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Abstract

The extent to which advanced organisms can grasp and learn complex environmental pat-

terns represents a fascinating feature. It is believed that memory is encoded by transiently

co-active cells, so called neuronal ensembles, in which cells are temporally linked by under-

lying network oscillations. In the hippocampus, rhythms of oscillating neuronal networks

are directly associated with behavioral states. For instance, gamma rhythms are linked

to memory formation, whereas intermittent sharp wave-ripple oscillations are involved in

memory consolidation.

During coordinated neuronal ensemble activity participating cells are selectively activated

although they are scattered throughout neuronal tissue. This spatiotemporal speci�city

requires dynamic anatomical and physiological working principles. In this work, we aimed

for a deeper understanding of the apparent complexity underlying neuronal ensemble for-

mation. We studied the recruitment of single cells into neuronal ensembles during sharp

wave-ripple oscillations in vitro. In our approach, we combined recent physiological and

anatomical evidence about hippocampal principal cells. On the one hand, a subpopulation

of principal cells elicits network-entrained action potentials that exhibit a characteristic ec-

topic waveform in vitro. On the other hand, a large number of cells feature a peculiar axon

location. We discovered a relationship between these two �ndings, showing that only cells

with axons originating from a dendrite were able to participate during sharp wave-ripple

oscillations.

As speci�c network oscillations are associated with di�erent behavioral states, we were

interested in the modulation of network rhythms. It has been shown that enhanced levels

of oxytocin a�ect the formation of long-lasting spatial memory. Here, we studied the e�ects

of oxytocin on hippocampal network activity in vitro, showing that it selectively reduced

sharp wave-ripples, while failing to modulate gamma oscillations.

Furthermore, we investigated the neuroprotective mechanism, which is enabled by the

amyloid precursor protein. Although being strongly associated with Alzheimer's disease,

its intracellular processing provides a basis for neuroprotection. We show that the harming

impact of a hypoxic condition on hippocampal network oscillations was eased by fragments

of the amyloid precursor protein through modulation of L-type calcium channels, in vitro.
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Zusammenfassung

Es ist eine faszinierende Besonderheit, in welchem Ausmaÿ hoch entwickelte Lebewesen in

der Lage sind, komplexe Umweltstrukturen zu erfassen und zu erlernen. Aktuelle Erkennt-

nisse gehen davon aus, dass Gedächtnisinhalte von vorübergehend koaktiven Nervenzellen

kodiert werden. In derartigen neuronalen Ensembles wird die Aktivität einzelner Zellen

durch zugrundeliegende Netzwerkoszillationen kurzzeitig aufeinander abgestimmt. Im Hip-

pokampus werden Rhythmen oszillierender Netzwerke direkt mit verschiedenen Verhal-

tenszuständen in Verbindung gebracht. Gamma-Oszillationen werden zum Beispiel mit der

Generierung von Gedächtnisinhalten assoziiert, während sporadische Sharp-Wave-Ripple-

Oszillationen bei der Gedächtniskonsolidierung eine wichtige Rolle spielen.

Während neuronaler Ensemble-Aktivität werden teilnehmende Zellen selektiv aktiviert,

obwohl sie verstreut im neuronalen Gewebe liegen. Eine derartige räumliche als auch

zeitliche Spezi�tät erfordert dynamische Funktionsmechanismen. Ziel dieser Dissertation

war es unter anderem, die Komplexität der Ausbildung funktioneller neuronaler Ensem-

bles anhand spontaner Sharp-Wave-Ripple-Oszillationen in vitro näher zu verstehen. Dabei

kombinierten wir jüngste physiologische und anatomische Erkenntnisse über hippokampale

Zellen. Einerseits sind Aktionspotentiale mit einer ektopischenWellenform in einigen Zellen

beobachtbar, andererseits weist eine Subpolulation von Neuronen eine eigenartige Position-

ierung des Axons auf. Wir konnten einen Zusammenhang zwischen beiden Beobachtungen

herstellen. Einzig Zellen, deren Axone an einem Dendriten entspringen, waren in der Lage,

an Sharp-Wave-Ripple-Oszillationen teilzunehmen.

Da hippokampale Netzwerkzustände mit spezi�schen Verhaltensmustern assoziiert sind,

untersuchten wir weiterhin die Modulation neuronaler Oszillationen. Es ist bekannt, dass

Oxytocin die Bildung des räumlichen Langzeitgedächtnisses beein�usst. Wir untersuchten

deshalb den E�ekt von Oxytocin auf hippokamaple Netzwerkaktivitäten und konnten

zeigen, dass Oxytocin Sharp-Wave-Ripple-Oszillationen selektiv dämpft, Gamma-Oszil-

lationen dagegen nicht beein�usst.

Weiterhin untersuchten wir einen neuroprotektiven Mechanismus, der auf dem Amyloid-

Vorläuferprotein basiert. Dieses Protein wird zwar mit der Entwicklung von Alzheimer in

Verbindung gebracht, allerdings bietet dessen intrazelluläre Prozessierung auch die Grund-

lage für Neuroprotektion. In dieser Arbeit konnten wir zeigen, dass ein Fragment des

Amyloid-Vorläuferproteins schädigende Ein�üsse von Sauersto�mangel auf hippokampale

Netzwerkoszillationen durch die Beein�ussung von L-Typ-Kalziumkanälen mindert.
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1 Introduction

1.1 The Hippocampal Formation and Its Proposed

Role in Memory

1.1.1 Anatomy and Circuitry

The hippocampal formation is thought to be pivotal for spatial as well as declarative

memory (Buzsaki, 1986; Csicsvari and Dupret, 2014; Ego-Stengel and Wilson, 2010; Kali

and Dayan, 2004). Moreover, it is well known for its behavioral state-dependent neural

oscillations (Buzsaki et al., 1983; O'Keefe, 1976; O'Keefe and Recce, 1993). Thus, it repre-

sents an ideal model system to complement current knowledge about mechanistic principles

of brain rhythms.

As part of the archicortex, the mammalian hippocampal formation lies within the

medial temporal lobe, bilaterally protruding into the lateral ventricles and belonging to

the limbic system of the brain. The origin of the name lies in the structural similarities

between the common seahorse (hippocampus) and the cerebral formation. The hippocam-

pal formation comprises the dentate gyrus (DG), hippocampus proper, subiculum (Sub),

presubiculum, parasubiculum and the entorhinal cortex (EC), as seen in �gure 1.1 A.

The hippocampus proper, also simply called hippocampus, is a sub-area of the hip-
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1 Introduction

Figure 1.1: Scheme of the rodent hippocampal formation and a representative CA1

pyramidal cell.

A. Drawing of the rodent hippocampal formation: As indicated in rose, the hippocampal
formation consists of the larger areas DG, CA3, CA2, CA1, Sub and EC. The EC projects to CA1
via the temporoammonic pathway (ta) and to the DG via the perforant path (pp). The DG provides
inputs to CA3 through mossy �bers (mf). The CA1 region resembles the main output region of
the hippocampus proper, receiving most of the excitatory inputs from CA3 via the Scha�er

collaterals (sc). Adapted from Amaral et al. (2007), original drawing from Santiago Ramon y
Cajal in Histologie de Système Nerveux from 1911. B. CA1 pyramidal cell and indicated

hippocampal layers. Basal dendrites branch from the soma inside stratum pyramidale into
stratum oriens. For the most part, Scha�er collaterals target apical dendrites in the stratum

radiatum, albeit also reaching apical CA1 dendrites through the stratum lacunosum-moleculare,
together with EC inputs. The axon is indicated in blue. Scale bar = 100 µm. Adapted from
Ishizuka et al. (1995).

pocampal formation. Due to its macroscopic shape, ancient scholars coined the hippocamps

cornu ammonis, which is Latin for horn of the ram. Thus, it is divided into the cornu am-

monis (CA) regions CA3, CA2 and CA1 (�gure 1.1 A). Evolutionary, the main structure

and �ber connections of the hippocampus are preserved across mammals. The EC projects

axons to the DG forming the perforant path (�gure 1.1 A). CA3 receives three main exci-

tatory inputs. Most prominently DG cells project their axons to CA3, forming the mossy

�bers (�gure, 1.1 A; Blackstad et al. 1970; Swanson et al. 1978). EC layer II neurons (Wit-

ter, 1993) as well as recurrent collateral CA3 inputs also target the CA3 region (Amaral

and Lavenex, 2007). Due to its extensive recurrent connections CA3 is considered as an

autoassociation network for pattern completion (Rolls, 1996, 2013).

CA1 on the other hand receives most of the excitatory input to basal and apical den-
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1.1 The Hippocampal Formation and Its Proposed Role in Memory

drites via the Scha�er collaterals (sc; �gure 1.1 A). Further, layer III medial EC neurons

also provide excitatory inputs to CA1 through the temporoammonic pathway (ta; �gure

1.1 A; Doller and Weight 1982), resembling the CA1-EC loop of information processing

(Amaral and Witter, 1989; Witter et al., 2000). The hippocampal CA1 region represents

the main output area of the hippocampus, playing a crucial role in the retrieval of context-

dependent memory (Ji and Maren, 2008) as well as in the detection of novel environmental

features (Fyhn et al., 2002; Hasselmo and Schnell, 1994; Lee et al., 2004).

The hippocampus is a layered structure (�gure 1.1 B), in which principal cell somata

are condensed into a single layer, called the stratum pyramidale. It comprises somata of

pyramidal cells and inhibitory interneurons. However, interneurons of several subtypes are

found in each hippocampal layer (Klausberger and Somogyi, 2008). In the CA sub-areas,

basal dendrites from pyramidal cells reach into the stratum oriens, the deeper layer of the

hippocampus. In the stratum radiatum bundled CA3 pyramidal cell axons, called Scha�er

collateral �bers, project onto CA1 apical dendrites. In CA3 only, stratum lucidum is po-

sitioned between strata pyramidale and radiatum, containing mossy �bers from the DG.

In the more super�cial hippocampal layers, �bers from EC cells reach distal CA apical

dendrites through stratum lacunosum-moleculare (�gure 1.1 B; Amaral and Witter 1989;

Witter et al. 2000).

In the hippocampal formation neurons are highly plastic and well interconnected, to

allow integration of multimodal sensory information from the neocortex. According to a

prominent model, the unidirectional �ow of information partly follows the so-called trisy-

naptic loop (EC
1.−−→ DG

2.−−→ CA3
3.−−→ CA1; Amaral and Witter 1989; Andersen et al.

1971).

1.1.2 A Spatial Map in the Hippocampus

As a structure of interest, the hippocampal formation caught the particular attention

of scientists in the late 1950s. In the course of an epilepsy treatment, parts of the medial

temporal lobe were surgically removed from patient H.M, who su�ered from memory con-
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solidation de�cits as a consequences. This indicated an essential role of the hippocampal

formation in learning and memory.

The potential role of the hippocampus in memory was expanded by György Buzsáki.

He postulated a consecutive "two-stage model of memory trace formation" (Buzsaki, 1989).

Accordingly, in exploring animals, inputs to the hippocampus lead to di�erentiating synap-

tic potentiation, which results in speci�c neuronal activity and hence memory formation.

Indeed, in vivo single cell recordings in rodents provided experimental evidence for a se-

lective activation of individual pyramidal cells, depending on the local position of the

respective animal (O'Keefe and Dostrovsky, 1971; Yartsev and Ulanovsky, 2013). These

principal cells are therefore called place cells (O'Keefe, 1976). During immobility or slow

wave sleep, these place cells are then reactivated, which leads to the consolidation of previ-

ously formed memory traces. Consequently, it is suggested that the hippocampus forms a

cognitive map, rendering it to be an essential structure for spatial mapping (O'Keefe and

Dostrovsky, 1971; O'Keefe and Nadel, 1978).

1.2 Axon Initial Segment - The Action Potential

Initiation Zone

1.2.1 Structure and Function

In neurons, the axon initial segment (AIS) represents the key excitable domain that

orchestrates AP initiation, propagation, and backpropagation. As part of the axon, it

forms a 20-70 µm unmyelinated and heterogeneous microdomain that separates the so-

matic from the axonal compartment (Clark et al., 2005; Palmer and Stuart, 2006; Peters

et al., 1968). The AIS enables a rapid and de�ned membrane depolarization via expression

of a variety of transient and persistent voltage-gated ion channels (Hodgkin and Huxley,

1952; Kole and Stuart, 2012). In general, APs are preferentially elicited at the distal AIS,
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due to low-threshold sodium channels. (Meeks and Mennerick, 2007; Palmer and Stuart,

2006; Schmidt-Hieber et al., 2008).

Multiple sodium and potassium channels are expressed at the AIS, which are essen-

tial for axonal and thus cellular excitability. Experiments suggest that the AP voltage

threshold is lower in the axon than at other neuronal structures, which enables a reliable

AP generation (Kole and Stuart, 2008). Consequently, overall sodium channel density is

found to be highest at the AIS in comparison to other neuronal compartments. The precise

ratio is proposed to range from 5- to 40-fold, but is still under debate (Fleidervish et al.,

2010; Kole and Stuart, 2008; Lorincz and Nusser, 2010; Schmidt-Hieber and Bischofberger,

2010).

Along the AIS there are multiple subtypes of sodium channel subunits (Nav). They

vary with respect to localization, electrophysiological kinetic and activation properties.

Hence, they ful�ll distinct roles in AP generation. The subtype composition and posi-

tioning of ion conductances along the AIS has been shown to vary with cell type and

age (Lorincz and Nusser, 2008). The two major sodium channel subtypes are Nav1.2 and

Nav1.6. Nav1.2 channels are positioned at the proximal end of pyramidal cells' AIS. Their

biophysical properties facilitate AP backpropagation into the soma and dendrites. Nav1.6

conductances on the other hand are primarily expressed at the distal end of the AIS. They

show a lowered activation voltage as compared to Nav1.2 channels and are crucial for ini-

tiation and orthodromic AP propagation (Hu et al., 2009).

Di�erent subtypes of potassium channel subunits (Kv) play an essential role in regu-

lating the axonal voltage threshold and AP properties in the AIS (Alle and Geiger, 2006;

Geiger and Jonas, 2000). Brie�y, Kv1 conductances at the distal AIS shape the axonal

spike width (Kole et al., 2007; Shu et al., 2007), whereas axonal excitability is modulated

by Kv7.2 and Kv7.3 (Johnston et al., 2010). They are the mediators of the so-called M-

current, which lowers the spike threshold of the axon. However, some potassium channel

types are less restricted to the AIS, like Kv3.1 (Elezgarai et al., 2003; Wang et al., 1998).

Most ion channels are anchored to the AIS by the two co-localizing sca�olding proteins

ankyrin-G and β-IV-spectrin. Both are commonly used as marker proteins for the AIS.
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The expression of Ankyrin-G and β-IV-spectrin is restricted to the AIS as well as nodes

of Ranvier (Kole and Stuart, 2012; Kordeli et al., 1995). They link the cellular cytoskele-

ton and the membrane proteins (Yang et al., 2007). Ankyrin-G ful�lls a vital role in the

AIS development whereas β-IV-spectrin is thought to be important for AIS maintenance

and stabilization (Hedstrom et al., 2007; Ogawa and Rasband, 2008). Animals lacking

β-IV-spectrin showed mislocalization of sodium channels (Komada and Soriano, 2002).

1.2.2 Plasticity and Location

The shape and location of the AIS is not as rigid as previously thought. Ion channels

are not strictly �xed in the AIS (Kuba et al., 2014). Exceeding or deprived stimulation

of neurons results in a translocation of sodium channels. Thereby, respective shorten-

ing (Grubb and Burrone, 2010) or distal shifting (Kuba et al., 2010, 2015) of the AIS

modulates neuronal excitability. While abundant stimulation increases the AP initiation

threshold, diminution of synaptic input reduces it (Grubb and Burrone, 2010; Kuba et al.,

2014, 2010). In addition, the AIS is targeted by inhibitory interneurons, which control AP

initiation and backpropagation (Zhu et al., 2004). Activity dependent adaption of the AIS

are assumed to exhibit a homeostatic mechanism, sustaining the intrinsic excitability of a

neuron. Although still largely unknown, AIS plasticity mechanisms are assumed to rely on

intracellular calcium entry (Grubb et al., 2011).

Recent evidence shows a heterogeneity in the axon and thereby also AIS positioning.

Apart from the somatic origin, axons can also derive from neuronal dendrites, being ob-

served in neuroendocrine cells (Herde et al., 2013), dopaminergic substantia nigra neurons

(Hausser et al., 1995), interneurons (Martina et al., 2000), neocortical pyramidal cells (Lor-

incz and Nusser, 2008) as well as hippocampal principal neurons (Thome et al., 2014). In

the hippocampal area CA1, axons of approximately 50 % of pyramidal cells emerge from a

basal dendrite instead of the soma. Synaptic inputs to these axon-carrying dendrites result

in greater excitation than to non-axon-carrying dendrites (Thome et al., 2014). Moreover,

due to the dendritic location of the axon, respective cells exhibit synaptic integration in
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dendritic compartments, rather than in the soma. Taken together, published data ascribe

a privileged role to axon-carrying branches with respect to input processing in the such

cells (Hausser et al., 1995; Thome et al., 2014).

1.3 Hippocampal Network Oscillations

Memory processes involve the coordinated activity of distributed cells, forming so

called neuronal ensembles (Hebb, 1949). Their information content is suggested to be

de�ned by the activity pattern of participating cells (Nakajima et al., 1986; O'Keefe, 1976;

Vandecasteele et al., 2014). To achieve synchrony, neuronal rhythms are thought to provide

a temporal framework for ensemble activities, organizing the order of spiking within an

ensemble (Buzsaki and Draguhn, 2004; Engel et al., 2001).

Figure 1.2: Schematic �eld potentials of theta (black) and gamma (orange) rhythms

in the hippocampus.

A. Scheme of place cell �ring during locomotion. Place �elds and place cell spikes are
illustrated in corresponding colors. Place cell activity is precisely locked to theta, whereby the
rate of AP �ring increases until the center is reached, as the animal traverses a place �eld. Peak
�ring emerges at the theta trough and indicates the center of the place �eld. B. Scheme of

interactions between theta and gamma oscillations. Memory representations are illustrated
as the ensembles x and y. They are activated with each theta cycle, precisely timed by gamma.
Adapted from Jensen and Colgin (2007)

Thus, such rhythms are postulated to provide an indispensable temporal framework for in-

formation processing and transfer (Klausberger and Somogyi, 2008; Salinas and Sejnowski,
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2001). Hippocampal network oscillations include theta rhythms (∼4-12 Hz; Vanderwolf

1969), gamma rhythms (∼25-150 Hz; Bragin et al. 1995; Lasztoczi and Klausberger 2017)

and sharp wave-ripple complexes (∼0.01-3 Hz sharp waves with ∼110-250 Hz superimposed

ripples; Buzsaki 1986).

1.3.1 Theta Rhythms (∼4-12Hz)

Theta oscillations occur during active exploration, locomotion and rapid eye movement

(REM) sleep (�gure 1.2 A; Vanderwolf 1969). Hippocampal theta oscillations are main-

tained by cholinergic medial septum input (Yoder and Pang, 2005), which is thought to

provide excitation as well as to antagonize other types of oscillations, such as sharp wave-

ripple complexes (SPW-Rs) (Nakajima et al., 1986; Vandecasteele et al., 2014). Theta

oscillations enable a de�ned order of principal cell �ring (Feng et al., 2015; Wang et al.,

2015).

Mechanistically, theta is generated through rhythmic inhibition of hippocampal in-

hibitory interneurons by parvalbumin-positive (PV+) pacemaking interneurons in the me-

dial septum (Freund and Antal, 1988). The �uctuating suppression of inhibition in turn

disinhibits pyramidal cells temporally (Freund and Antal, 1988). Thereby, the �ring of

hippocampal interneurons as well as pyramidal cells are phase-locked to distinct phases of

the theta cycle (Somogyi et al., 2014). As the animal transverses through a place �eld,

hippocampal PV+ interneurons rhythmically inhibit and thereby synchronize place cell

�ring (Varga et al., 2012). Thereby, a place cell elicits APs to earlier phases of the theta

cycle, while the animal passes its respective place �eld (�gure 1.2 A; O'Keefe and Recce

1993; Skaggs et al. 1996).

Additionally, intrinsic resonance properties of hippocampal pyramidal cells contribute

to theta generation. Subthreshold oscillations are established by slow voltage-gated cationic

currents through potassium and hyperpolarization-activated cyclic nucleotide�gated (HCN)

channels, called M- and h-current, respectively (Hu et al., 2002). Together with local in-

terneuron characteristics, these cationic currents lead to the generation of hippocampal
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theta oscillations without septal inputs in vitro (Goutagny et al., 2009). However, in vivo

hippocampal theta rhythms are accompanied by septal inputs (Mizumori et al., 1990).

1.3.2 Gamma Rhythms (∼25-150Hz)

In vivo, gamma oscillations occur during multiple behavioral states, showing a broad

range of frequencies. Conceptually, they are thought to provide a binding mechanism,

synchronizing distributed cells into ensembles, with a millisecond range precision (Buzsaki

and Draguhn, 2004). Gamma are nested in theta oscillations and thereby modulated by

the respective theta rhythms (�gure 1.2 B).

Evidence suggests that there are functionally di�erent types of gamma oscillations,

depending on the frequency (Bieri et al., 2014; Lasztoczi and Klausberger, 2014). An il-

lustrating scheme is depicted in �gure 1.2 B. Frequencies in the range of ∼25-50 Hz were

termed slow gamma, while frequencies in the range ∼65-150 Hz have been named fast

gamma (Colgin et al., 2009). Slow and fast gamma are thought to foster synchronization

between distinct brain regions (Womelsdorf et al., 2007), separating competing inputs to

the hippocampus, depending on the animal's behavior (Bieri et al., 2014). Slow and fast

gamma oscillations are associated near the theta trough, where the peak of slow gamma

is aligned with the early descending theta phase (Colgin et al., 2009; Schomburg et al.,

2014). It is followed by fast gamma, appearing at the peak of CA1 pyramidal cell �ring

probability (Colgin et al., 2009; Lasztoczi and Klausberger, 2014).

Fast gamma oscillations in CA1 synchronize with the medial entorhinal cortex (MEC),

presumably enhancing signaling from the MEC to CA1 (Bragin et al., 1995; Colgin et al.,

2009). CA1 plasticity is thought to be most e�cient during the theta phase of fast gamma,

which is therefore hypothesized to be essential for memory encoding (Huerta and Lisman,

1995; Jutras et al., 2009). During the slow gamma oscillation states CA1 on the other hand

synchronizes with CA3, which is likely to promote transmission from CA3 to CA1 (Bragin

et al., 1995; Colgin et al., 2009; Montgomery and Buzsaki, 2007). Slow gamma might play

a crucial role in memory retrieval (Hasselmo et al., 2002). The portion of CA1 pyramidal
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cells being phase-locked to slow gamma is decreased as compared to fast gamma (Colgin

et al., 2009). Data suggests that slow gamma is driven by transient feedforward inhibition

from CA3 (Csicsvari et al., 2003). However, the selection mechanism of pyramidal cells

participating during gamma is not known yet.

In vitro, multiple pharmacological gamma models have been described for hippocam-

pal brain slice approaches. The muscarinic acetylcholine receptor agonist carbachol induces

gamma oscillations (∼35-70 Hz; Fellous and Sejnowski 2000; Fisahn et al. 1998), simulating

medial cholinergic septum input to the hippocampus and enhancing synchronous spiking

of CA1 pyramidal neurons (Ovsepian, 2006). Carbachol-based gamma oscillations are

shown to be generated by inhibitory interneurons (Gulyas et al., 2010). Furthermore, the

ionotropic glutamate receptor agonist kainate also induces tonic excitation, resulting in

gamma oscillations in the frequency range of ∼20-80 Hz (Fisahn et al. 2004; Fuchs et al.

