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Abstract

The inclusive production of V 0-particles, i.e. K0
s mesons, ⇤ and ⇤ baryons in pp-

collisions at a centre-of-mass energy of 7 TeV is analyzed with the LHCb detector. The

study is done separately for both polarities of the LHCb spectrometer magnet. The

results are combined for the final cross-section measurements. The total luminosity

used for the analysis is 1.8 nb�1. The production cross-section is measured in bins of

the V 0 phase space. The kinematic variables used are the V 0 transverse momentum

pT and rapidity y. The selected range for the kinematic variables is 0  pT 
2.4GeV/c and 2.5  y  4.5 for the K0

s and 0.2  pT  2.4GeV/c and 2.5  y  4.0

for ⇤ and ⇤. The measurements are compared with predictions from QCD based

models of multi-hadron production at high energies.

Zusammenfassung

Die Produktion von V 0-Teilchen, d.h. K0
s Mesonen sowie ⇤ und ⇤ Baryonen,

in pp-Kollisionen bei einer Schwerpunktsenergie von 7 TeV wurde mit Hilfe des

LHCb-Detektors untersucht. Die Studie wurde für beide Polaritäten des LHCb-

Spektrometermagnets durchgeführt. Für die endgültigen Wirkungsquerschnitte wur-

den die Einzelmessungen kombiniert. Insgesamt basiert die Analsye auf einer itegri-

erten Luminosität von 1.8 nb�1. Die Produktionsquerschnitte wurden in Bins des

Phasenraumes bestimmt, und zwar als Funktion des Transversalimpulses pT und der

Rapidität y der V 0s. Der untersuchte kinematische Bereich ist 0  pT  2.4GeV/c

und 2.5  y  4.5 für K0
s Mesonen, und 0.2  pT  2.4GeV/c und 2.5  y  4.0

für ⇤ and ⇤. Die Messungen werden mit Vorhersagen QCD-basierter Modelle zur

Beschreibung der Multi-Hadron-Produktion bei hohen Energien verglichen.
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Chapter 1

Introduction

The results obtained so far in heavy flavor physics have been fully consistent with

the SM. On the other hand, hadron production in high energy collisions is not fully

understood. Strangeness production in hadron-hadron collisions is a good probe for

QCD-based hadron production models, since there are no initial strange quarks; there-

fore, strange particles must come from strong interactions. In this way, strangeness

production allows us to verify or refine QCD-based phenomenological predictions from

lower energies.

There are three long-lived neutral particles: K0
s mesons, ⇤, and ⇤ baryons. They

each contain one strange quark and are commonly referred as V 0’s (Section 2.1.6).

Measuring the cross section for V 0 production will not just allow for the verification

or refinement of QCD-based phenomenological predictions, but will also act as a

stepping stone for CP violation measurements using B meson decays, which is the

primary objective of the LHCb experiment. It is also important for quark-gluon

plasma studies in high energy heavy ion collisions. Here an enhancement in the

strange quark production is expected, and it is relevant to know how much of that

strangeness is produced by proton-proton interactions, where no quark-gluon plasma

is formed. V 0 ratios such as ⇤/⇤ provide good tests for baryon number transport.

Figure 1.1 shows the expected ⇤/⇤ ratio from theoretical predictions [2] at 7 TeV

center-of-mass energy, as a function of the pseudorapidity ⌘. It is clear from this

figure that in the central region the ratio is unity, but in the forward region the ratio

1
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starts falling, indicating that the forward region is more sensitive to baryon number

transport. This is an area of opportunity for the LHCb experiment, which is fully

instrumented in the pseudorapidity range 2.5  ⌘  5.

Figure 1.1: Predicted ⇤/⇤ ratio at 7 TeV center-of-mass energy by various genera-
tors. Peter Skands, Les Houches Plots [2].



Chapter 2

Theoretical Background

Since the beginning of mankind, numerous e↵orts have been made to classify the

fundamental constituents of matter. From the early days of Fire, Earth, Air, and

Water, through the alchemists of the middle ages to the chemists of the Modern Era,

this classification became more complex, and each time, as more was learnt about the

intrinsic nature of things, scientists had to deal with smaller and smaller components.

For a moment, when electrons and nucleons were discovered, it seemed that a final

understanding had been reached. Afterward, however, it was discovered that many

other tiny particles of comparable size existed, and furthermore, that nucleons were

made up of other smaller particles called quarks. Nowadays, there are many theories

that try to explain all of these elements. The Standard Model is one of the most

accepted and commonly used.

2.1 The Standard Model

The Standard Model was developed in the 1970s as the basic theory of matter. It

is based on sets of fundamental spin 1/2 particles called “quarks” and “leptons”,

which interact by exchanging intermediate vector bosons, i.e., particles of spin 1 [21].

Nowadays there are seventeen named particles in the Standard Model (Figure 2.1).

The last particles discovered were the tau neutrino in 2000, and the Higgs boson in

2012 [22], [23].

3
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Figure 2.1: Elementary particles in the Standard Model [3]. Left: fundamental spin
1/2 particles (quarks and leptons). Right and Center: spin 1 mediators of interactions.

2.1.1 Leptons

There are six leptons carrying an integral electric charge (in units of the magnitude

of the electron charge). They are divided into three generations, each one containing

two members: a charged particle and its associated neutral particle, called a neutrino.

Each of these six leptons has its own antilepton. For example, the positron has the

same mass as an electron but the exact opposite charge. If we count the antiparticles,

we have a total of 12 leptons. Table 2.1 shows some of the physical properties of the

leptons [24].
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Table 2.1: Leptons (spin 1/2)
Lepton Symbol Charge(|e|) Mass(MeV/c2)

electron e -1 0.511 ± 0
electron neutrino ⌫e 0 < 0.002

muon µ -1 105.7 ± 0
muon neutrino ⌫µ 0 < 0.19

tau ⌧ -1 1776.82 ± 0.16
tau neutrino ⌫⌧ 0 < 18.2

2.1.2 Quarks

As with leptons, quarks come in 3 generations, each one containing one positive and

one negative quark. Negative quarks have a charge of Q=-13 , and positive quarks

have a charge of Q=+2
3 of the magnitude of the electron charge. Each quark has a

di↵erent flavor; not counting the anti-particles, we end up with six di↵erent flavors

(see Table 2.2).

Table 2.2: Quarks (spin 1/2). Masses are in the MS scheme [1]
Flavor Symbol Charge(|e|) Mass

up u +2
3 2.3+0.7

�0.5 MeV/c2

down d -13 4.8+0.5
�0.3 MeV/c2

strange s -13 95+5
�5 MeV/c2

charm c +2
3 1.275+0.025

�0.025 GeV/c2

bottom b -13 4.18+0.03
�0.03 GeV/c2

top t +2
3 160+5

�4 GeV/c2

2.1.3 Mediators

Four types of fundamental interactions are known. Because the di↵erent interactions

are described in terms of the exchange of particles in quantum language, we call

these particles mediators. Mediators are particles of spin 1 (i.e., bosons). The strong

interaction is responsible for binding quarks together in hadrons. It is mediated by the

gluon. The electromagnetic interaction is responsible for the bound states of electrons

in nuclei and the intermolecular forces in solids and liquids. It is mediated by the
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photon. The weak interaction is responsible for flavor changes. It is mediated by the

W± and Z0 bosons. The gravitational interaction is responsible for the attraction

between particles with non-zero mass. It is theoretically associated with a spin 2 boson

called the graviton, which has not yet been found. Table 2.3 lists these mediators

and some of their properties.

Table 2.3: Mediators (Bosons)

Mediator Force Charge(|e|) Mass(GeV/c2) (Spin/parity)

photon(�) electromagnetic 0 0 1�

gluon(G) strong 0 0 1�

W± weak (charged) ±1 81.8 1�

Z0 weak (neutral) 0 92.6 1+

graviton(g) gravitational 0 0 2+

2.1.4 Strong Force

Quarks have many other properties besides those shown in Table 2.2. One of these

is a property called color charge. Each quark will carry one of three colors: red,

green or blue. Similar to the way that electromagnetism describes the interaction

between electric charges, chromodynamics, or the laws governing the strong force,

details the interactions of quarks through their color charge. This color nomenclature

is an analogy taken from the field of optics, with the intention of illustrating the fact

that quarks are observable only in colorless combinations. The known possibilities

are combinations of two or three quarks, known as hadrons. Baryons refer to the

three quark combinations, and must contain one of each color: red + green + blue is

equal to white or colorless. Mesons are made up of two quarks in a quark-antiquark

combination, for instance: blue + blue = colorless.

2.1.5 Weak Force and the CKM Matrix

Normally, all free hadrons (except the proton (uud)) will eventually decay into com-

binations of lighter hadrons, leptons, and/or photons. The possible daughters in a
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decay depend on the force that acts as the mediator. Figure 2.2 shows a graphical

interpretation of the interactions between the forces and particles of the Standard

Model.

The weak force is the only one that allows for the transition of quarks into lighter

quarks and leptons into lighter leptons. In addition, the weak force explains decays

that require changes in flavor, for example: a neutron (n) decaying to a proton (p) +

electron (e) + neutrino (⌫e).

Figure 2.2: Of the three forces included in the Standard Model, only the weak force
allows for quarks or leptons to change flavor and generation.

This property of the weak force implies that all stable matter in the universe is

made up of only first generation quarks and leptons, which is a consequence of the

fact that the weak force not only couples within a generation, but also allows for

cross-generational transitions. For quarks, these couplings are summarized in the

Cabbibo-Kobayashi-Maskawa (CKM) Matrix,

0

BB@

d0

s0

b0

1

CCA =

0

BB@

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

CCA

| {z }
CKMmatrix

0

BB@

d

s

b

1

CCA
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In other words, the weak force does not, see for instance a simple s quark, but

rather an s’, which is a linear combination of d, s, and b quarks,

s0 = Vcdd+ Vcss+ Vcbb. (2.2)

The magnitude of these matrix elements |V ij| is related to the quantum mechan-

ical probability amplitude of a quark changing flavor, for example, an up-type quark

i transitioning into a down-type quark j, within or even between generations. Within

the Standard Model, these magnitudes are not calculable from fundamental principles

and must be determined experimentally. Curiously, these experimental measurements

have revealed a pattern in the CKM matrix. The elements on the matrix diagonal

are approximately equal to one, which means that a quark is most likely to make a

transition within its own generation. The matrix elements become smaller, almost

symmetrically, as one moves o↵ the diagonal. The actual ranges of the elements are

summarized in the following CKM matrix [25]:

|Vij| =

0

BB@

0.97419± 0.00022 0.2257± 0.0010 0.00359± 0.00016

0.2256± 0.0010 0.97334± 0.00023 0.0415+0.0010
�0.0011

0.00847+0.00026
�0.00037 0.0407± 0.0010 0.999133+0.000044

�0.000043

1

CCA .

Based on this result, interactions that involve matrix elements that lie on the diag-

onal are considered “Cabbibo Favored” while those that involve o↵-diagonal elements

are called “Cabbibo Suppressed” [26]. The CKM matrix is commonly parametrized

by three mixing angles and a CP-violating phase. The standard choice is [27]

|Vij| =

0

BB@

c12c13 s12c13 s13e
�i�

�s12c23 � c12s23s13e
i� c12c23 � s12s23s13e

i� s23c13

�s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i� c23c13

1

CCA ,

where sij = sin✓ij, cij = cos✓ij, and � is the KM phase responsible for all CP-violating

phenomena in the flavor-changing processes in the SM. The angles ✓ij can be chosen
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to lie in the first quadrant so that sij and cij are positive. Experimentally, it has

been found that s13 ⌧s23 ⌧s12 ⌧1. This hierarchy is reflected in the Wolfenstein

parameterization, given by

s12 = � =
|Vus|q

|Vud|2 + |Vus|2
, s23 = A�2 = �

����
|Vcb|
|Vus|

���� , s13e
i� = A�3(⇢+ i⌘). (2.3)

This parametrization is an expansion using the parameter � ⇡ 0.23, which is the sine

of the Cabbibo angle for the up and strange quark coupling, as well as three additional

real parameters: ⇢, ⌘, and A. The parameter ⌘ represents the CP-violating phase.

Traditionally, the CKM matrix is expressed in terms of �, ⇢, ⌘, and A in the following

approximation:

|VCKM | =

0

BB@

1� �2/2 � A�3(�i⌘)

�� 1� �2/2 A�2

A�3(1� ⇢� i⌘) �A�2 1

1

CCA +O(�4)

2.1.6 Weakly decaying V 0’s

V 0’s are relatively long-lived (O(10�10 s)) neutral particles containing one strange

quark. The three particles in this category are K0
s mesons, ⇤, and ⇤ baryons. V 0’s

demonstrate a weak decay involving a flavor change (Figures 2.3 and 2.4), which

explains their long lifetime. Relevant properties of V 0-decays are summarized in

Table 2.4.
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Figure 2.3: K0
s ! ⇡+ ⇡� decay: we can observe the flavor change from an s to an u

quark.

Figure 2.4: ⇤ ! p ⇡� decay
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Table 2.4: V 0 decay channels and other relevant quantities

particle K0
s ⇤ ⇤

quark content 1/
p
2 (ds� sd) uds ūd̄s̄

mass(MeV/c2) 497.614 ± 0.024 1115.683 ± 0.006 1115.683 ± 0.006
primary decay K0

s ! ⇡+⇡� ⇤ ! p ⇡� ⇤! p ⇡+

branching fraction (69.2 ± 0.05) % (69.3 ± 0.5) % (69.3 ± 0.5) %
c⌧ 2.6842cm 7.89 cm 7.89 cm

2.2 QCD

2.2.1 Lagrangian

Quantum chromodynamics (QCD) is the gauge theory of strong interaction. The

chromo in the name is because in this theory, quarks possess an internal property

called color. Gauge transformations in QCD are precisely local transformations be-

tween di↵erent colored quarks. There are eight gauge bosons that mediate the strong

interactions, called the gluons. The mathematical notation that follows is that used

by R.K. Ellis [28].

QCD Lagrangian density is as follows:

LQCD = Lclassical + Lgauge�fixing + Lghost (2.5)

2.2.2 Classical Density

The classical Lagrangian density, invariant under SU(3) gauge transformations, is

Lclassical = �1

4
F 2[A] +

X

flavors

q̄a(i /D �m)abqb (2.6)

These terms define the interaction of spin-1/2 quarks of mass m with massless spin-1

gluons. The field strength tensor FA
↵,� derived from the gluon field AA

↵ is,
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FA
↵,� =

⇥
@↵AA

� � @�AA
↵ � gfABCAB

↵AC
�

⇤
(2.7)

where the indexes A, B, C run over the eight degrees of freedom in color from the

gluon field. The non-Abelian term gfABC distinguishes QCD from quantum elec-

trodynamics (QED). It results in cubic and quartic gluon self-interactions as well as

asymptotic freedom. The parameter g is the coupling constant that determines the

strength of the interaction between colored quanta, and the fABC are the structure

constants of the SU(3) color group. The sum
P

flavors q̄a(i /D �m)abqb runs over the

di↵erent flavors of quarks. The qa are the quark fields in the triplet representation

of the color group, and /D is symbolic notation for �µDµ, where �µ are the gamma

matrices, which are non-commutative, and Dµ are the covariant derivatives.

2.2.3 Gauge Fixing

The term Lgauge�fixing is introduced into the QCD Lagrangian to enable perturbation

theory. It is not possible to define a propagator for the gluon field without choosing

a gauge. Depending on which gauge is chosen, the ghost Lagrangian Lghost may be

needed to cancel unphysical degrees of freedom which would otherwise propagate in

covariant gauges. As an example, the choice

Lgauge�fixing =
1

2�

�
@↵AA

↵

�2
(2.8)

fixes the class of covariant gauges with gauge parameter �. In QCD, it must be

supplemented by a ghost Lagrangian given by

Lghost = @↵⌘
A† �D↵

AB⌘
B
�

(2.9)

where ⌘A is a complex scalar field that obeys Fermi statistics.
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2.2.4 Asymptotic Freedom

Asymptotic freedom in QCD explains why perturbation methods are useful in the

high energy regime. The problem is that the QCD gauge coupling, which is related

to the strong coupling ↵s via

↵s =
g2

4⇡
(2.10)

is large. For excessively large values of ↵s, reliable calculations are not possible

with perturbation theory. Renormalization is required to remove divergences. This

di�culty is avoided by using a coupling constant that is renormalized based on the

energy scale. In QCD, this is called the running coupling constant. The running of

↵s is determined by the � function (Figure 2.5), which has the expansion:

�(↵s) = �b↵2
s(1 + b0↵s) +O(↵4

s) (2.11)

where the first coe�cients are b = (11CA�2Nf )
12⇡ and b0 =

(17C2
A�5CANf�3CfNf )
2⇡(11CA�2Nf )

. The

parameter Nf is the number of “active” light flavors.

Figure 2.5: � as a function of ↵s using 3 active light flavors [4].
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This renormalization introduces a second mass scale µ, which indicates the point

at which the divergences are to be removed. Therefore, the renormalized coupling ↵s

depends on the choice of the subtraction point µ.

↵s

�
Q2

�
=

↵s (µ2)

1 + ↵s (µ2) b ln Q2

µ2

(2.12)

As we move into the high energy regime, ln Q2

µ2 becomes large and ↵s drops to zero,

allowing for perturbation theory to be used. This property is called asymptotic free-

dom.

2.2.5 Confinement

Asymptotic freedom tells us that ↵s becomes quite small at large Q, meaning that

the coupling between quarks becomes weaker at shorter distances (corresponding to

higher energy scales). It also follows that as Q becomes smaller, ↵s becomes large,

which implies that the coupling grows at larger distances. Therefore, we can never

isolate a quark (or a gluon) at large distances because as we pull the quarks apart, the

binding strength grows and we require more energy. When the energy contained in

the string of bound gluons and quarks become large enough, the color-string breaks

and more hadrons are created, resulting in more colorless hadrons, but no isolated

colored quarks. This explains why neither gluons nor quarks have been seen in a

laboratory. The only free particles which can be observed at macroscopic distances

from each other are color singlets. This mechanism is known as quark confinement.

2.2.6 Color Wave-Functions

With the introduction of color, quarks of any kind may exist in three equivalent states.

However, hadrons are neutral, or colorless. Therefore, the wave functions modeling

baryons and mesons must cancel out the color quantum number.

Baryons must obey Fermi-Dirac statistics, and so their wave function must be

antisymmetric [29]. However, it must also be color neutral. This requires all three
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quarks to have a di↵erent color (e.g., red-green-blue = white or colorless). The color

part of the wavefunction is given by

 = 1/
p
6✏abcqa(1)qb(2)qc(3) (2.13)

where ✏ is a totally antisymmetric tensor and the sum is taken over all color configu-

rations of the three quarks. The wavefunction transforms as a color singlet, i.e., the

bound state of the three quarks is color neutral.

