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Abstract

Cuneiform tablets appertain to the oldest textual artifacts used for more than

three millennia and are comparable in amount and relevance to texts written

in Latin or ancient Greek. These tablets are typically found in the Middle

East and were written by imprinting wedge-shaped impressions into wet clay.

Motivated by the increased demand for computerized analysis of documents

within the Digital Humanities, we develop the foundation for quantitative

processing of cuneiform script.

Using a 3D-Scanner to acquire a cuneiform tablet or manually creating line

tracings are two completely different representations of the same type of text

source. Each representation is typically processed with its own tool-set and the

textual analysis is therefore limited to a certain type of digital representation.

To homogenize these data source a unifying minimal wedge feature description

is introduced. It is extracted by pattern matching and subsequent conflict

resolution as cuneiform is written densely with highly overlapping wedges.

Similarity metrics for cuneiform signs based on distinct assumptions are

presented. (i) An implicit model represents cuneiform signs using undirected

mathematical graphs and measures the similarity of signs with graph kernels.

(ii) An explicit model approaches the problem of recognition by an optimal

assignment between the wedge configurations of two signs. Further, methods

for spotting cuneiform script are developed, combining the feature descriptors

for cuneiform wedges with prior work on segmentation-free word spotting using

part-structured models. The ink-ball model is adapted by treating wedge

feature descriptors as individual parts. The similarity metrics and the adapted

spotting model are both evaluated on a real-world dataset outperforming the

state-of-the-art in cuneiform sign similarity and spotting.

To prove the applicability of these methods for computational cuneiform

analysis, a novel approach is presented for mining frequent constellations of

wedges resulting in spatial n-grams. Furthermore, a method for automatized

transliteration of tablets is evaluated by employing structured and sequential

learning on a dataset of parallel sentences. Finally, the conclusion outlines how

the presented methods enable the development of new tools and computational

analyses, which are objective and reproducible, for quantitative processing of

cuneiform script.
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Zusammenfassung

Keilschrifttafeln gehören zu den ältesten Textzeugen, die im Umfang und

Bedeutung mit den Texten in lateinischer und alt-griechischer Sprache ver-

gleichbar sind, da diese Tafeln aus dem gesamten Alten Orient über beinahe

viertausend Jahre in Verwendung waren. In die aus Ton geformten Tafeln

wurden mit einem eckigen Stylus Zeichen als keilförmige Abdrücke eingedrückt.

Sie erfordern zur Dokumentation und Analyse, anders als die in Archiven

üblichen Flachwaren, neue Methoden der Informatik.

Keilschrifttafeln werden mit verschiedensten Methoden in 2D und 3D digi-

talisiert und in untereinander nicht kompatible Formate übertragen. Jede

dieser Repräsentationen erfordert ein eigenes Tool-Set zur Analyse. Zur Ho-

mogenisierung der Daten wird eine minimale und einheitliche Beschreibung

von Keilabdrücken mit Merkmalsvektoren eingeführt. Da sich die einzelenen

Keile stark überlagern, wird bei der Extraktion eine Untermenge von Vektoren

gewählt, die Keilmodelle optimal den jeweiligen Keilabdrücken zuordnet.

Ähnlichkeitsmetriken werden basierend auf zwei Modellen präsentiert: (i) Ein

implizites Modell stellt Keilschrift als ungerichtete Graphen dar und macht

sich Graphkernel zur Berechnung der Ähnlichkeit zunutze. (ii) Ein explizites

Modell repräsentiert Keile als Merkmalsvektoren und definiert die Ähnlichkeit

zwischen Zeichen unter Verwendung von einer optimalen Zuordnung von

Keilkonfigurationen. Darauf aufbauend werden Methoden zur Suche von

Keilschriftszeichen, ohne Notwendigkeit zur a-priori Segmentierung, auf Basis

von teilstrukturierten Modellen entwickelt. Die Merkmalsvektoren bilden

hierbei deren grundlegende Strukturelemente. Der Vergleich mit neusten

Ansätzen im Document Retrieval zeigt eine höhere Genauigkeit der hier

entwickelten Methoden bei gleichzeitig mehr gefundenen Zeichen.

Die Anwendbarkeit der vorgestellten Verfahren für die computergestützte

Analyse von Keilschrift, wird durch die Entwicklung von darauf aufbauenden

Methoden belegt: Die homogene Beschreibung von Keilen ermöglicht eine

Methode zur Assoziationsanalyse von räumlichen N-Grammen. Eine andere

Anwendung ist die automatisierte Transliteration von Keilschrift, durch sequen-

tielles Wortmodell auf einer Datenbasis von parallelen Sätzen. Abschließend

zeigt der Ausblick, wie diese Arbeit die Voraussetzung für die Entwicklung

neuer Werkzeuge und quantitativer Analysemethoden zur Erschließung von

Keilschrifttexten schafft, die dazu objektiv und reproduzierbar sind.
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Besonders danken möchte ich Prof. Micheal Gertz. Er widmete mir Zeit und

Geduld, mit mir über meine Fortschritte zu sprechen und mir Alternativen

aufzuzeigen. Seine fachliche Erfahrung, die er mit mir teilte, zeigte mir die

Vorgänge des wisschenschaftlichen Arbeitens.
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1 Digitalizing the Analysis of

Ancient Handwriting

Motivated by the increasing digitization and demand for computational text

analysis in Assyriology, we introduce and develop methods for the fundamental

constituents of written cuneiform script enabling computational modeling and

processing of cuneiform characters.

For more than three millenia in the ancient Middle East, scribes wrote doc-

uments using cuneiform script [Sod94]. Cuneiform tablets belong to the

oldest textual artifacts. The number of known tablets is assumed to be in

the hundreds of thousands, which is constantly increasing as new tablets are

excavated by archaeologists on a regular basis. By roughly estimating the

number of words on those tablets, we can assume that the total amount of

text in cuneiform script is comparable to those in Latin or Ancient Greek.

Since those tablets were used in all of the ancient Near East for over three

thousand years [Sod94], interesting research questions can be answered regard-

ing the development of religion, politics [Mau17], science, trade and climate

change [Kan+13]. These tablets were formed by clay and written on by im-

pressing a rectangular stylus [Bor04] into a wet clay tablet. The result is a

wedge-shaped impression in the clay tablet. The word cuneiform derives from

the Latin word “cuneus” wedge and “forma” shaped. Constellations of wedge-

shaped impression form thousands of cuneiform words and are documented

in the work of Borger [Bor04] and the work of Soden [Sod94]. As clay was

always cheaply and easily available, those capable of writing could produce a

multitude of documents. Therefore, the content of cuneiform tablets ranges

from mundane shopping lists to treaties between empires.

There is an increasing demand in the Digital Humanities domain for hand-

writing recognition, i.e. machine reading of handwritten script, focusing on

historic documents. Even the recognition of ancient characters sharing shapes

with their modern counterparts, e.g. ancient Chinese Sutra [MHK09], is a

challenging task. For digitally processing cuneiform script, there exist only few
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1 Digitalizing the Analysis of Ancient Handwriting

related approaches. Fisseler et al. [Fis+14] uses geometric features of cuneiform

tablets acquired with a 3D-scanner [Mar+10] and Sperl [Spe81] constructs a

labeling for wedge types. With the increased availability of high-resolution

3D-measurement technology [MMS08] it became possible to rapidly acquire

and process cuneiform tablets in 3D [HW11; Fis+14; Chn+14], which allows

to extract [MK13] outlines of cuneiform characters, i.e. groups of wedges.

However, most of the data does only exist in printed books with manual

drawings, which are only available as raster images. Furthermore, modern

Assyriologists manually create digital line drawings of tablets with vector

graphics editors, e.g. Inkscape and the proprietary Adobe Illustrator, using

the underlying photographs. In this case we get an eXtensible Markup Lan-

guage (XML) based Scalable Vector Graphics (SVG), which can have internal

variations depending on the manual drawing technique.

Manual transliteration of cuneiform is a challenging task. Cuneiform script has

no whitespace between words and contains upwards of 20 known grammatical

cases. Words are conjugated by adding a prefix, infix or postfix. Additionally,

the same cuneiform characters may have different readings that can only be

identified by knowing the current grammatical case. Assyriologists reference

other tablets containing the same character being translated to understand

the context in which it is used. This work is done manually by sifting through

tracings.

Automating this process by means of a wedge constellation spotting tool,

provides experts with a significantly broader base of references to create more

accurate and less time consuming transliterations and translations. Currently,

text analysis of cuneiform script is done only on the Latin transliterations

and translations which are incomplete and influenced by the knowledge and

experience of the expert that created them. Statistical analysis directly on the

wedge patterns is free from interpretation bias and has a significantly greater

data basis to work from.

1.1 Challenges and Objectives

The development of computational tools for cuneiform analysis presents many

opportunities. An efficient and accurate sign spotting enables cross-referencing

and statistical analyzes that are infeasible to perform manually. Yet, cuneiform

14



1.1 Challenges and Objectives

script has since resisted efforts to computational processing on basis of its

basic constituents, i.e. wedge-shaped impressions and signs. We identify the

following challenges which have to be overcome:

1. Original cuneiform tablets and tracings thereof are available in many

heterogeneous and incompatible formats. The usage of different tools

for every representation is not a workable solution.

2. Cuneiform script has no whitespace, highly complex and flexible grammar

and words with multiple conflicting interpretations. This precludes word

segmentation without actual understanding of the underlaying language.

3. The very dense writing and high variability of wedge-shaped impres-

sions makes basic approaches, like template matching, too limited for

extracting wedges. As a consequence, a closed enumerable discrete rep-

resentation, such as letters in Latin, is insufficient. Wedges require a

free-form continuous and open representation.

4. Even though there are thousands of cuneiform tablets present in museums,

only very few are accessible to us and available digitally for processing.

Therefore, methods requiring large datasets for learning are ruled out.

Given the current state of research of digitalized cuneiform, which is limited

to visualization [MK13] or analysis of manually collected facts as is the case

for the Cuneiform Commentaries Project (CPP), we set out for the following

objectives:

1. Develop methods and tools which enable the processing and manipulation

of heterogeneous sources of cuneiform in a unified fashion.

2. Research cuneiform sign search facilities that circumvent the need for

segmentation. Since neither writing direction or tablet layout are fixed

in cuneiform, a cuneiform sign search independent of this assumptions is

advantageous.

3. Develop feature vector representations and distance functions for wedges

and signs enabling the usage of common machine learning algorithms.

The application of common transformations, e.g. space embeddings and

clustering, and learning methods, e.g. classification and pattern-mining,

15



1 Digitalizing the Analysis of Ancient Handwriting

opens a plethora of opportunities for novel research in statistical language

analysis of cuneiform.

4. Apply the developed tools with methods in computer linguistics on

cuneiform. Gain new insights into quantitative properties and patterns

in cuneiform script which are as of yet not possible.

1.2 Structure of the Thesis

We organize this work into seven chapters and distinct steps of abstraction.

These are visualized in Figure 1.1. Chapter 1 provides an introduction into the

topic of historical handwriting recognition and motivates the need for novel

general tools for computational analysis. Chapter 2 provides background on

cuneiform script, the methods and results of acquiring cuneiform tablets, and

their contents.

In Chapter 3 we define mathematical models for cuneiform script and extract

these from tracings of tablets. We introduce a unified semantic description

of cuneiform. We published our findings in [BMM15]. Chapter 4 introduces

the concept of measurable equality and inequality for cuneiform script and

provides an evaluation of different similarity schemes. Work on these methods

has been published in [BGM15b] and [BGM15a]. In Chapter 5 we extend

approaches for spotting Latin words with our novel methods to arrive at an

algorithm for spotting cuneiform signs. We evaluated competing approaches

and published our results in [BHM16].

Chapter 6 proves the applicability of our contributions by performing com-

putational analysis of cuneiform script. We publish these analyses in [BM16]

and [BKM17]. Finally, in Chapter 7 we conclude with a highlight of key

achievements and provide a detailed overview of our contributions. An outlook

presents our impact on computational research in Assyriology and poses novel

research questions which are first enabled by our research.
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1.2 Structure of the Thesis

Figure 1.1: We visualize the structure of this thesis as distinct steps of increas-

ing abstraction of cuneiform script and analyses possible hereby.

Steps connected by arrows indicate a dependency on the results of

the previous step.
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2 Background on Cuneiform

Script and Cuneiform Research

Cuneiform tablets are one of the oldest textual artifacts comparable in extent

to texts written in Latin or ancient Greek. They have seen use in the ancient

orient from 3000 B.C to 1000 A.D. In this timeframe many different languages

based their writing on the cuneiform script and the writing itself evolved from

a pictographical to a syllabic script. These tablets were formed from clay and

written on by impressing a rectangular stylus. The result is a wedge shaped

impression in the clay tablet. More than half a million cuneiform tablets have

been excavated from regions including todays Iran, Iraq, Syria and Turkey.

2.1 Cuneiform Signs and Writing System

Cuneiform signs are written in left-to-right or top-down lines using a two

dimensional arrangement of wedge-shaped impressions. Wedges have an inner

approximately triangular form which we denote as the wedge-head and rifts

extending from the triangle corners which we denote as the wedge-arms.

Figure 2.3 on page 21 illustratively highlights these portions of a wedge-shaped

impression and Figure 2.2 shows the difference of appearances of wedge-

shaped impressions between original tablets and their tracings. Assyriologists

differentiate between five types of wedges [Cam14]. Figure 2.1 illustrates the

different types of wedges.

Standing wedges with a vertical stem and the wedge-head on top.

Prone wedges with a horizontal stem and the wedge-head on the left.

Upward askew wedges with diagonal stems and wedge-heads right of and

below the stem.

19



2 Background on Cuneiform Script and Cuneiform Research

Figure 2.1: The different types of wedges annotated in two cuneiform signs.

Downward askew wedges with diagonal stems and wedge-heads left of and

above the stem.

Winkelhaken that is being impressed by stabbing the rectangular stylus

without any additional movement. Winkelhaken are denoted with filled

wedge-heads in some tracings as shown in Figure 2.2. They are identified

by their wedge-head only as they are not traced with any wedge-arms.

In early cuneiform script written pictographic wedges have also been used

decoratively and in ways not clearly differentiated by the five recognized types.

Some amount of creative interpretation is not avoidable in transliteration and

translation of cuneiform.

Cuneiform is polyvalent, i.e. written cuneiform signs carry different meanings,

and the transliterating scholar has to decide its reading. A meaningful collec-

tion of wedge-shaped impressions forms cuneiform sign, whereas a meaningful

but not unique collection of cuneiform signs forms a word in cuneiform script.

The difficulty stems form the fact that the same succession of cuneiform

signs can be read as different words, especially if the language, e.g. Assyrian

or Sumerian, is not yet determined. Thus, the same sequence of cuneiform

signs split differently, yielding different subsequences of cuneiform signs, yields

differently read words.

Transliteration of cuneiform is therefore related to the exact set cover prob-

lem [Kar72]. A sentence of cuneiform signs is the universe of elements and

words are sets whose union equals the universe. A correct transliteration is

20



2.2 Digital Databases & Projects

(a) (b)

Figure 2.2: Excerpt of wedge-shaped impression on a a) cuneiform tablet and

b) its tracing.

(a) (b) (c)

Figure 2.3: Parts of wedge-shaped impression: a) The complete wedge, b) the

wedge-head and c) the wedge-arms.

therefore a collection of sets (words) that covers the universe (the sentence) so

that each element (cuneiform sign) is covered by exactly one set (word).

In this work we concern ourselves only with wedge-shaped impressions and

wedge constellations without regard to their meaning. Such an approach

allows us to develop methods for analysis and search that do not require a

language model or a word model. These languages are neither fully understood

yet nor static through their lifetime, writing developed from pictographic to

syllabic and differs between languages. Hence, our methods work on the visible

representation of written cuneiform.

2.2 Digital Databases & Projects

The digitization of cuneiform tablets and the development of respective

databases provides us with open access corpora of photographs, line tracings,

transliterations and translations. Major examples are the Cuneiform Digital

Library Initiative (CDLI, http://cdli.ucla.edu/) and the Open Richly An-

notated Cuneiform Corpus (ORACC, http://oracc.museum.upenn.edu/).

For many of its tablets the Cuneiform Commentaries Project (CPP) from

Yale University provides line tracings with annotated transliterations and

21

http://cdli.ucla.edu/
http://oracc.museum.upenn.edu/


2 Background on Cuneiform Script and Cuneiform Research

Figure 2.4: Excerpt from a cuneiform tablet (CCP 2.2.1.A.b) (top) and its

transliteration (bottom). Areas with ink points denote tablet

damage. Transliteration [FJF17] contains both radicals (lowercase)

and fully identified letters (uppercase).

translations. However, the library cannot be searched using cuneiform signs as

queries. Only the transliterations can be searched using Latin query words. Fig-

ure 2.4 illustrates a retro-digitized cuneiform tablet tracing and the associated

transliteration as available in the CCP.

Cuneiform tablets are being acquired from different sources and require different

methods for digitalization. In the following sections we describe the formats

of three sources and the methods necessary to digitize the information on the

tablets.

2.3 3D-Scanned Cuneiform Tablets

Cuneiform tablets available as originals are acquired using a stereo and struc-

tured light 3D-scanner [SM92] as shown in Figure 2.5. An alternating pattern

of structured light is projected on the cuneiform tablet and is deformed by its

surface shape. These deformations are measured by two cameras of the scanner.

Then, the software associated with the 3D-scanner calculates a mesh from

the set of captured images. The result is a mesh of triangulated measuring
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2.4 Retro-Digitized Cuneiform Tablets

Figure 2.5: Königsinschrift found 1975 in Assur, Iraq [Mar12]. Rasterized

3D-scan of a cuneiform tablet shaded with the MSII [MK13] feature

descriptor.

points, the vertices of the mesh, capable of resolving features up to 2mm. The

distance between the vertices is 1
100mm.

2.4 Retro-Digitized Cuneiform Tablets

Typically tracings of cuneiform tablets are done manually with paper and

ink. An Assyriologist traces the wedge-shaped impressions, the shape and

the damage of an original cuneiform tablet or the photograph of the original

tablet. Flat-bed scans of such tracings and the photographs of the original

cuneiform tablets are freely available to download from the CDLI.

In tracings of cuneiform tablets, different conventions are used to describe the

same concepts. Most cuneiform tablets are moderately damaged or broken

into parts, for example. Damage and break lines are often drawn using either

crosshatching or indicated with dots in differing densities. The shape and

damage of the original cuneiform tablet is indicated by contour lines outlining

areas of broken off parts. Wedge-shaped impressions are typically drawn as

triangles with arms. The wedge-head can either be a filled triangle or three

slightly curved pairwise intersecting strokes. Figure 2.6 shows an original

cuneiform tablet and a scan of a manually created tracing.
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2 Background on Cuneiform Script and Cuneiform Research

(a) (b)

Figure 2.6: Cuneiform tablet No. TCH92, G127 [Jak09]: (a) Photograph and

(b) its retro-digitized tracing.

2.5 Born-Digital Cuneiform Tracings

A more modern process used by Assyriologists are born-digital tracings of

cuneiform tablets. Comparable to tracings drawn on paper, digital tracings

are drawn manually on graphics tablet using a vector graphics editor, such as

Inkscape (https://inkscape.org/de/). The shape, damage and wedges are

drawn using the same conventions as in retro-digitized tracings of cuneiform

tablets. Figure 2.7 shows a born-digital tracing of a cuneiform tablet.

A born-digital tracings of a cuneiform tablet has two very important advantages

over a retro-digitized tracing for automated analysis. First, each stroke drawn

by an Assyriologist, no matter how short, small or occluded, is directly

enumerable from underlaying source code as shown in Figure 2.8. This allows

for pattern matching and the restoration of the underlying data. Secondly,

the strokes used to indicate wedges are typically on a separate layer than

strokes indicating tablet shape or tablet damage. Extraction can be performed

without the need of first segmenting the foreground text from the damaged

tablet. Figure 2.9 shows a born-digital tracing decomposed into three layers.

Although there is only a limited set of wedge types, wedges are traced by

individual strokes drawn on a graphics tablet instead of being drawn as tem-

plates. Hence, tracings of cuneiform tablets are a handwriting of a handwriting,

the cuneiform script on tracings is twice perturbed. First, by the original
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2.5 Born-Digital Cuneiform Tracings

Figure 2.7: A born-digital tracing of a cuneiform tablet created using a vector

graphics editor and a graphics tablet.

Figure 2.8: The stroke of a cuneiform sign and its respective description as a

spline in the SVG file format.
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2 Background on Cuneiform Script and Cuneiform Research

(a) (b) (c)

Figure 2.9: a) The script layer of born-digital tracing of a cuneiform tablet

containing the tracing of cuneiform script. b) The damage and

shading layer detailing geometric features of the cuneiform tablet.

c) The tablet shape layer outlining the tablet shape and hard edges.

As small errors creep in during the tracing process, layers are not

always perfectly separated. The script layer a) contains shading

and the shading layer b) contains some wedges from the script

layer.

author writing in cuneiform and second, by the expert tracing the tablet, each

bringing their own idiosyncrasies.

Figure 2.10 illustrates this difference. As a consequence, not only is the visual

appearance of each stroke different but also the internal structure between

wedges appearing to be similar may be completely different. The count of

strokes between the same wedge types and the usage of these strokes, as part

of the wedge-head or part of the wedge-arms, differs. Additionally, vector

graphics programs may decide to represent strokes using different style elements,

e.g. using straight segments as shown in Figure 2.10 b) and c) for strokes that

are straight enough, i.e. below an internally defined threshold. We choose to

overcome the challenge by supporting all these variations in expressing wedges.

To this end, we develop methods and strategies in Chapter 3 to extract the

underlaying wedges which are expressed by these strokes.