2007). As a third prominent approach, Whittington et al. (1995) describe an interneuron

gamma model. It is induced by activating metabotropic glutamate receptors, which results

in the excitation and consecutive synchronization of inhibitory interneuron networks. All

pharmacological gamma induction are modi�ed by modulation of GABAA receptors (Bar-

tos et al., 2007; Fisahn et al., 2004; Traub et al., 1996; Whittington et al., 1995), which

underlines the importance of inhibition in gamma oscillatory activity. Moreover, gamma

oscillations can be evoked by optogenetic stimulation (Akam et al., 2012; Butler et al.,

2016; Pastoll et al., 2013). The light-gated ion channel channelrhodopsin was expressed in

either pyramidal cells (Akam et al., 2012; Butler et al., 2016) or inhibitory interneurons

(Pastoll et al., 2013) and the respective cells were stimulated with increasing light intensi-

ties. Upon light-evoked activation the local network resonates in a gamma frequency range

(∼24-80 Hz).
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1.3.3 Sharp Wave-Ripple Oscillations (∼0.01-3 Hz / ∼110-250 Hz)

Figure 1.3: Example in vitro

sharp-wave ripple.

During behavioral states which are
not associated with theta rhythms,
like grooming (indicated by the mouse
drawing), SPW-R oscillations can be
observed in the hippocampal CA re-
gion. Top: Vertical bars indicate tem-
porally compressed spiking of reacti-
vated place cells, which correspond to
�gure 1.2 A. First trace: Original sharp
wave-ripple recorded in CA1 stratum
pyramidale, in vitro. Below di�erent
frequency bands are illustrated. Sharp
wave: low pass. Ripple oscillations:
band pass. Multi-unit activity: high
pass.

SPW-Rs, comprising ∼0.01-3 Hz sharp waves

and ∼110-250 Hz superimposed ripples, are thought

to originate in the hippocampus (Buzsaki, 1986;

Maier et al., 2003; Schlinglo� et al., 2014), as illus-

trated in �gure 1.3. They are believed to be electro-

physiological biomarkers for memory consolidation

(Buzsaki, 2015). Abolition of SPW-Rs leads to an

impaired performance in memory tasks (Girardeau

et al., 2009). As pointed out in section 1.1.2, dur-

ing active waking subsets of CA3 and CA1 pyrami-

dal cells form receptive �elds for speci�c locations

in space, namely place �elds. During awake stillness

and slow wave sleep these internal representations of

the external world are consolidated (Csicsvari and

Dupret, 2014; Kali and Dayan, 2004). For this pur-

pose, previously activated place cells are replayed in

a timely compressed manner during SPW-Rs. Evi-

dence suggests that SPW-Rs precede cortical spin-

dle activity (Siapas and Wilson, 1998). This indi-

cates an essential role in encoding and consolidating

episodic and declarative memories. (Karlsson and

Frank, 2009; Lee and Wilson, 2002; Ramadan et al., 2009; Squire, 1992).

Superimposed ripples, however, re�ect the synchronous consecutive spiking of CA1

principal and inhibitory neurons (Buzsaki et al., 1992; English et al., 2014). According

to the "two-stage model of memory trace formation", SPW-Rs are initiated by population

burst of CA3 pyramidal cells (section 1.1.2; Buzsaki 1989). However, the two-stage model

might have to be revised. Recent evidence suggests an essential role of CA2 neurons, which
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elicit population bursts prior to SPW-Rs, recorded in CA3 (Oliva et al., 2016).

The origin of the local �eld potential during sharp waves in the stratum pyramidale

is still being debated. Sharp waves recorded in the stratum pyramidale potentially result

from inhibitory inputs onto pyramidal cells (Schonberger et al., 2014; Valero et al., 2015).

Whereas sharp waves which are observed in stratum radiatum might represent the excita-

tory population burst inputs onto pyramidal cell apical dendrites (Buzsaki, 1989; Buzsaki

et al., 1983). The discussion about the hippocampal region of SPW-Rs initiation is still

ongoing.

Ripple-Associated Ensemble Generation

The spiking order of principle cells within neuronal ensembles dynamically depends

on the behavior of the animal. Therefore, ensemble formation is unlikely to be prede�ned

by hard-wired anatomical connections. Consequently, regarding ripple-associated ensem-

bles, multiple ensemble building principles have been proposed. Ripple generation in CA1

constitutes a local process. Independent of CA3, CA1 place cell �ring is phase-locked to

CA1 but not to CA3 ripples (Sullivan et al., 2011). In accordance, CA3 and CA1 ripples

are non-coherent and exhibit di�erent frequency ranges (Csicsvari et al., 1999a; Sullivan

et al., 2011).

At the current state of knowledge, hippocampal CA1 ripple oscillations are proposed

to be explained by the following �ve non-exclusive mechanisms (�gure 1.4).

A Reciprocal mechanism (�gure 1.4 A): The �rst model proposes that inter-

actions between inhibitory interneurons are solely responsible to generate the fast ripple

rhythm. The entire neuronal network is then synchronized via feedforward inhibition of

inhibitory interneuron networks onto excitatory pyramidal cells. The required excitatory

stimulus that activates the respective interneurons is provided by sharp wave activity.

Their membrane potential starts to oscillate, presumably through the interplay between

persistent sodium and slowly inactivating potassium conductance (Buzsaki and Chrobak,

1995). Next, the interneuron network oscillations synchronize due to γ-aminobutyric acid
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A (GABAA) synaptic time constants of reciprocal inhibition and intrinsic membrane dy-

namics (Geisler et al., 2005; Whittington et al., 1995). Interneuron networks are thus

believed to impose periodic inhibitory input onto pyramidal cells.

Figure 1.4: Scheme of proposed models for hippocampal ripple generation mecha-

nisms in CA1.

Inhibitory interneurons and pyramidal cells are simpli�ed by red circles and blue triangles, respec-
tively. Azure arrows indicate broad sharp wave-driven excitation. Black arrow-completing lines
show local excitation. Black-completing lines show local inhibition. A. Reciprocal mechanism.

Upon excitatory sharp wave input, local interneurons synchronize through feedback inhibition. In-
hibitory rhythm is conveyed onto pyramidal cells, which results in ripple frequency oscillations.
The scheme was drawn based on evidence from Buzsaki and Chrobak (1995); Geisler et al. (2005);
Taxidis et al. (2012); Ylinen et al. (1995) and Whittington et al. (1995). B. Feedback mech-

anism. Excitatory input onto both interneurons and pyramidal cells leads to ripple frequency
oscillations, due to GABAergic synaptic time constants and intrinsic membrane dynamics. The
scheme was drawn based on evidence from Brunel and Wang (2003) and Ylinen et al. (1995). C.
Reciprocal feedback mechanism. The sole activation of pyramidal cells by incoming sharp
waves leads to feed-forward activation of perisomatic interneurons. Eventually, direct interactions
between inhibitory and excitatory neurons results in ripple oscillations. The scheme was drawn
based on evidence from Geisler et al. (2005); Racz et al. (2009); Schlinglo� et al. (2014) and Stark
et al. (2014). D. Mechanism based on non-linear dendritic integration. Here, interneurons
only ful�ll a balancing function. Excitation of pyramidal cells is ampli�ed by dendritic supralinear
integration (indicated by green arrows). These cause dendritic sodium spikes, which synchronize
pyramidal cells in the ripple frequency range. The scheme was drawn based on evidence from
Ariav et al. (2003); Gasparini and Magee (2006); Gasparini et al. (2004) and Memmesheimer
(2010). E. Mechanism based on axo-axonal gap junctions. Axonal gap junctions connect
the axonal meshes of multiple pyramidal cells (blue dashed lines). Sharp wave input consequently
results in ectopic APs, exciting other cells. Networks are thereby synchronized in high-frequency
oscillations. The scheme was drawn based on evidence from Draguhn et al. (1998); Maex and
De Schutter (2007); Nimmrich et al. (2005); Schmitz et al. (2001); Traub and Bibbig (2000);
Traub et al. (1999) and Traub et al. (2012).

The resulting frequency and synchrony yield oscillation activity in the ripple frequency
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range (Taxidis et al., 2012; Ylinen et al., 1995).

Following this mechanism, a sharp wave from CA3 excites CA1 interneurons, which

then synchronize and provide intermittent inhibition to spontaneously active CA1 principal

cells, resulting in oscillatory activity of the network in the form of ripples.

B Feedback mechanism (�gure 1.4 B): Reduced inhibitory to excitatory mod-

els suggest that fast oscillations can be generated via feedback inhibition (Ylinen et al.,

1995). Inhibitory as well as excitatory cells receive excitation via network-entrained inputs,

for instance through the CA3 input. The resulting oscillation frequency depends on the

synaptic time constants and relative time scales of excitatory and inhibitory conductances

(Brunel and Wang, 2003).

C Reciprocal feedback mechanism (�gure 1.4 C): Evidence suggests that sole

activation of pyramidal cells can be su�cient to induce high-frequency oscillations in hip-

pocampal networks via feedback inhibition (Racz et al., 2009; Stark et al., 2014). Follow-

ing the reciprocal feedback mechanism, pyramidal cells activate perisomatic interneurons,

which in turn inhibit and thus pace the spiking of excitatory cells (Schlinglo� et al., 2014;

Stark et al., 2014). The time constants of synaptic interaction between the two cell types

then lead to fast oscillating network activity, fueled predominantly by excitatory input to

principal cells (Geisler et al., 2005).

D Mechanism based on non-linear dendritic integration (�gure 1.4 D):

In silico, non-linear dendritic integration is suggested to be a stable mechanism for en-

hanced synchrony propagation in randomly connected neuronal networks (Jahnke et al.,

2015; Memmesheimer, 2010; Memmesheimer and Timme, 2012). Dendritic sodium spikes

mediate supra-linear integration. They are elicited by synchronous inputs to dendritic ar-

bors (Ariav et al., 2003; Gasparini and Magee, 2006; Gasparini et al., 2004; Nevian et al.,

2007). Consequently, dendritic spikes depolarize the soma rapidly, resulting in somatic

APs, characterized by high temporal precision (Ariav et al., 2003).

In current CA1 models, the frequency of oscillations is determined by the timing

of dendritic spikes and delay properties of the principal cell connections (Memmesheimer,
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2010). In this way, dendritic spikes are essential for the generation of robust periodic activ-

ity with high-frequency oscillations, in hippocampal CA1 of about 200Hz, while inhibitory

interneuron ful�ll a global function (Memmesheimer, 2010).

E Mechanism based on axo-axonal gap junctions (�gure 1.4 E): In princi-

ple, CA3 sharp waves can also result in fast oscillatory activity in CA1 via axo-axonal gap

junctions between principal cells (Draguhn et al., 1998; Traub and Bibbig, 2000; Traub

et al., 1999). These connections form an interconnected axonal mesh and in that way a

sparse network of CA1 pyramidal cells. CA3 input onto CA1 is thereby multiplied in the

axonal bulk of interconnected principal cells, resulting in axonal ectopic APs that lead

to the excitation of other excitatory and inhibitory cells (Maex and De Schutter, 2007;

Schmitz et al., 2001; Traub and Bibbig, 2000; Traub et al., 1999). Ectopic APs, also called

antidromic spikes, represent APs that lack the positive charging of the somatodendritic

compartment prior to the steep AP rise (Schmitz et al., 2001).

The resulting network activity resembles a burst of oscillations (Traub and Bibbig,

2000; Traub et al., 1999, 2012) of which the underlying high-frequency activity is sug-

gested to be independent of synaptic transmission (Draguhn et al., 1998; Nimmrich et al.,

2005). Interestingly, there is experimental evidence showing the proposed spiking behav-

ior of pyramidal cells during SPW-Rs. Intracellular recordings from CA1 pyramidal cells

revealed that about 41 % of the cells elicited ectopic-like APs during SPW-Rs in vitro

(Bahner et al., 2011). The peculiar waveform suggests that ripple-associated APs reach

the soma antidromically (Bahner et al., 2011), underlining the gap junction-based ripple

mechanism.

Indeed, respective CA1 pyramidal cells are able to overcome SPW-R-entrained shunt-

ing inhibition. However, the exact mechanisms are still unknown.
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1.4 The Potential of Endogenous Factors to Modulate

and Protect Neuronal Networks

The spiking behavior of single neurons is controlled by rhythmical excitation and inhi-

bition. Neuronal oscillations are thought to synchronize individual neurons into functional

ensembles (Buzsaki and Draguhn, 2004; Engel et al., 2001). Endogenous and exogenous

factors can modulate encoded information by either disturbing its content or enhancing

coding e�cacy. The neuropeptide oxytocin as well as the amyloid precursor protein have

been shown to in�uence the activity of individual neurons. Both intrinsic factors are there-

fore postulated to ful�ll vital roles in higher order information processing and storage.

However, up to this date they remain to be investigated in detail.

1.4.1 The Hypothalamic Neuropeptide Oxytocin

The word oxytocin already contains information about the neuropeptide's impact on

mammals. It originates from the Greek word okytokine, translating to 'quick birth'. Oxy-

tocin facilitates pregnancy, lactation, delivery and maternal care (Feldman et al., 2010,

2011, 2007; Magon and Kalra, 2011). Oxytocin further modulates pregnancy-independent

complex emotional and social behaviors (Kirsch et al., 2005; Kosfeld et al., 2005; Ross and

Young, 2009) as well as stress alleviation and learning in mammals (Heinrichs et al., 2003,

2004).

Oxytocin is secreted by magnocellular as well as parvocellular cells. Magnocellular

neurons are found in the paraventricular, supraoptic and accessory nuclei of the hypotha-

lamus, projecting their axons to the posterior pituitary. They secrete the structurally sim-

ilar neuropeptides oxytocin and vasopressin (Du Vigneaud et al., 1953; Katsoyannis and

Du Vigneaud, 1958). Magnocellular neurons are evolutionary preserved cells, being found

in reptilians, avians and mammalians (Knobloch and Grinevich, 2014). Recent evidence
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suggests that magnocellular neurons form long-range connections to multiple forebrain

regions, such as the central nucleus of the amygdala, presumably facilitating the named

behavioral states (Althammer and Grinevich, 2017; Knobloch et al., 2012).

Oxytocin releasing parvocellular neurons are found in the paraventricular nucleus.

Their axons project to the brain stem and spinal cord (Swanson and Kuypers, 1980; Swan-

son and Sawchenko, 1983), and possibly to the median eminence (Fink et al., 1988; Van-

desande et al., 1977). Parvocellular neurons modulate autonomous functions like breath-

ing (Mack et al., 2002), food intake (Blevins et al., 2004) and even pain perception (Rash

et al., 2014). Parvocellular cells send oxytonergic projections to the dopamine system of

the midbrain, amongst other, modulating the pars compacta of the substantia nigra and

the ventral tegmental area (Xiao et al., 2017). The latter region is known to connect to

the hippocampus, possibly in�uencing memory formation (Heinrichs et al., 2004).

Oxytocin and its receptor are widely found in the brain (Marlin and Froemke, 2017).

In the hippocampus ORs are located in the regions DG, CA3, CA2 and CA1 (Hammock

and Levitt, 2013; Mitre et al., 2016; Raam et al., 2017; Yoshida et al., 2009), which indi-

cates an essential role of oxytocin in memory. Tomizawa et al. (2003) for instance showed

that oxytocin facilitates long-term potentiation (LTP) during motherhood, improving long-

term spatial learning. On the cellular level oxytocin enhances the activity of fast-spiking

inhibitory interneurons, thereby enhancing the �delity of AP transmission (Owen et al.,

2013). As a result, oxytocin increases the timing precision of pyramidal cell �ring as well

as the signal-to-noise ratios (Owen et al., 2013).

All in all, oxytocin appears to play a vital role in modulating information precessing

in the brain. However, its e�ect on network rhythms remains to be elusive.
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1 Introduction

1.4.2 Amyloid Precursor Protein - A Fine Line Between

Neurotoxicity and Neuroprotection

Alzheimer's disease represents the most common cause of dementia in developed coun-

tries (Prince et al., 2015). Interestingly, patients with hypoxic-ischemic brain injuries are

more susceptible to Alzheimer's disease (Zhang and Le, 2010). Hypoxic conditions are

accompanied by a dramatic increase in intracellular calcium levels, leading to neurodegen-

eration and apoptosis (Berridge, 2010).

Figure 1.5: Scheme of amyloid precursor protein metabolism.

Amyloid precursor protein (APP; surrounded by a dashed square) is located in the neuronal
membrane and can be cleaved by α-, β-, and γ-secretase. The cleavage sites are indicated by
black arrows. Following the non-amyloidogenic pathway, α-secretase cleaves APP within the
amyloid-β domain, generating APPsα (soluble N-terminus fragment) and a non-amyloidogenic C-
terminal fragment. Thereby, α-secretase averts the formation of amyloid-β (Aβ). The membrane-
bound C-terminal is subsequently cleaved by γ-secretase, resulting in an amyloid precursor protein
intracellular domain (AICD) and a P3 peptide (P3). In the amyloidogenic pathway, β-secretase
cleaves APP at the beginning of the amyloid-β domain, generating APPsβ (soluble N-terminus
fragment) and an amyloidogenic C-terminal fragment. The latter one is subsequently cleaved
by γ-secretase, which results in the generation of Aβ and an AICD. Adapted from Nicolas and
Hassan (2014).
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1.4 The Potential of Endogenous Factors to Modulate and Protect Neuronal Networks

In Alzheimer's disease, deposition of amyloid plaques in the extracellular space are

assumed to play a major role in the pathogenesis of the disease (Murphy and LeVine, 2010).

Amyloid plaques are formed by amyloid-β, a cleavage product of the amyloid precursor

protein (APP; �gure 1.5). They can have profoundly negative e�ects on hippocampal

network oscillations (Goutagny et al., 2013; Scott et al., 2012). In contrast, data from

rodents suggest that APP itself ful�lls a neuroprotective function against cellular stress

(Kogel et al., 2012). APP overexpression even decreases the size of brain infarct volumes

(Clarke et al., 2007), while lacking APP leads to increased acute mortality after hypoxic-

ischemic brain injuries (Koike et al., 2012). APPsα and APPsβ are the two direct soluble

cleavage products of APP, cleaved by α- and β-secretase, respectively (�gure 1.5). However,

as opposed to APPsβ (Hick et al., 2015) APPsα facilitates multiple positive e�ects on

neuronal encoding, rescuing plasticity and behavioral de�cits of APP-/- animals (Hick et al.,

2015; Ring et al., 2007). Astonishingly, APPsα in fact shows memory enhancing e�ects

when applied intraventricularly (Meziane et al., 1998). APPsα is secreted upon neuronal

activity (Gakhar-Koppole et al., 2008; Kirazov et al., 1997), exerting neuroprotective and

trophic e�ects (Fol et al., 2016; Hick et al., 2015; Plummer et al., 2016). So far, the

suggested neuroprotective e�ects of APP and / or APPsα during hypoxia have not been

extensively investigated on the cellular and network level. The impact of a de�ciency in

APPsα on SPW-R oscillations is still open for investigation. However, it is crucial to study

these potentially SPW-R-impairing mechanisms because changes in neuronal oscillations

can have profound e�ects on network oscillations (Goutagny et al., 2013; Scott et al., 2012)

as well as cognitive performance (Girardeau et al., 2009).
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2 Aims of the Study

Within the scope of this thesis, we address the following issues using hippocampal

mouse brain slices:

� Study the selective activation mechanism of individual pyramidal cells in

neuronal ensembles. In vitro pyramidal cells depict a particular spiking behav-

ior during hippocampal ensemble activation. How are single neurons recruited into

neuronal ensembles? Is there a functional relationship between observed spiking be-

haviors and described peculiar anatomical features of speci�c pyramidal cells?

� Investigation of the modulatory impact of oxytocin receptor activation on

network oscillations. Former studies suggest a decisive correlation between oxy-

tocin application and changes in the cognitive performance in human subject groups.

To what extend are hippocampal network oscillations modulated by oxytocin? Are

distinct neural rhythms in�uenced selectively?

To conduct required experiments, we implemented a spatially and temporally precise

illumination system, which enabled us to selectively activate de�ned cell types.

� Find underlying evidence for altered calcium dynamics in amyloid pre-

cursor protein de�cient mice. The amyloid precursor protein appears to ful�ll a

neuroprotective role during ischemic brain injury. Which ion channels are involved

in this protection mechanism and what are the characteristics of the resulting intra-

cellular calcium dynamics?
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3 Materials and Methods

3.1 Applied Drugs

Table 3.1: List of applied drugs

Item Supplier

(2S,3S,4S)-Carboxy-4-(1-

methylethenyl)-3-pyrrolidineacetic

acid

Tocris, Bristol, United Kingdom

Carbamoylcholine chloride Sigma-Aldrich, Steinheim, Germany

DesGly-NH2-d(CH2)5-[D-

Tyr2,Thr4]OVT

Maurice Manning, College of Medicine,

Toledo, USA

Nifedipine Sigma-Aldrich, Steinheim, Germany

L-Glutamic acid monosodium salt

hydrate

Sigma-Aldrich, Steinheim, Germany

[Phenylacetyl1, O-Me-D-Tyr2, Arg6,8,

Lys9]-Vasopressin amide

Sigma-Aldrich, Steinheim, Germany

Picrotoxin Tocris, Bristol, United Kingdom

(Thr4,Gly7)-Oxytocin H-Cys-Tyr-Ile-

Thr-Asn-Cys-Gly-Leu-Gly-NH2

Bachem, Bubendorf, Switzerland

(Arg8)-Vasopressin (H-Cys-Tyr-Phe-

Gln-Asn-Cys-Pro-Arg-Gly-NH2

Bachem, Bubendorf, Switzerland
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3 Materials and Methods

3.2 Animal Handling and Slice Preparation

Animals were treated in accordance with guidelines of the Federation of European

Laboratory Animal Science Associations (FELASA). In our experiments we used male

wild-type (WT, Charles River, Sulzfeld, Germany), APP-/- and APPsα-KI mice with a

C57BL/6 background. APP-/- and APPsα-KI animals were provided by Ulrike Mueller

(Institute for Pharmacy and Molecular Biotechnology, Functional Genomics, Heidelberg

University). Mice were anesthetized by de�ned CO2 in�ux into animal cage. After loss of

the righting re�ex mice were decapitated, the brain was surgically removed and immediately

stored in ice-cold (<4°C) arti�cial cerebrospinal �uid (ACSF), containing in mM: 124

NaCl (AppliChem, Darmstadt, Germany), 3 KCl (AppliChem, Darmstadt, Germany), 1.25

NaH2PO4 (Grüssing, Filsum, Germany), 1.6 CaCl2 (AppliChem, Darmstadt, Germany),

1.8 MgSO4 (Merck, Darmstadt, Germany), 10 glucose (Merck, Darmstadt, Germany), 26

NaHCO3 (Sigma-Aldrich, Steinheim, Germany), saturated with 95 % O2 and 5 % CO2

(pH = 7.4). Frontal and parietal lobes as well as cerebellum were largely removed to

then glue the brain to a virbatome cutting chamber (Leica VT1000S, Leica Biosystems

GmbH, Nussloch, Germany). The following slicing procedure allowed us to obtain 400 µm

thick, horizontal slices. These were quickly transferred to a Haas-type interface recording

chamber (Haas et al., 1979) in which slices were allowed to recover for at least 2 hours and

to record signals under de�ned �ow (1.2 - 1.6 ml / min) of pH-adjusted ACSF at 35 % ±

1 °C.