Mesons are the bound states of a quark and an antiquark. Here, the color part of

the wavefunction is

 =
1p
3
�abq̄a(1)qb(2) (2.14)

where �ab is the Kronecker delta. Being a superposition of color-anticolor combina-

tions, the wavefunction once again transforms as a color singlet.

2.2.7 Multi-Hadron Production

Hadron production in high energy collisions is not fully understood. Despite this,

there are many QCD-based phenomenological models which show good agreement

with observed results. Often, e+e� collisions are used to study strong interactions,

since there are no spectator quarks which can mask the process of interest [30].

However, strangeness production in hadron-hadron collisions is also a good probe

for QCD models, since there are no strange (valence) quarks in the initial state.

Therefore, strange quarks must come from strong interactions. The most widely used

model of parton fragmentation is based on partons splitting into quark-antiquark

pairs that finally recombine into the observed hadrons.

Generally, hadron production follows two steps: Firstly, a parton shower in which

an initial parton is far from the mass-shell evolves into a cascade of partons nearer

to mass-shell. This stage can be modeled using perturbative QCD with certain as-

sumptions. Secondly, the process of hadronization occurs, in which the partons close

to the mass shell form hadrons. This process becomes non-perturbative, and is where
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phenomenological models are used. There are two models that are widely used to sim-

ulate hadron production based on these processes. These are the HERWIG model [5]

and the Lund model [31].

2.2.8 Parton Shower

A parton shower is an iterative Markov branching process in which a highly excited

qq̄ system evolves to a system of partons with lower virtuality by radiating gluons

and producing new qq̄ pairs according to the leading log QCD probabilities [30]. The

basic picture of the parton shower development is illustrated in Figure 2.6. Each

vertex represents the splitting of a parton into two others of lower virtualities. The

probability of such a splitting is proportional to the running coupling constant ↵s at

an appropriate scale [5].

2.2.9 Hadronization

After the parton shower process, the partons close to the mass shell join to form

hadrons. This is usually described by two methods: clusters and string fragmentation.

The cluster scheme is simple; in the later stage of hadronization, when the virtual

mass of a parton reaches a certain cuto↵ (mg), the evolution of this parton stops. As

well, final gluons are forced to split into qq̄ pairs. Neighboring qq̄ pairs along the

color flux lines are combined to form colorless clusters. These clusters decay into one

or two hadrons. Such hadrons include both final particles and resonances which will

decay further. This is the scheme used in the HERWIG [5] model.

String fragmentation is based on the confinement between quarks. Since QCD

suggests a force which grows proportionally with the distance between quarks, this

model assumes that this force is provided by a string that holds them together. As

the q̄ and the q move apart in a boosted qq̄ pair, their kinetic energy is gradually

converted to potential energy stored in the string. Fluctuations in the system can

lead to a transition where energy stored in the string is converted into a new quark-

antiquark pair. A new qq̄ pair is created at the breaking point from the string, and

the original system becomes two separate color singlets, i.e., qq̄ ! qq̄0 + q0q̄ [6] as
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q

g

q q
q

Figure 2.6: Perturbative QCD branching process following g ! qq̄ [5].

pictured in Figure 2.7. This is the scheme used by the Lund model [31] which is used

in PYTHIA.

2.2.10 Strange Quark Production

Strange quark production is an area of opportunity in non-perturbative QCD. So far,

it is understood that strange quarks are produced mainly in the fragmentation stage,

when the color field in the string provides enough energy to create an ss̄ pair. Since

there are no spectator s quarks present in hadron-hadron collisions, the observation

of strange particles such as V 0’s is a good probe for hadronization models.
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Figure 2.7: Schematic picture of the formation of hadrons by the string breaking
process [6].



Chapter 3

The LHCb Experiment

3.1 The Large Hadron Collider (LHC)

The Large Hadron Collider (LHC) is a high energy circular synchrotron accelerator.

It sits in a tunnel with a circumference of 27 km that previously housed the LEP

accelerator. The tunnel is buried around 50 to 175 m underground. It is situated

between the Swiss and French borders on the outskirts of Geneva (Figure 3.1). It is

designed for colliding two opposing circulating beams of protons and lead nuclei at a

center of mass energy of 14 TeV and 2.8 TeV, respectively.

19
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Figure 3.1: Aerial view of the LHC with SPS [7].

Before particles reach the LHC, they are accelerated in several steps by a series of

accelerators (Figure 3.2). A brief description of the proton cycle used is as follows:

Protons are obtained from hydrogen gas inside a metal cylinder called the Duoplas-

matron. There, an electrical field is used to break down the gas into its constituent

protons and electrons. Protons are then accelerated by an accelerating voltage of 90

kV and leave the Duoplasmatron at 1.4 % of the speed of light. Afterwards they are

sent to a radio frequency quadrupole (RFQ), an accelerating component that both

speeds up and focuses the particle beam. After reaching an energy of 750 keV, the

particles are sent from the quadrupole to the linear accelerator (LINAC2). There,

the protons are accelerated up to 50 MeV and fed to the BOOSTER where they are

boosted to 1 GeV before entering the Proton Synchrotron (PS) and being accelerated

to 26 GeV. After the PS, the proton bunches enter the Super Proton Synchrotron

(SPS) where they are energized up to 450 GeV and finally enter the LHC through

the T12 and T18 tunnels.
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Figure 3.2: The CERN Accelerator Complex [8].
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In the LHC, protons circulate in both a clockwise and an anticlockwise direction.

To keep the proton beams circulating inside the ring, the LHC has around 1200 dipole

magnets (Fig 3.3) that provide a magnetic field of 8.34 T (for 7 TeV beams). These

are superconducting magnets cooled down to 1.9 K using superfluid helium. Addi-

tionally, the beam is focused by around 400 quadrupole magnets, and is accelerated

by radiofrequency (RF) cavities. At nominal conditions, the LHC should collide pro-

ton bunches at a frequency of 40 MHz, and provide a luminosity of 1034 cm�2s�1 at

the interaction points.

Figure 3.3: Cross-section schematic view of an LHC dipole magnet [9].

Figure 3.4 shows the location of the four major experiments on the LHC: ATLAS

(A Toroidal LHC ApparatuS), CMS (Compact Muon Solenoid), ALICE (A Large Ion

Collider Experiment), and LHCb (Large Hadron Collider beauty). ATLAS and CMS

are focused on finding the Higgs Boson and evidence for supersymmetry. ALICE

studies quark-gluon plasma formed in Pb-Pb collisions. LHCb focuses on studying

CP violation and rare decays in the B sector.



3.1. THE LARGE HADRON COLLIDER (LHC) 23

Figure 3.4: Map of the LHC showing the stations for its four major experiments [7].

3.1.1 LHC Performance

In November 2009, the LHC succeeded in colliding protons at an energy of 450 GeV

per beam. In 2010, the multi-TeV era started when
p
s = 7 TeV collisions were

achieved with a peak luminosity of 0.2⇥1033 cm�2s�1, delivering a total integrated

luminosity of 47 pb�1. In 2011, the collision energy continued at
p
s = 7 TeV, with

a peak luminosity of 3.6⇥1033 cm�2 s�1 and a total integrated luminosity of 5.5

fb�1 [32]. It was in 2012 that the LHC raised the collision energy up to
p
s = 8 TeV,

and more than 20 fb�1 were delivered at the main interaction points.
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3.2 The LHCb Experiment

In high energy hadronic collisions, bb̄ pairs are mostly produced by gluon-gluon fusion.

This mechanism consists of two virtual gluons that collide to form a quark anti-quark

pair. Due to the momentum distribution of the gluons inside the colliding protons,

in most cases the collision happens between one gluon carrying a large part of the

proton momentum and another gluon with much less momentum. This causes the bb̄

produced by this interaction to be strongly boosted in the forward direction. Con-

sequently, the hadronization results in B and B̄ mesons with a very narrow angular

distribution (Figure 3.5). This fact led to LHCb’s single–arm spectrometer design.

Figure 3.5: Angular distribution of bb̄ pairs produced in high energy pp collisions [10].

The angular acceptance of the LHCb detector extends from approximately 10mrad

around the beam axis to 300mrad in the magnetic bending plane and 250mrad in

the non-bending plane [11].
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What follows is a brief description of the functions of the LHCb subdetectors

shown in Figure 3.6 (from left to right):

• VELO (Vertex Locator): accurately reconstructs the primary and secondary

vertices of heavy flavor decays.

• RICH1: provides particle identification for low momentum particles (from 1 to

60 GeV/c ).

• TT (Tracker Turicensis): observes the trajectories of low momentum particles.

• Magnet: a 4 Tm magnet used to bend the trajectories of particles in order to

allow for the measurement of their momentum.

• T1, T2, and T3 stations: observe the trajectories of the particles.

• RICH2: provides particle identification for high momentum particles.

• ECAL: measures the energy of electromagnetic interacting particles.

• HCAL: measures the energy of hadronic particles.

• Muon Stations: separate muons from the other charged particles.

3.3 Tracking

The principle task of the tracking system is to provide e�cient reconstruction of

charged-particle tracks. These are then used to determine the momenta of charged

particles and to reconstruct primary vertices. The LHCb tracking system consists

of the vertex locator system (VELO), the Tracker Turicensis(TT) upstream of the

dipole magnet, and the T Stations T1-T3 downstream of the magnet. T1-T3 are

composed of silicon microstrip detectors in the region close to the beam pipe (Inner

Tracker IT) and straw tubes on the outer region (Outer Tracker OT). VELO and TT

are fully equipped with silicon microstrip detectors. The TT and IT were developed

in a common project called the Silicon Tracker (ST).
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Figure 3.6: z view of the LHCb Detector [11].
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3.3.1 Vertex locator

The Vertex Locator (VELO) plays a fundamental role in the LHCb detector because

it is able to precisely measure track coordinates close to the interaction region, which

are used to accurately build the primary and secondary vertices of the decays of short-

lived particles. This vertex identification and separation is essential for CP Violation

measurements using B mesons, in order to provide an accurate measurement of their

lifetimes and the impact parameter of the particles. The VELO consists of a series

of 42 (21 on each side) half-circular silicon modules (Figure 3.7) arranged along the

beam axis. Each module provides a measurement of the r and � coordinates, and is

placed around the interaction region (Figure 3.8, Top).

Figure 3.7: VELO’s silicon detector modules [11].

The VELO sensors have to be retracted from the beam line during injection in

order to prevent damage from the LHC proton beams. When the beam is stable

and everything is ready for data acquisition, the sensors are moved into the closed

position, in which the two halves of the VELO overlap (Figure 3.8, Bottom).
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Figure 3.8: Top: Cross-section of the VELO sensors in the xz-plane, indicating the
angular acceptance of the detector and the relative arrangement of the stations. The
distance from the first to the last station is 106.5 cm. Bottom: Sketch of a VELO
station in the closed and fully open positions [11].
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In order to perform an e�cient vertex reconstruction that meets the performance

requirements of the LHCb experiment, the VELO was designed with the following

criteria:

• A signal to noise ratio (S/N) greater than 14.

• An overall channel e�ciency of at least 99%.

• A spatial cluster resolution of around 4 µm.

• Less than 0.3 of the peak signal remaining after 25 ns.

• An angular acceptance in the pseudorapidity range 1.6 < ⌘ < 4.9 for particles

emerging from the primary vertex in the range |z|  10.6 cm.

• Full azimuthal acceptance; to facilitate alignment, the two detector halves are

required to overlap (Figure 3.8).

• Cylindrical geometry (R� coordinates) to enable fast reconstruction of tracks

and vertices in the LHCb trigger, and to achieve optimal impact parameter

resolution.

The sensors use n-implants in n-bulk technology with strip isolation achieved

through the use of a p-spray. The minimum pitch achievable using this technology

was approximately 32 µm. This choice was due to the severe radiation environment

close to the beam axis. For both the R and � sensors the minimum pitch is designed

to be at the inner radius in order to optimize the vertex resolution (Figure 3.9). Both

sensors are 300 µm thick.

For the R-sensors, the diode implants are concentric semi-circles with their center

at the nominal LHC beam axis. Each strip is divided into four 45� regions to minimize

occupancy. The pitch increases linearly from 38 µm at the inner radius to 101.6 µm

in the outer radius. The � sensor is intended to report the orthogonal coordinate to

the R-sensor. To avoid high occupancy, it is divided into inner and outer regions as

shown in Figure 3.9. The pitch varies proportional to the radius in both regions.
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Figure 3.9: Sketch illustrating the R� geometry of the VELO sensors [11].

The outer region has a pitch of 39.3–97 µm, while the inner has a pitch of 38–78.3

µm; the separation between them is given by the radius of 17.25 mm. In total, there

are 42 R sensors and 42 � sensors in both VELO halves.

3.3.2 Tracker Turicensis

The Tracker Turicensis (TT) is located downstream of RICH 1 and in front of the

entrance of the LHCb dipole magnet. It has a double purpose: to provide fast tracking

information on high IP tracks (mainly their transverse momentum) to the Level-1

trigger, and, in o✏ine analysis, to reconstruct the trajectories of long-lived neutral

particles that decay outside the VELO, as well as low momentum particles which are

bent out of the LHCb experiment before reaching stations T1-T3.

Figure 3.10 shows a view of the TT layout. It consists of four layers. The

first and last have vertical readout strips (x-layers) and the second and third (inner)
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Figure 3.10: Schematic showing the xuvx layout of the TT [12].
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layers have readout strips rotated by a stereo angle of +5� and �5�, respectively. The

four layers are arranged into two pairs or stations, and the approximate separation

between stations is 27 cm. The first station (TTa) is centered around z = 232 cm,

and the second (TTb) around z = 262 cm. In total, the TT has an active area of

8.4 m2, covered by silicon microstrip detectors. The active area covers the nominal

acceptance of the LHCb detector, i.e., ± 300 mrad in the horizontal plane and ± 250

in the vertical. For TTa this means a width of 143.5 cm and a height of 118.5 cm,

and for TTb a width of 162.1 cm and a height of 133.8 cm.

Sensors are organized in half-modules, two of which are required to cover a layer

from side to side. The layout of the half-modules is illustrated in Figures 3.11(a) and

3.11(b). They consist of seven silicon sensors with a stack of two or three readout

hybrids at one end. Half-modules close to the beam pipe (4-2-1 type) are situated

where the particle density is highest, and the seven sensors are organized into three

readout sectors: L, M, and K (Figure 3.11(a)). In the other half-modules (4-3 type)

the sensors are organized into two readout units, L and M (Figure 3.11(b)). The

silicon sensors are 500 µm thick, single-sided p+-on-n sensors. They are 9.64 cm wide

and 9.44 cm long, and carry 512 readout strips with a strip pitch of 183 µm.

3.3.3 Inner Tracker

In each of the tracking stations T1-T3, the Inner Tracker covers a cross-shaped area

around the beam pipe (Figure 3.12). This covers only 1.3 % of the sensitive area

of the T Tracking stations, but approximately 20% of all charged particles produced

close to the interaction point and passing through the previous tracking stations pass

through this area. Each of the three IT stations consists of four detection layers, in

a similar way to the TT. The IT layers feature an xuvx arrangement, with x-layers

(Figure 3.13(a)) having vertical readout strips and stereo layers (u- or v- layers,

Figure 3.13(b)) with strips rotated by a stereo angle of ±5�.

Each detector layer consists of seven modules. Adjacent modules in a layer are

separated by 4 mm in the z direction and overlap by 3 mm in the x direction to



3.3. TRACKING 33

(a) 4-2-1 type

(b) 4-3 type

Figure 3.11: TT detector modules [11].
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Figure 3.12: Front view of a T station [11].

avoid acceptance gaps and to facilitate relative alignment of the modules. As seen

in Figures 3.13(a) and 3.13(b), detector modules on the left and right of the beam

pipe consist of two silicon sensors and a readout hybrid, while the modules above and

below the beam pipe consist of only a single silicon sensor and a readout hybrid.
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(a) x-layer

(b) stereo layer

Figure 3.13: IT detector modules layouts. Dimensions are given in cm and refer to
the sensitive surface covered by the Inner Tracker [11].



36 CHAPTER 3. THE LHCB EXPERIMENT

Figure 3.14: Schematic view of a two-sensor IT module [11].

In both types of modules, the silicon sensors are single-sided p+-on-n sensors, 7.6

cm wide and 11 cm long, and carry 384 readout strips with a pitch of 198 µm. For

the one-sensor modules, the silicon sensors are 320 µm thick, and for the two-sensor

modules they are 410 µm thick.

3.3.4 Outer Tracker

The LHCb Outer Tracker (OT) is intended to cover most of the acceptance of the

LHCb experiment (± 300 mrad horizontally and ± 250 mrad vertically). Situated

downstream of the magnet, this corresponds to an active area of 5971 ⇥ 4850mm2.

The OT is a drift-time detector composed of several modules of gas-tight straw tubes.

Detector modules are arranged in three stations (Figure 3.15). Similar to the IT,

each station consists of four layers arranged in an x-u-v-x geometry.

Each module has two staggered layers of drift tubes with inner diameters of 4.9

mm (Figure 3.16). The filling of the tubes is a gas mixture made up of argon (70%)
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Figure 3.15: Arrangement of OT straw-tube modules in layers and stations [11].
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and CO2 (30%), which results in a drift time below 50 ns and a drift-coordinate

resolution of around 200 µm. The intended momentum resolution is �p/p = 4 %, in

order to achieve a mass window of 10 MeV/c2 for the B0
s! D�

s ⇡+ channel.

Figure 3.16: Cross section of an OT module [11].

3.4 RICH

In order to obtain a good performance in measuring B hadron decays, it is essential

to separate kaons from pions, and therefore, particle identification (PID) is funda-

mental for the LHCb. At large polar angles the momentum spectrum is softer, while

at small polar angles the momentum spectrum is harder. To account for this, the

LHCb detector has 2 RICH subdetectors (RICH1 and RICH2) to cover the full mo-

mentum spectrum. In both RICH subdetectors, the focusing of the Cherenkov light

is accomplished using a combination of spherical and flat mirrors to reflect the image

out of the spectrometer’s acceptance. Both use Hybrid Photon Detectors (HPD’s) to

detect the Cherenkov photons in the wavelength range from 200–600 nm.
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Figure 3.17: Cherenkov angle versus particle momentum for the RICH radiators [11].

