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Abstract

A chromophore (greek, χρω̃µα ”color”, ϕoρóς, ”carrying”) is a molecule that

appears colorful to the human eye in sunlight. The recognized color is related

to the wavelength of light, or in face of particle-wave dualism, to the energy

of photons absorbed by the molecule. Light absorption, also called photo-

excitation, corresponds to a transition of the molecule from its ground state to

an electronically excited state. The energy gained during excitation allows the

molecule to undergo manifold chemical and physical processes, giving rise to

the presents of a phlethora of chromophores in nature and technology. In order

to rationalize these light-induced processes, the involved electronic ground and

excited states of a molecule can be investigated by means of quantum-chemical

methods. These allow to determine the energy and properties of the molecule

in its different electronic states. An important step in the interpretation of the

results of such calculations is to determine the character of an excited state,

which is directly connected with many properties, such as the interaction with

an environment, reaction pathways and deexcitation processes. The aim of

this work is to develop new tools for the investigation of excited states, their

characters, and quantum-chemical methods for their description.

The central idea is to rationalize excited states in terms of correlated electron-

hole quasiparticles, i.e. excitons, a concept from solid-state physics. The work-

ing hypothesis is to identify the one-particle transition density matrix (1TDM)

as an effective electron-hole (i.e. exciton) wave function. The character of an

excited state can in turn be determined from the calculated exciton properties.

These properties are computed by evaluating expectation values of the exciton

wave function with respect to operators of interest. In practice, several proto-

cols have been developed, which characterize spatial and statistical properties

of the electron-hole quasiparticle. These excited-state descriptors are directly

comparable to results from solid-state physics as well as from experiments,

emphasizing their physical significance. In contrast to standard approaches,

deriving excited-state characters from exciton properties has some immediate

advantages. Different types of excited states such as charge-transfer, Rydberg

or local, can be directly determined according to a few exciton descriptors. The

use of quantitative descriptors is comparably unbiased, since it does not rely on

an ambiguous visual interpretation of molecular orbitals (MOs) involved in the

electronic transition. Moreover, exciton descriptors allow to investigate excited

states that are poorly represented in the MO picture. Since exciton analysis is

based on the 1TDM, which is a method-independent quantity, the descriptors

allow to investigate quantitative differences between the descriptions of excited

states at various levels of theory.
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The presented approach is particularly relevant for molecules featuring ex-

cited states with exciton character. A particularly important substance class

are large π-conjugated organic molecules. Here, delocalized π-electrons play

a decisive role and require precise description of correlation effects, posing a

challenge for quantum-chemical methods. The scientific interest in large π-

conjugated organic molecules is triggered by their special electronic properties,

which are applied in organic electronics. In the course of this work, a variety

of excited states of extended π-conjugated organic molecules is calculated by

means of correlated ab initio methods as well as by time-dependent density

functional theory (TDDFT) and subjected to exciton analysis. In Chapter 3,

exciton sizes are investigated for excited states of poly(para phenylene viny-

lene) (PPV) oligomers and polyacenes. Excited states are found to differ in

exciton sizes depending on irreducible representations and multiplicities. In

Chapter 4, PPV is thoroughly investigated as a prototypical organic semi-

conductor to rationalize its exciton properties from a quantum-chemical per-

spective. The emergence of excitonic states is examined for a series of PPV

oligomers with different chain length. It is found that exciton formation takes

place for oligomers with four or more building blocks. To gain insight into the

spectroscopic properties of the PPV polymer, the largest still computationally

feasible representative, the octamer (PV)7P is studied intensely. A system-

atic analysis of forty excited states allows to examine their exciton characters

in detail. The investigated excitons are found to have well-defined structures

that can be rationalized in terms of Frenkel and Wannier exciton models. The

results are in good agreement with experimental findings and band-structure

calculations of PPV. To investigate the effects of exciton formation for a more

chemically diverse set of molecules, a variety of aromats as well as heteroaro-

mats are investigated in Chapter 6. It is found that the first excited state

of these π-systems has a uniform exciton character with an exciton size con-

verging towards 7 Å very similar to the trends in PPV. The explicit chemical

structures and presence of heteroatoms have surprisingly little influence on this

character.

Shifting the focus to methodological aspects, Chapter 6 reveals the influence

of exchange-correlation (xc) functionals on the description of exciton proper-

ties in TDDFT. By comparing exciton sizes and electron-hole correlation coef-

ficients, it is found that there are major differences in the excited-state descrip-

tion for the tested xc-functionals. The trends amongst different xc-functionals

suggest that these deviations are mostly governed by the amount of nonlocal

orbital exchange (NLX) in the xc-functionals. This finding is of great signif-

icance showing that a single parameter can induce a complete change in the

electron-hole interaction from repelling (anti-correlated) to strongly attractive
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(correlated). A more general investigation of the same effect is presented for

Tozer’s benchmark set in Chapter 5. This set is composed of a broad selection

of molecules featuring different types of excited states and designed to develop

diagnostic tools for TDDFT. It is well-known that excited states which involve

nonlocal electron transitions, such as charge-transfer, Rydberg or π → π∗ states

of extended π-systems, show systematic errors in excitation energy for different

types of xc-functionals. Here, exciton descriptors reveal that these errors are

related to substantial differences in the description of the respective excited

states by the xc-functionals. Since exciton descriptors are able to identify all

problematic cases, they are suggested as diagnostic tools for TDDFT.

Ultimately, Chapter 7 focuses on the evaluation of excited-state methods.

For this purpose, the selection of methods is extended to include also equation-

of-motion coupled-cluster singles doubles (EOM-CCSD) and a diverse set of

applications is investigated. Exciton properties calculated with correlated ab

initio methods (ADC(2), ADC(3) and EOM-CCSD), as well as TDDFT are

compared, revealing strengths and weaknesses of the methods in different ap-

plications. The most important outcome of investiging exciton properties is

that accuracy in terms of excitation energies is not necessary a measure for

the quality of description of the underlying wave function and properties of a

system. In fact, the best agreement in terms of exciton properties with respect

to high level ab initio data is obtained with an xc-functional that is the least

accurate in terms of excitation energies for several examples.

The presented approach is publically available as open-source code package

libwfa and integrated in the Q-Chem program package.
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Zusammenfassung

Ein Chromophor (griechisch, χρω̃µα ”Farbe”, ϕoρóς, ”tragend”) ist ein Mo-

lekül, das dem menschlichen Auge im Sonnenlicht farbig erscheint. Die wahrge-

nommene Farbe steht in Bezug zur Wellenlänge des Lichts, oder in Anbetracht

des Welle-Teilchen Dualismus, zur Energie des vom Molekül absorbierten Pho-

tons. Durch die Absorption eines Photons wird ein Molekül “angeregt”, das

heißt, es geht von seinem Grundzustand in einen elektronisch angeregten Zu-

stand über. Die dabei aufgenommene Energie steht dem Molekül für vielfältige

chemische und physikalische Prozesse zur Verfügung, die in Natur und Technik

oft wichtige Rollen spielen. Um diese Prozesse zu verstehen, können die beteilig-

ten elektronischen Zustände eines Moleküls mit quantenchemischen Methoden

untersucht werden. Diese ermöglichen Energie und Eigenschaften der elektroni-

schen Zustände anhand von Wellenfunktionen und Dichten zu berechnen. Zur

Interpretation der Ergebnisse dieser Rechnungen ist die Bestimmung des Cha-

rakters eines angeregten Zustandes zentral, da dieser Rückschlüsse auf Eigen-

schaften wie beispielsweise Umgebungswechselwirkung, mögliche Reaktionspfa-

de und Abregungsprozesse zulässt. Das Ziel dieser Arbeit ist die Entwicklung

von neuen Analysemethoden zur Charaktisierung von elektronisch angeregten

Zuständen und zur systematischen Untersuchung der zugrundeliegenden quan-

tenchemischen Methoden.

Der Ansatzpunkt der entwickelten Methodik ist die Interpretation von elek-

tronisch angeregten Zuständen als korrelierte Elektron-Loch Quasiteilchen, auch

Exzitonen genannt, einem Konzept aus der Festkörperphysik. Die Grundannah-

me ist dabei, dass Einteilchenübergangsdichtematrizen als Exzitonwellenfunk-

tionen interpretierten werden können. Der Charakter eines angeregten Zustands

kann somit aus den Eigenschaften des Exzitons bestimmt werden, welche als Er-

wartungswerte der Exzitonwellenfunktion berechnen werden können. Konkret

werden Protokolle zur Berechnung von räumlichen und statistischen Eigen-

schaften der Elektron-Loch Quasiteilchen entwickelt. Diese Größen können di-

rekt mit Ergebnissen aus der Festkörperphysik und experimentellen Messungen

verglichen werden, was ihre physikalische Bedeutung zeigt. Außerdem ergeben

sich einige Vorteile bei der Bestimmung des Charakters angeregter Zustände an-

hand exzitonischer Eigenschaften. Verschiedene Arten angeregter Zustände wie

zum Beispiel charge-transfer, Rydberg, lokal, etc. können durch wenige Deskrip-

toren eindeutig bestimmt werden. Die Untersuchung quantitativer Deskripto-

ren ist dabei vergleichsweise objektiv, da sie keine subjektiven Interpretation

der am Übergang beteiligten Molekülorbitale (MOs) erfordert. Zudem können

auch solche angeregten Zuständen untersucht werden, die im Molekülorbitalbild

schlecht repräsentiert werden. Aufgrund der methoden-unabhängigen Definiti-
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on der Deskriptoren ist es möglich den Einfluss quantenchemischer Methoden

auf die Beschreibung angeregter Zustände quantitativ zu untersuchen.

Die entwickelte Analyse ist besonders relevant für Moleküle, deren angeregte

Zustände exzitonischen Charakter haben. Eine Molekülklasse mit diesen Eigen-

schaften sind große konjugierte π-Systeme. Delokalisierte π-Elektronen spielen

hierbei eine entscheidende Rolle und stellen gleichzeitig eine Herausforderung

für quantenchemische Methoden dar. Die daraus resultierenden, besonderen

elektronischen Eigenschaften großer π-Systeme sind von wissenschaftlichem In-

teresse und finden im Bereich der organischen Elektronik Anwendung. Diese

Arbeit beschäftigt sich mit der quantenchemischen Untersuchung von angereg-

ten Zuständen großer π-konjugierter Moleküle. Diese werden mit korrelierten ab

initio Methoden und zeitabhängiger Dichtefunktionaltheorie (TDDFT) berech-

net und auf exzitonische Eigenschaften untersucht. In Kapitel 3 werden Exzito-

nengrößen von Poly(para phenylen vinylen) (PPV) Oligomeren und Polyacenen

untersucht. Hierbei geben die Exzitonengrößen Hinweis auf unterschiedliche

exzitonische Eigenschaften der Zustände aus verschiedenen irreduzible Darstel-

lungen oder Multiplizitäten. Kapitel 4 befasst sich mit der Untersuchung des

prototypischen PPV, welches eine Schlüsselrolle zum Verständnis von orga-

nischen Halbleitermaterialien spielt. Die Entstehung von Exzitonen wird für

PPV Oligomere in Abhängigkeit der Molekülgröße untersucht und wird ab vier

Untereinheiten deutlich, was einer Kettenlänge von ca. 30 Å entspricht. Um

die spektroskopischen Eigenschaften des Polymers aus quantenchemischer Per-

spektive nachzuvollziehen, wird das Oktamer als größtes Modellsystem inten-

siv untersucht. Eine systematische Analyse von vierzig angeregten Zuständen

ermöglicht die Charaktersierung verschiedener Exzitonen, die mit Frenkel und

Wannier Exzitonmodellen interpretiert werden können. Dabei bestätigen die

Ergebnisse experimentelle Befunde und die berechnete Bandstruktur von PPV.

Eine Betrachtung einer allgemeineren Auswahl an π-konjugierten Systemen

wird in Kapitel 6 vorgestellt. Hier werden neben einer Reihe von reinen Aro-

maten auch Heteroaromaten untersucht. Dabei zeigt sich, dass der erste ange-

regte Zustand dieser Moleküle einen einheitlichen exzitonischen Charakter mit

einer Exzitonengröße von ca. 7 Å besitzt und damit überraschend unabhängig

von Details in der chemischen Struktur wie beispielsweise der Verknüpfung von

Untereinheiten oder der Einführung von Heteroatomen ist.

Ein methodischer Aspekt von Kapitel 6 befasst sich mit der Beschreibung

von Exzitonen durch verschiedene Austausch-Korrelations-Funktionale mittels

TDDFT. Der Vergleich von Exzitonengrößen und Elektron-Loch Korrelation

zeigt, dass Austausch-Korrelations- (xc) Funktionale einen erheblichen Ein-

fluss auf den Charakter angeregter Zustände haben. Dabei legen die Trends

in den Deskriptoren nahe, dass die Ursache in den unterschiedlichen Anteilen
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an exaktem Orbitalaustausch in den xc-Funktionalen liegt. Der beobachtete

Effekt ist drastisch, da eine schlichte Veränderung eines Parameters die phy-

sikalischen Eigenschaften des Elektron-Loch Paares vollständig ändern kann

in einem Spektrum von sich gegenseitig abstoßend (antikorreliert) bis sich

stark anziehend (korreliert). Eine allgemeinere Untersuchung des gleichen Ef-

fekts wird in Kapitel 5 für Tozers Datensatz vorgestellt. Dieser enthält eine

Auswahl an Molekülen mit unterschiedlichen Arten von angeregten Zuständen

wie lokale, charge-transfer, Rydberg und π → π∗ Zuständen ausgedehnter π-

Systeme und wurde zur Entwicklung diagnostischer Werkzeuge für TDDFT

entworfen. Nichtlokale angeregte Zustände weisen bekanntermaßen systemati-

sche Abweichungen von experimentellen Anregungsenergien für unterschiedli-

che xc-Funktionale auf. Die Untersuchung der angeregten Zustände mit Exzi-

tondeskriptoren zeigt systematische Unterschiede in deren Beschreibung durch

unterschiedliche xc-Funktionale, welche die Abweichungen in Anregungsenergi-

en erklären. Da Exzitondeskriptoren in der Lage sind alle problematischen Fälle

zu identifizieren und zu charakterisieren, eignen sie sich somit als diagnostische

Werkzeuge für TDDFT.

In Kapitel 7 wird die Methodenevaluierung anhand exzitonischer Eigen-

schaften auf neue Methoden und eine breite Auswahl angeregter Zustände

ausgeweitet und zusammenfassend betrachtet. Dabei werden insbesondere die

Algebraisch-Diagrammatische Konstruktionsmethode für den Polarisationspro-

pagator (ADC), die Bewegungsgleichungsvariante der Coupled-Cluster Theo-

rie (EOM-CCSD) und TDDFT verglichen, wobei deren jeweilige Stärken und

Schwächen in verschiedenen Anwendungen deutlich werden. Während quan-

tenchemische Methoden in der Regel an der Genauigkeit in der Reproduktion

von Referenz-Anregungsenergien beurteilt werden, zeigt die Untersuchung von

Exzitoneigenschaften, dass dieses Kriterium nicht notwendigerweise die Qua-

lität der zugrundeliegenden Wellenfunktionen und Eigenschaften des Systems

abbildet. Tatsächlich werden die besten Übereinstimmungen in exzitonischen

Eigenschaften mit ab initio Referenzen für ein xc-Funktional gefunden, des-

sen Anregungsenergien in den entspechenden Fällen die geringste Genauigkeit

aufweist.

Die entwickelte Analysemethodik ist als open-source Programmpaket libwfa

veröffentlicht und in Q-Chem integriert.
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Abbreviations

1TDM one-particle transition density matrix

2TDM two-particle transition density matrix

ADC algebraic-diagrammatic construction

BSE Bethe-Salpeter equation

CI configuration interaction

CIS configuration interaction singles

CT charge transfer

DFT density functional theory

DMABN 4-(N,N -dimethylamino)benzonitrile

EOM-CCSD equation-of-motion coupled-cluster singles doubles

ES excited state

GGA generalized gradient approximation

GS ground state

HF Hartree Fock

KS Kohn-Sham

LDA local density approximation

LRC long-range corrected

MgP magnesium porphyrin

NLX nonlocal orbital exchange

NTO natural transition orbital

MO molecular orbital

MP Møller Plesser

PPV poly(para phenylene vinylene)

PT perturbation theory

rms root mean square

SE Schrödinger equation

SI supplementary information

TDA Tamm-Dancoff approximation

TDDFT time-dependent density functional theory

xc exchange-correlation
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Chapter 1

Theory and computational
methods

The aim of this chapter is to introduce quantum-chemical methods and con-

cepts that describe molecules in their electronic ground and excited states,

which constitutes the basis of this work. The review starts with the descrip-

tion of quantum-chemical systems by means of the Schrödinger equation (SE),

followed by a discussion of the Born-Oppenheimer approximation and its im-

plications for molecules. Illustrating ways to find approximate solutions of the

electronic SE for the electronic ground state, the concepts of mean-field theory,

Hartree-Fock and density functional theory are reviewed. Afterwards configura-

tion interaction (CI) is discussed as approach to account for electron correlation

explicitly. As basic method for the calculation of electronically excited-states,

configuration interaction singles is presented, which is the simplest truncated

CI method. Subsequently, time-dependent density functional theory and the

Tamm-Dancoff approximation are introduced. As representative of correlated

wave-function-based excited-state methods, the algebraic-diagrammatic con-

struction (ADC) for the polarization propagator method is presented. Ulti-

mately, stategies for the analysis of excited states and electronic transitions are

discussed.
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Chapter 1. Theory and computational methods

Let me start with an overview of central ideas and important methods

for describing the electronic structure of a molecular system, in particular its

electronic ground and excited states. The equations presented here are funda-

mental in electronic structure theory and have been reformulated in countless

publications. Where no explicit reference is given, the reader is referred to

Ref. 1. As general remark for the reader of this work, the term ”excited state”

always refers to an electronically excited state, if not stated otherwise.

1.1 Molecular Schrödinger equation

A central task in quantum chemistry is to solve the time-independent molecu-

lar Schrödinger equation (SE). This equation contains information about sta-

tionary states of a system, and allows to characterize them in terms of wave

functions and energies. The Schrödinger equation is an eigenvalue equation

ĤmolΨmol = EmolΨmol , (1.1)

where Ĥmol is the Hamiltonian, that is, the total energy operator, Ψmol the

wave function and Emol the energy of the molecular system. Considering dif-

ferent energy terms and the fact that molecules are composed of nuclei (cores,

nuc) and electrons (ele), the molecular Hamiltonian takes the form

Ĥmol = T̂nuc + T̂ele + V̂nuc + V̂ele − V̂nuc−ele , (1.2)

where T̂nuc and T̂ele are the kinetic energy operators, V̂nuc and V̂ele are the

potential energy operators of nucleus-nucleus and electron-electron interaction,

respectively, and V̂nuc−ele describes the electron-nucleus attraction. For a sys-

tem with N nuclei and n electrons, the operators in eq. (1.2) can be expressed

explicitly as

Ĥmol =−
N∑

A=1

1

2mA
∇2

A −
n∑

i=1

1

2
∇2

i (1.3)

+

N∑

A=1

N∑

B>A

ZAZB

RA −RB
+

n∑

i=1

n∑

j>i

1

ri − rj
(1.4)

−
N∑

A=1

n∑

i=1

ZA

RA − ri
(1.5)

where mA is the mass, ZA is the charge and RA is the spatial coordinate of the

Ath nucleus, and ri is the spatial coordinate of the ith electron. Eq. (1.5) is

given in atomic units, i.e., ~, e, me and 4πǫ0 are set to one. Since the SE is a

2



1.2. Born-Oppenheimer approximation

(N + n)-body problem, an analytical solution of the SE can only be obtained

for hydrogenic systems containing two particles. For any other chemically rele-

vant system, approximations are necessary, and only approximate solutions of

the SE can be obtained. In the following, the most important concepts and

approximations for solving the molecular SE are reviewed.

1.2 Born-Oppenheimer approximation

The Born-Oppenheimer approximation2 is based upon the fact that electrons

and nuclei possess different masses. Electrons are approximately 1840 times

lighter than protons, and thus react much faster to changes in the molecular

potential. Hence, the wave function can be approximated as a product of a

nuclear and an electronic wave function according to

Ψ(ri;R) =
∑

i

Θ(R)Ψi(ri;R) . (1.6)

The main concern of this work is to find solutions for the electronic part of

the SE. Revisiting the structure of the molecular Hamiltonian in eq. (1.5) and

neglecting nuclear motion, the expression can be simplified to obtain an elec-

tronic Hamiltonian, in which the nuclear kinetic energy is zero and nuclear

coordinates become a set of parameters R

Ĥele(r;R) = T̂ele(r) + V̂nuc,const.(R) + V̂ele(r)− V̂nuc−ele(r;R) . (1.7)

An immediate consequence of the Born-Oppenheimer approximation is the

existence of potential energy surfaces, which map the energy of electronic states

against the nuclear geometry. Any given change in geometry can be associated

with a change of the energy of the system and it is possible to plot e.g. two-

dimensional representation of the potential energy hypersurface by scanning

changes in energy along a chosen coordinate, cf. Fig. 1.1.

The electronic SE has many solutions, which can be categorized according

to their energy. The energetically lowest solution is identified as the ground

state of a system, while low lying electronically excited states are important

for photochemistry and -physics. A transition from the ground state to an

excited state typically involves the absorption of a photon, that is, a photo-

excitation. This process can be rationalized by the Franck-Condon principle.3,4

In this picture, the excitation takes place from the ground-state minimum to

the excited-state surface at this geometry, and hence, this type of excitation is

called vertical, cf. Fig. 1.1. After the initial excitation, the excited molecule

can undergo several processes depending on the shape of the energy surface and

3
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Epot

R

ES

GS

Figure 1.1: 2-D plot of potential energy surface (Epot) of ground (GS) and
excited state (ES) against the nuclear coordinate R. The arrow indicates the
vertical transition from the ground-state minimum to the excited-state energy
surface according to the Franck-Condon principle.

character of the excited state. These processes include energy dissipation via

different channels involving electronic and nuclear degrees of freedom, such as

internal conversion, inter-system crossing, thermal cooling, fluorescence, phos-

phorescence, and excited-state absorption. However, these processes will only

be considered in very few cases and the main concern of this work is to study

the structure of the excited state at the Franck-Condon point, that is, the

ground-state optimized geometry.

1.3 Mean-field theory

Mean-field theory transforms an unsoluble many-body problem into a set of

coupled one-particle problems. As an ansatz for fermionic systems, a n-electron

wave function Φele can be expressed anti-symmetrized product of one-electron

wave functions [{ψi(r)}], which is a Slater determinant

Φele(r1, r2, ..., rn) =
1√
n!

ψ1(r1) ψ1(r2) · · · ψ1(rn)

ψ2(r1) ψ2(r2) · · · ψ2(rn)
...

...
. . .

...

ψn(r1) ψn(r2) · · · ψn(rn)

. (1.8)

This ansatz can be plugged into the electronic SE in order to find an approxi-

mate solution for the electronic ground state. For this purpose, the one-particle

wave functions are optimized according to Ritz’s variational principle.5 This

principle states that a trial wave function Ψ′ always corresponds to an energy

4



1.4. Hartree Fock method

which is greater or equal to the exact result:

〈Ψ′|Ĥ|Ψ′〉
〈Ψ′|Ψ′〉 ≥ Eexact . (1.9)

Plugging the wave function ansatz of eq. (1.8) into the electronic SE and impos-

ing the one-electron wave functions to form an orthonormal basis, the following

Lagrangian is obtained

L[{ψi}] = 〈Φ|Ĥele|Φ〉+
∑

k

λ(〈Φ|Φ〉 − 1) . (1.10)

One important consequence of the mean-field approach is that each electron

experiences a mean field of all other electrons and thus, electron-electron in-

teraction is approximated. Two prominent methods are built upon mean-field

theory and constitute the basis of modern quantum chemistry, namely Hartree

Fock and density functional theory, which will be discussed in the following.

1.4 Hartree Fock method

Hartree Fock6 is a method to find a solution of the electronic SE for the

electronic ground state and is built upon mean-field theory. Evaluating the

electronic SE for a single Slater determinant according to the Slater-Condon

rules7,8 allows to formulate an expression for the Hartree-Fock energy

EHF
0 = 〈Φ|Ĥ|Φ〉 =

occ∑

i

〈ψi|ĥ|ψi〉+
1

2

occ∑

ij

(〈ij|ij〉 − 〈ij|ji〉) (1.11)

=
occ∑

i

hi +
1

2

occ∑

ij

(Jij −Kij) . (1.12)

with

〈ψi|ĥ|ψi〉 =
∫
ψ∗
i (r)

[
−1

2
∇2 −

∑

A

ZA

|r −RA|

]
ψi(r)dr

〈ij|ij〉 =
∫∫

ψ∗
i (r)ψ

∗
j (r

′)ψj(r
′)ψi(r)

|r − r′| drdr′ .

The HF energy has three components. The first hi only depends on one particle

and contains the kinetic energy and Coulomb interaction with the nuclei. The

second and third terms, Jij and Kij , depend on two particles and describe the

electron-electron Coulomb and exchange interaction, respectively. To avoid

double counting, these terms are multiplied by 1
2 in the HF energy equation

(eq. (1.12)). Plugging eq. (1.12) into eq. (1.10), a Lagrangian for HF can be

5
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obtained as

LHF =

occ∑

i

hi +
1

2

occ∑

ij

(Jij −Kij)−
∑

ij

λij(〈ψi|ψj〉 − 1) . (1.13)

Taking the derivative of this Lagrangian with respect to 〈ψi|

∂LHF

∂ψ∗
i

=


ĥ+

1

2

∑

j

(
Ĵj [ψ]− K̂j [ψ]

)

ψi(r)−

∑

j

λijψj(r) (1.14)

and setting this equation to zero, yields the Hartree-Fock equations

LHF([ψ])ψi(r) =
∑

j

λijψi(r) ; (1.15)

F̂ [ψ]ψi(r) = εiψi(r) , i = 1, ..., n . (1.16)

Summing over all electrons i, eq. (1.16) can be expressed in matrix form as

F[Cn]C(n+1) = εSC(n+1) . (1.17)

The Fock equations are a set of non-linear differential equations, that is, the op-

erator F[Cn] already depends on the solution. To find an optimal solution, the

one-electron wave functions are optimized iteratively in a self-consistent-field

(SCF) procedure. For this purpose, the Fock matrix F[Cn] is constructed from

an approximate solution n to obtain C(n+1), which is then used to construct

a more accurate Fock matrix F[C(n+1)]. This procedure is repeated until self-

consistency is reached. The optimized one-electron wave functions correspond

to the optimal solution for the given ansatz and basis set.

Solutions of Hartree-Fock calculations have some interesting properties.

The eigenvalue εi of each one-electron wave function ψi is usually referred

to as orbital energy. Orbital energies of closed-shell systems can be interpreted

according to Koopmans’ theorem.9 Negative (positive) orbital energies of oc-

cupied (unoccupied) orbitals correspond to the ionization potential (electron

affinity). The HF ground state does not couple to singly excited determinants

as described by Brillouin’s theorem.

In practice, HF theory is too inaccurate for chemical predictions, since ex-

plicit electron-electron interaction is neglected in the mean-field picture. The

difference between the HF energy and the exact energy is defined as correla-

tion energy Ecorr = Eexact − EHF. A path to improve HF energies and wave

functions systematically is to account for electron correlation explicitly. There

are several ab initio methods, which improve the HF reference by adding cor-

relation energy terms using different schemes. These are the Møller Plesser10

6



1.5. Density functional theory

(MP) family, Coupled Cluster (CC) theory and Configuration Interaction (CI)

methods, the last of which will be discussed in Sec. 1.6.

1.5 Density functional theory

An alternative approach to HF is formulated in density functional theory

(DFT). Instead of solving the complex many-body wave function problem of

the SE, the idea is to determine the energy (and properties) of the system based

on the three-dimensional electron density

E =

∫
E(ρ)ρ(r)dr (1.18)

where ρ is the electron density and E(ρ) is the total energy functional. The

electron density can be determined from a known wave function as

ρ(r) =

∫
...

∫
Ψ∗(x1, ..., xn)Ψ(x1, ..., xn)ds1, ..., dxn (1.19)

with spin-spatial electron coordinates xi = (rx, ry, rz, si)
T . The original idea

of DFT is, however, to determine ρ directly, that is, without knowing the wave

function beforehand.

The Hohenberg-Kohn theorems11 provide the basis for density functional

theory. The first Hohenberg-Kohn theorem proves that a one-to-one mapping

exists between the exact electron density ρ and the exact external potential

vext. This exact external potential determines the exact ground-state wave

function, and the wave function itself is a functional of the electron density.

The second Hohenberg-Kohn theorem ensures a variational principle, that the

energy of a trial density is always higher than the energy of the exact density.

The energy of a system can thus be written as a functional of the density

EDFT[ρ] = T [ρ] + J [ρ] + Exc[ρ] + vext[ρ](r) , (1.20)

where T [ρ] is the kinetic energy (expressed as function of the electron density),

J [ρ] is the Coulomb energy describing electron repulsion, Exc[ρ] is the exchange-

correlation energy, and vext is the external potential.

So far, density functional theory is exact. However, no procedure describes

how to obtain the exact density directly. A practical solution for this problem

was introduced by Kohn and Sham.12 They suggested to describe the density

of a system by a non-interacting system with the same properties. Such a non-

interacting system of fermions can be described by a single Slater determinant

(giving rise to the formal connection between DFT and HF). By doing this,

7
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the density of a system can be constructed from a set of orbitals, the Kohn-

Sham (KS) orbitals. The KS-orbitals themselves can obtained by solving the

so-called Kohn-Sham equations,12 that is, a set of n coupled equations

(
1

2
∇2 + veff (~r)− εi

)
ψi(~r) = 0 ; i = 1, ..., n , (1.21)

where veff is the effective (Kohn-Sham) potential, and εi is the energy of the

ith Kohn-Sham orbital ψi. The effective potential is given as

veff (~r) = vext(~r) +

∫
ρ(~r′)

|~r − ~r′|
d~r′ +

δExc [ρ]

δρ(~r)
, (1.22)

where the first term vext is the external potential containing at least the

electron-nuclei attraction, the second term corresponds to the Coulomb po-

tential between electrons, and the third term is the derivative of the exchange-

correlation energy with respect to the electron density, that is a functional of

the density. For KS-DFT, eq. (1.21) transformes into

EKS[{ψi}, ρ] = T [{ψi}] + J [ρ] + vext[ρ](r) + fxc[ρ](r) . (1.23)

The last term of eq. (1.23) is the exchange-correlation functional fxc and

its structure is unknown. Hence, approximate exchange-correlation (xc) func-

tionals have to be used in practice. The development of xc-functionals is based

upon (more or less) empirical approaches, and is an active field of research.

Accounting for electron interaction by means of empirical parameters often

results in a significantly better accuracy compared to HF. State-of-the-art xc-

functionals often yield accuracies comparable to correlated ab initio methods

at a fraction of the computational cost. However, the empirical character of

xc-functionals undermines the reliability of DFT, and thus, benchmarking is

very important to examine the applicability and robustness of xc-functionals

for different applications.13

Since this work is concerned with investigating effects of xc-functionals on

the description of excited states (see Chapt. 5−7), the construction principles

will be discussed in the following. Exchange-correlation functionals can be

classified according to a Jacob’s ladder.14,15 The rungs correspond to different

ingredients for the construction of the xc-functionals. These are the local den-

sity approximation (LDA), local generalized gradient approximation (GGA),

meta-GGA, hybrid and double-hybrid functionals.

In the local density approximation (LDA) the exchange-correlation energy

Exc[ρ] is calculated at a given position as a function of the local density at the

same position. In local generalized gradient approximation (GGA) functionals

8



1.5. Density functional theory

also the local density gradient is taken into account, which corresponds to the

first derivative of the density at the given position (Exc[ρ,∇ρ] ). Meta-GGA

functionals use the same ingredients as GGAs, and additionally account for

the local kinetic energy density at the given position (Exc[ρ,∇ρ,∇2ρ]). Histor-

ically, an ultimate break through in applicability of DFT for the description of

molecules was the development of hybrid schemes. Hybrid functionals combine

a fraction of exchange energy calculated by pure density functionals with a

fraction of Hartree-Fock-type, nonlocal orbital exchange (NLX) calculated for

the Kohn-Sham orbitals of the investigated system. For example, in Becke’s

prominent three-parameter xc-functional B3LYP,16 the exchange-correlation

energy takes the form

EB3LYP
xc = a0Ex,HF + (1− a0)Ex,Slater + ax∆Ex,Becke88

+ (1− ac)Ec,VWN + ac∆Ec,LYP , (1.24)

where Ex,HF is the NLX energy obtained for the Kohn-Sham orbitals, Ex,Slater

is the uniform electron-gas exchange energy,17 ∆Ex,Becke88 is the generalized

gradient approximation for exchange formulated by Becke,18 Ec,VWN is the

correlation energy according to Vosko, Wilk and Nusair,19 and ∆Ec,LYP is

the correlation energy according to the Lee-Yang-Parr functional.20 The three

parameters a0, ax and ac are optimized for atomization energies. In B3LYP,

the NLX energy is constant with a0 = 0.21 independent of the interelectronic

distance. The consequences of this choice for excited-state calculations will be

discussed in Chapters 5, 6 and 7. Double hybrid functionals extend the hybrid

scheme by describing electron correlation explicitly via excited determinants

(cf. Ref. 21).

In summary, modern density functional theory is an empirically parame-

trized method, that obtaines reasonably accurate results for a broad range of

applications, when employing an appropriate xc-functional.22,23 However, there

are some noteworthy issues. The variational principle in DFT is only true for

the non-interacting system within the chosen xc-functional approximation, and

the obtained energy is not necessarily greater than the exact solution of the

real system. A fundamental issue is connected to the mathematical structure

of exchange-correlation functionals. In HF, the exchange and Coulomb terms

cancel out if i = j, that is, a particle does not self-interact. In DFT, this cancel-

lation is incomplete due to the xc-functional definition, cf. eq. (1.24). Another

central issue is connected to the absence of a proper description of long-range

electron interaction.22 This leads to problems in describing London dispersion,

extended π-systems, charge-transfer states and bond cleavage. It is important

to note that issues in DFT can affect TDDFT in two ways: (i) through affect-

9
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ing the ground-state reference and (ii) through the linear-response formulation

of TDDFT, which can translate them into TDDFT-specific issues.

1.6 Configuration interaction

Configuration interaction24 is a post-HF ab initio method, which constructs

excited determinants of ground-state Hartree-Fock references, and uses them to

describe electron correlation and excited states. In full configutation interaction

(full-CI) the exact ground state wave function can be expressed as

ΨCI
0 = c0Φ

HF
0 +

∑

ia

caiΦ
a
i +

∑

i<j,a<b

cabij Φ
ab
ij + ...+

∑

n

cnΦn , (1.25)

where ΦHF
0 is the Hartree-Fock wave function, Φa

i are singly excited determi-

nants with particle transitions from ψi to ψa, Φ
ab
ij are doubly excited determi-

nants, etc., and ck are coefficients weighting each contribution. The indices i, j

correspond to occupied, and a, b to unoccupied orbitals of the HF reference.

Introducing a short-hand notation for different components of the full-CI wave

functions, these are categorized according to the type of excitation

c0Φ0 = c00 (1.26)
∑

ia

caiΦ
a
i = cSS (1.27)

∑

i<j,a<b

cabij Φ
ab
ij = cDD , (1.28)

and so on. To obtain the full-CI energy, eq. (1.25) is plugged into the SE

Ĥ|ΨCI
0 〉 = ECI|ΨCI

0 〉 (1.29)

and left-multiply with 〈ΨCI
0 |. The task is then to diagonalize the CI matrix.