3.3 Electrophysiology

3.3.1 Standard Local Field Potential Recordings

Glass electrodes (GB200F-10, Science Products, Hofheim, Germany) were pulled to

an opening of about 9-12 µm using a DMZ-Universal-Electrode-Puller (Zeitz, Martinsried,
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3.3 Electrophysiology

Germany) and �lled with ACSF. After lowering such a glass electrode onto the slice surface,

extracellular �eld potentials were recorded in hippocampal stratum pyramidal of CA1.

Field potentials were ampli�ed 100x, �ltered at 2 kHz (lowpass) and at 0.3 Hz (highpass)

using a EXT 10-2F ampli�er (npi electronics, Tamm, Germany), direct-current-�ltered,

digitized at 20 kHz for o�-line analysis (power1401 digital/analog converter, Cambridge

Electronic Design, Cambridge, UK) and sampled with SPIKE2 (Cambridge Electronic

Design, Cambridge, United Kingdrom). Prior to any drug administration baseline SPW-R

activity was recorded for at least 5 minutes.

3.3.2 Single Cell Sharp Electrode Intracellular Recordings

Glass electrodes (GB100F-10, Science Products, Hofheim, Germany) were pulled to

a resistance of 60-150 MΩ using a DMZ-Universal-Electrode-Puller and �lled with 2 M

potassium acetate (Grüssing, Filsum, Germany; pH 7.35) containing 1 % biocytin (Sigma-

Aldrich, Steinheim, Germany). Intracelluar potentials were ampli�ed 10x, �ltered at 8

kHz (lowpass) using Axoclamp 900A ampli�er (Molecular Devices, Biberach an der Riss,

Germany), DC-�ltered, digitized at 20 kHz for o�-line analysis (power1401 digital/analog

converter, Cambridge Electronic Design, Cambridge, United Kingdom) and sampled with

Signal4 (CED, Cambridge, United Kingdom) as well as SPIKE2 software. After impale-

ment cells were stabilized through negative current injection, followed by at least 5 min

of zero current injection. Bridge balance was set and repeatedly adjusted throughout the

recording, by using negative squared current pulses (-200 pA). These were also applied to

calculate input resistance and membrane time constant (-200 pA for 500 ms each, every 2

s). Input resistance was calculated by applying Ohm's law (RInput = Vmeasured / Iinjected).

Membrane time constant was determined by a monoexponential �t of the �rst 50 ms of

negative voltage responses upon current onset. Intrinsic characteristics of cells were mea-

sured through consecutive current steps, ranging from negative to positive currents (200

pA steps, each for 100-500 ms). For post-hoc data analysis cells were required to remain

stable during current-free recording (at least 10 min in total) and to elicit overshooting ac-
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3 Materials and Methods

tion potentials with typical �ring characteristics of pyramidal cells during positive current

injection.

3.3.3 Conductance Analysis and Statistics

Figure 3.1: Example pyramidal cell record-

ing during SPW-Rs and corresponding conduc-

tance changes.

(A) Spontaneously occurring SPW-Rs (top

traces) induced intracellular membrane poten-

tial delfections (bottom traces). Respective po-
tentials are indicated on the left, applied currents are
shown on the right. Gray - individual responses per
SPW-R, black - median of individual responses. (B)
Time course of the input resistance change, in-

duced by SPW-Rs in A. (C) Mean of induced

SPW-R conductance changes. Green - excitatory,
orange - inhibitory. Dotted lines indicate the �rst rip-
ple before the peak of median SPW-R.

Understanding hippocampal en-

semble activity in the brain requires

knowledge about synaptic conductance

inputs to individual principle cells. Es-

timates of synaptic conductances con-

tribute to the understanding of sin-

gle cell recruitment to such temporally

speci�c population activity. They de-

scribe the evolution of the membrane

voltage and in that way provide in-

formation on the nature of networks

inputs. Excitatory and inhibitory in-

puts to a single cells are formed by

various synaptic channels. They af-

fect the membrane voltage according

to their respective characteristic rever-

sal potential and conductance. Com-

bined integration of excitatory and in-

hibitory conductances leads to intracel-

lularly obtainable voltage and current

responses. These do not only depend on conductance amplitudes, kinetics and reversal po-

tential but also on parameters like the time constant of the membrane, resting membrane

potential, leak conductance and the conductance overlap.

For post-hoc conductance calculations individual cells were recorded in conjunction
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3.3 Electrophysiology

with spontaneous SPW-R oscillations (�gure 3.1 A, top). We injected 5 negative squared

current pulses with decreasing amplitude and at least a single positive pulse. Each cur-

rent injection was selected to shift the membrane potential for about 5 mV (�gure 3.1

A, bottom). Time of current injections was either 30 s, with 30 s of current-free record-

ings in between individual pulses (nbaseline = 32, npicrotoxin = 6), or for the duration of

40 occurring SPW-Rs, with 40 SPW-Rs appearing during current-free recordings (nbaseline

= 4, ndynamic clamp = 1). To infer excitatory and inhibitory synaptic conductance from

membrane potential changes we employed a multi-trial method of continuous conductance

estimation of stimulus-evoked voltage de�ections, as originally described by Borg-Graham

et al. (1998). We modi�ed this method for current-clamp recordings, following Priebe and

Ferster (2005). Computational approaches by Koch et al. (1990) lay out that conductance

changes resulting from perisomatic inhibitory basket cell activity can be recorded at the

soma. Thus, we took into consideration that excitatory as well as inhibitory input signals

a�ected the electric activity of the membrane, either via polarization or shunting.

As described above, we targeted single pyramidal cells in hippocampal CA1 using

sharp microelectrodes. We aimed to calculate excitatory and inhibitory components from

synaptic conductance by applying the aforementioned stimulations (�gure 3.1; section

3.3.2: Single cell sharp electrode intracellular recordings). In short, o�-line analyses were

performed as follows. We only took non-voltage-dependent conductances into account.

Action potentials were thus excluded from the analysis due to their non-linear current to

voltage relations. Additionally, we assumed that only two major types of synaptic inputs,

non-NMDA-excitatory and inhibitory, reached the target cell. This enabled an estimation

of the corresponding conductance at each time point, during a SPW-R. Reversal potentials

of excitatory and inhibitory currents were estimated according to the reversal potentials of

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and GABA, being 0 mV

and -75 mV respectively.
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3 Materials and Methods

Algebraic calculations of corresponding conductances were performed using

the following equations. Synaptic conductance is composed of the sum of excitatory

and inhibitory conductances.

(3.1) gsynaptic(t) = gexcitatory(t) + ginhibitory(t)

By applying Ohm's law U = R · Itotal =
Itotal

gsynaptic(t)
the apparent reversal potential can be

calculated as

Esynaptic(t) =
Itotal

gsynaptic(t)
=

Itotal
gexcitatory(t) + ginhibitory(t)

with Itotal = Esynaptic(t) · gsynaptic(t) the apparent reversal potential is de�ned by

(3.2) Esynaptic(t) =
[Eexcitatory(t) · gexcitatory(t)] + [Einhibitory(t) · ginhibitory(t)]

gexcitatory(t) + ginhibitory(t)
.

Next, the derivation of the speci�c conductance equations is shown for the inhibitory

conductance. Excitatory conductance computation was performed respectively. By com-

bining the equations (3.1) and (3.2) the apparent reversal potential can be further charac-

terized by

Esynaptic(t) · gsynaptic(t) =[Eexcitatory(t) · (gsynaptic(t)− ginhibitory(t))]

+ [Einhibitory(t) · ginhibitory(t)].(3.3)

After transformation of the equation (3.3) the excitatory conductance can be calculated as

ginhibitory(t) =
[Esynaptic(t) · gsynaptic(t)]− [Eexcitatory(t) · gsynaptic(t)]

[Einhibitory(t)− Eexcitatory(t)]
.

The resulting equations, seen below, were then applied to compute inhibitory as well as
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3.3 Electrophysiology

excitatory conductance.

(3.4) ginhibitory(t) =
gsynaptic(t) · [Esynaptic(t)− Eexcitatory(t)]

Einhibitory(t)− Eexcitatory(t)

(3.5) gexcitatory(t) =
gsynaptic(t) · [Einhibitory(t)− Esynaptic(t)]

Einhibitory(t)− Eexcitatory(t)

Figure 3.1 C shows the median excitatory and inhibitory conductance changes over the

course a median SPW-R for a representative example cell. Further, we sub-divided the

original conductance changes into fast and slow components. To separate these conduc-

tance components, we �ltered the obtained conductance changes (fast: 150 - 300 Hz) and

subtracted the resulting signal from the original conductance changes (slow). The integral

of the resulting curves was calculated by trapezoidal numerical integration. Statistical

di�erence was tested with the nonparametric Wilcoxon's signed-rank test. Data were an-

alyzed using custom-written MATLAB (The MathWorks) algorithms.

3.3.4 Implementation of a Dynamic Clamp System

Working Principle of the Dynamic Clamp System

Dynamic clamp utilizes an in silico model to introduce arti�cial conductances into in-

tracellularly recorded neurons (Robinson and Kawai, 1993; Sharp et al., 1993). It thereby

o�ers the advantage of precise alteration of synaptic conductances while avoiding un-

known side e�ects of drug applications. Here, we designed a dynamic clamp model

that allowed us to counteract perisomatic inhibitory conductance inputs to an individ-

ual cell during SPW-Rs. Furthermore, our model computed an average conductance

change over the course of an average SPW-R that was speci�c of the recorded cell and

the activity state of the network. The annihilation basically represented a two-step pro-

cess. First, after invading a target cell, we obtained SPW-R-entrained inhibitory con-
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3 Materials and Methods

ductance changes, as described in section 3.3.3. These changes were averaged across

multiple SPW-Rs, as the conductance changes varied between SPW-Rs. The mean in-

hibitory conductance change ginhibitory(t) was then provided to the in silico model: I =

ginhibitory(t) · (V m − Ereversal, inhibitory). Note that time t represents the beginning of the

crossing of the SPW-R detection threshold and Ereversal, inhibitory = −75mV .

Figure 3.2: Scheme of the dynamic clamp recording principle.

In current clamp, the intracellular membrane potential is recorded and provided to an in silico

model, which calculates the actual current via I = g · (V m − Ereversal). Abbreviations: Iapplied -
Applied current, Vm - Membrane potential, g - Modeled conductance, Ereversal - Reversal potential.

The second step represented the injection of the calculation current evolution upon SPW-R

detection. Consequently, for each time point during a SPW-R event, the applied current

varied continuously depending on two parameters, the target cell's membrane potential

and the prior obtained mean inhibitory conductance change over multiple SPW-Rs. The

membrane potential was recorded as described in section 3.3.2, however using the SEC05-X

(npi electronics) ampli�er. The illustrated closed-loop approach was performed with the

RELACS software (Benda et al., 2007; Walz et al., 2014).

Contributions to the Implementation of a Dynamic Clamp System

Installation of dynamic clamp hardware was done by Dr. Alexei Egorov, Franziska

Lorenz and Paul Pfei�er. The aforementioned recording procedure was implemented by

Paul Pfei�er and Martin E. Kaiser, aided by Dr. Martin Both. The functional principle

of the applied dynamic clamp model was designed by Dr. Martin Both, Paul Pfei�er and

Martin E. Kaiser. It was coded in C and rendered user friendly by Paul Pfei�er. Custom-
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3.3 Electrophysiology

written MATLAB algorithms were coded by Dr. Martin Both and Martin E. Kaiser.

3.3.5 Microelectrode Array Recordings

Microelectrode Array Recording and Perfusion System

Figure 3.3: Scheme of the microelec-

trode array perfusion system.

Perfusion system (Multi Channel Systems)
provided an upper and lower �ow of ACSF.
Rapid exchange of ACSF enabled us to
record spontaneous SPW-R as well as in-
duced gamma oscillations.

As exempli�ed in section 3.2, brain slices

were placed in a Haas-type interface record-

ing chamber for post-preparation recovery. Af-

ter veri�cation of spontaneous SPW-R activ-

ity (as described in section 3.3.1) slices were

placed on a permeable microelectrode array

(MEA; 60pMEA200/30iR-Ti-pr; Multi Channel

Systems, Reutlingen, Germany). Extracellular

�eld potentials were obtained from 60 electrodes

(30 µm in diameter each) with an interpolar dis-

tance of 200 µm, using hard- and software pro-

vided by Multi Channel Systems. Field poten-

tials were ampli�ed, �ltered at 8 kHz (lowpass) and 0.3 Hz (highpass), and digitized at

25 kHz for o�-line analysis. Due to MEA perforation, slices were rapidly provided with

ACSF at 4-5 ml / min, saturated with 95 % O2 and 5 % CO2 (pH = 7.4). As indicated in

�gure 3.3, the ACSF perfusion was provided beneath and above the slice, using a peristaltic

pump (REGLO Analog, Ismatec, Germany) as well as sole gravity in combination with a

vaccuum pump (CVP, Multi Channel Systems), respectively. The lower perfusion created

a negative pressure, which sucked the slice onto the MEA, ensuring a continuous ACSF

supply and tight tissue to electrode contact. At 32°C (PH01 heater, Multi Channel Sys-

tems), this approach enabled us to record spontaneously occurring SPW-Rs (Hajos et al.,

2009; Maier et al., 2009) as well as optically induced gamma oscillations.
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Data Analysis and Statistics

Data shown in section 4.2 were obtained using the microelectrode array recording

system and analyzed using custom-written MATLAB routines, based on the Neuroshare

MATLAB API algorithm. We downsampled aquired data 10x and applied the morlet

wavelet transform method (MATLAB wavelet toolbox [cmor1-1.5]). Statistical di�erence

was tested with the nonparametric Wilcoxon matched-pairs signed-ranks test.

Contributions to the Microelectrode Array Recordings

The installation of the microelectrode array recordings system was accomplished by

Dr. Martin Both, Dr. Pascal Geschwill and Martin E. Kaiser. MATLAB algorithms were

custom-written by Dr. Martin Both, Dr. Jan-Oliver Hollnagel and Martin E. Kaiser.

3.4 Intracranial Injections of Viral Vectors

Figure 3.4: Cranial injections yielded con-

sistent viral expression.

(A) Scheme of the anatomical landmarks.

Abbreviations: B - Bregma, L - Lambda. (B)

Example slice showing the expression of

eYFP. Green - expression of eYFP, blue - DAPI
staining; Scale bar represents 200 µm.

For analgesia animals received 0.1 mg /

kg buprenorphine hydrochloride (Temgesic;

Indivior, Richmond, United States) subcu-

taneously, about 30 min prior to surgery.

During surgery we continuously observed

the depth of iso�urane-induced anesthesia.

Breathing rhythm and toe pinch re�ex al-

lowed us to adjust iso�urane �ow accord-

ingly. A moisturizing ointment protected

the animals' eyes against exsiccosis. Mice

were placed on a 37 °C warm heating pad.

Body temperature was continuously measured on the outside of the abdomen. As soon as

mice were anesthetized, we began the surgery. Fur on the head was partly removed, the
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3.4 Intracranial Injections of Viral Vectors

skin was disinfected and incised along the sagittal midline for about 1 cm. We expanded

the skin and dried the skull surface with cotton sticks.

Using the anatomical landmarks bregma and lamda (�gure 3.4 A), the skull was lev-

eled in the lateral-medial and the anterior-posterior axes. Viral vectors were dispensed in

350 mM NaCl and 5 % D-Sorbitol in PBS (viral solution), resulting in titers of about 4·1012

viral genomes per ml. At the bilateral injection sites (in reference to bregma: anterior-

posterior = -2.8; lateral-medial = ±3.5; dorsal-ventral = -3.3, -3.1 and -2.9) the skull was

opened locally, using a dental drill (Hager &Meisinger, Neuss, Germany). At each location

in the dorsoventral axis, we pressure-applied 400 nl viral solution through a microsyringe

(Hamilton Company, Reno, United States), at 200 nl / min (SYS-Micro4, World Precision

Instruments, United States). After application the skull surface was moisturized with 0.9

% NaCl and the skin was stitched. Animals recovered from surgery under 28 °C warm

infrared light for about 1 h. We again administered 0.1 mg / kg buprenorphine hydrochlo-

ride 3.5 h after surgical intervention. During subsequent viral incubation time of 3-4 weeks

mice were checked upon on a daily basis.

In order to optically activate principle cells, we injected the recombinant adeno-

associated virus (AAV) vector (AAV5-CaMKIIα-hChR2[H134R])-eYFP (Vector Core

Facility, University of North Carolina, USA) into both hemispheres. Brie�y,

channelrhodopsin-2 (ChR2) is a light-sensitive cation channel, found in the green alga

Chlamydomonas reinhardtii (Nagel et al., 2005, 2003). It was expressed under the

calcium/calmodulin-activated protein kinase II α (CaMKIIα) promoter. As a result we

observed a speci�c expression of ChR2 in glutamatergic hippocampal neurons (Liu and

Jones, 1996), which entailed the possibility to depolarize these in a temporally precise man-

ner (Boyden et al., 2005). The viral vector comprised humanized ChR2 (hChR2[H134R])),

which is an engineered gain-of-function ChR2 mutant. It yields larger photocurrents, in-

creasing the probability of AP induction at comparatively low light intensities (Nagel et al.,

2005). To render the expression of ChR2 visible, viral vectors contained as fusion protein

the enhanced yellow �uorescent protein (eYFP; �gure 3.4 B). YFP was developed on the

basis of the green �uorescent protein from the jelly�sh Aequorea macrodactyla (Xia et al.,
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2002). Regarding the expression pattern, we aimed for a broad and consistent expanse.

We therefore applied the AAV5 serotype, which as compared to other serotypes is known

to transverse the hippocampus e�ectively, infecting a large volume of neuronal cells (�gure

3.4 B; Aschauer et al. 2013; Burger et al. 2004).

Contributions to Intracranial Injections of Viral Vectors

Surgeries were performed by Katja Lankisch and Martin E. Kaiser.

3.5 Illumination and Microscopy

3.5.1 Implementation of a Holographic Illumination and Imaging

System

A major part of the presented work included the implementation of a holographic

illumination system in combination with a CSU-X1 Nipkow-type spinning-disk for confo-

cal imaging. Holographic light presentation was generated with a spatial light modulator

(SLM; X10468, Hamamatsu Photonics, Japan). By utilizing liquid crystals on silicon

(LCOS) it modulates the phase of a light beam. Voltages can be applied to individual pix-

els, allowing a de�ned phase retardation of the incident light wavefront. In that way the

resulting intensity patterns yield the projected image (Ne� et al., 1990; Papagiakoumou

et al., 2010; Zhang et al., 2014). Figure 3.5 illustrates a scheme of the illumination and

imaging system. As a light source, we used a diode-pumped solid state laser (wavelength

= 473 nm; DL473 Rapp Optoelectronics, Germany). Light passed a polarization �lter

(P) to ensure speci�c angle of light polarization, required for phase modulation by the

SLM. Before reaching the SLM the light beam was expanded to 20 mm in diameter (lens

L1) and converted into parallel rays to in�nity (lens L2). Thereby the light fully cov-

ered the SLM's aperture. Due to the grid structure of the pixel arrays non-modulated
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3.5 Illumination and Microscopy

light formed higher order di�raction e�ects. These disturbances reduced the quality

of the generated holographic image dramatically and therefore needed to be removed.

Figure 3.5: Scheme of the holographic illu-

mination and imaging system.

(A) Schematic drawing of the illumination

and imaging light path. Abbreviations: P -
polarization �lter, L1-L4 - lenses, SLM - spatial
light modulator, M - mirror, ZF - zero-order �l-
ter, DM - dichroic mirror, O - objective, MEA
- microelectrode array. (B) Example projec-

tions of test images onto a �uorescent sur-

face. Scale bars represent 200 µm.

First and foremost, we shifted the zero or-

der di�raction pattern from the image by

applying an additional fresnel lens to the

SLM. Then, we were able to �lter the zero-

order without disturbing the image. As

zero-oder �lter (ZF), we modi�ed a glass

coverslip by drawing a simple black dot

in the center. This blocked transmission

of the center of the ray, which contained

the zero order di�raction. From there on,

a dichroic mirror guided the light beam

through a tube lens. This lens converted

the light to parallel rays again. Then the

light passed the objective (Nikon LWD,

169/0.80 w, 16x magni�cation, water im-

mersion, [working distance = 3.0], Nikon,

Japan) and the holographic image was fo-

cused onto the slice. Using this objective,

we were able to illuminate a �eld of view of

353 x 353 µm with a maximum light inten-

sity of 0.3 mW / mm2.

In MATLAB, we developed a custom-made graphical user interface to enable live

image acquisition and to de�ne the pattern of holographic light presentation. The lat-

ter one was drawn with the graphical user interface and Fourier transformed based on

the Gerchberg�Saxton algorithm from (Gerchberg and Saxton, 1972). Together with a

computational insertion of a fresnel lens and the setting of the pattern of light intensity

progression, we were able to project light onto the slice in a temporally and locally precise
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manner. The time course of light presentation was controlled with transistor-transistor-

logic (TTL) squared voltage pulses, applied with the power1401 digital/analog converter.

Contributions to the Implementation of the Illumination System

The installation of the holographic illumination system as well as the development

of a graphical user interface software (amongst others laser controls, holographic pattern

generation and image acquisition) were accomplished by Dr. Martin Both, Dr. Felix Friedl,

Dr. Jan-Oliver Hollnagel, Dr. Pascal Geschwill and Martin E. Kaiser. Figure 3.5 A was

designed by Dr. Martin Both and modi�ed by Martin E. Kaiser.

3.5.2 Immunocytochemistry and Confocal Imaging

Following electrophysiological recordings, slices were �xed in paraformaldehyde (PFA;

Sigma-Aldrich, Steinheim, Germany), diluted to 1 % in 0.1 M phosphate bu�er (pH = 7,4),

at 4 °C overnight. After �xation, slices were stored in phosphate bu�ered saline (PBS;

in mM: 137 NaCl, 2.7 KCl, 8 NaH2PO4, 2 KH2PO4; pH = 7.2) at 4 °C. The subsequent

staining procedure was performed as follows. Slices were washed in PBS 3x for 15 min, each

before and after incubating slices in blocking solution for 2 h at room temperature. Blocking

solution (5 % normal goat serum (NGS; Vector Laboratories, Burlingame, USA) with

0.5 % Triton X-100 (Merck, Darmstadt, Germany)) served to block unspeci�c antibody

binding sites. Primary antibodies (rabbit anti β-IV spectrin) were provided by Dr. Maren

Engelhardt (Institute of Neuroanatomy, Medical Faculty Mannheim, CBTM, Heidelberg

University, Germany). They were diluted 1:1000 in primary antibody solution (0.2% Triton

X-100 and 1% NGS in PBS) and applied to the slices. After an overnight incubation period

at room temperature, slices were again washed 3x for 15 min in PBS. Next, we used avidin,

Alexa Fluor 488 conjugate (Molecular Probes, Schwerte, Germany; excitation wavelength =

493 nm, emission wavelength = 519 nm) to render intracellular biocytin visible. Avidin non-
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covalently binds to biocytin, which allowed us to image the Alexa conjugate. Additionally,

we applied the CY3 antibody (goat, anti rabbit; Dianova, Hamburg, Germany; excitation

wavelength = 552 nm, emission wavelength = 570 nm) against the β-IV spectrin primary

antibody. Secondary antibodies were also diluted in antibody solution. Slices were then

incubated in both secondary antibodies at room temperature, and again washed 3x for 15

min each. Finally, the histology mounting medium containing 4',6-Diamidin-2-phenylindol

(DAPI; Fluoroshield with DAPI; Sigma-Aldrich) was used, which allowed us to improve

the preservation of �uorescence and to counterstain for deoxyribonucleic acid (DNA).