3.4.1 RICH1

The RICH 1 subdetector is situated right after the VELO and before the TT, up-

stream of the LHCb dipole magnet. It covers the full LHCb acceptance from ± 25

mrad to ± 300 mrad on the horizontal plane and ± 250 mrad on the vertical plane,

and is intended to provide particle identification for low momentum particles (from 1

to 60 GeV/c). It contains aerogel and fluorobutane (C4F10) gas radiators. As shown

in Figure 3.18, it has a vertical optical layout. RICH1 was designed to respect the

following constraints:

• The restriction on the amount of material within the RICH1 acceptance requires

the use of lightweight spherical mirrors, with the rest of the components of the

optical system situated outside of the acceptance. The total radiation length of

RICH1, including the radiators, is 8% X0.
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• RICH1s low angle acceptance limit is given by the 25 mrad section of the beryl-

lium beam pipe which passes through the detector.

• The HPDs need to be shielded from the field of the LHCb dipole magnet (up

to 50 mT). Large iron boxes are used, since local shields of high permeability

alloy were not su�cient.

Figure 3.18: Side view schematic layout of the RICH1 detector [11].

3.4.2 RICH2

The RICH2 subdetector is intended to provide particle identification for high momen-

tum particles (from 15 to 100 GeV/c). It is located between the last tracking station
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and the first muon station, downstream of the LHCb dipole magnet. It has a limited

angular acceptance of ± 15 mrad to ± 120 mrad on the horizontal plane and ± 100

mrad on the vertical plane, but covers the region where the high momentum particles

are produced. It uses a CF4 radiator (Figure 3.19), and the optical component and

the readout are placed horizontally. Similar to the RICH1, which was restricted by

the main LHCb detector setup, RICH2 had to be designed to respect the following

constraints:

• The supporting structures and the photon detectors had to be placed outside

the acceptance of the spectrometer, with the photon detectors located to the

left and right of the beamline, where the iron shielding is accommodated. The

total radiation length of RICH2, including the gas radiator, is about 0.15 X0.

• The lower acceptance of the RICH2 detector (15 mrad) is limited by the neces-

sary clearance of 45 mm around the beam pipe.

• Similar to RICH1, the HPDs are located in large iron boxes in order to shield

them from the fringe of the LHCb dipole magnet (up to 50 mT).

3.5 Magnet

The LHCb dipole magnet is used to bend the trajectories of charged particles so that

their momentum can be measured. It is a warm magnet with saddle-shaped coils in

a window frame yoke, with sloping poles to match the detectors acceptance (± 250

mrad vertically and ± 300 mrad horizontally). The magnet is designed to provide

a field integral of 4 T·m, balancing the restrictions of having a field level inside the

RICHs of less than 2 mT and a field level as high as possible between the VELO and

the TT (see Table 3.1). Figure 3.20 shows the layout of the LHCb dipole magnet.

The field provided by the LHCb dipole magnet has its principal component in the y

axis (in general LHCb coordinates), so it generates a bending plane in the x-z plane.
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Figure 3.19: a) Top view schematic layout of the RICH2 detector, b) Schematic layout
of the RICH2 detector [11].

Table 3.1: Measured main parameters of the LHCb dipole magnet
Non-uniformity of |x| ±1 in xy planes of 1 m2 from z=3 to z=8 mR

Bdl upstream TT region (0-2.5m) 0.1159 T·mR
Bdl downstream TT region (2.5-7.95m) 3.615 T·m

Max field at HPD’s of RICH1 20 ⇥ 10�4 T
Max field at HPD’s of RICH2 9 ⇥ 10�4 T
Electric power dissipation 4.2 MW

Inductance L 1.3 H
Nominal / maximum current in conductor 5.85 kA/6.6 kA

Overall dimensions H ⇥ V ⇥ L 11 m ⇥ 8 m ⇥ 5 m
Total weight 1600 tons

3.6 Calorimeter system

The LHCb calorimeter system performs the identification of electrons, photons, and

hadrons, as well as the measurement of their energies and positions. It also se-

lects high transverse energy hadron, electron, and photon candidates for the first

trigger level (L0). High accuracy reconstructions of ⇡0 and prompt photons are es-

sential for the study of B-meson decays, i.e., a good calorimeter is important for the
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Figure 3.20: Schematic layout of the LHCb dipole magnet [11].
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LHCb physics program. The calorimeter system is designed to obtain a high perfor-

mance in terms of resolution and shower separation. The LHCb calorimeter system

has a classical structure, made up of an electromagnetic calorimeter (ECAL) fol-

lowed by a hadron calorimeter (HCAL). It consists of several layers: the Scintillating

Pad Detector (SPD), the Pre-Shower Detector (PS), the shashlik-type Electromag-

netic Calorimeter (ECAL), and the scintillating tile iron plate Hadron Calorimeter

(HCAL).

3.6.1 SPD/PS

The SPD determines whether particles hitting the calorimeter system are charged

or neutral, while the PS indicates the electromagnetic character of the particle (i.e.,

whether it is an electron, if charged, or a photon, if neutral). They are used at

the trigger level in association with the ECAL to indicate the presence of electrons,

photons, and neutral pions.

The SPD and PS consist of scintillating pads with a thickness of 15 mm, inter-

spersed with a 2.5 X0 lead converter. Light is collected using wavelength-shifting

(WLS) fibers (Figure 3.21). Almost four turns of fiber are inserted and glued in

the round groove of each square pad, and both ends of the WLS fiber are used to

transmit the light to multi-anode photomultipliers (MAPMTs) located at the periph-

ery of the detector. The SPD and PS both contain about 6000 pads, each of which

is equipped with an embedded individual light emitting diode (LED) for monitoring

detector stability.

3.6.2 ECAL

The LHCb electromagnetic calorimeter uses a shashlik calorimeter, which consists

of a sampling scintillator/lead structure readout by plastic WLS fibers. Its design

requirement is to give an energy resolution of �E/E = 10 % /
p
E � 1.5% (E in

GeV) [33]. This results in a ⇡0 mass resolution of 8 MeV/c2. The calorimeter is

placed 12.5 m from the interaction point. Its outer dimensions projectively match
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Figure 3.21: Loops of wavelength-shifting (WLS) fibers [13].

those of the tracking system, ✓x < 300 mrad and ✓y < 250 mrad; the inner acceptance

is limited by ✓x,y < 25 mrad around the beam pipe due to the substantial radiation

dose level. It is subdivided into inner, middle, and outer sections (see Table 3.2) to

account for the fact that the hit density is a steep function of the distance from the

beam pipe. The ECAL modules (Figure 3.22) are built from alternating layers of 2

mm thick lead, 120 µm thick white reflecting paper, and 4 mm thick scintillator tiles.

In depth, the 66 Pb and scintillator layers form a 42 cm stack corresponding to 25

X0. The Moliere radius of the stack is 3.5 cm.

Table 3.2: Main parameters of the LHCb electromagnetic calorimeter
Inner section Middle section Outer section

Inner dimension, x ⇥y, cm2 65 ⇥ 65 194 ⇥ 145 388 ⇥ 242
Outer dimension, x ⇥y, cm2 194 ⇥ 145 399 ⇥ 242 776 ⇥ 630

Cell size cm2 4.04 ⇥ 4.04 6.06 ⇥ 6.06 12.12 ⇥ 12.12
# of modules 176 448 2688
# of channels 1536 1792 2688

# of cells per module 9 4 1
# of fibers per module 144 144 64
Fibre density, cm�2 0.98 0.98 0.44
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Figure 3.22: Outer, middle, and inner type ECAL modules [11].

3.6.3 HCAL

The LHCb hadron calorimeter is placed right behind the electromagnetic calorimeter.

It consists of iron plates interspersed with scintillating tiles. The orientation of the

tiles is such that they run parallel to the beam axis. In the lateral direction, the tiles

are separated by 1 cm of iron, and in the longitudinal direction the length of tiles and

iron spacers corresponds to the hadron interaction length �I in steel. The light inside

the tiles is collected by WLS fibers running along the detector towards the back side,

where the photomultiplier tubes (PMTs) are located (Figure 3.23). The total weight

of the HCAL is about 500 tons.

The requirements for the HCAL energy resolution make it possible to obtain a

ratio of active to passive material as low as 0.18. The total length of the HCAL is

5.6 �I , due to the limited space available. The upstream ECAL adds another 1.2 �I .

Energy resolution was determined using the CERN SPS test beam; the fit to the data

at several energies is given by �E/E = (69±5) % /
p
E � (9±2)% (E in GeV).
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Figure 3.23: Schematic view of an HCAL Module [11].
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3.7 Muon system

The muon system provides fast information to the high-pT muon trigger at the earliest

level (L0), as well as muon identification for the high-level-trigger and o✏ine analy-

sis. Located at the far end of the detector, it is composed of five stations (M1-M5;

see Figure 3.24) covering an acceptance of ±300 mrad (horizontally) and ±250 mrad

(vertically). Rectangular stations are placed along the beam axis, and their combined

total area is 435m2. Each station contains multi-wire proportional chambers filled

with gas mixtures made up of Ar/CO2/CF4, with 40 % Ar and variable concentra-

tions of CO2/CF4. The passing muons react with this mixture, and wire electrodes

detect the signal. In total, the muon system contains 1,380 multi-wire proportional

chambers.

The layout of the muon stations is shown in Figure 3.24. Station M1 is placed in

front of the calorimeter system and is used to improve pT measurement in the trig-

ger. Stations M2-M5 are situated after the calorimeter system, and are interspersed

with 80 cm thick iron absorbers in order to select penetrating muons. The total ab-

sorber thickness, including the calorimeter system, is around 20 interaction lengths;

therefore, the minimum momentum of a muon required to cross the muon system is

approximately 6 GeV/c.

3.8 Trigger

The designed operating luminosity of the LHCb experiment is 2 ⇥ 1032 cm�2s�1,

motivated by the requirements for low occupancy and tolerable radiation damage to

the detector and electronics. The nominal LHC bunch crossing frequency is 40 MHz.

At this crossing rate and nominal luminosity, the interaction rate visible to the LHCb

spectrometer is 10 MHz. Of this 10 MHz, only a few events contain decays that

are interesting for physics analysis. The role of the trigger is to select such events,

limiting the output to 2 kHz, at which rate the events are recorded to storage. This

is achieved using two trigger levels (Figure 3.25): Level-0 (L0) and the High Level
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Figure 3.24: Schematic side view of the muon system [11].
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Trigger (HLT).

3.8.1 L0 trigger

The role of the L0 trigger is to reduce the LHC beam crossing rate from 40 MHz to 1

MHz, with which the entire detector can be read out. Its event selection criteria are

based on the main LHCb’s purpose, which is to reconstruct B mesons, i.e., it looks

for particles with large transverse momentum (pT ) and energy (ET ). Decays of B

mesons often produce such particles.

The L0 trigger attempts to quickly reconstruct:

• The highest ET hadron (h), electron (e), and photon (�) clusters in the calorime-

ters.

• The two highest pT muons (µ) in the muon chambers.

Then, together with an estimate of the number of primary pp interactions, per-

formed by the pile-up system in the VELO, and another estimate of the total number

of tracks, performed by the SPD (based on the number of hits), it makes a quick

decision to accept or reject an event which will be processed later by the HLT.

3.8.2 HLT trigger

The role of the HLT trigger is to reduce the rate from 1 MHz (i.e., the output of the

L0 trigger) to 2 kHz. For this, it makes use of the full event data. The HLT trigger is

subdivided into two stages, HLT1 and HLT2. In the HLT1 stage it reconstructs µ, e,

and h candidates found by the L0 trigger using the VELO and T stations, and in the

case of � and ⇡0 candidates it confirms the absence of a charged particle associated

with them. After this, it divides the candidates into independent alleys (Figure 3.26).

In the HLT2 stage, HLT1 candidates are selected using very loose cuts from their

momentum and impact parameter, and are afterwards used to form composite parti-

cles such as K⇤! K+⇡�, �!K+K�, D0!hh, Ds!K+K�⇡�, and J/ !µµ. This is
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Figure 3.25: Schematic representation of the trigger system
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Figure 3.26: Flow diagram of the trigger sequence [11].

done using very elementary information, since the HLT tracks di↵er from the o↵-line

track reconstruction in not having been fitted with a Kalman filter. After this, the

HLT2 combines such particles to form B candidates by performing cuts on the in-

variant mass and/or pointing of the B momentum towards the primary vertex. After

HLT2, the output should already be less than 2 kHz.

3.8.3 VELO Microbias Trigger

The trigger chosen for data acquisition in early May 2010 was a VELO microbias

trigger (Hlt1MBMicroBiasRZVeloDecision), in order to prepare a reference data set

for general physics purposes. The L0 trigger was in pass-through mode, while at the

HLT at least one track, reconstructed with VELO information, should be found to

accept the event.



Chapter 4

Analysis Preface

4.1 DATA and MC Sample

This analysis was run over the dataset collected by the LHCb experiment in May

2010, which recorded pp collisions at a center-of-mass energy of
p
s = 7 TeV. It

will be referred to throughout the document as DATA2010. Only runs of adequate

quality, with no prescaling and a 100% trigger e�ciency, are included. Data recorded

for the two field-polarities of the spectrometer magnet, referred to in the following

as “Magnet Up” and “Magnet Down”, are analyzed separately. The luminosity was

determined using the central LHCb luminosity project [34], based on the calibration

constants given by the conditions database tag “head-20100715”. The data sample

was placed under the Microbias line in the Reco05Stripping09 production. Datasets

are summarized in Table 4.1 :

Table 4.1: Summary of data samples used for the analysis (DATA2010)
Run number Magnet Polarity N Events (x106) Integrated Luminosity (nb�1)
71806-71816 Down 36.77 0.60±0.06
71474-71530 Up 73.49 1.2 ± 0.12

MC studies for this measurement were performed on 18 million simulated mini-

mum bias events (10 million for Magnet Down and 8 million for Magnet Up) of type

MC2010 (⌫=1, Sim04Reco03).

53
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4.2 Detector Performance

The event selection performed in this analysis is purely geometrical, based on ini-

tial reconstruction parameters as described in Chapter 5. Therefore, the selection

e�ciency is highly correlated with the resolution of such parameters. The following

subsections describe reconstruction information relevant to understanding both the

selection e�ciency and systematic uncertainties (Chapter 7).

4.2.1 Primary Vertex and IP Resolutions

The primary vertex (PV) resolution is determined in the following way:

• For each event, the VELO track sample is divided into two subsamples.

• The PV position is estimated with each subsample.

• The distribution of the di↵erences between the two PVs then has an rms-width

that is
p
2 times the actual resolution.

Figures 4.1(a) and 4.1(b) show the X and Y resolution as a function of the number

of tracks used in the estimate. Although the data and simulation are in qualitative

agreement, statistically significant di↵erences are observed and must be considered

as a source of systematic uncertainty for analyses relying on PV information.

The Impact Parameter (IP) is defined as the distance of closest approach of a track

to the PV. It is essential to discriminate between prompt and non-prompt particles.

Figures 4.2(a) and 4.2(b) show the X and Y resolution as a function of the number

of tracks used in the estimation. In this case the data and simulation clearly have

di↵erent IP resolutions, which has to be taken into account for systematic studies,

because it a↵ects selection e�ciencies.

4.2.2 Tracking E�ciency

The tracking e�ciency is defined as the probability of a particle emitted in the detec-

tor’s acceptance having a corresponding reconstructed track [14]. This involves the



4.2. DETECTOR PERFORMANCE 55

nTracks
5 10 15 20 25 30 35 40

R
es

ol
ut

io
n 

(m
m

)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
 / ndf 2χ  14.83 / 20

Prob   0.7859
X res     0.0004682± 0.07913 

 / ndf 2χ  14.83 / 20
Prob   0.7859
X res     0.0004682± 0.07913 

 / ndf 2χ   23.1 / 20
Prob   0.2837
Y res     0.0004421± 0.07605 

 / ndf 2χ   23.1 / 20
Prob   0.2837
Y res     0.0004421± 0.07605 

LHCb VELO Preliminary
 = 7 TeV Datas

X and Y resolution

(a) Data

nTracks
5 10 15 20 25 30 35 40

R
es

ol
ut

io
n 

(m
m

)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
 / ndf 2χ  33.86 / 20

Prob   0.02706
X res     0.0005511± 0.05751 

 / ndf 2χ  33.86 / 20
Prob   0.02706
X res     0.0005511± 0.05751 

 / ndf 2χ  27.46 / 20
Prob   0.1228
Y res     0.0005328± 0.05643 

 / ndf 2χ  27.46 / 20
Prob   0.1228
Y res     0.0005328± 0.05643 

LHCb Preliminary
 = 7 TeV MCs

X and Y resolution

(b) MC

Figure 4.1: Primary Vertex (PV) X and Y resolution plotted as a function of the
number of tracks used for its calculation, for (a) early 2010 data and (b) MC [14].
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Figure 4.2: IP resolution for X and Y coordinates plotted as a function of 1/pT for
(a) early 2010 data [15] and (b) MC.
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particle having remained within acceptance all the way up to the very last tracking

station. Included in this definition are the hit e�ciency and the track reconstruction

e�ciency, excluding any acceptance related e�ciency. To obtain the best possible

momentum estimate, long tracks (tracks that traverse all of the tracking subdetec-

tors) are used. One of the two methods used to estimate tracking e�ciency uses

K0
s decays into a ⇡+⇡� final state. With this method, after the selection of K0

s

candidates is complete, the sample is split into two types of candidates: candidates

with two oppositely charged long tracks, and candidates with one long track and one

VELO track with an associated calorimeter cluster (to ensure that the pion remains

in acceptance). Fig 4.3 shows the signal yields obtained for both types of candidates.

The di↵erence comes from the probability of having a reconstructed track segment

in the IT, or OT for the VELO track. Figure 4.4 shows the tracking e�ciency as

a function of transverse momentum pT of the mother particle; here we can observe

good agreement between the data and simulation.

Figure 4.3: K0
s signal for two types of candidates: two long tracks (solid black

histogram), and one long track and one VELO track with an associated calorimeter
cluster (solid blue histogram). Dashed lines represent the yields after background
subtraction for each selection [14].
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Figure 4.4: Tracking e�ciency as a function of transverse momentum pT for K0
s

reconstruction [14].

4.2.3 RICH Particle Identification

After particles traverse the RICH’s radiator material, the emitted Cherenkov Ra-

diation is projected by a system of mirrors onto the photon detectors. There, the

distribution of the Cherenkov photons is analyzed and compared to the expected ring

profiles corresponding to the kaon, pion, and proton hypotheses (Figure 4.5). The

discrimination between kaons, pions, and protons is done numerically by means of a

delta-log-likelihood variable, defined as

DLL(a� b) ⌘ lnLa � lnLb = ln
La

Lb

(4.1)

where La is the likelihood of the hypothesis for particle a and Lb is the likelihood of

the hypothesis for particle b. Therefore, when DLL(a-b) � 0, the Cherenkov photon

distribution is more likely to have been created by a particle of type a rather than

type b. RICH performance studies have been performed on the data taken in the

first half of 2010 [16]. Figure 4.6 shows the kaon PID e�ciency versus momentum

using the cut DLL(K-⇡) � 5. The upper curve (red symbols) shows the e�ciency
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for real kaons and the lower one (black symbols) for real pions. Since the observed

misidentification e�ciency for pions is very low, we can obtain very pure K samples

for a wide momentum range. Similarly, Figure 4.6 shows the proton PID e�ciency

versus momentum using the cut DLL(p-⇡) � 5 for protons and pions.