2.6 Definition of Strokes in Born-Digital Tracings

In SVG files, strokes are represented as closed cubic spline [Boo01] paths,

parametrized by four control points. For this work we consider the closed
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(a) (b) (c) (d)

Figure 2.10: Different representations of wedges in born-digital tracings of

cuneiform tablets. While a template representation a) would

seem natural due to the limited count of wedge types, traced

wedges outlines are drawn individually and differently for each

new wedge b) c) d).

spline paths as abstract objects supporting intersection and discretization of

their boundary. Let s ∈ S be a stroke s in the set of strokes S. We define a

set IS ⊆ S2 of intersecting stroke pairs (si, sj) ∈ IS. Then, the center of the

intersections is defined for intersecting strokes (si, sj) as follows.

center(si, sj) ∈ R2 ∀si, sj ∈ IS (2.1)

Additionally, we define the endpoints of a stroke si ∈ S as two points in R2

on the boundary of the stroke that are most distant from each other.

endpoints(si) ∈ (R2,R2) (2.2)

The spline of a stroke is planar manifold with a boundary which can be

discretized into a set of points. Since the exact definition of the discretization

is implementation dependent, in this case on the SVG implementation, we

limit ourselves to the following definition.
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2 Background on Cuneiform Script and Cuneiform Research

∂si ⊂ R2 (2.3)

Let ∥x∥2 denote the Euclidean 2-norm. In this work we elide the subscript

∥x∥2 since we only use the 2-norm to compute lengths. The definition is as

follows.

∥x∥ :=
√

x21 + x22 + · · ·+ x2n (2.4)

Given two vectors a, b we denote a vector pointing from a to b with a⃗b. The

distance between a, b is then written as ∥a⃗b∥. The two most distant points of

a stroke can be found by a greedy algorithm as shown in Algorithm 1.

In this work we describe the runtime of the presented algorithms asymptotically,

i.e. ignoring coefficients and lower-order terms, using big-O notation. We say an

algorithm has a runtime complexity of O(n) for an input size n if it completes

its execution in linear time, for example.

For a set of strokes s with size |s| = n Algorithm 1 completes n iterations

in which vectors a and b increase in distance. Any other operations are of

constant time with respect to the input size n. The asymptotic complexity is

therefore O(n).
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2.6 Definition of Strokes in Born-Digital Tracings

Algorithm 1 Greedily find two most distant points on a closed boundary.

procedure endpoints(s)

▷ Initialize most distance points as empty at first.

a← ⊥ and b← ⊥
▷ For each point on the boundary s.

for p ∈ ∂s do

▷ Initialize both points with some points

▷ on the boundary s.

if a = ⊥ then

a← p

else if b = ⊥ then

b← p

▷ If a connection with the current point p results

▷ in a greater distance than by connecting ab

▷ replace the respective a or b. Thus, increasing

▷ the greatest distance currently found.

else if ∥a⃗p∥ > ∥a⃗b∥ then
b← p

else if ∥b⃗p∥ > ∥a⃗b∥ then
a← p

end if

end for

▷ Return points farthest apart on the boundary of s.

return a, b

end procedure
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3 Wedge Detection and

Extraction

Born-digital tracings describe the shape and semantics of a cuneiform tablet.

Many different types of vector objects, e.g. splines, lines, points, are used for

visualization, each with a unique representation. For computational analysis

and search of cuneiform signs, we develop a minimal uniform mathematical

representation that discards visual noise and keeps semantic information.

Our common uniform representation of cuneiform script is used as an inter-

change format for cross data format analysis, e.g. between retro-digitized

tracings and born-digital tracings. Incomplete or damaged wedge-shaped

impressions or annotations and tablet damage erroneously added to script

layer are challenging for a straight-forward pattern-matching and extraction

of wedge-shaped impressions. In this chapter, we introduce two models of

cuneiform script and means of extracting them.

We approach pattern-matching wedges from two different assumptions. First,

we assume that wedges and, subsequently, cuneiform signs can be completely

described by an undirected graph. Extracting cuneiform signs is then reduced

to the subgraph isomorphism problem. Our second assumption uses a higher

level description of wedges. We posit that wedges can be described by a model

consisting of a triangle with three arms extending from its vertices.
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3 Wedge Detection and Extraction

3.1 Challenges and Objectives

In the following we provide a structured overview and emphasize the main

aspects of this chapter.

Motivation Computational tools for linguistic and pattern analysis depend

upon a uniform mathematical description. In state-of-the-art literature,

only the visual outlines [MK13] or raster images [Rot+15] of wedge-

shaped impressions have been researched. We develop a purely semantic

and uniform representation of cuneiform script.

Challenges Cuneiform script is a three dimensional, handwritten and highly

variable script. Additionally, transcriptions are also handwritten and add

another layer of idiosyncrasies. The script has no whitespace, is written

very densely and is polyvalent. Therefore, cuneiform signs overlap and

intersect and preclude automated segmentation.

Objectives We focus on modeling the features of wedge-shaped impressions

that are necessary to decipher meaning and shared in all representations,

e.g. in retro-digitized tracings, born-digital tracings and 3D-scans. It is

our explicit non-goal to model visual features such as surface texture and

the tablet shape and parts as those do not contribute to pure linguistic

understanding of the written script.

Related Work We review previous methods used to categorize cuneiform signs

and state the modeling objectives of our approach for a mathematical

description of cuneiform script.

Input Our dataset consists of born-digital cuneiform tablet transcripts in the

SVG format. These transcriptions are drawings of the visual outlines of

the tablets and wedge-shaped impressions.

Output From our dataset we compute 1) a set of wedges in uniform feature vec-

tor representation and 2) an undirected topological graph representation

on basis of semantic keypoints in the transcriptions.

Methods We introduce an implicit model of cuneiform script that represents

cuneiform signs as graphs between key-points and an explicit representa-

tion as a set of wedge-shaped impressions modeled by a feature vector.

We pattern-match the basic shapes of traced outlines to over-segment
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wedges from our data. The over-extraction creates overlapping model

interpretations and conflicts that are resolved by an heuristic rule-based

approach as well as an optimizing optimal assignment based approach.

Evaluation We evaluate the precision and recall to compare the extraction

performance of the presented strategies for retrieving implicit and explicit

wedge models.

Publications Work on standardizing representations for heterogeneous sources

has been published in [BMM15]. Work on optimally resolving conflicts

from over-segmentation has been published in [BHM16].

3.2 Modeling Objectives and Related Work

In this section, we present related work in modeling cuneiform and describe

our objectives for a model of the cuneiform writing system. Previous modeling

approaches of cuneiform script and wedge-shaped impressions were limited to

either enumeration and qualitative assessment of features or to purely visual

approaches bound to the underlaying representation.

Borger [Bor04] maintains a comprehensive list of known cuneiform signs, their

meanings and associated information. Signs can be found in this list by

counting wedge types. For our purposes of computational analysis a set of

prototypes is not flexible enough. It cannot represent as of yet unknown

wedge constellations or writer specific idiosyncrasies. Counting or enumerating

wedge types, in any sequential direction, is ambiguous as cuneiform script

is a two dimensional writing system. While insufficient as an interchange

representation in Chapter 4, Section 4.5 pp. 81, we evaluate two related

approaches for similarity computation that make use of templates and feature

enumeration.

Mara et al. [MK13] presents an approach for representing cuneiform signs

by outlining them with parametric splines by extracting these from 3D-scans

of cuneiform tablets. These outlines are strongly related to the underlaying

format of 3D-scans and exhibit noise from the surface features of the acquired

tablets. Rothacker et al. [Rot+15] use raster images to represent tablets and

signs. While such an approach is highly general, it makes analyses depending
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on an understanding of the constituents of the signs, e.g. n-gram clustering

and pattern mining, not feasible.

Our approach to modeling cuneiform script focuses on a direct description

of features necessary for linguistic analysis. Fitting models and learning

any template wedges is avoided to provide a model capable to represent both

pictographs and syllables. Further, the resultant model is independent from the

underlaying representation and can be extracted from different heterogeneous

sources.

3.3 Implicit Wedge Modeling

Wedges can be seen as distinctive elements of cuneiform script or as structures

arising from written cuneiform signs. Modeling signs as a whole gives us

the flexibility to model wedge constellations that arise from unique usages of

the stylus and do not follow the typical wedge-shaped impressions, a style of

writing in old ideographic cuneiform script.

3.3.1 Discovery of Connected Components

For born-digital tracings we divide the document into isolated components

for faster processing. On page 46 we can see that this procedure reduces the

processing time 32-fold for a highly polynomial algorithm in our pipeline. The

following pattern matching algorithms work locally on individual strokes or

connected components of strokes. For cuneiform script, extracted from 3D-

acquired tablets by means of the approach presented by Mara et al. in [MK13],

such a decomposition into components is already present.

We construct a set of connections by computing all intersecting strokes. Parti-

tioning this set of connections into independent connected components yields

sets of strokes which are then independently processed. Figure 3.1 on page 37

shows an excerpt of traced cuneiform script and components of intersecting

strokes. Algorithm 2 on page 35 illustrates the process of splitting the set of

strokes S into non-intersecting subsets S1 · · ·Sk.

Algorithm 2 is composed of two parts. First, the construction of the graph

structure by pairwise intersection of all combinations of strokes. For n = |S|
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3.3 Implicit Wedge Modeling

Algorithm 2 Split set of strokes into disconnected components.

procedure split(S)

▷ Here, we consider strokes as vertices

▷ and intersections of strokes as edges.

V ← S

E ← ∅

for (s, s′) ∈ S2 do

▷ For each pair of strokes, if they intersect

if (s, s′) ∈ IS then

▷ add those to the list of edges.

E ← (s, s′)

end if

end for

▷ Prepare a collection of independent sets.

S1 · · ·Sk ← ∅
▷ Compute connected components of the graph

for (l, s) ∈ components(V,E) do

▷ and add strokes to the respectively labeled set.

Sl ← Sl ∪ s

end for

▷ Return collection of independent sets of strokes.

return S1 · · ·Sk

end procedure

35



3 Wedge Detection and Extraction

the count of strokes this operation has O(n2) complexity, since all pairs have

to be enumerated and checked for presence in the set of all intersections

IS. Second, the construction of the subsets. Computing the connected

components of a graph has a complexity of O(n) [HT73]. There can be at

most n disconnected components, the count of strokes, and assignment to

the collection of sets of strokes has then a complexity of O(n). The final

complexity is then O(n2 + n+ n) = O(n2).

3.3.2 Definition of Keypoints

All our methods describing cuneiform script and wedge-shaped impressions use

the notion of keypoints. These two-dimensional points are salient identifying

features of wedges and wedge constellations and identify meaning without

depending on the underlaying representation. We construct keypoints from

two sources of points, endpoints and intersection points. Endpoints are

constructed by finding two points farthest apart on the spline boundary of

a stroke. Intersection points are created by pairwise intersecting all strokes

in the document and placing points at the centers of the intersection areas.

Figure 3.2 illustrates these two types of points used.

In this section, for modeling cuneiform signs without assumptions on wedge

structure, we use keypoints as vertices of an undirected topological graph.

Connections are computed by recovering the implied connections of intersecting

strokes. Thus, the resultant graph represent the stroke connections between

the salient features of a wedge constellation.

3.3.3 Graph Construction by Sweep-line

Recovering intersections of strokes for graph edges will not yield a proper

representation of a cuneiform sign. We want graph edges to follow the visual

shape of the strokes used to represent a sign. Therefore, graph edges are

constructed by successively connecting keypoints that originate from the same

stroke or have been created on said stroke through intersections with other

strokes. Subsequently, by merging the created vertices before connecting those,

we create a graph that visually resembles the underlaying visual representation

of the wedge constellation. We denote a graph with the letter G and its

vertices and edges with the letters V and E.
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3.3 Implicit Wedge Modeling

Figure 3.1: Excerpt from a born-digital tracing and an exploded view of its

connected components of self-intersecting script. It is clearly visible

that even signs from different lines intersect.
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(a) (b) (c)

Figure 3.2: The keypoints of a cuneiform wedge. a) An exemplary wedge

is outlined by three strokes. A different combinations of strokes

outlining is possible as shown in Figure 2.10 on page 27. b) In

this sign, endpoints of a stroke are used to denote the extents of

the wedge-arms and c) intersection points are used to denote the

vertices of the wedge-head.

(a) (b) (c)

Figure 3.3: a) Endpoints and intersection points of a set of stroke in a cuneiform

sign highlighted with red X marks. b) Graph overlaid on top of

the strokes. c) The resulting graph of the cuneiform sign.

G = (V,E) (3.1)

Figure 3.3 illustrates the visual and semantic equivalence of graph obtained

from a set of strokes used to describe the tracing of a cuneiform sign.

Since there is no inherent order of intersection and endpoints on a stroke,

we order all points originating from a stroke geometrically from bottom-left

to top-right and then connect them in sequence. This approach resembles

a sweep-line moving diagonally from bottom-left to top-right. Figure 3.4

illustrates this process. In rare cases this may create incorrectly connected

points, i.e. the chain of edges is self-intersecting, if the stroke is slightly curved
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Figure 3.4: A cuneiform wedge in spline representation. (a) Closed spline

paths forming strokes (gray) are pairwise intersected (black). (b)

The keypoints (marked X) of the strokes (marked with letters) are

first ordered from bottom right to top left, then (c) the edges of

the final graph are created by connecting the keypoints of each

stroke in turn. The sequence is indicated by the numbers.

and the geometric ordering does not correctly represent the curvature of the

stroke. Only few instances have been observed where this is the case. We

present a closer evaluation of the extraction performance in the evaluation of

this chapter in Section 3.5, pp. 54.

Algorithm 3 describes the process of reconstructing a graph from a set of

strokes S. Let n = |S| be the count of strokes in that set. The algorithm

iterates over each stroke in turn and computes vertices for the resulting graph.

Finding all incident intersecting strokes for a strokes has complexity of O(n),

each stroke in turn has to be checked for presence in the intersection set

IS. The computation of endpoints is independent of the input size n and is

therefore taken to be constant. Since all possible strokes may be incident

and intersecting, the ordering takes O(n log n) time. In summary, the time

complexity of the sweep-line algorithm is O(n ∗ (n+ n log n)) = O(n2 log n).

Vertex de-duplication The intersection of two wedges is semantically mean-

ingful. Yet, in some cases, intersection points and endpoints are very close,

but do not share the same position. These are inaccuracies natural to human

handwriting and artifacts of the tracing process. We recover implied connec-

tions by merging vertices that are closer than some threshold e. This threshold

is set to be 1
100 of the width of a typical stem of stroke in a born-digital tracing.

Figure 3.5 illustrates this process.
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Algorithm 3 Construct graph of keypoints from a set of strokes

procedure sweepline(S)

▷ Initialize empty lists for vertices and edges

V ← ∅, E ← ∅

▷ For each stroke in the current component S

for s ∈ S do

▷ Compute endpoints for current stroke and

▷ all intersection points with other strokes

▷ resulting in the set of all keypoints.

V ′ ← endpoints(s) ∪ {center(a, b) ∀(a, b) ∈ IS | a = s ∧ b ∈ S}

▷ Order points diagonally, the same order a

▷ diagonal sweepline would encounter these points.

V ′ ← sort(V ′) by increasing x and decreasing y

▷ Connect points in sequence to reconstruct

▷ original stroke.

for (vn, vn+1) ∈ V ′ do

E ′ ← (vn, vn+1)

end for

▷ Return vertices and edges of the graph.

V ← V ∪ V ′

E ← E ∪ E′

end for

return (V,E)

end procedure
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3.3 Implicit Wedge Modeling

(a) (b) (c)

(d) (e)

Figure 3.5: The same wedge type a) can be expressed by vastly different sets of

strokes yielding different and duplicated intersection and endpoints

b) and c). For a consistent labeling of keypoints we de-duplicate

these intersection and endpoints d) and e).

The process of greedy de-duplication is described in Algorithm 4. It iterates

over all vertices and builds a list of seen vertices. Any new vertex is first

checked before its added to a new set of vertices. Iteration has O(n) time

complexity, distance checking all added vertices has O(n) time complexity.

Since this check is performed for all vertices the resulting time complexity for

Algorithm 4 is O(n2).

Steps of Reconstruction The process of extracting a graph from the set of

strokes of a born-digital tracing of a cuneiform tablet can be thus described in

the following steps.

1. Find connected components of self-intersecting strokes to reduce working

set size (Algorithm 2 on page 35).

2. Compute graph from set of strokes by connecting keypoints (Algo-

rithm 3).
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3. Reconstruct implied wedge connections by merging close keypoints using

a greedy approach (Algorithm 4).

The resultant graph is then used in Chapter 4, Section 4.4.2, pp. 69 for

comparing cuneiform symbols. Representing symbols by means of a graph does

not presume any underlying structuring elements and allows the representation

of any set of intersecting strokes. But the free-form expression allowed by

graph models makes defining a semantically meaningful similarity metric, one

that models changes in graphs similar to how an expert perceives changes in

the respective symbols, difficult. In the following section we introduce wedge

models based on tool-usage.

Algorithm 4 Greedily de-duplicate vertices

procedure deduplicate(V)

▷ Initialize empty new set of vertices.

V ′ ← ∅

▷ For each vertex in the set of vertices.

for v ∈ V do

▷ If there is no other vertex in the new set of

▷ vertices closer than some ϵ.

if ∀v′ ∈ V ′ : ∥v⃗v′∥ > ϵ then

▷ Add it to the new set of vertices.

V ′ ← v

▷ This approach is greedy since the first

▷ vertex to be added to the set of new vertices

▷ suppresses all following even if their

▷ placement were more optimal.

end if

end for

▷ Return new set of vertices where no two vertices

▷ are closer than some ϵ.

return V ′

end procedure

42



3.4 Explicit Wedge Modeling

3.4 Explicit Wedge Modeling

In contrast to implicit wedge modeling, in this section we model the wedge-

shaped impressions directly as the most basic constituent of written cuneiform

script. Since wedge-shaped impressions are the result of using a rectangular

stylus to write, we therefore parametrize the tool usage to describe hand-

writing. This approach makes the results of our presented methods more

interpretable to Assyriologists where understanding of cuneiform signs begins

with understanding tool usage.

Since wedge-shaped impressions are concrete objects in this section, we in-

troduce the notation of W which represents the set of all wedges. We also

decompose a single wedge w ∈ W into a wedge-head and its wedge-arms

wh ∪wa = w. Wedges are sets of strokes from the set of all strokes w ⊂ S and

its constituents are, in turn, disjoint subsets of the wedge wh ∩ wa = ∅.

3.4.1 Keypoint Features as Shared Representation

Here, we introduce a common representation of wedges and cuneiform signs

across heterogeneous formats of tablets, e.g. retro-digitized tracings, born-

digital tracings and 3D-acquired tablets. A common representation has to

describe the most salient features of wedge-shaped impressions and has to leave

out any unnecessary detail. One important feature of a wedge is the shape of

the initial impression in the clay, the wedge-head. The other important feature

is the direction and length of any wedge-arms, the ridges extending from the

wedge-head created by pulling the rectangular stylus. Experts categorize and

recognize wedges by the size and orientation of their wedge-head and wedge-

arms. The keypoint feature descriptor derives directly from the way wedges

are drawn in transcriptions. It models wedges using six two-dimensional points

as shown in Figure 3.6. The first three points are the vertices of the three

pairwise intersecting strokes forming the wedge-head. The last three points

are endpoints of the wedge-arms attached to the respective wedge vertices.

These points form the keypoints of the keypoint feature descriptor and are

the same keypoints as introduced in Section 3.3.2, pp. 36 of this chapter. We

base our description on the same set of keypoints as in the implicit wedge

model, but choose six specifically designated ones to describe a wedge-shaped
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(a) (b)

Figure 3.6: a) A wedge constellation and b) the keypoints of one of its wedges.

impression. The choice which keypoints are used is determined by one of the

conflict resolution strategies detailed later.

Let the F k ⊂ R12 be the set of twelve-dimensional feature descriptors of a

wedge fk ∈ F k. It contains six two-dimensional points, three for the triangular

wedge-head h1 · · ·h6 and three for the endpoints of the wedge-arms a1 · · · a6.

fk = (h1, h2, h3, h4, h5, h6  
Wedge−head

, a1, a2, a3, a4, a5, a6  
Wedge−arms

) (3.2)

The keypoint feature descriptor of wedges, and subsequently signs as sets of

wedges, is used as a common interchange format between all of our cuneiform

tablet sources. Each of these has different representations, e.g. as 3D-scans,

retro-digitized tracings, born-digital tracings. The keypoint feature descriptor

encodes all semantically relevant information to reconstruct the represented

wedge-shaped impressions while leaving out any medium related artifacts, e.g.

lighting conditions, ridge depth or material condition. All subsequent feature

descriptors, e.g. the property feature descriptor and the template feature

descriptor, are derived from the keypoint feature descriptor.

3.4.2 Over-Segmentation for Robust Extraction

Our modeling approach makes use of the unique and very regular shape in

which wedge-shaped impressions are traced. We match wedge-head patterns

by finding three pairwise intersecting strokes and associated wedge-arms by

finding all strokes intersecting the strokes of the wedge-head. Since cuneiform
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3.4 Explicit Wedge Modeling

Figure 3.7: Hypothesized exemplary wedge-heads from Algorithm 5 on set of

strokes depicting a wedge constellation. Some, but not all walks

of 3, i.e. triangles of three pair-wise intersecting strokes, are true-

positives wedge-heads (blue and orange). Our over-segmentation

approach finds all possible wedge-like patterns and removes false-

positives (gray) through subsequent pruning and conflict resolution.

is densely written and wedges intersect each other, many false-positive wedge-

heads and wedge-arms are detected.

We generate wedge candidates for all possible combinations of the matched

wedge-heads and wedge-arms. These candidates intersect each other and are

in potential conflict since they share some of the underlaying strokes. That

is, the same stroke may be responsible for two different wedge-heads, one

of those being a false-positive, as shown in Figure 3.7. This a case of over-

segmentation where more model instances are computed than are supported

by the underlaying data.

Algorithm 5 describes the process of enumerating wedge candidates. A set of

three pairwise intersecting strokes, a candidate wedge-head, is denoted by wh.

A candidate subset of incident wedge-arms is denoted by wa and generated

by enumerating the power-set P1···3() of all incident strokes limited to sets

with cardinalities between 1 and 3. This procedure generates all possible

combinations of wedge-heads with between one or three wedge-arms.

For n = |S| the count of strokes in S, enumeration of all walks of 3 from the

set of intersections IS has a time complexity of O(n3). All intersecting 3-tuples

are enumerated and only those which are walks of 3 are kept. Enumerating

all subsets for the limited power set of 3 elements, also has a time complexity

of O(n3). All strokes could possibly be incident and intersect the wedge-
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3 Wedge Detection and Extraction

head. Since the power set is constructed for each wedge-head, the final time

complexity of Algorithm 5 is O(n3 ∗ n3) = O(n6).

