the joint reconstruction and motion problem.

in figure 3.3. Only the velocity vectors at pixels having a gray value of or above
0.005 on a scale from 0 (black) to 1 (white) are plotted in order to preserve clarity.

3.6.1 Weak Coupling Experiment

The first experiment is the execution of the weak coupling algorithm 3.3 for the joint
problem. For both the outer weak coupling iteration and the inner Chambolle-Pock
algorithm 3.2, the norm distance

∥∥∥µk+1 − µk
∥∥∥

2
with respect to the corresponding

iteration is employed as stopping criterion. As soon as this distance falls below a
certain predefined threshold, the iterative refinement is stopped.

The first time the inner Chambolle-Pock algorithm is executed, ψ0 = 1 is chosen
as starting point. In later executions ψ0 reuses the last value of ψ computed in the
inner Chambolle-Pock iteration of the previous outer Weak Coupling step, meaning
it is not reset to ψ0. The entries of the starting point µ0 corresponding to the start
and end images are chosen to be u0

(1,·,...,·) = U0 and u0
(T,·,...,·) = UT , i.e. equal to

the optimal image reconstructions. The remaining entries are set to 0. At first, all
parameters ρ, γ, ζ, η including those of the inner Chambolle-Pock algorithm θ, τ
and σ are set to 1.
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image u ∈ Rd2

0◦ projection ∈ Rd
90 ◦

projection
∈
R

d

45 ◦
projection ∈ R 2d−1

−4
5◦

pro
jec

tio
n ∈

R
2d

−1

Figure 3.2 - Setup used for the simulated tomographic sensor A ∈ {0, 1}d2×(6d−2) with 4
projections along different angles utilized for experiments and illustrated for d = 5. The projections
are concatenated forming the observation vector b ∈ R6d−2. Ai,j = 1 if the j-th ray is incident to
the i-th pixel, otherwise Ai,j = 0. This results in observation bj being the sum of pixels incident
to the corresponding ray so that Au = b; illustrated for two rays with the regarding observation
and pixels colored in green and red, respectively.
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u(1,·,·) u(5,·,·)

u(10,·,·) u(14,·,·)

u(19,·,·) u(23,·,·)

u(28,·,·) u(32,·,·)

Figure 3.3 - Reference motion estimation result without reconstruction computed by using
Benamou and Brenier’s fluid mechanics framework (section 2.6.2). Two 64× 64 images were
used as input showing 40 particles shifted towards the lower right corner (figure 3.1). The time
was discretized in 32 steps, but besides the first and the last frame only a few more in between
are shown. The red arrows illustrate the estimated motion.
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Running the weak coupling algorithm 3.3 with the previously described settings
does not yield any result since it does not terminate. This is not due to the inner
Chambolle-Pock iteration which always stops successfully. The overall algorithm
does not stop even though a large number of parameter combinations ρ, γ, ζ and
η are considered where it is ensured that τ and σ do not violate the constraint
τσ‖Φ‖2 < 1 required for proving convergence of the Chambolle-Pock algorithm as
described in section 2.4.3.3. The operator norm is estimated as ‖Φ‖ ≈ 2.15 such that
τ = σ = 1

‖Φ‖ − ε for a small ε > 0 is used.

Further simplifications such as stopping after a fixed number of iterations or providing
a good starting point including prior knowledge in the form of correctly recovered
time boundary images are not successful, either. For this reason no result is shown
here. Weak convergence and the loose coupling of the variables µ and ū do not seem
to be sufficient for leading to a converging algorithm. In this regard, the following
experiment clearly yields better results.

3.6.2 Scaled ADMM Experiment

The subject of the second experiment is the scaled ADMM algorithm 3.4 designed
to solve the joint reconstruction and motion estimation problem. Again, the norm
distance

∥∥∥µk+1 − µk
∥∥∥

2
is used as stopping criterion for the inner and outer loop.

The initial values µ0, ū0, r0 and ψ0 are chosen to be all 0. Similar to the weak
coupling experiment, ψ0 is not reset for the next execution of the Chambolle-Pock
step and parameters of this step are chosen the same in order to satisfy the constraint
τσ‖Φ‖2 < 1 and θ = 1. Choosing high values for ρ, i.e. a strong coupling of the
variables µ and ū showed to be beneficial for convergence. On the other hand, large
ρ also reduce the quality of the recovered images. Hence, γ = ρ = 1000 seems to
provide a good compromise enabling an alternating minimization.

When using the previously described settings, the algorithm converged after 312
iterations and took approximately 4 hours1. Still, the result clearly differs from
the reference solution. The original time boundary images can just be made out
in outlines, the frames in between are heavily flickering and the estimated motion
appears random. This flickering is already known from the computation of the
reference flow via algorithm 2.7 where it is observed when looking at intermediate
results before convergence.

An analysis showing the progression of all three step norms
∥∥∥µk+1 − µk

∥∥∥, ∥∥∥ūk+1 − ūk
∥∥∥

and
∥∥∥rk+1 − rk

∥∥∥ together with the required number of Chambolle-Pock iterations,
the value of 1>ū+G(ū) and the required time in each iteration is plotted in figure 3.4.
The step norms show that the algorithm clearly converges with regards to the consi-
dered criteria. For example, the value of 1>ū+G(ū) seems to converge to 80 which
is the correct value, since the time boundary images both have 40 nonzero pixels.

1On a PC with an Intel Core i5-2410M together with 8GB memory
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Figure 3.4 - Progression of selected values occurring in the iterations of the scaled ADMM
algorithm for the reconstruction and motion joint problem. Only the first 35 out of 312 iterations
are shown on the x-axis. The algorithm is clearly converging.

However, the algorithm stops at 1>ū + G(ū) ≈ 93.7 because µ and consequently
ū changes by less than 10−4. For the same reason the number of Chambolle-Pock
iterations decreases to 1 and the iteration time to 2 seconds in the end. For the
purpose of excluding too early termination of the algorithm, the stopping criterion is
removed, leading to the same flickering results even after 130000 iterations and more
than 3 days of computation, approximately.

In order to speed up convergence, a modification is applied to the second scaled
ADMM step. Instead of biasing the optimization towards the correct time boundary
images through

∥∥∥Āū− b̄∥∥∥
2
, the aforementioned speed up is enforced by replacing it

with δ{Āū=b̄}(ū). This amounts to the second scaled ADMM step changing to

ūk+1 = arg min
ū∈R2n

{∥∥∥Mµk+1 − ū+ rk
∥∥∥2

2

∣∣∣∣ Āū = b̄, ū ≥ 0
}

. (3.6.1)

After carrying out the experiment with this modification, the algorithm produces
the best scaled ADMM result in just 5 iterations shown in figure 3.5. The recovery
of the time boundary images is perfect. Obviously, an incomplete reconstruction of
those keeps the algorithm running. However, the intermediate frames still flicker
and the motion estimation does not improve. Reducing ρ which increases the pri-
ority of the motion estimation in the first iterative step does not change anything at it.
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u(1,·,·) u(4,·,·)

u(29,·,·) u(32,·,·)

Figure 3.5 - Time resolved pixel value output of the scaled ADMM algorithm 3.4 with
modification (3.6.1) for the joint problem. The underlying motion is a constant shift of all
particles towards the lower right corner. The result flickers in time conveying the impression of
u(i,·,·) and u(i+2,·,·) being subsequent. The estimated motion is not shown.
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Summing up the observations, it is not sure whether the scaled ADMM algorithm for
the solution of the reconstruction and motion joint problem converges. On the one
hand it is known that iterating ADMM until a high accuracy is achieved can be very
slow as mentioned in section 2.4.3.1, which may be the case here. On the other hand
there is the possibility that discontinuities in the method implemented for managing
the minimization over the nonlinear set K̄ required in the inner Chambolle-Pock
algorithm prevent accurate results. It would require further investigation, relaxation,
parameter tuning and several weeks of computation to issue a statement in this
regard which is refrained from in favor of the more promising approach detailed in
the next section.

3.6.3 PPXA Experiments

The basis for the third approach to solve the reconstruction and motion estimation
joint problem is the Parallel Proximal Algorithm 3.5. The iteration is stopped when∥∥∥µk+1 − µk

∥∥∥
2
falls below a certain threshold. As initial values y0

1 = y0
2 = y0

3 = y0
4 = 0

and parameters ε = 1
2 , γ = 1 and ω1 = ω2 = ω3 = ω4 = 1

4 are set. The functions
F2 and F3 are strictly imposing their regarding constraint on µ as described in (3.5.6).

After 1000 steps of PPXA iterations, the algorithm yields the result shown in fi-
gure 3.6. Similarities of the recovered time boundary images are recognizable and
the estimated motion tends to go in the correct direction. Further iterations does not
seem to improve the results significantly. The analysis in figure 3.7 shows shrinking
step norms supporting the impression of convergence. In contrast to that at least
F1(µ) (figure 3.7b) does not converge and Dµ in F2(µ) (figure 3.7d) is not fulfilled.
Function F1 heavily oscillates and F2 even recedes from the optimal value 0. This
seems contradictory to declining step norms, but it might be due to PPXA having
the feature “that some error [...] is tolerated in the computation of the [...] proximity
operator” [CP08].

Thanks to the modest discretization of the nabla operator (3.5.8) in F2 one PPXA
iteration takes approximately 1 second. More sophisticated finite differences leads to
an increase of iteration time to several minutes and more, and thus investigating this
option is omitted.

