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Abstract

State-of-the-art methods for the calculation of electronic structures of molecules pre-
dominantly use Gaussian basis functions. The algorithms employed inside existing code
packages are consequently often highly optimised keeping only their numerical require-
ments in mind. For the investigation of novel approaches, utilising other basis functions,
this is an obstacle, since requirements might differ. In contrast, this thesis develops the
highly flexible program package molsturm, which is designed in order to facilitate rapid
design, implementation and assessment of methods employing different basis function
types. A key component of molsturm is a Hartree-Fock (HF) self-consistent field (SCF)
scheme, which is suitable to be combined with any basis function type.

First the mathematical background of quantum mechanics as well as some numer-
ical techniques are reviewed. Care is taken to emphasise the often overlooked sub-
tleties when discretising an infinite-dimensional spectral problem in order to obtain a
finite-dimensional eigenproblem. Common quantum-chemical methods such as full con-
figuration interaction and HF are discussed providing insight into their mathematical
properties. Different formulations of HF are contrasted and appropriate SCF solution
schemes formulated.

Next discretisation approaches based on four different types of basis functions are
compared both with respect to the computational challenges as well as their ability
to describe the physical features of the wave function. Besides (1) Slater-type orbit-
als and (2) Gaussian-type orbitals, the discussion considers (3) finite elements, which
are piecewise polynomials on a grid, as well as (4) Coulomb-Sturmians, which are
the analytical solutions to a Schrödinger-like equation. A novel algorithmic approach
based on matrix-vector contraction expressions is developed, which is able to adapt
to the numerical requirements of all basis functions considered. It is shown that this
ansatz not only allows to formulate SCF algorithms in a basis-function independent
way, but furthermore improves the theoretically achievable computational scaling for
finite-element-based discretisations as well as performance improvements for Coulomb-
Sturmian-based discretisations. The adequacy of standard SCF algorithms with respect
to a contraction-based setting is investigated and for the example of the optimal damping
algorithm an approximate modification to achieve such a setting is presented.

With respect to recent trends in the development of modern computer hardware the
potentials and drawbacks of contraction-based approaches are evaluated. One drawback,
namely the typically more involved and harder-to-read code, is identified and a data
structure named lazy matrix is introduced to overcome this. Lazy matrices are a gener-
alisation of the usual matrix concept, suitable for encapsulating contraction expressions.
Such objects still look like matrices from the user perspective, including the possibility to

v



vi ABSTRACT

perform operations like matrix sums and products. As a result programming contraction-
based algorithms becomes similarly convenient as working with normal matrices. An
implementation of lazy matrices in the lazyten linear algebra library is developed in
the course of the thesis, followed by an example demonstrating the applicability in the
context of the HF problem.

Building on top of the aforementioned concepts the design of molsturm is outlined.
It is shown how a combination of lazy matrices and a contraction-based SCF scheme
separates the code describing the SCF procedure from the code dealing with the basis
function type. It is discussed how this allows to add a new basis function type to
molsturm by only making code changes in a single integral interface library. On top of
that, we demonstrate by the means of examples how the readily scriptable interface of
molsturm can be employed to implement and assess novel quantum-chemical methods
or to combine the features of molsturm with existing third-party packages.

Finally, the thesis discusses an application of molsturm towards the investigation of
the convergence properties of Coulomb-Sturmian-based quantum-chemical calculations.
Results for the convergence of the ground-state energies at HF level are reported for
atoms of the second and the third period of the periodic table. Particular emphasis is put
on a discussion about the required maximal angular momentum quantum numbers in
order to achieve convergence of the discretisation of the angular part of the wave function.
Some modifications required for a treatment at correlated level are suggested, followed by
a discussion of the effect of the Coulomb-Sturmian exponent. An algorithm for obtaining
an optimal exponent is devised and some optimal exponents for the atoms of the second
and the third period of the periodic table at HF level are given. Furthermore, the first
results of a Coulomb-Sturmian-based excited states calculation based on the algebraic-
diagrammatic construction scheme for the polarisation propagator are presented.



Zusammenfassung

Für die Berechnung elektronischer Zustände in Molekülen verwenden aktuelle Methoden
vor allem Gaußfunktionen. Die in den bestehenden Quantenchemiepaketen verwendeten
Algorithmen sind dementsprechend oft sehr stark auf diesen Funktionstyp und des-
sen numerische Anforderungen angepasst. Dies ist ein Hindernis für die Verwendung
anderer Basisfunktionen bei der Betrachtung dieser Methoden, da die Anforderungen
durchaus unterschiedlich sein können. Im Gegensatz dazu wird in dieser Arbeit das
Programmpacket molsturm entwickelt, welches explizit so gestaltet wurde, dass neue
Basisfunktionen in der Elektronenstrukturtheorie auf einfache Weise eingebunden und
getestet werden können. Ein Lösungsverfahren für das Hartree-Fock-Problem (HF), wel-
ches mit beliebigen Basisfunktionstypen verwendet werden kann, ist dazu ein wichtiger
Bestandteil von molsturm.

Zunächst werden der mathematische Hintergrund der Quantenmechanik und einige
numerische Techniken vorgestellt. Dabei wird insbesondere auf die oft unterschlagenen
Feinheiten eingegangen, welche beim Diskretisieren eines unendlich-dimensionalen Spek-
tralproblemes hin zu einem endlich-dimensionalen Eigenwertproblem entstehen. Häufig
verwendete quantenchemische Methoden wie die vollständige Konfigurationswechselwir-
kung (full configuration interaction) oder HF werden diskutiert. Unterschiedliche Formu-
lierungen von HF werden miteinander verglichen und Lösungsalgorithmen auf Basis des
Verfahrens des selbstkonsistenten Feldes (self-consistent field, SCF) angegeben.

Im Weiteren werden Diskretisierungsansätze basierend auf vier verschiedenen Basis-
funktionstypen miteinander verglichen, wobei sowohl auf Herausforderungen in Bezug
auf die numerische Berechenbarkeit der entstehenden Ausdrücke eingegangen wird, als
auch auf die Fähigkeit der Basen, die physikalischen Eigenschaften der Wellenfunktion
zu beschreiben. Neben (1) Orbitalen vom Slatertyp und (2) Gaußorbitalen behandelt die
vorgestellte Diskussion (3) finite Elemente, abschnittsweise Polynome, welche auf einem
Gitter definiert sind, sowie (4) Coulomb-Sturmfunktionen (Coulomb-Sturmians), welche
die analytischen Lösungen einer der Schrödingergleichung ähnlichen Differenzialgleichung
sind. Ein neuartiger Algorithmus basierend auf Matrix-Vektor-Kontraktionsausdrücken
wird entwickelt, welcher die numerischen Anforderungen aller betrachteten Funktionen
abdeckt. Es wird gezeigt, dass mittels dieses Ansatzes nicht nur SCF-Algorithmen in
einer basisfunktionsunabhängigen Weise formuliert werden können, sondern auch, dass
dadurch die algorithmische Komplexität für Diskretisierungen basierend auf finiten Ele-
menten reduziert wird und dass damit Effizienzverbesserungen für Diskretisierungen
basierend auf Coulomb-Sturmfunktionen möglich sind. Die Eignung üblicherweise ver-
wendeter SCF-Algorithmen auf eine derartige kontraktionsbasierte (contraction-based)
Formulierung wird geprüft und für das Beispiel des Algorithmus der optimalen Dämp-
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viii ZUSAMMENFASSUNG

fung (optimal damping algorithm) wird eine zusätzliche Näherung vorgeschlagen, die
diesen mit der kontraktionsbasierten Formulierung vereinbart.

Vor dem Hintergrund aktuell verfügbarer Hardware werden das Potential und die
Nachteile kontraktionsbasierter Methoden diskutiert. Ein Hindernis bei der Entwicklung
kontraktionsbasierter Methoden ist oft, dass die daraus entstehenden Quelltexte schwerer
lesbar sind. Um dieses Problem zu umgehen wird die Datenstruktur einer “bequemen
Matrix” (lazy matrix) eingeführt. Bequeme Matrizen sind eine Verallgemeinerung des
üblichen Matrixkonzeptes, welche als eine Art Behältnis (container) für Kontraktions-
ausdrücke aufgefasst werden können. Aus Sicht eines Benutzers bequemer Matrizen,
sehen diese weiterhin wie gewöhnliche Matrizen aus, beispielsweise können sie in üblicher
Weise miteinander addiert oder multipliziert werden. Die Folge ist, dass man kontrak-
tionsbasierte Algorithmen auf die gleiche Art und Weise wie bei der Verwendung von
gewöhnlichen Matrizen implementieren kann. Eine Implementierung des Konzepts der
bequemen Matrizen wird in Form von der Bibliothek lazyten vorgestellt. Ebenso wird
ein Beispiel gegeben, welches die Eignung von bequemen Matrizen im Kontext der Lösung
des HF-Problems demonstriert.

Basierend auf den oben erwähnten Konzepten wird die Programmstruktur von
molsturm diskutiert. Es wird dargelegt, wie durch die Anwendung der bequemen Matri-
zen innerhalb eines kontraktionsbasierten SCF-Verfahrens eine Trennung des Programm-
codes, welcher das SCF-Verfahren selbst beschreibt von jenem Programmcode, welcher
die Diskretisierung und die Basisfunktionen betrifft, erreicht werden konnte. Des Wei-
teren wird gezeigt, wie ein neuer Basisfunktionstyp in molsturm implementiert werden
kann, indem nur an einer einzigen Stelle im Programmcode Änderungen durchgeführt
werden. Darüber hinaus wird mittels einiger Beispiele besprochen, wie molsturm über
skriptbare (scriptable) Schnittstellen mit der Funktionalität bestehender Programme
kombiniert werden kann, um so auf einfache Weise neue Quantenchemiemethoden zu
implementieren und zu testen.

Zuletzt wird eine Anwendung von molsturm für die Untersuchung der Konvergen-
zeigenschaften von Quantenchemierechnungen basierend auf Coulomb-Sturmfunktionen
vorgestellt. Erste Ergebnisse für die Konvergenz der Grundzustandsenergie auf HF-
Niveau werden für die Atome der zweiten und dritten Periode des Periodensystems
vorgestellt. Im Besonderen wird auf die maximale Drehimpulsquantenzahl eingegangen,
welche benötigt wird, um eine Konvergenz des Winkelanteils der Wellenfunktion auf
HF-Niveau zu erreichen. Mögliche Änderungen dieses Ergebnisses im Hinblick auf die
Beschreibung der Atome mittels Korrelationsmethoden werden kurz angedeutet und
der Effekt des Exponenten der Coulomb-Sturmfunktionen auf die Grundzustandsenergie
diskutiert. Ein Algorithmus zur Bestimmung des optimalen Exponenten wird konstru-
iert und einige optimale Exponenten für die Beschreibung der Atome der zweiten und
dritten Periode des Periodensystems auf HF-Niveau werden angegeben. Des Weiteren
werden erste Ergebnisse einer Berechnung elektronisch angeregter Zustände mittels des
algebraisch-diagrammatischen Konstruktionsschemas für den Polarisationspropagator
basierend auf Coulomb-Sturmfunktionen vorgestellt.
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Chapter 1

Introduction

The underlying physical laws necessary for the mathematical theory
of a large part of physics and the whole of chemistry are thus com-
pletely known, and the difficulty is only that the exact application
of these laws leads to equations much too complicated to be soluble.
It therefore becomes desirable that approximate practical methods of
applying quantum mechanics should be developed, which can lead
to an explanation of the main features of complex atomic systems
without too much computation.

— Paul Adrien Maurice Dirac (1902–1984)

Experimental chemistry has already been performed thousands of years ago in the
form of alchemy, metallurgy, pottery and dye making. Gradually, in the 17th and 18th
century, chemistry transformed into a mature science, where new theories were developed
based on experimental evidence rather than philosophical thought. The 19th century
marked the appearance of thermodynamics, which provided a theoretical foundation to
quantitatively describe the physical processes of chemical reactions. Whilst this already
allowed to deductively reach predictions of chemical processes, a full understanding of
the microscopic behaviour of chemical systems was not available until the appearance of
quantum mechanics at the turn of the 20th century. By now the application of quantum
mechanics for the modelling of chemical processes has grown into a field on its own,
known as quantum chemistry.

Compared to experimental chemistry, quantum chemistry is thus relatively new. Still,
as Dirac [1] noted already in 1929, all fundamental equations of quantum chemistry, in the
form of the mathematical formulation of quantum mechanics, are known. Whilst solving
these equations exactly is possible for model systems, solving them for any chemically or
physically interesting system is only feasible using approximate methods. Which methods
are best employed depends largely on the intended application, i.e. the complexity of
the chemical system or the properties and behaviours to be described. Over the years
a hierarchy of approximations has been developed for this reason, ranging from crude
to numerically exact or from highly specialised to generally applicable. Nowadays the
modelling of chemical processes based on quantum-chemical arguments is well-established
both in industry and research.

1
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The aforementioned aspects of accuracy and applicability are to be seen in contrast
to computational demand. Generally speaking, the more specific the setting one has
in mind and the more accuracy can be sacrificed, the more computationally cheap the
resulting quantum-chemical methods become. In electronic structure theory, for example,
one typically neglects the motion of the nuclei in order to yield a simplified equation,
the electronic Schrödinger equation. With approximate solutions to this equation at
hand, already many aspects of chemical reactivity or spectroscopy can be modelled, even
though the nuclei are assumed to be motionless in this picture.

For most if not all practically relevant problems, the full description of a chemical
system on the level of the electronic Schrödinger equation is still not possible and
further approximations are required. One particular ansatz is the Hartree-Fock (HF)
method, where the interaction of the electrons amongst themselves is only treated in an
averaged manner. This leads to a computationally much more feasible problem, since
individual electrons of a chemical system no longer couple directly, but only via a mean
field generated by all electrons collectively. The many-body problem of the electronic
Schrödinger equation thus becomes an effective one-electron problem. The downside of
this is that some of the chemically relevant physics, namely parts of the electron-electron
interaction, is lost and a second so-called Post-HF method is needed on top of the HF
solution to correct for this. Various levels of Post-HF corrections are available, but in
practice not all levels are reachable due to the increasing complexity of the problem. On
the other hand, in order to gain insight into a particular research question, the most
accurate treatment is not necessarily required. The approach of a HF calculation followed
by a Post-HF method sketched here, is not the only way to model chemical systems. An
alternative route is density-functional theory (DFT), where the ansatz is to directly work
with the electron density instead of the wave function. Due to its good combination of
accuracy and computational cost for many problems of electronic structure theory, DFT
has become widely adopted.

Since the underlying function spaces of quantum mechanics are infinite dimensional
all of the aforementioned methods involve infinite-dimensional spaces as well. For a
numerical treatment on a computer, where only finite amounts of memory are available,
this is of course an insurmountable obstacle. The remedy in practice is yet another
approximation, where one restricts the problem spaces to a finite number of dimensions
by only considering subspaces spanned by a finite number of single-particle basis functions.
Such a restriction is called a discretisation and has the pleasant side effect that the partial
differential equations dictated by quantum mechanics reduce to standard problems of
linear algebra. In the case of HF, for example, the discretised problem may be solved by
repetitively diagonalising the arising so-called Fock matrix.

This naturally leads to the question: Which type of basis functions should be used to
span the subspace for modelling at HF, DFT or Post-HF level? Most available program
packages for quantum-chemical calculations of molecules nowadays employ methodologies
based on the linear combination of Gaussian-shaped atomic orbital functions. This
predominance can be rationalised by the pragmatic historic developments taking place in
the founding years of modern electronic structure theory. Boys [2] realised in 1950 that
evaluating the integrals required for solving HF is much more feasible for Gaussian-type
orbitals compared to the physically more suitable Slater-type orbitals [3]. This idea was
picked up and refined later [4] and eventually set off many developments both in terms
of efficient algorithms as well as methodologies centred around Gaussian basis functions,
spreading their use for simulating the electronic structures of molecules.
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Unfortunately Gaussian-type orbitals have major drawbacks caused by their unphys-
ical shape: They are not able to represent all features of the electron density well. Most
prominently they fail to describe the cusp of the electron density at the position of
a nucleus as well as its exponential decay behaviour [5]. In most practical use cases
this is acceptable, since the important quantity for understanding chemical processes is
not the absolute energy of a molecule. Much rather chemistry is all about the energy
differences between the involved species or electronic configurations. Since changes in
the electronic structure both at the nucleus as well as the region far from the nuclei are
generally much less pronounced, the errors resulting from an inadequate description of
these features tend to cancel one another. For cases where they do become important
one can usually compensate by employing specialised Gaussian basis sets [6, 7] up to
some extent. There are strong indications, however, that the accurate computation of
some physical properties like nuclear magnetic resonance (NMR) shielding tensors [8, 9]
requires a correct description of both aforementioned features. Additionally, those spe-
cialised basis sets can lead to numerical instabilities in the resulting linear algebra due to
their overcompleteness, making it numerically more challenging to obtain reliable results.

Multiple research groups have therefore looked into alternative types of basis func-
tions for the modelling of molecular structures. Examples include so-called numerical
basis functions [10] like wavelets [11–16] or finite elements [17–23]. Both of these are
interesting because they allow for rigorous error bounds to be derived for the discret-
isation, essentially leading to a modelling of chemical systems with guaranteed numer-
ical precision. Another promising approach are Sturmian-type functions like Coulomb-
Sturmians [9, 24–28] or generalised Sturmians [21, 29–34], since they amount to correctly
represent the physical features of the electron density and furthermore lead to more
feasible integrals than Slater-type orbitals. Their use in quantum-chemistry is, however,
not well-established.

There are some further aspects to consider in such a discussion about basis functions.
First of all our discussion has ignored a very important feature of the electronic structure,
namely the electron-electron cusp. It has been shown that a proper modelling of this
feature of the wave function is important in order to reach rapid convergence for Post-HF
methods [35]. A simple single-particle basis such as the Gaussian-type orbitals cannot
properly account for this, since these functions have no direct notion of the electron-
electron distance. Recent attempts to tackle this issue are so-called explicitly correlated
methods [35]. In a nutshell these methods change the underlying basis from the usual
Gaussian-type orbitals to so-called Gaussian geminals, where an explicit dependence on
the electron-electron distance is directly incorporated inside the basis functions. The
result is much faster convergence for Post-HF methods [35].

Furthermore we only took the viewpoint of modelling individual molecules so far,
mainly because this will be the focus of the thesis. But the modelling of electronic
structures is not restricted to single molecules. Periodic or extended systems are ac-
cessible for quantum-chemical simulations as well. For these a combination of DFT as
the underlying quantum-chemical method with a plane-waves or a projector-augmented
wave basis are well-established and highly suitable [36–39].

This overview suggests that going beyond the usual Gaussian-based discretisations
and towards employing novel basis function types could potentially yield quantum-
chemical methods, which might allow for a more suitable description of certain features
and properties. One of the challenges for developing such new methods are the deviating
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Finite elements Contracted Gaussians Coulomb-Sturmians

Figure 1.1: Structure of typical Fock matrices taken from a Hartree-Fock calculation
for beryllium if the indicated basis function types were used for the discretisation. The
absolute values of the matrices are depicted to the same scale with elements smaller than
10−10 coloured in white.

mathematical properties between conventional Gaussian-type orbitals as well as altern-
ative basis functions. As an example figure 1.1 shows the structure of the Fock matrix
when discretisations using finite elements, contracted Gaussians or Coulomb-Sturmians
are employed. The most drastic difference can be seen for a finite-element discretisation,
where the matrix is both much larger as well as sparser compared to the other two cases.
In fact the discretisation which gave rise to the Fock matrix depicted in figure 1.1 is
still too small to yield a sensible description of the beryllium atom density. A realistic
description would need on the order of 105 to 106 basis functions [22]. For this reason it
is not possible to keep the finite-element discretised Fock matrix completely in memory
and diagonalise it at once, which is the standard approach when employing contracted
Gaussians. Instead iterative diagonalisation methods need to be used for finite elements.
Coulomb-Sturmians are some sort of a middle ground, where iterative methods are not
necessarily required, but open up the possibility for more efficient algorithms, as we
will discuss in more detail later in this work. The implementation of alternative basis
function types therefore requires in many cases other numerical techniques compared to
Gaussian-based discretisations.

As mentioned before, existing packages for quantum-chemical calculations predomin-
antly rely on Gaussian-type orbitals and as a consequence are highly optimised towards
their properties. Implicit assumptions about the structure of the discretised quantities,
like the Fock matrix shown above, are thus typically scattered throughout these large
codes making the implementation of alternative types of basis functions rather challen-
ging and time consuming. Especially for the initial testing of novel methods towards
their range of applicability in standard problems of electronic structure theory this is
an obstacle. On the other hand starting from scratch for each new basis function type
is not an ideal option either, since one is faced with the task of reprogramming all the
algorithms for which already hundreds of man-years of development have been spent in
existing programs.

In this thesis a different approach is presented, which is followed by the molsturm1

program package [40]. Motivated by the mathematical structure of the HF problem
and the self-consistent field (SCF) approach usually utilised to solve it, molsturm is

1https://molsturm.org
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designed to be a quantum-chemical method development framework, which supports
experimentation at all levels. The SCF process in molsturm uses a contraction-based
approach, where the Fock matrix is not stored in memory, but where matrix-vector
contraction expressions are sufficient. As will be discussed, this allows to separate the
code dealing with the SCF scheme from the basis-function specific details, such that
the SCF code is highly general, but the integral back end is still in full control over the
way integral data is produced and consumed. A key result is that new types of basis
functions as well as new SCF algorithms can be readily incorporated and tried within
the existing framework. It is explicitly not the goal of molsturm to recode every aspect
of quantum-chemical modelling, but instead to facilitate integration of the implemented
SCF procedure with existing software for Post-HF methods by simple and easy-to-use
interfaces. One can best think of molsturm as a mediator between integral libraries and
Post-HF methods, where new developments on either side can be quickly connected and
tested for their applicability in the quantum-chemical modelling of electronic structures.

Following along these lines chapter 2 and chapter 3 provide the background for
treating the problems of quantum mechanics as well as quantum chemistry numerically.
Starting from the similarities of classical and quantum physics the reader will be intro-
duced to functional analysis and spectral theory in chapter 2, always motivated from a
quantum-chemical perspective. In chapter 3 we introduce standard projection techniques
for transforming from the picture of exact mathematics into the field of numerical linear
algebra, which allows to solve quantum-chemical problems on a computer.

Thereafter chapter 4 deals with the mathematical and numerical structure of quantum
chemistry with a strong focus on the HF problem. Chapter 5 follows with a detailed
review of numerical techniques and SCF algorithms for solving HF.

Chapter 6 picks up on the lessons learned about the numerical structure of HF and
discusses contraction-based methods and so-called lazy matrices in order to program
algorithms in a basis-function independent way. In chapter 7 the design of the quantum-
chemistry package molsturm is presented, emphasising its usefulness for investigating
novel methods for quantum-chemical calculations and computational electronic structure
theory.

In chapter 8 we employ molsturm to perform a systematic assessment of the conver-
gence properties of Coulomb-Sturmians for the quantum-chemical modelling of atoms
and make some suggestions regarding sensible Coulomb-Sturmian basis sets for ground
state calculations of atoms at HF level of theory. Finally chapter 9 concludes the work
and chapter 10 gives an outlook into further directions of research.
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Chapter 2

Mathematical foundation of

quantum mechanics

Whenever we proceed from the known into the unknown we may
hope to understand, but we may have to learn at the same time a
new meaning of the word “understanding”.

— Werner Heisenberg (1901–1976)

At the turn of the 19th century it was discovered that classical mechanics in the formu-
lations provided by Joseph-Louis Lagrange and William Hamilton is not able to capture
all effects observed in experiments. Especially the phenomenon of the black-body radi-
ation spectrum, but also the photoelectric effect could not be explained. Finally in 1900
Max Planck somewhat reluctantly introduced the idea of discrete, i.e. quantised, energy
levels in order to explain the black-body radiation spectrum, building on earlier ideas by
Ludwig Boltzmann. This started the development of a quantised theory of mechanics
with major contributions by nowadays famous names such as Niels Bohr, Max Born,
Louis de Broglie, Paul Dirac, Albert Einstein, Vladimir Fock, Pascual Jordan, John von
Neumann, Erwin Schrödinger and others.

In this chapter we will discuss the mathematical structure of quantum mechanics
in light of the problems of atomic physics and quantum chemistry. The discussion will
focus on the mathematical fields of functional analysis and spectral theory as these are
key in order to understand the peculiarities with computing discrete energy levels. The
connection to atomic physics is made clear wherever possible. The parts of the chapter,
where we build up the required mathematical language might seem rather technical, still.
In the chapter we follow the excellent material by Shankar [41], Müller [42] and Helffer
[43].

7
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2.1 Correspondence of classical and quantum mech-

anics

According to the Hamiltonian formulation of classical mechanics a physical system with
d degrees of freedom is described by a set of generalised coordinates q1, . . . , qd along
with their canonical momenta p1, . . . , pd. It is assumed that any physically measurable
quantity F only depends on these system parameters. In other words one may define a
so-called observable F (q1, . . . , qd, p1, . . . pd) as a function R2d → R, i.e. from a vector
in phase space to the measured value. Clearly the coordinates qi and momenta pi
are observables as well. The most important observable is the total energy function or
Hamiltonian

H(q1, . . . , qd, p1, . . . pd) ≡ 1
2

d∑

k=1

p2
k

mk

︸ ︷︷ ︸
=T (p1,...,pd)

+V (q1, . . . , qd), (2.1)

where mk is the mass of the particle associated with the degree of freedom k, T is the
kinetic energy observable and V the total potential energy observable. In the formalism
of Hamiltonian mechanics H governs the time evolution of the system, namely

dpk
dt

= −∂H

∂qk
,

dqk
dt

=
∂H

∂pk
∀k ∈ {1, . . . , d}. (2.2)

These expressions allow to generalise the description of the time evolution to any
other arbitrary observable as well. To make the connection to quantum mechanics more
apparent, let us introduce for this purpose the so-called Poisson bracket. It is the
skew-symmetric form

{F,G}P ≡
d∑

j=1

(
∂F

∂qj

∂G

∂pj
− ∂F

∂pj

∂G

∂qj

)
. (2.3)

According to the Liouville equation

dF
dt

=
∂F

∂t
+ {F,H}P . (2.4)

it relates the Hamiltonian H to the time evolution of any arbitrary observable F . One
may also show the relationships

{qk, ql}P = {pk, pl}P = 0 {pk, ql}P = −δkl ∀k, l ∈ {1, . . . , d} (2.5)

between the principle system observables.

2.1.1 Moving to quantum mechanics

We will now introduce (non-relativistic) quantum mechanics (QM) in a rather pragmatic
manner, namely by stating a summary what changes in the QM formulation compared
to the classical one. The full mathematical details are not yet stated at this point and
not all terms defined. The reader should take this overview as a motivation for a more
detailed treatment of the mathematical concepts further down this chapter.
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(a) Instead of phase space vectors (q1, . . . , qd, p1, . . . pd) ∈ R2d, in QM a particular
state of the system is represented by functions Ψ : Rd → C mapping from space
coordinates to a complex number. These originate from a complex separable Hilbert
space H.

(b) A classical observable F is represented by a self-adjoint operator F̂ on the Hilbert
space H in QM.

(c) For each classical observable one may construct an equivalent corresponding
quantum-mechanical operator. For example the observable qk corresponds1 to [41,
42]

qk −→ x̂k = xk,

i.e. just the multiplication with xk, the k-th coordinate of the system. On the
other hand pk corresponds to [41, 42]

pk −→ p̂k =
~

ı

∂

∂xk
,

an appropriately scaled derivative with respect to xk.

(d) Relationships originating from classical mechanics can (usually) be transformed
into their QM analogue. For this replace all occurrences of the Poisson bracket
and the contained classical observables with the commutator

[
F̂ , Ĝ

]
= F̂ Ĝ − ĜF̂ (2.6)

and corresponding operators, i.e. [41]

{F,G}P −→ ı

~

[
F̂ , Ĝ

]
.

(e) The measured values of an observable F are the eigenvalues λk of F̂ only.

(f) Assume that we can find a complete and countable set of eigenpairs {(λµ,Ψµ)}µ∈I

for the operator2 F̂ , where I is an appropriate index set. One may then compute
the expectation value of a measurement on a normalised3 state Ψ as

〈F̂〉 =
〈

Ψ
∣∣∣F̂ Ψ

〉

H
=
∑

µ∈I

λµ
∣∣〈Ψµ|Ψ〉H

∣∣2 , (2.7)

where 〈 · | · 〉H is the inner product of the Hilbert space H.

Now that we discussed the ad hoc modification of classical mechanics in order to yield a
theory based on the postulates of QM, let us see how one is able to deduce useful results
of QM from the analogous expressions in classical mechanics. For example from (2.5)
we can immediately deduce important commutator relations between the position and
momentum operators:

[x̂k, x̂l] = [p̂k, p̂l] = 0 [x̂k, p̂l] =
~

ı
δkl. (2.8)

1In fact alternative constructions for the position and momentum operator are possible as well. In
this work the so-called position representation is presented.

2We will see in section 2.3 on page 20 that this is not always possible. A more general treatment
of spectral theory involving spectral projectors allows to reformulate point (f) for cases where such
eigenpairs cannot be found. See [43] for details.

3unit normalised, i.e. 〈Ψ|Ψ〉H = 1
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Similarly from (2.4) we obtain

dF̂
dt

=
∂F̂
∂t

+
ı

~

[
F̂ , Ĥ

]
, (2.9)

the equation of motion, which governs the time-evolution of the operator F̂ in the so-
called Heisenberg picture of QM. Taking the statistical average over (2.9) results in
the Ehrenfest theorem

d〈F̂〉
dt

=
∂〈F̂〉
∂t

+
1
ı~

〈[
F̂ , Ĥ

]〉
. (2.10)

This result allows to rationalise the correspondence principle of classical mechanics
and QM, which we have developed so far. Comparing (2.10) and (2.4) and keeping
in mind that the expectation value 〈F̂〉 as well as the classical observable F both tell
us about the result of a measurement, we can deduce that — on average — classical
mechanics still holds. Thus we may expect the classical expressions to carry some
meaning in the QM sense as well.

2.1.2 The Schrödinger equation

Even though the Heisenberg picture developed in the previous section is descriptive
for deducing the analogy between classical mechanics and QM, it is not very suitable
for the kinds of problems we will be looking at in the remainder of this thesis. More
suitable for our needs is the Schrödinger picture of QM, which differs in the way it
treats time evolution. In the Heisenberg picture the state function Ψ is time-independent
and the operators evolve. In the Schrödinger picture it is the other way round, i.e.
Ψ may change over time and the operators are static. Both pictures are related by a
unitary transformation in the Hilbert space H governed by the Stone-von Neumann
theorem[44–46].

The equivalent expression to (2.9) in the Schrödinger picture is the time-dependent

Schrödinger equation [41, 42]

ĤΨ = ı~
∂

∂t
Ψ. (2.11)

Similar to (2.9) the key operator governing the time-evolution of the system is Ĥ. By
analogy to its classical counterpart Ĥ is referred to as the QM Hamiltonian or just
Hamiltonian as well. In fact many properties of a system may already be deduced by
considering the eigendecomposition of its Hamiltonian Ĥ alone. In light of this the ansatz

ĤΨµ = EµΨµ (2.12)

for finding the Hamiltonian’s eigenpairs

(Eµ,Ψµ) ∈ R × H

is given the name time-independent Schrödinger equation (TISE) as well.



2.1. CORRESPONDENCE OF CLASSICAL AND QUANTUM MECHANICS 11

2.1.3 The Hamiltonian of the hydrogen-like atom

Employing the correspondence principle it is often very convenient to construct the QM
Hamiltonian of a system starting from the classical energy expression. Let us consider a
hydrogen-like system, where a particle of positive charge Ze is clamped at the origin and
surrounded by a single electron. In Cartesian coordinates the position of the electron
can be described by the vector r ≡ (x1, x2, x3)T and its momentum by the vector p.
The classical kinetic energy and potential energy of such a system are given by

T =
p · p

2me
and V = − Ze2

‖r‖2

= −Ze2

r
. (2.13)

respectively. The appropriate QM analogues are

T̂ = − ~2

2me
∆ and V̂ = −Ze2

r
(2.14)

where the Laplace operator in 3 dimensions

∆ =
3∑

i=1

∂2

∂x2
i

(2.15)

was introduced. The full Hamiltonian therefore reads

Ĥ = T̂ + V̂ = − ~2

2me
∆ − Ze2

r
. (2.16)

The eigenvalues of the hydrogen-like Hamiltonian (2.16) can be determined analytic-
ally, see section 2.3.5 on page 27 for details. The lowest eigenvalue is an energy of around
−2.18 · 10−18 J, hardly a convenient number. In fact most energy values in quantum
chemistry and physics are of this order of magnitude. Similarly many other relevant
quantities like the charge of the involved particles or typical lengths are only very small
numbers. For this reason so-called atomic units are typically employed. These are
generated by a unitary transformation of the Hilbert space, which effectively yields

~ ≡ e ≡ me ≡ a0 ≡ Eh ≡ 1.

See table 2.1 on the next page for the values of these quantities in terms of the usual SI
units. Employing this transformation on (2.16) gives rise to

Ĥ = −1
2

∆ − Z

r
(2.17)

for the hydrogen-like Hamiltonian in atomic units. Its lowest energy eigenvalue is
−1/2Eh, certainly a more pleasant number. Additionally the sketched transformation
has simplified the expression of the operator from (2.16) to (2.17), which is in fact
a general observation for the relevant equations of quantum physics and chemistry,
providing another justification for their use. From now on we will work exclusively in
these units. A more detailed discussion of atomic units, approaching the subject from a
slightly different angle can be found in [47].
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symbol name atomic unit of value in SI units

~ Planck constant action 1.055 · 10−34 Js
e elementary charge charge 1.602 · 10−19 C
me electron mass mass 9.109 · 10−31 kg
a0 Bohr radius length 5.292 · 10−11 m
Eh Hartree energy energy 4.360 · 10−18 J

Table 2.1: Atomic units and their relationship to SI units. Values taken from [48].

2.2 Elements of functional analysis

The mathematical field of functional analysis is concerned with the study of Banach
and Hilbert spaces as well as the properties of mappings between such structures. In
this work we will neglect Banach spaces and focus on Hilbert spaces only due to their
exceptional importance in the mathematical structure of quantum mechanics, see the
previous section 2.1.1. After some general remarks, we will take a closer look at the
Lebesgue space L2(Rd,C) as well as Sobolev spaces in the context of QM.

In this section we assume familiarity with the concept of a vector space as well as
some intuitive understanding of the Lebesgue integral. For a more detailed discussion
developing such concepts by generalising standard Euclidean geometry, see [49].

2.2.1 Definition of Hilbert spaces

Hilbert spaces are generalising some concepts of two- or three-dimensional Euclidean
space to larger vector spaces of possibly infinite dimensions. Most notably taking limits
or computing lengths and angles is possible in the same way as for Euclidean geometry,
thus allowing to perform vector calculus or to numerically approximate in a sound way.
Same as vector spaces, Hilbert spaces are defined with respect to a field F, see definition
below. In our case F can be typically identified with the field of all complex numbers C

or the real numbers R.

The first ingredients to a Hilbert space are ways to measure angles and distances, i.e.
an inner product and a norm.

Definition 2.1. An inner product space over a field F is a vector space V (over the
same field) that is further equipped with an inner product, i.e. a map

〈 · | · 〉V : V × V → F

that satisfies(for all vectors x, y, z ∈ V and all α ∈ F)

〈x|y〉∗
V = 〈y|x〉V (conjugate symmetry) (2.18)

〈x|αy + z〉V = α 〈x|y〉V + 〈x|y〉V (linearity in the last argument) (2.19)

〈x|x〉V ≥ 0 and 〈x|x〉V = 0 ⇒ x = 0 (positive-definiteness), (2.20)

where the asterisk “∗” denotes complex conjugation. We typically drop the “V ” subscript
from the notation of the inner product if the underlying vector space is clear from context.
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Remark 2.2. Some literature uses a deviating definition for the inner product, where
not the second, but the first argument in (2.19) is linear, i.e. where (2.19) would be
replaced by

〈αy + z|x〉V = α 〈y|x〉V + 〈z|x〉V .
Our definition is in better agreement with the usual convention of quantum physics and
quantum chemistry due to the resemblance of Dirac notation [49].

Definition 2.3. Given a vector space V over the field F, a norm is a map ‖ · ‖ : V → R

such that the following axioms hold for all vectors x, y ∈ V and all α ∈ F:

‖αx‖ = |α| ‖x‖ (absolute scalability) (2.21)

‖x+ y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality) (2.22)

If ‖x‖ = 0 ⇒ x is the zero vector (norm separates points) (2.23)

If such a norm can be found for a particular vector space V , one typically refers to V as
a normed vector space as well.

Proposition 2.4. For every inner product space exists the so-called induced norm

‖x‖V =
√

〈x|x〉V ∀x ∈ V. (2.24)

One may drop the subscript on the norm if it is clear from context.

Proof. See [49].

The second ingredient for a Hilbert space is a property called completeness. Form-
ally it is defined as such:

Definition 2.5. A vector space V is called complete if every Cauchy sequence of
vectors in V has a limit in V .

Let us first recall, that a sequence (xn)n∈N ∈ V is called Cauchy if

∀ε > 0 ∃M ∈ N such that ‖xn − xm‖V < ε ∀n,m > M.

One can show that every converging sequence is Cauchy. A roughly equivalent way of
phrasing definition 2.5 is therefore, that a space V is complete iff every sequence (xn) of
elements which come arbitrarily close at large enough n tend towards an element, which
is from V as well.

Example 2.6. To make the concept of completeness more clear, let us consider a
counterexample. For this let us leave the setting of vector spaces and more broadly think
about sequences defined on sets of numbers4, where the concept of completeness applies
as well.

It is well known that the sequence

xn =
n∑

k=0

1
k!

∈ Q

4This is fine, since completeness is in fact a property on so-called metric spaces, which are related to
normed vector spaces, but have much less structure.
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converges to Euler’s number e, i.e.

lim
n→∞

xn = e 6∈ Q.

In other words Q is not complete.

One may, however, build the completion of Q by just including all limiting points
of all sequences in Q. In fact this is one way of defining the set of real numbers R.

Remark 2.7. A subtle point about completeness is that it depends on the norm which
is used to determine whether a sequence is Cauchy or not. In other words a vector space
may be complete with respect to one norm, but not with respect to another. Similarly
the completion of a space with respect to two different norms may yield different spaces.

In practice the choice of the norm is only of importance for infinite-dimensional
vector spaces, since for finite-dimensional real or complex vector spaces all norms are
equivalent5 anyway.

Finally we can state

Definition 2.8. A Hilbert space H is an inner product space, which is complete with
respect to the induced norm.

In other words a Hilbert space is a space, where the inner product naturally defines
a way to measure distances and take limits, that is perform calculus. Thinking ahead
towards the integral and differential operators we will define on such Hilbert spaces, this
is exactly what we will need.

Before we look into some Hilbert spaces relevant for QM, let us first clarify the
concept of denseness and separability.

Definition 2.9. A subspace S of a vector space V is called dense in V if each vector
x ∈ V either is a member of S or one may find a Cauchy sequence in S for which x is
the limit point.

In other words S is dense in V if we can — for each element of V — construct a
sequence of approximations inside the smaller space S, representing the desired element
up to arbitrary accuracy. Denseness is therefore one of the fundamental properties
required for approximation.

Example 2.10. Returning to example 2.6 on the previous page we note, that Q is
dense in R. This guarantees that we may approximate any real number up to arbitrary
accuracy by an appropriate sum of fractions, which is one of the assumptions behind
any floating point operation performed on the computer.

Definition 2.11. A Hilbert space is separable6 iff it admits a countable orthonormal
basis.

Remark 2.12. If a Hilbert space is separable we can find a basis set7 {ϕµ}µ∈Ibas
of at

most countably infinite cardinality, i.e. where Ibas ⊆ N. With this we can write for each
Ψ ∈ H:

Ψ =
∑

µ∈Ibas

cµϕµ. (2.25)

5That is they induce the same topology.
6In the broader context of metric spaces, a separable space has a countable, dense subset.
7This remark sketches the construction of a so-called Schauder basis, which is related, but not

identical to the concept of a Hamel basis, which is usually employed in finite-dimensional linear algebra.
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This in turn uniquely identifies each Ψ with a sequence (cµ)µ∈N of complex numbers. By
this means each complex, separable Hilbert space is isomorphic to the space of complex-
valued, square-summable sequences l2(N,C). One can easily show that this isomorphism
is even an isometry, i.e.

‖Ψ‖H = ‖(cµ)‖l2 =

√√√√
∞∑

µ=0

|cµ|2.

By transitivity all separable Hilbert spaces are isometrically isomorphic.

In our remaining discussion we will only encounter complex, separable Hilbert spaces.
This implies:

• If Ψ ∈ H is a vector in a Hilbert space, we can always identify it with a (possibly
infinite) column vector of complex coefficients.

• Finite-dimensional Hilbert spaces are isomorphic to Cd, where d is the dimension-
ality. Their vectors are thus identified by a column of complex numbers of finite
size.

Remark 2.13. A consequence of remark 2.12 is that we can numerically approximate
all separable Hilbert spaces rather naturally. For example by restricting the sum in
(2.25) to only a finite number of d basis functions, we can make sure that the resulting Ψ
is located in only a d-dimensional subspace H(d) ⊂ H. Moreover this subspace is dense,
since in the limit of taking all basis functions, we get exactly H. In turn since H(d) is
finite-dimensional, we can identify each approximation to Ψ with a vector in Cd, which
can be represented numerically on the computer, regardless of the structure of H.

2.2.2 The Hilbert spaces of quantum mechanics

Now that we have the required basic concepts at hand, let us discuss the question
which Hilbert space to take for quantum mechanics. In section 2.1.1 we said that the
state functions Ψ : Rd → C are taken from a complex, separable Hilbert space. In our
treatment we adhere to the Copenhagen interpretation or Born interpretation of
the quantum-mechanical state Ψ, which associates the meaning of a probability density
with the square of the state function |Ψ(x1, x2, . . . xd)|2 at each point in space (x1, . . . xd).
A more detailed analysis in light of this probabilistic meaning of Ψ suggests to take these
functions from the Hilbert space of square-integrable functions L2(Rd,C), which we will
define now.

Definition 2.14. Given two suitable8 functions f, g : Rd → C, we can define an inner
product

〈f |g〉L2 :=
∫

Rd

f∗(x)g(x) dx (2.26)

and the corresponding induced norm function

|f |L2 :=
√

〈f |f〉L2 =
(∫

Rd

|f(x)|2 dx

)1/2

, (2.27)

8In order for the inner product (2.26) to be well-defined, the integrand needs to be Lebesgue-
measurable, i.e. f and g need to be chosen such that the integral over f∗g can be performed in the
Lebesgue sense.
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where the integral — in both cases — is to be understood in the Lebesgue sense and we
identified

x ≡ (x1, . . . , xd)

for ease of notation.

Notice, that (2.27) is not yet a norm, but almost9. What is missing is the norm-
separates-points-condition (2.23). The reason has to do with the subtleties of the Le-
besgue integrals are defined. In fact the result of a Lebesgue integral

∫

Rd

f dx

is unchanged if we replace the integrand f by a function f ′, which is identical almost
everywhere. This is meant to say, that changing f at infinitely many, well-separated places
in order yield f ′ does not change the outcome of the integration. More mathematically
one says that the Lebesgue integral is only uniquely defined up to sets of measure

zero. Coming back to (2.23), the problem is hence that there is more than one function
satisfying |f |L2 = 0, in fact infinitely many. To circumvent this problem one performs
a trick, namely one puts all functions which are equivalent almost everywhere in one
class and henceforth only thinks of them as one entity. In the language of mathematics,
we form the quotient group under the equivalence relation of functions being identical
almost everywhere. Under this procedure | · |L2 becomes a full norm, denoted as ‖ · ‖L2

and we can define:

Proposition 2.15. The set

L2(Rd,C) :=
{
f : Rd → C

∣∣ ‖f‖L2 < ∞
}
,

where the norm ‖ · ‖L2 stays finite is the set of square-integrable functions. It forms
a Hilbert space over the field C.

Proof. See [50]

Proposition 2.16. L2(Rd,C) is separable.

Proof. See [51]

In other words L2(Rd,C) truly satisfies all the requirements for being a suitable
Hilbert space of QM as introduced in section 2.1.1 on page 8.

Remark 2.17. We did not introduce the most general theory of QM in this section,
but only non-relativistic, spin-free QM. In a fully relativistic QM treatment each state
is not a function returning a single complex value, but rather a function returning a
spinor, which for relativistic QM has 4 spin components per particle. In other words for
an N -particle system the corresponding space would be L2(R3N ,C4N ). This work does
not treat relativistic QM at all, much rather only deal with non-relativistic, spin-adapted
QM, which only has 2 spin components per particle, thus states from L2(R3N ,C2N ).

For simplifying the mathematical treatment we will nevertheless assume H = L2(Rd,C)
for most of our analysis in the next few chapters and only introduce spin ad hoc in the
form of the space L2(R3N ,C2N ) once this is needed. We can do this without any loss

9It is a so-called semi-norm.
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of generality because of remark 2.12 on page 14, where we pointed out that all infinite-
dimensional Hilbert spaces are isometrically isomorphic. This implies that all of the
properties we have showed or will show based on the Hilbert space L2(Rd,C) can be
generalised to L2(Rd,Cs) with s ≥ 1 with ease.

2.2.3 Sobolev spaces

Many operators of quantum mechanics including all the operators, which we will discuss
in detail, involve taking derivatives of states. Whilst Lebesgue spaces are suitable for
doing statistics, their mathematical structure does not make sure that derivatives of
functions from L2(Rd,C) stay in L2(Rd,C). For example 1/r is square-integrable on R3,
whilst its radial derivative −1/r2 is not. One way to tackle this, is to take an appropriate
subspace of L2(Rd,C), which allows taking a certain number of derivatives. As it turns
out the appropriate treatment for the numerical solution of partial differential equations,
does not require the usual or strong derivatives, weak derivatives are sufficient. These
are defined as such:

Definition 2.18. A function f ∈ L2(Rd,C) has a weak partial derivative g ∈
L2(Rd,C) with respect to xi if

∀ϕ ∈ C∞
0 (Rd,C) : 〈g|ϕ〉L2 = −

〈
f

∣∣∣∣
∂

∂xi
ϕ

〉

L2

,

where C∞
0 (Rd,C) is the space of all infinitely differentiable complex-valued functions

with compact support. To denote the weak derivative one may write g = ∂
∂xi

f like in
the strong case. It can further be shown that if f has a strong derivative then it also
has a weak derivative, which coincides with the strong derivative. For ease of notation
we also write

Dαf =
∂‖α‖

1

∏d
i=1 ∂x

αi

i

,

where α ∈ Nd and as usual for the l1-norm

‖α‖1 =
d∑

i=1

|αi| .

With the weak derivative at hand we can define the so-called Sobolev spaces, which allow
to make certain guarantees about the number of (weak) derivatives, which can be taken.
A full family of such spaces exist. We will only present two kinds here.

Definition 2.19. The Sobolev space defined by

Hk(Rd,C) :=
{
f ∈ L2(Rd,C)

∣∣ Dαf ∈ L2(Rd,C) for ‖α‖1 ≤ k
}

(2.28)

with inner product
〈f |g〉Hk :=

∑

‖α‖
1
≤k

〈Dαf |Dαg〉L2 (2.29)

and induced norm
‖f‖Hk =

∑

‖α‖
1
≤k

‖Dαf‖L2 (2.30)

is a Hilbert space [50].
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Figure 2.1: Overview of the spaces discussed in this section. Apart from C∞
0 (Rd,C) all

mentioned spaces are Hilbert spaces. In each case A ⊂ B denotes that A is a proper,
dense subspace of B.

Definition 2.20. The completion of C∞
0 (Rd,C) with respect to the norm ‖ · ‖Hk is the

Sobolev space Hk
0 (Rd,C). It is a proper subspace of Hk and a Hilbert space as well [50].

Colloquially speaking if a function is a member of Hk(Rd,C) or Hk
0 (Rd,C), we can

assume that the k-th derivative of this function remains square-integrable. These spaces
will become rather important in the next section 2.3 on page 20, where we will need them
to define self-adjoint operators upon them. As a summary the relationships between the
spaces we discussed in this section have been summarised in figure 2.1. Note, that by
definition

L2(Rd,C) = H0(Rd,C) = H0
0 (Rd,C).

To finish our discussion of Sobolev spaces let us determine in which Sobolev space
the function

Ψ1s(r) = exp
(

−
√
x2 + y2 + z2

)
= exp(−r) (2.31)

is located. This function and trivial generalisations thereof will be of relevance for
our future treatment, since it arises naturally as an eigenfunction of the hydrogen-like
Hamiltonian (2.17) (see section 2.3.5 on page 27) and is furthermore an important
building block of the Coulomb-Sturmians (see section 5.3.6 on page 115).

Example 2.21. The function Ψ1s of (2.31) belongs to H1(R3,C).

Proof. Since the function is Riemann-integrable over R3, it is Lebesgue-integrable as
well and as a result Ψ1s ∈ L2(R3,C). Furthermore for any α ∈ {x, y, z}:
∥∥∥∥
∂Ψ1s

∂α

∥∥∥∥
L2

=
∥∥∥−α

r
exp(−r)

∥∥∥
L2

=
∫

R3

α2

r2
exp(−2r) dr ≤

∫

R3

r2

r2
exp(−2r) dr (2.32)

Due to the properties of the Lebesgue integral, we may ignore the removable discontinuity
at r = 0 and instead write

∥∥∥∥
∂Ψ1s

∂α

∥∥∥∥
L2

≤
∫

R3

exp(−2r) dr = ‖Ψ1s‖L2 < ∞.

This shows that exp(−r) ∈ H1(R3,C), since each term of (2.30) is bound.

For the next step, showing Ψ1s ∈ H2(R3,C), we need two results relating H1(R3,C)
and L2(R3,C).

Proposition 2.22 (Hardy’s inequality). For all u ∈ H1(R3,C), we have

∫

R3

‖∇u‖2
2 dr ≥ 1

4

∫

R3

|u|2
r2

dr
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Proof. For a proof of the special case u ∈ C∞
0 (R3,C) see [43, p. 30]. The more general

case we claim here, follows from the denseness of C∞
0 (R3,C) in H1(R3,C) and continuity

of the integrands on both sides with respect to the H1 norm.

Corollary 2.23. If u ∈ H1(R3,C), then u
r ∈ L2(R3,C).

Proof. One easily rewrites Hardy’s inequality to

‖u‖H1 ≥
∑

α∈{x,y,z}

∫

R3

∣∣∣∣
∂u

∂α

∣∣∣∣ dr
(triangle)

≥
∫

R3

‖∇u‖2
2 dr

(Hardy)

≥ 1
4

∫

R3

|u|2
r2

dr =
1
4

∥∥∥
u

r

∥∥∥
L2

which proves the claim.

Example 2.24. We now want to use corollary 2.23 to prove that Ψ1s ∈ H2(R3,C).

Proof. Considering our result from (2.32) we find that for all α, β ∈ {x, y, z}:

∥∥∥∥
∂2Ψ1s

∂α∂β

∥∥∥∥
L2

≤
∥∥∥∥
δαβ
r

exp(−r)
∥∥∥∥
L2

+

∥∥∥∥
αβ

r3
exp(−r)

∥∥∥∥
L2

+

∥∥∥∥
αβ

r2
exp(−r)

∥∥∥∥
L2

Noting |αβ| ≤ r2 and ignoring the removable singularities in the Lebesgue integral, we
arrive at

∥∥∥∥
∂2Ψ1s

∂α∂β

∥∥∥∥
L2

≤
∥∥∥∥

1
r

exp(−r)
∥∥∥∥
L2

+

∥∥∥∥
r2

r3
exp(−r)

∥∥∥∥
L2

+

∥∥∥∥
r2

r2
exp(−r)

∥∥∥∥
L2

= 2

∥∥∥∥
1
r

exp(−r)
∥∥∥∥
L2

+ ‖exp(−r)‖L2

< ∞,

where in the last line we used exp(−r) ∈ H1(R3,C) and corollary 2.23.

Remark 2.25. Analogously to what we sketched in examples 2.21 on the facing page
and 2.24, one could attempt to probe whether the one-dimensional function f(x) =
exp(− |x|) is in H1(R,C) or H2(R,C). Whilst the former can be easily verified, one finds
f 6∈ H2(R,C).

This rather surprising result is a consequence of the second part of the Sobolev
embedding theorem of which we only present a slightly specialised form here.

Theorem 2.26 (Sobolev embedding). Given r, k, d ∈ N with

k >
d

2
> 0 and k − d

2
> r

one may find an embedding
Hk(Rd) ⊂ Cr(Rd)

between the Sobolev space Hk(Rd) and the space of the r times continuously differentiable
functions, Cr(Rd).

This embedding theorem allows to get an idea what is to be expected about the
smoothness of a function inHk. Interestingly the smaller the dimensionality the smoother
such a function has to be.
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2.3 Spectral theory

In this chapter we will broaden our discussion focusing on linear operators between the
state functions of a Hilbert space. We will discuss certain common classes of operators
including self-adjoint and compact operators as well as their spectral properties. We will
see that most operators, including the ones required for atomic physics and quantum
chemistry, do not show all the nice properties we would like to rely on. For example one
might not be able to find eigenfunctions for all eigenvalues and the ones one is able to
determine might not amount to span the Hilbert space completely. For this reason we
will hint at techniques relevant to the Hilbert space L2(Rd,C) and a few of the relevant
operators of QM, which will allow us to recover at least part of the eigenspectrum with
the numerical methods discussed in chapter 3 on page 31.

2.3.1 Bounded and self-adjoint operators

Mathematically a linear operator is defined as such:

Definition 2.27. A linear operator on a Hilbert space H is the linear map Â :
D(Â) → H, where D(Â) ⊂ H is a subspace called the domain of Â.

Typically we employ just the term operator to refer to linear operators. Recall that
a mapping is called linear if for all u, v ∈ H and all α ∈ C

Â (u+ v) = Âu+ Âv Â (αu) = αÂu (2.33)

hold. Even though not strictly necessary, we will assume for our treatment that the
Hilbert space is separable and that the domain of an operator is always dense in it.

Proposition 2.28. The inner product of H induces the so-called operator norm

∥∥∥Â
∥∥∥

L(H)
:= sup

u∈D(Â),
u 6=0

‖Au‖H

‖u‖H

.

Proof. See [51, Satz II.1.4]

The first important classification we will discuss here is the notion of bounded and
unbounded operators.

Definition 2.29. An operator Â on H is bounded iff
∥∥∥Â
∥∥∥

L(H)
< ∞,

i.e. if it has finite operator norm. A bounded operator is referred to as continuous10

as well.

In our example of H = L2(Rd,C) an operator is hence bounded if its action on a
square-integrable function yields another function, which stays square-integrable. In the
introductory paragraph of section 2.2.3 on page 17 we already noted that the radial
derivative of the square-integrable function 1/r, namely −1/r2, is not square-integrable.

10In fact this is a consequence from the fact that a bounded linear operator between normed vector
spaces is always continuous.
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It should therefore not come as a surprise that operators containing derivatives — like the
kinetic energy operator of QM— are not bounded in general. Instead they are typically
unbounded operators, which we will define in the following.

Definition 2.30. Let Â and B̂ be operators on H. B̂ is an extension of Â ifD(Â) ⊂ D(B̂)
and if ∀u ∈ D(Â) : Âu = B̂u.

Definition 2.31. An operator Â on H which does not possess a bounded extension is
called an unbounded operator on H.

There also exists a middle ground, namely so-called semi-bounded operators,
defined as such:

Definition 2.32. An operator Â on H with domain D(Â) is called semi-bounded from
below if there exists a constant C such that for all u ∈ D(Â):

〈
u
∣∣∣Âu

〉
=
〈

Âu
∣∣∣u
〉

and
〈
u
∣∣∣Âu

〉
≥ −C 〈u|u〉 .

Starting from definition 2.29 it is easy to show that a bounded operator Â on a
Hilbert space H maps Cauchy sequences to Cauchy sequences, i.e. if (xn) ∈ H is Cauchy,
so is (Âxn). In this sense a somewhat stronger version of boundedness is compactness,
defined as:

Definition 2.33. An operator Â : D(Â) → H on a Hilbert space H is compact if for
any sequence (xn) that converges weakly in D(Â), Âxn converges strongly in H.

Recall that a sequence (xn) is called weakly convergent if for all φ ∈ H the sequence
(yn) with yn = 〈xn|φ〉H is strongly convergent, i.e. Cauchy.

Compactness is of importance for us in the context of spectral theory, since compact
operators have particularly nice spectral properties. As expected one may easily show,
that [51]

Proposition 2.34. A compact operator Â defined on a Hilbert space is bounded as well.

Remark 2.35. Each operator Â on a Hilbert space H can be uniquely identified with
a sesquilinear form a : H × H → C, defined by

H × H ∋ (u, v) 7→ a(u, v) :=
〈
u
∣∣∣Âv

〉

H
∈ C. (2.34)

This is a consequence of the Riesz representation theorem [49].

In many applications, including the numerical treatment discussed in chapter 3 on
page 31, the sesquilinear form a is more intuitive to employ than the operator Â itself.

Using the identification of the previous remark, we may define the terms symmetric
and self-adjoint.

Definition 2.36. An operator Â on H is called symmetric if

∀(u, v) ∈ D(Â) ×D(Â) :
〈

Âu
∣∣∣v
〉

=
〈
u
∣∣∣Âv

〉

In Physics textbooks a symmetric operator is usually called Hermitian.

Definition 2.37. Let Â be a linear operator on H with (dense) domain D(Â) and let
D(Â†) be the space

D(Â†) :=
{
v ∈ H

∣∣∣ ∃fv ∈ H such that ∀u ∈ D(Â) :
〈

Âu
∣∣∣v
〉

= 〈u|fv〉
}
,
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where for each v the fv is unique due to the denseness of D(Â) in H and the Riesz
representation theorem.

Then the adjoint of Â is the linear operator Â† with domain D(Â†) defined by

∀v ∈ D(Â†)
〈

Âu
∣∣∣v
〉

=
〈
u
∣∣∣Â†v

〉

Definition 2.38. A self-adjoint operator is an operator Â for which Â† = Â, or equi-
valently an operator which is symmetric and where D(Â) = D(Â†).

Remark 2.39. For a bounded linear operator Â with D(Â) = H one can find11 a
definition for the adjoint, which is more usual in the literature of quantum physics.

Namely by means of the identification

∀(u, v) ∈ H × H
〈

Âu
∣∣∣v
〉

=
〈
u
∣∣∣Â†v

〉

one can find a unique adjoint Â† for each bounded operator Â. This operator will be
bounded, too12.

Comparing with the definition of a symmetric operator we find that for bounded
operators the property of symmetric and self-adjoint are equivalent.

Remark 2.40. Even though symmetric and self-adjoint are related concepts, symmetric
operators are not very useful in practice. Only self-adjoint operators have the nice
mathematical properties, we require for quantum mechanics, namely a real spectrum
and a spectral decomposition into bound and continuous states. See the next section for
details.

Most operators in QM are not self-adjoint albeit being symmetric if defined in a
naïve way. In many cases this issue can be circumvented by choosing an appropriate
operator extension. We will discuss this is section 2.3.3 on page 26 and 2.3.5 on page 27
considering the spectrum of the Laplace operator (2.15) and the hydrogen-like operator
(2.17).

Remark 2.41. As a summary of the terms introduced in this section, we note the
following implications for an operator Â on a Hilbert space H.

• Â compact ⇒ Â bounded ⇒ Â semi-bounded

• Â self-adjoint ⇒ Â symmetric

• If Â bounded: Â self-adjoint ⇔ Â symmetric.

2.3.2 Spectra of self-adjoint operators

In this section we will clarify the notion of a spectrum for a self-adjoint operator in infinite
dimensions and the connections to the probably more familiar concepts of eigenvalues
and eigenvectors in finite dimensions.

11Since D(Â) in our treatment is dense in H, one can always find a unique, bounded extension of Â
with complete domain H if Â if bounded

12Note, that this makes the set of bounded operators on H a so-called C∗ algebra.
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Definition 2.42. Let Â be a self-adjoint13 linear operator on Ĥ.

• We call the open set14

ρ(Â) =
{
λ ∈ C

∣∣∣ (Â − λ idH) is bijective on D(Â)
}

the resolvent set of Â.

• The closed set σ(Â) = C \ ρ(Â) is then the spectrum of Â.

We can further show: [43, p. 102]

Proposition 2.43. If Â is self-adjoint, then σ(Â) ⊂ R.

Another way of phrasing definition 2.42 is that the spectrum is the set of all points
where (Â−λ idH) is not bijective. This implies that both points where (Â−λ idH) is not
injective as well as points where (Â − λ idH) is not surjective are part of the spectrum.

Recall that an eigenpair (λ, v) ∈ C × H satisfies

Âv − λv = 0 ⇔ v ∈ ker(Â − λ idH) ⇒ ker(Â − λ idH) 6= {0},

since v 6= 0. Since only non-injective operators can have a non-trivial kernel, this implies
that (Â −λ idH) is necessarily non-injective for (λ, v) to be an eigenpair. Unlike in finite
dimensions15 it may well happen in infinite dimensions, that (Â −λ idH) is injective, but
not surjective. Therefore one may find points in the spectrum, which are not eigenvalues.
This is expressed more formally in the next definition.