This is the most expensive algorithm in our extraction pipeline and the reason

why the dataset from born-digital tracings has to be divided into connected

components. For such high polynomial runtime a simple division into two

independently processed parts already results in a reduction of processing

steps to the account of O((n ∗ 1
2)

6) = O(n6 ∗ 1
26 ), therefore for two invocations

a ( 2
26 = 1

32)-fold reduction in runtime.

Algorithm 5 Generate wedge candidates

procedure hypothesize(S)

▷ Initialize the empty set of hypothetical wedges

W ← ∅

▷ For every triangle, find walks of 3

▷ on the graph of intersecting strokes.

for wh ∈ {{a, b, c} | (a, b), (b, c), (c, a) ∈ IS} do

▷ Choose every permutation of incident intersecting

▷ strokes as possible wedge-arms for the current

▷ wedge-head triangle.

for wa ∈ P1···3({a | (s, a) ∈ IS ∧ s ∈ wh}) do

▷ Record the hypothesized wedge-model for later

▷ pruning.

W ← W ∪ {wh ∪ wa}
end for

end for

▷ Return the generated set of hypothesized wedge-models.

return W

end procedure

A-Priori Modeling Constraints After over-segmenting the set of strokes, we

prune the set of generated candidate wedges by applying a set of thresholds.

These thresholds are a-priori expert knowledge of written cuneiform. The area

of the wedge-heads has to be between the thresholds for small-head size tsh

and big-head size tbh. The area is computed using Heron’s formula.
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3.4 Explicit Wedge Modeling

area(wh) =

√
(a+ b+ c)(a+ b− c)(b+ c− a)(c+ a− b)

4

where a = ∥⃗b− c⃗∥, b = ∥a⃗− c⃗∥, c = ∥a⃗− b⃗∥
and {a⃗, b⃗, c⃗} = {center(s1, s2), center(s2, s3), center(s3, s1)}

and {s1, s2, s3} = wh

(3.3)

The angle of incidence of the wedge-arms to the triangle corners and the

lengths of the wedge-arms are constrained. Since a single stroke can contribute

to an edge of a wedge-head and a wedge-arm, we consider endpoints from

all strokes of a wedge candidate. That is, an endpoint from a stroke used to

draw a part of a wedge-head also contributes points that are interpreted as

endpoints for wedge-arms.

incidence(wh, wa) =
{
max
a⃗∈A
⟨⃗a− c⃗, b⃗− c⃗⟩

⏐⏐⏐ b⃗ ∈ B
}

angle(wh, wa) =
{
max
a⃗∈A

cos−1 ⟨⃗a− c⃗, b⃗− c⃗⟩
∥a⃗− c⃗∥∥⃗b− c⃗∥

⏐⏐⏐ b⃗ ∈ B
}

where A =
⋃

s∈wh∪wa

endpoints(s)

and c⃗ = mean(B)

and B = {center(s1, s2), center(s2, s3), center(s3, s1)}
and {s1, s2, s3} = wh

(3.4)

The dot-product of the vector from the center of the wedge-head to a wedge-

head vertex a⃗− c⃗, and the vector from the center to a wedge-arm endpoint b⃗− c⃗

has to be greater than the threshold tα. We set tα = 45◦, tsh = 10, tbh = 50.

W ← {w ∈ W | tsh < area(w) < tbh ∧
∀α ∈ angle(w) : α > tα}

(3.5)

Even after pruning the set of candidate wedges, the resulting set of wedges is

not guaranteed to be free of conflicts where candidate wedges share the same

strokes. To remove any conflicts between wedge candidates, we employ a set

of conflict resolution strategies.
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3.4.3 Conflict Resolution using Heuristics

Our first approach uses a set of rules and heuristics to resolve conflicts.

Strokes that contributed to identifying wedge-heads are never assigned to

wedge candidates to fill the role of wedge-arms.

W ← {{wh, wa} ∈ W | ∄{w′h, w′a} ∈ W : s ∈ wa ∧ s ∈ w′h} (3.6)

If two wedge candidates share the same stroke making up their wedge-head

the smaller candidate wedge is discarded.

W ← {{wh, wa} ∈ W | ∄{w′h, w′a} ∈ W :

s ∈ wh ∧ s ∈ w′h ∧ area(w) < area(w′)}
(3.7)

Strokes that contribute to wedge-arms are assigned the candidate wedge where

the stroke is most in line with one of the wedge-head corners.

W ← {{wh, wa} ∈ W | ∄{w′h, w′a} ∈ W :

s ∈ wa ∧ s ∈ w′a ∧ max
d∈incidence(wh,s)

d < max
d′∈incidence(w′h,s)

d′ (3.8)

The resultant set of wedge-models is non-overlapping and follows the interpre-

tation approach of an expert. Hypotheses most closely resembling ideal wedges

are kept, while conflicting less ideal hypotheses are discarded. Figure 3.8 shows

an overview of our heuristic pruning pipeline.

3.4.4 Conflict Resolution by Optimal Assignment

Our previous approach is sensitive to the ordering of its rules and brittle,

i.e. produces unpredictable assignments if complex conflicts are present. Here,

we introduce a conflict resolution strategy that works with the complete

connected set of intersecting strokes. We model the conflict resolution as an

optimization of an assignment problem. On one side are strokes and on the
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(a)

(b)

Figure 3.8: a) Hypothesized exemplary wedge-models in a set of strokes de-

picting a wedge constellation. The intersecting wedge-models are

shown in non-overlapping detail to the right. The gray wedge

models receive worse score from the heuristic functions since their

wedge-heads are small and their wedge-arms are at acute angles.

b) From a set of hypothesized wedge-models our heuristic model

prunes all unlikely candidates and leaves behind a non-overlapping

set of well-formed wedges.

49



3 Wedge Detection and Extraction

other are hypothesized wedge candidates. The optimization function prefers

assigning strokes to bigger wedge-heads and to wedge-arms where the strokes

are more in line with a wedge-head corner. The assignment problem is solved

using the Hungarian algorithm. From the resulting assignment we recover

wedge candidates that are viable, that is, where more than 3 strokes have been

assigned to form a complete wedge.

The Hungarian Algorithm Given a set of worker and a set of tasks we want

to find an assignment of workers to tasks. Any assignment of a worker to

a task incurs some varying cost. The assignment problem is the problem of

finding an assignment that minimizes that cost. The Hungarian algorithm by

Munkres [Mun57] traverses the edges of the simplex constraining the solution

space to find an assignment. The runtime of the algorithm with respect to the

count of tasks n is contained in O(n3).

Let cij be the costs of assigning some task i to worker j and let xij denote the

assignment of task i to worker j. Then the typical assignment problem is:

Minimize
∑
i

∑
j

cijxij

subject to
∑
i

xij = 1 and
∑
j

xij = 1

and xij ∈ {0, 1}

(3.9)

The first constraint ensures that every worker is assigned to exactly one task

and the second constraint ensures that every task is assigned to exactly one

worker. The third constraints ensures that the resulting assignments are

sensible, i.e. either a worker is assigned a task xij = 1 or he is not assigned to

it xij = 0.

Mathematical Reformulation Let A be a set of assignments (s, w) of strokes

s to wedge candidates w. From this set, only assignments are valid where a

stroke are capable being part of the wedge candidate, i.e. they are either part

of the wedge-head or one of its wedge-arms.

A = {(s, w), s ∈ S,w ∈ W | s ∈ wh ∨ s ∈ wa} (3.10)
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3.4 Explicit Wedge Modeling

We define two score functions chsw and casw. The function chsw computed the

benefit of assigning stroke s to wedge candidate w as part of the wedge-head,

and the function casw computes the benefit of assigning the stroke s as a wedge-

arm. If an assignment is not valid, the score is set to −1, to avoid assigning a

stroke to the wedge candidate. In the score matrix a block is reserved as a

sink with scores set to 0 for such strokes that violate the constraints in the

score functions. The weighting factor ωh prioritizes the formation of wedge-

heads instead of assigning additional wedge-arms to unfinished wedge-heads.

Different weightings have been tested (0.1, 5, 10, 20) with ωh providing the

best results. Wedge-heads with bigger head area are prioritized over smaller

wedge-heads.

chsw =

{
area(w) ∗ ωh, if (s, w) ∈ A,

−1, else
(3.11)

Wedges have obtuse angeled wedge-arms, we disallow angles smaller than the

threshold tα. Wedge-arms are preferentially assigned to wedge candidates

where the wedge-arms are long and in line with the wedge-head vertices.

casw =

{
d̂, if (s, w) ∈ A ∧ α̂ < tα

−1, else

where d̂ = max
d∈incidence(wh,s)

d

and α̂ = max
α∈angle(wh,s)

α

(3.12)

Each wedge candidate is given 6 columns for the six positions a stroke can be

assigned to. Three slots in the wedge-head and three slots for the wedge-arms.

For reasons of readability, we denote this group of columns for one wedge

candidate with one index and elide complex modulo operations. Therefore,

while there are m wedge candidates, there are 6m columns reserved for those.

We arrange the costs in a (6m+ n)× n matrix for optimization. Figure 3.9

shows a simplified and illustrative version of this matrix for an exemplary

conflict resolution task. The matrix has n rows for each of the strokes to

be uniquely assigned. Columns 1 · · · 6m represent the wedge candidates the

strokes can be assigned to. For strokes that cannot be assigned to any wedge

candidates, because they violate the constraints in the score functions, encoded

as −1 scores, a block reserved in (1 · · ·n)× (6m · · · (6m+ n)) functions as a
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3 Wedge Detection and Extraction

Figure 3.9: A simplified visual representation of the score matrix used for

optimally assigning strokes to wedges. False positive candidate

wedges are gray triangles. True positive candidate wedges are

orange and blue. The green check mark signifies a match with

high score, the orange triangle a match with low score and the red

cross a match that is not allowed.
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sink. Strokes are assigned to this block only if any other assignment would

result in a score less than zero.

C =

w1 . . . wm s1 . . . sn⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠

  
ch . . . ca . . .

  
ch . . . ca

  
0 . . .−1 s1

ch . . . ca . . . ch . . . ca −1 . . .−1 s2
ch . . . ca . . . ch . . . ca −1 . . .−1 s3

...
. . .

...
. . .

...

ch . . . ca . . . ch . . . ca −1 . . . 0 sn

(3.13)

We find a score maximizing assignment by solving the assignment problem

with the Hungarian algorithm [Mun57]. Viable assignments are recovered

by retrieving all wedge candidates that were at least assigned three strokes

for the wedge-head. Wedge-arms assignments are optional. Since one wedge

candidate spans 6 columns,
∑

Cmn denotes the sum over these six columns.

W = {wi ∈ {w1 · · ·wm} |
∑

j∈{1···n}

Cij ≥ 3} (3.14)

Having determined the strokes that constitute the tracing of a wedge-shaped

impressions, we move on to extracting the six defining keypoints from this set

of strokes.

3.4.5 Construction of the Keypoint Feature Descriptor

Regardless of the method used to determine the strokes representing a wedge-

shaped impression, the process of constructing a keypoint feature descriptor

does not change. The vertices of the wedge-head are computed from pairwise

intersections of the strokes constituting the wedge-head in the prior assignment.

The vertices of the endpoints of the wedge-arms are the most distant endpoints

of any stroke from a vertex in the wedge-head.

Let {wh, wa} = W be the sets of strokes in the wedge-head wh and the wedge-

arms wa of an extracted wedge model W . All keypoint feature descriptors

define wedge-arms endpoints but, by definition, not all wedge models contain

strokes representing wedge-arms. Wedge-arms vertices are therefore computed
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from all endpoints in a wedge model W , including strokes contributing to the

wedge-head tracing.

fk = { center(wh
1 , w

h
2 ),

center(wh
2 , w

h
3 ),

center(wh
3 , w

h
1 ),

max
p∈endpoints(W )

∥p− center(wh
1 , w

h
2 )∥,

max
p∈endpoints(W )

∥p− center(wh
2 , w

h
3 )∥,

max
p∈endpoints(W )

∥p− center(wh
3 , w

h
1 )∥}

(3.15)

This description of wedge-shaped impressions describes the most basic and

semantically meaningful keypoints and serves as a basis for any other feature

vector descriptions of wedges in our work.

3.5 Evaluation of Extraction Accuracy

In this chapter we introduced three methods for extracting cuneiform script

from a born-digital tracing. We evaluate the extraction accuracy of these

methods by computing the precision and recall. Wedges and signs are recov-

ered from Cuneiform tablets and correctly extracted wedges (true positives),

incorrectly extracted wedges (false positives), correctly ignored strokes (true

negatives), and incorrectly ignored wedges (false negatives) are counted. We

perform the evaluation manually with the help of expert knowledge and decide

whether the results correctly represents the underlaying tracing of wedge-

shaped impressions. Figure 3.10 shows the various extraction strategies and

their results applied to a single born-digital tracing. Since the implicit graph

model uses no preconceived notions of a wedge-shaped impression, it is able to

capture all strokes used to trace wedges accurately. At same the time it also

identifies and extracts many non-script elements, such as dividing lines and

damage. Therefore, the evaluation metrics presented below are not applicable

to the graph extraction.

The table in Figure 3.11 summarizes the results of evaluation of the explicit

extraction of wedge-shaped impressions. Even though the precision and recall
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3.5 Evaluation of Extraction Accuracy

Figure 3.10: Extraction results of the three presented approaches, sweep-line

extraction of graphs from keypoint, heuristic conflict resolution

of wedge models and optimizing conflict resolution. Very dense

cuneiform script is annotated in red circles. The optimizing is

able to correctly infer wedge placement and configuration. The

graph based approach is visually correct but has no concept of

wedges, e.g. the separator line is also extracted.
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TP FP TN FN Precision Recall

Heuristic 1780 95 96 43 0.949 0.976

Optimizing 1947 26 91 34 0.987 0.983

Figure 3.11: Extraction accuracy values of the three presented strategies to

extract wedge-shaped impressions from born-digital tracings.

values are very similar for the heuristic and optimizing extraction approach,

Figure 3.10 shows that for some very densely written cuneiform signs the

optimizing approach provides significantly more correct results. For complex

and dense signs the optimizing extraction thus performs significantly better.

3.6 Summary

In this section we introduced the concept of a feature descriptor, to mathe-

matically describe properties of an object, and the Hungarian algorithm, to

optimally solve an assignment problem. We then described the approach to

pattern matching wedges in an unstructured and unordered set of intersect-

ing strokes. Connected components of strokes are independently processed

for reasons of computational efficiency. Two approaches were presented in

this chapter. An implicit approach that models whole cuneiform words as

mathematical graphs which are extracted by means of a sweep-line. The other

approach models wedge-shaped impressions explicitly by means of a keypoint

feature descriptor with six keypoints, three for the triangular wedge-head and

three for the endpoints of the wedge-arms.

We established our common interchange format for semantically representing

wedge-shaped impressions and wedge constellations by introducing the key-

point feature descriptor which represents wedges by the three vertices of its

wedge-head and the three endpoints of its wedge-arms. These methods and

results have been published in our work on evaluating cuneiform and wedge

representations [BGM15b; BGM15a] and our work establishing common inter-

change format for semantically representing cuneiform tables from disparate

sources [BMM15; MB15; Mas+16].

Since cuneiform script is densely written, many wedges are intersecting and

creating false-positives. We solve this challenge with two different methods.

A greedy method applies a set of heuristics to prune false-positives and then
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greedily resolves conflicts by preferring bigger wedge-heads with obtuse wedge-

arms. Our second method uses a globally optimizing method, first transforming

the conflict set into an assignment problem with two score functions. Then

the Hungarian algorithm is used to find an optimal assignment from which

wedges are recovered. We present these results in our work on symbol spotting

in [BHM16].
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With the extraction of the basic geometrical structures and patterns from

tracings of cuneiform tablets, in the form of a graph of keypoints or as a set

of wedges, we now approach the challenge of comparing wedge constellations

for similarity. First, we define the notion of similarity functions and kernel

functions. These are used to measure an intuitive understanding of similarity

between objects. Based upon these definitions, we then introduce five sim-

ilarity functions with no a-priori assumption about the structure of wedge

constellations and three similarity functions that require wedges to be the

most basic component of wedge constellation.

4.1 Challenges and Objectives

In this chapter we define the properties of a suitable similarity function and

develop six similarity functions specifically for cuneiform and evaluate those

to three state-of-the-art similarity function for Latin script.

Motivation Computational analysis of handwritten signs requires a robust

definition of equality and inequality in the presence of noise. Any analysis

algorithms, e.g. clustering and pattern mining and learning algorithms

including Support Vector Machine (SVM) and visualizations including

t-stochastic neighborhood embedding (TSNE), make use of similarity

functions for the objects under study.

Challenges Different from Latin script, cuneiform script is arranged in two

dimensions, diminishing the accuracy of sequential models. Additionally,

the shapes and bounds of cuneiform signs are irregular and cannot be

contained in a fixed-size raster image feature descriptor as used for

Chinese signs.
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Objectives A similarity function for cuneiform script must capture its hori-

zontal and vertical complexity and be robust to two-dimensional pertur-

bations. Additionally, for cuneiform sign search in large datasets it has

to be computationally efficient.

Related Work We review work in historical word-spotting and approaches

for computing word image features. Similarity computations are based

on linear sequential models, e.g. Markov chains, and feature matching

with zones of interest.

Input We develop novel similarity functions based on the structures extracted

in Chapter 3. Additionally, we adapt state-of-the-art similarity functions

to our data for evaluation.

Output Our similarity functions measure the notion of semantic similarity

between two cuneiform sign. They are robust w.r.t. to noise and per-

turbations which preserve the meaning of the signs. They models the

expectations of similarity of experts in Assyriology.

Methods We employ methods from graph similarity computation such as

graph kernels and the spectral decomposition for our graph representation

from Chapter 3. For the explicitly modeled set of wedges, we develop

methods based on bag-of-properties approaches and Gaussian mixture

models.

Evaluation We create ground truth of similar signs by employing an expert to

tag a set of signs by their meaning in the Borger [Bor04] list of cuneiform

signs. Then, we evaluate our similarity functions and the state-of-the-art

functions on basis of a precision-recall graph. We also evaluate the

runtime performance of an assignment approach to show how brute-force

algorithms can outperform optimized algorithms for very small data

sizes.

Discussion We find that current state-of-the-art methods for retrieval of

handwritten Latin words do not model vertical complexity of cuneiform

signs sufficiently. We discuss the behavior of the similarity functions on

our data.

Publications Work in this chapter on implicit representation of cuneiform

signs has been published in [BGM15b] and work on explicit representation

has been published in [BGM15a].
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4.2 Background on Similarity

In this section we introduce mathematical concepts and terms used throughout

this chapter to characterize similarity measures and the computation thereof.

4.2.1 Feature Descriptors

In machine learning a feature describes a measurable, independent and discrim-

inative property of an object under study. A feature-vector combines many

such properties into a vector. Paired with a distance function supporting the

triangle inequality and a well-defined inner product, a Hilbert space is created.

These properties enable the use of machine learning algorithms, including

Gaussian Mixture Model (GMM), Hidden Markov Model (HMM), K-Nearest

Neighbors (KNN) classifiers, SVM classifiers, and k-Means clustering.

4.2.2 Distance Functions

Regardless of the representation of wedge constellations, we have to define a

distance function which accurately models the judgment of an expert as to

how similar two different wedge constellations are. A distance function (or

metric) is used to define a distance between two objects. For the purpose of

similarity comparisons, a distance function is chosen that models a perceptive

quality of the objects under study, e.g. the presence or absence of a feature or

the sum movements necessary to align two sets of points. An ideal distance

function satisfies the following conditions.

d(x, y) ≥ 0

d(x, y) = 0⇔ x = y

d(x, y) = d(y, x)

d(x, z) ≤ d(x, y) + d(y, z)

(4.1)

The distance functions and kernel functions presented in this chapter do not

satisfy these conditions in all cases. For our purposes of comparing wedge

constellations for retrieval and analysis, an approximate adherence to these
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conditions is sufficient. Instead of strict adherence to these conditions, a

usable distance function needs to be robust and discriminatory. Robustness

implies that small perturbations in the perceived similarity of two objects

should only result in a small change in distance between those objects. A

discriminatory distance function should assign a significantly higher distance

value to distinctively dissimilar objects. For an ordered set of points, the

keypoint feature description of wedges, the sum of squared Euclidean distances

satisfies these requirements.

d(x, y) =
∑
i

∥x⃗i − y⃗i∥2 (4.2)

The Euclidean distance is a special case of the p-Norm [BS61]. Other distance

functions include the cosine distance [TSK05].

4.2.3 Kernel functions

Instead of a distance function, for machine learning algorithms, including those

based on the SVM framework [CV95], a kernel is used to define the similarity

of two objects. The kernel computes the dot-product of two objects lifted into

a higher dimensional space, also known as the kernel trick [Sch+00], since no

mapping into the high-dimensional space is actually performed.

k(x, y) = ⟨ϕ(x), ϕ(y)⟩ (4.3)

The feature map ϕ does not need to be defined as long as the kernel k is an

inner product of two objects x and y. Schölkopf [Sch00] presents a method to

compute a distance function from a kernel formulation.

∥d(x, y)∥2 = k(x, x) + k(y, y)− 2k(x, y) (4.4)

Using this equivalence, we can convert the kernel functions, presented in

this chapter, into functions behaving like distance functions to compare the

similarity between two objects.
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4.2.4 Usage of Points and Keypoints as Feature Descriptors

In Chapter 3, Section 3.3.2 pp. 36 we introduced the concept of keypoints that

describes points of interest in wedge-shaped impressions, that is, intersection

points and endpoints of strokes. Further, we derived the keypoint feature

descriptor from this set of points to describe wedges with a fixed-size vector.

In this Chapter we will introduce the concept of a point-cloud, a set of two-

dimensional points without any specific semantic meaning. To summarize,

these three sets of points can differentiated as follows.

Keypoints Intersections between strokes and endpoints of strokes are extracted

as in Chapter 3, Section 3.4.2, pp. 44. From this set of keypoints a

graph of wedge constellations is constructed by a sweepline algorithm

to recover the topology induced by the strokes, i.e. to represent strokes

and their intersection using a graph.