Results can be influenced by changing the weights ω1, ω2, ω3 and ω4 assigning
different priorities to the corresponding target function terms. Thus, choosing ω3
multiple times greater than the remaining parameters, optionally together with
ω4, results in an improved reconstruction of the time boundary images after 1000
iterations whereas the motion appears random. Vice versa, for higher ω2, a more
clear motion is recognizable which is, however, based on wrong time boundary image
reconstructions. Varying ω1 has no visible effect on the results. It turns out that
distributing the weights equally is a good compromise yielding a result which is
closest to the reference solution.
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u(1,·,·) u(5,·,·)

u(10,·,·) u(14,·,·)

u(19,·,·) u(23,·,·)

u(28,·,·) u(32,·,·)

Figure 3.6 - Result of PPXA applied to the joint problem (algrithm 3.5) after 1000 iterations.
Between the time boundary images u(1,·,·) and u(32,·,·) only a few selected intermediate frames
are shown. For clarity reasons, the motion is only illustrated for pixel values having a gray value
greater or equal to 0.005 as red arrows. A trend towards the reference result (figure 3.3) is
recognizable.
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Figure 3.7 - Evolution of selected values occurring in the iterations of the PPXA algorithm
for the reconstruction and motion joint problem after 1000 iterations. Despite of declining step
norms, the algorithm does not seem to converge as indicated by the plots (b) and (d).
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Experimenting with different combinations of the other parameters ε and γ and the
relaxed versions of F2 and F3 according to (3.5.7) does not improve results. Neither,
more iterations help in this regard since reconstruction and motion become more
and more dissimilar to the reference as it can be observed at ‖Dµ‖22, for example.
Further tuning of parameters and weights did not lead to essential improvements
compared to the shown result with its decreasing step norms, oscillating function F1
and increasing norm ‖Dµ‖22 starting at a certain iteration.

3.7 Conclusion from Joint Optimization of Reconstruction
and Motion

The primary purpose of joining the reconstruction and motion joint problem is to
take advantage of possible synergy effects. Those are only observable if the joint
approaches are at least capable of reproducing the reference result computed by
a separate image recovery followed by a motion estimation, afterwards. All three
investigated methods, weak coupling (section 3.3), scaled ADMM (section 3.4) and
PPXA (section 3.5) fail in this regard.

Whereas the weak convergence of the weak coupling algorithm seems to prevent any
kind of convergence, the scaled ADMM result suffers from flickering at subsequent
frames which remains even after more than 100000 iterations. ADMM being known
for its very slow convergence to high accuracy [BPC+10] is one possible explanation.
However, the reconstruction of the time boundary images is perfect. Since both
methods utilize the Chambolle-Pock algorithm as an inner method for managing the
first alternating minimization step, the computational effort and, consequently, the
running time of one iteration is comparably slow. None of the two approaches yields
a result similar to the reference, especially considering the motion.

On the other hand a true joint optimization can be observed at the PPXA ite-
rations. By adjusting parameters appropriately, priorities can be shifted between
reconstruction and motion terms, and an improvement in the according variables
can be observed. However, in comparison to the reference solution only the recon-
struction quality can benefit significantly. With higher priority on the motion, results
have wrong flow directions based on unfinished reconstructions. Assigning equal
weights seems to be a good trade-off in order to obtain a better recovery and motion
estimation performance. Nevertheless, results similar to the reference solution cannot
be achieved since the similarity starts to decline from a certain number of iterations
onwards for all considered parameter combinations. Again, a reason for that is the
weak convergence of PPXA which is insufficient for high accuracy.

Another explanation for all approaches not resulting in the reference solution are
inappropriate physical constraints imposed to the motion. The reference solution
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already shows the pixel intensities or mass, respectively, diverge from a nonzero
pixel to the surrounding reconcentrating at the end. At frames in between the time
boundary images a diffuse mass cloud can be observed rather than separate particles
which are the requirement for image recovery. This seems to render the methods
used for the reconstruction and the motion estimation incompatible to each other.
Ideas how this problem could be handled, but which are not further investigated
here, are described in section 3.7.1.

Summing up, in combination with methods used, the straight forward additive joining
of objects functions from mass recovery and motion estimation does not lead to
satisfactory results which allow to demonstrate synergy effects.

3.7.1 Incompressibility Constraints as Generalization

A way to suppress mixing of pixel intensities or mass, respectively, in the intermediate
frames between the time boundary images of the motion part may be additional
physical constraints. One option is to impose an incompressibility constraint such as
the vanishing divergence of the flow velocity

∇ · v = 0 (3.7.1)

is known to be. Benamou and Brenier themself suggest in their paper [BB00] to use
the Euler Equations for an ideal incompressible fluid. These equations are (3.7.1)
and additionally

∂tv + v · ∇v = −∇p (3.7.2)

where p(t, x) is the pressure field. However, they do not follow up on that path.
Instead, together with Guittet [BBG04] they essentially multiply density and velocity
variables so that several instances of the same variables exists which they call “phases”.
They try to achieve incompressibility by coupling the different phases to a mutual
constraint.

A different common approach to enforce incompressibility is to view the Monge-
Kantorovich problem 2.6.2 in terms of geodesics i.e. absolute continuous curves in a
space of probability measures. This space can be extended to e.g. the set of doubly
stochastic probability measures in a space representing the set of all Borel measures
with a certain property which, then, is the configuration space of incompressible fluids.
Brenier [Bre99, Bre03] and others as well, like Ambrosio and Figalli [AF07, AF08]
take this path whereas Loeper [Loe06] approximates the Euler equations (3.7.2) with
the help of “semi-geostrophic equations”.
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The topic of this section is the development of an extension to the classical compressed
sensing framework (section 2.5) for the recovery of time-varying signals. In particular,
the temporal variation of indirectly measured intensity distributions is considered
that can be interpreted as motion. This is the motivation for calling the approach
compressed motion sensing or in short CMS.

Assume a signal undergoes a change over time having states x ∈ Rn and y ∈ Rn at two
subsequent points in time which can be described by a transformation T : Rn → Rn
such that T (x) = y. Observations bx ∈ Rm and by ∈ Rm with m < n are available
for x and y, respectively, both acquired by the same sensor A ∈ Rm×n. The two
separate recovery problems Ax = bx and Ay = AT (x) = by then lead to the joint
CMS problem [

A 0
0 A

] [
x

T (x)

]
=
[
bx
by

]
.

In the following the analysis is restricted to linear CMS, meaning y = Tx originates
from x through a linear transformation realized by a matrix T ∈ Rn×n so that[

A

AT

]
x =

[
bx
by

]
. (4.0.1)

It is worth to mention that in the case of constant change this formulation can easily
be extended to more than two points in time by just appending AT 2, AT 3, etc. to
the sensor and the corresponding observations to the right hand side. Independent
from the number of time points, only the first signal status x is being recovered and
the subsequent once can easily be calculated as T kx where k is the discrete time
step. If the transformation T is varying with each time step which is assumed here,
(4.0.1) should be solved pairwise for consecutive frames.

The main difference to classical compressed sensing models is the presence of the
transformation T which is unknown in general. One can say CMS is compressed
sensing with additional observations by and a second but unknown sensor AT . This
perspective motivates to investigate the joint estimation of the recovered signal x
and transformation T and to explore possible synergy effects.

A typical application scenario is the reconstruction of mass distributions and their
movement, represented as nonnegative values on a regular grid. The following in-
vestigations are based on binary D = 2 and D = 3-dimensional images x ∈ {0, 1}n
showing s ∈ N particles and having a pixel or voxel grid of size d ∈ N in each
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4 Compressed Motion Sensing

dimension, such that n = dD. Some synthetic scenarios with known ground truth are
created by placing the particles in the middle of the grid cells unless stated other-
wise, i.e. 0 and 1 indicates the absence and presence of a particle in a cell, respectively.

For the first considerations the investigation is restricted to a very simple scenario:
Each particle occupies exactly one cell and general linear transformations are assumed
to be permutations, i.e. T = P ∈ Pn such that

Bx = b with B :=
[
A

AP

]
∈ R2m×n and b :=

[
bx
by

]
∈ R2m . (4.0.2)

B is called the CMS sensor and Bx = b the CMS system.

Typical questions regarding sparsity dependent recoverability of the signal assuming
the permutation P is known are addressed in section 4.1. Hereby, the CMS system
reduces to an ordinary underdetermined linear equation which is investigated from the
viewpoint of compressed sensing. Thereafter, section 4.2 deals with the additional esti-
mation of the motion in form of matrix P including extensions to more general signals.

4.1 Signal Recovery

Throughout this section it is assumed that the permutation matrix P of the CMS
system (4.0.2) is known unless stated otherwise.

Obviously, Ax = bx is the part of the CMS system which is commonly used in order
to recover the signal x. The lower half consists of a second sensor, i.e. the permuted
sensor AP , and additional m observations by available for determining x. Hence,
recovery quality as predicted by CS must be at least as good as considering the
first equation system only, see section 2.5. However, doubling of information is no
guarantee for a recovery quality gain. If there is no motion, meaning the permutation
is the identity, P = In, then the two systems Ax = bx and APx = Ax = by coincide in
cases of no measurement errors. In other words the maximum rank of the CMS Sensor
B ∈ R2m×n is merely m depending on the rank of A, since rank(A) = rank(AP ).
Hence, there cannot be any improvement and no gain from using CMS if P = In.

It is not as clear whether the upper bound for rank(B) is 2m or less. This is the sub-
ject of section 4.1.1 followed by sparsity boundary estimates and recovery guarantees
in section 4.1.2 and experiments in section 4.1.3.

4.1.1 Sensor Rank

Naturally, the higher the rank of the CMS sensor B is, the better is the recovery of
the signal x. Clearly, the rank is dependent on both the sensor A and the permutation
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4.1 Signal Recovery

Table 4.1 - Cycle structure of permutations leading to invertible (good permutations) and

singular (bad permutations) CMS sensors B =
[
A
AP

]
∈ R2m×2m represented by the matrix

P ∈ P2m. The sensor A ∈ Rm×2m is chosen to be a Gaussian random matrix. The different
permutation structures are ordered by the number of fixed points for each m. Each table cell
shows the cycle structure of the remaining elements which are no fixed points in the form l1- . . . -lc
with lj ∈ {2, . . . , 2m} for all j ∈ [c] meaning a permutation with c cycles having lengths l1, . . . , lc.
The shortcuts “all” and “id” mean all cycle combinations regarding the corresponding number
of fixed points, whereas “no” or “-” stands for no permutation and no permutation exists with
the corresponding number of fixed points, respectively. Empty columns with no permutations
are not shown. The ratio of good permutations with respect to all possible permutations is
50%, 70.8333%, 85.9722%, 94.2684% and 97.9707% for m = 1, 2, 3, 4 and 5.