The CI matrix collects interaction between different configurations in terms

of expectation values with respect to the Hamiltonian, and has the general

structure




〈0|Ĥ|0〉 〈0|Ĥ|S〉 〈0|Ĥ|D〉 〈0|Ĥ|T 〉 · · ·
〈S|Ĥ|0〉 〈S|Ĥ|S〉 〈S|Ĥ|D〉 〈S|Ĥ|T 〉 · · ·
〈D|Ĥ|0〉 〈D|Ĥ|S〉 〈D|Ĥ|D〉 〈D|Ĥ|T 〉 · · ·
〈T |Ĥ|0〉 〈T |Ĥ|S〉 〈T |Ĥ|D〉 〈T |Ĥ|T 〉 · · ·

...
...

...
...

. . .




. (1.30)
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According to the Slater-Condon rules, the expectation value for a two particle

operator is zero if the determinants differ by more than two orbitals. Moreover,

Brillouin’s theorem states that singly excited determinants do not couple to the

electronic ground state. Therefore, the matrix in (1.30) can be reduced to a

tridiagonal form




〈0|Ĥ|0〉 0 〈0|Ĥ|D〉 0 0

0 〈S|Ĥ|S〉 〈S|Ĥ|D〉 〈S|Ĥ|T 〉 0

〈D|Ĥ|0〉 〈D|Ĥ|S〉 〈D|Ĥ|D〉 〈D|Ĥ|T 〉 . . .

0 〈T |Ĥ|S〉 〈T |Ĥ|D〉 〈T |Ĥ|T 〉 . . .

0 0
. . .

. . .
. . .




(1.31)

A set of eigenfunctions (wave functions) and eigenvalues (energies) can be ob-

tained by diagonalizing the full Hamiltonian matrix. The lowest-energy so-

lution of the full-CI matrix corresponds to the electronic ground state of the

system. Higher energy solutions correspond to excited states and will be further

discussed in sec. 1.7 for configuration interaction singles.

An expression for the correlation energy of the electronic ground state is

yielded by substracting the HF energy from eq. (1.29)

(Ĥ − EHF)|ΨCI
0 〉 = (ECI − EHF|ΨCI

0 〉 . (1.32)

After imposing an intermediate normalization 〈ΦHF
0 |ΨCI

0 〉 = 1, and left-multiply-

ing eq. (1.32) with 〈ΦHF
0 |, the correlation energy can be expressed as

〈ΦHF
0 |(Ĥ − EHF)|ΨCI

0 〉 = ∆Ecorr . (1.33)

Evaluation of the expectation values by applying Slater-Condon rules and Bril-

luion’s theorem further reduces the expression to

∆Ecorr = 〈ΦHF
0 |(Ĥ − EHF)|ΦHF

0 〉+
∑

ij,ab

〈ΦHF
0 |(Ĥ − EHF)|cabij Φab

ij 〉 (1.34)

=
∑

ij,ab

cabij 〈ia||jb〉 . (1.35)

Apparently, only doubly excited determinants contribute to the correlation en-

ergy of the ground state directly, while singly excited determinants do not

couple to the HF ground state (Brillouins theorem). However, the coefficients

cabij depend on the full CI matrix and therefore also on other types of excited

determinants, such as triples, etc. In practice, full-CI is only feasible for very

small systems. Truncating the full-CI wave function after singly excited deter-
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minants yields CIS, after doubly excited determinants CISD, and so on. Since

the correlation energy of the ground state is mainly described by doubly excited

determinants, CISD is often chosen as reasonable approximation of full-CI for

practical applications.

1.7 Configuration interaction singles

In Section 1.6, CI was introduced as a method to describe electron correlation

based on excited determinants. The same ansatz also allows to calculate excited

states, which correspond to higher-energy solutions of the CI matrix. However,

full-CI is too expensive for most practical applications. The simplest truncated

variant of CI is the configuration interaction singles (CIS) method,25 which is

the only size-consistent CI scheme. In CIS, an excited-state wave function can

be expressed as linear combination of all possible singly excited determinants

ΨCIS =
∑

ia

caiΦ
a
i . (1.36)

As a consequence of exclusively considering singly excited determinants, CIS

can only describe excited states with primary single excitation character. The

coefficients cai can be deduced from the normalized eigenvectors of the Hamil-

tonian matrix, which for a closed-shell system is given as

〈Φa
i |Ĥ|Φb

j〉 = (EHF + εa − εi)δijδab − 〈aj||ib〉 . (1.37)

Eigenvalues of this equation are the total energies for excited states in the CIS

picture and can be calculated as

ECIS = EHF +
∑

ia

c2ia(εa − εi)−
∑

ijab

ciacjb〈aj||ib〉 . (1.38)

In CIS, the energy of an excited state contains three different contributions.

The first term is the HF ground-state energy. The second term is a zeroth

order guess for the excitation energy accounting for difference in orbital energies

weighted by their contribution to the state vector. The third term describes

the weighted changes in electronic Coulomb and exchange interaction of the

excited electron.

The expression in eq. 1.32 has shown that doubly excited determinants are

required to describe the correlation energy of the ground state. To describe

electron correlation for singly excited states in an analogous way, it is nec-

essary to consider triply excited determinants. However, such higher excited

determinants are not taken into account in CIS, and in the same sense that
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HF yields uncorrelated ground-state wave functions, CIS obtains uncorrelated

excited-state wave functions.

1.8 Time-dependent density functional theory

Time-dependent density functional theory (TDDFT)26 is a density-based ap-

proach for the computation of excited states of molecular systems. Due to

its computational efficiency, it allows even to describe excited states of large

chromophores for which high-level ab initio methods are not feasible.

TDDFT is built upon a similar set of theorems and approximations as its

time-independent counterpart DFT, where the difference is that these theo-

rems and approximations refer to a time-dependent picture. In analogy to the

first Hohenberg-Kohn theorem, the Runge-Gross theorem27 ensures the exis-

tance of a one-to-one mapping between the time-dependent density and the

time-dependent potential of a real, interacting system evolving from an initial

state. This initial state is characterized by an initial wave function, which is a

functional of the density.

A generalization of this theorem by van Leeuwen28 ensures the existence

of a time-dependent, non-interacting system described by the density ρS(r, t)

with the same external potential as a time-dependent real, interacting system.

This time-dependent non-interacting system can be represented as single Slater

determinant Φ(r, t) consisting of single-electron orbitals ψi

ρreal(r, t) = ρS(r, t) =
n∑

i

|ψi(r, t)|2 (1.39)

The evolution of an initial one-particle wave function ψi in time can be prop-

agated as

i
∂

∂t
ψi(r, t) =

{
−1

2
∇2

i + vext(r, t) + J [ρ(r, t)] +
∂Axc[ρ]

∂ρ(r, t)

}
ψi(r, t) , (1.40)

which are the time-dependent Kohn-Sham equations. In this expression, − 1
2∇2

i

is the kinetic energy operator, vext is the time-dependent external potential de-

scribing electron-nucleus interaction, J is the time-dependent Coulomb func-

tional and Axc is the so-called exchange-correlation part of the action integral,

cf. Ref. 26 and references therein. In practice, the problem is reduced to a

linear-response formulation obtaining a pseudo-eigenvalue equation known as

Casida’s equation29

(
A B

B∗ A∗

)(
X

Y

)
= ω

(
1 0

0 −1

)(
X

Y

)
, (1.41)
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HF TDHF
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Figure 1.2: Relation between methods: ground-state methods Hartree Fock
(HF), density functional theory (DFT), and excited-state methods configura-
tion interaction singles (CIS), time-dependent Hartree Fock (TDHF), time-
dependent density functional theory (TDDFT) and Tamm-Dancoff approxi-
mation (TDA), adopted from Ref. 26.

where X and Y are the excitation and de-excitation amplitudes and ω is the

excitation energy. The elements of the A and B matrices depend on the xc-

functional. In case of a hybrid xc-functional, the elements of the A matrix are

defined as

Aij,ab = (εa − εi)δijδab + 〈ia|bj〉 − cHF〈ia|jb〉+ (1− cHF)〈ia|fxc|bj〉 , (1.42)

where εi and εa are the orbital energies of the occupied and virtual orbitals,

and i, j and a, b are the indices corresponding to occupied and unoccupied

molecular orbitals, respectively. cHF marks the fraction of Hartree-Fock-type

nonlocal orbital exchange (NLX) for a standard hybrid functional and fxc is

the xc-kernel of the functional. The elements of the B matrix are given as

Bij,ab = 〈ia|jb〉 − cHF〈ia|bj〉+ (1− cHF)〈ia|fxc|jb〉 , (1.43)

that is, they correspond to the integrals with permuted indices and describe

electronic couplings to de-excitations.

Comparing the structure of theAmatrix (eq. (1.42)) to the matrix elements

of the CIS matrix (eq. (1.37)), their construction principle is similar. However,

there are two remarkable differences: (i) CIS refers to the HF ground state,

while TDDFT refers to the DFT ground state; (ii) electronic couplings between

excited configurations differ in their exchange part, where for CIS the HF-

type exact exchange is considered, and for TDDFT this term is substituted

by the exchange-correlation functional expression. Furthermore, CIS does not

account for couplings to de-excitations as described in theBmatrix for TDDFT

(eq. (1.43)). However, such kind of couplings are considered in time-dependent
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1.8. Time-dependent density functional theory

HF, as depicted in Fig. 1.2.

An anagous method to CIS, the Tamm-Dancoff approximation (TDA)30 can

be constructed by neglecting theBmatrix and the de-excitation amplitudeY of

eq. (1.41) in TDDFT. TDA is a linearized, Hermitian version of time-dependent

density functional theory, for which the eigenvalue problem takes the form

AX = ωX . (1.44)

Depending on the selected xc-functional, the B matrix has only minor effect on

the results justifying the TDA. TDA calculations are computationally less de-

manding than standard TDDFT, especially for hybrid and long-range corrected

xc-functionals.26 TDA sometimes obtains superior results compared to TDDFT

in particular for xc-functionals with large amount of nonlocal exchange. Such

cases are, e.g., excited states of extended π-systems31 and triplet excited states,

which are prone to be energetically overstabilized by TDDFT.32,33

Similar to ground-state DFT, time-dependent density functional theory is

a powerful tool to describe excited states of molecular systems. Especially for

large chromophores, the computational efficiency is a key ingredient. How-

ever, the dependence on empirically fitted xc-functionals is a source of signif-

icant errors. These errors become apparent for several types of excited states

such as charge-transfer states,34–37 Rydberg states,38 excited states of large

π-conjugated systems,39–41 and multiply excited states.42,43

Charge-transfer states can serve as important test cases to illustrate the

underlying issues. First, it is important to realize how electron-electron in-

teraction is described in linear-response TDDFT (eq. (1.41)). In the linear

response formalism, a Coulomb integral translates into an exchange-type inter-

action in the TDDFT energy expression (second term of eq. (1.42)), while an

exchange integral translates into Coulomb interaction (third term of eq. (1.42)).

For pure GGA functionals without nonlocal orbital exchange the Coulomb re-

pulsion between electrons vanishes, which leads to spurious CT states in the

low-energy excited-state regime. In hybrid xc-functionals, Coulomb repulsion

is reintroduced, but artificially scaled by cHF. While this usually improves the

overall description of excited-state spectra, it still leads to a systematic over-

stabilization of CT states. As will be shown e.g. in Chapters 5−7, other types

of excited states are critically affected by the same issue, but for less obvious

reasons.

One strategy to overcome these issues is to make use of the so-called long-

range corrected (LR or LRC) xc-functionals.44–49 In LRC xc-functionals the

amount of nonlocal exchange depends on the interelectronic distance and the
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exchange-correlation energy expression usually takes the form

ELRC
xc = Ec,DFT + (1− aHF)E

SR
x,DFT + aHFE

SR
x,HF + ELR

x,HF . (1.45)

Ec,DFT corresponds to the correlation energy of the chosen xc-functional, while

the exchange energy is split into three components corresponding to short-range

(SR) DFT and HF-type exchange (ESR
x,DFT and Ex,HF) and long-range (LR) HF-

type exchange ELR
x,HF. The separation is realized by means of an Ewald split,

which allows to rewrite the electron repulsion operator using standard error

function (erf )45 as

1

|r1 − r2|
=

1− erf (µ|r1 − r2|)
|r1 − r2|

+
erf (µ|r1 − r2|)

|r1 − r2|
. (1.46)

The factor µ is the range-separation parameter given in Bohr−1 and usually op-

timized for a certain benchmark set. The first term of eq. (1.46) corresponds to

the short-range regime, while the second term defines the long-range part. This

formulation connects the favorable description of short-range electron correla-

tion of DFT xc-functionals with the correct asymptotic behaviour of Coulomb

interaction for long-range electron separations. A recent approach is to opti-

mize µ for each molecule individually, which is referred to as optimal tuning,

cf. Ref. 50.

Despite advances in functional design, TDDFT results have to be checked

carefully for each system. While the main criterion for the accuracy of a xc-

functional is usually the excitation energy, method assessment should also take

diagnostic tools into account, which are capable to detect methodological short-

comings. For this purpose, various descriptors have been designed in recent

years,51–56 and also descriptors developed in this work are suitable to analyze

the performance of xc-functionals, cf. Chapters 5−7. The importance of such

analyses comes from the fact that benchmarking only according to excitation

energies can be in favour of an xc-functional which does not correctly describe

the density and properties of the real system, for more details cf. Chapter 7.

1.9 Algebraic diagrammatic construction for the

polarization propagator

The algebraic-diagrammatic construction (ADC) scheme for the polarization

propagator57–60 is a correlated ab initio method for the description of excited

states. Similar to CI, it makes use of n-tuply excited intermediate states,

which serve as a basis to expand excited-state wave functions. Instead of

an excitation-class based truncation such as in CI, ADC employes Rayleigh-
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1.9. Algebraic diagrammatic construction method

Schrödinger perturbation theory to identify the terms that need to be included

in the ADC matrix for a consistent treatment. ADC is therefore often referred

to as the excited-state analog of Møller Plesser10 (MP) perturbation theory for

the ground state.

Taking a look at the origins of ADC,59,60 it was historically derived from

Green’s function theory. Another derivation makes use of the intermediate-

state representation (ISR) formalism,61,62 which is considered in the following.

As a starting point, a set of excited-state wave functions |ΨN
J 〉 is constructed

by an excitation operator Ĉ acting on the exact ground-state wave function Ψ0

|ΨJ〉 = ĈJ |Ψ0〉 (1.47)

{ĈJ} = {â†aâi; â†aâ†bâiâj ; i < j, a < b; ...} ,

where Ĉ collects annihilation and creation operators, which correspond to for-

mation of singly, doubly, and higher order multiply excited states. In order

to form a proper basis, the intermediate states {|Ψ̃N
J 〉} have to be orthogonal,

which is in practice realized by Gram-Schmidt and symmetry orthogonaliza-

tion. Expressing the shifted hamiltonian in the intermediate-state basis yields

the matrix elements of the ADC matrix M as

MIJ = 〈Ψ̃I |Ĥ − E0|Ψ̃J〉 , (1.48)

where E0 is the exact ground-state energy. Solving the hermitian eigenvalue

problem by diagonalizing the matrix M

MX = XΩ ; (1.49)

X†X = 1 , (1.50)

yields eigenvalues and eigenvectors, which correspond to excitation energies ω

and representation of excited-state wave functions in the IS basis. In practice,

the low-lying excited states can usually be obtained by partial diagonalization

of the ADC matrix using Davidson or Lanczos algorithms.

Up to this point, ADC is an exact method as no assumptions or approx-

imations have been introduced so far, however, for practical applications this

method is not feasible. Employing Rayleigh-Schrödinger perturbation theory,

the ADC matrix M can be expanded as a series

M = M(0) +M(1) +M(2) +M(3) + ...+M(i) , (1.51)

such that the matrix elements can be consistently treated up to a certain or-

der as indicated by the superscript (i). Advantages of employing perturba-

17



Chapter 1. Theory and computational methods

ph

2p2h

ADC(0)

ADC(1)

ADC(2)

ADC(3)

ph ph-2p2h
2p2h-ph

2p2h

0

1

2

3

-

-

1

2

-

-

0

1

ph - 2p2h

2p2h - ph

Figure 1.3: ADC matrix M: (a) sketch of different blocks, and (b) level of
perturbation-theoretical treatment of these blocks for different ADC variants.

HF CIS, CISD, ...

exact GS ADC(1), ADC(2), ADC(3), ...

CI matrix

ADC matrix

truncation

class-based

n-th order 
in PT

CI 
expansion

ISR

Figure 1.4: Relation of the methods: The main difference between ADC and
CI are the principles to reduce the dimensions of the respective matrix. While
ADC is built upon a correlated ground-state, CI starts with the uncorrelated
HF ground state.

tion theory instead of a excitation-class based truncation scheme in CI is that

electron-correlation is treated more consistently while the dimensions of the M

matrix grow slower as compared to CI or coupled cluster excited-state meth-

ods. ADC is therefore a compact, size-consistent method. To illustrate this

behaviour in more detail, fig. 1.3 presents the structure of the ADC matrix for

different orders of PT. For example, in ADC(3) four blocks are considered: the

1-particle-1-hole (ph) block is treated at third order in PT, the 2-particles-2-

holes (2p2h) block is treated at first order in PT, and couplings between these

blocks are treated at second order in PT. To account for electron correlation in

the 2p2h-block of the CI matrix, an inclusion of triply and quadruply excited

determinants would be necessary, hence, the dimensions of the CI matrix grow

substantially faster. At first order in perturbation theory ADC(1) is equivalent

to CIS: The MP(1) energy expression (which is the ADC ground-state refer-

ence) is identical to HF, and in analogy, the ADC(1) energy expression is equal

to CIS. Any higher order of ADC corresponds to a successively more accurate

treatment electron correlation and excited states compared to CIS, for more

details cf. Ref. 59.

In the beginning of this section, the intermediate-state representation was

constructed upon the exact ground-state wave function, see eq. (1.47). How-

ever, since the exact ground-state wave function is unknown, an approximate
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correlated ground-state wave function has to be used in practice. Standard ref-

erences are Møller Plesser ground-state wave functions constructed at the same

level of perturbation theory as the order of ADC. In principle, this restricts the

applicability of ADC to systems whose ground states are well-described at the

corresponding MP level. Recent developments make use of the possibility to

employ other ground-state references. For example, ADC has been successfully

adopted for multi-reference ground states by exploiting the spin-flip ansatz.63

1.10 Characterization of excited states

Systematic analysis and visualization of excited states is a key step in the

interpretation of quantum-chemical results. Visual inspection of molecular or-

bitals (MOs) that are involved in the electronic transition is the standard way

to characterize excited states and electronic transitions in quantum chemistry.

But since molecular orbitals describe the electronic ground state of the system,

they may not be ideal to represent excited states and electronic transitions. In

many cases it can become difficult to draw a conclusive picture about excited

states by interpreting MOs, especially if many of them contribute to the exci-

tation vector by similar weights. One way to improve this situation is to move

to orbital representations and other properties that are directly connected to

excited states. Over the past decades, qualitative and quantitative analysis

tools have been developed based on one-particle transition density matrices

and one-particle difference density matrices (cf. Refs. 64–66 and references

therein). Both quantities serve as bases for compact orbital representations of

excited states: the natural transition orbitals67–69 (cf. sec. 2.8) and natural

difference orbitals.65,66 A variety of excited-state descriptors has been devel-

oped mainly with the purpose to characterize the amount of charge transfer

and spatial extends of electron and hole distributions in the context of TDDFT

diagnosis, cf. Refs 51–53,70–72. This work focuses on the one-particle tran-

sition density matrix (1TDM) which is identified as exciton wave function73

and allows for a clear physical interpretation of derived descriptors. For this

purpose, the construction and properties of the one-particle transition density

matrix are briefly discussed in the following.

One-particle transition density matrix Many-electron wave functions

comprise information about the full n-electron system. If the task is to analyze

electronically excited states, the properties of interest are more specifically con-

nected to changes in the electronic structure between the ground and excited

state. This information is contained in the one-particle transition density ma-

trix, which is essentially a map of the molecule which indicates how the excited
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electron is shifted during excitation. The 1TDM between the ground Ψ0 and

the excited ΨI state wave functions is defined as

γ0I(rh, re) = n

∫
Ψ0(rh, r2, ..., rn)×ΨI(re, r2, ..., rn)dr2, ...drn , (1.52)

where ri denotes the spatial and spin coordinates of the i-th electron: ri =

(~xi, si). Note that in eq. (1.52) and in the following real valued wave functions

and orbitals are assumed but an extension to complex quantities is straight

forward. The matrix representation with respect to an underlying basis set of

spin atomic orbitals (AOs) {χµ(r)} is constructed as

D0I
µν = 〈Ψ0|â†µâν |ΨI〉 , (1.53)

where â†µ and âν are the creation and annihilation operators, respectively. This

definition leads to an alternative expression for γ0I

γ0I(rh, re) =
∑

µν

D0I
µνχµ(rh)χν(re) , (1.54)

which will be used later to derive the exciton wave function and its properties.

It is worth noting that switching the bra and ket states amounts to transposing

the transition density matrix

DI0
νµ = 〈ΨI |â†ν âµ|Ψ0〉 = 〈Ψ0|â†µâν |ΨI〉 = D0I

µν (1.55)

(D0I)T = DI0 . (1.56)

As already mentioned, the 1TDM can be used to construct a compact orbital

representation of the electronic transition, the natural transition orbitals. An

alternative strategy to further analyze excited states relies on evaluation of

1TDMs in terms of quantitative measures. Such excited-state descriptors have

first been derived in the framework of CIS, RPA and TDDFT.74,75 Specifically,

two indices were introduced measuring charge-transfer strengths and electronic

coherence.76 Also a visual representation of the 1TDM itself was introduced.

For this purpose, a population analysis with respect to individual atoms is

performed creating a probability map for the electron being promoted from

one atom to another. These methods have been successfully applied to large

π-conjugated systems illustrating their conceptual advantage for interpreting

excited states of complex systems, cf. Ref. 77. These ideas have been trans-

ferred to higher level ab initio methods including CASSCF, MR-CI, ADC(2)

and CC2, and inspired the construction of more descriptors for an ever more

detailed analysis of excited states.64 These works have been the starting point

and inspiration for the developments presented in the following.
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Exciton analysis

In this chapter, the formalism of exciton analysis is introduced for quantum-

chemical calculations. For this purpose, excitons are defined, the concept is

transferred to the framework of many-electron wave functions and expectation

values of the introduced exciton wave functions are calculated. Definitions and

significance of central excited-state descriptors are discussed for exciton sizes,

electron and hole sizes, vectorial electron-hole separation and statistical mea-

sures quantifying electron-hole correlation effects. An interpretation in terms

of natural transition orbitals is given and the definition of exciton wave func-

tions is transferred to time-dependent density functional theory. The chapter

closes with a short introduction of electron-hole correlation plots, which allow

to visualize excitons, and a definition of total transfer measure. Descriptors

that are designed for specific purposes are described in the respective chapters.

Please note that parts of this chapter have already been published in Phys-

ical Reviews A, volume 90 (2014), 052521 (Ref. 73) and in The Journal of

Computational Chemistry, volume 36, (2015), pages 1609 − 1620 (Ref. 78).
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Chapter 2. Exciton analysis

2.1 Introduction

A central goal of quantum-chemical calculations is to improve our understand-

ing of investigated molecular systems and their properties. Characterizating

electronically excited states according to their excitation energy is a central step

in any study. Details about excited-state character are usually extracted from

the molecular orbitals (MOs) contributing to the response vector, i.e., they

are involved in the electronic transition. A few more properties, e.g., oscillator

strengths are frequently considered. Determining the excitation character is

important for several reasons. Knowing the type of excitation such as local,

Rydberg, charge-transfer, etc. allows one to judge whether a method is reliable

for the description of the state, to predict interaction with the molecular en-

vironment, to consider excited-state couplings, and many more. In summary,

there is a high motivation to determine excitation character as precise as pos-

sible. For large molecules, however, the MO picture reaches its limits in terms

of interpretive power. In such systems, MOs can be spatially delocalized and

excitations can involve many orbital transitions with significant weights. In

such a scenario, not only the shapes of the MOs but also their superpositions

are important, however, phase information and couplings between MOs are

difficult to extract. Furthermore, it is difficult to compare differences between

excited-state methods, since the MOs depend on the precise wave function ex-

pansion. It is therefore desirable to develop alternative concepts to examine

excited states and their properties. In solid-state physics, excited states are

rationalized as coupled electron-hole pairs, which arise from transitions be-

tween different bands in extended periodic systems. These so-called excitons

are directly connected to experimental observables, e.g. the exciton binding

energy characterizes the amount of energy necessary for charge separation in

semiconductors.

Transferring the concept of excitons to the framework of many-body wave

functions opens new ways to interpret computational results. Moreover, it al-

lows to bridge the gap between the quasi-particle and MO pictures. An exciton

theory for many-body wave functions should (i) be well-defined independent of

the wave function model and give a result for the exact solution, (ii) apply to a

wide range of wave function properties, (iii) be invariant to redundant orbital

rotations, and (iv) neither depend on atom-centered basis function nor require

a partitioning of the wave function into atom or fragment centered contribu-

tions. In the following sections, such an exciton theory is introduced based

upon the assumption that the one-electron transition density matrix (1TDM)

can be interpreted as an effective two-body exciton wave function describing

the correlated electron-hole quasiparticles. After reviewing some details about
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excitons in solid-state theory, a closer look is taken at the derivation and eval-

uation of exciton properties in quantum-chemical calculations (see Ref. 73).

After that, exciton descriptors are introduced and their interpretive power is

discussed (see also Refs. 73,78,79).

2.2 Excitons in solid-state theory

Excitons describe excited states in solid-state theory in terms of correlated

electron-hole pairs. A classification of excitons is given according to the char-

acter of the bands involved in the electronic transition, where two corner cases

are defined, i.e., Wannier-Mott and Frenkel excitons.80,81 In the first case, the

electron is promoted from a delocalized band to another delocalized band, and

the resulting exciton is characterized by a large size and small binding energy.

In the second case, the promotion takes place between local bands, and the

resulting Frenkel excitons are characterized by small sizes and large binding

energies. In practice, these models are corner cases, and a variety of excitons

with mixed contributions from different bands exist.

A useful strategy to extract information about the nature of excitons is to

decompose the exciton wave function into two parts

χexc(rh, re) ≈ φsep(reh)φCM (R) , (2.1)

where φsep describes the intrinsic electron-hole wave function and φCM is the

center-of-mass wave function of the neutral quasi-particle pair. This decom-

position allows to determine exciton sizes as well as to find the exciton in

Cartesian space. Later this decomposition scheme will be employed to charac-

terize excitons in PPV oligomers and other π-conjugated systems (cf. Chapt. 4

and 6).

2.3 Exciton wave function

As described above, some properties of excited states (e.g. exciton sizes and

binding energies) are best understood in terms of a two-body exciton wave

function describing the correlated motion of hole and electron quasi-particles

(cf. Figure 2.1). Such a wave function appears directly within the solid-state

physics approach of using many-body Green’s function theory82–87 while it is

usually not considered in the context of quantum chemistry methodology. In

the following, a connection of the two theories is presented.

Starting with solid-state physics theory, the Bethe-Salpeter equation (BSE)

of the exciton is the standard way of solving the electronic excitation problem
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within Green’s function theory.82,83,85 The solution of the BSE can be expressed

as frequency (ω) dependent two-body correlation function83

L(r1, r
′
1; r2, r

′
2;ω) = i

∑

I 6=0

[
χI(r1, r

′
1)χ

I(r′2, r2)

ω +∆EI
−χ

I(r2, r
′
2)χ

I(r′1, r1)

ω −∆EI

]
, (2.2)

which is closely related to the polarization propagator.57 Here, ∆EI denotes

the excitation energy of state I and χI is the electron-hole amplitude. This

latter function is commonly regarded as the wave function of the electron-hole

pair83–86 and it is precisely the quantity of interest in this work. It usually

takes the form83–85

χI(re, rh) =
∑

vc

AI
vcψ

QP
v (rh)ψ

QP
c (re) (2.3)

connecting the valence (ψQP
v ) and conduction (ψQP

c ) quasi-particle states.88

A rigorous connection between the BSE and explicit many-body theories, and

thus between the quasi-particle and MO pictures can be provided by considering

the general form of the electron-hole amplitudes83

χI(re, rh) = −
〈
Φ0|ψ̂†(rh)ψ̂(re)|ΦI

〉
(2.4)

where the field operators ψ̂(r) can be expressed in the AO basis as

ψ̂(r) =
∑

µ

âµχµ(r) . (2.5)

Inserting eq. (2.5) into eq. (2.4) already provides the relation of interest

χI(re, rh) = −
∑

µν

〈Φ0|â†µâν |ΦI〉χµ(rh)χν(re) = −γ0I(rh, re) . (2.6)

The exciton wave function as defined within Green’s function theory is simply

the 1TDM as obtained from quantum-chemical calculations. If χI is computed

by exactly solving the BSE, it contains the same information as the 1TDM

between the exact many-body wave functions. This provides a rigorous starting

point for further investigations. Specifically, in the notation used here and in

previous work,65 the exciton wave function is defined as

χexc(rh, re) := γ0I(rh, re) = −χI(re, rh) , (2.7)

i.e. there is a change in sign and an exchange of the electron and hole coordi-

nates when compared to Ref. 83 (and the superscript I is dropped for brevity).
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which after inserting eq. (1.54) leads to

〈
Ô
〉
exc

=
1

Ω

∑

µν

∑

ξζ

DµνDξζ

∫∫
χµ(rh)χν(re)Ôχξ(rh)χζ(re)drhdre . (2.13)

Hence, the task reduces to a contraction of AO integrals with the density

matrices. Once the AO integrals of Ô are computed, evaluating eq. (2.13) is

straightforward. The relation can be simplified in cases where the operator is a

product of two one-particle operators, each acting on only one of the electrons,

i.e., Ô = P̂ (rh)Q̂(re). Then eq. (2.13) yields

〈
P̂ (rh)Q̂(re)

〉
exc

=
1

Ω

∑

µν

∑

ξζ

DµνDξζ

×
∫∫

χµ(rh)χν(re)P̂ (rh)Q̂(re)χξ(rh)χζ(re)drhdre , (2.14)

which can be decomposed with respect to rh and re

=
1

Ω

∑

µν

∑

ξζ

DµνDξζ

∫
χµ(rh)P̂ (rh)χξ(rh)drh

∫
χν(re)Q̂(re)χζ(re)dre. (2.15)

In matrix representation this can be rewritten as

=
1

Ω

∑

µν

∑

ξζ

DµνDξζPµξQνζ (2.16)

which, in analogy to eq. (2.10) finally leads to (assuming that Q is a symmetric

matrix) 〈
P̂ (rh)Q̂(re)

〉
exc

=
1

Ω
tr
(
DI0PD0IQ

)
. (2.17)

For an operator, which does not explicitly act on rh and re, but is a simple

function of these coordinates (Ô = f(rh, re)), eq. (2.12) reduces to

〈f(rh, re)〉exc =
1

Ω

∫∫
f(rh, re)γ

0I(rh, re)
2drhdre . (2.18)

Specifically, if f is a polynomial, then 〈f(rh, re)〉exc can be interpreted as a

multipole moment of the exciton distribution function χ2
exc. These types of

expressions are the ones which are employed in the excited-state analysis.

2.4 Exciton size

In the following the exciton wave function will be evaluated with respect to its

size,79 illustrated in Fig. 2.2 (a). The exciton size is defined here as root-mean-
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working equation is

d2exc =
1

Ω

∑

ξ∈{x,y,z}

(
tr
(
DI0M

(2)
ξ D0IS

)
− 2tr

(
DI0M

(1)
ξ D0IM

(1)
ξ

)

+ tr
(
DI0SD0IM

(2)
ξ

))
. (2.25)

The first and third terms in this sum refer to the quadrupole moments of the

hole D0ISDI0 and electron DI0SD0I densities (see also Ref. 65). The second

term contains mixed dipole contributions deriving from correlated motion of

hole and electron. Decomposing the two-particle problem into matrices of one-

particle operators derives from the specific definition of dexc as rms separation,

a simplification which is also used in the Boys orbital localization scheme.91

Approximate exciton size An evaluation of eq. (2.25) is straight forward

if the 1TDM and multipole matrices are available. However, this information

is usually not part of the standard output of quantum-chemical programs and

the formula has to be implemented.73 To enable an a posteriori evaluation, an

approximate version of dexc is derived, which requires only the charge-transfer

numbers and the coordinates of the nuclei as input. Starting with the definition

of the exciton size (cf. eq. (2.19)) given as

d2exc =
1

Ω

∫∫
γ0I(rh, re)(~xh − ~xe)

2γ0I(rh, re)drhdre , (2.26)

the double integral is divided into separate regions pertaining to different atoms

M and N ,

d2exc =
1

Ω

∑

M,N

∫

M

∫

N

γ0I(rh, re) (~xh − ~xe)
2

︸ ︷︷ ︸
≈d2

MN

γ0I(rh, re)drhdre . (2.27)

Subsequently, the (~xh − ~xe)
2 term is approximated by the squared distance

between the positions of the respective nuclei d2MN . The constant term d2MN

is taken out of the integral

d2exc ≈
1

Ω
d2MN

∑

M,N

∫

M

∫

N

γ0I(rh, re)γ
0I(rh, re)drhdre (2.28)

leaving the CT number ΩMN according to eq. (2.47). This suggests the defini-

tion of an approximate exciton size

d̃exc =

√
1

Ω

∑

M,N

ΩMNd2MN . (2.29)
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In contrast to the full implementation, d̃exc neglects the spatial extent of the

orbitals involved and it is therefore expected that d̃exc ≤ dexc. A detailed

evaluation of the accuracy of d̃exc for PPV oligomers is presented in Chapter 3.

Albeit similar equations have been suggested by other researchers,77,92–94 only

the present approach is embedded in a clear approximation hierarchy and the

formalism is applicable to arbitrary wave function models.

Vectorial electron-hole separation An alternative for the characterization

of the electron-hole distance is a vectorial measure of the separation of the

electron and hole charge cendroids, see Fig. 2.2 (b). This quantity is called

vectorial electron-hole distance78 dh→e and defined as

dh→e = |〈~xe − ~xh〉exc| (2.30)

= |〈~xe〉exc − 〈~xh〉exc| . (2.31)

In contrast to the definition of dexc, the vectorial electron-hole distance dh→e is

computed only from dipole moments of the exciton wave function and neglegts

the spatial extention and correlation dh→e between electron and hole distribu-

tions. Expressing eq. (2.31) in terms of matrix elements yields the following

form

dh→e =
1

Ω

∑

ξ∈{x,y,z}

(
tr
(
DI0SD0IM

(1)
ξ

)
− tr

(
DI0M

(1)
ξ D0IS

))
. (2.32)

The descriptor is well-suited to identify direct charge transfer. Moreover, the

comparison of dh→e and dexc can reveal interesting features for the assignment

of excited-state characters, as will be demonstrated in Chapters 5 and 7.

2.5 Electron and hole sizes

The spatial extents of electron and hole distributions in a molecular system can

be quantified by evaluating the exciton wave function with respect to either the

hole or electron multipole moments. As a measure for electron and hole sizes,

root-mean-square deviations of their centers-of-masses are evaluated as

σh =
√
〈~x2h〉exc − 〈~xh〉2exc (2.33)

or

σe =
√
〈~x2e〉exc − 〈~xe〉2exc . (2.34)
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2.7 Dependencies of descriptors

In view of their common foundation, the exciton descriptors have some no-

table dependencies that are relevant to link individual descriptors to a global

picture. For example, exciton size definition incorporates electron-hole corre-

lation terms, but also depends on electron and hole sizes and their vectorial

center-of-mass distance:

dexc =
√
d2h→e + σ2

h + σ2
e − 2× COV(rh, re) . (2.39)

This relation has some implications for the characterization of different types of

states. For example, in the case of Rydberg states, exciton sizes are enhanced

compared to locally excited states of the same system, because they have large

electron sizes.96 In the case of excitonic ππ∗ states in large conjugated sys-

tems, exciton sizes are comparably small due to large electron-hole correlation

effects.97

Concerning the relationship between exciton size and vectorial electron-hole

distance, the following relation holds

dh→e ≤ dexc , (2.40)

that is, the vectorial electron-hole separation is always smaller or equal to the

exciton size. This relation is especially interesting when charge transfer and

charge resonance excitations are investigated, cf. Chapter 5.

