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Knowledge Fusion in Soil Hydrology: The mathematical representation of soil
water movement exhibits uncertainties in all model components. Data assimi-
lation methods, like the ensemble Kalman filter (EnKF), combine models and
measurements into an improved representation and can — at least in principle —
account for all uncertainties. However, a proper description of the uncertainties
is required, which is particularly difficult in soil hydrology, where model errors
typically vary rapidly in space and time. Inflation methods can account for unrep-
resented model errors. To improve the EnKF performance, I designed an inflation
method specifically for soil hydrology, that is capable of adjusting inflation factors
to spatiotemporally varying model errors. For the application on a real-world case,
I assessed the key uncertainties for the specific hydraulic situation of a 1-D soil
profile with TDR (time domain reflectometry)-measured water contents. With
the EnKF, I directly represented and reduced all key uncertainties (initial con-
dition, soil hydraulic parameters, small-scale heterogeneity, and upper boundary
condition), except for an intermittent violation of the local equilibrium assumption
by the Richards equation. To bridge this time, I introduced a closed-eye period,
which ensures constant parameters and improves the EnKF towards the goal of
knowledge fusion — the consistent aggregation of all information pertinent to some
observed reality.

Knowledge Fusion in der Bodenhydrologie: Die mathematische Darstellung
der Bodenwasserbewegung weist Unsicherheiten in allen Modellkomponenten auf.
Datenassimilationsmethoden, wie der Ensemble Kalman Filter (EnKF), verbin-
den Modelle und Messungen zu einer verbesserten Darstellung und kénnen da-
bei grundsétzlich alle Unsicherheiten berticksichtigen. Allerdings ist eine kor-
rekte Charakterisierung dieser Unsicherheiten erforderlich, was insbesondere in
der Bodenhydrologie herausfordernd ist, da sich Modellfehler in der Regel schnell
in Raum und Zeit &ndern. Inflation-Methoden kénnen nicht dargestellte Mo-
dellfehler ausgleichen. Um den EnKF zu verbessern, entwickelte ich speziell fiir
die Bodenhydrologie eine Inflation-Methode, welche in der Lage ist, Inflation-
Faktoren an die in Raum und Zeit variierenden Modellfehler anzupassen. Fiir
die Anwendung in einem realen Fall ermittelte ich die Hauptunsicherheiten fiir
die spezifische hydraulische Situation eines 1-D Bodenprofils mit TDR (Time Do-
main Reflectometry)-gemessenen Wassergehalten. Mit dem EnKF beriicksichtigte
und reduzierte ich alle Hauptunsicherheiten (Ausgangszustand, bodenhydraulische
Parameter, kleinskalige Heterogenitdt und obere Randbedingung), aufler einer
zwischenzeitlichen Verletzung der lokalen Gleichgewichtsannahme der Richards-
Gleichung. Um diese Zeit zu iiberbriicken, fithrte ich einen closed-eye Zeitraum ein.
Dieser sorgt fiir konstante Parameter und verbessert den EnKF hin zu Knowledge
Fusion — der konsistenten Zusammenfiihrung aller fiir eine beobachtete Realitét
relevanten Informationen.
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1 | Introduction

In parts based on Bauser et al. [2016] and Bauser et al. [2018].

Soils are at the interface of hydrosphere, biosphere, atmosphere, and lithosphere and
are a key component to all ecosystem services for humankind (provisioning, regulat-
ing, cultural, and supporting services) [Adhikari and Hartemink, 2016]. The services
provided by soils are controlled by interlinked basic biological, chemical, and physi-
cal processes. One of these processes is soil water movement [Dominati et al., 2010;
Vereecken et al., 2016]. It is a key process in several provisioning and regulating ecosys-
tem services, such as biomass production, fresh water retention, climate regulation, or
water buffering and filtering.

Current research questions concerning these ecosystem services range from more
efficient water usage and increased crop yield [e.g., Silber et al., 2015] and the prediction
of fertilizer leaching into groundwater [e.g., Baram et al., 2016] in agriculture to the
feedback of soil moisture and precipitation in the context of climate change [e.g., May
et al., 2017]. They all rely on a proper description of the underlying soil hydrologic
processes.