Cycle structure of
good permutation

fixed points

Cycle structure of
bad permutation

fixed points
m 0 1 2 3 4 2 3 4 5 6 7 8 10
1 all - no - - id - - - - - - -
2 all all no - no all - id - - - - -
3 all all 4 no no 2-2 all all - id - - -

4 all all
6
4-2
3-3

5 no 2-2-2 3-2 all all all - id -

5 all all

8
6-2
5-3
4-4
4-2-2
3-3-2

7
5-2
4-3

6 2-2-2-2 3-2-2
4-2
3-3
2-2-2

all all all all id

matrix P . The basic question addressed next is how the permutation P influences
rank(B). Therefore, the investigation starts with the case n = 2m leading to a square
CMS sensor B ∈ R2m×2m.

In order to get a first idea an initial experiment is performed where the sensor
A ∈ Rm×2m is chosen as a Gaussian random matrix with normalized columns having
maximum rank. These matrices are known to be the best performing sensors regar-
ding recovery quality as described in section 2.5. Afterwards, rank(B) is calculated
for every possible permutation matrix P where the investigation is restricted to the
cases m = 1, . . . , 5. In this context, permutations leading to an invertible CMS sensor
are called good whereas the bad ones yield a singular CMS sensor. The result is
summarized in table 4.1.

Adopting the notation from section 2.3, the CMS sensor B is always singular if f ≥ m
where f is the number of fixed points of the permutation. Invertibility is clearly
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given in cases of a permutation with f ≤ 1 fixed points whose number converges
from above to

lim
m→∞

!(2m) + 2m (!(2m− 1))
(2m)! = 2

e
≈ 73.58%

due to lemma 2.11, so that the majority of permutations is good for m > 2. Interes-
tingly, in the range of f ∈ {2, . . . ,m− 1}, the specific permutation cycle structure
determines whether the CMS sensor is invertible. It seems like fewer but longer
cycles are beneficial for invertibility. The ratio of the overall number of good per-
mutations with respect to all possible permutation matrices of the same size grows
with increasing m: 50%, 70.8333%, 85.9722%, 94.2684% and 97.9707%. Running the
experiment using different Gaussian random matrices yields the very same result
each time. Likewise, analyzing few randomly picked sensors of larger dimensions
confirms the impression of exclusive dependency on the permutations cycle structure.

Singularity occurring in the cases when f ≥ m can be shown easily.

Lemma 4.1 (singularity of the CMS sensor for f ≥ m):
Let A ∈ Rm×2m be an arbitrary matrix. Then, the CMS sensor B ∈ R2m×2m is
singular if the permutation induced by P ∈ P2m has f ≥ m fixed points.

Proof. Assume A =
[
L R

]
where L,R ∈ Rm×m, and assume the permutation

induced by P has f ≥ m fixed points, so that w.l.o.g.

B =
[
A

AP

]
=
[
L R

L π(R)

]

for a permutation π acting on the columns of R. Using the Schur complement, B is
singular if and only if π(R)−LL−1R = π(R)−R is singular. That is the case, since
(π(R)−R)1 = 0 meaning 1 ∈ N (π(R)−R).

For showing the invertibility of the CMS sensor in general, further constraints to
the sensor matrix A are necessary, since zero columns, for example, would heavily
influence rank(A) and, consequently, rank(B). The randomness of A seems to play a
crucial rule in this regard, since it is easy to derive examples leading to a singular
CMS sensor for every single permutation as the following examples illustrate.

Example 4.2 (permutation with cycles of length 2 leading to a singular CMS sensor):

For A =
[
1 0 1 −1
0 1 1 3

]
the permutation p = {(2 1) (4 3)} yields a singular CMS

sensor with rank(B) = 3 which is

B =


1 0 1 −1
0 1 1 3
0 1 −1 1
1 0 3 1

 .

Permutation p is considered good based on evaluation with a number of randomly
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chosen matrices A ∈ R2×4.
Example 4.3 (permutations consisting of a single cycle leading to singular CMS
sensors):

For A =
[
2 0 1 4
0 −2 1 5

]
the permutations p = {(4 1 2 3)} and p′ = {(2 3 4 1)} both

consist of one single cycle and result in singular CMS sensors

B =


2 0 1 4
0 −2 1 5
4 2 0 1
5 0 −2 1

 and B′ =


2 0 1 4
0 −2 1 5
0 1 4 2
−2 1 5 0

 ,

respectively, where both have rank(B) = rank(B′) = 3. These are two permutations
considered good after evaluation with randomly chosen matrices A ∈ R2×4.
Example 4.2 and 4.3 show that even if spark(A) > m, there is no guarantee for the
invertibility of the CMS sensor. However, it appears to be rather unlikely that for a
randomly picked Gaussian matrix A, a basically good permutation turns out to be a
bad one for B. In this regard, the set of matrices behaving different than a Gaussian
random matrix A ∈ Rm×2m seems to be small compared to the set of all real m× 2m
matrices. This leads to conjecture 4.4 which covers all good permutations with the
determined cycle structure of the initial experiment (table 4.1).
Conjecture 4.4 (invertibility of the CMS sensor):
Let A ∈ Rm×2m be a Gaussian random matrix. Let the permutation represented by
matrix P ∈ P2m have k ∈ N cycles, where each fixed point counts as one cycle. If

k ≤ m , (4.1.1)

then the CMS sensor B =
[
A

AP

]
∈ R2m×2m is almost surely invertible.

The following corollary generalizes this result to arbitrary dimensions.
Corollary 4.5 (extension of invertibility condition to nonsquare CMS sensors):
Let conjecture 4.4 be true and A ∈ Rm×n be a Gaussian random matrix. Let the
permutation represented by matrix P ∈ P2m have k ∈ N cycles, where each fixed
point counts as one cycle. If

k ≤ n−m , (4.1.2)

then the CMS sensor B =
[
A

AP

]
∈ R2m×n has almost surely rank(B) = 2m.

Proof. W.l.o.g. let the first 2m columns of P induce m or less cycles. Applying
conjecture 4.4 on the first 2m columns of B reveals that they are almost surely
linearly independent. Hence B has maximum rank.

In summary, maximum recovery gain can be expect from using the CMS sensor if
the permutation has sufficiently few cycles given conjecture 4.4 is true. This im-
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pression is further consolidated in sections 4.1.1.1 and 4.1.1.2 which offer a different
viewpoint on how the CMS sensor rank properties derive, including the counterpart
to conjecture 4.4 being proven. In the following the inequalities (4.1.1) or (4.1.2),
respectively, are referred to as cycle criterion. Section 4.1.1.3 gives an probabilistic
estimation on when it can be expected to be fulfilled.

4.1.1.1 Permutation Eigenspace

Deeper insights into the properties of the CMS sensor can be obtained from investi-
gating its image. Corollary 2.14 implies that a permutation matrix P ∈ Pn can only
have two different real eigenvalues, i.e. 1 and −1, and real eigenvectors depend on
their algebraic multiplicity. Eigenvalue ϕljlj = 1 for j ∈ [k] has algebraic multiplicity
k whereas all other eigenvalues ϕilj with i < lj have a smaller multiplicity as long as
there is a cycle length which is not a multiple of the shortest cycle length minj∈[k] lj .
An exception to this is the case when all cycles have the shortest cycle length 2 as
common divisor. Then, both eigenvalues, 1 and −1, have the same multiplicity and,
thus, there exists an equal number of real eigenvectors. In general all eigenvectors
form an orthogonal basis and have a clear structure.

Lemma 4.6 (eigenvector basis obtained from a permutation):
The eigenvectors of a permutation matrix P ∈ Pn with cycle structure (2.3.1) form
an orthogonal basis U of Cn which is

U =
⋃
j∈[k]

Uj with Uj =

u ∈ Cn

∣∣∣∣∣∣∣∣ u[n]\Cj = 0, uCj =


ϕ1

...
ϕlj

 , ϕ ∈ Φj

 , (4.1.3)

where Φj =
{
ϕilj

∣∣∣ i ∈ [lj ]
}
is the set of different powers of an arbitrary lj-th primitive

root of unity ϕlj ∈ C.

Proof. Since P is normal, its eigenvectors form an orthogonal basis U of Cn. For each
j ∈ [k], lemma 2.14 implies that the eigenvalues contained in the set Φj originate
from cycle Cj of length lj . Let u ∈ Cn with uCj =

[
ϕ1, . . . , ϕlj

]>
for an arbitrary

ϕ ∈ Φj and all other entries u[n]\Cj = 0. It holds

(Pu)Cj =
[
ϕlj , ϕ1, . . . , ϕlj−1

]>
=
(
ϕ−1u

)
Cj

.

Thus, u is an eigenvector to the eigenvalue ϕ−1 = ϕlj−1 and, consequently, Uj
contains all eigenvectors corresponding to the eigenvalues in Φj .

In particular, the previous proof shows that the eigenvector corresponding to the
eigenvalue ϕljlj = 1 is u ∈ Rn with u[n]\Cj = 0 and uCj = 1 for each j ∈ [k], which play
a special role in a stricter version of lemma 4.1 covering all permutations considered
as bad in the initial experiment (table 4.1).
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Theorem 4.7 (singularity of the CMS sensor):
Let A ∈ Rm×2m and let the permutation represented by matrix P ∈ P2m have k ∈ N
cycles, where each fixed point counts as one cycle. If

k > m ,

then the CMS matrix B =
[
A

AP

]
∈ R2m×2m is singular.

Proof. Consider the mapping of matrix B from the eigenspace of P induced by
eigenvalue 1 to the corresponding image, i.e. B : E1 → H1 where

E1 :=
{
x ∈ R2m

∣∣∣ Px = x
}

and

H1 :=
{[
y

y

] ∣∣∣∣∣ y ∈ Rm
}

= {x ∈ R2m | xi = xi+m for i ∈ [m]} . (4.1.4)

Let k be the multiplicity of the eigenvalue 1 of P , then dim(E1) = k with regard to
(2.3.4) and the corresponding eigenvectors

{
u ∈ Rn

∣∣∣ u[n]\Cj = 0, uCj = 1, j ∈ [k]
}
.

Furthermore, dim(H1) < m. For any arbitrary square matrix B it holds, that
rank(B) = 2m if and only if dim{Bx | x ∈ S} = dim(S) for every linear subspace
S ⊆ R2m. Since E1 is a linear subspace of R2m, it follows that, if
k = dim(E1) > m > dim(H1), then rank(B) < 2m. Hence, the CMS matrix
B is singular, if the number of cycles k exceeds m.