Keypoint feature descriptors We assume that all strokes are describing wedge-

shaped impressions created by a rectangular stylus. Therefore, we extract

a fixed-size reduced set of points. These define the keypoint feature de-

scriptor and three intersection points for the wedge-head three endpoints

of adjacent strokes forming the wedge-arms. These six keypoints form a

12-dimensional vector.

Point-clouds By sampling the spline boundary of the initial set of strokes

equidistantly without regard to any meaning of the strokes, we arrive at

point-cloud, a set of points, that accurately and directly describes the

exact appearance of the strokes. We use this method as a baseline to

show the abstractive power and to make sure that no meaning is lost in

our high-level description methods.

Figure 4.1 illustrates the difference between the three points which are com-

puted using different means from the same set of strokes.
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(a) (b) (c)

Figure 4.1: The same set of strokes and three different sets of points computed

from it. a) Keypoints are computed by finding intersection points

between strokes and endpoints of strokes. b) Keypoint feature

descriptors are derived from the previous set. We take the three

intersection points of a wedge-head forming a triangle and three

endpoints of adjacent strokes forming the wedge-arms. The asso-

ciation of keypoints to a specific wedge is indicated by color. c)

A point-cloud is computed from a set of stokes by equidistantly

sampling the spline boundary of all strokes and deriving from it

a set of points. No additional information, i.e. the original stroke

they were derived from, is associated with these points beyond

their two-dimensional position.

4.3 Related Work in Feature Description for

Handwriting

The challenge of defining an accurate and computationally efficient distance

between signs of any script is the basis of word-spotting systems if combined

with word segmentation [RM07] or an efficient search strategy [LLE07].

In their work on historical word-spotting, Rath et al. [RM07] present an

approach to similarity computation using the projection profiles of words.

These are compared using Dynamic Time Warping (DTW) as shown in their

earlier work [RM03]. Word images are segmented from the document using a

scale space approach from the work of Manmatha et al. [MR05]. Four different

features of word images are extracted, the upper profile, the lower profile,

the count of background and ink transitions and the sum of foreground ink

pixels.

Another approach is the work by Kennard et al. [KBS11] where segmented

word images are aligned using a flexible grid. First, the authors perform a
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coarse alignment of the grid using DTW. Then, the word images are thinned by

the medial axis algorithm [Blu67]. The dissimilarity of the query word to the

candidate word is computed by distance transforming [Bor86] of both images

and summing the distance when the medial axis overlaps the query. Grid

alignment is performed in alternating steps of deforming and subdivision of the

grid. This saves computational resources and results only in an insignificant

loss of precision.

The vertical complexity present in the slices used for HMM training requires

features that are robust against noise and writing variations, but also retain

spatial relationships between the information present in the slice. Fischer et

al. [FRB10] choose to use graphs to model handwritten script and to slice those

graphs into windows for learning a HMM. To transform graphs into feature

vectors, a necessity for HMM, dissimilarity space embedding is used [RB10].

This technique uses a set of prototype vectors, against which a candidate

graph is compared. During training the authors manually select a prototype

graph for each letter in their Latin script. For graph comparison Fischer et

al. use the graph edit distance [BA83]. Another simplification is that the

graphs used for modeling slices have no edges. Computing the graph edit

distance between those graphs is reduced to the assignment problem that can

be efficiently solved using the Hungarian algorithm [Mun57].

Leydier et al. [LLE07] use gradient features to identify zones of interest in

historical document images. Their approach to word-spotting requires no

prior learning. The query word is decomposed into zones of interest that are

matched against zones of interest detected in the document. Three approaches

to matching are presented. The native approach aims to position all zones of

interest of the query using a single translation vector. This method suffers

from its rigidity with respect to the variability of human hand-writing. Their

elastic-naive method of matching aligns each pixel in the query independently,

but suffers from a lack of cohesion and high computational complexity. Finally,

a hybrid approach independently aligns zones of interest instead of individual

pixels.

4.4 Implicit Wedge Similarity

In this chapter we present methods for computing the similarity of wedge

constellations in implicit representation as introduced in Chapter 3, Section 3.3,
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pp. 34. This assumption of modeling wedge constellations does not assume

any underlaying structure and simply models a set of strokes. The set of

strokes can be arbitrarily arranged, not necessarily representing wedge-shaped

impressions, and still be compared and analyzed by the presented methods.

4.4.1 Projection Profile

A standard approach for word-spotting in historical handwriting is the projec-

tion profile introduced by Rath et al. [RM07]. It makes use of word profile

feature descriptors by Chen et al. [Che95] which exploit the fact that written

Latin script expresses its salient information in writing direction. Thus, if

we collapse the columns of a word raster image by means of a summarizing

function and express a word image as a linear signal, we do not lose differ-

entiating information and remove noise. Further, comparing linear signals

for similarity is computationally more tractable than images, e.g. using the

DTW algorithm to align two signals has only quadratic runtime complexity.

Figure 4.2 illustrates a rasterized cuneiform sign from a set of strokes and its

projection and transition profiles.

Let I denote a raster image with pixel intensities Iij ∈ [0, 1]. We assume that

word images are binary where 1 is the foreground color and 0 is the background

color. Then, each of these feature descriptors operate on columns of this image

yielding a summarizing value p(I)i ∈ R. We compute four different word

profile feature descriptors presented in [Che95] by Chen et al., which we denote

as pproj, ptrans, ptop and pbot. The projection profile is a sum of foreground

pixels.

pproj(I)i =
∑
j

Iij (4.5)

The transition profile counts the amount of transitions between foreground

and background pixels in each column.

ptrans(I)i =
∑
j

∥Iij+1 − Iij∥ (4.6)
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Figure 4.2: Three rasterized cuneiform signs with their projection profile, tran-

sition profile and top profile shown.
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The top word profile and the bottom word profile counts the background

pixels until reaching the first foreground pixel from the top or the bottom,

respectively. It is an outline of the word as if looked upon from top or from

below.

ptop(I)i = min{j | Iij = 1} (4.7)

pbot(I)i = max{j | Iij = 1} (4.8)

From such a word image we derive a feature describing signal x by applying a

profile feature descriptor for each column in turn. Applying more than one

profile feature descriptor yields a multivariate signal where each element is a

vector of the results of the applied profile feature descriptors.

x =

⎡⎢⎣
⎛⎜⎝ pproj(I)1
ptrans(I)1

...

⎞⎟⎠ ,

⎛⎜⎝ pproj(I)2
ptrans(I)2

...

⎞⎟⎠ , · · · ,

⎛⎜⎝ pproj(I)i
ptrans(I)i

...

⎞⎟⎠
⎤⎥⎦ (4.9)

Two raster word images do not necessarily have the same width. The signal

feature descriptors computed from these images are therefore of differing

lengths. Signals of different lengths cannot be directly compared, e.g. by

element-wise Euclidean distances. For this, we first align the signals from the

two word raster images being compared so that their difference is minimized.

The DTW algorithm aligns two sequences so that the sum of element-wise

distances is minimized.

Dynamic Time Warping The DTW algorithm by Sakoe et al. [SC78] has

seen first application in speech recognition where a signal of utterances has been

aligned to a transcription. The algorithm uses a dynamic programming [Bel57]

approach to find an alignment of two signals that minimizes their distance.

Through the use of word profiles we model word images in documents as

signals. Word similarity and word recognition is then transformed into a signal

alignment challenge. Then, DTW is a similarity metric for word images.

For two discrete signals x, y ⊂ R we define a distance function d(xi, yj) : R→ R
with d = ∥xi− yj∥ to measure the similarity between two points in the signals.
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The alignment and cumulative distance D(x, y) between these signals can then

be recursively defined as follows.

D(1, 1) = d(x1, y1)

D(i, 1) = D(i− 1, 1) + d(xi, y1)

D(1, j) = D(1, j − 1) + d(x1, yj)

D(i, j) = min

⎧⎨⎩
D(i, j − 1)

D(i− 1, j)

D(i− 1, j − 1)

⎫⎬⎭+ d(xi, yi)

(4.10)

The cumulative distance D is a path of minimal cost in the similarity matrix

of the signals being compared. Figure 4.3 shows two signals and the similarity

matrix between those. The DTW distance function is efficiently computable

with a O(n2) runtime complexity where n is the sum of lengths of the signals.

Then, a distance function for two rasterized wedge constellations I1 and I2 are

defined as follows.

dDTW(I1, I2) = D(pproj, trans, top, bot(I1), pproj, trans, top, bot(I2)) (4.11)

To compare wedge constellations we rasterize the set of strokes representing

each constellation into a raster image. We make use of the multivariate

formulation of signal feature descriptor and compute all for profile feature

descriptors for each column of each word raster image. This makes sure that

all relevant vertical features are captured.

4.4.2 Graph of Keypoints

On basis of our implicit representation of wedge constellations we introduce

three methods for comparing topological undirected graphs. We assume that

changes in the graph connectivity indicate changes of meaning to the wedge

constellation being described. Graph comparison can be achieved by methods,

including the Weisfeiler-Lehman Graph Kernel framework [WL68; She+11],

random-walk graph kernels [Vis+10], and the spectral decomposition [Chu97].

These methods exploit various properties of these graphs to approximate

graph equality tests. Exact graph equality or similarity by means of the graph
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Figure 4.3: DTW matrix with exemplary projection profile of the previously

shown cuneiform signs. Light color values denote high similarity in

the respective areas and dark colors denote dissimilarity between

the two signs.

edit distance [SF83; Gao+10] has combinatorial runtime complexity [GJ79].

The presented methods, however, require polynomial time to approximate

similarity.

Weisfeiler-Lehman Graph Kernel Weisfeiler and Lehman [WL68] intro-

duced a reduction of graphs to a canonical representation. Then, Shervashidze

et al. expanded this approach to the concept of graph kernels [She+11]. The

Weisfeiler-Lehman graph kernel framework provides us with a feature descrip-

tors and a positive semi-definite kernel function.

The computation of graph kernels proceeds iteratively. Each vertex of a graph

is assigned a, not necessarily unique, label. On every iteration of the algorithm

each vertex label is expanded with labels of adjacent vertices. Those adjacent

vertex labels have been, in turn, extended in an earlier iteration by their

adjacent vertex labels. Thus, the label of each vertex is an enumeration of a

subtree rooted at that vertex. Algorithm 6 gives a detailed procedure for the

computation of the kernel and Figure 4.4 illustrates the procedure.
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(a) (b)

(c) (d)

Figure 4.4: a, b) First iteration and b, c) second iteration of the Weisfeiler

Lehman Kernel computation. a, c) Adjacent labels are first col-

lected and then, b, d) vertices are relabeled. The arrows show the

directions in which labels flow.

Let n = |V | denote the count vertices and m = |E| the count of edges in

a graph. Finding adjacent vertices has a runtime complexity of O(n), each

vertex is checked for adjacency. This operation is performed for each vertex in

the graph, k-times for the k re-labeling iterations. The runtime complexity of

Algorithm 6 is O(k ∗ n ∗ n) = O(k ∗ n2).

The subtree kernel is a direct application of the re-labeling iterations of the

Weisfeiler Lehmann Graph Kernel Framework. In each iteration the re-labeling

operation computes new labels. The subtree kernel compares the generated

sets of two graphs and counts identical labels. This process is repeated for each

iteration up to some iteration limit k and the counts are summed. Since the

labels represent unique subtrees, the subtree kernel effectively counts identical

subtrees between two graphs up to an depth of k. The kernel requires an

a-priori labeling of the vertices. We label each vertex with a unique label.

Let L be the set of iteratively computed labels L0 · · ·Lk in k iterations. Then,

the i-th component of the feature vector f of a graph is the count of times
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Algorithm 6 Compute Weisfeiler-Lehman subtree labeling.

procedure labels(V, E, L, k)

▷ First iteration of labels is the initial

▷ labeling of vertices.

L0 ← L

▷ Expand labels k times

for i ∈ {1 · · · k} do

▷ For each vertex find adjacent vertices.

for v ∈ V do

for w ∈ adjacentE(v) do

▷ And expand the label of the current

▷ vertex with their labels from the

▷ last iteration.

li,v ← li,v ∪ li−1,w

end for

▷ Save hashes of labels for each iteration

▷ instead, otherwise they get exponentially

▷ long.

li,v ← hash(li,v)

end for

end for

▷ Return descriptor of graph as a set of labels

▷ generated from it. A similar graph will share

▷ many labels with this set. Graph comparison is

▷ then reduced to set comparison.

return {L0 · · ·Lk}
end procedure
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label li is present in the label set throughout the re-labeling iterations. That

is, the count of times the subtree denoted by label li has been seen.

L =
⋃
{L0 · · ·Lk}

{l0, l1, l2, · · · li, lj, · · · } ∈ L

fi = |{l ∈ L | l = li}|
f = (|l0|, |l1|, |l2|, · · ·  

∈L0

|li|, |lj|, · · ·  
∈L1···k

)

(4.12)

By fixing the iteration depth for two graphs G and G′, we obtain equal length

feature vectors that can be compared using the dot product.

kSubtree(G,G′) = ⟨fG, fG′⟩ (4.13)

The dot product in the kernel counts matching subtrees between two graphs

as the vectors fG and fG′ are binary vectors denoting the presence or absence

of a subtree.

Random Walk Graph Kernel The fundamental idea of this kernel is count

shared walks, sequences of incident vertices starting and ending with the same

vertex, between two graphs to compute their similarity. These walks are

generated randomly on either of these graphs and both are checked for their

presence. The similarity comparison becomes more accurate with increasing

count of checked random walks. Figure 4.5 illustrates this principle on wedge

constellations.

In their work [Vis+10] Vishwanathan et. al present an efficient means of

computing the random walk graph kernel. They exploit a property of the

direct graph product of two graphs. A random walk on the direct graph

product of two graphs G× = G⊗G′ is present in both of the original graphs.

The direct graph product of two graphs can be computed by the Kronecker

product of their adjacency matrices AG× = AG⊗AG′. Further, they make use

of the property that the k-th power of an adjacency matrix Ak
G×

computes the

count of walks of length k from vertex i to j in the matrix element Aij.
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Figure 4.5: Two cuneiform signs represented as graphs. In each one an exem-

plary random walk has been illustrated by the red stippled path.

The small graphs aside denote three random walks exemplary ex-

tracted from the respective sign. Two of those are topologically

identical while the third ones are not. We consider graphs sharing

a high count of topologically equal random walks to be similar.

Therefore, instead of naively generating random walks and checking their

presence in both graphs, we make use of the properties of the adjacency

matrices of undirected topological graphs, the kind which we use to represent

wedge constellations. We iteratively compute the count of all shared walks

up to a length of k. This approximation of the random walk graph kernel

completely removes the component of randomness. We still call this approach

the random walk graph kernel since we only approximate a random process by

means of a deterministic method. Contrary to the naive random walk graph

kernel, the approximation has a deterministic computational complexity. The

Kronecker product of two matrices Am×m and Bn×n, representing two graphs

with respectively m and n vertices, is O(mn+mn) = O(mn) resulting in a

matrix with (m+ n)× (m+ n) elements. Naive matrix multiplication has the

complexity of O(p3) of two matrices with p× p elements. We compute lengths

up to k by repetitive matrix multiplication. Therefore, the complexity of the

random walk graph kernel of two cuneiform signs represented by two graphs

with m and n vertices is O(mn+ k(m+ n)3) = O(km3 + kn3).

In our approach, we additionally scale those count by the path length k to

weight longer paths more. Those are important for the graphs computed from

cuneiform signs as short paths encode only wedges which are present in all

signs. The approximation to the random walk graph kernel is computed as

follows.
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kRandomwalk(G,G′) =
∑
k

(AG ⊗ AG′)k ∗ k (4.14)

Contrary to the Weisfeiler Lehmann Graph Kernels, the Random Walk does

not requires an a-priori labeling of graph nodes. We limit the count of iterations

when computing random walks. More than 10 iterations did not improve the

similarity metric.

Spectral Graph Kernel Here we introduce our third method for computing

the similarity between graphs. Similar to the random walk graph kernel, it

makes use of mathematical properties of the adjacency matrices of its graphs.

The spectral decomposition into sequences of eigenvalues and eigenvectors of a

graph has a variety of applications in the field of graph analysis [Chu97]. We

make use of the property that the two similar graphs have similar sequences

of eigenvectors and eigenvalues. Further, a small modification of the topology

of a graph results in only a small change in its sequences of eigenvectors and

eigenvalues. This property makes it well suited for a distance function.

We compute the spectral decomposition from the normalized Laplacian matrix

L with components luv from the adjacency matrix A of a graph G with vertices

u, v and vertex degrees du, dv. L has the eigenvectors ϕi and the sequence of

eigenvalues λi.

L =[luv]

luv =

⎧⎪⎪⎨⎪⎪⎩
1, if u = v and du ̸= 0

− 1√
dudv

, if u ̸= v and auv = 1

0, otherwise

(4.15)

ϕT
i Lϕi =λi

λ1 ≤ · · · ≤ λi ≤ · · · ≤ λn

(4.16)

For a real symmetric matrix such as the adjacency matrix of our graphs, the

Jacobi method [GV00] computes the set of eigenvalues in O(n3) time where

n denotes the count of vertices in the graph. We illustrate the results of
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(a) (b)

(c) (d)

Figure 4.6: The first four eigenvectors of a graph representing a wedge constel-

lation. Eigenvector components have visualized at their respective

vertices. Line length visualizes component magnitude. Red lines

visualize positive values and blue lines visualize negative values.

this computation here by mapping the eigenvector to the graph it has been

computed from. The cardinality of the eigenvector matches the count of

vertices. We attach each component of the eigenvector to its respective vertex

in the graph and visualize its value in Figure 4.6.

The sequence of eigenvalues has the property that eigenvalues occurring at

the beginning describe the topology globally, i.e. only significant changes in

topology change their value, while eigenvalues at the end describe the topology

locally, i.e. small changes in topology incur great changes in value. This allows

us to compare graphs directly by their sequences of eigenvalues. The length of

the sequence of eigenvalues is determined by the count of vertices in a graph.

To ensure the sequences have the same length for comparison of two graphs,

we shorten the longer sequence by dropping its values at end of its sequence.
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As those only describe small and local modifications in topology we do so

without loss of precision.

Typically, graphs are compared by embedding them into a feature space

by their sequence of eigenvalues and measuring distances with the p-norm.

However, we found that using the cosine distance [Sid+14], to measure the angle

between the eigenvalues of both decomposed graphs, yields better classification

performance. The similarity of two graphs G and G′ can therefore be computed

by measuring the angle between the feature vectors λ and λ′, which are the

sequences of eigenvalues of the respective graphs.

kSpectral =
⟨λ, λ′⟩
∥λ∥∥λ′∥

(4.17)

Each of these three presented graph kernels compute distances purely based

on the topology of the graphs. If the only difference between two wedge

constellations represented by graphs are moved vertices, the presented methods

are not able to detect such changes.

Delaunay triangulation To maintain the expressiveness of graph based rep-

resentation while adding constraints to the movement of vertices, we perform

a Delaunay triangulation [Del34]. We remove all edges from the graph and

re-compute the topology by triangulating the vertices made of keypoints.

Figure 4.7 illustrates a graph representing a wedge constellation and its trian-

gulated counter-part. Then, the presented graph kernels are applied as-is for

comparing wedge constellations. The process of comparison is then performed

as follows.

1. Keypoints and edges are extracted from the initial set of stroke of the

born-digital tracing of a cuneiform tablet.

2. When comparing two graphs of wedge constellations, edges are removed

and re-computed by triangulation of the vertices.

3. One of the presented graph kernels is used on the triangulated vertices

to compute a distance.

The triangulation of a set of n keypoints has a computational complexity

of O(n log n) [Ber+08]. We evaluate all of the presented graph kernels with
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(a) (b)

(c) (d)

Figure 4.7: a) The keypoints of a set of strokes representing a wedge constel-

lation, b) and c) the reconstructed graph and d) the Delaunay

triangulation of the keypoints. The triangulation is shown in gray

with the original recovered graph overlaid in red.

added triangulation to find the best performing combinations. The results are

presented in Section 4.6, pp. 95 of this chapter.

4.4.3 Point Clouds from Splines

The presented graph representations model only the topology of graphs repre-

senting wedge constellations. Even the topology of the Delaunay triangulation

does not change for small differences in keypoint position. For wedge con-

stellations that are visually similar but carry different meaning, these small

difference in position have to be modeled.

We differentiate three different sets of points in this work. Section 4.2.4, pp. 63

gives an overview. Here we extract points from the boundaries of strokes

resulting in a point-cloud describing wedge constellations. While keypoints

have a well-defined meaning for wedge constellations, points extracted from

stroke boundaries are purely visual and are compared without any preference

given to specific subsets. This approach discriminates between small changes
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Figure 4.8: Two wedge constellations overlaid on top of their geometrical

centers. Blue markers of the first point cloud are matched to

the red markers of the second point cloud. The original strokes

of the wedge constellations are shown but have no influence on

the similarity computation. The Iterated Closest Points (ICP)

algorithm performs this computation iteratively and adjusts each

time the transformation to minimize distances.

in appearance and is unbiased by any definition of keypoints. Because of its

simplicity and applicability to any set of stokes, this approach is a baseline in

our evaluation that all other methods are compared to. Figure 4.8 visualizes

the point-clouds extracted from two wedge constellations in two different poses

and their closest points.

Let S be set of strokes of a wedge constellation and s a stroke in this set.

Then, X is the point-cloud extracted from the boundaries of the strokes and

x a two-dimensional point in the point-cloud.

X =
⋃
s∈S

∂s (4.18)

We introduce two methods to compare the resulting point-clouds. One com-

putes the distances of the point-clouds as-is, and is in principle comparable to

template matching of raster images, the other computes an affine transforma-

tion to optimize the matching.
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Direct Distance If the two point-clouds being compared for similarity are

in roughly the same pose, same rotation and same scaling, we can directly

compute the distance between corresponding points. This is a reasonable

assumption for modern cuneiform script, since line height and cuneiform sign

size shows little variability across a single cuneiform tablet. For two point-

clouds computed from two wedge constellations being compared, let X and X ′

denote their sets of points. We compute their distance by first centering the

point-sets by aligning their centers of mass and then computing the minimal

distances between points.