The description of soil water movement with a mathematical model requires knowl-
edge of material properties (typically characterized by soil hydraulic parameters), ini-
tial conditions, and boundary conditions. Soil hydraulic parameters are especially
difficult to determine, since they can neither be measured directly nor transferred
directly from the laboratory to the field.

Soil hydraulic parameters have been estimated inversely based on measurements of
the temporal development of the hydraulic state [e.g., Hopmans et al., 2002; Vrugt
et al., 2008]. Inverse methods are based on the assumption of a perfect model and
incorporate all errors and uncertainties into the estimated parameters, leading to a
suboptimal estimation.

In contrast, data assimilation methods are capable of combining information from
uncertain measurements and uncertain models into an optimal estimate of the geo-
physical field of interest, but depend on the correct description of the correspond-
ing uncertainties [Reichle, 2008]. Data assimilation methods have applications in all
branches of the geosciences, with weather forecasting as the driving force behind many
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recent advances [van Leeuwen et al., 2015]. Nonlinear data assimilation methods in-
clude variational methods, particle filters, and ensemble Kalman filters (EnKF). The
EnKF [Fvensen, 1994; Burgers et al., 1998] is a popular data assimilation method due
to its simple conceptional formulation and ease of implementation [Evensen, 2003].

In hydrology, the EnKF was used for soil moisture estimation from satellite data
[e.g. Reichle et al., 2002; Crow and Van Loon, 2006] or from local measurements [e.g.
De Lannoy et al., 2007, 2009; Camporese et al., 2009]. However, including material
properties into the estimation can be crucial in hydrology. Liu and Gupta [2007] called
for an integrated assimilation framework including not only states but parameters, and
even model structure.

Moradkhani et al. [2005] used a dual EnKF approach, whereas Vrugt et al. [2005]
combined an EnKF and the shuffled complex evolution metropolis algorithm in an
iterative way, to estimate parameters and states in a rainfall-runoff model. The joint
assimilation of states and parameters in an augmented state was successfully performed
in groundwater research [e.g. Chen and Zhang, 2006; Hendricks Franssen and Kinzel-
bach, 2008; Kurtz et al., 2012, 2014; Erdal and Cirpka, 2016], but also in soil hydrology
for land surface models [e.g. Bateni and Entekhabi, 2012; Han et al., 2014; Zhang et al.,
2017] and on smaller scales based on the Richards equation [e.g. Li and Ren, 2011; Wu
and Margulis, 2011, 2013; Song et al., 2014; Erdal et al., 2014, 2015; Shi et al., 2015;
Brandhorst et al., 2017; Botto et al., 2018].

The studies based on the Richards equation are, except for Botto et al. [2018], either
purely synthetic cases, or with a focus on synthetic cases. This offers the advantage
of a direct control and knowledge about all uncertainties. The characterization of un-
certainties is critical for the success of a data assimilation scheme [Liu et al., 2012].
Un- or ill-represented processes are typical in soil hydrology and can cause spatially
and temporally varying model errors. Inflation methods can account for unrepresented
model errors. However, these methods are developed in an atmospheric sciences con-
text and their transfer to soil hydrology is not trivial. Consequently, data assimilation
applications to real-world cases in hydrology remain challenging.

This work focuses on the representation of uncertainties in soil hydrology within an
EnKF framework with the goal of knowledge fusion — the consistent aggregation of
all information pertinent to some observed reality. Therefore, I developed an inflation
method for the specific needs in soil hydrology, where it is able to operate with joint
state and parameter estimation and spatiotemporally varying model errors typical for
hydrology. Next, I applied the EnKF to a small real-world example. For this specific
case, all uncertainties are assessed qualitatively. Whenever it is possible, the relevant
uncertainties are represented directly. Otherwise, they are taken into consideration by
introducing a closed-eye period to bridge times, when uncertainties cannot be repre-
sented. Through this approach a consistent aggregation of information is achieved.



2 | Soil water movement

Soils can be considered as a porous medium partitioned into a solid matrix and the
pore space in between. This pore space can be filled by fluids. In the context of this
work, only water and air are considered with the sole focus on the representation of
soil water movement.