Definition 2.44. If Â is self-adjoint, we can decompose σ(Â) = σP (Â) ∪̇σC(Â) with

• the point spectrum

σP (Â) =
{
λ ∈ R

∣∣∣ (Â − λ idH) is non-injective
}

= {eigenvalues of Â}.

• the continuous spectrum16

σC(Â) =
{
λ ∈ R

∣∣∣ (Â − λ idH) injective, but not surjective
}
.

This definition can be understood physically by the so-called RAGE17 theorem [52].
It draws a connection between the point spectrum σP (Â) and the so-called bound

states of an operator and between the continuous spectrum σC(Â) and the so-called
scattering states. Bound states are characterised by the property, that they have —
at all times — a non-vanishing function value only in a finite region of space. Scattering
states on the other hand are not eigenstates and they will vanish from any arbitrarily
large, bounded part of space if enough time has passed.

The decomposition of the spectrum into point and continuous spectrum is not the
only possibility. Especially from the point of view of numerical modelling the following,
an alternative approach is more helpful as we shall see later.

13Strictly speaking the operator only needs to be closed for this definition. An operator is closed if
its graph {(u, Âu) | u ∈ D(Â)} is a closed subspace of H × H. This is true for all self-adjoint operators.

14idH is the identity operator on the Hilbert space H.
15In finite dimensions one can always find an operator extension for any injective operator to be

surjective as well.
16A denotes the closure of the set A.
17Named after Ruelle, Amrein, Georgescu and Enss, who all worked on it.
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Definition 2.45. For any self-adjoint18 operator, we can decompose
σ(Â) = σdisc(Â) ∪̇σess(Â) with

• the discrete spectrum19

σdisc(Â) ≃
{
λ ∈ R

∣∣∣λ is an isolated eigenvalue of Â with finite multiplicity
}
,

• the essential spectrum

σess(Â) = σ(Â) \σdisc(Â).

By construction the essential spectrum consists of

• the continuous spectrum,

• eigenvalues of infinite multiplicity,

• eigenvalues embedded inside the continuous spectrum.

It will become clear in a moment, why approximate numerical methods can only be
easily used on the discrete spectrum. For this we need to discuss the special case of
compact, self-adjoint operators in more detail. If an operator is compact, its spectrum
has a particularly simple form.

Proposition 2.46. If Â is a compact operator on the Hilbert space H:

• 0 ∈ σ(Â)

• σ(Â) \ {0} = σP (Â) \ {0}
• Only one of these cases is true:

◦ σ(Â) = {0}
◦ σ(Â) \ {0} is finite.

◦ σ(Â) \ {0} can be described as a sequence of points tending to 0.

Proof. See [43, p. 56].

In other words the continuous spectrum of a compact operator may at most contain
the value 0 — even in infinite dimensions. Furthermore there is a nice result for the
eigenfunctions of a compact, self-adjoint operator:

Proposition 2.47. Let H be a separable Hilbert space and Â a compact, self-adjoint
operator on H. The eigenfunctions of Â, i.e. the set of all functions {uk}k∈I ⊂ H with

Âuk − λkuk = 0

for a λk ∈ σ(Â)\{0} are a Hilbertian basis for H. In other words they satisfy

〈uk|ul〉 = δkl ∀ k, l ∈ I and span ({uk}k∈I) = H.

Proof. See [43, p. 60].

18Again only closed is strictly required.
19For a mathematically more precise description, see [43, p. 103 and p. 132].
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With propositions 2.46 and 2.47 at hand, compact operators start to look a lot like
the familiar case of complex square matrices. In fact one can show that [43, p. 43]

Proposition 2.48. Any linear operator on a finite-dimensional Hilbert space is compact.

This is essentially a consequence of the fact that in finite dimensions weak and strong
convergence are equivalent.

Remark 2.49. With proposition 2.48 we can reduce the setting of self-adjoint operators
on a finite-dimensional Hilbert space to the following:

• In remark 2.12 on page 14 we said that the vectors of a d-dimensional Hilbert
space can be represented as column vectors from Cd. In a similar sense Â can be
identified by a finite matrix from Cd×d.

• The eigenfunctions of Â are a complete orthonormal basis for the underlying Hilbert
space. Â has only real eigenvalues.

• Apart from zero Â has only a point spectrum. The essential spectrum and the
continuous spectrum at most consist of 0.

Remark 2.50. As we will see in the next sections 2.3.3 on the next page and 2.3.5 on
page 27 both the Laplace operator ∆ as well as the Hamiltonian Ĥ corresponding to
hydrogen-like systems are not compact on the Hilbert space L2(R3,C), since both of
these operators are not even bounded. Furthermore both of these operators do possess
a non-trivial essential spectrum.

If a numerical approach for computing the spectra for these operators should be
used, one naturally needs to restrict oneself to a finite-dimensional subspace for solving
the problem. See section 3.1.2 on page 32 in the next chapter for details. Because of
prop. 2.48 our approximations to ∆ and Ĥ will be compact. As we just discussed these
will therefore at most have the value zero in their continuous spectrum.

Ignoring this 0 for a moment, we can state that both the point spectrum as well as the
continuous spectrum of the infinite-dimensional operator will be mapped to the discrete
spectrum of the approximation. For approximations to the discrete spectrum this is
not a big problem. As we go to infinite accuracy in our approximation, we will recover
more and more digits of the discrete eigenvalues provided that our approximation is
sensible. For those eigenvalues which are part of the essential spectrum, however, things
are not so simple, because they might be surrounded by discrete approximations to the
continuous spectrum. In general distinguishing between true eigenvalues and so-called
spurious eigenvalues inside the approximation to the essential spectrum is difficult.
See the discussion in remark 3.8 on page 35 for some further details.

It is therefore very important to know the spectral properties of the exact operator
in order to understand which part of the spectrum one may obtain. Let us discuss in
the following a few examples, which are important for our treatment of QM.
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2.3.3 The Laplace operator

Let us first consider the d-dimensional analogue of the Laplace operator introduced in
(2.15). In Cartesian coordinates it reads

∆ =
d∑

i=1

∂2

∂x2
i

. (2.35)

Since this operator is essentially a scaled form of the kinetic energy operator T̂ (see
(2.17)), we expect it to be self-adjoint and have real eigenvalues.

As it turns out, however, the naive choice of taking the domain of the operator to
be the full quantum-mechanical Hilbert space D(∆) = L2(Rd,C) is not helpful as this
operator cannot be made self-adjoint. Only upon using the Sobolev space domainD(∆) =
H2(Rd,C), we get a self-adjoint operator ∆. Its spectrum is σ(∆) = σC(∆) = [0,∞) [53,
example 3.2.2]. In other words it is a semi-bounded operator with no eigenvalues and
no discrete spectrum at all.

2.3.4 The Laplace-Beltrami operator on the unit sphere

In contrast to the previous section, let us now consider the Laplace operator on the
surface of the unit sphere

S2 :=
{

r ∈ R3
∣∣x2 + y2 + z2 = 1

}
.

For this it is most convenient to consider the spherical coordinate system, i.e. instead
of parametrising the vector r as a Cartesian column vector (x, y, z)T , we specify it as
(r, θ, ϕ) with

r = ‖r‖ =
√
x2 + y2 + z2 θ = arccos

z

r
ϕ = arctan

y

x
.

The condition for the unit sphere than reduces to r
!
= 1.

Since the sphere has no longer a Euclidean geometry but a curved manifold the
operator equivalent to (2.35) takes the deviating functional form

∆S2u =
1

sin θ
∂

∂θ

(
sin θ

∂u

∂θ

)
+

1
(sin θ)2

∂2

∂ϕ2
u (2.36)

in spherical polar coordinates. (2.36) is sometimes called the Laplace-Beltrami oper-

ator as well.

By taking the domain D(∆S2) = H2(S2) the operator ∆S2 is self-adjoint [43, p. 120].
Furthermore one can show that the spectrum is (apart from 0) fully discrete20. Therefore
this can be explicitly calculated by solving the ansatz ∆S2 Y = λY for the eigenpairs
(λ, Y ). This results in the spherical harmonics

Y ml (θ, ϕ) =

√
2l + 1

4π
(l −m)!
(l +m)!

Pml (cos θ) eimϕ (2.37)

20This follows since the inverse ∆−1

S2 is compact [43, p. 44].
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where Pml is the associated Legendre polynomial with orders l and m. The eigenvalue
corresponding to Y ml (θ, ϕ) is −l(l + 1). Due to the restriction

−l ≤ m ≤ l

this eigenvalue is (2l + 1)-fold degenerate. Our spherical harmonics obviously satisfy

− ∆S2 Y ml (θ, ϕ) = l(l + 1)Y ml (θ, ϕ). (2.38)

For the next section let us briefly note, that the Laplace-Beltrami operator on the unit
sphere and the Laplace operator in 3 dimensions, expressed in spherical polar coordinates,
are related by

r2∆ =
∂

∂r

(
r2 ∂

∂r

)
+ ∆S2 . (2.39)

This allows to show

− r2∆Y ml (θ, ϕ) = −∆S2 Y ml (θ, ϕ) = l(l + 1)Y ml (θ, ϕ). (2.40)

An important consequence of the discreteness of the spectrum of the Laplace-Beltrami
operator is that the spherical harmonics form a complete basis for H2(S2).

2.3.5 The Schrödinger operator for a hydrogen-like atom

One might wonder if a pure Laplace operator as in section 2.3.3 on the facing page only
possesses an essential spectrum, how this develops if a potential is added, like the Z/r
in the case of the hydrogen-like Schrödinger operator (2.17)

Ĥ = −1
2

∆ − Z

r
.

As the Hilbert space for this operator we take the QM space L2(R3,C) and an appropriate
domain to make it self-adjoint is H2(R3,C) [43, p. 38]. One can show [53, 54] that
σC(Ĥ) = [0,∞) and all discrete eigenvalues from σP (Ĥ) are less than zero. Thus
σdisc = σP and σess = σC . The point spectrum of Ĥ can be conveniently determined by
solving the Schrödinger equation (2.12)

(Ĥ −Eµ)Ψµ = 0, (2.41)

where Ψ ∈ H2(R3,C) and E ∈ R−. Without jumping ahead too far let us assume that
the state Ψµ may be uniquely identified by three quantum numbers µ ≡ (n, l,m).

Using (2.39) we may write the Hamiltonian as

Ĥ = − 1
2r2

∂

∂r

(
r2 ∂

∂r

)
− 1

2r2
∆S2 − Z

r
. (2.42)

A careful inspection of (2.42) in contrast with (2.38) suggests a product ansatz

Ψnlm(r) = Rnl(r)Y ml (θ, φ).

With (2.40) this yields the radial equation
(

− 1
2r2

∂

∂r

(
r2 ∂

∂r

)
+
l(l + 1)

2r2
− Z

r
− Eµ

)
Rnl(r) = 0 (2.43)
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which has the solutions [42]

Rnl(r) = Nnl

(
2Zr
n

)l
exp

(
−Zr

n

)
1F1

(
l + 1 − n

∣∣∣∣2l + 2

∣∣∣∣
2Zr
n

)
(2.44)

where 1F1(a|b|ζ) is a confluent hypergeometric function, namely [29]

1F1 (a|b|ζ) =
∞∑

k=0

ak̄

k! bk̄
ζk = 1 +

a

b
ζ +

a(a+ 1)
2b(b+ 1)

ζ2 + · · · (2.45)

with ak̄ being the rising factorial of a. The normalisation constant is

Nnl =
2
(
Z
n

)3/2

(2l + 1)!

√
(l + n)!

n(n− l − 1)!

and the corresponding energy eigenvalues are

Eµ = − Z2

2n2
. (2.46)

If one follows through the derivation properly, one notices that the quantum numbers
n, l and m are integer and need to satisfy the following conditions:

n > 0 0 ≤ l < n −l ≤m ≤ l (2.47)

Furthermore since all involved equations are of Sturm-Liouville form, the set of all
solutions

{Ψnlm}n,l,m satisfy (2.47)

forms the orthonormal basis for a Hilbert space HH.

We saw in examples 2.24 on page 19 and 2.21 on page 18 that exp(−r) ∈ H2(R3,C),
which implies

Ψ1s(r, θ, φ) = Ψ100(r, θ, φ) =

√
Z3

π
exp(−Zr) ∈ H2(R3,C). (2.48)

From the functional form of Rnl and Y ml it is clear, that all eigenstates Ψnlm are infinitely
differentiable everywhere except at r = 0. See [5] and references therein for details. The
polynomial in r in front of the exponential factor of the radial part Rnl has exponents
in r in the range [l, n − 1] such that the eigenstate with l = n − 1 = 0, i.e. Ψ1s is the
least smooth. This implies Ψnlm ∈ H2(R3,C) and thus HH is a (true) subspace21 of
H2(R3,C).

21 This is a true subspace, i.e. non-identical to H2(R3,C), since the scattering states are not part of
it.
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2.4 Takeaway

Many observations of the one-particle hydrogen-like Schrödinger operator Ĥ of sec-
tion 2.3.5 on page 27 generalise to the more complicated many-body atomic and molecular
Hamiltonians we will introduce in chapter 4 on page 43.

Most importantly all these Hamiltonians are unbounded operators, which become
self-adjoint by making the domain a subspace of the Sobolev spaces H2(R3Nelec ,C). Their
essential spectrum is non-trival, but luckily one can show [54–57] that

∀λ ∈ σdisc(Ĥ), µ ∈ σess(Ĥ) λ < µ,

i.e. that the discrete spectrum always is located below the essential spectrum.

In remark 2.50 on page 25 we discussed that the essential spectrum cannot be
approximated reliably by a finite-dimensional Hilbert space with only compact operators.
Our best ansatz is therefore to follow a numerical approach, which aims at the description
of the low end of the spectrum. This thus avoids σess(Ĥ) and allows to obtain good
approximations to at least a few eigenpairs corresponding to the discrete spectrum
σdisc(Ĥ), i.e. bound states.

Even though this is a restriction, one gets by for many cases. The rationale for
this are the laws of thermodynamics, which imply that a sensible quantum-mechanical
description of a system typically only requires the lowest energy state, i.e. the ground

state, and the next few excited states following most closely in energy. Assuming this
is the case, care only needs to be taken to choose a sensible approximation method and a
large enough approximation space. Otherwise one cannot be sure whether the obtained
eigenstates are approximations to true discrete states or spurious states originating from
discretising scattering states of the continuum.

This assumption does, however, break down for a couple of cases, such as plasma
states, strong field physics or similar. But even without extreme energies, the description
of certain processes such as resonances or Rydberg-like states requires the description of
high-energy bound states, which can be embedded inside the continuum, i.e. where the
corresponding eigenvalues are part of the essential spectrum. This makes a numerical
modelling challenging. We will mostly ignore this aspect.
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Chapter 3

Numerical treatment of

spectral problems

It is a well-known experience that the only truly enjoyable and
profitable way of studying mathematics is the method of “filling in
details” by one’s own efforts.

— Cornelius Lanczos (1893–1974)

This chapter discusses numerical techniques and algorithms, which can be used for
obtaining a few of the discrete eigenvalues and corresponding eigenstates of a self-adjoint
operator. For simplifying the discussion we will restrict ourselves to the cases where
the eigenvalues of interest are located at the lower end of the discrete spectrum and
are well-separated from the essential part of the spectrum. Notice that this is not the
case for all regimes of quantum chemistry or even electronic structure theory. See the
discussion in section 2.4 on page 29 for examples, where this assumption is violated.

3.1 Projection methods for eigenproblems

Let Â be a self-adjoint, bounded below operator on a separable Hilbert space H with
domain D(Â). We already saw in remark 2.35 on page 21 that Â uniquely defines a
sesquilinear form

a(u, v) =
〈
u
∣∣∣Âv

〉

H

for (u, v) ∈ D(Â) ×D(Â).

3.1.1 Form domains of operators

Even though Â might only be self-adjoint on the domain D(Â), the form a( · , · ) can
often be defined sensibly on a larger domain Q(Â), called the form domain of Â. Its
construction will be sketched in this section. For more details see [54, p. 77] or [58, p.
276].

31



32 CHAPTER 3. NUMERICAL TREATMENT OF SPECTRAL PROBLEMS

Since Â is semi-bounded from below, one can define a scalar product

〈u|v〉Â ≡
〈
u
∣∣∣Âv + (C + 1)v

〉

H
= a(u, v) + (C + 1) 〈u|v〉H ,

for all u, v ∈ D(Â). Here C is the constant of semi-boundedness of definition 2.32 on
page 21. Clearly the associated norm ‖ · ‖Â satisfies

‖u‖Â =
〈
u
∣∣∣Âu

〉
+ (C + 1) ‖u‖H

def.2.32
≥ ‖u‖H . (3.1)

We now take the completion of D(Â) under the norm ‖u‖Â and call it Q(Â). (3.1)
assures that all sequences, which are Cauchy in D(Â) with respect to ‖ · ‖H are Cauchy
in Q(Â) with respect to ‖ · ‖Â as well. One can show further [54] that such sequences
have the same limit in Q(Â) irrespective of the norm used.

This allows to uniquely extend a( · , · ) to Q(Â) ×Q(Â) by setting

a(u, v) := 〈u|v〉Â − (C + 1) 〈u|v〉H .

Constructed as such Q(Â) is the largest Hilbert space on which the form a( · , · ) is
defined and continuous. The form domain satisfies

D(Â) ⊆ Q(Â) ⊆ H,

where the subspaces are dense in the respective larger space.

Example 3.1. For all cases we discussed in the previous chapter, that is the Laplace
operator ∆ and the hydrogenic Hamiltonian − 1

2 ∆− Z
r , the form domain is H1(R3). This

can be easily verified by constructing the expression for the form a( · , · ) and applying
partial integration.

3.1.2 The Ritz-Galerkin projection

The defining property of any eigenpair (λi, vi) ∈ σP (Â) ×D(Â) of the operator Â is of
course the condition

Âvi = λivi. (3.2)

By a simple projection onto an arbitrary test function u, one can show that any such
eigenpair satisfies

∀u ∈ H : a(u, vi) = λi 〈u|vi〉H . (3.3)

as well, the so-called weak formulation of the eigenproblem. In contrast to this, (3.2)
is sometimes referred to as the strong formulation. A consequence of the Lax-Milgram
theorem [43, p. 23] and the semi-boundedness of Â is that a solution in the weak sense
implies a solution in the strong sense as well, making both formulations equivalent.

This suggests the Ritz-Galerkin projection, where one attempts to find an ap-
proximate solution for (3.2) by considering (3.3) in a sequence of subspaces of Q(Â).

Definition 3.2 (Ritz-Galerkin projection). Let Â be a self-adjoint, bounded below
operator with form domain Q(Â) and associated sesquilinear form a( · , · ). Given a
sequence (Sn)n∈N ⊂ Q(Â) of finite-dimensional subspaces satisfying

∀v ∈ Q(Â) inf
v(n)∈Sn

∥∥∥v − v(n)
∥∥∥
Q(Â)

n→∞−−−−→ 0, (3.4)
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obtain a sequence of approximate eigenspectra σ(n)(Â) by solving — for each n — the
variational problem





Search (λ(n)
i , v

(n)
i ) ∈ R × Sn such that

∀u(n) ∈ Sn : a(u(n), v
(n)
i ) = λ

(n)
i

〈
u(n)

∣∣∣v(n)
i

〉

H∥∥∥v(n)
i

∥∥∥
H

= 1





. (3.5)

For ease of our discussion let Â(n) denote the self-adjoint operator on a particular
Sn, which is defined by the variational problem (3.5), i.e. which satisfies

∀(u(n), v(n)) ∈ Sn × Sn

〈
Â(n)u(n)

∣∣∣v(n)
〉

H
= a(u(n), v(n)).

Since Sn is finite-dimensional, Â(n) is compact1 and thus it will have a discrete spectrum
σ(Â(n)). By definition σ(n)(Â) = σ(Â(n)).

Our hope is now to construct such a sequence (Sn) of subspaces, that σ(Â(n)) con-
verges to σ(Â). Unfortunately this is not possible in general, see [43] for details. What
can be achieved, however, is a method to obtain sensible approximations for the lower
end of the spectrum, especially all discrete eigenvalues below the essential spectrum.

Let us first state the theoretical basis in the form of the celebrated min-max the-

orem [43, p. 146]. In our discussion here, we follow the usual convention, where the
eigenvalues in the discrete spectrum are indexed2 in increasing order, i.e.

λ1 ≤ λ2 ≤ λ3 ≤ · · · .

Theorem 3.3 (Courant-Fischer min-max theorem). Let Â be a self-adjoint operator
on H, which is bounded below with form domain Q(Â) and associated sesquilinear form
a( · , · ). For each 0 < n ∈ N, we define

λn(Â) := inf
W∈Sn

sup
u∈W\{0}

a(u, u)

‖u‖2
H

(3.6)

where Sn is the set of all n-dimensional subspaces of Q(Â). Then

• if Â has at least n eigenvalues lower than inf σess(Â) (counting multiplicities the
appropriate number of times), then λn(Â) is the n-th eigenvalue of the discrete
spectrum of Â,

• otherwise, λn(Â) = inf σess(Â).

Combining this with the Ritz-Galerkin projection of definition 3.2 yields:

Corollary 3.4. Let Â be a bounded below, self-adjoint operator on H and let (Sn) be a
sequence of subspaces of the form domain, which satisfy condition (3.4). If we denote
with Â(n) the approximations to Â according to the variational Ritz-Galerkin ansatz
(3.5), then

∀0 < i ∈ N λ
(n)
i := λi(Â(n)) n→∞−−−−→ λi(Â),

where the convergence is always from above.

1See proposition 2.48 on page 25.
2This can always be done, since by definition the discrete spectrum is always countable.
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As discussed in section 2.4 on page 29 those operators, which will be considered
in this thesis, always possess a discrete spectrum located below the essential spectrum.
Furthermore we will always be interested in those bound states located at the lower end of
the discrete spectrum. With the aforementioned results we can sketch an approximation
method for our setting.

Remark 3.5 (Approximation of the bottom of the discrete spectrum). Let Â be a
self-adjoint, bounded below operator and let us assume that we seek approximations for
a few discrete eigenvalues, which are all located at the bottom of the spectrum σ(Â) and
well below the essential spectrum.

Let U ⊂ Q(Â) be a dense subspace. We can span a sequence of subspaces (SNbas
) ⊂

Q(Â) by selecting larger and larger3 sets {ϕµ}µ∈Ibas
of Nbas = |Ibas| orthonormal basis

functions ϕµ ∈ U as the bases. Since U is a dense subspace of the separable Hilbert
space H, it is separable as well. Therefore we know that in the limit of Nbas → ∞,
span{ϕµ}µ∈Ibas

will tend towards U . Thus span{ϕµ}µ∈Ibas
eventually allows to construct

Cauchy sequences, which approximate each v ∈ Q(Â) up to arbitrary accuracy. In other
words the sequence (SNbas

) with Nbas increasing satisfies condition (3.4).

Because of corollary 3.4 we can thus get arbitrarily accurate approximations to our
eigenvalues of interest by solving the variational problem (3.5) in subspaces spanned by
larger and larger basis sets {ϕµ}µ∈Ibas

⊂ U . This results in more and more accurate
approximations of the corresponding bound eigenstates as well.

Remark 3.6 (Discrete formulation of (3.5)). We are again in the setting of remark 3.5.

If SNbas
= span{ϕµ}µ∈Ibas

, we can expand

v
(n)
i =

∑

ν∈Ibas

C
(n)
νi ϕν with C

(n)
νi ≡

〈
ϕν

∣∣∣v(n)
i

〉

and thus reformulate (3.5) to become




Search λ
(n)
i and C

(n)
νi such that

∀ϕµ ∈ SNbas
:

∑

ν∈Ibas

C
(n)
νi a(ϕµ, ϕν) = λ

(n)
i

∑

ν∈Ibas

C
(n)
νi 〈ϕµ|ϕν〉

1 =
∑

ν∈Ibas

∑

µ∈Ibas

(
C

(n)
µi

)∗

〈ϕµ|ϕν〉C(n)
νi





. (3.7)

Introducing the matrix A(n) ∈ CNbas×Nbas and the vectors c
(n)
i ∈ CNbas with elements

Aµν = a(ϕµ, ϕν)
(
c

(n)
i

)
µ

=
〈
ϕµ

∣∣∣v(n)
i

〉
= C

(n)
µi (3.8)

we can write (3.7) as the matrix eigenvalue problem




Search (λ(n)
i , c

(n)
i ) ∈ R × CNbas such that

Ac
(n)
i = λ

(n)
i c

(n)
i∥∥∥c

(n)
i

∥∥∥
CNbas

= 1




. (3.9)

In this formulation the eigenpairs (λ(n)
i , c

(n)
i ) can be determined by standard diagonal-

isation schemes like the ones we will discuss in section 3.2 on page 36 below.
3Until the dimensionality of U is reached in case it is finite-dimensional.
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Remark 3.7 (Requirements regarding the basis function type). In light of the numerical
approach sketched in remarks 3.5 and 3.6 let us summarise the requirements towards
the basis functions ϕµ for solving the discretised problem (3.9).

• The basis function type should admit to construct a dense subspace of Q(Â) if
an infinitely large basis set is chosen, since this is needed in order to satisfy (3.4).
Some basis function types even admit to span Q(Â) itself. We shall call these
complete.

• It should be numerically feasible to solve (3.9). In other words both computing A

and determining its eigenpairs should be viable.

• The convergence in corollary 3.4 should be fast and systematic. In other words the
basis type should allow to construct a suitable basis set in case certain requirements
regarding accuracy, computational demands, description of properties, . . . should
be met. Any prior knowledge about the physical problem or the properties of Â
can ideally be incorporated in such a basis set choice.

See chapter 5 on page 85 for some basis function types, which are used in quantum
chemistry, in the light of solving the Hartree-Fock problem.

Before we discuss some basic diagonalisation algorithms in the next section, let us
conclude our discussion about the discretisation of eigenvalue problems with a word of
warning about the essential spectrum.

Remark 3.8. Remark 2.50 on page 25 stated that it was difficult to obtain numerical
approximations to the essential spectrum. The min-max theorem 3.3 provides some
theoretical justification for this. In corollary 3.4 we saw, that all eigenvalues from
a Ritz-Galerkin approximation of Â tend to λi(Â) as the subspace size is increased.
Unfortunately this value is equal to inf σess(Â), the infimum of the essential spectrum, as
soon as we exhausted the discrete spectrum. In other words the methods we developed
in this section will only help to find the bottom end of the essential spectrum, but no
further information about it at all.

Another consequence of corollary 3.4 is that only a part of the eigenpairs obtained
by diagonalising the matrix A(n) of (3.9) can be trusted to carry any meaning regarding
the spectrum of the exact physical operator Â. This is because the larger eigenvalues
λ

(n)
i of A(n) will only provide an artificial discretisation of the essential spectrum: Their

values will all tend to inf σess(Â) as the basis set is increased. Since the convergence to
the bottom of the essential spectrum as well as the discrete eigenvalues is always from
above, one sometimes has trouble judging whether an eigenpair of A(n) is a true discrete
eigenpair of the operator or already part of the essential spectrum. In either case the
bottom end of the spectrum of A will carry meaning about the underlying operator Â
if the basis set is large enough and satisfies remark 3.7.

For practical quantum-chemical applications such as the modelling of resonance
processes, bound states embedded inside the continuous spectrum are required. For
this reason approaches such as the so-called stabilisation method [59–61] have been
developed, which can be used to probe bound states inside the continuum region. To
the best of my knowledge a rigorous mathematical treatment, which assures that such
methods do not miss states or converge to spurious, non-physical states has not been
developed yet, however.
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3.2 Diagonalisation algorithms

This section discusses the key ideas of a few algorithms for obtaining approximations to
the eigenpairs of a matrix A. Whilst the regime of quantum mechanics is a complex-
valued Hilbert space, in this thesis we will only consider combinations of operators and
discretisation bases {ϕµ}µ∈Ibas

, which have the property that

∀µ, ν ∈ Ibas : a(ϕµ, ϕν) ∈ R.

As a result all matrices in (3.9) will be real and symmetric. In this section we will
therefore only consider eigenproblems of the type

Aui = λiui

where A ∈ RNbas×Nbas , λi ∈ R and ui ∈ RNbas .

3.2.1 Direct methods

One approach to solve such eigenproblems are so-called direct diagonalisation meth-

ods. These methods directly attempt to perform a transformation

OTAO = L = diag(λ1, λ2, . . . , λNbas
),

where O ∈ RNbas×Nbas is an orthogonal matrix. Typically this is performed in steps
by inspecting the elements of A and gradually building both O as well as the matrix-
matrix product OTAO using techniques such as Householder reflectors [62] or Givens
rotation [62]. In either case this requires random access into the memory of A. This
is one of the reasons why direct methods are typically only suitable for either small
matrices, where Nbas is at most on the order of 1000, or matrices with special structure,
like being tridiagonal or banded. Important dense diagonalisation methods include QR
factorisation [62, 63] as well as Cuppen’s divide and conquer algorithm [62, 63]. They
generally yield all eigenvalues of a matrix at once and little or no extra work is required
to additionally obtain all eigenvectors as well.

3.2.2 Iterative diagonalisation methods

Unlike direct methods, which directly access the matrix elements, iterative diagonal-

isation methods only probe the matrix A indirectly, namely by iteratively gathering
more and more information about the eigenpairs of interest. The way this is done in
practice is to repetitively form the matrix-vector product

y = Ax

of the problem matrix A with suitably constructed trial vectors x. The resulting vector
y is then used to improve upon the approximation for the eigenpairs as well as to build
the x for the next step. This implies that random access into A is not required for such
methods and thus specific storage schemes or well-crafted algorithms going beyond a
typical matrix-vector product can be employed for forming y. The latter aspect is most
important for the contraction-based methods, which will be developed in chapters 5 on
page 85 and 6 on page 141 of this thesis.
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Iterative methods are typically not ideal for computing many or all eigenpairs of a
matrix A, which is in contrast to direct methods. They do perform, however, much
better than direct methods if only few eigenpairs are desired and it is well-known where
in the spectrum they are located. Examples for cases where iterative methods tend to
work well is if one requires some of the largest eigenvalues of A or some of those which
are closest to an estimated value σ. Some important iterative methods are sketched in
the following sections.

3.2.3 The power method

The simplest iterative approach to obtain a single extremal eigenvalue from a particular
matrix A is the power method. Starting from a random initial vector v(0) ∈ RNbas , the
algorithm only consists of applying the matrix A repetitively to the current vector, i.e.

v(1) = Av(0),

v(2) = Av(1) = A2v(0),

v(3) = Av(2) = A3v(0),

...

v(j) = Av(j−1) = Ajv(0).

(3.10)

In each step we may compute an estimate θ(j) for the eigenvalue by the expression

θ(j) = ρR

(
v(j)

)
≡ vTAv

vTv
, (3.11)

where ρR is the Rayleigh quotient, the discretised version of (3.6). In well-behaved
cases this algorithm will find an approximation for the largest eigenvalue in θ(i) and an
approximation for the corresponding eigenvector as

v(i)

∥∥v(i)
∥∥

2

.

To understand this, let us write v(0) as an expansion in the exact eigenvectors
u1,u2, . . . ,uNbas

:

v(0) =
Nbas∑

i=1

αiui = αNbas
uNbas

+
Nbas−1∑

i=1

αiui (3.12)

Without loss of generality4 we can normalise v(0) such that αNbas
= 1. Keeping this in

mind, the application of A to (3.12) results in

Av(0) = λNbas

(
uNbas

+
Nbas∑

i=1

λk
λNbas

αiui

)
.

4The case αNbas
= 0 is handled by the limited precision floating point arithmetic. After a single

application of A, this is cured and we are back to the case we consider here.
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After the j-th step and subsequent normalisation we hence get

v(j)

∥∥v(j)
∥∥

2

= uNbas
+ O

((
λNbas−1

λNbas

)j)
.

Provided that |λNbas−1| 6= |λNbas
|, i.e. that the largest eigenvalue (by magnitude) is

single, the iterate v(j) therefore converges linearly against the eigenvector corresponding
to this largest eigenvalue λNbas

. Similarly θ(j) converges against λNbas
in this case.

3.2.4 Spectral transformations

With the power method at hand to obtain the largest eigenvalue, the question is now,
how one could generalise this approach for getting the lowest eigenvalue or even one
directly from the middle of the spectrum. This is the purpose of so-called spectral

transformations.

Proposition 3.9. Given a symmetric matrix A ∈ RNbas×Nbas , the following holds for
each eigenpair (λi,ui) ∈ R × RNbas :

(a) If A is invertible, ui is an eigenvector of A−1 with eigenvalue 1/λi.

(b) For every σ ∈ R, ui is an eigenvector of the matrix A − σINbas
with eigenvalue

λi − σ.

(c) If σ ∈ R is chosen such that A − σINbas
is invertible, then ui is an eigenvector of

(A − σINbas
)−1 with eigenvalue 1/(λi − σ).

Proof. All can be shown in a single line:

(a) By definition INbas
= A−1A and thus we have

1
λi

ui =
1
λi

INbas
ui =

1
λi

A−1Aui =
1
λi

A−1λiui = A−1ui.

(b) Direct calculation shows

(A − σINbas
) ui = Aui − σui = λiui − σui = (λi − σ) ui.

(c) Follows from (a) and (b).

Proposition 3.9 provides us with a toolbox for changing the spectrum of a matrix
in a desired way without changing its eigenvectors. For example if we are interested in
obtaining the lowest eigenvalue of a matrix A using the power method, we essentially
only need to apply the scheme (3.10) to the inverse5 A−1 instead of A. Since the largest
eigenvector of A−1 will be the smallest of A, this yields the required result. Similarly, by
proposition 3.9(c), we can tune the power method into a particular eigenvalue of interest
by guessing an appropriate shift σ. Such spectral transformations are not restricted to
the Power method, since the equivalent effect can be achieved for other iterative methods
by passing them an appropriate matrix.

5Usually the inverse is computed iteratively as well, see discussion in section 3.2.7.
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3.2.5 Krylov subspace methods

Applying the power method effectively amounts to generating a sequence of vectors

v, Av, A2v, . . . , (3.13)

starting from an initial guess v. Given that the eigenvalue of largest magnitude of A is
not degenerate, the above sequence will approach the eigenvector corresponding to this
extremal eigenvalue (see discussion in section 3.2.3). In each iteration the power method
does, however, only keep one of the vectors in (3.13) and throws away all information
encoded in the history of the iteration. An alternative approach which avoids doing so,
is to explicitly keep all vectors in (3.13). This leads to the construction of a Krylov
subspace [62]

Kj =
{

v, Av, A2v, . . . ,Ajv
}
. (3.14)

A large number of iterative methods both for solving eigenproblems as well as linear
problems can be boiled down to an iterative construction of such a Krylov subspace.
Once or while it is found the original problem matrix A is projected onto this subspace,
yielding Ã ∈ Rj×j .

A key step to exploit the notion of Krylov subspaces is the construction of an
orthogonal basis for Kj . The Arnoldi algorithm [64] was devised to achieve this in
a very efficient manner. It exploits the fact that each vector (3.14) is related to its
predecessor by an application of the problem matrix A to produce a simple recursion
scheme minimising the work needed in each step. Alongside with the construction of the
basis, the Arnoldi algorithm at the same time constructs Ã, the projection of A into
the Krylov subspace. Since Ã is both smaller than A and has a much simpler form6 it
can be diagonalised by a shifted QR factorisation, a direct method. This leads to the
Arnoldi method for diagonalising non-symmetric real matrices, where one first uses the
Arnoldi procedure to construct a sufficiently good Krylov subspace7, followed by a dense
diagonalisation of the subspace matrix to yield estimates for the eigenpairs.

A modification of the Arnoldi method for symmetric matrices A is the Lanczos
method [65], which implicitly exploits the fact that the subspace matrix has to be
tridiagonal8 already while constructing the Krylov subspace basis.

Even though the basic idea of Arnoldi and Lanczos are comparatively easy, the
implementation is still involved due to a range of subtleties. For example one can
show [62] that the unmodified Lanczos procedure leads to an Arnoldi basis of poor
numerical quality with potentially linearly dependent vectors roughly speaking exactly
when achieving convergence for an eigenpair. Similarly both Arnoldi and Lanczos tend to
have difficulties when reporting multiplicities. So if A has a triply degenerate eigenvalue
λi it can happen that these algorithms only find it twice, even though the eigenspaces
for λi−1 and λi+1, i.e. of the next smallest and next largest eigenvalue, are completely
described. For such issues a large range of remedies have been proposed over the
years [62, 63], stressing the importance of Arnoldi methods in numerical linear algebra.
Examples include block modifications — where not a single vector, but a collection

6It is a so-called upper Hessenberg matrix, i.e. only the upper triangle and a single subdiagonal in
the lower triangle are non-zero.

7Some error estimates exist to judge this without performing the next step of actually diagonalising
the upper Hessenberg matrix.

8Since A is symmetric, so is the subspace matrix and a symmetric upper Hessenberg matrix is
tridiagonal.
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of vectors is iterated in the Arnoldi procedure — or concepts such as implicit restart,
deflation or locking.

3.2.6 The Jacobi-Davidson algorithm

Related to the Krylov subspace methods sketched above, the Jacobi-Davidson approach
finds approximations to the eigenpairs of (3.9) by constructing suitable small subspaces
and solving the projected problem with dense methods. The algorithm used for con-
structing the subspace is, however, somewhat different9. Let us sketch the procedure
for a matrix A ∈ RNbas×Nbas , where an approximation to the unknown, exact eigenpair
(λi,ui) is desired. Following Davidson [66] we define the residual

r(j = Av(j) − λiv
(j) (3.15)

of our current approximation v(j) to the eigenvector ui. In order to correct, we employ
the Jacobi orthogonal component correction, i.e. we want to add a vector t(j) ⊥ v(j)

to our subspace, such that

A
(

v(j) + t(j)
)

= λi

(
v(j) + t(j)

)
.

In other words, we attempt to find the vector missing from the subspace, such that it is
able to span the exact solution, which implies that it would be able to find it the next
time we solve the projected problem in the subspace.

Since λi is in general not known at the j-th step of the algorithm, t(j) cannot be found
exactly in practice. Instead one employs the value returned by the Rayleigh quotient
(3.11) instead of λi to make progress. Incorporating the condition t(j) ⊥ v(j) leads to
the correction equation

(
INbas

− v(j)v(j) ∗
)(

Av(j) − θ(j)INbas

)(
INbas

− v(j)v(j) ∗
)

t(j) = −r(j). (3.16)

Since a vector t(j) is required in each iteration, it needs to be solved many times.
Fortunately, it does, however, not need to be solved exactly. In practice, one therefore
employs preconditioning techniques [62, 63, 67, 68] to speed up the performance of
the iterative procedures needed to solve (3.16). An alternative is to avoid using the
exact matrix A in favour of an approximation, which makes solving (3.16) easier. A
combination of both is possible as well.

In the original paper Davidson [66] assumed A to be diagonal-dominant and thus
only used the diagonal

DA = diag (A11A22 . . . ANbas,Nbas
)

instead of the full A for the correction in (3.16). This leads to the identification

t(j) =
(

DA − θ(j)INbas

)−1

r(j),

which is trivially computed elementwise as

(
t(j)
)

i
=

(
r(j)
)
i

Aii − θ(j)
.

9One should mention that similarities to the Lanczos procedure can be found, however. See [62] for
details.
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This is the basis of many diagonalisation routines employed in quantum-chemistry pack-
ages nowadays.

3.2.7 Generalised eigenvalue problems

Many eigenproblems occurring in quantum chemistry are in fact not of the form (3.9),
but are so-called generalised eigenproblems,

Aui = λiSui (3.17)

where the right-hand side contains a real, positive-definite matrix S ∈ RNbas×Nbas as well.
These typically arise because the basis set {ϕµ}µ∈Ibas

used for the discretisation is not
orthogonal. For the typical basis sets employed to numerically solve the Hartree-Fock
problem, one of the central aspects of this thesis, this is the usual case (see section 5.3
on page 91).

One way to deal with (3.17) is to reduce it to a normal eigenproblem by formally
inverting S and multiplying from the right-hand side. This leads to

(
S−1A

)
ui = λiui,

a normal eigenproblem with the problem matrix S−1A. In iterative methods this amounts
to replacing all occurrences of the matrix-vector product Ax by the expression

y = S−1Ax.

In this expression the vector y can be computed by solving the linear system

Sy = Ax

using an inner preconditioned iterative method. Whilst this would work, this approach
is hardly ever followed in practice. The reason is that even for a real symmetric, positive-
definite S and a real symmetric A, the matrix S−1A might not be symmetric, which
would imply that less advantageous solution algorithms need to be employed.

An alternative approach to avoid this is to try to modify the iterative procedures
towards supporting the generalised eigenproblems straight away. By properly following
the derivations, one finds that appropriate formulations of the algorithms in the setting of
generalised eigenproblems can be achieved by replacing the explicit or implicit occurrences
of the orthonormality condition

uT
i uj = δij

by
uT
i uj = Sij .

In other words, only the way the orthonormalisation of the subspace vectors is performed
as well as some expressions in which the identity matrix occurs, like in (3.16), need to
be changed.

Yet another option is to orthogonalise the basis before performing the discretisation
and thus avoid the appearance of the generalised eigenproblem all together.
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Chapter 4

Solving the many-body

electronic Schrödinger

equation

The word “reality” is also a word, a word which we must learn to
use correctly.

— Niels Bohr (1885–1962)

I am convinced that despite his slightly positivist language, Bohr
believes as much as we do in the reality of phenomena of which he
speaks, and then the difference between the views of Bohr and mine
is more a difference of language than a difference of content.

— Vladimir Fock (1898–1974)

This chapter is concerned with the generalisation of the one-electron hydrogen-like
Schrödinger Hamiltonian (2.17)

ĤH = −1
2

∆ − Z

r
,

which we discussed in section 2.3.5 on page 27, towards the many-body problems of
quantum chemistry.

Even though the spectral properties are very similar to the hydrogen-like case, solving
the associated time-independent Schrödinger equation (2.12) analytically for any but the
most trivial problems is impossible. Most of this chapter will therefore be devoted to
discussing approximations to the exact TISE as well as numerical approaches for solving
such approximations in practice.

43
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4.1 Many-body Schrödinger equation

Let us consider a chemical system consisting of M nuclei and Nelec electrons. We take
the nuclei to be located at mass-scaled1 coordinates {RA}A=1,2,...,M ⊂ R3 with corres-
ponding charges {ZA}A=1,2,...,M . The electron positions are denoted by the (Cartesian)
coordinates {ri}i=1,2,...,Nelec

⊂ R3. Following the correspondence to classical mechanics
(see section 2.1.1 on page 8) we can construct the many-body Hamiltonian on the Hilbert
space L2(RL,C) with dimensionality L = 3M + 3Nelec as

ĤMB = T̂e + T̂n + V̂nn + V̂ne + V̂ee. (4.1)

In this expression we introduced the nuclear-nuclear, electronic-electronic and nuclear-
electronic Coulombic interaction potentials

V̂nn =
M∑

A=1

M∑

B=A+1

ZAZB
‖RA − RB‖2

, V̂ee =
Nelec∑

i=1

Nelec∑

j=i+1

1∥∥ri − rj
∥∥

2

, (4.2)

V̂ne = −
M∑

A=1

Nelec∑

i=1

ZA
‖RA − ri‖2

,

respectively. Furthermore we used the electronic and nuclear kinetic energy operators

T̂e = −1
2

Nelec∑

i=1

∆r
i
, T̂n = −1

2

M∑

A=1

∆R
A
, (4.3)

with the shorthand

∆q =
3∑

α=1

∂2

∂q2
α

for the Laplace operator with respect to particle coordinates q. If we take the domain

D(ĤMB) = H2(RL,C) this operator can be made self-adjoint [69]. It is furthermore
bounded below [69] with a couple of discrete states below the essential spectrum.

The operator ĤMB is the fundamental object the field of quantum chemistry invest-
igates. Its properties allow for a full (non-relativistic) quantum-mechanical description
of a chemical system. This includes important properties like stable chemical structures
or reactivity, with respect to other molecules as well as external potentials. As discussed
in section 2.4 on page 29 a consequence of the laws of thermodynamics is, that in many
cases one already gets a reasonable idea about the chemical properties of matter if only
the lowest-energy, discrete eigenstates of the relevant many-body Hamiltonian ĤMB are
determined.

Let us use the vectors x ∈ R3Nelec and X ∈ R3M , defined as

xT ≡
(
rT

1 , r
T
2 , . . . , r

T
Nelec

)
, XT ≡

(
RT

1 ,R
T
2 , . . . ,R

T
M

)
, (4.4)

to refer to all electronic or all nuclear coordinates, respectively. Taking I to denote an
appropriate multi-index of quantum numbers, our problem from the previous paragraph

1 If R̃A is the Cartesian coordinate of the A-th nucleus with mass MA, then the mass-scaled

coordinates are given as RA =
√

MA R̃A.
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can be reformulated as finding those eigenstates ΨMB
I ∈ H2(RL,C) with lowest corres-

ponding energies EMB
I ∈ R by the means of solving the time-independent Schrödinger

equation
ĤMBΨMB

I (X,x) = EMB
I ΨMB

I (X,x). (4.5)

Solving this equation analytically is not possible in general. Already for the Helium
atom, a 3-body problem, clever approximations are needed to get anywhere [70]. But
even numerically (4.5) is intractable to solve without further approximations.

Let us illustrate this claim by an example. In water, H2O, we have 3 nuclei and 10
electrons. The dimensionality2 of the problem is thus L = 3 · 13 = 39. In the numerical
approach we introduce in section 3.1 on page 31 the evaluation of the inner product

〈Ψ|Φ〉 ≡
∫

R3M

∫

R3Nelec

Ψ∗(x,X)Φ(x,X) dx dX (4.6)

between two functions Ψ and Φ from the underlying Hilbert space L2(RL,C) appears
rather prominently. Most notably the computation of the sesquilinear form a( · , · ) in
order to build the discretisation matrix in (3.9) boils down to computing such integrals.
The numerical evaluation of (4.6) implies a sampling of the L-dimensional space RL

in some way or another. Even for an extremely sophisticated discretisation method or
a well-designed quadrature scheme we will probably need of the order of 10 sampling
points per dimension. For a 39-dimensional problem, like our water molecule, this makes
on the order of 1039 sampling points overall. If we want a single integration to finish
within the lifetime of a human being, say 100 years, the evaluation of the integration
kernel Ψ(x,X)Φ(x,X) may take no more than some 10−30 seconds, which is impossible
due to the physical limitations inside a general purpose computer.

Certainly one could probably find even more clever methods in some cases, but the
example illustrates the so-called curse of dimensionality rather well. For a general
quantum-chemical investigation of matter one needs to develop approximate methodolo-
gies.

4.2 Born-Oppenheimer approximation

The masses of electrons and nuclei differ by orders of magnitude. The ratio between the
mass of a proton and the electron masses is already around 1836 and this ratio increases
further across the table. Already for the elements of the first period, this value is at least
of the order of 104. This justifies an approximative treatment, where we assume the
motion of the electrons and the motion of the nuclei to happen at different timescales.

For this let us consider a simplified version of (4.1) at first, namely the electronic

Hamiltonian

Ĥelec ≡ ĤMB − T̂n = T̂e + V̂ne + V̂ee + V̂nn.
This operator is constructed form the full many-body Hamiltonian by neglecting the
nuclear kinetic energy operator T̂n completely. Introducing the short hand notation

rAB ≡ ‖RA − RB‖2 , riA ≡ ‖ri − RA‖2 , rij ≡
∥∥ri − rj

∥∥
2
,

2Some of the 39 degrees of freedom can be factored out, namely the 3 overall translations of the
molecule. This does not change the overall picture very much and we will ignore this possibility in our
discussion.
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we can write it as

Ĥelec = −1
2

Nelec∑

i=1

∆r
i

−
M∑

A=1

Nelec∑

i=1

ZA
riA

+
Nelec∑

i=1

Nelec∑

j=i+1

1
rij

+
M∑

A=1

M∑

B=A+1

1
rAB

. (4.7)

Even though Ĥelec still depends on the nuclear coordinates X, one could interpret the
elements of the vector X not as coordinates, but much rather as parameters for the
potential operators V̂ne and V̂nn. Physically this means that Ĥelec describes a chemical
system where the nuclei are clamped at well-defined points in space. Sometimes we will
write Ĥelec(X) in order to make the parametrisation of Ĥelec with respect to X visible.

Without going into details at the moment, let us assume that Ĥelec becomes self-
adjoint inside a suitable domain. With appropriate multi-indices Ie we can thus find its
eigenpairs (EIe

,Ψelec
Ie

) via the electronic Schrödinger equation

Ĥelec(X)Ψelec
Ie

(X,x) = Eelec
Ie

(X)Ψelec
Ie

(X,x). (4.8)

Originating from the dependence of Ĥelec(X) towards the nuclear coordinates, we can
think of the resulting electronic energies Eelec

Ie
(X) and electronic wave functions

Ψelec
Ie

(X,x) to be dependent on X as well. Typically one uses the term electronic

state to refer to Ψelec
Ie

(X,x).

With the electronic states at hand we are able to formulate the framework of the
Born-Oppenheimer approximation, which consists of the following two assumptions:

• Each eigenstate of (4.1) may be written by a factorisation

ΨMB
I (X,x) ≡ ΨMB

IeIn
(X,x) ≃ Ψelec

Ie
(X,x)Ψnuc

In
(X), (4.9)

where the multi-indices are related by I ≡ (Ie, In). Ψelec
Ie

(X,x) is a solution to the
electronic Schrödinger equation (4.8) and the nuclear wave function Ψnuc

In
(x) is

yet to be determined.

• The factorisation (4.9) satisfies the property3

T̂nΨMB
I (X,x) ≃ T̂n

(
Ψelec
Ie

(X,x)Ψnuc
In

(X)
)

≃ Ψelec
Ie

(X,x)
(

T̂nΨnuc
In

(X)
)
. (4.10)

By plugging ansatz (4.9) into (4.5) we can simplify

0 =
(

ĤMB − EMB
I

)
ΨMB
I (X,x)

(4.9)≃
(

Ĥelec + T̂n − EMB
I

)
Ψelec
Ie

(X,x)Ψnuc
In

(X)

(4.10)≃
(

ĤelecΨelec
Ie

(X,x)Ψnuc
In

(X)
)

+ Ψelec
Ie

(X,x)
(

T̂nΨnuc
In

(X)
)

− EMB
I ΨMB

I (X,x)

(4.8)
= Ψelec

Ie
(X,x)

(
Eelec
Ie

(X)Ψnuc
In

(X) + T̂nΨnuc
In

(X) − EMB
I Ψnuc

In
(X)

)
.

3More precisely what we assume is that the nuclear kinetic energy operator T̂n projected onto the
basis formed by all electronic states Ψelec

Ie
(X, x) is diagonal with all elements equal to 1. See [71] or [72]

for details.
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This statement is satisfied provided that the nuclear wave function Ψnuc
In

(X) follows the
nuclear Schrödinger equation

(
T̂n + Eelec

Ie
(X)

)
Ψnuc
In

(X) = EMB
I Ψnuc

In
(X). (4.11)

Overall the Born-Oppenheimer approximation allows to solve the many-body Schrö-
dinger equation (4.5) in two steps. First we limit ourselves to the point of view of the
electrons under the electric field induced by fixed, motionless nuclei. This leads to (4.8),
which is solved for the electronic states Ψelec

Ie
(X,x) along with corresponding electronic

energies Eelec
Ie

(X). In the second step we consider nuclear motion by solving (4.11).
In this equation the electronic energies Eelec

Ie
(X) depending on the nuclear coordinates

act as the electrostatic potential in which the nuclei move. For this reason Eelec
Ie

(X) is
sometimes called a potential energy surface as well. Note, that each electronic state
characterised by quantum numbers Ie gives rise to a different potential energy surface.

Employing a more detailed treatment of the Born-Oppenheimer approximation, like
in the original paper [73] or Baer [71], allows to gain more insight regarding the range
of applicability of the Born-Oppenheimer approximation. Loosely speaking it is a valid
approximation as long as the potential energy surfaces Eelec

Ie
(X) are well-separated from

another.

From a numerical point of view this approximation allows to reduce the dimensionality
of the problem somewhat. To illustrate this let us return to the water molecule, which was
already discussed at the end of section 4.1 on page 44. In the exact problem we need to
solve one equation, namely the many-body Schrödinger equation (4.5) of dimensionality
L = 39. Within the Born-Oppenheimer approximation this is replaced by solving two
equations, the electronic one (4.8) of dimensionality 3Nelec = 30 and the nuclear TISE
(4.11) of dimensionality 3M = 9. In the estimate we presented in section 4.1 on page 44
for the L2 inner products, this would roughly provide a speed-up factor of 109.

4.2.1 Electronic Schrödinger equation

By solving the electronic Schrödinger equation (4.8) we get access to the electronic
states Ψelec

Ie
(X,x) as well as the potential energy surface Eelec

Ie
(X). In many cases these

quantities already provide enough insight into a chemical system in order to address
many questions relevant to quantum chemistry. For this reason the nuclear Schrödinger
equation (4.11) will be neglected in this work from now on and we will focus only on
approximation methods for solving (4.8) instead.

For ease of notation we will usually drop the indices “e” and the superscripts “elec”
from now on if we refer to electronic energies or the electronic part of the wave function.
Similarly in the context of the electronic Schrödinger equation the nuclei are motionless,
which makes X a fixed quantity. Thus we drop the nuclear coordinates “X” from the
function arguments, too. In this convention we would for example write the electronic
Schrödinger equation (4.8) as

ĤΨI(x) = EIΨI(x).

Another simplification we sometimes employ is to consider the simplified electronic
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Hamiltonian

ĤNelec
≡ Ĥelec − V̂nn = −1

2

Nelec∑

i=1

∆r
i

−
M∑

A=1

Nelec∑

i=1

ZA
riA

+
Nelec∑

i=1

Nelec∑

j=i+1

1
rij

(4.12)

instead of Ĥelec. This is possible, since the potential operator governing the Coulombic
interaction amongst the nuclei

V̂nn =
M∑

A=1

M∑

B=A+1

1
rAB

only depends on X, which makes it a constant value for one particular chemical system.
In many cases one can therefore work with ĤNelec

in a numerical treatment and only
add the nuclear potential energy term V̂nn afterwards.

In analogy to the many-body Hamiltonian (4.1) and the hydrogen-like Hamiltonian
(2.17) we choose the underlying Hilbert space of ĤNelec

to be L2(R3Nelec ,C). Due to
Kato’s theorem [69] ĤNelec

becomes self-adjoint if we set its domain to D(ĤNelec
) =

H2(R3Nelec ,C). Not all functions in H2(R3Nelec ,C) are physical, however [41, 42]. This is
due to the fact that electrons do not only show spatial degrees of freedom, but furthermore
an intrinsic angular momentum degree of freedom called spin. More precisely electrons
are so-called spin-1/2 particles. By the spin statistics theorem [41] of quantum field
theory this requires the electronic wave function to be antisymmetric with respect to
particle exchange. More symbolically all eigenfunctions ΨI of ĤNelec

need to satisfy the
condition

∀i, j ∈ {1, 2, . . . , Nelec} : ΨI(. . . , ri, . . . , rj , . . .) = −ΨI(. . . , rj , . . . , ri, . . .). (4.13)

It is easy to see that not all elements of H2(R3Nelec ,C) satisfy this.

Given that the classical correspondence of 2.1 on page 8 did not yield any kind of spin
degree of freedom for non-relativistic QM, one might wonder at this point why we need
to bother with spin and the resulting antisymmetry of the wave function at all in our
physical model. As it turns out many fundamental experimental results and observations
made at the beginning of the 20th century can only be explained if proper spin statistics
is taken into account. This includes the Stern-Gerlach experiment [74–76], the spectral
properties of atoms [77] and Fermi-Dirac statistics [78], just to name a few. Even though
spin can only be rigorously derived using more sophisticated theories like relativistic QM
or quantum field theory [41], one still needs to include it ad hoc in non-relativistic QM
as well such that above observations can be explained [41, 77, 79].

Notice that a proper inclusion of spin in non-relativistic QM requires two modifica-
tions. First we need each wave function to include an extra spin degree of freedom [77].
Secondly we need to make sure that (4.13) is always satisfied [78]. We will defer the
first modification to remark 4.12 on page 60 in order to yield a simpler mathematical
treatment for now. Unfortunately we cannot ignore (4.13) due to its tremendous impact
on the mathematical structure of the emerging problems [78, 80].

There are a couple of approaches which could be followed to adhere to (4.13). Typ-
ically one abstains from modifying the Hamiltonian ĤNelec

and instead restricts the
search space for the eigenstates ΨI to an appropriate subspace of L2(R3Nelec ,C), which is
constructed in a way to enforce the required antisymmetry with respect to the electronic
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coordinates [78, 80]. Such a space is the Nelec-th exterior power of L2(R3,C) defined
as

Nelec∧
L2(R3,C) ≡ span

{
ψ1 ∧ ψ2 ∧ · · · ∧ ψNelec

∣∣∣ψi ∈ L2(R3,C) ∀i = 1, . . . Nelec

}
. (4.14)

The key component of this definition is the wedge product or exterior product f ∧g.
This product is totally antisymmetric with respect to its operands and is closely related
to the tensor product f ⊗ g. For example if f, g ∈ L2(R3,C), then f ∧ g ∈ L2(R6,C). In
some sense one can think of the wedge product as a generalisation of the cross product
a × b for vectors a, b ∈ R3. This is somewhat apparent from its properties. Notice for
example

ψ1 ∧ ψ1 = 0, ψ1 ∧ ψ2 = −ψ2 ∧ ψ1, ψ1 ∧ (c1ψ1 + c2ψ2) = c2ψ1 ∧ ψ2 (4.15)

for any ψ1, ψ2 ∈ L2(R3,C) and any c1, c2 ∈ C. One may identify the application of a
wedge product string like

Nelec∧

i=1

ψi ≡ ψ1 ∧ ψ2 ∧ · · · ∧ ψNelec

onto the electronic coordinates x with the evaluation of a determinant, i.e.
(
Nelec∧

i=1

ψi

)
(x) ≡

(
ψ1 ∧ ψ2 ∧ · · · ∧ ψNelec

)
(r1, r2, . . . , rNelec

)

≡ 1√
Nelec

det




ψ1(r1) ψ2(r1) · · · ψNelec
(r1)

ψ1(r2) ψ2(r2) · · · ψNelec
(r2)

...
...

. . .
...

ψ1(rNelec
) ψ2(rNelec

) · · · ψNelec
(rNelec

)


 .

Because of this observation ψ1∧ψ2∧· · ·∧ψNelec
is typically called a Slater determinant4

in standard quantum-chemistry textbooks [83, 84]. The functions ψi ∈ L2(R3,C) are
usually called single-particle functions, since they only depend on a single electronic
coordinate. Another way of phrasing (4.14) is therefore that

∧Nelec L2(R3,C) is the
space spanned by all Slater determinants consisting of Nelec single-particle functions
from L2(R3,C). Notice, that5

Nelec∧
L2(R3,C) ⊂ L2(R3Nelec ,C),

exterior power on the left hand side is even dense in the space on the right.

If we want to encode condition (4.13) into our problem an easy solution is to combine
this with Kato’s theorem and employ the domain

D(ĤNelec
) = H2(R3Nelec ,C) ∩

Nelec∧
L2(R3,C) (4.16)

4After John Slater, who introduced it. [81, 82].
5This observation is the reason why the single-particle functions need to be square-integrable, i.e.

from L2(R3,C).
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for the electronic Hamiltonian ĤNelec
. This makes both the operator self-adjoint and

the electronic wave function comply with the spin statistics theorem. Applying similar
arguments to section 3.1.1 on page 31, we can deduce the analogous form domain of
ĤNelec

as

Q(ĤNelec
) = H1(R3Nelec ,C) ∩

Nelec∧
L2(R3,C).

For establishing the spectral properties of ĤNelec
, there is first the important HVZ

theorem [54–57] after Hunziker, van Winter and Zhislin.

Theorem 4.1 (HVZ). Let ĤNelec
be the self-adjoint operator of (4.12) on the Hilbert

space L2(R3Nelec ,C) with the domain given in (4.16). Then ĤNelec
is bounded from below

and its essential spectrum6 is

σess

(
ĤNelec

)
= [ΣNelec

,+∞)

with

ΣNelec
=

{
0 if Nelec = 1

inf σ
(

ĤNelec−1

)
< 0 if Nelec ≥ 2

.

This theorem establishes a link between the lower bound of the essential spectrum
σess of the electronic Hamiltonian of a Nelec-electron system and the lower bound of the
complete spectrum σ of a corresponding Nelec − 1 electron system with the same nuclear
arrangement.

For characterising the discrete spectrum of ĤNelec
we employ the important results

by Zhislin [85] and Yafaev [86], summarised by the following proposition.

Proposition 4.2. Let ĤNelec
be the Nelec-electron electronic Hamiltonian operator of

(4.12) with domain as stated in (4.16). Let further Ztot ≡ ∑M
A=1 ZA denote the total

nuclear charge.

• If Nelec ≤ Ztot, i.e. we consider a neutral or positively charged system, then ĤNelec

has an infinite number of discrete eigenvalues below the essential spectrum.

• If Nelec ≥ 1 + Ztot (negatively charged system), then ĤNelec
has at most a finite

number of discrete states below the essential spectrum.

Proof. See [85, 86].