For anatomical analysis cells were imaged with a Nikon A1R confocal microscope. We

used objectives with magni�cation factors 10 (Nikon Plan Apo λ 10x NA 0.45 [numerical

aperture = 0.45, working distance = 4mm, �eld of view at zoom 1 = 1.27 x 1.27mm]), 40

(Nikon Plan Fluor 40x NA 1.3 oil immersion [numerical aperture = 1.3, working distance

= 0.2mm, �eld of view at zoom 1 = 0.32 x 0.32mm]) or 60 (Nikon N Apo 60x NA 1.4 λ oil

immersion [numerical aperture = 1.4, working distance = 0.14 mm, �eld of view at zoom

1 = 0.21 x 0.21mm]).

Contributions to Immunocytochemistry and Confocal Imaging

Immunocytochemistry and detailed confocal imaging were performed by Nadine Zu-

ber, Lucie Landeck and Martin E. Kaiser, aided by Tina Sackmann as well as Dr. Maren

Engelhardt.

3.5.3 Calcium Imaging

In oder to measure intracellular calcium dynamics of large groups of cells in the

hippocampal network, we used the synthetic �uorescent calcium indicator Oregon Green

BAPTA 1-acetoxymethyl ester (OGB-1; Molecular Probes; excitation wavelength = 494

nm, emission wavelength = 523 nm). Solid OGB-1 was dissolved in Pluronic F-127 (20% in

DMSO, Molecular Probes) and diluted in calcium free Ringer's solution (in mM: 150NaCl,
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2.5 KCl, 10 HEPES (Carl Roth, Karlsruhe, Germany)). For bolus loading (Garaschuk

et al., 2006; Tsien, 1981) of OGB-1 into CA1 strata pyramidale and radiatum (Pfei�er

et al., 2014), a glass electrode with an opening of about 2-3 µm was back-�lled with the

OGB-1 solution. After slight tissue penetration, gentle pressure was applied for about 5

min, which caused a release of OGB-1 into the slice. OGB-1 could then di�use across cell

membranes due to its acetoxymethyl ester group, which was cleaved and thus trapped the

OGB-1 inside the cells. Dye loading was performed under normal gas supply (95 % O2

and 5 % CO2). Following a 60 min incubation period, calcium imaging in conjunction

with �eld potential recording in hippocampal CA1 was performed under hypoxia (95 %

N2 and 5 % CO2). Laser light (wavelength = 489 nm; TopticaiBeam Smart; Toptica Pho-

tonics, Muenchen, Germany) excited OGB-1. We employed a custom-built �uorescence

microscope with a CSU-X1 Nipkow-type spinning-disk (1800 rpm, Yokogawa) to image a

large �eld of view (410 x 410 µm; Reichinnek et al. 2012). Fluorescent light was sam-

pled through a dry objective (Olympus LMPlanFL N 20x [numerical aperture = 0.4]) by

an electron-multiplying charge-coupled device (EMCCD) camera (Image EM C9100-13;

Hamamatsu, Herrsching am Ammersee, Germany) at 31.9 Hz. Both, a dichroic mirror

(486 - 491 nm; Yokogawa, Ratingen, Germany) and an emission �lter (525 ± 18 nm;

Chroma, Olching, Germany) separated excitation and emission wavelength, to detect a

conclusive signal. Slice movement artifacts, caused by hypoxia, were corrected manually

during imaging procedure.

Data Analysis and Statistics

For o�-line analysis, only slices that showed spontaneously occurring SPW-Rs prior

to and post OGB-1 bolus loading were included. With the aid of ImageJ we obtained

pixel intensity values per imaged frame of a de�ned 40 x 40 µm region of interest (ROI)

of the CA1 pyramidal cell layer. Intensity values were then analyzed by applying custom-

written MATLAB routines. We subtracted background �uorescent intensity and calculated

shown intensity values as percentage change from baseline conditions. Their intensity
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values were obtained from 60 s of continuous imaging immediately before the induction of

hypoxia. Data were tested for statistical signi�cance of di�erences with the nonparametric

Wilcoxon's signed-rank test.
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4 Results

4.1 Privileged Recruitment of Axon-Carrying Dendrite

Pyramidal Cells in CA1 during Sharp Wave-Ripple

Complexes in vitro

4.1.1 SPW-R-Entrained Spiking Behavior Correlated to Cellular

Anatomy

The �eld potential signal of hippocampal SPW-Rs represents the de�ned co-activity

of multiple neurons. These are thought to be selectively activated in reliable and rever-

berating patterns, which are proposed to be the basis for complex information encoding in

neuronal circuits (Hebb, 1949). Di�erent recruitment mechanisms of single cells into these

neuronal ensembles have been suggested so far (Bahner et al., 2011; Draguhn et al., 1998;

Hebb, 1949; Memmesheimer, 2010; Schmitz et al., 2001). However, the exact mechanisms

are still unknown.

Here, we aimed for a further understanding of the selective activation of single pyra-

midal cells within neuronal ensembles. As a model system, we used spontaneously occur-

ring SPW-Rs in 400 µm thick horizontal hippocampal mouse brain slices. We conducted
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standard �eld potential measurements in conjunction with intracellular sharp electrode

recordings in the proximal and distal hippocampal area CA1, respectively (�gures 4.1 and

4.2; Bahner et al. 2011; Maier et al. 2003). During recordings, single pyramidal cells were

�lled with biocytin to stain them afterwards. In order to enable a su�cient biocytin �ll-

ing, cells were recorded for at least 25 minutes. In addition, stainings for the AIS marker

β-IV-spectrin allowed the observation of axon locations and therefore a classi�cation of

recorded neurons in two anatomical classes (�gure 4.3; Thome et al. 2014).

Pyramidal Cell Spiked Within SPW-Rs Selectively

Bahner et al. (2011) described two functionally distinct subgroups of CA1 pyramidal

cells during SPW-R oscillations, either eliciting APs or remaining silent within SPW-Rs.

In accordance with their �ndings, we observed that a subgroups of principal neurons spiked

within SPW-Rs (�gure 4.1 B, C), namely participating cells. The waveform of APs oc-

curring within SPW-Rs appeared ectopic-like, which suggested that they were generated

in the axon, subsequently backpropagating into the soma (�gure 4.1 C, D; Bahner et al.

2011). The typical antidromic AP waveform was further shown by the second temporal

derivative, which depicted a clear latency separation between two spike components (�gure

4.1 D, red), separating the spike generation in the AIS and the subsequent somatodendritic

charging (Bahner et al., 2011).

In contrast, the second pyramidal cell group remained silent during network-entrained

inputs, namely nonparticipating cells (�gure 4.2; Bahner et al. 2011). The somatic mem-

brane potential of these cells was hyperpolarized by SPW-R-driven inputs (�gure 4.2 C;

Bahner et al. (2011)). Interestingly, it has further been shown that even strong somatic cur-

rent injection fails to induce AP �ring of nonparticipating pyramidal cells within SPW-Rs

(Bahner et al., 2011). In our recordings, these cells were only capable of eliciting APs

outside of SPW-Rs.
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Figure 4.1: Representative network-entrained spiking of a single CA1 pyramidal cell

during SPW-R oscillations.

(A) Scheme of the experimental setup. Intracellular voltage de�ections from CA1 pyramidal
cells were recorded in conjunction with �eld potential recordings in CA1 stratum pyramidale. (B)
and (C) Original �eld potential (upper traces) and intracellular recordings (bottom

traces). (B) Selective AP-�ring of the shown cell during SPW-Rs. The cell was participating
in SPW-R oscillations (participating cell). (C) Expanded traces from B (red rectangle), showing
an ectopic-like AP within a SPW-R. Note the missing slow depolarization before the steep rising
phase. (D) Left top: Zoomed-in view of the AP shown in C. Left bottom: Corresponding �rst
(dotted line) and second (solid line) temporal derivative of the shown AP waveform. Note the
prominent dent (red) in the latter one, re�ecting the latency between spike generation in the
AIS and following somatodendritic charging, which is typical for ectopic spikes. Right: Phase
plot (dV/dt versus V) of the AP shown in B, C and D. A negative shift of SPW-R-driven AP
threshold could be observed, in comparison to APs outside SPW-Rs (see �gure 4.2). nAcD cells =
18. nnonAcD cells = 17.

The resulting nonparticipating APs depicted a canonical waveform, which was character-

ized by a continuous rise of the second temporal derivative (�gure 4.2 D; Bahner et al.

2011). In general, APs induced by somatic current injections as well as spontaneously

generated ones outside SPW-Rs mimicked a canonical waveform, in both participating and

nonparticipating cells (�gure 4.2 D; Bahner et al. 2011).
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Moreover, the comparison of participating and nonparticipating APs did not only reveal

di�erences in the waveform but also in the membrane potential upon AP initiation. Par-

ticipating, ectopic-like APs showed a negatively shifted membrane potential as compared

to nonparticipating APs (�gures 4.1 D and 4.2 D, respectively; Bahner et al. 2011).

According to our observations, the participating cells represented approximately 25 %

of all recorded CA1 principal neurons.

Figure 4.2: Representative network-entrained hyperpolarization of a single CA1 pyra-

midal cell during SPW-R oscillations.

(A) Scheme of the experimental setup. Intracellular voltage de�ections from CA1 pyramidal
cells were recorded in conjunction with �eld potential recordings in CA1 stratum pyramidale. (B)
and (C) Original �eld potential (upper traces) and intracellular recordings (bottom

traces). (B) Hyperpolarization of the shown cell during SPW-Rs. No spontaneous APs were
observed within SPW-Rs. The cell was not participating in SPW-R oscillations (nonparticipating
cell). (C) Expanded traces from B (red rectangle), showing an SPW-R-entrained hyperpolar-
ization of the intracellular membrane potential. (D) Left top: Induced AP outside SPW-Rs,
subsequent to 200 pA somatic current injection. Left bottom: Corresponding �rst (dotted line)
and second (solid line) temporal derivative of the shown AP waveform. Note the continuous rising
phase in the latter one, which is typical for orthodromic APs, missing a prominent dent. Right:

Phase plot (dV/dt versus V) of the induced AP shown in D. Current-induced AP threshold was
not shifted towards negative membrane potentials, as opposed to APs within SPW-Rs (see �gure
4.1). nAcD cells = 18. nnonAcD cells = 17.
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CA1 Pyramidal Cells Depicted a Dendritic Axon Origin

With respect to the anatomy of hippocampal CA1 pyramidal cells, Thome et al. (2014)

showed a peculiar positioning of the axon in a portion of cells. Axons of approximately

50 % of CA1 pyramidal cells derive from dendritic compartments, which led to the name

axon-carrying dendrite (AcD) cells. The excitability of axon-carrying dendrites is enhanced

as compared to regular basal dendrites (Thome et al., 2014). The axons of the other half of

CA1 pyramidal cells originate from the soma, therefore these cells were coined non-axon-

carrying dendrite (nonAcD) cells. In line with Thome et al. (2014), we were able to classify

about 49 % of all identi�ed CA1 pyramidal cells as AcD neurons (�gure 4.3; nAcD cells =

29, nnonAcD cells = 30).

Figure 4.3: CA1 pyramidal cells constituted two distinct anatomical groups.

(A) and (B) Immunocytochemistry of two representative examples.

Left: Images represent a maximum intensity projection of consecutive confocal imaging pictures.
Cells were �lled with biocytin through the sharp electrode and stained with Alexa Fluor 488
(green). The axon initial segment (AIS) was visualized by staining against the AIS marker protein
β-IV-spectrin (red). The AIS is pointed out by white arrow heads. Right: Anatomical tracings
of confocal images on the left. The axons are shown in black. Scale bars represent 40 µm. (A)
Axon-carrying dendrite (AcD) cell. Note, that the axon derived from a basal dendrite. (B)
Non-axon-carrying dendrite (nonAcD) cell. The axon of the representative nonAcD cell
originated from the soma.

Correlation between AcD Anatomy and SPW-R-Entrained Spiking

Strikingly, our combined e�orts in recording pyramidal cells intracellularly and post-

hoc anatomy analyses revealed that solely AcD cells represented participating cells during
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SPW-R oscillations (�gure 4.4; two-tailed chi-squared test, P < 0.0001). This potentially

implies so far not considered e�ects on single cell activation in neural networks. While the

aforementioned SPW-R-entrained ectopic-like APs were exclusively elicited by AcD cells,

all recorded nonAcD cells remained silent within SPW-Rs, always representing nonpartici-

pating neurons. However, not all but 14 of 28 AcD cells (50 %) were recruited into SPW-R

ensembles (�gure 4.4).

Figure 4.4: Axon location indicated the SPW-R-entrained spiking behavior of tar-

geted CA1 pyramidal cells.

Cells were classi�ed according to their respective anatomy (AcD or nonAcD) as well as to their
SPW-R-entrained spiking behavior (participating or nonparticipating). Anatomical quanti�ca-
tions of AcD (yellow) or nonAcD (blue) cells are color-coded. In our recordings only AcD cells
elicited spontaneous APs within SPW-Rs (nAcD cells = 14), whereas nonAcD cells (nnonAcD cells =
28) remained silent, only capable of spiking outside SPW-Rs. Note that there was also a fraction
of AcD cells that did not participate during spontaneous SPW-R oscillations (nAcD cells = 15).
Two-tailed chi-squared test, P < 0.0001.

AcD and NonAcD Cells Received Similar SPW-R-entrained Synaptic Inputs

Since we wanted to study the recruitment of single cells into neuronal ensembles, we

next investigated the mechanisms causing observed selective spiking behavior of AcD and

nonAcD cells. Di�erences in passive membrane properties between AcD as well as nonAcD

cells could be excluded from possible explanations. The following data is shown as mean

± SEM. The input resistance was not di�erent between AcD and nonAcD cells (AcD: 38.8

± 4.3 MΩ, n = 18; nonAcD: 42.6 ± 5 MΩ, n = 17; P = 0.3014). The membrane potential

decay time was also unchanged between AcD and nonAcD cells (AcD: 11.5 ± 1.3 ms, n =

18; nonAcD: 14.3 ± 2 ms, n = 17 each; P = 0.1791).

46



4.1 Privileged Recruitment of AcD Pyramidal Cells in CA1 during SPW-Rs in vitro

Another possible explanation for the observed spiking behavior could lie in a sub-

stantially greater excitatory SPW-R-driven input to participating cells, here shown to be

only AcD cells, as compared to nonparticipating neurons, here shown to be AcD as well as

nonAcD cells. Following this proposition, a pronounced excitation is expected to depolarize

participating neurons above the hyperpolarizing impact of perisomatic shunting inhibition

(Colgin, 2016), which a�ects pyramidal cells during SPW-R oscillations (Klausberger et al.,

2003; Schlinglo� et al., 2014). Hence, we analyzed SPW-R-entrained inputs onto individ-

ual AcD and nonAcD pyramidal cells, by calculating network-driven conductance changes.

The obtained data are illustrated in table 4.1, presented as median and 25th as well as 75th

percentiles and illustrated in �gures 4.5, 4.6 and 4.7 (nAcD cells = 18, nnonAcD cells = 17).

Statistical di�erences were calculated using the nonparametric Wilcoxon rank sum test.

In order to quantify and compare synaptic inputs, we adapted the conductance esti-

mation methods described by Borg-Graham et al. (1998) and Priebe and Ferster (2005),

which we already published in Maier et al. (2016). We calculated excitatory as well as

inhibitory conductance changes during SPW-Rs. For achieving this, single pyramidal cells

were targeted with sharp electrodes. SPW-R-driven membrane potential changes were

recorded while applying somatic current injections in discrete steps. In following o�-line

analyses, we plotted the injected current steps to the respective cellular membrane poten-

tial responses for each time point over all occurring SPW-Rs. In this way, we were able

to use the linear regression approach to calculate the slopes of the resulting straights over

all SPW-Rs for each time point. The slopes represent the total SPW-R-driven conduc-

tance changes of a targeted pyramidal cell. From there on, we estimated the fraction of

inhibitory and excitatory conductance changes, depending on the respective reversal po-

tential of AMPA and GABA (for illustration see section 3.3.3, Borg-Graham et al. 1998;

Priebe and Ferster 2005).
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Figure 4.5: AcD and nonAcD CA1 pyramidal cells received similar SPW-R-entrained

peak conductance inputs but at di�erent peak excitation times.

(A) Representative example of SPW-R-entrained excitatory (green) and inhibitory

(orange) conductance changes. Illustration for the following quanti�cations: Peak conduc-
tances were obtained as maximum conductance responses (indicated by black circles and arrows).
Time to peak was calculated as the di�erence between the time point of the �rst sharp wave
ripple before the sharp wave peak (dashed horizontal line) and the respective peak conductance
(indicated by black circles and arrows). (B)-(E) Quanti�cations of SPW-R-entrained con-

ductance changes. Characteristics of excitatory (highlighted in green) and inhibitory (high-
lighted in orange) inputs onto AcD (yellow) or nonAcD (blue) cells are illustrated as box plots.
Colored boxes show the 25th, the 50th (median) and the 75th percentiles (from bottom to top,
respectively). Black whiskers indicate the most divergent data points not considered outliers,
while outliers are plotted by plus symbols. (B) SPW-R-induced peak excitatory (left) and peak
inhibitory conductances (right) were not di�erent between AcD and nonAcD cells. (C) Ratio of
the peak conductances (inhibition / excitation) as well as (D) ratio of peak timings (inhibition /
excitation) were also similar between both groups of cells. (E) Time to peak of excitatory (left)
and inhibitory conductance evolutions (right). Note that the maximum of excitation occurred
earlier in AcD than in nonAcD cells, as opposed the peak inhibition timing. nAcD cells = 18.
nnonAcD cells = 17. Wilcoxon rank sum test. *P < 0.05.

Figure 4.5 A shows representative main excitatory (green) and inhibitory conductance

changes (orange) of one cell. Our conductance quanti�cations revealed that spontaneous

SPW-R-input provided higher inhibition than excitation to both AcD and nonAcD cells.

Nevertheless, both cell groups received similar SPW-R-driven synaptic inputs.
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Figure 4.6: AcD and nonAcD CA1 pyramidal cells received similar SPW-R-entrained

conductance time courses but with di�erent inhibitory rise times.

(A) and (C) Representative example of SPW-R-entrained excitatory (green) and in-

hibitory (orange) conductance changes. Illustration for the following quanti�cations: (A)
Rise time was calculated as the time di�erence between 20 % (lower black arrow) and 80 % (upper
black arrow) of the respective conductance change (black components of the respective traces).
Arrows are only illustrated for the inhibitory conductance change, however, analyses were per-
formed for excitatory as well as inhibitory conductance evolutions. (C) Tau of the respective
conductance decay was calculated from an exponential �t (black curves, pointed out by black
arrows). (B) and (D) Quanti�cations of SPW-R-entrained conductance changes. Char-
acteristics of excitatory (highlighted in green) and inhibitory (highlighted in orange) inputs onto
AcD (yellow) or nonAcD (blue) cells are illustrated as box plots. Colored boxes show the 25th,
the 50th (median) and the 75th percentiles (from bottom to top, respectively). Black whiskers
indicate the most divergent data points not considered outliers, while outliers are plotted by plus
symbols. (B) Rise time of excitatory (left) and inhibitory conductance evolutions (right). Note,
that inhibition depicted a slightly steeper slope in AcD as compared to nonAcD cells. (D) Decay
time of SPW-R-entrained excitation (left) and inhibition (right) revealed no di�erences between
both groups of cells. nAcD cells = 18. nnonAcD cells = 17. Wilcoxon rank sum test. *P < 0.05.

Peak excitatory as well as peak inhibitory conductances were not di�erent between AcD

and nonAcD cells (�gure 4.5 B, table 4.1). Consequently, the median ratio of peak in-

hibitory to peak excitatory conductances was also similar in both groups (�gure 4.5 C,

table 4.1). However, we observed di�erences in time of peak excitation (�gure 4.5 E, table

4.1). Excitatory SPW-R-driven input arrived 6.62 ms earlier in AcD than in nonAcD cells
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(�gure 4.5 E, table 4.1). This time to peak conductance was calculated relative to the

�rst ripple in front the peak of the respective SPW-R. While the time point of strongest

excitation di�ered between both groups of cells, we obtained no timing di�erence for peak

inhibitory conductance changes (�gure 4.5 E, table 4.1). The ratio of peak conductance

timings (inhibition / excitation) was comparable in both groups of cells (�gure 4.5 D, table

4.1). The time courses of both conductance changes were characterized by obtaining the

rise and decay times, which are illustrated in �gure 4.6. The rise time was speci�ed as the

time di�erence between 20-80 % of the respective conductance increase. The decay time

on the other hand was calculated from the exponential �t of the declining conductance

curves. Our analyses revealed that rise and decay times of excitatory conductance changes

were similar between AcD and nonAcD cells (�gure 4.6, table 4.1), as was the decay of

inhibitory conductance changes (�gure 4.6, table 4.1). However, the rise time of SPW-

induced synaptic inhibition was observed to be 0.74 ms faster in AcD versus nonAcD cells

(�gure 4.6 B, table 4.1).

In a next step, we estimated the amount of sharp wave and ripple evoked conductance

changes separately. In oder to do so, the conductance changes were band-pass �ltered

(150-300 Hz; (�gure 4.7). The �ltered signal components were then subtracted from the

original conductance evolution. In this way, we obtained slow and fast phasic conductance

components (�gures 4.7 A and C, respectively). We assessed the amount of the respective

conductances by calculating the integral of the �ltered curves of both components. Brie�y,

SPW-R oscillations resulted in comparable slow and fast conductance changes in AcD

and nonAcD cells. The integrals of this decomposition in slow and fast phasic conduc-

tance components underlined the observed similarity of SPW-R-driven un�ltered synaptic

inputs to AcD and nonAcD cells.

Summarized, spontaneous SPW-R-entrained inputs to AcD and nonAcD cells were

similar to each other. Signi�cant conductance di�erences between both groups of cells were

only obtained with respect to the time to peak excitation and the rise time of inhibition,

both being less in AcD as compared the nonAcD cells.
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Figure 4.7: AcD and nonAcD CA1 pyramidal cells received similar sharp-wave as well

as ripple-entrained inputs.

(A) and (C) Filtered examples of SPW-R-entrained excitatory (green) and inhibitory

(orange) conductance changes. Originals can been in �gure 4.6 A. Conductance changes were
�ltered and the integral of the resulting curves was calculated by trapezoidal numerical integration.
(B) and (D) Quanti�cations of the slow and fast components of SPW-R-entrained

conductance changes. Data of slow and fast excitatory (highlighted in green) and inhibitory
(highlighted in orange) inputs onto AcD (yellow) or nonAcD (blue) cells are illustrated as box
plots. Colored boxes show the 25th, the 50th (median) and the 75th percentiles (from bottom to
top, respectively). Black whiskers indicate the most divergent data points not considered outliers,
while outliers are plotted by plus symbols. (B) Integral of slow excitatory (left) and slow inhibitory
conductance evolutions (right) were similar between AcD and nonAcD cells. (D) Integral of fast
excitatory (left) and fast inhibitory conductance evolutions (right) were not di�erent between
AcD and nonAcD cells. nAcD cells = 18. nnonAcD cells = 17. Wilcoxon rank sum test. *P < 0.05.