In this work, I call the mathematical description of a physical system a representa-
tion, which comprises in the most general sense the four components:

e Dynamics: the dynamics specifies how the system’s state develops in time at the
scale of interest.

e Subscale physics: the subscale physics is not explicitly described by the dynamics,
but with a parameterization comprising one or more functional forms and their
parameters, both with possible spatial and temporal distribution.

o Superscale physics: the coupling of the system to the superscale physics in space
(boundary condition) and time (initial state).

e Response: the response of the system given a specific dynamics, sub- and super-
scale physics. This is primarily the trajectory of states in time, but also includes
derived quantities like fluxes.

According to this definition a representation is specific for each system. It is bounded
in space, time, and scale. The following sections describe each component specifically
as employed in this work. The focus lies on the explanation of the most important
uncertainties within each of these components, to enable their informed assessment
and representation in the applications. The description of the dynamics (Sect. 2.1) and
subscale physics (Sect. 2.2) is based on Roth [2017], where a more complete presentation
can be found. Section 2.3 and Sect. 2.4 present superscale physics and response,
respectively.

2.1 Dynamics

The dynamics describes how the state is propagated in space and time. At the pore
scale, which ranges from about 0.001 mm to 1mm, the state can be described as the
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distribution of the solid soil matrix and of air and water occupying the pore space in
between. Such a detailed description is not feasible at larger scales, however.

To describe the state of the soil at the larger continuum scale relevant for this
work of about 0.001 m to 10 m, averaged quantities can be defined on the basis of a
Representative Elementary Volume (REV). An REV is the minimum volume, for which
the averaged quantity does not change any more with small changes of the averaging
volume. This way the porosity ¢ (—) can be defined as the volume fraction of the
pore space of the total volume. Accordingly, the water content 6 (—) is defined as the
volume fraction of water V,, (L) in the total volume V (L3):

Vi
0=—. 2.1
% (2.1)
If the complete pore space is filled with water, the soil is at the saturation water content
0s = ¢. The minimum water content that always remains in the soil (on reasonable
time scales) is the residual water content 6,.. With these quantities the saturation © (-)
can be defined as

(2.2)

To describe the development of the soil water content state, I start with the descrip-
tion at the pore scale and sketch the necessary steps for a description at the continuum
scale. The assumptions made during these steps are crucial to understand the limita-
tions of the final formulation. The first assumption, already made above, is that the
pore space is only occupied by water and air. No solutes, or additional fluids like oil
are considered.

Under the assumption of a small Strouhal and a small Reynolds number, the water
flow in a water filled pore can be described with the time-independent Stokes equation:

pVAvit = Vpt — pg, (2.3)

with dynamic viscosity p (ML~!T~1), density p (ML™3), velocity v (L T™!), pres-
sure p (ML~'T~2) and acceleration of gravity g (L'T~2). The superscript u addi-
tionally indicates small-scale quantities. A small Strouhal number means that changes
of the boundary conditions are slow compared to the relaxation time of the inter-
nal dynamics. This is also called local equilibrium assumption and can be violated
for strong forcing. A small Reynolds number means that viscosity dominates inertia.
This assumption will hold in small pores, but is violated in cracks or large macropores.
Additionally, Eq. (2.3) assumes water to be a Newtonian fluid. Because p and u are
set to constants, it additionally assumes that the fluid is incompressible and at a con-
stant temperature. Particularly, p has a noteworthy dependency on temperature. The
assumption also means that interface effects between soil matrix and fluid on these
quantities are negligible. This may get violated for very fine textured soils like clay.
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With the above assumptions, v# is parallel to V2v* and Eq. (2.3) leads to a linear
relation between v#* and the driving potential gradient Vp* — pg described with

vi= ) (g g (2.4)
! ,

where r#(x) (L?) characterizes the local pore geometry. This inherently assumes that
the soil matrix is incompressible as k" (x) does not depend on p*.
To obtain the flux law at the continuum scale, averaging v* over a plane REV yields

j= —eiw V' — pgl), (2.5)

where j (L'T™!) is the flux and ( ) denotes the average over the microscopic quanti-
ties marked by the superscript p. The covariance between the forcing Vp* and the
pore geometry x* does not allow to simply replace the microscopic quantities by their
macroscopic averages. However, because of the linearity in Eq. (2.3), the magnitude
of Vp* and Vp are proportional, even though they need not be parallel due to the
pore space geometry. Thus, they can be related through a second rank, symmetric
tensor a(x): Vpt = a(x)Vp. Since k is independent of the macroscopic Vp, it can be
factored out of the microscopic average. This leads to Darcy’s law,

j= —ij Vo pel (2.6)

where the permeability k (L?) is again a second rank, symmetric tensor. It incorpo-
rates the average, k = #(ka). Typically, k and p are combined into the hydraulic
conductivity K,, (L3> TM™!):

Ky = —, 2.7
. (2.7)

which is specific for each fluid. Note that the local equilibrium assumption required for
Eq. (2.3) now has to hold on the averaging volume. This defines a Maximum Averaging
Volume (MAV). Equation (2.6) does only hold when the required REV is smaller than
the MAV.