Figure 4.5: Cherenkov photon profiles measured in RICH1 and RICH2. Blue circles
indicate the kaon and pion hypotheses [16].

Figure 4.6: Kaon PID e�ciency for kaons (black squares) and pions (red squares) [16].
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Figure 4.7: Proton PID e�ciency for protons (black squares) and pions (red
squares) [16].

4.3 General Strategy

The production of three strange particles (K0
s , ⇤, and ⇤ as seen in Table 2.4) is

analyzed. The term V 0 will be used to refer to the three particles when it ap-

plies generally; for particular reference to each resonance the specific name will be

given. The analysis is performed in bins of V 0 phase space. The kinematic variables

used are the V 0 transverse momentum pT , defined as
p

p2x + p2y, and the rapidity

y = ln((E+pz)/(E-pz)), where (E,px,py,pz) is the V 0 four-momentum defined in the

pp center-of-mass system.

The selected range for the kinematic variables is 0  pT  2.4 GeV/c, 2.5  y 
4.5 for K0

s , and 0.2  pT  2.4 GeV/c, 2.5  y  4.0 for ⇤ and ⇤. This binning

was chosen to guarantee su�cient data statistics in each bin. For consistency, the

same selection (Chapter 5) is applied to all V 0-resonances. All V 0 candidates are

reconstructed in their main decay modes, namely, K0
s ! ⇡+ ⇡� , ⇤ ! p ⇡�, and ⇤!

p ⇡+ (as seen in Table 2.4).
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Cross-sections are measured using only information from each bin (i,j) in terms of

pT and rapidity as

�i,j =
NObs

i,j

✏i,jLint

, (4.2)

where:

• NObs
i,j : the number of reconstructed and selected V 0-decays with pT and y in bin

(i,j) from DATA2010.

• ✏i,j: the detector e�ciency for reconstruction and selection, determined for

MC2010.

• Lint : the integrated luminosity.

Finally, to cancel out any possible e↵ects on the reconstruction e�ciency due

to the detector’s geometry (Subsection 7.4), the observed cross-sections from both

magnet polarities are combined via an unweighted average as

�i,j =
1

2
�Down
i,j +

1

2
�Up
i,j . (4.3)

4.3.1 Yields

The number of reconstructed and selected V 0-decays (NObs
i,j ) is obtained from the

signal yields in DATA2010 using the event selection described in Chapter 5. Yields

are measured from the invariant mass distributions of V 0-decays for each pT and y

bin. For this purpose, each component track of the candidate is given the mass of the

corresponding positive and negative daughter particles for each decay (⇡+⇡� for K0
s ,

p⇡� for ⇤, and ⇡+p̄, proton for ⇤). This is done to calculate the four-momentum of

each daughter particle and combine to build that of the mother particle, from which

its invariant mass is obtained. Figures 4.8 and 4.9 show the distributions for K0
s -

decays in DATA2010 and MC2010, respectively, where a prominent peak is positioned

at the known value for this resonance (498 MeV/c2) [PDG reference], and practically

no background is present. It can be seen that the peaks are not fully symmetric, due
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to radiative tails and the detector’s momentum-dependent resolution. To prevent any

possible bias that might arise from fitting a signal shape, yield extraction performed

by background subtracted event counting is chosen for this analysis. The same holds

for ⇤ and ⇤-decays (Figures 4.10, 4.11), which also present a clear mass peak in the

PDG value (1115.7 MeV/c2) which is not symmetrical. In this case we see a fairly

linear background with a positive slope.

Having the invariant mass distributions ready, the yield extraction procedure is as

follows: directly count the entries in the signal region and subtract the background

estimated from the sidebands, based on the cubic background assumption [35] as

Nbckg =
3(Nb +Nc)� (Na +Nd)

2
, (4.4)

where Nbckg is the estimated background, and Na, Nb, Nc, and Nd are the number

of entries in the sideband regions (of equal size), specified in Table 4.2 and shown in

Figures 4.8, 4.9, 4.10, and 4.11. The regions for each of the di↵erent V 0-decays were

assigned to guarantee that the majority of the signal was accounted for.
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Figure 4.8: Invariant mass distribution for K0
s candidates on DATA2010.
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Figure 4.9: Invariant mass distribution for K0
s candidates from MC2010.
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Figure 4.10: Invariant mass distribution for ⇤ and ⇤ candidates from DATA2010.
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Figure 4.11: Invariant mass distribution for ⇤ and ⇤ candidates from MC2010.

Table 4.2: Signal and sideband regions
Particle Signal A B C D
K0

s [484,512] [456,470] [470,484] [512,526] [526,540]
⇤,⇤ [1107.7,1123.7] [1091.7,1099.7] [1099.7,1107.7] [1123.7,1131.7] [1131.7,1139.7]

4.3.2 E�ciencies

E�ciencies for reconstructing and selecting prompt V 0-decays are measured for MC2010

for each pT and y bin by the following:

✏i,j =
NObs

i,j (MC)

NGen
i,j (MC)

, (4.5)

where:

• NObs
i,j (MC): the number of reconstructed and selected V 0-decays with pT and y

in bin (i,j), for MC2010, measured as in DATA2010 via background subtracted

yields.
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• NGen
i,j (MC): the number of generated prompt V 0-decays for MC2010. For this

purpose, only V 0’s which do not include p-p interaction particles with a mean

lifetime (⌧) greater than 10�10s (Section 7.2) in their decay chain are taken into

account.

To understand the enclosed e↵ects in ✏i,j, the following partitioning is performed:

✏i,j = ✏(trig|sel)i,j✏(sel|rec)i,j✏(rec)i,j (4.6)

Here ✏(rec)i,j is taken from MC and is well known to reproduce data reconstruction

e�ciency. With 3% uncertainty on the single track reconstruction e�ciency [36], a

systematic uncertainty of 6% is assigned to the V 0reconstruction e�ciency estimated

from the simulation.

The quantity ✏(sel|rec)i,j is the selection e�ciency, namely how many of the re-

constructed V 0-decays survive the selection criteria. This is analyzed thoroughly

in Section 5.4. Di↵erent kinematics between DATA and MC cause discrepancies; a

correction factor is calculated from the observed di↵erences in ✏(sel|rec)i,j between

DATA2010 and MC2010, and is applied to the cross-section measurements to correct

for this error.

Finally, ✏(trig|sel)i,j is the trigger e�ciency. The trigger used for this analysis,

MicroBiasTriggered, does not have any further requirements at the L0 level as com-

pared to a track reconstructed with the VELO and found by the HLT. Therefore, this

trigger configuration is intrinsically 100 % e�cient for reconstructed V 0-decays after

selection (Chapter 5), because they are formed from two long tracks. Because no

prescaling was applied for this trigger on the selected data samples, we can proceed

to take ✏(trig/sel)i,j = 1.



Chapter 5

Event Selection

5.1 General requirements

The requirements for an event to be processed by the algorithm are:

• VELO microbias trigger on HLT1 (Subsection 3.8.3).

• Two or more long tracks (tracks which traverse all of the tracking subdetectors,

as shown in Figure 5.1).

• At least one reconstructed primary vertex.

• Geometrical variable ! � 5.5 (see Section 5.2).

66
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Figure 5.1: Schematic illustration of the various track types, classified by the tracking
subdetectors traversed.

5.2 Geometrical candidate selection (!)

In an ideal V 0! h+h� decay we would obtain planar geometry, meaning that the

momentum of the V 0 and its daughters would all be on the same plane. However,

due to detector resolution, the measured configuration is, in general, not planar. If we

take the vector resulting from the cross product of the momentum of both daughter

particles, n̂ = p̃1 ⇥ p̃2, then the geometry splits into two planes orthogonal to n̂

(Figure 5.2). Standard notation is used, where r̃ stands for a 3-vector and r̂ for a

unit 3-vector.

Figure 5.2: Schematic view of the planes formed by the V 0 daughter particles’ tracks.
The vector n̂ is shown at the beginning of the positive and negative daughters as a
green arrow, and its projection into the primary vertex as a yellow arrow, where v1
and v2 are measured.
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We then have observables perpendicular to n̂ (Figure 5.3) such as:

• d1,d2 : 2-dimensional signed impact parameters of the positive and negative

daughters, respectively, at the primary vertex measured perpendicular to n̂. The

sign comes from the orientation of the impact parameter vector with respect to

the momentum of the V 0, namely, the sign of the scalar product (d̃i · (p̃1 + p̃2)).

• d: 2-dimensional impact parameter of the V 0 candidate at the primary vertex

calculated perpendicular to n̂.

Figure 5.3: 3-D schematic view of a simulated V 0 decay showing d, d1, and d2. The
red and blue lines are the initial momentum directions of the positive and negative
daughters, respectively. In between the green knobs is the candidate’s decay vertex.
Gray lines illustrate the projection of the candidate and daughters’ momentum to-
wards the primary vertex (in between the yellow knobs), from which d, d1, and d2 are
calculated.

Parallel to n̂ (Figure 5.2):

• v1,v2 : the perpendicular distance from each plane to the primary vertex.
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From this information, we construct the dimensionless variable ! (Equation 5.1)

which is expected to be large for V 0-decays.

! = ln
d1d2

d2 + v21 + v22
(5.1)

Similarly, it is expected that d1,d2 > 0. For real V 0-decays the tracks generated

by the daughter particles should appear ahead of the decay vertex; therefore, the dot

product (d̃i · (p̃1 + p̃2)) should be positive.

5.3 Separation of V 0from background using !

Before proceeding with further analysis, it is appropriate to explicitly define the

terminology which will be used:

• Candidate: the combination of two of fully reconstructed, oppositely charged

tracks. Their momentum and position information is combined to obtain the

momentum and decay vertex of the expected mother particle (V 0-decay).

• True MC: those candidates whose component tracks both come from the same

V 0 particle which was generated in MC2010 by PYTHIA 6.4, and for whom

the V 0 mother particle is confirmed to be prompt.

• Combinatorial background: all candidates which are not real V 0-decays (iden-

tified as non-true MC in MC2010), assumed to be just random combinations of

tracks, not arising from the same mother particle.

Now, we will show how ! is a good selection variable, because it was tailored to

isolate V 0’s from the combinatorial background. As was mentioned in the preface,

V 0’s have long lifetimes, so they decay a long distance from where they were created.

Because we are looking for prompt particles, namely, particles which come directly

from the primary vertex, this long distance between the primary vertex and the decay

vertex gives the geometry of the decay some distinctive features: Firstly, the impact

parameter of the candidate (d) should be small, which is easy to understand as the
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momentum of the candidate should point directly towards the primary vertex if it

actually came from there. Secondly, the impact parameters of the tracks that compose

the candidate (d1, d2) should be large in comparison to d. As can be seen in Figure 5.3,

the projection of the momentum of the tracks is further away from the primary vertex

than the projection of the candidate. Finally, the distance from the primary vertex

to the planes of the positive and negative tracks (v1, v2), as seen in Figure 5.2, should

be small if the candidate is a well-reconstructed V 0-decay coming from the primary

vertex, and not just a random track combination. It is then expected that candidates

which are actually prompt V 0-decays would have a large ! value as compared to the

rest of the particles and combinatorial background. This assumption is verified in

Figure 5.4, where the distribution of the ! variable shows a clear separation between

true MC candidates and the combinatorial background. The area to the right of the

line represents the chosen selection cut of ! � 5.5, where the true MC candidates

clearly dominate over the combinatorial background.

ω
-25 -20 -15 -10 -5 0 5 10 15
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comb bckg

Figure 5.4: ! distribution for true MC candidates (solid red histogram) and combi-
natorial background (solid blue histogram) for MC2010.
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5.4 Selection e�ciency

The selection e�ciency was checked for consistency and possible systematic correc-

tions. The first step was to use true MC V 0candidates for MC2010 and count how

many survived selection, similar to the way in which the selection cut ! � 5.5 was

defined in Section 5.3. Then, background subtracted yields for MC2010 were used

to observe the e↵ects of reconstruction e�ciency and yield extraction (comparing to

the counts of true MC candidates). Finally, the yields were measured on DATA2010

to observe how well MC2010 describes the data. Details are presented later in this

section.

Selection e�ciency is measured as follows:

✏(sel|rec)i,j =
I(sel)i,j

I(sel)i,j + I(nsel)i,j
(5.2)

Where I(sel)i,j is the number of reconstructed V 0-decays accepted by the selection,

and I(nsel)i,j is the number of reconstructed V 0-decays that are rejected. The indices

(i,j) indicate the pT ,y bin. Since this selection involves only one variable, (!), it is

straightforward to define ✏(sel|rec)i,j in terms of !:

✏(sel|rec)i,j =
I(! � 5.5)

I(! � 5.5) + I(!  5.5)
(5.3)

The acceptance region (! � 5.5) was selected to optimize the selection of V 0candidates.

In Figures 5.6 and 5.7 we can observe that candidates with !  5.5 have a uniform ⇡⇡

invariant mass distribution, meaning that they are mostly combinatorial background.

On the other hand, the candidates !  5.5 appear in a very dense area around the

K0
s mass and very sparsely elsewhere.

Figure 5.5 shows the ! distribution for K0
s -decays in the acceptance region. The

area to be taken into account for comparison between DATA2010 and MC2010 is !

� 2. Here, the background subtracted yield extraction is still reliable. For values !
2 the simulation shows that background contributions remain. The region ! 2 is

therefore not used in the determination of the e�ciency correction factor. Since !

doesn’t show a correlation in the ⇡⇡ invariant mass distribution, and the background
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is quite homogeneous for DATA2010 and MC2010 (Figures 5.6 and 5.7), it is reliable

to use background subtracted yields to estimate its distribution.

Comparing the background subtracted distribution for MC2010 to DATA2010 for

non-selected (2  !  5.5) and selected (! � 5.5) V 0-decays, it is observed that:

• MC/DATA � 1 for ! � 5.5, so I(sel) is overestimated.

• MC/DATA  1 for 2  !  5.5, so I(sel) is underestimated.

• Therefore ✏(sel|rec)i,j is overestimated by MC2010.

To measure this overestimation of ✏(sel|rec)i,j, truncated estimates for MC2010

and DATA2010 are calculated using background subtracted yields in both cases as

follows:

✏̂(sel|rec)MC =
I(! � 5.5)MC

I(2 � !  5.5)MC + I(! � 5.5)MC

(5.4)

✏̂(sel|rec)DATA =
I(! � 5.5)DATA

I(2 � !  5.5)DATA + I(! � 5.5)DATA

(5.5)

and from those estimates the correction factor for the MC estimate is obtained:

k̂ =
✏̂DATA

✏̂MC

(5.6)

This correction factor k̂ is applied to the e�ciency calculated from simulation data

✏(sel|rec)i,j (Eq 5.3) to estimate the actual reconstruction e�ciency.
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Figure 5.5: K0
s ’s ! distribution from the background subtracted yields in

DATA2010(black filled triangles), MC2010 (red filled circles), and true MC particles
(solid blue histogram). The ratio plot shows how the simulated data underestimates
data for candidates of !  5.5 and starts overestimating for ! � 5.5, hence the need
for the correction factor k̂ (Eq 5.6).
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Figure 5.6: ! vs ⇡⇡ invariant mass on DATA2010.
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Figure 5.7: ! vs ⇡⇡ invariant mass for MC2010.
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The correction factor is measured in di↵erent ranges of transverse momentum

and rapidity to check for phase space dependence. Table 5.1 shows the measured k̂

values. The selected pT ,y bins are chosen such that there are still enough entries to

see the ! distribution using background subtracted yields. The observed mean value

of k̄ = 0.94 ± 0.024 was checked for consistency with the conforming bins using a

�2 test, which gave a p-value of 0.44, i.e., within the accuracy of this measurement

there is no evidence for a phase space dependence of the correction factor. Therefore,

the correction factor of k̂=0.94 is applied uniformly for all measured pT ,y bins. The

assigned systematic correction is 3% (rounding the error of k̄). The area, which is not

taken into account (!  2), was measured in true MC and found to be only 7% of the

total area; therefore, its contribution to k̂ is not significant, and the small uncertainty

due to truncation is already covered by the assigned systematic uncertainty.

Table 5.1: Observed k̂ values for K0
s -decays

pT -y 2.5-3 3-3.5 3.5-4 4-4.5
0-600 0.98 ± 0.027 0.94 ± 0.016 0.95 ± 0.018 0.90 ± 0.036

600-2400 0.93 ± 0.017 0.97 ± 0.018 0.94 ± 0.016 0.94 ± 0.03

For ⇤ and ⇤, the same over-estimate of ✏(sel|rec)i,j is observed (Figure 5.8). As in

the case of the K0
s -decays, ! does not show any trend in the invariant mass distribu-

tion for DATA2010 and MC2010 (Figures 5.9 and 5.10), so obtaining its distribution

via background subtracted yields is reliable. Table 5.2 shows the measured values

for di↵erent pT ,y bins. The overall mean of k̂ = 0.92± 0.034 is applied uniformly as

a correction factor for all measured pT ,y bins. The �2 test in this case gives a p-value

of 0.88; therefore, there is no evidence for a phase space dependence.

Table 5.2: Observed k̂ values for ⇤, ⇤,-decays
pT -y 2.5-3 3-3.5 3.5-4

200-800 0.90 ± 0.11 0.94 ± 0.06 0.93 ± 0.11
800-2400 0.96 ± 0.09 0.86 ± 0.05 0.92 ± 0.07
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Figure 5.8: ⇤, ⇤’s ! distributions from background subtracted yields in DATA2010
(black filled triangles), MC2010 (red filled circles), and true MC particles (solid blue
histogram).
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Figure 5.9: ! vs ⇡⇡ invariant mass on DATA2010
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Figure 5.10: ! vs ⇡⇡ invariant mass on DATA2010
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5.5 Kinematic Analysis with Armenteros Variables

To test the event selection, we can perform a kinematic analysis using only the mo-

mentum information of the tracks via an Armenteros-Podolansky plot (Figure 5.12).

Taking the components of the two daughter particles’ momenta with respect to the V 0

(Figure 5.11), we plot the transverse momentum of either one (pT ) on the ordinate,

and the asymmetry of the longitudinal momenta on the abscissa,

aL =
p+L � p�L
p+L + p�L

, (5.7)

where p+L , p
�
L are the longitudinal momenta of the positive and negative daughter,

respectively.