2.8 Interpreting exciton properties from a NTO

perspective

To connect exciton properties to an orbital picture, the most intuitive choice

is to employ natural transition orbitals (NTOs). NTOs are the most compact

orbital representation of the electron-hole transition67–69 and are constructed

based on the 1TDM by performing a singluar value decomposition given as

D0I = U diag(
√
λ1,
√
λ2, ...)V

T . (2.41)

The matrices U and V contain the hole/electron NTO pairs φ0I and φI0,

and λi are the weighted coefficients representing the probability of an electron

transition between the NTOs consituting a pair. The exciton wave function
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2.9. Exciton analysis in TDDFT

can be rewritten in a diagonal form yielding78

χexc(rh, re) =
∑

i

√
λiφ

0I
i (rh)φ

I0
i (re) . (2.42)

Revisiting the general expression of evaluation of the multipole operators (2.23)

and plugging in the definition for χexc in the NTO basis, the following is ob-

tained

〈xkhxle〉exc =
1

Ω

∑

i,j

√
λiλj〈φ0Ii (rh)|xkh|φ0Ij (rh)〉〈φI0i (re)|xle|φI0j (re)〉 . (2.43)

Inserting the multipole integrals M with respect to the electron and hole NTOs

into eq. (2.43) yields

〈xkhxle〉exc =
1

Ω

∑

i,j

√
λiλjM

0I,k
ξ,ij M

I0,l
ξ,ij . (2.44)

Next, the equation is split into diagonal and off-diagonal terms

〈xkhxle〉exc =
1

Ω


∑

i

λiM
0I,k
ξ,ii M

I0,l
ξ,ii +

∑

i 6=j

√
λiλjM

0I,k
ξ,ij M

I0,l
ξ,ij


 . (2.45)

In the present form, it is possible to differentiate between components that be-

long to a simply weighted contribution of individual NTO pairs (non-vanishing

coefficients on the main diagonal, first term), and components that originate

from mixed contributions between NTOs that do not belong to the same pair

(second term). While the situation is very simple if the electron-hole pair can

be described by only one NTO pair (all λ are zero except for one), all other sce-

narios require thoughtful analysis of the involved NTO pairs, and the situation

becomes even more involved if off-diagonal contributions are present.

2.9 Exciton analysis in TDDFT

In time-dependent density functional theory, the computation of wave func-

tions is subsidised by the computation of the densities corresponding to the

respective states under investigation as discussed in Section 1.8. Hence the

exciton wave function has to be redefined employing the 1TDM obtained from

TDDFT calculations. In TDDFT, the 1TDM is usually constructed from the

excitation and de-excitation amplitudes XI
ia and Y I

ia of the Ith excited state
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and the exciton wave function is given as

χTDDFT
exc (rh, re) =

occ∑

i

virt∑

a

[
XI

iaφi(rh)φa(re) + Y I
iaφa(rh)φi(re)

]
, (2.46)

where φi and φa are the occupied and virtual molecular orbitals, and rh and

re denote the coordinates of the electron and hole quasi-particles. The form

of eq. (2.46) is used in the current implementation in Q-Chem 4.3,98 how-

ever there exist different formalisms suggesting the use of additional scaling

factors.29,99,100 In the case of the Tamm-Dancoff approximation (TDA)30 the

same formalism is applied, but the Y I
ia terms vanish.

The analysis of exciton properties computed with time-dependent density

functional theory allows not only to investigate excited states of molecular

systems, but also to assess methodological performance by comparing exciton

properties for different xc-functionals to those obtained with ab initio methods.

In Chapters 5 and 6, the performance of different types of xc-functionals was

investigated for various molecular systems. In Chapter 7 benchmarking with

exciton properties was discussed revealing that coinciding excitation energies

not necessarily correspond to identical description of state characters. For more

details, see for example the respective chapters.

2.10 Visualizing exciton wave functions using

electron-hole correlation plots

A visual representation of the exciton wave function can reveal interesting infor-

mation about its shape and properties. Such a representation can be obtained

by constructing electron-hole correlation plots. The plotting procedure was in-

troduced by Luzanov75 and is reviewed here due to its frequent use throughout

this work. Prior to the evaluation of the transition density matrix, fragments

of the system need to be chosen. These fragments can contain single atoms or

groups of atoms, which form a subunit of the system. Subsequently, a partial

integration over the square of γ0I is performed, while the hole coordinate is

restricted to one fragment A and the electron to a fragment B:

ΩAB =

∫

A

∫

B

γ0I(rh, re)
2
dredrh . (2.47)

The resulting charge-transfer numbers75 afford the probability to find the hole

on fragment A, while the electron is located at B. Subjecting eq. (2.47) to a

34



2.11. Total charge transfer

Mulliken population analysis leads to the working equation65

ΩAB =
1

2

∑

µ∈A

∑

ν∈B

[
(D0IS)µν(SD

0I)µν +D0I
µν(SD

0IS)µν
]
, (2.48)

where S is the overlap matrix between the basis functions. A visualization of

the ΩAB matrix in terms of a pseudo-color matrix yields electron-hole corre-

lation plots that provide a coarse-grained representation of the exciton wave

function, an example of which is shown in Figure 2.1(c). Local excitation con-

tributions are mapped on the main diagonal going from the lower left to the

upper right, while off-diagonal contributions indicate charge transfer between

fragments A and B. The relative probability is typically visualized in grey

scale, where black corresponds to the highest probability and white to zero.

Although this is a flexible and rather intuitive tool, it has the drawback of

requiring an a priori definition of the fragmentation. Furthermore, one can

expect the same, significant basis-set dependence for eq. (2.48) that has been

reported for standard Mulliken population analysis, cf. Ref. 101.

2.11 Total charge transfer

In many cases it is desirable to deduce more compact, skalar descriptors from

the ΩAB matrix64,102 and in this work the total charge transfer is quantified

for several systems. Generally, the descriptor is defined as

ωCT =
1

Ω

∑

A

∑

B/∈A

ΩAB . (2.49)

ωCT ranges from 0 to 1, where 0 corresponds to a local excitation or Frenkel

exciton (with respect to the defined fragmentation scheme) and 1 denotes a

completely charge-separated state. Like the underlying ΩAB values, ωCT is

sensitive to both, the fragmentation scheme and basis set.

The charge-transfer measure is used in this work to cross-validate results of

exciton sizes and opens a route to compare 1TDM analysis to other schemes

based on 1DDMs or related quantities describing changes in electron density

upon excitation in future investigations.
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Chapter 3

Exciton size analysis of
many-body wave functions

In the course of this work, the first derived exciton property was the exciton

size. In this chapter, its application to many-body wave functions from ADC(2)

calculations is discussed in detail. A broad selection of examples highlights

different aspects of the developed methodology: Starting with an analytical

example, a validity check of the developed protocol is presented, delivering

expectation values for different types of excited states. Subsequently, two rep-

resentatives of stacked π-systems, an ethylene-tetrafluoroethylene complex and

a pyridine dimer are analyzed with emphasis on differentiating between dif-

ferent types of excited states, such as local, charge transfer, Rydberg, charge

resonance, etc. It is found that for charge separated states exciton sizes closely

correspond to the intermolecular distances, while they reflect the size of a local

excitation on one monomer in the case of locally excited states. Exciton sizes

furthermore provide useful information in the case of state mixing, which oc-

curs in symmetric dimers and leads to resonance states. For two examples from

the class of large conjugated π-systems, that are, poly(para phenylene vinylene)

and polyacene compounds, energetically low-lying excitonic states are analyzed

in terms of exciton sizes, structures and dynamic charge separation.

Please note that parts of this chapter have already been published by Prof.

Dr. Andreas Dreuw, Dr. Felix Plasser, Dr. Michael Wormit and myself in

Physical Reviews A, volume 90 (2014), 052521 (Ref. 73).
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Chapter 3. Exciton size analysis of many-body wave functions

3.1 Introduction

In this work, exciton sizes are considered as root-mean-square separation be-

tween electron and hole and evaluated for many-body wave functions. Since

it was the first developed protocol to examine exciton properties, exciton sizes

are closely examined in the following in order to highlight the validity and

capabilities of the approach. Let me start the discussion with general prop-

erties of exciton sizes and their implications for the analysis of excited states,

cf. eq. (2.39). Firstly, exciton sizes characterize the structure of excitons by

measuring the dynamic spatial separation of electron and hole. In contrast

to measuring the vectorial electron-hole separation, exciton sizes do not only

quantify permanent charge-transfer character of excited states, but also ac-

count for dynamic electron-hole correlation. This is especially important for

identifying excitonic excited states for which permanent charge-transfer is ab-

sent. For excited states with exciton character, exciton sizes allow for a first

guess of exciton binding energies, which - according to band-structure theory -

are inversely related to each other: Small exciton sizes are connected to large

binding energies, and vice versa. Secondly, the compactness of electron and

hole distributions is also reflected in exciton sizes. It is therefore possible to

differentiate between locally and Rydberg excited states of a molecule, since

the latter have comparably larger exciton sizes due to their significantly larger

and diffuse distribution of the excited electron. Thirdly, exciton sizes are sensi-

tive towards linear electron-hole correlation effects. These effects describe the

electron and hole interaction which can range between repulsive, absent or at-

tactive depending on the type of excited state. This information is particularly

valuable for examining the domains of applicability of time-dependent density

functional theory (TDDFT). The potential of exciton sizes as diagnostic tool

for TDDFT is rooted in the capability to measure, both, static and dynamic

charge-transfer effects. However, more details about this topic will be discussed

later and in Chapters 5−7.

Four molecular systems highlight different aspects of exciton size analysis,

see Fig. 3.1. Firstly, it is demonstrated that for simple charge-transfer states

between two chromophores the exciton size is equal to their spatial distance.

For this purpose, an analytic model, and an ethylene - tetrafluoroethylene

complex ([Et· · ·TFE]) at varying intermolecular distances are considered. Sec-

ondly, the symmetric pyridine dimer is selected as a representative stacked

π-system. In this case the differentiation between excitonic and charge res-

onance states in terms of the completely delocalized MOs will be illustrated

(cf. Refs 64,103,104) and state mixing, charge separation, and excimeric ef-

fects are discussed. Thirdly, excitons in poly(para phenylene vinylene) (PPV),
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Figure 3.1: Molecular systems considered in this chapter: (a) [ethylene tetraflu-
oroethylene], (b) pyridine dimer, (c) (PV)5P, (d) tetracene and (e) hexacene.107

a representative conjugated organic polymer, will be analyzed by comparing

previously computed electron-hole correlation plots105 with exciton sizes. Fi-

nally, polyacenes are selected as challenging test case for quantifying hidden

excited-state charge-transfer character.41,106

3.2 Computational details

If not stated otherwise, all calculations were performed using the algebraic dia-

grammatic construction scheme for the polarization propagator57 evaluated at

second order in many-body perturbation theory (ADC(2))58 using a develop-

mental version of the Q-Chem 4.1 program package.60,98,108 For the ethylene-

tetrafluoroethylene complex and the pyridine dimer Dunning’s cc-pVDZ basis

set109 was used. For computational efficiency in the cases of PPV and poly-

acene excited states the smaller Ahlrichs SV basis set110 was used as it was

shown by previous studies that an unpolarized basis set is sufficient to provide

a qualitatively correct description of these systems.105,111 Electron-hole corre-

lation plots of the ΩAB matrices (see Sec. 2.10) were created using an external

program package.64,112

3.3 Applications

In this section a hierarchy of model systems is analyzed highlighting the power

of the protocol to compute exciton sizes for a variety of applications (Fig. 3.1).

First, the case of local and charge-transfer excitations in a dimer model system

is discussed formally in some detail. Specific results are given for the simple

case where the excitation process only consists of moving one point charge

across a distance d to show that in this case dexc = d. This relation is tested

practically for the lowest CT state of a complex between ethylene (Et) and
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Figure 3.2: Eight limiting cases for excitation patterns emerging in the case of
two chromophores with two orbitals each. Adapted from Ref. 64.

tetrafluorethylene (TFE). As a somewhat more extended example the stacked

pyridine dimer at varying intermolecular separations is investigated. In this

case the different behaviour between excitonic and charge resonance states and

mixing between them is analyzed. After these proof-of-principle investigations

two examples highlight the potential of the developed methods in the case of

conjugated organic molecules are presented. On the one hand the structure of

different excitons in PPV is analyzed. On the other hand the excited states

of polyacenes are investigated with the aim of elucidating otherwise hidden

charge-transfer contributions in their excited states.

3.3.1 Dimer model

In this section the formal structure of the exciton analysis is discussed in some

detail using an idealized dimer model. For this purpose, a system of two chro-

mophores 1 and 2 is considered, each possessing two active orbitals (see also

Refs 64,103,104). Chromophore 1 contains the initial orbital i (occupied in the

ground state) and the final orbital f (unoccupied in the ground state) while the

orbitals on 2 are denoted i′ and f ′. The eight limiting cases arising for singly

excited states in such a situation are depicted in Fig. 3.2. On the one hand,

four linearly independent states may be constructed as local excitations on

each chromophore (|1∗2〉 = |i→ f〉 and |12∗〉 = |i′ → f ′〉) and charge-transfer

states between them (|1+2−〉 = |i → f ′〉 and |1−2+〉 = |i′ → f〉). On the

other hand, delocalized linear combinations of these may be constructed under

resonance conditions leading to Frenkel excitonic (or excitonic resonance, σ

and γ) and charge-resonance states (δ and ρ). The transition density matrices

D0I for these states are shown in Tab. 3.1 for local states and in Tab. 3.2 for

delocalized states, along with their ωCT and dexc values which are discussed
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Table 3.1: Transition density matricesa D0I , charge-transfer measures ωCT,
and exciton size dexc of the idealized locally excited states |1∗2〉 and |12∗〉 and
charge-transfer states |1−2+〉 and |1+2−〉 evaluated under the assumption of
a unit overlap matrix.
state |1∗

2〉 |12∗〉 |1−
2
+〉 |1+

2
−〉

D
0I









0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

















0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

















0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

















0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0









ωCT 0 0 1 1
dexc

b 0 0 d d

a Arranged according to (i, f, i′, f ′)
b Evaluated specifically for the case of two point-like orbitals separated by a distance d.

later. The non-zero entries of D0I simply represent the individual orbital tran-

sitions as shown in Fig. 3.2. The ωCT values can be extracted immediately

from Tab. 3.1 and 3.2 by considering that only the off-diagonal 2 × 2 blocks

contribute to this quantity. The locally excited and excitonic resonance states

possess ωCT = 0, while this value is one for the charge-transfer and charge-

resonance states (see also Ref. 64). Let me now analytically evaluate eq. (2.25)

to compute dexc. First, the relevant equations will be evaluated in general, and

then with respect to a model system of point-like orbitals. Starting with the

|1∗2〉 state, the case of a local excitation on one molecule can be illustrated:

d2exc(|1∗2〉) =
∑

ξ∈{x,y,z}

(
M

(2)
ξ,ii +M

(2)
ξ,ff − 2 ·M (1)

ξ,iiM
(1)
ξ,ff

)
(3.1)

This equation has a simple interpretation if one assumes both orbitals to be

centered at the origin (M
(1)
ξ,ii =M

(1)
ξ,ff = 0) and to have the same spatial extent

(M
(2)
ξ,ii =M

(2)
ξ,ff = σ2

d). Then dexc(|1∗2〉) = σd
√
6 is simply proportional to this

extent. For a charge-transfer state, e.g. |1−2+〉 an analogous equation but

with respect to an altered set of orbitals is obtained:

d2exc(|1−2+〉) =
∑

ξ∈{x,y,z}

(
M

(2)
ξ,ff +M

(2)
ξ,i′i′ − 2 ·M (1)

ξ,i′i′M
(1)
ξ,ff

)
. (3.2)

The equations for the delocalized states are longer but also easy to set up. For

example, for the excitonic state σ one obtains

d2exc(σ) =
1

2

∑

ξ∈{x,y,z}

(
M

(2)
ξ,ii +M

(2)
ξ,ff +M

(2)
ξ,i′i′ +M

(2)
ξ,f ′f ′

− 2
(
M

(1)
ξ,iiM

(1)
ξ,ff +M

(1)
ξ,i′i′M

(1)
ξ,f ′f ′ − 2 ·M (1)

ξ,ii′M
(1)
ξ,ff ′

))
(3.3)
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Table 3.2: Transition density matricesa D0I , charge-transfer measures ωCT,
and exciton size dexc of the idealized Frenkel excitonic resonance states σ and
γ and charge resonance states δ and ρ evaluated under the assumption of a
unit overlap matrix.
state σ γ δ ρ

D
0I ·

√
2









0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

















0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

















0 0 0 1
0 0 0 0
0 1 0 0
0 0 0 0

















0 0 0 1
0 0 0 0
0 −1 0 0
0 0 0 0









ωCT 0 0 1 1
dexc

b 0 0 d d

a Arranged according to (i, f, i′, f ′)
b Evaluated specifically for the case of two point-like orbitals separated by a distance d.

which includes also some matrix elements with mixed indices. A similar situa-

tion arises for the charge-resonance states, e.g. for δ the exciton size takes the

form

d2exc(δ) =
1

2

∑

ξ∈{x,y,z}

(
M

(2)
ξ,ii +M

(2)
ξ,ff +M

(2)
ξ,i′i′ +M

(2)
ξ,f ′f ′

− 2
(
M

(1)
ξ,iiM

(1)
ξ,f ′f ′ +M

(1)
ξ,ffM

(1)
ξ,i′i′ + 2 ·M (1)

ξ,ii′M
(1)
ξ,ff ′

))
. (3.4)

A general interpretation of the above equations can be given in the limit that

the involved orbitals are points in space and that i and f , as well as, i′ and f ′

are located at the same positions, respectively. Furthermore, without loss of

generality, i and f are placed at the origin of the three-dimensional coordinate

system while i′ and f ′ are at a distance d in x-direction. This leads to the

multipole matrices

M(k)
x = diag(0, 0, dk, dk) : k ≥ 1 (3.5)

while the ones with respect to the y and z coordinates vanish. The results

obtained in this way are marked as dexc in Tab. 3.1 and 3.2. For locally

excited states and coupled local excitations (Frenkel excitons) it holds that

dexc = 0 Å while for the charge separated states dexc = d. In other words

dexc corresponds to the natural definition of a charge-transfer distance. In the

remaining sections, this concept will be applied to increasingly complex cases.

3.3.2 Ethylene tetrafluoroethylene

The stacked ethylene-tetrafluoroethylene [Et· · ·TFE] complex (Fig. 3.1 (a)) is a

prototype system for intermolecular charge transfer.36 In this work this system

serves as a first proof-of-principle application of the developed approach. For

this purpose, Et and TFE are set up in a parallel face-to-face arrangement using
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Figure 3.3: (a) Excitation energies of charge-transfer and locally excited ππ∗

states of [Et· · ·TFE] and (b) exciton sizes (dexc, Å) examined for varied molec-
ular distances d (Å) at the ADC(2)/cc-pVDZ level of theory. Legend in (b)
also applies to (a).

varying molecular distances between 10 and 50 Å. For comparing properties of

local and charge-transfer (CT) excited states, the two lowest lying local ππ∗

excitations on each molecule (denoted [Et∗ · · ·TFE] and [Et· · ·TFE∗]) and the

CT state from Et to TFE [Et+ · · ·TFE−] are investigated at the ADC(2)/cc-

pVDZ level of theory.

Excitation energies and exciton sizes dexc of these three states are presented

in Fig. 3.3. For the local states (positioned at S2 and S3) the excitation ener-

gies remain constant at about 8.73 and 8.77 eV for the range considered. In

contrast, the excitation energy of the CT state increases strongly according

to the expected 1/d behaviour (where d is the intermolecular separation) as a

consequence of the electrostatic attraction between electron and hole. Accord-

ingly the relative position of this state is raised: While it is the S9 state at

d = 10 Å, it becomes the S14 state at d = 50 Å. Similarly to excitation ener-
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gies also exciton sizes of the local states remain constant at dexc = 1.94 and

2.04 Å for [Et∗ · · ·TFE] and [Et· · ·TFE∗], respectively (Fig. 3.3(b)). These

values are identical to the ones obtained for the ππ∗ excited states of isolated

Et and TFE molecules. For the CT state there is a close correspondence be-

tween d and dexc and only a minor difference remains due to the non-vanishing

size of the molecules making dexc slightly larger. For example at a distance of

d = 10 Å the exciton size is 10.20 Å. In summary, the results are consistent

with the theoretical considerations of the previous section and highlight the

suitability of dexc for quantifying charge transfer.

3.3.3 Pyridine dimer

Complexes of aromatic and heteroaromatic molecules are highly interesting

models for biological chromophores with particular relevance to DNA.113 The

excited states of these systems are characterized by excitonic delocalization and

charge transfer, and at smaller intermolecular separations exciplex interactions

come into play.114,115 However, analyzing these processes is challenging, in par-

ticular when several transitions between delocalized orbitals are involved.64,104

The pyridine dimer116,117 is chosen as a prototypical example: two pyridine

molecules are positioned in a face-to-face arrangement, with the nitrogen atoms

located on top of each other yielding C2v symmetry for the total system. Due

to this symmetric arrangement, all states and MOs are evenly delocalized over

the system and no net charge transfer or dipole moments are present. While

this is a challenging situation for standard analysis methods,104,118 the states

can be readily characterized using charge-transfer measures ωCT and exciton

sizes dexc.

Tab. 3.3 summarizes properties of the 15 lowest lying singlet states of the

pyridine dimer at 5 Å distance. The twelve lowest lying states are excitonic

resonance states of nπ∗ and ππ∗ nature. These states arise as the σ and γ

linear combinations (cf. Fig. 3.2) of the six low lying states of the pyridine

monomer.66,119 In all these cases ωCT is very close to zero and the exciton size is

about 2.5 Å. After these twelve excitonic states, the two charge separated states

(ωCT ≈ 0.99) 41B1 and 51A1 follow. Their exciton sizes (dexc ≈ 5.6 Å) reflect

extended electron-hole separation of these states spanning the intermolecular

separation of 5.0 Å. These are the δ and ρ charge resonance states deriving

from the same orbitals as the 11B1 and 21A1, σ and γ excitonic states, forming

together a complete set of four delocalized states as described in Fig. 3.2. The

last state considered is the 51B1 state. This state is local in the sense that

ωCT ≈ 0.0, but Tab. 3.3 reveals that its exciton size is somewhat increased

compared to the previous cases (dexc = 3.81 Å). The reason for this is the

Rydberg character of this state, i.e. the diffuse particle orbital leads to an
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Table 3.3: Excitation energies (∆E, eV), oscillator strengths (f), charge-
transfer measures (ωCT), exciton sizes (dexc, Å) and type assignment of the
15 lowest energy singlet nπ∗, ππ∗, CT and Rydberg states of the pyridine
dimer at an intermolecular separation of 5 Å at the ADC(2)/cc-pVDZ level of
theory.

state ∆E f ωCT dexc type
11B1 5.13 0.00 0.000 2.55 nπ∗

21A1 5.13 0.00 0.000 2.55 nπ∗

11A2 5.37 0.00 0.000 2.57 nπ∗

11B2 5.37 0.00 0.000 2.57 nπ∗

21A2 5.44 0.00 0.001 2.43 ππ∗

21B2 5.45 0.04 0.000 2.43 ππ∗

21B1 6.92 0.00 0.002 2.54 ππ∗

31A1 6.95 0.04 0.000 2.53 ππ∗

31A2 7.67 0.00 0.006 2.51 ππ∗

31B1 7.78 0.00 0.005 2.57 ππ∗

31B2 7.84 1.10 0.000 2.49 ππ∗

41A1 7.92 0.92 0.008 2.72 ππ∗

41B1 8.00 0.00 0.990 5.65 nπ∗

51A1 8.00 0.02 0.984 5.63 nπ∗

51B1 8.19 0.00 0.011 3.81 Rydberg

increase in exciton size.

Tab. 3.3 is used as a starting point for a scan of intermolecular separations

between 2.5 and 9 Å. To reduce the complexity of the information only states

of B1 symmetry will be considered, as this irreducible representation contains

both, the lowest lying excitonic and charge-resonance states. In Fig. 3.4 the

relative energies, exciton sizes dexc, and the ωCT values of these states are plot-

ted against the intermolecular distance d. Above distances of 6.0 Å (i.e. on

the right hand side of Fig. 3.4) the first three excited states (11B1 − 31B1) are

excitonic combinations of nπ∗ and ππ∗ states while 41B1 is a Rydberg state and

none of these states show any charge separation (ωCT = 0). The nπ∗ charge

resonance state (ωCT = 1) is the highest lying state presented here (51B1).

This latter state exhibits the expected 1/d dependence of the total energy and

a linear growth of dexc comparable to the CT state [Et+ · · ·TFE−] described

previously. For the other states these values remain constant possessing similar

values as in Tab. 3.3. In Fig. 3.4, coming from the right, the first state crossing

occurs at about 5.75 Å affecting the Rydberg and the charge resonance state.

This goes along with an abrupt exchange of the excited state characters of the

41B1 and 51B1 states as seen in Fig. 3.4 (b) and (c). Below about 5 Å direct or-

bital interactions come into play104 and the clear distinction between excitonic

and charge-resonance states is no longer possible. In Fig. 3.4 this effect can be
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Chapter 3. Exciton size analysis of many-body wave functions

Figure 3.4: (a) Total energy relative to the ground state at infinite separation
(E, eV), (b) exciton size (dexc, Å), (c) charge-transfer measures (ωCT) for the
five energetically lowest lying 1B1 states of pyridine dimer calculated at the
ADC(2)/cc-pVDZ level for varied molecular distances d (Å). Legend in (b)
applies to all plots in this figure.
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seen by the fact that starting at around this separation the dexc and ωCT val-

ues of the individual states diverge from the idealized results described above.

This effect is enhanced for the 31B1 and the 41B1 states which lie close in en-

ergy over an extended geometric range around d = 4 Å. Substantial coupling

between these states leads to strong modulations of the dexc and ωCT values.

At intermolecular separations below 3.5 Å excimeric effects play the dominant

role. In particular the ππ∗ states (21B1 and 31B1) exhibit deep potential wells

at intermolecular separations below 3.0 Å. It should be noted that a quanti-

tatively correct description of these minima cannot be guaranteed using the

present computational protocol owing to potential multi-reference effects and

basis set superposition error,115 but a semi-quantitative analysis of the wave

functions is certainly of highest interest. As discussed previously,64,113,115 the

energetic stabilization goes along with a significant change in wave function

character, which is reflected by the fact that at smaller separations the charge-

transfer measures (ωCT) of all states approach a value of 0.5. This means that

the differentiation between excitonic and charge separated states disappears

and the resulting exciplex states are of a homogeneous and coherent nature.

An analogous trend is observed for dexc, which converges to about 3.0 Å for all

the valence states. Only the Rydberg state (41B1) retains its distinctly higher

value of 3.87 Å.

In summary, the presented analysis strategy revealed a detailed picture

about excited-state characters in stacked systems. It provided new quantita-

tive information, which remained hidden when simpler analysis strategies were

applied.

3.3.4 Poly(para phenylene vinylene)

Over the last decades the study of poly(para phenylene vinylene) has provided

fundamental insight into the working principles of π-conjugated polymers used

in organic electronics.81,120,121 However, a number of questions remain open

and especially the magnitude of the exciton binding energy is still discussed

controversially.122–127 Aside from the large system sizes the main barrier for

computational studies lies in the fact that even when accurate excitation ener-

gies are available, an analysis of excitonic correlation effects is by far not trivial

and outside the scope of standard quantum chemical approaches. One strategy

used to overcome these problems is analysis of the 1TDM revealing otherwise

hidden excitonic properties.77,102,105 In this work, a more refined picture is pre-

sented by considering quantitative information through the analysis of exciton

sizes.

For the description of PPV, the strategies explored in Refs 64,105 are revis-

ited. The main tools in these investigations were the charge-transfer numbers
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Figure 3.5: Fragmentation scheme for electron-hole correlation plots ΩAB of
(PV)5P.

131

ΩAB (cf. sec. 2.10 and in particular eq. (2.48)),64,75 which allow to visualize

the correlated electron-hole distribution (cf. Refs 102,128–130). This anal-

ysis requires a fragmentation of the molecule into subunits, which is chosen

according to ”chemically intuitive” units, e.g. Fig 3.5. The ΩAB numbers then

encode the joint probability of finding the hole and electron at fragments A

and B, respectively. An electron-hole correlation plot visualizes these proba-

bilities and presents a coarse representation of the correlated electron-hole wave

function (cf. Fig. 2.1 (c)). In these representations, the hole and electron posi-

tions are plotted along the horizontal and vertical axis, respectively. Elements

on the main diagonal represent local excitations within one fragment, whereas

charge-transfer contributions between two fragments appear as off-diagonal el-

ements. While the CT numbers can be useful to represent excitonic structures

in π-conjugated organic polymers, there are several downsides: (i) the results

depend on the fragment definitions, (ii) on population analysis scheme, and

(iii) the plots are only easily interpreted for linear molecules. Exciton sizes

dexc provide a more compact and clearly defined measure of electron-hole sep-

aration and can deliver useful additional information. A hexamer fragment of

poly(para phenylene vinylene) termed (PV)5P was considered as a model for

the spectroscopic unit in the polymer. To perform the CT number analysis,

the molecule was split into six quasi-equivalent fragments by cutting through

carbon-carbon double bonds (Fig. 3.5, see also Refs 64,105). The resulting

correlation plots and additional information about the lowest four singlet and

triplet excited states of (PV)5P are presented in Tab. 3.4.

A first visual inspection of the correlation plots for the singlet excited states

directly suggests the existence of two distinct excitation patterns: The first

three states (S1−S3) resemble a series of particle-in-a-box-like excitations with

increasing number of nodes subdividing the π-system into regular units (see

also Ref. 92). By contrast, the S4 state (31Ag) has much more pronounced

off-diagonal contributions highlighting its enhanced intrinsic charge-transfer

character. The same trend can also be seen in the ωCT values (counting the

fraction of charge separated configurations in the excited state, eq. (2.49)). For

the first three states ωCT lies between 0.61 and 0.51 decreasing for the higher

excited states, while the value of ωCT = 0.75 for S4 indicates a considerable
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Table 3.4: Excitation energies (∆E, eV), exciton sizes (dexc, Å), charge-transfer
measures (ωCT) and electron-hole correlation plots ΩAB of the first four singlet
and triplet excited states of (PV)5P computed at the ADC(2)/SV level.

(a) Singlets
S1(1

1Bu) S2(2
1Ag) S3(2

1Bu) S4(3
1Ag)

∆E 3.45 3.96 4.46 4.50
dexc 6.49 5.92 5.19 10.45
ωCT 0.61 0.59 0.51 0.75

ΩAB

(b) Triplets
T1(1

3Bu) T2(1
3Sg) T3(2

3Bu) T4(2
3Sg)

∆E 2.28 2.49 2.78 3.12
dexc 4.53 4.14 3.79 3.47
ωCT 0.38 0.36 0.34 0.32

ΩAB

charge separation (according to the chosen fragmentation scheme).

Tab. 3.4 presents the exciton size dexc, which allows for a quantitative com-

parison among the excited states. The sizes for the first three states are some-

what smaller than the length of the PV repeat unit (6.71 Å) while they are

significantly larger than the diameter of a single phenyl ring (2.86 Å) (see Ref.

93 for a related analysis in poly(para phenylene)). These values are reflected

in the electron-hole correlation plots ΩAB , which show that excitations occur

either locally or between adjacent fragments. With an increase of nodes per-

pendicular to the π-system, the electron-hole distance dexc drops from 6.49 to

5.19 Å, which suggests that excitons become more tightly bound for higher

momentum particle-in-a-box states (a similar trend is observed in Ref. 77). In

comparison to the S1 − S3 states, the electron-hole separation of S4 is much

larger with dexc = 10.45 Å. Previous studies64,105 suggested that the S4 state

belongs to a distinct PPV band and the difference in dexc is in agreement with

this idea (see also Ref. 132 for a discussion of the different possible states).

The four triplet states show similar exciton structures as compared to the

(S1−S3) singlets. The electron-hole correlation plots illustrate that the exciton

wave functions have similarities to the particle-in-a-box model. However, in

contrast to the singlet states, the triplets show a reduced CT character (see also

Ref. 77). Accordingly, the mean electron-hole distances are significantly smaller

and lie between 4.53 and 3.47 Å. These findings nicely reflect the contrasting

exchange-correlation effects expected for singlet and triplet excitons81 as only
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(a) (b)

Figure 3.6: Transition densities (with isovalue 0.003 e) and transition moments
shown as green arrows with volume proportional to the oscillator strength for
(a) 1La, and (b) 1Lb of tetracene.131

the former are affected by exchange repulsion between the electron and the

hole.

3.3.5 Polyacenes

Polyacenes are a promising substance class for applications in organic electron-

ics due to their unique electronic structure properties. However, the descrip-

tion of their electronic states is quite challenging.40,41,111,133–137 In particular,

in the case of the larger polyacenes open-shell character in the ground state133

and doubly excited character in some of the excited states come into play.134

Furthermore, there are specific problems for TDDFT even at smaller system

sizes.40,41 In the light of these considerations, a more detailed comprehension

of polyacene excited states is certainly of highest interest. This work is specif-

ically concerned with tetracene and hexacene, which have comparatively large

π-systems but are still amenable to a single-reference approach.133

The two lowest spectroscopically relevant states, usually termed 1La(1
1B2u)

and 1Lb(1
1B3u), are computed at the ADC(2) level, which has been tested

previously for this purpose, cf. Ref. 134. To analyze the general character of

these states, the transition densities and moments are considered in the case of

tetracene (Fig. 3.6). In this representation it becomes apparent that the 1La

state is polarized along the short axis (the transition moment points in this

direction) and possesses a large oscillator strength (f = 0.113). By contrast,

the 1Lb state is polarized along the long axis and is almost dark (f = 0.002).

The transition density is located on the carbon atoms for the 1La state while

it is centered around the bonds in the 1Lb case (see also Ref. 41).

To get more insight into the wave functions of these states a similar strat-

egy as in Section 3.3.4 is adopted, that is, a decomposition in terms of charge-

transfer numbers as well as the computation of dexc. However, in contrast to

(PV)5P setting up the fragmentation scheme required for the charge-transfer

analysis is not quite as unambiguous. The choice finally adopted is presented

in Fig. 3.7. Unfortunately, it is not possible to set up chemically equivalent
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Figure 3.7: Fragmentation scheme for electron-hole correlation plots ΩAB for
tetracene. Hexacene is fragmented in analogy.131

fragments in this way and the obtained results should be analyzed with care.

By contrast, there is no such arbitrariness in the computation of dexc, which

highlights the power of this approach. The results of this investigation are

presented in Tab. 3.5. For both systems the 1La state is significantly lower in

energy than the 1Lb state and possesses by far the larger oscillator strength.