For the case of unsaturated soils, the Buckingham-Darcy law extends Eq. (2.6) to

j=-Ku(0) [Vm — pg] , (2.8)

where the hydraulic conductivity K,, now depends on the water content 6. This as-
sumes that K,, does not depend on the air content, which means that water transport
as water vapor through the air phase is neglected. However, this assumption is vio-
lated for small water contents. Furthermore, the pressure p is replaced by the matric
potential ¢, (ML™1T~2). It describes the pressure jump across the interface between
water and air: ¥, = py — Pa, Which is given by the Young—Laplace equation

"/}m = 20waH , (2.9)
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where 0, (MT™2) is the surface tension between water and air, and H (L7!) is the
mean curvature of the interface. Equation (2.8) further assumes, that the air pressure
Dq is constant. This means that Vp, has to be negligible compared to Vp,,. This can
be violated for water flow at high water contents.

Consequently, Eq. (2.8) only holds for intermediate water contents, the so called de-
generate multiphase regime. Note that the assumption of an essentially incompressible
soil matrix for the saturated description in Eq. (2.4) now has to hold for unsaturated
soils as well. This can be violated, because soils can shrink and swell with changing
water content.

Inserting Eq. (2.8) into the conservation of mass,

ol
b - 2.1
yields the Richards equation,
00
o~ V- Ku(0) [V — pel] =0, (21)

which describes the change of the water content state in a soil over time. Note that this
equation emphasizes the local equilibrium assumption already required for Eq. (2.3),
since Vi, has to be well-defined and associated with 99/a:. This affects the MAV,
which can easily become smaller than an REV, for example, during a strong rain
event, and consequently violates the assumptions of the Richards equation.

A more intuitive formulation of the Richards equation is achieved by expressing the
potentials per unit weight instead of per unit volume. This leads to

00

5 V- [K;,(0)[Vhn —1]] =0, (2.12)
with the matric head h,, = ¥m/pg (L), which now corresponds to the height of an
equivalent water column, and K} (LT~1), which can be associated with a velocity.
From now on this notation is used and the asterisk * is dropped.

2.2 Subscale physics

The Richards equation (Eq. 2.12) requires the description of K, (#) and a relation
between 6 and h,,. These dependencies are called material properties and describe
the subscale physics not explicitly represented in Eq. (2.12) any more. They are
typically parameterized into simplified functions. Again, it is important to note these
simplifications.

To motivate the relation between 6 and h,,, recall that the pressure jump across the
air-water interface is given through the mean curvature (Eq. 2.9). For a completely
wettable capillary, with the capillary rise in static equilibrium, the mean curvature
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equals the inverse of the radius of the capillary. In this case, the matric head is
connected to the radius r (L) of the capillary through

i2‘7wa

B = —
pg T

(2.13)
A soil comprises a range of different pore sizes, which leads to a decreasing water
content for a decreasing matric head. However, because of varying pore sizes and
varying pore radii, soils show a hysteretic behavior.

In this work, I use the simplified form of the van Genuchten [1980] parameterization
for the unsaturated soil water characteristics hy,(0):

hn(©) = = [@7/In=1 1}1/” , (2.14)

where © is the saturation (Eq. 2.2), which includes the parameters 65 and 6, for the
saturated and residual water content. The parameter o (L™!) is a scaling factor and
can be related to an inverse air entry value. The air entry value gives the matric
head when the largest pores begin to be filled with air and consequently the saturation
becomes smaller than 1. The parameter n (—) can be associated with the width of
the pore size distribution and influences the sharpness of the air entry. However, both
parameters do not have a direct physical relation.

The van Genuchten parameterization does not consider hysteresis. It additionally
assumes that the wettability does not change over time and does not depend on the
temperature.