X̃ = mean(X)

X̃ ′ = mean(X ′)

dDirect(X,X ′) =
∑
x∈X̃

min
x′∈X̃ ′

∥x− x′∥2
(4.19)

Besl et al. [BM92] showed that computing the minimal distance between points

approximates the distance computation corresponding points. We assume

that for most points, the nearest point from the second point-cloud is also its

corresponding point, in our case, a point on the boundary of the same stroke

carrying the same meaning. Since the distance of every pair of points has to

be computed, this approach has a computational complexity of O(n2) where

n is the count of points.

Iterated Closest Points If the poses of the two point-clouds are not close,

Besl et al. [BM92] presented the ICP method that iteratively converges on a

transformation that positions point-clouds to minimize the squared distances

of their corresponding points. In each iteration the currently closest points

are matched and an error function between those is minimized [Hor87].

While an optimal solution is not guaranteed, it is possible the algorithm

becomes stuck in a local optimum, the closer the initial poses are, the more

likely a globally optimal solution is. Additionally, we restrict the transformation

to translation, rotation and limited scaling, as shearing and scaling are not

transformations which preserve meaning for cuneiform signs. Significantly

smaller or bigger wedge-shaped impression carry different meaning, sheared

wedges are not possible because of the constraints of impressing a rectangular

stylus. RANSAC [FB80] is an another method for finding an alignment

between two point-clouds that provides better stability than ICP. We choose
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not to use RANSAC since the initial poses of two wedge constellations being

compared are very close, i.e. rotation more than a few degrees implies a

different cuneiform sign, and we perform only 10 iterations of ICP to correct

slant present handwritten script.

The ICP algorithm (and its optimized variant FastICP by Jost et al. [JH02])

approximates an affine transformation matrix T of a point cloud X that

minimizes the distance dICP to another point cloud X ′.

dICP(X,X ′) = arg min
T

dP (XT,X ′) (4.20)

Similar to the direct distance computation, the ICP algorithm computes all

distance pairs and iterates up to k times. Its runtime complexity is therefore

O(kn2) with n points and a fixed count of iterations k. The three presented

approaches of representing and comparing wedge constellations made no

assumption about the structure. Rasterization of graphs and point-clouds

does not require any specific arrangement of strokes to function. However, we

know a-priori that wedge-shaped impressions are traced to look like triangles

due to the usage of a rectangular stylus. Cutting an edge of a cube results in

a triangular face. In the following section, we make use of this assumption

and compare wedge constellations directly by their feature representation

introduced in Chapter 3, Section 3.4, on pp. 43.

4.5 Structured Similarity

We extend the previously introduced unstructured approach to wedge con-

stellation similarity by introducing hierarchical structure. The topology of

keypoints in wedges-shaped impressions is directly modeled by six keypoints,

three for the wedge-head and three for the endpoints of the wedge-arms. The

wedge-head forms a triangle and the wedge-arms are vertices connected by an

edge to the closest vertices of the wedge-head. The set of wedges is modeled as

a set of wedge-head centers, no connectivity to neighboring wedges is preserved.

Figure 4.9 illustrates the modeling hierarchy of keypoints describing wedges

and wedges describing cuneiform signs.

We compare wedge constellations by first aligning wedges and summing the

geometric distance of their centers, and then by computing the feature distances
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(a) (b)

(c) (d)

Figure 4.9: a) A wedge constellation as a set of strokes. b) Keypoint vectors

from the center of the wedge-head. Vectors in red point toward

wedge-head corners. Vectors in black point toward wedge-arm

corners. c) The bounding box around all wedge-head centers. Black

vectors from the center of the wedge constellation point toward

wedge centers. d) The two stage hierarchical model. Vectors from

the center of the wedge constellation to wedge centers with one of

the wedges exemplary shown as vectors only.
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between individual wedges. The two wedge constellations are first embedded

into the same coordinate system. The centers of their bounding boxes, spanning

the wedge-head vertices only, are overlaid on top of each other. Then the

similarity of the wedges themselves is computed individually. While the

distances of the coarse alignment of wedges is always computed using the

Euclidean distance, the feature distance between individual wedges is generic.

In the following we present three methods for comparing wedges by defining

distance functions.

We assume no specific order in which wedges in a wedge constellation are

written or read. It is therefore necessary to find an assignment of wedges

between the two wedge constellations being compared. We do not assign wedges

to their closest corresponding wedges, as used in the ICP method, as this may

result in two wedges being assigned to one. As wedges are objects carrying

complex meaning and the count of wedges in a wedge constellation is small (less

than 30), we require each wedge to have at most one other corresponding wedge.

That is, we require the assignment function to produce an injective mapping

from one wedge constellation to another wedge constellation being compared.

We introduce two methods for computing injective assignment functions. The

first naive function assigns wedges by their order on the horizontal axis. While

computationally very efficient, quasilinear due to sorting, it performs poorly in

the presence of wedges stacked on the vertical axis. We solve this challenge in

our second approach by solving an linear assignment problem that minimizes

the cumulative offset induced by the assignment.

Assignment by horizontal order In our first approach we make use of the

fact that cuneiform signs are slightly wider than tall. The difference in width

and height is nonetheless much less pronounced than in Latin script. We order

wedges by their position on the x-axis from left to right. The position of a

wedge is the geometric center of the triangle representing the wedge. The

edges of the arms do not influence the ordering of the wedges. Wedges of

wedge constellations being compared are then compared individually by order-

ing. While computationally efficient, this approach fails at ordering wedges

consistently between wedge constellations where wedges are vertically in line

as shown in Figure 4.10. The illustration of ordered assignment in Figure 4.10

shows a wrong assignment of wedges between two wedge constellations that

results in unnecessarily high assignment distances. The optimized assignment

in Figure 4.10 is the expected assignment that minimizes distances between

assigned wedges. The following method achieves the expected assignment.

83



4 Wedge Similarity

Figure 4.10: Comparison of two different assignment approaches for computing

the similarity distance of wedge constellations. First, ordered as-

signment, wedges are ordered by the position of their wedge-heads

on the x-axis. Colored dots show the centers of the wedge-heads

and the numbers denote their order on the x-axis. Incorrect assign-

ments are denoted by red arrows. Second, optimizing assignment,

wedges are assigned by minimizing distances of wedge pairs. The

wedge-heads have no inherent ordering, minimal distances are

shown with orange bars.
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Assignment by optimal order In our second approach we formulate the

challenge of matching wedges as an assignment problem with an assignment

cost to be minimized. We compute all possible wedge assignments and choose

the assignment that minimizes the distances. The advantage of this approach

is that it allows wedges that are not in the same left-to-right order to still

be assigned to each other, on the condition, however, that the difference in

position and shape is minimal.

In theory, the Hungarian [Mun57] algorithm has better runtime complexity

than a brute-force approach, i.e. polynomial complexity versus combinatorial

complexity. In practice however, for small problem sizes of less than 6 wedges,

constant costs like initialization of data-structures and function call costs,

dominate the execution time. For comparisons where one wedge constellation

has less than 6 wedges, we brute-force all possible permutations and compute

assignment costs for all possible assignments. For comparisons with 6 wedges

or more we use the Hungarian algorithm.

We evaluate the performance of our hybrid approach on a test dataset of

increasing assignment matrix size. The matrix size is dependent on the wedge

counts n,m of the two signs being compared Dn×m. Figure 4.11 shows the

runtime performance of both approaches with respect to the matrix size. We

see that only for wedge counts greater than D6×6 the optimizing approach is

faster, before that, the constant costs dominate its runtime. Since most wedges

have less than 6 wedges, Figure 4.12 shows a histogram of wedge counts of

manually segmented sign in our dataset, this optimization reduces the overall

runtime of our pipeline.

The distance between two wedge constellations is computed as shown in

Algorithm 7. We use the notation [C] to denote all permutations of wedges in

a wedge constellation C. For a set of all possible permutations P we denote

a specific permutation p ∈ P with [C](p), e.g. [{1, 2, 3}](1) = {3, 1, 2}. If the
count of wedges between two wedge constellations is unequal, for each missing

wedge we add a penalty equal to highest assignment cost. Otherwise very

small and zero length wedge constellation would always be very similar to any

other wedge constellation.

For an asymptotic complexity analysis of Algorithm 7 the brute-force com-

putation is effectively constant, it is only used for wedge counts n = |C| and
m = |C ′| less then n < 6 or m < 6. Solving an assignment problem with

n+m elements has a runtime complexity of O(n3+m3). Penalty computation

depends on the difference of wedge counts |n−m| thus at most max{n,m} and
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Figure 4.11: Runtime in seconds versus data size of two assignment approaches.

A brute-force approach and linear optimization approach are

compared. For very small dataset sizes the constant runtime

costs dominate the performance of the linear optimization.

Figure 4.12: A histogram of wedge count sizes of our manually segmented

dataset. Most cuneiform signs in our dataset have only few

wedges.
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the size of the distance matrix n ∗m. The algorithm has a runtime complexity

of O(n3 +m3 +max{n,m} ∗ n ∗m) = O(n3 +m3).

Algorithm 7 Compute the distance between two wedge constellations given

a wedge distance function.

procedure distance(d, C, C ′)

▷ Compute distance matrix between each pair

▷ of wedges given a distance function d.

D ← {d(c, c′) | c ∈ C ∧ c′ ∈ C ′}

▷ Choose either optimal or brute-force

▷ approach depending on count of wedges.

if |C| > 5 ∧ |C ′| > 5 then

a←
∑

solve assignment(D)

else

▷ Iterate through all possible assignments

▷ of wedges between wedge constellations

▷ and choose assignment with lowest distance.

a← minp∈P
∑

D[C](p),C′

end if

▷ Add a penalty equal to the highest assignment

▷ distance of the current distance matrix times

▷ missing wedges.

a← a+ ||C| − |C ′||maxD

▷ Return cumulative distance and penalty of this

▷ assignment. This is the distance between these

▷ two wedge constellations.

return a

end procedure

4.5.1 Wedge Distance by Keypoints

Our first structured approach to wedge similarity is based on the keypoints

model derived in Chapter 3, Section 3.4.1, pp. 43. These keypoints are

extracted from intersection points and endpoints of strokes and collected by

pattern-matching in fixed-size feature vector.

87
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For the keypoint model of wedge similarity we directly measure the Euclidean

distance between the keypoints of two wedges. Each wedge is represented

by a high-dimensional feature-vector. It consists of three intersection points

forming the vertices of the wedge-head triangle and the three endpoints of the

wedge-arms. Similar to the ordering challenge of wedges when comparing two

wedge constellations, we require a unique assignment of keypoints between

two wedges to minimize their distance. Since keypoints from wedge-heads

and keypoints from wedge-arms carry different meaning, c.f the Winkelhaken

described in Chapter 2, Section 2.1, pp. 19, we compare these individually.

The relevant keypoints are shown illustratively in Figure 4.13.

Solving an optimal assignment problem using the Hungarian algorithm for

each wedge has only polynomial complexity but is due practical considerations,

e.g. setup costs and function call costs, not feasible. Nevertheless, we observe

that in any comparison of wedges there are always three keypoints being

compared to other three keypoints. The count of necessary comparisons for

an optimal assignment is always six. Therefore, we brute-force the assignment

possibilities and chose the optimal. Even though this approach is exponential

in theoretical runtime complexity for an arbitrary count of keypoints, for our

use-case, the real-world performance is significantly better than an optimal

algorithm and the theoretical complexity with fixed input size is constant,

i.e. O(1).

Let fK , f ′K ∈ R12 be the wedge feature descriptors of two wedges and let

(h, a) = fK and (h′, a′) = fK denote the wedge-head and wedge-arms parts.

We use h{1,2,3} to denote the set of vertices of the triangular wedge-head and

a{1,2,3} the vertices of the endpoints of the wedge-arms. The notation [(1, 2, 3)]

denotes all permutation of the tuple (1, 2, 3):

[(1, 2, 3)] = {(1, 2, 3), (3, 1, 2), (3, 2, 1), · · · } (4.21)

We use an index p to inspect a specific permutation [(1, 2, 3)](1) = (3, 1, 2) and

an index i to inspect a specific element of that permutation [(1, 2, 3)](1)0 = 3.

We combine this notation to iterate all orderings of wedge-head vertices h[(1,2,3)]

all orderings of endpoints in wedge-arms a[(1,2,3)].
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Figure 4.13: Two cuneiform wedges in Keypoint Model representation. Con-

nection between the wedge-head vertices and the endpoints of the

wedge-arms are shown as gray lines. The keypoints are shown as

red markers.

dK({h, a}, {h, a}) = min
k

∑
i∈{1,2,3}

∥h[(1,2,3)](k)i − hi∥

+min
k

∑
i∈{1,2,3}

∥a[(1,2,3)](k)i − ai∥
(4.22)

We compare all orderings of vertices of a wedge to the vertices of another wedge

and choose the ordering which results in the smallest distances, effectively

brute-forcing an optimal assignment. With this method we are independent

of the ordering of vertices in feature descriptor of a wedge. And with the

optimal assignment of wedge constellations shown in the previous section,

we are also independent of the ordering of wedges in wedge constellations.

The comparison thus proceeds in a structured fashion. 1) Wedges between

two wedge constellations being compared are assigned to minimize distance

between centers, 2) vertices of the wedge-heads are assigned to minimize

distance, 3) vertices of the wedge-arms are assigned to minimize distance.

This comparison scheme ensures that the results are stable and semantically

meaningful measures of similarity.

4.5.2 Bag-of-properties Model

Here, we introduce a feature description of wedges that models the presence or

absence of specific properties of a wedge. While the previous structured and
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Figure 4.14: Original wedges as sets of strokes and properties set for bag-of-

properties model. Dark shades with red dots denote properties

set the wedge-head strokes. Lighter shades with red dots denote

properties set by each of the wedge-arm strokes. If wedge-head

and wedge-arm strokes match the same property, it is set only

once.

unstructured representations directly and accurately described the geometric

shape of a wedge-shaped impression, the exact angle and length of a wedge

is not necessary to decipher its meaning. We simplify the range of possible

property expressions (angles and lengths) by discretization. We discretize

lengths into three ranges (short, medium, long) and angles into 8 directions.

Then, the presence or absence of a property, e.g. a long wedge-arm down-left,

is marked with a bit in a feature-vector. The advantage of this representation

is that the ordering of properties is fixed for all wedges and no additional step

aligning, as shown in the previous section, is necessary. Figure 4.14 illustrates

the bits in the property vector that are set for a wedge-shaped impression.

Let t̂P be a property vector and t̂Pk the k-th component of that vector. We

compare vectors of the keypoint feature descriptor to the property vectors to

determine which features a wedge-shaped impression posses. The respective bit

for the aforementioned property is then set in the property feature descriptor.

The properties are enumerated by the set of angles {α = 45◦n | 0 ≤ n <

8∧n ∈ N} and by empirically set property vector lengths {l ∈ 1, 5, 10}. Using
this discretization our property feature descriptors are 24-dimensional.

t̂P1···24 =

{(
sinα

cosα

)
l

}
(4.23)
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Then, fP is a binary vector defined as follows. Let W and W ′ denote the sets

of paths representing two wedges. We base this feature representation on the

keypoint feature descriptor. That is, we compare each of the six vectors in the

keypoint feature to the property vectors t̂P and choose the template vector t̂P

that is closest to the respective vector. Let v ∈ fK be keypoint vector from

the center of the wedge-head in the keypoint feature descriptor of a wedge

W .

fP
k =

{
1 if k ∈ {argmaxi ∥t̂Pi − v∥ | v ∈ fK},
0 otherwise

fP =

⎛⎜⎜⎜⎝
fP
1

fP
2
...

fP
2 4

⎞⎟⎟⎟⎠
(4.24)

Given a binary feature descriptor of properties, we define a distance function

between two wedges W and W ′.

dP (W,W ′) = ∥fP − f ′P∥ (4.25)

The resulting binary feature vectors are compared using the Euclidean distance.

Testing with the cosine distance yielded worse results. The properties of this

model have been empirically constructed by discretization of the space of

possible expressions of wedge-heads and wedge-arms. The actual space of

possible wedge expression is smaller, in the following section we infer typical

wedge shapes and arrive at a significantly shorter, 5 dimensional instead of 24

dimensional, feature vector representation.

4.5.3 Gaussian Mixture Model

Cuneiform is written using a limited set of prototypical wedges. Experts

actually only recognize three different types [Bor04]. We imagine written

wedges as imperfect manifestations of these known types. To account for

the natural variance of human handwriting and the damage of the cuneiform
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tablets, we model the keypoints of wedge constellation with a mixture of

high-dimensional Gaussian distributions.

If we want to model the imperfect manifestations of some value and assume

that it follows a Gaussian distribution, we denote this as a random variable X̃

following the Gaussian distribution X̃ ∼ N (µ, σ2) with mean µ and variance σ2.

We can fit the parameters µ, σ2 by means of maximum likelihood estimation

by computing the mean and the standard deviation of a dataset X. To align

our notation with literature in probability theory, we denote a dataset as X

with samples x ∈ X. A single Gaussian distribution can be used to model

a unimodal variable. If the underlaying process is inherently multi-modal,

a mixture of many Gaussian distributions is used for modeling. In that

case, we assume that a dataset is best approximated by a sum of multiple

Gaussian distributions with the means µi, variances σ
2
i and additionally the

weights for each Gaussian θi. This modeling approach is then extended by

modeling high-dimensional multi-model features. We imagine these visually as

ellipses encircling dense clusters of datapoints in feature-space as illustrated

by Figure 4.15.

Let µi be randomly initialized prior means and σ2
i prior variances of the

mixture component i of k Gaussian mixtures. We denote the parameters θ as

follows.

θi=1...k = (µi=1...k, σ
2
i=1...k) (4.26)

We use covariance matrices Σi for each component in a multi-variate setting

to model dependencies between the dimensions of the samples. Then, the

posterior distribution p(θ | x), given the feature vectorsX ⊂ Rn and covariance

matrices Σi, is formulated as follows.

p(θ | X) =
k∑

i=1

N (µi,Σi) (4.27)

While a single distribution can be estimated by computing the mean and

standard deviation, for multi-model many-dimensional data we have to employ

an iterative approach of estimation. The posterior distribution is estimated

using the Expectation Maximization (EM) method, introduced by Dempster

et al. [DLR77]. The EM algorithm finds a Maximum Likelihood Estimation
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Figure 4.15: Gray lines denotes keypoint model from which distributions are

derived. A mixture of Gaussian distributions (illustrated as

orange and purple contour lines) is estimated for all keypoints

(red crosses) of the keypoint model.

(MLE) of the parameters of a statistical model where there are unobserved,

latent, variables. It proceed in two steps, the expectation step and the

maximization step. The initial estimates for the two unknown sets, the latent

variables and the parameters, can be randomly initialized. Then, the likelihood

of the two sets are maximized separately in turn, once in the expectation step

and once in the maximization step, given the recent inaccurate estimate of the

other set. This procedure continues until convergence. The latent variables in

our case are the assignments of feature vectors to the respective components

denoted by zi=1...k ∈ Z. We approximate the component parameters best

explaining our data.

θ̂ = argmaxθ p(θ | X,Z) (4.28)

Then, the probability of a feature vector x ∈ X being part of component i is

computed as follows.

p(x | θ, zi) = N (x;µi, σ
2
i ) (4.29)

After introducing the basics of modeling with Gaussian mixtures, we now

derive wedge feature descriptors from this model. To align our notation with

literature in probability theory, we denoted a dataset as X with samples

x ∈ X. Now, we revert to notation used in previous chapters, i.e. F k is the

set of keypoint feature descriptors, the dataset X in previous notation, with
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fK being a keypoint feature descriptor for a single wedge, a sample x in the

previous notation. We denote the Gaussian feature descriptors based on our

GMM with F T for the set of all features and with fT ∈ F T for one feature

descriptor of a specific wedge. Similar to the bag-of-properties model, we derive

the Gaussian feature descriptors from a set of keypoint feature descriptors.

Therefore, we write fT (fK) to denote that fT is computed on basis of fK . To

estimate the types of wedges used to represent the Gaussian wedge feature

vectors, we maximize the parameters θ for 5 components {z1, · · · , z5} ∈ Z

given the feature descriptors F T .

θ̂ = argmaxθ p(θ | FK , Z) (4.30)

We construct a Gaussian wedge feature vector fT by estimating the posteriori

probability of it being a manifestation of one of the learned prototypical wedges,

the mixture components. We use this vector of probabilities as a feature-

vector and measure similarity between wedge manifestations fT and fT with

the euclidean distance. This comparison scheme ensures a smooth similarity

function, as opposed to using the class affinity as a binary classifier.

fT (fK) =

⎛⎜⎝p(fK | θ, z1)
...

p(fK | θ, zk)

⎞⎟⎠
dG(fK , fK) = ∥fT (fK)− fT (fK)∥

(4.31)

Contrary to all previous wedge modeling approach presented in this chapter,

this approach requires a priori estimation of parameters θi=1...k before feature

vectors can be constructed. It cannot be used directly if no cuneiform wedges

have been seen before. The parameter estimation is performed on the whole

dataset FK , i.e. all wedges extracted and represented by means of the keypoint

feature vectors. Then, Gaussian feature vectors are computed for the same set

of wedges. Thus, we are performing a clustering of the keypoint feature vectors

of vectors to discretize their possible expressions, i.e. wedge types. Cuneiform

wedge constellations are then described by the positions and type affiliations

of its wedges instead of the exact geometric shape. The process of computing

Gaussian wedge feature vectors and representing wedge constellations proceeds

as follows.
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1. Estimate Z by maximizing p(θ | FK , Z) with respect to θ given the

keypoint feature descriptors.

2. Derive new Gaussian feature vectors fT from fK by computing the

affiliations to the estimated wedge types.

3. Represent wedge constellations by means of fT and measure distances

between wedges with the Euclidean distance between Gaussian feature

vectors with the distance function dG.

This method concludes our approaches to modeling distance functions for

wedges and wedge constellations. In the following we evaluate the presented

approaches to wedge and cuneiform similarity. Unstructured and structured

approaches are compared and evaluated to the current state-of-the-art in

handwritten Latin text retrieval.