Before we discuss the physical interpretation of these results, let us first introduce
some terminology. If we are either concerned with a neutral or positively charged Nelec-
electron system or a negatively charged system with at least a single discrete eigenvalue,
we can define a ground-state energy

ENelec
0 = min σ

(
ĤNelec

)
= ΣNelec

. (4.17)

The energies of the discrete spectrum are ordered as usual

ENelec
0 ≤ ENelec

1 ≤ ENelec
2 ≤ · · ·

6For a definition see 2.45 on page 24.
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and associated with these eigenvalues are the corresponding (bound) eigenstates

Ψ0,Ψ1,Ψ2, . . . .

All states Ψi which have an energy eigenvalue ENelec
i = ENelec

0 are commonly referred to
as the ground state. If ENelec

0 is not degenerate by construction Ψ0 is the ground state.
All other states Ψi with ENelec

i 6= ENelec
0 are called excited states.

For negatively charged systems we similarly use the term “ground state” to refer to

the state or states corresponding to the lowest eigenvalue of σP
(

ĤNelec

)
and “excited

states” for the other eigenfunctions of ĤNelec
. Note, however, that for negatively charged

systems the case inf σ
(

ĤNelec

)
< ENelec

0 is possible (see proposition 4.2), i.e. that the

lowest-energy bound state is already embedded inside the continuum.

Remark 4.3 (Physical interpretation of the spectrum). In this remark we will summarise
the results, which can be deduced from the HVZ theorem 4.1 on the facing page and
from proposition 4.2 on the preceding page.

Let us first consider a neutral or positively charged system with Nelec electrons. It
has a ground states as well as an infinite number of discrete and bound excited states
until the ground-state energy ENelec−1

0 of the corresponding (Nelec − 1)-electron with
the same nuclear arrangement is hit. Note, that we can be sure that ENelec−1

0 exists,
because the (Nelec − 1)-electron system is positively charged. This behaviour is easy
to understand physically. As soon as the energy ENelec−1

0 is reached our Nelec-electron
system can always separate into a stable system with Nelec − 1 bound electrons and an
unbound Nelec-th electron taking the excess energy into the continuum. From this we
can easily understand the energy difference ENelec−1

0 − ENelec
0 as the ionisation energy.

Note, that embedded inside the emerging continuum at energies beyond ENelec−1
0 may

still be bound states of the (Nelec − 1)-electron system. In other words in general we
have

σC

(
ĤNelec

)
( σess

(
ĤNelec

)
.

If the Nelec-system is of single negative charge and possesses no bound states below
the essential spectrum, this implies

inf σ
(

ĤNelec

)
= inf σ

(
ĤNelec−1

)
= ENelec−1

0 ,

since the Nelec − 1-electron system is neutral, thus possesses a ground state. In other
words all bound states of this system are embedded inside the continuum. The system
thus separates into a bound (Nelec − 1)-electron system and an unbound electron at all
energies: This negative ion is not stable. Conversely for stable negative ions we would
expect at least a single bound state to exist.

Unlike neutral or positively charged systems, negatively charged systems in each case
only possess a finite number of bound states below the essential spectrum.

To summarise this remark, let us note the following interesting observations, which
are now backed by rigorous mathematical treatment:

• The essential spectrum marks the energies at which a chemical system is unstable,
because it can separate into (one or more) unbound electron plus a stable system
with a reduced number of bound electrons.
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• Forming a positive ion always costs energy.

• All systems with more than one electron will produce unbound electrons, i.e. ionise,
at large-enough energies (in vacuum).

• Not all negative ions possess a stable ground state (in vacuum).

• All positive ions possess a stable ground state (in vacuum).

Remark 4.4 (Consequences for a numerical treatment). From proposition 4.2 we can
immediately deduce, that there are no problems with neutral or positively charged
systems under a variational numerical treatment as discussed in section 3.1 on page 31.
Both the ground state as well as the first few excited states are located below the essential
spectrum and thus accessible for the treatment described in remark 3.5 on page 34.

For negative ions we might get into trouble. If the ion is stable, then at least its
ground state can be approximated numerically via remark 3.5. If it is not, we might not
even be able to get its ground state. The problem is, that in a variational numerical
treatment we cannot easily distinguish between approximations to bound states and
approximations to continuum states if they are located in the same energy range. So if
the lowest-energy bound state is embedded inside the continuum, both are inside the
essential spectrum. A variational treatment will converge to the bottom end of the
essential spectrum (see theorem 3.3), which might not be the lowest-energy bound state
in this case.

4.3 Full configuration interaction

In this section we want to develop a numerical treatment for solving the electronic
Schrödinger equation (4.8) under the Ritz-Galerkin projection ansatz of section 3.1.2 on
page 32. In the previous section we analysed the mathematical implications of the spin
statistics theorem for electrons as fermionic systems, which lead us to choose the form
domain

Q(ĤNelec
) = H1(R3Nelec ,C) ∩

Nelec∧
L2(R3,C).

for the electronic Schrödinger operator ĤNelec
.

For simplifying our treatment we will not try to discretise this domain in the Ritz-
Galerkin ansatz of definition 3.2, much rather we will develop methods to sample only
the subspace

Q̃(ĤNelec
) = H1

a(R3Nelec ,C) ≡
Nelec∧

H1(R3,C) ⊂ Q(ĤNelec
)

due to its simpler structure. Since this subspace is dense we will not suffer from any loss
of numerical accuracy in the approximate treatment later on. This implies no potential
loss of numerical accuracy. By definition of the exterior power

Q̃(ĤNelec
) = span

{
Nelec∧

i=1

ψi

∣∣∣∣∣ψi ∈ H1(R3,C) ∀i = 1, . . . , Nelec

}
. (4.18)

Since H1(R3Nelec ,C) is separable, we can find a countable basis set

B1 ≡ {ψi}i∈N with 〈ψi|ψj〉1 = δij and spanB1 = H1(R3Nelec ,C), (4.19)
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where we used the abbreviated notation 〈 · | · 〉1 ≡ 〈 · | · 〉L2(R3,C) for the one-particle inner
product. Taking the properties of the wedge product (4.15) into account allows to deduce
the equivalent construction

Q̃(ĤNelec
) = span

{
Nelec∧

i=1

ψi,

∣∣∣∣∣ψi ∈ B1 ∀i = 1, . . . , Nelec

}
, (4.20)

which builds Q̃(ĤNelec
) as the span over all Slater determinants built by selecting Nelec

functions from B1. Since nothing stops us from selecting the same basis function twice
from B1 in this construction, many of the constructed determinants

∧Nelec

i=1 ψi are zero.
In other words these determinants amount to span Q̃(ĤNelec

), but they are not a basis
for this space. In the following we want to fix this and construct an orthonormal basis
of suitable Slater determinants. This requires an appropriate inner product.

Definition 4.5. Let Q̃(ĤNelec
) be defined as in (4.18). We define an inner product on

Q̃(ĤNelec
) by requiring for any two arbitrary Slater determinants

Ψ =
Nelec∧

i=1

ψi and Ξ =
Nelec∧

i=1

ξi

with ψi, ξi ∈ H1(R3,C) for all i ∈ 1, . . . , Nelec:

〈Ψ|Ξ〉Nelec
≡ det G where Gij = 〈ψi|ξj〉L2(R3,C) ∀i, j ∈ 1, . . . , Nelec. (4.21)

The inner product for other elements from Q̃(ĤNelec
) is then constructed in accordance

with the axioms shown in definition 2.1 on page 12.

With this inner product at hand we can construct an orthonormal basis for Q̃(ĤNelec
).

Remark 4.6 (Orthonormal basis for Q̃(ĤNelec
)). Let Q̃(ĤNelec

) be defined as in (4.18)
and let B1 be an arbitrary basis for H1(R3,C). We take one arbitrary, non-trivial Slater
determinant 0 6= Φ0 ∈ Q̃(ĤNelec

), such that

Φ0 = ψ̃1 ∧ ψ̃2 ∧ · · · ψ̃i · · · ∧ ψ̃Nelec

for appropriate ψ̃i ∈ B1. This determinant can always be found due to the alternative
construction for Q̃(ĤNelec

) sketched in (4.20). Let us call Φ0 the reference determinant

in the following.

The functions of the (countable) basis set B1 = {ψi}i∈N can be indexed in such a
way that the first Nelec functions coincide with (ψ̃1, ψ̃2, . . . , ψ̃Nelec

). In other words

Φ0 = ψ1 ∧ ψ2 ∧ · · ·ψi · · · ∧ ψNelec

as well. We further define the index sets7

Iocc = {1, . . . , Nelec} and Ivirt = {i ∈ N | i > Nelec}.

With reference to Φ0 we can construct for each i ∈ Iocc and each a ∈ Ivirt a so-called
singly excited determinant

Φai = ψ1 ∧ ψ2 ∧ · · · ∧ ψa ∧ · · · ∧ ψNelec

7The subscript “occ” stands for occupied and “virt” for virtual. These terms will become clear when
we discuss the Hartree-Fock ansatz in the next section.



54 CHAPTER 4. SOLVING THE MANY-BODY ELEC. SCHRÖDINGER EQN.

by replacing the i-th function of the Slater determinant wedge string by the a-th function
of B1 without changing the order. Analogously one may define doubly or higher excited
determinants

Φabij = ψ1 ∧ ψ2 ∧ · · · ∧ ψa ∧ · · · ∧ ψb ∧ · · · ∧ ψNelec

Φabcijk = ψ1 ∧ ψ2 ∧ · · · ∧ ψa ∧ · · · ∧ ψb ∧ · · · ∧ ψc ∧ · · · ∧ ψNelec

where8 i, j, k ∈ Iocc and a, b, c ∈ Ivirt In this case one has to additionally require that
i < j < k < · · · and a < b < c < · · · , because otherwise no new determinants are
generated (if i = j or i = k or . . . ) or a zero determinant is generated (if a = b or
similar). Constructed in this way all determinants in the set

BNelec
≡
{

Φ0,Φai ,Φ
ab
ij ,Φ

abc
ijk , · · ·

}

are unique. Still it is not hard to see that spanBNelec
= Q̃(ĤNelec

), since we only took
away those determinants adding redundant information in the construction (4.20).

With the inner product defined in (4.21) we notice for all r, s ∈ N

〈Φ0|Φsr〉Nelec
= 〈ψr|ψs〉1 = δrs,

since by (4.19) all functions in B1 are orthonormal to each other. In other words BNelec

is an orthonormal basis for Q̃(ĤNelec
).

The set BNelec
is sometimes called the Nelec-particle basis or many-particle basis

corresponding to B1 and the reference determinant Φ0. Albeit the precise entries in
BNelec

might differ from case to case the end result spanBNelec
= Q̃(ĤNelec

) is always
true regardless of the choice of Φ0 or B1.

Remark 4.7. Given a many-particle basis BNelec
consisting of normalised Slater determ-

inants, any function Ψ ∈ Q̃(ĤNelec
) can be expanded as such

Ψ =
∑

µ

cµΦµ where ∀µ ∈ N : Φµ ∈ BNelec
, cµ ∈ C. (4.22)

If one is interested in emphasising the particular basis of one-particle functions B1 and
the particular reference determinants Φ0 this can be written equivalently as

Ψ = c0Φ0 +
∑

ia

caiΦai +
∑

i<j
a<b

cabij Φabij +
∑

i<j<k
a<b<c

cabcijkΦabcijk + · · · , (4.23)

where i, j, k, . . . ∈ Iocc and a, b, c, . . . ∈ Ivirt.

This expansion is commonly referred to as the CI expansion, where CI stands for
configuration interaction, a term which will become more clear after the next remark.

Remark 4.8 (Full CI). The discrete formulation of the Ritz-Galerkin scheme of re-
mark 3.6 on page 34 can now be applied rather easily to the electronic Schrödinger
equation. This leads to a procedure called full CI or full configuration interaction (FCI).

8This is the typical indexing convention in quantum chemistry. Indices i, j, k, l, m, . . . stand for
occupied indices and a, b, c, d, e, . . . for virtual indices.
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For n = 1, 2, . . .:

• Take a finite-sized basis set of orthonormal one-particle functions

B
(n)
1 ≡ {ψi}i∈Ibas

⊂ U,

where U ⊂ H1(R3,C) is dense.

• Choose — at random or using prior knowledge — an arbitrary reference determin-
ant

Φ0 = ψ1 ∧ ψ2 ∧ . . . ∧ ψNelec

where

(ψ1, ψ2, . . . , ψNelec
) ∈

(
B

(n)
1

)Nelec

and construct the finite Nelec-electron basis

B
(n)
Nelec

≡ {Φ0,Φai ,Φ
ab
ij , . . .} (4.24)

using substitutions of the functions from B
(n)
1 according to the procedure described

in remark 4.6 on page 53. As usual we take

i, j, k, l, . . . ∈ Iocc with i < j < k < l < · · · , (4.25)

a, b, c, d, . . . ∈ Ivirt with a < b < c < d < · · · (4.26)

where in the finite case

Iocc = {1, . . . , Nelec} and Ivirt = {Nelec + 1, . . . , Nbas}.

• Construct the full CI matrix AFCI ∈ CNFCI×NFCI consisting of elements

(AFCI)IJ = a(ΦI ,ΦJ) =
〈

ΦI
∣∣∣T̂e + V̂ne + V̂ee

∣∣∣ΦJ
〉

Nelec

(4.27)

for all combinations ΦI ,ΦJ ∈ B
(n)
Nelec

. There are

NFCI =
(
Nbas

Nelec

)
≤ NNelec

bas

such Slater determinants.

• Diagonalise AFCI to find a few energy eigenvalues E(n)
i ∈ R and corresponding CI

vectors c
(n)
i ∈ CNFCI .

• Repeat with a larger basis B
(n+1)
1 until convergence of eigenstates up to desired

accuracy has been achieved. In many cases one already selects a suitable basis set
B

(n)
1 and only performs the calculation top-to-bottom once.

Notice that the subspace sequence spanB
(n)
Nelec

⊂ Q̃(ĤNelec
) satisfies the required condition

(3.4) since U is dense in H1(R3,C), which makes spanB
(n)
Nelec

dense in Q̃(ĤNelec
) and thus

transitively dense in Q(ĤNelec
). If ĤNelec

thus has a discrete ground and some discrete
excited states below the essential spectrum, we can approximate it by this procedure up
to arbitrary accuracy. This is satisfied for all neutral or positively charged systems and
some negatively charged systems. Recall remark 4.4 on page 52 for details.
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Equation (4.27) helps to understand where the term full configuration interaction for
the sketched method comes from. In some sense a basis function in the single-particle
basis {ϕµ}µ∈Ibas

describes the behaviour of a single electron. In turn a Slater determinant
can be interpreted physically as one sensible configuration of Nelec electrons amongst
the available single-particle functions. The full CI matrix (4.27) now couples these
configurations via the electronic Hamiltonian ĤNelec

, which describes the interaction of
the electrons in the chemical system with another. By diagonalising the matrix AFCI we
thus determine the electronic eigenstates taking the full range of interactions between
all configurations into account, explaining the name full CI.

Even though FCI allows to compute the solution of the electronic Schrödinger equa-
tion up to arbitrary accuracy, it is only employed for the simplest problems or for
benchmark purposes. The main reason for this is its enormous computational cost.
Already for small molecules like water with only Nelec = 10 electrons and a rather small
def2-SV(P)[87] basis set B

(n)
1 with Nbas = 18 basis functions this makes NFCI = 43758

and thus around N2
FCI = 2 · 109 entries in AFCI in an extremely naïve implementation,

where known zero entries are stored as well. Of course this can be improved by exploiting
some symmetries or the rather sparse structure of AFCI, which we will discuss in the
next remark. Nevertheless the computational cost scales exponentially and allows only
treatment of small systems9

Remark 4.9 (Structure of the FCI matrix). Recall the expression

ĤNelec
= T̂e + V̂en + V̂ee =

Nelec∑

i=1

(
−1

2
∆r

i
+

M∑

A=1

ZA
riA

)
+
Nelec∑

i=1

Nelec∑

j=i+1

1
rij

for the electronic Hamiltonian. The goal of this remark will be to write the many electron

integrals
〈

Φ1

∣∣∣ĤNelec
Φ2

〉
between two Slater determinants Φ1,Φ2 ∈ BNelec

in terms of

integrals over the one-electron functions ψi these determinants are composed of.

For this we will make use of the so-called Slater-Condon rules [83]. For applying
these rules we need to differentiate between so-called one-electron operators and two-

electron operators. One-particle operators like T̂e and V̂en can be written as a sum
of operators like ∆r

i
or r−1

iA , which act only on the coordinate ri of a single electron at

once. Two-particle operators like V̂ee, however, are built as a sum of terms r−1
ij making

reference to the coordinates of two electrons.

For our discussion here, let us take Φ0 to be an arbitrary reference determinant
constructed from the single-particle basis B1. We construct excited determinants Φai ,
Φabij , . . . under the index conventions (4.25) and (4.26).

For the one-electron operator T̂e + V̂en the Slater-Condon rules yield
〈

Φ0

∣∣∣
(

T̂e + V̂en
)

Φ0

〉

Nelec

=
∑

i∈Iocc

〈
ψi

∣∣∣Ĥcore ψi

〉

1

〈
Φ0

∣∣∣
(

T̂e + V̂en
)

Φai
〉

Nelec

=
〈
ψi

∣∣∣Ĥcore ψa

〉

1〈
Φ0

∣∣∣
(

T̂e + V̂en
)

Φabij
〉

Nelec

= 0.

(4.28)

9Our water case is definitely still feasible with modern FCI techniques. A benchmark calculation
from 1999 for example treated a system with NFCI ≃ 9.7 · 109 [88].
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In this result we made use of the core Hamiltonian operator

Ĥcore = T̂ + V̂0 = −1
2

∆ +
M∑

A=1

ZA
‖r − RA‖2

, (4.29)

which is just the sum of the kinetic operator T̂ and the nuclear attraction operator
V̂0 contribution from a single electron. Since the choice of the reference determinant

Φ0 was arbitrary, we can state more generally that the element
〈

Φ1

∣∣∣Â1Φ2

〉

Nelec

of a

one-particle operator Â1 is only non-zero for determinants Φ1, Φ2, which differ in at
most one single-particle function.

On the other hand for two-electron operators like V̂ee the Slater-Condon rules yield
〈

Φ0

∣∣∣V̂ee Φ0

〉

Nelec

=
1
2

∑

i∈Iocc

∑

j∈Iocc

(ψiψi|ψjψj) − (ψjψi|ψiψj) ,
〈

Φ0

∣∣∣V̂ee Φai
〉

Nelec

=
∑

j∈Iocc

(ψiψa|ψjψj) − (ψjψa|ψiψj) ,
〈

Φ0

∣∣∣V̂ee Φabij
〉

Nelec

= (ψiψj |ψaψb) − (ψaψj |ψiψb) ,
〈

Φ0

∣∣∣V̂ee Φabcijk
〉

Nelec

= 0.

(4.30)

where the electron-repulsion integrals (ERIs) in Mulliken’s indexing convention are
given by the expression

(ψiψj |ψkψl) =
∫

R3

∫

R3

ψ∗
i (r1)ψj(r1)ψ∗

k(r2)ψl(r2)
‖r1 − r2‖2

dr1 dr2. (4.31)

Again this result generalises in the sense that for a two particle operator Â2 and any de-

terminants Φ1 and Φ2 the elmement
〈

Φ1

∣∣∣Â2Φ2

〉

Nelec

is only non-zero if the determinants

differ in at most two single-particle functions.

Both these observations combined allow to deduce that the full CI matrix AFCI

must be rather sparse. Originating from the two-electron Coulomb term V̂ee all entries
a(Φ1,Φ2) where the determinants differ by more than two functions vanish. If we pick an
arbitrary reference determinant ⊕̂0 and order the Nelec-electron basis as in equation (4.24)
a banded structure as in fig. 4.1 on the next page results. Of course the dimensionality is
still large, but a combination of the iterative methods sketched in section 3.2 on page 36
and a contraction-based ansatz like the one sketched in section 6.1 on page 142 allow to
obtain a few eigenvalues of AFCI exploiting the sparsity structure.

The electron-repulsion integral tensor introduced in (4.31) is a very important quant-
ity in computational chemistry. We will employ it at various occasions throughout the
thesis. In the standard literature a number of deviating conventions are used for denoting
this tensor. The following remark provides a summary.

Remark 4.10 (Formulation of the repulsion integrals). In equation (4.31) we already
met the electron-repulsion integral (ψiψj |ψkψl) in Mulliken notation. Alternative
names for this indexing convention are shell pair notation or chemists’ notation. If
the one-particle basis and its indexing convention is clear from context one sometimes
writes this integral abbreviated as (ij|kl) as well.
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Figure 4.1: Sketch of the upper left part of the FCI matrix AFCI. The identified blocks
denote the interaction of equivalent classes of excited determinants under the electronic
Hamiltonian ĤNelec

. The size of the blocks increases left to right and top to bottom and
is not depicted to scale. Blocks with white background are identically zero and blocks
with grey background may contain non-zero elements. The grey blocks show further
sparsity, which is not fully depicted here. See [89] for details.

An alternative convention is physicists’ notation

〈ij|kl〉 ≡ 〈ψiψj |ψkψl〉 =
∫

R3

∫

R3

ψ∗
i (r1)ψ∗

j (r2)ψk(r1)ψl(r2)

‖r1 − r2‖2

dr1 dr2.

Both conventions are related by

〈ij|kl〉 = (ik|jl) . (4.32)

It is a rather common feature that the ERI integrals appear in pairs like in (4.30),
where the indices are only slightly permuted. For this reason one typically defines an
antisymmetrised electron-repulsion tensor with elements

〈ij||kl〉 ≡ 〈ψiψj ||ψkψl〉 ≡ 〈ψiψj |ψkψl〉 − 〈ψjψi|ψkψl〉 = (ψiψk|ψjψl) − (ψjψk|ψiψl)

as well. With this quantity the element a(Φ,Φ), where the quadratic form is applied to
an arbitrary normalised determinant Φ = ψ1 ∧ ψ2 ∧ · · · ∧ ψNelec

can be written as

a(Φ,Φ) =
〈

Φ
∣∣∣ĤNelec

Φ
〉

Nelec

=
∑

i∈Iocc

〈
ψi

∣∣∣Ĥcore ψi

〉

1
+

1
2

∑

i∈Iocc

∑

j∈Iocc

〈ij||ij〉 . (4.33)

Originating from the integral expression (4.31) both the ERI tensor as well as the
antisymmetrised ERI tensor show a lot of symmetry with respect to index permutations.
An overview of these symmetry properties provides appendix A on page 209.
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4.4 Single-determinant ansatz

In the previous section we noted that even an approximate solution to the electronic
Schrödinger equation (4.8) via the full CI ansatz is hardly feasible. Even if comparatively
small one-electron basis sets {ϕµ}µ∈Ibas

⊂ H1(R3,C) are used, the dimensionality of the
matrix AFCI becomes simply too large. In this section we discuss the opposite end of
the scale and only consider one-dimensional subspaces of the form domain

Q(ĤNelec
) = H1(R3Nelec ,C) ∩

Nelec∧
L2(R3,C)

for solving the electronic problem. Formally by the Courant-Fischer theorem (3.3) the
ground state electronic energy E0 can be obtained by a variational minimisation over all
subspaces of dimension 1. In other words

E0 = inf
Ψ∈WNelec

〈
Ψ
∣∣∣ĤNelec

Ψ
〉

Nelec

, (4.34)

where

WNelec
=
{

Ψ ∈ Q(ĤNelec
)
∣∣∣ ‖Ψ‖L2(R3Nelec ,C) = 1

}
. (4.35)

denotes the subspace of all normalised functions from Q(ĤNelec
). If we restrict the search

to only run over the space

R1
Nelec

=

{
Nelec∧

i=1

ψi

∣∣∣∣∣ψi ∈ H1(R3,C), 〈ψi|ψj〉1 = δij , ∀ 1 ≤ i, j ≤ Nelec

}
(4.36)

of all normalised Slater determinants, which is a proper subspace of WNelec
, we no longer

yield the exact energy. According to corollary 3.4 on page 33 we merely obtain an upper
bound

E0 ≤ EHF
0 = inf

Φ∈R1
Nelec

〈
Φ
∣∣∣ĤNelec

Φ
〉

Nelec

. (4.37)

The implied procedure, where an approximation to the electronic ground state is com-
puted by minimising the sesquilinear form of ĤNelec

over the space spanned by all nor-
malised Slater determinants, is the celebrated Hartree-Fock (HF) approximation [80].
The resulting minimal energy EHF

0 is the HF ground-state energy and the corresponding
minimising determinant Φ0 the HF ground state.

The HF approach is named both after Douglas Hartree and Vladimir Fock. Historic-
ally Hartree [90] first proposed an ansatz for the electronic problem based on symmetric
products of one-electron functions, which is algorithmically very similar to the procedure
followed nowadays (see remark 5.1 on page 86). Slater [82] and Fock [80] then both
noted the issue arising from the use of symmetric products in the context of spin (see
section 4.2.1 on page 47) and subsequently Fock reformulated the procedure using Slater
determinants.

Notice, that Φ0 is — by construction — the best possible single Slater determinant
to approximate the electronic ground state. Mathematically speaking the set of Slater
determinants R1

Nelec
is exactly the set of all elements from WNelec

, which are of rank 1.
For this reason one sometimes refers to the Hartree-Fock ground state Φ0 as a rank-1

approximation to the exact electronic ground state.
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Remark 4.11 (Molecular orbital formulation of HF). Let

Θ ≡ (ψ1, ψ2, . . . , ψNelec
) ∈

(
H1(R3,C)

)Nelec

denote an arbitrary tuple of single-particle functions. It uniquely identifies a Slater
determinant ΦΘ =

∧Nelec

i=1 ψi. Inserting this ansatz into the energy expression (4.33) for
a single determinant yields the Hartree-Fock energy functional

EHF(Θ) =
1
2

Nelec∑

i=1

∫

R3

‖∇ψi‖2
2 dr −

∫

R3

M∑

A=1

ZA ρΘ(r)
‖r − RA‖2

dr

+
1
2

∫

R3

∫

R3

ρΘ(r1)ρΘ(r2)
‖r1 − r2‖2

dr1 dr2 − 1
2

∫

R3

∫

R3

|γΘ(r1, r2)|2
‖r1 − r2‖2

dr1 dr2,

(4.38)
where

ρΘ(r) =
Nelec∑

i=1

|ψi(r)|2 and γΘ(r1, r2) =
Nelec∑

i=1

ψ∗
i (r1)ψi(r2) (4.39)

are the electron density and the one-particle reduced density matrix, respectively.
The HF ansatz (4.36) thus becomes

E0 ≤ EHF
0 = inf

{
EHF(Θ)

∣∣∣Θ ∈
(
H1(R3,C)

)Nelec
, ∀i, j 〈ψi|ψj〉1 = δij

}
. (4.40)

The minimiser Θ0, i.e. the tuple for which the minimum energy EHF
0 = EHF(Θ0) is

exactly obtained, defines the HF ground state Φ0 ≡ ΦΘ0 .

Before we discuss the mathematical properties of the HF ansatz, let us first pick up
on our discussion of spin in section 4.2.1 on page 47 and generalise the formalism.

Remark 4.12 (Spin-adapted formulation of HF). The mathematical treatment up to
this point only includes one property resulting from the spin-1/2 nature of electrons,
namely the antisymmetry of the wave function. The missing property is the explicit
inclusion of the spin degree of freedom. For a single spin-1/2 particle the spin degree of
freedom spans the two-dimensional Hilbert space C2, which can be probed by the spin
operator

ŝ ≡ (ŝx, ŝy, ŝz) =
1
2

(σx, σy, σz) .

In this expression we used the Pauli matrices defined as

σx =
(

0 1
1 0

)
σy =

(
0 −ı
ı 0

)
σz =

(
1 0
0 −1

)
. (4.41)

The operator ŝz has two eigenstates

↑ ≡
(

1
0

)
↓ ≡

(
0
1

)
,

which are called spin-up and spin-down, respectively.

One way to incorporate spin into our present treatment is the spinor formalism,
where a one-particle function is now written as a function of two spin components

ψ(r) ≡
(
ψα(r)
ψβ(r)

)
, (4.42)
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mapping each real coordinate r to a complex spinor from C2. All results from functional
analysis and spectral theory which we derived for the spin-free case can be adapted to the
spinor formalism, simply moving from the function space L2(R3,C) (and its subspaces)
to L2(R3,C2) (and equivalent subspaces). For example for two spin-adapted one-particle
functions

ψ ≡
(
ψα

ψβ

)
∈ L2(R3,C2) and ϕ ≡

(
ϕα

ϕβ

)
∈ L2(R3,C2)

the one-particle inner product 〈 · | · 〉 becomes the L2(R3,C2) inner product

〈ψ|ϕ〉1 ≡
∫

R3

〈ψ(r)|ϕ(r)〉2 dr =
∫

R3

(ψα(r))∗
ϕα(r) +

(
ψβ(r)

)∗
ϕβ(r) dr

in analogy to the spin-free case. In a similar fashion one may construct the exterior power∧Nelec

i=1 L2(R3,C2) and Slater determinants
∧Nelec

i=1 ψi from functions ψi ∈ H1(R3,C2) as
well. Notice that the tensor product nature of the exterior power implies

Nelec∧

i=1

L2(R3,C2) ⊂ L2(R3Nelec ,C2Nelec)

and
Nelec∧

i=1

ψi ∈
Nelec∧

i=1

H1(R3,C2) ⊂ H1(R3Nelec ,C2Nelec). (4.43)

In this sense the derived expressions from sections 4.1 and 4.3 can be brought forward
to the spin-adapted case with only minor modifications. For example, the expression of
the HF energy functional EHF(Θ) can be used exactly as stated in (4.38) for a tuple

Θ ≡ (ψ1, ψ2, . . . , ψNelec
) ∈

(
H1(R3,C2)

)Nelec

of spin-adapted one-particle functions as well. We only need to understand the gradient

∇ψ1 ≡
(∇ψα1

∇ψβ1

)
∈ C6

as a vector from C6 and define the density as

ρΘ(r) =
Nelec∑

i=1

‖ψi(r)‖2
2 =

Nelec∑

i=1

|ψαi (r)|2 +
∣∣∣ψβi (r)

∣∣∣
2

(4.44)

and the one-particle density matrix as

γΘ(r1, r2) =
Nelec∑

i=1

〈ψi(r1)|ψi(r2)〉2 =
Nelec∑

i=1

(ψαi )∗(r1) ψαi (r2) +
(
ψβi

)∗

(r1) ψβi (r2).

(4.45)

The extra spin component introduces another complication into the HF procedure.
Analogously to the one-particle spin operator ŝ and component operators ŝx, ŝy, ŝz for
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a single particle, one can define the total spin operator Ŝ as well as Cartesian spin
components Ŝx, Ŝy, Ŝz for an Nelec-electron system. Originating from Ŝ one may define

Ŝ2 = Ŝ · Ŝ =
(

Ŝ2
x, Ŝ2

y , Ŝ2
z

)
.

One can show [41] that [
Ŝ2, Ŝz

]
= 0,

i.e. that the total spin squared operator commutes with Ŝz. Since the Hamiltonian ĤNelec

makes no explicit reference to any particular spin component, we necessarily have
[
Ŝz, ĤNelec

]
=
[
Ŝ2, ĤNelec

]
= 0 (4.46)

as well. This implies10 that one is able to find simultaneous eigenfunctions of ĤNelec
,

Ŝz and Ŝ2. For many applications of electronic structure theory, e.g. the interpretation
of certain spectroscopic results or for understanding the aforementioned Stern-Gerlach
experiment, the determination of simultaneous eigenstates of these three operators at
once is crucial. (4.46) naturally implies that it is possible to obtain the ground state
or ground states of ĤNelec

in a way that they are eigenfunctions of the spin operators.
There is, however, no guarantee that the HF ansatz (4.40) gives rise to a HF ground
state ΦΘ0 , which is an eigenfunction of Ŝz or Ŝ2 [91, 92]. In fact it is rather easy to
construct Slater determinants, which are neither an eigenstate of Ŝz nor of Ŝ2.

There are two common approaches to deal with this issue [92]. One is to minimise
according to (4.40) and then use appropriate projections in order to yield the required
eigenstates with respect to Ŝz and Ŝ2. The other ansatz is to impose conditions on the
ansatz space (4.43), such that the resulting HF ground states are eigenfunctions of Ŝz
and Ŝ2. This is what we will discuss when we move to a discretised treatment of the HF
ansatz in 4.15 on page 64.

Even though the Hartree-Fock ansatz was already proposed by Fock [80] in 1930, its
fundamental mathematical properties were only rigorously characterised and proved by
Lieb [93] and Lions [94, 95] in the 70s and 80s for the general spin-adapted case. These
are summarised in the following.

Remark 4.13 (Invariance under orbital rotations). Let

Θ = (ψ1, ψ2, . . . , ψNelec
) ∈

(
H1(R3,C2)

)Nelec

be a tuple, which satisfies the orthonormality condition

∀i, j ∈ 1, . . . , Nelec : 〈ψi|ψj〉1 = δij . (4.47)

One can easily show [95], that for any unitary matrix U ∈ CNelec×Nelec it holds:

• Θ′ = ΘU satisfies (4.47) as well.

• EHF(ΘU) = E(U)

In other words all properties of HF can only be stated up to a unitary rotation amongst
the constituents of the ground state Slater determinant Φ0.

10Since ÂB̂f = B̂Âf ⇔
[
Â, B̂

]
= 0.
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Theorem 4.14 (Mathematical properties of HF). Assume Nelec ≤ ∑M
A=1 ZA, i.e. a

neutral or positively charged chemical system.

(a) A minimiser

Θ0 =
(
ψ0

1 , ψ
0
2 , . . . , ψ

0
Nelec

)
∈
(
H1(R3,C2)

)Nelec (4.48)

to EHF exists [93], i.e. the HF model (4.40) has a ground state.

(b) Let us define the Fock operator

F̂Θ0 = T̂ + V̂0 + ĴΘ0 + K̂Θ0 (4.49)

consisting of the kinetic energy operator T̂ and the nuclear attraction operator V̂0

as defined in (4.29) as well as the effective Coulomb operator

ĴΘ0 =
∫

R3

ρΘ0(r2)
‖ · − r2‖2

dr2 (4.50)

and the exchange operator, implicitly defined by

(
K̂Θ0χ

)
(r) = −

∫

R3

γΘ0(r, r2)
‖r − r2‖2

χ(r2) dr2. (4.51)

To find a stationary point of EHF with respect to Θ one needs to solve the Euler-
Lagrange equations corresponding to the minimisation problem (4.40). By their
means one finds that Θ0 as defined in (4.48) can only be a stationary point of
EHF if there exists a Hermitian matrix λ ∈ CNelec×Nelec , such that for all i, j ∈
{1, . . . , Nelec}

F̂Θ0ψ0
i =

∑

ij

λijψ
0
j and

〈
ψ0
i

∣∣ψ0
j

〉
= δij (4.52)

hold. This is a necessary condition for Θ0 to be a minimiser.

Once we found the ground state, the application of the Fock operator will thus only
rotate us around the space spanned by the minimising functions from Θ0.

(c) Due to the elliptic regularity theorem [93]

ψ0
i ∈ H2(R3,C2) ∩ C∞(R3\{RA}A=1,...,M ,C

2),

which implies that a solution to (4.52) will always be smooth everywhere but the
nuclei and globally in H2(R3,C2).

(d) The Fock operator F̂Θ0 as defined in (4.49) is a self-adjoint operator on L2(R3,C2)
with domain D(F̂Θ0) = H2(R3,C2) and form domain Q(F̂Θ0) = H1(R3,C2) [94].
It is bounded below and σess = [0,+∞).

(e) Up to replacing Θ0 by Θ0U for some unitary matrix U ∈ CNelec×Nelec , the canonical
Hartree-Fock equations hold

F̂Θ0ψ0
i = εiψ

0
i and

〈
ψ0
i

∣∣ψ0
j

〉
= δij (4.53)

with
ε1 ≤ ε2 ≤ · · · ≤ εNelec

< 0.
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(f) The Aufbau principle is satisfied: The {ε1, . . . , εNelec
} are the lowest Nelec eigen-

values of F̂Θ0 .

(g) Let εNelec+1 be the (Nelec+1)-th eigenvalue of F̂Θ0 if the Fock operator has (Nelec+1)
negative eigenvalue (counting multiplicities) otherwise set εNelec+1 = 0. The no

unfilled-shell property

εNelec
< εNelec+1

is satisfied [96].

The proofs for these results in the general setting are somewhat involved and can be
found in the cited works. Theorem 4.14 provides the mathematical justification for the
HF procedure as it is performed in almost every quantum-chemistry program these days
for neutral or positively charged system. A similar mathematical statement making a
guarantee that the HF procedure gives a sensible ground state for negatively charged
systems is not known to me. In fact one can even show that no solution to the HF
problem (4.40) exists for negative ions with Nelec > 2Ztot + M [97]. This holds for
example for H2– . To the best of my knowledge there is furthermore no uniqueness proof
for the solution (4.48) in the infinite-dimensional setting up to today, not even for the
resulting ground state density.

4.4.1 Discretised Hartree-Fock

A central result of theorem 4.14 is that the HF ansatz (4.40) can be seen as a variational
problem towards finding the best molecular orbitals for a single Slater determinant,
which at the optimal point reduces to the spectral problem of the Fock operator F̂ . This
section deals with the discretisation of both representations of HF.

Remark 4.15 (Discretised HF variational problem). Assume a one-particle basis
{ϕµ}µ∈Ibas

consisting of Nbas = |Ibas| basis functions taken from a dense subspace
of H1(R3,C). The space

S1 = span
{(

ϕµ
0

)
,

(
0
ϕµ

) ∣∣∣∣µ ∈ Ibas

}

spanned by spin-adapted linear combinations from {ϕµ}µ∈Ibas
is a subspace ofH1(R3,C2).

Consequently {
Nelec∧

i=1

ψi

∣∣∣∣∣ψi ∈ S1, 〈ψi|ψj〉1 = δij

}
⊂ R1

Nelec
,

which implies

E0 ≤ EHF
0 ≤ ẼHF

0 = inf
{

EHF(Θ)
∣∣Θ = (ψ1, . . . , ψNelec

) ∈ (S1)Nelec , 〈ψi|ψj〉1 = δij
}
.

(4.54)
Let us denote with

ϕ =
(
ϕ1 ϕ2 · · · ϕNbas

)

the row vector of all basis functions written one after another. Then each element ψi of
the tuple

Θ = (ψ1, . . . , ψNelec
) ∈ (S1)Nelec (4.55)
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can be expanded as

ψi =
(
ψαi
ψβi

)
=

∑

µ∈Ibas

ϕµ

(
C̃αµi
C̃βµi

)
=

(
ϕ 0
0 ϕ

)

︸ ︷︷ ︸
2 rows,

2Nbas columns




C̃α1i
...

C̃αNbas,i

C̃β1i
...

C̃βNbas,i




. (4.56)

This allows to write

Θ =
(

ϕ 0
0 ϕ

)
C where C =

(
C̃α

C̃β

)
∈ C2Nbas×Nelec (4.57)

is the coefficient matrix, which is built by pasting the row matrices at the right hand
side of (4.57) one after another.

It is not hard to imagine that one could insert (4.57) into the expression for the
HF energy functional EHF in order to obtain an expression of the HF energy in terms
of C. This expression could be minimised with respect to the coefficients C in order
to obtain an approximate HF ground-state energy and a corresponding approximate
HF ground state. Even though this could be done such a generalised unrestricted

Hartree-Fock (GUHF) procedure is hardly ever performed in practice [92]. The reason
is that it suffers exactly from the issues raised at the end of remark 4.12 on page 60,
namely that the resulting HF ground state is neither an eigenfunction of Ŝ2 nor Ŝz.

Instead one typically selects a target eigenvalue MS of the projected spin operator
Ŝz before performing the HF procedure. From this value and Nelec one determines
two parameters Nα

elec and Nβ
elec, the number of spin-up and the number of spin-down

electrons, such that

Nα
elec +Nβ

elec = Nelec, MS =
1
2

(
Nα

elec −Nβ
elec

)
.

One can show [83, 84], that any Slater determinant ΦΘ made from a tuple like (4.55) is an
eigenfunction of Ŝz with eigenvalue MS if it consists of Nα

elec single-particle functions with
zero β component and Nβ

elec single-particle functions with zero α component. Invoking
remark 4.13 on page 62 we can always reorder the single-particle functions such that
the Nα

elec functions with zero β component are first and the other functions with zero
α-component follow thereafter or

ψβi = 0 ∀i ∈ {1, . . . , Nα
elec} and ψαi = 0 ∀i ∈ {Nα

elec + 1, . . . , Nelec}.

Applying these conditions to the generalised unrestricted Hartree-Fock ansatz (4.57)
leads to the unrestricted Hartree-Fock (UHF) method11 [98]. In UHF the coefficient
matrix C of (4.57) becomes block-diagonal

C =
(

Cα 0
0 Cβ

)
∈ C2Nbas×Nelec , (4.58)

11 Beware that even though the UHF ansatz is termed unrestricted it implies a restriction of the
search space due to spin symmetry. This naming is an unfortunate historic consequence.
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where Cα ∈ CNbas×Nα
elec and Cβ ∈ CNbas×Nβ

elec are the spin-up and spin-down occupied
coefficient matrices, respectively. Inserting (4.57) and (4.58) into (4.38) we obtain the
HF energy functional in terms of of the coefficient matrix C

EHF
C (C) = tr

(
C† (T + V0) C

)
+

1
2

tr
(

C†
(
J
[
CC†

]
+ K

[
CC†

])
C
)
, (4.59)

where all involved matrices are α-β block-diagonal, just like the coefficient matrix (4.58).
Furthermore

• the kinetic energy matrix T has identical α and β blocks with elements

Tαµν = T βµν =
1
2

∫

R3

(∇ϕµ)∗ · ∇ϕν dr. (4.60)

• the nuclear attraction matrix V0 has identical α and β blocks of elements

(V α0 )µν =
(
V β0

)

µν
= −

∫

R3

M∑

A=1

ZA
ϕµ(r)∗ϕν(r)
‖r − RA‖2

dr. (4.61)

• the Coulomb matrix J
[
CC†

]
depends explicitly on the coefficient matrix C as

expressed by the term in the square brackets. It has an identical α and β block
with elements

Jαµν
[
CC†

]
= Jβµν

[
CC†

]
=

∑

σ∈{αβ}

Nσ
elec∑

i=1

Cσλi (Cσκi)
∗ (ϕµϕν |ϕκϕλ) . (4.62)

Here as usual ( · · | · · ) denotes the electron-repulsion integrals defined like (4.31).

• the exchange matrix K
[
CC†

]
has deviating α and β blocks, both depending on

the coefficients. For σ ∈ {αβ} their elements are

Kσ
µν

[
CC†

]
= −

Nσ
elec∑

i=1

Cσλi (Cσκi)
∗ (ϕκϕν |ϕµϕλ) . (4.63)

Let us further define a block-diagonal overlap matrix

S =
(

Sα 0
0 Sβ

)

with elements

Sαµν = Sβµν =
∫

R3

ϕ∗
µ(r)ϕν(r) dr. (4.64)

Altogether definitions (4.59) to (4.64) allow to rewrite (4.54) as an optimisation problem
with respect to the coefficients C

ẼHF
0 = inf

{
EHF
C (C)

∣∣C ∈ C
}

(4.65)

where

C =
{(

Cα 0
0 Cβ

) ∣∣∣∣C
α ∈ CNbas×Nα

elec , Cβ ∈ CNbas×Nβ

elec , C†SC = INelec

}
. (4.66)
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One can show [97] in the discrete case, that the minimiser C0 is even unique up to
unitary rotations, i.e. up to multiplications with unitary matrices Uα ∈ CN

α
elec×Nα

elec ,
Uβ ∈ CN

β

elec
×Nβ

elec with
(

Cα 0
0 Cβ

)
→
(

CαUα 0
0 CβUβ

)

In many cases an alternative formulation of (4.65) in terms of the density matrix

D = CC† ∈ C2Nbas×2Nbas where Dα = Cα (Cα)†
, Dβ = Cβ

(
Cβ
)†
, (4.67)

is desirable. The coefficient matrices from C span

P =
{(

Dα 0
0 Dβ

) ∣∣∣∣ ∀σ ∈ {α, β} Dσ ∈ CNbas×Nbas ,

tr (SσDσ) = Nσ
elec, DσSσDσ = Dσ

}
.

(4.68)

With these definitions we can recast (4.65) as

ẼHF
0 = inf

{
EHF
D (D)

∣∣D ∈ P
}
, (4.69)

where the energy functional in terms of the density matrix is

EHF
D (D) = tr

(
(T + V0) D

)
+

1
2

tr
(

(J[D] + K[D]) D
)
. (4.70)

The respective expressions for J[D] and K[D] can be obtained from (4.62) and (4.63)
by replacing

CC† → D and
Nσ

elec∑

i=1

Cσλi (Cσκi)
∗ → Dσ

λκ. (4.71)

Notice, that the first trace term of EHF
D (D) is linear in the density matrix, whereas the

second trace term is quadratic in the density matrix. Again the minimiser D0 of (4.69)
is unique [97] if the Aufbau principle ordering of orbital energies is chosen when building
D from C.

Remark 4.16. All matrices arising from a discretisation of the HF ansatz (4.40) in
the sense of UHF give rise to block-diagonal matrices, with the α-block describing
the spin-up component and the β-block describing the spin-down component. Apart
from the exchange matrix K, the density matrix D as well as the coefficient matrix
C all matrices arising in remark 4.15 have identical entries in both blocks. Inside the
HF energy functional it is the exchange term tr

(
C†KC

)
where the α and β block

lead to non-symmetrical energy contributions. In a minimisation it is thus this term,
which distinguishes spin-up and spin-down electrons and makes them become subject to
deviating physics. In other words this term gives rise to the non-classical effects inside
the Hartree-Fock approximation.

The UHF procedure automatically assures that the minimiser C0 gives rise to a
Slater determinant, which is an eigenfunctions of Ŝz. It is not assured, however, that
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it is an eigenfunction of Ŝ2. In fact one can show [83], that the value obtained for the
total spin squared for the discretised HF ground state Φ0 is

S2 =
〈

Φ0

∣∣∣Ŝ2Φ0

〉
= S2

exact +Nβ
elec −

∥∥∥(Cα)†
SβCβ

∥∥∥
2

frob
(4.72)

where ‖ · ‖frob is the Frobenius norm defined as

‖M‖frob ≡

√√√√
Nbas∑

i=1

Nbas∑

j=1

|Mij |2 (4.73)

and

S2
exact =

(
Nα

elec −Nβ
elec

2

)(
Nα

elec −Nβ
elec

2
+ 1

)
.

The observed deviation typically becomes larger if the basis gets larger.

The mathematical structure of the minimisation problems (4.65) and (4.69) are
comparatively complex. One reason for this is that the spaces C and P, spanned by the
coefficient or the density matrix parameters sets, are not vector spaces. Much rather
they are manifolds, i.e. geometrical objects which locally look like vector spaces, but
globally show less structure. More precisely C is a subset of a Stiefel manifold and P
is a subset of a Grassmann manifold. This aspect becomes apparent when designing
rigorous algorithms for solving the HF problem since the topological properties of the
HF parameter spaces imply that intuitive approaches to the problem may not always
work.

Remark 4.17 (Discretised HF equations). Theorem 4.14 on page 63 allows to recast
the HF ansatz (4.40) into an equivalent spectral problem (4.53) for the Fock operator F̂
at the minimal point. It guarantees further that F̂ shows the spectral requirements for
applying the Ritz-Galerkin ansatz of remark 3.6 on page 34, namely that it is self-adjoint
and shows a discrete spectrum below the essential spectrum. Choosing the same basis
{ϕµ}µ∈Ibas

as in remark 4.15 and projecting problem (4.53) onto this basis yields the
discretised HF equations

∀i, j ∈ {1, . . . , Nelec}
{

F
[
CC†

]
ci = εiSci

c
†
icj = δij

, (4.74)

where the elements of the Fock matrix F
[
CC†

]
are computed by applying the sesqui-

linear form

aΘ(φ, χ) =
∫

R3

〈
φ(r)

∣∣∣
(

F̂Θχ
)

(r)
〉

2
dr

=
∫

R3

(φα(r))∗
(

F̂Θχ
)α

(r) +
(
φβ(r)

)∗
(

F̂Θχ
)β

(r) dr

(4.75)

to all pairs of basis spinors (φ, χ) with

φ, χ ∈
{(

ϕ
0

)
,

(
0
ϕ

) ∣∣∣∣ϕ ∈ {ϕµ}µ∈Ibas

}
.



4.4. SINGLE-DETERMINANT ANSATZ 69

This matrix is Hermitian and block-diagonal12

F =
(

Fα 0
0 Fβ

)

and can be written as

F
[
CC†

]
= T + V0 + J

[
CC†

]
+ K

[
CC†

]
∈ C2Nbas×2Nbas , (4.76)

where the matrix terms are defined as (4.60) to (4.63).

The generalised eigenvalue problem (4.74) can be solved for up Norb ≤ Nbas eigenpairs
(εi, ci) using one of the algorithms described in section 3.2 on page 36 incorporating the
modifications discussed in section 3.2.7. Let us assume the usual ordering

ε1 ≤ ε2 ≤ · · · ≤ εNelec
.

By the Aufbau principle of theorem 4.14 the coefficient matrix is

C =
(
c1 c2 · · · cNelec

)
,

i.e. the first Nelec eigenvectors pasted together. In analogy we define a full coefficient
matrix

CF =
(
c1 c2 · · · cNelec

· · · cNorb

)
, (4.77)

which contains all Norb eigenvectors we solved (4.74) for.

Applying the spin restrictions of unrestricted HF exactly as in remark 4.15, we know
that that we expect Nα

elec eigenvectors with only α components and Nβ
elec eigenvectors

with only β components. Let us take Norb to be even and such that Nα
elec, N

β
elec > Norb/2.

Since both F and S are block-diagonal we can solve (4.74) block-wise, i.e. we solve

Fσ
[
CC†

]
cσi = εiS

αcσi

for σ = α and σ = β separately for Norb/2 eigenpairs each. In analogy to (4.77) we
proceed to define

Cσ
F =

(
cσ1 cσ2 · · · cσNorb

)

and consequently get a block-diagonal full coefficients matrix

CF =
(

Cα
F 0

0 C
β
F

)
∈ C2Nbas×Norb .

To adhere with the restriction to Nα
elec spin-up and Nβ

elec spin-down orbitals the occupied

coefficient matrix Cα is obtained as the first Nα
elec columns of Cα

F and likewise Cβ as
the first Nβ

elec columns of C
β
F .

The eigenfunctions ci of F are called HF orbitals or SCF orbitals13. Those
orbitals, which are part of C according to the Aufbau principle, are called occupied

orbitals as they are in some sense occupied by electrons. Conversely all other orbitals

12This is true even in the case of generalised unrestricted Hartree-Fock.
13The term SCF will defined in the next remark.
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are called unoccupied or virtual orbitals. For later convenience let us define the index
sets

Iorb ≡ {1, . . . , Norb}
Iαocc ≡ {1, . . . , Nα

elec} Iαvirt ≡ {Nα
elec + 1, . . . , Norb/2}

Iβocc ≡ {Norb/2 + 1, . . . , Norb} Iβvirt ≡ {Nα
elec +Norb/2 + 1, . . . , Norb}

Iocc ≡ Iαocc ∪ Iβocc Ivirt ≡ Iorb\Iocc,

whose meaning should be self-explanatory.

Remark 4.18 (Properties of the discretised HF ansatz). By theorem 4.14 on page 63
the minimiser C0 ∈ C of (4.66) satisfies exactly the discretised HF equations (4.74) such
that

F
[
C0C

†
0

]
C0 = SC0Ẽ

where
Ẽ = diag(ε1, ε2, . . . , εNelec

) ∈ RNelec×Nelec .

This condition can be equivalently expressed as [99]

F
[
C0C

†
0

]
C0C

†
0 S − S C0C

†
0 F
[
C0C

†
0

]
= 0 (4.78)

and is always satisfied if C0 is a minimiser. The reverse statement is not true, however,
since all stationary points of the energy functional EC optimised on the manifold C satisfy
(4.78).

Nevertheless, nothing stops us to pick any other C(n) ∈ C and build the Fock matrix

F
[
C(n)

(
C(n)

)†
]

according to (4.76). We can solve for its eigenpairs, i.e. find a matrix

C
(n+1)
F of eigenvectors and corresponding eigenvalues

E(n+1) = diag
(
ε

(n+1)
1 , ε

(n+1)
2 , . . . , ε

(n+1)
Norb

)
∈ RNorb×Norb .

such that

F

[
C(n)

(
C(n)

)†
]

C
(n+1)
F = SC

(n+1)
F E(n+1). (4.79)

In such a case, we can in general not expect the expression

e(n) = F

[
C(n)

(
C(n)

)†
]
C(n)

(
C(n)

)†

S − S C(n)
(

C(n)
)†

F

[
C(n)

(
C(n)

)†
]

(4.80)

to be zero. Typically, however, C(n+1) is much closer to the minimum C0 than C(n) was
— see section 5.4.1 on page 128 for details. This suggests an iterative approach to find
the minimum C starting from a guess C(0). Such an approach is called self-consistent

field (SCF) procedure and we will discuss it in more detail in the next chapter. In
the context of such an iterative approach to solve (4.74) expression (4.80) is called the
Pulay error after Peter Pulay [99].

There are two more aspects of theorem 4.14 worth pointing out. From the unfilled
shell property (g) εNelec

< εNelec+1 [96], we can deduce that there is always a gap between
the highest occupied orbital (HOMO) and the lowest unoccupied orbital (LUMO) in a
converged HF result. Together with (e), we see that only eigenfunctions ψi with negative
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orbital energy eigenvalue εi may be part of C in the converged case [95]. Secondly the
smoothness property (c) makes sure that all solutions of the HF equations are numerically
easy to model. Especially for numerical basis functions like finite elements, where the
rate of convergence depends on the smoothness of the function, this is important such
that the problem can be modelled employing a reasonable number of basis functions.
Furthermore care needs to be taken to place the grid points in a way that the nuclei sit
on a grid point and not in between.

In this section we discussed roughly three ways to view the HF problem in the discrete
setting of a finite basis set {ϕi}i∈Ibas

. Firstly, as a minimisation on a Stiefel manifold
(4.65), where the energy is optimised with respect to the occupied orbital coefficients
C. The second option is to minimise on a Grassmann manifold (4.69) and optimise the
energy with respect to the density matrix D. The last option is to solve the non-linear
HF equations (4.74) in a self-consistent field approach, which would construct a sequence
C(n) of orbital coefficients or of density matrices D(n) until (4.74) is satisfied within a
certain error. No guarantee is made that this converges to the minimum, but in many
cases it does. For all these approaches we will discuss practical algorithms in 5.4 on
page 127.

4.4.2 Restricted Hartree-Fock

By the means of equation (4.72) we already stated that the unrestricted HF ansatz does
not always yield an HF ground state Ψ0, which is an eigenfunction of Ŝ2. Following
our discussion in remark 4.12 on page 60 we could fix this either by projection onto the
space of eigenstates of Ŝ2 or by imposing extra conditions on the HF ansatz.

In the case of closed-shell chemical systems the latter is in fact rather simple. For
closed-shell atoms Nα

elec = Nβ
elec, which implies that (4.72) gives the correct value S2

exact

if we enforce Cα = Cβ . The condition Cα = Cβ not only yields an eigenfunction of
Ŝ2, but furthermore implies that Fα = Fβ as well. In other words in this restricted

Hartree-Fock (RHF) [100] ansatz one only needs to solve one block of the Fock matrix
in (4.74) and may use the result for both spin-up and spin-down functions.

Enforcing the correct S2 value (4.72) for open-shell electronic systems with14 Nα
elec >

Nβ
elec is considerably more involved. A first approach was published by Roothaan

[101, 102]. In this celebrated work he distinguishes doubly occupied, singly occupied
and virtual orbitals. He then replaces the block-diagonal Fock matrix from (4.74) by a
specially crafted Fock matrix consisting of nine blocks, each block modelling the interac-
tion between pairs of two of the aforementioned orbital subspaces. A block is build as a
linear combination of certain parts of Fα and Fβ , made in such a way to ensure, that
the resulting SCF minimum is an eigenfunction of S2 with exactly the desired eigenvalue.
In other words the way this linear combinations are done depends on the spin state
to be computed. Multiple ways to perform the linear combinations is possible [103]
and depending on which method is chosen, results can deviate. This restricted open-
shell Hartree-Fock (ROHF) approach will not be considered much further in this thesis.
Instead we will treat all open-shell systems with the UHF procedure, since UHF is sim-
pler to implement, computationally cheaper and overall more widespread. Nevertheless
some issues, which appeared in our convergence analysis of our Coulomb-Sturmian-based
Hartree-Fock ansatz (see chapter 8 on page 171) turned out to originate from our UHF

14By convention there are always more spin-up than spin-down electrons
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treatment and could be potentially avoided in an ROHF formalism. We will discuss this
further in section 8.2.1 on page 179.

4.4.3 Real-valued Hartree-Fock

Our discussion of Hartree-Fock up to this point leads to numerical problems taking place
in complex arithmetic, since both the coefficient matrix C as well as the Fock matrix
F are so far taken to have complex entries. Whilst doing this is possible, it is typically
nevertheless avoided by reducing the HF problem to a problem of equivalent structure,
but situated in real Hilbert spaces. The major motivation for this is that computations
amongst complex numbers are slower since effectively more floating point operations
need to be performed in order to treat the real and the imaginary part as required.

Let (εi, ψi) ∈ R ×H2(R3,C2) be an eigenpair of the HF problem, i.e.

0 =
(

F̂Θ0 − εi

)
ψi (4.81)

Choosing appropriate functions ψRi , ψ
I
i ∈ H2(R3,R2) we can write ψi = ψRi + ıψIi such

that by linearity of the Fock operator

0 =
(

F̂Θ0 − εi

)
ψRi + ı

(
F̂Θ0 − εi

)
ψIi . (4.82)

For (4.82) to be satisfied, we need the real and the complex part of the right hand side
to be equal to the zero function.

Since all terms of the Fock operator only contain real factors or real differential
operators, it is clear that the Fock operator maps real-valued functions to real-valued
functions. In other words

χ ∈ H2(R3,R2) ⇒
(

F̂χ
)

∈ L2(R3,R2).

This implies that (4.82) is true iff simultaneously

0 =
(

F̂Θ0 − εi

)
ψRi (4.83)

0 =
(

F̂Θ0 − εi

)
ψIi . (4.84)

If ψi is not already real-valued and thus ψIi = 0, its real part ψRi and its imaginary part
ψIi must both be solutions to the HF equations as well. Furthermore ψRi and ψIi are
associated to the same eigenvalue εi as ψ.

As a result one can obtain the solutions for the complex-valued problem (4.81) by
only looking for eigenpairs (εi, ψi) ∈ R ×H2(R3,R2). This completely avoids the need
for complex arithmetic as CF , D, F and all other matrices we defined previously in this
section will only consist of real elements in this case. Apart from this simplification no
extra care needs to be taken, since the real eigenfunctions corresponding to an eigenvalue
εi still span the full complex eigenspace one would obtain from solving the original
complex-valued problem — provided that complex coefficients are used. This makes
sure that we neither miss anything nor get spurious results by using a real-valued ansatz,
thus still get exactly the physical eigenstates we are after.
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The overall approach sketched here is more general than just the Hartree-Fock prob-
lem and can be applied to many other spectral problems of quantum physics in order
to yield equivalent real-valued versions for a numerical treatment. One should stress,
however, that the operator under consideration really needs to satisfy the condition that
it maps vectors from a real vector space to to vectors from a real vector space on top of
being Hermitian. Let us illustrate this by the example of the single-particle spin operator

ŝy =
(

0 −ı
ı 0

)
.

It is easy to see that on the Hilbert space C2, ŝy is a Hermitian matrix, hence a self-adjoint
operator. Its eigenvalues are −1 and 1 with corresponding normalised eigenvectors

1√
2

(
−1
ı

)
and

1√
2

(
−1
−ı

)
.

Even though this operator is Hermitian, trying to find the aforementioned eigenpairs by
solving the spectral problem

ŝyv = λv

in real arithmetic only, i.e. with v ∈ R2, will not yield a single eigenpair.

4.5 Capturing electronic correlation

In the previous section we talked at length about the HF approximation for solving the
non-relativistic electronic Schrödinger equation. Since the search space for the variational
minimisation is much more restricted compared to the FCI ansatz, we necessarily make
a larger approximation error in the HF case. Nevertheless it should be noted that HF
yields a rather good rank-1 approximation to the full Schrödinger problem, where up
to 99% of the FCI energy [104] in a respective basis is obtained at a fraction of the
cost. Unfortunately chemistry is about energy differences and not absolute energies. For
example to a good approximation, chemical reactivity can be determined by looking at the
energy barrier between reactants and products, i.e. the difference in energy between the
reactants and the maximal energy, which is obtained along the reaction path transforming
them to products. As the difference matters getting 99% of the absolute energy typically
still leads to much larger errors than 1% for the reaction barrier. One might therefore
wonder what part of the exact physical picture HF is missing and how one could improve
on that.