The group-speci�c distinction of the timing to peak excitatory conductance changes in-

dicates that dendritic input integration might rely on slower mechanism in nonAcD cells.

However, it can hardly explain the distinct SPW-R-driven spiking behavior of participating

AcD versus nonparticipating nonAcD cells because the amplitude and the integral of ob-

served conductance were comparable between both groups of cells. Likewise, the di�erence

between AcD and nonAcD cells in inhibitory rise times in the microsecond range cannot

be explain a selective AP generation with SPW-Rs. Consequently, the here presented evi-
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dence contradicts the prior described hypothesis that the pure strength of synaptic inputs

de�nes the recruitment of individual cells into ensembles.

Comparison to in vivo Data

Furthermore, in order to verify obtained conductance values, we compared our results

to published in vivo data from Gan et al. (2017). Data is shown as mean ± SEM. In

vivo, peak excitation was 1.8 ± 0.4 nS and peak inhibition was 6.0 ± 0.8 nS (17 cells;

P < 0.0001; Gan et al. 2017). In vitro, we obtained 1.15 ± 0.22 nS peak excitatory and

5.12 ± 0.85 nS peak inhibitory conductances (nAcD + nonAcD cells = 36; P < 0.0001). In vivo

and in vitro excitatory and inhibitory conductances were similar to each other (unpaired

t-test; P = 0.7164 and P = 0.6492, respectively). Note that the inhibition to excitation

ratio shows the tendency to be lower in vivo than in our in vitro approach (3.33 versus

4.45, respectively), indicating a relatively stronger inhibition in vitro. These ratios were

calculated by dividing the overall mean, as opposed to the in vitro ratio shown in the table

4.1, which was calculated for each recording separately.

Table 4.1: SPW-R-entrained conductance features under baseline conditions

Feature Type Values P-value

Peak excitation
in nS

AcD
median = 0.66

P = 0.96
[P25 = 0.42, P75 = 1.13]

nonAcD
median = 0.72
[P25 = 0.34, P75 = 1.38]

Peak inhibition
in nS

AcD
median = 4.29

P = 0.609
[P25 = 2.18, P75 = 8.05]

nonAcD
median = 2.95
[P25 = 1.82, P75 = 7.08]

Peak ratio
(inhib./excit.)

AcD
median = 4

P = 0.8045
[P25 = 2.62, P75 = 8.31]

nonAcD
median = 4.65
[P25 = 3.45, P75 = 7.69]
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Time to peak
in ms
(excitation)

AcD
median = 1.68 ms

*P = 0.0121
[P25 = -0.95, P75 = 6.55]

nonAcD
median = 8.3
[P25 = 3.28, P75 = 10.3]

Time to peak
in ms
(inhibition)

AcD
median = 8.7

P = 0.0774
[P25 = 6.55, P75 = 14.25]

nonAcD
median = 13.2
[P25 = 9.78, P75 = 16.22]

Ratio peak time
(inhib./excit.)

AcD
median = 9.05

P = 0.1252
[P25 = 4.29, P75 = 14.15]

nonAcD
median = 4.85
[P25 = 1.01, P75 = 9.79]

Rise time
20-80 %
in ms
(excitation)

AcD
median = 11.1

P = 0.7397
[P25 = 8.25, P75 = 13.35]

nonAcD
median = 11.53
[P25 = 8.85, P75 = 13.25]

Rise time
20-80 %
in ms
(inhibition)

AcD
median = 7.18

*P = 0.0227
[P25 = 6.2, P75 = 7.6]

nonAcD
median = 7.92
[P25 = 7.25, P75 = 8.85]

Decay Tau
in ms
(excitation)

AcD
median = 12

P = 0.2834
[P25 = 7.02, P75 = 23.14]

nonAcD
median = 17.74
[P25 = 10.88, P75 = 22.49]

Decay Tau
in ms
(inhibition)

AcD
median = 17.71

P = 0.2413
[P25 = 13.65, P75 = 22.83]

nonAcD
median = 19.1
[P25 = 15.39, P75 = 24.57]

Integral of the
slow component
in mV·ms
(excitation)

AcD
median = 12.96

P = 0.2038
[P25 = 6.52, P75 = 29.50]

nonAcD
median = 30.09
[P25 = 10.92, P75 = 49.12]

Integral of the
slow component
in mV·ms
(inhibition)

AcD
median = 91.29

P = 0.856
[P25 = 61.85, P75 = 152.16]

nonAcD
median = 120.59
[P25 = 23.67, P75 = 165.61]
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Integral of the
fast component
in mV·ms
(excitation)

AcD
median = 0.53

P = 0.3302
[P25 = 0.3, P75 = 1.19]

nonAcD
median = 0.48
[P25 = 0.21, P75 = 0.68]

Integral of the
fast component
in mV·ms
(inhibition)

AcD
median = 2.32

P = 0.8301
[P25 = 0.8, P75 = 6.73 ]

nonAcD
median = 3.07
[P25 = 1.44, P75 = 4.98]

4.1.2 A Working Hypothesis for Selective Network-Entrained

Pyramidal Cell Activation, Based on the Position of the

Axon

Our conductance analyses contradicted the proposition by some scholars that relatively

stronger excitation to the participating group of cells enables them to uniquely participate

in neuronal ensemble activity (Colgin, 2016). Therefore, we propose an anatomy-based

recruitment mechanism of single cells into SPW-R ensemble activity (�gure 4.8).

Brie�y, during spontaneous SPW-R oscillations perisomatic inhibition, mediated by

prominent PV+ basket cell activity (Schlinglo� et al., 2014), rhythmically hyperpolarizes

the soma of pyramidal cells (English et al., 2014; Klausberger and Somogyi, 2008). Never-

theless, in the hippocampus, a portion of place cells elicit spikes during network-entrained

events, leaving the question of the mechanistic principles unanswered. Consequently, en-

sembles of somehow privileged principal cells are able to overcome strong perisomatic

shunting. We propose the following mechanistic explanation for the observed �ring behav-

ior of AcD CA1 pyramidal cells during SPW-R oscillations. A potential way to circumvent

perisomatic shunting inhibition could be found in the positioning of the axon at a dendrite,

as observed in AcD cells (�gure 4.8 A). The AIS could thereby be both decoupled from

the somatic compartment and receive direct dendritic input.
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Figure 4.8: Working hypothesis for selective AcD cell activation during hippocampal

SPW-R oscillations.

Mechanism explaining the observed distinct SPW-R-entrained spiking of AcD cells. It could
constitute a basis for absent AP �ring of nonAcD cells within SPW-Rs. Illustrated membrane
potential de�ections were modi�ed from original recordings. We did not perform intracellular
axonal recordings, these are meant to be hypothetical.
(A) AcD cell input processing during SPW-Rs. Upon excitation (green) of the axon-
carrying dendrite, the resulting membrane potential depolarization transverses to the axon (rose)
directly. The consecutive depolarization circumvents the somatic region. In the axon, the AIS
depolarizes above threshold and thereby initiates a canonical AP (1), which propagates back to
the soma. There, SPW-entrained perisomatic inhibition (orange) shifts the somatic membrane
potential negatively (2), shunting the excitation at the perisomatic region. The incident back-
propagating AP evokes a somatic AP by depolarizing the soma rapidly (ectopic-like AP, 2).
(B) NonAcD cell input processing during SPW-Rs. Upon excitation (green) of a non-axon-
carrying dendrite, the resulting membrane potential depolarization cannot transverse to the axon
(rose) directly. Instead, excitation has to pass the somatic region before reaching to the axon. In
this way, the soma integrates synaptic inputs. At the soma, SPW-entrained perisomatic inhibition
(orange) shifts the somatic membrane potential negatively (2). This shunts the network-driven
excitatory postsynaptic potential, preventing it from transferring to the axon. Consequently, APs
are neither observed at the soma (2) nor at the axon (1).

Excitatory inputs reaching an axon carrying dendrite could be integrated independently
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of the soma and directly excite the AIS. Thereby, the somatic compartment would be cir-

cumvented. Cells in which the axon originates from a dendrite could meet these theoretical

requirements. Hence, concurrent somatic inhibition, being observed during SPW-R oscil-

lations, would have little in�uence on the output generation of the respective AcD cell.

In contrast, in nonAcD cells SPW-R-entrained perisomatic inhibition potentially has

decisive consequences on the spontaneous AP generation (�gure 4.8 B). The axons of

nonAcD cells derive from the soma. Excitatory inputs to their dendrites are integrated in

the soma and transversed to the axon. There, as soon as a critical membrane depolariza-

tion is reached, the AIS initiates AP �ring. However, critical perisomatic inhibition shunts

excitatory inputs, preventing network-driven pyramidal cell �ring.

In the next steps, we provide evidence for the proposed working hypothesis by using

two independent techniques, which are exclusively based on single cell manipulations.

4.1.3 Reduction of Perisomatic Inhibition Turned Silent Pyramidal

Cells Into Participating Ones

Here, we present evidence that the positioning of the axon in conjunction with peri-

somatic inhibition are key regulators in including pyramidal cells into SPW-Rs. We se-

lectively alleviated SPW-R-driven perisomatic inhibition to the targeted pyramidal cells

by either pharmacologically blocking GABAA receptors or by applying dynamic clamp.

Both approaches o�ered the advantage of leaving the network rhythms unchanged, only

in�uencing the targeted cells. In section 4.1.2 we propose that only AcD cells are capa-

ble to circumvent SPW-R-entrained perisomatic silencing. Synaptic excitation to nonAcD

cells on the other hand cannot bypass the soma and is thus shunted. According to this

hypothesis, we expected that the abolishment of SPW-R-driven perisomatic inhibition by

either blocking perisomatic GABAA receptors or by introducing an arti�cial conductance

(dynamic clamp) a�ects the spiking behavior within SPW-Rs. As a consequence the ob-

served selectivity of participating APs was presumed to be abolished. While only AcD cells
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elicited APs within SPW-Rs under baseline conditions, during diminution of perisomatic

inhibition AcD as well as nonAcD cells were expected to elicit SPW-R-entrained APs.

Pharmacological Blockage of Perisomatic GABAA Receptors Reduced

SPW-R-entrained Perisomatic Inhibition.

In order to obtain evidence for the aforementioned hypothesis, we aimed for a reduction

of SPW-R-entrained perisomatic inhibition by �rst utilizing a pharmacological approach.

We again recorded single pyramidal cells as well as standard �eld potential �uctuations

in area CA1 of horizontal hippocampal brain slices. However, we dialyzed the targeted

pyramidal cells with biocytin and the GABAA receptor antagonist picrotoxin (PTX, 1mM;

Goutman and Calvo 2004; Inomata et al. 1988; Valero et al. 2017). PTX was dissolved in

2M KAc. Following intracellular recordings, we again stained for the intracellular biocytin

and the indicator of the AIS, β-IV-spectrin. However, we were only able to classify a single

cells according to its anatomy into AcD or nonAcD. The representative cell can be seen in

�gure 4.11 B and in table 4.2.

As expected, quanti�cations of network-entrained conductance changes revealed dif-

ferences between intracellular application of picrotoxin versus sole KAc (baseline). The

blockage of perisomatic GABAA receptors reduced the amplitude of inhibitory conduc-

tances as well as the ratio of inhibition to excitation (�gure 4.9 B, C, respectively; table

4.2), while excitatory conductances were unaltered (�gure 4.9 B, table 4.2). However, intra-

cellular picrotoxin did not modulate decay times of excitatory and inhibitory conductance

waveforms (�gures 4.9 E, table 4.2). Moreover, we again decomposed obtained conduc-

tances into slow sharp wave-associated and fast ripple-related components (�gures 4.10).

In line with the altered peak conductance changes, picrotoxin dialysis also diminished the

integral of slow and fast inhibitory components. However, as opposed to the inhibitory

conductance components, both excitatory components were similar between dialysis of

KAc and picrotoxin.
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Figure 4.9: Intracellular application of picrotoxin (1mM) reduced the peak of SPW-

R-entrained inhibitory conductance changes of CA1 pyramidal cells.

(A) and (D) Representative example of SPW-R-entrained excitatory (green) and

inhibitory (orange) conductance changes, subsequent to intracellular picrotoxin dial-

ysis. (A) Illustration of the quanti�cations in B and C: Peak conductances were obtained as
maximum conductance responses (indicated by black circles and arrows). Time to peak was cal-
culated as the di�erence between the time point of the �rst sharp wave ripple before the sharp
wave peak (dashed horizontal line) and the respective peak conductance (indicated by black cir-
cles and arrows). (D) Illustration of the quanti�cations in E: Decay time of SPW-R-entrained
conductances was calculated from an exponential �t (black curves, pointed out by black arrows).
(B, C and E) Quanti�cations of SPW-R-entrained peak conductance changes. Char-
acteristics of excitatory (highlighted in green) and inhibitory (highlighted in orange) inputs onto
CA1 pyramidal cells, that were either �lled with KAc (black) or picrotoxin (red) are illustrated as
box plots. Recordings with KAc were termed baseline conditions. Colored boxes show the 25th,
the 50th (median) and the 75th percentiles (from bottom to top, respectively). Black whiskers
indicate the most divergent data points not considered outliers, while outliers are plotted by plus
symbols. (B) SPW-R-induced peak excitatory conductance (left) was similar between KAc and
picrotoxin �lled cells. In contrast, peak inhibitory conductance (right) was di�erent in both condi-
tions, being reduced during dialysis of picrotoxin. (C) Ratio of the peak conductances (inhibition
/ excitation) was also decreased subsequent to intracellular picrotoxin application. (D) Decay
time of SPW-R-entrained excitation (left) and (right) inhibition revealed no di�erences between
KAc and picrotoxin �lled cells. nbaseline = 25. nPTX = 6. Wilcoxon rank sum test. *P < 0.05.

In �gures 4.9 and 4.10 as well as in the table 4.2 quanti�cations are presented as

median and 25th as well as 75th percentiles. We did not di�erentiate between AcD and
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nonAcD cells in the presented quanti�cations (nbaseline = 25 and nPTX = 6). Statistical

di�erences were calculated using the nonparametric Wilcoxon rank sum test.

Figure 4.10: Intracellular application of picrotoxin (1mM) diminished sharp wave- as

well as ripple-entrained inhibitory conductances.

(A) and (C) Filtered examples of SPW-R-entrained excitatory (green) and inhibitory

(orange) conductance changes. Illustration of the quanti�cations in B and D: Originals (seen
in �gure 4.9 A. Conductance changes were �ltered and the integral of the resulting curves was
calculated by trapezoidal numerical integration. (B) and (D) Quanti�cations of the slow and

fast components of SPW-R-entrained conductance changes. Characteristics of excitatory
(highlighted in green) and inhibitory (highlighted in orange) inputs to CA1 pyramidal cells, that
were either �lled with KAc (black) or picrotoxin (red) are illustrated as box plots. Recordings
with KAc were termed baseline conditions. Colored boxes show the 25th, the 50th (median) and
the 75th percentiles (from bottom to top, respectively). Black whiskers indicate the most divergent
data points not considered outliers, while outliers are plotted by plus symbols. (B) Integral of slow
excitatory conductance evolution (left) was similar between KAc and picrotoxin �lled cells. In
contrast, slow inhibitory conductance change (right) was di�erent between both conditions. (D)
Integral of fast excitatory conductance (left) change was not di�erent between both conditions.
Fast inhibitory conductance evolutions di�ered between KAc and picrotoxin �lled cells (right).
nbaseline = 25. nPTX = 6. Wilcoxon rank sum test. *P < 0.05.

All in all, we were able to strongly diminish SPW-R-driven perisomatic inhibition

onto the targeted pyramidal cells via intracellular dialysis of picrotoxin. Under baseline

conditions, nonAcD cells could not elicit APs within SPW-Rs due to the shunting e�ect
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of SPW-R-entrained perisomatic inhibition. However, picrotoxin reduced this inhibitory

impact by reducing the peak conductance and the total amount of perisomatic inhibition.

This leads to the assumption that the respective cells should have started to become

participating in SPW-R oscillations.

Table 4.2: SPW-R-entrained conductance features during picrotoxin dialysis

Feature Type Values P-value

Peak excitation
in nS

Baseline
median = 0.76

P = 0.1273
[P25 = 0.46, P75 = 1.83]

PTX
median = 0.45
[P25 = 0.35, P75 = 0.79]

Peak
inhibition
in nS

Baseline
median = 6.43

*P = 0.0074
[P25 = 3.97, P75 = 9.6]

PTX
median = 0.64
[P25 = 0.19, P75 = 1.27]

Peak ratio
(inhib./excit.)

Baseline
median = 5.99

*P = 0.0261
[P25 = 3.78, P75 = 11.27]

PTX
median = 1.22
[P25 = 0.47, P75 = 3.65]

Decay Tau
in ms
(excitation)

Baseline
median = 16.6

P = 0.4685
[P25 = 13.83, P75 = 23.8]

PTX
median = 20.55
[P25 = 16.14, P75 = 21.16]

Decay Tau
in ms
(inhibition)

Baseline
median = 14.71

P = 0.1542
[P25 = 10.16, P75 = 16.72]

PTX
median = 21.98
[P25 = 14.92, P75 = 33.33 ms]

Integral of the
slow component
in mV·ms
(excitation)

Baseline
median = 20.74

P = 0.7077
[P25 = 7.43, P75 = 61.12]

PTX
median = 15.99
[P25 = 13.04, P75 = 28.97]

Integral of the
slow comp.
in mV·ms
(inhibition)

Baseline
median = 171.31

*P = 0.0074
[P25 = 93.15, P75 = 230.11]

PTX
median = 11.64
[P25 = -9.37, P75 = 22.92]
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Integral of the
fast component
in mV·ms
(excitation)

Baseline
median = 0.7

P = 0.068
[P25 = 0.49, P75 = 0.98]

PTX
median = 0.32
[P25 = 0.26, P75 = 0.47]

Integral of the
fast comp.
in mV·ms
(inhibition)

Baseline
median = 5.16

*P = 0.0483
[P25 = 3.20, P75 = 8.48 ]

PTX
median = 2.24
[P25 = 1.73, P75 = 2.84]

Pharmacological Blockage of Perisomatic GABAA Receptors Resulted in

Spontaneous Canonical Action Potentials during SPW-Rs.

Indeed, picrotoxin dialysis for about 15 min resulted in canonical AP �ring in a

nonAcD cell during spontaneous SPW-Rs, upon mild current injection (50pA; �gure 4.11

C and D). Mild current injection was necessary because we aimed to substitute pruned ex-

citatory inputs to the targeted cell. Due to our in vitro approach, using hippocampal brain

slices, network inputs to targeted cells were potentially pruned. In slices, the probability

of excitatory dendritic inputs decreases with distance. The calculated AP derivatives in

�gure 4.11 D underlined the observed nonAcD anatomy of the respective cell. Accordingly,

the second derivative misses the dent in the rising phase. Moreover, the canonical AP

waveform was uncovered by computing the AP phase plot (�gure 4.11 D). Since Bahner

et al. (2011) report that even strong somatic current injections in nonparticipating cells

failed to evoke APs within SPW-Rs, the here applied mild unspeci�c current injection was

unlikely to be responsible for the observed network-entrained spiking behavior. Further-

more, 5 out of 6 pyramidal cells elicited SPW-R-entrained APs after dialysis of picrotoxin.

The observed spiking of a nonAcD cells with SPW-Rs provided clear evidence that the sole

blockage of perisomatic GABAA receptors resulted in spontaneous, network-driven somatic

APs in nonAcD cells.

Consequently, the presented data suggests that the mere reduction of perisomatic in-

61



4 Results

hibitory inputs was su�cient to cause network-entrained AP �ring in nonAcD cells. How-

ever, pharmacological interventions potentially bear the disadvantage of, amongst others

provoking unspeci�c or unknown side e�ects.

Figure 4.11: Intracellular application of picrotoxin (1mM) resulted in spontaneous

�ring of canonical APs of nonAcD CA1 pyramidal cells during SPW-Rs.

(A) Scheme of the experimental setup. Intracellular voltage de�ections from CA1 pyra-
midal cells were recorded in conjunction with �eld potential recordings in CA1 stratum pyrami-
dale. (B)-(D) Original perisomatic anatomy as well as �eld potential and intracellular

recordings from a single CA1 pyramidal cell. (B) Immunocytochemistry of a repre-

sentative nonAcD cells. Cell was �lled with biocytin through the sharp electrode and stained
with Alexa Fluor 488 (green). The axon initial segment (AIS) was rendered visible by staining
against the AIS marker protein β-IV-spectrin (red). (a) the axon or (b) the AIS is pointed out
by white arrow heads. Note, that the axon derived from the soma. Images represent a maximum
intensity projection of consecutive confocal imaging pictures. Scale bars represent 50 µm for (a)
and 20 µm for (b) and (c). (C) Selective AP-�ring of the shown cell within SPW-Rs (marked by
*). The cell was participating in SPW-R oscillations, despite being a nonAcD cell. (D) Expanded
traces from (C, red rectangle) showing a canonical AP within a SPW-R (left), subsequent to
mild somatic current injection (50 pA). Corresponding �rst (dotted line) and second (solid line)
temporal derivative of the shown AP waveform in D (bottom) (middle). Note the continuous
rising phase in the second derivative, which is typical for orthodromic APs, missing a prominent
dent. Phase plot (dV/dt versus V) of the induced AP shown in D (right). Current-induced AP
threshold was not shifted towards negative membrane potentials, similar to canonical AP shown
in �gure 4.2.

In our case, this constitutes a potential in�uence on the activity of single cells and thus

their recruitment into neuronal ensembles. Hence, we used a second approach (dynamic
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clamp) to substantiate the presented �ndings.

Dynamic Electrical Reduction of Perisomatic Inhibition Resulted in Spontaneous

Canonical Action Potentials during SPW-Rs.

We implemented a dynamic clamp system and an in silico model, which o�ers an

alternative method to diminish the shunting e�ect of perisomatic inhibition on pyramidal

cells (for illustration see section 3.3.4). In general, the dynamic clamp approach o�ers the

possibility to insert an arti�cial synaptic conductance into a targeted neuron. Here, this

additional conductance was supposed to counteract SPW-R-entrained perisomatic inhibi-

tion and thereby lead to spontaneous participating APs in the targeted pyramidal cell.

We thus processed this approach as follows. First, intracellular recordings of CA1

pyramidal cells and standard �eld potential recordings were performed as described in

section 4.1.1. Inhibitory conductance changes were obtained from 40 SPW-Rs, providing

an estimate of the perisomatic inhibition that the respective pyramidal cells received on

average. In o�-line analyses synaptic conductance changes were estimated and inhibitory

as well as excitatory components were calculated (see sections 3.3.3 and 4.1.1). In parallel

to these analyses, targeted cells were continuously recorded, to maintain penetration of the

respective cell. This time course of the inhibitory conductance change over all 40 SPW-Rs

was included in our in silico model, which then calculated the respective arti�cial synaptic

conductance change that would annihilate the average SPW-R-entrained inhibitory con-

ductance change. Next, we applied this simulated conductance change to the recorded cell,

every time a spontaneous SPW-R occurred. Upon SPW-R input onto the targeted cell,

a current that corresponded to the actual membrane potential and to the arti�cial con-

ductance was applied via the intracellular recording electrode. In this way, we selectively

diminished the network-entrained perisomatic inhibition of a single pyramidal cell on-line,

thereby being cell as well as network speci�c. Indeed, the time course of the resulting

average inhibitory conductance change was reduced and curtailed during dynamic clamp

(�gure 4.12 D, gray [baseline] vs. orange [dynamic clamping]). Moreover, estimations of
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peak excitation, inhibition as well as their ration revealed a change due to electrical reduced

on SPW-R-entrained perisomatic shunting.