4.6 Evaluation of Wedge Distance Metrics

At the beginning of this chapter we introduced the concept of a usable distance

metric, one that is robust and discriminatory, c.f. Section 4.2.2 pp. 61. Here, we

evaluate the representations and distance metrics presented in this chapter with

respect to a ground truth. We manually segmented a dataset of cuneiform

signs and labeled each cuneiform sign with its respective meaning in the

Assyrian language. We expect a good distance metric to compute a lower

distance for cuneiform signs that are labeled with the same label and a higher

distance for cuneiform signs with different labels. The exact numerical values

are not important as long as they are clearly separable for equally labeled and

differently labeled cuneiform signs.

The evaluation task proceeds by comparing a query cuneiform sign against all

other segmented cuneiform signs in our dataset. We expect the most similar

cuneiform signs to have the same label as the query. That is, the optimal

retrieval result is sequence of cuneiform signs of descending similarity where

the first part are only cuneiform signs with the same label as the query followed

by cuneiform signs having other labels. We say that such a result has a high

precision. If the labels in this sequence are mixed, the distance function is not

able to discriminate labels well, we say that the precision is low.
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The task to test the classification performance of the presented methods was

performed by hiding a query instance of the segmented cuneiform signs and

comparing the remaining cuneiform signs instances against the query instance.

The retrieved candidates were ranked by similarity from most similar to least

similar. The classification performance of the presented methods was then

compared using a precision recall graph. We evaluate our approach on a set of

vectorized cuneiform tablets manually segmented into cuneiform signs. There

are 160 cuneiform sign instances and 32 cuneiform sign classes in our test

dataset.

We evaluate two of the three explicit wedge models, i.e. the bag-of-properties

model and the Gaussian mixture model, in Chapter 5, Section 5.5, pp. 120.

These models have been developed in unison with our extension of Howe‘s

part-structured method. The testing methodology employed for these methods

differs from the testing methodology presented here, it does not necessitate

an a-priori manual segmentation of the documents, and it is therefore not

directly comparable with the methods presented here. It does, however, allow

us compare the performance of the explicit methods to state-of-the-art word-

spotting methods in Latin script. In opposition, the keypoint feature model is

part of the following evaluation.

4.6.1 Precision Recall Graphs

A precision recall graph visualizes the performance of a retrieval system, its

precision, at different recall values. Precision P is the fraction of relevant

retrieved items. True positives (TP) are relevant items that are in the result

set. False positives (FP) are irrelevant items in the result set.

P =
TP

TP + FP
(4.32)

Recall R is the fraction of retrieved relevant items of all relevant items. False

negatives (FN) are relevant items that are not in the result set.

R =
TP

TP + FN
(4.33)
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Figure 4.16: Precision Recall graph for three graph based methods. The

Weisfeiler-Lehman Graph Kernel (WFLM ), the spectral decom-

position (Spectral) and the random walk graph kernel (RndWalk).

Then, the methods extended with the delaunay triangulation are

WFLM DGM, SP DGM (for the spectral decomposition) and

RW DGM (for the random walk kernel), respectively.

Then, the precision recall visualizes the precision of the result set as the recall

is increased. Intuitively, the count of relevant results increases as the whole

result set increases in size but the count of relevant items gets smaller. In

the trivial case, returning all results, the recall is maximal, all relevant items

have been returned, but the precision is minimal, most returned items are

irrelevant. An optimal retrieval system has a high precision for most recall

values, that is, the curve is close to the top of the graph.

4.6.2 Discussion on the Impact of Triangulation

Figure 4.16 shows the classification performance of the graph based methods

with and without triangulating keypoints. The Delaunay transformation

reduces precision greatly for the Weisfeiler-Lehman graph kernel. This kernel

counts the number identical subtrees in both graphs. Since many vertices

in a Delaunay triangulated graph have the same degree, two geometrically

dissimilar triangulated graphs will share a high number of subtrees rendering

them indistinguishable for the Weisfeiler-Lehman graph kernel.
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The decrease in performance for the random walk kernel can be attributed

to the same problem. Dissimilar triangulated graphs share a lot of random

walks since most vertices are reachable by a high number of different walks.

The random walk method and the Weisfeiler-Lehman graph kernel achieve

better classification performance when the untransformed cuneiform graphs

are used. Variable node degrees and unique walks in the untransformed graphs

enable those methods to differentiate graphs representing wedge constellations

better.

The spectral decomposition, on the other hand, has better precision when

extended with Delaunay transformed graphs. The spectral decomposition can

be seen as a series of minimal cuts [Chu97] of a graph where the edge density

is lowest. Translation and rotation of wedges are therefore detectable by

changes in connectivity of the graph partition leading to a better classification

performance than just using the graph topology. An exemplary cuneiform

sign retrieval is shown in Figure 4.17 using the best performing graph based

similarity method, the spectral graph decomposition for Delauney triangulated

graphs.

4.6.3 Comparison with the State of the Art

The classification performance of our method is compared to three standard

methods used in handwritten text recognition. We compare to the DTW

method [RM07], the Word Warping method [KBS11] and a HMM classifier.

None of these three standard methods work on vectorized data. We rasterize

wedge constellations to make these methods applicable to our dataset. All

wedge constellations are rasterized to a uniform line height and a variable

width. The conversion takes place by filling and rasterizing the closed spline

paths describing the strokes of the wedge constellations. The result is no

different than rendering the vector data in a vector graphics editor. We

tested 50 pixels and 300 pixels line heights and found that a 150 pixels line

height yields the best classification performance for the three methods. The

configuration parameters of the four methods are as follows:

Dynamic Time Warping We limit the DTW matrix to a band of 15 pixels in

either direction. Neither a higher nor a lower limit improve classification

performance.
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Figure 4.17: The top 9 results for the task to retrieve the query sign are

displayed. The query sign is represented as a set of strokes. This

set is then transformed into the graph representation. The kernel

used for similarity is the spectrum kernel extended with Delaunay

triangulation. The results are ordered from best (top left) to

worst (bottom right). Cuneiform signs with a green background

have been correctly classified, signs with a red background have

been incorrectly classified.
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Word Warping We choose a grid spacing of 10 pixels and perform ten refine-

ment iterations. A lower grid spacing gives only a negligible improvement

on classification performance but a severe impact on runtime. More

refinement steps do not increase classification performance.

Hidden Markov Model Wedge constellation images are split 10 pixel wide

slices. We tested 5 pixels and 20 pixels wide slices and found that 10 pixel

wide slices yield the best classification performance. The image slices

are transformed into a Histogram of oriented Gradients (HoG) [DT05]

with 4 possible orientations and 5 histograms per slice. Our HMM state

machine has a left-to-right topology with 10 states and uses 20 Gaussian

mixtures to represent the feature vectors. The state machine is trained

on the query word using the Baum-Welch algorithm. Candidate words

are decoded using the Viterbi algorithm [Rab89].

Iterated Closest Points Wedge constellations are converted into point clouds

by sampling the closed spline paths equidistantly. We choose a sampling

rate of 1 point per 1 millimeter of spline path. This leads to approximately

40 sampling points per wedge. Lower sampling at 0.3 pixels or higher

sampling at 10 pixels does not improve classification performance.

An exemplary retrieval result using the keypoint feature descriptor is shown

in Figure 4.18 and the precision recall results for all evaluated methods are

shown in Figure 4.19.

The näıve ICP approach proves surprisingly successful at low recall. Match-

ing point clouds is highly discriminative and provides good results if wedge

constellations are highly similar. The method, however, is not able to deal

with the high variability of wedge constellations. It fails to classify cuneiform

signs written differently, which results in bad classification performance at

high recall.

DTW struggles with high visual complexity of cuneiform signs on the vertical

axis. Although Word Warping performs better than DTW, by allowing

deformation in both directions, it can only match the performance of the ICP

method at most.

The HMM classifier performs at the level of the DTW method. The bad

classification performance can be attributed to having only one training sample

and the inability to efficiently model vertical complexity of cuneiform signs.
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Figure 4.18: Given a query cuneiform sign the keypoint model for describ-

ing wedges retrieves 9 signs most similar to the query. There

are 5 True Positives (green background) and 4 False Positives

(red background). The cuneiform signs in this figure have been

reconstructed and visualized using only their keypoint feature

descriptors.

Figure 4.19: Precision-recall curves for our approach with optimized wedge

assignment (Assigned) and naive assignment (Ordered) compared

against three approaches commonly used for handwritten text

recognition.

101



4 Wedge Similarity

Our method outperforms all other methods on our dataset. Matching wedges

by optimizing a linear assignment problem yields significantly better results

at very high and very low recall. In the case of very high recall values it is

important to correctly recognize damaged cuneiform signs or cuneiform signs

written with reordered wedges. For very low recall values the cuneiform signs

are mostly identical, and small differences in arm length and wedge orientation

decide between correctly and incorrectly classified cuneiform signs.

4.7 Summary

In this section we introduced the notion of distance functions to measure a

similarity between two objects. The methods presented in this chapter have

been successively developed and published together in [BGM15b; BGM15a]

and [BHM16]. For comparing cuneiform wedge constellations we developed

two approaches differing in their assumptions on the structure of the wedge

constellations being compared. The distance function of the first approach

assumes no underlaying structure and model wedge constellations holistically.

From this assumption we derive five distance functions.

We rasterize wedge constellations and compare their projection profiles with

the DTW method. When representing wedge constellations as mathematical

graphs, we compute random walks, subtrees, and spectral decompositions

to measure the similarity of two graphs. By discretizing the set of strokes

of a wedge constellation into a point cloud, we can measure the similarity

directly by embedding both wedge constellations into a similar pose using the

ICP method and then computing the sum of distances between corresponding

points.

Our other approach assumes that the most basic constituent of cuneiform

script is the wedge-shaped impression created by the writing tool, a rectangular

stylus. We model each wedge by six keypoints, three for the triangular wedge-

head and three for the endpoints of the wedge-arms. Then, we derive three

feature vector representations. The Keypoint Model is a direct representation

of the six keypoints in a feature vector, the Bag-of-Properties model is a binary

vector of properties present in a wedge and the Gaussian Mixture Model

learns prototypical wedges that serve as templates actual wedges are compared

against.
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4.7 Summary

We evaluate the presented distance functions against each other and the state

of the art classifiers, such as a HMM classifier. The results are compared in a

precision recall graph. We find that the Keypoint Model outperforms all of

our other distance functions and all of the state of the art classifiers.
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Literary analysis, literary edition and other forms, such as interpretation and

criticism of text, always require the cross-reference of works for the comparison

and discovery of sources. For modern Latin text, such work is aided by linear

time complexity [KMP77] word search facilities, allowing scientists analyzing

literary text to seek out references easily.

Transcription and transliteration of cuneiform script requires intensive study of

cuneiform signs and reading of related cuneiform tablets for cross-reference to

understand the underlaying context in which signs are used. Symbol spotting,

similar to word-spotting for Latin text, enables automated searching and

exploration of both transcribed and not yet transcribed cuneiform tablets to

discover the meaning of a sign by its usage.

In this chapter, we develop and evaluate means of searching wedge constella-

tions without an a-priori segmentation of the cuneiform tablets being searched.

In contrast to the previous chapter, where we developed methods for computing

the similarity of two given wedge constellations, here we introduce approaches

that additionally locate wedge constellations on a tablet. Such a retrieval task

is called segmentation-free word-spotting. Since the following approaches do

not require the queries to be known cuneiform signs, we therefore perform

segmentation-free wedge constellation spotting.
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5.1 Challenges and Objectives

This section provides an overview of the main objectives and contributions of

this chapter.

Motivation Segmentation of cuneiform script is challenging due to its complex

grammatic structure, meaning dependent upon grammatical case and

lack of whitespace. For computational analysis of cuneiform script

word-spotting algorithms cannot relay on an a-priori segmentation.

Challenges Similar to approach for handwritten Latin script, word-spotting

methods assume that most complexity is expressed in the horizontal

axis. Further, approaches for Latin assume a left-to-right reading order,

a constraint that also is not supported by texts in cuneiform.

Objectives Develop methods for discovering free-form arrangements of wedges

on basis of a query wedge constellation. Additionally, this approach has

to support our shared keypoint feature descriptor.

Related Work We review state-of-the art segmentation-free spotting ap-

proaches to historical Latin script. The presented approaches are based

on sliding a window across the document and computing a distance

between those two. Different a-priori feature transformations accelerate

this process.

Input The presented cuneiform sign spotting methods work on either 1) the

set of wedges extracted in Chapter 3, Section 4.5, pp. 81 represented

explicitly by keypoint feature descriptors 2) or when evaluating to the

state-of-the-art, as a rasterized set of strokes. Further, query wedge

constellation is given that is being searched.

Output The results are a set of bounding boxes that indicate areas in the

searched documents that contain the query wedge constellation.

Methods We adapt our data for a state-of-the-art word-spotting approach

based on HMM. Additionally, we employ the similarity functions devel-

oped in Chapter 4 and extend a part-structured spotting approach that

can directly work with the our set of extracted wedge feature vectors.
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5.2 Related Work in Handwriting Recognition

Evaluation Based on ground truth created for the evaluation in Chapter 4,

Section 4.6, pp. 95 of labeled cuneiform signs, we compute expected

bounding boxes for each query sign. Methods are evaluated using a

precision-recall graph. We find that the explicit modeling of similarity

of wedge-shaped impressions and the free-form arrangement allowed by

part-structured models outperforms the implicit and linear modeling of

HMM based approaches for cuneiform script.

Discussion We discuss the impact and failure behavior of the different explicit

wedge models introduced in Chapter 3, Section 3.4, pp. 43.

Publications The work presented in this chapter has been published in [BHM16].

5.2 Related Work in Handwriting Recognition

The common approach to automated reading of written text is Optical Char-

acter Recognition (OCR) which aims to detect written letters and reconstruct

their layout, i.e. words and sentences, in documents. Historical text is often

damaged, hand-written, used unknown fonts or is written in a no longer used

script, c.f. Chinese Sutra [MHK09] or cuneiform. In such cases, automated

reading is limited to word-spotting. Given one (one-shot) or more (multi-

shot) examples of a query word this word is then pattern matched against a

document collection.

The concept of word-spotting was first proposed by Manmatha et al. [RMC96].

It makes the challenge of computational analysis of written text, e.g. searching

or counting n-grams, in an unknown and hard to read script, e.g. medieval

Latin, tractable. Instead of optical recognition of the written characters, a

comparison on basis of the word image regions is performed. While this task

is similar to image recognition tasks, several assumptions can be made about

written script that are not possible for image recognition. Most written script

has a writing direction, is written in lines of similar length and uses only

one color. These assumptions allow for recognition tasks that model most

information in the writing direction, i.e. sequential models, and where the text

can be segmented into lines using the projection profile.

Rodriguez et al. [RSP09] introduce in their work the use of HMMs to model and

query handwritten script. The authors evaluate their approach on handwritten
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letters. Line segmentation is performed by computing the projection profile

and word segmentation by computing connected components. In a first step

of pruning, a linear classifier [Kri+05] rejects unlikely word candidates. The

remaining word images are transformed using a sliding window into a sequence

of feature vectors computed from HoG. The authors explore the use of two

different HMM types, continuous and semi-continuous. The semi-continuous

HMM uses shared weights for the GMM modeling the feature vectors. This

restriction significantly increases the performance of single-shot word-spotting

since the amount of parameters to be learned is greatly reduced.

Rothacker et al. [Rot+15] employ their word-spotting framework based on

bag-of-features HMM [RRF13] for segmentation-free spotting of cuneiform

signs. A 3D scan of a cuneiform tablet is transformed into a 2D representation

using the curvature of the tablet surface. Then, the authors learn a HMM on

a single example query word and spot cuneiform signs by decoding the learned

HMM on a grid of possible positions on the cuneiform tablet. Their approach

is based on their previous work in segmentation-free spotting in historical

Latin script. We compare our approach to spotting to a modified variant of

their method which is suited more favorably for our data.

In their work Rusin̄ol et al. [Rus+14] aim to model the spatial complexity of

handwritten script by using Spatial Pyramid Matching (SPM) [LSP06] with

Bag-of-Visual-Words (BoVW) populated by dense Scale Invariant Feature

Transform (SIFT) [FVS08] descriptors. The authors divide the document image

into patches of four different lengths to accommodate different query lengths.

Each document patch is first partitioned horizontally into two regions, used

for the SPM part of the descriptor. The dense SIFT sampling then populates

the SIFT feature-vector, of the two half regions and the whole region, for the

resulting image patch descriptor. These vectors are then re-weighted using

the TF-IDF model [SB88] to emphasize visual words frequent in a local patch

but infrequent in the corpus. Since the variability of written script results

in words being represented by different visual words, the authors transform

the feature descriptor using Latent Semantic Analysis (LSA) [Dee+90]. The

underlying assumptions is that while words may not have the same visual

words representing them, they will have the same topics and lie close in

LSA space. Queries are retrieved by performing the same transformation on

the query image as on the document image and then computing the cosine

similarity between the query descriptor and all document descriptors. Regions

in the document that have gained the most votes are likely candidates for the

results.
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5.3 Sequential Modeling

Almazan et al. [Alm+14] argue that since most approaches implement a sliding

window approach, costly feature descriptors are best avoided, in favor of

computationally efficient ones as HoG. In their approach the author propose

two stage word-spotting where the first stage provide fast but inaccurate

results and the second stage refines those. For the first stage the authors

divide the document into equal sized HoG cells. The query word is also divided

into identically sized HoG cells. A sliding window of the query computes the

convolution of the query HoGs over the document HoGs for all cells. In a

second step, the authors use the Exemplar Support Vector Machine (E-SVM)

framework [MGE11] to learn a more accurate representation of the query.

In this framework a SVM is trained on slightly shifted windows of the same

query as positive samples versus many random windows from the document

as negative samples. The candidates generated from the first step are then re-

ranked using the learned classifier. To increase the reach of the word-spotting,

new queries on basis of the spotted words are run to improve the retrieval

results.

5.3 Sequential Modeling

Rothacker et al. [RRF13; Rot+15] approach the task of word-spotting by

means of combining a dense SIFT sampling of the document for BoVW feature

descriptors with sequential model based on a HMM. For handwriting where

spatial information is typically laid out horizontally, modeling with a HMM

provides the necessary sequential expressiveness while ignoring horizontal

spatial relationships by means of BoVW. Since their approach achieves state-

of-the-art performance in segmentation-free handwritten word-spotting tasks,

albeit on Latin script, we evaluate their method on our born-digital cuneiform

tracings.

5.3.1 Feature Extraction

Our dataset is derived from different sources in heterogeneous representations.

To make this data available for the sequential modeling approach, we rasterize

the cuneiform tablet set of strokes represented by splines. The resolution of the

rasterized documents is chosen to reflect the script size in the dataset used in

the approach by Rothacker et al. [RRF13]. Therefore, the typical height of our

rasterized cuneiform signs is 60 pixels. Then, we employ their feature extraction
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5 Symbol Spotting

Figure 5.1: Dense SIFT features on a rasterized cuneiform tracing. The color

of the dots represents the class of the detected SIFT feature in the

learned dictionary of features.

pipeline and densely sample SIFT features from rasterized document images.

The extracted features are clustered using the k-means [Mac67] algorithm

yielding reduced codebook of 1024 visual words. Figure 5.1 illustrates the

dense SIFT sampling of cuneiform sign. Features are extracted by sliding a

thin window (5 pixels width and 60 pixels height) over the query words, the

words being searched, and extracting the BoVW feature vectors. We denote

these features as the observed emissions yt=1...T .

5.3.2 Hidden Markov Model Topology

The HMM introduced by Baum et al. in [BP66] is an unsupervised generative

technique for describing a sequence of events by means of an underlying unob-

served state machine. The state machine is a graph of transition probabilities

between each of the states. Each state has a set of emission probabilities of

observed events. The Model assumes that the future states of a system is only

determined by its current state without regard to previous states, this is the

Markov assumption. Let the following definitions describe a HMM.
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5.3 Sequential Modeling

Figure 5.2: The topology of a HMM state machine in chain topology. Only

loops and steps forward are allowed. The assignment of probability

mass is heavily biased towards loops.

ϕi=1...N,j=1...N : Probability of transition from state i to state j

µi ∈ RK : Means vector of observations x associated with state i

Σ2
i ∈ RK×K : Covariance matrix of observations x associated with state i

xt=1...T : State of observation at window position t

yt=1...T : Observation at window position t

(5.1)

The observation yt is a histogram of visual words occurring at sliding window

position t of the query words. The unobserved state of the HMM for an

observation yt is denoted by xt. While the graph for the unobserved state

machine, the transitions ϕij, can be arbitrary, learning a high amount of tran-

sition probabilities, given only few observations, is not robust. In handwriting

recognition topologies such as the chain topology are used to exploit the

sequential way in which Latin script is written. The chain topology only allows

state transitions from left-to-right and loops. Figure 5.2 illustrates a HMM

state-machine in chain topology configuration. The sliding window positions

are linearly mapped onto the HMM states sharing many successive window

positions. In one of their approaches, Rothacker et al. the number of HMM

states is 17% of the count of window slice of the query. Let Ni be the count

of observations x mapped onto state i. Then, the transitions probabilities

inducing a chain topology are defined as follows.
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ϕii =
Ni − 1

Ni

ϕij =
1

Ni

(5.2)

The parameters of a HMM can be estimated with Baum-Welch training. It

is an instance of the EM algorithm [Bau+70]. Given a sequence of observed

emissions, Baum-Welch training executes three inference steps, the forward

procedure, the backward procedure, and an update step until the convergence

of the estimated parameters. The training maximizes the probability of an

observed sequence y ∈ Y with respect to the parameters θ = {ϕ, µ,Σ} of the
HMM.

θ∗ = argmaxθ P (Y |θ) (5.3)

This concludes the learning phase. While the HMM can be trained using one

single query example, more examples increase its classification performance.

5.3.3 Result Retrieval

Results are retrieved by sliding a query sized window over the document image

and decoding the learned HMM on the document image BoVW feature vectors.