4.5.1 What does Hartree-Fock miss?

Even though the Fock operator (4.49) describes a many-electron system it is a one-particle
operator, since it only acts on single-electron functions. The many-particle aspect is only
treated via the Coulomb term (4.50) and the exchange term (4.51), where the interaction
with other electrons is included in the form of integrals over the electron density ρΘ0

or the density matrix γΘ0 . Overall an electron thus does not see the exact position of
all its neighbours via the Fock matrix, but only some kind of an average electron field.
In this sense the HF ansatz is sometimes called a mean-field approximation. In the
light of this the SCF can be thought of as an adjustment procedure, where the electronic
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Figure 4.2: Real planetary system and mean-field model in the spirit of the HF
approximation shown side-by-side. The mean-field picture on the right-hand side is
shown from the point of view of the red planet, such that its neighbours are smeared
out as thick black circles over their respective orbits. Adapted from [104].

arrangement in the form of the occupied SCF orbitals {ψi}i∈Iocc
is adjusted until their

generated mean field is no longer changing this arrangement, i.e. is self-consistent.

To visualise this issue better, let us consider in analogy a planetary system15, where
multiple planets are revolving around a central sun. In the real system, which is depicted
on the left-hand side of figure 4.2, the individual planets feel each other at all times at
their exact positions. As a result their orbit around the sun is not a perfect circle but
shows pronounced wiggles due to the interaction between the planets. In other words
the motion of the planets around the sun is highly correlated. In contrast to this the
right-hand side depicts the scenario drawn for the red planet in a HF-like mean-field
model. Its neighbours are no longer visible at their exact positions and the red planet
thus only amounts to interact with some sort of smeared out particle density, where their
position is averaged over their complete orbits. This interaction is almost as strong at
all points and thus the mean-field orbit of the red planet is much more smooth.

In the electronic system the situation is similar in sense that the behaviour of indi-
vidual electrons is indeed very much correlated. Due to its mean-field nature the HF
ansatz largely misses the description of this so-called electron correlation16. In fact
one typically refers to the difference

Ecorr
0 = EFCI

0 − EHF
0 (4.85)

between the HF and FCI energies in a particular basis set as the correlation energy.
As mentioned before Ecorr

0 is typically rather small compared to EHF
0 . Nevertheless the

15The idea is taken from [104].
16Conventionally one calls the HF treatment of a chemical system the uncorrelated treatment of the

electronic structure. This is not perfectly sound in my opinion, as for example the Pauli principle is
fulfilled in HF. This implies for example that two electrons of the same spin cannot occupy the same
orbital, which implies in turn that the motion of electrons of the same spin is at least to this extend
correlated.
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effects of the electron-electron interaction are very important for a proper description of
the electronic structure of a chemical system and can therefore not be neglected [83, 84,
104].

In practice one sometimes divides correlation effects into two subclasses. The first
kind, the so-called dynamic correlation, is the aforementioned failure of the HF
approximation to treat the communal, correlated motion of electrons properly. The
second kind, static correlation, occurs if the number of Slater determinants, which is
available for the description of a degenerate or near-degenerate state is not sufficient.
For the HF approximation, where only one determinant for the description of the ground
state is available, this defect becomes apparent in situations with a low-lying excited
state, for example. A classic example would be a molecule close to bond breaking. In
such a case the ground state resulting from a full CI treatment has relevant contributions
from more than one determinant. As a result even the best restricted HF ground state
determinant misses a substantial part of the full CI ground state and thus represents
a wrong description of the physics. In the remainder of this discussion about electron
correlation we will ignore static correlation and assume that a single determinant HF
ground state is already a pretty decent description of the electronic structure. Detailed
discussions of so-called multi-reference or multi-configurational methods tackling static
correlation can be found for example in [84, 92, 104, 105].

4.5.2 Truncated configuration interaction

In section 4.3 on page 52 about the FCI method we already mentioned that the exact
ground state Ψ0 to the electronic Schrödinger equation can be expressed as a CI expansion
(4.23)17

Ψ = c0Φ0 +
∑

ia

caiΦai +
∑

i<j
a<b

cabij Φabij +
∑

i<j<k
a<b<c

cabcijkΦabcijk + · · · ,

starting from an arbitrary reference determinant Φ0. A very natural choice for this is to
take the reference determinant to be the HF ground state, i.e. the best single determinant
for describing the electronic ground state. In this way the remaining contributions of
the excited determinants Φai , Φabij , Φabcijk , . . . can be expected to be small, which makes it
numerically more feasible to diagonalise the FCI matrix AFCI. Furthermore this justifies
truncating the CI expansion (4.23) prematurely to yield some sort of an intermediate
approximation between HF and FCI. For example CISD, configuration interaction singles-
doubles [106], truncates the above expansion in a way that only singles and doubles
excitations are taken into account. This would lead to the ansatz wave function

ΨCISD
0 = Φ0 +

∑

ia

caiΦai +
∑

i<j
a<b

cabij Φabij

where one assumes the individual determinants are normalised in a way that c0 = 1.

Even though truncated CI methods are conceptionally very simple, they are not used

17 In this section about correlation methods we will adhere to the usual index conventions where
occupied indices are denoted with letters i, j, k, l ∈ Iocc and virtual indices with letters a, b, c, d ∈ Ivirt,
see remark 4.8 on page 54 for details. To avoid clutter we will usually not indicate the index set in sums
explicitly, e.g. write

∑
a

instead of
∑

a∈Ivirt
.
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much any more for capturing dynamic correlation18 The main reason for this is the
so-called size-consistency problem. Unlike FCI the CISD energy of two molecular
fragments is in general not additive, even if these fragments do not interact. Put more
mathematically one can show [84] the following: If EA is the energy corresponding to the
CISD ground state ΨCISD

0 for a molecule A and EB is the analogous energy for another
molecule B, then the CISD ground-state energy EAB for a system consisting of both A
and B separated by an infinite distance is not EA + EB. One refers to this unphysical
behaviour as size-inconsistent. Including higher excitations does not fix this problem,
such that all canonical truncated CI methods are size-inconsistent. For the modelling
of chemical reactions or even large molecules, size-inconsistency is a major problem.
Nowadays better, size-consistent alternatives like the coupled-cluster ansatz (see below)
exist and are usually preferred.

4.5.3 Second order Møller-Plesset perturbation theory

Starting from the reasonable assumption that the HF ground state determinant Φ0 is
a very good approximation to the exact electronic ground state it is a sensible ansatz
to employ Rayleigh-Schrödinger perturbation theory [83, 84] and correct perturbatively
for the missing correlation contribution to the energy as well as the wave function. one
partitions the electronic Schrödinger Hamlitonian (4.12) into

ĤNelec
= Ĥ0 + Ĥ1,

i.e. a zeroth order Hamiltonian Ĥ0, which is easy to compute, and the perturbation Ĥ1,
which is the part missed in Ĥ0, assumed to be small.

One way this partitioning can be achieved is Møller-Plesset perturbation theory [108],
where the unperturbed operator is taken to be the direct sum of Nelec Fock operators at
the orbital configuration corresponding to the HF ground state Φ0,

Ĥ0 =
Nelec⊕

i=1

F̂Θ0 ,

and the perturbation is

Ĥ1 = V̂ee −
Nelec⊕

i=1

(
ĴΘ0 + K̂Θ0

)
,

i.e. whatever the HF operator misses. In the discretised setting of a finite-dimensional
one-particle basis {ϕµ}µ∈Nbas

one may easily derive the zeroth to second order energy
contributions [83]

E0
0 =

∑

i

εi,

E1
0 = −1

2

∑

ij

〈ij||ij〉 ,

E2
0 =

1
4

∑

ijab

|〈ij||ab〉|2
εi + εj − εa − εb

18In contrast to this statement the related multi-reference CI ansatz [107] is a state-of-the-art method
for dealing with statically correlated systems.
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to the ground-state energy. In other words up to zeroth order we obtain the sum of
the orbital energies. The first order correction accounts for the double counting of
the electron-electron interactions and recovers the HF energy expression. The first
real improvement to HF results at second order Møller-Plesset perturbation the-

ory (MP2). For reasons, which will become clear in the next section one often introduces
the so-called T2 amplitude

tabij ≡ 〈ij||ab〉
εi + εj − εa − εb

(4.86)

and writes the MP2 energy as

EMP2
0 = EHF

0 +
1
4

∑

ijab

〈ij||ab〉∗
tabij . (4.87)

The MP methods do in general have some issues as well. Most notably the perturbation
expansion of energies does in general not converge [84], making it hard to properly justify
these methods from a mathematical basis. In practice MP2 is still vividly employed,
mainly because it gives a decent guess towards the exact energy of the electronic ground
state at manageable computational cost19. The other MP methods on the other hands
are nowadays used only rarely.

One should mention that due to its perturbative nature, there is no guarantee that
EMP2

0 ≥ E0, the exact ground-state energy of the electronic Schrödinger equation (4.8).
In the community of quantum chemistry one often refers to this fact as MP2 being
non-variational. This saying is, however, a bit inaccurate, since the method MP2 is
indeed variational in the sense of the Courant-Fischer theorem (3.6), namely that larger
basis sets will always lead a lower-energy MP2 ground state, which is furthermore closer
to the exact MP2 ground-state wave function. This is not that much apparent in the
outlined derivation, but can be seen from an alternative route employing the Hylleraas
functional [84]. In contrast it is not variational in the sense that a larger basis yields an
MP2 energy which approaches E0 from above.

4.5.4 Coupled-cluster theory

The main idea of coupled-cluster theory is to employ a more elaborate ansatz for the
ground-state wave function with the overall aim to reach a size-consistent method. In
this work coupled-cluster only plays a minor role. This section will therefore be limited
to the absolutely necessary steps to get the rough idea. For a more thorough introduction
the reader is directed to the excellent review by Crawford and Schaefer [110] as well as
numerous other works [84, 111] dealing with the topic.

In coupled-cluster theory one starts from the so-called exponential ansatz

ΨCC = exp(T̂)Φ0 (4.88)

to generate the coupled-cluster wave function ΨCC from a HF ground state reference
determinant Φ0. In this equation

T̂ = T̂1 + T̂2 + · · · + T̂Nelec
(4.89)

19Using sensible approximations linear-scaling MP2 is possible [109].
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is the excitation operator consisting of all singles excitations

T̂1 =
∑

ia

tai τ̂
a
i

with τ̂ai defined, such that Φai = τ̂ai Φ0, all doubles excitations

T̂2 =
∑

i<j
a<b

tabij τ̂
ab
ij with Φabij = τ̂abij Φ0,

all triples

T̂3 =
∑

i<j<k
a<b<c

tabcijk τ̂
abc
ijk with Φabcijk = τ̂abcijk Φ0,

and so forth. In these sums the coefficients tai , t
ab
ij , tabcijk and so forth are called cluster

amplitudes. In a similar notation to (4.22) the excitation operator is often directly
written as a sum of the operators τ̂ai , τ̂abij , τ̂abcijk . . . , namely as

T̂ =
∑

µ

tµτ̂µ, (4.90)

where µ is an appropriately chosen multi-index and the sum is implicitly taken to have
sensible limits.

If we allow all possible excitations in (4.89), i.e. do not truncate the sum, the space
spanned by all possible coupled-cluster wave functions ΨCC is exactly equivalent to
the space of all Slater determinants, namely the form domain20 Q̃(ĤNelec

). Without
truncation CC is thus equivalent to FCI, moreover the exponential ansatz in this case
just provides an alternative to the standard parametrisation of Q̃(ĤNelec

) in terms of the
CI expansion (see remark 4.6 on page 53).

In the corresponding discretised setting, Φ0 is the solution to the discretised HF
problem (section 4.4.1 on page 64). In a similar fashion to full CI one would expect
a good ansatz for obtaining a CC approximation to the ground state of the electronic
Schrödinger equation to use the Ritz-Galerkin ansatz of remark 3.6 on page 34. In other
words, one would attempt to solve the variational minimisation problem

E0 ≤ ECC
0 = inf

{tµ}µ

〈
exp(T̂)Φ0

∣∣∣ĤNelec
exp(T̂)Φ0

〉

Nelec〈
exp(T̂)Φ0

∣∣∣exp(T̂)Φ0

〉

Nelec

, (4.91)

where there resulting minimising amplitudes give the CC ground state wave function
corresponding to the minimal ground-state energy ECC

0 . Without truncation of (4.89)
this is again equivalent to discretised full CI. Even with truncation to, for example,
T̂ = T̂1 + T̂2, equation (4.91) is intractable to solve. The reason for this is the number
of parameters in the problem. Even with truncation the exponential ansatz exp(T̂)Φ0

20Recall the definition in (4.18).
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generates every Slater determinant, such that (4.91) yields a high-dimensional, non-linear
problem, where products of the individual amplitudes {tµ}µ often occur in the resulting
system of equations.

For this reason one usually employs a different projection approach, which shall
only be sketched here21. If one plugs the exponential ansatz directly into the electronic
Schrödinger equation (4.8) for the ground state one obtains

ĤNelec
exp(T̂)Φ0 = ECC

0 exp(T̂)Φ0, (4.92)

where ECC
0 is the coupled-cluster ground-state energy. By a simple rearrangement this

can be written as

ECC
0 =

〈
Φ0

∣∣∣ĤT

∣∣∣Φ0

〉

Nelec

(4.93)

where we introduced the similarity-transformed Hamiltonian

ĤT = exp(−T̂)ĤNelec
exp(T̂).

For making use of equation (4.93) at all, the unknown amplitudes {tµ}µ still need to be
found. This is done by projecting (4.92) onto determinants exp(−T̂)Φµ = exp(−T̂)τ̂µΦ0,
which yields equations

〈
Φµ
∣∣∣ĤT

∣∣∣Φ0

〉

Nelec

= 0 (4.94)

one for each µ. In truncated CC methods, where only some of the terms of (4.89) are
kept, we can use (4.90) to generate exactly one equation for each amplitude µ. In other
words, the µ in (4.94) is just taken to run over the same index range as in the expansion
(4.90) for the truncated excitation operator T̂.

Numerically solving for the CC amplitudes in (4.94) amounts to a root-finding prob-
lem, where the parameters are the set of all amplitudes {tµ}µ. This is typically ap-
proached by minimising the residuals

rµ =
〈

Φµ
∣∣∣ĤT

∣∣∣Φ0

〉

Nelec

(4.95)

iteratively until numerically rµ = 0 for all µ. Even though this problem is easier compared
to the variational CC ansatz, the working equations resulting from the expressions (4.95)
are typically all but simple. For example, let us consider one of the simplest coupled-
cluster approaches, where

T̂ = T̂2 =
∑

i<j
a<b

tabij τ̂
ab
ij ,

called coupled-cluster doubles (CCD). A proper derivation [110–113] starting from (4.94)

21Notice, that some mathematical rigour is dropped here. Since ĤNelec
exp(T̂)Φ0 is only defined

properly if Φ0 ∈ H2(C3Nelec ,C2Nelec ), which is not true in general. Even in the discretised case one
may choose a one-particle basis {ϕµ}µ∈Ibas

, where some functions are not members of H2(C3Nelec ,C),

such that Φ0 6∈ H2(C3Nelec ,C2Nelec ) is possible.
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yields the equations

rabij = 〈ab||ij〉
+
∑

e

fae t
eb
ij −

∑

e

fbe t
ea
ij −

∑

m

fmi t
ab
mj +

∑

m

fmj t
ab
mi

+
1
2

∑

mn

〈mn||ij〉 tabmn +
1
2

∑

ef

〈ab||ef〉 tefij

+
∑

me

〈mb||ej〉 taeim −
∑

me

〈mb||ei〉 taejm

−
∑

me

〈ma||ej〉 tbeim +
∑

me

〈ma||ei〉 tbejm

− 1
2

∑

mnef

〈mn||ef〉 tafmn tebij +
1
2

∑

mnef

〈mn||ef〉 tbfmn teaij

− 1
2

∑

mnef

〈mn||ef〉 tefin tabmj +
1
2

∑

mnef

〈mn||ef〉 tefjn tabmi

+
1
4

∑

mnef

〈mn||ef〉 tabmn tefij +
1
2

∑

mnef

〈mn||ef〉 taeim tbfjn

− 1
2

∑

mnef

〈mn||ef〉 taejm tbfin − 1
2

∑

mnef

〈mn||ef〉 tbeim tafjn

+
1
2

∑

mnef

〈mn||ef〉 tbejm tafin

. (4.96)

for the CCD residual rabij . They involve multiple contractions over the antisymmetrised
ERI tensor from remark 4.10 on page 57, the amplitudes tebij and elements of the Fock
matrix f in the SCF orbital basis. This latter matrix is defined as

f = C
†
FFCF ∈ CNorb×Norb .

If the canonical HF ansatz of (4.53) is used, f will be diagonal and equivalent to
diag(ε1, ε2, . . . , εNorb

). The corresponding CCD energy expression

ECCD =
1
4

∑

ijab

〈ij||ab〉 tabij . (4.97)

can be obtained by simplifying (4.93). Since the rank-4 tensor tabij occurs in the expression

for the T̂2 excitation operator, this tensor is usually called the T2-amplitudes tensor as
well. Comparing the structure of (4.87) and (4.97), the name of the expression (4.86) in
MP2 finally becomes apparent.

For higher-order methods like CCSD, where T̂ = T̂1 + T̂2, or CCSDT, were T̂3

is considered on top, the expressions for the working equations (4.95) are even more
involved. In turn these methods become rather expensive as well, e.g. CCSD scales as
O(N6

bas) and CCSDT as O(N8
bas). Nevertheless, CC methods are very popular and widely

adopted in quantum chemistry. Firstly because they converge systematically towards the
FCI energy as higher and higher excitations are considered in (4.89) and secondly because
all CC methods are size-consistent — unlike the truncated CI methods we mentioned
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above. One particular approach named CCSD(T), where the triples excitations are
perturbatively added on top of CCSD, has been named the gold standard of chemistry
as it generally yields highly accurate results with an expensive, but an acceptable scaling
of O(N7

bas), where the most costly O(N7
bas) is not iterative. Recent improvements [114]

within the framework of pair-natural orbital approaches, has brought down the apparent
scaling of CCSD(T) to linear, allowing to compute the energies of complete proteins on
the level of CCSD(T).

4.5.5 Excited states methods

In most of our discussion up to this point we have only focused on obtaining an approxim-
ation to the ground state of the electronic Schrödinger equation. In some applications of
electronic structure theory, however, electronic excitations play a role. Examples include
the interaction of UV photons or photons of visible light with the electronic structure in
a dye or a solar cell or more generally any photo-activated chemical reaction. Whenever
this is the case the modelling of multiple electronic states on an equal footing is required.

For FCI or the truncated CI methods, this can be achieved without additional
modification by solving the respective full or truncated CI matrix for more than one
eigenpair. All but the lowest are excited states. These are not the only excited states
methods in existence. In fact to each of the other methods we have discussed so far one
is able to appoint at least one analogue [115]. For example for Hartree-Fock, there is
configuration-interaction singles (CIS) or time-dependent HF (TDHF) and for coupled-
cluster there are the equation-of-motion and linear-response coupled-cluster theories [116,
117]. Last but not least, the algebraic-diagrammatic construction scheme (ADC) for the
polarisation propagator at various orders [118, 119] can be seen as a CI-like scheme on
top of a Møller-Plesset ground state. Its excited states are generally in good agreement
with the MP description of the ground state.

4.6 Density-functional theory

In this section we want to briefly look at a different approach towards modelling the
electronic structure. Instead of solving for the wave function Ψ0 associated to the ground
state of the electronic Hamiltonian ĤNelec

, the idea behind density-functional theory

is to solve for the state’s electronic density ρ0 instead.

The rationale for this is twofold. Firstly the density contains all information about the
chemical system. The integral

∫
R3 ρ(r) dr evaluates to the number of electrons Nelec and

via Kato’s cusp condition [69] one may obtain the nuclear charges ZA via the derivatives
of the electron density at the cusp points. Secondly the Hohnberg-Kohn theorems [120] as
well as the Levy constrained search ansatz [121] provide a unique identification between
a particular ground state electron density and the potential, which generates this density.
Even from a mathematical point of view solving for the ground state density ρ0(r) is
thus sufficient to characterise all properties of the ground state of a system.

The Levy constrained search ansatz [121] provides a conceptionally rather intuitive
route to obtain the ground state density, namely by a constrained minimisation of the
energy with respect to all possible densities. The issue with this procedure is that a
closed-form expression for the energy functional E(ρ), which returns the energy of a given
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density, is not known for any relevant chemical system. In other words Levy constrained
search in the form presented so far cannot be applied to chemical systems.

Further progress can be made with the Kohn-Sham ansatz [122], however. The idea
is to consider a fictitious system of Nelec non-interacting electrons, which still has the
property that it reproduces the exact ground state density of the full, interacting system.
Ignoring spin in our discussion in this model system the exact wave function is a single
determinant

Ψ = ΦΘ =
Nelec∧

i=1

ψi where Θ ≡ (ψ1, ψ2, . . . , ψNelec
) ∈

(
H1(R3,C)

)Nelec

is a tuple of Nelec single-particle functions. Ignoring spin the resulting ground state
density is

ρΘ(r) =
Nelec∑

i=1

|ψi(r)|2 ,

which allows to write the Kohn-Sham energy functional as

EKS(Θ) =
1
2

Nelec∑

i=1

∫

R3

‖∇ψi‖2
2 dr +

∫

R3

M∑

A=1

ZA ρΘ(r)
‖r − RA‖2

dr

+
1
2

∫

R3

∫

R3

ρΘ(r1)ρΘ(r2)
‖r1 − r2‖2

dr1 dr2 + Exc(ρΘ).

(4.98)

In this expression Exc is the exchange-correlation functional, which depends only
on the density function ρ. This term is supposed to describe the non-local many-body
effects not yet contained in the other terms, which is threefold, (1) the part of the kinetic
energy missed by the non-interacting electrons, (2) the exchange interaction as well as
(3) correlation effects. The crux with Kohn-Sham DFT is that its exact functional form
is unknown, such that one has to live with approximations. Which exchange-correlation
functional is sensible for a particular problem depends very much on the context of
the chemical system, the property one is interested in and is still subject of debate in
quantum-chemical literature. Notice, however, that if the exact exchange-correlation
functional was to be found, (4.98) would yield the exact ground-state energy.

Following the original Levy constrained search, we want to find the density corres-
ponding to the minimal energy, which in the Kohn-Sham picture implies the minimisation
of EKS(Θ) with respect to the orbitals, thus the problem

E0 ≤ EKS
0 = inf

{
EKS(Θ)

∣∣∣Θ ∈
(
H1(R3,C)

)Nelec
, ∀i, j 〈ψi|ψj〉1 = δij .

}
. (4.99)

Both the energy functional (4.98) as well as the Kohn-Sham minimisation problem (4.99)
are closely related to the HF problem (4.40). In fact the only difference is the substitution
of the exchange energy term by the exchange-correlation functional. As such it should
not be very surprising that the methods employed to solve (4.99) is very similar to HF
as well. The conditions to obtain the stationary points of (4.99), the Euler-Lagrange
equations, can be reformulated as

F̂KS
Θ0 ψ0

i = εiψ
0
i and

〈
ψ0
i

∣∣ψ0
j

〉
= δij (4.100)
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where Θ0 is the minimiser of (4.99) and

F̂KS
Θ0 = T̂ + V̂0 + ĴΘ0 + Vxc (4.101)

is the Kohn-Sham operator. Its difference to the Fock operator (4.49) is again simply the
replacement of the exchange operator K̂Θ0 by the exchange-correlation potential

Vxc(r), which is the derivative of the exchange-correlation energy Exc(ρ) with respect
to the density function ρ. Equation (4.100) as well as the minimisation problem (4.99)
can now be discretised similar to the procedure outlined in section 4.4.1 on page 64 for
Hartree-Fock, which leads to an iterative self-consistent field procedure, which is very
similar to the Hartree-Fock SCF outlined in remark 4.18 on page 70. Algorithmically
both for Kohn-Sham DFT as well as HF the same type of problem needs to be solved,
such that all of the numerical procedures discussed in the next chapters for HF could be
applied to Kohn-Sham DFT with only very few changes.

Even though the mathematical problem of the Kohn-Sham DFT ansatz is related to
HF, one should mention that DFT in combination with modern exchange-correlation
functionals [123–128] is much more exact than HF for common applications of quantum-
chemical calculations. Since the cost is comparable to HF, it has thus become by far the
most widely used method of electronic structure theory.
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Chapter 5

Numerical approaches for

solving the Hartree-Fock

problem

I believe there is no philosophical high-road in science, with epistem-
ological signposts. No, we are in a jungle and find our way by trial
and error, building our road behind us as we proceed.

— Max Born (1882–1970)

This chapter is devoted to an in-depth discussion of numerical approaches for solving
the HF problem both when it comes to the basis function type used for the discretisation
and the algorithms for solving the discretised problem. We will discuss how different
basis function types lead to numerical problems of vastly different structure and how
therefore not every algorithmic ansatz works for every type of basis function.

In section 4.4.1 we noted that there are roughly three ways to view the discretised HF
problem. One way would be to think of it as a minimisation of the energy with respect
to the orbital coefficients, another as a minimisation with respect to the density matrix
and yet a third as a non-linear eigenproblem, which needs to be solved self-consistently.
Our discussion here will generally take the third viewpoint and only switch to the others
when this aids our argument. Furthermore we will implicitly assume a real-valued UHF
ansatz in this chapter. The adaption of the presented results to RHF or ROHF is usually
straightforward1.

1 To go from UHF to RHF one just needs to consider both blocks of the relevant Fock, coefficient,
and density matrices to be equivalent. Going from UHF to ROHF only amounts to replacing the UHF
Fock matrix by the appropriately constructed ROHF Fock matrix before performing the diagonalisation
for getting the new coefficients.

85
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5.1 Overview of the self-consistent field procedure

In remark 4.18 of the previous chapter we suggested a simple procedure for iteratively
solving the HF equations. The idea was to start from an initial guess C(0) from the Stiefel
manifold C as defined in (4.66) and repetitively construct occupied coefficient matrices
C(1),C(2), . . . ,C(n−1) ∈ C by solving the discretised HF equations (4.79) and considering
the Aufbau principle. Since the minimiser of the discretised HF problem (4.65) is unique2,

there is no need to diagonalise exactly F
[
C(n)

(
C(n)

)†
]

in each iteration. Instead we

could well diagonalise an arbitrary matrix F̃(n) for obtaining the new coefficients C(n). It
is important, however, to ensure that the final coefficients, say C0, satisfy the necessary
conditions for being a minimiser of EC , namely that C0 ∈ C and that the Pulay error
(4.80) vanishes. At least its norm should stay within a finite value. Notice, that for

the computation of the Pulay error in each case the unmodified matrix F
[
C(n)

(
C(n)

)†
]

needs to be employed in order for the resulting value to be meaningful. As discussed in
remark 4.18 on page 70 even if both these conditions are satisfied, this is no guarantee,
however, that C(n) is a minimiser for (4.65), since both are only necessary but no
sufficient conditions. Ignoring this fact for a moment, this leads to the following general
approach.

Remark 5.1 (SCF procedure). Pick a convergence threshold εconv ∈ R, a basis set

{ϕµ}µ∈Ibas
⊂ H1(R3,R) and an initial guess C(0) ∈ C of occupied coefficients. From

this build an initial Fock matrix F̃(0) = F
[
C(0)

(
C(0)

)†
]
.

For n = 1, 2, 3, . . .

• Diagonalise

F̃(n−1)C
(n)
F = SC

(n)
F E(n)

under the condition (
C

(n)
F

)†

SC
(n)
F = INorb

where
E(n) = diag

(
ε

(n)
1 , ε

(n)
2 , . . . , ε

(n)
Norb

)

is the diagonal matrix of orbital eigenvalues.

• Construct the occupied matrix C(n) from the full matrix C
(n)
F by the Aufbau

principle.

• Build the Fock matrix F
[
C(n)

(
C(n)

)†
]
.

• Compute e(n) according to (4.80)

e(n) = F

[
C(n)

(
C(n)

)†
]

C(n)
(

C(n)
)†

S − S C(n)
(

C(n)
)†

F

[
C(n)

(
C(n)

)†
]

Check the necessary condition: If
∥∥e(n)

∥∥
frob

≤ εconv the procedure is considered
converged3 with final coefficients C0 ≡ C(n).

2This is only true in the discrete setting.
3In finite dimensions all norms are equivalent, so the choice of the Frobenius norm is arbitrary here.
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• Build a Fock matrix F̃(n) somehow using C(n) and all insight into the problem
gathered so far.

The final HF energy is given by EC(C0) according to (4.59) and the final SCF orbitals
Θ0 by (4.57).

This scheme still leaves a couple of important questions unanswered, which we will
address in the following sections, namely:

• What is a suitable method for choosing the initial guess C(0)?

• What type of basis function is suitable?

• What algorithms are sensible for building the next Fock matrix F̃(n)?

Furthermore remark 5.1 considers the HF problem to be parametrised in terms of
the occupied coefficients C(n) and solves it by producing a sequence of coefficients
C(1),C(2), . . . ,C(n) ∈ C until convergence. By the arguments discussed in section 4.4.1
one can alternatively parametrise the HF problem in terms of density matrices D(n).
In this light some SCF algorithms are better understood if one thinks about them
as schemes producing a sequence of density matrices D(0),D(1), . . . ,D(n) ∈ P instead.
As an example see the optimal damping algorithm in section 5.4.3 on page 129. To
distinguish both approaches, the first kinds of algorithms iterating C(n) will be called
coefficient-based SCF schemes whilst the second kind of algorithms iterating D(n) we
will call density-matrix-based SCF algorithms.

The identification

D(n) = C(n)
(

C(n)
)†

,

which we already presented in (4.71) in section 4.4.1, allows to build the density matrix
from the coefficients by a matrix-matrix product and in the reverse direction we can find
matching coefficients for each density matrix by a factorisation, e.g. a diagonalisation or
a singular-value decomposition4. This allows — at least theoretically — to convert every
density-matrix-based algorithms into a coefficient-based scheme like remark 5.1 and vice
versa. In practice, the factorisation from density matrices to coefficients could become
rather costly and might not be always applicable.

5.2 Guess methods

A good guess for an iterative procedure like the SCF is characterised by two things.
Firstly, it should already be close to the expected solution. Otherwise one might as well
start from a random initial set of coefficients. Secondly, it should be cheap to obtain, at
least considerably cheaper than the SCF itself. Otherwise again a totally random guess
does just as well.

Notice that in general random guesses have not much application from a practical
point of view, but for investigating the stability of an SCF procedure they are really
helpful. For example, one could check whether a combination of guess method and SCF
algorithm yields a true local minimum or just a stationary point of the HF problem
(4.65) by trying a few random guesses and checking the resulting energies.

4Thanks to Eric Cancès for pointing this out to me.
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The next sections present a non-exhaustive list of commonly used guess methods for
starting SCF procedures.

5.2.1 Core Hamiltonian guess

Only the Coulomb and exchange matrix terms of the Fock matrix expression (4.76)

F
[
CC†

]
= T + V0 + J

[
CC†

]
+ K

[
CC†

]

depend on the coefficients C. Furthermore the entries of the kinetic matrix T and the
nuclear attraction matrix V0 are typically larger than the entries of the Coulomb and
exchange matrices. A reasonable approximation, which avoids the SCF procedure as a
whole is therefore to find an initial guess C(0) by diagonalising the core Hamiltonian
T + V0 and keeping the Nelec lowest eigenvalue solutions.

Since electrons in this model do not repel each other the resulting approximate
orbitals are typically too contracted and thus not extremely physical. In my calculations
with Coulomb-Sturmian-type basis functions (see section 5.3.6) for example I found core
Hamiltonian guesses to often converge to stationary points in the SCF process, which
are not minima of the HF problem.

Such issues become worse with large basis sets or larger molecules. An ad-hoc way
to fix this is to scale the nuclear attraction matrix by a factor 0 < α ≤ 1 in order to
mimic the shielding of the nuclear charge somewhat. Nevertheless this guess method is
typically only used if other options are not available. An advantage is, however, that it
can always be done.

5.2.2 Guesses by projection

A common procedure in many discretisation approaches is to first obtain a quick and
crude solution using only a small basis set and to refine the result later in a larger basis.
Ideally as much of the information gained in the crude result is used for starting the
large calculation.

In the context of the SCF procedure one would, for example, like to use the final
coefficients c̃0 from a calculation in the small basis {χν̃}ν̃=1,...,Ng

with only Ng functions
to obtain a guess for the more refined calculation in the basis {ϕµ}µ=1,...,Nb

with Nb ≥ Ng.
Conceptionally this requires to operate on the coefficients with the transformation matrix
U ∈ CNb×Ng consisting of elements

Uµν̃ = 〈ϕµ|χν̃〉1 .

Since Uµν̃ is not necessarily unitary, the simple matrix-matrix product Uc0 will in general
not be orthonormal with respect to the overlap matrix of the new basis S ∈ RNb×Nb and
is thus not directly usable. Instead, a more involved treatment is required, taking the
overlap matrices both in the old and the new basis into account. If we use s̃ ∈ RNg×Ng

to denote the overlap matrix in the new basis, a properly orthonormalised guess would
be [129]

C(0) = S−1Uc0N−1/2 (5.1)
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where the matrix

N = c̃
†
0U†S−1Uc0 (5.2)

takes care of proper normalisation. The computation (and diagonalisation) of N can
be avoided if other techniques for orthogonalising the Norb column vectors S−1Uc0 are
used, like a Gram-Schmidt procedure or a singular-value decomposition.

A modification of this procedure would be to alternatively build

f = Uc0Ẽc
†
0U†, (5.3)

where (assuming Ng ≥ Norb)

Ẽ = diag (ε̃1, ε̃2, . . . ε̃Norb
)

are the orbital energies obtained from the SCF in the old basis. Diagonalisation of this
matrix with respect to S yields a set of initial guess coefficients C(0) as the eigenvectors
and the modified orbital energies as the eigenvalues. For example the quantum-chemistry
program ORCA uses the latter approach by default [130].

5.2.3 Extended Hückel guess

The extended Hückel (EH) procedure for obtaining estimates of molecular orbitals was
developed in the 1960s by Hoffmann [131] based on the extended Hückel Hamiltonian
matrix defined in the earlier work by Wolfsberg and Helmholz [132]. Sometimes this
procedure is called Generalised Wolfsberg-Helmholz procedure for this reason as
well.

The idea is here to start from a minimal set of orbitals {φi}i=1,...,Ntrial
, originally

exponential-type orbitals, and build the model Hamiltonian

HEH
ij =

1
2
KSEH

ij

(
HEH
ii +HEH

jj

)
,

from the EH overlap matrix SEH with elements

SEH
ij =

∫

R3

φi(r)φj(r) dr,

an empirical parameter K typically set to 1.75 and the diagonal elements HEH
ii , which

should be a rough estimate for the trial orbital energies φi. For this a range of methodo-
logies are employed in practice, including the diagonal elements of the core Hamiltonian
matrix of the trial basis, experimental atomic ionisation energies [133] or even the results
from a cheap SCF procedure [130]. The obtained matrix HEH

ij is diagonalised with
respect to the EH overlap matrix SHF yielding trial coefficients CHF. Following the
procedures of the previous section 5.2.2 one may project these onto the basis set of the
problem of interest and use them as an initial guess C(0) for the SCF procedure.

Despite its age the EH method is still subject to active research. For example Lee
et al. [134] have constructed a scheme combining the extended Hückel method and
Slater’s rules [3] by which decent guesses for finite-element-based density-functional
theory calculations may be obtained.
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Typically the EH method only works reasonably well for small basis sets and small
molecular systems. This drawback is overcome if an approach related to the superposition
of atomic densities is used for obtaining the diagonal elements of HEH. In the quantum-
chemistry package ORCA [130] for example one can use both the atomic orbitals as well
as the orbital energies from pre-calculated atomic STO-3G [4] calculations to drive the
EH guess: The trial basis set {φi}i=1,...,Ntrial

in their approach is just the combination of
all atomic STO-3G orbitals and the diagonal elements HEH

ii the corresponding STO-3G
orbital energies.

5.2.4 Superposition of atomic densities

The idea of the superposition of atomic densities (SAD) [135] is that molecules are to
a very large extend just a collection of atoms, such that the molecular electron density
can be obtained approximately just by adding the densities of all constituting atoms
together. If atom-centred basis functions are used this process is almost trivial. Let us
illustrate the procedure by a chemical system made up of M atoms labelled 1, 2, . . . ,M .
We first perform atomic ROHF calculations on each atom using the same basis set we
want to employ for the molecular calculation, but only the basis functions of the atom
in question. This yields converged atomic SCF density matrices D1,D2, . . .DM . In the
SAD guess method as described in [135] the trial density matrix D̃ is the sum of all
density matrix Dα

1 , D
β
1 , Dα

2 after they have been projected from the atomic basis onto
the basis used for the molecular calculation. If we compose the basis of the molecular
system in the usual manner, i.e. by pasting together all basis functions a basis set defines
for each atom, in the order atom by atom, D̃ would be block-diagonal

D̃ =




Dα
1 + D

β
1 0 · · · 0

0 Dα
2 + D

β
2 · · · 0

...
...

. . .
...

0 0 · · · Dα
M + D

β
M


 .

Replicating D̃ twice on the α and the β block we can construct the trial density matrix

Dt =
(

D̃ 0
0 D̃

)

and with it a trial Fock matrix Ft = F[Dt]. A diagonalisation

FtC(0) = C(0)Et

finally yields the initial coefficients C(0) along with some trial energies along the diagonal
matrix Et.

A few remarks about the SAD guess method:

• This whole procedure costs roughly as much as a single SCF step plus the time
needed for the atomic calculation, which is typically negligible.

• Furthermore many quantum-chemistry programs store precomputed atomic dens-
ities D1,D2, . . . for their supported basis functions and all relevant elements of
the periodic table, such that the cost of the SAD guess procedure is typically even
lower in practice.
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• The quality of the guess is in general rather good [135].

• Since Dt 6∈ P, the orbital energies Et obtained from the diagonalisation of Ft are
not variational with respect to the overall HF problem. At least one further SCF
step is therefore required.

• For molecular UHF and ROHF calculations, one might want to perturb the α and
β parts of Dt slightly in order to enforce breaking the spin symmetry in the α and
β blocks.

5.3 Basis function types

This section tries to address the question, which classes of functions can be used in order
to build a basis set {ϕµ}µ∈Ibas

for solving the HF problem. For this we will first discuss
some desirable properties for a basis set, both motivated from the aim to represent the
physics of the electronic Schrödinger equation as good as possible as well as requirements
from the numerical side. In the light of this, we will discuss four types of basis functions in
depth, namely the Slater-type orbitals (STOs), the most commonly employed contracted
Gaussian-type orbitals (cGTOs), a finite-element-based discretisation method as well as
so-called Coulomb-Sturmian-type orbitals.

Even though we mostly concentrate on the HF problem in this section, quite a few
of the observations made here apply to DFT or methods going beyond Hartree-Fock as
well. In this sense the outlined discussion can be seen as an example case for the use of
the mentioned basis function types in electronic structure theory as a whole.

5.3.1 Desirable properties

The central aspect of the Ritz-Galerkin procedure for approximately solving a spectral
problem is the evaluation of the a( · , · ) corresponding to the operator for all pairs of
basis functions, compare with remark 3.7 on page 35 for details. For this procedure
to be mathematically meaningful at all, this requires the basis functions {ϕµ}µ∈Ibas

to be taken from a dense subspace of the form domain of the operator. For the real-
valued HF problem this is the Sobolev space H1(R3,R), thus a hard requirement for
all types of basis functions used for Hartree-Fock and quantum chemistry in general is
that they originate from H1(R3,R). Furthermore, in some or another sense we will need
compute the elements of the Fock matrix F

[
CC†

]
(4.76), which in turn boils down to

computing the integrals of the constituent matrix expressions (4.60) to (4.63), as well as
the overlap matrix (4.64). The challenging step for this is typically the evaluation of the
electron-repulsion tensor (4.31)

(ϕµϕν |ϕκϕλ) =
∫

R3

∫

R3

ϕ∗
µ(r1)ϕν(r1)ϕ∗

κ(r2)ϕλ(r2)

‖r1 − r2‖2

dr1 dr2.

as it involves a double integral over space incorporating a singularity at the origin as
well as the product over four basis functions. Additionally, the discretised HF equations
(4.74) need to be solvable numerically as well. We will see in the next sections that
the main reason why contracted Gaussian-type orbitals have become so popular in
quantum chemistry is that both evaluating the ERI tensor as well as solving the resulting
eigenproblem is rather easy compared to the other cases.
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Apart from the mathematical and numerical feasibility we would like to get meaningful
results with as little effort as possible, i.e. a good description of a chemical system should
already be achievable with small basis sets. Usually this goes hand in hand with a
basis function which by itself represents the physics of the chemical system very well
already, such that as much prior knowledge and chemical intuition as possible could be
incorporated already into the basis. Ideally this would not bias the solution procedure,
such that unexpected or unintuitive results can still be found.

Last but not least we would like to be able to know how wrong our HF results are
compared to the exact HF ground state, possible even with a pointer how to increase
the basis, such that results can be systematically improved. The aspired scenario would
be a rigorous and tight a priori or even better a posteriori error estimate for the chosen
basis function type in the context of HF.

Of course this just sketches an ideal scenario. In reality one needs a good compromise,
typically even a different compromise for different applications. Especially the a priori
and a posteriori error estimates are not easy to derive rigorously for HF and I am not
aware of any work achieving this for the basis function types I will discuss here in detail.

5.3.2 Local energy

Before we start discussing individual basis types, let us briefly pause and think about
ways to quantitatively judge a particular basis function type. A natural choice is to
consider a model system, where the analytical solution can be found, and compare it
with the Ritz-Galerkin HF result produced by a particular basis on the same system.
In this chapter, we will compare against the hydrogen atom. Without a doubt this
does not probe all aspects of the physical interactions happening inside the electronic
structure. Most importantly it does miss an evaluation how a basis set deals with electron
correlation. All results therefore need to be taken with care: In more complex systems
the situation will be deviating.

For comparing our numerical answers in the form of the HF ground-state Slater
determinant Φ0 to the exact electronic Schrödinger equation solution Ψ0, we will use
absolute errors and relative errors in the ground-state wave function as well as the
ground-state energy. Additionally, we will consider a quantity called local energy,
which is defined below.

Definition 5.2. Let Φ0 be an approximation to the ground state of the operator ĤNelec
.

The local energy is defined by the quotient

EL(x) ≡ ĤNelec
Φ0(x)

Φ0(x)
, (5.4)

which is constant for an exact eigenstate of ĤNelec
and approximately constant for good

approximations. Since the potential energy operator terms are only multiplicative, this
expression can be alternatively written as

EL(x) = −1
2

Nelec∑

i=1

∆r
i
Φ0(x)

Φ0(x)
−
Nelec∑

i=1

M∑

A=1

Za
‖r − RA‖2

+
Nelec∑

i=1

Nelec∑

j=1+1

1
rij
.

The concept of local energy originates from the quantum Monte Carlo community [136,
137], where its sampling by a Monte Carlo procedure plays a central role for obtaining
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the correlation energy. It is related to the relative residual

1
Φ0(x)

(
ĤNelec

− E0

)
Φ0(x) =

ĤNelec
Φ0(x) − E0Φ0(x)

Φ0(x)
= EL(x) − E0,

where E0 is the exact ground-state energy of ĤNelec
. This implies first of all that

EL(x) = E0 is necessary for Φ0(x) being the exact ground state. Furthermore the
fluctuations of EL(x) around the exact constant value E0 provide a measure how far
Φ0(x) is off from being an exact eigenstate of ĤNelec

at a particular point x. In this
sense EL(x) can thus be seen as a local measure for the accuracy of Φ0(x) [9]. Inside
regions where EL(x) is close to being constant, the basis {ϕµ}µ∈Ibas

provides a sensible
description of an eigenstate of ĤNelec

. EL(x) is without a doubt conceptionally related
to the relative error in the ground-state wave function 1 − Φ0(r)/Ψ0(r). Compared to
the latter quantity, EL(x) has the additional advantage that one is able to notice which
eigenstate Φ0(r) approximates in each region of space. For example, if it fluctuates
around E0 in some areas and around E1 in others, we can see that Φ0(r) sometimes
represents the first excited state better than the ground state. Additionally, EL(x) can
be applied even for cases where the exact solution is not known and thus the relative
error cannot be found.

5.3.3 Slater-type orbitals

In section 2.3.5 on page 27 we discussed the analytical solution of the simplest chemical
systems, namely the hydrogen-like atoms or ions with only a single nucleus and a single
electron. Their solutions were functions

Ψnlm(r) = NnlP̃nl

(
2Zr
n

)
Y ml (θ, φ) exp

(
−Zr

n

)

where P̃nl is polynomial of degree n− 1 in 2Zr
n , see (2.44) for details. Characteristic for

the functional form of these solutions is both the exponential decay as r → ∞ as well as
the discontinuity at the origin, i.e. the position of the nucleus. These two fundamental
observations can be generalised to the setting of the full electronic Hamiltonian ĤNelec

as summarised in the following remark.

Remark 5.3. Let Ψi(x) be an exact eigenstate of the electronic Hamiltonian ĤNelec

with eigenenergy ENelec
i . It holds:

• Kato’s electron-nucleus cusp condition [5]:

∂〈Ψ(x)〉
∂ri

∣∣∣∣
r

i
=R

A

= −ZA 〈Ψ(x)〉|r
i
=R

A

where 〈Ψ(x)〉|r
i
=R

A
denotes the average value on a hypersphere with ri = RA

fixed. Notice, that this expression can be reformulated to yield the more well-known
result

∂ρ(r)
∂r

∣∣∣∣
r=R

A

= −2ZAρ(RA).

• Taking the limit r1 → ∞, while keeping all other electronic and nuclear coordinates
finite, the first electron is essentially decoupled from the motion of the other
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particles and only sees them as a point charge of value

Znet =
M∑

A=1

ZA − (Nelec − 1). (5.5)

The other particles of the system, i.e. excluding electron 1, effectively forms a
Nelec − 1-electron system. This allows to approximately write

Ψi(x) ≃ Ψ̃rest
j (x)Ψ̃1

i (r1),

where Ψ̃rest
j has only parametric dependence5 on r1. Approximately it is an eigen-

function to ĤNelec−1. With this ansatz the electronic Schrödinger equation at large
r1 reduces for Ψ̃1

i (r1) to

(
−1

2
∆r1

− Znet

r1
− Enet

i

)
Ψ̃1
i (r1) ≃ 0, (5.6)

where Znet is the net charge as in (5.5) and Enet
i is the net energy eigenvalue

roughly equal to ENelec
i − ENelec−1

j < 0. For a neutral Nelec-system Znet = 1, such
that the solution of (5.6) is

Ψ̃1
i (r1) ≃ exp

(
−
√

−2Enet
i r1

)
, (5.7)

i.e. an energy-dependent exponential decay.

Both these results motivate the use of exponential-type atomic orbitals involving a
factor exp (−ζ ‖r − RA‖) as basis functions for molecular calculations, since such a basis
will give rise to solutions, which satisfy both conditions if the factor ζ is chosen correctly.

The first attempt to do this predates the rigorous results by Kato [5, 69] by over two
decades. In 1930 Slater [3] obtained approximate solutions to the electronic Schrödinger
equation for many atoms of the periodic table. He employed basis sets {ϕµ}µ∈Ibas

⊂
H1(R3,R) made out of exponentially decaying functions. Motivated from the solution
to the Schrödinger equation of the Hydrogen atom, his ansatz was to write each basis
function as

ϕSTO
µ (r) = RSTO

µ (rµ)Y mµ

lµ
(θµ, φµ) (5.8)

i.e. as a product of radial part RSTO
µ and real-valued6 spherical harmonic Y mµ

lµ
, where

(rµ, θµ, φµ) ≡ rµ = r − Rµ

is the distance vector to the nucleus located at Rµ. For the radial part he used a
polynomial times exponential form

Rµ(r) = Nµr
nµ−1 exp(−ζµr), (5.9)

5Notice that this ansatz is somewhat related to the Born-Oppenheimer approximation.
6Keeping in mind that all 2l + 1 spherical harmonics Y m

l
with the same value for l correspond to

the same eigenspace one can always find an alternative representation to the functional form given in
(2.37), where all spherical harmonics are real-valued functions. See [138] for details.



5.3. BASIS FUNCTION TYPES 95

where ζµ is a constant depending on the nuclear charge as well as the orbital in question
and Nµ is the normalisation factor

Nµ = (2ζµ)nµ

√
2ζµ

(2nµ)!
.

He was able to construct rules of thumb for obtaining the exponents ζµ for many elements
by introducing a concept now known as shielding [3]. A more detailed discussion about
shielding constants can be found in section 8.4.2 on page 191. In his honour exponential-
type atomic orbitals of the form (5.8) with radial part (5.9) are called Slater-type
orbitals (STOs).

As mentioned above STOs are physically rather sound and as such in many cases
only few of them are required to achieve good results as errors are generally small and
convergence fast [8, 9, 139, 140]. Their big drawback, however, is that evaluating the
electron-repulsion tensor (ϕµϕν |ϕκϕλ) is challenging, such that STO-based methods are
not amongst the most commonly used quantum-chemistry methods nowadays. Never-
theless, their promising properties and fast convergence has motivated many people to
work on optimising STO expansions and on designing efficient evaluation schemes for
the ERI tensor [9, 32, 140–142]. As a result, a number of packages like STOP [143],
SMILES [144] and ADF [145] have become available, which employ basis sets composed
of STOs.

5.3.4 Contracted Gaussian-type orbitals

In 1950 Boys [2] suggested to replace the exponential factor exp(−ζr) in the radial
part (5.9) by a Gaussian factor exp(−αr2), resulting in the so-called Gaussian-type
orbitals (GTOs). Such GTO basis functions still follow the ansatz radial part times
real-valued spherical harmonic

ϕGTO
µ (r) = RGTO

µ (rµ)Y mµ

lµ
(θµ, φµ) (5.10)

but their radial part is now given as

RGTO
µ (r) = Nµr

lµ exp(−αµr2) (5.11)

with Gaussian exponent αµ and normalisation constant

Nµ =

√
2l+2

(2l + 1)!!
4

√
(2α)2l+3

π
,

where
(2l + 1)!! = (2l + 1)(2l − 1)(2l − 3) · · · 1

This replacement allows to perform the evaluation of the integrals involved in building the
Fock matrix F much more efficiently. Because of the Gaussian product theorem [2,
83, 146], the product of two Gaussians may be expressed exactly as

RGTO
µ

(∥∥r − Rµ

∥∥) RGTO
ν

(∥∥r − Rµ

∥∥) = RGTO
κ (‖r − Rκ‖)

where lκ, ακ and Rκ are chosen appropriately. With this result the evaluation of all
ERI integrals (4.31) can be done analytically [2]. An example would be those involving
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four basis functions with lµ = 0. All other ERI integrals, potentially involving higher
angular momentum lµ, can be computed from the initial ones employing a set of recursion
formulas [147]. Similar strategies can be found for the one-electron integrals in order to
build T and V0. Overall the construction of F therefore becomes much more feasible
for larger basis sets of Gaussians compared to large sets of STOs.

Unfortunately, certain physical aspects like the exponential decay or the cusp are
no longer directly built into the basis set if such GTO basis functions are used. Since
ϕGTO
µ (r) ∈ C∞(R3,R), which is a dense subset of H1(R3,R) this is not per se a problem:

The denseness ensures that we can still represent every function from H1(R3,R) up to
arbitrary accuracy if we use enough GTOs. In other words, the Ritz-Galerkin ansatz
still allows us to solve problems like HF or FCI up to arbitrary accuracy, but since the
physics is not completely represented, more basis function might be required to model
for it.

As a remedy Hehre et al. [4] introduced so-called contracted Gaussian-type or-

bitals (cGTOs), where the radial part of a basis function ϕµ is expressed as a fixed
linear combination of Ncontr primitive Gaussians7

RcGTO
µ (r) = rlµ

Ncontr∑

i

cµ,i exp(−αµ,ir2).

The idea is to get the best out of both worlds: The easily solvable integrals in terms of
primitive GTOs and an accurate description of the wave function by using predetermined
sets of contraction coefficients cµ,i and exponents αµ,i, known to give a good basis set
{ϕcGTO

µ }µ∈Ibas
. By the means of this trick one is able to effectively split the parameter

space of the variational problem (4.65) into two parts. One — the contraction coefficients
— is fitted once and for all in order to fit a large range of problems and another — the
coefficient matrix (4.58) — is the search space over which one minimises during the
actual calculation.

Out of the pragmatic desire to perform molecular calculations on systems larger than
what was feasible with STO basis sets at that time, Hehre et al. [4] initially focused on
contracting primitive Gaussians in a way that they most closely resembled a particular
STO function. This resulted in the famous STO-nG family of basis sets. Later it was
realised that more accurate basis sets could be constructed by trying to minimise the
energy, which is resulted from an actual HF or an MP2 calculation. Other strategies
included a rigorous construction of the basis set in order to obtain convergence in the
amount of recovered correlation energy, or to be consistent in certain computed properties.
These deviating approaches have led to a number of different basis set families over the
years, most of which share common concepts, however. Our discussion here should
remain rather brief. Interested readers are referred to the excellent reviews by Hill [7]
and Jensen [6].

All basis sets, which are considered state-of-the-art nowadays, are so-called split-

valence basis sets, which is meant to indicate that multiple contracted Gaussians are
available for describing the valence shell of an atom. How many are used is typically
referred to by the ζ-level, e.g. a double-ζ basis set contains two contracted Gaussians for
each valence orbital, a triple-ζ basis set three and so on. For this characters like D, T, Q,

7Here we follow the usual convention to include the normalisation constant inside the contraction
coefficients.
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Figure 5.1: Relative error in the hydrogen ground state employing selected cGTO basis
sets [4, 148, 151, 152]. The error is plotted against the relative distance of electron and
proton. Notice that pc-n is a basis set at n+ 1-ζ level.

5, . . . — for double, triple, quadruple, quintuple level — may be found in the name of the
basis set. Notice that each contracted Gaussian inside such basis sets is typically in turn
made up from multiple primitives. For a particular basis set family the error generally
decreases going to higher zeta levels. For some families like Dunning’s correlation-
consistent basis sets [148] empirical formulas for estimating the error at a particular zeta
level exist [149]. These results have been used for many years to estimate properties
at the so-called complete basis set (CBS) limit, i.e. the theoretical value obtained
if an infinitely large basis set of cGTOs were employed for the calculation. A recent
work by Bachmayr et al. [150] provides some mathematical support for such formulas
by rigorously deriving error estimates in the relevant H1(R3,R)-norm. One should note,
however, that these results strictly speaking only apply to a basis of uncontracted even-
tempered GTOs. The authors point out, however, that a generalisation towards cGTOs
should be possible.

A large range of cGTO basis sets are available nowadays, which offer a spectrum of
compromises between accuracy and computational cost. Nevertheless, some systematic
issues related to the non-physical shape of the primitive GTOs cannot be fully accounted
for, even in the largest basis sets. To illustrate this, consider figure 5.1. In this plot
the relative error of the hydrogen ground state Φ0 with respect to the exact electronic
ground state Ψ1s (2.48)8

Φ0(r) − Ψ1s(r)
Ψ1s(r)

8For hydrogen HF is equivalent to solving the full Schrödinger equation.
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is shown at various electron-proton distances. The plots for multiple standard cGTO
basis sets are depicted, namely the minimal basis set STO-3G [4], the double-ζ basis
sets cc-pVDZ [148] and pc-1 [151], the quadruple-ζ basis set pc-3 [151] as well as the
sextuple-ζ basis set cc-pV6Z [152]. In each case the error is smallest at intermediate
electron-proton distances, but increases both at the origin as well as larger distances. The
former feature originates from the failure of Gaussians to represent the electron-nuclear
cusp. The latter feature can be explained due to the faster fall-off of the Gaussians,
exp(−αr2), compared to the exact solution, which goes as exp(−ζr). Larger basis sets
like pc-3 or cc-pV6Z amount to recover the correct decay behaviour as well as the cusp
somewhat, such that the error stays below 0.02 ≡ 2% in the complete inner part of the
plot up to distances of about 7.5 Bohr. Eventually all relative errors tend towards −∞
as r → ∞, however. Even though this cannot be seen in figure 5.1, this includes the case
of pc-3, where the relative error has a local maximum around r = 10 and then follows
a downhill slope as well. Overall the plots agree with the rule of thumb that results
become more accurate at higher ζ-levels: Both the relative errors get smaller as well
as the region where the wave function is well-represented becomes larger as we proceed
from STO-3G to double-ζ and higher ζ levels.

In figures 5.2 and 5.3 the local energies (5.4) of the aforementioned basis sets are
depicted — again as a function of relative distance. These plots not only diverge to
−∞ as r → ∞, but at the origin as well, see particularly figure 5.3. At intermediate
electron-proton distances the local energies of all basis sets fluctuate around the exact
ground-state energy of 0.5 Hartree, where the amplitude of the fluctuations are lowest
for cc-pV6Z and pc-3. Recall that the local energy is related to the relative residual
error and that ideally it should be a constant. At intermediate distances, where the
fluctuations are small, the ground state thus agrees well with the exact ground state.
Unsurprisingly, the parts of figure 5.2, where EL(r) is almost constant, agree roughly
with the parts of figure 5.1 where the relative error is small. Similarly, the wrongful
decay behaviour of the cGTO solutions is observed in both the plot of the relative error
as well as the local energy plot. The most notable discrepancy of both error metrics is
close to the nucleus, see figure 5.3. Whilst the relative error gets smaller and smaller for
the larger pc-3 and cc-pV6Z basis sets close to the core as well, these show rather vivid
fluctuations in EL(r) as r → 0. Eventually they diverge to −∞ exactly like the result
employing any other basis set. In other words, whilst these basis sets amount to produce
a very good description of the ground state from distances around 0.5 Bohr up to 7.5
Bohr, they fail to do so close to the core in a rather misbehaving manner. Since the
relative error is small, the issue is not that the function value of the exact ground state
is missed. Much rather the culprit is the gradient of the approximated ground state.

This can be explained following [137]. The potential term in the local energy (5.4)
diverges as −ZA/r close to the nucleus A, such that the kinetic energy term inside
(5.4) needs to provide an equal and opposite divergence in order for the resulting local
energy to be constant. Since the gradient of every cGTO basis functions is zero at
the origin, so is the gradient of the final ground state, thus the local energy goes to
−∞. Furthermore, the gradient of each individual primitive Gaussian goes to zero at a
different rate depending on its exponent αµ,i. Overall this leads to an overcompensation
of the diverging potential in the kinetic term at some points and an undercompensation
at others, giving rise to the oscillatory behaviour. This oscillatory feature close to the
nucleus is well-known in the quantum Monte-Carlo community [136, 137], since it can
lead to problems when sampling the local energy, especially in diffusion Monte-Carlo.
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Figure 5.2: Local energy EL(r) of the hydrogen atom ground state obtained using the
indicated contracted Gaussian basis sets [4, 148, 151, 152]. EL(r) is plotted against the
relative distance of electron and nucleus. Notice that pc-n is a basis set at n+ 1-ζ level.

Figure 5.3: Magnified version of figure 5.2 around the origin.
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Figure 5.4: Structure of the Fock matrix for a cGTO-based Hartree-Fock calculation
of the beryllium atom in a pc-2 [153] basis set. The three figures show the matrix at
different convergence stages during the SCF. From left to right the Pulay error Frobenius
norm is 0.18, 0.0063 and 4.1 · 10−7. The colouring depends on the absolute value of the
respective Fock matrix entry with white indicating entries below 10−8.

In HF, DFT and Post-HF methods the failure of the cGTOs to represent the nuclear
cusp or the long-range behaviour is typically only an issue if either parts of the wave
functions are especially important for a particular property. The reason is that the
important aspect for the modelling of chemical processes and properties is not the
absolute energy of a molecule. Much rather chemistry is all about relative energies
between the involved species or electronic configurations. Since changes in the electronic
structure both at the nucleus as well as the region far from the nuclei are generally much
less pronounced, the errors resulting from an inadequate description of these features
tend to cancel one another. In other words the convergence with respect to a description
of electronic properties tends to be faster than the convergence of absolute energies.

Examples for cases which require a proper representation of the nuclear cusp or
the long-range behaviour of the electron density are the determination of Rydberg-like
excited states, resonance processes, the computation electron affinities, the computation
of X-ray absorption spectra or the computation of nuclear-magnetic resonance properties.
For the modelling of these processes specific basis sets are required [6, 7], which include
further cGTO basis functions to either sample the core region or the long-range tail more
accurately. If such basis sets are not employed it may happen that the desired features
are completely missed or described very inaccurately. In this sense cGTOs are not fully
black-box and picking a reasonable basis set for a particular problem usually requires
some idea of the electronic structure already. On the other hand, if such special basis
sets are employed, one may encounter numerical instabilities. The reason is that such
basis sets tend to be amended with cGTOs of either very small or very similar exponents.
This implies that the basis functions ϕµ may become almost linearly dependent, yielding
large off-diagonal overlap matrix elements 〈ϕµ|ϕν〉1 and a near-singular overlap matrix.
This observation is typically referred to as the overcompleteness of the cGTO basis.