In other words the basis vectors in U according to (4.1.3) corresponding to eigenvalue 1
are all mapped to H1 which has a dimension not exceeding m. Consequently, if
there are m+ 1 or more vectors in U corresponding to eigenvalue 1, the image of
the remaining m− 1 or less basis vectors under B cannot cover the remaining space
of R2m since they are too few in order to span the complement R2m \ H1 having
dimension m, as well. In the case of eigenvalue 1 with multiplicity m or less, the
remaining eigenvectors in U have to span R2m \H1 for an invertible CMS sensor.
Those other eigenvectors are mapped to complex spaces

Hψ :=
{[

y

ψy

] ∣∣∣∣∣ y ∈ Rm, ψ ∈ C, ‖ψ‖2 = 1
}

={x ∈ C2m | ψ ∈ C, ‖ψ‖2 = 1, xi ∈ Rm, xi = ψxi+m for i ∈ [m]}
(4.1.5)

with ψ ∈ C. Every Hψ for a fixed ψ is a half space of C2m, since dim(Hψ) = m and
Hψ1 ∩Hψ2 = {0} for different ψ1, ψ2 ∈ C, obviously. Thus, any set of 2m vectors
with no more than m elements from a set of the form (4.1.5) with the same ψ span
the entire space C2m, but only H1 and H−1 form an m-dimensional half space of
R2m. This is the reason why all permutations consisting of m cycles of length 2 yield
an invertible CMS sensor B in the initial experiment (table 4.1). Example 4.2 shows

87



4 Compressed Motion Sensing

once more that this is not the case for every arbitrary matrix A. Theorem 4.7 can
be naturally extended to nonsquare CMS sensors.

Corollary 4.8 (extension of singularity condition to nonsquare CMS sensors):
Let A ∈ Rm×n and let the permutation represented by matrix P ∈ Pn have k ∈ N
cycles, where each fixed point counts as one cycle. If

k > n−m ,

then the CMS sensor B =
[
A

AP

]
∈ R2m×n has rank(B) < 2m.

Proof. W.l.o.g. let the first 2m columns of P induce m+ 1 or more cycles. Applying
theorem 4.7 on the first 2m columns of B reveals that they do not have maximum
rank 2m. The remaining n− 2m column vectors do not add to rank(B) since their
indexes are fixed points under the permutation induced by P such that their image
is in the half space H1 defined by (4.1.4) which is already entirely spanned by the
first 2m columns of B. Hence rank(B) < 2m.

In summary this makes the condition of the permutation P ∈ Pn having

k ≤ n−m (4.1.6)

disjoint cycles a necessary condition for an invertible CMS sensor B =
[
A

AP

]
∈ R2m×n

with A ∈ Rm×n. In the following it is called the maximum rank condition.

4.1.1.2 Nullspace Angles

The invertibility of a square CMS sensor is strongly related to the properties of the
two nullspaces N (A) and N (AP ). An invertible CMS sensor B ∈ R2m×2m means a
vanishing nullspace

rank(B) = 2m ⇔ N (B) = {0} ⇔ N (A) ∩N (AP ) = {0} .

Due to lemma 2.4 this is the case if the smallest principal angle θ(N (A),N (AP ))
is positive as described in section 2.1. It can easily be derived with the help of
definition 2.7 introducing the polar decomposition without computing the nullspaces
first.

Lemma 4.9 (smallest principal angle between N (A) and N (AP )):
Let A ∈ Rm×n and P ∈ Pn. Moreover, let L be the matrix whose normalized
columns form an orthogonal basis of the image of A>, denoted by R(A>). The
smallest principal angle between the nullspaces N (A) and N (AP ) is

θ(N (A),N (AP )) = arccos
(
σmax

(
L>P>L

))
.
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Figure 4.1 - Mean smallest principal angle between the nullspaces N (A) and N (AP ) and the

mean rank of the corresponding CMS sensor B =
[
A
AP

]
∈ R2m×2m over 50000 different Gaussian

random matrices A ∈ Rm×2m and permutation matrices P ∈ P2m for each m. θ(N (A),N (AP ))
is converging to zero whereas rank(B) asymptotically approaches the maximum possible rank for
increasing m rather fast.

Proof. Since dim(A>) = dim((AP )>) = dim(A>P>), it holds

P>A> = LAPR
1
2
AP = P>A>(APP>A>)−

1
2 (APP>A>)

1
2 = P>LAR

1
2
A

where LX and RX are the matrices with X> = LXR
1
2
X obtained from the polar

decomposition (2.2.1) for X = A and X = AP , respectively. Thus, the columns of
P>L with L = LA form an orthogonal basis for R(P>A>) = R((AP )>). Due to
N (X)⊥ = R(X>) it follows

θ(N (A),N (AP )) =θ
(
N (A)⊥,N (AP ))⊥

)
=θ
(
R(A>),R((AP )>)

)
= arccos

(
σmax

(
L>P>L

))
.

The behavior of θ(N (A),N (AP )) is evaluated in an experiment with 50000 different
Gaussian random matrices A and permutations P for each m ∈ [55]. In addition, the
rank of the corresponding CMS sensor is computed. The results shown in figure 4.1
indicate a declining smallest principal angle converging to zero for increasing m and
a CMS sensor rank which is the maximum possible for sufficiently large m. For
m ≥ 12, all 50000 different CMS sensors have maximum rank 2m. Once more, this
solidifies the impression of conjecture 4.4 being correct.
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4.1.1.3 Maximum Rank Condition Probability

A permutation p ∈ S2m is considered good if for its number of cycles holds that
k ≤ m (maximum rank condition (4.1.6)). This sections answers the question about
the probability of a random permutation being good. A normalized random variable
in relation to the number of cycles k can be defined by

Kn := k − log(n)√
log(n)

.

According to [SL66] it is asymptotically normally distributed, that is

lim
n→∞P(Kn ≤ κ) = 1√

2π

∫ κ

−∞
e−

z2
2 dz for κ ∈ R, (4.1.7)

whereas by Chebyshev’s inequality [HMRAR13], it can be obtained for any n

P(Kn ≥ κ) ≤ 1
κ2 .

The following lemma is estimating the probability for a random perturbation to
satisfy the maximum rank condition.

Lemma 4.10 (maximum rank condition probability):
Let p ∈ Sn be a random permutation drawn uniformly from Sn. Then, for any m ≥ 3,
the maximum rank condition (4.1.6) for n = 2m is fulfilled with probability at least

P(k ≤ m) ≥ 1−
√

2 log(n)√
π(n− 2 log(n)) exp

(
−(n− 2 log(n))2

8 log(n)

)
(4.1.8)

whereas
P(k ≤ m) = 1

holds asymptotically for n→∞.

Proof. Applying (4.1.7) and the tail bound [FR13, Lemma C.7] yields

lim
n→∞P(Kn ≤ κ) = 1− 1√

2π

∫ ∞
κ

e−
z2
2 dz ≥ 1− 1√

2π
min

{√
π
2 ,

1
κ

}
exp

(
−κ

2

2

)
.

for κ > 0. By substitution of

m = n

2 := κ
√

log(n) + log(n) ⇔ κ = n− 2 log(n)
2
√

log(n)
,

it can be obtain 0 < 1
κ <

√
π
2 for n ≥ 6 and consequently

P(c+ f ≤ m) ≥ P(Kn ≤ κ) ≥ 1−
√

2 log(n)√
π(n− 2 log(n)) exp

(
−(n− 2 log(n))2

8 log(n)

)
.
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Figure 4.2 - Lower probability bound (4.1.8) of a random permutation p ∈ Pn drawn uniformly
from Sn having n

2 or less cycles k, P
(
k ≤ n

2
)
, together with the experimental validation. This is

the minimum probability for a fulfilled maximum rank condition (4.1.6) of a CMS sensor with
n = 2m. Experimentally, many uniformly drawn random permutation matrices of different sizes
n are generated, and the relative numbers of permutations with k ≤ n

2 confirm the theoretical
result. Since the bound quickly approaches 1 with increasing n, the maximum rank condition
holds with very high probability for interesting problem sizes n.

Regarding the asymptotic case it holds

κ = n− 2 log(n)
2
√

log(n)
≥ − 1

104n
2 + 9

40n−
1
2 for n ≥ 2 ,

and hence for increasing n

P (c+ f ≤ m) ≥ P(Kn ≤ κ)

= 1− 1√
2π(− 1

104n2 + 9
40n− 1

2)
exp

(
−1

2
( 1

104n
2 − 9

40n+ 1
2
)2)

n→+∞−−−−−→ 1 .

Figure 4.2 illustrates the behavior of the lower bound derived in lemma 4.10, graphi-
cally, together with an experimental validation. In this experiment 106 random
permutation matrices are generated drawn uniformly from Sn with n satisfying
n = 2m for the considered range n ∈ [40]. The relative number of permutations
satisfying the maximum rank condition (4.1.6) gives an estimate of the desired
probability. The result confirms the derived bound very clearly. Thus, it is save to
say that the maximum rank condition holds with very high probability for interesting
problem sizes n.

4.1.2 Sparsity and Recovery Performance

The previous sections only investigate the invertibility of the CMS sensor (4.0.2) that
guarantees exact recovery of any vector x disregarding its sparsity. In the following
the sparsity of x is assumed, in addition.
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Motivated by application-oriented scenarios, the investigation is limited to tomo-
graphic recovery problems. In the following, the results from section 2.5.4 are
extended to the CMS sensor. The randomness assumption of sensor A is dropped
and the deterministic sensor ADd with D = 2 or D = 3 from (2.5.26) is considered
instead. As already described, this corresponds to a tomographic projection matrix
from D orthogonal projections. This kind of sensors does not have maximum rank
m being discussed in section 2.5.4.4. Furthermore, a binary signal x ∈ {0, 1}n is
assumed here resulting in observations b ∈ N2m

0 when acquired by the CMS sensor

BD
d =

[
ADd
ADd P

]
∈ {0, 1}2m×n (4.1.9)

with permutation matrix P ∈ Pn.