The algorithm named after Andrew Viterbi [Vit67] is used to find a maximum

probability decoding of a HMM. Given a sequence of observations and model

parameters of hidden states of a HMM, Viterbi decoding finds a most likely

path through the HMM states. This path through the hidden states is the

path that most likely caused the sequence of observed states. Let y1 . . . yT
be a sequence of observed visual words slices in the document image, then

the Viterbi algorithm determines the probability of the most probable state

transition sequence x1 . . . xT with respect to the learned HMM configuration

θ∗.

maxP (x1, . . . , xT , y1, . . . , yT | θ∗) (5.4)

For retrieval, we are not interested in the actual sequence of HMM states, but

the probability of an observed sequence. That is, we compute the probability
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5.4 Part-Structured Modeling

Figure 5.3: A search window is moved across the raster image of a cuneiform

tracing. For each position the Viterbi decoding for a HMM trained

on a query is computed. A higher probability is denoted by a

lighter color.

of the observed visual word sequence being generated from the learned query

word visual word sequence. A high probability indicates that the observed

visual word sequence is similar to the learned sequence, we spotted a similar

word. Figure 5.3 shows the computed probabilities of a search window sliding

over the document image. Results are than retrieved using non-maximum

suppression [Can86] of the probability field.

5.4 Part-Structured Modeling

In this section, we adapt an approach developed by Howe [How13] for our

wedge feature representation. In his work on word-spotting, Howe [How13]

introduced the usage of part-structured models. These are generative models

of word appearance.

Part-structured spotting by Howe [How13] provides a framework for spotting

words modeled as ink-balls. In cooperation with Howe, we adapted the part-

structured model to allow spotting of arbitrary high-dimensional point clouds,

albeit, still constrained to transposition on two-dimensions. Since all our

wedge models construct a feature-vector, they all are applicable as underlaying

representations for the part-structured model.
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Compared to Howe’s original approach, query wedge constellations are directly

represented as trees of feature-vector. No thinning and ink-ball placement

is performed. We use a similar greedy approach to tree construction where

the nearest feature-vector, on the plane induced by the two unconstrained

dimensions for spotting, is attached with an edge to the existing tree.

Then, instead of computing the distance transform of the medial-axis of the

document, we compute the euclidean distance between all query constellations

wedge feature vectors and all document wedge feature vectors. From this, a

distance transformed image is computed that is then summed according to

scheme presented by Howe [How13].

5.4.1 Query and Document Feature Representation

In the approached presented by Howe, a medial axis transform of the query

is computed and points are placed equidistantly on the skeleton of the query.

In our modified approach, we use the semantically rich feature description

introduced in Chapter 3, Section 3.4.1, pp. 43 of cuneiform wedges and

represent a query wedge constellation by a collection of these high-dimensional

points. We connect these points into a tree structure by starting at the point

closest to the center and greedily add points while avoiding loops. Figure 5.4

illustrates the tree structure on a cuneiform sign.

Algorithm 8 describes the construction of a tree from a set of vertices V . Let

n = |V | be the count of vertices in this set. The minimum operations used

have a time complexity of O(n). Checking a vertex for presence in the set V ′

has an amortized time complexity of O(1) due to the use of an efficient hashing

data structure. Since for every vertex a minimum must be computed inside

the loop, the algorithm has a time complexity of O(n+ n ∗ n) = O(n2).

In similar fashion, the document to be queried is represented as a collection of

points, the positions of wedges on the document and their high-dimensional

wedge feature vectors. These have been extracted by the methods presented

in Chapter 3. Figure 5.5 on page 117 provides an illustrated overview of the

word-spotting framework and our extensions to it. A rigorous description

follows in the next section.
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Algorithm 8 Greedily connect a collection of points to a tree structure.

procedure greedy tree(V)

▷ Initialize set of vertices in tree structure.

▷ It is empty at beginning, vertices are successively

▷ added.

V ′ ← ∅

▷ Initialize empty set of vertices which will hold

▷ the structure of the the constructed tree.

E ← ∅

▷ The root vertex is the most central vertex.

V ′ ← V ′ ∪ {minp∈V ∥mean(V )− p∥}

▷ For each vertex not yet in the structure

▷ find the closest vertex add an edge between those.

for v ∈ V do

if v ∈ V ′ then

▷ The current vertex already is part of the

▷ tree structure.

Continue

end if

▷ Find closest vertex in tree for current

▷ vertex which is outside.

v′ ← minv′∈V ′ ∥v − v′∥

▷ Add newly discovered edge to the set of edges

▷ and the set of visited vertices.

E ← E ∪ {(v, v′)}
V ′ ← V ′ ∪ {v′}

end for

▷ Return edges defining the structure of the tree.

return E

end procedure
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Figure 5.4: Tree structure computed by greedily connecting points, centers of

wedge-heads, of a cuneiform sign.

5.4.2 Displacement Energy Computation

Word spotting is performed by finding the configurations of the query sign

model with minimal energy that match the observations, the wedges, in the

document. Let Q = {q1, ..., qn} represent a set of wedges that form some wedge

constellation or an other unit of interest, and let {v1, ..., vn} represent their
positions, taken as the mean of the three wedge head vertices. We assemble

the parts into a tree structure by greedily forming pairwise links between

disconnected units. Without loss of generality let q1 be the wedge closest to

the group’s center of mass; this wedge becomes the root of the tree. Letting

qi↑ indicate the parent of qi in the tree structure, we define the default offset

mi for each child node. Note that m1 and q1↑ are undefined, since q1 has no

parent.

mi = vi − vi↑ (5.5)

Having identified the model’s tree structure and default offsets, we define

a deformation energy Eξ for any proposed configuration of the model, Z =

{z1, ..., zn}. This energy is a quadratic function of the difference between

the observed offsets and the model default, and is invariant under rigid

translations.
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Figure 5.5: Illustration of the word-spotting framework introduced by Howe

and our extensions based on methods developed in previous chap-

ters emphasized in bold text. The word-spotting pipeline proceeds

in three phases. First, using our extraction methods, document and

query features (color dots) are computed. Then, using our distance

metrics for these features, we compute document displacement en-

ergies (tablets with enlarged dots). The displacement energies are

summed according to Howe‘s framework (overlaid tablets). Finally,

the query is found at local minima of the resultant document.
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Eξ(Z) =
n∑
2

∥(zi − zi↑)−mi∥2 (5.6)

Given a cuneiform document, word-spotting attempts to identify locations

that are likely matches to the query model. More precisely, if T = {t1, ..., tN}
is the set of wedges in the target, with positions U = {u1, ..., uN}, then we

seek locations x where the following energy function reaches a minimum and

lies below some target threshold.

E(x) = min
Z|z1=x

[Eξ(Z) + Eω(Z,Q, T, U)] (5.7)

The second term in this expression measures the proximity of model wedges

to suitable target wedges under the proposed configuration. A parameter α

trades off between spatial proximity and wedge match quality D, as computed

using one of the methods from the previous section.

Eω(Z,Q, T, U) =
n∑

i=1

Eω(zi, qi, T, U) (5.8)

Eω(zi, qi, T, U) =
N
min
j=1

[
∥zi − uj∥2 + αD(qi, tj)

]
(5.9)

The energy function in Equation 5.7 can be minimized via an efficient dynamic

programming algorithm, as in prior work on part-structured models [How15].

We first write an expression for the minimum energy of arbitrary subtrees of the

model, where Zi↓ represents the positions of wedge qi and all its descendants.

Ei(x) = min
Zi↓|zi=x

[Eξ(Zi↓) + Eω(Zi↓, Qi↓, T, U)] (5.10)

This in turn can be rewritten recursively as the wedge match at the root plus

the minimum energy over all possible child configurations, as adjusted by the

model offsets.

Ei(x) = Eω(x, qi, T, U) + min
Zi↓|zi=x

E↓i(x) (5.11)
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Figure 5.6: The deformation energy necessary to fit the query model to the

document image. Low values indicate a particularly good fit for

the query sign as it has to be only minimally deformed. These

minima are the results of the retrieval process.

min
Zi↓|zi=x

E↓i(x) =
∑
j|j↑=i

Γ (Ej(x−mj)) (5.12)

Here Γ denotes the generalized distance transform (GDT) [FH05; FH12], which

performs the minimization over the deformation term. At the leaves of the

model, the child energy contribution E↓i is zero and the energy function Ei
can be computed simply via a GDT, with the function values with respect to

x represented on a discrete grid. Moving up the tree, parent node energies

Ei can be computed using the results at the leaves, translated by the offset

mj and passed through another generalized distance transform before being

added up. This process eventually yields the energy of the entire model over

the grid of possible root positions. A visualization of this energy field is shown

in Figure 5.6. Strong local minima on this grid are the locations where the

model matches well. We place bounding boxes with the extents of the query

around these minima and perform a non-minimum [Can86] suppression of

the results to remove close duplicates.
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5.5 Evaluation of the Modeling Approaches

We evaluate our methods on a dataset of two cuneiform tablets line traced

by professional Assyriologists using a graphics editor. These tablets contain

around 500 identifiable cuneiform signs. The tablets are only incompletely

manually labeled and segmented. This precludes a precise evaluation of the

performance of the presented methods on the given dataset and offers us no

possibility to exactly analyze the methods on their recall performance.

However, our evaluation scheme makes the relative differences in retrieval

performance still valid and allows for a comparison of the methods. We

perform retrieval queries by example using the set of segmented cuneiform

signs. Given the size of our dataset, we assume that each cuneiform signs class

has in average 30 instances. Perfect recall is achieved when 30 instances are

retrieved. An expert then decides for each returned result whether it belongs

to the class of the query and tags it with either true positive or false positive.

We evaluate our method against the work of Rothacker et al. on word-spotting

on Latin script [RRF13]. Since we use vectorized transcriptions of cuneiform

tablets as data, we cannot employ their work on word-spotting on cuneiform

tablets for comparison [Rot+15]. We have no 3D data or curvature data

available for our dataset.

To make our data available to their bag-of-features word-spotting framework,

we first rasterize the vectorized dataset to raster images. The size of the

raster images is chosen so that their choice of slice parameters and sliding

windows advancement is optimal for our data. That is, we chose 40 pixel sized

structuring elements for the dense SIFT [Bic+06] transformation with a 5

pixel wide regular grid. The query examples are taken from the incompletely

segmented document and sliced with 5 pixel wide horizontal slices advancing

2 pixels. We use the same HMM chin-topology as presented in their work.

The results of our evaluation are shown in Figure 5.7. The Gaussian mixture

model yielded the least satisfactory results. Closer inspection of the inferred

classes showed that they did not represent the space of different wedges well.

Binary template vectors offer more flexibility, nonetheless, they do not perform

as well as the keypoint model. We attribute this to the rigidity of the defined

templates. If many semantically different wedges fall into the same template,

they no longer can be differentiated. A more flexible template model, more
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Figure 5.7: Precision recall graph for the sequential and part-structured model.

The part-structured model has been evaluated with three different

wedge feature descriptors.
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angles and more sizes, would lead to high-dimensional feature vectors that are

hard to compare.

The keypoint model performs best and outperforms the approach presented

by Rothacker et al. The keypoint model uses an advantageous description of

wedges when used in combination with the adapted part structured spotting.

It too models two dimensional points that are compared using the Euclidean

distance.

5.6 Summary

In this chapter we introduced two approaches to spotting wedge constellations.

The state-of-the-art in segmentation-free word-spotting Latin script is achieved

by sequential modeling approaches such as the BoVW HMM as introduced by

Rothacker et al. [RRF13]. We adapted our dataset to the pipeline presented

in their work by rasterizing the born-digital tracings of cuneiform tablets.

Evaluation of the pipeline on our dataset showed that the significant vertical

complexity expressed in cuneiform signs is insufficiently modeled resulting in

bad retrieval performance.

Then, we presented a part-structured modeling approach that relies on a

tree-structure of ink-balls connected by spring-like potentials. We employed

our semantically descriptive wedge feature vectors introduced in Chapter 4,

Section 3.4.1, pp. 43 to replace the ink-ball model.

We performed an evaluation of both models on our dataset. Our adapted part-

structured approach outperformed the word-spotting framework of Rothacker

et al. on our test dataset. Therefore, we achieve state-of-the-art segmentation-

free constellation spotting on cuneiform. As a result of our common fea-

ture representation, our adapted part-structured wedge constellation spotting

pipeline is applicable to heterogeneous datasets of cuneiform tracings. The

results of this work have been published in [BHM16].
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With the development of a computational representation of cuneiform script,

similarity metrics for wedge constellations and segmentation-free spotting of

wedge constellations, we introduce in this chapter two applications of these

methods to gain new insights into cuneiform script. While qualitative aspects

of cuneiform script and its history is being researched by Assyriologists, we

present quantitative analyses common to computational linguistics in Latin

script.

6.1 Challenges and Objectives

We make use of our computational tools to perform analyses, such as pattern-

mining and spatial n-gram mining, which were hitherto not feasible to do

manually. We also present an approach towards automatic transliteration of

transcriptions by mining common pairs of wedge constellations and respective

transcriptions.

Motivation Computational analysis of written language is based on robust

methods for similarity and search of signs. Further, understanding and

explicit representation of the basic constituents of cuneiform, its wedge-

shaped impressions, enables analysis that generates new insights into its

structure, e.g. frequent patterns in signs.

Challenges Pattern mining and sequence alignment is commonly discrete,

e.g. text, or sequential, e.g. voice. Cuneiform is a two-dimensional

freely arrangeable script with continuous expressions of wedge-shaped

impressions and a very complex structure.

Objectives A precise sign spotting method and a robust similarity measure

enable the discovery of constellations of wedges. Without prior knowledge

123



6 Applications and Concepts

of known cuneiform signs, wedge constellations are found that are part

of the list of discovered cuneiform signs. Therefore, showing that the

developed methods enable the automation of cuneiform script analysis.

Related Work Since until now no computational analyses were possible, we

review work in pattern mining and clustering. For automatically inferred

transcriptions of cuneiform tablets we refer to work in language learning

with sequential and structural models.

Input We compute spatial n-grams on basis of the set of extracted keypoint

feature descriptors from cuneiform tablets. Additionally, we make use of

our novel similarity functions cluster patterns and discover n-grams.

Output The result is a set of constellation of wedges that occurs frequently

in the analyzed dataset. For our transliteration approach we expect

a learning method to infer Latin transliteration tokens given a raster

image of cuneiform wedge.

Methods A distance matrix is computed on basis of the similarity function

for wedge feature vectors. Then, we perform a TSNE embedding of

the matrix and extract clusters with the k-means algorithm. We learn

transliterations by mining co-occurring raster image slices and tokens

which are used to train sequential and structural models.

Discussion We find that our developed methods enable hitherto unachievable

computational and automated linguistic analysis of cuneiform script.

We discuss the future impact and possibilities our methods enable for

computational analysis.

Publications We published the work in pattern mining spatial n-grams in [BM16]

and the work towards automated transliterations in [BKM17].

6.2 Pattern Mining Spatial n-Grams

We build upon our previous work, i.e. extracting features from cuneiform, to

cluster constellations of wedges. We describe cuneiform tablets in terms of

spatial n-grams to efficiently query which locations in a tablet contain all

n-grams of a query. Additionally, we describe the automatic discovery of
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6.2 Pattern Mining Spatial n-Grams

these patterns by mining cuneiform tablets for repeating constellations of

wedges. These locations are used to perform an exact matching. We provide

preliminary results in form of exemplary query results to show the viability of

our method. Our main contribution in this work is a framework to decompose

cuneiform tablets and identify repeating geometric patterns that are usable

for a large-scale and segmentation-free search.

6.2.1 Background on Linguistic Patterns

Syllables, words and some sentence markers are expressed as unique con-

stellations of wedges in cuneiform script and form the radicals — the most

basic, semantically meaningful constituents — of the various languages. Signs

and word lists as the Borger list [Bor04] enumerate known cuneiform signs

and their meaning. We introduce the concept of spatial n-grams, similar to

n-grams in computer linguistics, a small collection of two-dimensional points

with associated high-dimensional feature-vectors. Similar to their counterparts

in computer linguistics, a cuneiform sign is composed of many spatial n-grams.

Unlike their counterparts, spatial n-grams have no ordering but a position in

2D of their atoms, the wedges. While pattern-mining [AH14] in sequential data

and associated algorithms is a well researched topic, pattern discovery in point

clouds is novel and requires more generalized algorithms [AS94]. We represent

wedge constellations as a finite set of search-able patterns, spatial n-grams,

which in turn are sets of wedge feature vectors as introduced in Chapter 3,

Section 3.4.1 pp. 43. The feature representation and feature similarity metric

of wedges forming a spatial n-gram is general and is used to derive different

properties of similarity.

6.2.2 Clustering to Extract Common Spatial n-Grams

We enumerate all possible spatial n-grams by finding all constellations of

wedges that are closer than some threshold value. Wedge-heads centers are

stored in a kd-tree that is then repeatedly queried for neighbors for each

wedge-head center. Some interesting constellations, spatial n-grams, may be

obscured by other overlapping spatial n-grams or by stray points. We can

remove those obscuring points by enumerating all possible k-subsets of each

spatial n-gram. While this approach greatly expands the set of spatial n-grams,

many of which have no semantic importance, we reduce this set by pruning
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6 Applications and Concepts

Figure 6.1: Data transformations of the learning stage. The colored points

of the class representatives symbolize the spatial n-grams used to

decompose queries.

spatial n-grams that are not common. The commonness of a spatial n-gram is

determined by it being an inlier in the subsequent clustering.

Given the similarity metrics defined in Chapter 4, Section 4.5, pp. 81 we

have a notion of distance between spatial n-grams. This allows us to employ

hierarchical clustering algorithms [RM05] that only require a distance matrix

between the samples. Hierarchical clustering uses various linkage criteria.

Since the extracted spatial n-grams come from a noisy source, damaged

cuneiform tablets, we use a very robust linkage criterion, complete linkage, for

clustering.

Other clustering methods, such as k-means [Mac67] and DBSCAN [Est+96],

require the samples to be embedded into metric space. We use embedding

methods such as Multi-Dimensional Scaling (MDS) [BG05] and TSNE [MH08].

Then, we cluster the resulting space with DBSCAN to make sure that definite

outliers, like the generated meaningless spatial n-grams, are not part of the

resulting clusters. From the resulting cluster we choose spatial n-grams that

are most central, their mean distance to all other spatial n-grams in that

cluster is minimal. Those are then the common spatial n-grams, we denote

these as class representatives. The pipeline of this learning stage is illustrated

in Figure 6.1.

We search a query constellation by decomposing it into known class represen-

tatives. All possible constellations are extracted from the search query and

compared to the representatives. Then, locations on the tablet are computed

where constellations from all classes are present that are contained in the query.

A cuneiform tablet is represented as a point cloud where each point is labeled

with cluster of constellations it belongs to. The query is located by performing

a nearest neighbor search so that all classes of the query are present in the
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6.2 Pattern Mining Spatial n-Grams

Figure 6.2: Data transformations in the retrieval process. Spatial n-grams

are extracted from tablet and query. Only location on tablet

containing all spatial n-grams are matched exactly. The colored

points symbolize these n-grams.

retrieved search. Then, for each of the computed locations an exact matching

using the similarity metrics presented in Chapter 4, Section 4.5, pp. 81 is

performed. This process is illustrated in Figure 6.2.

6.2.3 Evaluation of the Mined Spatial n-Grams

We preliminarily evaluate our method on our real-word dataset of traced

cuneiform tablets. First, the embedding and clustering methods are trained

on the dataset to find an embedding and cluster centers. Then, the query is

transformed according to our pipeline and located on the tablet. The query is

a random wedge constellation, not correlated to grammatical structures, that

is spotted on tablet without the need of prior segmentation. The repeating

patterns in Figure 6.3 were autocratically marked by our framework. In future

work we will validate of our method. Currently, we manually segment and

tag tablets to create ground truth. We also evaluate different embedding and

clustering methods for the pipeline.
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Figure 6.3: Retrieval results of an example query. The query has a blue bound-

ing box, the spotted cuneiform signs have an orange bounding

box.

6.3 Automating Transliteration from Parallel

Sentences

Currently, cuneiform databases like the Cuneiform Commentaries Project

(CCP, http://ccp.yale.edu/) provide raster-images of cuneiform tablet

tracings and associated transliterations. The library cannot be searched using

wedge constellations as queries. Only the available transliterations can be

searched using Latin query words. An automatical generation of transcription

would greatly expand the corpus of data that can be searched, even if it was

done only partially. Additionally, automatically generated transcriptions could

be vetted by expert Assyriologists to expand the ground truth.

Therefore, we present a first approach towards automated learning of translit-

erations of cuneiform tablets based on a corpus of parallel sentences. To our

knowledge there is no prior work on the automatic transliteration of cuneiform

script. There is little work on automatic transliteration in general and the

challenge is usually approached by learning a mapping from a sequence of

discrete tokens to another set of discrete tokens, a form of restricted machine

translation.
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Kang et al. [KC00] present a method for automatically transliterating English

words into Korean phonemes. Since their method is unsupervised, they

modify Covingtonś algorithm [Cov96] to learn an alignment of tuples of

English and Korean words. Their method works on a character level and

learns decision trees for the individual characters to transliterate and back-

transliterate unobserved words.

Al-Badrashiny et al. [AB+14] approach the challenge by aligning a corpus of

parallel words with GIZA++ [ON03]. The alignments are then used to build

a Finite State Transducer from sequences of Arabizi characters to sequences

of Arabic characters. Sajjad et al. [Saj+11] uses rule-based equivalence and

the Levenshtein distance [Lev65] to align a parallel corpus of Urdu and Hindi.

Then, a most likely transliteration is found by deriving character to character

probabilities from the alignments.

Our transliteration task is significantly more complex, as we work on parallel

lines where many words are present and with raster data, where features are

continuous (instead of discrete tokens of language) and noise introduces false

positives.

We derive our dataset by automatically scraping the CCP website for data.

Since cuneiform script is three dimensional, a single photograph with a single

direction of lighting is not sufficient for reading the tablet. A line-tracing

is a manually created drawing on the basis of the original artifact, usually

accompanying cuneiform tablets to ease deciphering.

6.3.1 Background on Ground Truth Extraction

For around 130 tablets of 1000 tablets, the CCP provides both a line-tracing

and the corresponding transliteration. To avoid introducing false positives,

tablets where the count of line-tracings and transliteration pages mismatch,

where transliteration references have dead links, and where line-tracings or

transliterations lack meta-data clearly identifying a correspondence (no data

on which side is obverse) are all discarded. This leaves us with 30 tablets for

analysis and learning.