It was already mentioned that the Gaussian product theorem allows for an efficient
evaluation of the integrals required for building the Fock matrix F. Furthermore the
resulting Fock matrix is comparatively small: Even for systems with hundreds of atoms
one typically only needs in the order of thousands of basis functions. In other words,
both building the Fock matrix as well as diagonalising it can be performed using direct
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methods9. Ignoring the basis sets suffering from overcompleteness for a second, the
numerical structure of a cGTO-based Fock matrix is rather advantageous in most cases.
Figure 5.4 on the facing page, for example, shows some Fock matrices from an SCF
calculation of a beryllium atom in the pc-2 [153] basis set. The matrices are taken
as snapshots during the SCF procedure. From left to right the Pulay error Frobenius
norm decreases from 0.18 to 0.0063 and finally 4.1 · 10−7. As the error gets smaller the
matrix becomes more and more diagonal as the off-diagonal elements in the occupied-
virtual block of the Fock matrix all have to vanish10. Already the leftmost matrix is
almost diagonal-dominant with 12 out of 15 rows µ satisfying the condition for diagonal-

dominance

Nbas∑

ν=1

Fµν < 2Fµµ.

For larger systems, the structure generally gets worse due to interactions between the
atoms, but if a proper description of the core region or the tail is not required F stays
numerically manageable and almost diagonal-dominant. This allows further to employ
iterative eigensolver methods like Davidson’s method (see section 3.2.6 on page 40) to
efficiently obtain eigenpairs of the Fock matrix if only a selected part is required.

Since for most cases in chemistry the region close to the nucleus and the long-range
tail are not extremely important, both obtaining and diagonalising Fock matrices from
a cGTO discretisation is straightforward. Even though cGTOs are physically not the
most sensible basis function type, this has historically made cGTO-based methods the
most predominant approach to describe a chemical system within decent accuracy such
that these methods are now implemented in countless quantum-chemistry packages. In
light of this, it is remarkable, that only in 2014 error bounds were rigorously derived by
Bachmayr et al. [150] for some special kinds of Gaussian basis sets and these results are
not employed on a daily basis.

5.3.5 Discretisation based on finite elements

The Slater-type orbitals and Gaussian-type orbitals we introduced in the previous sections
are examples for so-called atom-centred basis functions or atom-centred orbitals (AOs).
A different ansatz in many respects are grid-based methods, where the underlying idea is
to partition three-dimensional real space into smaller parts using a structured grid. The
problem is then solved by grid interpolation and numerical integration instead of ana-
lytical evaluation of integrals. The example we want to consider in this work, are finite

elements, which are specifically constructed piecewise polynomials, often employed
in structural mechanics or engineering for solving partial differential equations [155].
Multiple approaches for solving the HF problem or the Kohn-Sham equations using
finite-element-based discretisations have been performed over the years [17–23, 134].
This section only gives a short overview of the finite-element method in the light of the
HF problem with special focus on the things I have tried during my doctoral studies.
For more details the reader is referred to the literature [68, 155–157].

9A standard procedure would be to reduce the matrix to tridiagonal form using Householder reflections
and then use Cuppen’s divide and conquer [62] or multiple relatively robust representations [154].

10This is another way equivalent to (4.80) to express SCF convergence.
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Construction of a FE grid

Compared to atom-centred basis functions, where a discretisation based on the complete
domain R3 is possible, any grid-based method can only achieve this on a subset Ω ⊂ R3.
Typically Ω is taken to be open. At the boundary ∂Ω one needs to impose a boundary
condition in order for the solution to be unique. Ideally we would like to model the
problem as close to the complete R3 as possible, i.e. one would like to make the domain
Ω as large as possible. In practice one needs to make a compromise, raising the question
what kind of conditions to impose on the boundary. We will discuss this in more detail
later in the context of solving the Poisson equation, see equations (5.20) to (5.22). For
now let us assume that Ω is large enough, such that the SCF orbitals are essentially zero
on ∂Ω and we can impose a homogeneous Dirichlet boundary11. Using this approximation
as well as the inner product

〈ψ|χ〉1 ≡
∫

Ω

ψ(r)χ(r) dr

the spin-free, real-valued HF equations (4.53) can be adapted to read

F̂Θ0ψ0
i (r) = εiψ

0
i (r) r ∈ Ω

ψ0
i (r) = 0 r ∈ ∂Ω

where
〈
ψ0
i

∣∣ψ0
j

〉
1

= δij ,

(5.12)

for Θ0 = (ψ0
1 , ψ

0
2 , . . . , ψ

0
Nelec

) ∈
(
H2(Ω,R)

)Nelec being the minimiser to the HF problem
(4.40). The corresponding sesquilinear form

aΘ0(ψ, χ) ≡
∫

Ω

ψ(r)F̂Θ0χ(r) dr

is defined in analogy to (4.75). By partial integration it can be seen that this form is
defined on the domain Q(F̂Θ0) = H1(Ω,R). In the finite-element method the aim is
to solve (5.12) variationally in the sense of remark 3.6 on page 34 employing a hierarchy
of approximation spaces Sn. Such an attempt is of course only sensible if such spaces
are more and more accurate approximations of the form domain H1(Ω,R) in the sense
of (3.4).

To outline the construction the spaces Sn, let us consider at first a (fictitious) one-
dimensional chemical system, where Ω = (a, b) with a, b ∈ R. This domain can be
subdivided into Ncell parts

a = x0 < x1 < x2 < · · · < xNcell
= b,

which do not need to be of equal size (see figure 5.5 on the next page). The open
intervals cj = (xj , xj+1) for j = 0, 1, . . . , Ncell − 1 are called grid cells and the set
Mh = {cj | j = 0, 1, . . . , Ncell − 1} of all grid cells is called a mesh or a triangulation.
In this set the index h stands for the maximal size of a grid cell defined as

h ≡ max
c∈Mh

∣∣max(c) − min(c)
∣∣.

11This implies that the HF eigenfunctions are forced to be exactly zero at the boundary ∂Ω.
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Figure 5.5: A few examples of linear finite elements on a one-dimensional grid with
unevenly spread grid points x0 to xNcell

. The cells are split from another by vertical
dashed grey lines and the nodal points are indicated as by ticks on the x axis.

Figure 5.6: Same as figure 5.5, but showing quadratic finite elements in one dimension.

Using the vector space

P1
k ≡

{
u ∈ C∞(R)

∣∣∣∣∣u(x) =
k∑

i=0

cix
i, ci ∈ R

}

of all real polynomials of order at most k, we can define

Pk(Mh) ≡
{
u ∈ C0(Ω)

∣∣ ∀c ∈ Mh : u|c̄ ∈ P1
k

}
, (5.13)

the set of piecewise polynomials of at most degree k. The elements of Pk(Mh) are at least
continuous on the complete domain Ω and inside the grid cells they are completely smooth.
It can be shown [68, Lemma 4.1] that this implies Pk(Mh) ⊂ H1(Ω,R). As h → 0 such
approximations become more exact, which make Pk(Mh) the desired approximation
spaces of H1(Ω,R) for a one-dimensional problem.

For representing Pk(Mh) one typically chooses a Lagrange basis {ϕµ}µ∈Ibas,h
,

consisting of basis functions ϕµ with 0 ≤ µ ≤ kNcell, defined as

ϕµ ∈ Pk(Mh), ϕµ(x̃ν) = δµν .

In this expression12

x̃ν = xν/k +
ν mod k

k

(
x(ν/k)+1 − xν/k

)
(5.14)

12In equation (5.14) ν/k denotes integer division without remainder.
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where 0 ≤ ν ≤ kNcell are the nodal points. An alternative term to refer to such basis
functions ϕµ is finite element of order k, the order k being a reference to the maximal
polynomial degree inside the cells c. Examples for linear and quadratic finite elements are
illustrated in figures 5.5 and 5.6, respectively. In each case the finite element functions
are either 1 or 0 at the nodal points and only non-zero on a few cells, which are always
direct neighbours.

In the following this construction is generalised towards a three-dimensional domain
Ω. In the most general form a mesh can be defined as

Definition 5.4 (Mesh). Let Ω be a domain in R3. A mesh is a finite set Mh =
c0, c1, . . . , cNcell−1 of Ncell domains ci with sufficiently regular boundary13, such that

Ω =
Ncell−1⋃

i=0

ci and ci ∩ cj = ∅ ∀i 6= j,

i.e. such that these domains completely partition Ω. Furthermore we set for each c ∈ Mh

the cell diameter

h(c) = max
x,y∈c̄

∥∥x − y
∥∥

2

and call
h = max

c∈Mh

h(c)

the mesh size.

Usually one only considers so-called affine meshes.

Definition 5.5. A mesh is called affine if a reference cell c0 and for each cell ci ∈ Mh

affine transformations14 τci
exist, such that ci = τci

(c0).

In other words a mesh is affine exactly if each grid cell can be generated from the
reference cell c0 by a linear transformation followed by a shift. This work only considers
cuboidal meshes, where the reference cell c0 = [0, 1]3 is the unit cube. Similar to the
construction of the grid cells, the finite elements of order k themselves can be constructed
by applying the affine transformations to a set of template polynomials of the same order
k. Typically one defines these so-called shape functions eii on the reference cell c0 and
uses the affine transformation τc to generate the finite elements on each cell via τc(ei).
A few examples of shape functions in one and two dimensions are illustrated in figure
5.7 and 5.8 on the facing page. Notice that the shape functions in two dimensions have
been constructed as tensor products from the one-dimensional ones. This construction
is a special property of so-called Qk finite elements, which are typically used in cuboidal
meshes. Via the tensor product ansatz Qk elements in three and higher dimensions can
be constructed as well.

Let us denote with Sh the space spanned by all Qk finite elements {ϕµ}µ∈Ibas,h
on a

cuboidal mesh Mh, which have been constructed by applying appropriate affine maps
to a set of shape functions. Even though we always have Sh ⊂ H1(Ω,R), condition
(3.4) is not necessarily satisfied as h → 0. In other words to ensure convergence of the
Ritz-Galerkin procedure in three dimensions a vanishing mesh size is not sufficient. The
further required conditions are that the mesh is uniform and shape-regular. Roughly

13The boundary of the domains has to be Lipschitz.
14A transformation τ is affine iff τ(x) = Ax + b with A being a transformation matrix and b being a

constant shift vector.
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Figure 5.7: The shape functions for polynomial orders k = 1, k = 2 and k = 3 in one
dimension.

Figure 5.8: Examples for shape functions in two dimensions. The upper left shape
function is for k = 1, all others for k = 2.
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speaking, these conditions ensure that all grid cells have the same size and their shape
is closer to being a ball than to being a needle.

If those conditions are taken into account, an initial mesh can be refined more and
more until the HF problem (5.12) is solved up to the desired accuracy. Furthermore, a
priori and a posteriori error estimates can be derived for regular meshes. From these
estimates, grid cells which contribute most to the estimated error, can be identified
and refined — typically by splitting them into four equal-sized parts. This refinement
strategy15 is called adaptive refinement. Since FE grids do not need to be equally
spaced, one may well start from a crude initial grid and refine the grid adaptively whilst
solving the problem (5.12) until the desired accuracy is achieved. In this manner, the
density of grid points is lower where the electron density does not change a lot and is
higher where more grid cells are needed to represent the problem properly. Notice that
such a process can be automated as well. Compared to a cGTO-based discretisation the
finite-element method is therefore truly back box.

There are a couple of drawbacks to the finite-element method, which should not
go unmentioned. First of all the tensor product construction of the Qk finite elements
in two and three dimensions implies that the three-dimensional FE basis {ϕµ}µ∈Ibas,h

is similarly only non-zero in a few cells. Therefore for a proper description of the HF
orbitals on the full domain Ω many finite elements are required, typically 105 to 106 [22].
All approaches for solving the numerical problems arising from a FE discretisation may
therefore scale at most linearly to be feasible. On the other hand the strict locality of
the FE basis functions typically leads to very sparse matrices, such that this is usually
no problem if appropriate algorithms are devised.

Secondly, the electron-nuclear cusp tends to be an issue for finite elements as well.
For most problems the cell-wise error contains a term involving the gradient of the
approximate solution. See the Kelly error estimator [158] for a very simple example. The
adaptive refinement process will therefore place a larger amount of grid points — and
thus a larger amount of finite-element basis functions — around the regions, where the
gradient of the approximated function is large. Both the wave function as well as the HF
orbitals have large gradients around the electron-nuclear cusp [5], which is furthermore
the only discontinuity of these functions [69]. Even though for most applications the
region around the core is not very interesting from a chemical point of view, it thus
consumes a large number of FE basis functions for proper representation. In the light of
the previous paragraph this is not at all ideal. As a remedy most FE-based approaches
to quantum chemistry employ pseudo-potentials to represent the core region [22], leaving
only the regions of smaller gradients to be represented by finite elements. Overall this
significantly reduces the number of finite elements required, but in turn introduces an
empirical element ruining the black-box nature. For simplicity we will not consider
pseudo-potentials in the remaining discussion about finite elements, but our expressions
can be easily modified to incorporate such.

Evaluating the discretised Fock matrix

Let us now consider a particular cuboidal mesh Mh at some stage during the process of
solving (5.12) up to desired accuracy. On Mh we can construct a set of Nbas Qk finite
elements {ϕµ}µ∈Ibas,h

following the procedure outlined above. In a completely analogous

15In practice there is a bit more to it, since the meshes should stay uniform and shape-regular.
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procedure to section 4.4.1 on page 64 we use these to discretise (5.12), which results in
the non-linear eigenproblem

F

[
C(n)

(
C(n)

)†
]

C
(n+1)
F = SC

(n+1)
F E(n+1)

C†SC = INelec
,

(5.15)

where

F

[
C(n)

(
C(n)

)†
]

= T + V0 + J

[
C(n)

(
C(n)

)†
]

+ K

[
C(n)

(
C(n)

)†
]
,

E(n+1) = diag
(
ε

(n+1)
1 , ε

(n+1)
2 , . . . , ε

(n+1)
Norb

)
∈ RNorb×Norb .

By the Aufbau principle the occupied coefficients C(n+1) ∈ RNbas×Nelec are as usual the
first Nelec columns of the full coefficient matrix C

(n+1)
F ∈ RNbas×Norb . The individual

terms of the Fock matrix and the overlap matrix are given by expressions (4.60) to (4.64)
just with the integration over R3 replaced by an integration over Ω. Naturally problem
(5.15) can in principle be solved by the self-consistent field procedure of remark 5.1 on
page 86.

For evaluating the Fock matrix F
[
C(n)

(
C(n)

)†
]
, let us first consider the terms T and

V0 as well as the overlap matrix S. This amounts to evaluating integrals

Oµν =
∫

Ω

ϕµ(r) Ôϕν(r) dr where Ô = T̂ , V̂0 or idH1(Ω,R) .

With reference to the grid Mh we can write this as a sum of cell contributions Ocµν

Oµν =
∑

c∈Mh

Ocµν where Ocµν =
∫

c

ϕµ(r) Ôϕν(r) dr.

All of the operators T̂ , V̂0 or id are so-called local operators, which implies

∀ν ∈ Ibas,h : Supp
(

Ôϕν

)
⊆ Supp (ϕν) ,

where
Supp(χ) ≡ {r ∈ Ω |χ(r) 6= 0}

denotes the support of a function χ. In other words
(

Ôϕν
)

(r) is non-zero only if ϕν(r)

is non-zero, which implies

c 6⊂ Supp(ϕµ) ∩ Supp(ϕν) ⇒ Ocµν = 0.

Conversely, to build the matrix O we only need to consider those elements Oµν where
Supp(ϕµ) ∩ Supp(ϕν) 6= ∅. A particular ϕµ only has support in up to 23 = 8 cells.
In each cell at most (k + 1)3 finite elements have support, such that for a particular
µ ∈ Ibas,h, Oµν can only be non-zero for at most 8(k + 1)3 values of ν ∈ Ibas,h. Using
a clever ordering of the finite-element functions, one can determine the set of finite
elements ϕν , which couple with a given element ϕµ immediately [159], such that O can
be evaluated by only considering a number of pairs (µ, ν) ∈ Ibas,h × Ibas,h, which scales
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linearly with the number of finite elements Nbas. Furthermore, the cell contributions
Ocµν to O are independent from one another, such that O can be determined by an
embarrassingly parallel MapReduce step, i.e. one first distributes the computation of the
Ocµν in batches over a number of workers (Map) and then accumulates the result of each
in one place (Reduce).

By construction for each finite element ϕµ one can find a shape function ei such that
on a particular cell c ∈ Mh

ϕµ
∣∣
c
(r) = ei

(
τ−1
c (r)

)
.

Let similarly ej be the shape function corresponding to ϕν and further let Jc(ξ) denote
the Jacobian matrix of the mapping r = τc(ξ), defined as

∀α, β ∈ {x, y, z} :
(
Jc(ξ)

)
αβ

=
∂
(
τc(ξ)

)
α

∂ξβ
.

Then we can evaluate Ocµν as

Ocµν =
∫

c

ϕµ(r) Ôϕν(r) dr

=
∫

c

ei
(
τ−1
c (r)

)
Ô ej

(
τ−1
c (r)

)

=
∫

c0

ei(ξ) Ô ej(ξ) det
(
Jc(ξ)

)
dξ

=
Nquadc∑

q=1

ei(ξq) Ô ej(ξq) det
(
Jc(ξq)

)
wq,

(5.16)

where in the last step we introduced a quadrature for the integration using Nquadc

quadrature points ξ
1
, ξ

2
, . . . , ξ

Nquadc
∈ c0 with quadrature weights w1, w2, . . . , wNquadc

.

Provided that the operator Ô acting on ej returns a polynomial16, the numerical integ-
ration in the last step of (5.16) can be made exact using large enough Nquadc, since ei
and ej are only polynomials of order k. Notice that the only quantities in the above
sum depending on the cell c are the Jacobian and perhaps the operator Ô. In other
words the quadrature itself only needs to be defined with respect to the reference cell
and as a result the only required values of the shape function are those at the quadrature
points. For a particular combination of quadrature and type of shape function, this could
for example be stored in a lookup-table and used for the evaluation of many integrals.
Together with the guaranteed linear scaling in the number of matrix elements Oµν which
need to be computed as well as the embarrassingly parallel procedure this makes the
computation of the matrices T, V0 and S extremely efficient despite the large number of
basis functions Nbas for a finite-element-based discretisation. Since we know the sparsity
pattern of pairs of finite elements (ϕµ, ϕν) with common support already before any
computation, we can already set-up sensible storage schemes for these matrices and thus
avoid storing the known zeros. This leads to linear scaling in storage with respect to the
number of finite elements as well.

For the evaluation of the Coulomb term J and the exchange term K this naïve
approach does not work, unfortunately, since neither Ĵ nor K̂ are local operators. Let

16This is the case for example for electrostatic Coulomb potentials or the kinetic energy operator.
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us first treat the Coulomb term. With reference to (4.50) and (4.62) we can write for all
µ, ν ∈ Ibas,h

Jµν

[
C(n)

(
C(n)

)†
]

=
∫

Ω

ϕµ(r1)
(∫

Ω

ρ(n)(r2)
r12

dr2

)
ϕν(r1) dr1, (5.17)

where we introduced the discretised electron density

ρ(n)(r) ≡
∑

i∈Iocc

∣∣∣∣∣∣

∑

µ∈Ibas,h

C
(n)
µi ϕµ(r)

∣∣∣∣∣∣

2

. (5.18)

Following classical electrostatics [160] such an electron density gives rise to a potential
V

(n)
H (r) defined by a Poisson equation

−∆V (n)
H (r) = 4πρ(n)(r) r ∈ Ω (5.19)

with suitable boundary condition on ∂Ω — see discussion below. In this case V (n)
H (r) is

called the Hartree potential as well. Assuming (5.19) can be solved, we can rewrite
(5.17) to give

Jµν

[
C(n)

(
C(n)

)†
]

=
∫

Ω

ϕµ(r1)V (n)
H (r1)ϕν(r1) dr1.

Since the Hartree potential V (n)
H is a local operator, this latter integral can be evaluated

in O(Nbas) time and space using the cell-wise numerical integration scheme discussed
above.

Solving the Poisson equation (5.19) is a well-understood problem in numerical math-
ematics consisting of just solving a linear system of equations. Using a combination of
multigrid preconditioning [161] and a conjugate-gradient linear solver [68], this problem
can be solved in O(Nbas).

Let us now address the pending question, which boundary condition to use in equa-
tions (5.15) as well as (5.19). First we note, that for non-equally spaced grids, one may
take the cells close to the boundary to be rather large. Given that both the Hartree
potential V (n)

H as well as the SCF orbitals decay asymptotically, there is less and less
change in their values to be expected. In other words a coarse grid will be sufficient in
these regions and we can in fact take Ω quite large, say [−100, 100]3 or even larger. If
we impose a homogeneous Dirichlet boundary on such a domain, this is still a sensible
choice for the SCF orbitals, but it can lead to issues for the Hartree potential, which
only falls off as −1/r. So even at distances of 106 Bohr from the nucleus the potential
will is around 10−6. The situation can be improved by approximating the density ρ(n)(r)
at large distances by a point charge in the sense of a multipole expansion. The solution
to the Poisson equation in this case is trivial, yielding the Coulomb potential

VP (r) =
Nelec − 1

r
.

For the complete SCF problem (5.15) one could similarly employ a multipole approx-
imation to yield an approximate solution at the boundary, related to what we already
did in remark 5.3 on page 93. In both cases such approximate solutions can be enforced
using appropriate boundary conditions. The options are
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• Dirichlet boundary conditions:

V
(n)
H (r) = VP (r) r ∈ ∂Ω (5.20)

• Neumann boundary conditions:

∂nV
(n)
H (r) = ∂nVP (r) r ∈ ∂Ω, (5.21)

where ∂nV
(n)
H denotes the normal derivative at the boundary ∂Ω.

• Robin boundary conditions:

α(r)Ṽ (n)
H (r) = ∂nṼH(r) r ∈ ∂Ω (5.22)

where α(r) is determined from

α(r)VP (r) = ∂nVP (r)

For the Poisson equation Robin boundary conditions (5.22) usually work best in practice,
since they enforce resemblance of the gradient and the value of VP (r) at the same time.

In theory there is no reason why one should use the same discretisation for solving
the Poisson equation (5.19) and for solving the HF equations (5.12). Using different
meshes is possible, but leads to complications when projecting the Hartree potential
V

(n)
H onto the grid used for solving the HF equations. The use of different polynomial

orders, for example, has been investigated by Davydov et al. [22] in the context of the
related Kohn-Sham equations. Their results suggest to use twice the polynomial order
for solving the Poisson equation compared to the polynomials used for the HF problem.
This can be rationalised by looking at the expression (5.18) for the discretised density. If
ϕµ and ϕν denote two Qk finite elements, which are used for the discretisation of (5.12),
solving the Poisson equation (5.19) requires the representation of the density ρ(n)(r),
which consists of products ϕµ ·ϕν . These can only be represented exactly if at least Q2k

elements are used to discretise (5.19).

Now we consider the exchange term. Using (4.51) and (4.63) we can deduce an
expression of the exchange matrix elements. For all µ, ν ∈ Ibas,h we get

K(n)
µν ≡ Kµν

[
C(n)

(
C(n)

)†
]

= −
∫

Ω

∫

Ω

ϕµ(r1)
γ(n)(r1, r2)

r12
ϕν(r2) dr2 dr1, (5.23)

where we introduced the discretised one-particle reduced density matrix

γ(n)(r1, r2) ≡
∑

i∈Iocc

∑

µ,ν∈Ibas,h

C
(n)
µi ϕµ(r1)C(n)

νi ϕν(r2). (5.24)

The double integral (5.23) can be split into a sum of contributions from each grid cell
pair (c, d) ∈ (Mh)2

K(n)
µν = −

∑

c,d∈Mh

∫

c

∫

d

ϕµ(r1) γ(n)(r1, r2)ϕν(r2)
r12

dr2 dr1

= −
∑

c,d∈Mh

∫

c0

∫

c0

ei(ξ1
) γ(n)

(
τc(ξ1

), τd(ξ2
)
)
ej(ξ2

)
∥∥∥τc(ξ1

) − τd(ξ2
)
∥∥∥

2

dξ
1

dξ
2
,
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where ei is the shape function corresponding to ϕµ and ej the one corresponding to ϕν .
Introducing two quadratures Q and Q′ with quadrature points ξ

q
, ξ′

r
and corresponding

weights wq and w′
r yields

K(n)
µν ≃ −

∑

c,d∈Mh

Nquadc∑

q=1

N ′

quadc∑

r=1

ei(ξq) γ
(n)
(
τc(ξq), τd(ξ

′

r
)
)
ej(ξ

′

r
)

∥∥∥τc(ξq) − τd(ξ
′

r
)
∥∥∥

2

wqw
′
r.

Notice that in contrast to (5.16) the right-hand side expression is not exactly equal to
the matrix element K(n)

µν , since there are a couple of issues. First of all there is the 1/r12

singularity, which becomes
∥∥∥τc(ξq) − τd(ξ

′

r
)
∥∥∥

−1

2
after the introduction of a numerical

quadrature. If the resulting matrix elements should be numerically meaningful one
needs to at least make sure that the quadrature points ξ

q
and ξ′

r
are rather different

for both quadratures in order to avoid divergence. More properly one needs to use a
particular quadrature scheme, suitable for integrating this singularity or one needs a lot
of quadrature points. Already this aspect makes the construction of K more challenging
than the other matrices. Additionally, the non-local nature of HF exchange really comes
into play as well. Unlike the previous Fock matrix terms no immediate criterion for
excluding some pairs of finite element indices (µ, ν) can be found from the derived
expression.

Each element K(n)
µν can be evaluated in O(k6NquadcN

′
quadcNelec) computational time.

To see this, let us first consider the evaluation of γ(n)
(
τc(ξq), τd(ξ

′

r
)
)

on one cell pair

(c, d) and for one pair of quadrature points (ξ
q
, ξ′

r
). With each cell c only O(k3) fi-

nite element functions share support. Therefore, there will be at most O(Nelec(k3)2)

terms in (5.24) which are non-zero. In other words evaluating γ(n)
(
τc(ξq), τd(ξ

′

r
)
)

takes

O(Neleck
6), which gives rise to a cost of O(k6NquadcN

′
quadcNelec) to evaluate a single

element K(n)
µν . Overall the computational scaling for the naïve procedure outlined above

is therefore O(N2
bas). In storage we would expect the same quadratic scaling, which is

highly undesirable.

Theoretically one would expect that this can be improved by considering some dis-
tance cut-off. The physical justification for this is the exponential decay of the wave func-
tion, which causes the density matrix γ(n)(r1, r2) to decay exponentially with ‖r1 − r2‖2

as well, provided that the discretisation is sensible for describing the problem. In com-
bination with the additional decay of 1/r12 it should be possible to a priori exclude
some index pairs (µ, ν) and thus reduce the scaling.

From the preliminary results I obtained, I would not expect this attempt to be
beneficial by its own and that further strategies are required. To illustrate this, consider
figure 5.9, where both the structure of the local terms T + V0 + J and the structure of
the complete Fock matrix

F = T + V0 + J + K

is depicted for a closed-shell treatment of the beryllium atom. Notice that we only
used a rather small finite-element basis with around 7000 finite element functions. The
colouring depends on the absolute value of the entries, where white indicates values less
than 10−10. From the figure it is immediately visible that the extra exchange term K

seems to play a major role only in some blocks of the Fock matrix, but not so much in
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a) T+V0 +J b) F

Figure 5.9: Structure of the local terms T + V0 + J and the Fock matrix F for a finite-
element-based HF treatment of the beryllium atom in three dimensions in a small FE
basis of around 7000 basis functions. The Pulay error of the depicted Fock matrix is
around 0.1. The colouring depends on the absolute value of the entries with entries
smaller than 10−10 being shown in white.

others. Whilst this probably allows for neglecting to evaluate some blocks of K, still a
large amount of elements cannot be ignored. Notice that even in the upper left corner of
F some elements originating from K are larger than 10−10. Compared to the structure
of the local terms T + V0 + J, even a clever reordering scheme will probably not improve
the sparsity structure very much. I therefore believe it to be challenging if not impossible
to achieve an O(Nbas)-scaling in the number of matrix entries K(n)

µν , which have to be
computed.

An alternative strategy is to avoid building and storing the matrix K at all and
instead recompute its elements whenever needed. At first sight this does not seem to
make the problem any easier, yet it even appears to lead to more computations rather
than less. But as will be demonstrated for the example of the application of the exchange
matrix K to an arbitrary vector x ∈ RNbas , this is not always true. The trick is usually
that changing the order of summation and integration often allows to compute the
elements of a matrix like K in a more efficient way, reducing the overall computational
scaling to O(Nbas). For easier writing of the following algebra, let

ψ
(n)
i (r) =

∑

µ∈Ibas,h

C
(n)
µi ϕµ(r)

such that

γ(n)(r1, r2) =
∑

i∈Iocc

ψ
(n)
i (r1)ψ(n)

i (r2)



5.3. BASIS FUNCTION TYPES 113

Using expression (5.23) we can write the application of K to a vector x as:
(

K(n)x
)

µ
= −

∑

ν∈Ibas,h

xνK
(n)
µν

= −
∑

ν∈Ibas,h

xν

∫

Ω

∫

Ω

ϕµ(r1)
∑

i∈Iocc

ψ
(n)
i (r1)ψ(n)

i (r2)
r12

ϕν(r2) dr2 dr1

= −
∑

i∈Iocc

∫

Ω

ϕµ(r1)ψ(n)
i (r1)



∫

Ω

∑

ν∈Ibas,h

ψ
(n)
i (r2)xνϕν(r2)

r12
dr2


dr1

= −
∑

i∈Iocc

∑

κ∈Ibas,h

∫

Ω

ϕµ(r1)C(n)
κi ϕκ(r1)

(∫

Ω

ρ
(n)
x,i (r2)

r12
dr2

)
dr1,

(5.25)
where we introduced the exchange contraction densities

ρ
(n)
x,i (r) =

∑

ν,λ∈Ibas,h

C
(n)
λi ϕλ(r2)xνϕν(r2). (5.26)

For each i ∈ Iocc we can solve a Poisson equation in analogy to (5.19)

−∆Vx,i(r) = 4πρ(n)
x,i (r) r ∈ Ω, (5.27)

where the boundary is fixed using one of (5.20) to (5.22). Solving (5.27) defines implicitly
the exchange contraction potentials V

(n)
x,i . With these potentials (5.25) becomes

(
K(n)x

)

µ
= −

∑

i∈Iocc

∑

κ∈Ibas,h

∫

Ω

ϕµ(r)C(n)
κi ϕκ(r)V (n)

x,i (r) dr. (5.28)

Since V (n)
x,i is a local operator, the integrals in (5.28) can be evaluated in O(k3NbasNquadc)

once the potentials V (n)
x,i are known. Consequently, the complete expression (5.28) can

be computed in O(k3NquadcNelecNbas) time.

Assuming the same grid and polynomial order are used17 for solving the Poisson
equations (5.27) and for discretising (5.12), each of the exchange contraction densit-
ies (5.26) can be evaluated on the grid in O(k3NquadcNbas). Solving each Poisson

equation (5.27) is again O(Nbas), such that overall obtaining the potentials V (n)
x,i takes

O(k3NquadcNelecNbas) time. Even though computing the complete matrix K is quadratic
in Nbas, the application to a vector x can be done in O(Nbas) computational time with
this scheme.

Many iterative diagonalisation algorithms, like the Lanczos method (see section 3.2.5)
or Davidson’s method (see section 3.2.6) do not make explicit reference the elements of
the matrix to be diagonalised. Much rather they only require a way to perform the matrix-
vector product. In this manner obtaining a few selected eigenpairs is possible without
having the complete matrix in memory. In the context of the finite-element method

17Similar to the results of [22] for the Poisson-solves in (5.19), it seems reasonable that one might
need to go to twice the polynomial order for solving (5.27) as well. This does not change our analysis,
however, since it just introduces a constant factor.
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so-called matrix-free methods have been developed recently [162]. These follow this
strategy and avoid building any finite-element-discretised form of any operator in memory.
This includes local operators like T̂ , V̂0 or Ĵ in our case. If properly preconditioned
iterative linear solvers are used, such methods tend to perform better [162] than their
traditional counterparts. For reasons which will become more clear in the next chapter,
I will refer to efforts, where storing matrix data is avoided in favour of a matrix-vector
contraction expression as contraction-based methods instead.

For achieving a finite-element-based HF this seems to be a very promising ansatz
as well. Already lifting the requirement to build the Fock matrix F and instead only
employ iterative diagonalisation algorithms allows to formally reduce the scaling from
O(N2

bas) to O(Nbas) — in both storage and time. In our preliminary implementation of
such a scheme, we were, however, not able to implement such an ansatz successfully. The
biggest challenge is the application of the exchange term K. Even though the formal
scaling is linear in Nbas, one still needs to solve the Poisson equations (5.27) a lot of times.
Already for each matrix-vector application Nelec Poisson-solves are required. For both
Davidson and Lanczos one usually needs around 50 iterations, with a couple of hundred
matrix-vector products to be computed. If we further need around 30 SCF steps, this
altogether makes some 1000 Poisson-solves already for very small chemical systems. The
only way this can be achieved is by proper approximations, proper preconditioning and
the caching of important intermediate results. Beyond the multigrid preconditioning
we already mentioned in the context of the Coulomb term (5.19), other options for
preconditioning include an incomplete Choleski factorisation [163] of the discretised form
of ∆ or potentially even an exact sparse inversion using libraries like UMFPACK [164]
Even though such approaches are comparatively costly, they are extremely good precon-
ditioners up to the point where solving the Poisson equations (5.27) reduces to a few
manageable matrix-vector products. Since ∆ is essentially equivalent to T and occurs
both is the computation of J as well as the equations (5.27) for applying K to a vector,
the costs could amortise overall. If one accepts storing the discretised form of ∆ as well as
its sparse Choleski factorisation or its exact sparse inverse [164], one can reduce the costs
even further, since these quantities only need to be computed once for each discretisation
grid and not once per SCF cycle. Another problem in the proposed scheme for FE-based
HF is numerical stability. In integrals like (5.28) the integrand is no longer a simple
polynomial function, but could have a rather complicated functional form, such that
higher quadrature orders than usual could be necessary. Furthermore, our experiments
suggest, that the Poisson equations (5.27) need to be solved to high numerical accuracy
in order to result in meaningful eigenpairs in the iterative diagonalisation method. Due
to these challenges a practically useful implementation of the presented ansatz is still
pending.

Despite these numerical challenges finite-element-based HF is a promising approach.
Once clear relationships between the quadrature orders and the required accuracies
between the iterative solvers are known, the error is completely controlled by the dis-
cretisation itself. An adaptively refined grid should therefore allow to solve the HF
problem up to arbitrary precision. In contrast to the cGTO discretisation, where a basis
set has to be selected prior to the calculation, the finite-element method amounts to
build an appropriate basis as it solves the problem. Even though no further results from
FE-based quantum chemistry will be presented in this work, many decisions that lead
to the program and algorithm design of molsturm (see chapter 7 on page 153) keep the
numerical requirements of finite elements in mind as well.
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5.3.6 Coulomb-Sturmian-type orbitals

Coulomb-Sturmians (CS) are another type of atom-centred basis functions, which so far
have seen little attention in electronic structure theory. Similar to Slater-type orbitals
they were introduced [24] as a generalisation to the solutions of the Schrödinger equation
for hydrogen-like atoms. CS functions cannot be used for molecules, only for atoms,
but closely related functions exist, which are more generally applicable. The main
motivation for Shull and Löwdin [24] to look into alternative exponential functions
was that they wanted to construct one-electron basis functions, which could be used
to compute the spectra of many-electron atoms. From previous approaches it was
known that a proper representation of the wave function required the inclusion of the
continuum [29] if hydrogen-like orbital functions were used. This can be rationalised by
the fact that hydrogen-like orbitals — except the 1s — are comparatively diffuse [165].
Their classical turning point, i.e. the distance r where they intersect with the Coulomb
potential −Z/r, increases roughly as O(n2) for the s-like functions. In other words with
increasing principle quantum number n, the hydrogen-like orbitals very quickly become
unsuitable for the description of bound atomic states, which are residing close to the
nucleus. Increasing the basis by including more hydrogen-like functions with an even
larger n allows to correct for this, but convergence will be slow as the included states
become more and more continuum-like.

To avoid this dilemma, Shull and Löwdin [24] artificially modified the Schrödinger
equation (2.41) for hydrogen-like atoms, such that it was on the one hand still analytically
solvable, but on the other hand the spectrum of Helium could be modelled up to a rather
good level of accuracy, even without explicit inclusion of the continuum. Effectively their
trick was to multiply the Coulomb term in (2.41) by a prefactor

βn =
kexpn

Z
(5.29)

with kexp ∈ R arbitrary to yield

(
−1

2
∆ − βn

Z

r
− E

)
ϕCS
µ (r) = 0. (5.30)

This equation has a countably infinite number of solutions ϕCS
µ ∈ H1(R3,C), which are

the so-called Coulomb-Sturmians. They are isoenergetic, i.e. all have the identical
energy eigenvalue

E = −
k2

exp

2
, (5.31)

such that the underlying self-adjoint operator

ĤCS = −1
2

∆ − nkexp

r

has the very simple point spectrum

σP (ĤCS) =

{
−
k2

exp

2

}
,

but an empty discrete spectrum, thus σP (ĤCS) ⊂ σess(ĤCS).
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Since (5.30) and the hydrogen-like Schrödinger equation (2.41) are very similar, we
can apply the solution approach discussed in section 2.3.5 on page 27 to equation (5.30)
as well. Inserting a product ansatz of radial part and spherical harmonic

ϕCS
µ (r) ≡ ϕCS

nlm(r) = RCS
nl (r)Y ml (r̂) ≡ RCS

nl (r)Y ml (θ, φ) (5.32)

into (5.30) we obtain the Coulomb-Sturmian radial equation
(

− 1
2r2

∂

∂r

(
r2 ∂

∂r

)
+
l(l + 1)

2r2
− nkexp

r
− E

)
Rnl(r) = 0. (5.33)

Its solutions have the form

RCS
nl (r) = Nnl(2kexpr)le−kexpr

1F1(l + 1 − n|2l + 2|2kexpr) (5.34)

with normalisation constant

Nnl =
2k3/2

exp

(2l + 1)!

√
(l + n)!

n(n− l − 1)!

and 1F1(a|b|z) being the confluent hypergeometric function as defined in (2.45). Unsur-
prisingly this functional form is closely related to the radial part of the hydrogen-like
orbitals (2.44). In fact the Coulomb-Sturmians can be constructed from the equivalent
hydrogen-like orbitals just by replacing the factors Z/r by kexp. In analogy one therefore
commonly uses the spectroscopic terminology 1s, 2s, 2p, . . . to describe the respective
triples of quantum numbers (n, l,m) for Coulomb-Sturmians as well. Originating from
the same arguments as discussed in section 2.3.5 the full range of possible triples is

IF ≡
{

(n, l,m)
∣∣∣n, l,m ∈ Z with n > 0, 0 ≤ l < n, −l ≤ m ≤ l

}
. (5.35)

Given that both STOs as well as CS functions are exponential type orbitals of the
form radial part times spherical harmonic, their radial parts (5.34) and (5.9) are related
as well18. The important difference between both types of orbitals is that STO basis
sets may use a different Slater exponent ζµ for each STO basis function, whereas all
CS functions share the same exponent kexp as a commonly modified parameter. Even
though this difference is subtle, it is the key ingredient to derive the efficient evaluation
schemes of the CS-ERI tensor discussed further down this section.

In their original work, Shull and Löwdin [24] did not yet use the term “Coulomb-
Sturmians” to refer to the functions ϕCS

µ . This name was only introduced a few years
later by Rotenberg [25, 26], who managed to find a link between the CS radial equation
(5.33) and the special class of Sturm-Liouville differential equations. Sturm-Liouville
equations are second order differential equation of the form

(
d
dr

(
p(r)

d
dr

)
+ q(r) + λnw(r)

)
un(r) = 0, (5.36)

where p(r) ∈ C1(Ω,R) and q(r), w(r) ∈ C0(Ω,R) are all positive functions and Ω =
(a, b) ⊂ R is an open interval. Provided that on a and b suitable boundary conditions

ui(a) cosα− p(a)u′
i(a) sinα = 0 0 < α < π

ui(b) cosβ − p(b)u′
i(b) sin β = 0 0 < β < π

18In fact, some recent work [32] exploits this to evaluate STO ERI integrals with Coulomb-Sturmians.
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are chosen, the eigenvalues λi are real and non-degenerate

λ1 < λ2 < λ3 < · · · < λn < · · · → ∞

and the eigenfunctions ui can be normalised to satisfy the weighted orthonormality
condition

∫ b

a

u∗
i (r)w(r)uj(r) dr = δij . (5.37)

Following Rotenberg [25, 26], one can use the ansatz

Rnl(r) =
unl(r)
r

as well as (5.31) to rewrite the Coulomb-Sturmian radial equation (5.33) as

(
∂2

∂r2
− l(l + 1)

r2
− k2

2
+
kn

r

)
unl = 0,

which is of Sturm-Liouville form with

p(r) = 1, q(r) =
k2

exp

2
+
l(l + 1)
r2

, λnw(r) =
nkexp

r

One consequence of this is that Coulomb-Sturmians satisfy the potential-weighted

orthonormality condition [29]

∫

R3

(
ϕCS
nlm(r)

)∗ n

rkexp
ϕCS
n′l′m′(r) dr = δnn′δll′δmm′ . (5.38)

Most importantly, however, it is possible to show that the countably infinite set of all
Coulomb-Sturmians {ϕCS

µ }µ∈IF
is a complete basis for H1(R3,R) [165, Theorem 2.3.4].

In the original context of Shull and Löwdin this implies that Coulomb-Sturmians are
not only able to represent the bound states of any atomic Schrödinger operator ĤNelec

,
but continuum-like states as well. When it comes to the discretised HF problem (see
section 4.4.1) or the FCI problem (see remark 4.8), this makes CS basis functions rather
promising, since the completeness property provides a mathematical guarantee that the
exact solution can be approximated arbitrarily closely if more and more CS functions
are included.

Another remarkable property of the Coulomb-Sturmians is the ability to map the
set of all Coulomb-Sturmians {ϕCS

µ }µ∈IF
one-to-one onto the set of all hyperspherical

harmonics, the eigenfunctions of the Laplace-Beltrami operator on the surface of a four-
dimensional hypersphere. This can be achieved by applying the Fock transformation
to the Fourier-transformed Coulomb-Sturmians [29]. This aspect is a key ingredient to
treat multi-centre integrals involving Sturmian-type orbitals in a numerically efficient
manner [31, 32, 166–169].
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Figure 5.10: Relative error in the hydrogen ground state for selected CS basis sets. The
error is plotted against the relative distance of electron and proton. The optimal value
for kexp for hydrogen is 1.0, which is exact.

Since CS functions contain the term

exp(−kexpr) = exp
(

−
√

−2Er
)
,

which both gives rise to a cusp at r = 0 as well as an energy-dependent exponential decay
at r → ∞, they reflect the physical properties summarised in remark 5.3 on page 93
already at the level of basis functions. As mentioned above a CS basis has exactly
one exponent kexp, which is used in all basis functions of the CS basis. For atomic
systems other than hydrogen, where multiple electrons of deviating asymptotic decays
are present, one kexp therefore needs to be chosen to model all electrons of an atom
and thus one needs to make a compromise. Due to the completeness of the CS basis
this is not an issue, since a large enough basis will recover the errors for each kexp, such
that in theory any kexp could be chosen. In practice this is not quite the case, since the
rate of convergence of a CS discretisation does well depend on kexp, see [32] as well as
section 8.4 on page 186 for a more detailed discussion. A more suitable value for kexp

will thus give rise to a better representation of the physics at a smaller sized CS basis.

We will now investigate how the error in a CS discretisation changes if we move away
from the optimal value for kexp. Figure 5.10 shows the relative error in the hydrogen
ground state versus the relative electron-nucleus distance for a few selected Coulomb-
Sturmian basis sets. The labels of the plots both indicate the kexp value as well as the
triple (nmax, lmax,mmax), which is a short hand for indicating the finite basis

{
ϕCS
nlm

∣∣∣ (n, l,m) ∈ IF n ≤ nmax, l ≤ lmax, |m| ≤ mmax

}
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Figure 5.11: Local energy EL(r) of the hydrogen atom ground state of selected Coulomb-
Sturmian basis sets. EL(r) is plotted against the relative distance of electron and nucleus.
The optimal value for kexp for hydrogen is 1.0, which is exact.

Figure 5.12: Magnified version of figure 5.11 around the origin. The orange curve
theoretically goes to −∞ as well, but the slope is so large that this is not visible at the
resolution level of the plot.
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of CS functions. For the special case of hydrogen, which is considered here, only a single
electron is present in the system. One can therefore choose kexp such, that the exact
hydrogen ground state is obtained in the ϕCS

1s function. This is the optimal exponent for
hydrogen, which is kexp = 1.0. Figure 5.10 on page 118 shows, in agreement with our
previous discussion, that both the size of the basis as well as the value for kexp has an
influence on the relative error. Since the slope at which the CS functions decay at infinity
depends on kexp — with larger values leading to faster decay — it is not surprising to
find that a too large value for kexp leads to a negative relative error at r = ±∞, whilst
a too small value for kexp leads to a positive error. Similarly, larger deviations of kexp

from 1.0 cause the relative error to become larger in magnitude throughout the curve:
Compare the blue and the orange curve with kexp = 1.4 and kexp = 1.2, for example.
The relative error does, however, not scale linearly with kexp. Yet furthermore it is not
even symmetric with respect to the direction into which kexp deviates from the optimal
value. In this case the orange curve is less steep as r → ∞ and has a lower value at the
cusp than the green one, even though both miss the best exponent by 0.2. In all systems
I investigated so far, I made the similar observation that the error is more pronounced
if the optimal value for kexp is underestimated rather than overestimated. Compared to
the effect which kexp has on the error, the effect of increasing the basis is much more
significant. Even though the green and the red curve both use a kexp which is off by 0.2,
the red curve following a (5, 1, 1)-basis stays below a relative error of 0.05 over the full
depicted range of distances. On the other hand, the green one, a (3, 1, 1)-basis, starts to
become rather inaccurate from distances of 7.5 Bohr and larger.

Very similar conclusions can be drawn from figure 5.11 on the preceding page, which
shows the local energy versus relative distance. Comparing this plot to the local energy
obtained for the cGTO discretisations in figure 5.2 on page 99, one notices how the cGTO
local energy has much more wiggles and overall deviations from the exact value of 0.5.
Even though the CS discretisations depicted in figure 5.11 are not perfect eigenfunctions
of the hydrogen atom, the local energy is still mostly close to 0.5, thus they encode
most of the physics. Even with a too small value kexp = 0.8, the (5, 1, 1) basis produces
an acceptable eigenfunction over the full depicted range — except the nucleus. This
is illustrated in more detail in figure 5.12, which is a close-up of the local energies of
a (3, 1, 1), a (5, 1, 1) and a (7, 1, 1) discretisation for kexp = 0.8 around the nucleus.
Whilst the (3, 1, 1) and the (5, 1, 1) both decay visibly to −∞ at the origin, the (7, 1, 1)
discretisation already mostly corrects for this. Even though it still goes to −∞ in
theory, the resolution of the plot is no longer good enough to show this properly. From
the illustrated trends it is clear that CS discretisations are able to represent both the
exponential decay as well as the electron-nuclear cusp up to any desired accuracy if the
basis is chosen large enough. More examples discussing the convergence behaviour of CS
discretisations can be found in chapter 8 on page 171.

Apart from the ability of a basis function type to properly represent the physics of a
chemical system, we also need to be able to solve the arising numerical problems in order
to make it useful for practical quantum-chemical calculations. Similar to the other basis
function types discussed so far, we will therefore now turn our attention to the Fock

matrix F
[
C(n)

(
C(n)

)†
]
, both its structure as well as its diagonalisation. For this we

first consider the computation of the integrals (4.60) to (4.64), starting with the overlap
matrix. Its elements Sµµ′ can be computed for any two Coulomb-Sturmians19 ϕµ and

19The “CS” superscripts for basis functions and radial parts are dropped in the remainder of this
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ϕµ′ by treating radial and angular part separately [169]

Sµµ′ =
∫

R3

ϕ∗
µ(r)ϕµ′(r) dr

=
∫ ∞

0

Rnl(r)Rn′l′(r) r2 dr ·
∫

S2

(Y ml )∗(r̂) Y m
′

l′ (r̂) dr̂

= δmm′δll′

∫ ∞

0

Rnl(r)Rn′l(r)r2 dr
︸ ︷︷ ︸

=s
(l)

nn′

.

(5.39)

Normalisation implies that s(l)
nn = 1 and the potential-weighted orthonormality (5.38)

implies that s(l)
nn′ = 0 iff |n− n′| > 1. By following the algebra one can further show [169]

that

s
(l)
n,n+1 = s

(l)
n+1,n = −1

2

√
(n− l)(n+ l + 1)

n(n+ 1)
.

This implies that S is tridiagonal in each block of identical angular momentum quantum
number l, thus it has only three three non-zeros per row.

Similarly one can directly employ the potential-weighted orthonormality (5.38) to
show that the nuclear attraction matrix is diagonal, namely

(V0)µµ′ = −
∫

R3

ϕ∗
µ(r)

Z

r
ϕµ′(r) dr

= −Zkexp

n′

∫

R3

ϕ∗
µ(r)

n′

rkexp
ϕµ′(r) dr

= −δµµ′

Zkexp

n
.

(5.40)

From (5.29) to (5.31) we get
(

−1
2

∆ − nkexp

r
+
k2

exp

2

)
ϕµ(r) = 0,

which implies for the kinetic energy matrix elements

Tµµ′ =
∫

R3

ϕ∗
µ(r)

(
−1

2
∆
)
ϕµ′(r) dr

=
∫

R3

ϕ∗
µ(r)

(
n′kexp

r
−
k2

exp

2

)
ϕµ′(r) dr

= k2

(
δµµ′ − 1

2
Sµµ′

)

= k2δll′δmm′

(
δnn′ − 1

2
s

(l)
nn′

)
,

(5.41)

such that they follow the same advantageous sparsity pattern as the overlap matrix. The
one-electron integrals thus all contain at most 3 non-zeros per row and are tridiagonal

section for simplicity.
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in each block of identical angular momentum quantum number l. Due to the simplicity
of the expressions of the matrix elements, storing these matrix terms in memory — even
in a compressed tridiagonal form — is not needed, since recomputing the values takes a
negligible number of flops.

Unsurprisingly, treating the two-electron integrals is more involved. We follow [169],
which describes the treatment in a more general context and the specialised arguments
presented in the documentation of sturmint [170]. Due to the structure of the radial part
Rnl(r) one may write the product of two Coulomb-Sturmians as a sum over Coulomb-
Sturmians with twice the exponent, i.e.

ϕ∗
µ1

(r)ϕµ2
(r) =

∑

µ

Cµµ1,µ2
ϕµ(2kexp, r), (5.42)

where ϕµ(2kexp, r) denotes a CS function with twice the exponent. This expansion looks
familiar to the density-fitting approximation in the context of cGTO basis sets, but is
in fact exact in the case of Coulomb-Sturmians. Since

(
ϕ∗
µ1

(r)ϕµ2(r)
)∗

= ϕ∗
µ2

(r)ϕµ1(r)

it follows that the conjugated product requires the related expansion coefficients Cµµ2,µ1
.

With this the electron-repulsion integral tensor in Mulliken index (4.31) ordering may
be written as the contraction

(µ1µ2|µ3µ4) =
∑

µµ′

(
Cµµ1,µ2

)∗
Iµµ′ Cµ′

µ3,µ4
=
∑

µµ′

Cµµ2,µ1
Iµµ′ Cµ′

µ3,µ4
(5.43)

where Iµµ′ is the electron-repulsion kernel in terms of the 2kexp-functions

Iµµ′ ≡
∫

R3

∫

R3

ϕ∗
µ′(2k, r1)ϕµ(2k, r2)

r12
dr1 dr2. (5.44)

Using the expansion of the Coulomb operator in terms of spherical harmonics [138]

1
r12

=
∞∑

l′′=0

rl
′′

<

rl
′′+1
>

4π
2l′′ + 1

l′′∑

m′′=−l′′

Y m
′′

l′′ (r̂1)
(
Y m

′′

l′′ (r̂2)
)∗

,

where

r< ≡ min(r1, r2) r> ≡ max(r1, r2),

equation (5.44) may be rewritten as

Iµµ′ =
∞∑

l′′=0

4π
2l′′ + 1

l′′∑

m′′=−l′′

∫ ∞

0

∫ ∞

0

r2
1Rnl(2kexp, r1) r2

2Rn′l′(2kexp, r2)
rl

′′

<

rl
′′+1
>

dr1 dr2

·
∫

S2

(Y ml (r̂1))∗
Y m

′′

l′′ (r̂1)︸ ︷︷ ︸
=δl,l′′δm,m′′

dr̂1 ·
∫

S2

Y m
′

l′ (r̂2)
(
Y m

′′

l′′ (r̂2)
)∗

︸ ︷︷ ︸
=δl′,l′′δm′,m′′

dr̂2

= δll′δmm′I
(l)
nn′ ,

(5.45)
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where

I
(l)
nn′ =

4π
2l + 1

∫ ∞

0

∫ ∞

0

r2
1Rnl(2kexp, r1) r2

2Rn′l(2kexp, r2)
rl<
rl+1
>

dr1 dr2. (5.46)

It is not immediately obvious from the form of equation (5.46), but the dependency on
kexp can be factored out of this expression, such that it only depends on n, n′ and l.
Assuming for the principle quantum number n ≤ 20, which is rather typical, the tensor
I

(l)
nn′ has only about 203 = 8000 elements, which can be pre-evaluated and stored inside

the program. In fact even more simplifications are possible if one inserts the definition
of the radial parts and splits the integration kernel by powers of r1 and r2. For the
required polynomial powers α, β the integrals

∫ ∞

0

∫ ∞

0

rα1 r
β
2 exp(−r1) exp(−r2)

rl<
rl+1
>

dr1 dr2

can then be precomputed and stored as a vector, but this equation is less numerically
stable than (5.46). At runtime one only needs to form the dot product of the precomputed
vector with the appropriate vector of polynomial coefficients to yield the value for I(l)

nn′ .

Let us now return to equation (5.42), i.e.

ϕ∗
µ1

(r)ϕµ2
(r) =

∑

µ

Cµµ1,µ2
ϕµ(2kexp, r).

To obtain an expression for the coefficients Cµµ1,µ2
we multiply this equation with

ϕ∗
µ′(2kexp, r) from the right and integrate over R3. Using the potential-weighted or-

thonormality (5.38) for the 2kexp Coulomb-Sturmians this yields

Cµµ1,µ2
=

n

2k

∫

R3

ϕ∗
µ1

(r)ϕµ2(r)
1
r
ϕµ(2kexp, r) dr.

=
n

2k

∫ ∞

0

Rn1,l1(r)Rn2,l2(r)Rn,l(2k, r)r dr

·
∫

S2

(Y ml (r̂))∗ (
Y m1

l1
(r̂)
)∗
Y m2

l2
(r̂) dr̂.

(5.47)

The angular part of the latter expression can be written in terms of Clebsch-Gordan
coefficients, which are precomputed and stored20. The properties of the Clebsch-Gordan
coefficients imply that Cµµ1,µ2

can only be non-zero if

m = m2 −m1 and l ∈
[

|l1 − l2| , l1 + l2

]
,

such that Cµµ1,µ2
is again a sparse tensor. The radial part is computed similar to (5.46),

i.e. as a dot product between polynomial coefficients and precomputed kernels over
polynomial powers.

20Due to the sparsity and symmetry properties of the Clebsch-Gordan coefficients even for a large
value maximal principle quantum number like n = 20, no more than a few hundred thousand such
coefficients need to be stored. If some recursion relations are taken into account as well, it is far less.



124 CHAPTER 5. NUMERICAL APPROACHES FOR SOLVING HF

Due to the outlined sparsity of the 2kexp-kernel Iµµ′ and the expansion coefficients
Cµµ1,µ2

the contraction in equation (5.43) can be written more effectively as

(µ1µ2|µ3µ4) =
∑

µµ′

Cµµ2,µ1
Iµµ′ Cµ′

µ3,µ4

=
∑

n,l,m

∑

n′,l′,m′

C(n,l,m)
µ2,µ1

δll′δmm′I
(l)
nn′ C(n′,l′,m′)

µ3,µ4

=
∑

n′

∑

n,l,m

C(n,l,m)
µ2,µ1

I
(l)
nn′ C(n′,l,m)

µ3,µ4

= δm1−m2,m4−m3

lmax∑

l=lmin

n1+n2−1∑

n=l+1

n3+n4−1∑

n′=l+1

C(n,l,m2−m1)
µ2,µ1

I
(l)
nn′ C(n′,l,m2−m1)

µ3,µ4

(5.48)
where

lmin = max(|l1 − l2| , |l3 − l4|) lmax = min(l1 + l2, l3 + l4). (5.49)

Because of the selection rules in the quantum numbers l and m the ERI tensor is thus a
sparse quantity with far less than N4

bas non-zeros. When contracting it with the occupied
coefficients C to form the Coulomb and exchange matrices, i.e. computing the elements

Jµ3µ4

[
C(n)

(
C(n)

)†
]

=
∑

i∈Iocc

∑

µ1,µ2∈Ibas

∑

µ,µ′∈Ibas

C
(n)
µ1i
C

(n)∗
µ2i

Cµµ2,µ1
Iµµ′Cµ′

µ3,µ4
(5.50)

and

Kµ3µ4

[
C(n)

(
C(n)

)†
]

=
∑

i∈Iocc

∑

µ1,µ2∈Ibas

∑

µ,µ′∈Ibas

C
(n)
µ1i
C

(n)∗
µ2i

Cµµ2,µ3
Iµµ′Cµ′

µ1,µ4
, (5.51)

the sparsity is partially lost. The reason is that the sum over the occupied orbital index i
implies that each element Jµ3µ4

or Kµ3µ4
becomes a linear combination of contributions

from different angular quantum number pairs (l1,m1) and (l2,m2). Thus, a Coulomb or
exchange matrix element is only a known zero if all of the possible combinations of the
indices µ3, µ4 with the pairs (l1,m1) and (l2,m2) are guaranteed to be zero — a much
weaker selection rule. For forming the matrix-vector products of J and K with other
vectors therefore most elements of Jµ3µ4

and Kµ3µ4
need to be touched. For the exchange

matrix K in fact all elements may be non-zero, giving rise to a full quadratic scaling of a
matrix-vector product in the number of basis functions. On the other hand, avoiding the
storage of (µ1µ2|µ3µ4) and K in favour of directly computing the matrix-vector product
expression

(Kx)µ3
=
∑

i∈Iocc

∑

µ1,µ2,µ4∈Ibas

∑

µ,µ′∈Ibas

C
(n)
µ1i
C

(n)∗
µ2i

Cµµ2,µ3
Iµµ′Cµ′

µ1,µ4
xµ4

, (5.52)

whenever the contraction of K with a vector x is needed, one may fully exploit all
angular momentum selection rules during the evaluation. With this one may achieve
the best possible scaling, certainly below quadratic. Notice that an efficient contraction
scheme for computing (5.52) will carry out the contraction over occupied orbitals (index
i) at the very end. In other words the improved scaling originating from (5.52) can only
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Figure 5.13: Structure of the Fock matrix for a Coulomb-Sturmian-based Hartree-Fock
calculation of the beryllium atom starting from using a (5, 1, 1) Coulomb-Sturmian basis
in mln order and a Sturmian exponent of kexp = 1.99. The three figures show left to
right the Fock matrix at an SCF step with a Pulay error Frobenius norm of 0.13, 0.0079,
6.7 · 10−8. The colouring depends on the absolute value of the respective Fock matrix
entry with white indicating entries below 10−8.

be achieved if K is not in memory and if the occupied coefficients C are available as
separate quantities and not already contracted into a density matrix.

Both the very simple form of the one-electron matrices, given by the expressions
(5.39), (5.40) and (5.41), as well as the previous discussion about the angular momentum
selection rules in the case of the Coulomb and exchange matrices suggests to employ a
contraction-based scheme for a Coulomb-Sturmian-based SCF. Looking at the structure
of the Fock matrix F in figure 5.13, we notice that it is very similar to the cGTO
case (figure 5.4 on page 100). Most notably it is almost diagonal dominant and of a
similar size than the cGTO Fock matrix. In other words a dense diagonalisation method
could in theory be employed for the Fock matrix F as well. The downside of a dense
scheme would be the higher storage requirement as well as the larger computational
scaling of the matrix-vector product. Whilst CS discretisations on the one hand do not
require contraction-based methods to be feasible, they still allow for improved contraction
if such methods are employed.

While Coulomb-Sturmians are not yet used for molecules due to their difficulties with
respect to computing the ERI tensor in this context, a range of more generalised Sturmian-
type basis functions exist [9, 30], which can be applied, for example, to molecular
systems as well. Especially when it comes to evaluating the two-electron integrals, these
share some of the properties of the Coulomb-Sturmians, but both the mathematical
machinery as well as the numerics are more involved. CS functions can thus be seen
as a first step towards these more general Sturmian-type basis functions. Generalised
Sturmian-type orbitals are an active field of research [9, 21, 27–34, 138, 142, 166–169, 171–
176]. Some recent works include efforts to develop schemes for the fast evaluation of
the resulting ERI tensor [32, 138, 142] as well as the application of Sturmian-type
functions for evaluating STO integrals more efficiently [31, 32]. Other methods include
the combination of Sturmians and some numerical methods to yield ionising Sturmians
to simultaneously model bound states as well as the continuum-like states in a single
basis [28, 33, 34, 175, 176].
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5.3.7 Other types of basis functions

The selection of basis function types discussed so far already gives a decent overview of the
functions, which could be used for electronic structure theory calculations. Nevertheless
there are few more basis function types, which should not go unmentioned.