Figure 4.12: Counteracting phasic inhibition with dynamic clamp resulted in canon-

ical APs during SPW-Rs.

(A)-(D) Data from an example CA1 pyramidal cell recording. (A) Calculated conduc-
tance changes during dynamic clamp, as compared to baseline. Peak excitatory conductance was
increased (green �lled circle) while peak inhibitory conductance (orange �lled circle) as well as the
inhibitory / excitatory ration were decreased (orange and green �lled circle). (B) Within a SPW-
R (top) the targeted pyramidal cell elicited an AP (middle) potentially due to dynamic current
injection, decreasing inhibitory inputs (bottom). (C) Phase plot (left; dV/dt versus V) of the AP
shown in B. AP threshold was not shifted towards negative membrane potentials (similar to the
one in �gure 4.2). Corresponding �rst (dotted line) and second (solid line) temporal derivative
(right) of the shown AP waveform in B. Note the continuous rising phase in the second derivative,
which is typical for orthodromic APs, missing a prominent dent. (D) Obtained SPW-R-entrained
mean inhibitory conductance changes without (baseline; gray) and with (orange) dynamic clamp.

Amplitude of mean the perisomatic inhibitory conductance was reduced by 22.58 % (4.97

nA [baseline] vs. 3.85 nA [dynamic clamp]; �gure 4.12 A, orange circle). In contrast,

amplitude of median excitatory conductances increased by 52.68 % (0.93 nA [baseline] vs.

1.42 nA [dynamic clamp]), shifting the inhibition to excitation ratio to a favorable state

(5.37 [baseline] vs. 2.71 [dynamic clamp]; �gure 4.12 E, green circle and split green/orange

circles respectively). The reason for the increased peak excitatory conductance might be

found in the limited number of SPW-Rs and accompanied variations in SPW-R charac-

teristics, that were used for conductance calculations. Data shown represent data from

one cell only, therefore no further statistical analysis was performed. Nevertheless, these
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results appear to be promising. The recorded pyramidal cell exhibited SPW-R-entrained

spiking upon reduction of network-driven shunting and medium current injection. Figure

4.12 B shows a spontaneously occurring SPW-R (top trace), the corresponding intracellular

voltage de�ection (middle trace) as well as the dynamically computed and applied current

injection (bottom trace). As illustrated by the phase plot (�gure 4.12 C) the participating

AP exhibited a canonical waveform, which is con�rmed by the second derivative of the

AP waveform, missing a clear dent during the rising phase (�gure 4.12 C; Bahner et al.

2011). Furthermore, according to data in section 4.1.1 this indicates that the recorded cell

represented a nonAcD cell, which is in line with the �nding that the targeted cell never

participating in SPW-Rs during baseline recordings. Only the dynamic reduction of SPW-

driven inhibition resulted in a participating spiking behavior.

Taken together, we showed that a dynamic reduction of network-entrained perisomatic

shunting inhibition in conjunction with mild positive current injection resulted in AP �ring

during SPW-Rs. Thus, the dynamic clamp approach con�rmed the evidence obtained by

the pharmacological blockage of GABAA receptors, providing a promising tool for further

pyramidal cells recordings.

All in all, in section 4.1 we presented a hypothesis and validating data that suggests

an AcD-based recruitment mechanism of individual pyramidal cells into SPW-R ensemble

activity. The described evidence potentially provides a function relation between the ob-

served selective spiking network-entrained behavior in vitro and the axon location of CA1

pyramidal cells in the hippocampus.

Contributions to the AcD Study

Data shown in section 4.1 were collected, analyzed and �gures were designed by Martin

E. Kaiser, aided by Paul Pfei�er for section 4.1.3. Custom-made Matlab scripts were

written by Martin Both and Martin E. Kaiser. Slice shown in �gure 4.3 (A) was stained and

imaged by Lucie Landeck. Martin Both, Paul Pfei�er, and Martin E. Kaiser designed the
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utilized model in section 4.1.3. Paul Pfei�er generated the respective model and adapted

the software, used for dynamic clamp recordings, presented in section 4.1.3.
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4.2 Di�erential Modulation of Hippocampal Network

Oscillations by Oxytocin in vitro

The coherent and repetitive activation of neurons plays a key role in memory formation

and retrieval. The AcD-based recruitment mechanism of individual cells into memory

encoding ensembles, shown in the last section, could be decisive during these processes.

However, the formation of neuronal ensembles can potentially be additionally modulated by

endogenous hormones. They might tune neuronal co-activation and therefore also network

oscillations.

4.2.1 Oxytocin Receptor Activation Resulted in Reduced SPW-R

Oscillations

Oxytocin appears to be widely present in the hippocampus, with oxytocin receptors

being expressed in the CA area and the dentate gyrus (Hammock and Levitt, 2013; Mitre

et al., 2016; Raam et al., 2017; Yoshida et al., 2009). While on the behavioral level facili-

tating long-lasting spatial learning (Tomizawa et al., 2003), on the single cell level oxytocin

enhances the activity of fast-spiking inhibitory interneurons, thereby improving the �delity

of AP transmission (Owen et al., 2013). However, the apparently vital role in the modula-

tion of information processing has so far not been shown on the level of neuronal network

oscillations.

Here, we investigated whether the social hormone oxytocin modulates network-entrained

ensembles rhythms. We recorded spontaneous SPW-Rs in the hippocampal area CA1 of

horizontal mouse brain slices (Maier et al., 2003), using standard local �eld potential mea-

surements. Prior to drug application, we obtained at least 5 min baseline SPW-R activity.

For statistics, drug-induced e�ects were compared to these baseline recordings. Drugs were

dissolved in ACSF and applied via global wash-in, a�ecting the entire slice. To guarantee
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su�cient drug concentration in the tissue, drugs were supplied for at least 30 min before

quantifying their observed impacts.

Selective Oxytocin Receptor Activation by TGOT

Experiments performed by Pia Maier suggest that the oxytocin receptor antago-

nist (Thr4,Gly7)-Oxytocin H-Cys-Tyr-Ile-Thr-Asn-Cys-Gly-Leu-Gly-NH2; disul�de bond

(TGOT) resulted in a decline of sharp wave and ripple characteristics, across a large range

of concentrations (0.3-300 nM) (�gure 4.13; Maier et al. 2016).

It has been published that at low concentrations TGOT targets oxytocin receptors se-

lectively (Busnelli et al., 2013). However, at higher concentration TGOT is shown to also

binds to AVP receptors (Busnelli et al., 2013). Oxytocin and arginine-vasopressin (AVP)

receptors share a great structural similarity (Chini and Manning, 2007). Thus, certain

ligands can potentially bind to both receptor types in a concentration dependent manner,

which challenges the observed e�ects of TGOT on SPW-Rs. Hence, here we tackled the

possible unspeci�city of TGOT in OR binding by co-applying both the OR agonist TOGT

(10 nm) and the speci�c OR antagonist OTRA (200 nm) to the slice during SPW-R os-

cillations. Figure 4.13 C illustrates that this co-application negated suppressing e�ects of

TGOT alone. The following data is presented as mean ± SEM. SPW-R amplitudes and

ripple energies were even increased by 9.7 ± 4.7 % and 11.1 ± 5.2 %, respectively (SPW-R

amplitude 0.21 ± 0.01 mV [baseline] vs. 0.23 ± 0.02 mV [TGOT + OTRA], P = 0.0476

and ripple energy (0.29 ± 0.03 a.u. [baseline] vs. 0.33 ± 0.03 a.u. [TGOT + OTRA], P =

0.0349) (Maier et al., 2016). The abolishment of TGOT-mediated e�ects on SPW-Rs by

the speci�c OR antagonist provides evidence that TGOT indeed speci�cally binds to ORs

at low concentrations.

In order to exclude possible AVP receptor involvement in the observed TGOT-induced

SPW-R modulations, next, we co-applied the AVP receptor antagonist V1ARA (300 nm)

together with TGOT. Interestingly, the observed prominent SPW-R changes were compa-

rable to the application of TGOT application alone (�gures 4.13 A, D and Ha-d, n = 11).
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SPW-R frequency and amplitude were reduced by 19.6 ± 4.8 % (2.89 ± 0.25 Hz [baseline]

vs. 2.41 ± 0.32 Hz [TGOT], P = 0.0026) and 19.2 ± 4.6 % (0.44 ± 0.05 mV [baseline]

vs. 0.36 ± 0.05 mV [TGOT], P = 0.0016), respectively. Ripple energy was decreased by

16.3 ± 2.1 % (0.60 ± 0.09 a.u. [baseline] vs. 0.50 ± 0.08 a.u. [TGOT], P = 0.0002) and

ripple frequency declined by 2.7 ± 0.6 % (234 ± 5 Hz [baseline] vs. 228 ± 4 Hz [TGOT],

P = 0.0012), whereas the number of ripple cycles was unchanged. The sole application of

V1AR decreased the SPW-R amplitude. However, this e�ect was considered to correspond

to the recording time and observed amplitude deterioration.

The presented data provided evidence that the observed TGOT-induced impacts of

SPW-R characteristics were independent of AVP receptor activation. We were able to res-

cue oxytocin-induced reduction of SPW-R characteristics. Moreover, the combined activa-

tion of oxytocin and blockage of vasopressin receptors yielded results that were comparable

to a sole oxytocin receptor activation.

Vasopressin Acted on Vasopressin as well as Oxytocin Receptors

The so far suggested speci�city of vasopressin at low concentrations might not be that

speci�c after all. At concentrations used here, (Arg8)-Vasopressin (H-Cys-Tyr-Phe-Gln-

Asn-Cys-Pro-Arg-Gly-NH2 (vasopressin, 20 nM) was reported to activate AVP receptors

speci�cally. However, evidence for that was shown in rats (Spoljaric et al., 2017). In con-

trast to Spoljaric et al. (2017), we present evidence that vasopressin partially acts on ORs

at the applied concentration. Figures 4.13 A and F illustrate that in our hands the sug-

gested selective activation of AVP receptors resulted in diminished SPW-R characteristics

(P < 0.05, n = 9). The following data is presented as mean ± SEM. SPW-R incidence

was reduced by 28.3 ± 11.3 % (2.76 ± 0.26 Hz [baseline] vs. 2.06 ± 0.43 Hz [20 nM va-

sopressin], P = 0.0383). SPW-R amplitudes were decreased by 36.7 ± 6.1 % (0.30 ± 0.03

mV [baseline] vs. 0.19 ± 0.03 mV [20 nM vasopressin], P = 0.0007).
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Figure 4.13: Oxytocin receptor activation decreased SPW-R oscillations.

(A): Time course of SPW-R amplitudes after drug applications. TGOT as well as va-
sopressin reduced SPW-R amplitudes. This reduction was either preserved or reversed during
parallel blockage of AVP receptors, respectively. (B) Quanti�cation of SPW-R character-

istics before (baseline) and during application of TGOT (10 nM) and OTRA (200

nM). Applied in combination, OR agonist and antagonist increased SPW-R amplitude and ripple
energy. (C)-(G) Normalized quanti�cations of the applied agonizing or antagonizing

approaches. (C) TGOT (10 nM) and OTRA (200 nM) increased SPW-R amplitude and ripple
energy. (D) TGOT (10 nM) and V1ARA (300 nM) diminished SPW-R amplitude and frequency
as well as ripple energy. (E) V1AR (300 nM) decreased only SPW-R frequency. (F) Vasopressin
(20 nM) diminished SPW-R amplitude and frequency as well as ripple energy. (G) Vasopressin
(20 nM) and OTRA (200 nM) showed no modulation of SPW-R characteristics. (G) V1AR (300
nM) decreased only SPW-R frequency. (Ha-Hd) Quanti�cation of SPW-R characteristics

before (baseline) and during application of TGOT (10 nM) and V1AR (300 nM). (H)
(a-d) SPW-R incidence, amplitude, ripple frequency as well as energy were decreased. *P < 0.05.
Adapted from (Maier et al., 2016).
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Ripple energy was lowered by 22.4 ± 7.4 % (0.35 ± 0.04 a.u. [baseline] vs. 0.29 ± 0.07

a.u. [20 nM vasopressin], P = 0.0421) (Maier et al., 2016). Hence, vasopressin mimicked

TGOT regarding its e�ect on SPW-R oscillations (Maier et al., 2016).

A similar impact of the putative speci�c oxytocin or vasopressin receptor activation

could result from unspeci�c vasopressin to AVP binding in mice, as Spoljaric et al. (2017)

presents evidence from experiments with rat tissue. We investigated this by activating AVP

receptors at the reportedly selective concentration (Spoljaric et al., 2017) while blocking

ORs. Together, vasopressin (20 nM) and OTRA (200 nM) yielded no changes of SPW-R

characteristics (�gure 4.13 A and G).

At large, the presented data suggests that vasopressin resembled the e�ect of TGOT on

SPW-Rs because of a co-activation of oxytocin receptors. According to our data, activation

of oxytocin but not VAP receptors modulated SPW-R characteristics.

4.2.2 Oxytocin Receptor Activation Did Not Modulate Gamma

Oscillations

After identifying an OR-dependent modulatory impact on hippocampal ensembles

during SPW-R oscillations, we aimed at investigating whether oxytocin receptor activa-

tion disrupts SPW-Rs selectively or also other network oscillations. Hippocampal gamma

oscillations are believed to ful�ll speci�c functions in hippocampal input processing and

memory formation. Here we investigated the modulatory potential of an OR activation

on induced gamma rhythms. We tested the impact of the OR agonist TGOT on three

di�erent pharmacological and one optogenetic gamma models.

Pharmacologically Induced Gamma Oscillations

First, in experiments performed by Pia Maier, gamma oscillations were induced glob-

ally through wash-in of either carbamoylcholine chloride (carbachol, 5 µM, �gure 4.14 A;

Fellous and Sejnowski 2000) or by application of (2S,3S,4S)-Carboxy-4-(1-methylethenyl)-
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3-pyrrolidineacetic acid (kainate, 100 nM, �gures 4.14 A and C; Fisahn et al. 2004). The

following data is presented as mean ± SEM. TGOT altered kainate-based gamma oscil-

lations with respect to their amplitude, which was increased by 11.3 % ± 4.34 % (0.42

± 0.06 mV [baseline] vs. 0.47 ± 0.07 mV [TGOT], P = 0.0150; n = 17, �gure 4.14 E).

The half width maximum was decreased by 16.8 ± 5.6 %, (20.1 ± 1.6 Hz [baseline] vs.

17.3 ± 2.4 Hz [TGOT], P = 0.0305; n = 17, �gure 4.14 E). In contrast, TGOT did not

modulate carbachol-induced gamma oscillations, as illustrated in �gure 4.14 E(a-d). This

di�erence in TGOT sensitivity of carbachol- and kainate-induced gamma models might

be based on the activation of muscarinic acetylcholine receptors (mAChRs) in the �rst

one. mAChRs are located at the pre- and postsynaptic site of neurons (Levey et al., 1991;

Volpicelli and Levey, 2004). Activation of mAChRs can modulate parvalbumin-positive

(PV+) inhibitory interneurons in a somewhat opposing manner. Presynpatic mAChRs di-

minish vesicular release form PV+ interneuron terminals (Lawrence et al., 2015) whereas

postsynaptic mAChRs depolarize PV+ interneurons (Yi et al., 2015). Due to this likely

interference of PV+ inhibitory interneurons by mAChRs, they potentially in�uence the

described gamma oscillations.

Therefore, we additionally utilized a third pharmacological gamma model. Whit-

tington et al. (1995) showed that isolated networks of inhibitory neurons can generate

oscillations in low gamma frequencies in pyramidal cells. For this, interneurons need to

be activated tonically, which results in mutual inhibition, eventually leading to �eld po-

tential oscillations in the gamma frequency range. In order to provide tonic excitation

of interneurons, we applied the glutamate receptor agonist L-Glutamic acid monosodium

salt hydrate (L-glutamic acid, 500 µM) locally while globally blocking ionitropic glutamate

receptors with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 µM) and D(-)-2-Amino-5-

phosphonopentanoic acid (D-APV, 30 µM). CNQX represents an AMPA receptor antago-

nist while D-APV acts as a N-methyl-D-aspartate (NMDA) receptor antagonist. Thereby,

interneurons were solely activated via metabotropic glutamate receptors, which are thought

to drive the oscillation in the inhibitory network (Whittington et al., 1995).
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Figure 4.14: TGOT marginally a�ected pharmacologically induced gamma oscilla-

tions.

(A) and (B) Example traces of gamma oscillations during baseline TGOT (100

nM) condition, respectively. Carbachol-induced gamma oscillations (top), kainate-induced
gamma oscillations (middle), L-glutamic adic-induced gamma oscillation (bottom). (C) and

(D) Power spectra of gamma oscillations during baseline (gray) or TGOT condition

(red). Kainate-induced gamma (top) and L-glutamic acid-induced gamma (bottom). (E): Nor-
malized quanti�cations of gamma oscillation parameters following TGOT (100 nM)

treatment. Gamma power (a) and frequency (b) were unchanged in all three gamma oscillation
models. Apart from the kainate-induced gamma model, amplitude and half width maximum were
also unaltered by TGOT (c - d) *P < 0.05. Adapted from (Maier et al., 2016).

L-glutamic acid was applied into the hippocampal area CA1, using a thin glass electrode,

which was carefully lowered onto the slices. Upon glass to tissue contact, we observed os-

cillations in the gamma frequency range (see �gure 4.14 A, C). In line with the previously
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shown gamma models, this interneuron-based gamma was also insensitive to oxytocin re-

ceptor activation (n = 7). The following data is presented as mean ± SEM. Gamma power

only showed a tendency to be decreased by 26.86 % ± 23.45 %, (0.0049 ± 0.0014 mV2

(baseline) vs. 0.0046 ± 0.0011 mV2 [TGOT]), however, not statistically signi�cant (P =

0.0655). Gamma frequency tended to be increased by 44.19 % ± 18.88 %, (65.3844 ±

7.8807 Hz [baseline] vs. 89.4103 ± 6.2272 Hz [TGOT]; P = 0.1553), similar to gamma am-

plitude, which was slightly increased by 6.84 % ± 17.19 %, (0.1205 ± 0.0262 mV [baseline]

vs. 0.1389 ± 0.0305 mV [TGOT]; P = 0.7044).

Strikingly, all employed pharmacological gamma oscillation models were largely in-

sensitive the application of the selective OR agonist TGOT. However, the shown gamma

rhythm induction models are all based on additionally applied pharmacological receptor

agonists. These might interfere with the ORs or AVP receptors, potentially intermingling

with the investigated modulation impact of the selective OR activation.

Optogenetically Induced Gamma Oscillations

In order to overcome potential de�cits of the applied pharmacological gamma oscilla-

tion models, we applied optogenetics for gamma induction, in a next set of experiments.

Akam et al. (2012) and Butler et al. (2016) describe that gamma oscillations can be lo-

cally generate in the hippocampus by slowly but consistently activating a large group of

pyramidal cells. This action was performed with optogenetic tools. A purely optogenetic

approach entails the advantage of circumventing drug-evoked neuromodulatory e�ects. For

the selective and temporally de�ned activation of CA3 pyramidal cells, we implemented a

holographic illumination system, based on a spatial light modulator (see section 3.5.1). By

applying that system we were able to transmit light in a locally and temporally speci�c

and well de�ned mode.

We recorded �eld potential �uctuations in the hippocampal area CA3 of horizontal

mouse brain slices, expressing ChR2-eYFP under the CamKIIα promoter (�gure 3.4 in
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section 3.4), which allowed for a restriction of ChR2 expression to excitatory pyramidal

cells only (Wang et al., 2013). As opposed to prior sections, local �eld potential recordings

were performed in submerged conditions (Hajos et al., 2009), using a microelectrode array,

that comprised 60 extracellular electrodes (see section 3.3.5). Using the dual perfusion

MEA (see section 3.3.5), the implemented recording system enabled spontaneous SPW-R

oscillations to occur. In conjunction, confocal imaging, precise light presentation and

MEA-based �eld potential recordings allowed us to perform the following experiments.

Slices were placed on a MEA in a way that its recording electrodes were covered by most

part of the hippocampal pyramidal cell layers. If SPW-R activity was observed optogenetic

experiments were conducted. Then, we recorded a confocal image and tagged the location

of light stimulation to hippocampal CA3 (�gure 4.15 A). Confocal imaging provided the

additional advantage of clear and high-resolving images of the respective tissue. Prior to

light presentation this was needed to de�ne the exact location that the light had to target.

Gamma oscillations were recorded adjacent to the stimulation area. For o�-line analyses

we only used data from a single recording electrode from CA3 stratum pyramidale of each

hippocampal slice. The negative potential de�ection was possibly observed due to the light

evoked cation in�ux into pyramidal cells, through ChR2 channels.

In contrast to theta nested characteristics of in vivo gamma oscillations (Belluscio

et al., 2012), here optogenetically induced in vitro gamma oscillations lacked the theta

component (�gure 4.15 B and C). However, similar experiments that were conducted in

an interface chamber (see section 3.3.1; Haas et al. 1979) revealed an underlying theta

rhythm (data not shown). Further, in vivo cholinergic input has been shown to be crucial

for shifting hippocampal activity states (Vandecasteele et al., 2014). As described at the

beginning of this section, we conveyed that evidence to the in vitro situation in a separate

set of experiments by applying carbachol as a structural analogue of acetylcholine (�gure

4.14). Interestingly, in our optogenetic approach the exclusive activation of CA3 pyramidal

cells by ChR2 was su�cient to induce gamma oscillations. Additional septal inputs were

not evoked or simulated otherwise (�gure 4.15 B and C).
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Figure 4.15: Oxytocin receptor activation left light-induced nested gamma oscillations

unchanged.(A) Field of view, observed as a light microscopic image of a hippocampal

brain slice recumbent on a MEA. Anatomical regions (DG, CA3 and CA1) as well as location
of light stimulations (blue circle) are illustrated. Scale bar represents 200 µm. (B) and (C)

Examples of induced gamma oscillations, recorded in stratum pyramidale of CA1.

(Top) Azure lines indicate intensity changes of the delivered light. (Middle) Raw local �eld
potentials show periodic gamma oscillations. (Bottom) Wavelet spectra of the extracellular signals
with respective frequency components. Mean frequency power distribution is indicated by the gray
line (right side). (B) Gamma oscillations during baseline condition (right: expanded few pointed
out by the red rectangle). (C) Gamma oscillations after TGOT (100 nM) application (right:
expanded few pointed out by the red rectangle). (D) Normalized quanti�cation of gamma

oscillations properties after TGOT (100 nM) application. Gamma power, frequency and
half width maximum were unchanged. Adapted from (Maier et al., 2016).