The hydraulic conductivity is a tensor depending on the water content. However, it
is typically simplified to an isotropic hydraulic conductivity function K(©). It is con-
nected to the pore radius and consequently to the soil water characteristics. Mualem
[1976] assumed capillary elements where radii are proportional to corresponding lengths
and arrived at the expression

© 4o’ A2
K(©) = Ko0" 7f01 /() : (2.15)
fO d9'/hm(®’)

where Ko (L T™!) is the saturated hydraulic conductivity and 7 (-) can be associated
with the increasing flow path tortuosity for decreasing saturation. However, there
again is no direct physical relation. Inserting Eq. (2.14) into Eq. (2.15) yields

K(©) = K,0" [1 - [1 - @n/[nfll] 1‘1/”] . (2.16)

The Mualem-van Genuchten parameterization comprises Eq. (2.14) and Eq. (2.16).
It is possibly the most common parameterization of the material properties in soil
hydrology and is also used in this work. It connects the hydraulic conductivity to the
soil water characteristics, by assuming geometric similarity and simplifies implications
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of the complicated pore geometry into two functions, characterized by a set of six soil
hydraulic parameters 0, 0., a, n, Kg, and 7. The assumption of constant wettability,
together with the assumptions of constant p, p, and the incompressibility of the soil
matrix already made in Sect. 2.1 are often summarized into one strong assumption:
that these parameters are constant in time.

The material properties of a soil vary in space. Large structures, like soil layers, are
typically directly represented through individual parameter sets for each layer. This is
difficult for smaller heterogeneity, the texture, within such a structure. A possibility
to describe the texture in a simplified way is Miller scaling. It assumes geometrical
similarity and scales the reference material properties of the structure at every point
in space with

hn(0) = hiu(0) - <, (2.17)

I e =

K(0)=K*0)-¢&, (2.18)
where * denotes the reference material properties and & (—) is the Miller scaling pa-
rameter at this location. This scaling cannot represent all aspects of small scale het-
erogeneity, though. Most importantly, it neglects possible variations of ¢.

The soil hydraulic parameters introduced in this section can neither be measured
directly nor transferred directly from the laboratory to the field. Consequently, they
are often associated with the largest uncertainties in soil hydrology.

Both material properties are highly nonlinear and encompass a range of several or-
ders of magnitude. They determine characteristic shapes for the soil water movement.
This can be seen when transforming the Richards equation (Eq. 2.12) into the 6-form,

gz +V(0)-VO -V -[DO)VO =0, (2.19)
where the second term describes an advection with V(6) = dK(0)/das and the third
term describes a dispersion with D(0) = dhm(6)/d9 K (f). Due to the rapidly increasing
hydraulic conductivity with increasing water content, the advection tends to form
sharp shock fronts. This is counteracted by the dispersion, smoothing out the water
content, which leads to characteristic shapes.

2.3 Superscale physics

The considered system representing soil water movement has to be limited in space
and time. The physics outside of this range is the superscale physics. The coupling
to the superscale in space is the boundary condition, and the coupling in time is the
initial condition.

Boundary conditions can be described as Dirichlet or Neumann boundary conditions,
or combinations thereof. A Dirichlet boundary condition gives the state value at the
boundary of the system. This means a water content, or more common a matric head
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(which is linked to the water content through the material properties). A Neumann
boundary condition describes the normal derivative of the state at the boundary. For
the Richards equation this is the water flux.

Generally, the description of boundary conditions is challenging. In the following I
only describe the boundary conditions employed in this work. A water table at the
boundary can be represented through a Dirichlet boundary condition with h,, = Om.
However, this assumes that the water table is constant and not influenced by fluxes over
the boundary. To reduce the effect of an uncertain boundary, the described domain
can be extended and the description close to the uncertain boundary disregarded.

The boundary condition at the interface to the atmosphere is possibly the most
difficult one. It is typically strongly influenced by plants. However, in this work the
role of plants is neglected completely.

The infiltration into the soil during a rain event, can be described by a Neumann
boundary condition. The flux can be determined by measuring the precipitation rate.
However, if the rain intensity is too strong the infiltration can become limited by the
soil, which results in ponding and possibly surface runoff.