For example, in the context of electronic structure calculations on extended peri-
odic systems or systems in the solid state plane-wave and projector-augmented wave
approaches[36–39] are both extremely popular as well as very well-suited. Over the
years there has also been an enormous amount of development into the direction of
numerical basis functions. Frediani and Sundholm [10] provide an excellent review. Such
approaches include a fully numerical treatment employing clever numerical integration
grids [39, 177, 178] or discretisation schemes based on finite-differences [179] or finite-
elements [17, 19–23, 180, 181]. A common pattern is to only treat part of the electronic
wave function numerically [18, 182, 183] and, for example, employ a factorisation of the
one-particle functions into a numerical radial part and a spherical harmonic function.
Last but not least one should also mention wavelet-based methods [11–16], where quite
some progress has been made in recent years. To the best of my knowledge, wavelet-
based electronic structure theory is the only methodology where guaranteed precision in
the solution to the respective problems can be achieved.

5.3.8 Mixed bases

In theory there is no reason to stick to a single type of basis function in a discretisation.
For example the projector-augmented plane-wave approaches [36–39] combine a plane-
wave basis with other types of basis functions close to the atom cores. In a similar way
the combination of finite elements and cGTO basis functions in one basis set has been
employed for electronic structure theory calculations [184–186].

In practice, not all combinations of basis functions are feasible or sensible. This can
be rationalised by looking at the cGTO or the CS discretisations, which both heavily
rely on basis-specific properties for efficiently computing the electron-repulsion integrals
in order to make the computation of the Fock matrix F or its matrix-vector product
fast. In a fully mixed basis one not only needs to compute ERI integrals between the
same type of basis functions, but also between all combinations of four basis functions
involving different types. In a combination of the two aforementioned basis function
types, this would destroy their advantageous properties. This is not meant to say that
mixture basis sets involving cGTOs or CS basis functions are not possible or helpful, but
that computing the electron-repulsion integrals efficiently would be a rather involved
tasks.

5.3.9 Takeaway

In the previous sections we saw that different basis function types can lead to rather
different numerical properties in the discretised HF problem. Just considering the three
figures 5.4 on page 100, 5.9 on page 112 and 5.13 on the previous page illustrating the
structures of the Fock matrices the overall differences are apparent. Whilst the number
of basis functions of the atom-centred cGTO and CS discretisations depends on the
number of atoms in the chemical system, FE discretisations need very similar numbers
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of basis functions for atoms and molecules. In contrast to AO approaches, FE-based
discretisations need many more basis functions, in the order of millions compared to
hundreds for AO discretisations. For this reason only iterative methods are feasible for
a FE discretisation, where a contraction-based scheme can theoretically lead to linear
scaling in the number of basis functions. On the other hand the finite-element method
does not rely on the intuition of the user very much. Initial grids can be easily auto-
generated and while the calculation is running adaptively refined. Nevertheless, prior
knowledge of the physics can be incorporated into the initial grid generation. Leaving
the numerical issues aside, the FE approach in theory comes very close to the ideal basis
function type we sketched in 5.3.1 on page 91.

From a practical point of view the AO approaches are less black-box, since more
choices about the particular basis set need to be made before the calculation, but they
are numerically much more feasible. Especially for cGTO-based methods the evaluation
of the integrals is considerably less challenging compared to STOs, Coulomb-Sturmians
or FEs and is well-understood by now. Coulomb-Sturmians on the other hand are
physically much more sound than cGTOs such that they represent the wave function
better. Contrast figures 5.2 on page 99 and 5.11 on page 119, for example. Unlike
the STO based approaches, the integrals in CS discretisations can be evaluated rather
efficiently due to the restriction to a single exponent kexp. As discussed in section 5.3.6
on page 115 efficiency improvements are possible in a contraction-based ansatz. As
figure 5.11 suggests, the convergence properties can be expected to be rather decent
and predictable going to larger and larger basis sets. Originating from the completeness
of the CS functions with respect to the form domain Q(F̂) = H1(R3,R), eventually
both the long-range part as well as the cusp can be represented perfectly with larger
and larger basis sets. The convergence properties of CS basis sets in the context of
quantum-chemical calculations will be investigated in chapter 8 on page 171.

5.4 Self-consistent field algorithms

In this section we want to discuss a few standard self-consistent field algorithms in the
light of the various types of basis functions we discussed in the previous section. Even
though it is my hope that the selection of algorithms discussed here is representative, the
vast number of methods, which has been developed over the years, makes it impossible
to be exhaustive.

Most SCF algorithms are designed only with a cGTO-based discretisation of the HF
and Kohn-Sham DFT problem in mind. The deviating numerical properties of the finite-
element method or a CS-based discretisation therefore often call for minor modifications
of the schemes. For example both finite elements as well as Coulomb-Sturmians favour
contraction-based methods due to the better scaling of equations like (5.25) and (5.52)
compared to building the full matrix. Therefore the Fock matrix might not be built in
memory any more, which implies that a linear combination of Fock matrices cannot be
computed in memory either. This does not imply that SCF schemes which form linear
combinations of Fock matrices are completely ruled out, but they might become less
favourable compared to other schemes.

On the other hand, in FE-based approaches all quantities which scale quadratically
in Nbas cannot be stored in memory. This applies not only to the iterated Fock matrix
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F(n), but to the density matrix D(n) ∈ RNbas×Nbas as well. Even though clever low-rank
approximation methods like hierarchical matrices [187–190] or tensor decomposition
methods [191–194] could reduce the memory footprint of the density matrix, this work
will try to indicate ways by which building the density matrix in an SCF can be avoided.
Naturally this implies a focus on coefficient-based SCF schemes as well, where the number
of iterated parameters — the coefficient matrix C ∈ RNbas×Norb — scales only linearly
in Nbas. Furthermore coefficient-based SCF schemes have the advantage that iterating
the density matrix destroys the possibility to follow the optimal contraction scheme for
the application of K in CS-based methods. See equation (5.52) for details.

It was already pointed out in section 5.1 on page 86 that focusing on coefficient-based
schemes is hardly a restriction in terms of the number of possible approaches, since
coefficient-based and density-matrix-based schemes can be interconverted, at least ap-
proximately. For the case of the optimal damping algorithm (ODA) [195] a modification
will be suggested in section 5.4.4 to bring this method to the coefficient-based setting.

Most of the SCF algorithms we will consider here only converge the HF equations
(4.79) until the Pulay error (4.80) vanishes following our general description in remark 5.1
on page 86. Regarding the HF optimisation problem (4.65) this is only the necessary con-
dition for a stationary point on the Stiefel manifold C. Only some SCF algorithms, termed
second-order self-consistent field methods, take at least approximate measures to
ensure that the stationary point they find is a minimum. They are briefly considered in
section 5.4.6.

5.4.1 Roothaan repeated diagonalisation

Roothaan’s repeated diagonalisation [100] approach to the HF problem (4.79) is by far the
simplest. In the formalism of remark 5.1 on page 86 this algorithm can be described by
building the next Fock matrix F̃(n) only by considering the current occupied coefficients

C(n), i.e. F̃(n) = F
[
C(n)

(
C(n)

)†
]
. The two-step iteration procedure of figure 5.14a on

page 130results.

Even though Roothaan’s algorithm already works for a few simple cases, it is far
from being reliable. For example one can show [97, 196] that it either converges to a
stationary point of the discretised HF problem (4.65) or alternatively it oscillates between
two states, where none of them is a stationary point of (4.65). In practice it depends
both on the system as well as the basis set which of these cases occurs. Furthermore
there is no guarantee that the resulting stationary point found by Roothaan’s algorithm
is the HF ground state. All these cases can already be observed for HF calculations on
atoms of the first three periods of the periodic table [97].

5.4.2 Level-shifting modification

If one uses essentially the same SCF scheme as 5.14a but instead diagonalises the matrix

F̃(n) = F

[
C(n)

(
C(n)

)†
]

− bS C(n)
(

C(n)
)†

S

where b > 0, already a much better convergence is achieved. This modification is called
level shifting [197, 198], where b is the level-shifting parameter, typically chosen in
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the range between 0.1 and 0.5. Effectively this modification increases the energy gap
between occupied and virtual orbital energies. To see this, let us consider the converged
case, where

FCF = SCFE

exactly and let us partition the full coefficient matrix21

CF =
(
C Cvirt

)

into occupied and virtual parts. Now let F̃ = F − bS CC† S such that

F̃CF =
(
F − bS CC† S

)
CF

= SCFE − bS
(
CC†SC CC†SCvirt

)

= SCFE − bS
(
C 0

)

= SCFE + SCF

(
−b 0

)

= SCF Ẽ

where
Ẽ = diag (ε1 − b, ε2 − b, . . . , εNelec

− b, εNelec+1, . . . , εNorb
) .

In other words the virtual orbitals are unaffected whereas the occupied orbitals are
shifted downwards in energy by an amount b.

The effect of this is that coupling between both orbital spaces is reduced, which
tends to lead to faster convergence especially if the gap between εNelec

and εNelec+1 is
small. This empirical observation is backed up by a more sophisticated mathematical
analysis by Cancès and Le Bris [196]. Their result shows that for sufficiently large b, the
level-shifted Roothaan procedure is guaranteed to converge to a stationary point of the
HF problem (4.65). They also provide an expression for the lower bound of b. In this
manner convergence to a stationary point can be forced even for cases where the original
HF equations (4.40) have no solution (like the negative ions with N > 2Z +M). In such
a case the result is no physical ground state, however.

One can show [197] that the level-shifting modification is mathematically equivalent
to another modification of Roothaan’s repeated diagonalisation, called damping. In
this procedure one chooses a damping factor 0 < α < 1 and sets

F̃(n) = (1 − α)F̃(n−1) + αF

[
C(n)

(
C(n)

)†
]
, (5.53)

such that the new Fock matrix to diagonalise contains still a share of the old Fock matrix.

5.4.3 Optimal damping algorithm

The optimal damping algorithm (ODA) was proposed by Cancès and Le Bris [195] based
on their analysis of the Roothaan algorithm including the level-shifting modification.

In unmodified form [97, 195] it is a density-matrix-based SCF algorithm. Starting
from an initial density D̃(0) = D(0), the procedure is roughly (compare figure 5.14a) for
n = 1, 2, 3, . . .

21We assume RHF here and furthermore only consider the α block. For UHF the analysis is exactly
the same with the relevant equations just replicated in α and β block.
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Figure 5.14: Schematic of Roothaan repeated diagonalisation and optimal damping
algorithm. The step which updates the Fock matrix is highlighted in red and the step
which updates the coefficients is highlighted in blue.

• Build the Fock matrix
F̃(n−1) = F

[
D̃(n−1)

]
(5.54)

and diagonalise it to obtain the new coefficient C
(n)
F . Form the new density D(n)

according to the Aufbau principle from these as

D(n) = C(n)
(

C(n)
)†

.

• Evaluate the Pulay error e(n) (4.80) from F
[
D̃(n)

]
and D(n). End the process if∥∥e(n)

∥∥
frob

≤ εconv.

• Solve the line search problem

D̃(n+1) = arg inf
D̃∈Seg[D̃(n),D(n+1)]

EHF
D [D̃] (5.55)

where
Seg [D1,D2] =

{
(1 − λ)D1 + λD2

∣∣∣λ ∈ [0, 1]
}

is a line segment of density matrices and the energy functional EHF
D is defined as

in (4.70). Repeat the process thereafter.

One can show [97] that the ODA always converges to a local minimum of (4.69).

The remaining question to complete the picture of the ODA from a computational
point of view is to find a way to obtain the minimal density D̃(n+1). First notice that in
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general the density matrix segment

Seg [D1,D2] 6⊂ P

even if D1,D2 ∈ P. Much rather this line segment is fully contained only in a superset
P̃ ⊃ P, where we relax the constraint D2 = D to22 D2 ≤ D. See [97] for details. For
ease of notation let us define

E1 [D] ≡ tr (TD + V0D) ,

G [D] ≡ F [D] + K [D]

and

E2 [D] ≡ 1
2

tr (D G [D]) .

For all matrices D1,D2 ∈ P̃ we can show the properties [195]

tr (D1G [D2]) = tr (D2G [D1]) (5.56)

tr (F [D1] D2) = E1[D2] + tr (D1G [D2]) (5.57)

These imply for E2 and arbitrary α, β ∈ R

E2[αD1 + βD2] =
1
2

tr
(
α2D1G [D1]

)
+

1
2

tr (αβD1G [D2])

+
1
2

tr (αβD2G [D1]) +
1
2

tr
(
β2D2G [D2]

)

(5.57)
= α2E2[D1] + β2E2[D2] + αβ tr (D1G [D2]) ,

whereas E1 is linear

E1[αD1 + βD2] = αE1[D1] + βE1[D2]. (5.58)

These results allow to expand the HF energy for a member D̃(n+1) of the density matrix

22Let A, B ∈ Rn×n, then A ≤ B ⇔ ∀x ∈ Rn x†Ax ≤ x†Bx
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segment Seg
[
D̃(n),D(n+1)

]
as

EHF
D

[
D̃(n+1)

]
= EHF

D

[(
1 − λ(n+1)

)
D̃(n) + λ(n+1)D(n+1)

]

= EHF
D

[
D̃(n) + λ(n+1)

(
D(n+1) − D̃(n)

)]

= E1

[
D̃(n) + λ(n+1)

(
D(n+1) − D̃(n)

)]

+ E2

[
D̃(n) + λ(n+1)

(
D(n+1) − D̃(n)

)]

= E1[D̃(n)] + λ(n+1)E1

[
D(n+1) − D̃(n)

]
+ E2[D̃(n)]

+ λ(n+1) tr
(

D̃(n)G
[
D(n+1) − D̃(n)

])

+
(
λ(n+1)

)2

E2[D(n) − D̃(n)]

= EHF
D

[
D̃(n)

]
+ λ(n+1) tr

(
D̃(n)F

[
D(n+1) − D̃(n)

])

︸ ︷︷ ︸
=s

+
(
λ(n+1)

)2

E2[D(n) − D̃(n)]︸ ︷︷ ︸
=c

= EHF
D

[
D̃(n)

]
+ λ(n+1)s+

(
λ(n+1)

)2

c

(5.59)

The coefficients s and c can alternatively be written as

s = tr
(

F̃(n)
(

D(n+1) − D̃(n)
))

= tr
(

F̃(n)D(n+1)
)

− EHF[D̃(n)] − E2[D̃(n)]

= tr
(

F̃(n)D(n+1)
)

− E1[D̃(n)] − 2E2[D̃(n)]

(5.60)

and23

c = E2

[
D(n+1) − D̃(n)

]

(5.58)
= E2[D(n+1)] − tr

(
G
[
D̃(n)

]
D(n+1)

)
+ E2[D̃(n)]

= E2[D(n+1)] − tr
(

F̃(n)D(n+1)
)

+ E1[D(n+1)] + E2[D̃(n)]

(5.61)

Now the stationary point along the density matrix segment can be determined by differ-
entiating (5.59) resulting in

∂EHF
D

[
D̃(n+1)

]

∂λ(n+1)
= s+ 2λ(n+1)c and

∂2EHF
D

[
D̃(n+1)

]

∂
(
λ(n+1)

)2 = 2c

Due to E2[D] ≥ 0 [195] for all D ∈ P̃ one easily deduces c ≥ 0, such that the stationary
point of the above expression is always a minimum. Since λ(n+1) ∈ [0, 1] the minimiser
is

λ
(n+1)
min =

{
1 if 2c ≤ −s

− s
2c else

, (5.62)

23Note that the original paper [195] uses a deviating formalism which causes an extra factor of 2 to
appear in their expression for c.
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where the cases c = 0 and s = 0 have been ignored, since they only occur at convergence.
This closes the missing link and allows to implement a ODA in as a density-matrix-based
SCF.

Let α, β ∈ R and D1,D2 ∈ P̃. Since F[D] = T + V0 + J[D] + K[D] and the
two-electron terms are linear in the density matrix, we have

F[αD1 + βD2] = αF[D1] + βF[D2] (5.63)

iff α+ β = 1. Defining

F̃(n) ≡ F
[
D̃(n)

]
F(n) ≡ F

[
D(n)

]

this allows to rewrite (5.54) as

F̃(n) = F
[(

1 − λ(n)
)

D̃(n−1) + λ(n)D(n)
]

=
(

1 − λ(n)
)

F̃(n−1) + λ(n)F(n), (5.64)

where the “min” subscripts were dropped. Comparing with equation (5.53) one can
identify with λ(n) the damping factor α. Since λ(n) is optimal in the sense of minimising
the energy along the line segment spanned by D(n) and D̃(n−1), the ODA can be
described by repetitively finding the optimal damping parameter from SCF step to SCF
step. Notice that its construction guarantees that the SCF energy will always decrease.
It is hence guaranteed to converge to a local minimum of the HF problem (4.69) [97, 195].
The ODA is only a particularly simple example from a whole family of density-matrix-
based SCF algorithms called relaxed constraints algorithms, which are discussed in detail
in [195].

Using (5.64) one can show by induction that

F̃(n) =
n∑

j=0

F(j)λ(j)
n∏

i=j+1

(
1 − λ(i)

)
, (5.65)

D̃(n) =
n∑

j=0

D(j)λ(j)
n∏

i=j+1

(
1 − λ(i)

)
, (5.66)

where we set λ(0) ≡ 1. Since

F(j) = F

[
C(n)

(
C(n)

)†
]

D(j) = C(j)
(

C(j)
)†

these results in theory allow to express the complete ODA in terms of the coefficients
such that expressions like (5.25) or (5.52) could be used for a FE-based or a CS-based
discretisation respectively.

In practice this is usually not a fruitful approach for two reasons. Firstly it requires
to store a growing list of coefficients, namely one for each SCF step. Especially for
a FE approach this becomes increasingly costly in terms of memory. Secondly for a
contraction-based ansatz we especially want to avoid storing the Fock matrices F(j) in
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favour of contraction expressions like (5.25) and (5.52). In other words each application
of F̃(n) to a vector x would need to be performed by first computing F(j)x for each j
and then adding the results. This procedure is roughly n times as expensive as a single
apply. Even though the contraction expressions formally scale better, the increasing
number of times they need to be invoked should make this ansatz rather expensive.

Overall the ODA is very suitable for cGTO and CS-based discretisations, since for
these density-matrix-based SCF schemes are fine. However, this algorithm is not suitable
for solving the HF problem with a FE-based discretisation without further modifications.

5.4.4 Truncated optimal damping algorithm

Let us again consider (5.65). Due to λ(i) ∈ [0, 1] the Fock matrix prefactor

λ(j)
n∏

i=j+1

(
1 − λ(i)

)
∈ [0, 1] (5.67)

is a product of factors, which are all between 0 and 1. Therefore this prefactor may
become rather small for small values of j as n increases. In other words in the later SCF
steps the F(j) terms which were produced at the beginning of the SCF procedure may
be accompanied by a small prefactor and hence can at some point be neglected in (5.65).
This is the justification for the truncated optimal damping algorithm (tODA), which
approximates the ODA by artificially restricting the number of terms in (5.65) to the m
most recently obtained Fock matrices. If we define

j0(n) ≡ n−m+ 1

this allows to write the approximated sums as

F̃(n) =
1

λ(j0(n))

n∑

j=j0(n)

F(j)λ(j)
n∏

i=j+1

(
1 − λ(i)

)
, (5.68)

and analogously for the density matrices

D̃(n) =
1

λ(j0(n))

n∑

j=j0(n)

D(j)λ(j)
n∏

i=j+1

(
1 − λ(i)

)
. (5.69)

The factor 1/λ(j0(n)) is required to make sure that the Fock matrix prefactors sum to 1,
i.e. to make sure that the condition for the linear combination of Fock matrices (5.63) is
fulfilled.

The simplest case of this class of approximations is m = 1. This implies j0(n) = n
such that (5.68) and (5.69) simplify to read

F̃(n) = F(n) D̃(n) = D(n)

In other words this 2-step tODA is equivalent to an adhoc modification of the exact
ODA where we replace D̃(n) by D(n), the density of the previous SCF step. Taking this
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into account the expressions (5.60) and (5.61) may be written as

s = tr
(

F̃(n)D(n+1)
)

− E1[D̃(n)] − 2E2[D̃(n)]

= tr
((

C(n+1)
)†

F(n)C(n+1)

)
− E1

[
C(n)

(
C(n)

)†
]

− 2E2

[
C(n)

(
C(n)

)†
]

(5.70)

and

c = E2[D(n+1)] − tr
(

F̃(n)D(n+1)
)

+ E1[D(n+1)] + E2[D̃(n)]

= E2

[
C(n+1)

(
C(n+1)

)†
]

− tr
((

C(n+1)
)†

F(n)C(n+1)

)

+ E1

[
C(n+1)

(
C(n+1)

)†
]

+ E2

[
C(n)

(
C(n)

)†
]

(5.71)

In contrast to the exact ODA this yields a coefficient-based SCF algorithm. Starting
from an initial set of coefficients C(0) with corresponding initial Fock matrix F̃(0) =

F
[
C(0)

(
C(0)

)†
]

we proceed for n = 1, 2, 3, . . . as follows.

• Diagonalise F̃(n−1) in order to obtain coefficients C
(n)
F .

• According to the Aufbau principle select C(n) and build F(n) = F
[
C(n)

(
C(n)

)†
]
.

• Evaluate the Pulay error e(n) (4.80) and end the process if
∥∥e(n)

∥∥
frob

≤ εconv.

• Compute s, c and λ(n) according to (5.70), (5.71) and (5.62).

• Set
F̃(n) =

(
1 − λ(n)

)
F(n−1) + λ(n)F(n)

and repeat.

In this process one only needs the history of two Fock matrices F(n−1) and F(n), such that
F̃(n) can be applied when needed. This in turn implies that only the coefficient matrices
C(n−1) and C(n) are required, such that F(n) and F(n−1) can be applied whenever
needed.

Compared to the Roothaan algorithm (see section 5.4.1) the tODA only roughly
doubles the cost of each diagonalisation, since two Fock matrices need to be applied.
Additionally one needs to evaluate the trace

tr
((

C(n+1)
)†

F(n)C(n+1)

)

and compute the energies E1[D(n)] and E2[D(n)] in order to obtain c and s for each
iteration. The former step costs about as much as a single matrix-vector product and
the latter is usually done during the SCF anyways to display the progress to the user,
thus representing no extra cost.

Even though about twice as expensive as the Roothaan algorithm if a contraction-
based SCF is performed, the advantage of the tODA is that it automatically finds
the damping coefficient λ(n), which reduces the energy at each iteration as much as
possible. This amounts to break the oscillatory behaviour of the standard Roothaan
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repeated diagonalisation scheme in a slightly improved manner than the default damping
or level-shifting modifications.

One should mention, however, that the tODA does not inherit all of the nice mathem-
atical properties from the ODA. For example it is no longer guaranteed that the tODA
converges to a minimum of the HF problem (4.65) [199]. Especially close to convergence
it may for example happen, that λ(n) 6∈ [0, 1] since both c and s become rather small,
thus 2c ≤ s ill-defined. One can get around this by explicitly setting λ(n) = 1 in the
cases, where |c| and |s| become small. The tODA is thus best used in the initial SCF
steps in order to effectively prevent the Roothaan oscillations from happening.

5.4.5 Direct inversion in the iterative subspace

In his celebrated 1982 paper Pulay not only introduced the aforementioned Pulay error
(4.80), but also improved upon his previously introduced SCF convergence acceleration
scheme [200]. This effort resulted in the procedure now widely known by the term direct

inversion in the iterative subspace (DIIS). In his variant of the DIIS procedure the
next Fock matrix was found as a linear combination

F̃(n) =
m−1∑

i=0

ciF
(n−i) (5.72)

of Fock matrices from the m most recent SCF steps, i.e.

F(j) = F

[
C(j)

(
C(j)

)†
]
.

The coefficients {ci}i=1,...,m are to be determined such that the norm of the corresponding
linear combination of Pulay errors

fDIIS(c0, c1, . . . , cm−1) =

∥∥∥∥∥

m−1∑

i=0

cie
(n−i)

∥∥∥∥∥

2

frob

=
m−1∑

i=0

m−1∑

j=0

cicj tr
(

e(n−i)e(n−j)
)

(5.73)

is minimal. Defining a real-symmetric matrix B ∈ Rm×m with elements

Bij = tr
(

e(n−i)e(n−j)
)

(5.74)

we can alternatively write
fDIIS(c) = c†Bc. (5.75)

In agreement with what was discussed in equation (5.63), we need to additionally impose
the constraint

m−1∑

i=0

ci = 1,

such that the resulting Fock matrix F̃(n) is physically sensible. In other words Pulay’s
DIIS scheme can be expressed as the quadratic programming problem

c = arg min

{
c†Bc

∣∣∣∣∣

m−1∑

i=0

ci = 1

}
,
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which has corresponding Euler-Lagrange equations

(
B 1

1† 0

)(
c

λ

)
=
(

0

1

)
, (5.76)

where 1,0 ∈ Rm are column vectors of m ones and m zeros and λ is the Lagrange
multiplier corresponding to the constraint

∑m−1
i=0 ci = 1. Typically one takes m between

2 and 10, such that the linear system (5.76) can be solved by either direct diagonalisation
methods rather fast.

There are a few issues, which typically occur close to self-consistency, where the error
matrices {e(n−i)}i=0,...,m−1 will be almost identical. This causes multiple rows in B to
be extremely similar and thus gives rise to an ill-conditioned linear system (5.76). There
are a couple of remedies typically used in practice [201]. For example one may drop the
Fock matrices F(n−i) where the coupling to the most recent Fock matrix F(n), i.e. the
matrix element B0i is smaller than a certain threshold. Alternatively one may artificially
bias the lowest-energy solution, by multiplying all other diagonal entries Bii by a penalty
factor slightly larger than 1. Last but not least one may always drop the oldest Fock
matrix F(n−m+1) if an ill-conditioned linear system is detected. Alternatively one can
remove linear dependencies by a singular-value decomposition of B. Another point worth
noting is that the DIIS procedure is an extrapolation technique. In other words there is
no guarantee, that the Fock matrix F̃(n) is of any physical or mathematical significance.
It could lead into totally the wrong direction causing the SCF procedure to eventually
diverge.

Since there is no reason to build the density matrix in Pulay’s DIIS procedure it is
suitable for both density-matrix-based as well as coefficient-based SCF settings. Moreover
given that the m coefficients {C(n−i)}i=0,...,m−1 are stored, the Fock matrix terms of
(5.72) can be applied using expressions like (5.25) or (5.52) without any problems, making
the DIIS suitable for a contraction-based SCF as well.

Let us summarise the procedure in a contraction-based SCF. Start from an initial
set of occupied coefficients C(0) ∈ C. Set B00 = 1 and run for n = 1, 2, 3, . . .

• Use the overlaps B to setup and solve (5.76) for the new set of DIIS coefficients c.

• Build the Fock matrix F̃(n) according to (5.72). In this process skip coefficients
ci below a certain threshold in order to save some matrix-vector products when F̃

is contracted with trial vectors during the diagonalisation. If one entry ci is very
large, say > 10, then only keep this matrix in the expression. In all cases be sure
to renormalise, such that all coefficients still sum to 1.

• Diagonalise F̃ to obtain C
(n)
F . Select C(n) by the Aufbau principle.

• Evaluate the Pulay error e(n) (4.80) from C(n) and F
[
C(n)

(
C(n)

)†
]
. End the

process if
∥∥e(n)

∥∥
frob

≤ εconv.

• Calculate the new error overlaps B0i =
〈
e(n)

∣∣e(n−i)
〉
. Note that only one row of B

has to be calculated, since the others can be kept from the previous SCF iteration.
Drop coefficients, which are beyond the m Fock matrices to keep and repeat the
process thereafter.

The Pulay DIIS scheme outlined here is rather general and has been frequently applied to
problems other than solving the HF or Kohn-Sham equations [202]. For example it can be
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applied to accelerate the convergence of fixed-point problems as they occur for example
in coupled-cluster theory, see section 4.5.4 on page 77. In the optimisation community
the DIIS technique is known as Anderson acceleration[203] in this context.

Last but not least one should mention that a few improvements to the DIIS have been
suggested recently. This includes the energy DIIS [201], which effectively interpolates
between densities resulting from the ODA accelerating ODA convergence whilst showing
mathematically highly desirable properties. Shepard and Minkoff [139] have suggested
ways to improve the DIIS by reformulating the original problem into a least squares
or a linear least squares problem. The augmented Roothaan-Hall DIIS [204] is another
take to yield a linear-scaling method with improved convergence. The least-squares

commutator in the Iterative Subspace [205] approach can also be seen as a variant
of the DIIS trying to correct some of its issues.

5.4.6 Second-order self-consistent-field algorithms

To conclude our review of selected SCF schemes this section will briefly touch upon
so-called second-order SCF algorithms. Generally these methods try to go beyond
incorporating gradient information of the HF minimisation problem (4.65). Next to
solving the HF equations (4.74) these methods thus incorporate the Hessian of the
energy functional (4.59) with respect to the parameters C as well. The aim is both to
achieve faster convergence and to ensure that convergence is not to any stationary state
on C, but instead to a true SCF minimum. Since forming the Hessian of (4.65) can
become rather expensive, many approaches use approximate Hessians instead. Typically
it is observed that convergence only becomes quadratic once the SCF procedure is already
reasonably close to the minimiser of (4.65).

One of the first approaches, which fall in this category, is the quadratically-

convergent SCF (QCSCF) [206]. This approach minimises the SCF energy by finding
the minimum of a configuration interaction singles-doubles expansion based on the cur-
rent set of SCF orbitals. Similar to most methods discussed in this section, QCSCF
employs normalised basis functions {ϕµ}µ∈Ibas

. These have the advantage, that the
occupied SCF coefficients C(n) can be alternatively parametrised [84] as

C(n) = C(0)U(n) = C(0) exp(−K(n)),

where U(n) ∈ RNorb×Norb is a unitary rotation matrix and K(n) is an anti-Hermitian
matrix. Further details about the orbital rotation ansatz for SCF methods can be found
in [84].

Related to the idea of an orbital rotation SCF is the geometric direct minimisa-

tion method [207], see figure 5.15 on the next page. This approach tries to directly
optimise the coefficients C(n) in the sense of (4.65) on the Stiefel manifold C. The
algorithm determines the energy gradient g(n) of the current coefficient set C(n). Then
it follows the geodesic defined by g(n) to find a unitary rotation matrix U which defines
the new set C(n+1)U. The step size is determined by a Newton-Raphson-like step, where
the Hessian is constructed approximately using the Broyden-Fletcher-Goldfarb-Shanno
update scheme.

Last but not least one should mention recent linear scaling SCF approaches, for ex-
ample the one by Sałek et al. [208] as well as the augmented Roothaan-Hall method [204].
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Figure 5.15: Schematic of the geometric direct minimisation algorithm. The step which
updates the Fock matrix is highlighted in red and the step which updates the coefficients
is highlighted in blue.

Both of these can be seen as approximate second-order SCF methods, which try to dir-
ectly minimise the coefficients as well.

5.4.7 Combining self-consistent field algorithms

In the previous sections we mentioned quite a few approaches to solve the HF min-
imisation problem using a self-consistent field ansatz. Needless to say that different
algorithms tend to perform best in different cases. For this reason in practice often
a mixture of methods is employed in order to guarantee fast and reliable convergence.
This section represents my own judgement of the situation and give some suggestions
based on my own experience. Hardly any of this is resulted from any kind of proper
scientific evaluation24 and should therefore not be taken as a final answer, much rather
as a guideline.

In the beginning of the procedure ODA or tODA work great, since they essentially
direct the coefficients reliably into the right direction, breaking the oscillatory behaviour
of the plain Roothaan algorithm. The energy DIIS can be seen as an accelerated
improvement of those methods, which is recommendable for cGTO-based discretisations
as the initial SCF algorithm in my point of view.

For the intermediate steps a Pulay DIIS shows typically a faster convergence than
the energy DIIS [201]. This can be rationalised by considering the conditions on the
coefficients for the linear combination of Fock matrices. In the Pulay DIIS these con-
ditions are much laxer compared to the energy DIIS25, making it easier to explore the
SCF manifold and search for directions which lead to nearby stationary points.

24Unfortunately I am not aware of a work, which properly compares the large range of SCF algorithms
with another. Most papers only compare to the Pulay DIIS.

25The Pulay DIIS extrapolates, whereas the energy DIIS interpolates.
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Close to convergence the DIIS becomes numerically more unstable, but conversely
second-order SCF schemes like QCSCF now show the fastest and most reliable conver-
gence to the SCF minimum. These should be considered in the final SCF steps in order
to obtain a highly-accurate SCF minimum after the DIIS.

5.5 Takeaway

The SCF algorithms we discussed in this section all follow the general scheme, where
a Fock-update step and a coefficient-update or density-matrix-update step are
repetitively executed. In the former step a new Fock matrix F(n) is constructed from
the present set of SCF coefficients C(n) or the present density matrix D(n). In the latter
step this Fock matrix F(n), perhaps with additional insight gained in previous iterations,
is used in order to generate a new set of coefficients C(n+1) and perhaps from this a
new density D(n+1). For Roothaan’s repeated diagonalisation, the optimal damping
algorithm and the geometric direct minimisation algorithm this sequence of steps is
emphasised in figures 5.14 on page 130 and 5.15 on the previous page, where the Fock
update step is highlighted in red and the coefficient/density update step in blue in each
case. Motivated by the deviating structure of the aforementioned algorithms I consider
it reasonable to assume that all SCF algorithms can be thought of in such a two-step
process.

Another key result in this chapter is that different basis function types give rise to
different numerical structure of the quantities involved in the SCF procedure. We focused
most on the Fock matrices of contracted Gaussian, finite-element and Coulomb-Sturmian
discretisations, which are shown in figures 5.4 on page 100, 5.9 on page 112 and 5.13 on
page 125. These matrices differ both in size as well as in sparsity. Both for FE-based as
well as CS-based discretisations a contraction-based ansatz26, where one avoids building
the Fock matrix at all and instead thinks in terms of matrix-vector applications, showed
noteworthy improvements in formal computational scaling.

As we will discuss in depth in the next chapter, a contraction-based ansatz can be
thought of as a generalisation of a scheme keeping the matrices in memory. This suggests
targeting a contraction-based SCF scheme to achieve maximum generality of the SCF
algorithm and potentially independence of the SCF code from the basis function type in
a quantum chemistry program.

As mentioned before this implies to formulate the SCF in terms of coefficients to
exploit the favourable computational scaling for some basis function types like the FE
or the CS functions. We indicated for the ODA algorithm how approximations allow to
transform this density-matrix-based SCF into the tODA scheme, which can be formulated
as a contraction-based SCF. In section 5.1 on page 86 we furthermore gave more general
suggestions, which allow to transform every density-matrix-based SCF into a coefficient-
based SCF in theory. We therefore believe it to be possible to construct an efficient
contraction-based SCF, which is independent from the type of basis function used and
where one is able to switch between multiple algorithms depending on the numerical
requirements of the basis functions as well as the chemical system. This in turn opens the
door for achieving a single quantum-chemistry program, which is in theory compatible
with every type of basis function. We will present such a program in chapter 7.

26See the next chapter for a proper introduction into the concept of contraction-based methods.



Chapter 6

Contraction-based algorithms

and lazy matrices

There is a race between the increasing complexity of the systems we
build and our ability to develop intellectual tools for understanding
their complexity. If the race is won by our tools, then systems will
eventually become easier to use and more reliable. If not, they will
continue to become harder to use and less reliable for all but a re-
latively small set of common tasks. Given how hard thinking is, if
those intellectual tools are to succeed, they will have to substitute
calculation for thought.

— Leslie Lamport (1941–present)

Summarised in one sentence the main idea of contraction-based algorithms is to avoid
storing large matrices or tensors in memory and instead employ highly optimised con-
traction expressions for the necessary computations. We already saw in the previous
chapter that applying such a strategy to the Fock matrix resulting from a FE-based or a
CS-based discretisation can lead to an improved formal computational scaling, making
these methods a promising approach. Contraction-based algorithms are, however, not
at all limited to SCF procedures or quantum-chemical calculations. This chapter will
give a general overview of contraction-based methods, giving some examples where these
methods are employed as well as discussing the potentials and some drawbacks.

Closely connected to contraction-based methods is the concept of lazy matrices,
which is a direct generalisation to the conventional matrices in the form of a domain-
specific language for coding contraction-based algorithms. Main goal of the lazy matrix
language is to yield code, which can be used both with matrices stored in memory and
additionally in a contraction-based fashion without noteworthy changes. A preliminary
C++ implementation of lazy matrices with focus on user-friendliness and flexibility is
available in the lazyten library.

141
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6.1 Contraction-based algorithms

The underlying idea of contraction-based methods, namely to avoid storing large matrices
in favour of using matrix-vector-product expressions, is hardly new. In his paper
from 1975 Davidson [66] not only describes his now famous iterative diagonalisation
method (see section 3.2.6), but furthermore he suggests to use an algorithmic expression
for computing the required matrix-vector products. The use case Davidson had in mind
back then was the diagonalisation of the CI or full CI matrix, which is — even today —
too large to keep in memory, see remark 4.9 on page 56.

Nowadays contraction-based methods are rather widespread in quantum chemistry.
Even though the contraction expressions are sometimes given different names such as
working equations, making the concept less clear. Examples are recent implement-
ations of the algebraic diagrammatic construction (ADC) scheme [209–211], which do
not build the complete ADC matrix to be diagonalised, and efficient coupled-cluster
schemes [84], which similarly avoid constructing the matrix governing the CC root-
finding problem explicitly. Instead both methods use appropriate tensor contractions
and compute matrix-vector products on the fly during the respective iterative solves.
A somewhat related take on this are the recent matrix-free methods [162] for solv-
ing partial differential equations in a finite-element discretisation without building the
system matrix in memory at all.

From the algorithmic point of view one should notice, that especially the direct ei-
gensolvers and linear solvers algorithms as they are implemented in LAPACK[212] do
require random access into the matrix, are thus not available for a contraction-based
ansatz. In practice this an acceptable restriction. Firstly because for large matrices
direct methods become unfavourably expensive anyway1. Secondly because many diag-
onalisation methods and methods for solving linear systems do not need the problem
matrix in memory. Instead they can be operated just like the Davidson algorithm [66],
by coding an expression for delivering the required matrix-vector products. In this cat-
egory practically all Krylov-subspace approaches can be found, including widely-adopted
algorithms like Arnoldi, Lanczos, conjugate gradient or GMRES [62, 63, 67]. In the
context of eigenproblems one should mention that such iterative methods have an addi-
tional disadvantage. It is typically very costly to obtain a large number of eigenpairs of
the diagonalised matrix. Fortunately this is hardly needed for large matrices and tech-
niques like Chebyshev filtering [213–215] or spectral transformations (see section 3.2.4
on page 38) allow to effectively direct the diagonalisation routines towards the part of
the eigenspectrum one is truly interested in.

On the one hand, employing a contraction-based method thus does not really restrict
the range of numerical problems, which can be tackled. On the other hand avoiding the
storage of the problem matrix immediately reduces the scaling in memory from quadratic
(in system size) to linear. The rationale for this is that the memory bottleneck in most
subspace algorithms is storing the generated subspace, i.e. a fixed number of vectors,
which take linear storage. This makes contraction-based methods especially attractive
for problems where memory is a bottleneck. Therefore this concept has been introduced
in a range of fields of numerics and scientific computing under different names. Terms
like apply-based method, matrix-free method or phrases like using matrix-vector

product expressions or using matrix-vector products overall largely describe the

1Usually exactly because they necessarily keep everything in memory.



6.1. CONTRACTION-BASED ALGORITHMS 143

Storage layer Latency /ns FLOPs

L1 cache 0.5 13
L2 cache 7 180
Main memory 100 2600
SSD read 1.5 · 104 4 · 105

HDD read 1 · 107 3 · 108

Table 6.1: Typical latency times required for random access into selected layers of
storage. The right-hand side column represents the peak amount of floating point
operations a Sandy Bridge CPU with 3.2 GHz clock frequency could perform in the same
time assuming perfect pipelining. Data taken from [216] and [217]. Notice, that the seek
time on HDDs averages out in sequential HDD reads. For example reading 1 MB from
disk only takes about 2 · 107 ns, i.e. only twice as long as the seek by itself. For other
types of storage this effect is less pronounced.

same concept. I personally like the term contraction-based best, because under the
hood evaluating such matrix-vector products in many cases, that I came across, involves
expressions with contractions over tensors with rank larger than 2. Consider for example
the coupled-cluster doubles working equations (4.96) or the contraction expression for
the exchange matrix in a CS-based discretisation of Hartree-Fock (5.52). Additionally,
calling such algorithms contraction-based indicates that the idea to substitute storage by
expressions is more general than the matrix-vector product. In theory one could think
of similar approaches for higher-order tensor contractions as well.

6.1.1 Potentials and drawbacks

Historically the main driving force behind contraction-based methods was to circumvent
the memory bottleneck. Since the amounts of memory available in the mainframes of
the 70s was much more limited compared to today, the only alternative to recomputing
the data as needed would have been to store the system matrices on disk. Taking a look
at table 6.1 we notice that in the time needed to perform random access to HDDs in the
order of millions of floating point operations can be performed. Overall it is therefore
not hard to understand why people went for recomputing the data instead.

Nowadays the amounts of available main memory has increased substantially, such
that for larger and larger system sizes, the required matrices can now be stored in
memory. Nevertheless one should not forget that accessing main memory costs time as
well, which could be equally well spent for computations. Assuming perfect pipelining
on the order of 2500 floating point operations can be performed while the CPU waits for
a random value to be loaded from main memory (see table 6.1). This is of course orders
of magnitude lower than the corresponding value for a random read from SSD or HDD,
but one should notice that this does not improve as much for sequential reads as it does
for HDDs. In other words this 2500 flops of computation are in some sense lost for each
memory access — whether it is sequential or completely random.

Another aspect one should take into account are the historic trends. Figure 6.1
clearly2 shows the so-called processor-memory performance gap. This is meant to

2The original source [218] does not provide a clear description how the data points in each year were
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Figure 6.1: Scale-up of memory bus speed and CPU clock speed relative to 1980 for
selected hardware in each year. Data taken from [218].

express that the available memory bandwidth has increased by a lesser amount relative
to 1980 as the CPU clock speed. Since the number of flops per second is directly related
to the CPU clock speed, one can extrapolate that the ratio of computable FLOPs per
memory access will likely increase in the upcoming years. In other words contraction-
based methods will become more and more attractive in the future, just because they
amount to exploit the steeper increase of the CPU clock speed curve in figure 6.1 much
better.

Notice, that the aforementioned advantage of contraction-based methods to exploit
the emerging hardware trends is an effect which comes on top of the possible reduction in
formal computational scaling, which we found for FE-based or CS-based discretisations
of HF in the previous chapter. This reduction in scaling is not an effect which is limited
to the case of an SCF routine, but can be observed in other cases as well. The underlying
reason is in many cases that the delayed evaluation of the matrix elements alongside the
contraction with an actual trial vector allows to reorder the required summations more
freely. In other words giving up the storage of values implies that we do no longer need
to comply with one particular storage format, allowing to more freely choose an optimal
evaluation strategy. Somewhat paradoxically this implies that contraction-based method
have the potential to be faster even though more computational work is done.

Let us consider an iterative diagonalisation method, like the Arnoldi or Davidson
scheme in a contraction-based ansatz. All steps but the matrix-vector product expression
are performed in the generated iterative subspace, which by construction has a lower
dimensionality than the full system matrix. Therefore the matrix-vector product, i.e.

computed and what kinds of processors and chipsets were selected for each year. Nevertheless the trend
is so clear, that I consider this aspect to have little influence on the conveyed picture.
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the contraction expression is the computational bottleneck. A typical diagonalisation
requires around low to mind hundreds of matrix-vector products. Implementing this
contraction expression in a highly efficient manner is key to make a contraction-based
ansatz fast.

Even in the naïve manner presented in equations (5.25) and (5.52) the contraction
expressions of the exchange term of the Fock matrix with a trial vector look all but simple.
In a practical implementation achieving maximal performance the required procedures
will most probably be more involved, since issues like the following will all need to be
addressed.

• Adoption to Hardware and parallelisation: The features provided by modern
hardware have of course changed a lot over the years. This includes aspects
like vectorisation or the recent trend to employ general-purpose graphics cards
in scientific calculations. A good algorithm takes modern features into account
and shows a parallelisation scheme, which exploits the available hardware as good
as possible. Notice, that in many cases the requirements can be contradictory,
such that achieving best performance in all circumstances is a real challenge if not
impossible.

• Storing intermediates: Often one can identify subexpressions of a large contrac-
tion expression, where it makes sense to store it between individual executions of
the contraction.

• Order of contractions: For more complicated expressions involving multiple
tensor contractions at once the order in which the contractions are executed can
be crucial to achieve best computational scaling as well as a low memory footprint.

• Approximations: Especially in iterative procedures one is typically not interested
in the numerically exact result of a contraction. Much rather the iterative procedure
will only solve the problem up to a certain accuracy threshold, such that computing
elements, which are smaller than this threshold is a waste of computational time.
Sometimes this can be incorporated into a contraction expression by prescreening
the elements to compute or by other approximations.

On top of that one should keep in mind that problem matrices are usually composed out
of different terms with potentially different structures. In the case of a finite-element-
based SCF, for example, the Fock matrix is as sum of the local one-electron terms T and
V0, which can be directly computed, the Coulomb term J, which requires the solution
to a Poisson equation as well as and the exchange term K, which requires to solve
multiple equations on each single apply. It is therefore not hard to imagine that the best
approach to the issues raised above might well differ from term to term. Compared to
the traditional case where all these matrices are kept in memory, adding the terms T, V0,
J and K to form the Fock matrix F is thus much more involved in the contraction-based
ansatz.

In passing let us note, that the parallelisation of contraction-based methods is typically
both easier and more efficient than for conventional methods. The rationale is that less
stored data generally implies that there is less data to manage between different cores
or nodes and thus less data to communicate, because it is recomputed on each worker as
required. Unlike communicating data, recomputing data is embarrassingly parallel after
all.

Overall we can conclude that contraction-based methods are more flexible and amount
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Figure 6.2: Examples for lazy matrix expression trees. The upper represents the
instruction D = A + B and the lower the multiplication of the result D with C.

to comply better with the current hardware trends. Since contraction expressions are
the computational hot-spot, the procedures one needs to implement are, however, more
involved and consequently the resulting code can become less intuitive and hard to
modify or adapt.

6.2 Lazy matrices

The idea of lazy matrices is to encapsulate the coding contraction-based in a domain-
specific language, which makes it feel as if one was dealing with actual matrices instead of
contraction expressions. Even though not all complications can be hidden, the resulting
syntax allows to write algorithms in a high-level manner being independent from the
underlying implementation of the contraction expression. This will turn out to be the
key aspect leading to the basis-type of the quantum-chemistry package molsturm.

For this purpose we generalise the concept of a matrix to objects we call a lazy

matrix. Whilst a conventional or stored matrix is dense and has all its elements
residing in a continuous chunk of memory, this restriction does no longer hold for a lazy
matrix. It may for example follow a particular sparse storage scheme like compressed-row
storage, but does not even need to be associated to any kind of storage at all. In the most
general sense it can be thought of as an arbitrary contraction expression for computing
the matrix elements, which is dressed to look like an ordinary matrix from the outside.

In other words one may still obtain individual matrix elements, add, subtract or
multiply such lazy matrix objects together or apply them to a bunch of vectors or a
stored matrix. Not all of these operations may be equally fast than there counterparts
on stored matrices, however. Most importantly obtaining individual elements of such a
matrix can become rather costly, since they might involve a computation as well and
not just a lookup into memory.

On the upside one gains a much more flexible data structure where a familiar matrix-
like interface can be added to more complicated objects. Most notably a lazy matrix
may well be non-linear or can have a state, which may be changed by a update function
in order to influence the represented values at a later point. An example where this
is sensible would be the Coulomb and Exchange matrices, where the values of these
matrices depend on the set of occupied coefficients, which have been obtained in the
previous iterations. Other examples include the update of an accuracy threshold for a
contraction expression, which might change between iterations.

All evaluations between lazy matrices like addition, subtraction or matrix-matrix
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multiplication is usually delayed until a contraction of the resulting expression with a
vector or a stored matrix is performed and thus the represented values are unavoidably
needed. This evaluation strategy is called lazy evaluation in programming language
theory [219], explaining the name of these data structures. To make this more clear
consider the lazy matrix instructions

D = A + B,

E = DC,

y = Ex,

(6.1)

where A, B and C are lazy matrices and x is a vector stored in memory. The first two do
not give rise to any computation being done. They only amount to build an expression
tree in the returned lazy matrix E as illustrated in figure 6.2 on the facing page. The
final line is a matrix-vector product with a stored vector, where an actual stored result
should be returned in the vector y. In the lazy matrix sense this triggers the complete
expression tree to be evaluated in appropriate order, leading effectively to an evaluation
of the expression

y = (A + B) Cx (6.2)

at once at this very instance. (6.2) can be evaluated entirely only using matrix-vector
contraction expressions. For example one could first form the product x̃ ≡ Cx using
the matrix-vector-product expression of the lazy matrix C. Afterwards one would form
Ax̃ and Bx̃ again by appropriate contraction expressions and finally add the result to
give y. This is just one way to perform the evaluation. An implementation of the lazy
matrix language is free to choose a different route for evaluating (6.2) by reordering the
expression if it considers this useful. If C for example was made up of a sum F + G, it
could use distributivity to write

(A + B) (F + G) x = A (Fx) + A (Gx) + B (Fx) + B (Gx) .

Which of these routes is best differs very much on the structure of the lazy matrices
being part of the expression to evaluate. But other factors like the operating system or
hardware on which the program code is executed are not unimportant either. Since the
evaluation is delayed until the call to Ex gets executed at the actual program runtime, all
of this can in theory be taken into account for deciding which route to take. Naturally the
design of an appropriate cost function is not easy as previous works have shown [220–226]

In either case such decision happen in the evaluation back end and are well-abstracted
by the lazy matrix language from the instructions (6.1), which stay intelligible and
understandable. Furthermore if the structure of the matrices changes, since for example
the discretisation scheme changes, the evaluation route will automatically adapt given
that the cost function is sensibly chosen.

6.3 Lazy matrix library lazyten

An initial implementation of the lazy matrix language has been achieved in the C++

library lazyten [227]. Not all aspects of lazy matrix concept are yet covered, however.
For example many opportunities to achieve performance improvements by reordering the
lazy matrix expression tree are currently missing. On the other hand lazyten goes a bit
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Figure 6.3: Structure of the lazyten lazy matrix library [227] and its interfaces to the
3rd party codes armadillo [228], Bohrium [225, 226], LAPACK [212] and ARPACK [229].
Support for Eigen [230] and Anasazi [231] is planned.

beyond the lazy matrix specification in the sense that it has become a full abstraction
layer for linear algebra. As depicted in figure 6.3 the goal of lazyten is to provide a
common interface for contraction-based methods with access to different linear algebra
back ends or solver implementations. Not everything has been achieved as planned, but
nevertheless lazyten is already used in production by the molsturm quantum-chemistry
framework discussed in the next section.

lazyten is open-source software licensed under the GNU General Public License. Its
source code can be obtained from https://lazyten.org free of charge. As of December
2017 lazyten amounts around 22500 source lines of code excluding comments and blanks,
but including the helper library krims [232] as well as examples and tests.

Inside the framework of lazyten combining custom lazy matrices as well as built-
in structures, like a lazy matrix representing the inverse of a matrix, can be achieved
transparently. Even a combination with stored matrices in any of these expressions is
possible. In this manner code working on lazyten matrix objects will continue to work
if the type of one of the involved objects is changed. In other words replacing a plain
stored matrix by an involved lazy matrix, which exploits the sparsity properties of the
represented quantity much better, can typically be done without changing any of the
code operating on such a matrix.

This is possible, since the interface of lazyten provides high-level routines to perform
linear solves and to access eigensolvers, where the call passes through a branching layer,
which mediates between the available back ends depending on the structure of the
problem matrix. By providing appropriate parameters to the high-level function a user
of the implemented code may still overwrite which solver implementation is chosen and
what precise setup parameters are passed to it. Currently a selection of methods from
the LAPACK [212] linear algebra library as well as the ARPACK [229] package for
Arnoldi diagonalisation methods is available from lazyten. The selection mechanism
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between the different algorithms for one particular task is not yet extremely sophisticated.
Generally it will for example favour direct diagonalisation methods from LAPACK [212]
if many eigenpairs are requested or if the supplied system matrix is already dense. On
the other hand Arnoldi methods are selected for lazy matrices and if only very few
eigenpairs are desired.

Whenever an operation like a product of a lazy matrix with a stored vector unavoid-
ably requires computation, lazyten addresses the employed LA back end through an
abstracted interface, such that switching behaviour on this layer is possible as well. At the
present stage armadillo [228] as a LAPACK-based back end as well as Bohrium [225, 226]
as an array-operation-based back end are currently available. Rather inconveniently
switching the back end right now requires to recompile lazyten with the appropriate
configure options.

For evaluating a lazy matrix contraction expression the LA back end is typically
not extremely important, since it is only required for very few operations. Consider for
example the third line of (6.1) above, where evaluation of the product Ex is required.
Most work is done by the matrix-vector contraction expressions of the lazy matrices A,
B and C. Only for the final sum of the vectors Ax̃ and Bx̃ lazyten passes on to the
LA back end. The impact of changing the back end is naturally larger for operations
between stored matrices or vectors, where it is used to evaluate all arising expressions.

6.3.1 Examples

To finish off this section, we demonstrate the high-level syntax of lazyten in two example
cases. First consider a general linear problem Ax = b with known right-hand side b and
unknown x. The system matrix A shall be represented by the lazyten matrix object A

and the right-hand side b by the object b, which is taken to be a simple stored vector
of type SmallVector<double>. In lazyten there are two absolutely equivalent ways to
solve this problem. First

1 SmallVector <double > x(b.size ());

2 solve(A, x, b);

or equivalently

1 auto invA = inverse (A);

2 auto x = invA * b;

i.e. quite literally coding the application of the inverse. In both cases the last line will
cause the problem to be passed to a linear solver algorithm in order to solve it iteratively
or by direct methods. The user may provide extra parameters to the calls of solve or
inverse in order to influence the selected eigensolver algorithm or provide some means
of preconditioning the problem matrix.

The second example is more relevant to the scope of this work and brings us back
to the end of section 5.5 on page 140, where we discussed the possibility of an SCF
routine, which is independent from the type of basis function used. Figure 6.4 on the
next page shows a code fragment from a very simple Roothaan repeated diagonalisation
SCF routine (see section 5.4.1 on page 128) for closed-shell systems coded in the syntax
of lazyten.
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1 // Obtain a core Hamiltonian guess

2 const auto hcorebb = Tbb + Vbb;

3 const auto eigensolution = eigensystem_hermitian (hcorebb , Sbb ,

4 n_orbs );

5

6 // View current occupied coefficients in convenient data structure

7 const auto cocc = eigensolution . evectors (). subview ({0, n_alpha });

8

9 // Initialise two - electron terms with guess coefficients

10 Jbb. update ({{" coefficients_occupied ", cocc }});

11 Kbb. update ({{" coefficients_occupied ", cocc }});

12

13 // Start Roothaan repeated diagonalisation

14 double oldene = 0;

15 std :: cout << "Iter etot echange " << std :: endl;

16 for ( size_t i = 0; i < max_iter ; ++i) {

17 // Obtain new eigenpairs ...

18 const auto Fbb = hcorebb + (2 * Jbb - Kbb);

19 const auto eigensolution = eigensystem_hermitian (Fbb , Sbb ,

20 n_orbs );

21

22 // ... and a new view to the occupied coefficients

23 const auto cocc = eigensolution . evectors (). subview ({0, n_alpha });

24

25 // Compute HF energies :

26 // Coulomb energy is 2 * tr(C^T J C),

27 // where 2 appears , since we only consider alpha block ,

28 // but both alpha and beta coefficients would contribute .

29 double ene_coulomb = 2 * trace( outer_prod_sum (cocc ,

30 Jbb * cocc));

31 double ene_exchge = -trace( outer_prod_sum (cocc ,

32 Kbb * cocc));

33 double ene_one_elec = trace( outer_prod_sum (cocc ,

34 hcorebb * cocc));

35 double energy = 2 * ( ene_one_elec + 0.5 * ene_coulomb +

36 0.5 * ene_exchge );

37

38 // Display current iteration

39 double energy_diff = energy - oldene ;

40 std :: cout << i << " " << energy << " " << energy_diff << ւ

→֒std :: endl;

41 oldene = energy ;

42

43 // Check for convergence

44 if (fabs( energy_diff ) < 1e -6) break ;

45

46 // Update the two - electron integrals ,

47 // before coefficients go out of scope

48 Jbb. update ({{" coefficients_occupied ", cocc }});

Figure 6.4: Code fragment of a simple basis-type independent Hartree-Fock procedure im-
plemented with lazyten. The procedure follows the Roothaan repeated diagonalisation
algorithm in the specialisation for closed-shell system (see section 5.4.1).
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Before the depicted code segment is executed, the integral library is given information
about the chemical system and the desired discretisation and returns the objects Tbb, Vbb,
Jbb, Kbb and Sbb, which represent the matrices T, V0, J, K and S as they are defined
in (4.60) to (4.64). Additionally parameters appearing in the code include n_alpha, the
number of alpha electrons and n_orb, the number of SCF orbitals to compute in each
step.

Alongside the comments the code should largely be self-explanatory. In lines 1 to
6 a core Hamiltonian guess is obtained by diagonalising T + V0 (see 5.2.1). Then the
Coulomb and exchange lazy matrices are updated to the guess coefficients in lines 9 and
10. Depending on the implementation of these lazy matrices, this might already involve
the computation of the matrices (4.62) and (4.63), but for others this might just update
an internal reference to the current set of coefficients and apart from that do nothing.
From what we discussed in the previous chapter it should be clear that the former is
better-suited for a cGTO discretisation and the latter from a FE-based discretisation for
example.

Afterwards the main loop starts, where first the Fock matrix expression is built in line
17 and then diagonalised in line 21. Then the current energies are computed in lines 27
to 30 following (4.59) making vivid use of the outer_prod_sum routine. Right now this
routine is required in such a case originating from the unfortunate decision to represent
a matrix and a set of vectors as two inherently different data structures. Effectively it
computes products such as CT (JC) from the matrices C and JC represented as a list
of vectors. The remaining lines 32 to 43 print the current iteration to the user, check for
convergence and update the state of J and K for the next iteration.

Despite its simplicity the depicted code is independent of the type of basis function
used to discretise the problem as lazyten automatically adapts the executed eigensolver
routines for the calls in lines 6 and 18 to the structure of the Fock matrix. Indirectly it is
thus the structure of the matrices Tbb, Vbb, Jbb, Kbb and Sbb and usually3 not the code
depicted in figure 6.4 which decides, which eigensolver algorithms are chosen. Given
that the basic heuristics currently implemented, the depicted code would for example
perform a contraction-based SCF for a CS-based discretisation and use direct eigensolves
for a cGTO-based discretisation. In the light of this lazyten becomes a very effective
abstraction layer between the details of the lazy matrix implementation, i.e. the integral
evaluation, and the SCF algorithm.

In the SCF depicted in figure 6.4 many expressions like lines 17 and 18 or the energy
computation are designed to resemble the equivalent equations one would derive on
paper up to a very large extent. Nevertheless the matrices like Tbb, Vbb, Jbb, Kbb and
Sbb could be stored or lazy for the code to work. Adding an extra term to the Fock
matrix expression in line 17 can be done by a simple addition of another matrix object
irrespective whether the added object is lazy or stored. In either case its structure
would be taken into account during the following diagonalisation without explicit user
interaction. Still the user could influence the behaviour of the called solver by providing
appropriate parameters explicitly. For this reason we believe lazyten to be very suitable
for teaching or experimentation with novel methods, since many details are abstracted
and one may at first concentrate on the algorithm and not on numerics.

Overall lazyten therefore amounts to yield a very intuitive syntax for contraction-

3Since the automatic selection methods are not yet extremely advanced, it is necessary to overwrite
the automatic choice from user code from time to time.



152 CHAPTER 6. CONTRACTION-BASED ALGORITHMS & LAZY MATRICES

based methods in the form of lazy matrices, where algorithms can be written at a high
level. By means of changing the implementation behind the employed lazy matrix objects
the code can be fixed but still flexible to changes in the available hardware or if novel
types of basis functions with unusual matrix structures become available.



Chapter 7

The molsturm

method-development

framework

[C has] the power of assembly language and the convenience of
. . . assembly language.

— Dennis Ritchie (1941–2011)

Keep it simple, make it general, and make it intelligible.
— Doug McIlroy (1932–present)

When the molsturm project [40] was initiated a couple of years back, the original idea
was to support molecular calculations with Sturmian-type basis functions in a formula-
tion similar to the contraction-based ansatz mentioned in section 5.3.6, which explains
the name. Following my unsuccessful attempts on a finite-element-based Hartree-Fock
scheme, where I mostly used the approaches known to me from a cGTO setting, we
expanded the goals of molsturm. Now, the primary project goal has become to yield
a quantum-chemistry method development framework, which supports the implementa-
tion and evaluation of discretisations based on novel types of basis functions. We have
achieved this by building largely on the conclusions about the common structure of
SCF algorithms and the generality of the lazy matrix syntax of lazyten, which were
discussed in the previous chapters. Additionally molsturm has been equipped with a
powerful python interface, where it is easy to obtain, archive and analyse results. Even
implementing completely new features on top of molsturm’s SCF procedure often takes
comparatively little development time as will be demonstrated. The arguments and
examples of this chapter follow closely our publication [233].