Theta-rhythmic (4 Hz) light presentation in a ramp-like pattern stimulated CA3 pyra-

midal cells and thus resulted in gamma oscillations (47.7 ± 1.6 Hz; �gures 4.15 A, B and

C), which spread to CA1. As soon as the light presentation was turned o�, optogeneti-

cally induced gamma oscillations vanished and spontaneous SPW-Rs occurred. This is in

line with hypotheses regarding the SPW-R generation, which appears to be a "default"

activity state of the hippocampus (Buzsaki, 2015; Buzsaki et al., 1983). Thus, by using

the aforementioned approach we were able to rapidly switch between network states. Dur-

ing absence of light hippocampal slices generated spontaneous SPW-R oscillations. Up on

light presentation in the described pattern, gamma oscillations were observed. We were

76



4.2 Di�erential Modulation of Hippocampal Network Oscillations by Oxytocin in vitro

able to investigate the activity-dependent transition between di�erent hippocampal oscil-

latory states in more detail in (Geschwill et al., 2018).

Likewise to the prior pharmacological gamma oscillations, optogenetically evoked

gamma oscillations were insensitive to the presence of TGOT (100 nM) (�gure 4.15 D,

n = 14). Data is presented as mean ± SEM. Quanti�cations revealed that gamma peak

power (0.84 ± 0.25 a.u. [baseline] vs. 0.73 ± 0.16 a.u. [TGOT], P = 0.1269), gamma

frequency (47.7 ± 1.6 Hz [baseline] vs. 45.1 ± 2.8 Hz [TGOT], P = 0.3303) as well as

gamma half width maximum (20.1 ± 0.7 Hz [baseline] vs. 20.1 ± 0.7 Hz [TGOT], P =

0.9293) were not modulated by TGOT (�gure 4.15 D).

All in all, we were able to present evidence that the activation of ORs modulates

hippocampal network oscillations selectively. While SPW-R characteristics were largely

diminished, di�erent gamma oscillation models were independent of oxytocin modulations.

With respect to the association of SPW-R oscillations with memory consolidation and

gamma oscillations with memory formation, oxytocin potentially potentially rather in�u-

ences the �rst process.

Contributions to the Study of The Impact of Oxytocin on

Hippocampal Network Oscillations

Data shown in section 4.2 was collected in joint e�orts of Pia Maier and Martin E.

Kaiser. Pia Maier and Martin E. Kaiser contributed equally, consequently the study re-

sulted in a shared �rst authorship publication (Maier et al., 2016). Data analysis and �gure

design were performed by Pia Maier, Martin Both and Martin E. Kaiser. Contributions

to the illumination setup are stated in section 3.5.1.
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4.3 Amyloid Precursor Protein Protected Neuronal

Networks against Hypoxia in vitro

Neural oscillations are diminished by oxygen-lacking conditions (Hefter et al., 2016),

potentially in�uencing associated memory processes. Thus, neurons potentially provide an

arsenal of neuroprotective mechanisms, which contribute to a fast recovery after functional

diminution due to neurotoxic events. Previous studies suggest a potentially neuroprotective

role of endogenous APP and / or APPsα (see section 1.4.2). Here, we thus aimed to

investigate the mechanism through which APP fragments function.

4.3.1 Block of L-type Calcium Channels Alleviated Posthypoxic

De�cits in APP-/- Mice

Hypoxia disrupts neuronal membrane potential and �ring properties (Hefter et al.,

2016). Oxygen deprivation is accompanied by an intracellular calcium concentration in-

crease (Lobner and Lipton, 1993). L-type voltage gated calcium channels (LTCCs) and

NMDA receptors are a major source of neuronal calcium in�ux. Antagonizing them reduces

the damaging impact of hypoxic conditions (Zhang et al., 2002). Since APP is associated

with both LTCCs (Yang et al., 2009) and NMDA receptors (Cousins et al., 2009), we

repeated such blockage experiments with electrophysiological and calcium imaging tech-

niques in hippocampal mouse brain slices. To carve out the potentially neuroprotective

role of APP and / or APPsα during hypoxia, we conducted the experiments on wild-type

(WT), APP-/-, and APPsα-KI mice.

Field potential and intracellular recordings from hippocampal CA1, applied and an-

alyzed by Dimitri Hefter (Hefter et al., 2016), revealed that hypoxia impaired excitability

in APP-/- but not in WT hippocampal brain slices.
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Figure 4.16: Increased calcium in�ux through LTCC reduced latency to hypoxia-

induced spreading depression in APP-/- hippocampal brain slices.

(A, E, and I) Representative examples of calcium imaging (left) in CA1 and the

corresponding LFP recordings (right). During standard oxygen condition (A; see section
3.3.1), at the plateau-like phase before the spreading depression (E) and during hypoxia-induced
spreading depression (I) calcium levels di�ered. Abbreviations: Rad - stratum radiatum. Pyr
- stratum pyramidale. (A) Blue line illustrates the approximate border between Rad and Pyr
in CA1. Dashed line indicates the position of the recording pipette. White bar represents 50
µm, for A, E and I. (B-D) Quanti�cation of maximal calcium in�ux showed signi�cant

di�erences between genotypes. Latency to the peak of �uorescence intensity (left) and in-
crease of �uorescence intensity at the plateau before spreading depression (right) in untreated
WT and APP-/- slices (B; n = 7/9 slices from 4/5 mice, respectively), in nifedipine-treated WT
and APP-/- (C; 6/7 slices from 2/3 mice, respectively), and in untreated WT and APPsα-KI
slices (D; 6/9 slices from 2/3 mice, respectively). (F)�(H) and (J)�(L) Calcium levels in-

creased during hypoxia. Hypoxia-induced mean increase of pixel intensity in (F) untreated,
(G) nifedipine-treated WT and APP-/- and (H) untreated WT and APPsα-KI slices. Dashed lines
indicate the start of hypoxia. Fluorescence intensity increase shown with each two representative
(J) untreated, (K) nifedipine-treated, (K) WT and APP-/- and (L) untreated WT and APPsα-KI
slices during hypoxia. *P < 0.05. Adapted from Hefter et al. (2016).

Population spike generation, high-frequency �ring of CA1 pyramidal cells as well as spon-
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taneous SPW-R activity were impaired following �ve minutes of hypoxia. Furthermore,

these experiments alluded that blockage of LTCCs was crucial to mitigate neuronal damage

after hypoxia. Application of the LTCC antagonist nifedipine (10 µM) indeed diminished

observed di�erences between WT and APP-/- tissues. The NMDA receptor antagonist

D-APV (60 µM) had no e�ect on APP-/- hippocampal tissue (Hefter et al., 2016). The

obtained electrophysiological evidence pointed towards a substantial role of calcium in�ux

through LTCCs regarding the increased susceptibility of APP-de�cient mice to hypoxia.

However, evidence showing the calcium dynamics during hypoxia, with and without block-

ing LTCCs, was needed.

Hence, in this work, we performed calcium imaging experiments in conjunction with

standard �eld potential recordings in hippocampal area CA1. We compared the calcium

dynamics in CA1 of WT, APP-/-, and APPsα-KI hippocampal networks before and during

hypoxia (�gure 4.16). Brie�y, cells were bulk-loaded with OGB-1 by lowering an OGB-

1 �lled glass electrode into the slice prior to imaging (section 3.5.3). Gentle pressure

application caused a slow OGB-1 injection into the CA1 region. After incubation we were

able to record �uorescent pixel intensity variations from an area of about 500 x 500 µm

(�gure 4.16 A, E, I). Due to the calcium-binding characteristics of OGB-1, a change in

�uorescent intensity correlated with a change in intracellular calcium concentrations. The

following imaging data was analyzed as described in section 3.5.3. First, we obtained 5

min baseline activity of �eld potential �uctuations and corresponding calcium dynamics,

while supplying the tissue with a gas mixture of 95 % O2 and 5 % CO2. Afterwards,

we switched to hypoxic gas supply conditions (95 % N2 and 5 % CO2). During the time

course of hypoxia �uorescent intensity increased continuously (�gure 4.16 E), typically

reaching a plateau signal (�gure 4.16 J-L). The amplitude of such a plateau intensity was

increased in APP-/- as compared to WT mice (�gure 4.16 F). Hypoxia was maintained

until so called hypoxia-induced spreading depressions occurred, which were observed as a

rapid surge of �uorescent intensity, followed by a peak intensity (�gure 4.16 I-L). Spreading

depression constitute a prominent depolarization of neurons on the one hand and a dramatic
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distribution ion concentrations between the intra- and extracellular space on the other hand

(Risher et al., 2010; Somjen, 2001). Peak intensities varied between cells, depending on the

quality OGB-1 loading. Spreading depressions allowed us to image a maximum calcium

in�ux into the cells. This peak pixel intensity signal was always higher than the prior

plateau values, suggesting that they were indicating physiological values, which were not

biased by technical calcium bu�ering limits of OGB-1. In the course of hypoxia the slices

showed minor shrinking and expanding patterns, which changed the focused slice level

and thereby also the recorded pixel intensities independent of cellular calcium in�ux. We

corrected for these movements characteristics by adjusting the focus manually, depending

on the magnitude of hypoxia-induced z-focus shifts. These shifts and the immediate focus

corrections can be seen as downward spikes in the time course of pixel intensities (�gure

4.16 J, K, L).

Strikingly, time to onset of spreading depressions was reduced in APP-/- mice (849.6

± 114.266 s [WT] vs. 1230.6 ± 74.298 s [APP-/-], P = 0.0385; �gure 4.16 B left), while

the signal amplitude was increased (4.9 ± 0.637 % [WT] vs. 2.69 ±0.36 % [APP-/-], P =

0.0494]; �gure 4.16 B right), as compared to WT mice (n = 7/9 slices from 4/5 WT and

APP-/- mice, respectively).

Application of nifedipine (10 µM) abolished the observed di�erences between WT and

APP-/- mice. Antagonizing LTCC receptors resulted in no di�erence in time to onset of

spreading depressions (1111 ± 75.007 s [WT] vs. 1216.9 ± 143.086 s [APP-/-], P = 0.5081;

�gure 4.16 C left) as well as plateau intensity (3.24 ± 0.347 % [WT + nifedipine] vs. 2.92

± 0.6143 % [APP-/- + nifedipine], P = 0.8356; �gure 4.16 C right; n = 7/9 slices from 4/5

WT and APP-/- mice, respectively). Also, the time course of �uorescent intensity changes

were similar in both genotypes (�gure 4.16 G, K). Next, we obtained further evidence

for the key role of APP in the LTCC-mediated susceptibility to hypoxia. We compared

calcium dynamics of WT and APPsα-KI slices (�gure 4.16 D, H and L). In line with the

nifedipine experiments, slices from APPsα-KI mice showed no di�erence in time to onset of

spreading depressions (259.4411 ± 29.9877 s (WT) vs. 277.0433 ± 53.7153 s (APPsα-KI),

P = 0.8639; �gure 4.16 D left), plateau intensity (8.2589 ± 1.4963 % [WT] vs. 10.6201
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± 1.7481 % [APPsα-KI], P = 0.4559; �gure 4.16 D right) as well as the time course of

�uorescent intensity changes (�gure 4.16 H, L) as compared to WT tissue (n = 6/9 slices

from 2/3 WT and APPsα-KI mice, respectively). In accordance with �eld potential and

single cell recordings presented in (Hefter et al., 2016), our calcium imaging data indicated

disrupting consequences of a lack of APPsα.

All in all, we were able to con�rm initial electrophysiological �ndings by Dimitri Hefter.

We present supportive evidence that the calcium dynamics of APP-/- neural tissue showed

a greater sensitivity towards hypoxia. This LTCC dependent e�ect could be rescued by

either blocking these calcium channels or by APPsα, indicating that this APP fragment

provides the basis for e�ective neuroprotection.

Contributions to the Study of the Neuroprotective Role of APP on

Network Oscillations

Data presented in section 4.3 contributed to the publication from Hefter et al. (2016).

Dimitri Hefter set the foundations for the presented data, obtaining essential electrophys-

iological evidence. Calcium imaging and corresponding �eld potential recordings were

performed by Martin E. Kaiser, as well as the respective analyses and �gure design. For

analysis custom-written Matlab scripts were used, created by Martin E. Kaiser.
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The hippocampus is vital for episodic and spatial memory (Squire et al., 2004). It is

suggested that memory processes are enabled by groups of co-active cell forming neuronal

ensembles (Hebb, 1949). While jointly performing neuronal computations these precisely

spiking groups of neurons participate in network oscillations (Ylinen et al., 1995). In

the local �eld potential, this coordinated activity can be observed as periodic potential

changes (Buzsaki et al., 1983; Csicsvari et al., 2000; O'Keefe, 1976; O'Keefe and Recce,

1993), constituting behavioral correlates. Theta-nested gamma rhythms are present during

active waking (Bragin et al., 1995; Vanderwolf, 1969) and rapid eye movement (REM)

sleep (Jouvet, 1969). SPW-R oscillations are observed during immobility, consummatory

behaviors and slow-wave sleep (Buzsaki et al., 1992, 1983). Networks oscillations are

thought to synchronize neuronal activity and thereby to provide a temporal framework

for the reliable formation neuronal ensembles (Buzsaki and Draguhn, 2004; Engel et al.,

2001).

In this work we provide new insights in the formation, modulation and resistivity of

neuronal ensemble activity during hippocampal network oscillations. We present evidence

for a striking, so far unknown recruitment mechanism of single cells into de�ned ensembles.

Further, our data showed selective modulatory e�ects of the endogenous hormone oxytocin

on di�erent network oscillations. Moreover, we illustrate a potential protection mechanisms

of spontaneous rhythms in the hippocampus, working through L-type calcium channels.
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5.1 Selective Recruitment of CA1 Pyramidal Cells into

Hippocampal SPW-R-Ensembles Depended on

Anatomical Features

In the �rst part of this work we unraveled a potential recruitment mechanism of single

hippocampal pyramidal cells into neuronal ensembles (section 4.1). During hippocampal

SPW-R oscillations the consecutive, temporally compressed reactivation of place cells sup-

ports spatial memory formation and consolidation (Buzsaki, 1986; Csicsvari and Dupret,

2014; Ego-Stengel and Wilson, 2010; Kali and Dayan, 2004). These cells exhibit experience-

dependent reactivation during behavioral resting states (Pavlides and Winson, 1989; Wil-

son and McNaughton, 1994), resembling a selective activation of groups of cells that are

geared to each other. In vitro and in vivo recordings provided evidence that inhibitory in-

terneurons play a key role in the temporal organization of such ensembles (Csicsvari et al.,

1999b). Therefore, excitatory pyramidal cells receive strong hyperpolarizing and shunting

inhibition during SPW-Rs (Ellender et al., 2010; Gan et al., 2017; Klausberger et al., 2003).

Nevertheless, subgroups of pyramidal cells are somehow able to participate in SPW-R

ensemble activity. In vitro these cells initiate somatic APs that exhibit an ectopic-like

waveform, showing an abrupt rising, missing a slow subthreshold depolarization phase be-

forehand (Bahner et al., 2011). So far the recruitment mechanisms as well as the reason

for their peculiar AP waveform are unknown.

5.1.1 Axon-Carrying Dendrite Cells Were Preferentially Recruited

into SPW-R Oscillations

Within neuronal network oscillations, single neurons are activated, participating in

ensemble activity. However, the mechanisms providing the basis for the observed selectiv-

ity of neuronal activity within hippocampal SPW-R oscillations are not fully understood.
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Why are some neurons activated while others, whether anatomically close or not, remain

silent? In this regard, multiple potential recruitment mechanisms have been proposed.

First, synaptic properties of a neuronal network promote di�erential excitation and in-

hibition of individual cells. Convergent and divergent synaptic wirings create structural

frameworks for a speci�c �ow of information (Kumar et al., 2010; Pernice et al., 2013;

Song et al., 2005). Moreover, the strength of postsynaptic potentials di�er depending on

the respective synaptic e�cacy (Lorente De Nó, 1938; Sun et al., 2014). Both, synaptic

connections as well as e�cacy are in�uenced by activity-dependent plasticity, which can

result in a modulation of neuronal ensemble formations (Bi and Poo, 1998; Garner et al.,

2012; Lowel and Singer, 1992; Markram et al., 1997; Matsuzaki et al., 2004).

Taking a step further, evidence from in silico approaches suggests that nonlinear

dendritic integration constitutes a potential mechanism for the activation of individual

pyramidal cells into SPW-R ensembles (Memmesheimer, 2010). Voltage-gated sodium

conductances in dendrites can trigger dendritic spikes that transverse to the soma and

generate fast depolarizations with high temporal precision (Ariav et al., 2003; Gasparini

and Magee, 2006; Gasparini et al., 2004). With respect to a group of excited neurons,

supralinear dendritic interactions can mediate synchronization in network activity, diversi-

fying the postsynaptic impact of synaptic potentials and thereby increasing the di�erence

between participating and nonparticipating cells (Memmesheimer, 2010; Memmesheimer

and Timme, 2012).

As a complementary possibility, Draguhn et al. (1998) and Schmitz et al. (2001) argue

that the coupling of pyramidal cells via axonal gap junctions could result in the spiking

of groups of neurons during SPW-R oscillations. Accordingly, ectopic-like, network-driven

APs are generated by fast electronic coupling potentials, transmitting between axonal gap

junctions that interconnect groups of pyramidal cells. Subsequent mathematical models

predict that indeed this mechanism is able to generate spikes at high frequencies observed

during ripples (Traub and Bibbig, 2000; Traub et al., 1994, 1999, 2012). Following their

model, groups of pyramidal axons therefore generate APs at ripple frequency by utilizing

conducting gap junction couplings. However, this view leaves the necessity of phasic inhi-
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bition for ripple generation out of the picture. Consequently, the observed antidromic-like

waveform of co-active cells during SPW-R oscillations might be complemented by other

mechanisms.

Apart from that, it is hypothesized that the di�erence in AP �ring behavior between

participating and nonparticipating CA1 pyramidal cells results from distinct synaptic input

strengths (Colgin, 2016). It is hypothesized that cells within a neuronal ensemble receive

stronger excitatory inputs than cells outside such coordinated activity.

We followed up on this hypothesis and particularly took the work of Thome et al.

(2014) into account. They recently discovered that the axons of about 50 % of CA1 pyra-

midal cells originate from a basal dendrite (AcD cells). The other half constitutes pyramidal

cells of which the axons derive from the soma (nonAcD cells; Thome et al. 2014). In oder

to investigate whether the AcD as a privileged input channel impacts the recruitment of

these cells into SPW-R ensembles, we performed �eld potential in conjunction with in-

tracellular electrophysiological recordings from hippocampal brain slices. To our surprise,

data presented in this work showed, that only AcD cells elicited SPW-R-entrained APs,

while nonAcD cells were con�ned to spike outside of SPW-Rs. Furthermore, we showed

that somatic excitatory as well as inhibitory conductance changes were similar in both

pyramidal cell types. The amount of sharp wave- and ripple-evoked conductances as well

as the amplitude, rate of rise, and decay kinetics of the overall conductances were not dif-

ferent between AcD and nonAcD cells. Our evidence thus contradicts the proposition from

Colgin (2016). The observed di�erentiation in �ring behavior cannot just be explained by

di�erent synaptic inputs alone.

Interestingly, peak excitatory and inhibitory conductances in awake mice were com-

parable to the respective values that we obtained (Gan et al., 2017). In our recordings, the

average peak excitatory conductance was much lower than the peak inhibitory one. Also,

the amplitude of SPW-R-entrained conductance changes were comparable between the in

vivo and in vitro measurements. This comparison of the presented in vitro to already

published in vivo data underlined the credibility of our approach.

So far, our evidence does not support the hypotheses from Schmitz et al. (2001) and
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Colgin (2016). Thus, we present the following alternative proposition about the involve-

ment of single pyramidal cells in coherent neuronal activity.

5.1.2 Cellular Anatomy and Incident Perisomatic Inhibition

Shaped De�ned CA1 Pyramidal Cell Recruitment into

Ensemble Activity

In this work, we propose a recruitment mechanism of CA1 pyramidal cells into hip-

pocampal SPW-R-ensemble activity that is based on an anatomical feature which allows

excitation to bypass somatic inhibition-mediated shunting. We provided evidence that

AcD cells were able to elicit APs because excitatory inputs to the respective axon-carrying

dendrite remained e�cient, while the ones to other dendrites were abolished by somatic

shunting. Following this proposition, even similar excitatory as well as inhibitory inputs to

individual AcD and nonAcD cells could result in selective spiking patterns. With respect

to the intracellular �ow of depolarization towards the AIS, excitatory inputs to the AcD

would omit transversing through the soma and thereby directly depolarize the axonal re-

gion. In contrast, excitatory inputs to nonAcD cells would always be required to transverse

the soma, in oder to depolarize the AIS and thus be shunted during SPW-R oscillations.

Hence, the here proposed recruitment mechanism is based on in silico evidence of Thome

et al. (2014). They illustrate that in AcD cells, the axon and thus the AIS are shifted away

from the perisomatic region, thus rendering the AP generation side to be less a�ected by

perisomatic inhibition.

Our data strongly supports the here hypothesized AcD-based selection mechanism.

We experimentally diminished SPW-R-entrained perisomatic inhibition of the targeted

pyramidal cells. As a consequence and as predicted by the aforementioned hypothesis, we

were able to demonstrate that upon this reduction, pyramidal cells participated in hip-

pocampal ensemble activity, irrespective of their axon location. Strikingly, nonAcD cells

elicited spontaneous APs within SPW-Rs. Moreover, the typical ectopic-like waveform of
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participating APs changed to canonical waveforms. Consequently, the privilege of an AcD,

regarding the e�cacy of incident excitatory inputs in triggering APs, was abolished by the

reduction of network-entrained perisomatic shunting.

To reduce SPW-R-driven perisomatic inhibition, we used two independent approaches,

each only modulating the targeted pyramidal cell, while leaving the overall network activity

unchanged. First, we utilized a pharmacological approach. While recording single pyrami-

dal cells, we applied the GABAA receptor antagonist picrotoxin intracellularly, through the

recording pipette (Goutman and Calvo, 2004; Inomata et al., 1988; Valero et al., 2017). As

expected, the amount of inhibitory sharp wave- and ripple-entrained as well as the ampli-

tude of the overall inhibitory conductances decreased. Thereby, prior silent pyramidal cells

started to elicit APs during SPW-Rs. In detail, by using post-hoc anatomical analyses

we con�rmed that this approach resulted in the network-driven recruitment of nonAcD

cells. However, due to possible drawbacks of this pharmacological approach, regarding

drug application, controllability, and unknown unspeci�c binding e�ects, we utilized a sec-

ond method of curtailing SPW-R-associated perisomatic inhibition. We implemented a

dynamic clamp system that allowed us to precisely annihilate perisomatic inhibition de-

pending on the membrane potential of the target cell. By applying dynamic clamp, we

introduced an arti�cial conductance into a targeted cell that was tuned to the network-

entrained inhibitory conductance input. Since synaptic input to individual pyramidal cells

varies between cells and slice conditions, this approach enabled us to pursue a cell as well

as network-state speci�c approach. The simulated arti�cial conductance diminished the

impact of SPW-R-driven perisomatic inhibition e�ectively. In line with the aforementioned

pharmacological approach, we thus obtained participating APs that resembled a canonical

waveform, from a pyramidal cell that was likely to be regarded as a nonAcD cell. Never-

theless, our dynamic clamp approach still needs further characterization and adjustments

to diminish inhibitory conductance changes to a greater extent. Data shown here was

obtained from one cell only. However, we could still show that this approach worked as

well as present evidence, supporting our working hypothesis.

At large, a decrease in shunting inhibition rendered an under baseline conditions im-
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peding anatomy, meaning the nonAcD less relevant for the network-driven selectivity of

single pyramidal cells. In contrast, intact SPW-R-entrained perisomatic shunting pre-

vented nonAcD cells from participating in hippocampal ensembles. Only AcD cells were

able to circumvent this constricting network activity.