Recovery guarantees will be derived based on the tools from section 2.5.4.3. In
particular, the reduced system (section 2.5.4.2) corresponding to the CMS system
induced by an s-sparse signal is considered. In order to guarantee that reduced
systems behave on average like the adjacency matrix of a well connected expander
graph their dimensions will be constrained. To this end, the expected number of
nonzero observation is derived first, based on the expected nonzero observation
of Ax = bx. In particular, it is shown that the later are equal to the expected
nonzero observation of APx = by and that by is also generated by random uniformly
distributed s-sparse signal entries. The following lemma shows that an unknown
permutation matrix P ensures the independence of y from x with

x, y ∈ X ns :=
{
z ∈ {0, 1}n | ‖z‖0 = s

}
where ‖z‖0 is the sparsity of a vector z defined by (2.5.1), that is the size of the
support supp(z).

Lemma 4.11 (uniform distribution of the signal recorded at a second time step):
Let X ∈ X ns and Π ∈ Pn be independent and uniformly distributed random va-
riables of s-sparse vectors and permutation matrices x ∈ X ns and P ∈ Pn. Then
Y = ΠX ∈ X ns is uniformly distributed, too.

Proof. Let x, y ∈ X ns be any realizations. Then there are s!(n− s)! different permuta-
tions mapping the support {i | xi = 1} to {i | yi = 1} and consequently {i | xi = 0}
to {i | yi = 0} so that y = Px for corresponding permutation matrices P ∈ Pn.
Let Pn(x, y) denote this set of permutation matrices. For any other realization
x 6= x̃ ∈ X ns , the corresponding set Pn(x̃, y) exists and has the same cardinality.
Furthermore, from y = Px = P̃ x̃ it follows P 6= P̃ for P̃ ∈ Pn(x̃, y) because otherwise
0 = P (x− x̃) which contradicts x 6= x̃, i.e. x and x̃ have different supports. Hence,
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taking the independency assumption of X and Π into account, it holds

P(y) =
∑
x∈Xns

∑
P∈P(x,y)

P(x)P(P ) =
∑
x∈Xns

∑
P∈P(x,y)

1(n
s

) 1
n!

=
(
n

s

)
s!(n− s)! 1(n

s

) 1
n! = 1(n

s

) = P(x) .

This enables the derivation of the expected dimension of the reduced CMS system
with

2mred := |Ic| = |{i | bi > 0}|
rows and

nred := |Jc| = |{j | Bi,j = 0, i ∈ I}|
columns depending on sparsity s of x ∈ X ns where the sets I and J include the
redundant row and column indexes similar to (2.5.28) for the CMS sensor BD

d . Let
Mred and Nred denote the random variables for mred and nred, respectively.
Lemma 4.12 (expected number of rows in the reduced CMS system):
Let the s-sparse signal x ∈ X ns and permutation matrix P ∈ Pn be drawn uniformly
random from X ns and Pn, respectively. Then the expected number of rows after
reducing the CMS system with sensor BD

d ∈ {0, 1}2m×n is

E(2Mred) = 2DdD−1
(

1−
(

1− 1
dD−1

)s)
. (4.1.11)

Proof. Lemma 4.11 shows that the distributions of x and y = Px are the same, so both
time specific observations bx ∈ Nm0 and by ∈ Nm0 have expected number of nonzero

entries DdD−1
(
1−

(
1− 1

dD−1

)s)
due to (2.5.29). Consequently, b =

[
bx
by

]
∈ N2m

0

has twice as much.

Figure 4.3a on page 95 shows an example of (4.1.11) for D = 3 which, naturally,
converges to 1.

The expected value of a priori nonzero signal entries requires some more effort. The
sensor matrix ADd has d nonzero entries in each row and D in each column, which
reflects the fact that each projecting ray is incident to d cells of the grid and vice
versa every cell is incident to D rays. Since sensor BD

d is generated by concatenation,
the number of nonzero entries in each column will be doubled. Thus, BD

d can be
interpreted as a notional sensor measuring every cell with 2D rays onto its 2D
projections. Even though the geometric meaning gets lost, expressions like ray and
projection in connection with the CMS sensor are still used below.
Lemma 4.13 (expected number of columns in the reduced CMS system):
Let the s-sparse signal x ∈ X ns and permutation matrix P ∈ Pn be drawn uniformly
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4 Compressed Motion Sensing

random from X ns and Pn, respectively. Then the expected number of columns after
reducing the CMS system with sensor BD

d ∈ {0, 1}2m×n is

E(Nred) = dD
(

1 +
2D∑
k=1

(−1)k
(

2D
k

)(
1− k(d− 1) + 1

dD

)s)
. (4.1.12)

Proof. The probability for a single grid cell to be incident to a specific ray
is d

n = 1
dD−1 . In general, the probability that a grid cell is incident to at least

one out of k ∈ [2D] different rays r1, . . . , rk intersecting at one single cell (in the case
of k > 1) is

qd,k := k(d− 1) + 1
dD

.

Hence, the probability that l = 0, . . . , s out of the s nonzero entries of x are incident
to at least one of those rays is

P

 ∑
i∈
⋃
r∈{r1,...,rk}

Cr

xi = l

 =
(
s

l

)
qld,kp

s−l
d,k with pd,k := 1− qd,k (4.1.13)

where Cr is the set of cell indexes not being incident to the ray corresponding to the
r-th sample. Let the random variable Rr for r ∈ [2DdD−1] denote the event when
the r-th sample is zero, i.e. Rr = 1 if br = 0 and Rr = 0 if br > 0, respectively. For
l = 0, (4.1.13) gives the expected value

E
(

k∏
i=1

Rri

)
= P

(
k∏
i=1

Rri = 1
)

= psd,k =
(

1− k(d− 1) + 1
dD

)s
, (4.1.14)

for the event when all samples corresponding to the rays r1, . . . , rk are zero, i.e.
br1 = . . . = brk = 0. A nonzero entry in a cell incident to the rays r1, . . . , r2D
means that the regarding column is supposed to be removed from the system if
br1 = . . . = br2D = 0 and Rr1 = . . . = Rr2D = 1, respectively. Thus, the event∏2D
i=1(1− Rri) = 1 corresponds to the case when the regarding column remains in

the system. The probability for this to happen is the same for all dD cells and the
corresponding rays being incident to them. Thanks to the linearity of the expectation,
the result is

E(Nred) = dDE
(2D∏
i=1

(1−Rri)
)

= dD
(

1 +
2D∑
k=1

(−1)k
(

2D
k

)
psd,k

)

where the last equation is obtained through multiplying out the product and applying
(4.1.14) to the resulting terms.

An illustration for D = 3 is shown in figure 4.3b. Note that (4.1.14) for k = 1
validates lemma 4.1.11 once more, since the important events are 1−Rri = 0.

Based on the knowledge of the expected dimensions of the reduced system, recovery
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(a) Expected number of rows E(2Mred)
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Figure 4.3 - Expected size of the reduced CMS system with sensor B3
d depending on sparsity

s. All curves above have been experimentally validated by generating 1000 instances of uniform
s-sparse signals in Xns and averaging the reduced systems dimensions.

guarantees via CMS can be derived depending on the critical sparsity parameter s
that generates such reduced systems. If 2mred

nred
≥ 1, then the reduced system is square

or overdetermined and perfect recovery becomes possible, provided reduced systems
have full rank. Also it leads to the critical sparsity

scrit := max
{
s ∈ [n]

∣∣∣∣ 2mred
nred

≥ 1
}

(4.1.15)

reflecting the case of a square system matrix. For fixed d, a standard root finding
algorithm can find the corresponding solution for the sparsity s by solving

2E(Mred)− E(Nred) = 0 , (4.1.16)

where E(2Mred) and E(Nred) are given in (4.1.11) and (4.1.12). This was done
in figure 4.4 showing scrit for several different dimensions d. For comparison the
corresponding graphs of the original sensor (2.5.26) with D = 3 and of a Gaussian
random sensor ∈ Rm×n derived from (2.5.19) as described in section 2.5.3 are plotted,
too. The curve for the critical sparsity sAcrit that induces square reduced systems
with respect to the original sensor A3

d can also be done using the expected number
of nonzero rows (2.5.29) and the expected number of nonredundant cells (2.5.30).
The fraction scrit

sAcrit
is plotted in figure 4.5 and shows an increasing function for d ≥ 10

having a minimum of 3.4, approximately, and that becomes larger than 17 for d ≥ 104.
That means the sparsity s for signals acquired by the CMS sensor is allowed to be
at least 3.4 times greater compared to the one of the original sensor. The more the
discretization grid size d grows, the better the recovery performance of the CMS
sensor is in this scenario.
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Figure 4.4 - Critical sparsity scrit that induces square reduced systems in the case of the CMS
sensor B3

d (4.1.9, continuous curve), in the case of the original sensor A3
d (2.5.26, dashed curve)

and in the case of a Gaussian random sensor of the same size as A3
d (dotted curve). For B3

d , scrit is
obtained by solving E(2Mred) = E(Nred) for s, where E(2Mred) and E(Nred) are given in (4.1.11)
and (4.1.12). A higher scrit value implies recovery of denser vectors (particle distributions) and
shows that CMS performs best.
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Figure 4.5 - Fraction scrit
sA

crit
between the critical sparsities of sensor (2.5.26) and the corresponding

CMS sensor (4.1.9), that is the theoretical performance gain from using CMS regarding the
sparsity of the signal. The graph shows a minimum at d = 10 of approximately 3.4 and the
superiority grows further with increasing d.
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4.1 Signal Recovery

The CMS sensor clearly shows the best performance compared to the other two, but
this is not surprising as it has twice as much measurements available due to the
known permutation matrix P describing the transformation between the considered
points in time. Estimating P at the same time is more relevant for the intended
application and the topic of section 4.2.

As already mentioned, CMS sensors of the investigated kind do not have maximum
rank. This issue is addressed in the next section.