All components of the molsturm program package are open-source software, licensed
under the GNU General Public License. To obtain a copy of the code go to https:

//molsturm.org.
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7.1 Related quantum-chemical software packages

Apart from molsturm I am unaware of another quantum-chemistry package which has
achieved a similar flexibility with respect to the type of basis functions in its SCF
procedure. Many packages still have related goals towards flexibility or generality of
their codes and should therefore not go completely unmentioned here.

When it comes to flexibility of a program package a key ingredient is a versatile
interface. This allows to invoke or extend the methods already available elsewhere.
Recently the scripting language python has become very popular for achieving this.
Even even meta-projects like ASE [234], which aim at extending existing packages by a
common python front end, have emerged. Other packages like HORTON [235], pyscf [236],
pyQuante [237] and GPAW [38, 39] are written almost exclusively in python and only
employ low-level C or C++ code for the computational hot spots to various extents.
Starting from the opposite direction Psi4 [238] has gradually introduced a more and
more powerful python interface on top of their existing C++ core over the years.

The popularity of the combination of FORTRAN or a C-like language in the core and
python as the high-level interface language can be understood by considering the recent
publication of Sun et al. [236] about the pyscf package. They rationalise the choice of
python as follows:

• There is no need to learn a particular domain-specific input format.

• All language elements from python are immediately available to e.g. automatise
repetitive calculations with loops or similar.

• The code is easily extensible beyond what is available inside pyscf, for example
to facilitate plotting or other kinds of analysis.

• Computations can be done interactively, which is helpful for testing or debugging.

Additionally one should mention, that python as a high-productivity, multi-paradigm
language often permits to achieve even complicated tasks with few lines of code, whilst
still staying surprisingly easy to read. In the context of quantum chemistry this has the
pleasant side effect that a python script used for performing calculations and subsequent
analysis is typically not overly lengthy, but still documents the exact procedure which
is followed in a readable manner. All this comes at pretty much no downside if python

is combined with carefully optimised low-level C or FORTRAN code in the computational
hot spots. Sun et al. [236] for example claim that pyscf is as fast as any other existing
quantum chemistry packages written solely in C or FORTRAN.

Another common feature between pyscf and Psi4 is their modular design inside
the package. They vividly facilitate well-established open standards like HDF5 [239] or
numpy arrays [240] for data exchange, such that linking their codes to external projects is
easily feasible. Psi4 for example managed to integrate more than 15 external packages
into their framework. This includes three completely different back ends for computing
integrals. In the case of pyscf it only took us about a day to link our molsturm to the
FCI algorithms of pyscf via an interface based on numpy. Nevertheless the numerical
requirements of Gaussian-type orbitals are currently hard-coded inside the optimised C

or C++ parts of both these projects, such that extending them by other types of basis
functions could still be involved.

With respect to supporting a large range of basis function types, especially the
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quantum Monte Carlo packages CASINO [241] and QMCPACK [242] should be men-
tioned. They both allow to start a quantum Monte Carlo calculation from discretisations
of the trial wave function in terms of cGTOs, STOs, plane-waves or numerical orbitals
like splines. Similarly the packages CP2K [243], ASE [234] and GPAW can be employed
to perform and post-process computations using more than one type of basis function.
Both GPAW and CP2K even allow to perform calculations employing hybrid basis sets with
a mixture of Gaussian-type orbitals and plane waves. To the best of our knowledge, the
design of these packages is, however, very specific to the particular combinations of basis
function type and method they support.

7.2 Design of the molsturm package

As mentioned above the main target for the current design of molsturm is to yield a
framework, which supports notions towards novel quantum-chemical methods, including
methods where unusual discretisation approaches or new types of basis functions are
employed. Ideally, adding new basis functions becomes kind of plug-and-play, such
that one only implements a minimal interface linking an integral library and the rest
of molsturm. Thereafter the SCF and the Post-HF methods would just work. Many
details regarding the numerical and algorithmic treatment will most likely still need to
be optimised thereafter, such that high-level access to influence all kinds of parameters of
the SCF scheme or the diagonalisation algorithms are absolutely key. Additionally such
a new method would need to be tested and evaluated towards their overall usefulness in
standard problems of quantum-chemical modelling. These tasks are usually both highly
repetitive and again require access into many layers of a quantum-chemistry program to
obtain the quantities to compare. This motivates the following overall design goals for
the molsturm project.

Enable rapid development: In the early stages of developing new quantum-chemical
algorithms, it is often not clear how well these algorithms perform or if they even meet
the expected requirements. In other words before worrying about making an algorithm
fast, one first wants to know whether it even works. A light-weight framework, which
possesses the flexibility to quickly combine or amend what is already implemented is very
important for this. The syntax of the resulting code should be high-level and intuitive,
resembling the physical formulae as much as possible. To make the initial implementation
easy for people not entirely familiar with all tricks of the trade, the details regarding
numerics and linear algebra should be mostly hidden in the code. Especially in highly
interdisciplinary subjects such as quantum chemistry, too often PhD students are rather
unfamiliar to coding and numerics and thus spend half a year to understand the clunky
programs, a year to implement the method, just to find that it did not quite work that
well. Still influencing the algorithmic details will in many cases be required at a later
step. Ideally this can be done by the means of changing mere parameters directly from
the user interface and without changing the code very much, such that it stays nice
and clean for the next feature to be implemented. A careful reader should have noticed
that the lazyten lazy matrix library, described in the previous chapter, covers many
of the aspects mentioned here. This is of course no surprise and explains why lazyten

has become one of the key ingredients to molsturm. For some more details see 7.2.2 on
page 159.
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Figure 7.1: Structure of the molsturm package. Shown are the five major modules of
the package, along with the set of integrals accessible from gint and the set of post-HF
method, which can be used together with molsturm. Only the modules inside the red
box are part of molsturm. The blue boxes are all external packages. The greyed-out
boxes are planned, but not yet implemented.

Modular design with low code complexity: The aspired flexibility of molsturm

as well as the intended strong separation between high-level code describing algorithms
and low-level code dealing with the numerics, necessarily calls for proper modularisa-
tion. Even though our current design takes our experiences with many types of basis
functions into account, it is very likely that we missed certain aspects, which will make
major restructuring unavoidable in the future. To proactively account for this molsturm

consists of five small modules, which are designed as layers, see figure 7.1. The top
layer, “molsturm”, defines the application programming interface (API), by which other
programs may control the flow of molsturm or exchange data. Unlike the other layers,
which are mostly implemented in C++, the molsturm layer is mainly python. gint, the
general integral library, provides a single link to multiplex between the supported integ-
ral calculation back ends. gscf implements a couple of contraction-based SCF schemes
following the general two-step Fock-update, coefficient/density-matrix-update structure,
we mentioned in section 5.5. gscf is written on top of lazyten, both to make use of its
linear algebra abstraction as well as the generality of the lazy matrix formalism to work
on dense, sparse and contraction-based Fock matrices under the same syntax. Finally
krims is the library for common utility Krimskrams1. In our design we made sure that
dependencies are only downwards, never sideways or upwards, to make it easy to replace
libraries at a later point.

Plug-and-play implementation of new discretisations: When attempting to im-
plement a new basis function type or an unusual discretisation technique in existing
quantum-chemistry packages, there is one rather significant obstacle: Implicit assump-
tions about the numerical properties of the employed basis are scattered around the
sometimes rather large codes. Using the lazy matrix language of lazyten, we have
achieved to centralise the basis function specifics as much as possible at a single place,

1German for “odds and ends”
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namely the implementation of the contraction expressions of the integral lazy matrices.
This takes place in our integral interface gint, where all properties of the basis function
type as well as the precise back end implementation regarding symmetries, selection
rules, sparsity properties or evaluation schemes are known and can be fully exploited. In
line with the final example presented in section 6.3.1 on page 149, the SCF and post-HF
methods only need to care about the integral lazy matrix objects, being completely inde-
pendent from the precise nature of the contraction expression. The result of these efforts
is that switching from one implemented basis function type to another can be achieved
by merely passing the corresponding string parameter. All that effectively changes is
the collection of lazy matrices, which is exposed to the SCF and all methods building
on top of the SCF results. Trying a new basis function type or a new computational
back end for the integral values thus becomes really plug and play: One implements the
respective collection of lazy matrices and selects it using the appropriate parameter. For
more details regarding this aspect see section 7.2.1.

Easy interfacing with existing code: The evaluation and assessment of new
quantum-chemical methods necessarily implies that one needs to test their perform-
ance towards standard problems of quantum chemistry. This is especially true for new
discretisation methods. Implementing everything from scratch, however, is a rather
daunting task. For this reason it is explicitly not our goal to create yet another fully-
fledged quantum chemistry package as well as the surrounding ecosystem around it.
Instead molsturm is designed as a small package, where both the full package as well
as the individual modules can be readily incorporated into other infrastructures or used
on their own for teaching and experimentation. Overall our goal here is not to force a
particular “molsturm-way” upon our users, much rather provide well-documented and
open interfaces, with which it is easy to for them to interact with molsturm exactly
how it fits there workflow best. In this notion we want our molsturm interface to be
flexible enough such that interacting with third-party packages can be easily achieved,
thus building on the hundreds of man-years, which went into the development of already
existing quantum-chemistry codes, and extend molsturm beyond the scope originally
intended. For details see section 7.2.2 on page 159 as well as the examples in section 7.3
on page 161.

The following sections discuss some of the aforementioned design aspects in more
detail.

7.2.1 Self-consistent field methods and integral interface

In chapter 5 on page 85 we looked at various ways to solve the HF equations, both with
respect to different types of basis functions for the discretisation as well as different SCF
algorithms. One conclusion was that all SCF schemes can be condensed into a similar
structure, namely a two-step process, where a Fock-update step and a coefficient-update
or density-matrix-update step repeat each other until convergence. We already saw in
the last example of section 6.3.1 on page 149, that lazyten is well-suited to support
this. In the example the Fock-update step could be expressed by a call to the update-
function of the exchange and Coulomb lazy matrices and the coefficient-update was a
diagonalisation using eigensystem_hermitian. For more complicated SCF schemes,
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where the coefficient-update is more involved, a contraction-based ansatz still allows to
express this latter step only in terms of calls to the contraction expression. Taking this
idea one step further the SCF schemes of gscf do not need to see the individual terms
of the Fock matrix, but access to the update function and contraction expression of a
lazy matrix object representing the complete Fock matrix is sufficient. This makes the
algorithms of gscf self-contained and applicable to any non-linear eigenproblem with
a structure similar to the HF minimisation problem (4.40). This is rather desirable,
because there are plenty of methods in electronic structure theory, which can be thought
of as modifications of the HF problem. Examples include the Kohn-Sham matrix (see
section 4.6 on page 81) arising in standard treatments of density-functional theory (DFT)
or additional terms in the problem matrix arising from a modelling of an external field,
a density embedding or a polarisable embedding.

Overall the precise self-consistency problem to be solved by gscf is thus defined by the
lazy Fock matrix object, which is passed downwards from the upper layer molsturm. For
building this lazy matrix molsturm inspects the method, which is selected by the user, and
appropriately combines the integral lazy matrices representing the required one-electron
and two-electron terms, i.e. kinetic, nuclear attraction, Coulomb and exchange for HF.
Appropriately one would take an exchange-correlation term for DFT and additional
terms for embedding theories. Both are not currently available, however.

The integral lazy matrices are obtained from gint, which acts as broker presenting a
common interface for all basis function types and third-party integral back end libraries
towards the rest of the molsturm ecosystem. On calculation start molsturm will take
the discretisation parameters supplied by the user and hand them over to gint, which —
based on these parameters — sets up the selected integral back end library and returns a
collection of lazy matrix integral objects. For each basis type and back end the interface
of the returned objects will thus look alike, since they are all lazy matrices. On call
to their respective contraction expressions, however, the required computations will be
invoked in the previously selected integral back end. In other words gint itself does
not implement any routine for computing integral values at all, but it just transparently
redirects the requests. Notice, that the precise kind of parameters needed by gint to
setup the back end depends very much on the selected basis function type. For example
a Coulomb-Sturmian basis requires the Sturmian exponent kexp and the selection of
(n, l,m) triples of the basis functions whereas a contracted Gaussian basis requires the
list of angular momentum, exponents and contraction coefficients.

Right now contracted Gaussian and Coulomb-Sturmians are in fact the only basis
function types supported for discretisation in gint. For each of these at least two
different implementations is available, however, and adding more back end libraries or
basis function types is rather easy. Essentially one only needs to implement a collection
of lazy matrices, where the contraction expressions initiates the appropriate integral
computations in the back end. This collection then needs to be registered as a valid
basis type to gint to make it available to the upper layers. Adding preliminary support
for the contracted Gaussian library libcint, for example, was added in just two days
of work. Notice, that the design of gint would even allow all of this to be achieved
without changing a single line of code inside gint itself, since the call to the registration
function could happen dynamically at runtime. So one could implement a new integral
back end in a separate shared library and add it as needed in a plug-in fashion without
recompiling molsturm.
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To summarise, the responsibility for the HF problem has thus been effectively split
between three different, well-abstracted modules by the means of the lazy matrices
of lazyten. gint provides the interface to the integrals, depending on the supplied
discretisation parameters, molsturm builds the Fock matrix expression according to the
method selected by the user and hands it over to gscf to get the SCF problem solved.

7.2.2 python interface

The topmost layer of the molsturm quantum-chemistry package is our interface layer.
It provides helper functionality to define the calculation parameters like the chemical
system or the basis type and basis set choices and finally receives those from the user to
setup the calculation. That is, it obtains the integral lazy matrices from gint, builds the
Fock matrix as described above and starts the actual SCF calculation. The converged
results from gscf are returned in a convenient data structure afterwards.

We chose to implement most of this interface layer and especially the interface itself
in the scripting language python. Our reasoning for this is similar to the arguments
of the pyscf authors already outlined in section 7.1. By providing the required func-
tionality to setup and drive a molsturm calculation from python, we avoid to define yet
another “input format” and “output format” for quantum-chemical calculations. Instead,
calculations can be initiated cleanly and flexibly directly from a host script. This can
afterwards be used to post-process the results as well, such that any kind of output pars-
ing is not needed. The whole calculation can be performed in a single script from setup
to analysis, which makes the complete procedure much more transparent. Moreover,
rather repetitive processes like benchmarking a new method can be easily automated in
this way.

To give the user full control over the complete molsturm ecosystem all parameters for
gint, the SCF algorithms of gscf as well as the employed linear solvers from lazyten are
forwarded to the python interface of molsturm, where they can all be directly accessed
and changed. These parameters include ways to influence which algorithms are chosen by
lazyten for diagonalisation or how gint switches between the implemented SCF solvers.
For returning the SCF results back to the host environment molsturm heavily relies on
numpy arrays, which have become the de facto standard for storing and manipulating
matrices or tensors in python. A large range of standard python packages, which are
commonly used for plotting or data analysis, like matplotlib [244], scipy [240, 245], or
pandas [246], similarly employ numpy arrays as their primary interface. Additionally by
the means of interface generators like SWIG [247] numpy arrays can be automatically
converted to plain C arrays for calling more low-level C++, C or FORTRAN code as well.

A python interface comes in handy in the context of method development as well.
For example we explicitly support running molsturm from an interactive IPython [248]
shell, such that one can immediately interfere with the progress of a calculation, check
assertions about intermediate results or visualise such graphically with matplotlib [244]
This greatly reduces the feedback loop for small calculations, e.g. during debugging. If
one uses molsturm from a Jupyter notebook [249], one can even perform calculations
and view plots interactively from within a web browser.

For larger calculations molsturm is able to archive the complete calculation, including
all SCF results in the widely adopted YAML [250] or HDF5 [239] formats. In this way
large calculations can be performed in advance on a cluster or bigger computer, then
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archived and transferred to a workstation machine for analysis. This can be again done in
an interactive shell with full access to the state of the calculation as if it would have been
performed locally. Additionally this allows to restore an archived state and continue in
a different direction at a later point building on results obtained previously and without
redoing everything from scratch. On top of that, molsturm’s archived state contains
the precise set2 of input parameters which were used to obtain the stored results. This
not only makes the archive self-documenting, but additionally restarting the identical
calculation or a slightly amended calculation becomes very easy.

Our aforementioned numpy interface has already proven to be very helpful to link to
other third-party quantum chemistry codes to molsturm. For example molsturm’s SCF
can be used to start a full configuration interaction (FCI) calculation in pyscf [236].
Recently support for computing excited state energies at ADC(2), ADC(2)-x and ADC(3)
[118, 119] level with adcman [210] was added. Both these links make use of the python-
numpy interfaces these third-party packages already offer and were realised in only a
couple of days. Notice that these interfaces are general enough to work both for CS and
cGTO discretisations and theoretically all basis function types which are implemented
in gint.

The aforementioned aspects will be demonstrated in the context of practical examples
in section 7.3 on the facing page.

7.2.3 Test suite

A very important subsidiary to a good software design is a good testing framework. A
test suite which is simple to execute, fast and easy to expand not only allows to verify
that the current status of a piece of software is correct, but it also allows to verify that
all future changes do not break anything. This naturally includes a potential adoption
of the design towards future requirements. A good test suite generally aids with any
code refactoring, since all changes can be performed in a sequence of many small steps,
verifying the correctness of the software on the way.

For this reason molsturm comes with an extensive test framework with roughly
four types of tests. Firstly there are unit tests, which test the functionality of a single
function or code unit in a couple of hard-coded examples. Further we have functionality

tests, which test a larger portion of code and are meant to ensure that the results of
molsturm agree between different versions. Thirdly the reference tests compare the
results of molsturm to other quantum-chemistry packages. Especially in lazyten we
furthermore make use of yet another type of tests, namely so-called property-based

tests. This testing technique uses the expected properties of a code unit to randomly
generate test cases and to verify the result as well. On failure the generated test cases
are simplified until the most simple, failing test case is found. This is very helpful to
reduce the human aspect in testing and finding the actual issue during debugging.

Next to combining various different types of tests, it is very important that running
the tests by itself is hassle-free. Only in this way they are actually used. In molsturm we
therefore employ the continuous integration service offered free of charge by Travis
CI GmbH for open source projects: Whenever a new commit is made to our github

2That is not the parameters provided by the user, but the post-processed parameters which were
actually used by the lower layers, amended, for example, by default values.



7.3. EXAMPLES 161

repository, a set of virtual machines start automatically in order to checkout and build
molsturm completely from scratch in a few typical build configurations. Afterwards the
test suite is automatically executed and all output generated by the test suite displayed.
In this way even people, who are unfamiliar with all details of molsturm can test their
changes thoroughly, which encourages code contributions. Additionally this gives us
molsturm developers the chance to easily make sure that no untested code enters the
stable source branch, since only if the continuous integration testing passes, a commit
to the stable branch is allowed.

One might argue that such a continuous integration system only achieves its purpose
if users committing new code furthermore write the accompanying tests to check its
validity. For this reason we try to make it simple to add new tests by providing tooling
to automate this process as well. For example in order to add a new reference test for
a new feature or a corner case, where a bug was discovered, one only needs to add a
small configuration file to a special directory. Afterwards one only needs to call a python

script, which picks up the configuration file, reads the desired test case and calls the
external third-party reference quantum-chemistry program (currently ORCA [130]) to
compute the required data. From the next time the molsturm test suite is executed, this
additional reference test will be part of the test suite as well.

Another way we employ to make sure that most of molsturm’s code is indeed tested
is a measure called coverage analysis. Roughly speaking this method inserts special
checkpoints during the compilation of a program, which allow to retrace which code paths
have been executed and which have not. In combination with our automatic continuous
integration builds, we use this to check automatically which parts of the code have been
touched when the test suite was executed, i.e. which parts of molsturm are covered by
the test suite. Ideally one would keep test coverage close to 100%, implying that literally
every line of molsturm was tested. In practice in most modules of molsturm we currently
achieve between 80% and 90% coverage. Notice that coverage analysis is more powerful
than just detecting untested code paths. For example it allows to find hot spots, i.e.
parts of the code executed very often, or dead code, which is never executed. Similar to a
pass of the continuous integration builds, we currently enforce that molsturm’s coverage
may not decrease by more that 0.5% each time code is merged into the stable branch.
This makes sure that most of molsturm’s code really gets tested each time new features
are added.

7.3 Examples

In this section we present a few examples, which demonstrate how the python interface
of molsturm could be combined with existing features of python in order to analyse
results or to extend the capabilities of molsturm. In all cases shown the computations
are done using contracted Gaussian basis sets. It should be noted, however, that due
to the basis-function-independent nature of molsturm the procedures outlined in the
scripts could be easily used with other types of basis functions as well.
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1 from matplotlib import pyplot as plt

2 import molsturm

3 import molsturm . posthf

4 import numpy as np

5 from scipy . optimize import curve_fit

6

7

8 def compute_curve (atom , basis_args , conv_tol =1e-6,

9 zrange =(0.65 , 7.15) ,

10 n_points =30):

11 distances = np. linspace ( zrange [1] , zrange [0] ,

12 n_points )

13 energies = np. empty_like ( distances )

14 previous_hf = None

15

16 for i, z in enumerate ( distances ):

17 system = molsturm . System (

18 atoms =[ atom , atom],

19 coords =[(0 , 0, 0) , (0, 0, z)],

20 )

21

22 # Run a UHF and subsequent UMP2 calculation

23 # using the basis parameters . If a previous

24 # result exists (i.e. this is not the first

25 # HF calculation we do along the curve )

26 # use it as a guess .

27 guess = " random " if not previous_hf \

28 else previous_hf

29 state = molsturm . hartree_fock (

30 system , conv_tol =conv_tol , guess =guess ,

31 restricted =False , ** basis_args

32 )

33 mp2 = molsturm . posthf .mp2( state )

34 energies [i] = mp2[" energy_ground_state "]

35 previous_hf = state

36 return distances , energies

37

38

39 def plot_morse_fit (dist , ene):

40 # First fit Morse potential :

41 def morse (x, de , a, xeq , off):

42 return de * (1 - np.exp(-a * (x - xeq)))**2 + off

43 popt , pcov = curve_fit (morse , dist , ene)

44

45 # Plot data and Morse using 100 sampling points :

46 x = np. linspace (np. min(dist), np.max(dist), 100)

47 plt.plot(dist , ene , "+", label ="UMP2")

48 plt.plot(x, morse (x, *popt),

49 label =" Morse potential ")

50

51 plt. xlabel ("Bond distance in Bohr")

52 plt. ylabel (" Energy in Hartree ")

53 plt. legend ()

54

55

56 def main ():

57 # Compute the H2 dissociation using a particular

58 # basis type , backend and basis set:

59 basis_args = {

60 " basis_type ": " gaussian ",

61 " backend ": " libint ",

62 " basis_set_name ": "def2 -svp"

63 }

64 distances , energies = compute_curve ("H", basis_args )

65

66 plot_morse_fit (distances , energies )

67 plt.show ()

68

69

70 if __name__ == " __main__ ":

71 main ()

Figure 7.2: Script for computing a H2 dissociation curve and fitting a Morse potential
to it. The decision about the basis function type, the integral back end as well as the
basis set are only made in line 64, where the compute_curve is called with the chosen
set of parameters.
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Figure 7.3: Plot resulting from computing the H2 dissociation curve in a def2-SVP
basis set [251] at UMP2 level, employing the script of figure 7.2. Shown are both the
UMP2 energy values as well as the fitted Morse potential.

7.3.1 Fitting a dissociation curve

Many day-to-day tasks in quantum chemistry boil down to performing a multitude of
similar calculations, followed by a subsequent graphical analysis by plotting or fitting.
Here, we want to consider the computation of a dissociation curve followed by the fit of
a Morse potential.

Even though many traditional quantum-chemistry programs have developed function-
ality for automatising simple energy versus geometry scans, the vast number of possible
post-processing methodologies makes it impossible to cover everything. In other words
in many cases one is required to write a script to parse the program’s output and then
feed it to potentially yet another program for doing the fitting and the plotting.

This has the disadvantage that skill in at least two different settings is required: The
domain-specific language the quantum-chemistry program uses in its input file as well
as the scripting language to parse the results. For people who are new to the field, this
can become quite an obstacle. More subtly, the output formats of quantum-chemistry
programs change from time to time breaking the parser scripts or — even worse —
producing wrong results without any notice. This is a common problem in the practice
of computational chemistry.

Contrast this with the approach taken by packages like molsturm, which can be
controlled solely by a scripting language interface. The python script shown in figure 7.2
performs exactly what has been discussed above: First, in the function compute_curve, it
computes the energy of the H2 molecule at various bond distances using spin-unrestricted
second-order Møller-Plesset perturbation theory (UMP2) [252, 253] Then it calls the
function plot_morse_fit to plot the resulting data points of energies vs. distances
and to fit a Morse potential through them, see figure 7.3. Note how the error-prone
parsing step is replaced by just line 34 of figure 7.2, where UMP2 ground-state energy
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is requested from the dictionary of results returned by the calculation.

Since we are able to orchestrate the full computational procedure from a single script,
all parameters influencing the computation, the plotting or the fitting are denoted in a
single location. The script therefore serves as automatic documentation of the precise
computational procedure. On top of that if our efforts are to be reproduced by someone
else, all it takes is to re-run the script.

It should be noted that the present script only makes a single reference to the
parameters used for the selection of the discretisation basis, namely in lines 59–63. By a
trivial extension one may hence utilise this script as a building block for a systematic
study investigating the effect a change of basis set, integral implementation or basis
function type might have on the UMP2 description of the H2-dissociation. Additionally
the basis-function independent design of molsturm assures that if a new basis type or a
new integral back end becomes available in gint, only the appropriate keyword needs
to be replaced in lines 59–63 in order to employ it for the UMP2 calculations instead.

7.3.2 Coupled-cluster doubles

In this example we want to show how the high-level python interface of molsturm

may be used in combination with standard functionality from the python package
numpy [240, 245] to quickly extend molsturm by novel methods.

Even though molsturm right now neither offers any coupled-cluster method nor an
interface to any third-party coupled-cluster code, we managed to implement a simple,
working coupled-cluster doubles (CCD) (see section 4.5.4 on page 77) algorithm in only
about 100 lines of code and about two days of work. The most relevant part of the
implementation, namely computing the CCD residual for the current guess of the T2

amplitudes tabij , is shown on the right of figure 7.4, side-by-side with the expression of the
CCD residual (compare (4.96)). The full CCD code is available as an example in the file
examples/state_interface/coupled_cluster_doubles.py of the molsturm reposit-
ory [40]. We follow the standard procedure of employing a quasi-Newton minimisation of
the CCD residual with respect to the T2 amplitudes using the orbital energy differences
as an approximate Jacobian [84, 113]. The guess for the T2 amplitudes is taken from
second order Møller-Plesset perturbation theory.

The python implementation (right-hand side of figure 7.4) computes the CCD residual
following equation (4.96), which was introduced in section 4.5.4. For this it employs the
data structures molsturm provides in the state object, which is returned by the SCF
procedure. Since our code uses chemists’ indexing convention in the electron-repulsion
integrals object state.eri and we do not store the antisymmetrised tensor, the first two
lines of the code of figure 7.4 need to be executed once to generate the antisymmetrised
electron-repulsion integrals 〈mn||ef〉 in physicists’ indexing convention inside the eri

tensor object. All subsequent lines compute the residual tensor res by contracting the
relevant blocks of the Fock matrix state.fock, the eri object and the T2 amplitudes
contained in t2 and are executed once per CCD iteration. For this the code makes heavy
use of the einsum method from numpy, which performs tensor contractions expressed in
the form of Einstein’s summation convention. Note, how the interplay of numpy with
the data structures molsturm results in a strikingly close resemblance of implementation
and actual equation.
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eri_phys = state.eri.transpose((0, 2, 1, 3))

eri = eri_phys - eri_phys.transpose((1, 0, 2, 3))

...

oooo = eri.block("oooo"); vvvv = eri.block("vvvv")

oovv = eri.block("oovv"); ovvo = eri.block("ovvo")

res = (

+ np.einsum("abij->iajb", eri.block("vvoo"))

+ np.einsum("ae,iejb->iajb", state.fock.block("vv"), t2)

- np.einsum("be,ieja->iajb", state.fock.block("vv"), t2)

- np.einsum("mi,majb->iajb", state.fock.block("oo"), t2)

+ np.einsum("mj,maib->iajb", state.fock.block("oo"), t2)

+ 0.5 * np.einsum("mnij,manb->iajb", oooo, t2)

+ 0.5 * np.einsum("abef,iejf->iajb", vvvv, t2)

+ np.einsum("mbej,iame->iajb", ovvo, t2)

- np.einsum("mbei,jame->iajb", ovvo, t2)

- np.einsum("maej,ibme->iajb", ovvo, t2)

+ np.einsum("maei,jbme->iajb", ovvo, t2)

- 0.5 * np.einsum("mnef,manf,iejb->iajb", oovv, t2, t2)

+ 0.5 * np.einsum("mnef,mbnf,ieja->iajb", oovv, t2, t2)

- 0.5 * np.einsum("mnef,ienf,majb->iajb", oovv, t2, t2)

+ 0.5 * np.einsum("mnef,jenf,maib->iajb", oovv, t2, t2)

+ 0.25 * np.einsum("mnef,manb,iejf->iajb", oovv, t2, t2)

+ 0.5 * np.einsum("mnef,iame,jbnf->iajb", oovv, t2, t2)

- 0.5 * np.einsum("mnef,jame,ibnf->iajb", oovv, t2, t2)

- 0.5 * np.einsum("mnef,ibme,janf->iajb", oovv, t2, t2)

+ 0.5 * np.einsum("mnef,jbme,ianf->iajb", oovv, t2, t2)

)

Figure 7.4: Equation for the coupled-cluster doubles (CCD) residual (4.96) on the left and excerpt of a CCD implementation using
molsturm and numpy on the right. Equivalent quantities are highlighted in the same colour. The first two lines of code show the
computation of the antisymmetrised electron-repulsion integrals from the state.eri object obtainable from molsturm, which is carried
out once at the beginning of the algorithm. The remaining lines compute the residual for a particular T2 amplitude stored in the tensor
object t2. We follow the same index convention used in section 4.5 on page 73.



166 CHAPTER 7. THE MOLSTURM METHOD-DEVELOPMENT FRAMEWORK

The state object provides access to more quantities from the SCF procedure than
just the Fock matrix and the repulsion integrals. Individual terms of the Fock matrix or
quantities like the overlap matrix in terms of the underlying discretisation basis functions
may be obtained as well. We provide this data either as actual numpy arrays or by the
means of structures, which are based on numpy arrays, such that the user can employ
the SCF results freely and flexibly within the python ecosystem. Coupled with the
basis-function independence of molsturm’s SCF this allows for rapid development and
systematic investigation of Post-HF methods based on arbitrary basis functions.

At the moment we make no efforts to employ symmetry or parallelise the computa-
tion of the tensor contractions shown in the script of figure 7.4. For this reason such
implementations are all but suitable for real-world applications. Nevertheless, the script
presented in figure 7.4 may be used for CCD calculations of small molecules with small
basis sets. For example an O2 6-31G [254] calculation on a recent laptop took about an
hour to converge up to a residual l∞-norm of 10−4. For investigating new methods on
top of the molsturm framework or to provide a flexible playground for teaching Post-HF
methods to students such scripts are therefore still well-suited.

7.3.3 Gradient-free geometry optimisation

In order to make a novel basis function type properly accessible to the full range of
quantum-chemical methods a daunting amount of integral routines and computational
procedures need to be implemented. For assessing the usefulness of a new discretisation
method it is, however, important to be able to quickly investigate its performance with
respect to as many problems as possible. Undoubtedly a very important application of
computational chemistry is structure prediction, i.e. geometry optimisation. For per-
forming such calculations, the implementation of appropriate integral derivatives inside
the integral library is required. Since doing so can become as difficult as implementing
the integrals required for the SCF scheme itself, one would much rather skip this step
and concentrate only on what is required for the SCF at first.

In this example we will demonstrate how the flexible design of molsturm enables us to
incorporate readily available building blocks of python such that a decent gradient-free
geometry-optimisation scheme results. This effectively works around the lack of nuclear
derivatives on the side of the integral library and allows to perform simple structure
optimisations even without nuclear gradients — neither analytical nor numerical.

The script shown in figure 7.5 performs a geometry optimisation of a water based
on Powell’s gradient-free optimisation algorithm [255, 256] as implemented in the scipy

library [240, 245]. The optimal structure is found in a two-step procedure. First, a cheap
STO-3G [4] basis set is used to obtain a reasonable guess. Then, the final geometry is
found by minimising to a lower convergence threshold in the more costly def2-SV(P) [251]
basis.

Similar to the CCD example the time required to code the script was rather little,
about 30 minutes. Nevertheless the script is able to converge in a couple of minutes to
the equilibrium geometry shown in figure 7.6. A novel basis function type, for which one
just implemented the SCF integrals in gint, can be used with the script of figure 7.5 by
only altering the parameters in lines 36 and 41. This makes the script very suitable for
giving such basis functions a try in the context of geometry optimisation.
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1 import numpy as np

2 import scipy . optimize

3 import molsturm

4

5

6 def optimize_h2o (rHO_guess , angHO_guess , conv_tol ,

7 ** params ):

8 # Function which computes the cartesian geometry

9 # from r and theta .

10 def geometry (r, theta ):

11 rad = theta / 180 * np.pi

12 pos = (r * np.cos(rad), r * np.sin(rad), 0)

13 return molsturm . System (["O", "H", "H"],

14 [(0 , 0, 0) , (r, 0, 0) , pos ])

15

16 def objective_function (args):

17 system = geometry (* args)

18 ret = molsturm . hartree_fock (

19 system , conv_tol = conv_tol /100 , ** params ,

20 )

21 return ret[" energy_ground_state "]

22

23 guess = (rHO_guess , angHO_guess )

24 res = scipy . optimize . minimize (

25 objective_function , guess , tol=conv_tol ,

26 method =" Powell "

27 )

28 return res.x[0] , res.x[1]

29

30 def main ():

31 r = 2.0 # O-H radius guess (in au)

32 theta = 120 # H-O-H angle guess

33

34 # First a crude optimisation with sto -3g

35 r, theta = optimize_h2o (r, theta , conv_tol =5e-4,

36 basis_type =" gaussian ",

37 basis_set_name ="sto -3g")

38

39 # Then a more fine optimisation with def2 -sv(p)

40 r, theta = optimize_h2o (r, theta , conv_tol =1e-5,

41 basis_type =" gaussian ",

42 basis_set_name ="def2 -sv(p)")

43 print (" optimal H-O bond length (au): ", r)

44 print (" optimal H-O-H bond angle : ", theta )

45

46 if __name__ == " __main__ ":

47 main ()

Figure 7.5: Example python script for performing a gradient-free optimisation using
Powell’s method [255, 256] and molsturm.



168 CHAPTER 7. THE MOLSTURM METHOD-DEVELOPMENT FRAMEWORK

Figure 7.6: Density plot of the final optimised H2O Hartree-Fock geometry with a
O−H bond length of 0.95046 Å and a H−O−H bond angle of 106.35◦. A geometry
optimisation in ORCA [130] employing the same basis set agrees with this result within
the convergence tolerance of 10−5.

7.4 Current state of molsturm

After about two years of development, molsturm has become a light-weight quantum-
chemistry package of about 45000 lines of C++ and python code3, which tries to explicitly
keep the requirements of more than one basis function in mind. The key ingredient to
reach the necessary flexibility is a contraction-based self-consistent field scheme, where
the details of the Fock matrix contraction expression are varied according to the numerical
properties of the basis function type by our integral back end library gint. In contrast the
code describing the SCF algorithm is well-separated from the details of the contraction
expression using the high-level lazy matrix language of lazyten. As such it becomes
independent from the type of basis function used for the discretisation. Even if changes
to the SCF scheme or some back end library are needed in the future our modular design
will assure that the other parts of the molsturm package will stay unaffected. Once
the SCF orbitals have been obtained, the remainder of a calculation, e.g. a Post-HF
method, can be typically be formulated entirely in the SCF orbital basis and without any
reference to the underlying basis functions. Because of this molsturm can be thought of
as a mediator to produce SCF results in a very general fashion on top of which one may
stick any Post-HF method.

In molsturm the SCF procedure can be started from either a core Hamiltonian guess,
a completely random guess or any other arbitrary set of initial coefficients supplied by
the user via a numpy array. For some cases, e.g. if Coulomb-Sturmians are employed,
molsturm offers means to interpolate a guess from the converged state of a previous
calculation. During the SCF molsturm automatically switches between the implemented
SCF schemes. This is necessary since the plain Roothaan repeated diagonalisation [100]
as well as the truncated optimal damping algorithm schemes are cheaper, but typically
do not converge as efficiently as a coefficient-based Pulay DIIS. Switching the algorithms
allows us to balance this. As demonstrated in the examples in section 7.3, the algorithmic
details of the SCF procedure can be fully controlled from python, such that one often

3The number includes the code from the dependencies gint, gscf, lazyten, krims as well as all
examples and tests, but excludes comment lines and blanks.
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only needs to change a single keyword in order to switch to a different solver algorithm
or to employ a different basis function type.

Once an SCF computation has finished the obtained results can be archived in either
in YAML [250] plain text or in HDF5 [239] binary files. Such an archive not only contains
the full final state of the calculation but also the precise set parameters which were used
to start the SCF. A file therefore becomes self-explanatory and reproducible without
any special measures taken from the user. On top of that an archived calculation can
be continued or analysed at a later point or on a different machine with ease by just
restoring the state.

On top the SCF a range of interfaces for performing Post-HF calculations or further
analysis are available. Right now molsturm only implements second order Møller-Plesset
perturbation theory (see section 4.5.3) and some utility functions for plotting. Some
selected methods from third-party libraries can be easily invoked on any SCF result
using third party libraries. For example full configuration interaction is available via
pyscf [236] and the excited states methods ADC(1), ADC(2), ADC(2)-x [118] and
ADC(3) [119] based on the algebraic diagrammatic construction scheme are available
via adcman [210]. Calculations in molsturm may be performed based on contracted
Gaussians [4] — using the integral libraries libint [257, 258] or libcint [259] — and
based on Coulomb-Sturmians [24, 30] — using sturmint [170]. Implementing further
types of basis functions takes nothing more than providing appropriate interface classes
in our integral interface library gint. Thereafter such basis functions are available for
the full molsturm ecosystem including the Post-HF methods provided by the third-party
libraries mentioned above.

In section 7.3 the abilities of molsturm have been demonstrated by three practical
examples. We put particular emphasis on how our python interface integrates with
existing third-party python packages such that additional functionality can be quickly
combined with molsturm, potentially to extend molsturm in ways we as the authors
would have never thought of. In the examples it was further shown how to aid repetitive
calculations, implement novel quantum-chemical methods or rapidly amend functionality
in a preliminary way, where a proper implementation would be much more involved. We
hinted how systematic comparisons with established basis functions as well as subsequent
graphical analysis is convenient to perform by the means of our readily scriptable interface.
We hope that in this manner molsturm will be a useful package to rapidly try novel
basis function types and get a feeling for their range of applicability.
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Chapter 8

Coulomb-Sturmian-based

quantum chemistry

The real problem is that programmers have spent far too much time
worrying about efficiency in the wrong places and at the wrong times;
premature optimization is the root of all evil (or at least most of it)
in programming.

— Donald Knuth (1928–present)

In this chapter we will discuss preliminary computational results obtained from quantum-
chemical calculations using Coulomb-Sturmian basis functions inside the
molsturm framework. The focus will be on discussing and understanding the convergence
properties of CS-based calculations on atoms of the second and the third period of the
periodic table, mostly at Hartree-Fock level. Some exemplary FCI and MP2 calculations
have been performed to get an idea how the picture changes if correlation effects are
taken into account as well.

Based on these results we will discuss some preliminary guidelines for selecting CS
basis set parameters, like the angular momentum restrictions or the Sturmian exponent
kexp, where the overall aim is to yield rapid convergence of the ground state energies at
HF or correlated level. Finally we present the first results of a CS-based excited states
calculation at ADC(2) level.

For the calculations in this chapter we employed molsturm (version 0.0.3) [40] as well
as its interfaces to pyscf (version 1.4.0) [236] and adcman (version 2.5-core_valence) [210].

171
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8.1 Denoting Coulomb-Sturmian basis sets

In section 5.3.6 on page 115 we denoted a Coulomb-Sturmian basis function as the
product

ϕnlm(r) = Rnl(r)Y ml (r̂) (8.1)

of radial part

Rnl(r) = Nnl (2kexpr)le−kexpr
1F1 (l + 1 − n|2l + 2|2kexpr) (8.2)

and spherical harmonic, compare equation (5.32). It is uniquely defined by specifying
both the CS exponent kexp as well as the quantum number triple (n, l,m) ∈ IF , where
IF is the index set defined in (5.35). Since all basis functions share the same exponent
kexp a truncated CS basis is thus uniquely defined by specifying the common exponent
kexp as well as the set of all (n, l,m) triples of all basis functions ϕCS

nlm.

Theoretically any selection of triples (n, l,m) can be used to form a CS basis. From
the similarity of the CS functions to the hydrogen-like orbital functions as well as the
shape of the orbitals of other atoms one would, however, expect Coulomb-Sturmians with
smaller values of n to be the most important. In this work we have therefore restricted
ourselves to CS basis sets of the form

{
ϕnlm

∣∣∣ (n, l,m) ∈ IF , n ≤ nmax, l ≤ lmax, −mmax ≤ m ≤ mmax

}
,

i.e. where all three quantum numbers are bound from above. We will sometimes refer
to such a CS basis set by the triple (nmax, lmax,mmax) of the three maximal quantum
numbers itself. In other words a (3, 2, 2)-basis set shall denote a basis set with nmax = 3,
lmax = 2 and mmax = 2. One should mention that a restriction to basis sets of this form
is entirely arbitrary and mainly done for the sake of reducing the search space at hand
for an initial investigation.

In existing literature about Coulomb-Sturmians the existing terminology to denote
atomic orbitals as well as sets of atomic orbitals is often carried forward to the CS context
as well. For examples the spectroscopic terms 1s, 2s, 2p−1 and so on are often used to
denote the Coulomb-Sturmian functions ϕ100, ϕ200, ϕ2,1,−1.

8.2 Convergence at Hartree-Fock level

In chapter 4 on page 43 we mentioned that Hartree-Fock is typically the first step for a
quantum-chemical simulation with many accurate Post-HF methods building on top of
the HF result. Because of this as well as its simplicity it is a very good starting point
for our investigation of the convergence of Coulomb-Sturmian-based discretisations in
quantum-chemical calculations. To reduce the complexity further, we will not yet consider
variations of the CS exponent kexp in this as well as the next few sections. Instead we
will only discuss the effect of changing the maximal quantum numbers nmax, lmax and —
to a lesser extend — mmax. The reason for this is twofold. First of all already our initial
discussion about the relative error and local energies of CS discretisations in section 5.3.6
on page 115 showed that the effect of varying the maximal quantum numbers is much
more pronounced compared to changing kexp. Secondly the completeness property of
the Coulomb-Sturmians is satisfied regardless of the value of kexp and thus any error
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resulting from a less ideal value of kexp can be corrected with larger basis sets. Notice,
however, that the rate of convergence with increasing the basis size does well depend
on the choice of kexp as previous work suggests [32] and our discussion in section 8.4
confirms. In other words a sensible value for kexp does need to be chosen for our analysis
nonetheless.

The net effect of tuning the maximal quantum numbers nmax, lmax and mmax is that
one effectively selects which part of the set of all radial functions {Rnl}nl and which part
of the set of all angular functions {Y ml }lm is available for modelling the wave function.
The completeness property of the Coulomb-Sturmians implies that both {Rnl}nl as well
as {Y ml }lm are complete bases. Whilst the latter is furthermore a well-known property
of the spherical harmonics [138], the former is also apparent from the connection of the
CS radial equation to Sturm-Liouville theory (see section 5.3.6 on page 115), where one
key result is that the eigenfunctions of a Sturm-Liouville differential equation form a
complete basis for a weighted L2-space [29]. Since the angular momentum quantum
number l is a parameter in the CS radial equation (5.33), not only the set {Rnl}nl of
all radial parts is complete, but also the set {Rnl′}n, where the angular momentum l′ is
held fixed. This allows to express each function Rnl with l > 0 as a linear combination
of the functions {Rn′,0}n′ . As a careful analysis using the recurrence relations between
the confluent hypergeometric functions shows, employing those radial parts with l = 0
and n′ ≤ n is sufficient to express Rnl. In other words convergence in the radial part
can be completely controlled by the range of available principle quantum numbers n,
i.e. by tuning nmax. Conversely lmax and mmax control the convergence with respect to
the angular part in agreement with the physical interpretation given to the quantum
numbers l and m.

Related to this aspect is the scaling of CS basis set size with the maximal quantum
numbers nmax, lmax and mmax. For example a CS basis consisting of complete shells
with principle quantum numbers up to and including nmax consists of

Nbas(nmax) =
nmax∑

n=1

n−1∑

l=0

l∑

m=−l

1 =
nmax∑

n=1

n−1∑

l=0

2l + 1

=
nmax∑

n=1

n2 =
(2nmax + 1)(nmax + 1)nmax

6
∈ O(n3

max),

(8.3)

basis functions, i.e. scales cubically with nmax. In contrast the size of a basis set, which
is limited both by nmax as well as the maximal angular momentum lmax scales as

Nbas(nmax) =
nmax∑

n=1

min(lmax,n−1)∑

l=0

2l + 1

=
nmax∑

n=1

(
min(lmax + 1, n)

)2

≤
nmax∑

n=1

(lmax + 1)2 = (nmax − 1)(lmax + 1)2 ∈ O(nmaxl
2
max).

(8.4)

In other words if we manage to find a sensible upper bound for lmax, which captures all
of the angular part of the HF wave function, we can converge the radial part thereafter
by just increasing the basis set size linearly. A key aspect of the next few sections will
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system EHF system EHF

Li −7.4327376a,U Na −161.8589459a,U

Be −14.57302317b,R Mg −199.61463642b,R

B −24.5334831a,U Al −241.8808503c,U

C −37.6937751c,U Si −288.8589476c,U

N −54.4046409c,U P −340.7192829c,U

O −74.8192096c,U S −397.5133666c,U

F −99.4166858c,U Cl −459.4899302c,U

Ne −128.54709811b,R Ar −526.8175128b,R

U unrestricted HF
R restricted HF
a CBS extrapolation using cc-pVDZ to cc-pv5Z [148, 261]
b Morgon et al. [260]
c CBS extrapolation using cc-pVTZ to cc-pv6Z [148, 152, 261–263]

Table 8.1: Reference values used for comparison of the CS-based results and for
estimating errors in the CS values. The CBS extrapolation was done with a builtin
routine provided by molsturm following Jensen [149].

therefore be to find a suitable upper bound for lmax for a particular chemical system.
Notice, that the completeness of the radial part of the CS functions implies that this
upper bound for lmax is not specific to CS functions, but can be applied to any basis
function type, which is of the product form radial part times angular part.

To estimate errors and judge the quality of our CS-based HF results we compare
to the reference values given in table 8.1. For the closed-shell atoms we use the very
accurate numerical RHF energies obtained by Morgon et al. [260]. For open-shell atoms
as well as the other systems we employ the method of Jensen [149] to extrapolate the
UHF complete basis set (CBS) limit from UHF calculations using the Dunning cc-pVnZ
family of cGTO basis sets.

8.2.1 Basis sets without limiting angular momentum

Without truncating the maximal angular momentum by limiting lmax the CS basis set
effectively consists only of full shells of principle quantum numbers n, ranging from 1 to
nmax. Since the CS functions are complete, increasing nmax is guaranteed to reduce the
error due to the Courant-Fischer theorem 3.3 on page 33. Figure 8.1 on the facing page
shows this for the atoms of the second period by plotting the absolute error in the HF
energy versus the number of basis functions. For each calculation of a particular atom
the same value of kexp was used, which was taken to be close to the optimal exponent of
this atom at (6, 5, 5) level to exclude any influence on the behaviour originating from a
very unsuitable exponent. Whilst we notice a clear convergence with increasing basis set
size, it is furthermore visible that the convergence rate drops for larger values of nmax.

The question is now whether all employed basis functions are actually required in
order to represent the HF wave function properly. From a physical point of view, we
would not expect all angular momentum to be equally important for the description of
the electronic ground state of a particular atom. In beryllium, for example, only the
1s and 2s atomic orbitals are occupied, such that we would expect, that only angular
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Figure 8.1: Plot of the absolute error in the HF energy versus the number of basis
functions in a CS basis containing complete shells up to and including principle quantum
number nmax. For the closed-shell atoms Be and Ne the restricted HF procedure was
used, whereas for the other systems UHF was employed. The errors were computed
against the reference values from table 8.1 on the facing page.
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momentum up to l = 0 is required. In light of our discussion in the previous section, we
would therefore propose that a basis with lmax = 0 is sufficient to converge the angular
part of the beryllium ground state. Conversely we would expect all CS functions with
l > 0 to contribute only very little to the increase in accuracy as we go to larger basis
sets in figure 8.1 on the previous page. To test this hypothesis, let us introduce the
root mean square occupied coefficient per angular momentum l, formally defined
as follows.

Definition 8.1. The root mean square (RMS) occupied coefficient per angular mo-
mentum l is the quantity

RMSOl =

√√√√
∑

(n,l,m)∈Ibas

∑

i∈Iα
occ

1
Nα

elec Nbas,l

(
Cαnlm,i

)2

+
∑

i∈Iβ
occ

1

Nβ
elec Nbas,l

(
Cβnlm,i

)2

(8.5)
where Cαµi and Cβµi are the orbital coefficients of the α and β orbitals (see (4.58)) and

Nbas,l :=
∣∣∣
{

(n′, l′,m′)
∣∣ (n′, l′,m′) ∈ Ibas and l′ = l

} ∣∣∣

is the number of basis functions in the CS basis which has angular momentum quantum
number l.

By construction RMSOl is the RMS-averaged coefficient for a particular angular
momentum quantum number l in the occupied SCF orbitals. It therefore provides a
measure of which angular momentum quantum numbers l are required in the current basis
set for describing a state properly. Conversely values of RMSOl below the convergence
threshold εconv of the SCF procedure indicates that all CS basis functions of this angular
momentum value l can be safely removed from the CS basis set without influencing the
accuracy of the HF calculation above this level. In many cases this property of RMSOl

can assist in finding a good value of lmax for truncating the orbital angular momentum.

For example let us consider figures 8.2 and 8.3 on the facing page, which show the
variation of RMSOl vs. l for the HF ground state for the atoms of the second and
third period if a (6, 5, 5) Coulomb-Sturmian basis is employed. In the plot two kinds
of behaviour can be identified. The first kind applies to those atoms which are either
closed-shell like Be, Ne, Mg or Ar or which have a half-filled valence sub-shell like Li,
N, Na or P. For these a very pronounced drop in RMSOl occurs once a particular
angular momentum value l has been reached. For Li and Be, where only s-functions
are occupied in the ground state, this happens from l = 0 to l = 1 and for the other
mentioned atoms from l = 1 to l = 2, which in both cases is in perfect agreement with
the behaviour expected from the physical point of view. For these atoms truncating at
lmax = 0 or lmax = 1, respectively, will not introduce a noticeable error as we will see in
the next section. In contrast to this the other atoms B, C, O, F, Al, Si, S and Cl vary
in a decreasing staircase pattern. Much rather their RMSOl value decreases only very
moderately over the range of angular momentum quantum numbers.

Figures 8.4, 8.5 on page 178 and 8.6 on page 179 provide a good hint to understand
this behaviour. These show the RMS-averaged value of those orbital coefficients that
share the same angular momentum quantum number l in the corresponding basis function.
For the modelling of the atoms in each case a (6, 5, 5) Coulomb-Sturmian basis with a
near-optimal value of kexp is employed. Whilst for nitrogen (figure 8.4) the 2s function
mostly has significant coefficient values associated to basis functions with l = 0, both for
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Figure 8.2: Plot RMSOl vs. l for the HF ground state of the atoms of the second period
if a (6, 5, 5) CS basis is employed. In each case kexp was taken close to the optimal value.
For Be and Ne a RHF procedure was used, for the other cases UHF.

Figure 8.3: Plot RMSOl vs. l for the HF ground state of the atoms of the third period
if a (6, 5, 5) CS basis is employed. In each case kexp was taken close to the optimal value.
For Mg and Ar a RHF procedure was used, for the other cases UHF.
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Figure 8.4: Root mean square coefficient value per basis function angular momentum
quantum number l for selected orbitals of nitrogen. The atom is modelled in a (6, 5, 5)
CS basis using UHF.

Figure 8.5: Root mean square coefficient value per basis function angular momentum
quantum number l for selected orbitals of carbon. The atom is modelled in a (6, 5, 5) CS
basis using UHF.
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Figure 8.6: Root mean square coefficient value per basis function angular momentum
quantum number l for selected orbitals of oxygen. The atom is modelled in a (6, 5, 5)
CS basis using UHF.

carbon (figure 8.5) as well as oxygen (figure 8.6) the basis functions with l = 2 and l = 4
are important as well. Similar observations can be made for the 2p functions, which for
N and C have significant coefficients at angular momenta l = 1, 3, 5 and the 3d functions,
which require l = 2 and l = 4, sometimes even l = 0, for a proper description. This
explains why RMSOl plots for carbon and oxygen do not show the expected drop from
l = 1 to l = 2, since the higher angular momenta play a role for the occupied s-type and
p-type SCF orbitals as well. Equivalent plots to figures 8.5 and 8.6 for the other atoms,
which are not closed-shell or have a half-filled valence shell, show very similar features,
which overall explains the slow decrease in the RMSOl plots for such atoms.

The pending question is now why angular momenta higher than the expected l = 0
and l = 1 are needed for modelling the s-like and p-like orbitals in some atoms in the
first place. Since very similar RMSOl and RMS orbital coefficient plots are observed if
cGTO discretisations are used, see appendix B on page 211, this effect cannot be due to
the CS discretisation we employ. Much rather it is an artefact of our UHF treatment of
the open-shell systems. For example Cook [264] described a similar behaviour for a UHF
modelling of carbon and fluorine based on cGTO discretisations. He noticed that the
s-type and p-type SCF orbitals for both these systems were not only composed of cGTO
basis functions with l = 0 and l = 1, but much rather were linear combinations of basis
functions with angular momentum quantum numbers in steps of 2 apart. So for s-like
SCF orbitals s, d, g, . . . basis functions were combined in his calculations — exactly
what we observe in figure 8.5. Later it was found that the occurrence of higher angular
momenta in the ground state is a general issue of UHF [91, 92, 265]. Fukutome [91]
provides a very detailed analysis of the underlying mechanisms including a discussion of
the effect of spin symmetry breaking and HF instabilities in UHF and GUHF.
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Let us try to understand the occurrence of this behaviour in the context of our
calculations. For the case with an unevenly occupied electronic configuration, like
a single or two unpaired electrons, a very naïve guess for UHF, that is without using
fractional occupation numbers, is not spherically but axially symmetric [92]. This implies
that the obtained SCF orbitals no longer represent a spherically symmetric density, but
an axially symmetric density instead. This is carried forward over the iterations, such
that for the final UHF ground state spherical symmetry is broken. If we were to use
fractional occupations, then numerical error, which accumulates over the SCF procedure,
could still lead to axially symmetric SCF orbitals. The reason is the same mechanism
leading to the Jahn-Teller effect [266], namely that breaking the symmetry allows to
change the geometry, such that overall the energy of the occupied SCF orbitals is net
lowered, and the energy of the virtual orbitals overall raised. As soon as numerical error
amounts to break the spherical symmetry once, the effect will amplify over the UHF
iterations and thus lead to the same axially symmetric UHF ground state.

On the level of the SCF orbitals, the broken spherical symmetry allows for CS basis
functions of different angular momentum to be combined inside a single orbital, such
that these are no longer of pure s, p, d, . . . character. Let us give a few examples for
this. If a spherically symmetric s orbital is amended with a fraction of dz2 , then this
effectively causes a stretching of the orbital along the z axis, which makes it axially
symmetric. Similarly the px, py and pz orbitals may be amended with fxz2 , fyz2 and fz3

to cause the same stretching along the z-axis in each of these. Even if all p orbitals of
this p-shell are evenly occupied in the final HF ground state, the wave function is then
axially symmetric.

Since such a linear combination of angular momenta lowers the total SCF energy, the
UHF procedure for unevenly occupied electron configurations may well explore these.
In contrast, for evenly occupied valence shells, like the half-filled valence shell atoms N
and P, such a symmetry breaking does not help to lower the energy since all p orbitals
are occupied to the same level, thus it does not occur and the pure angular momentum
character of each of the orbitals is kept even in an UHF treatment. In other words the
observed slow decrease in the RMSOl plots in figures 8.2 and 8.3 for the atoms with one
or two unpaired electrons is not due to the CS discretisation not being able to represent
the system, but much rather due to a known issue of UHF. A treatment of the atoms
with ROHF should give more consistent results for all atoms.

Conversely our discussion shows that RMSOl is a good diagnostic measure for un-
derstanding which angular momentum quantum numbers are required for an accurate
quantum-chemical modelling. Since its value for a particular quantum number l indicates
the RMS-averaged coefficient value it even provides a quantitative measure for the error,
which is introduced if the range of available angular momentum in a CS basis set is
truncated to angular momenta below this value.

8.2.2 Basis sets with truncated angular momentum

From the discussion of the previous section it becomes clear that at least in some cases
it makes sense to limit not only nmax, but on top of that lmax as well. For example
for beryllium the clear drop in RMSOl in figure 8.2 suggests that limiting the angular
momentum quantum numbers to lmax = 0 is reasonable. Similar arguments for N
and P suggest taking lmax = 1 for these atoms. In other words we would expect the
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Figure 8.7: Relative error in EHF versus the number of basis functions for selected CS
basis sets of the form (nmax, lmax, lmax). The connected points show basis set progressions
in which the maximum principle quantum number nmax is varied in steps of one and the
maximum lmax is fixed. The first and last value for nmax are indicated as small numbers
next to the plot. The same line type is used for all progressions of the same lmax and
the same colour for all progressions of the same atom.

discretisation of the angular part of the HF wave function to be already well-converged
for CS discretisations with lmax = 0 or lmax = 1, respectively. Consequently we will only
need to increase nmax further and further in order to converge the remaining radial part
of the wave function as well. Since fixing lmax reduces the scaling of the basis set size
from cubic in nmax (see (8.3)) to linear (see (8.4)), we would expect to obtain a much
faster convergence rate.

To test our hypothesis figure 8.7 shows some example calculations of beryllium,
nitrogen, carbon, oxygen and phosphorus using progressions of CS basis sets, where
lmax is limited to either 0, 1 or 2, but nmax is ranged between 4 and 12. In each case
the relative error of the HF energy with respect to the reference values in table 8.1 are
plotted against the size of the CS basis and those error values corresponding to the same
atom and the same lmax, but different nmax, are connected by lines. We will refer to
such a sequence of connected error values by the term progression in the following.
As usual kexp is fixed to a sensible value for all calculations of the same atom and for
beryllium we used RHF, for the other atoms UHF.

Even though the basis sets are now additionally truncated in angular momentum
quantum numbers, the HF energies for beryllium still converge steadily. This applies both
to the cases lmax = 0 as well as lmax = 1. Compared to figure 8.1 one notices, however,
a massive improvement in convergence rate. For the lmax = 1 progressions of nitrogen
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Figure 8.8: Relative error in EHF versus the number of basis functions for oxygen. The
plot shows the oxygen progressions of figure 8.7 amended with further progressions using
larger basis sets,

and phosphorus the same holds true. Choosing lmax = 2 for nitrogen does not improve
the obtained values very much in accordance with the RMSOl plot (figure 8.2). Since
the basis now grows faster as nmax increases, the convergence rate is slower, however.
For oxygen and carbon the angular momentum values l > 2 are important for a proper
modelling of the ground state as well. As such it is no surprise that the convergence
of the HF energy for these two cases stagnates visibly for the nmax-progressions with
lmax = 1 and lmax = 2. Even though the convergence is initially linear as well, the curves
bend off at some point. The reason for this is that the truncation of the available set of
angular momentum quantum numbers to at most lmax makes some of the true solution
of the angular part not accessible to the CS discretisation. At some point the resulting
error completely dominates, such that improving the radial part by increasing nmax does
not improve the relative error by much any more.

The results of our investigations on the oxygen atom are summarised in figure 8.8,
which shows the (nmax, 1, 1) and (nmax, 2, 2) progressions already depicted above as well
as one using (nmax, 3, 3) CS basis sets. The effect of truncating the angular momentum
is clearly visible. The blue curve with lmax = 1 is not able to converge to relative errors
below around 7 · 10−5, whilst the orange curve with lmax = 2 can take the error down
to 2 · 10−5. The green curve with lmax = 3 on the other hand converges almost linearly
over the full range of nmax considered. This can be explained if we take another look
at the RMSOl plot of oxygen in figure 8.2. Comparing these findings with the RMSOl

plot of oxygen in figure 8.2 indicates some noteworthy agreements. Whilst RMSO2 and
RMSO3 are of a similar size, there is a larger decrease, about 2 orders of magnitude,
going from RMSO3 to RMSO4. In other words selecting lmax = 2 instead of lmax = 1
does not improve the error in the angular part as much as going to lmax = 3 does. This
is reflected by the fact that for lmax = 3 an almost linear convergence up to nmax = 12
is obtained, whilst for lmax < 3, the error in the angular part starts to dominate from
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around nmax = 10, such that the convergence slows down.