An inspection of the electron-hole correlation plots (ΩAB) reveals clear differ-

ences between the states. The 1La state possesses enhanced charge separation

(strong contributions on the upper left and lower right corners) and notably

no contribution on the central fragment. By contrast, the 1Lb states possess

enhanced contributions on the main diagonal (going from lower left to upper

right), which derive from configurations where the electron and hole are on the

same fragment. While the construction and interpretation of these correlation

plots is quite involved, dexc provides a more compact and simple descriptor of

the dynamical charge transfer in these systems. Two trends can be observed

immediately: Firstly, dexc increases when going from tetracene to hexacene,

meaning that there is a significant change in electronic structure between these

molecules, which probably derives from confinement effects. Secondly, in both

cases the charge separation for the 1La state is significantly larger when com-

pared to the 1Lb state. Interestingly, it has been known for a long time that

Table 3.5: Excitation energies (∆E, eV), oscillator strengths (fosc), exciton
sizes (dexc, Å) and electron-hole correlation plots (ΩAB) of tetracene and hex-
acene excited states computed at the ADC(2)/SV level of theory.

Tetracene Hexacene
1La

1Lb
1La

1Lb

∆E 3.20 3.67 2.18 3.23
fosc 0.113 0.002 0.093 0.006
dexc 4.60 4.02 5.60 4.76

ΩAB

the 1La state of polyacenes is not described well by local density functionals.40
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This phenomenon, which has been attributed to hidden charge transfer, has

since been difficult to understand in a quantitative sense.41,106 However, the

presented results show that dexc does indeed find enhanced charge transfer

for this state. Combined with the results of the previous sections, discussing

charge separation in dimers, these findings suggest that dexc carries potential as

a new charge-transfer diagnostic for TDDFT (see Refs 51–54,71 for alternative

strategies). The presented formalism can also be combined with TDDFT and a

more detailed analysis of the excited states of acenes is presented in Chapter 5.

Furthermore, the potential of dexc as a diagnostic tool for direct charge-transfer

and charge-resonance states is discussed.

3.4 Conclusion

The performance and predictive power of the developed exciton size dexc pro-

tocol was investigated for a diverse set of applications. Quantifying exciton

sizes provided insight into excited states of dimers and aggregates as well as of

extended π-conjugated systems. Three examples of the first class were chosen

featuring excited states with divers properties: (i) an analytical dimer model of

two separated chromophores, (ii) the ethylene tetrafluoroethylene system, and

(iii) the pyridine dimer. In the case of charge-transfer and charge-resonance

states an almost perfect correspondence between exciton sizes and intermolec-

ular separation was found, while for local and Frenkel excitonic states exciton

sizes depend on the excited-state properties of the respective monomers. For

pyridine dimer, exciton sizes were used to rationalize state mixing, orbital in-

teractions, and excimeric effects, and revealed that Rydberg states possess high

dexc values.

As representatives for extended π-systems, two prototypical compounds,

PPV and oligoacenes, were analyzed in terms of exciton sizes and related

1TDM-based properties. In both cases, a wealth of information was obtained

with exciton analysis, which would have remained hidden if only the Hartree-

Fock orbitals were analyzed. The findings of this chapter generally stand in

good agreement with results and hypotheses by other researchers, cf. 40,41,64,

77,105,106,134. Specifically, the exciton size measure proved beneficial with re-

spect to the analysis of dynamic charge-separation effects, i.e., excitonic effects

providing a more compact quantitative measure when compared to previously

used electron-hole correlation plots.102,105 In this context, the exciton size pro-

vided a quantitative description of electron-hole correlation effects, which has

potential as diagnostic tool for charge-transfer interactions in time-dependent

density functional methods (cf. Refs 51–54,71). The analysis of charge-transfer

interactions in TDDFT calculations is analyzed in more detail in Chapt. 5, 6.
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Chapter 4

Excitons in poly(para
phenylene vinylene): A
quantum-chemical
perspective based on
high-level ab initio

calculations

This chapter focuses on the investigation of excited states of poly(para pheny-

lene vinylene) (PPV), a prototypical π-conjugated system for which excitonic

effects play a fundamental role. A high-level benchmark based on ADC(3) re-

sults confirms that the more efficient ADC(2) method is generally adequate for

calculating singly excited states, but also reveals the existence of low-energy

doubly excited states. For a series of oligomers with increasing lengths it is

shown how confinement effects dominate excited state of small oligomers, while

delocalized exciton bands emerge for larger systems. For the largest studied

oligomer, (PV)7P, the first twenty singlet and triplet excited states are charac-

terized and compared to Wannier and Frenkel models. Different Wannier bands

appear following a general trend that exciton sizes are lowered with increasing

quasi-momentum for each band. Ultimately, triplet excitons of oligomers with

different sizes are compared to their singlet counterparts. It is found that the

absence of exchange repulsion results in more tightly bound triplet excitons.

Please note that parts of this chapter have already been published by Prof.

Dr. Andreas Dreuw, Dr. Felix Plasser, Dr. Jan-Michael Mewes and myself in

the Journal of Physical Chemistry and Chemical Physics, volume 18 (2016),

pages 2548− 2563 (Ref. 138).
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4.1 Introduction

Poly(para phenylene vinylene) (PPV)122,123,139–141 is an organic π-conjugated

system, which plays a key role in the rapidly advancing scientific field of or-

ganic electronics due to its electronic structure.120,121,123,130,142–145 Its simple

molecular structure consisting of the two monomers phenylene and vinylene

renders this molecule an ideal prototype to explore the relation between molec-

ular structure and electronic properties. The theoretical investigation of this

polymer is, however, challenging due to its large size and the involvement of

complex electron correlation effects. Despite the large number of studies, there

is not even qualitative consensus about the nature of the excitons. Estimates

of the binding energy lie in the range from almost free charge carriers at 0.1 eV

to strongly bound states at 1.0 eV.124,125,146–148

A wide range of computational studies of PPV have been performed in re-

cent years covering such diverse methods as solid-state physics models,81,147,149

semi-empirical methods,102,120,150–152 density matrix renormalization group

theory solving a Pariser-Parr-Pople model,153,154 time-dependent density func-

tional theory,94,155,156 many-body Green’s function theory,84,157 correlated ab

initio methods105,158,159 and non-adiabatic dynamics.160,161 These studies have

elucidated the properties of this polymer from different, sometimes contradic-

tory viewpoints. The reconciliation of these different viewpoints is arguably

one of the most pressing issues in this field and could move our understanding

of these systems forward considerably. The major dividing line may be drawn

between the solid-state physics inspired methods and the quantum chemical

methods. The former are formulated in terms of a correlated quasi-particle

electron-hole wave function and possess the advantage of a direct connection

to the picture of charge carriers, which are invoked for the understanding of

electronic devices. The latter take full account of the molecular details, but

are based on molecular orbitals and hence lack the direct connection to charge

carriers.

In the following, a selection of quantum-chemical studies, that are best

suited for a comparison with this work, are briefly summarized. As a con-

sequence of the large system size, the first computational studies were per-

formed using approximate, semi-empirical methods102,120,150–152,162 such as the

collective-electronic oscillator (CEO) and the Zerner’s intermediate neglect of

differential overlap (ZINDO) methods. These led to a coarse picture of exci-

tonic wave functions and assignment of different bands in the excitation spec-

trum of PPV. Further studies reported the application of linear-response time-

dependent density functional theory (TDDFT) to oligomers of PPV.94,155,156

This method has the ability to describe excited states of fairly large systems
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with twenty repeat units and more. However, this comes at the cost of a

strong dependency of the results on the xc-functional. It was illustrated that

excitons can be tuned from completely unbound electron-hole pairs to tightly

bound quasi-particles by employing different xc-functionals.156,163 Accurate

multi-reference ab initio methods such as complete active space self-consistent

field (CASSCF) and complete active space perturbation theory to second order

(CASPT2) have only been applied to the smallest PPV oligomer, stilbene, for

which the computational demand is feasible.164,165 Although these high-level

ab initio methods yield accurate results for small systems, a transfer of these

results to extended polymers is difficult. Due to its lower computational cost,

symmetry-adapted cluster-configuration interaction (SAC-CI) can afford the

computation of small oligomers with up to four units.159 In this respect, the

algebraic-diagrammatic construction for the polarization propagator of second

order (ADC(2)) constitutes a great improvement105 as it allows for a descrip-

tion of oligomers with up to eight phenyl rings, which closely resemble the

polymer with respect to its electronic properties.162 The calculated vertical

excitation energies are in good agreement with experimental data. Further-

more, it was found that defects in the oligomer chain invoked by a break in the

conjugated system lead to exciton localization. In addition, the one-particle

transition density matrix has been visualized to interpret the excited states in

terms of an electron-hole picture.

In this chapter, high-level ab initio calculations are combined with elab-

orate exciton analysis tools to take advantage of, both, the molecular and

quasi-particle viewpoints of excitation processes. This is realized by subjecting

the computed excited-state wave functions to exciton analysis64,65,73,78 follow-

ing previous ideas in literature.77,92,102,151 A key quantity in this analysis is

the interpretation of the one-particle transition density matrix as an effective

exciton wave function. The major objectives of this chapter are (i) to provide a

high-level ab initio benchmark for vertical excitation energies and exciton prop-

erties on third-order level of perturbation theory (ii) to emulate the emergence

of exciton properties for sufficiently large π-systems, and (iii) to systematically

characterize exciton bands, both qualitatively and quantitatively.

4.2 Phenomenological models for exciton wave

functions

Since high-level ab initio methods become prohibitively expensive for large

system sizes, it is interesting to test whether reasonable results for extended

systems can be obtained with more phenomenological exciton models. While

55



Chapter 4. Excitons in poly(para phenylene vinylene)

this question is only qualitatively assessed in this work, a similar methodology

can in the future be used to evaluate, re-parametrize or adjust existing empirical

models allowing for accurate multi-scale descriptions of large systems.

A number of excellent discussions of excitons in polymers is available in

literature93,132,144,166,167 and therefore only the concepts that are immediately

relevant to this work are reviewed in the following. The central idea is to

move away from the molecular-orbital picture to the quasi-particle exciton rep-

resentation. This is achieved mathematically by a coordinate transformation

of the exciton wave function (Fig. 2.1) into the electron-hole separation (or

relative) coordinate rhe = re − rh and the center-of-mass (CM) coordinate

R = (rh + re)/2. Furthermore, it is assumed that these two variables are sep-

arable and the wave function can be rewritten, at least approximately, into a

product of the form

χexc(rh, re) ≈ φsep(rhe)φCM (R), (4.1)

where φsep describes the intrinsic electron-hole wave function and φCM the

center-of-mass wave function. φsep(rhe) describes the relative motions of two

oppositely charged particles. Its solutions in a homogeneous medium will there-

fore possess the same shape as the wave functions of a simple hydrogen atom,

only that a different effective mass and dielectric susceptibility have to be in-

serted. By contrast, φCM (R) describes a neutral particle, which is not sub-

jected to any Coulomb potential. In a periodic system this yields a plane-wave

solution, while in a confined molecular system a particle-in-a-box picture is

adequate, and for more complex branched systems an exciton scattering ap-

proach166 has been developed.

Following the above considerations, the Wannier-Mott picture of excitons

in polymers can defined. In this concept, the radial wave functions φsep(rhe)

are assumed to resemble hydrogenic s, p, d etc. orbitals only that they extend

in a one-dimensional space. These wave functions are indexed by a principle

quantum number n. Specifically, the exciton size of the Wannier Bu excitons

is expected to scale linearly with n according to81

dexc,n ≈ n× dexc,1 (4.2)

where dexc,1 is the size for the primary (n = 1) exciton. Furthermore, the

center-of-mass wave functions φCM (R) are described by the quasi-momentum

quantum number j. These can be identified with particle-in-a-box -like wave

functions possessing j−1 nodal planes. In the following, Wannier excitons can

be characterized by the quantum numbers n and j using the notation W (n, j).

The Wannier picture assumes the presence of freely moving quasi-particles.
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Exciton wave function
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Approx. exciton size 
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Exciton size 

Figure 4.1: Wave function analysis software used in this chapter: the libwfa
library and the TheoDORE program package.

More localized states can be rationalized using the Frenkel exciton model. This

model is based on entirely different assumptions, and is discussed for PPV in

detail in Ref. 168: In the Frenkel picture, the system is divided into individual

sites i, and these give rise to locally excited states |i〉 that are each confined

to the respective site. The excited states of the whole system are obtained as

eigenstates of the Hamiltonian

ĤFrenkel =
∑

i

εi |i〉 〈i|+
∑

ij

cij |i〉 〈j| (4.3)

where εi are the site excitation energies and cij are the electronic couplings

or transfer integrals, which are usually assumed to derive from Coulomb in-

teractions. To understand this equation, it may be helpful to realize that the

resulting Hamiltonian matrix 〈i| ĤFrenkel |j〉 possesses the same structure as

a matrix in Hückel theory considering only nearest neighbour couplings. Fur-

thermore, considering close-lying εi values and small couplings cij , it is clear

that the resulting excitation energies are closely spaced.

4.3 Computational details

All calculations were performed using variants of the algebraic diagrammatic

construction (ADC) scheme for the polarization propagator.57,58 ADC(2) and

ADC(3/2) calculations were performed employing the Q-Chem 4.2 package in
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Chapter 4. Excitons in poly(para phenylene vinylene)

Figure 4.2: Fragmentation scheme to compute electron-hole correlation plots
and ωCT values shown for (PV)5P.

131

a developmental version.59,60,98,169 The abbreviation ADC(3/2) indicates that

although excited-state vectors are computed at the third order of perturba-

tion theory, the corresponding densities are computed using these vectors in

combination with the second-order intermediate-state basis, cf. sec. 1.9. For

these calculations, an efficient calculation of properties is possible through the

intermediate state representation (ISR).170 For larger systems and basis sets,

the Turbomole 6.3.1 program package171 was used, which affords an efficient

implementation of ADC(2) exploiting the resolution-of-the-identity (RI) ap-

proximation (RI-ADC(2)).172–174 The calculations were performed using the

Ahlrichs basis sets SV, SV(P), and TZVP110,175 to examine basis-set effects.

For all calculations planar geometries were taken from Ref. 105 and C2h symme-

try was used throughout. In the case of the ADC calculations in Q-Chem, the

wave function analysis library (libwfa)65,73,78 was applied to directly analyze

the 1TDMs as given by the ISR to compute the exciton size and charge-transfer

numbers. This information was, however, not accessible in the RI-ADC com-

putations in Turbomole. Therefore, the response vectors were read instead

and processed externally by the TheoDORE 1.0 analysis package.176 In all

cases, post-processing of the results and the creation of electron-hole correla-

tion plots was carried out using TheoDORE.176 The different software used to

compute the various wave function properties is summarized in Fig. 4.1. While

TheoDORE is publicly available as a stand-alone package, libwfa is distributed

as a part of Q-Chem 4.3. The fragmentation scheme used to compute electron-

hole correlation plots and ωCT numbers is shown in Fig. 4.2. The oligomers

were cut into fragments that alternatively represent phenylene rings or vinylene

groups yielding, e.g., 11 fragments in the case of (PV)5P.

4.3.1 Total charge transfer

As opposed to the general definition given in eq. (2.49), the total charge transfer

is calculated in this chapter according to

ωCT =
1

Ω

∑

A

∑

B/∈{A−1,A,A+1}

ΩAB (4.4)
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which means that only charge transfer between at least second-nearest neigh-

bours is taken into account. This is motivated by the small sizes of the chosen

fragments.

4.3.2 Functional group contribution

The functional group contribution may be regarded as a specific fragmentation

scheme, where the fragments are identified as the functional groups. This is

particularly interesting as PPV is composed of two distinct monomer building

blocks, the phenyl ring (P) and the vinylene group (V ). In the fragmentation

scheme, the P and V contributions are separated and the partial summation

ωP =
1

2Ω

∑

P∈P

∑

A

(ΩAP +ΩPA) (4.5)

is performed, where P runs over the set of phenyl rings P while A runs over

all fragments. ωP , ranging from 0 to 1, counts the total participation of all

phenylene groups to both, electron and hole of an excitation. Technically, this

summation is realized by dividing the system into two formal fragments, one

related to all phenyl rings and one to all vinylene groups and counting the

excitation contributions that go from and to these fragments.

4.4 Results and discussion

In this section a detailed analysis of the excited states of poly(para phenylene

vinylene) oligomers is presented. Firstly, a high-level benchmark of the ex-

citation energies is presented and the role of double excitations is addressed.

Secondly, the low-lying excited states of oligomers from two to eight phenyl

rings are discussed. These oligomers emulate spectroscopic units, which help

to explain the properties of the polymer.121,140,177 In these cases a detailed anal-

ysis of the different excited states is carried out. Special attention is devoted

to the emergence of exciton bands, which are illustrated by employing visual

representations, as well as numerical descriptors of the excitations. Thirdly, a

large-scale analysis including twenty singlet and twenty triplet excited states of

(PV)7P is performed and the results are interpreted within the exciton models

discussed above (Section 4.2). Ultimately, triplet excitons are investigated for

oligomers of small to large chains in analogy to their singlet counterparts.
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4.4.1 High-level benchmark of singly and doubly excited

states

The discussion starts with high-level benchmark calculations performed at the

ADC(3) level of theory.169,178,179 ADC(3) is a polarization-propagator based

excited-state method that consistently treats terms to the polarization prop-

agator up to the third order in perturbation theory, cf. sec. 1.9. It provides

a very accurate, third-order description of singly excited states, which are the

primary focus of this chapter. Also the description of doubly excited states is

reasonably accurate and correct to first order of perturbation theory.59 ADC(2)

on the contrary treats all terms at one order of perturbation theory lower than

ADC(3). To keep the computational cost at an affordable level, the ADC(3)

computations are limited to the smallest three oligomers investigated, i.e., stil-

bene to (PV)3P.

Vertical excitation energies, oscillator strengths as well as additional excited-

state descriptors computed at the ADC(3)/SV(P) level are presented in Tab. 4.1

and compared to the analogous ADC(2)/SV(P) results. In this analysis the

double excitation character is of particular interest and two different values

are used for its quantification. On the one hand, the Ω value, defined as

the squared norm of the 1TDM,65,90 is used providing a universal method-

independent measure for single excitation character. On the other hand, the

weight of the single excitation amplitudes t1 is used, which is straightforward

to extract from a computation but possesses a meaning only within a chosen

computational protocol. Fortunately, as seen in Tab. 4.1, the numbers are very

similar with the only exception that t1 is always slightly larger than Ω.

For the smallest oligomer PVP (i.e. stilbene, n = 1) the excitation energies

of the first three excited states are shifted down by about −0.2 eV when going

from ADC(2) to ADC(3). Furthermore, there is a notable transfer of oscillator

strength: While the 11Bu state is by far the brightest state in the ADC(2)

calculation, there is an even distribution of oscillator strength between the 11Bu

and 21Bu states for ADC(3). The remaining values for the first three states

shown in Tab. 4.1 are rather similar for both methods, and this is also true for

the electron-hole correlation plots shown in Fig. 4.4.1. After these three singly

excited states, there are a number of low-energy doubly excited states found

with ADC(3), which are missing in the ADC(2) spectrum. A doubly excited

state (31Ag, Ω = 0.19) is found at 4.66 eV with ADC(3). The excitation

energy of this state stands in agreement with both, the experimental value of

4.84 eV, which was predicted by two-photon absorption,180 and calculations

on the CASPT2 level of theory with a vertical excitation energy of 4.95 eV.165

Since the analysis protocols of the 1TDM are not applicable to doubly excited
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Table 4.1: Vertical excitation energies (∆E, eV) and oscillator strengths (f)
and a selection of excited-state descriptors for (PV)nP singlet states with n = 1
to 3 calculated at the ADC(2)/SV(P) and ADC(3)/SV(P) levels of theory.
n method state ∆E f Ω t1 ωCT dexc

1 ADC(3) 11Bu 4.449 0.514 0.80 0.86 0.09 3.61
ADC(2) 11Bu 4.543 1.082 0.85 0.91 0.14 4.01
ADC(3) 21Ag 4.544 0 0.75 0.81 0.06 3.28
ADC(2) 21Ag 4.844 0 0.83 0.90 0.06 3.33
ADC(3) 21Bu 4.629 0.610 0.81 0.87 0.10 3.67
ADC(2) 21Bu 4.854 0.089 0.83 0.90 0.08 3.41
ADC(3) 31Ag 4.659 0 0.19 0.20 (0.29) (4.59)
ADC(2) −

ADC(3) 31Bu 5.652 0.010 0.23 0.24 (0.04) (3.88)
ADC(2) −

ADC(3) 51Ag 6.108 0 0.82 0.87 0.07 3.51
ADC(2) 31Ag 6.106 0 0.83 0.89 0.24 4.52
ADC(3) 61Ag 6.336 0 0.77 0.81 0.14 3.90
ADC(2) −

2 ADC(3) 21Ag 3.758 0 0.16 0.17 (0.45) (6.28)
ADC(2) −

ADC(3) 11Bu 3.819 1.982 0.83 0.90 0.22 4.81
ADC(2) 11Bu 3.814 2.068 0.83 0.90 0.26 5.16
ADC(3) 21Bu 4.251 0.115 0.74 0.80 0.10 3.70
ADC(2) 21Bu 4.526 0.033 0.82 0.89 0.10 3.72
ADC(3) 31Ag 4.498 0 0.75 0.81 0.08 3.55
ADC(2) 21Ag 4.780 0 0.83 0.90 0.09 3.72
ADC(3) 51Ag 4.992 0 0.85 0.90 0.14 4.00
ADC(2) 31Ag 4.967 0 0.83 0.89 0.30 5.35

3 ADC(3) 21Ag 3.460 0 0.14 0.15 (0.51) (7.34)
ADC(2) −

ADC(3) 11Bu 3.504 2.963 0.83 0.90 0.26 5.43
ADC(2) 11Bu 3.487 2.959 0.82 0.90 0.32 5.86
ADC(3) 21Bu 3.886 0.001 0.16 0.16 (0.45) (6.32)
ADC(2) −

ADC(3) 31Ag 4.184 0 0.75 0.81 0.11 3.92
ADC(2) 21Ag 4.310 0 0.84 0.90 0.23 4.90
ADC(3) 31Bu 4.224 0.079 0.74 0.80 0.10 3.84
ADC(2) 21Bu 4.495 0.029 0.82 0.89 0.11 3.93
ADC(3) 61Ag 4.389 0 0.81 0.87 0.17 4.40
ADC(2) 31Ag 4.516 0 0.82 0.89 0.17 4.57
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11Bu 21Ag 21Bu 31Agn
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Figure 4.3: Electron-hole correlation plots of the first four electronically excited
states of (PV)nP oligomers with n = 1, 2, 3 calculated at the ADC(2)/SV(P)
and ADC(3)/SV(P) levels of theory. Only the plots corresponding to singly
excited states are shown in the case of ADC(3) and the state nomenclature
refers to the ADC(2) states.
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4.4. Results and discussion

Table 4.2: Vertical excitation energies (eV) of the first optically allowed 11Bu

state of (PV)nP oligomers with n = 1, ..., 4.

state method n = 1 n = 2 n = 3 n = 4
11Bu exp. 4.15a 3.50b 3.20b 3.05b

exp.c 4.19 3.69 3.47 3.35
ADC(2)/SV(P) 4.54 3.81 3.49 3.32
ADC(3)/SV(P) 4.45 3.82 3.50 -
SAC-CI/6-31G(d)d 4.21 3.57 3.18 3.09

Data taken from aRef. 184, b Ref. 185, c Ref. 186, d Ref. 159.

states and their character is not discussed further here. However, it should be

noted that analysis methods of two-body densities have been indeed introduced

in literature.181–183 By contrast, at the ADC(2) level the 31Ag state is located

at 6.10 eV and possesses single excitation character. It is the counterpart of

the fifth totally symmetric state 51Ag at the ADC(3) level. While the amount

of single excitation character of this state is the same for both methods, the

exciton properties differ significantly. Inspecting the electron-hole correlation

plot for the 51Ag state (see Fig. 4.4.1), dominant contributions on the phenyl

rings are found, but also charge transfer between the rings and towards the

vinylene group is present.

Going to the second oligomer (PV)2P, the differences between ADC(2) and

ADC(3) are more pronounced: For ADC(3) already the first excited state

(21Ag) is a dark doubly excited state (f = 0, Ω = 0.16). The assumption

that this state indeed lies below the bright 11Bu state is contradictory to the

observation of luminescence in PPV oligomers. However, geometric and en-

vironmental effects as well as methodological uncertainty can easily cause a

shift by a few tenths of eV which would again establish the bright state as the

lowest-energy state. The remaining states are only slightly displaced in energy

and the oscillator strengths are almost unaltered. In the case of 11Bu a slight

lowering of ωCT and dexc is observed for ADC(3) indicating a small reduction

in charge-transfer character. Furthermore, the Ω values of the 21Bu and 31Ag

states are lowered to about 0.75, which indicate an enhanced admixture of

double excitation character.

In the case of (PV)3P the lowest excited state at the ADC(3) level is again

a doubly excited 21Ag state and as well a doubly excited 21Bu state comes

into play. By contrast, the bright 11Bu state is more or less unaltered with

only a small blue shift and a slightly diminished CT character as indicated by

ωCT and dexc.

The computed results and experimental data is compared for the 11Bu state

for oligomers with up to five phenyl rings (cf. Tab. 4.2). There exist some
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Figure 4.4: Vertical excitation energies (∆E, eV) of poly(para phenylene viny-
lene) oligomers of increasing chain length computed at the RI-ADC(2)/SV
(dotted lines), RI-ADC(2)/SV(P) (dashed lines) and RI-ADC(2)/TZVP (solid
lines) levels of theory.

controversial experimental values from Hohlneicher et al.,184 Woo et al.185 and

Gierschner et al.,186 which deviate increasingly as a function of chain length.

The results of this work agree very well with the data from Gierschner et al.,

while previous SAC-CI calculations159 agree much better with the first series by

the other researchers. As will be shown below, excitation energies are somewhat

lowered with larger basis sets shifting the results more towards Refs. 184,185.

Despite some deviations, experimental data confirms the accuracy of ADC(2)

for these systems as far as energies, oscillator strengths, and wave functions

of singly excited states are concerned. The ADC(3) results, however, give rise

to a new perspective onto low-energy doubly excited states. The presence

of such states is not necessarily surprising considering their importance for

other related systems, e.g. polyenes187,188 or polyacenes.134 To our knowledge,

however, they have only received little attention so far. It would be of particular

interest to explore whether these states have a connection to singlet fission

observed in PPV,189,190 i.e. the generation of two charge carrier pairs from

one photon. However, this question has to be postponed to future studies.

4.4.2 Excitons in PPV oligomers of increasing size

After establishing ADC(2) as reliable method for computing primarily singly

excited states in PPV, excited states of PPV oligomers of varying size will

now be analyzed. Excitation energies of the first four singlet excited states of
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(a)

(b)

11Bu 21Ag 21Bu 31Ag

Figure 4.5: (a) Transition, (b) hole and electron densities of first four excited
states of stilbene calculated at the ADC(2)/SV(P) level of theory. Isovalues are
0.003 and 0.001 e, negative (hole) densities in blue, positive (electron) densities
in red.131

oligomers with (PV)nP chains from n = 1 to 7 are presented in Fig. 4.4 at the

RI-ADC(2) level in combination with three basis sets SV, SV(P) and TZVP.

In all cases the lowest excited state is the 11Bu state which is significantly

lowered in energy for increasing length of the π-conjugated system, e.g. from

approximately 4.5 to 3.0 eV in the TZVP basis. This lowering in energy can be

rationalized by considering the diminished gap between the frontier molecular

orbitals, or by a reduction in kinetic energy154 deriving from delocalization.

For all systems except for the (PV)2P oligomer, the second lowest state is the

21Ag, and similarly to the 11Bu state a significant decrease in excitation energy

and a convergence for larger chains is observed. The 21Bu energies decrease

unsteadily, being similar to the 21Ag ones first, and clearly above them for

larger oligomers. The highest-energy state in this series is the 31Ag state for

all oligomers. It has an excitation energy of ∆E = 6.38 eV for PVP in the

TZVP basis, and the energy curve significant drops until (PV)3P, and stays

rather flat for larger oligomers. The shape of the energy curve is somewhat

similar to the 11Bu energy curve. Reducing the number of basis functions

does not change the qualitative trends of the curves, but systematically raises

the excitation energies. The SV(P) curves (dashed lines) lie about +0.12 eV

higher than the TZVP reference, while the SV curves (dotted lines) are shifted

by about +0.32 eV. These results stand in agreement with the findings of Ref.

105.
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Figure 4.6: Electron-hole correlation plots of the first four excited states of
PPV oligomers computed at the RI-ADC(2)/TZVP level of theory.
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The characters of the singlet states involved for the different oligomers can

be interpreted by analyzing the electron-hole correlation plots of the ΩAB ma-

trices (cf. Fig. 2.1 (c)). The first four singlet excited states of each oligomer are

analyzed, see Fig. 4.6. In this figure the excited states are ordered according

to their symmetry, which does not necessarily coincide with an arrangement of

increasing excitation energies. In the case of the smallest system, stilbene or

PVP, the electron-hole correlation plots contain a 3 x 3 matrix where the main

diagonal goes from the lower left to the upper right. On the main diagonal

the first and third element represent the probability for local excitations at the

phenyl rings and the central element displays this probability for the vinylene

group. Charge transfer between these functional groups is indicated in the re-

spective off-diagonal fields. In the first row going from left to right, the 11Bu

state is delocalized over the entire PVP molecule and both, charge transfer and

local excitation character are present. The 21Bu and 21Ag states, in contrast,

show predominantly local excitation character. The two states represent a pair

of excitonic resonance states (see e.g. Ref. 73) consisting of one positive and

one negative linear combination of locally excited states at the phenyl rings.

The fourth state of stilbene is the 31Ag state and possesses a different excita-

tion pattern compared to the previous ones. In this case, local contributions

at the phenyl rings are found as well as charge-transfer contributions between

each phenyl ring and the vinylene group.

To relate the electron-hole correlation plots to more common representa-

tions of excited states, the transition densities as well as the electron and hole

densities65,66 for the four states of stilbene are plotted in Fig. 4.5. The tran-

sition density is the diagonal part of the 1TDM, where the electron and hole

are at the same location in space (rh = re). This, in turn, means that the

main diagonals in the electron-hole correlation plots are a coarse representa-

tion of the transition densities. Inspecting the plots in Fig.s 4.5 and 4.6, a

close correspondence between the different representations can be found. In

particular, it is observed that in all cases there are important contributions on

the phenyl rings while only the first state (11Bu) possesses significant vinylene

participation. The electron and hole densities correspond to partial summa-

tions of the Ω-matrices over individual rows or columns, respectively. Also in

this case a correspondence between the representations can be observed and it

is possible to get an impression about the state character. If the electron and

hole densities are rather similar, charge transfer is only involved to a smaller

extent (e.g. 21Ag and 21Bu), while large differences in their spatial distribution

indicate a more pronounced charge transfer (e.g. 11Bu and 31Ag). The ad-

vantage of the electron-hole correlation plot is, however, that it collects all the

presented aspects in one representation, and also contains crucial information
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about dynamic charge transfer.

Going to the second row in Fig. 4.6, the matrix is increased by one pheny-

lene and one vinylene to 5 × 5. The first 11Bu state is slightly delocalized

over the entire system with a dominant contribution on the central phenylene

unit. Some charge transfer occurs, mostly between direct and second-nearest

neighbours. In contrast, the second and third state of this system have dom-

inantly local nature, concentrated on the terminal and central phenyl rings,

respectively. The fourth excited state 31Ag shows enhanced charge-transfer

character, where mostly the terminal phenyl rings are involved. The asymmet-

ric pattern with respect to the main diagonal arises from a directed transfer

of electron density from the terminal phenyl rings to the inner vinylene and

phenylene groups.

In (PV)3P, the first two states are delocalized similar to the 11Bu states

of the smaller systems and electron and hole are not separated by more than

three functional units. However, a new feature is observed for the 21Ag state:

A nodal plane perpendicular to the main diagonal is found. This phenomenon,

which will appear more prominently for the larger oligomers, is interpreted as

a particle-in-a-box -like state of higher quasi-momentum. The third and fourth

state of the (PV)3P molecule are again a pair of excitonic resonance states at

the central two phenyl rings and the two states are quasi-degenerate.

For (PV)4P, the first two states are again delocalized and the third state is

a local excitation at the central phenyl ring. Interestingly for the fourth state

31Ag, a new excitation pattern is found. In this case, major CT contributions

over larger separations play a dominant role. On the main diagonal there

are only three small contributions of the phenyl groups around the center.

Such kind of distinct intrinsic electron-hole structure was earlier assigned to a

distinct Wannier exciton band73,105 and in the above-defined nomenclature it

corresponds to a W (2, 1) state. In accordance with predictions of Mukamel et

al.162 at this chain length some of the bulk properties start to become apparent.

Going to larger chains with n > 4, the exciton wave function patterns

reappear and enhanced electronic coherence is present. The exclusively local

states are no longer observed for n ≥ 5 and in the case of (PV)7P also the

charge-separated state disappears and only four similar looking Wannier states,

W (1, j) with j between 1 and 4 remain. The other types of states are located

at higher relative energies as will be examined in Section 4.4.3.

While the previous analysis gave an intuitive visual representation of the

excited states, let me now proceed to a more compact quantitative analysis. For

this purpose different excited-state descriptors will be applied to the same set

of computations (see Chapter 2 and Section 4.3 for definitions of descriptors).

The exciton sizes (d̃exc) are presented in Fig. 4.7 (a). In case of the 11Bu, 2
1Ag
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Figure 4.7: (a) Approximate exciton sizes (d̃exc, Å), (b) charge-transfer mea-
sures (ωCT) and (c) functional group contribution ωP of excited states of
poly(para phenylene vinylene) oligomers of increasing chain length computed
at the RI-ADC(2)/TZVP (solid lines) RI-ADC(2)/SV(P) (dashed lines) and
RI-ADC(2)/SV (dotted lines) levels of theory.
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and 21Bu states these increase steadily with growing system size until they

converge against values between 5 and 6 Å. As a common trend, it is observed

that the exciton sizes decrease with more nodes perpendicular to the main

diagonal as seen in Fig. 4.6, i.e. with a higher translational quantum number

j. Contrary to the three lower-energy states, the 31Ag states show larger

fluctuations in exciton sizes with a minimal value of 4.92 Å for (PV)3P and a

large jump to 9.46 Å for (PV)4P until the value once again drops to 5.28 Å for

(PV)7P. These variations follow the changes in state character as presented

in Fig. 4.6. The charge-separated 31Ag states of W (2, 1) character found for

n = 4, 5, 6 possess large exciton sizes of about 10 Å while the lowering in the

case of n = 7 coincides with the appearance of the W (1, 4) exciton. A more

detailed understanding of the variations in state characters could be gained

by computing higher excited states, which is postponed the next section. An

important conclusion of Fig. 4.7 (a) is that the exciton size saturates at about

6 Å and does not increase further with increasing system size. A similar trend

was found for a variety of polymers in a related study, only that a somewhat

larger saturation size was found with the chosen computational protocol.191

The charge-transfer measures shown in Fig. 4.7 (b) are largely consistent

with the exciton sizes with some small differences observed only on closer in-

spection. For example for large oligomers, the three lower energy states 11Bu,

21Ag and 21Bu converge to almost the same value of ωCT ≈ 0.33 while a clear

separation exists between them with respect to the dexc values. The general

consistency between the d̃exc and ωCT values facilitates the interpretation of

the results by transmitting a clear connection between pictorial representations

and quantitative analysis of the exciton wave functions. However, the close cor-

respondence between these values shows that in future studies, it may suffice

to compute exciton sizes.

Ultimately, the functional group contribution as defined in eq. (4.5) is dis-

cussed, see Fig. 4.7 (c). This descriptor accounts for the fraction of excitation

that takes place at all phenylene groups of the system, e.g. a high value in ωP

indicates that the excitation mostly occurs at the phenyl rings. In the case of

the 11Bu states, it is almost constant with values sightly above 0.6. For the

other states, the values vary depending on the exciton wave function character

as examined in the electron-hole correlation plots. If the states are predomi-

nantly locally confined at the phenyl rings, they possess high ωP values ≥ 0.8.