5.1.3 Functional Consequences for the Information Processing in

the Hippocampus

Recently, it was shown illustrated that in AcD cells the axon is preferentially located

at basal dendrites (Thome et al., 2014). Moreover, in our somatic recordings we did not

observe di�erences in network-entrained excitatory inputs between AcD and nonAcD cells.

Distinct �ring behaviors of the two cell groups relied on the location of excitatory inputs

to respective basal dendrites. Thinking ahead, this points towards the possibility that

excitatory inputs to apical dendrites might serve as a general excitation rather than being

leveled cell speci�cally. The location of excitation to the basal dendrites, however, could

be decisive for neuronal output generation. The AcD input route could be more e�ective

and therefore AcD cells would be privileged as opposed to nonAcD cells, during SPW-R

oscillations.

Furthermore, the here described functional separation of AcD and nonAcD cells might

also resemble a recruitment mechanism of single cells into other network state-dependent

neuronal ensembles. Interestingly, Epsztein et al. (2010) observed that in exploring rats, 7

out of 16 hippocampal CA1 pyramidal cells elicited APs, with exceedingly fast rising phases

while the other 9 cells showed canonical APs only, in vivo. This number resembles the total

proportion of hippocampal CA1 AcD cells (Thome et al., 2014), indicating a potential role

of the here proposed AcD-based mechanism. Probable AcD cells �red ectopic-like APs at

higher frequency inside than outside their respective place �eld. The observation of such

a peculiar AP waveform during theta rhythms, in conjunction with the here shown data

during SPW-R oscillations, indicates a broader importance of the proposed mechanism in

89



5 Discussion

memory encoding in the hippocampus.

Intriguingly, other approaches did not lead to SPW-R-entrained ectopic-like APs in

hippocampal CA1 pyramidal cell, in vivo (English et al., 2014). Moreover, in vitro the

spiking behavior of pyramidal cells can be classi�ed into two groups, either only �ring

canonical APs or eliciting ectopic-like as well as canonical APs, depending on the spatial

position of the animals (Epsztein et al., 2010). We suggest that these �ndings underline

the nonexclusive nature of the here presented anatomy-based integration mechanism. We

propose that the here illustrated mechanism rather o�ers an additional recruitment option

of principal cells into hippocampal ensemble activity. As described by Memmesheimer

(2010), nonlinear dendritic integration constitutes a mechanism that theoretically leads to

the recruitment of individual pyramidal cells into SPW-R ensembles. Supralinear dendritic

integration can result from the activation of voltage-gated sodium (Ariav et al., 2003; Gas-

parini and Magee, 2006; Gasparini et al., 2004; Nevian et al., 2007), potassium channels

(Johnston et al., 2000), as well as NMDA receptors (Grienberger et al., 2014; Schiller et al.,

2000). In our recordings, we observed a time di�erence of peak SPW-R-evoked excitation

between AcD and nonAcD cells, being about 6.625 ms later in the latter ones. This dis-

tinction can potentially be explained by di�erences in dendritic supralinear integration

processes. In AcD cells these might mainly rely on sodium channels, which only allow a

small time window of about 3 ms for nonlinear input integration (Magee and Cook, 2000;

Memmesheimer, 2010). In nonAcD cells on the other hand, potassium channels could

provide a larger time window of about 10 ms for dendritic coincidence detection of pre-

and postsynaptic activity (Johnston et al., 2000; London and Hausser, 2005). Indeed,

an enhanced supralinear integration in axon-carrying versus non-axon-carrying dendrites

was shown (Thome et al., 2014). Hence, di�erences in nonlinear dendritic processes are ob-

served, indicating a distinct ionic prevalence and distribution of respective ion conductances

in between AcD and nonAcD cells. Further, the here proposed selectivity mechanism of

single hippocampal pyramidal cells during network oscillations is unlikely to work digitally,

meaning. First, AcD cells constitute 50 % of CA1 pyramidal cells (Thome et al., 2014).

It is thus unlikely that the proposed mechanism works in a nonexclusive all or nothing
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pattern. As shown by computational modeling, the shunting impact of perisomatic inhibi-

tion depends on the distance of the axon, branching form a dendrite, to the soma (Thome

et al., 2014). Consequently, plasticity mechanisms can in�uence the impact of perisomatic

inhibition on the output, by modulating the positioning of the axon, relative to the soma.

It has already been shown that the AIS positioning and length can be modulated in an

activity-dependent manner (Grubb and Burrone, 2010; Kuba et al., 2010, 2015), indicating

that so far unknown plasticity mechanisms potentially regulate the AcD anatomy.

5.1.4 Potential Impact of the in vitro Condition on Observed

Spiking Pyramidal Cells Behaviors

Data presented in this work was obtained from in vitro experiments, recording intra-

and extracellular voltage �uctuations in 400 µm thick hippocampal brain slices. Due to

the slicing process, dendritic as well as axonic branches were pruned away, which is likely

to have resulted in diminished cellular inputs to the targeted CA1 pyramidal cells. The

resulting lack of network connections can potentially explain the observed discrepancy be-

tween participating and nonparticipating AcD cells. However, although only half of AcD

cells elicited SPW-R-entrained APs, all identi�ed nonAcD pyramidal cells remained silent

during SPW-Rs.

Furthermore, a comparison of the peak inhibition to excitatory conductances in vitro

to in vivo indicated an increase in the latter condition. This could provide an explana-

tion of the observed ectopic-like waveform of all pyramidal APs that were elicited within

SPW-Rs, while English et al. (2014) only reported canonical APs. Stronger perisomatic in-

hibition can result in an increased SPW-R-driven hyperpolarization of somatic membrane

potentials. Back-propagating APs are therefore more likely to be recorded as ectopic.
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5.2 Selective Neuromodulatory E�ects of Oxytocin on

Hippocampal Network Oscillations in vitro

After investigating the newly proposed mechanism of spontaneous ensemble forma-

tion, we took our investigation of neuronal ensemble activity during network oscillations a

step further. We aimed for a more detailed understanding of the impact of the neuromod-

ulator oxytocin on hippocampal network states (section 4.2). We investigated the e�ect

and speci�city of an oxytocin receptor activation on spontaneous SPW-Rs and multiple

gamma oscillation models.

It appears interesting that oxytocin caused a profound suppression of SPW-Rs, while

leaving gamma oscillations mostly unchanged. Both hippocampal network states are mu-

tually exclusive, hinting a speci�c neuromodulatory role of oxytocin.

5.2.1 Oxytocin Receptor Activation A�ected Spontaneous

SPW-Rs

In vitro, SPW-Rs consist of a positive �eld potential de�ection with superimposed fast

ripple oscillations, when recorded in stratum pyramidale of the CA region. Interestingly,

we found that the oxytocin receptor agonist TGOT modulates the aforementioned SPW-R

characteristics.

TGOT decreased SPW-R amplitudes, which can potentially be explained by two mech-

anisms. On the one hand, blocking GABAA receptors diminishes positive SPW-Rs com-

ponents in stratum pyramidale (Schonberger et al., 2014). In accordance with that TGOT

increases the �ring of inhibitory interneurons in the hippocampus (Owen et al., 2013).

Tonic inhibition is elevated while phasic inhibition decreases due to use-dependent de-

pression of interneuron-pyramidal cell synapses (Owen et al., 2013). This indicates that

TGOT reduced phasic inhibitory synaptic transmission, which led to smaller SPW-R am-
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plitudes. On the other hand, it is suggested that CA3 pyramidal cells provide bursts of

excitatory inputs to the CA1 area, generating positive SPW-R de�ection in stratum pyra-

midale (Buzsaki, 1986, 2015; Sullivan et al., 2011). In this context, TGOT might hinder

the excitation from emanating through the CA areas.

In addition to SPW-R amplitudes, TGOT also reduced the incidence of SPW-Rs. As

stated above phasic and tonic inhibition appear to modulate SPW-R amplitudes. More-

over, the two components of inhibition de�ne a time window for SPW-R generation (Bah-

ner et al., 2011; Ellender et al., 2010; Viereckel et al., 2013). SPW-R incidence can be

modulated by the GABA receptor subtypes A and B (Hollnagel et al., 2014; Nimmrich

et al., 2005). Prolongation of the GABAA decay time constant suppresses the frequency

of SPW-R occurrence (Viereckel et al., 2013). Interestingly, tonic inhibition appears to

be required for SPW-R activity. Low concentrations of GABAA receptor blockers fully

abolish SPW-R occurrence (Ellender et al., 2010). Agonizing GABAB receptors suppresses

SPW-R incidence as well (Hollnagel et al., 2014). In line with Viereckel et al. (2013) and

Owen et al. (2013), SPW-R reduction by TGOT might also occur due to inhibition of

pyramidal cell targeting inhibitory interneurons (Muhlethaler et al., 1984).

Further, we found that TGOT reduced ripple energy as well as the number of ripple cy-

cles of SPW-Rs. Again the modulation of fast-spiking interneurons by oxytocin can present

a potential mechanistic explanation for the this �nding (Owen et al., 2013). Through in-

hibitory interneuron �ring, oxytocin sharpens excitation-spike coupling while suppressing

background pyramidal cell activity (Owen et al., 2013). In the �eld less pyramidal cell �r-

ing can potentially be observed as diminished negative de�ections. Alteration of synaptic

transmission bears the potential to modulate spiking precision. However, the underlying

mechanism of interneuron-pyramidal cell phase-coupling remains to be explained (Csicsvari

et al., 1999b; Memmesheimer, 2010; Schmitz et al., 2001).

Strikingly, TGOT application reduced all SPW-R characteristics except for the rip-

ple frequency. This observation contradicts the presumed role of GABAergic inhibition in

ripple generation, supporting other possible mechanisms (Memmesheimer, 2010; Schmitz

et al., 2001). Similarly, other approaches also report that a change of synaptic transmis-
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sion leaves the ripple frequency unchanged (Bahner et al., 2011; Schonberger et al., 2014;

Viereckel et al., 2013).

5.2.2 Oxytocin Receptor Activation Spared Induced Gamma

Oscillations

In contrast to the e�ect on SPW-Rs, TGOT failed to modulate most features of the

applied gamma rhythms. Gamma power and frequency of all pharmacologically and opto-

genetically induced gamma oscillations did not change upon TGOT application. However,

Owen et al. (2013) shows evidence that the kainate-induced gamma oscillation is sensitive

to oxytocin receptor activation due to an increased amplitude of the evoked population

spike. In line with this, we observed that TGOT enhanced gamma amplitude and reduced

half width maximum during kainate-induced gamma. We further employed an interneuron

gamma model during which ionotropic glutamate receptors were blocked. Similar to the

carbachol gamma model, the interneuron gamma model was insensitive to TGOT. Taking

a step further and eliminating neuromodulatory interferences, we next applied an optoge-

netical gamma model. Due to ChR2 expression the presentation of ramp-like light patterns

stimulated pyramidal cells in a theta rhythm. The resulting gamma oscillation was not

a�ected by TGOT.

The presented evidence points towards the conclusion that hippocampal gamma oscil-

lations are largely insensitive to oxytocin receptor activation. This profound discrepancy

in oxytocin receptor sensitivity between spontaneous SPW-Rs and induced gamma oscil-

lations appears crucial. It might re�ect functional di�erences between the two network

rhythms and could thus be explained by these.

The �rst possible reason for the observed di�erences might lie in the di�ering role of

tonic and phasic inhibition during SPW-Rs and gamma oscillations. A modulation of inhi-

bition could therefore result in distinct impacts, being less e�ective during gamma gamma

oscillations. Oxytocin increases the �ring frequency of fast-spiking interneurons (FSI) and
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thereby modulates phasic and tonic inhibition (Owen et al., 2013).

In vitro, during SPW-R oscillation FSI �re at around 6 Hz (Bahner et al., 2011) while

being active with 30-45 Hz during gamma oscillations (Bartos et al., 2007; Butler et al.,

2016). Hence, the rhythm related di�erences in the responsiveness to oxytocin that we

observed, might re�ect distinct oxytocin induced �ring frequency modulations of FSI. At

baseline conditions FSI �re at a lower frequency during SPW-R than during gamma os-

cillations (Bahner et al., 2011; Bartos et al., 2007; Butler et al., 2016). Oxytocin could

thus have a stronger relative impact in enhancing FSI activity during SPW-Rs, resulting

in a higher increase in discharges. During gamma oscillations FSI �ring frequency has

reached a relatively high level already at baseline conditions. Oxytocin might not be po-

tent enough to increase it further. There is a correlation between FSI discharges and the

states of phasic as well as tonic inhibition (Owen et al., 2013). Di�erently a�ected FSI

action potential activity during both types of network rhythms might therefore also result

in diverging modulations of phasic and tonic inhibition. If oxytocin modulates the balance

of both inhibitory components less during gamma oscillations, distinct oscillation related

inhibition can be an explanation for our observation that oxytocin modulated SPW-R but

not gamma oscillations.

A second explanation for the observed di�erences in the sensitivity of SPW-Rs versus

gamma rhythms might lie in the distinct local networks that are formed by hippocampal

inhibitory interneurons, amongst each other and together with pyramidal cells (Csicsvari

et al., 1999b; Klausberger and Somogyi, 2008). Oxytocin could have selective e�ects on

such local connections, depending on the types of interneurons involved and the nature of

the occurring network oscillation (Memmesheimer, 2010; Whittington et al., 2011). During

a SPW-R, evidence suggests that perisomatic PV+ basket and bistrati�ed cells increased

their �ring frequency (Buhl et al., 1994; Klausberger et al., 2003; Varga et al., 2014; Ylinen

et al., 1995), while axo-axonic, cholecystokinin expressing and oriens-lacunosum molecu-

lare GABAergic cells are silenced (Klausberger et al., 2003, 2005). However, such a digital

on/o� feature of certain interneuron types is not observed during gamma oscillations. Evi-

dence suggested that all identi�ed inhibitory interneurons are activated during theta-nested
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gamma oscillation (Klausberger and Somogyi, 2008). Interestingly, in CA3 a similar situ-

ation can also be observed during SPW-Rs (Hajos et al., 2013). Consequently, if distinct

interneuron types participate during the two network oscillations, it is possible that oxy-

tocin modulates these di�erently and thus changes network rhythms depending on their

frequency.

In this work, we provide striking evidence that oxytocin a�ects di�erent network oscil-

lations distinctly. Projecting these results to the behavioral level oxytocin might also play

a profound role in social cognition, cognitive performance as well as psychiatric diseases

(Feifel et al., 2012, 2010; Guastella et al., 2010; Pedersen et al., 2011). Further studies have

thus to be conducted to understand the network e�ects of oxytocin on behavioral states

fully.

5.3 Neuroprotection by Amyloid Precursor Protein

during Hypoxic Stress

The preservation of a precisely neuronal ensemble activity is vital for reliable memory

processes. Sudden incidences like brain ischemia can impact crucial network oscillations

negatively. Thus, under normal conditions reliable mechanism can suddenly be malfunc-

tioning. However, neuronal networks provide protection mechanisms, that support fast

recovery from disturbing incidences.

5.3.1 Soluble Amyloid Precursor Protein Alpha Exerted a

Neuroprotective Role through L-Type Calcium Channels

In this work, we present evidence that APP has a neuroprotective e�ect, underlining

previously published in vitro (Kogel et al., 2012) and in vivo (Clarke et al., 2007; Koike

et al., 2012) studies (section 4.3). APP and it's cleavage products are strongly involved in
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Alzheimer's disease (O'Brien and Wong, 2011). However, the exact role in neurons' via-

bility is still unknown. Our calcium imaging approach demonstrated that during hypoxia

hippocampal brain slices from APP-/- mice showed an increased calcium in�ux as compared

to WT animals. This di�erence between APP-/- and WT mice could be abolished by an-

tagonizing L-type calcium channels with nifedipine. Importantly, tissue of both genotypes

was treated with nifedipine. Unspeci�c hypoxic e�ects were therefore not responsible for

the observed de�cits of APP-/- neuronal tissue. We argue that the lack of APP in APP-/-

mice enhanced the LTCC-dependent rise of intracellular calcium levels during hypoxia. In

accordance with our argumentation, Yang et al. (2009) demonstrated that APP interacts

with Cav1.2 LTCCs, which as a result suppresses neuronal voltage-dependent calcium in-

�ux. Taking a step further, Anekonda et al. (2011) as well as Anekonda and Quinn (2011)

suggested the blockage of calcium channels as a prospective neuroprotective treatment of

Alzheimer's disease. Generally, increased intracellular calcium have been shown to cause

dysfunctional and damaging e�ects (Thibault et al., 2007; Zhang et al., 2002).

Strikingly, in our experiments APPsα-KI and WT mice showed no di�erence in cal-

cium in�ux through LTCCs during hypoxia. In line with previous studies (Smith-Swintosky

et al., 1994; Thornton et al., 2006), we thus suggest that the observed hypoxia-dependent

neurodamaging e�ects appeared to be mostly mediated by a lack of the soluble extracellu-

lar domain APPsα. APPsα has been shown to abolish amyloid-β-dependent toxic e�ects

(Fol et al., 2016; Obregon et al., 2012) and to rescue APP-induced de�cits (Hick et al.,

2015; Ring et al., 2007). Our evidence strongly suggests that APPsα diminished calcium

in�ux through LTCCs. Whereas amyloid peptides the expression (Webster et al., 2006)

and consequently the potential calcium in�ux increases. APPsα potentially a�ects LTCCs

extracellularly, while APP could interact with LTCCs intracellularly (Yang et al., 2009).

Our evidence suggests a neuroprotective role of APP and APPsα against damaging

impacts of hypoxia. For future clinical approaches against Alzheimer's disease or vas-

cular diseases, reconstituting neuronal calcium homeostasis diminishing damaging rise of

intracellular calcium levels might be promising therapeutic therapies.
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6 Outlook

In this work, we answered prominent questions about the following three major issues.

We showed a recruitment mechanism of single pyramidal cells into neuronal ensembles,

presented the extend of an oxytocin-based modulation of oscillatory ensemble activity as

well as described the neuroprotective impact of the amyloid precursor protein on calcium

dynamics during SPW-R oscillations. Nevertheless, there are still open questions regarding

the detailed mechanisms behind the observed �ndings. This section will provide insights

into possible experiments and ideas, targeting some of these issues.

Privileged Recruitment of AcD Cells into SPW-R Oscillations - Next Step:

Studying the Functional Role

We present evidence that AcD pyramidal cells were preferentially recruited during

SPW-R oscillations in hippocampal CA1 in vitro, whereas nonAcD pyramidal cells gen-

erally remained silent. Our data suggests that this exclusive SPW-R-entrained spiking

behavior of AcD cells represents a possible, so far unknown mechanism to include individ-

ual cells into functional ensembles. In this way, AcD cells were potentially activated during

SPW-Rs because their axons were decoupled from the soma, allowing speci�c excitatory

dendritic input to circumvent SPW-R-entrained perisomatic inhibition in vitro. However,

as prominent as the AcD-based selection mechanism was observed to be, future experiments

will have to show the relevance of an AcD-based recruitment mechanism in vivo. One could
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repeat the here presented recordings from single pyramidal cells in conjunction with �eld

potential measurements in freely moving rodents and obtain the anatomy of recorded cells

afterwards. This approach could con�rm the importance of the AcD anatomy of pyramidal

cells that participate in SPW-Rs.

In the hippocampus, about 50 % of CA1 pyramidal cells are described to be AcD cells

(Thome et al., 2014). Therefore, during SPW-R oscillations the AcD-based recruitment

mechanism reduced the cell population pool that is able to be recruited to only 50 % of

all CA1 pyramidal cells. However, this pool of cells is unlikely to be the same for all net-

work oscillations. Therefore, future studies will have to provide insights into recruitment

mechanisms and the regarding cell pool during other oscillation types. Additionally, while

we observed a distinct network-entrained �ring behavior in AcD versus nonAcD cells, both

groups received similar synaptic inputs during SPW-R oscillations. Future approaches will

also have to describe if this holds true for other network oscillations. In vitro, these two

issues, the digital AcD versus nonAcD spiking as well as the estimation of synaptic inputs,

could be investigated during gamma oscillations by either inducing gamma rhythms phar-

macologically or optogenetically, as presented in this work.

Moreover, the axon to soma distance might modulate the AcD-based recruitment mecha-

nism during SPW-R oscillations (Thome et al., 2014), since synaptic potentials are shown

to decrease with distance intracellularly (Magee, 2000). Therefore, future studies might

be able to decipher potential correlation between the axonal distance to the soma and

functional consequences.

Furthermore, if the AcD-based recruitment mechanism is as vital as we observed it

to be during hippocampal network oscillations, the AcD anatomy could be modulated at

a certain developmental stage or even continuously throughout life. Further studies could

investigate an AcD plasticity during in vivo behavioral tasks. Live imaging of the AIS

could be conducted via genetically-encoded fusion of a �uorescent protein to AIS-speci�c

voltage-gated sodium channels (Dumitrescu et al., 2016).

We con�rmed that SPW-R-entrained APs depicted an ectopic-like waveform in vitro
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(Bahner et al., 2011). In contrast, in vivo SPW-R-driven APs are described as orthodromic

(English et al., 2014). A possible explanation for this lack of an ectopic-like waveform

could be found in a lower inhibition to excitation ratio in vivo, which would result in a less

hyperpolarized soma during SPW-R oscillations. Therefore, the relevance of the AcD-based

recruitment mechanism could be underlined by paired recordings from the soma and the

axon. These could show a larger delay in the AP generation between both compartments

in AcD versus nonAcD cells.

Modulation of Hippocampal Oscillations by Oxytocin - Next Step: Going Beyond

Mere Description

We showed the selective modulation of hippocampal network oscillations by oxytocin

in vitro. While oxytocin reduced spontaneous SPW-R oscillations, it did not alter gamma

oscillations. In addition, future approaches could study this modulation in vivo, also tar-

geting the question about its relevance for memory consolidation versus encoding.

The modulation selectivity of oxytocin was most likely observed due to a di�ering

role of tonic and phasic inhibition during SPW-Rs and gamma oscillations. Single cell

recordings from inhibitory interneurons could decipher the modulatory impact of oxytocin

on tonic and phasic inhibition during both oscillation types. Moreover, inhibitory in-

terneurons show distinctive spiking behaviors during SPW-R versus gamma oscillations.

While perisomatic PV+ basket and bistrati�ed cells increase their spiking frequency during

SPW-R oscillations, a broad activation in interneurons is observed during gamma oscilla-

tions (Buhl et al., 1994; Klausberger et al., 2003, 2005; Varga et al., 2014; Ylinen et al.,

1995). Therefore, targeted intracellular recordings from di�erent interneuron classes could

provide insights into the di�erential modulation of them by oxytocin.
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Modulation of Intracellular Calcium Dynamics by Amyloid Precursor Protein -

Next Step: Studying the E�ect on Memory

In this work, we con�rmed that a disrupted calcium homeostasis in APP-/- mice could

be rescued by blocking L-type calcium channels. Moreover, the larger calcium in�ux in

APP-/- as compared to APPsα mice could explain the protective role of the APP fragment

APPsα during hypoxic conditions. We presented data that suggest the blockage of L-

type calcium channels to be a promising neuroprotective treatment against ischemic brain

injuries as well as Alzheimer's disease. However, future studies could evaluate the extent

of neuroprotection of a selective antagonization of L-type calcium channels in vivo. Taking

a step further, clinical studies could provide insights into the protective impact of memory

during Alzheimer's disease.
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