Evaporation from the soil into the atmosphere can be limited by (i) available en-
ergy, (ii) the atmospheric demand, or (iii) the water content state in the soil. If the
evaporation is limited by the soil, the boundary condition should be defined through
a Dirichlet boundary condition giving the atmospheric potential. If the evaporation
is limited by the atmosphere, the boundary condition should be described through a
Neumann boundary condition. This is assumed in this work.

To describe the atmospheric demand based on atmospheric measurements like they
are available from weather stations (net radiation, wind speed, temperature and rel-
ative humidity), the empiric FAO Penman—Monteith equation [Allen et al., 1998] can
be used. It estimates the reference evapotranspiration for a well watered grass, with
specific height, albedo, and surface resistance. The equation considers the energy bal-
ance at the surface, Bowen ratio between sensible and latent heat, Dalton’s law for
potential evaporation, and additionally accounts for evaporative cooling and surface
resistances [Foken, 2006]. For daily mean values the uncertainty is estimated to range
from 10 % to 20 % [Foken, 2006]. However, for bare soils a multiplicative factor ranging
from 0 to 1.2 has to be applied depending on the water content state of the soil.

The initial condition describes the water content state at the beginning of the time
interval considered. It can be estimated using measurements, which are discussed in
more detail in the next section. However, measurements are typically sparse. Alterna-
tively a spin-up phase can be employed, where a model is used starting at a previous
time. Uncertainties from the initial condition of the spin-up phase become smaller over
time, but uncertainties from the model itself increase.
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2.4 Response

For known dynamics, subscale physics, and superscale physics of a system, the response
can be calculated. This is primarily the trajectory of water content states in time, but
also includes derived quantities like fluxes. In this work, only the states are consid-
ered. A discretized representation of the continuous states can be calculated using a
numerical solver. I employ MuPhi [Ippisch et al., 2006], which uses a cell-centered
finite-volume scheme with full-upwinding in space and implicit Euler scheme in time
and an inexact Newton-Method with line search to linearize the nonlinear equations.

The calculated response based on dynamics, subscale physics, and superscale physics
incorporates all uncertainties discussed above and consequently has large uncertainties
itself. Additionally, the numerical solver introduces a spatial resolution. The local
equilibrium assumption required for the Richards equation (Eq.2.12) has to hold on
this resolution as well. This means it has to be better than the MAV. It is possible to
choose the spatial resolution of the solver smaller than the REV. This may actually be
required for numeric stability and accuracy. However, the results will not be meaningful
on this finer scale, can only be interpreted above the REV scale, and may indicate a
violation of the local equilibrium assumption in the physical representation.

The state cannot only be calculated, but also measured. In this work, time domain
reflectometry (TDR) sensors are used to determine the water content. The used de-
sign consists of three 20 cm long rods inserted into the soil. By measuring the travel
time of an electromagnetic wave guided by the rods, the dielectric permittivity of the
surrounding soil can be determined [Robinson et al., 2003]. To relate the measured
bulk relative permittivity e, to the soil water content, a petrophysical relationship
is required. Following Roth et al. [1990], a mixing law, the complex refractive index
model (CRIM), for an isotropic bulk medium is used,

V= 0y + (6~ 8)Era + (1— 6) /ers (2.20)

with relative permittivity of air €., = 1, and relative permittivity of the soil ma-
trix €, s = 5. The relative permittivity of water is determined with the temperature
correction by Kaatze [1989] and is €,,, = 80 at 20 °C. The porosity is determined from
volumetric soil samples taken during the installation of the probes.

The large difference between ¢, ,, and €, , allows the estimation of the water content
in the soil with TDRs. However, their evaluation becomes more difficult in situations
with high electric conductivity or relaxation losses [Robinson et al., 2003]. The mea-~
surement volume of a TDR for the used design extends around the rods with a distance
of O(1cm), but varies based on the bulk dielectric permittivity.

This section shows that there is a dual information about the response. On the one
hand from modeling based on dynamics, subscale physics, and superscale physics and
on the other hand from measurements. This dual information can be used to improve
the representation and reduce uncertainties.

10
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This chapter introduces the data assimilation method employed in this work, the en-
semble Kalman filter (EnKF). First, Sect. 3.1 positions data assimilation methods
conceptually. Sect. 3.2 introduces the Kalman filter under the assumption of Gaussian
uncertainty distributions and linear models. It is the basis for the EnKF (Sect. 3.3),
the ensemble extension of the Kalman filter for nonlinear models. A limited ensemble
size, the assumption of Gaussian distributions, and un- or ill-represented model er-
rors cause a suboptimal performance. Localization (Sect. 3.4) and inflation (Sect. 3.5)
are standard extensions to the EnKF to account for these issues. Extensions for the
specific use of the EnKF in hydrology, namely augmented state, damping factor, and
iterative filters are described in Sect. 3.6.