Figure 5.11: Visualization of the V 0 decay and its momentum components.

Results indicate that the selection based on ! is quite e↵ective in isolating V 0-

decays from the combinatorial background. As we can observe from Figure 5.12,

after selecting candidates of ! � 5.5, we obtain a clear structure for all V 0-decays:

K0
s -decays which can have either positive or negative aL since both of the daughters

have the same mass. ⇤-decays always have positive aL since their positive daughter,

the proton, carries most of the momentum. The opposite holds for the ⇤-decays,

whose heavy daughter is the negatively charged anti-proton. It is important to notice
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Figure 5.12: Armenteros-Podolansky plot showing the defined structure for K0
s ’s and

⇤ ’s.

the intersection between K0
s -decays and ⇤-decays (0.750  aL  0.775), where both

particles overlap in phase space; this is mainly seen in the ⇤ invariant mass distri-

butions as a K0
s background (Fig 5.13), and is fairly linear. Therefore, the linear

background subtraction is reliable enough to remove the K0
s background on ⇤-decays,

and no additional cuts are required. The same holds for ⇤-decays.
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Figure 5.13: ⇤-invariant mass distribution after ! � 5.5 selection (black histogram)
for MC2010, showing K0

s contamination from true identified K0
s -decays(cyan filled

histogram), and estimated by |m⇡⇡ � 498MeV/c2|  30MeV/c2 (solid red histogram).

5.6 Systematic analysis of the discriminant vari-

able !

In order to better understand the causes behind the discrepancy in ! between MC2010

and DATA2010, its constituent variables were analyzed. The components of omega

are geometric quantities. For prompt V 0’s, d, v1, and v2 are expected to be zero,

and d1, d2 to be a↵ected by the decay kinematics. Due to the finite resolution of the

tracking system, d, v1, and v2 have non-zero values, but are nevertheless smaller than

d1 and d2. Further details are discussed in this section.

5.6.1 V 0impact parameter d

The impact parameter d is calculated geometrically, taking into account only the

momentum information of the V 0-candidate. Since prompt V 0’s should point to the

primary vertex, it is expected for them to have small d values. Figure 5.14 shows the

true MC V 0’s double-binned ! vs d distribution. One can observe that most prompt
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V 0’s fall into the low d region. Similarly, it can be seen that the selection cut (! 
5.5) doesnt a↵ect the densely populated V 0region.
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Figure 5.14: ! vs d distribution for true MC V 0’s for MC2010.

Figure 5.15 shows the discrepancy between MC2010 and DATA2010 in d, which

occurs mainly in the lower d values; this means that there are less events with fine

resolution in DATA2010 than there are in MC2010. For this reason, there are less

entries at high ! values in DATA2010. In an attempt to compensate for this discrep-

ancy, the d distribution in MC2010 was smeared by a Gaussian distribution with �=

0.005mm (the value which achieved the best consistency with DATA2010). The re-

sult is the red curve in Figure 5.15, which is more consistent with DATA2010 at high

occupancy bins, especially in the first fine resolution bin. Chi-square values for the

comparison of both MC2010 distributions versus DATA2010 are listed in Table 5.3,

which show that the e↵ect of the smearing is significant.
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Figure 5.15: d distribution for selected candidates from DATA2010 (black filled cir-
cles), and MC2010 before and after smearing (solid blue and red histograms).
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Table 5.3: Weighted chi-square test values for comparison of d from MC2010 vs
DATA2010, before and after smearing.

variable �2 p-value
d regular 47.6 0.016
d smeared 32.5 0.30

5.6.2 v
1

and v
2

Similarly to d, v1 and v2 should be very small and due only to the resolution. As

well, large ! values necessarily involve small v1 and v2, as is shown in Figures 5.16

and 5.17. It can also be seen that non-selected (!  5.5) events have a wider spread

in v1 and v2 than selected events. This confirms the observation made from the d

distribution that selected events in general have better resolution than non-selected.
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Figure 5.16: ! vs v1 distribution of true MC V 0’s for MC2010.

To prove the hypothesis that v1 and v2 are the result of the resolution and not

kinematics, scatter plots of v1 and v2 against the flight length (Figure 5.18, 5.19) are

presented, which show no correlation between the plotted variables.
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Figure 5.17: ! vs v2 distribution of true MC V 0’s for MC2010.

0

200

400

600

800

1000

flight length (mm)
0 100 200 300 400 500 600 700

 (m
m

)
1v

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 5.18: v1 vs flight length distribution of true MC V 0’s for MC2010.



5.6. SYSTEMATIC ANALYSIS OF THE DISCRIMINANT VARIABLE ! 85

0

200

400

600

800

1000

flight length (mm)
0 100 200 300 400 500 600 700

 (m
m

)
2v

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 5.19: v2 vs flight length distribution of true MC V 0’s for MC2010.

In order to make v1 and v2’s MC2010 distribution consistent with the data, the

variables were smeared by a Gaussian distribution with �= 0.015 mm (the value which

achieved the best consistency with DATA2010). The resulting smeared variables are

more consistent with DATA2010 (Figures 5.20, 5.21), the e↵ect being more significant

in the center bins, which have large statistics and which contribute to large ! values.

Chi-square values for the comparison of both MC2010 distributions versus DATA10

are listed in Table 5.4, showing that the smeared distributions are more consistent

with DATA2010. From this it is understood that MC2010 has better resolution than

that observed in DATA2010.

Table 5.4: Weighted chi-square test value for comparison of v1, v2 for MC2010 vs
DATA2010, before and after smearing.

variable �2 p-value
v1 regular 36.8 0.15
v1 smeared 27.7 0.53
v2 regular 31.96 0.32
v2 smeared 26.59 0.59
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Figure 5.20: v1 distribution for selected candidates from DATA2010 (black filled
circles),and MC2010 before and after smearing (solid blue and red histograms).
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Figure 5.21: v2 distribution for selected candidates from DATA2010 (black filled
circles),and MC2010 before and after smearing (solid blue and red histograms).
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5.6.3 Track impact parameters d
1

and d
2

In contrast to d,v1, and v2, the parameters d1 and d2 are more strongly related to the

kinematics of the V 0-decay than to the resolution, and should depend on the flight

length. The more the V 0’s fly away from the primary vertex, the more the projection

of the daughters momentum move further away from the primary vertex. Figures 5.22

and 5.23 illustrate the direct dependence between d1 and d2 and the flight lengths of

the V 0-candidates. It can be observed that large d1 and d2 values necessarily involve

long flight distances, and vice-versa.

The impact of d1 and d2 on the selection variable ! is clearly expected to be a

direct dependence. This is confirmed in Figures 5.24 and 5.25. It is also observed

that selected candidates (! � 5.5) have larger d1 and d2 values than non-selected (!

 5.5). Consequently, because d1 and d2 are directly correlated with flight length,

selected candidates also have longer flight lengths than non-selected. The distribution

of d1 and d2 for MC2010 is consistent between MC2010 and DATA2010. The values

are smeared by the same factor as used for v1 and v2, and no observable di↵erence is

shown between the smeared and regular distributions of d1 and d2.
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Figure 5.22: d1 vs flight length distribution of true MC V 0’s for MC2010.
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Figure 5.23: d2 vs flight length distribution of true MC V 0’s for MC2010.
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Figure 5.24: ! vs d1 distribution of true MC V 0’s for MC2010.
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Figure 5.25: ! vs d2 distribution of true MC V 0’s for MC2010.

5.6.4 Resolution e↵ect on !

The observed improvement in consistency with the data for d, v1, and v2 obtained by

smearing was implemented on !. For this purpose, !’s distribution was recalculated

using smeared d, v1, and v2 values, assuming that they are independent variables,

which can be confirmed by Figures 5.28 and 5.29. Figure 5.30 shows the comparison

of the original distribution for MC2010 before (blue histogram) and after smearing

(red histogram). Clearly, after smearing, the !’s distribution in MC2010 is more

consistent with DATA2010, especially for large ! values. It can be seen that the

MC/DATA ratio after smearing approaches closer to 1 than before. It is therefore

understood that one of the main causes for the di↵erent ! distributions is the di↵er-

ence in resolution. Nevertheless, the smearing is used only to understand the origin

of the discrepancy. The correction in the selection e�ciency is estimated by the

correction factor k described in section 5.4.
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Figure 5.26: d1 distribution for selected candidates from DATA2010 (black filled
circles), and MC2010 before and after smearing (solid blue and red histograms).
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Figure 5.27: d2 distribution for selected candidates from DATA2010 (black filled
circles), and MC2010 before and after smearing (solid blue and red histograms).
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Figure 5.28: d vs v1 distribution of true MC V 0’s for MC2010.
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Figure 5.29: d vs v2 distribution of true MC V 0’s for MC2010.
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Figure 5.30: ! distribution estimated via background subtracted yields for DATA2010
(black filled circles),and MC2010 before (blue histogram) and after smearing (red
histogram).



Chapter 6

Cross-checks

The properties of reconstructed and selected V 0-decays were analyzed in order to

understand how suitable MC2010 is to reproduce DATA2010. Comparisons for sev-

eral kinematic variables were made using background subtracted yields. The same

procedure was applied for both cases.

6.1 Invariant mass

The procedures for yield extraction for DATA2010 and e�ciency estimation for MC2010

rely on the invariant mass distributions. Figure 6.1(a) shows that for K0
s -decays, sig-

nal peaks in MC2010 are shifted slightly towards higher invariant mass values; how-

ever, they still fall within the chosen signal window so that the extracted signal yield

is only marginally a↵ected (less than 0.1%). The yield extraction method used for

this analysis (Subsection 4.3.1) was tested on MC2010 (Section 7.1) and was found to

be reliable. For ⇤ and ⇤ (Figures 6.2(a) and 6.2(a)), the signal to background ratio

is higher for DATA2010 as compared to MC2010, which indicates that in MC2010

the baryon production is underestimated. In this case, MC2010 distributions are

normalized to match the background area in DATA2010, in order to show the clear

di↵erences in the signal peaks. However, since the background distribution has the

same shape, and background subtraction was observed to be accurate in MC2010

(Figure 5.5), this underestimation does not a↵ect the e�ciency determination.

95
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Figure 6.1: Invariant mass distribution of K0
s -decays after selection from DATA2010

(black filled circles) and MC2010 (solid blue histogram), normalized to match signal
yields. This normalization was chosen because the background contribution in K0

s -
decays is insignificant compared to ⇤ and ⇤-decays.
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Figure 6.2: Invariant mass distribution of ⇤-decays after selection from DATA2010
(black filled circles) and MC2010 (solid blue histogram), normalized to match the
background area in both distributions.
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Figure 6.3: Invariant mass distribution of ⇤-decays after selection from DATA2010
(black filled circles) and MC2010 (solid blue histogram), normalized to match the
background area in both distributions.
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6.2 Rapidity

The rapidity (y) distributions (Figures 6.4 and 6.5) show a qualitative agreement

between MC2010 and DATA2010. Discrepancies are on the order of 6%. Since the

analysis was performed double di↵erentially in bins of pT and y, there is no weighting

for this variable, nor for pT .
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Figure 6.4: Observed y distribution of reconstructed and selected K0
s -decays for

DATA2010 (black filled circles) and MC2010 (red filled circles). MC2010 is normalized
to match DATA2010 statistics.
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Figure 6.5: Observed y distribution of reconstructed and selected ⇤ and ⇤-decays for
DATA2010 (black filled circles) and MC2010 (red filled circles). MC2010 is normalized
to match DATA2010 statistics.
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6.3 Flight length and c⌧

Flight length and decay time distributions were analyzed in parallel. Flight length

is important because the reconstruction and selection e�ciency depend on where the

particles decay and other correlated factors. On the other hand, the variable c⌧ takes

into account the observed momentum, which di↵ers between MC2010 and DATA2010

and thus provides additional information.

Flight length distributions for the reconstructed and selected candidates are shown

in Figures 6.6 and 6.7 for K0
s and ⇤, ⇤-decays, respectively. The first noticeable

feature is the presence of a double structure. Keeping in mind that only long tracks

are used in the analysis, this structure can be explained by the positioning of modules

in the VELO detector (Figure 3.8, Top). After the interaction region, there comes the

primary zone, with a high density of modules which cover up to approximately 35 cm

after the interaction region; this gives us the first component. After the primary zone

follows an almost empty space, and then there comes the final part of the VELO,

which has only 4 modules on each side; the second distribution comes from here. The

second distribution is clearly smaller, since the density of modules is significantly less

than in the primary zone, so V 0’s decaying there have a smaller probability of being

reconstructed. Figure 6.8 shows the reconstruction e�ciency in flight length bins

where the double structure due to the detector module setup is present.

Flight length distributions are also distorted due to event reconstruction and can-

didate selection. Long-lived V 0’s generally decay out of VELO acceptance, and there-

fore the tracks of their daughter particles are not reconstructed as long tracks. As

a consequence, flight lengths are only reconstructed up to values around 70 cm. In

addition, short-lived V 0-decays are removed, since the selection variable ! tends to

reject candidates that have small impact parameters on the daughter particles (d1,

d2), and this is directly correlated with the flight length (Figure 5.22). Due to these

short lived V 0’s, there are more candidates in MC2010 as compared to DATA2010.

It was seen that MC2010 has a high resolution such that its signal decays have small

v1 and v2 values, resulting in larger ! values and acceptance by the selection (Subsec-

tion 5.6.3); on the contrary, for DATA2010, having larger values of v1 and v2 compared
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to MC2010 results in smaller ! values which are not accepted by the selection. This

e↵ect is directly correlated with candidate selection based on the discriminant vari-

able !. Therefore, this discrepancy is already taken into account by the correction

factor k̂ (Section 5.4). In this analysis, an estimate for the decay time c⌧ is calculated

using the known mass (m) together with the momentum (pz) and flight length (lz)

components in the z axis as

c⌧ = m
lz
pz
, (6.1)

and its distributions (Figures 6.9 and 6.10) show that MC2010 reconstructs and selects

more long-lived V 0-decays than DATA2010, and vice versa for short-lived V 0-decays.

This is an e↵ect of the resolution di↵erence, since it is correlated with flight length.

In addition, this discrepancy is already taken into account by the correction factor k̂.
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Figure 6.6: Observed flight length distribution of reconstructed and selected K0
s -

decays on DATA2010 (black filled circles) and MC2010 (red filled circles). MC2010
is normalized to match DATA2010 statistics.
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Figure 6.7: Observed flight length distribution of reconstructed and selected ⇤ and
⇤-decays on DATA2010 (black filled circles) and MC2010 (red filled circles). MC2010
is normalized to match DATA2010 statistics.
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Figure 6.8: Observed e�ciency in flight length bin distribution. The double structure
due to the detector module setup is present.



106 CHAPTER 6. CROSS-CHECKS

0 5 10 15 20 25 30 35 40 45 50

ca
nd

id
at

es
/ 2

m
m

310

410

510
4.5≤y≤2400 2.5≤

T
p≤0

Yield DATA 2010

Yield MC 2010

(ps)τc
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

M
C

/D
at

a

0
0.5

1
1.5

2

Figure 6.9: Observed c⌧ distribution of reconstructed and selected K0
s -decays on

DATA2010 (black filled circles) and MC2010 (red filled circles). MC2010 is normalized
to match DATA2010 statistics.
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Figure 6.10: Observed c⌧ distribution of reconstructed and selected ⇤ and ⇤-decays on
DATA2010 (black filled circles) and MC2010 (red filled circles). MC2010 is normalized
to match DATA2010 statistics.
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Systematics

Relevant observed systematic uncertainties are classified in Table 7.1 as either global,

for those which are taken homogeneously for every bin, or as local, for those where

a phase space dependence was observed, making it necessary to estimate bin by bin.

The total global uncertainties add up to 7.83% forK0
s and 8.26% for ⇤, ⇤ , respectively.

In general, the precision in the measurement of systematic uncertainties is limited for

the low occupancy bins, where large statistical uncertainties dominate.

Table 7.1: V 0 systematic uncertainties
Source Local Global

- Selection 2-10 %
- Background subtraction 0.1-28 %

- E�ciencies (magnet configuration) 0-14 %
- Binning (generator dependence) 0-20 %

- Luminosity 3.5 %
- Track e�ciency 6 %

- Di↵raction 2 %
- Selection e�ciency (k̂ correction) 3, 4%

108
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7.1 Yield extraction

The yield extraction method described in Section 4.3.1 was tested on MC2010 to

determine if it properly counts the number of reconstructed V 0-decays after selec-

tion. For this purpose, the double-binned pT and y distributions obtained by back-

ground subtracted yields are compared with the true MC associated particles. As a

first attempt, the K0
s -decays, in Figure 7.1 and 7.2 show good agreement between

yields and the true MC, meaning that the yield extraction method is reliable. ⇤

and ⇤ (Figures 7.3 and 7.4) show a small discrepancy in the central y region. Uncer-

tainties due to background subtraction were estimated by measuring and comparing

the reference cross-sections (which use background subtracted yields for e�ciency

estimation) against cross-sections estimated using MC true particles for e�ciency

estimation. There is a strong phase space dependence in this uncertainty, which is

to be expected, since there are di↵erent background contributions associated with

many phase space regions. Systematic uncertainties due to background subtraction

are listed in Tables A.19, A.20, and A.21 for K0
s , ⇤, and ⇤-decays, respectively.
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Figure 7.1: Reconstructed and selected K0
s -decays in bins of pT for MC2010, mea-

sured via background subtracted yields (red filled circles), and true MC (solid blue
histogram).
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Figure 7.2: Reconstructed and selected K0
s -decays in bins of y for MC2010, mea-

sured via background subtracted yields (red filled circles), and true MC (solid blue
histogram).
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Figure 7.3: Reconstructed and selected K0
s -decays in bins of pT for MC2010, mea-

sured via background subtracted yields (red filled circles), and true MC (solid blue
histogram).
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Figure 7.4: Reconstructed and selected K0
s -decays in bins of y for MC2010, mea-

sured via background subtracted yields (red filled circles), and true MC (solid blue
histogram).
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7.2 Non-prompt and di↵ractive contributions

Another possible systematic uncertainty is the mismodelling of di↵raction in the simu-

lated data. MC studies were performed to estimate the contribution due to di↵ractive

interactions and non-prompt V 0’s, which are defined in the analysis as follows:

In di↵ractive processes no internal quantum numbers are exchanged between the

colliding protons. A color singlet pomeron (IP ) with vacuum quantum numbers me-

diates the interaction [37]. The di↵ractive contributions in this analysis are estimated

in the simulated data for V 0’s coming from single di↵ractive and double di↵ractive

interactions (Figure 7.5). In single di↵ractive processes only one of the colliding pro-

tons dissociates via a pomeron (p1 + p2 ! p01 + X and p1 + p2 ! X + p02) [38].