However, the values become smaller with increasing chain length indicating

that a delocalization over adjacent vinylene groups becomes more important.

Interestingly, the charge-transfer 31Ag states for (PV)nP with n = 5, 6 show the

same amount of phenylene contribution as the other exciton states, although

they are assumed to belong to a different band. Summarizing the findings,
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Figure 4.8: Schematic excitation spectrum and dark states of PPV deduced
from experiment.192–196 Peaks visible in the absorption spectrum are indicated
by solid black lines, dark states are indicated by dashed lines, where red corre-
sponds to singlet and blue to triplet states.

major differences in ωP can be associated with Frenkel (ωP ≥ 0.8) or Wannier

nature of the states where different Wannier bands exhibit similar behaviour

in terms of ωP .

To estimate basis-set effects on the excited-state descriptors, the values

are recalculated at the RI-ADC(2)/SV(P) and RI-ADC(2)/SV levels of theory

and the results are shown in Fig. 4.7 as dashed and dotted lines, respectively.

The results are largely consistent with the TZVP results for the large oligomers.

However for the smallest three oligomers, significant deviations from the TZVP

reference are found for the 31Ag state hinting on differences in the state char-

acter in this case. For the RI-ADC(2)/SV(P) results the mean absolute error

for d̃exc is 0.16 Å (mean error −0.09 Å) and for ωCT it amounts 0.01 (mean

error 0.00).

Summarizing the results of this section, it was found that for large π-

conjugated systems a band picture emerges featuring different types of excitons,

while for smaller oligomers excited states are spatially confined.

4.4.3 Systematic study of (PV)7P excitons

In the previous section, various exciton patterns are revealed for the low-lying

excited states of different oligomers. To understand their significance in more

detail, it is necessary to arrange them in a more systematic way. For this

purpose, the largest compound presented above, (PV)7P, is chosen and its

higher excited states are studied. The first twenty singlet and twenty triplet

states are computed at the RI-ADC(2)/TZVP level of theory and analyzed

using the methods discussed previously. Furthermore, the results are analyzed

with respect to the phenomenological models discussed in Section 4.2.

To relate the results of this study to experimentally determined properties

71



Chapter 4. Excitons in poly(para phenylene vinylene)

Table 4.3: Vertical excitation energies (∆E, eV), oscillator strengths (f),
weight of the single excitation amplitudes (t1), charge transfer (ωCT), exciton

size (d̃exc), phenyl group participation (ωP ), and type assignments computed
for (PV)7P singlet excited states at the RI-ADC(2)/TZVP level of theory.

state ∆E f1 t1 ωCT d̃exc ωP type2

1 11Bu 3.028 6.212 0.93 0.36 6.48 0.61 W (1,1)
2 21Ag 3.346 0 0.93 0.34 6.11 0.61 W (1,2)
3 21Bu 3.703 0.654 0.93 0.32 5.75 0.61 W (1,3)
4 31Ag 4.055 0 0.93 0.28 5.28 0.63 W (1,4)
5 41Ag 4.070 0 0.90 0.75 11.59 0.60 W (2,1)
6 31Bu 4.254 0.000 0.90 0.69 10.01 0.61 W (2,2)
7 41Bu 4.309 0.101 0.92 0.16 4.16 0.78 F

8 51Bu 4.344 0.033 0.91 0.15 4.39 0.84 F

9 51Ag 4.356 0 0.91 0.14 4.10 0.84 F

10 61Ag 4.361 0 0.91 0.14 4.08 0.84 F

11 61Bu 4.390 0.026 0.91 0.15 4.29 0.84 F

12 71Ag 4.399 0 0.91 0.17 4.46 0.83 F

13 71Bu 4.498 0.173 0.92 0.23 4.82 0.70 W (1,5)
14 81Ag 4.511 0 0.90 0.63 8.89 0.62 W (2,3)
15 91Ag 4.670 0 0.92 0.11 3.68 0.86 F

16 81Bu 4.688 0.013 0.92 0.13 3.92 0.87 F

17 91Bu 4.771 0.005 0.90 0.62 8.19 0.61 W (2,4)
18 101Ag 4.829 0 0.93 0.23 4.67 0.66 W (1,6)
19 101Bu 4.866 0.224 0.90 0.88 20.73 0.60 W (3,1)
20 111Ag 5.037 0 0.89 0.60 7.56 0.58 W (2,5)

1All bright states shown are polarized along the chain axis.
2Assignment as Wannier exciton W (n, j) or Frenkel exciton F, see Section 4.2.
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Table 4.4: Vertical excitation energies (∆E, eV), weight of the single excitation

amplitudes (t1), charge transfer (ωCT), exciton size (d̃exc), phenylene group
participation (ωP ), and type assignments computed for (PV)7P triplet excited
states at the RI-ADC(2)/TZVP level of theory.

state ∆E t1 ωCT d̃exc ωP type1

1 13Bu 2.123 0.98 0.22 4.98 0.55 W (1,1)
2 13Ag 2.248 0.98 0.20 4.63 0.55 W (1,2)
3 23Bu 2.429 0.98 0.17 4.25 0.55 W (1,3)
4 23Ag 2.652 0.98 0.14 3.90 0.54 W (1,4)
5 33Bu 2.903 0.98 0.12 3.57 0.53 W (1,5)
6 33Ag 3.166 0.98 0.09 3.26 0.50 W (1,6)
7 43Bu 3.418 0.98 0.07 3.00 0.42 W (1,7)
8 43Ag 3.869 0.98 0.05 2.98 0.83 W (1,8)
9 53Bu 4.070 0.98 0.03 2.68 0.74 W (1,9)
10 53Ag 4.174 0.96 0.82 13.17 0.60 W (2,1)
11 63Ag 4.268 0.98 0.06 3.00 0.77 W (1,10)
12 63Bu 4.282 0.97 0.15 4.51 0.85 F

13 73Ag 4.296 0.98 0.13 4.18 0.86 F

14 73Bu 4.301 0.97 0.15 4.39 0.85 F

15 83Bu 4.348 0.98 0.14 4.30 0.85 F

16 83Ag 4.351 0.98 0.10 3.59 0.86 F

17 93Ag 4.371 0.98 0.09 3.48 0.80 F

18 93Bu 4.389 0.96 0.71 10.88 0.63 W (2,2)
19 103Bu 4.504 0.99 0.03 2.51 0.75 F

20 103Ag 4.594 0.98 0.22 5.67 0.80 F

1Assignment as Wannier exciton W (n, j) or Frenkel exciton F, see Section 4.2.
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of excited states of PPV, the latter are briefly summarized, cf. Fig. 4.8. The

absorption spectrum of PPV is dominated by two absorption peaks with high

oscillator strength.192 They lie at 2.8 and 6.1 eV and are polarized parallel to

the chain axis. Two weaker absorptions are found at around 3.6 and 4.8 eV,

where the prior has a less well-defined polarization but the latter is polarized

perpendicular to the chain axis.192,193 Electroabsorption192 and two-photon

absorption194 spectroscopy revealed information about three additional states.

One dipole-forbidden state can be found at about 0.7 eV above the lowest

dipole-allowed state, which is approximately at 3.5 eV. Furthermore there are

two triplet states, one is approximately 0.7 eV below the lowest bright state195

and another one 0.7 eV above.196 This latter state is quasi-degenerate to the

dipole-forbidden state and these two states are referred to as the singlet and

triplet charge-transfer states.154,197

An analysis of the computed singlet excited states is shown in Tab. 4.3

presenting vertical excitation energies as well as various data about the excited

states. Excitation energies range from 3.03 eV up to 5.04 eV with a very

dense region of states around 4.3 eV. Only states of Bu symmetry possess non-

vanishing oscillator strength due to dipole selection rules. In all of these cases,

the transition moment lies in the molecular plane pointing along the chain axis.

The brightest state with f = 6.2 is the 11Bu state at 3.03 eV. This value is

somewhat higher than the lowest bright peak in the experimental absorption

spectrum with 2.8 eV.146,192,193,198 The second largest oscillator strength is

found for 21Bu, which is the j = 3 state of the same exciton band. This state

could certainly be responsible for the shoulder to the main peak at around

3.7 eV,192,193 cf. Fig. 4.8. The remaining states have rather small oscillator

strengths below 0.25 and may be hidden in the experimental spectrum. The

higher energy peaks detected by experiment are most likely beyond the states

computed here and, in particular, no off-axis polarized state is found as was

reported for the band at 4.7 eV.193 The 101Bu state at 4.87 eV, which is the

W (3, 1) exciton, matches from an energetic viewpoint but due to its rather

small oscillator strength of 0.224 and its polarization along the main axis it

remains unsure whether it should be assigned to the experimental peak. The

experimentally characterized, dipole-forbidden state can be identified as the

41Ag at 4.07 eV, which is blue-shifted compared to the experimental value of

≈ 3.5 eV.

Collected data of the triplet states is summarized in Tab. 4.4. In their case,

excitation energies are shifted to smaller values compared to the singlets and

range from 2.12 eV up to 4.59 eV. Similar to the singlets, there is a dense

region of states around 4.3 eV. The two triplet states that have been reported

from experiment can both be identified with calculated states: The lowest-
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energy triplet 13Bu state lies at 2.12 eV which stands in agreement with the

measured value of 2.1 eV. Moreover, the second state with an excitation energy

of 4.17 eV is the 53Ag state, which is again blue-shifted w.r.t. experiment by

about 0.7 eV. The 41Ag and 53Ag states are quasi-degenerate as expected as

they both belong to the n = 2 branch of Wannier excitons. As discussed later

for the electron-hole correlation plots, they possess odd-parity wave functions

with respect to the electron-hole separation coordinate. This pair of states

is referred to as the singlet-triplet charge-transfer states and are proposed to

play an important role in the formation of free charge carriers.154 Comparing

excitation energies of the lowest-lying singlet and triplet states, a gap of 0.91 eV

is found similar to values that have been reported for this gap at the polymer

limit.140

Moving to visual representations, the excited states are divided into local

and delocalized states, or in other words Frenkel and Wannier excitons, based

on the information in Tabs 4.3 and 4.4. Frenkel excitons are distinguished by

small exciton sizes and charge transfer combined with enhanced participation

of the phenyl rings. In the case of (PV)7P, eight local states of this type should

be present, i.e., one for each phenyl ring. Inspecting the singlet excited states

these can be identified as the states featuring ωCT < 0.23, d̃exc < 4.50 Å, and

ωP > 0.75. The situation is less clear in the triplet case as there is some mixing

between the Frenkel and the more compact Wannier states. Nevertheless eight

states are identified as Frenkel excitons (these are marked F in Tab. 4.4). The

electron-hole correlation plots for the singlet and triplet Frenkel excitons are

presented in Fig. 4.9. Due to the C2h symmetry of (PV)7P, the excitations are

always distributed over pairs of rings separated by an equal distance from the

center of the molecule. In Fig. 4.9 these are arranged by showing the states

with excitations on the central phenyl rings on top and moving to the outer part

below. The excitation patterns and excitation energies are similar for singlet

and triplet states. This agreement supports the idea that the interactions are

dominated by Coulomb coupling, which acts independently of the spin. A

determination of the couplings (cij in eq. (4.3)) is not straightforward in this

complex system, but a glance at the energy scale shows that these are probably

not much larger than 0.01 eV. As a final note, it should be pointed out that

these states lie significantly below the bright band at 6 eV that is usually

assigned with Frenkel character.102,193,198 A comparison to these higher-lying

Frenkel states could be of interest but is out of the scope of this investigation.

The structures of the delocalized Wannier excitons are more complex and,

as explained in Section 4.2, it is favorable to discriminate between two inde-

pendent phenomena: (i) the intrinsic structure of the electron-hole pair, which

is determined by the relative motions of the electron and hole, and (ii) the
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Figure 4.9: Electron-hole correlation plots of the singlet and triplet Frenkel-
type excitonic states for (PV)7P (excitation energies in eV in parentheses).
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combined exciton quasi-particle. For this purpose, a two-index nomenclature

W (n, j) is adopted where n is the quantum number of the intrinsic wave func-

tion and j indicates the quasi-momentum of the particle-in-a-box -like state.

The intrinsic quantum number correlates with the number of nodal planes in

parallel to the main diagonal (going from lower left to upper right). Each

of these main types gives rise to a series of particle-in-a-box -like states with

different j, which are in turn characterized by the number of nodal planes

perpendicular to the main diagonal.

The discussion starts with the singlet excitons shown in Fig. 4.10 (top).

In this case examples for n ranging from 1 to 3 are obtained within the first

twenty states. Six W (1, j) excitons starting at 3.03 eV can be found while the

W (2, j) series starts at 4.07 eV and consists of five states in the examined energy

range. Besides these, there is one W (3, j) exciton at 4.87 eV. The idealized

W (2, j) wave functions possess odd-parity with respect to the electron-hole

separation. Accordingly, the probability of the electron and hole occupying

the same position tends toward zero, which in turn means that the transition

density vanishes everywhere in space and that the ΩAA elements vanish almost

completely. As a consequence of the vanishing transition density,65 none of

these states possesses any noticeable oscillator strength.102 By contrast, all the

W (1, j) andW (3, j) excitons of Bu symmetry exhibit oscillator strengths above

0.15. In the case of triplet Wannier-type excitons, only two series are found

within the first twenty states, W (1, j) and W (2, j). The W (1, j) series starts

at 2.13 eV and consists of ten states. In this series the lower-energy states

present the clear particle-in-a-box -like picture found in the singlet case while

the higher-energy states possess reduced CT character and start to resemble

Frenkel states. The fact that these triplet states are positioned at lower energy

and possess reduced charge-transfer character when compared to the singlets

stands in agreement with the expected effects of missing exchange repulsion.81

In contrast to the W (1, j) excitons the triplet W (2, j) series starts at 4.17 eV

and rather resembles the properties of the singlet case (with the exception that

only two states of this type are computed here).

After the visual classification of the state characters, a quantitative analysis

is performed to further refine the description of the states. For this purpose,

the exciton sizes d̃exc , charge-transfer measures ωCT and functional group

participation ωP of the various singlet and triplet states are plotted against

the excitation energies in Fig. 4.11. The Frenkel excitons are found clustered

around an excitation energy of about 4.3 eV. They are characterized by small

ωCT values (below 0.23) and exciton sizes ranging between 2.51 and 4.51 Å.

Comparing these values to molecular and fragment sizes, they lie between the

size of an individual phenyl ring and a PV subunit, both indicated by dotted
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11Bu - W(1,1) 21Ag - W(1,2) 21Bu - W(1,3) 31Ag - W(1,4) 71Bu - W(1,5) 101Ag - W(1,6) 

41Ag - W(2,1) 31Bu - W(2,2) 81Ag - W(2,3) 91Bu - W(2,4) 111Ag - W(2,5) 

101Bu - W(3,1) 

Singlets

13Bu - W(1,1) 33Ag - W(1,6) 

43Bu - W(1,7) 

93Bu - W(2,2) 

Triplets

13Ag - W(1,2) 

43Ag - W(1,8) 

23Ag - W(1,4) 33Bu - W(1,5) 23Bu - W(1,3) 

53Ag - W(2,1) 

63Ag - W(1,10) 53Bu - W(1,9) 

Figure 4.10: Electron-hole correlation plots of Wannier-type singlet and triplet
excitons of (PV)7P, as well as, assignment of principle n and center-of-mass

quantum numbers j, written W (n, j).
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4.4. Results and discussion

Figure 4.11: Analysis of excited states of (PV)7P: (a) Exciton sizes (d̃exc ,
Å), (b) charge-transfer measures (ωCT), and (c) functional group participation
(ωP ) of singlet and triplet excitons plotted against vertical excitation energy
at the RI-ADC(2)/TZVP level of theory. The inset in (a) shows the size of
a PPV oligomer for comparison. The legend in (a) applies to all plots in this
figure.
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lines in Fig. 4.11 (a). Charge-transfer measures of the Frenkel states are below

0.23 for all states resembling the ωCT values of locally confined excitations

in the oligomer series in Sec. 4.4.2. The Wannier excitons present a different

picture showing a large dispersion of the excitation energies with varying quasi-

momentum and strong variations in the d̃exc and ωCT measures. Different series

of data points are, however, clearly apparent and a more detailed examination

shows that they indeed correspond to the previously defined exciton types. For

the singletW (1, j) series marked in red, [x,⊗] in Fig. 4.11, exciton sizes start at

6.48 Å, which is somewhat larger than a PV subunit, slowly decreasing towards

4.67 Å. The corresponding charge-transfer measures lie between 0.36 and 0.23.

In contrast, the W (2, j) series starts at exciton sizes of 11.59 Å, about the

size of a PVPV fragment, decreasing to 7.56 Å. The W (2, 1) exciton is almost

double the size of W (1, 1), in agreement with eq. (4.2).81 In Fig. 4.11 (a) there

is an isolated data point at d̃exc = 20.73 Å. It belongs to the W (3, 1) exciton,

which also possesses the large ωCT value of 0.88. The triplet excitons are

marked in blue [⋄,△] in Fig. 4.11. The W (1, j) series starts slightly above

2 eV with the W (1, 1) exciton possessing an exciton size of 4.98 Å. The series

slowly decreases towards a size of 3.00 Å. The second triplet exciton series

W (2, j) starts at exciton sizes more than twice as large as the W (1, j) excitons

with 13.17 Å and contains a second state at 10.88 Å. A general trend found

in Fig. 4.11 is that excitons become more tightly bound with increasing quasi-

momentum (see also Ref. 77). This shows that the intrinsic wave function

is not completely separated from the combined quasi-particle motion. It will

certainly be of interest to determine whether similar effects are found for other

systems.

In band models three different types of excitons are usually considered to be

responsible for the excitation spectrum of PPV. These are constructed from two

different types of bands, one has delocalized orbital contributions over pheny-

lene and vinylene groups (d and d∗) and one has localized orbitals confined at

the phenyl rings with zero orbital contributions at the bridging C-atoms con-

nected to the vinylene groups (l and l∗). The first exciton is a Wannier-type

exciton with a transition between delocalized bands (d→ d∗), the second is an

intermediate species with transitions between different band types (l → d∗ and

d → l∗) and the third is a Frenkel-type exciton with a transition between lo-

calized bands (l → l∗).81,102 In the present quantum-chemical framework, the

contributing molecular orbitals are computed without a priori assumptions

and therefore it is interesting to examine the participation of the two func-

tional groups to different excitonic states identified earlier. For this purpose,

the ωP value as defined in eq. (4.5) is employed, which counts the probabil-

ity of electron or hole to be found at a phenyl ring plotted in Fig. 4.11 (c).
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The results show that Wannier excitons are in general composed of an even

mixture of phenylene and vinylene orbital contributions with ωP values rang-

ing between 0.42 and 0.66. For example the 11Bu state has an ωP value of

0.61 and the 13Bu state a somewhat smaller value of 0.55. This observation

is truly independent from the quantum numbers n or j. This stands in good

agreement with the picture of delocalized bands responsible for the d → d∗

transitions. In contrast, Frenkel states show much larger ωP values of ≈ 0.85

indicating that these are primarily localized on the phenylene groups. However,

it should be noted that there are indeed resonances with the vinylene groups,

which contribute about 15% of the excitation. The delocalization effect may in

fact be responsible for the small excitation energies of these states compared

to isolated benzene rings. In the whole set of excited states there are not any

states with more than 50% vinylene contribution. In fact, the states with large

vinylene group contributions are always at least delocalized over the adjacent

phenylene carbon atoms.

4.4.4 Triplet excitons in PPV oligomers

Triplet excitons are structurally different from singlet excitons as the electron

and hole do not experience an exchange repulsion.81 In Sec. 4.4.2, the emer-

gence of excitonic states for increasing chain lengths were already discussed

for singlet excited states, yet it is interesting to investigate how the exchange

repulsion influences the exciton formation as well as the exciton properties.

Triplet excitons, furthermore, are interesting excited-state species in organic

electronics as the lowest triplet state is usually energetically below the first

bright singlet state, and hence a potential candidate for intersystem crossing

and intermediate state for decay channels to the electronic ground state.

In analogy to Sec. 4.4.2, the first four triplet excited states of a set of PPV

oligomers (PV)nP with n = 1 − 7 are investigated focussing on the results

for TZVP basis set (cf. Fig. 4.12). The triplet excited states are on average

shifted by about −1 eV compared to their singlet counterparts. In contrast

to the singlet excited states, however, excitation energies smoothly converge

against state-specific values within each state symmetry and the order of the

states is pertained throughout the complete data set. Only some states show

excitation energies above 3.5 eV and are potential candidates for being locally

excited states. For completeness, it is noted that the t1 values (not shown, see

ESI of Ref. 138) are all close to 1 indicating a predominant single excitation

character for all triplet excited states.

Proceeding to the charge-transfer numbers ωCT shown in Fig. 4.12 (c), very

low values below 0.23 are found with a maximum of 0.22 for the 13Bu state of

(PV)7P. Similar to the singlet states, a decrease in charge-transfer character is

81



Chapter 4. Excitons in poly(para phenylene vinylene)

Figure 4.12: (a) Vertical excitation energies (∆E, eV), (b) approximate exci-

ton sizes (d̃exc, Å), and (c) charge-transfer measures (ωCT) of poly(para pheny-
lene vinylene) oligomers plotted against chain length n computed at the RI-
ADC(2)/TZVP level of theory. Legend in (a) applies to all plots in this figure.

observed for higher excited states of the same oligomer. This trend is confirmed

by the exciton sizes, which are plotted in Fig. 4.12 (b). Generally, the triplet

exciton sizes range between 2 and 5 Å, and for longer chains the values increase.

Except for the first PVP oligomer, a clear pattern emerges where for each

oligomer exciton sizes can be sorted according to 13Bu < 13Ag < 23Bu < 23Ag,

which is the reverse order of the state energies. Earlier, this behaviour has been

found for the excited states of (PV)7P for Wannier excitons with increasing

quasi-momenti, a trend which is again confirmed by visual analysis in the next

step.

A visual analysis of the triplet exciton wave functions (shown in Fig. 4.13)

reveals that exciton formation is favoured compared to the formation of charge-
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Figure 4.13: Electron-hole correlation plots ΩAB of the first four triplet ex-
cited states of poly(para phenylene vinylene) oligomers computed at the RI-
ADC(2)/TZVP level of theory.
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separated states, which were somewhat likely to find in small systems the case

of singlet excited states (see Fig. 4.6 for comparison). Moreover, triplet exci-

ton wave functions do not spread out as much from the main diagonal of the

ΩAB plots as compared to their the singlet counterparts. This means that the

electron-hole pairs are more localized in space and hence more tightly bound.

In summary, for the same excitation pattern, the triplet excitons form

electron-hole pairs which are closely confined in space, i.e. tighter bound than

their singlet counterparts. This behaviour is present in all descriptors analyzed

here. Hence, the results from ab initio calculations confirm the predictions

from solid-state theory.81

4.5 Conclusion

In this chapter, high-level ab initio calculations of the excited states of poly(para

phenylene vinylene) oligomers were presented and interpreted using specialized

wave function analysis protocols. The results have shown a good agreement

with experimental findings and essential excitonic properties were reproduced.

Furthermore, a variety of details about the exciton wave functions were exam-

ined in qualitative and quantitative analyses.

High-level benchmark computations employing the ADC(3) method were

presented for the smallest three oligomers. Aside from verifying the accu-

racy of the ADC(2) method with respect to energies, oscillator strengths, and

wave functions of primarily singly excited states, the importance of low-energy

doubly excited states was highlighted. Albeit the doubly excited states have

received little attention so far, they are presumably of high importance as they

represent ideal doorway states for singlet fission as observed in PPV.189,190

The influence of increasing the size of the π-conjugated system on the ex-

cited states was investigated. For this purpose, a set of eight oligomers was

constructed ranging from two to eight phenyl rings. While for the smaller

oligomers, confinement effects dominated, delocalization and the formation of

exciton bands was observed for the larger cases. These changes were illus-

trated in a pictorial representation, using electron-hole correlation plots, as

well as quantified through excited-state descriptors.

The largest compound octa(para phenylene vinylene), (PV)7P, was ana-

lyzed in detail investigating the first twenty singlet and twenty triplet excited

states. A detailed examination of exciton wave functions revealed the pres-

ence of different exciton bands which were identified as Wannier or Frenkel

excitons. For Wannier excitons, bands of varying quasi-momentum were iden-

tified. A comparison of singlet and triplet excitons revealed that the latter

exhibited more tightly bound electron-hole pairs leading to significantly lower
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excitation energies which matches experimental findings. A characterization in

terms of the participation of the phenylene and vinylene functional groups was

provided. The results of this study highlighted some new aspects, which were

previously not at the center of attention, pertaining to (i) the systematic low-

ering of electron-hole separation distances with increasing quasi-momentum for

Wannier excitons, (ii) the importance of low-energy doubly excited states, and

(iii) the presence of a band of dark low-energy Frenkel excitons around 4.5 eV.

Understanding these points and determining whether (i) and (ii) are general

phenomena in conjugated organic polymers will require extended studies in

the future. Furthermore, it will be beneficial to examine the effects of struc-

tural fluctuations and of dielectric screening, which is expected to be strong

and variable in bulk PPV.81 These questions will be addressed in forthcoming

work employing ADC in combination with equilibrium and non-equilibrium

polarizable continuum models199 and appropriate structural sampling.
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Chapter 5

Exciton analysis in
time-dependent density
functional theory: How
functionals shape
excited-state characters

Time-dependent density functional theory (TDDFT) is a widely applied excited-

state method which affords an efficient computation of excited states of even

large molecules. However, its reliability suffers from the absence of an exact

exchange-correlation (xc) functional, which gives rise to significant errors. Con-

sequently, benchmarking of xc-functionals against experimental and/or high-

level computational data is an important step to find an adequate xc-functional

that properly describes the investigated system. From a more general point of

view, it is important to identify systematic errors and understand their origins.

To gain insight into methodological shortcomings, results from TDDFT calcu-

lations are subjected to exciton analysis: State characters are determined, cat-

egorized as local, extended ππ∗, Rydberg or charge transfer, and compared re-

vealing substantial differences amongst the xc-functionals. Furthermore, strong

effects of the choice of the xc-functional on the physical nature of excited states

are found in the case of acenes. A strong influence of nonlocal orbital exchange

on electron-hole correlation effects is proposed to cause significant errors in the

description of excited states of large π-conjugated organic systems for certain

xc-functionals.

Please note that parts of this chapter have already been published by Prof.

Dr. Andreas Dreuw, Dr. Felix Plasser and myself in the Journal of Chemical

Physics, volume 143 (2015), number 171101 (ref. 163).
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5.1 Introduction

Linear-response time-dependent density functional theory (TDDFT) is cer-

tainly one of the most widely-used quantum-chemical methods for excited-state

calculations of medium-size and large molecules.26,27,29 At the same time, the

failure of TDDFT to correctly describe charge-transfer (CT) states is well-

known.34–37 Also Rydberg states, excited states of extended π-conjugated sys-

tems39,40 and multiply-excited states42,43 cause difficulties. To solve concep-

tual shortcomings, great effort has been made to search for improved func-

tionals that reliably describe CT states, and in particular long-range corrected

(LRC) functionals featuring varying amounts of nonlocal exchange were devel-

oped for this purpose. The first LRC functional proposed by Yanai et al.47 was

a Coulomb-attenuated variant of the prominent Becke-3-Lee-Yang-Parr func-

tional16,20 (CAM-B3LYP), which contains nonlocal orbital exchange from 19 %

at short range up to 65 % at long range.

The search for tools to diagnose the failures of TDDFT in combination with

different functionals is an ongoing challenge and several descriptors measuring

orbital overlaps51–53 and centroid distances55,71,94 have been proposed. How-

ever, some cases like extended symmetric π-conjugated systems, e.g. acenes,

cause significant but hard-to-detect errors.39–41 For these systems the over-

lap of the canonical orbitals is not a good predictor of the performance of

TDDFT41,106,137,200 and a more complex dynamical view has to be adopted.

In recent work,65,66,73,78 my co-workers and I established a series of excited-

state descriptors based on the physical picture of an exciton wave function,

which is constructed from the one-particle transition density matrix (1TDM)

(see also Refs 64,75,102). Information about the spatial distributions of elec-

tron and hole over the molecular system as well as statistical descriptors pro-

vide a solid basis for analyzing excited states. This opens a route to assign

excited-state characters without the need for orbital inspection, which is ben-

eficial for identifying problematic cases. Furthermore, the effect of a chosen

exchange-correlation (xc) functional on an excited state can be investigated in

detail. High-level benchmarks are accessible as the same descriptors can be

computed for any method providing 1TDMs. This allows detailed benchmark-

ing of TDDFT results going beyond a simple comparison of energies.

5.2 Results and discussion

First the relation between rms exciton sizes dexc and charge centroid dis-

tances dh→e will be examined for Tozer’s benchmark set51 (molecules shown in

Fig. 5.1) as presented in Figure 5.2. In these and all following computations,
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Figure 5.1: Tozer’s benchmark set51 investigated in this chapter: (a) ni-
trogene, (b) carbon monoxide, (c) formaldehyde, (d) hydrogen chloride,
(e) dipeptide, (f) β-dipeptide, (g) tripeptide, (h) acenes (n = 1 − 5),
(i) polyacetylene oligomers (n = 2 − 5), (j) N -phenylpyrrole, (k) 4-(N,N -
dimethylamino)benzonitrile (DMABN).107

three functionals of different classes are applied: PBE201 is employed as a rep-

resentative of the local generalized gradient approximation (GGA), B3LYP16,20

as hybrid, and CAM-B3LYP as long-range corrected functional. The exciton

descriptors are plotted against the error in excitation energy compared to ex-

perimental data, where the same geometries, basis sets, and reference data are

used as in Ref. 51. Starting with exciton sizes computed by TDA/PBE, four dif-

ferent groups can be identified. First, locally excited states with well-described

excitation energies and small exciton sizes appear in the upper left corner of

Figure 5.2 (a) marked in black. Second on the main diagonal, charge-transfer

states with strongly underestimated excitation energies are found, where the

error in excitation energies seems to scale linearly with the exciton size (also

marked in black). To highlight some notoriously difficult cases, the exciton

sizes for acenes and polyacetylenes are marked in red. As their energies are

rather well-described using the Tamm-Dancoff approximation,31 they appear

at small deviations in ∆Eexp but possess large exciton sizes with a linear de-

pendency between molecular size and exciton size. In addition, the Rydberg

states are marked in blue. They have rather large exciton sizes due to their dif-

fuse electron sizes σe. At the same time, their description is somewhat poorer

compared to the previous group and they show a systematic underestimation

of excitation energies on the order of 2 eV.

Going to the charge centroid separation dh→e plotted in Figure 5.2 (d), the

overall distribution of the black data group is preserved. The interpretation of

this finding is simple: Locally excited states show only small electron-hole sepa-

rations, however, some values above zero may occur as in some cases charges are

promoted between adjacent functional groups. For the charge-transfer states,
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Chapter 5. Exciton analysis in TDDFT

Figure 5.2: Exciton sizes (dexc, Å, first column) and center-of-mass electron-

hole distances (dh→e, Å, second column) for Tozer’s benchmark set51 plotted
against the error in excitation energy with respect to experimental data (∆Eexp,
eV). All presented states are singlet excited states and the Tamm-Dancoff ap-
proximation was applied. Excited states with local or directed charge-transfer
character are marked in black (×), states for extended π systems (polyacenes
and polyenes) in red (△), and Rydberg states in blue (⋄).
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the values of dh→e and dexc are quite similar as expected from eq. (2.39) in the

case for insignificant electron and hole sizes, as well as correlation effects. For

the two other groups, the large conjugated systems and the Rydberg states,

the situation differs dramatically. With a few exceptions for some Rydberg

states, the static electron-hole separation dh→e is zero, which means that no

static charge transfer occurs. In particular in extended π systems, an almost

equal and symmetric distribution of electron and hole densities over the excited

molecules and a superposition of their centroids is present. The spatial extent

of the charge clouds, as measured by σh and σe, and correlation effects are

responsible for the large exciton sizes. In contrast for the Rydberg states, the

dominant factor for large exciton sizes is clearly the electron size σe.

Proceeding to the B3LYP functional, locally excited states show similar

exciton sizes compared to PBE. In contrast, the other states show in average a

shift to smaller exciton sizes, especially in the cases of extended π systems and

Rydberg states. While the huge errors of the directed charge-transfer states are

attenuated at this level, there is only a slight improvement for the extended π

system states. For the Rydberg states, the excitation energies are substantially

corrected by about +1 eV compared to PBE.

For the CAM-B3LYP functional, the best performance in excitation ener-

gies is found, see Figure 5.2 (c). Examining the exciton sizes of the locally

excited states, their sizes are found to be preserved independent of the func-

tional choice. This comes along with almost constant excitation energy shifts

with respect to experiment. In contrast, as observed before in the case of

B3LYP, the states for extended π systems and Rydberg states have a tendency

to significantly smaller exciton sizes compared to PBE. To understand this lo-

calization effect in more detail, it is worth revisiting eq. (2.40). Especially for

the cases where dh→e is zero, the exciton size depends on the sizes of electron σe

and hole σh and their covariance. Going from PBE to B3LYP to CAM-B3LYP

for these states a general trend is that σe,PBE > σe,B3LYP > σe,CAM−B3LYP and

the same is observed for σh which is logical considering that a diminished self-

interaction error results in more compact electron-hole distributions. However,

the variations in σh and σe only explain a small part of the variations in dexc

and the covariance becomes the decisive factor for explaining the differences

between the functionals. In the case of a positive electron-hole correlation, the

resulting attraction leads to an additional compression of dexc. In contrast

for a negative correlation, the exciton size is enlarged because of the effective

repulsion and charge avoidance. To gain deeper insight into this effect, the

correlation coefficient Reh will be discussed for acenes.

Let me now examine the linear electron-hole correlation effects with respect

to the choice of functionals and compare standard linear-response TDDFT
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Figure 5.3: Correlation coefficients Reh for (a) 1La and (b) 1Lb states for
the acene series from naphthalene (n = 2) to hexacene (n = 6) calculated
at the TDDFT/cc-pVTZ (solid lines) and TDA/cc-pVTZ (dotted lines) lev-
els of theory employing the PBE, B3LYP and CAM-B3LYP functionals and
ADC(3)/SV(P) reference values. Legend in (b) also applies to (a).

with the Tamm-Dancoff approximation. The 1La and 1Lb states of acenes

from naphthalene to hexacene are calculated at the TDDFT/cc-pVTZ and

TDA/cc-pVTZ levels of theory employing the PBE, B3LYP and CAM-B3LYP

functionals and the correlation coefficient Reh is plotted against the system

size in Figure 5.3. First, the 1La states are discussed, see Figure 5.3 (a). For

the TDDFT results indicated by solid lines, the correlation coefficient Reh for

the PBE functional (orange) is the smallest for all molecules ranging between

−0.20 and −0.15 with a trend towards lower values for larger systems. This

behaviour can be interpreted with the picture of two charges avoiding each other

dynamically. Proceeding to B3LYP (green), the values of Reh become closer

to zero staying slightly below −0.05 and are almost constant for the systems

larger than naphthalene (n = 2). Finally, in the case of CAM-B3LYP (blue) the

correlation coefficient starts from approximately zero and constantly increases

for larger systems to a value of 0.08 for hexacene. This positive correlation can

be understood as the onset of exciton binding. This result sheds new light on

the observations by Tretiak et al.156 that bound excitons in large conjugated

systems can only be described by long-range corrected functionals.