4.1.2.1 Perturbation of the CMS System

Sensors of the form (2.5.26) do not have maximum rank 2m. Rather than deriving
the critical sparsity for overdetermined reduced CMS systems, a slight perturbation
of the nonzero sensor entries will be considered in order to obtain recovery guarantees
for denser vectors. Therefor, a perturbed sensor is used as given in definition 2.50. As
described in section 2.5.4.4, the perturbation of a sensor does not change its sparsity
structure, so that the previous investigation of the size of the reduced CMS system
is still valid for a perturbed sensor ÃDd . The corresponding perturbed CMS sensor
then is

B̃D
d :=

[
ÃDd
ÃDd P

]
∈ R2m×n . (4.1.17)

The subsequent proposition is a sufficient condition that guarantees uniqueness of a
nonnegative and sparse enough vector sampled by a CMS sensor of the form (4.1.17)
with high probability.

Proposition 4.14 (unique recovery using perturbed CMS sensor):
There exists a perturbed matrix ÃDd that has the same sparsity structure as ADd
from (2.5.26) such that the perturbed system B̃D

d x = B̃D
d x
∗, with B̃D

d defined as in
(4.1.17), admits unique recovery of an s-sparse nonnegative signal x∗ ∈ X ns with high
probability, i.e. the set {

x ∈ Rn
∣∣∣ B̃D

d x = B̃D
d x
∗, x ≥ 0

}
(4.1.18)

is almost surely a singleton, if s satisfies condition s ≤ scrit, where scrit solves (4.1.16).

This proposition is the analogy to theorem 2.54 for the CMS system and the proof is
analogous, too. All elements x in (4.1.18) have equal `1-norm since

‖x‖1 = 1
>
n x = 1

2D1
>
mB̃x = 1

2D1mB̃x
∗

holds. Thus, enforcing sparsity by `1-regularization as in (2.5.27) would be redundant.
For sparse recovery, it is enough to take nonnegativity into account by solving
(2.5.31).
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Figure 4.6 - Averaged error norm ‖x̂− x∗‖2 between the recovered and optimal signal out of
200 recovery runs of Bx = b with random b for different grid sizes d depending on the relative
sparsity s

n . For every d there is a bound up to which perfect recovery is possible. Beyond this
bound the error rises very quickly as more particles are added to the image.

4.1.3 Recovery Experiments with Known Permutation

In the previous section theoretical recovery guarantees of an s-sparse binary signal
x ∈ X ns sampled by a CMS sensor with support (4.1.9) are derived. In the analysis,
the critical boundary scrit on the sparsity computed from the expected size of the
reduced system plays an essential role. The validation of these results on the basis of
the CMS sensor B3

d is the subject of this section.

Several experiments are run in which random signals discretized on a d×d×d grid are
recovered. One experiment consists of a given grid dimension d, sparsity s, uniformly
random permutation matrix P ∈ Pn as part of the CMS sensor and a uniformly
random binary signal x∗ ∈ X ns . Next, observations are generated by b = B3

dx
∗ and

the size of the corresponding reduced system is computed (see section 2.5.4.2). A
solution

x̂ = arg min
x≥0

‖B3
dx− b‖1

is obtained by using the reduced system and in order to certify recovery the recovery
error ‖x̂− x∗‖2 is computed. For every combination of several grid dimensions d and
sparsities s this is done 200 times. The averaged recovery error depending on the
relative sparsity s

n is shown in figure 4.6 for a few grid dimensions d. The maximum
relative sparsity yielding a mean error norm of numerically zero is the boundary
up to which perfect recovery can be empirically guaranteed. Figure 4.7 collects the
estimated boundary of every experiment and compares it to the theoretical result in
form of scrit derived in (4.1.15). Overall, the experimental results are in accordance
with the theory. The estimated sparsity boundary is significantly greater than the
theoretical bound scrit.

98
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Figure 4.7 - Experimental validation of the derived recovery guarantee in form of the relative
sparsity boundary s

n for D = 3 together with the theoretical bound derived with the help of scrit
according to (4.1.15) for comparison. The experiments are in agreement with the theory and
show a significantly better recovery of denser images than predicted.

4.2 Simultaneous CMS Reconstruction and Motion
Estimation

The centerpiece of compressed motion sensing and the subject of the present section
is the joint computation of a signal from observations and its change over time. Two-
dimensional or three-dimensional particle images and their corresponding motion is
the considered case of application.

Similar to previous sections the signal is assumed to be an s-sparse and n-dimensional
binary vector resulting from the discretization of a D-hypercube-shaped domain
Ω ⊂ RD into a grid graph with n cells having an arbitrarily fixed order. The signal
has the states x ∈ X ns at a point in time and y ∈ X ns at a subsequent one. An 1 entry
indicates the presence of a particle at the grid cell associated with the vector index
whereas 0 means no particle there. The change happening in between the states x
and y can be described by a permutation matrix P ∈ Pn so that y = Px imposing
a 1-to-1 correspondence between all n grid cells. This is more than necessary since
only the motion of the s particles is of current interest.

Section 4.2.1 details the representation of particle motions between two frames by
permutation matrices. Based on this, the joint recovery and motion estimation
problem is elaborated in section 4.2.2.

4.2.1 Linear Particle Assignment

Section 2.6.1 introduces an optimal transport method leading to a linear program
(2.6.5) suitable for the estimation of 1-to-1 assignment problems. However, an ap-
plication to the current situation is not easily possible since this method assumes
a present particle at every location meaning x = y = 1. In order to adapt it, the
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4 Compressed Motion Sensing

assignment estimation has to be restricted to the support of the signal states x and
y or, respectively, to the s particles.

Considering full x ∈ X ns and y ∈ X ns , there are lots of permutations fulfilling the
transformation x = Py with P ∈ Pn. All those permutation matrices mapping a
known x ∈ X ns to a known y ∈ X ns are collected in the set Πn(x, y). Corresponding
to s moving particles, an element P ∈ Πn(x, y) maps the support

Sx := supp(x) to Sy := supp(y)

and, consequently, the n− s empty cells Scx := [n] \ Sx to Scy := [n] \ Sy. Due to this
partition of P , the number of permutations fulfilling x = Py is |Πn(x, y)| = s! (s−n)! .
The corresponding permutation restricted to the s cells with present particles can be
represented by PSy ,Sx ∈ Ps in the view of

ySy = PSy ,SxxSx whereas yScy = 0 .

Associating the assignment of j ∈ Sx to i ∈ Sy with the cost given by element Ci,j of
matrix C ∈ Rs×s+ enables the application of the initially mentioned optimal transport
method. This leads to the linear assignment problem

min
P∈Bs

tr
(
C>P

)
(4.2.1)

where Bs =
{
P ∈ Rn×n+ : P1 = 1, P>1 = 1

}
is the assignment polytope 2.6.1 which

is a relaxation to the feasible set of permutation matrices Ps, see section 2.6.1, and
P = PSy ,Sx . The entries of the cost matrix Cs are related to the energy required to
move the particles in x to y. A natural choice is the Euclidean distance between
every two grid vertexes i and j, i.e. Ci,j = ‖vi − vj‖2, where vi ∈ Ω, i ∈ [n] denotes a
vertex location. Of course, other distance functions are possible and might be even
more suitable if prior knowledge on the motion is available.

Now, as the estimation of PSy ,Sx is determined, (4.2.1) must be seen in the context
of the entire grid. Therefore, arbitrary assignments of s particles on n grid cells
are considered next, where the permutation matrix P ∈ Ps is enlarged accordingly,
leading to a larger displacement matrix T ∈ {0, 1}n×n.
Proposition 4.15 (displacement matrix with permutation entries):
Let x, y ∈ X ns and C ∈ Rn×n+ be given. Assume that P̃ ∈ Πn(x, y) is a solution of

min
P∈Pn

tr
(
C>P

)
subject to Px = y, P>x = y, P ≥ 0. (4.2.2)

Then the assignment matrix T ∈ {0, 1}n×n with TSy ,Sx := P̃Sy ,Sx ∈ Ps and
TScy ,Scx = 0n−s is a solution of (4.2.2), too.

Proof. The constraints are met since Tx = P̃ x = y, T>y = P̃>y = x and T ≥ 0.
Furthermore, tr

(
C>Sx,SyTSy ,Sx

)
= tr

(
C>Sx,Sy P̃Sy ,Sx

)
is minimal due to TSy ,Sx ∈ Ps
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and tr
(
C>Scx,ScyTScy ,Scx

)
= 0 does not change the target value.

Hence, the optimal assignment T between x ∈ X ns and y ∈ X ns is a sparse matrix
with s nonzero entries that equals a permutation matrix when restricted to the
support of x and y. In this regard, the remaining n − s assignments PScx,Scy are
unimportant regarding valid correspondences between nonzero entries of x and y.
This means the underlying permutation can be assumed to have a cycle containing
those n− s elements which maximizes the chance of the maximum rank condition
(4.1.6) to be fulfilled. Moreover, proposition 4.15 allows to formulate a linear joint
optimization problem where the signals are unknown, as described in the next section.

4.2.2 Joint Reconstruction and Displacement Estimation

The problem of jointly estimating x, y ∈ X sn and P ∈ Πn(x, y) is based on merging
the CMS system (4.0.2) with the linear assignment problem in (4.2.2) into a single op-
timization problem. For some given transportation costs C ∈ Rn×n+ and observations
bx, by ∈ Rm acquired by a known ordinary sensor A ∈ Rm×n this gives

minimize
x,y∈Rn
P∈Rn×n

tr
(
C>P

)
subject to Ax = bx, Ay = by, x, y ≥ 0,

Px = y, P>y = x, P ≥ 0 .

(4.2.3)

This is a block biconvex problem, that is (4.2.3) is convex with respect to P for every
arbitrary fixed x and y on the one hand, and on the other hand it is convex with
respect to x and y for every fixed P . Those two blocks of variables (x, y) and P could
be minimized alternatingly as introduced in section 2.4.3 or by a block coordinate
descent approach that sequentially updates the two blocks via proximal minimization,
see e.g. [XY13]. Instead, the non-convex constraints involving variables of both
blocks, Px = y and P>y = x, are replaced so that the linear program

minimize
x,y∈Rn
P∈Rn×n

tr
(
C>P

)
subject to Ax = bx, Ay = by, x, y ≥ 0,

P1 = y, P>1 = x, P ≥ 0

(4.2.4)

is solved. (4.2.4) is referenced to as CMS program. By utilizing the displacement
matrix T again, the following proposition shows that the important assignments,
those between xSx and ySy , coincide for solutions of (4.2.3) and (4.2.4).