If both of the protons dissociate, then the process is double di↵ractive (p1 + p2 !
X1 +X2).
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Figure 7.5: Di↵ractive interaction diagrams.

Non-prompt V 0’s include in their decay chain from the p-p interaction particles

with a mean lifetime (⌧) greater than 10�10s. Most of the products from these particles

are ⇤ and ⇤ . Table 7.2 enumerates the particles (and all their related antiparticles)

found in the PYTHIA list which meet such a requirement. Figure 7.6(a) and 7.6(b)

show the contributions of di↵ractive events as well as non-prompts versus their trans-

verse momentum for K0
s and ⇤, ⇤-decays, respectively. It is clear that di↵ractive and

non-prompt events are located in the low pT region. Non-prompt contamination is

not significant for two reasons: Firstly, the reconstruction and selection e�ciencies

✏sel already take into account this factor, since they are calculated for non-prompt

V 0-decays. Secondly, the selection applied implies strong pointing cuts to the primary

interaction vertex, so it is robust against non-prompt contamination.
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Table 7.2: Long-Lived Progenitors of ⇤’s
Particle PDGID ⌧(s)

⌅0 3322 2.90⇥10�10

⌅� 3312 1.64⇥10�10

⌃� 3112 1.48⇥10�10

⌦� 3334 8.21⇥10�11

⌃+ 3222 8.02⇥10�11

The systematic uncertainty due to the modelling of di↵ractive contributions is

found to be smaller than 2%. This approach is conservative since it is still model

dependent, so no further e↵ort is made to quantize bin by bin.
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(a) K0
s

(b) ⇤ and ⇤

Figure 7.6: Transverse momentum pT distribution of V 0’s after selection (black filled
circles) showing single di↵ractive (red filled circles), double di↵ractive (blue filled
circles), and non-prompt contamination (green filled circles) for MC2010.
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7.3 Binning and generator dependence

Since it was observed that various distributions for MC2010 do not match DATA2010

(Chapter 6), simulated detector e�ciencies were checked carefully. Possible variations

in reconstruction and selection e�ciency within a certain bin of phase space are

caused by the MC generator spectrum within the bin. These variations were studied

by repeating the analysis, dividing each bin into four sub-bins of size �y = 0.25

and �pT = 0.05 GeV/c for K0
s -decays and �y = 0.25 and �pT = 0.1 GeV/c for ⇤

and ⇤-decays, adding up the e�ciency corrected yields, and comparing the results

to those of the original binning. Good agreement was found between both binnings.

Tables A.22, A.23, and A.24 show the observed di↵erences in % for K0
s , ⇤, and

⇤-decays.

7.4 Magnet Down/Up asymmetries

Studies were performed to determine how the reconstruction e�ciency of V 0-decays

is a↵ected by the detector geometry. For this task, the PY vs PX distributions for the

reconstructed V 0-decays were analyzed. For K0
s -decays, PY vs PX distributions show

no apparent asymmetry between both magnet polarities (Figure 7.7(a) and 7.7(b)).

However, for ⇤ and ⇤-decays there is a clear di↵erence. When the magnet polarity

is in the -y direction (Magnet Down), most of the ⇤-decays are reconstructed on the

left side of the detector, leaving the right side almost empty 7.8(a). For ⇤-decays

we have the exact opposite case (Figure 7.8(b)). This is because for ⇤-decays the

pion is much softer than the proton (as seen in Figure B.1), and because it has a

negative charge the magnetic field bends it strongly in the -x direction, taking it

out of the detector’s acceptance. For ⇤-decays the soft daughter is the positively

charged pion. In this case the magnetic field bends the pion in the +x direction, so

that pions coming from ⇤-decays with pX > 0 fall out of the detector’s acceptance.

For the inverse magnet polarity (Magnet Up), we have the inverse situation, i.e.,

⇤-decays are mostly reconstructed on the right side and ⇤-decays on the left side

(Figures 7.9(a) and 7.9(a)). For this polarity (B Field in the + y direction) the soft
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negative pions from ⇤-decays are bent in the +x direction, and the opposite holds

for the soft positive pions from ⇤-decays. Final cross-sections are obtained using

an unweighted average for both magnet polarities to cancel out any possible e↵ects

on the e�ciency that may arise from the detector geometry. Combining the results

for both magnet polarities, the distribution is fairly symmetric for all V 0-decays, as

observed in Figures 7.11(a), 7.11(b), and 7.10.

Finally, the small di↵erence in e�ciency between the magnet polarities is taken

into account as a systematic uncertainty for every pT ,y bin. Tables A.25, A.26,

and A.27 show the measured uncertainties due to reconstruction e�ciencies for op-

posite magnet polarities for K0
s , ⇤, and ⇤-decays, respectively.
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Figure 7.7: pY vs pX distributions for reconstructed K0
s candidates after selection

from DATA2010.
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Figure 7.8: pY vs pX distributions for reconstructed ⇤, ⇤-decays after selection from
DATA2010, for the Magnet Down case.
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Figure 7.9: pY vs pX distributions for reconstructed ⇤, ⇤-decays after selection from
DATA2010, for the Magnet Up case.
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Figure 7.10: pY vs pX distributions for reconstructed K0
s -decays after selection from

DATA2010, combining Magnet Down and Up results.
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Figure 7.11: pY vs pX distributions for reconstructed ⇤, ⇤-decays after selection from
DATA2010, combining Magnet Down and Up results.



Chapter 8

Results

8.1 Measured yields

As a first step to estimate the cross-sections defined in Eq 4.2, the signal yields were

measured for DATA2010 and MC2010. This was done separately for each magnet

polarity. Figure 8.7 shows the measured K0
s yields in bins of pT , showing consistency

between Magnet Down and Magnet Up results for both DATA2010 and MC2010.

In the case of K0
s -decays, despite the yield underestimation in 2010 in the high pT

bins, we are still provided with enough statistics to measure the e�ciencies with good

accuracy. For ⇤ and ⇤, there is an observable, but not significant di↵erence between

magnet polarities (Figures 8.2, 8.3) in DATA2010. For MC2010, the discrepancy

in the high pT bins is large, but still covered by statistical uncertainties. These bins

su↵er from low statistics, since the pT spectrum in MC2010 is softer and has a smaller

sample size compared to DATA2010.

Numerical results are shown in Tables A.1, A.2, A.3, A.4, A.5, and A.6. For all V 0-

decays, the numbers show no apparent inconsistency between the magnet polarities,

and the event counts seem to be approximately double for Magnet Up with respect to

Magnet Down. This is expected, since the sample used for Magnet Up had twice the

luminosity of the one used for Magnet Down, and the e�ciencies are approximately

the same.
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Figure 8.1: Measured K0
s yields in bins of pT (y integrated). Triangles are mea-

surements done on DATA2010 for Magnet Down and Up polarities (black filled and
black hollow triangles). In blue and red the same measurements for MC2010 are
shown. The distributions are normalized to the same area as the data. Error bars
are statistical uncertainties.
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Figure 8.2: Measured ⇤ yields in bins of pT (y integrated). Triangles are measure-
ments done on DATA2010 for Magnet Down and Up polarities (black filled and black
hollow triangles). In blue and red the same measurements for MC2010 are shown. The
distributions are normalized to the same area as the data. Error bars are statistical
uncertainties.
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Figure 8.3: Measured ⇤yields in bins of pT (y integrated). Triangles are measurements
done on DATA2010 for Magnet Down and Up polarities (black filled and black hollow
triangles). In blue and red the same measurements for MC2010 are shown. The
distributions are normalized to the same area as the data. Error bars are statistical
uncertainties.
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8.2 Observed e�ciencies

The e�ciencies described in Subsection 4.3.2 were determined for MC2010 for the

respective measured phase space regions for K0
s -decays (0 pT  2.4 GeV/c, 2.5 

y  4.5 ) and ⇤, ⇤-decays (0.2 pT  2.4 GeV/c, 2.5  y  4.0). MC2010 was

produced using PYTHIA 6.4 [39] as a generator to model high energy pp collisions,

where the particles produced are propagated afterwards, modelling the interactions

throughout the detector using GEANT 4 [40]. Inconsistencies between MC2010 and

DATA2010 were measured and the correction factor k̂ defined in Eq 5.6 was applied

uniformly to all measured e�ciencies for cross-section measurements.

Figures 8.4(a) and 8.4(b) show a 2-D map ofK0
s corrected (k̂) selection e�ciencies

in bins of pT -y. The phase space region in which the detector o↵ers the highest

e�ciency (8-10%) is 300  pT  1200MeV/c and 3  y  4. The structure in y

is due to the detector geometry since we require long tracks, and in this rapidity

region tracks traverse the most active material. The decrease in e�ciency at high pT

is due to the long lifetime of V 0 particles. High momentum V 0 particles travel long

distances before decaying, so that they are not seen in the VELO detector. For ⇤ and

⇤ (Figure 8.5(a), 8.5(b), 8.6(a), and 8.6(b)) the highest e�ciencies are observed

(8-10%) in the bins with 600  pT  1400MeV/c and 3  y  4. The low e�ciencies

for low pT and at high and low y are due to the wide opening angle present in ⇤ and

⇤-decays.

Estimates of selection e�ciencies are shown in Tables A.7, A.8, A.9, A.10 , A.11,

and A.12 for K0
s , ⇤, and ⇤ for both magnet polarities. The e�ciencies are around 2

 ✏seli,j  11% for K0
s -decays and 2  ✏seli,j  10% for ⇤ and ⇤-decays.

No significant di↵erence in e�ciency was found between magnet polarities. Nev-

ertheless, the unweighted average cross-section measurement is performed to cancel

any systematic e↵ects due to magnet polarity.
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Figure 8.4: Reconstruction and selection e�ciencies ✏sel for K0
s -decays measured for

MC2010, pT vs y profile.
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(b) Magnet Up

Figure 8.5: Reconstruction and selection e�ciencies ✏sel for ⇤-decays measured for
MC2010, pT vs y profile.
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Figure 8.6: Reconstruction and selection e�ciencies ✏sel for ⇤-decays measured for
MC2010, pT vs y profile.
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8.3 Cross-sections

The measured cross-sections show good consistency for both polarities, as is illustrated

in Figures 8.7, 8.12, and 8.9. From this it is understood that the di↵erences seen

between both magnet polarities are accounted for by the simulation.

The predictions performed by the MC generator, based on PYTHIA 6.4 [39] which

includes only soft di↵raction and pT -spectra extrapolated from 1 TeV data, largely

underestimate the measured cross-sections at high pT . Predictions from PYTHIA

8 [20], which includes both soft and hard di↵raction and early LHC data pT calibra-

tion, show better agreement with DATA2010 for the high pT tail. Nevertheless, both

generators overestimate the measured ⇤ and ⇤ production at low pT . Tables A.13,

A.14, A.15, A.16, A.17, and A.18 show the measured cross-sections for each magnet

polarity. The numbers show good consistency within error, which is only statistical at

this point. The high pT bins in the ⇤ and ⇤-decays already show uncertainties greater

than 20%, due to the limited statistics in MC2010. This also reflects a limitation in

measuring systematic uncertainties for these bins (Chapter 7).

To cancel out detector asymmetry e↵ects (Subsection 7.4), the final cross-sections

are calculated by combining the results for both magnet polarities via an unweighted

average, using Eq. 4.3. Relative uncertainties are summarized in Table 7.1 (discussed

in Chapter 7 in detail) and are added in quadrature within each category (local and

global). The final results are listed in Tables A.28, A.29, and A.30.

The final cross-sections as a function of transverse momentum are plotted, compar-

ing the results with other prompt V 0 measurements in high energy hadron collisions.

Firstly, K0
s results for this measurement (pp at 7 TeV, 2.5 < y < 4.5) were compared

with previous measurements done by UA1 (pp̄ at 630 GeV, -2.5 < ⌘ < 2.5 [18]), UA5

(pp̄ at 540 GeV, -3.5 < ⌘ < 3.5 [19]), and LHCb (pp at 900 GeV, 2.5 < y < 4.0 [17]).

The UA1 and UA5 measurements were published in the form of invariant di↵erential

cross-sections Ed3�
d3p

as a function of pT . They were converted into measurements of
d2�

dpT dy
by multiplication with 2⇡pT in order to compare them with this measurement

and the previous measurement from the LHCb at 900 GeV [17]. For both LHCb cases

the pT binning is the same, and systematic uncertainties are conservatively taken to
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Figure 8.7: Observed K0
s production cross-section (y integrated) in bins of pT . Trian-

gles are measurements done on DATA2010 for Magnet Down and Up polarities (black
filled and black hollow triangles). The blue and red histograms represent the particles
generated from MC2010, scaled to match the DATA2010 area. The green histograms
represent the prediction by PYTHIA 8. Error bars are statistical uncertainties.
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Figure 8.8: Observed ⇤ production cross-section (y integrated) in bins of pT . Triangles
are measurements done on DATA2010 for Magnet Down and Up polarities (black filled
and black hollow triangles). The blue and red histograms represent the particles
generated from MC2010, scaled to match the DATA2010 area. The green histograms
represent the prediction by PYTHIA 8. Error bars are statistical uncertainties.
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Figure 8.9: Observed ⇤ production cross-section (y integrated) bins of pT . Triangles
are measurements done on DATA2010 for Magnet Down and Up polarities (black
filled and black hollow triangles). The blue and red histograms represent the particles
generated from MC2010, scaled to match the DATA2010 area. The green histograms
represent the prediction by PYTHIA 8. Error bars are statistical uncertainties.
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be 100% correlated. Figure 8.10 shows that the observed strange meson production

is around 2.5 times higher than previous low center-of-mass energy measurements.

To verify this result, K0
s production pT distributions were generated using PYTHIA

8 [20] for the rapidity range 2.5  y  4.5, at 7 TeV and 0.9 TeV (Figure 8.11), where

a similar increase in K0
s -decay production is observed, consistent with measurement

results. For ⇤ and ⇤, as Figure 8.12 shows, the production is compared with the

results from UA1, also showing a significant increase in strange baryon production.

More comparisons were performed for V 0 production ratios with previous LHCb

measurements at 7 TeV [17]; however, these are to be taken with a grain of salt, since

the two measurements are sensitive to di↵erent systematic uncertainties. The results

of this comparison are shown in Appendix C.
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Figure 8.10: Measured prompt K0
s production cross-section as a function of pT , mea-

sured on the LHCb DATA2010 (black filled circles), LHCb @0.9 TeV [17] (black
hollow squares), UA1 [18] (blue filled circles), and UA5 [19] (red filled squares). Mea-
surements were done at di↵erent cms energies on di↵erent hadron collision types and
di↵erent pseudorapidity or rapidity ranges.
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s production prediction for the rapidity range 2.5  y  4.5,

for 7 TeV and 0.9 TeV pp collisions generated using PYTHIA 8 [20].
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circles). Measurements were done at di↵erent center-of-mass energies on di↵erent
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8.4 Conclusion

The production of V 0-decays from pp collisions at 7 TeV has been studied with the

data collected by the LHCb detector in early 2010. A pure geometrical selection is

used and applied equally to all V 0-decays. The analysis was done for two magnet

polarities, and their results are combined for the final cross-section measurements.

The total luminosity used for the analysis is 1.8 nb�1 (0.6 nb�1 for Magnet Down and

1.2 nb�1 for Magnet Up).

Uncertainties in the measurement were studied by calculating the variations due to

background subtraction, di↵erences in the reconstruction e�ciency between Magnet

Down and Magnet Up, and generator dependence (via binning). The most peculiar

of these uncertainties are the Magnet Down-Magnet Up asymmetries, wherein it

was found that ⇤ and ⇤-decays are reconstructed mostly on one specific side of the

detector, depending on the magnet configuration. This has a small e↵ect on the

reconstruction e�ciency. For this reason, the best strategy is to combine the results

for both magnet polarities. From background subtraction studies it was seen that

assuming a linear background accounts well for the background on ⇤ and ⇤-decays,

and that such decays can then be analyzed without further cuts which might introduce

a phase space bias.

The cross-sections were measured in bins of pT and y in the kinematic range of

0  pT  2.4 GeV/c, 2.5  y  4.5 for K0
s and 0.2  pT  2.4 GeV/c, 2.5  y

 4.0 for ⇤ and ⇤. Statistical errors for K0
s -decays vary between 1 % and 5 % for

low pT , and between 7 % and 16 % for high pT . For ⇤ and ⇤-decays, errors vary

between 3 % and 6 % for low pT , and between 14 % and 17 % for high pT . Local

systematic uncertainties are on the order of 6 %; however, there are large uncertainty

values observed for certain bins. Firstly, to the fact that MC2010 has a very soft

pT spectra, the high pT bins contain very few events. Secondly, at low pT with very

small or very large y, these bins provide small statistics due to detector acceptance

for both DATA2010 and MC2010. The total global systematic uncertainty is 12%.

In general, MC2010 has a higher resolution than DATA2010, resulting in a smaller

selection e�ciency for DATA2010; however, this e↵ect was measured and taken into
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account for the measurement.

Data results were compared to two generator predictions: LHCb MC (based on

PYTHIA 6.4) and PYTHIA 8.1. It was found that LHCb MC does not reproduce the

pT spectra. It is too soft compared to data results. PYTHIA 8.1 predictions were more

consistent with the observed spectra, proving that its configuration and calibration

provides a reasonable description of meson production in pp collisions at the TeV scale.

V 0 production cross-sections from this measurement showed a significant increase

compared to previous low center-of-mass energy measurements. The increase was

verified using PYTHIA 8.1 generator predictions.

These results can provide valuable information for generator tuning in experiments

complementary to other strange mesons production measurements [41], baryon pro-

duction ratios [42] [43], and previous K0
s measurements at lower energies [17].