Going from time-dependent density functional theory to the Tamm-Dancoff

approximation (dotted lines), the electron-hole correlation behaviour is signif-

icantly altered in favour of a stronger electron-hole attraction or at least a

decrease of their repulsion. In the case of PBE, the average shift is about

+0.06 still containing significant amount of dynamic electron-hole repulsion.

For the B3LYP functional an increase of Reh from clearly negative values of

−0.05 for naphthalene to zero correlation for tetracene and larger molecules is

found. This zero correlation is considered as linearly independent dynamical
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motion of electron and hole which is the standard assumption when inspecting

molecular orbitals. Going to the long-range corrected CAM-B3LYP functional,

the positive correlation increases almost constantly for all systems and ranges

between 0.02 and 0.15 which is significantly higher than for TDDFT.

The values for the 1Lb states are shown in Figure 5.3 (b) and again the

discussion starts with the TDDFT results. For PBE the Reh values are ap-

proximately zero for all systems independent of their sizes. In contrast, for

B3LYP and CAM-B3LYP positive values are found with a constant increase

for larger system sizes. At the same time for CAM-B3LYP the slope of the

curve is larger and a stronger trend towards bound excitons is found. Going

to the TDA results, essentially the same trends can be observed for all func-

tionals. However, an almost constant shift towards higher correlation values is

observed with a shift of +0.02 for B3LYP and an even larger shift of +0.05 for

CAM-B3LYP. For a more extended discussion about the effect of varying exact

exchange in the TDA and TDDFT methods, cf. Ref. 32. The Reh values were

recomputed at the ab initio level using the algebraic-diagrammatic construc-

tion method for the polarization propagator to third order (ADC(3)/SV(P))169

showing excellent agreement with the TDA/CAM-B3LYP level.

In view of electron-hole correlation effects within the 1La and 1Lb states,

the problems encountered to calculate excitation energies for the two states

at the TDDFT level can be easily explained. For the 1La state, a long-range

corrected hybrid functional is absolutely necessary to correctly describe a bound

exciton. In contrast, the physically correct picture for the 1Lb state emerges

already for B3LYP and in the case of PBE at least no dynamical electron-hole

repulsion is found. This explains the increased sensitivity of the 1La state

with respect to the choice of functional.31,41 The level of theory and the choice

of the exchange-correlation functional are very critical to obtain a physically

reasonable description. In this respect there is a decisive difference between

TDDFT and TDA, that Peach et al. related to the singlet-triplet instability

issue.32,33

5.3 Conclusion

A series of excited-state descriptors based on the concept of excitons has been

combined with time-dependent density functional theory. These descriptors

allow to determine diverse excited-state properties such as static electron-hole

separations, exciton sizes and correlation coefficients affording a detailed de-

scription of excited states. Tozer’s benchmark set was studied to illustrate how

excited states can be characterized distinguishing different types, e.g. Rydberg,

charge-transfer, locally excited and charge-resonance states. Furthermore, the
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Chapter 5. Exciton analysis in TDDFT

influence of exchange-correlation functionals on the description of excited states

was analyzed by monitoring variations in exciton properties.

Correlation coefficients are a powerful tool to describe electron-hole corre-

lation effects in excited states of acenes which have shown to be crucial for

understanding the performance of different xc-functionals. The erroneous de-

scription of excitation energies with the local GGA functional PBE was as-

sociated with repulsive electron-hole interactions. In contrast, the long-range

corrected CAM-B3LYP functional does not only obtain much better excitation

energies, but also bound excitonic states with attractive electron-hole interac-

tions. This effect is even enhanced when the Tamm-Dancoff approximation

is applied, and the poorer results from full time-dependent density functional

theory can be traced back to more weakly bound electron-hole pairs.

The results illustrate that exciton properties are useful for evaluating ex-

change-correlation functional performance in time-dependent density functional

theory. Exciton analysis has potential for diagnosing methodological shortcom-

ings and should be able to provide useful information for xc-functional design

in the future. As the employed exciton descriptors can also be used in combina-

tion with ab-initio methods,73,78 they open a route for improved benchmarking

as will be discussed in Chapter 7.
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Chapter 6

Universal exciton size in
organic polymers is
determined by nonlocal
orbital exchange in TDDFT

In this chapter, the reasons why certain xc-functionals in time-dependent den-

sity functional theory have problems to correctly describe excited states of ex-

tended π-systems are investigated in detail. A diverse set of large π-conjugated

organic systems is studied employing a variety of xc-functionals. The results

reveal that the exciton size of the lowest singlet excited state is a universal,

system-independent quantity of approximately 7 Å. Moreover, the explicit ex-

citon size as well as the overall description of the exciton is almost exclusively

governed by the amount of nonlocal orbital exchange in the xc-functionals.

This behaviour is traced back to the lack of Coulomb attraction between elec-

tron and hole quasiparticles in pure TDDFT, which is reintroduced only with

admixing nonlocal orbital exchange. This study confirms the utility of exciton

descriptors for assessing xc-functional performance as proposed in the previous

chapter.

Please note that parts of this chapter have already been published by Prof.

Dr. Andreas Dreuw, Dr. Felix Plasser and myself in The Journal of Physical

Chemistry Letters, volume 8 (2017), number 6, pages 1205–1210 (Ref. 97).
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6.1 Introduction

Quantum-chemical methods applied on modern computer architectures allow

for investigating excited states of ever larger molecules.26,27,29 Despite the rapid

developments on the computational side, analysis of excited-state properties of

these large systems is in practice often limited to visual inspection of frontier

orbitals. As an example, for a π → π∗ excitation it seems at first sufficient

to analyze the highest occupied (HOMO) and the lowest unoccupied molecular

orbitals (LUMO) as they usually represent large parts of the excitation process.

In extended π-systems, however, electron-hole correlation effects gain substan-

tial importance and the assumption underlying MO theory that the excited

electron is decoupled from the excitation hole is no longer true.163 Moreover, it

becomes crucial to adopt a picture of coupled electron-hole pairs i.e. excitons,

a concept which is central to the description of excited states in solid-state

physics.

In the following, evidence is provided for the necessity to move to a cor-

related electron-hole description for investigating excitons in the context of

quantum-chemical calculations of large molecular systems.65,73,163 Specifically,

the onset of excitonic properties is studied for π-conjugated systems of varying

size to illustrate how excitonic effects emerge. This aspect is of high impor-

tance in the discussion of localization effects in finite π-systems, a topic that

is intensely debated.202–206 While previous work was focused on a qualita-

tive rationalization of excitonic effects,92,137,156,207 a quantitative perspective

is adopted here which allows to decompose excitonic effects in large conjugated

π-systems on different levels. Furthermore, a hierarchy of exchange-correlation

(xc) functionals is investigated in terms of their ability to describe excitonic

properties, i.e. the electron-hole interaction, which turns out to crucially de-

pend on the amount of nonlocal orbital exchange.

6.2 Theory

In linear-response time-dependent density functional theory (TDDFT),26,29

Casida’s pseudo-eigenvalue equation is solved

(
A B

B∗ A∗

)(
X

Y

)
= ω

(
1 0

0 −1

)(
X

Y

)
, (6.1)

where ω is the excitation energy, and X and Y are the excitation and de-

excitation amplitudes. The elements of the A matrix in the case of a hybrid
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functional are given as

Aia,jb = (εa − εi)δijδab + 〈ia|bj〉 − cHF〈ia|jb〉+ (1− cHF)〈ia|fxc|bj〉, (6.2)

and the elements of the B matrix possess a similar structure with permuted

indices. The indices i, j and a, b pertain to occupied and virtual orbitals, re-

spectively. The εi and εa values denote the orbital energies, cHF marks the

fraction of nonlocal orbital exchange, and fxc is the xc-kernel of the employed

functional. Connecting this equation to the quasi-particle picture,85 occupied

orbitals involved in electronic excitation are relabeled as ”hole” and virtual

orbitals as ”electron”. In this picture, the second term in eq. (6.2) 〈ia|bj〉,
which is the response of (i.e. originates from) the Coulomb interaction in

DFT takes the form of an exchange repulsion between the electron and hole

in TDDFT. The third term cHF〈ia|jb〉, the response of the nonlocal exchange

interaction takes the form of a Coulomb attraction. Hence, in TDDFT cHF

can be interpreted as charge screening parameter, cf. Ref. 208. In the case of

cHF = 1 the electron-hole pair experiences the full Coulomb attraction, while

it is screened for lower values and disappears for cHF = 0. The fourth term

depends specifically on the xc-functional and has no such simple interpretation.

If range-separated xc-functionals are used, eq. (6.2) becomes somewhat more

involved. In a nutshell, the more nonlocal orbital exchange is employed, the

stronger becomes the electron-hole Coulomb attraction.

A new perspective on the results of eq. (6.1) can be obtained employing

exciton analysis.64,65,73,78 For this purpose, an effective exciton wave function

is constructed using the excitation and de-excitation amplitudes

χexc(rh, re) =
occ∑

i

virt∑

a

[
Xiaφi(rh)φa(re) + Yiaφa(rh)φi(re)

]
. (6.3)

φi and φa refer to occupied and virtual molecular orbitals, respectively, and

rh and re are the coordinates of the electron and hole quasi-particles.163 To

characterize excitons, the expectation value of an operator Ô can be evaluated

as

〈Ô〉 = 〈χexc|Ô|χexc〉
〈χexc|χexc〉

. (6.4)

To measure the spatial extent of the hole generated during excitation, the hole

size is computed as

σh =
√

〈r2h〉 − 〈rh〉2. (6.5)

The exciton size depends on the joint electron-hole position, and is analyzed
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as the root-mean-square (rms) electron-hole distance

dexc =
√

〈|re − rh|2〉. (6.6)

Furthermore, linear electron-hole correlation effects are investigated employing

a correlation coefficient similar to Pearson correlation as

Reh =
COV(rh, re)

σhσe
(6.7)

with the covariance defined as

COV(rh, re) = 〈rh · re〉 − 〈rh〉 · 〈re〉. (6.8)

Reh ranges from−1 to +1, where negative values correspond to anti-correlation,

i.e. a dynamical avoidance of electron and hole in space, 0 indicates no linear

electron-hole correlation (which is the standard assumption in the MO-based

picture), and positive values correspond to a joint electron-hole movement, i.e.

exciton formation. To rationalize excitonic effects, the exciton wave function

can be decomposed as

χexc(rh, re) ≈ φhe(rhe)φCM (R), (6.9)

where φhe(rhe) describes the intrinsic electron-hole structure, which is similar

to a hydrogen atom but with different effective masses, and φCM (R) describes

the center-of-mass (CM) movement of the neutral exciton within the molecular

potential.93,138 To visualize the decomposed exciton wave function in terms of

the joint electron-hole distribution in space the so-called electron-hole correla-

tion plots are employed (cf. Refs. 65,75,138). The probability of an electron

being promoted from one molecular site to another is encoded in grey scale.

6.3 Computational details

All calculations are performed with Q-Chem 4.3.98 For the TDDFT calcula-

tions, the geometries are optimized in the corresponding ground state for each

xc-functional using Alrichs’ SV(P) basis set.110 Seven xc-functionals are se-

lected with different amounts of nonlocal orbital exchange (NLX): (a) PBE201

as representative of local generalized-gradient-approximation-type functionals

without nonlocal orbital exchange; (b) three different global hybrid function-

als including: B3LYP (21 %),16,20 PBE0 (25 %),209 and M06-2X (54 %);210 (c)

three different long-range corrected (LRC) functionals CAM-B3LYP47 (19−65 %),

ωPBE (0−100 %),211 and ωB97 (0−100 %)49 (fraction of NLX in parenthesis).
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Figure 6.1: Conjugated π-systems investigated in this chapter: (a) fullarene
C60, (b) polythiophene (n = 4, 6, 8) (c) 4TB, (d) poly(para phenylene vinylene)
(n = 3, 5, 7), (e) ladder-type poly(para phenylene) (n = 1 − 4, 6, 8), (f) benz-
imidazo-benzophenanthroline polymer (n = 3− 6).107

If not stated otherwise, the Tamm-Dancoff approximation30 was employed.

For the configuration interaction singles (CIS) calculations, the geometries are

optimized at the Hartree Fock (HF) level of theory and for the algebraic-

diagrammatic construction for the polarization propagator (ADC(2)) calcu-

lations,57–59 the geometries are optimized with ωB97. Conjugation lengths

are determined by measuring the distance of the outermost atoms for each

system for the B3LYP-optimized geometry and are presented in the support-

ing information. This quantity is not a unique measure for the extent of

the π-system, nevertheless it is accurate enough for a rough estimate for the

HOMO and LUMO sizes, since they are in all cases completely delocalized

over the entire molecules. Electron-hole correlation plots are created using

TheoDORE 1.1.4176 with fragments representing individual phenyl rings as

defined in Fig. 6.3.

6.4 Results and discussion

In the following, the first excited state of a set of prototypical, large π-conju-

gated molecules is investigated employing exciton analysis. These π-systems

are the fullerene C60, and oligomers of polythiophene (T), poly(para phenylene

vinylene) (PPV), ladder-type poly(para phenylene) (LPPP) and poly(benz-

imidazo-benzophenanthroline) (BBL) as shown in Fig. 6.1.

In Fig. 6.2 (a) the exciton size for all molecules is plotted against the con-

jugation length. The first remarkable observation is a uniform exciton size

scaling, i.e. the growth of exciton size with the conjugation length, cf. Refs

191,212. This uniform scaling is surprisingly independent from the molecular

details of this diverse set of π-conjugated oligomers. However, large differ-

ences are observed between the computational methods. While with PBE (0 %
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Figure 6.2: (a) Exciton sizes (dexc, Å), (b) hole sizes (σh, Å), and (c) correlation
coefficientsReh for the first excited singlet state of each molecule plotted against
conjugation length. Legend in (a) also applies to (b) and (c).
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NLX) the exciton sizes increase linearly with values of about half of the con-

jugation lengths, for all other xc-functionals which include nonlocal orbital

exchange, dexc converges to functional-dependent values for long chains. For

B3LYP (21 % NLX), a maximum of approx. 13.0 Å is found, while for PBE0

(25 % NLX) dexc converges against 11.5 Å. With 54 % of nonlocal orbital ex-

change included, the exciton size with M06-2X is about 7.5 Å, and 7.0 Å for

the long-range corrected CAM-B3LYP (19−65 % NLX). For the LRC function-

als ωPBE and ωB97, which admix up to 100 % nonlocal orbital exchange at

large electron-electron separations, the exciton size converges to 5 Å. To put

these results into perspective, the exciton sizes are calculated with the ab initio

methods CIS and ADC(2). The CIS exciton sizes mark a lower limit below the

LRC functionals with a maximum of 5.0 Å, while ADC(2) closely resembles

CAM-B3LYP with 7.0 Å. For semi-empirical methods, an even lower exciton

size of 4 Å is found for ladder-type para phenylene oligomers.207 Generally, the

results confirm exciton size trends of Refs 102,191,213,214. As opposed to Ref.

212, there is no indefinite linear increase in dexc, but the exciton size quickly

levels off. In conclusion, the asymptotic exciton size limit in TDDFT depends

almost exclusively on the amount of nonlocal orbital exchange included in the

xc-functional. This nicely falls into place considering that this value deter-

mines the strength of the Coulomb interaction between electron and hole, cf.

eq. (6.2).

The results for the hole sizes σh are shown in Fig. 6.2 (b) and electron

sizes follow similar trends (see in Fig. 2 in SI of Ref. 97). In contrast to

the exciton sizes dexc, the electron and hole sizes increase linearly for all xc-

functionals. To rationalize the discrepancy between dexc and σh, it is instructive

to examine linear correlation effects between electron and hole (Reh) plotted in

Fig. 6.2 (c). For the pure GGA functional PBE, correlation coefficients are neg-

ative throughout all systems investigated. This indicates that electron and hole

quasi-particles dynamically avoid each other in space, which is rather typical for

charge-transfer states than for bound excitons.78,163 For all other xc-functionals

that include nonlocal orbital exchange, electron-hole correlation coefficients are

positive. This corresponds to a correlated motion of electron and hole in space,

i.e. exciton formation. For the two hybrid functionals B3LYP and PBE0, the

electron-hole correlation grows linearly with the system size with maxima for

the largest conjugated system of 0.65 (B3LYP) and 0.72 (PBE0). For all LRC

functionals and M06-2X, there is a strong increase between 5 to 40 Å, after

which the value is already close to 1. The CAM-B3LYP results again closely

resemble the ADC(2) results. These trends illustrate how exciton formation

emerges for medium to large sized systems, whereas there is an intermediate

range in which scattering prevents the excitons to form standing waves within
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the molecular potentials.92 The key message of the results is that the exci-

ton structure can be manipulated from anti-correlated electron-hole pairs to

strongly bound excitons just by tuning the cHF parameter in eq. (6.2).

To further analyze the connection between correlation coefficient Reh, ex-

citon size dexc and hole size σh, it is worth to examine their mathematical

dependencies. The exciton size can be rewritten as78

dexc =
√
d2h→e + σ2

h + σ2
e − 2× COV(rh, re). (6.10)

In the case of extended π-conjugated polymers, it can be assumed that the vec-

torial electron-hole distance dh→e is approximately zero, and that electron and

hole sizes are approximately the same (σh ≈ σe). Considering this, eq. (6.10)

can be simplified to obtain

dexc ≈ σh
√
2(1−Reh). (6.11)

Eq. (6.11) allows to predict expectation values for different scenarios. For an

uncorrelated electon-hole pair, the exciton size amounts to
√
2σh. For positive

or negative correlation, it can vary between 0 and 2σh, respectively. Revisiting

Fig. 6.2, these trends are reproduced as e.g. in the case of PBE, the exciton

size is always above
√
2σh, whereas it is always below this value for all other

xc-functionals.

For drawing a connection between correlation effects of Reh and excitonic

structure, exciton wave functions of 8LPPP are visualized in terms of electron-

hole correlation plots for all xc-functionals in Fig. 6.3.65,75,102 For the PBE

functional, the elements on the main diagonal (going from lower left to upper

right) indicate a probability of almost zero, while the off-diagonal elements

show a broad distribution of charge transfer between molecular sites in var-

ious distances. This pattern highlights the charge-transfer character of the

excited state,64,73,138 which coincides with a negative correlation coefficient of

−0.31. On the contrary, for all the other xc-functionals which obtain positive

Reh values, electron-hole correlation plots are dominated by local excitations

and charge transfer between neighboring sites. These patterns correspond to

Wannier-type excitons, for which the intrinsic structure of the electron-hole

pair is hydrogenic (for more details see Ref. 138). The off-diagonal width in

the electron-hole correlation plots represents the average electron-hole distance

(i.e. exciton size), and is controlled by the amount of nonlocal orbital exchange

employed in the respective xc-functional in analogy to the values of dexc and

Reh. The decomposition of the exciton wave function into an intrinsic part

(shown as off-diagonal width of the electron-hole distribution) and an extrinsic

part (distribution of the neutral exciton within the molecular potential parallel
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(a)

PBE, - 0.31

(b)

B3LYP, 0.65

(c)

PBE0, 0.72

(d)

M06-2X, 0.88

(e)

CAM-B3LYP, 
0.90

(f)

�PBE, 0.93

(g)

�B97, 0.94

H    

H 

7

Figure 6.3: Electron-hole correlation plots and correlation coefficients Reh of
the first excited state of 8LPPP calculated using various xc-functionals. The
fragmentation scheme is shown as inset.107 The main diagonal in the electron-

hole correlation plots65,75,102 going from the lower left to the upper right el-
ement represents the probability of an electron being locally excited within
one site while promotion between different sites is indicated as off-diagonal
elements.
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to main diagonal) allows to rationalize the connection between the exciton and

MO pictures, cf. eq. (6.9). The delocalization of the joint electron-hole pair

over the molecular potential generates a non-zero probability for the exciton

to be located anywhere in the entire system. This translates into completely

delocalized MOs, which themselves, however, are not capable to highlight the

underlying exciton structure dominating the excited-state character. At this

point it becomes clear why it is misleading to interpret excited states as weakly

boundWannier excitons with large sizes by arguing that the HOMO and LUMO

are delocalized over the entire molecule. An exciton can simply not be charac-

terized in the MO picture. To reveal its intrinsic structure, it is imperative to

move to a correlated electron-hole representation.

As an alternative computational approach, the standard variant of linear-

response TDDFT is employed to compare the performance of TDA and TDDFT

for the systems investigated in this work. A reason for studying large systems

with the Tamm-Dancoff approximation (TDA) is that it offers a computation-

ally cheaper alternative to full TDDFT.30 It is usually a good approximation

to the full TDDFT scheme, and similar, sometimes even superior results can be

obtained concerning excitation energies and properties, e.g. oscillator strength,

motivating its use in the computations discussed previously. For comparing

TDA and TDDFT in terms of exciton properties, exciton sizes and correlation

coefficients are evaluated for three representative xc-functionals, PBE, PBE0

and ωPBE. Concerning the excitation energies shown in Fig. 6.4 (a), the results

obtained by TDA and TDDFT show small deviations which decrease when go-

ing from small to larger systems for all xc-functionals. In the case of exciton

sizes and correlation coefficients presented in Fig. 6.4 (b) and (c), the devia-

tions between TDA and TDDFT results are consistently small, and the most

significant deviations are found for PBE. Concerning the discussion of which

method should be preferred to calculate excited states of large conjugated sys-

tems, this study reveals the treatment in terms of excitonic properties is similar

for both methods and the largest differences are found for excitation energies

of medium-size systems.
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6.4. Results and discussion

Figure 6.4: Comparison of TDA and TDDFT in terms of (a) excitation energies
(∆E, eV), (b) exciton sizes (dexc, Å) and (c) correlation coefficients (Reh) for
the first excited state of the π-conjugated molecules employing PBE, PBE0
and ωPBE. Legend in (b) applies to all plots in this figure.
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6.5 Conclusion

Exciton properties of the energetically lowest singlet excited states of a set of

extended π-conjugated molecules were investigated with TDDFT in combina-

tion with a hierarchy of xc-functionals as well as the ab initio methods CIS

and ADC(2). With the latter, the exciton size converges against 7 Å. In gen-

eral, the convergence of the exciton size is found to be system-independent, but

essentially governed by the amount of nonlocal orbital exchange in TDDFT.

This effect is traced back to the electron-hole correlation, which is influenced by

the xc-functional-dependent Coulomb attraction between the electron and hole

quasiparticles. The problem of pure TDDFT to describe excited states in ex-

tended π-conjugated systems31,39–41,106,137 hence originates from the inability

to describe bound excitonic states.
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Chapter 7

Benchmarking excited-state
calculations using exciton
properties

In this chapter, exciton analysis is employed for the evaluation of ab initio and

TDDFT excited-state methods. Assessment of the accuracy of excited-state

methods, whether for specific application or for establishing new approaches,

is an important task in quantum chemistry. In benchmark studies, excita-

tion energies are the central and often only criterion to judge the performance

of excited-state methods. However, a detailed comparison of excited-state de-

scription is crucial to gain insight into differences of computational models. For

this purpose, it is necessary to analyze the underlying wave functions and den-

sities, and consequently, physically relevant quantities. Exciton-related prop-

erties provide a concise, quantitative description of excited-state properties,

which is independent of computational protocols. Exciton properties are used

to examine the performance of several excited-state methods for carefully se-

lected molecules featuring challenging cases, such as Rydberg, doubly excited,

extended π → π∗ and charge-transfer states. These examples illustrate the util-

ity of different exciton descriptors in assigning state characters and explaining

discrepancies among different methods.

Please note that parts of this chapter have already been published by Prof.

Dr. Andreas Dreuw, Prof. Dr. Anna I. Krylov, Dr. Felix Plasser and myself in

the Journal of Chemical Theory and Computation, volume 14 (2018), number 2,

pages 710−725 (Ref. 96).
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7.1 Introduction

One important task in quantum chemistry215 is proper benchmarking of ap-

proximate computational methods against highly accurate ones.216–225 Such

benchmark studies are motivated by the limited applicability of highly accu-

rate methods to large systems due to unfavorable computational scaling of

many-body theories leading to high computational demands.215 The necessity

to employ computationally more efficient but less reliable methods26,208,226

together with limited experimental data undermine the credibility of computa-

tional protocols. In benchmarks of excited-state methods, the main (and often

only) criterion is the excitation energy. While the excitation energy is certainly

very important, the character of the underlying states should also be correctly

described by approximate methods. However, the analysis of the underlying

wave functions is often omitted, since it is a non-trivial task to compare or-

bitals and amplitudes systematically and quantitatively.227 However, exactly

these details are crucial to get insight into the differences in the physical de-

scription of excited states, and can be a decisive factor in determining the

domains of applicability of approximate models.

In this chapter, a new perspective on benchmarks of excited-state methods is

adopted by using exciton analysis.73 Excited states are interpreted as excitons,

i.e., correlated electron-hole pairs. Exciton wave functions can be extracted

from quantum-chemical computations via the one-particle transition density

matrix (1TDM), which contains information on coupled electron-hole proper-

ties of an excited state. A variety of exciton properties can subsequently be

extracted and serve as a basis for detailed analyses of excited states.65,66,73,78

The exciton-based analysis of the electronic transitions provides insight into

character of excited electronic states and offers several advantages for bench-

marking: Firstly, it is independent from the method-dependent MO picture.

Secondly, it can be applied to any excited-state method giving access to the

one-particle transition density matrix. Thirdly, it enables explicit benchmark-

ing of electron-hole correlation phenomena, which are directly related to the

physical description of the excited state and crucial for the performance of

quantum-chemical methods. Fourthly, it facilitates state character assignment,

as different types of excited states can be distinguished by the features that

are easy to identify (for example, Rydberg states possess large electron sizes,

charge-transfer states have large separations between the centroids of holes and

electrons). Ultimately, it affords detailed benchmarking of different methods,

even when experimental data is absent.

While reduced density matrices and NTOs have been used in electronic

structure for quite some time,67–69,228 using them to compute properties of exci-
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Figure 7.1: Molecules investigated in this chapter: (a) formaldehyde, (b) 4-
(N,N -dimethylamino)benzonitrile (DMABN), (c) all-trans octatetraene, (d)
hexa(thiophene) (6T), and (e) magnesium porphyrin (MgP).107

tons is relatively new.65,66,73,78 Complementary to the here presented approach,

there exists a variety of descriptors based on orbital overlaps,51,53 changes in

the density matrix54,55 or in the electron density.52 While these descriptors

have been successfully employed for assessing the accuracy of TDDFT cal-

culations,229,230 they have not yet been generalized to higher-level ab initio

methods. As an alternative approach for benchmarking, a comparison of entire

many-electron wave functions by calculating wave function overlaps was re-

cently introduced.231 This analysis affords quantification of variations in wave

functions with respect to a reference wave function for a wide range of compu-

tational methods.

In the following, it is shown that focusing on exciton properties opens a new

route for a simple yet detailed benchmarking of excited states. A carefully cho-

sen set of molecules is investigated that features various types of excited states

(sec. 7.3). These systems, shown in Fig. 7.1, are formaldehyde, the push-pull

system 4-(N,N -dimethylamino)benzonitrile (DMABN), all-trans octatetraene

as a representative for multiply excited states, hexa(thiophene) (6T) as a large

π-conjugated system with delocalized ππ∗ excited states, and magnesium por-

phyrin (MgP) as large, biologically relevant compound. Two families of ab

initio methods are compared: the equation-of-motion coupled-cluster singles

doubles (EOM-CCSD)232–236 and the algebraic-diagrammatic construction for

the polarization propagator (ADC(n))57–59 methods. In selected cases, time-

dependent density functional theory26,27,29 is employed in combination with a

few, commonly used exchange-correlation functionals.
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7.2 Computational details

All calculations were performed with the Q-Chem98,108 electronic structure

package. NTOs were visualized using Jmol.237

Formaldehyde. The geometry was optimized at the RI-MP(2)/cc-pVTZ

level of theory yielding C2v symmetry. Excited-state calculations were carried

out with the ADC57–59 method for the polarization propagator at the second

and third order of perturbation theory as well as with the EOM-CCSD method

for excitation energies (EOM-EE-CCSD).232–234,238 ADC(2) and ADC(3) were

used in their standard variants in combination with the Ahlrichs’ SV(P) and

SVP basis sets, and in the Resolution-of-Identity approximation239 (RI) in

combination with Ahlrichs’ SV,110 SV(P) and SVP, and Dunning’s cc-pVDZ,

cc-pVTZ, aug-cc-pVDZ, and aug-cc-pVTZ basis sets.109,240 EOM-CCSD was

used in its canonical variant (no RI) for all basis sets.

DMABN. Six structures were considered: the fully relaxed, ground-state

geometry (GS) optimized at RIMP(2)/cc-pVDZ level of theory and five excited-

state geometries, LE, CT0, CT45, CT90, CTP, optimized with RI-ADC(2)/cc-

pVDZ. The LE and CTP structures were fully relaxed. For the CT geome-

tries, constained optimization was carried out with the twisting angle between

the benzene ring and the dimethylamino group constrained to 0◦ (CT0), 45◦

(CT45), and 90◦ (CT90). All optimizations were carried out in vacuum. Fur-

ther details can be found in Ref. 241. Excited-state calculations were performed

using ADC(2)/cc-pVDZ, ADC(3)/cc-pVDZ and EOM-CCSD/cc-pVDZ in vac-

uum in their canonical variants. Calculating solvent effects, a state-specific po-

larizable continuum model (IEF-PCM)199 was employed in combination with

standard ADC(2)/SS -PCM/cc-pVDZ available in Q-Chem 5.0. The solvents

cyclohexane (cHex, ε = 1.89, n2 = 1.88) and acetonitrile (MeCN, ε = 36.7,

n2 = 1.81) were employed (information about specific input parameters can be

found in Ref. 241).

Hexa(thiophene). The ground-state geometry was first optimized using

ωB97/SV(P) level of theory and then symmetrized using IQmol (the sym-

metrization resulted in very small changes in total energy). Excited-state ge-

ometry of the S1 state was optimized using CAM-B3LYP/cc-pVDZ. Excited-

state calculations for vertical excitations were carried out at the RI-ADC(2),

RI-EOM-CCSD (with core electrons frozen), and CIS ab initio levels of theory,

and at the full-time-dependent density functional theory26,27,29 (TDDFT) and

Tamm-Dancoff approximation30 (TDA) levels employing BLYP, B3LYP, CAM-

B3LYP exchange-correlation functionals. The three xc-functionals feature dif-

ferent amounts of nonlocal orbital exchange: the BLYP functional (0 % of exact

exchange) is a representative of local generalized-gradient-approximation-type
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(GGA) functionals, the B3LYP functional is a global hybrid functional (21 %

of exact exchange),16,20 and CAM-B3LYP is a long-range corrected method

(19−65 % of exact exchange).47 All calculations were performed using Ahlrichs’

SV(P) basis set. In addition, RI-EOM-CCSD calculations with aug-cc-pVDZ

were carried out. Adiabatic excitation energies were calculated using TDDFT

optimized structure and the RI-ADC(2)/SV(P) and RI-EOM-CCSD/aug-cc-

pVDZ levels of theory.

All-trans octatetraene. The ground-state geometry was optimized us-

ing CCSD(T)/cc-pVTZ level of theory yielding C2h symmetry. This high

level of theory is essential to correctly describe the electronic structure of the

ground state and to obtain accurate carbon-carbon distances for the conju-

gated system.242 Excited-state calculations were carried out with RI-ADC(2),

RI-ADC(3), RI-EOM-CCSD and with TDDFT/TDA using BLYP, B3LYP, and

CAM-B3LYP xc-functionals employing Dunning’s cc-pVTZ basis.

Magnesium(II)porphyrin. The ground-state geometry was optimized

using RIMP/TZVP level of theory, followed by IQmol symmetrization. Excited-

state calculations were performed with RI-ADC(2)/SV(P), RI-EOM-CCSD/-

SV(P), RI-EOM-CCSD/cc-pVDZ, RI-EOM-CCSD/cc-pVTZ, ADC(3)/SV(P),

and CIS/SV(P) as well as with TDDFT/TDA employing BLYP, B3LYP, and

CAM-B3LYP as xc-functionals with Ahlrichs’ SV(P) and TZVP basis sets.

Cartesian coordinates for all structures are given in SI of Ref. 96. It should

be noted that Q-Chem does not follow the standard Mulliken convention243

for molecular orientation, such that the labels of some irreps are flipped.244

All raw numbers shown in figures are given in SI of Ref. 96.

7.3 Results and discussion

In the following, different types of excited states are examined focusing on

exciton descriptors that deliver information relevant to each particular case. It

is illustrated which descriptors can aid the benchmark procedure and how they

can inform the user about methodological aspects.

7.3.1 Valence and Rydberg states in formaldehyde

A popular benchmark molecule,25,245 formaldehyde demonstrates the utility

of exciton descriptors in distinguishing Rydberg and locally excited states.227

Rydberg states have relatively small hole sizes σh and large electron sizes σe. In

contrast, locally excited states show rather similar electron and hole sizes. Ta-

ble 7.1 shows excitation energies, term labels, and state characters for six singlet

excited states of formaldehyde.25 The experimental values are compared with

111



Chapter 7. Benchmarking excited-state calculations

Table 7.1: Excited states of formaldehyde: irreducible representations, charac-
ters and excitation energies (eV).

. cc-pVTZ aug-cc-pVTZ

state typea exp.a ADC(3) ADC(2) EOM. ADC(3) ADC(2) EOM.

11A2 n → π∗ 4.1 3.92 4.01 4.07 3.90 3.92 4.02
11B1 n → 3s 7.13 8.77 7.66 8.35 7.63 6.52 7.24
21B1 n → 3p 7.98 10.53 9.94 9.36 8.46 7.54 8.12

21A1 n → 3p 8.14 (9.23)b 9.37 9.82 8.62 7.49 8.22
11B2 σ → π∗ 9.0 9.20 9.29 10.28 9.18 9.18 9.30

31A1 π → π∗ 10.7 (9.81)b 10.22 (10.57)c 9.06 (9.48)d 9.68

a experimental data and state assignment is from Ref. 25.
b substantial state mixing and double excitation character.
c state has 53% Rydberg character and only 30% π → π∗.
d state has 64% Rydberg character and only 25% π → π∗.

the computational results obtained with ADC(3), ADC(2) and EOM-CCSD in

combination with the cc-pVTZ and aug-cc-pVTZ basis sets. As expected, the

cc-pVTZ basis is not sufficient for describing Rydberg states, leading to large

errors in excitation energies. The results improve considerably in the aug-cc-

pVTZ basis set: the state ordering is correct in almost all cases and the errors

against the experimental values are substantially smaller. Using specialized

basis sets246 for the description of Rydberg states may further improve the re-

sults, however, for the purpose of this study the obtained results suffice. Using

this assessment of the accuracy of the methods as a starting point, detailed

analysis based on exciton descriptors will be discussed in the following.

Fig. 7.2 shows the ADC(3) results for the first two singlet excited states of

each irreducible representation. Two states are highlighted in blue, 11A2 and

21A2, which are discussed in more detail below. Fig. 7.2 (a) shows the changes

in excitation energies with respect to the basis sets. The following hierarchy

of basis sets is considered (from left to right): first, the polarization of the

second-row atoms is included; second, the basis is extended from double-ζ to

triple-ζ; third, diffuse functions are included (for both double-ζ and triple-ζ

bases). While the excitation energies remain constant for almost all states for

the first five basis sets (with a few exceptions), significant changes occur upon

the augmentation. This is expected since diffuse functions are mandatory for

the correct description of Rydberg states.227 Although more compact valence

states do not requite diffuse functions, they can mix and interact with Rydberg

states, especially when the density of states is high227 as it is the case around

9 eV in formaldehyde. Consequently, locally excited states in this energy range

also stabilize in the augmented basis sets (black, dotted lines). This example

illustrates that the dependence of excitation energy on the basis set is not suf-

ficient for distinguishing Rydberg and valence states and the utility of exciton
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Figure 7.2: Excited states in formaldehyde. (a) Excitation energies (∆E, eV),
(b) electron size (σe, Å), and (c) Ω values of the first two excited states of each
irreducible representation calculated by ADC(3) with different basis sets. The
legend in (a) applies to all diagrams. The inset of the formaldehyde structure
in (b) shows the size of the molecule.
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Figure 7.3: Excited states of formaldehyde. (a) Differences between experi-
mental and computed excitation energies (∆(∆E− exp), eV), and (b) electron
sizes (σe, Å) of six excited states computed at the ADC(3), ADC(2) and EOM-
CCSD levels of theory employing the aug-cc-pVTZ basis set. Root-mean-square
deviations (eV) are displayed in legend.

analysis becomes obvious.