Proposition 4.16 (coinciding solutions for particle displacements):
Let x, y ∈ X ns , P ∈ Πn(x, y) and T ∈ {0, 1}n×n with TSy ,Sx := PSy ,Sx ∈ Ps and
TScy ,Scx := 0n−s. If the tupel (x, y, T ) is a solution of (4.2.3), then (x, y, T ) is a solution
of (4.2.4). Likewise, a solution (x, y, T ) to (4.2.4) is a solution to (4.2.3), too.
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Proof. It holds that Tx = T1 = y and T>y = T>1 = x and hence (x, y, T ) is feasible
for both (4.2.3) and (4.2.4) and optimal at the same time since the target functions
are equal.

For a given cost matrix C no recovery guarantee can be given. For example, a
constant matrix imposing equal costs to all possible assignments is highly insufficient
for estimating the correct one. However, if the provided cost matrix is appropriate,
unique recovery can be expected, again by using a perturbed sensors as introduced
in section 2.5.4.4.

Corollary 4.17 (unique recovery using perturbed sensor):
Assume x ∈ X ns is mapped to y = Px via P ∈ Πn(x, y). Then there exists a
perturbation Ã of ADd from (2.5.26) and a cost matrix C ∈ Rn×n+ such that x, y and
the assignment matrix T ∈ {0, 1}n×n with TSy ,Sx := PSy ,Sx ∈ Ps, TScy ,Scx := 0n−s and
y = Tx can be recovered perfectly with high probability by solving problem (4.2.4),
specialized to

minimize
u,v∈Rn
T∈Rn×n

tr
(
C>T

)
subject to Ãu = Ãx, Ãv = Ãy, u, v ≥ 0,

T1 = y, T>1 = x, T ≥ 0

(4.2.5)

provided that s ≤ scrit, with scrit defined by (4.1.15) .

Proof. By proposition 4.14 there exists Ã such that x ∈ X ns is the unique nonnegative
solution of

B̃u =
[
Ã

ÃP

]
u =

[
Ã

ÃP

]
x =

[
Ãx

Ãy

]
.

Furthermore, the tupel (x, y, P ) is a solution to (4.2.3) by assumption so that (x, y, T )
with TSy ,Sx = PSy ,Sx ∈ Ps and TScy ,Scx = 0n−s is a (vertex) solution to (4.2.5) due to
proposition 4.16 for an appropriate C ∈ Rn×n+ .

The CMS program (4.2.4) is the main contribution to simultaneous computation of
signal recovery and its change or, respectively, to joint image reconstruction and
motion estimation. It is experimentally examined in the next section.

4.2.3 CMS Experiments

If the transformation in form of the permutation matrix P of the CMS system (4.0.2)
is known, it reduces to an ordinary linear equation system which is underdetermined
in most applications. Corresponding experiments showing the potential recovery
capabilities of CMS are carried out in section 4.1.3. Here, besides the signal states x
and y, the permutation P is assumed to be unknown and supposed to be recovered.
Therefore, the experiments are formulated as a CMS program (4.2.4) and solved by
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a standard linear minimization solver.

In order to save memory and computation time it is very reasonable to reduce the
two equation systems Ax = bx and Ay = by as part of the CMS program first,
according to the procedure described in section 2.5.4.2. Using the notation from
there correspondingly for x and y, this amounts in the actual solving of the reduced
CMS program

minimize
xred∈R|J

c
x| yred∈R|J

c
y|

Pred∈R|Jcy|×|Jcx|

tr
(
C>Jcy ,JcxPred

)

subject to AIcx,Jcxxred = (bx)Icx , AIcy ,Jcyyred = (by)Icy , xred, yred ≥ 0,

Pred1 = yred, P
>
red1 = xred, Pred ≥ 0 ,

(4.2.6)

where the original solutions are obtained from setting

xJcx = xred, xJx = 0 and yJcy = yred, yJy = 0

afterwards. The utilization of the reduced CMS program is implicitly assumed, even
though it is not mentioned in the following.

All experiments in this section consists of the reconstruction of binary images x ∈ X ns
and y ∈ X ns of dimension D = 2 or D = 3 from a few (D−1)-dimensional projections
at two points in time and the simultaneous estimation of the particle motion in
between. The images are square and cubic-shaped having size d in each dimension so
that their number of pixels and voxels, respectively, is equal to n = dD. Each image
shows exactly s particles.

4.2.3.1 Evidence of Synergy

The first experiment deals with small 6× 6 images showing 2 particles, only. The
matrix A2

6 from (2.5.26) is used as a sensor generating the observations bx, by ∈ R12.
Those are used as input together with a cost matrix C ∈ R36×36 filled with Euclidean
distances

Ci,j = ‖vi − vj‖2 (4.2.7)

between pixel locations vi, vj ∈ R2 for i, j ∈ [6] in this case. Figure 4.8 illustrates the
output of the CMS program. In addition, the figure shows the usual `1-minimization
recovery for positive signals (2.5.27) applied separately to both linear equation sys-
tems Ax = bx and Ay = by for obtaining the subsequent images. The `1-recoveries
fail whereas CMS yields perfect recovery of the two images and the motion in be-
tween. Particularly remarkable is the fact that the sensor A2

6 is rather poor since
it cannot recover a signal with sparsity s > 1 in a standard CS scenario with high
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(a) x, original (b) x, `1-recovery (c) x, CMS

(d) CMS Motion

(e) y, original (f) y, `1-recovery (g) y, CMS

Figure 4.8 - Recovery of 2-sparse subsequent 6×6 images x (a) and y (e) by separate standard
`1-recovery and by CMS, respectively, based on a sensor matrix A2

6 (2.5.26). Standard recoveries
(b) and (f) by solving (2.5.27) fail due to poor sensor properties of A2

6, despite sparsity. Using the
same number of measurements the corresponding CMS sensor (4.1.9) leads to unique recovery
(c) and (g) and correspondence (motion) information (d) by solving (4.2.4).

probability [PS14]. Nevertheless, CMS is capable of doing so and seems to turn this
poor sensor into one worth considering in an application. This is a clear evidence of
synergy enabled by the joint computation of recovery and motion. The subsequent
CMS results are presented in a similar fashion as in figure 4.8d.

4.2.3.2 Realistic Scenarios

In order to test CMS in more application-oriented scenarios for D = 2 and D = 3,
several similar experiments with different grid sizes d and number of particles s
are carried out. The underlying movements are chosen to be realistic turbulent
random flows discretized on the grid so that y is s-sparse when computing it with
the help of the flow from x. On this basis, observations bx, by ∈ Rm are sampled by
using different sensor types and used as input for the CMS program (4.2.4). Again,
Euclidean distances (4.2.7) are the transport costs between grid cells.

Figures 4.9 shows a 2D and 4.10 a 3D example of the experimental results. In
the 2D experiment, s = 80 particles are displaced and the images are sampled by a
tomographic sensor with 4 projections as shown in figure 3.2. The 3D experiment
uses sensor A3

256 from (2.5.26) with 3 orthogonal projections and 500 particles. In
both cases CMS recovers the correct images within 38 (2D) and 15 (3D) seconds,
approximately, on an usual desktop PC1. This seems counter-intuitive but is due to
the two systems Ax = bx and Ay = by of the CMS program (4.2.4) being overde-

1Intel Core i5-2410M together with 8GB memory
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4.2 Simultaneous CMS Reconstruction and Motion Estimation

Figure 4.9 - Output of the CMS program (4.2.4) recovering 2D images on a 256× 256 grid
using an original sensor illustrated in figure 3.2. Particles of the first and the second image are
marked in blue and red, respectively, and the detected correspondences in between are drawn as
black arrows. The underlying motion used for generating this example is shown as gray arrows.

Figure 4.10 - Output of the CMS program (4.2.4) applied to 3D images with 500 particles on
a 256× 256× 256 grid using CMS sensor A3

256 (2.5.26). Particles of the first and the second
image are marked in blue and red, respectively, and the detected correspondences in between are
drawn as black arrows.
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4 Compressed Motion Sensing

termined after reduction in the 3D example, which is, in turn, a consequence of a
relative sparsity s

n ≈ 2.98 · 10−5 for 3D compared to approximately 1.22 · 10−3 in 2D.
In general, the greater the relative sparsity, the longer the computation takes since
the size of the reduced system naturally grows.

Besides CMS recovery, separate `1-reconstructions of the two images are computed
in all experiments, as well. In many cases separate recovery fails whereas, in contrast,
the CMS approach yields perfect reconstructions as already seen in the minimal
example in figure 4.8.

When looking carefully at computed solution and possible corresponding permu-
tations, respectively, it can be noticed that underlying realistic motions lead to
comparably long cycles. An example is the direction field shown in figure 4.9 in form
of gray arrows. Realistic motions always look similar to this, that is, following the
direction of an arrow, the subsequent one rarely points back in opposite direction. If
this was the case a particle at either position would move back and forth repeatedly
which is unrealistic and corresponds to a permutation cycle of length 2. But, particles
rather tend to follow a longer path which means in turn longer, and most often much
longer permutation cycles. Thus, for typical realistic particle motions, the maximum
rank condition 4.1.6 seems fulfilled with overwhelming probability.

4.2.3.3 Incorporated Prior Knowledge

CMS offers the possibility to incorporate prior knowledge by defining the cost ma-
trix C accordingly. In order to illustrate the heavy influence of this choice on the
output of the CMS program (4.2.4), the following experiment is carried out.

The setting is a 3D volume with a 257 × 257 × 257 grid discretization filled with
s = 200 particles. Again, A3

257 from (2.5.26) is used as sensor. The motion used to
generate y ∈ X 3

200 from x ∈ X 3
200 can be described as

y =


 cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1

x+

 0
0
vz




with α = rad(5vz) where b·e denotes the nearest integer function necessary for y
being a binary image. This represents a rotation around and a constant shift along
the z-axis where vz ∈ N is the vertical velocity on a voxel basis illustrated in figure
4.11a. In addition to an Euclidean cost matrix (4.2.7), one allowing particles to move
along their orbit around the z-axis without penalty is used, i.e.