Appendix A

Tables

A.1 Yields

Table A.1: Number of observed K0
s -decays on DATA 2010, Magnet Down, in bins of

transverse momentum pT and rapidity y.
pT (MeV/c )/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5
0-200 9961.5± 104.4 33685.5± 193.4 21787.5± 159.7 3423.5± 69.8
200-400 23651.5± 157.6 74936.5± 281.9 66812± 272.5 21904± 162.3
400-600 36557± 196.2 75865± 283.4 80130± 301.7 32117.5± 197.4
600-800 38738.5± 200.9 54701± 242.4 60805± 268.4 22815.5± 168.9
800-1000 31265.5± 180.5 35058± 198.3 40931± 225.6 13989± 134.5
1000-1200 22693.5± 154.4 21876.5± 160.1 25638.5± 181.1 8426.5± 106.5
1200-1400 15166.5± 128.2 13100.5± 126.9 15842.5± 144 5252± 85.4
1400-1600 10103± 106.9 8206.5± 101.1 9590± 112.9 3028.5± 65.4
1600-1800 6684± 88 5076± 81.4 5866± 88.1 1900± 51.7
1800-2000 4332± 72.2 3306± 65.6 3726± 71 1166.5± 39.4
2000-2200 3038.5± 60.7 2189± 53.5 2354.5± 57.1 753.5± 32
2200-2400 2023.5± 50.6 1368± 43 1602.5± 45.3 438± 25.8

140
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Table A.2: Number of observed K0
s -decays on DATA 2010, Magnet Down, in bins of

transverse momentum pT and rapidity y.
pT (MeV/c )/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5
0-200 19841.5± 147.7 67027± 273.1 44132.5± 226.7 7010.5± 98.8
200-400 46450.5± 221.5 149293± 398.1 135624± 387.8 43512.5± 228.4
400-600 74030.5± 278.2 152038± 401 157866± 423.7 63792.5± 279.5
600-800 77094.5± 283.7 110238± 344 121558± 379.9 45560± 239
800-1000 62798± 256.4 70451± 280.8 81242± 316.8 27795.5± 189.8
1000-1200 44913.5± 217.9 43283± 225.9 51759± 257 16893.5± 150.9
1200-1400 30654.5± 182.7 26694± 181 31159.5± 202.9 10088.5± 117.7
1400-1600 20378± 151.5 16342.5± 143.8 19206.5± 160.4 6319± 93.2
1600-1800 13290± 125 10370.5± 115.7 11821± 125.9 3684.5± 72
1800-2000 8954.5± 103.6 6565± 92.3 7374.5± 99.8 2324± 56.9
2000-2200 5895.5± 85.6 4277± 74.8 4720± 80.2 1476.5± 46.1
2200-2400 3974.5± 70.2 2833.5± 60.6 2999.5± 63.3 963.5± 35.2

Table A.3: Number of observed ⇤-decays on DATA2010, Magnet Down, in bins of
transverse momentum pT and rapidity y.

pT (MeV/c )/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0
200-400 1486.5± 46.4 2929± 79.9 538± 39.9
400-600 3275.5± 65.2 5775.5± 103.5 2689.5± 75.4
600-800 3097.5± 64.5 7899± 112.5 3511± 79.8
800-1000 2730± 60.8 7519.5± 105.6 3648.5± 78
1000-1200 2373.5± 57.3 5291± 88.8 3419.5± 73
1200-1400 1990± 52.5 3442± 71.5 2745± 63.7
1400-1600 1521± 45.5 2160± 55.1 1884.5± 51.9
1600-1800 1126± 39.5 1365.5± 44.6 1198± 41.8
1800-2000 808.5± 33.3 847± 34.6 860.5± 34.8
2000-2200 621± 29 541± 28.7 529± 27.4
2200-2400 408.5± 24.2 362± 22.1 293± 22.4
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Table A.4: Number of observed ⇤-decays on DATA2010, Magnet Up, in bins of
transverse momentum pT and rapidity y.

pT (MeV/c )/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0
200-400 3098.5± 68.1 5987.5± 114.5 1280± 56.6
400-600 6845± 94.9 11852.5± 147.1 5696.5± 107.4
600-800 6787± 93.8 16214± 161.1 7448.5± 114.1
800-1000 5783± 87.3 15011± 150.6 7842.5± 111.3
1000-1200 5182.5± 83.2 10879± 126.5 7233± 104.3
1200-1400 4269± 75.4 7295± 102.8 5490± 90.4
1400-1600 3076± 66.1 4573± 81.6 3970.5± 75
1600-1800 2349± 57.7 2799± 63.5 2515± 59.5
1800-2000 1638± 48 1801.5± 51.2 1640± 48.3
2000-2200 1164± 40.1 1098± 39.8 971± 38.9
2200-2400 828± 33.4 730.5± 32.5 611± 30.9

Table A.5: Number of observed ⇤-decays on DATA2010, Magnet Down, in bins of
transverse momentum pT and rapidity y.

pT (MeV/c )/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0
200-400 1365.5± 46.7 2542.5± 78 558± 40.1
400-600 3124.5± 64.6 5511.5± 101.7 2580.5± 74.7
600-800 3168± 64.7 7235± 111.3 3442± 78.3
800-1000 2684.5± 60.5 6792± 103.9 3586± 77.1
1000-1200 2354.5± 57.2 4785± 86.9 3202.5± 71.6
1200-1400 1976.5± 51.6 3292± 70.1 2522.5± 61.8
1400-1600 1460.5± 44.9 2008± 55.2 1677.5± 50.7
1600-1800 1101± 39.8 1202.5± 43.3 1198.5± 41.6
1800-2000 728± 33.6 856.5± 34.5 710.5± 33
2000-2200 540.5± 27.8 505.5± 27.7 481.5± 25.2
2200-2400 394± 23.7 354± 22.8 297± 20.3
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Table A.6: Number of observed ⇤-decays on DATA2010, Magnet Up, in bins of
transverse momentum pT and rapidity y.

pT (MeV/c )/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0
200-400 2637± 64.1 5141± 109.6 1120.5± 53.9
400-600 6197± 91.1 10484.5± 139.9 5003± 103.1
600-800 5950± 89.8 14465± 154.8 6524± 108.3
800-1000 5192± 83.1 13276± 144.1 6929.5± 106.3
1000-1200 4479.5± 77.6 9843.5± 122.1 6358± 99.4
1200-1400 3866.5± 71.8 6380± 98.8 4956.5± 87
1400-1600 2912± 64 4149.5± 77.5 3476.5± 71.5
1600-1800 2147± 55.4 2557.5± 61.5 2135± 57.4
1800-2000 1484.5± 45.9 1630.5± 48.9 1452± 47.7
2000-2200 1107.5± 40.3 1019.5± 38.4 873.5± 36.4
2200-2400 687.5± 31.6 606± 30.9 555.5± 29.5



144 APPENDIX A. TABLES

A.2 E�ciencies

Table A.7: Estimated reconstruction and selection e�ciencies (in %) for K0
s -decays

on MC 2010, Magnet Down, in bins of transverse momentum pT and rapidity y.
pT (MeV/c )/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5
0-200 2± 0 7.3± 0.1 5.3± 0.1 0.9± 0
200-400 2.2± 0 7.6± 0 7.5± 0 2.6± 0
400-600 3.6± 0 8.1± 0 9.3± 0.1 4.1± 0
600-800 5.2± 0 8± 0.1 9.9± 0.1 4.3± 0.1
800-1000 6.2± 0.1 7.6± 0.1 10.1± 0.1 4.2± 0.1
1000-1200 6.7± 0.1 7.2± 0.1 9.9± 0.1 4± 0.1
1200-1400 6.9± 0.1 6.6± 0.1 9.4± 0.2 4± 0.1
1400-1600 7.1± 0.2 5.9± 0.2 8.8± 0.2 3.6± 0.2
1600-1800 6.6± 0.2 5.6± 0.2 7.9± 0.3 3.4± 0.2
1800-2000 6.6± 0.3 5.3± 0.3 7.3± 0.3 3.3± 0.2
2000-2200 5.5± 0.3 5.2± 0.3 6.6± 0.4 2.8± 0.3
2200-2400 6± 0.3 4.4± 0.3 6± 0.4 3± 0.3

Table A.8: Estimated reconstruction and selection e�ciencies (in %) for K0
s -decays

on MC 2010, Magnet Up, in bins of transverse momentum pT and rapidity y.
pT (MeV/c )/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5
0-200 2± 0 7.3± 0.1 5.4± 0.1 0.9± 0
200-400 2.2± 0 7.7± 0.1 7.5± 0.1 2.5± 0
400-600 3.7± 0 8.1± 0.1 9.3± 0.1 4.2± 0
600-800 5.1± 0.1 8± 0.1 9.9± 0.1 4.4± 0.1
800-1000 6.3± 0.1 7.8± 0.1 10.3± 0.1 4.2± 0.1
1000-1200 6.7± 0.1 7.3± 0.1 9.7± 0.2 4± 0.1
1200-1400 6.9± 0.1 6.8± 0.2 9.2± 0.2 3.6± 0.1
1400-1600 6.6± 0.2 6.4± 0.2 8.8± 0.3 3.2± 0.2
1600-1800 6.5± 0.2 6.1± 0.2 7.8± 0.3 3.2± 0.2
1800-2000 6.3± 0.3 5.7± 0.3 7.3± 0.4 2.9± 0.3
2000-2200 5.9± 0.3 4.2± 0.3 7.6± 0.4 2.8± 0.3
2200-2400 5.5± 0.4 5± 0.4 6.5± 0.5 2.2± 0.3
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Table A.9: Estimated reconstruction and selection e�ciencies (in %) for ⇤-decays on
MC 2010, Magnet Down, in bins of transverse momentum pT and rapidity y.

pT (MeV/c )/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0
200-400 0.9± 0 1.7± 0.1 0.4± 0
400-600 1.6± 0.1 2.8± 0.1 1.5± 0.1
600-800 1.7± 0.1 4.1± 0.1 2.1± 0.1
800-1000 1.5± 0.1 4.4± 0.2 2.8± 0.1
1000-1200 1.8± 0.1 4.5± 0.2 3.4± 0.2
1200-1400 2± 0.2 4.3± 0.2 4± 0.3
1400-1600 2.1± 0.2 3.2± 0.3 2.8± 0.3
1600-1800 2.1± 0.2 2.8± 0.3 3.2± 0.4
1800-2000 2± 0.3 2.1± 0.4 1.9± 0.4
2000-2200 2.5± 0.4 1.9± 0.4 3.2± 0.5
2200-2400 1.9± 0.4 2.1± 0.5 3.7± 0.6

Table A.10: Estimated reconstruction and selection e�ciencies (in %) for ⇤-decays
on MC 2010, Magnet Up, in bins of transverse momentum pT and rapidity y.

pT (MeV/c )/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0
200-400 0.9± 0.1 1.9± 0.1 0.4± 0.1
400-600 1.6± 0.1 3± 0.1 1.6± 0.1
600-800 1.7± 0.1 4.1± 0.1 2.3± 0.1
800-1000 1.5± 0.1 4.7± 0.2 2.7± 0.2
1000-1200 1.8± 0.1 4.3± 0.2 3.6± 0.2
1200-1400 2.4± 0.2 4.1± 0.3 3.5± 0.3
1400-1600 2± 0.2 3.3± 0.3 3.5± 0.3
1600-1800 2.3± 0.3 2.6± 0.4 2.7± 0.4
1800-2000 2.1± 0.3 2.8± 0.4 2.2± 0.5
2000-2200 2.8± 0.4 1.9± 0.5 2.8± 0.6
2200-2400 1.4± 0.5 1.6± 0.5 3.3± 0.7
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Table A.11: Estimated reconstruction and selection e�ciencies (in %) for ⇤-decays
on MC 2010, Magnet Down, in bins of transverse momentum pT and rapidity y.

pT (MeV/c )/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0
200-400 0.9± 0.1 1.7± 0.1 0.3± 0
400-600 1.4± 0.1 2.9± 0.1 1.5± 0.1
600-800 1.5± 0.1 4.1± 0.1 2.1± 0.1
800-1000 1.5± 0.1 4.5± 0.2 2.8± 0.1
1000-1200 1.8± 0.1 4.4± 0.2 3.4± 0.2
1200-1400 2.1± 0.2 3.7± 0.2 3.3± 0.3
1400-1600 1.8± 0.2 3.4± 0.3 3.4± 0.3
1600-1800 2.3± 0.2 3.4± 0.3 3.1± 0.4
1800-2000 2.4± 0.3 2.8± 0.4 3± 0.4
2000-2200 2± 0.4 2.7± 0.4 3± 0.5
2200-2400 1.9± 0.5 2.2± 0.4 3.3± 0.7

Table A.12: Estimated reconstruction and selection e�ciencies (in %) for ⇤-decays
on MC 2010, Magnet Up, in bins of transverse momentum pT and rapidity y.

pT (MeV/c )/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0
200-400 0.8± 0.1 1.6± 0.1 0.3± 0.1
400-600 1.5± 0.1 2.7± 0.1 1.5± 0.1
600-800 1.5± 0.1 4± 0.1 2.1± 0.1
800-1000 1.6± 0.1 4.3± 0.2 2.6± 0.2
1000-1200 1.6± 0.1 4.1± 0.2 3.1± 0.2
1200-1400 2± 0.2 4.1± 0.3 3.7± 0.3
1400-1600 2.2± 0.2 3.2± 0.3 3.2± 0.3
1600-1800 2.6± 0.3 2.8± 0.4 3.5± 0.4
1800-2000 1.9± 0.4 2.1± 0.4 3.1± 0.5
2000-2200 1.7± 0.3 1.9± 0.4 2.8± 0.6
2200-2400 1.3± 0.5 2.4± 0.6 2.3± 0.7
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A.3 Cross-sections for both B-field polarities

Table A.13: Observed K0
s production cross-section (in µb) in bins of transverse mo-

mentum pT and rapidity y on DATA2010, Magnet Down. The quoted error is statis-
tical.

pT (MeV/c )/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5
0-200 818.3± 16.1 777.8± 8.7 693.6± 9.9 626.2± 27.2
200-400 1819.7± 22.5 1645.3± 11.5 1488.6± 11.2 1422.3± 19.5
400-600 1706.7± 17.5 1566.5± 11.2 1436.5± 10.4 1319.5± 15.5
600-800 1239± 12.9 1138.4± 10.2 1025.7± 9.1 897.6± 13.1
800-1000 841± 10.6 776.5± 9.6 679.1± 8 557.8± 11.1
1000-1200 563.9± 9 509.4± 8.7 435.2± 7 351.2± 9.8
1200-1400 365.7± 7.6 332± 7.9 281.2± 6.1 221± 8.3
1400-1600 239.6± 6.3 231.2± 7.3 181.6± 5.2 142.7± 7.4
1600-1800 170.2± 5.7 150.6± 6 125.2± 4.8 95± 6.3
1800-2000 109.4± 4.5 105.4± 5.5 85.4± 4.1 58.7± 4.5
2000-2200 93.1± 5.1 70.8± 4.3 59.9± 3.6 45.8± 5
2200-2400 56.1± 3.5 52.1± 4 45± 3.6 24.6± 3.2

Table A.14: Observed K0
s production cross-section (in µb) in bins of transverse mo-

mentum pT and rapidity y on DATA2010, Magnet Up. The quoted error is statistical.
pT (MeV/c )/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5
0-200 822.7± 16.7 772.8± 8.7 691.3± 10 621.6± 26.9
200-400 1798.6± 22.6 1629.3± 11.6 1523.6± 11.7 1442.6± 20.5
400-600 1697.3± 17.5 1573.4± 11.6 1422.2± 10.6 1285± 15.3
600-800 1258.7± 13.7 1149.9± 10.6 1031.9± 9.5 876.9± 12.9
800-1000 834.7± 10.9 755.3± 9.6 658± 8 556.9± 11.4
1000-1200 563.2± 9.5 496.4± 8.9 446.9± 7.7 351.3± 10.1
1200-1400 371.6± 8.1 330.3± 8.1 283.7± 6.6 232.1± 9.4
1400-1600 257.1± 7.3 215.1± 6.9 182.2± 5.5 165.6± 9.3
1600-1800 172.6± 6.3 142.1± 5.8 127.2± 5.2 95.3± 6.8
1800-2000 118.3± 5.4 96.7± 5.1 84.5± 4.4 67.3± 6.3
2000-2200 83.8± 4.7 84.4± 6.1 52± 3 45± 5
2200-2400 61± 4.3 47.9± 3.8 38.5± 2.9 36.6± 5.7



148 APPENDIX A. TABLES

Table A.15: Observed ⇤ production cross-section (in µb) in bins of transverse momen-
tum pT and rapidity y on DATA2010, Magnet Down. The quoted error is statistical.

pT (MeV/c )/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0
200-400 283.6± 18.3 294.1± 16.7 252.9± 39.1
400-600 344± 14 350± 13.6 307.3± 17.8
600-800 312.3± 14.3 326.5± 11.1 278.9± 14.7
800-1000 307.9± 18.6 289.2± 11.6 217.5± 11.6
1000-1200 223.3± 15.8 198.7± 9.7 168.7± 10.2
1200-1400 167.4± 13.6 135.2± 8.3 116.3± 8.1
1400-1600 121± 12.1 113.1± 9.7 111.5± 12.6
1600-1800 89.1± 10.7 80.7± 9.6 62.8± 7.4
1800-2000 68.3± 11.1 66.6± 12.3 75.2± 16.3
2000-2200 42.3± 6.7 47.4± 9.8 28± 4.4
2200-2400 36.2± 8.3 29.3± 7.1 13.1± 2.2

Table A.16: Observed ⇤ production cross-section (in µb) in bins of transverse mo-
mentum pT and rapidity y on DATA2010, Magnet Up. The quoted error is statistical.

pT (MeV/c )/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0
200-400 277.8± 17.7 257.5± 13.3 278.8± 40.7
400-600 361.9± 15.7 327.3± 12.4 302.9± 17.7
600-800 329.6± 14.7 332.4± 12 266.2± 13.6
800-1000 327.5± 21.9 270.5± 11.2 242.2± 14.3
1000-1200 237.7± 17.6 213.4± 12 169.4± 10.4
1200-1400 149± 11.2 148.1± 9.8 130.7± 10.6
1400-1600 129± 15 115± 11.2 96.4± 9.6
1600-1800 86.8± 11.7 91.1± 14 78.1± 12.2
1800-2000 64.7± 10.6 53.9± 8.5 62.6± 13.4
2000-2200 35.1± 5.6 49.4± 13.7 29± 6.2
2200-2400 48.1± 17 39.1± 13.6 15.3± 3.4
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Table A.17: Observed ⇤production cross-section (in µb) in bins of transverse momen-
tum pT and rapidity y on DATA2010, Magnet Down. The quoted error is statistical.

pT (MeV/c )/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0
200-400 259± 17.2 246.3± 14.1 268.7± 42.9
400-600 376.1± 17 313.3± 11.8 288.4± 17.3
600-800 346.2± 16.9 294.3± 10.2 271.3± 14.6
800-1000 298.5± 18.1 254.9± 10.3 215.8± 11.8
1000-1200 223.3± 15.8 181.1± 9.1 160± 10.3
1200-1400 156.3± 12.5 150.8± 10.7 128.3± 10.5
1400-1600 133.7± 15.6 98.2± 8.7 83.4± 8.4
1600-1800 79.7± 8.9 59.5± 6.3 65.1± 8.3
1800-2000 50.5± 7.5 51.5± 7.6 39.9± 5.6
2000-2200 45.2± 8.3 31.5± 5.3 26.7± 4.7
2200-2400 34.7± 9.5 26.7± 5.5 15.3± 3.3