Fig. 7.2 (b) and Fig. S1(b) in SI of Ref. 96 illustrate the effect of the basis

set on the excited-state wave functions by considering electron and hole sizes,

cf. eq. (2.33). While the hole sizes (Fig. S1(b) in SI of Ref. 96) vary between

1.0 and 1.3 Å (and only two excited states show a noticeable increase of ∼0.2 Å

upon the inclusion of diffuse functions), the electron sizes change dramatically

for the Rydberg states (Fig. 7.2 (b)). This behavior can be contrasted to almost

constant values of σe of the locally excited states (11A2, 1
1B2, 3

1A1). Thus, σe

is a key descriptor which is able to differentiate between valence and Rydberg

states.

Fig 7.2 (c) presents another important property, Ω, which quantifies the

amount of single excitation character in the excited-state wave functions. For

a primarily singly excited state, Ω ≈ 1. In small (not augmented) basis sets,

some states (two 1A1 states and 21A2) show significantly smaller values of Ω

at the ADC(3) level of theory, which indicates substantial double excitation

character. This doubly excited character disappears when diffuse functions

are included, suggesting that it is an artifact of using small basis sets (which is

similar to a well-known phenomenon of valence-space CASSCF, overestimating

doubly excited character).

In the following, exciton characters will be compared for ADC(2), ADC(3)

and EOM-CCSD wave functions with the aug-cc-pVTZ basis set. Fig. 7.3 (a)

presents the differences between experimental and computed excitation energies

for the six excited states discussed above including the ADC(2), ADC(3) and

EOM-CCSD levels of theory. The corresponding electron sizes are plotted in

Fig. 7.3 (b). The deviations from the experimental values can be systematically
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Figure 7.4: Natural transition orbitals of the 11A2(n → π∗) and 21A2(n →
Ry(3p)) excited states of formaldehyde calculated at the ADC(3)/aug-cc-pVTZ
level of theory. Singular values are given in percentage. For the Rydberg state,
two different isovalues are used (0.05 e and 0.04 e).

explained in terms of the state characters. The ADC(2) method underestimates

Rydberg excitation energies by about 0.5 eV, whereas ADC(3) overestimates

energies of these states by 0.5 eV. EOM-CCSD yields the smallest errors for,

both, valence and Rydberg states. An outstanding case is the 31A1 state,

for which all computational methods yield large errors in excitation energies.

The electron sizes indicate that the state has some Rydberg character at the

ADC(2) level, while it appears to be rather local at the other levels of theory.

The analysis of single excitation character in Fig 7.2 (c) reveals that this state

has some double excitation character. However, it seems that both ADC(3)

and EOM-CCSD are underestimating the energy of this state.

A practical issue for which electron sizes are helpful is connected to creating

orbital representations of Rydberg states. Fig. 7.4 shows NTOs for the 11A2

(n→ π∗) and 21A2 (n→ Ry(3p)) excited states of formaldehyde. Both states

are well described by a single NTO pair (the respective leading σ2 values are

0.87 and 0.89). The visualization of the hole orbital is straightforward, however,

accurate rendering of the electron (particle) orbital requires some care. While

valence-like electron NTOs (such as π∗ electron orbital of the 11A2 state) can

be adequately visualized using the same isovalues as used for the also valence-

like hole orbitals, the diffuse Rydberg orbitals need to be rendered with smaller

isovalues. When using the same isovalue as for valence orbitals, the isosurface

encloses only a small part of the electron density of much more diffuse Rydberg

orbitals (this can be easily understood by comparing two normalized gaussians

with different exponents, see Fig. S3 in SI of Ref. 96). This can lead to a

misleading picture as illustrated by the middle row of Fig. 7.4. Only when the
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isovalue is adjusted to a lower value (as in the low row of Fig. 7.4), the true

shape of the Rydberg orbital becomes visible. By considering electron sizes,

the Rydberg character of a state becomes directly apparent, alerting users that

small isovalues are required for rendering NTOs.

7.3.2 Charge-transfer states in DMABN

Charge-transfer states present a challenge for many excited-state methods (cf.

sec. 1.8). As a consequence, they are often used in benchmark studies to exam-

ine methodological issues.36,51 In this benchmark set, 4-(N,N -dimethylamino)-

benzonitrile (DMABN), a substituted benzene ring with a donor and accep-

tor group in para position, is considered as a representative organic push-pull

molecule. The photochemistry of DMABN is rather complex. DMABN features

dual fluorescence in polar environments,247 where there are two fluorescence

peaks, one at 350 nm (3.54 eV) and another at 475 nm (2.61 eV); the lat-

ter peak vanishes in apolar solvents. The origin of dual fluorescence and the

solvent-dependent vanishing of the second peak has been attributed to the two

singlet excited states that are responsible for the fluorescence. The first state

is a locally excited state (LE) of π → π∗ character localized on the benzene

ring. The second state is a charge-transfer (CT) state, in which an electron is

promoted from the electron-donating dimethylamino group towards the ben-

zonitrile group (cf. Fig. S4 of SI of Ref. 96). It should be noted that none of

these states is of ”pure” LE or CT character, but mixing of different configu-

rations occurs to a various extent. The LE and CT states experience different

interactions with a polar solvent and also exhibit different structural relaxation.

Detailed discussion on the role of these states in dual fluorescence can be found

in Refs. 241,248.

In this work, excited states of DMABN are investigated by means of exciton

analysis in order to analyze the properties of LE and CT states in detail. Several

geometries from Ref. 241 are used to represent excited-state relaxation (see

sec. 7.2). The LE geometry is the fully-relaxed geometry optimized for the LE

state. By using the sequence of CT structures, the effect of solvent-dependent

structural relaxation is investigated by considering a twist of the two methyl

groups with respect to the benzene (these structures with different twisting

angles are denoted by CT0, CT45 and CT90). The fully relaxed CT state

structure has a pyramidalized dimethylamin group (denoted CTP).

Fig. 7.5 presents the results for the lowest LE and CT states of DMABN

at different geometries computed at the ADC(3)/cc-pVDZ, ADC(2)/cc-pVDZ,

and EOM-CCSD/cc-pVDZ levels of theory. Fig. 7.5 (a) shows that the LE

state is the lowest at the ground-state geometry for all three methods. While

ADC(2) and ADC(3) values are on top of each other (4.49 eV and 4.47 eV,
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Figure 7.5: Lowest LE and CT states of DMABN at different geometries at
the ADC(3)/cc-pVDZ, ADC(2)/cc-pVDZ, and EOM-CCSD/cc-pVDZ levels of
theory. (a) Relative excitation energies (Erel, eV). (b) Distances between elec-
tron and hole charge centers (dh→e, Å). Legend in (a) also applies to (b). (c)
Relative energies (Erel, eV) of the ground (GS) and excited states (LE, CT) cal-
culated at the ADC(2)/cc-pVDZ level of theory in combination with PCM.241

(d) Solvent effects on electron-hole separation (dh→e, Å). Legend in (c) also
applies to (d).
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respectively), the EOM-CCSD excitation energy is slightly higher (4.65 eV). For

the CT state, the spread in excitation energies is larger: at the ADC(2) level,

the CT state lies only 0.26 eV above the LE state, whereas the gap is larger

(≈0.5 eV) for ADC(3) and EOM-CCSD (the respective excitation energies are

4.94 and 5.15 eV). At the LE geometry (Fig. 7.5 (a), left side), the LE state is

strongly stabilized, while the energy of the CT state is slightly blue-shifted. At

the CT geometries (right side of Fig. 7.5 (a)), the excitation energy of the LE

state slightly increases. These trends are observed at all levels of theory. At the

CT90 geometry, the LE excitation energy computed by ADC(2) jumps up to

5.57 eV in sharp contrast to ADC(3) and EOM-CCSD. At all levels of theory,

the CT state exhibits a gradual stabilization along the twisting coordinate. The

stabilization is most pronounced at the ADC(2) level. At the CT45 geometry,

the excitation energies for the LE and CT state are almost degenerate at the

ADC(3) and EOM-CCSD levels. Increasing the angle disrupts the conjugation

between the benzene ring and the lone pair orbital at the nitrogen atom, leading

to further stabilization of the CT state and destabilization of the LE state.

To rationalize differences between the different levels of theory, excited-state

properties are examined. In the context of CT states, the vectorial electron-

hole distance dh→e is the key property. For the LE state, it is expected that

the vectorial distance between the electron and hole distribution dh→e, that is,

the separation of the charge cendroids (eq. (2.31)) is close to zero since the rel-

evant orbitals reside in the same part of the molecule despite being delocalized

(which is the case for the π-orbitals of a benzene ring). In contrast, CT states

involve transitions between orbitals located at different parts of the molecule.

Consequently, dh→e values should reflect the distances between the parts of the

molecule involved in charge transfer. The data presented in Fig. 7.5 (b) shows

that at the GS geometry, the LE and CT states differ in dh→e by at least 0.6 Å

for EOM-CCSD and by more than 0.8 Å for the ADC methods. At the LE-

optimized geometry and along the twisting coordinate, the charge separation

moderately increases for the LE state and is strongly enhanced for the twisted

structures (CT45 and CT90) at all levels of theory. Rationalizing the trends in

ADC(2) excitation energies, the dh→e values reveal major changes in the state

character for the LE state: for the CT45 geometry, dh→e of the LE state is as

large as 1.41 Å which is rather typical for a CT state. At the CT90 geometry,

dh→e drops to almost zero. Obviously, the twist of the dimethylamin group

beyond 45 degrees breaks the conjugation, and, as a consequence, the LE state

localizes on the benzene ring. This effect can also be visualized using NTOs,

which are presented in Fig. S4 in the SI of Ref. 96 for three geometries at the

EOM-CCSD level of theory.

It is worth noting that electron-hole separation dh→e increases in the fol-
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lowing sequence: ADC(3) < EOM-CCSD < ADC(2). To my knowledge, no

systematic analysis of this trend has been reported so far, yet there have been

a couple of studies with similar findings suggesting that ADC(2) tends to over-

estimate charge-transfer character.241,249,250

To understand solvent effects on excitation energies and exciton properties,

the dh→e values of the LE and CT states are recalculated employing a polariz-

able continuum model (PCM) with equilibrium solvation, that is, the solvent

field is optimized for the same state as the geometry as described in detail in

Ref. 241. Fig. 7.5 (c) shows the results for two solvents, acetonitrile (MeCN),

an example of a polar solvent, and cyclo-hexane (cHex), a non-polar solvent.

Fig. 7.5 (c) shows the relative energies for the ground and excited states with

respect to the ground-state energy at the GS geometry, which is set to zero

for each model. At the GS geometry, the CT state is more stabilized by the

solvents than the LE state. At the CT-optimized geometries, the ground state

is strongly destabilized and its energy rises up by more than 2 eV for the CTP

geometry in MeCN. At the same time, the CT energy decreases for the CT-

optimized geometries, as shown in the right hand side of Fig. 7.5 (c), and the

stabilization is more pronounced in the polar solvent, just as expected. The

LE state is slightly destabilized, with only minor influence of the environment

for the smaller twisting angles. In contrast, at the CT90 and CTP geometries

there are significant changes: the excitation energies steeply increase and the

solvent effects become more pronounced. Comparing these trends with the

changes in dh→e presented in Fig. 7.5 (d), it is interesting that the effects gen-

erally follow the trends in relative energies but that the magnitude of change

in dh→e does not necessarily linearly correspond to the solvent-induced shifts.

While the dh→e values of the CT state show a constant shift when going from

vacuum to cHex to MeCN, irrespectively of the geometry, the LE state shows

a very different trend. At the GS geometry, the shifts in dh→e are almost equal

to the ones of the CT state at this geometry. In contrast, the shifts are more

than twice as large for the LE, CT0 and CT45 geometries. The dramatic drop

in dh→e at the CT90 geometry, which is attributed to the break in conjugation

between the benzene ring and the dimethylamino group, is accompanied by a

complete vanishing of solvent effect on the dh→e values. The solvent-dependent

changes in excitation energies of the LE state at the CT90 and CTP geome-

tries are driven by the changes in the ground-state energies at these geometries

rather than by changes in the excited-state character.

In conclusion, it was demonstrated how the dh→e values of the LE and CT

states in DMABN are affected by the electronic structure method as well as by

different solvent models. Comparing these values with the trends in relative

energies allowed to quantify different effects of the solvent models on different
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Figure 7.6: Excited states of hexa(thiophene). (a) Excitation energies (∆E,
eV), (b) exciton sizes (dexc, Å), and (c) correlation coefficients (Reh) of the first
singlet (S1, 1

1Bu) and triplet (T1, 1
3Bu) states calculated at various levels of

theory employing the SV(P) basis set. The legend in (a) applies to all plots in
this figure, CAM. refers to CAM-B3LYP. Light colors for BLYP, B3LYP and
CAM-B3LYP correspond to TDA, dark colors to full TDDFT. Experimental
spectrum recorded in dioxane.251,252

types of states. The examples highlighted the utility of dh→e in identifying and

quantifying permanent charge-transfer character.

7.3.3 Delocalized ππ
∗ states in hexa(thiophene)

Excited states of extended π-systems, such as hexa(thiophene) oligomer (6T)

tend to form excited states with exciton character.81,97,120,121,138,156 It is there-

fore particularly interesting to analyze their excited states by means of exciton

descriptors. The theoretical description of transitions with charge-resonance

character, as those giving rise to bright states in organic photovoltaic mate-

rials, is affected by the same methodological shortcomings as charge-transfer

states,34,36,37 although the origin of the problem is less obvious due to the

absence of permanent charge separation.41,106,137 Two descriptors are relevant

is this case: the exciton size and the linear electron-hole correlation. While

the former allows to determine the type and character of the exciton, the lat-

ter is important to assess the description of electron-hole correlation effects by

different quantum-chemical methods.97,138

In the following, the first singlet (S1,1
1Bu) and triplet (T1,1

3Bu) excited

states are considered. The 11Bu state is the lowest singlet excited state and

carries large oscillator strength. Fig. 7.6 presents an analysis of the states in

terms of excitation energies as well as exciton descriptors using Reh and dexc.

In terms of excitation energies shown in Fig. 7.6 (a), ADC(2) and EOM-CCSD

appear to significantly overestimate the excitation energy of S1 state, by 0.54

eV and 0.82 eV, respectively (the experimental value is 2.85 eV). Several factors

contribute to this rather large discrepancy. Firstly, the experimental spectrum
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has been recorded in dioxane, which has a refractive index of 1.42 and stabilizes

excited states, thus lowering vertical excitation energies in comparison to gas-

phase experiments. Secondly, the selected geometry contributes to the rather

large errors. The employed geometry was optimized at the ωB97/SV(P) level.

Reoptimizing the structure and calculating vertical excitation energies at the

CAM-B3LYP/cc-pVDZ level yields 3.05 eV, which is a significant improvement

and a similar effect is expected for ADC(2) and EOM-CCSD. Thirdly, using

a more appropriate basis, such as the aug-cc-pVTZ set, is expected to lead to

additional lowering of excitation energy by 0.1−0.2 eV.138,253 While 6T is too

large for EOM-CCSD calculations with a triple-zeta basis, EOM-CCSD calcu-

lations were performed with aug-cc-pVDZ basis and obtained excitation energy

of 3.38 eV (thus, reducing the error down to 0.53 eV). Ultimately, states with

large charge-resonance character (such as singlet π → π∗ states in conjugated

systems) are known to require accurate account of dynamic correlation, and the

errors of EOM-CCSD are often close to 0.3 eV and systematic for such states

leading to overestimation of excitation energies, cf. Ref. 253. This is reflected

in the trends when going from CIS to ADC(2): Increasing the level of treat-

ment of doubly excited determinants yields more accurate excitation energies.

While it is clear that the bright Bu state is a singly excited state, doubly excited

determinants contribute indirectly, giving rise to a more accurate description

of electron correlation. Among TDDFT methods, the B3LYP shows the best

agreement with experimental vertical excitation energy (error of −0.10 eV for

TDA) in both TDA and full TDDFT variants. The CAM-B3LYP/TDA result

is blue-shifted by 0.35 eV, and BLYP/TDA underestimates the excitation en-

ergy by −0.52 eV. The blue shift observed with CAM-B3LYP is consistent with

the behavior of wave-function methods, whereas seemingly better agreement of

BLYP and B3LYP is likely to be an artifact.

For the T1 state (3Bu), EOM-CCSD and ADC(2) obtain very similar re-

sults: The EOM-CCSD excitation energy for T1 is 2.29 eV, which is only

−0.15 eV below the ADC(2) value of 2.44 eV. In contrast, TDDFT (and CIS)

methods for T1 state obtain much smaller values clustered around 1.7 eV.

Fig. 7.6 (b) and (c) show exciton descriptors, revealing a large spread in

exciton sizes and correlation coefficients for the two states. For the S1 state,

EOM-CCSD exciton size is 5 Å, which is very similar to the CAM-B3LYP value.

B3LYP and BLYP results have substantially larger values of 8 Å and 10 Å,

respectively. These values can be compared to the size of the molecule, which

is 22.1 Å. Taking into account that the exciton size is defined as root-mean-

square separation of the electron-hole distribution, EOM-CCSD, ADC(2) and

CAM-B3LYP predict a bound electron-hole pair, whereas BLYP and B3LYP

describe the exciton as unbound, for a more detailed discussion of these effects
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cf. Chapter 6. The exciton size in T1 is much smaller for all methods, which

can be attributed to the absence of exchange repulsion.

The electron-hole correlation coefficients (Fig. 7.6 (c)) illuminate the ob-

served wide spread in exciton sizes for the S1 state: While for the ab initio

methods and CAM-B3LYP Reh is positive with values above 0.46, BLYP result

has a negative electron-hole correlation (−0.29), and B3LYP has small positive

value (+0.12). A negative value in Reh corresponds to a dynamical avoidance

of the electron and hole in space, which is physically incorrect according to the

ab initio references and contradicts the picture of bound excitons. A related

study on tetra(thiophene) has shown that the excitation energies of the first

bright excited state strongly depend on the amount of nonlocal exact exchange

and that spurious charge-transfer states appear for xc-functionals without or

with low percentage of nonlocal orbital exchange.35 The same phenomenon is

at play in π-conjugated systems and is related to methodological issues in the

description of excitonic properties.97 The results of hexa(thiophene) present

another example of misleading error cancellation, illustrating that seemingly

accurate excitation energies obtained by B3LYP correspond to erroneous de-

scription of the exciton.

In the triplet state, all methods yield Reh larger that the respective S1

values. The increase in electron-hole correlation can be rationalized in terms

of exchange interaction: While electron and hole experience a short-range ex-

change repulsion in the case of singlet excitons, in triplet excitons this repulsion

is absent due to the different multiplicity, allowing the hole and electron to

co-localize in space. This phenomenon, clearly seen in dexc and Reh, is a short-

range effect and largely determined by the response of the Hartree potential.

Consequently, it is well captured by TDDFT with all xc-functionals.

Concerning the applicability of the Tamm-Dancoff approximation in ex-

tended π-systems, Fig. 7.6 (a) also compares the S1 excitation energies com-

puted employing the TDA (light colors) and full TDDFT (dark colors) in combi-

nation with BLYP, B3LYP and CAM-B3LYP. While for the BLYP and B3LYP

functionals deviations from the experimental excitation energy are smaller for

TDA, full TDDFT seems to perform better for CAM-B3LYP (+0.24 eV versus

+0.35 eV).

7.3.4 Doubly excited states in octatetraene

All-trans polyenes, prototypical linear π-conjugated systems, play key roles

in many biologically relevant systems, for example, in carotenoids. Despite

their simple molecular structure, excited states of polyenes are challenging for

theoretical description due to low-lying doubly excited configurations.42,90,187

A plethora of studies investigated different aspects of the excited states of
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Figure 7.7: Excited states of all-trans octatetraene. (a) Excitation energies
(∆E, eV), (b) oscillator strengths (fosc), (c) Ω values (Ω), and (d) squared
doubles amplitudes (R2) of the 21A−

g , 11B+
u , and 21B−

u states calculated
with ADC(2), ADC(3), EOM-CCSD, BLYP/TDA, B3LYP/TDA and CAM-
B3LYP/TDA employing the cc-pVTZ basis set. The legend in (a) applies to
all diagrams. Experimental data are from Ref. 187.

polyenes.39,42,187,242,254–260 In this benchmark set, octatetraene is selected to

identify double, or, more generally, multiple excitation character in excited

states according to exciton properties, and to compare excited states and their

properties at different levels of theory. In many biologically relevant applica-

tions, excited-state calculations are only feasible using very efficient but ap-

proximate TDDFT approach. An intense search for an appropriate exchange-

correlation functional revealed that BLYP was capable of obtaining the experi-

mentally observed state order, i.e., that the dark Ag state is the lowest excited

state for all compounds larger than hexatriene. Therefore the BLYP functional

is included in the benchmark study, along with its hybrid counterpart, B3LYP,

and a long-range corrected functional, CAM-B3LYP. However, it is well known

that linear-response TDDFT performs poorly for doubly excited states.42,43

It would therefore be interesting to compare these methods with alternative

approaches, e.g. dressed TDDFT or spin-flip TDDFT,261,262 cf. e.g. Ref. 208

and references therein, however, this is beyond the scope of the present work.

The excited states are classified in terms of their irreducible representation as

Ag, Au, Bg and Bu and marked with + or − depending on their character,

i.e., + denotes ionic resonance structures and − denotes neutral (covalent)

ones (cf. Ref. 259 and references therein). Fig. 7.7 presents the results for
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the 21A−
g , the 11B+

u , and the 11B−
u excited states of octatetraene. Fig. 7.7 (a)

shows a large spread in the excitation energies computed by different methods.

ADC(3) shows the best agreement with the experimental data,187 with devia-

tions of +0.36 eV and +0.27 eV for 21A−
g and for 11B+

u , respectively. ADC(3)

is the only ab initio method that reproduces the experimental state order-

ing. ADC(2) and EOM-CCSD show substantial deviations for the 21A−
g state

(+2.39 eV for ADC(2) and +2.54 eV for EOM-CCSD). For the 11B+
u state,

the errors are much smaller: +0.24 eV and +0.62 eV for ADC(2) and EOM-

CCSD, respectively. Increasing the basis set up to aug-cc-pVTZ lowers the

EOM-CCSD excitation energies by about 0.1 eV yielding 6.055 and 4.896 eV

for the 21A−
g and 11B+

u states, respectively. Thus, even with a larger basis

EOM-CCSD still places the dark Ag state above the bright Bu state vertically.

Exciton analysis provides information to rationalize these large discrepan-

cies between the methods. The key quantity is the amount of single and double

(or multiple) excitation character. Fig. 7.7 (c) and (d) show two measures, the

squared norm of the exciton wave function Ω and the squared value of the dou-

bles amplitudes R2 in the excited states. An advantage of using Ω is that the

respective values are orbital invariant and well-defined independently from the

computational protocol, which affords a more precise comparison than using

R2. The ADC(3) values clearly indicate a predominant double excitation char-

acter in the 21A−
g and 21B−

u excited states. ADC(2) fails to capture this effect

even qualitatively: all three states have Ω values larger than 0.8, completely

missing out differences in state character and confirming the results of Ref. 169.

Despite relatively large errors in excitation energies, the EOM-CCSD Ω values

indicate that EOM-CCSD captures a small difference in excitation character in

accordance with the trends observed at the ADC(3) level. The R2 values fol-

low similar trend as the Ω values. In face of the differences in state characters,

it is not surprising that the ADC(3) method, which describes doubly excited

determinants at first order in perturbation theory, performs much better than

ADC(2), which describes these determinants only at zeroth order, cf. sec 1.9.

In EOM-CCSD ansatz, the double excitations are included explicitly, but their

primary role is to describe dynamical correlation for singly excited configura-

tions. Thus, when excited states have predominantly doubly excited character,

there are no higher-level configurations to correlate these states. An explicit

inclusion of double excitations in EOM-CCSD is responsible for its superior-

ity relative to to ADC(2). Further discussion on doubly excited states can be

found in Ref. 187.

The performance of TDDFT is discussed in the following, cf. Fig. 7.7 (a).

At the first glance, BLYP shows the best agreement with the experimental

data and the ADC(3) results. While CAM-B3LYP closely follows ADC(2) and
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Figure 7.8: Excited states of all-trans octatetraene. (a) Exciton sizes (dexc,
Å) and (b) correlation coefficients (Reh) of the 21A−

g , 11B+
u , and 21B−

u ex-
cited states calculated with ADC(2), ADC(3), EOM-CCSD, BLYP/TDA,
B3LYP/TDA and CAM-B3LYP/TDA employing cc-pVTZ basis set. The leg-
end in (a) applies to both diagrams.

EOM-CCSD, the excitation energies obtained with B3LYP are almost exactly

in between BLYP and CAM-B3LYP for all three states. As TDDFT only in-

cludes singly excited determinants, Ω=1 for all TDDFT states, which means

that doubly (or multiply) excited character cannot be described.39 To ratio-

nalize the differences and similarities of the computational results regarding

the excited-state wave functions, Fig. 7.8 shows exciton sizes and correlation

coefficients. It should be noted that these descriptors only characterize the part

of the excited state that is described by single electron transitions, since it is

based on the one-particle transition density matrix. For example, the predom-

inantly doubly excited state 21A−
g has Ω=0.2 at the ADC(3) level. This means

that only 20% of the excited state can be described within the exciton model.

Consequently, exciton sizes and correlation coefficients in Fig. 7.8 have limited

significance for the 21A−
g and 21B−

u states. For the predominantly singly excited

state 11B+
u , all wave-function based methods are in good agreement with an

exciton size of about 4 Å and a slightly positive correlation coefficient of +0.1.

Among TDDFT methods, CAM-B3LYP shows the best agreement with these

values. In contrast, for BLYP, dexc is much larger (5.21 Å) and Reh is negative

(−0.148). Other states (those with substantial single excitation character) are

described consistently within the wave-function based methods, suggesting the

major differences in excitation energies originates from the doubly or multiply

excited determinants. It would be interesting to further characterize this phe-

nomenon, however, more advanced techniques need to be employed, cf. Ref.

183, which is beyond the scope of this work. Using ADC(3) as a reference, the

best agreement in exciton properties is observed for the EOM-CCSD results,

while the largest discrepancies are found for the 21A−
g state with ADC(2). In

contrast to the good agreement in excitation energies, the exciton sizes ob-

tained with BLYP deviate the most from the ADC(3) values. A systematic
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decrease in differences from the ADC(3) results is observed when going from

BLYP to B3LYP to CAM-B3LYP, which effectively corresponds to an increase

of nonlocal orbital exchange.97,208

Fig. 7.8 (b) plots electron-hole correlation coefficient Reh, showing a quali-

tative agreement among all wave function based methods. An opposite trend is

observed concerning the deviations from the ADC(3) reference: When the cor-

relation is smaller, then the exciton size increases with respect to the reference.

While for the predominantly doubly excited state, the electron-hole correlation

is negative, i.e., the electron and hole dynamically avoid each other in space,

the Reh values for the second and third state are slightly positive.

In summary, the low-lying excited states of octatetraene are characterized

in terms of double excitation character and exciton properties confirming the

findings of Ref. 187. Interestingly, in the doubly excited 21A−
g state, there

is a negative correlation between electron and hole. CAM-B3LYP is the only

xc-functional that reproduces exciton properties of ab initio references, while

its performance in excitation energies is rather poor in contrast to, e.g., BLYP.

Ref. 39 has pointed out that excited states in polyenes require a more accurate

treatment of electron correlation than provided by pure local gradient-corrected

functionals. The presented results confirm this conclusion suggesting that long-

range corrections are unlikely to compensate the errors for polyenes and related

molecules inherited from the simpler xc-functionals.

7.3.5 Magnesium(II)porphyrin

Porphyrins are an important class of molecules present in active centers of

biologically and physiologically relevant molecules. Magnesium(II)porphyrin

is a model for chlorophyll, which has been an object of intense studies ever

since its discovery in 1940. Using this molecule as a representative of a large

molecular class with rich photochemistry, it is illustrated how benchmarking

and interpretation of the excited states can benefit from exciton analysis.

The excited-state absorption spectrum of magnesium(II)porphyrin (MgP)

is rationalized using a four-orbital model by Gouterman,263–265 which explains

the origin of the Q and B bands. While drawing a full picture of all relevant

excited states is beyond the scope of this work, the focus is on the first bright

excited state related to the low-intensity Q band and on the interpretation of

the four doubly degenerate, bright states in comparison to Gouterman’s model.

The discussion is started with the benchmark data set for the first bright ex-

cited state shown in Table 7.2. Comparing the excitation energies obtained with

the different computational methods with the experimental value of 2.07 eV,263

the ADC(3) method shows the best agreement (excitation energy of 1.996 eV).

The second smallest error obtained with BLYP is already substantially larger
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Table 7.2: Excitation energies (∆E, eV), oscillator strengths (f), single excita-
tion character (Ω), exciton sizes (dexc, Å), hole and electron sizes (σh and σe,
Å) and linear correlation coefficients (Reh) of the first excited Q state of mag-
nesium(II)porphyrin calculated at various levels of theory employing Ahlrichs
SV(P)110 basis set if not stated otherwise.

method ∆E f Ω dexc σh σe Reh

exp. 2.07a

ADC(3) 1.996 0.008 0.728 4.58 3.50 3.65 0.179
ADC(2) 2.382 0.007 0.757 4.64 3.38 3.67 0.169

EOM-CCSDb 2.344 0.001 0.759 4.58 3.45 3.65 0.167

EOM-CCSDb,c 2.345 0.007 0.736 4.62 3.46 3.64 0.158

EOM-CCSDb,d 2.302 0.007 0.741 4.65 3.49 3.67 0.158
BLYP 2.265 0 1 5.17 3.46 3.70 −0.048
B3LYP 2.388 0.001 1 5.03 3.47 3.68 0.012
CAM-B3LYP 2.423 0.004 1 4.81 3.48 3.65 0.090
CIS 2.432 0.038 1 4.68 3.55 3.67 0.160

a From Ref. 263.
b Symmetrized geometry.
c Dunning’s cc-pVDZ basis set.
d Dunning’s cc-pVTZ basis set.

with 2.265 eV. All other methods exhibit a uniform blue shift of about 0.3 eV

(or even +0.4 eV for CAM-B3LYP). It is worth noting that EOM-CCSD and

ADC(2) excitation energies are close (2.344 eV and 2.382 eV, respectively) and

also B3LYP is close to these values (2.388 eV). For EOM-CCSD, the effects of

the basis set are investigated. While the value obtained with Dunning’s double-

ζ basis is within 0.001 eV from the value obtained with Ahlrichs’ SV(P) basis,

using triple-ζ basis leads to an improved agreement with the experiment (2.30

eV).

Despite the discrepancies in the excitation energies, the overall descrip-

tion of the first excited state in terms of the exciton properties is consistent

among the wave function-based methods (ADC(3), ADC(2) and EOM-CCSD),

and in particular ADC(3) and EOM-CCSD obtain similar values. The ADC(2)

descriptors show larger differences, but are nevertheless in a good overall agree-

ment.

Considering differences between the tested TDDFT methods, the most in-

teresting trend can be attributed to a stepwise introduction of nonlocal orbial

exchange. In the BLYP functional nonlocal orbital exchange is absent, while

a constant fraction of 21 % is included for B3LYP, and a range-separation

function admixes nonlocal orbital exchange between 19 % and 65 % in CAM-

B3LYP. While the best results for the excitation energy appears to be ob-

tained with BLYP, it is noteworthy that the electron-hole correlation is neg-

ative (Reh = −0.048) as opposed to the ADC(3) results, which suggest that
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Table 7.3: Characterization of the four doubly degenerate, bright excited states
of MgP in terms of excitation energies (∆E, eV), oscillator strengths (fosc),
exciton sizes (dexc, Å), hole and electron sizes (σh, σe,Å) and correlation co-
efficients (Reh) calculated by CIS and TDDFT with the BLYP, B3LYP, and
CAM-B3LYP functionals employing Ahlrichs’ TZVP basis set.

method state ∆E fosc dexc σh σe Reh

exp. Q 2.07a

BLYP S1 2.271 0 5.20 3.47 3.72 −0.046
B3LYP S1 2.393 0 5.05 3.48 3.70 0.011
CAM-B3LYP S1 2.430 0.001 4.83 3.48 3.66 0.088

ADC(2)b 11B2u 2.382 0.007 4.64 3.38 3.67 0.136
CIS S1 2.465 0.020 4.71 3.56 3.68 0.155

exp. B 3.05a

BLYP S3 3.156 0.016 5.55 3.77 3.71 −0.101
B3LYP S4 3.676 0.110 5.14 3.70 3.70 0.038
CAM-B3LYP S3 4.098 1.123 4.65 3.43 3.79 0.172

ADC(2)b 21B2u 3.487 1.357 4.88 3.40 3.76 0.075
CIS S3 4.578 2.698 4.88 3.38 3.80 0.079

exp. N 3.97a

BLYP S10 3.441 0.064 5.47 3.75 3.77 −0.059
B3LYP S8 3.947 0.593 5.04 3.45 3.82 0.042
CAM-B3LYP S7 4.402 0.992 4.93 3.60 3.71 0.092

ADC(2)b 31B2u 3.993 0.007 4.89 3.62 3.68 0.105
CIS S7 5.274 0.323 4.44 3.79 3.80 0.314

BLYP S15 3.973 1.583 5.60 3.72 4.00 −0.052
B3LYP S13 4.340 1.722 5.63 4.05 3.79 −0.031
CAM-B3LYP S12 4.994 0.798 5.28 4.07 3.67 0.072

ADC(2)b 41B2u 4.625 0.478 5.26 4.06 3.66 0.075
CIS S16 6.235 0.729 4.92 3.94 3.66 0.163

a From Ref. 263.
b Symmetric structure, SV(P) basis.

electron-hole correlation should be positive. Increasing the amount of exact

exchange, which corresponds to introducing the electron-hole attraction in the

framework of TDDFT,97,208 improves the description of the electron-hole cor-

relation yielding positive values of Reh. But while the Reh value is improved

when going from BLYP to B3LYP to CAM-B3LYP, the excitation energies

become worse, approaching the typical error of CIS.

As the next step, the first four doubly degenerate ππ∗ states of MgP are

analyzed employing TDDFT and a triple-ζ basis set and it is attempted to re-

construct Gouterman’s model. The TDDFT results and experimental data,263

as well as ADC(2)/SV(P) references are presented in Table 7.3 (only the re-

sults for one state from each degenerate pair is presented as the second state

has identical properties). Following the trends described for the S1 state, the

results illustrate impressively how difficult it is to describe excited states of

large conjugated systems, highlighting a true dilemma. While BLYP deliv-
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Figure 7.9: Gouterman’s model: (a) hole and electron sizes (σh and σe, Å) of
four doubly degenerate excited states calculated at the CAM-B3LYP/TZVP
level of theory, (b) sketch of orbitals and transitions involved in the absorption
spectrum of MgP including the classic Four-Orbital model (grey), adopted from
Ref. 266.

ers reasonable excitation energies, the negative correlation between hole and

electron reflects a qualitatively wrong description of the corresponding exciton.