C(u, v) = min
z∈R3

{
‖z − v‖22

∣∣∣∣∣
∥∥∥∥∥
[
z1
z2

]∥∥∥∥∥ =
∥∥∥∥∥
[
u1
u2

]∥∥∥∥∥
}

(4.2.8)

for two grid locations u, v ∈ R3. (4.2.8) is referenced as orbit costs here. This
corresponds to an application-oriented situation where an rotation of particles is
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4.2 Simultaneous CMS Reconstruction and Motion Estimation

expected but the deviation from this is unknown. In this case the deviation is the
constant shift vz. The result of this vortex scenario for different values of velocity vz
and either cost matrices can be found in figure 4.11.

Using Euclidean costs, the CMS solution is correct for approximately a vertical
velocity vz = 2 accompanied by a rotation of 10◦. Larger values lead to wrong
assignments between particles especially starting to occur in the outer region of the
vertex where displacements are larger than closer to the center. In connection with
orbit costs, perfect motion recovery remains possible even for large displacements
with a velocity vz = 18 and a rotation of 90◦.

This experiment still works with slightly larger velocities vz > 18 and corresponding
rotation angles. Similarly, the sparsity of s = 200 particles is not the limit by far,
but is used in order to produce recognizable results. The quality of the motion
estimation is still satisfying for s = 500 and above, but at approximately s = 350
misassignments start to occur.

4.2.4 Relaxation

The compressed motion sensing approach presented above is very fast and reliable if
the underlying images allow a 1-to-1 correspondence. This is not the case if particles
enter or leave the image domain. Furthermore, it might occur that in practice
particles are closely located and occupy the same discretization cell. In this case, the
image cannot be represented by a binary signal in X ns any more. Thus, an extension
to more general signals is reasonable.

Assuming one binary image x ∈ X ns shows more particles than y ∈ X ns , i.e.
sx := ‖x‖0 > ‖y‖0 =: sy. Then, the constraints of the CMS program (4.2.4) P1 = y

and P>1 = x impose sx nonzero rows and sy nonzero columns of P summing to 1
whereas the remaining rows and columns are 0. Since sx 6= sy, such a matrix P does
not exist because the sum of all elements is independent from the summation order.
Hence, the CMS program is infeasible and has no solution in this case, suggesting to
relax the aforementioned constraints. The relaxed CMS program which does exactly
that is

minimize
x,y∈Rn
P∈Rn×n

tr
(
C>P

)
subject to Ax = bx, Ay = by, x, y ≥ 0,

lyy ≤ P1 ≤ uyy, lxx ≤ P>1 ≤ uxx, P ≥ 0

(4.2.9)

where lx, ly ∈]0, 1[ and ux, uy > 1 are parameters determining a certain degree of
freedom to P . The reduced CMS program (4.2.6) can be relaxed, correspondingly.
As the following experiments show, this relaxation ensures the solubility of a CMS
scenario using binary images with an unequal amount of particles or nonbinary
nonegative images.
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(f) vz = 18, α = 90, Orbit C

Figure 4.11 - Vortex scenario in a 257× 257× 257 volume with additional vertical shift (a)
and detected motions by CMS (b)-(f). Choosing a cost matrix C with Euclidean distances, the
correct motion is recovered for a vertical velocity of vz = 2 and a corresponding rotation angle
α = 10 (b),(c). After increasing both, recovery with an Euclidean C fails (d), but CMS is still
capable of recovering the correct motion by using a different cost matrix (4.2.8) referred to as
orbit costs here. Even for comparably large displacements the CMS solution is perfect (e),(f).
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4.2 Simultaneous CMS Reconstruction and Motion Estimation

Figure 4.12 - Output of the relaxed CMS program (4.2.9) recovering 2D binary images on a
256 × 256 grid using the sensor illustrated in figure 3.2. Particles of the first and the second
image are marked in blue and red, respectively, and the detected correspondences in between are
drawn as black arrows. The underlying motion used for generating this example is shown as gray
arrows. There is no 1-to-1 correspondence since the first image shows 60 particles whereas the
second one shows only 57. Due to that some assignments are incorrect in certain regions.

4.2.4.1 Relaxed CMS Experiments

Two experiments are carried out in order to pin down the differences between the
CMS program (4.2.4) and its relaxed companion (4.2.9). In both settings 2D square
images with grid dimension d in each direction and, consequently, n = d2 pixels are
sampled by the sensor illustrated in figure 3.2 yielding observations bx, by ∈ Rm+ as in-
put for the relaxed CMS program. Moreover, both experiments use an Euclidean cost
matrix (4.2.7) and parameters lx = ly = 0.5 and ux = uy = 1.5 determined arbitrarily.

In the first experiment s-sparse binary signals x, y ∈ X ns are recovered. Image x
shows 60 particles randomly distributed over the area which are transported by a
randomly generated turbulent flow discretized on the grid. Due to the movement, 3
particles are shifted out of the image domain so that the second image y shows 57
particles, only. Figure 4.12 visualizes the setup and recovery results.

The image reconstructions are both perfect, but regarding the motion, there cannot
be a 1-to-1 correspondence, naturally, since both images contain a different number
of particles. Especially, in regions where particles leave the image domain, local
misassignments can be recognized such as at the upper, lower and left image border.
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(a) x, original (b) x, CMS

(c) CMS Motion(d) y, original (e) y, CMS

Figure 4.13 - Relaxed CMS recovery of 20× 20 images x (a) and y (d) based on the sensor
shown in figure 3.2. The recovered images (b) and (e) and the estimated motion information (c)
are computed by solving the relaxed CMS program (4.2.9). In this form the pixels belonging to a
single transported blob are not displaced as 1-to-1 correspondences

Those particles that are missing in the second image, can create incorrect corre-
spondences in other regions as it happens in the upper left center of figure 4.12.
However, the motion is satisfactory in this example, but may be unacceptable in others
depending on the relative sparsity, the position of particles and the underlying motion.

Images originating from a real world experiment are rarely sparse binary, not even
if the captured scene shows particles only. This is because particles can be present
at any location and not just the positions corresponding to the discretization grid.
Moreover, a camera cannot capture all particles in perfect focus and thus the particle
appearance is smoothed out well approximated by a Gaussian blob located at its
actual position. In the second experiment Gaussian blobs of the form

Gi(z) = exp
(
−1

2‖z − µi‖
2
2

)
are used in order to represent the i-th particle at location µi ∈ R2

+. The sum of all
particle blobs ∑iGi(z) then corresponds to the continuous image which is sampled
on the discrete image grid. In this way, time boundary images x, y ∈ Rn+ of 20× 20
pixels are generated showing 5 particle blobs placed uniformly random in the domain.
Pixels with an intensity value below 0.2 are set to zero. Figure 4.13 illustrates the
output of the reduced and relaxed CMS program together with the ground truth
images.

The image reconstruction part of CMS is based on a sparse uniform distribution
of the signal entries and needs to be generalized for more coherent structures like
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4.2 Simultaneous CMS Reconstruction and Motion Estimation

the blob images. However, the image reconstructions are acceptable since the blobs
shown in the underlying original images can be recognized. The estimated motion
shows similar misassignments as in the previous experiment and pronounces the weak
point of the relaxed CMS formulation even more: Mass or signal intensity is not
enforced to remain compact. There are no constraints causing the mass belonging to
one blob to stick together as an unit and CMS tears it apart if it is advantageous for
the target value.
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5 Conclusion

In this work the problem of sparse signal recovery in dynamic sensing scenarios has
been considered. In particular, the joint image reconstruction and motion estimation
of a corresponding 3D particle distribution indirectly observed from linear measure-
ments of a single static sensor at two different points in time is addressed by both
continuous and discrete optimal transport.

The contributions of this thesis are:

• In section 2.5.3.1 the relation between the signal sparsity and the number of
Gaussian measurements that guarantee uniqueness with high probability via
`1-minimization with nonnegative or 0/1 box constraints is accurately described.
The calculations build on recent compressed sensing theory [ALMT14] that
upper bounds the statistical dimension of the descent cone of the structure
enforcing regularization. These undersampling rates are used in chapter 4 and
compared with the performance of the compressed motion sensor developed in
this thesis.

• In chapter 3 the first approach for joint signal and motion recovery is presented.
The problem is formulated as a continuous optimal transport between two
indirectly observed densities with a physical constraint following the framework
of Benamou-Brenier [BB00]. The contributed novelty is the extension of the
Benamou-Brenier scheme to the projection constraint corresponding to the
indirectly observed densities at two points in time. This still leads to a space-
time convex variational problem and allows the integration of the projection
constraints by different splitting techniques (weak coupling, scaled ADMM,
parallel proximal algorithm). Unfortunately, it was not possible to substantiate
by numerical experiments any synergy effect of joint reconstruction of signal
and motion.

• In chapter 4 the compressed motion sensor is introduced. The recovery problem
is modelled as observing a single signal using two different sensors, a real one
and a virtual one induced by signal motion. First, the recovery properties
of the resulting combined sensor are examined for the special case of 50%
undersampling rate of the static sensor that is assumed to be in general position.
Invertibility of the compressed motion sensor is shown under weak conditions
on the number of cycles of the permutation matrix underlying motion. Next, it
is showed along the lines of [PS14] that complementing the standard Tomo-PIV
sensor with a motion sensor, based on wrapped projections due to known
motion, significantly improves recovery performance, even beyond Gaussian
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sensing matrices. In particular, critical sparsities are derived that guarantee
that the compressed motion sensor behaves on average like the adjacency
matrix of a well connected expander graph. This allows to show further that
not only can the signal be uniquely recovered with overwhelming probability
by linear programming, but also the correspondence of signal values (signal
motion) can be established between the two points in time. Moreover, numerical
experiments confirm that via compressed motion sensing the performance of
an undersampling static sensor is doubled or, equivalently, that the sufficient
number of measurements of a static sensor can be halved. Finally, the more
general case of reconstructing blob particles rather than point particles and
their correspondence is considered along with a relaxed version of CMS and
assessed by numerical experiments.

The work presented in this thesis admits several extensions:

• enhancing the Benamou-Brenier scheme with additional physical fluid flow
constraints;

• extending the analysis to a continuous trajectory of time;

• designing constraints which prevent particles from merging or splitting as
observed in the relaxed approach;

• relaxing the constraints to allow particles entering or leaving the domain.
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