For constructing CS basis sets, which converge rapidly at HF level, a good balance
between the error remaining in the discretisation of the angular part as well as the error
in the discretisation of the radial part is required. As discussed the former aspect is
controlled by selecting lmax, the latter by selecting nmax. We found in the case of oxygen
that the magnitude of the error in the discretisation of the angular part and the trends
in the RMSOl versus l plots are related. We believe this finding to be general in the
sense that a significant drop of RMSOl from l to l + 1 indicates that the CS basis set
progression with lmax = l will allow convergence to a lower error in the HF energy than
lmax = l − 1 would be able to. Once a large enough value for lmax is chosen to converge
the angular part, the convergence in the radial part with increasing nmax is initially
linear. For large values of nmax the remaining error in the angular part will start to
dominate and yet a larger lmax has to be chosen to make further progress.

From the examples considered in this section we would expect to require around
nmax = 10 to reach a target accuracy of 5 digits, which equals a relative error of below
10−5. For Li and Be, where lmax = 0 is sufficient this equals a (10, 0, 0) basis consisting
of only 10 CS basis functions. For N, Ne, Na, Mg, P and Ar a (10, 1, 1) basis would be
required, which has 37 basis functions. For the difficult cases like O, C and most other
atoms with a single or 2 unpaired electrions at least lmax = 3 is required. A (10, 3, 3) CS
basis has the enormous number of 126 basis functions, which still only reaches 5 digits
of accuracy in the HF energy.

8.3 Convergence at correlated level

In the previous section we took a first look at the convergence properties of Coulomb-
Sturmian-based discretisations at Hartree-Fock level. In practical quantum-chemical
calculations Hartree-Fock is typically not the final answer, but only a first step, such
that our discussion of convergence should really not focus on Hartree-Fock alone. In this
spirit the aim of this section is to take our preliminary guidelines for sensible basis sets
at HF level and describe some adaptions, which could help to construct sensible CS basis
sets for correlated quantum-chemical methods. In line with what we discussed before,
we will ignore the dependency of the CS basis on the exponent kexp and keep a sensibly
chosen, fixed exponent value for each atom throughout. So far we have not carried
out many calculations for investigating the dependency of the correlated ground-state
energy with respect to altering the maximal quantum numbers nmax, lmax and mmax.
Our results in this section are therefore just exemplary and should not be taken to be
general for Coulomb-Sturmian discretisations at correlated level. Moreover we have only
considered two Post-HF approaches, namely MP2 and to a much lesser extent full CI,
such that the behaviour might well deviate in other methods.

A first impression regarding the dependency of the correlation energy on the CS basis
set provides figure 8.9 on the following page. It shows the fraction of the beryllium atom
correlation energy, which is recovered by selected CS basis sets and at FCI and MP2
level, plotted against the size of the basis. As the reference, i.e. 100% correlation energy,
we take the value obtained in a FCI calculation employing the rather large (10, 2, 2) CS
basis. When it comes to interpreting this figure one has to be a little careful. First of all
the ground-state energy at HF level is not necessarily constant for all of the basis sets
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Figure 8.9: Fraction of beryllium correlation energy recovered relative to a FCI reference
calculation with a (10, 2, 2) CS basis. All calculations employ an exponent of kexp = 2.1.

employed. In the depicted cases the changes in EHF are, however, only very little and
orders of magnitude smaller than the changes in correlation energy. The reason for this
is that the selected basis sets only differ in the maximal angular momentum quantum
numbers lmax and mmax, whilst the beryllium HF wave function is already converged
very well in the angular part for lmax = 0. The second issue with this plot is that the blue
curve somewhat compares apples and pears, namely a variationally obtained reference
correlation energy at FCI level with a perturbatively obtained correlation energy using
MP2. Ignoring this fact for a moment, we find that the FCI and the MP2 correlation
energy curves follow very similar trends. Most notable are the two strong increases
in the amount of correlation energy recovered going from (6, 0, 0) to (6, 1, 0) and from
(6, 2, 0) to (6, 1, 1). Interestingly another increase of lmax, namely the transition (6, 1, 1)
to (6, 2, 1) does not have such a pronounced effect. In line with the arguments presented
in the context of HF it seems that the angular momentum discretisation of the MP2
or FCI ground-state wave functions are largely converged as soon as lmax = mmax = 1,
such that further increases of angular momentum have much smaller effects.

Since the FCI calculations on large basis sets such as (10, 2, 2) become extremely
costly for larger atoms with more electrons, we did not perform such calculations except
for beryllium. The only other correlation method, which is currently available from
molsturm is MP2. Thus somewhat pragmatically we limited our investigation of the
convergence at correlated level for the other atoms of the second and third period to
MP2 only, arguing that at least for the case of beryllium we got the same trends. The
results are presented in the tables of appendix C on page 213 and graphically in figures
8.10 and 8.11 on page 186. These show that the fraction of total MP2 energy which is
missed by a particular basis set compared to the most accurate result we obtained in
our calculations for a particular atom. Again this value is plotted against the size of the
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Figure 8.10: Plot of the missing fraction of total MP2 energy compared to a calculation
employing a (6, 3, 3) CS basis versus the basis size. Shown are the atoms of the second
and third period with a full or half-full valence shell.

basis set. Similar to the case of beryllium sketched above, we concentrate on capturing
the effect of converging the discretisation of the angular part of the MP2 wave function
by varying lmax and mmax. In figure 8.10 for the half-filled and filled valence shells, a
convergence is visible. For Li and Be, where lmax = mmax = 0 converges the angular
part of the HF ground state, lmax = mmax = 1 does so pretty much for the MP2 ground
state. For the other atoms shown in figure 8.10 lmax = mmax = 2 is at least required.
In other words compared to converging the HF ground state we roughly speaking need
one extra angular momentum. For the cases of one and two unpaired electrons, which
are shown in figure 8.11, the picture is not so conclusive. Since already the HF ground
state requires lmax = 3 for a decent modelling of the angular part, this is of course at
least required for the MP2 wave function as well. But figure 8.11 seems to suggest that
lmax = 4 is important as well since the change from (6, 3, 3) to (6, 4, 4) is much steeper
compared to the change from (6, 2, 2) to (6, 3, 3) in figure 8.10. Whether even larger
angular momentum is required cannot be said with the currently available results.

Following our discussion above it is probably a little far fetched to assume that one can
properly judge how well a CS basis set is able to capture correlation effects just by looking
at MP2 correlation energies. Nevertheless given how well the trends of MP2 and FCI
agree for beryllium, it seems likely that at least for the well-behaving cases with closed or
half-filled valence shell the rule to take one extra angular momentum for the correlated
calculation captures the predominant effects. On top of the few investigations towards
converging the angular part of the correlated wave function, no further investigation
regarding nmax and the convergence of the radial part was attempted so far.
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Figure 8.11: Plot of the missing fraction of total MP2 energy compared to a calculation
employing a (6, 4, 4) CS basis versus the basis size. Shown are the atoms of the second
and third period with one or two unpaired electrons.

8.4 The effect of the Coulomb-Sturmian exponent

In our discussion about the properties of Coulomb-Sturmian basis sets in this chapter,
we have neglected the effect of the CS exponent kexp so far. Our main argument was that
a CS basis is complete regardless of the value of kexp, such that for large enough CS basis
sets the result will not depend on kexp anyway. In practice the aim is of course to yield a
sensible discretisation of the wave function in the smallest basis possible and furthermore
to obtain the best rate of convergence as the basis is increased. As we will discuss in
this section the value of kexp has an influence on these matters and can therefore not be
chosen completely arbitrarily. We will subsequently develop an algorithm for obtaining
the optimal exponent kopt with respect to minimising the HF energy and present some
results for the atoms of the first two periods of the periodic table.

Notice that for the case of a CS-based FCI a reformulation of the FCI problem exists,
which allows to find the optimal exponent kexp alongside the FCI energies [29]. In fact
this reformulation yields to an eigenproblem in which the obtained eigenvalues are not
energies, but the optimal CS exponents for each FCI state. Via the relationship

E = −
Neleck

2
exp

2

the energy of each state can be found thereafter. This is highly advantageous, because
the aforementioned explicit optimisation of the exponent can be avoided. To the best
of my knowledge a related approach for the HF problem, has not been found, however,
such that at the level of HF and Post-HF (excluding FCI) a CS exponent kexp needs to
be specified explicitly for performing a calculation.
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Figure 8.12: Plot of the HF energy contributions of the beryllium atom versus the
Coulomb-Sturmian exponent kexp. All calculations are done in a (5, 1, 1) CS basis.

In the CS basis functions kexp only occurs in the radial part (8.2). In the form of
the exponential term exp(−kexpr) it influences how quickly the basis functions decay
asymptotically and in the form of the polynomial prefactor it determines the curvature
of the radial functions as they oscillate between the radial nodes. Keeping this in mind
let us consider figure 8.12, which shows the changes to individual energy contributions
of the HF ground-state energy as kexp is altered. The largest changes are apparent for
the nuclear attraction energy, which decreases — initially rather steeply — as kexp is
increased. This can be easily understood from a physical point of view: Since larger
values of kexp imply a more rapid decay of the basis functions, the electron density
on average stays closer to the nucleus, which in turn leads to a lower (more negative)
interaction energy between electrons and nucleus. The converse effect happens for smaller
values of kexp, where the electron density is more expanded and thus on average further
away from the nucleus. On the other hand the kinetic energy is related to the curvature
of the wave function, which — as described above — increases for larger kexp. In other
words the trends of nuclear attraction energy and electronic kinetic energy oppose each
other, with the kinetic energy being somewhat less effected. On the scale depicted in
figure 8.12 the variation of the electron-electron interaction, i.e. both classical Coulomb
repulsion as well as the exchange interaction combined, is much less pronounced. Only a
very minor increase with kexp can be observed. The physical mechanism is again similar
to the nuclear attraction energy term, namely that larger kexp compresses the wave
function and thus leads to the electrons reside more closely to another, which increases
the Coulomb repulsion between them. The exchange interaction is effected as well, but
the changes are smaller and thus not visible.

Summing up all energy contributions leads to the blue curve in figure 8.13, which
shows the total Hartree-Fock energy versus the Coulomb-Sturmian exponent kexp. From
our discussion of the individual terms it is apparent that at small values for kexp the
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Figure 8.13: Plot of the HF, MP2 and FCI ground state energies of beryllium versus
the Coulomb-Sturmian exponent kexp. The optimal exponent kopt for each method is
marked by a cross. All calculations are done in a (5, 1, 1) CS basis.

increase in nuclear attraction energy dominates, such that the HF energy increases
rapidly. At large distances the kinetic energy and electron-electron interaction terms
win, such that a convex curve for the plot EHF versus kexp results. Adding correlation
effects by a treatment of the atom at MP2 or FCI level, does not change this overall
behaviour much. Up to a large extent the curves are just shifted downwards by the
correlation energy term. The shift is, however, not completely uniform. This can be seen
if we consider the optimal CS exponent kopt, which is denoted by a cross in each of the
plots of figure 8.13. This exponent of minimal energy shifts to slightly larger values going
from HF to MP2 and finally to FCI indicating that the amount of correlation energy is
somewhat larger at exponents slightly above kopt for Hartree-Fock. Notice that kopt not
only depends on the method used for modelling a particular state, but it well depends
on the state as well. For example for modelling the first T1 excited state of beryllium a
smaller value for kopt is obtained than the FCI kopt of the depicted S0 ground state.

Since kexp only occurs in the radial part of the CS basis functions the effect of its
variation depends on the maximal principle quantum number nmax of the basis set. As
larger and larger values of nmax are used, the discretisation of the radial part of the wave
function becomes more and more complete, such that the choice of kexp in turn becomes
less important. Figure 8.14 on the facing page shows this for the ground-state energy of
the carbon atom at unrestricted HF and MP2 level. Whilst a (4, 2, 2) CS basis reproduces
largely the shape of the plots in figure 8.14, for (5, 2, 2) and (6, 2, 2) the energy versus
exponent curves become visibly flatter close to the optimal exponent (around kexp = 2.8).
The influence of increasing nmax is not the same for all values of kexp. Instead the curves
seem to bend down in the range kexp > 3, indicating a faster rate of convergence in this



8.4. THE EFFECT OF THE COULOMB-STURMIAN EXPONENT 189

Figure 8.14: Plot of the unrestricted HF and MP2 ground state energies of carbon
versus the Coulomb-Sturmian exponent kexp in the (4, 2, 2), (5, 2, 2) and (6, 2, 2) basis
sets. The optimal exponent kopt at HF level for each basis set is marked by a cross.

region compared to the range kexp < 2.5. In other words choosing a CS exponent larger
than kopt will generally speaking lead to better convergence, thus a smaller error than
choosing a too small exponent1. Another conclusion we can draw from figure 8.14 is
that the optimal value for the exponent kopt depends on nmax as well as larger basis
sets give rise to smaller values for kopt. We can rationalise by taking the plots of the
energy terms in figure 8.12 on page 187 into account. We already noticed above that
the nuclear attraction energy is influenced by kexp most strongly. Additionally it is (by
magnitude) the largest contribution to the HF energy. In order to yield the minimal
ground-state energy in a small basis the dominating effect is therefore to minimise the
nuclear attraction energy as much as possible. As a result the optimal exponent kopt

takes comparatively large values. As the basis becomes larger a balanced description
of the complete physics becomes possible, such that the electron repulsion and kinetic
energy terms are described better as well and thus smaller values for kopt result.

Due to the structure of the energy versus exponent curves, like the ones shown in
figure 8.14, one hardly ever needs to know kopt very accurately. As long as one uses a
reasonable guess, which is constructed to overestimate kopt rather than underestimate
it, one is usually safe. If a highly accurate treatment of a particular system is required,
then increasing nmax has both a much larger effect and is computationally cheaper than
finding the optimal exponent in the smaller basis. See the next section for details.

1We already noted this aspect in the context of discussing the local energy plots in section 5.3.6.
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8.4.1 Determining the optimal exponent kopt

For variational quantum-chemical methods finding the best Coulomb-Sturmian exponent
kopt for the ground state is equivalent to minimising the ground state energy with
respect to kexp. Since such energy curves are convex (compare figures 8.13 and 8.14)
and only scalar functions of a single parameter, this minimisation can be performed
quite effectively by gradient-free optimisation algorithm. The procedure implemented in
molsturm for finding kopt uses Brent’s method [267]. Starting from a reasonable guess
for kopt convergence to the minimum is usually achieved in around 10 iterations. For
achieving this Brent’s method will require a similar number of energy computations
using the chosen quantum-chemical method and the chosen CS basis.

With respect to the basis, which is used for such a procedure, there are two things to
note. Firstly we already mentioned in our previous discussion that kexp is a parameter,
which only affects the radial part. In other words for obtaining a situation in which the
individual calculations of the energies are not dominated by the error in the angular
discretisation, but the current value of kexp, large enough values for lmax and mmax

should be chosen. Too large values of lmax will, however, lead to large basis sets, thus
long run times for the energy calculations. In practice a compromise between accuracy
and runtime needs to be found. Our investigations (see tables 8.2 and 8.3 on page 195)
seem to suggest that one can find reasonable values for kopt already for basis sets where
lmax is chosen smaller than the value suggested by the RMSOl plots. Secondly one
should keep in mind that too large values of nmax will cause the energy-vs-kexp curves to
become flat around kopt, which slows down convergence of the optimisation procedure.
Keeping in mind that typically getting roughly the right value for kopt is good enough, it
is sometimes more sensible to find kopt in a smaller basis set, where the energy-vs-kexp

is more steep and calculations are faster, and use this value for larger basis sets as well.
For the reasons we discussed in the previous section such a kopt from a smaller basis will
always be an overestimation of the actual kopt, which is favourable.

Our investigations have so far only considered obtaining optimal exponents kopt

at HF level. The most challenging aspect for doing so is in fact the stability of the
SCF procedure itself. Especially at the beginning of the iteration, when the Coulomb-
Sturmian exponent kexp is still relatively far off the optimal value, the core Hamiltonian
guess2 we employ by default is not very good and frequently fails to lead to the true SCF
minimum in our SCF scheme. Much rather another stationary point on the SCF Stiefel
manifold is found. If we now continue to use the resulting wrongfully converged SCF
coefficients as the guess for the next iteration of Brent’s method, we will typically manage
to find a kopt, but this might not be the kopt of the true SCF minimum, i.e. the true
HF ground state. On the other hand if we start from the core Hamiltonian guess each
time, it can happen that the SCF iterations for different values of kexp lead to different
stationary points on the Stiefel manifold. This violates a fundamental assumption of
Brent’s method, namely the continuity of the objective function. In other words the
optimisation procedure is likely to find a wrong value for kopt in this case.

Our remedy is to first make very sure we obtain a reliable guess for starting the SCF
procedures called during the optimisation before starting the optimisation procedure
energy versus kexp at all. In order to do so we first perform 5 SCFs starting from totally
random guesses for the input value of kexp supplied by the user. From the lowest-energy

2So far only random guesses, guesses from previous SCF cycles and core Hamiltonian guesses are
implemented in molsturm.
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result of these we then take the orbital energies εi and use them to estimate a second
value for kexp, namely

kexp ≃
√

−2
Nelec

∑

i∈Iocc

εi. (8.6)

The rationale for this heuristic formula is the energy-dependent decay of the exact
wave function [69], which — assuming HF to be exact — would manifest as well in an
energy-dependent decay of the orbitals by themselves. Applying the formula

εi = −1
2
k2
i ⇔ ki =

√
−2εi

to yield the best exponent ki for describing orbital i and taking the average over all ki
results in (8.6). The result from applying (8.6) is typically not extremely good, but in
the cases we considered it is at least in the same order of magnitude as the final kopt,
such that this estimate is easy to compute and corrects for the cases, where the user’s
guess was very far off. For this second kexp we perform another 5 SCF iterations starting
completely from random guesses. From all 10 obtained SCF ground states, both the 5
with the kexp supplied by the user and the 5 with the kexp from (8.6), we only keep the
solution, which has the lowest HF energy. For all SCFs which are started during the
subsequent energy versus kexp optimisation this solution is used as the initial guess. In
this way all inner SCFs approach the SCF procedure from the same reliable guess, which
largely avoids discontinuities in the HF energies and thus directs Brent’s method to a
sensible value for kopt.

This algorithm for finding kopt is not cheap, since around 20 to 30 complete SCFs
are required for convergence. It is, however, reliable and allowed us to obtain optimal
exponents for a range of basis sets for all atoms of the second and third period. These
results are shown in tables 8.2 on page 194 and 8.3 on page 195. For convenience this
procedure is implemented in molsturm and can be called from python using the function
find_kopt from the module molsturm.sturmian.cs. molsturm also offers the function
empirical_kopt as a cheaper empirical estimate for kopt. It is based on interpolations
using the values from tables 8.2 and 8.3, can thus only be used for atoms of the second
and third period.

8.4.2 Relationship to the effective nuclear charge

In his 1930 paper Slater [3] proposed simple guidelines for approximating the orbitals
of atoms. For this he introduced for each orbital a shielding parameter σ, which was
supposed to indicate how much of the nuclear charge is screened away by the electrons
closer to the core. He then proceeded to describe the functional form of the atomic
orbitals by the simple analytic expression

χn∗,σ = rn
∗−1 exp

(
− (Z − σ)r

n∗

)
≡ rn

∗−1 exp (−ζr) , (8.7)

along with empirical rules to find n∗ and Z − σ, the effective nuclear charge. We
already met functions like (8.7) as basis functions for solving the Hartree-Fock problem
when we discussed Slater-type orbitals in section 5.3.3 on page 93. In the same chapter
we mentioned the close relationship between the Coulomb-Sturmians and the Slater-type
orbitals in the sense that the CS exponent kexp plays the role of the Slater exponent
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Figure 8.15: Plot of the atomic number versus the optimal Coulomb-Sturmian exponent
kopt for the neutral atoms of the second and the third period. For comparison the
occupation-averaged value of the Clementi and Raimondi [268] optimal Slater exponent
ζClementi are shown as well.

ζ with the subtle difference that for CS basis sets all functions need to carry the same
exponent.

The rough results obtained by Slater’s rules were later refined by Clementi and
Raimondi [268], who determined optimal values for ζ by performing HF calculations.
In turn they used these values to define a new set of shielding parameters and thus a
new set of effective nuclear charges. Their optimisation procedure was very similar to
the procedure we followed to find kopt, namely they optimised the energy variationally
with respect to the Slater exponents ζ. Both the similarity of the form of both types
of functions as well as the similarity of the procedures followed indicates that our kopt

and the optimal exponents ζClementi from Clementi and Raimondi should bear some
resemblance.

As a first attempt to characterise this similarity we propose to compare kexp to
the average value of ζClementi taken in all occupied orbitals of a particular atom. A
plot of these values across the second and third period of the periodic table is shown
in figure 8.15. Over the full depicted range the magnitude of kopt and ζClementi stays
similar. Furthermore except the sharp drop going from atom number 10 to 11 the roughly
linear increase of ζClementi is reproduced by kopt. One reason why the diverging feature
between atom number 10 and 11 is observed is that we chose to use a different, larger
CS basis set for determining kopt in the third period. In our discussion related to figure
8.14 we already mentioned that larger basis sets tend to yield a lower value of kopt.
The observed drop in figure 8.15 is, however, much larger than any lowering induced
by increasing the basis we observed in our calculations (see tables 8.2 and 8.3). One
possible additional explanation could be the reduction of information, which is implied
by taking the average of all ζClementi. For example when changes in the physics of the
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electronic structure of the atom cause relative adjustments of the exponents ζClementi,
this is not captured by the average ζClementi. Especially when going to a new shell, i.e.
when adding a new, more expanded orbital with only a single electron in it, the structure
of the electron density does indeed change more compared to the previous atom as in
other cases. Whilst the Slater-type orbital basis has more degrees of freedom in form of
the multiple exponents to adapt to this, the CS basis needs to balance the errors, which
could lead to the observed deviation from the trend in the previous period.

Overall figure 8.15 suggests that there is some connection between kopt and the average
ζClementi. Considering the relationship between ζClementi and the effective nuclear charge
in turn, we could think of kopt as a measure for the average effective nuclear charge,
which is felt by the individual orbitals.
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system CS basis kopt Nbas EHF relative error

Li (4, 1, 1) 1.562 13 −7.38483U 6.4 · 10−03

Li (5, 1, 1) 1.539 17 −7.41652U 2.2 · 10−03

Li (6, 1, 1) 1.533 21 −7.42812U 6.2 · 10−04

Be (4, 1, 1) 2.017 13 −14.46796R 7.2 · 10−03

Be (5, 1, 1) 1.990 17 −14.53916R 2.3 · 10−03

Be (6, 1, 1) 1.988 21 −14.56445R 5.9 · 10−04

B (3, 2, 2) 2.480 14 −23.64847U 3.6 · 10−02

B (4, 1, 1) 2.464 13 −24.32117U 8.7 · 10−03

B (4, 2, 2) 2.466 23 −24.32594U 8.5 · 10−03

B (5, 1, 1) 2.426 17 −24.46411U 2.8 · 10−03

B (5, 2, 2) 2.428 32 −24.46852U 2.6 · 10−03

B (6, 1, 1) 2.409 21 −24.51204U 8.7 · 10−04

B (7, 2, 2) 2.402 50 −24.52731U 2.5 · 10−04

C (4, 1, 1) 2.916 13 −37.34490U 9.3 · 10−03

C (5, 1, 1) 2.873 17 −37.58533U 2.9 · 10−03

C (6, 1, 1) 2.849 21 −37.66284U 8.2 · 10−04

N (4, 1, 1) 3.364 13 −53.88221U 9.6 · 10−03

N (5, 1, 1) 3.320 17 −54.24940U 2.9 · 10−03

N (6, 1, 1) 3.287 21 −54.36501U 7.3 · 10−04

O (5, 2, 2) 3.738 32 −74.57763U 3.2 · 10−03

O (6, 1, 1) 3.685 21 −74.74979U 9.3 · 10−04

O (7, 2, 2) 3.638 50 −74.79613U 3.1 · 10−04

F (5, 2, 2) 4.162 32 −99.07686U 3.4 · 10−03

F (6, 1, 1) 4.099 21 −99.32043U 9.7 · 10−04

F (7, 2, 2) 4.038 50 −99.38482U 3.2 · 10−04

Ne (4, 1, 1) 4.637 13 −127.0528 R 1.2 · 10−02

Ne (5, 1, 1) 4.585 17 −128.0943 R 3.5 · 10−03

Ne (6, 1, 1) 4.512 21 −128.4255 R 9.5 · 10−04

U unrestricted HF
R restricted HF

Table 8.2: Optimal CS exponent for the 2nd period of the periodic table at HF level.
Relative errors are given with respect to the reference energies of table 8.1 on page 174.
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system CS basis kopt Nbas EHF relative error

Na (5, 1, 1) 4.449 17 −159.8132U 1.3 · 10−02

Na (6, 1, 1) 4.286 21 −160.9291U 5.7 · 10−03

Na (7, 1, 1) 4.096 25 −161.4028U 2.8 · 10−03

Na (8, 1, 1) 3.917 29 −161.6200U 1.5 · 10−03

Mg (5, 1, 1) 4.583 17 −196.1362R 1.7 · 10−02

Mg (6, 1, 1) 4.442 21 −198.0276R 8.0 · 10−03

Mg (7, 1, 1) 4.267 25 −198.8705R 3.7 · 10−03

Mg (8, 1, 1) 4.107 29 −199.2445R 1.9 · 10−03

Al (6, 2, 2) 4.649 41 −239.5138U 9.8 · 10−03

Al (7, 1, 1) 4.485 25 −240.7812U 4.5 · 10−03

Al (7, 2, 2) 4.485 50 −240.7885U 4.5 · 10−03

Si (4, 2, 2) 5.009 23 −271.6163U 6.0 · 10−02

Si (5, 2, 2) 5.009 32 −282.0009U 2.4 · 10−02

Si (6, 2, 2) 4.904 41 −285.7755U 1.1 · 10−02

Si (7, 1, 1) 4.754 25 −287.4682U 4.8 · 10−03

Si (7, 2, 2) 4.755 50 −287.4751U 4.8 · 10−03

Si (8, 1, 1) 4.616 29 −288.1995U 2.3 · 10−03

P (6, 1, 1) 5.186 21 −336.9464U 1.1 · 10−02

P (7, 1, 1) 5.049 25 −339.0724U 4.8 · 10−03

P (8, 1, 1) 4.922 29 −339.9651U 2.2 · 10−03

S (4, 2, 2) 5.451 23 −370.8869U 6.7 · 10−02

S (5, 2, 2) 5.540 32 −387.1635U 2.6 · 10−02

S (6, 2, 2) 5.476 41 −392.9687U 1.1 · 10−02

Cl (5, 2, 2) 5.821 32 −447.2744U 2.7 · 10−02

Cl (6, 2, 2) 5.777 41 −454.1715U 1.2 · 10−02

Cl (7, 2, 2) 5.656 50 −457.2387U 4.9 · 10−03

Ar (5, 1, 1) 6.109 17 −512.6726R 2.7 · 10−02

Ar (6, 1, 1) 6.084 21 −520.7125R 1.2 · 10−02

Ar (7, 1, 1) 5.970 25 −524.2770R 4.8 · 10−03

Ar (8, 1, 1) 5.862 29 −525.7054R 2.1 · 10−03

U unrestricted HF
R restricted HF

Table 8.3: Optimal CS exponent for the 3rd period of the periodic table at HF level.
Relative errors are given with respect to the reference energies of table 8.1 on page 174.
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Figure 8.16: Convergence of a CS-based ADC(2) [118] calculation of beryllium. Plotted
are the singlet excitation energies going from the ground state 2s2s to the denoted
excited state. We show the results from a progression of CS calculations with exponent
kexp = 2.0 as well as bases sets of the form (nmax, 1, 1). For comparison the last two
data points show the results from a cGTO-based calculation using cc-pVTZ [263] as well
as the experimental values from Moore [269].

8.5 Coulomb-Sturmian-based excited states calcula-

tions

This section provides an outlook towards excited states calculations employing Coulomb-
Sturmians as the underlying basis functions. As mentioned in section 7.4 on page 168
the python interface of molsturm allowed us to link it to multiple third-party packages.
One of these is adcman [210], which in this manner can be employed to perform excited
states calculations based on the algebraic diagrammatic construction scheme at ADC(1),
ADC(2), ADC(2)-x [118] and ADC(3) [119] level based on any basis function type
supported by molsturm.

This section reports the first successful ADC(2) calculation using Coulomb-Sturmians
for the discretisation. In figure 8.16 we show the singlet excitation energies of the
beryllium atom as a progression with increasing CS basis set size from (4, 1, 1) to (10, 1, 1).
For comparison the figure further indicates an equivalent calculation using cc-pVTZ [263]
as well as the experimental values [269]. Within the CS basis set progression the results
converge from above as expected. Judging from the plots a maximum principle quantum
number around nmax = 10 seems to be at least required to converge the radial part. This
agrees with our findings for the ground state, see for example figures 8.7 on page 181
and 8.8 on page 182,

Comparing the computed excitation energies to the experimental values the (10, 1, 1)
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basis set performs worse than cc-pVTZ at the first excited state 2s2p, but better for
the 2s3s and the 2s3p states. This result is, however, a little misleading for two reasons.
First the cc-pVTZ basis set and the (10, 1, 1) CS basis are not exactly comparable,
since they have a deviating structure. Whilst cc-pVTZ contains 10 contracted Gaussian
functions with angular momentum up to l = 4, (10, 1, 1) contains 37 uncontracted
Coulomb-Sturmians with angular momentum at most l = 1. Second the CS basis has
not really been optimised at all with respect to ADC(2) as a method or with respect
to the excited states of beryllium. For example the employed CS exponent of 2.0 is
a good value for describing the ground state of beryllium, but it is certainly not an
optimal value for describing the excited states. Further there is some indications from
example calculations that at least angular momentum l = 2 is required for a proper
description of the 2s2p excited state. In figure 8.16 this amounts to explain, why the
observed convergence to a higher excitation energy than the cGTO result or experiment
is observed.

Keeping both these aspects in mind it is therefore not yet possible to directly compare
the CS and the cGTO results. But given than no attempts to optimise the CS basis
towards the ADC(2) excited states setting have been made, it is still remarkable to find
the observed convergence. A further, more systematic investigation could easily lead
to a clarification of the picture and allow to contrast the different properties of both
discretisations with respect to computing atomic spectra.
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Chapter 9

Conclusions

We must include in any language with which we hope to describe
complex data-processing situations the capability for describing data.

— Grace Hopper (1906–1992)

The present thesis devised a self-consistent field (SCF) scheme for solving the Hartree-
Fock (HF) problem based on matrix-vector contraction expressions. It was subsequently
utilised in order to design and implement the quantum-chemical method development
framework molsturm, where novel methods can be readily implemented and tested.
Furthermore molsturm was used to investigate the convergence properties of quantum-
chemical calculations based on Coulomb-Sturmians, a basis function type which got little
attention so far. Initial results of Coulomb-Sturmian-based excited states calculation em-
ploying the algebraic-diagrammatic construction scheme for the polarisation propagator
were reported as an outlook to future developments.

Chapter 1 provided an introduction into the setting of the thesis. Chapter 2 reviewed
the mathematical background of quantum mechanics and sketched important results
of functional analysis and spectral theory. In chapter 3 the Ritz-Galerkin ansatz for
numerically treating spectral problems was discussed, followed by the ideas of common
algorithms to solve the arising eigenproblems. The emphasis was put on discussing
this established mathematical material from a quantum-chemical perspective, while
indicating the often overlooked peculiarities, which occur when transforming from the
infinite-dimensional regime of functional analysis to the finite-dimensional regime of
linear algebra.

In the light of this section 4.2.1 discussed the spectral properties of the electronic
Schrödinger equation and described common quantum-chemical methods for solving
this equation numerically. The mathematical formulation of both full configuration
interaction (FCI), in section 4.3, as well as HF, in section 4.4, were discussed. In
section 4.4.1 multiple formulations of HF were given and their numerical properties were
compared. In remark 4.18 the usual SCF procedure as a scheme to solve the HF problem
was introduced. The physical aspects missing in an HF treatment of the electronic
structure were mentioned in section 4.5.1 and common Post-HF methods to correct for
these were reviewed in sections 4.5.2 to 4.5.5.
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A detailed discussion of the basis function types, which can be employed to discretise
the HF problem was given in section 5.3. Section 5.3.1 and 5.3.2 first provided a summary
of the desirable properties of such a discretisation, namely feasible resulting numerical
problems on the one hand and a good description of the physical features of the wave
function on the other. With respect to this four basis function types were evaluated in
particular.

First the well-known properties of the Slater-type orbitals and the Gaussian-type
orbitals were reviewed in sections 5.3.3 and 5.3.4. It was mentioned that Slater-type
orbitals lead to challenging integrals when discretising HF in such a basis, whereas
discretisations employing Gaussian-type orbitals give up a physical functional form in
the basis functions in order to gain feasible integrals. The well-known conclusion that
suitable Gaussian basis sets need to be used to correctly describe electronic structures
was emphasised.

In contrast to the first two, both finite elements, as well as Coulomb-Sturmians, were
discussed. It was demonstrated how both of these basis functions have the possibility to
represent all physical features of the wave function properly, such that they are promising
alternatives. In contrast to Gaussian-type and Slater-type orbitals their discretisations,
however, gave rise to unusual numerical demands. For finite elements, for example, the
matrix representation of the exchange matrix term of the HF equations was shown to be
rather expensive to compute. Building on the idea of matrix-free methods [162], a novel,
contraction-based ansatz for HF was introduced to compensate for this. In this approach
the difference is that storing the Fock matrix in memory is avoided and instead only
matrix-vector product applications are performed. An analysis of the computational
complexity for the exchange term in the context of finite elements was presented, which
showed that a contraction-based scheme reduces the formal computational scaling from
O(N2

bas) to O(Nbas) with Nbas being the number of finite elements. For Coulomb-
Sturmians such a contraction-based SCF ansatz allowed to exploit the available selection
rules in the integral kernels to a further extent, thus similarly improving performance.
Even though both Coulomb-Sturmians as well as Slater-type orbitals are exponential
basis functions of related functional form, it was found that the integral expressions of
Coulomb-Sturmians are much simpler and fit very well into the context of a contraction-
based SCF.

Section 5.3.9 summarised our discussion of the basis function types and section 5.4
reviewed common SCF algorithms with respect to their ability to support the contraction-
based SCF. For the case of the optimal damping algorithm [195] section 5.4.4 gave an
approximate modification to carry some advantageous properties of the complete scheme
to the contraction-based setting.

In chapter 6 contraction-based methods were formally introduced and in section
6.1.1 their potentials and drawbacks were evaluated. The trend of an increasing gap
between processor and memory performance was outlined and used to emphasise that
recomputing data can sometimes be advantageous, even over storing it in main memory.
A typical challenge with contraction-based methods, namely their tendency to lead to
more involved and harder-to-read code, was identified and lazy matrices were introduced
in section 6.2 as a data structure to tackle this problem. It was discussed how lazy
matrices, as a generalisation of conventional matrices, allow to encapsulate arbitrary
contraction expressions, but still maintain the high-level interface of matrices. This was
achieved by employing lazy evaluation, which means that operations on lazy matrices
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are only evaluated when needed and otherwise cached inside an expression tree for
later evaluation. Whilst the primary application for lazy matrices in this thesis was
the quantum-chemical program package molsturm, lazy matrices are more general and
could be used for other problems of physics and chemistry as well. For this reason
an implementation of lazy matrices was carried out in the lazyten library and its
applicability demonstrated in section 6.3. An example showing a simple SCF scheme
coded in the language of lazyten was given in section 6.3.1.

In section 7.2 the design of the molsturm program package was discussed. In particu-
lar the interplay between the contraction-based SCF scheme and the integral library was
detailed in section 7.2.1. It was emphasised how the lazy matrix language of lazyten

on the one hand enables to write SCF algorithms without making explicit reference to
the basis function type, whilst on the other hand still allowing the integral back end full
control over the way integral data is produced and consumed. Thus the code describing
the SCF algorithms has become independent from the code dealing with the discretisa-
tion details. On top of that a suitable integral abstraction layer has made implementing
additional integral back ends or basis function types very easy. In this way a connection
from molsturm to libint [257, 258] and libcint [259] for Gaussian-type integrals and
to sturmint [170] for Coulomb-Sturmian-type integrals has been achieved.

The test suite and the testing strategy of molsturm were outlined in section 7.2.3.
Together with the modularised design of the program this ensures that even if changes
to the SCF scheme were needed in the future, code could be amended in steps and the
correctness of molsturm verified in each of these steps.

The key aspects of the design of the python interface of molsturm were to enable
full control over the algorithmic details via a detailed set of parameters on the one hand
and to return computed SCF results in a readily usable data structure on the other. It
was discussed how in this way many aspects of the SCF as well as the linear algebra
back end, like the employed diagonalisation algorithms, can be altered directly from the
interface and without changing any code. It was pointed out this is of significance when
developing methods based on novel basis functions, since the best numerical approach
might not be clear in the beginning. In such cases molsturm allows for experimenting
directly from python scripts or even interactively.

By means of three examples, (1) fitting a H2 dissociation curve in section 7.3.1, (2)
implementing a coupled-cluster doubles on top of the SCF of molsturm in section 7.3.2
and (3) a gradient-free optimisation in section 7.3.3, the usefulness of the python interface
for automating calculations, analysing results and implementing novel methods has been
demonstrated. Furthermore the python interface has been used to establish links to
selected methods from pyscf [236] and adcman [210], such that these may be used in
combination with any of the basis function types and integral back ends implemented
in molsturm. As a result one can think of molsturm as a mediator between integral
libraries and Post-HF methods. The current features of molsturm were summarised in
section 7.4.

In chapter 8 the link of molsturm to the Coulomb-Sturmian integral library sturmint

was used in order to perform an initial investigation of the convergence properties of
Coulomb-Sturmian-based quantum-chemical calculations. The main focus was on HF
calculations of atoms of the second and third period of the periodic table. In section 8.2
a detailed analysis based on the root mean square values of the occupied coefficients per
angular momentum (RMSOl) allowed to suggest that a maximal angular momentum
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quantum number of lmax = 0 is sufficient for Li and Be, whereas lmax = 1 is required for N,
Ne, Na, Mg, P and Ar. It further allowed to understand that a known fundamental issue
of the unrestricted HF procedure was responsible for the slow convergence observed for
the atoms with one or two unpaired electrons. At correlated level some full configuration
interaction and MP2 calculations were performed, which suggested that increasing the
angular momentum quantum number by one is sufficient to capture most correlation
effects for Li, Be, N, Ne, Na, Mg, P and Ar.

Furthermore the effect of modifying the Coulomb-Sturmian exponent on the resulting
HF energies was analysed in section 8.4. Both an ansatz for estimating the optimal
exponent kopt, i.e. the exponent leading to the minimal energy, as well as an algorithm
for finding the value of kopt systematically, were developed in section 8.4.1. Following
the relationship of Coulomb-Sturmians and Slater-type orbitals an analogy between the
optimal exponent and the effective nuclear charge was indicated in section 8.4.2 and from
this context the observed linear relationship of kopt with the atomic number explained.

In section 8.5 the connection from molsturm to adcman via python was employed
to perform the first excited states calculation based on the algebraic-diagrammatic
construction scheme for the polarisation propagator. Initial results were reported, which
looked promising and motivating for future research.



Chapter 10

Prospects and future work

Humanity needs practical men, who get the most out of their work,
and, without forgetting the general good, safeguard their own in-
terests. But humanity also needs dreamers, for whom the disinter-
ested development of an enterprise is so captivating that it becomes
impossible for them to devote their care to their own material profit.

— Marie Skłodowska Curie (1867–1934)

With the molsturm program package in its current state, a flexible research tool for
the development and the investigation of novel quantum-chemical methods has become
available. The possibility to easily extend the present functionality by linking to ex-
isting third-party packages, opens the door to rapidly test novel combinations of basis
function types and existing quantum-chemical methods. In this way one could seek to
find alternatives for cases, which are challenging to describe using Gaussian-type basis
functions. Examples are the description of extended states, potentially embedded in
the continuum, like autoionising or resonance states [61, 270–272] or the computation of
properties involving a description of the wave function close to the nuclei, like nuclear
magnetic resonance properties [8, 9].

From this respect interesting candidates are Sturmian-type basis functions, which are
exponential-type orbitals, obtained as analytic solutions to Schrödinger-like equations.
Such functions are able to properly represent the physical features of the wave function,
see section 5.3.6, and they lead to feasible integrals in the Hartree-Fock (HF) self-
consistent field (SCF) procedure. Furthermore they are complete and thus able to model
continuum-like states as well. See section 10.2 for a more detailed discussion with respect
to quantum-chemical calculations employing Sturmian-type orbitals.

Additionally, molsturm is a framework with an interface in which a novel method
only needs to be implemented once and can subsequently be used with different types
of basis functions. This was already discussed in section 7.3.2 where a coupled-cluster
doubles (CCD) code building on top of molsturm was shown. Already at the present
state, such a user code can directly utilise all basis function types available in molsturm,
i.e. Coulomb-Sturmians as well as Gaussian-type orbitals, but the performance is far
from optimal. Section 10.1 provides some direction how performance could be improved.
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Another aspect of such a framework is that links to different libraries and programs
providing the same quantum-chemical methods can be achieved. In this way implement-
ations with deviating algorithmic details can be compared directly. One application of
this would be to verify the correctness of integral back ends, see section 10.3 for details.

10.1 molsturm program package

After two years of development, molsturm is in a state, where calculations based on
contracted Gaussian basis sets and Coulomb-Sturmian basis sets can be performed.
Furthermore, as mentioned in section 7.4 and demonstrated in chapter 8, not only HF,
but full configuration interaction (FCI) and methods based on the algebraic-diagrammatic
construction scheme (ADC) are available via interfaces to pyscf [236] and adcman [210].
For employing these Post-HF methods with more than around a hundred basis functions,
a drawback at the moment is performance inside the SCF procedure of molsturm.

One reason for this is that the SCF scheme, which is currently used in molsturm,
only consists of a few rather simple algorithms, namely the Roothaan repeated diag-
onalisation [100], the direct inversion in the iterative subspace (DIIS) algorithm [99]
and the truncated optimal damping algorithm (see section 5.4.4). More sophisticated
schemes like the energy DIIS [201] or a second-order SCF scheme [204, 208] would be
more efficient as well as more reliable. For this the published schemes need to be adapted,
such that they fit into the contraction-based setting of molsturm, where the Fock matrix
is not stored in memory, but only employed in the form of a matrix-vector product,
see section 5.4. As discussed in section 5.1 such modifications are always possible in
theory, but in practice one needs to be careful that the introduced changes keep the
advantageous mathematical properties of such algorithms with respect to convergence
and stability.

Another aspect for improvement is the lazy matrix library lazyten, which is a key
component inside the contraction-based self-consistent field (SCF) of molsturm, see sec-
tion 7.2. Whenever the Fock matrix is applied to a trial vector inside the SCF or the
diagonalisation algorithm employed by the SCF, a contraction expression is evaluated.
This proceeds by working on the expression tree, which represents the Fock matrix, see
section 6.2. In lazyten this is currently neither parallelised, nor is the expression tree op-
timised before the computation begins. Both these aspects, i.e. automatic parallelisation
of linear algebra expressions as well as finding optimal evaluation schemes, is ongoing
research, where, both in the context of quantum-chemical calculations as well as a more
general setting, enormous progress has been made in recent years [220–226, 273, 274]. By
linking to such libraries these advances could be incorporated or reused inside lazyten

leading to performance improvements in the SCF of molsturm.

Additionally the modular structure of molsturm makes it fast to interface to further
quantum-chemistry libraries or program packages. An effort worth pursuing is the
libxc [275] library, which offers a range of exchange-correlation functionals for density-
functional theory. Implementing an interface to this library inside appropriate lazy matrix
objects would allow to construct the Kohn-Sham matrix inside molsturm’s SCF without
any further changes, such that density-functional theory calculations would become
available. Furthermore a better link to pyscf [236] would allow to perform configuration-
interaction and coupled-cluster calculations as well as calculations employing the density
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matrix renormalisation group approach directly from molsturm. The prospect is to try
other basis functions in the context of such methods and investigate their applicability
with respect to quantum-chemical calculations.

10.2 Investigation of Sturmian-type discretisations

The original purpose of the molsturm package has been to devise a program which could
be used for quantum-chemical calculations employing Sturmian-type basis functions.
The package has outgrown this purpose in the current design, but investigating the
properties of Sturmian-type basis functions is still of interest as discussed above.

10.2.1 Convergence properties of Coulomb-Sturmian basis sets

The simplest example for Sturmian-type basis functions are Coulomb-Sturmians. An
initial investigation of such basis functions in chapter 8 looked overall promising, but
the obtained results were not yet sufficient to provide definitive construction schemes for
Coulomb-Sturmian (CS) basis sets or general estimates for the overall accuracy. There
are three ways this could be improved.

Firstly so far only main group elements of the second and third period of the periodic
table were considered. Originating from the involvement of the d-orbitals the properties
of the electronic structures of the transition metals do, however, differ compared to
the main group elements. An analysis with respect to the fourth period and beyond is
therefore required to reach more general conclusions with respect to sensible CS basis
sets.

Secondly, most of the presented investigation has concentrated on the HF level
with some minor modifications suggested mostly based on second-order Møller-Plesset
perturbation theory (MP2). Whilst these two methods are both used in electronic
structure theory, more methods should be added to reach a representative set. Most
notably MP2 as a perturbative approach for modelling electron correlation effects is
very different from configuration-interaction-based or coupled-cluster-based approaches
— both with respect to the way the physics is described as well as the numerics. Further
convergence studies employing, for example, the latter kind of methods would be required.

Thirdly, the full flexibility towards constructing CS basis sets has not yet been
exploited in the discussion in section 8.2. There is no reason why one should define
a basis set by limiting the angular quantum numbers l and m to the same maximum
for all principle quantum numbers n. As mentioned in section 8.1 a CS basis set
can be any combination of the quantum number triples (n, l,m). Since alternative
construction schemes might allow to reduce the required basis set size, they are worth
considering. With respect to this it would also be interesting to compare the observed
convergence properties with the typical construction schemes employed for contracted
Gaussian (cGTO) basis sets [6, 7]. Potentially the schemes employed in the cGTO setting
are applicable to CS basis sets and vice versa.

In general a detailed comparison of the results obtained from employing Coulomb-
Sturmians as well as cGTO discretisations seems appropriate. An interesting question
is, for example, the required basis sizes for both discretisation types to reach a certain
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accuracy in the description of the ground or excited-state energies at various levels of
theory.

10.2.2 Coulomb-Sturmian-based excited states calculations

In section 8.5 first results for computing excited state energies of atoms based on ADC
were already presented. A more detailed analysis of the convergence properties could
help to proceed with the application of CS-based ADC calculations in order to compute
the spectra of atoms. Due to the completeness of the Coulomb-Sturmians and their
possibility to describe both core region as well as the exponential decay, a range of
interesting applications for the modelling of excitation processes come to mind. Three
of them are (1) methods where continuum-like states needs to be modelled, like Fano-
Stieltjes [270–272], (2) cases where modelling both the core and the valence shell is
required, like core-valence excitations [276, 277] as well as (3) the modelling of expanded
bound states, like the determination of Rydberg-like states [61, 278].

10.2.3 Avoiding the Coulomb-Sturmian exponent as a parameter

An unfavourable aspect of the CS basis sets employed in chapter 8 is the Coulomb-
Sturmian exponent kexp. As was discussed in section 8.4, this parameter has indeed
an influence on the results obtained. For example the obtained SCF minimum could
be unphysical, i.e. with occupied orbitals of positive energies, if kexp is not chosen in
the vicinity of the optimal exponent, which is the one yielding the lowest possible HF
ground state energy. Furthermore, there is some indication that the ordering of excited
states in ADC calculations depends on kexp. Using the algorithm described in section
8.4.1, a route for finding an optimal value at HF level has been sketched. With respect
to excited states methods like ADC, it is not immediately obvious how to determine the
most optimal exponent, since the value for describing the ground state with the least
error will differ from the value for representing a particular excited state best. In turn
each excited state will have a different kexp to give the best description in a particular
CS basis. Which value or which combination of the values should be taken is not directly
clear.

An equivalent problem at FCI level can be avoided. The reason is that the relationship

E = −
Neleck

2
exp

2
,

between the CS exponent kexp, the number of electrons Nelec and the energy E of a
particular state, can be employed to re-formulate FCI in terms of the Coulomb-Sturmian
exponents [29]. In other words, instead of solving for the energy of a state, one solves
for the kexp for each state and uses this value both to find the corresponding energy as
well as the exponent of the basis functions, when properties for such a state are to be
computed. A similar reformulation should be possible for HF and potentially even for
some other Post-HF methods as well, even though this is uncertain at the moment. If
this could be achieved both the determination of an optimal kexp would become obsolete
at HF level and for excited states kexp would adapt automatically to the required state.
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10.2.4 Molecular Sturmians

The implementation of a CS-based SCF scheme was always intended to be only the first
step with respect to the exploration of Sturmian-based quantum-chemical calculations.
More general and at the same time more challenging types of Sturmian basis functions
exist, which are able to describe molecular systems, for example. Building on recent
advances in the calculation of the ERI integrals (4.31) for such generalised Sturmian-type
orbitals [21, 29–34] a Sturmian-based HF suitable for molecular calculations is within
reach and could be implemented within sturmint [170] building on already existing
infrastructure required for the Coulomb-Sturmians. This would allow for performing
calculations based on Sturmian-type basis functions for molecules as well.

10.3 Fuzzing of integral back ends

The common interface, which molsturm provides for accessing the implemented integral
libraries, allows to test the correctness of the algorithms employed inside these libraries
by comparing the results of random or semi-random input against each other. Due
to the python interface of molsturm this process could even be completely automated.
Such fuzzing approaches have already been applied with huge success in the context of
hardening security-critical software [279]. With respect to quantum-chemical software
a similar work by Knizia et al. [280], which tested the hardness of quantum-chemical
software with respect to numerical instabilities using random noise, lead to the discovery
of unexpected bugs in the integral evaluation scheme of Molpro [281], justifying a closer
look at this subject.
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Appendix A

Symmetry properties of the

electron-repulsion integrals

In accordance with (4.31) of remark 4.9 on page 56 we define the ERIs in physicist’s
indexing convention and in Mulliken convention

〈ij|kl〉 =
∫

Ω

∫

Ω

ψ∗
i (r1)ψ∗

j (r1)
1
r12

ψk (r2)ψl (r2) dr1 dr2

= (ik|jl)
and the antisymmetrised repulsion integrals

〈ij||kl〉 = 〈ij|kl〉 − 〈ji|kl〉 = (ik|jl) − (jk|il) .
where ψi, ψj , ψk, ψl ∈ H1(R3,C). There is 4-fold symmetry in Mulliken convention

(ij|kl) = (kl|ij) Swap shell pairs (A.1)

= (ji|lk)∗ Swap inside both shell pairs (A.2)

= (lk|ji)∗ Both the above

and 4-fold symmetry in physicist’s convention as well

〈ik|jl〉 = 〈ki|lj〉 Swap shell pairs (A.3)

= 〈jl|ik〉∗ Swap inside both shell pairs (A.4)

= 〈lj|ki〉∗ Both the above.

The asymmetric integrals, however, have 8-fold symmetry

〈ik||jl〉 = 〈ki||lj〉 Swap shell pairs (A.5)

= 〈jl||ik〉∗ Swap inside both shell pairs (A.6)

= 〈lj||ki〉∗ Both the above

= − 〈ki||jl〉 Antisymmetry (A.7)

= − 〈ik||lj〉 (A.7) and (A.5)

= − 〈lj||ik〉∗ (A.7) and (A.6)

= − 〈jl||ki〉∗ (A.7) and (A.6).
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For real-valued functions, i.e. ψi, ψj , ψk, ψl ∈ H1(R3,R), the ERI tensor shows an
8-fold symmetry as well:

(ij|kl) = (kl|ij) Swap shell pairs (A.8)

= (ji|kl) Swap inside first shell pair (A.9)

= (ij|lk) Swap inside second shell pair (A.10)

= (ji|lk) Swap inside both shell pairs (A.11)

= (lk|ij) (A.8) and (A.9)

= (kl|ji) (A.8) and (A.10)

= (lk|ji) (A.8) and (A.11)

Similarly for real functions and physicist’s convention:

〈ik|jl〉 = 〈ki|lj〉 Swap shell pairs (A.12)

= 〈jk|il〉 Swap inside first shell pair (A.13)

= 〈il|jk〉 Swap inside second shell pair (A.14)

= 〈jl|ik〉 Swap inside both shell pairs (A.15)

= 〈li|kj〉 (A.12) and (A.13)

= 〈kj|li〉 (A.12) and (A.14)

= 〈lj|ki〉 (A.12) and (A.15)

For the antisymmetrised ERI tensor and real functions we get 16-fold symmetry:

〈ik|jl〉 = 〈ki||lj〉 Swap shell pairs (A.16)

= 〈jk||il〉 Swap inside first shell pair (A.17)

= 〈il||jk〉 Swap inside second shell pair (A.18)

= 〈jl||ik〉 Swap inside both shell pairs (A.19)

= 〈li||kj〉 (A.16) and (A.13)

= 〈kj||li〉 (A.16) and (A.14)

= 〈lj||ki〉 (A.16) and (A.15)

= − 〈ki||jl〉 Antisymmetry (A.20)

= − 〈ik||lj〉 (A.20) and (A.16)

= − 〈kj||il〉 (A.20) and (A.17)

= − 〈li||jk〉 (A.20) and (A.18)

= − 〈lj||ik〉 (A.20) and (A.19)

= − 〈il||kj〉 (A.20), (A.16) and (A.13)

= − 〈jk||li〉 (A.20), (A.16) and (A.14)

= − 〈jl||ki〉 (A.20), (A.16) and (A.15)



Appendix B

RMSOl plots for Dunning

basis sets

This appendix shows RMSOl (see definition 8.1 on page 176) plots for the cGTO basis
sets cc-pV5Z and cc-pV6Z [148, 152, 261–263] similar to the ones depicted for CS
discretisations in section 8.2 on page 172. The values were computed molsturm [40, 233]
using libint [257] as a back end for the integral values. The most notable differences
compared to figures 8.2 and 8.3 on page 177 is that the RMSOl of lithium and phosphorus
decreases much slower and that beryllium has some pronounced spikes of larger RMSOl

values for l = 2 and l = 4.

Figure B.1: Plot RMSOl vs. l for the HF ground state of the atoms of the second
period. All calculations done with the cc-pV6Z basis set, except Li and Be for which at
cc-pV5Z was used. For Be and Ne a RHF procedure was used, for the other cases UHF.
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Figure B.2: Plot RMSOl vs. l for the HF ground state of the atoms of the third period.
All calculations done with the cc-pV6Z basis set, except Na and Mg for which at cc-pV5Z
was used. For Mg and Ar a RHF procedure was used, for the other cases UHF.

Figure B.3: Root mean square coefficient value per basis function angular momentum
quantum number l for selected orbitals of oxygen. The atom is modelled in a cc-pV6Z
basis using UHF.



Appendix C

Coulomb-Sturmian-based MP2

ground state energies

The tables presented in this appendix, show computed ground state energies for the
atoms of the second and third period of the periodic table at Hartree-Fock and second-
order Møller-Plesset perturbation theory level. For each atom only one CS exponent
kexp, but a range of CS basis sets is employed. Table C.1 continues on the next page.

atom Coulomb-Sturmian basis set
kexp (6, 0, 0) (6, 1, 0) (6, 1, 1) (6, 2, 1)

UHF −7.42812 −7.42812 −7.42812 −7.42812
Li UMP2 −7.44091 −7.44758 −7.46092 −7.46167
1.532 UMP2 corr. −0.01278 −0.01945 −0.03280 −0.03355

RHF −14.56445 −14.56445 −14.56445 −14.56445
Be MP2 −14.57906 −14.59427 −14.62469 −14.62780
1.988 MP2 corr. −0.01461 −0.02983 −0.06025 −0.06335

UHF −54.36501 −54.36501
N UMP2 −54.43401 −54.47133
3.287 UMP2 corr. −0.06900 −0.10632

RHF −128.42549 −128.42549
Ne MP2 −128.59497 −128.65853
4.512 MP2 corr. −0.16948 −0.23304

Table C.1: Hartree-Fock and MP2 ground state energies as well as MP2 correlation
energies (MP2 corr.) for the atoms of the 2nd period and a range of CS basis sets.
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S atom Coulomb-Sturmian basis set
kexp (6, 2, 2) (6, 3, 2) (6, 3, 3) (6, 4, 3) (6, 4, 4)

UHF −7.42812 −7.42812 −7.42812
Li UMP2 −7.46217 −7.46220 −7.46222
1.532 UMP2 corr. −0.03404 −0.03408 −0.03410

RHF −14.56445 −14.56445 −14.56445
Be MP2 −14.62987 −14.63075 −14.63110
1.988 MP2 corr. −0.06542 −0.06630 −0.06666

UHF −24.51614 −24.51616 −24.51616 −24.51616 −24.51616
B UMP2 −24.59788 −24.60123 −24.60172 −24.60273 −24.60285
2.409 UMP2 corr. −0.08174 −0.08508 −0.08557 −0.08657 −0.08669

UHF −37.66382 −37.66383 −37.66383 −37.66383 −37.66383
C UMP2 −37.77146 −37.77667 −37.77911 −37.78066 −37.78116
2.849 UMP2 corr. −0.10764 −0.11285 −0.11529 −0.11683 −0.11733

UHF −54.36501 −54.36501 −54.36501
N UMP2 −54.49917 −54.50751 −54.51100
3.287 UMP2 corr. −0.13416 −0.14250 −0.14599

UHF −74.75348 −74.75421 −74.75504 −74.75504 −74.75504
O UMP2 −74.93218 −74.94613 −74.95399 −74.95816 −74.95979
3.685 UMP2 corr. −0.17870 −0.19192 −0.19895 −0.20312 −0.20474

UHF −99.32407 −99.32478 −99.32560 −99.32560 −99.32560
F UMP2 −99.55722 −99.57831 −99.58688 −99.59396 −99.59566
4.099 UMP2 corr. −0.23316 −0.25353 −0.26128 −0.26836 −0.27006

RHF −128.42549 −128.42549 −128.42549
Ne MP2 −128.72163 −128.74585 −128.75676
4.512 MP2 corr. −0.29614 −0.32036 −0.33127

Table C.1: Hartree-Fock and MP2 ground state energies as well as MP2 correlation ener-
gies (MP2 corr.) for the atoms of the 2nd period and a range of CS basis sets. (continued)
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atom Coulomb-Sturmian basis set
kexp (6, 1, 1) (6, 2, 1) (6, 2, 2) (6, 3, 2) (6, 3, 3) (6, 4, 3) (6, 4, 4)

UHF −160.92907 −160.92907 −160.92907 −160.92907 −160.92907
Na UMP2 −161.09552 −161.17343 −161.24656 −161.27291 −161.28465
4.289 UMP2 corr. −0.16645 −0.24436 −0.31749 −0.34385 −0.35558

RHF −198.02758 −198.02758 −198.02758 −198.02758 −198.02758
Mg MP2 −198.21545 −198.30812 −198.39191 −198.42111 −198.43398
4.442 MP2 corr. −0.18786 −0.28054 −0.36433 −0.39353 −0.40640

UHF −239.51378 −239.51413 −239.51413 −239.51414 −239.51414
Al UMP2 −239.88342 −239.91818 −239.93094 −239.94018 −239.94268
4.649 UMP2 corr. −0.36963 −0.40404 −0.41681 −0.42605 −0.42855

UHF −285.77553 −285.77583 −285.77583 −285.77584 −285.77584
Si UMP2 −286.16187 −286.19764 −286.21565 −286.22535 −286.22841
4.904 UMP2 corr. −0.38634 −0.42180 −0.43982 −0.44951 −0.45258

UHF −336.94639 −336.94639 −336.94639 −336.94639 −336.94639
P UMP2 −337.08603 −337.22801 −337.35742 −337.39998 −337.41864
5.186 UMP2 corr. −0.13965 −0.28162 −0.41103 −0.45359 −0.47225

UHF −392.96867 −392.97038 −392.97235 −392.97235 −392.97235
S UMP2 −393.40463 −393.45640 −393.48253 −393.49790 −393.50147
5.476 UMP2 corr. −0.43596 −0.48602 −0.51018 −0.52554 −0.52912

UHF −454.17153 −454.17321 −454.17514 −454.17514 −454.17514
Cl UMP2 −454.64351 −454.70610 −454.73332 −454.75087 −454.75775
5.776 UMP2 corr. −0.47198 −0.53289 −0.55819 −0.57574 −0.58261

RHF −520.71255 −520.71255 −520.71255 −520.71255 −520.71255
Ar MP2 −520.85353 −521.03471 −521.22884 −521.29531 −521.32548
6.084 MP2 corr. −0.14099 −0.32217 −0.51630 −0.58276 −0.61293

Table C.2: Hartree-Fock and MP2 ground state energies as well as MP2 correlation energies (MP2 corr.) for the atoms of the
3rd period and a range of CS basis sets.
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