Adding exact exchange as, e.g., in CAM-B3LYP improves exciton properties,

yielding the expected positive electron-hole correlation similar to the ADC(2)

reference, but at the price of increased errors in excitation energies, which are

overestimated by 0.36− 1.00 eV.

Fig. 7.9 (a) visualizes the hole and electron sizes of the four bright states

computed with CAM-B3LYP/TZVP. While electron sizes (blue) are quite sim-

ilar with a mean value of 3.71 ± 0.06 Å, hole sizes (red) show larger variation

around the mean value of 3.65± 0.29 Å. Nearly constant σe values are consis-

tent with the Four-Orbital model of Gouterman in which the two degenerate

LUMOs act as final orbitals in all bright states.263 At the same time, varia-

tions in σh indicate the different types of initial orbitals. These observations

are confirmed by an inspection of the NTOs shown in Fig. S8 in the SI of Ref.

96. All final (electron) orbitals have the same shape with only minor differences

in amplitudes. S1 and S3 contain admixture of the same initial orbitals (50 %

and 36 %, respectively), in agreement with the Four-Orbital model. For the S12

state, the hole orbitals are localized on the porphyrin ring with amplitudes in

the largest possible distance to each other which results in the largest σh. The

metal center is not involved in the excitation process as the NTOs illustrate.

Summarizing the magnesium porphyrin results, ADC(3) yields the best

agreement with the experimental value of the S1 excitation energy. The EOM-

CCSD excitation energy is blue-shifted by ∼0.25 eV, but the respective exci-

ton properties are in excellent agreement with ADC(3). TDDFT results de-

pend strongly on the amount of nonlocal orbital exchange as defined in the
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Chapter 7. Benchmarking excited-state calculations

xc-functionals. The increased fraction of nonlocal orbital exchange improves

exciton description, but leads to larger errors in the excitation energies. The

NTO analysis of the four bright states responsible for the visible MgP spectrum

confirm Gouterman’s classic model.

7.4 Conclusion

This work presented a new strategy for benchmarking excited-state calcula-

tions that went beyond excitation energies by employing exciton analyses. The

utility of exciton analyses in benchmarking was illustrated for a comprehensive

set of examples ranging from small to large molecules with different types of ex-

cited states. The study considered correlated ab initio methods, EOM-CCSD,

ADC(2) and ADC(3), as well as time-dependent density functional theory in

combination with three xc-functionals (BLYP, B3LYP and CAM-B3LYP).

It was illustrated that electron sizes provide a convenient tool for differ-

entiating between Rydberg and valence excited states. The distance between

charge cendroids (dh→e) of electron and hole were used to quantify the amount

of permanent charge transfer. Computing electron-hole correlation illuminated

the nature of excitons and revealed important methodological aspects, such

as a qualitatively different description of singlets and triplets by TDDFT. The

analysis of exciton properties in large π-conjugated systems highlighted the lim-

itations of energy-based benchmarking: it was shown that for TDDFT methods

the best agreement in terms of excitation energies corresponded to a rather poor

(and even qualitatively incorrect) exciton description, while improving the ex-

citon description by increasing the fraction of exact exchange led to increased

errors in excitation energies.

Exciton properties facilitated the assignment of state characters and deliv-

ered important information about electron-hole correlation effects, thus estab-

lishing a new criterion for benchmarking. Importantly, the analysis based on

density matrix and exciton properties enabled unambigous comparisons of dif-

ferent many-body wave functions and between wave function-based and DFT

methods. While this chapter was focussed on comparisons between single-

reference methods, it should be noted that analysis of exciton properties has

been recently implemented267 within the framework of multireference meth-

ods, CASSCF and CASPT2. This allows for comparisons between single- and

multi-reference methods in the future.
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Chapter 8

Conclusion

I presented the development and application of analysis tools for the systematic

quantum-chemical investigation of electronically excited states and excited-

state methods. The central idea underlying the methodology is to describe

excited states in terms of correlated electron-hole pairs called excitons. The

developed tools were shown to afford a precise, quantitative description of ex-

cited states in terms of spatial and statistical properties. As such, they provide

a basis for exploring molecular photochemistry and benchmarking of quantum-

chemical excited-state methods. To highlight the utility and outreach of the

developed approach, I presented a diverse set of applications in combination

with various quantum-chemical methods with focus on organic molecules as

summarized in the following.

A particularly relevant application for the developed approach are molecules

that form excitons upon excitation. As prominent representatives I selected

large π-conjugated organic molecules. While already the computation of elec-

tronic ground and excited states of these molecules poses a challenge for quan-

tum-chemical methods due to strong electron correlation effects, the interpre-

tation of exciton-related phenomena is notoriously difficult in the molecular

orbital picture. This problem is mitigated by moving to the exciton picture

as I demonstrated for several examples throughout this work. One of these

examples is poly(para phenylene vinylene) (PPV), a prototypical semiconduc-

tor relevant in organic electronics, which I investigated in Chapters 3 and 4.

For this purpose, excited states of PPV oligomers were computed with the cor-

related excited-state methods ADC(2) and ADC(3) and subjected to exciton

analysis. This revealed a detailed picture about the emergence of excitons and

their properties in PPV. Exciton formation in PPV oligomers was found to

depend on the chain length. For small oligomers, confinement effects are dom-

inant leading to locally excited and charge-transfer states. For oligomers with

a size of approximatly 30 Å or larger, exciton formation was observed. These
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Chapter 8. Conclusion

excitons were found to have defined structures, that is, electron and hole quasi-

particles experience interaction with each other and the molecular potential

that result in certain patterns of wave functions. In the case of Wannier exci-

tons, these wave functions have similarity with particle-in-a-box and hydrogen

wave functions. As another aspect of Chapter 4, I devised a quantum-chemical

perspective on the band structure of PPV. For this purpose, twenty singlet and

twenty triplet excited states of the octamer (PV)7P were computed. The found

excitons were categorized according to their wave functions and properties, and

interpreted in terms of Wannier and Frenkel models. In that way, I could recon-

struct the band structure of PPV in good agreement with experimental data

and solid-state physics approaches. In accordance with band-structure calcu-

lations, triplet excitons were found to be spatially more confined as compared

to their singlet counterparts, suggesting that they are more tightly bound due

to the absence of spin repulsion.

In Chapter 6, I extended the selection of molecules to include various aro-

mats and heteroaromats with chain lengths of up to 80 Å. Excited states were

calculated using time-dependent density functional theory (TDDFT) in combi-

nation of various exchange-correlation (xc-) functionals. For this diverse set of

molecules, exciton formation was again found to mainly depend on the chain

length, while the explicit chemical structure plays a surprisingly unimportant

role. Accordingly, the exciton character of the first excited state of these sys-

tems was found to be very similar to PPV, with a uniform exciton size con-

verging against 7 Å and positively correlated electron and hole quasiparticles.

Another central aspect of this work was the assessment of the domains

of applicability of computational methods by means of exciton analysis. As

the available quantum-chemical methods substantially differ in computational

demand and accuracy, an essential step in, both, development of new methods

and practical application is to carefully examine the performance of a chosen

method by comparison to higher level calculations. Since exciton analysis is

based on the method-independent 1TDM, it allows to compare the description

of excited states calculated at different levels of theory in a quantitative way.

Following this line of thought, I investigated the performance of TDDFT

and the Tamm-Dancoff approximation (TDA) for different xc-functionals in

Chapters 5 and 6. A important difference in these xc-functionals is the amount

of nonlocal orbital exchange (NLX). The influence of xc-functionals on excita-

tion energies is known to be strong for excited states involving nonlocal electron

transitions such as charge-transfer, Rydberg or extended π → π∗ excited states.

Here, this influence is reinvestigated using Tozer’s benchmark set in order to

test the suitability of the developed tools for diagnosing TDDFT shortcomings.

This set is chosen such that the description of excited states is particularly
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challenging for TDDFT. Using the developed excited-state descriptors, the dif-

ferent types of excited states and variations in their character could be easily

traced and problematic cases identified. This revealed major differences in the

description of excited states with different xc-functionals, which stand in line

with systematic errors in excitation energies. They furthermore illustrate that

NLX does not only become a decisive factor when describing charge-transfer

states, but also more general when long-range electron interactions become im-

portant. To shed light on the trends of La and Lb excited states of oligoacenes,

electron-hole correlation effects were investigated in dependence of the system

size. It was found that the La state is much more sensitive towards the xc-

functional choice and application of the TDA. This was traced back to the

description of its electron-hole interaction, which completely changes from re-

pulsive (PBE) to attractive (CAM-B3LYP) depending on the xc-functional. In

conclusion, exciton descriptors were able to identify all types of problematic

states and allowed to quantify differences in their description depending on the

xc-functionals.

Returning to Chapter 6, I furthermore investigated how the description

of excited states with exciton character differs between xc-functionals and as

a function of NLX. The trends in exciton sizes and electron-hole correlation

coefficients for organic π-conjugated molecules of different chain length revealed

that the pure GGA functional PBE is unable to describe bound excitons. This

was traced back to the absence of NLX, which results in repulsive electron-hole

interaction and spurious charge-transfer character of the first excited state of

the π-conjugated molecules. For global hybrid functionals, such as B3LYP,

PBE0 and M06-2X, exciton sizes were found to increase linearly with the system

size, whereas the slope is proportional to the fraction of NLX. Only long-

range corrected xc-functionals (CAM-B3LYP, ωB97 and ωPBE) reproduced

the asymptotic trend in exciton sizes in agreement with ab initio reference

data. In summary, the results from Chapters 5 and 6 clearly demonstrated

that the choice of xc-functional and in particular the amount of NLX has a

dramatic influence on excited-state properties.

Ultimately, I employed the developed tools to study the performance of dif-

ferent high level ab initio methods and aspects of benchmarking in Chapter 7.

For this purpose, the excited-state methods ADC(2), ADC(3), equation-of-

motion coupled-cluster (EOM-CCSD), configuration interaction singles (CIS),

TDDFT and TDA in combination with a few xc-functionals were considered.

In benchmarks, the performance of excited-state methods is usually assessed

by their ability to reproduce reference excitation energies. However, this in-

vestigation revealed that this criterion does not necessarily reflect the quality

of description of the underlying wave functions and densities. For example
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for octatetraene, both, ADC(3) and BLYP provide reasonably accurate exci-

tation energies in agreement with the experimental state ordering. However,

in contrast to ADC(3), which provides an adequate and balanced description

of excited states with substantial double excitation character, the commonly

used BLYP functional fails to describe many relevant excited-state properties

as indicated by several descriptors. Its good performance in terms of excita-

tion energies is therefore likely a result of fortuitious error compensation. For

excited states of magnesium porphyrin, correlated ab initio methods provide

reasonably accurate excitation energies and a uniform description of excited-

state properties in accordance with Gouterman’s model. For TDDFT calcula-

tions, the situation was found to be difficult. While BLYP and B3LYP provide

rather accurate excitation energies, the excited-state properties significantly

deviate from ab initio references. In contrast, the long-range corrected func-

tional CAM-B3LYP performes worst in terms of excitation energies, but best

in terms of excited-state properties. These results clearly show that in order to

identify suitable xc-functionals, it is mandatory to consider not only excitation

energies but also excited-state properties. Furthermore, it would be interest-

ing to survey a broader selection of xc-functionals and the influence of optimal

tuning.

Other aspects studied in Chapter 7 are the effect of nuclear relaxation as

well as the influence of the environment onto excited states. These are often

of particular relevance for the investigation of photochemical processes. For

this purpose, excited states of the push-pull system 4-(N,N -dimethylamino)-

benzonitrile were calculated with high level ab initio methods along nuclear

relaxation pathways and in different environments represented with a polariz-

able continuum model. Excited states were analyzed in terms of their charge-

transfer character, which helped to explain the respective excited-state poten-

tial energy curves. Excited-state descriptors were furthermore shown to be

particularly useful to keep track of excited states as these significantly change

in energy and properties along relaxation pathways. This is an important

step in determining the molecular mechanism underlying dual fluorescence in

DMABN.

An interesting aspect for future investigations is to examine the effects of

thermal fluctuations onto exciton properties. For this purpose, exciton analysis

could be applied to geometries sampled from molecular dynamics simulations.

While such investigations could be readily conducted with available methods, it

is furthermore desirable to combine exciton analysis with more computational

methods in order to increase the scope of benchmarking and applications. Some

interfaces to other methods already exist, for example to the GW+Bethe-

Salpeter method.268 Furthermore, exciton analysis has been recently adopted
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for multi-reference methods, such as complete active space self-consistent field

(CASSCF) and the complete active space second-order perturbation theory

(CASPT2) methods.267 A detailed comparison of these methods to the ones

studied in this work would be certainly of high interest.

Further developments in exciton analysis may concern the derivation of

new descriptors. A quantity of high interest is the exciton binding energy,

which characterizes the energy that is necessary to dissociate bound excitons

into separate charges. This property is directly related to the work principles

of organic photovoltaics and organic light emitting devices. Going beyond

the exciton picture, which describes only singly excited states, it would be

desirable to explore two-electron-two-hole properties as collected by the two-

particle transition density matrix and related concepts of biexcitons. In the face

of the advent of data-driven investigations of excited states, a future application

of exciton descriptors could be automatized character assignment. While one

attempt of creating a scheme for this purpose has been reported already,268 a

robust scheme for classifying excited states still needs to be elaborated. Such

a methodology could also be developed under the premise to automatically

identify problematic cases and alert the user.

135



Bibliography

[1] A. Szabo and N. S. Ostlund. Modern Quantum Chemistry - Introduction

to Advanced Electronic Structure Theory. ISBN-13: 978-0-486-69186-2. Dover
Publications, INC., Mineola, New York (1996).

[2] M. Born and R. Oppenheimer. “Zur Quantentheorie der Molekeln”. Ann.

Phys., 389 (1927) pages 457–484. doi:10.1002/andp.19273892002.

[3] J. Franck and E. G. Dymond. “Elementary processes of photochem-
ical reactions”. Trans. Faraday Soc., 21 (1926) pages 536–542. doi:
10.1039/TF9262100536.

[4] E. U. Condon. “Nuclear Motions Associated with Electron Transitions
in Diatomic Molecules”. Phys. Rev., 32 (1928) pages 858–872. doi:
10.1103/PhysRev.32.858.
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ness of Density-Functional Theory for the Calculation of Molecular Electronics
Properties”. Annals of the New York Academy of Sciences, 1006 (2003) pages
235–251. doi:10.1196/annals.1292.017.

[23] J. P. Perdew, A. Ruzsinszky, L. A. Constantin, J. Sun and G. I.
Csonka. “Some Fundamental Issues in Ground-State Density Functional The-
ory: A Guide for the Perplexed”. J. Chem. Theory Comput., 5 (2009) pages
902–908. doi:10.1021/ct800531s.

[24] R. K. Nesbet. “Configuration Interaction in Orbital Theories”. Proc. Roy.

Soc. A, 230 (1955) pages 312–321.

[25] J. B. Foresman, M. Head-Gordon, J. A. Pople and M. J. Frisch. “To-
ward a systematic molecular orbital theory for excited states”. J. Phys. Chem.,
96 (1992) pages 135–149. doi:10.1021/j100180a030.

[26] A. Dreuw and M. Head-Gordon. “Single-Reference Ab Initio Methods for
the Calculation of Excited States of Large Molecules”. Chem. Rev., 105 (2005)
pages 4009–4037. doi:10.1021/cr0505627.

[27] E. Runge and E. K. U. Gross. “Density-Funtional Theory for Time-
Dependent Systems”. Phys. Rev. Lett., 52 (1984) pages 977–1000. doi:
10.1103/PhysRevLett.52.997.

[28] R. van Leeuwen. “Mapping from Densities to Potentials in Time-Dependent
Density-Functional Theory”. Phys. Rev. Lett., 82 (1999) pages 3863–3866. doi:
10.1103/PhysRevLett.82.3863.

II



Bibliography

[29] M. E. Casida. Recent Advances in Density Functional Methods Part I. World
Scientific, Singapore (1995).

[30] S. Hirata and M. Head-Gordon. “Time-dependent density functional theory
within the Tamm-Dancoff approximation”. Chem. Phys. Lett., 314 (1999) pages
291–299. doi:10.1016/S0009-2614(99)01149-5.

[31] Y.-L. Wang and G.-S. Wu. “Improving the TDDFT Calculation of Low-
Lying Excited States for Polycyclic Aromatic Hydrocarbones Using the Tamm-
Dancoff Approximation”. Int. J. Quantum Chem., 108 (2008) pages 430–439.
doi:0.1002/qua.21510.

[32] M. J. G. Peach, M. J. Williamson and D. J. Tozer. “Influence of Triplet
Instabilities in TDDFT”. J. Chem. Theory Comput., 7 (2011) pages 3578–3585.
doi:10.1021/ct200651r.

[33] M. J. G. Peach, N. Warner and D. J. Tozer. “On the Triplet In-
stability in TDDFT”. Mol. Phys., 111 (2013) pages 1271–1274. doi:
10.1080/00268976.2013.777481.

[34] A. Dreuw and M. Head-Gordon. “Failure of Time-Dependent Den-
sity Functional Theory for Long-Range Charge-Transfer Excited States:
The Zincbacteriochlorin-Bacteriochlorin and Bacteriochlorophyll-Spheroidene
Complexes”. J. Am. Chem. Soc., 126 (2004) pages 4007–4016. doi:
10.1021/ja039556n.

[35] R. J. Magyar and S. Tretiak. “Dependence of Spurious Charge-Transfer
Excited States on Orbital Exchange in TDDFT: Large Molecules and Clusters”.
J. Chem. Theory Comput., 3 (2007) pages 976–987. doi:10.1021/ct600282k.

[36] A. Dreuw, J. L. Weisman and M. Head-Gordon. “Long-range charge-
transfer excited states in time-dependent density functional theory require non-
local exchange”. J. Chem. Phys., 119 (2003) page 2943. doi:10.1063/1.1590951.

[37] W. Hieringer and A. Görling. “Failure of time-dependent density functional
methods for excitations in spatially separated systems”. Chem. Phys. Lett., 419
(2006) pages 557–562. doi:10.1016/j.cplett.2005.11.112.

[38] M. W. Casida, C. Jamorski, K. C. Casida and D. R. Salahub. “Molecular
excitation energies to high-lying bound states from time-dependent density-
functional response theory: Characterization and correction of the time-
dependent local density approximation ionization threshold”. J. Chem. Phys.,
108 (1998). doi:10.1063/1.475855.

[39] Z. L. Cai, K. Sendt and J. R. Reimers. “Failure of density-functional theory
and time-dependent density-functional theory for large extended π systems”.
J. Chem. Phys., 117 (2002) page 5543. doi:10.1063/1.1501131.

[40] S. Grimme and M. Parac. “Substantial Errors from Time-Dependent Density
Functional Theory for the Calculation of Excited States of Large π Systems”.
ChemPhysChem, 4 (2003) pages 292–295. doi:10.1002/cphc.200390047.

[41] R. Richard and J. Herbert. “Time-Dependent Density-Functional Descrip-
tion of the 1La State in Polycyclic Aromatic Hydrocarbons: Charge-Transfer
Character in Disguise?” J. Chem. Theory Comput., 7 (2011) pages 1296–1306.
doi:10.1021/ct100607w.

III



Bibliography

[42] R. J. Cave, F. Zhang, N. T. Maitra and K. Burke. “A dressed TDDFT
treatment of the 21Ag states of butadiene and hexatriene”. Chem. Phys. Lett.,
389 (2004) pages 39–42. doi:10.1016/j.cplett.2004.03.051.

[43] N. T. Maitra, F. Zhang, R. J. Cave and K. Burke. “Double excitations
within time-dependent density functional theory linear response”. J. Chem.

Phys., 120 (2004) pages 5932–5937. doi:10.1063/1.1651060.

[44] H. Iikura, T. Tsuneda, T. Yanai and K. Hirao. “A long-range correction
scheme for generalized-gradient-approximation exchange functionals”. J. Chem.

Phys., 115 (2001) pages 3540–3544. doi:10.1063/1.1383587.

[45] Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai and K. Hirao. “A long-
range-corrected time-dependent density functional theory”. J. Chem. Phys., 120
(2004) pages 8425–8433. doi:10.1063/1.1688752.

[46] M. Kamiya, H. Sekino, T. Tsuneda and K. Hirao. “Nonlinear optical prop-
erty calculations by the long-range-corrected coupled-perturbed Kohn-Sham
method”. J. Chem. Phys., 122 (2005) 234111. doi:10.1063/1.1935514.

[47] T. Yanai, D. P. Tew and N. C. Handy. “A new hybrid exchange-correlation
functional using the Coulomb-attenuating method (CAM-B3LYP)”. Chem.

Phys. Lett., 393 (2004) pages 51–57. doi:10.1016/j.cplett.2004.06.011.

[48] O. A. Vydrov and G. E. Scuseria. “Assessment of a long-range corrected
hybrid functional”. J. Chem. Phys., 125 (2006) 234109. doi:10.1063/1.2409292.

[49] J.-D. Chai and M. Head-Gordon. “Systematic optimization of long-range
corrected hybrid density functionals”. J. Chem. Phys., 128 (2008) page 084106.
doi:10.1063/1.2834918.

[50] L. Kronik, T. Stein, S. Refaely-Abramson and R. Baer. “Excitation
Gaps of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid
Functionals”. J. Chem. Theor. Comput., 8 (2012) pages 1515–1531. doi:
10.1021/ct2009363.

[51] M. J. G. Peach, P. Benfield, T. Helgaker and D. J. Tozer. “Excitation
energies in density functional theory: An evaluation and a diagnostic test”. J.

Chem. Phys., 128 (2008) page 044118. doi:10.1063/1.2831900.

[52] T. Le Bahers, C. Adamo and I. Ciofini. “A Qualitative Index of Spatial
Extent in Charge-Transfer Excitations”. J. Chem. Theory Comput., 7 (2011)
pages 2498–2506. doi:10.1021/ct200308m.

[53] C. A. Guido, P. Cortona, B. Mennucci and C. Adamo. “On the Metric
of Charge Transfer Molecular Excitations: A Simple Chemical Descriptor”. J.

Chem. Theory Comput., 9 (2013) pages 3118–3126. doi:10.1021/Ct400337e.

[54] T. Etienne, X. Assfeld and A. Monari. “New Insight into the Topology
of Excited States through Detachment / Attachment Density Matrices-Based
Centroids of Charge”. J. Chem. Theory Comput., 10 (2014) pages 3906–3914.
doi:10.1021/ct500400s.

[55] T. Etienne, X. Assfeld and A. Monari. “Toward a Quantitative Assess-
ment of Electronic Transitions’ Charge Transfer Character”. J. Chem. Theory

Comput., 10 (2014) pages 3896–3905. doi:10.1021/ct5003994.

[56] M. Campetella, F. Maschietto, M. J. Frisch, G. Scalmani, I. Ciofini
and C. Adamo. “Charge Transfer Excitations in TDDFT: A Ghost-Hunter
Index”. J. Comput. Chem., 38 (2017) pages 2151–2156. doi:10.1002/jcc.24862.

IV



Bibliography

[57] J. Schirmer. “A new approximation scheme for the polarization propagator”.
Phys. Rev. A, 26 (1982) pages 2395–2416. doi:10.1103/PhysRevA.26.2395.

[58] A. B. Trofimov and J. Schirmer. “An efficient polarization propagator
approach to valence electron excitation spectra”. J. Phys. B, 28 (1995) pages
2299–2324. doi:10.1088/0953-4075/28/12/003.

[59] A. Dreuw and M. Wormit. “The algebraic diagrammatic construction
scheme for the polarization propagator for the calculation of excited states”.
WIREs Comput. Mol. Sci., 5 (2015) pages 82–95. doi:10.1002/wcms.1206.

[60] M. Wormit, D. R. Rehn, P. H. Harbach, J. Wenzel, C. M. Krauter,
E. Epifanovsky and A. Dreuw. “Investigating Excited Electronic Stated
using the Algebraic Diagrammatic Construction (ADC) Approach of the
Polarisation Propagator”. Mol. Phys., 112 (2014) pages 774–784. doi:
10.1080/00268976.2013.859313.

[61] F. Mertins and J. Schirmer. “Algebraic propagator approaches and
intermediate-state representations. I. The biorthogonal and unitary coupled-
cluster methods”. Phys. Rev. A, 53 (1996) pages 2140–2152. doi:
10.1103/PhysRevA.53.2140.

[62] J. Schirmer. “Closed-form intermediate representations of many-body prop-
agators and resolvent matrices”. Phys. Rev. A, 43 (1991) pages 4647–4659.
doi:10.1103/PhysRevA.43.4647.

[63] D. Lefrancois, M. Wormit and A. Dreuw. “Adapting algebraic dia-
grammatic construction schemes for the polarization propagator to problems
with multi-reference electronic ground states exploiting the spin-flip ansatz”. J
Chem. Phys., 143 (2015) page 124107. doi:10.1063/1.4931653.

[64] F. Plasser and H. Lischka. “Analysis of excitonic and charge transfer in-
teractions from quantum chemical calculations”. J. Chem. Theory Comput., 8
(2012) pages 2777–2789. doi:10.1021/ct300307c.

[65] F. Plasser, M. Wormit and A. Dreuw. “New tools for the systematic anal-
ysis and visualization of electronic excitations. Part I: Formalism”. J. Chem.

Phys., 141 (2014) page 024106. doi:10.1063/1.4885819.
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[152] V. Lukeš, R. Šolc, M. Barbatti, H. Lischka and H.-F. Kauffmann.
“Torsional Potentials and Full-Dimensional Simulation of Electronic Ab-
sorption Spectra of para-Phenylenevinylene Oligomers Using Semiempirical
Hamiltonians”. J. Theor. Comput. Chem., 09 (2010) pages 249–263. doi:
10.1142/S0219633610005645.

[153] M. Y. Lavrentiev, W. Barford, S. J. Martin, D. H. and R. J.
Bursill. “Theoretical investigation of the low-lying electronic structure of
poly(p-phenylene vinylene)”. Phys. Rev. B, 59 (1999) pages 9987–9994. doi:
10.1103/PhysRevB.59.9987.

[154] R. J. Bursill and W. Barford. “Symmetry-adapted density matrix renor-
malization group calculations of the primary excited states of poly(para-
phenylene vinylene)”. J. Chem. Phys., 130 (2009) page 234302. doi:
10.1063/1.3149536.

[155] A. Pogantsch, G. Heimel and E. Zojer. “Quantitative prediction of optical
excitations in conjugated organic oligomers: A density functional theory study”.
J. Chem. Phys., 117 (2002) page 5921. doi:10.1063/1.1502244.

XI



Bibliography

[156] S. Tretiak, K. Igumenshchev and V. Chernyak. “Exciton size of conduct-
ing polymers predicted by time-dependent density functional theory”. Phys.

Rev. B, 71 (2005) page 033201. doi:10.1103/PhysRevB.71.033201.

[157] M. Rohlfing and S. G. Louie. “Optical Excitations in Conju-
gated Polymers”. Phys. Rev. Lett., 82 (1999) pages 1959–1962. doi:
10.1103/PhysRevLett.82.1959.

[158] T. M. Cardozo, A. J. A. Aquino, M. Barbatti, I. Borges and H. Lis-
chka. “Absorption and Fluorescence Spectra of Poly(p-phenylenevinylene)
(PPV) Oligomers: An ab Initio Simulation”. J. Phys. Chem. A, 119 (2015)
pages 1787–1795. doi:10.1021/jp508512s.

[159] B. Saha, M. Ehara and H. Nakatsuji. “Investigation of the Electronic Spec-
tra and Excited-State Geometries of Poly(para-phenylene vinylene) (PPV) and
Poly(para-phenylene) (PP) by the Symmetry-Adapted Cluster Configuration
Interaction (SAC-CI) Method”. J. Phys. Chem. A, 111 (2007) pages 5473–
5481. doi:10.1021/jp068441d.

[160] T. Nelson, S. Fernandez-Alberti, V. Chernyak, A. E. Roitberg and
S. Tretiak. “Nonadiabatic Excited-State Molecular Dynamics Modeling of
Photoinduced Dynamics in Conjugated Molecules”. J. Phys. Chem. B, 115
(2011) pages 5402–5414. doi:10.1021/jp109522g.
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[175] A. Schäfer, C. Huber and R. Ahlrichs. “Fully optimized contracted Gaus-
sian basis sets of triple zeta valence quality for atoms Li to Kr”. J. Chem. Phys.,
100 (1994) pages 5829–5835. doi:10.1063/1.467146.

[176] F. Plasser. “TheoDORE: a package for theoretical density, orbital relaxation,
and exciton analysis; available from
http://theodore-qc.sourceforge.net/.”

[177] E. Hennebicq, C. Deleener, J.-L. Brédas, G. D. Scholes and
D. Beljonne. “Chromophores in phenylenevinylene-based conjugated poly-
mers: Role of conformational kinks and chemical defects”. J. Chem. Phys., 125
(2006) page 054901. doi:10.1063/1.2221310.

[178] A. B. Trofimov, G. Stelter and J. Schirmer. “A consistent third-order
propagator method for electronic excitation”. J. Chem. Phys., 111 (1999) pages
9982–9999. doi:10.1063/1.480352.

[179] A. B. Trofimov, G. Stelter and J. Schirmer. “Electron excitation en-
ergies using a consistent third-order propagator approach: Comparison with
full configuration interaction and coupled cluster”. J. Chem. Phys., 117 (2002)
pages 6402–6409. doi:10.1063/1.1504708.

[180] M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A.
Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder et al. “De-
sign of Organic Molecules with Large Two-Photon Absorption Cross Sections”.
Science, 281 (1998) pages 1653–1656. doi:10.1126/science.281.5383.1653.

[181] D. Yamaki, Y. Kitagawa, H. Nagao, M. Nakano, Y. Yoshioka and
K. Yamaguchi. “Visualization of Two-Body Electron Densities and Wave
Functions of Magnetic Molecules”. Int. J. Quant. Chem., 75 (1999) pages 645–
654. doi:10.1002/(SICI)1097-461X(1999)75:4/5¡645::AID-QUA31¿3.0.CO;2-0.

XIII



Bibliography

[182] J. Coe and M. Paterson. “Characterising a configuration interaction excited
state using natural transition geminals”. Mol. Phys., 112 (2014) pages 733–739.
doi:10.1080/00268976.2013.856489.

[183] A. V. Luzanov, D. Casanova, X. Feng and A. I. Krylov. “Quantifying
charge resonance and multiexciton character in coupled chromophores by charge
and spin cumulant analysis”. J. Chem. Phys., 142 (2015) page 224104. doi:
10.1063/1.4921635.

[184] G. Hohlneicher and B. Dick. “Experimental determination of the low-lying
excited a states of trans-stilbene”. J. Photochem., 27 (1984) pages 215 – 231.
doi:10.1016/0047-2670(84)85039-X.

[185] H. Woo, O. Lhost, S. Graham, D. Bradley, R. Friend, C. Quattrocchi,
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J. Fröhlich, D. Lumpi and F. Plasser. “Charge-transfer states in tria-
zole linked donor-acceptor materials: strong effects of chemical modification
and solvation”. Phys. Chem. Chem. Phys., 19 (2017) pages 18055–18067. doi:
10.1039/C7CP01664F.

[251] R. Colditz, D. Grebner, M. Helbig and S. Rentsch. “Theoretical stud-
ies and spectroscopic investigations of ground and excited electronic states
of thiophene oligomers”. Chem. Phys., 201 (1995) pages 309 – 320. doi:
http://dx.doi.org/10.1016/0301-0104(95)00280-4.

[252] D. V. Lap, D. Grebner and S. Rentsch. “Femtosecond Time-Resolved
Spectroscopic Studies on Thiophene Oligomers”. J. Phys. Chem. A, 101 (1997)
pages 107–112. doi:10.1021/jp961670n.

[253] E. Epifanovsky, K. Kowalski, P.-D. Fan, M. Valiev, S. Matsika and
A. I. Krylov. “On the electronically excited states of uracil”. J. Phys. Chem.

A, 112 (2008) pages 9983–9992. doi:10.1021/jp803758q.

[254] C.-P. Hsu, S. Hirata and M. Head-Gordon. “Excitation Energies from
Time-Dependent Density Functional Theory for Linear Polyene Oligomers: Bu-
tadiene to Decapentaene”. J. Phys. Chem. A, 105 (2001) pages 451–458. doi:
10.1021/jp0024367.

[255] W. Barford, R. J. Bursill and M. Y. Lavrentiev. “Density-matrix
renormalization-group calculations of excited states of linear polyenes”. Phys.

Rev. B, 63 (2001) page 195108. doi:10.1103/PhysRevB.63.195108.

[256] M. Dallos and H. Lischka. “A systematic theoretical investigation of the
lowest valence- and Rydberg-excited singlet states of trans-butadiene. The char-
acter of the 11Bu (V) state revisited”. Theor. Chem. Acc., 112 (2004) pages
16–26. doi:10.1007/s00214-003-0557-9.

[257] M. Dierksen and S. Grimme. “Density functional calculations of the vibronic
structure of electronic absorption spectra”. J. Chem. Phys., 120 (2004) pages
3544–3554. doi:10.1063/1.1642595.

[258] J. Catalán and J. L. G. de Paz. “On the photophysics of all-trans polyenes:
Hexatriene versus octatetraene”. J. Chem. Phys., 124 (2006) page 034306.
doi:10.1063/1.2158992.

[259] C. Angeli and M. Pastore. “The lowest singlet states of octatetraene revis-
ited”. J. Chem. Phys., 134 (2011) page 184302. doi:10.1063/1.3585607.

[260] Y. Shu and D. G. Truhlar. “Doubly Excited Character or Static Correlation
of the Reference State in the Controversial 21Ag State of trans-Butadiene?” J.

Am. Chem. Soc., 139 (2017) pages 13770–13778. doi:10.1021/jacs.7b06283.

[261] Y. Shao, M. Head-Gordon and A. I. Krylov. “The spin-flip ap-
proach within time-dependent density functional theory: Theory and appli-
cations to diradicals”. J. Chem. Phys., 118 (2003) pages 4807–4818. doi:
10.1063/1.1545679.

[262] Y. A. Bernard, Y. Shao and A. I. Krylov. “General formulation of spin-flip
time-dependent density functional theory using non-collinear kernels: Theory,
implementation, and benchmarks”. J. Chem. Phys., 136 (2012) page 204103.
doi:10.1063/1.4714499.

XIX



Bibliography

[263] L. Edwards, D. H. Dolphin, M. Gouterman and A. D. Adler. “Por-
phyrins XVII. Vapor Absorption Spectra and Redox Reactions: Tetraphenyl-
porphins and Porphin”. J. Mol. Spectrosc., 38 (1971) pages 16–32. doi:
10.1016/0022-2852(71)90090-7.

[264] M. Gouterman. “Spectra of porphyrins”. J. Mol. Spectr., 6 (1961) pages
138–163. doi:10.1016/0022-2852(61)90236-3.

[265] M. Gouterman. “Study of the Effects of Substitution on the Absorption
Spectra of Porphin”. J. Chem. Phys., 30 (1959) pages 1139–1161. doi:
10.1063/1.1730148.

[266] M. Rubio, B. O. Roos, L. Serrano-Andrès and M. Merchán. “Theoretical
study of the electronic spectrum of magnesium-porphyrin”. J. Chem. Phys., 110
(1999) pages 7202–7209. doi:10.1063/1.478624.

[267] F. Plasser, S. A. Mewes, A. Dreuw and L. González. “Detailed Wave
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An erster Stelle gilt mein großer Dank meinem Doktorvater Prof. Dr. Andre-

as Dreuw, der meine Begeisterung für Computational Chemistry entfacht hat

und mich über die letzten Jahre wissenschaftlich und persönlich in vielfältiger
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