Transliterations and translations provided by the CCP are heavily annotated

with additional cross-references to word-stems and alternate word-forms. Fig-

ure 6.4 visualizes a cuneiform tracing and the accompanying transliteration.
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While, at first sight, such a range of annotations seems favorable to a learn-

ing task, the amount of relationships between forms of denoting cuneiform

signs create ambiguities. Not all transliterations are annotated or correctly

annotated, some lead to non-existing documents. Some relationships are only

implied by the authors while others are overly expansive. We choose to use

the directly annotated and longer written forms instead of following a chain

of relationships.

The Assyrian language has a complicated grammar and numerous derivations

where suffixes, prefixes and even infixes are added to verbs. This results

in many different readings of single sets of wedges. Experts may decide

to transliterate bigger cuneiform signs or their constituents, both are valid

decisions. We make use of the annotations to split all transliteration tokens to

its most basic and shortest radicals.

There is no whitespace between cuneiform signs. It is therefore very hard to

infer word boundaries, since any sequence of words may look very similar to

any other sequence of differently stemmed words. Only from understanding

the topic of the document and the grammatical case of a sentence can word

boundaries be inferred. Word segmentation is thus not tractable without a

language model.

6.3.2 Feature Extraction

Our learning task requires sequences of transliteration tokens paired with

sequences of feature-vectors from the raster-image data. We extract fixed-size

feature-vectors by segmenting lines and moving a sliding window over the

segmented lines to extract HoG (Histogram of oriented Gradients [DT05])

feature descriptors.

Line Segmentation The cuneiform tablets in our dataset are historically

young and therefore written in well separated lines and from left-to-right. The

common approach of computing a projection profile [San+09] and segmenting

lines centered around local peaks provides good results. We normalize line

heights to 40 pixels height, typical heights in our dataset range between 20

and 38 pixels.
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Figure 6.4: Excerpt from a cuneiform tablet (TCH 92.G.127) (top) and its

transliteration [Jak09] (bottom). Areas with ink points denote

tablet damage. Transliteration contains both radicals (lowercase)

and fully identified letters (uppercase).
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The line-tracings are often annotated in-band, that is, Latin text inside the

raster-images. Those annotation do not disturb the line segmentation but add

lines from the top or at the bottom of the cuneiform tablet. We manually

remove tablets from the dataset with annotation at the top and automatically

discard lines that exceed the count of transliteration lines.

Descriptors We extract HoG feature descriptors by sliding a 40-by-8 pixels

window with 5 pixel increments horizontally over the segmented lines. Each

window contains 16 4-by-4 pixel HoG cells with 9 orientations each. Different

parameters were tried, 2-by-2 or 8-by-8 HoG cells and 4 or 10 pixel wide

windows, the chosen parameters performed best on our dataset. This results

in a 144 dimensional feature-vector for each slice of a segmented line. We

denote a feature descriptor on line k at slice position l with xk,l.

Outlier Removal Cuneiform tablets are between 1000 and 3000 years old

weathered stone artifacts that are damaged, broken or misshapen. Assyriolo-

gists annotate outline, damage, white-space and unreadable signs by dense

crosshatching. Those areas are have to be removed from the extracted set of

slices.

Whitespace is removed by thresholding the sum of pixels in a slice. Slices

with more than 95% (experiments with 80% or 90% performed worse) white

background color are rejected. We assume that crosshatching has an unusual

count of edges compared to written cuneiform. We extract edges from a slice

with the Canny Edge Detector [Can86] and sum those per column and per

row. The resulting set of features is modeled using a Gaussian distribution.

Slices that have a log-probability of being part of the estimated distribution

lower than -50 are marked as outliers and removed from the dataset. We

additionally experimented with lower (-30, -40) and higher values (-60, -70).

The result of outlier removal is shown in Figure 6.5.

6.3.3 Sequence Learning

Given parallel sequences of features and labels, HoG descriptors and transliter-

ation tokens, the challenge of learning automated transliteration is transformed

into a sequence labeling task. Learning a reordering between features and

labels is not necessary since transliterations proceed in the same sequence
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Figure 6.5: An excerpt of a cuneiform tablet. Areas highlighted in blue have

been accepted after passing background thresholding and outlier

detection. Whitespace, tablet shape markings and tablet damage

has been successfully left out. Annotations in Latin to the right

have been erroneously accepted.
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Figure 6.6: Visualization of the data alignment process. An extracted line from

a cuneiform tablet, the associated HoG (Histogram of oriented

Gradients) feature descriptors, the profile feature descriptors and

the aligned and normalized transliteration tokens are shown. Some

slices are not annotated since those have been rejected as outliers.

as their source, unlike translations where a reordering has to be estimated.

Therefore, we evaluate various methods used for sequence classification.

Generating Training Data The classifiers evaluated in this work require

the sequence of labels and the sequence of feature descriptors to be of equal

lengths, each feature descriptor is paired with a label. In our case, the count

of emissions (feature descriptors of slices) per line is significantly higher than

the count of labels (transliteration tokens). We stretch the label sequence to

the length of the emission sequence by repeating labels.

Original word labels are denoted with yk,m on line k and word position m

where |yk,·| is the count of labels on a line k. Stretched labels are denoted as

ŷk,l and |ŷk,·| is the count of stretched labels on a line k.

ŷk,l = yk,m where k = l ∗ |ŷk,·|
|yk,·|

We assume that the lengths of the transliteration tokens correlate with the

lengths of cuneiform signs. This assumption is valid as we split the written

forms of the signs into short radicals (comparable to consonants in Latin).

Wrong transliterations, damaged areas in the tablet, and annotations compli-

cate this assumption. Figure 6.6 shows this repetition of labels.

Point-wise Classification With point-wise classification of sequences we

learn and predict labels independent of surrounding context. While the
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modeling power of this approach for sequence labeling is limited, we can

make use of common classification methods. We evaluate a k-Nearest Neigh-

bor (KNN) [Alt92] approach and a multi-class C-Support Vector Machine

(SVC) [Sch+00]. First, we reduce the dimensionality of the feature descriptor

using Principal Component Analysis (PCA) [Pea01]. We experimented with

different values for the target dimensionality (2, 5, 10, 50, 100) and reached an

optimal value of 5.

Sequence Classification In sequence classification the label of a feature

descriptor is dependent on its context and complete sequences are predicted

at once. We evaluate a generative approach modeling with a Hidden Markov

Model (HMM) [Bau+70] and a discriminative approach with the SVM-HMM

framework by Joachims et al. [JFY09].

For the HMM approach, our a-priori model consists of starting probabilities

si, transition probabilities ϕi,j and means µi and covariances σ2
i with a set of

labels i, j ∈ L. The set {xk,l|yk,l = i} denotes the feature vectors x that were

assigned the label i. The emissions features of the HMM are modeled as a

Gaussian distribution.

si =
|ŷ·,0 = i|
|ŷ·,0|

ϕi,j =
|ŷk,n = i ∧ ŷk,n+1 = j|

|ŷ·,·|
µi = mean(Xi)

σ2
i = cov(Xi, Xi)

Xi := {xk,l|yk,l = i}

Then, for a sequence of feature descriptors we find a path with highest probabil-

ity through the modeled states using Viterbi [Vit67] decoding. Smoothing, by

reserving a probability mass for unobserved transitions, did not improve results.

No a-priori model for the SVM-HMM framework is specified. The penalty

parameter for the structured SVM is set to 10 where (0.1, 1, 10, 100) have

been tried. Both of these methods did not benefit from prior dimensionality

reduction.
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Figure 6.7: The pipeline of our presented automatic transliteration approach

consists of four stages. From left to right, data extraction (web

scraping, line segmentation and line slicing), Feature pre-processing

(normalization, tokenization, descriptor computation and outlier

detection), training (data alignment and model fitting) and predic-

tion.

6.3.4 Discussion of the Generated Transliterations

Our transliteration pipeline is thus as follows. First, scraped cuneiform tablet

tracings are segmented into lines and sliced into fixed size windows. Then,

outliers are removed from this dataset. Transliteration tokens are normalized

and tokenized into radicals. These two sets of parallel data are aligned by

repeating tokens. One of the four presented models are trained on the aligned

data. Finally, a transliteration can be predicted from unseen data either

point-wise (each feature descriptor individually) or by whole sequence (all

feature descriptors of a line at once). Figure 6.7 illustrates this process.

Experiment setup To evaluate our transliteration pipeline, we employ a

10-fold sequence aware cross-validation scheme. The training and test folds

are randomly populated with continuous sequences (lines of cuneiform) so that

the count of samples (HoG feature descriptors), not the count of sequences, is

proportional to the split of train and test data.

We use two different sets of metrics to measure the classification performance

of our methods: (i) Point-wise metrics consider only slices without context

and evaluate the zero-one loss for each sample in the test set individually.

(ii) Sequence metrics evaluate the zero-one loss for complete sequences, that

is, each sample in a sequence must be correctly classified to consider such a

sentence correct as well. Good results are hard to achieve on this metric if we

take into account that sequences have usually more than 100 samples and all
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Method (Parameters) Point-wise Sequence

Baseline 0.01± 0.01 0.00± 0.00

KNN (k = 100) 0.04± 0.01 0.00± 0.00

SVC (C = 0.1) 0.05± 0.01 0.00± 0.00

HMM 0.06± 0.03 0.01± 0.02

SVM-HMM 0.02± 0.01 0.00± 0.00

Figure 6.8: Accuracy scores for point-wise prediction and whole sequence pre-

diction after 10-fold cross validation. Best performing parameters

for each method are given.

of these need to be correctly identified. We also include a baseline estimator

that provides a point-wise stratified random guess for each sample.

Evaluation Figure 6.8 summarizes the performance of the evaluated methods.

An evaluation of the parameters of the classifiers is given in Figure 6.9.

The best point-wise classifier, SVC, is five times better than the random

baseline. Given the amount of noise in our dataset, a lenient mis-classification

penalty, low value of the parameter C, provides best results. For the same

reason, the KNN classifiers perform best with a high count of neighbors

used for classification providing smooth results. The sequence classification

methods do not significantly outperform the point-wise classification methods.

Nevertheless, the HMM model is the only classifier which was capable of

correctly transliterating at least some of the sentences in the test data and

performs six times better than the random baseline. An a-priori language

model of the transliteration allowed the HMM to outperform the structured

SVM on our dataset.

The biggest challenge in our transliteration task proved to be alignment of

cuneiform signs to the respective tokens in the transliteration. Figure 6.10

shows that the classes (transliteration tokens) in our dataset have only few

data-points assigned to them and the assigned data-points do not repeat. Too

many false-positives are present in the ground truth for efficient learning. Due

to the performance of the HMM approach on whole sequences, we conclude

that cuneiform transliteration is tractable but requires significantly cleaner

data. The alignment process has to be either performed manually by experts

or learned, e.g. using the common Expectation Maximization (EM) [DLR77]

method.
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Figure 6.9: Accuracy score for point-wise prediction over various parameters.

The gray stippled line indicates mean accuracy of the the baseline

estimator.
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Figure 6.10: Transliteration tokens and assigned slices. Each token has only

few assigned slices and those often constitute only one example.

This is not enough training data to learn many of the tokens used

to describe cuneiform sign.
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6.4 Summary

In this work, published in [BKM17], we presented a first approach for automatic

transliteration of cuneiform script by learning sequence classifiers on a dataset

of parallel lines. We employed a pipeline of feature extraction, tokenization,

outlier detection, and subsequent classification of written cuneiform to predict

labels.

The main challenge is the sparsity of data to reliably train a classifier. Only

30 tablets were annotated with identifiable transliterations, tablets were

damaged, misshapen and contained in-band annotations that need to be

reliably segmented before aligning. Additionally, the transliteration did

not use a uniform notation to denote identically written cuneiform script.

The Machine Translation and Automated Analysis of Cuneiform (MTAAC,

https://cdli-gh.github.io/mtaac/about/) project has been initiated to

standardize the format of annotations and cuneiform tablet data and provide

structured ground-truth for high-level computational analysis. Homogenizing

cuneiform tracings [BMM15] into a unified description of wedges would also

alleviate the challenge of multiple annotation and tracing styles.

Nevertheless, we successfully segmented outliers and we were able to demon-

strate that some structure has been learned by showing that a sequence

classifier outperformed point-wise classifiers. In our future work we aim to

obtain a reliable segmentation of the cuneiform into words, not lines, performed

manually by experts and a uniform style of transcription also performed by

experts.
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7 Outlook and Conclusion

In this work, we cross-linked research in Assyriology to computer science and

computer linguistics by laying the groundwork for computational analysis of

cuneiform script. We developed novel foundational tools for linguistic process-

ing of cuneiform. To prove the applicability of our framework we performed

linguistic pattern analysis of cuneiform which was thus far infeasible.

Our work paves the way for quantitative research on cuneiform and consists

of four major contributions. Each step builds upon the last and establishes a

pipeline of increasing power of abstraction and reasoning capabilities.

Uniform inter-operable feature vector description Cuneiform tablets and

transcriptions are acquired from disparate sources in heterogeneous

representations. We unify these to a common and shared representation

suitable as a foundation for computational research.

Semantically robust similarity measures Cuneiform signs are highly vari-

able, but not all variations are uniquely meaningful. We developed

distance functions modeling semantic similarity for cuneiform script.

Thus, we were the first to introduce a computational notion of semantic

equality and inequality of cuneiform signs.

Segmentation-free sign spotting The fluid concept of words and lack of

whitespace in cuneiform script makes segmentation very challenging.

We circumvent brittle grammatical analysis for word separation by

adapting segmentation-free part-structured spotting with our wedge

feature representations and distance functions. We enable free-form

cuneiform sign search without any assumptions to tablet layout. With

this development we provide a crucial tool and the groundwork for

researchers in Computer Linguistics and Assyriology to analyze and gain

new insights into statistical properties of cuneiform script.
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Application of our foundational tools for analysis For the lack of any com-

putational tools for cuneiform script analysis, quantitative research was

so far not possible. We applied our framework for computational analysis

and gained new insights into patterns of wedge constellations which were

previously unattainable.

Cuneiform script is an especially challenging handwriting due to its highly

variable three dimensional signs necessitating the use of manual transcriptions

which, in turn, introduce their own set of idiosyncrasies. We tackled these

challenges by applying and evaluating a multitude of methods, in particular,

the following:

CVWW2015 We analyze the suitability of graph-based representations of

cuneiform scripts withGraph Kernels, the Spectral Decomposition,

Random Walks and Delaunay triangulation.

HIP2015 We present a unified shared description of cuneiform script based

on an explicit representation of wedge-shaped impressions and methods

for extracting these by means of Over-segmentation and Heuristic

Conflict Resolution.

ICDAR2015 We introduce distance functions for our shared descriptions of

cuneiform script by evaluating Projection Profiles with DTW, ICP,

HMM.

DAS2016 We prove the applicability of our shared description by mining

frequent patterns of wedge constellations by applying TSNE and k-

Means clustering.

ICFHR2016 We adapted part-structured spotting together with Howe [How13]

with our shared description and new distance functions, GMM and

Bag-of-properties, and evaluate to a HMM model.

ICDAR2017 We develop an approach towards automatic transcription of

retro-digitized tracings by evaluating models using HMM, Structural

Support Vector Machine (S-SVM) and KNN.

Additionally, we summarized our findings with and analyzed their applicability

for the Digital Humanities community in the following publications: [MB15]

and [BM17]. The multitude of different mathematical tools and machine
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learning methods we were able to apply to analyze cuneiform script further

underscores the generality and practical usefulness of our methods.

7.1 New Research Questions

During our research we discovered further directions and new areas in which

our methods are capable of being applied. Especially, our tools allow the

formulation of new research question.

Which novel research questions can now be posed?

Apply our foundational tools for advanced linguistic analysis. By developing

computational models and tools for cuneiform script, we enabled the first

quantitative research and development of new statistical insights. The wealth

of computer linguistic methods now made applicable to cuneiform enables for

the formulation of research questions in the, up to now, unreachable frontier

of Digital Assyriology.

Which further complex scripts are prime for computational

research?

Transfer our approach to modeling of cuneiform to the next, just as complex

and computationally inaccessible, historic writing script. Our approach to

understanding and modeling cuneiform by decomposing it into a hierarchy

of basic constituents based on tool-usage, i.e. wedge-shaped impressions and

cuneiform signs, is applicable to other highly complex languages, such as Maya

script [Fel+17]. The methods we developed for cuneiform script analysis are

also capable providing novel insights into different historic scripts.
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Which new insights can be gained by cross-referencing

disparate sources of cuneiform?

Extract our common shared wedge feature description from more different

cuneiform sources, such as photographs of original tablets. Cuneiform tablets

and tracings are available in plentiful, disparate and mutually incompatible

formats. With our work, we lifted born-digital tracings into a computationally

analyzable representation. With each additional source of cuneiform made

available to our shared wedge feature description, new opportunities arise for

cross-source analyses.

7.2 Summary

Cuneiform tablets appertain to the oldest textual artifacts, in extent com-

parable to texts written in Latin or ancient Greek. Since those tablets were

used in all of the ancient Near East for over three thousand years [Sod94],

interesting research questions can be answered regarding the development of

religion, politics, science, trade and climate change [Kan+13]. These tablets

were formed by clay and written on by impressing a rectangular stylus [Bor04]

into a wet clay tablet, leaving a wedge-shaped impression.

The digitization of cuneiform tablets and the development of databases provides

us with open access corpora of photographs, line tracings, transliterations and

translations. Major examples are the Cuneiform Digital Library Initiative

(CDLI, http://cdli.ucla.edu/) and the Open Richly Annotated Cuneiform

Corpus (ORACC, http://oracc.museum.upenn.edu/).

Cuneiform tablets are acquired by different means, including 3D-scanning

original artifacts, flatbed scanning tracings and digital tracing of originals.

We extracted wedges from born-digital tracings of cuneiform tablets by split-

ting documents into independent components and over-segmenting triangular

shapes. Then, we presented a novel approach to extract our wedge model,

from densely written and self-intersecting cuneiform script, by representing the

pattern matching process by an optimal assignment task that can be efficiently

solved by the Hungarian algorithm.

From the extracted wedges, we derived two unstructured, using graphs, and

three structured, using feature vectors, wedge representations and developed
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associated similarity metrics. We evaluated these methods on a spotting task

with a-priori segmented cuneiform signs. The results have been compared

using a precision-recall graph. We found that a six keypoint representation

with a Euclidean distance similarity metric gave the most accurate results.

On the basis of our wedge descriptors we adapted part-structured models to

enable segmentation-free spotting of wedge constellations. Additionally, we

implemented a sequential HMM, the state-of-the-art in Latin word-spotting,

for use on our dataset and evaluated both on a test dataset. Comparing results

with a precision-recall graph, we find that our approach of combining part-

structured spotting with our six keypoint model and its associated similarity

metric achieved superior performance on the spotting task.

Finally, we presented two different applications of our methods to prove the

applicability of our computational analysis tools for cuneiform. We extracted

frequent constellation of cuneiform from a set of cuneiform tablets that match

the basic constituents, radicals or word-stems, of cuneiform as defined by

experts. We also present a first approach to automatic transliteration of

cuneiform script. Lines of cuneiform script are extracted from tracings by

layout analysis and line segmentation. Then a sequential HMM is trained

on parallel sentences of slices of HoG transformed signs and the associated

transliterations.

* * *

In conclusion, we developed and evaluated several ways of processing and

manipulating cuneiform script computationally resulting in a set of tools

that serves as a basis for near future computational research in Assyriology.

Our contributions to the frontier of research in the Digital Humanities open

a completely new research focus where cuneiform script can by analyzed

quantitatively.
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Notation

S Set of strokes

S1 · · ·Sk Sets of strokes partitioned from S

si, sj ∈ S Strokes in the set S

IS ∈ S2 Set of intersecting strokes in S

|S| Cardinality (size) of a set

center(si, sj) ∈ R2 Center of intersection area

endpoints(s) ∈ (R2,R2) Endpoint of a stroke

a⃗b Vector from a to b

∥a∥ Euclidean norm

V Set of vertices

E Set of edges

L Set of labels

G = (V,E) An undirected topological graph

P (S) Power-set of a set

W ⊂ P (S) Set of all wedges

w ∈ W Wedge consisting of a set of strokes

wh ⊂ w Set of strokes for the wedge-head

wa ⊂ w Set of strokes for the wedge-arms

FK ⊂ R12 Set of all keypoint feature vectors

fK ∈ FK A keypoint feature vector

(h, a) = fK Feature subsets for the wedge-head and wedge-arms

v ∈ fk, v ∈ R2 2D-Vector projections of keypoints

FP ⊂ {0, 1}24 Set of all bag-of-properties feature vectors

fP ∈ FP A bag-of-properties feature vector

F T ⊂ R5 Set of all GMM feature vectors

fT ∈ F T A GMM feature vector
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A = {0, 1}S×W Assignment matrix from strokes to wedges

C = RS×W Cost matrix of assigning strokes to wedges

d(x, y) ∈ R Distance between two objects

k(x, y) ∈ R Kernel (dot-product) between two objects

dDTW(I, I ′) DTW distance for profile features

dDirect(X,X ′) Nearest neighbor distance between point-clouds

dICP(X,X ′) ICP distance between point clouds

kSubtree(G,G′) Sub-tree graph kernel

kRandomwalk(G,G′) Random-walk graph kernel

kSpectral(G,G′) Spectral graph kernel

D = Rm×n Assignment costs between two sets of wedges

C ⊂ W Constellation of wedges

[C] ⊂ P (W ) Set of all permutations of C

[C](p) ∈ P (W ) p-th permutation of C

t̂P Property vectors of the property feature descriptor

θ1...k Gaussian mixture parameters for k components

θ̂ Maximum likelihood estimation of parameters

µ1···k Means of k Gaussians

σ2
1···k Squared variances of k Gaussians

Σ ∈ Rk×k Covariance matrix of aforementioned Gaussians

N (µi,Σi) i-th multi-variate Gaussian distribution

p(θ | X) Probability of parameters θ given data X

dK(fK , f ′K) ∈ R Keypoint feature distance

dP (fP , f ′P ) ∈ R Bag-of-properties feature distance

dT (fT , f ′T ) ∈ R Template feature distance
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