Table A.18: Observed ⇤production cross-section (in µb) in bins of transverse momen-
tum pT and rapidity y on DATA2010, Magnet Up. The quoted error is statistical.

pT (MeV/c )/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0
200-400 271± 19.4 261.4± 16.3 279± 46.3
400-600 347.8± 15.7 319.7± 13.4 288.7± 18.3
600-800 326.4± 16.8 305.8± 11.6 265.3± 15.2
800-1000 273.7± 16 256.6± 11.4 219.8± 13.3
1000-1200 232.3± 18.6 202.5± 11.7 171.8± 12.1
1200-1400 165.3± 14.9 129.1± 8.5 111.4± 8.6
1400-1600 109.9± 11.2 108.4± 11.5 92.5± 10
1600-1800 70.4± 8.2 76.9± 11.4 51.4± 6.7
1800-2000 65.4± 13.1 66.5± 13.3 38.8± 6.3
2000-2200 55.1± 10.8 45.6± 10 26.2± 5.8
2200-2400 42.7± 16.8 21.6± 5.3 20.5± 6.2
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A.4 Systematics

Table A.19: Estimated uncertainties (in %) due to background estimation for K0
s -

decays.
pT/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5
0-200 1.20 -0.07 -0.18 -3.73
200-400 1.33 0.56 -0.10 -1.84
400-600 0.98 0.73 -0.03 -1.46
600-800 1.65 1.32 0.51 -0.44
800-1000 1.09 0.96 0.67 -0.63
1000-1200 1.14 0.86 0.84 -0.55
1200-1400 0.63 0.89 1.42 0.00
1400-1600 1.25 0.24 2.98 -0.48
1600-1800 2.85 1.14 -0.46 0.24
1800-2000 2.53 0.26 0.27 3.59
2000-2200 -0.14 1.05 3.04 -1.17
2200-2400 -0.54 3.59 -1.80 -7.61

Table A.20: Estimated uncertainties (in %) due to background estimation for ⇤-
decays.

pT/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0
200-400 -0.18 3.87 0.84
400-600 2.74 2.60 4.50
600-800 6.14 5.67 5.07
800-1000 -3.17 0.91 0.13
1000-1200 -1.65 2.34 6.36
1200-1400 8.34 4.50 1.76
1400-1600 1.65 1.80 -0.35
1600-1800 -4.15 -11.74 -6.72
1800-2000 -3.95 -8.91 -14.27
2000-2200 13.19 -4.12 16.14
2200-2400 -20.15 -14.40 26.66
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Table A.21: Estimated uncertainties (in %) due to background estimation for ⇤-
decays.

pT/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0
200-400 -1.66 3.09 2.93
400-600 -0.13 4.19 0.23
600-800 1.82 -0.33 2.96
800-1000 2.45 1.92 -4.40
1000-1200 5.57 3.36 3.74
1200-1400 1.56 1.16 -1.14
1400-1600 9.77 -4.02 -2.65
1600-1800 -7.05 -3.89 13.51
1800-2000 -0.84 4.95 13.13
2000-2200 -28.24 10.08 4.40
2200-2400 3.60 -9.87 3.92

Table A.22: Estimated uncertainties (in %) due to binning (generator dependence)
for K0

s -decays.
pT/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5
0-200 -1.23 0.17 -0.62 1.67
200-400 -0.31 0.07 0.15 -0.78
400-600 0.29 0.17 -0.03 0.08
600-800 -0.04 0.23 -0.16 0.76
800-1000 0.22 0.23 -0.26 0.05
1000-1200 0.06 0.04 -0.02 -0.58
1200-1400 0.16 0.31 -0.05 -0.48
1400-1600 0.23 0.18 0.01 2.26
1600-1800 0.72 0.79 0.00 0.58
1800-2000 0.46 2.79 0.28 3.75
2000-2200 0.96 0.53 1.06 -0.59
2200-2400 1.26 3.76 1.08 19.17
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Table A.23: Estimated uncertainties (in %) due to binning (generator dependence)
for ⇤-decays.

pT/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0
200 - 400 1.19 0.11 -1.44
400 - 600 4.24 -0.06 4.07
600 - 800 -2.77 -0.15 0.81
800 - 1000 -0.71 0.16 -0.25
1000 - 1200 -0.42 0.27 -0.00
1200 - 1400 -0.03 -0.93 1.87
1400 - 1600 3.41 0.94 1.68
1600 - 1800 3.31 0.35 -0.09
1800 - 2000 5.35 4.3 7.55
2000 - 2200 3.04 14.9 5.62
2200 - 2400 18.7 10.6 9.03

Table A.24: Estimated uncertainties (in %) due to binning (generator dependence)
for ⇤-decays.

pT/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0
200 - 400 -1.49 2.83 -15.5
400 - 600 -0.98 -0.63 2.98
600 - 800 -1.95 0.06 0.07
800 - 1000 -0.98 -0.19 -0.91
1000 - 1200 0.23 1.43 -0.56
1200 - 1400 0.56 1.13 1.01
1400 - 1600 0.61 -0.54 -0.02
1600 - 1800 2.4 1.39 9.87
1800 - 2000 1.44 -0.67 3.78
2000 - 2200 36.6 23.4 -0.07
2200 - 2400 7.53 5.34 11
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Table A.25: Estimated uncertainties (in %) due to di↵erence in reconstruction e�-
ciencies for opposite magnet polarities for K0

s -decays.
pT/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5
0-200 -1.23 0.17 -0.62 1.67
200-400 -0.31 0.07 0.15 -0.78
400-600 0.29 0.17 -0.03 0.08
600-800 -0.04 0.23 -0.16 0.76
800-1000 0.22 0.23 -0.26 0.05
1000-1200 0.06 0.04 -0.02 -0.58
1200-1400 0.16 0.31 -0.05 -0.48
1400-1600 0.23 0.18 0.01 2.26
1600-1800 0.72 0.79 0.00 0.58
1800-2000 0.46 2.79 0.28 3.75
2000-2200 0.96 0.53 1.06 -0.59
2200-2400 1.26 3.76 1.08 19.17

Table A.26: Estimated uncertainties (in %) due to di↵erence in reconstruction e�-
ciencies for opposite magnet polarities for ⇤-decays.

pT/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0
200 - 400 -3.39 10 1.59
400 - 600 -0.92 4.28 10.1
600 - 800 -6.44 -1.8 -4.07
800 - 1000 -2.67 1.23 -2.6
1000 - 1200 -13.6 -7.43 0.00
1200 - 1400 10.4 -7.73 -4.58
1400 - 1600 -6.74 -4.67 7.43
1600 - 1800 9.32 5.86 -0.77
1800 - 2000 -9.9 11.4 8.44
2000 - 2200 37.7 8.4 14.3
2200 - 2400 -17 -24.2 -11.6
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Table A.27: Estimated uncertainties (in %) due to di↵erence in reconstruction e�-
ciencies for opposite magnet polarities for ⇤-decays.

pT/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0
200 - 400 2.0 -5.8 -9.6
400 - 600 3.5 4.9 -0.7
600 - 800 7.5 1.8 -1.0
800 - 1000 0.4 2.5 -2.4
1000 - 1200 1.11 -6.7 -10.1
1200 - 1400 2.6 3.5 -3.2
1400 - 1600 3.6 -2.5 -2.2
1600 - 1800 5.8 -4.2 32.4
1800 - 2000 -0.6 -6.9 10.9
2000 - 2200 -35.7 -38.1 -7.7
2200 - 2400 11 58.1 -28.7
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A.5 Cross-sections

Table A.28: Measured K0
s production cross-section (in µb) in bins of transverse mo-

mentum pT and rapidity y as defined on Eq. 4.3. The first quoted error is statistical
and the second is the local systematic error. The total global systematic uncertainty
is 12%.
pT/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5
0-200 821 ± 12 ± 67 775 ± 6 ± 61 692 ± 7 ± 56 624 ± 19 ± 58
200-400 1809 ± 16 ± 145 1637 ± 8 ± 130 1506 ± 8 ± 121 1432 ± 14 ± 116
400-600 1702 ± 12 ± 135 1570 ± 8 ± 124 1429 ± 7 ± 115 1302 ± 11 ± 109
600-800 1249 ± 9 ± 103 1144 ± 7 ± 91 1029 ± 7 ± 81 887 ± 9 ± 76
800-1000 838 ± 8 ± 66 766 ± 7 ± 65 669 ± 6 ± 57 557 ± 8 ± 44
1000-1200 563 ± 7 ± 45 503 ± 6 ± 45 441 ± 5 ± 36 351 ± 7 ± 28
1200-1400 369 ± 6 ± 30 331 ± 6 ± 26 282 ± 5 ± 24 227 ± 6 ± 18
1400-1600 248 ± 5 ± 28 223 ± 5 ± 23 182 ± 4 ± 15 154 ± 6 ± 26
1600-1800 171 ± 4 ± 15 146 ± 4 ± 18 126 ± 4 ± 10 95 ± 5 ± 9
1800-2000 114 ± 4 ± 12 101 ± 4 ± 14 85 ± 3 ± 7 63 ± 4 ± 7
2000-2200 88 ± 3 ± 11 78 ± 4 ± 9 56 ± 2 ± 6 45 ± 4 ± 7
2200-2400 59 ± 3 ± 6 50 ± 3 ± 9 42 ± 2 ± 5 31 ± 3 ± 9

Table A.29: Measured ⇤ production cross-section (in µb) in bins of transverse mo-
mentum pT and rapidity y as defined on Eq. 4.3. The first quoted error is statistical
and the second is the local systematic error. The total global systematic uncertainty
is 12%.

pT/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0
200-400 281 ± 13 ± 25 276 ± 11 ± 37 266 ± 28 ± 23
400-600 353 ± 11 ± 34 339 ± 9 ± 33 305 ± 13 ± 44
600-800 321 ± 10 ± 40 329 ± 8 ± 34 273 ± 10 ± 29
800-1000 318 ± 14 ± 30 280 ± 8 ± 24 230 ± 9 ± 20
1000-1200 231 ± 12 ± 37 206 ± 8 ± 23 169 ± 7 ± 18
1200-1400 158 ± 9 ± 25 142 ± 6 ± 17 123 ± 7 ± 12
1400-1600 125 ± 10 ± 14 114 ± 7 ± 11 104 ± 8 ± 12
1600-1800 88 ± 8 ± 12 86 ± 8 ± 13 70 ± 7 ± 8
1800-2000 67 ± 8 ± 10 60 ± 7 ± 10 69 ± 11 ± 14
2000-2200 39 ± 4 ± 16 48 ± 8 ± 9 28 ± 4 ± 7
2200-2400 42 ± 9 ± 14 34 ± 8 ± 11 14 ± 2 ± 4
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Table A.30: Estimated ⇤ production cross-section (in µb) in bins of transverse mo-
mentum pT and rapidity y as defined on Eq. 4.3. The first quoted error is statistical
and the second is the local systematic error. The total global systematic uncertainty
is 12%.

pT/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0
200-400 265 ± 13 ± 23 254 ± 11 ± 28 274 ± 32 ± 55
400-600 362 ± 12 ± 33 317 ± 9 ± 33 289 ± 13 ± 25
600-800 336 ± 12 ± 39 300 ± 8 ± 25 268 ± 11 ± 24
800-1000 286 ± 12 ± 25 256 ± 8 ± 23 218 ± 9 ± 21
1000-1200 228 ± 12 ± 23 192 ± 7 ± 22 166 ± 8 ± 22
1200-1400 161 ± 10 ± 14 140 ± 7 ± 13 120 ± 7 ± 11
1400-1600 122 ± 10 ± 16 103 ± 7 ± 10 88 ± 7 ± 8
1600-1800 75 ± 6 ± 9 68 ± 7 ± 7 58 ± 5 ± 22
1800-2000 58 ± 8 ± 5 59 ± 8 ± 7 39 ± 4 ± 8
2000-2200 50 ± 7 ± 30 39 ± 6 ± 18 26± 4 ± 3
2200-2400 39 ± 10 ± 6 24 ± 4 ± 14 18 ± 4 ± 6



Appendix B

RICH selection

An alternative method for measuring ⇤ and ⇤ yields uses RICH information to re-

duce the background. V 0-decays can be su�ciently well-identified using only tracking

information, and clean mass peaks with very little or practically no background can

be obtained. Nevertheless, as a cross-check, RICH particle ID was used to verify

the identity of the V 0-daughters, especially for ⇤-decays whose combinatorial back-

ground is mostly due to pion tracks from K0
s -decays given a proton mass. As seen in

Figure B.1, the momentum of the positive and and negative daughters of the ⇤ candi-

dates in the signal region (Table 4.2) fall into the active separation range of the RICH

subdetectors for proton-pion separation (Figure 4.7). We can also see clearly that the

pion is the soft daughter from the decay, which plays a role in Subsection 7.4. The

discriminant variable used is DLL(p-⇡), which stands for ’Delta-Log-Likelihood for

proton hypothesis vs pion hypothesis’ of the p candidate (defined in Subsection 4.2.3).

First, from real data, we can observe in Figure B.2 that the p candidates from ⇤-

decays in the signal region, peak well right after DLL(p-⇡) = 0. The p candidates

coming from the sidebands fall mostly to the left of the red line. It can also be seen

that weighting the sidebands assuming a linear background is a good model, since

for DllP (p-⇡)< 0 it exactly covers the tail left by the p candidates from the signal

region.
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Figure B.1: p candidate (black filled circles) and ⇡ candidate (red filled circles) mo-
mentum p for ⇤-decays, after selection, in the signal region.
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Figure B.2: DLL(p-⇡) distribution for p candidate momentum for ⇤-decays in the
signal region (solid black histogram) and sidebands (solid violet histogram).
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Finally, Figure B.3 shows a comparison of the DLL(p-⇡) distributions for p candi-

dates of ⇤-decays in the signal region for DATA2010, background subtracted DATA2010,

MC2010, and MC truth associated particles. A good match is visible between the

four distributions for DLL(p-⇡) > 0. From this, one can trust that for DLL(p-⇡) > 0,

most of the signal ⇤-decays come from true ⇤’s (and similarly for ⇤). Also, one can

conclude that there is a fair match between DATA2010 and MC2010. Finally, one

can see that the background subtraction method is appropriate, since background

subtraction reduces the counts mostly on the DLL(p-⇡) < 0, which is mostly combi-

natorial background contamination, and on the right side where the true ⇤’s appear,

both profiles match very well, and there is no significant signal reduction.

)πDLL(P-
-150 -100 -50 0 50 100 150

10

210

310

410
LHCb Preliminary

DATA
DATA-bckg
MC
MC+truth

Figure B.3: DLL(p-⇡) distribution for p candidates from ⇤-decays in the signal region
for DATA2010 (black filled circles), sideband subtracted DATA2010 (red filled circles),
MC2010 (solid blue histogram), and MC truth associated (cyan filled histogram).

The e↵ect of the DLL(p-⇡) cut on invariant mass distributions can be seen in

Figures B.4(a) and B.4(b). The background is reduced almost completely, leaving
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the signal untouched for both DATA2010 and MC2010. The e↵ect on the e�ciency

corrected yields is shown in Tables B.1 and B.2, which demonstrate that there is no

significant reduction in yields from using the extra RICH cut while the background

is highly suppressed.

Table B.1: Estimated uncertainties (in %) due to RICH particle identification for
⇤-decays.

pT/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0
200 - 400 4.36 -5.66 -7.97
400 - 600 5.62 -9.3 -7.63
600 - 800 3.55 -5.24 -7.22
800 - 1000 2.33 -2.5 -6.82
1000 - 1200 1.52 -1.64 -3.22
1200 - 1400 -0.598 -2.01 -3.06
1400 - 1600 -1.2 -1.81 -2.67
1600 - 1800 -1.18 -2.07 -2
1800 - 2000 -2.1 -2.12 -3.41
2000 - 2200 -2.39 -0.965 -2.26
2200 - 2400 -0.984 -3.12 2.18

Table B.2: Estimated uncertainties (in %) due to RICH particle identification for
⇤-decays.

pT/y 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0
200 - 400 8.88 -6.97 -8.6
400 - 600 7.97 -8.37 -7.97
600 - 800 5.22 -6.16 -8.65
800 - 1000 2.42 -3.48 -5.44
1000 - 1200 0.783 -3.39 -3.62
1200 - 1400 -0.903 -2.04 -4.19
1400 - 1600 -1.86 -1.38 -2.84
1600 - 1800 -1.45 -3.29 -3.34
1800 - 2000 -1.47 -2.65 -4.67
2000 - 2200 -1.53 -2.34 -5.72
2200 - 2400 -1.43 -2.53 -1.19
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Figure B.4: Invariant mass distribution for ⇤-decays after selection without RICH
cuts (solid black histogram) and after DLL(p-⇡) > 0 (solid violet histogram).



Appendix C

V 0production ratios

V 0 production ratios from this measurement were compared with previous results

obtained in the experiment at 7 TeV [17], which will be referred to as LHCb 2011.

The cross-section ratio of ⇤ over ⇤ production is displayed in Figure C.1 as a function

of rapidity, and shows good agreement between DATA2010 and LHCb 2011. The

generator level predictions are not consistent with observations, but they are quite

close.

Secondly, for ⇤/K0
s ratios (Figure C.2), DATA2010 and LHCb 2011 are consistent

within error bars. The agreement is good considering that the measurements were

done using quite di↵erent selections. LHCb 2011 has a veto around the K0
s mass for

the ⇡⇡ hypothesis for ⇤ and ⇤selection; it was shown in Section 5.5 that this cut

removes part of the signal. In addition, e�ciency estimations in the case of LHCb

2011 were corrected using weighted distributions, so in general the measurements are

sensitive to di↵erent systematic uncertainties. One should also keep in mind that this

ratio is pT dependent, that ⇤ and K0
s have a di↵erent pT spectra, and that the two

measurements are not in exactly the same transverse momentum range. Generator

predictions in this case largely underestimate the observation.
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Figure C.1: Measured ⇤/⇤ production ratios in bins of y for DATA2010 (black filled
circles), LHCb 2011 measurement [17] (black hollow circles), and generator predictions
by MC2010 (solid red histogram) and PYTHIA 8 (solid green histogram). Error bars
represent systematic uncertainties.
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Figure C.2: Measured ⇤/K0
s production ratios in bins of y for DATA2010 (black filled

circles), LHCb 2011 measurement [17](black hollow circles), and generator predictions
by MC2010 (solid red histogram) and PYTHIA 8 (solid green histogram). Error bars
represent systematic uncertainties.
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