Within this work, the EnKF and its extensions were implemented into the Knowledge
Fusion (KnoFu) software developed in a parallel doctoral study by Berg [2018]. KnoFu
provides a framework for the coupling of data assimilation methods with models.

3.1 Conceptual overview

Forward model: In forward modeling, measurements and knowledge about dynamics,
subscale physics, and superscale physics are used to calculate the response of a system.
Measurements of the response are not used (or only used as a control for the forward
model).

However, in most geophysical systems dynamics, subscale physics, and superscale
physics come with large uncertainties. This is also true for soil hydrology (see chap-
ter 2). Particularly, parameters describing the subscale physics are highly uncertain
since they can neither be measured directly nor transferred from the laboratory to
the field. This strongly limits the predictive capabilities of forward modeling in soil
hydrology.

Inverse modeling: In contrast to forward modeling, inverse modeling uses a measured
response to determine its causes. Typically, this means the estimation of parameters in
the subscale and superscale physics. However, this limits the consideration of errors to
the parameters. Errors in the other components are not considered and consequently
incorporated into the parameters.

11
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Since subscale parameters are considered to have the largest uncertainties in soil
hydrology, inverse modeling has been applied intensively with reviews, e.g., by Hop-
mans et al. [2002] and Vrugt et al. [2008]. Errors in the other components limit its
applicability.

Data assimilation: Data assimilation combines information from forward models and
measurements into an optimal state estimate. Errors in all components of the repre-
sentation can — at least in principle — be considered through the state estimation.
However, the estimation depends on the correct description of these uncertainties.

In soil hydrology, the estimation of states alone is insufficient. However, data assim-
ilation methods can be extended to estimate parameters along with the states. This
offers the possibility to consider model errors in the estimation. Nevertheless, un- or
ill-represented uncertainties lead to suboptimal parameter estimation.

Knowledge fusion: Knowledge fusion is the consistent aggregation of all information
pertinent to some observed reality [Bauser et al., 2016]. This means that not only
measurements but any other relevant information, even expert knowledge, should be
incorporated into a representation. Furthermore, uncertainties of all components have
to be represented correctly and should even be reduced. Data assimilation methods
are promising methods for knowledge fusion but can only partly comply with the
requirements. Particularly, the reduction of uncertainties in the dynamics remains an
open challenge.

In soil hydrology where uncertainties are present in all representation components, it
is necessary to come closer to the goal of knowledge fusion in order to reach a consistent
representation of soil water movement end eventually well-founded predictions that
include sound uncertainties.

The transition between inverse modeling, data assimilation, and knowledge fusion
is continuous. Consequently, there is no consistent differentiation in the literature.
For example, Vrugt et al. [2008] see data assimilation as a special method for inverse
modeling, while van Leeuwen et al. [2015] describe how inverse modeling can be seen as
a specific branch of data assimilation. In this work, the two are distinguished, whether
the method includes state estimation (data assimilation) or not (inverse modeling),
since the state estimation provides the means for the consideration of model errors.

Data assimilation methods themselves can be classified either as filter or smoother.
Filters sequentially combine model information with measurement information at a
single point in time. Information from previous measurements is already incorporated
in the model. Future measurements are not considered for the current estimation.
Examples are 3D-Var, Kalman filters, and particle filters. Smoothers on the other hand
incorporate measurements from several points in time simultaneously. This allows the
consideration of ‘future’ measurements within the assimilation interval as well. An
example is 4D-Var, but also ensemble Kalman smoothers and particle smoothers exist.
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3.2 Kalman filter

While smoothers have the advantage of incorporating several measurements at a
time, this reduces the possibilities to update the state estimate and consequently lowers
the ability to consider model errors. An application in hydrology showed the superiority
of the EnKF over the ensemble smoother [Crestani et al., 2013].

At the basis of all data assimilation methods is Bayes’ theorem to combine measure-
ments and models into an optimal state estimation [van Leeuwen et al., 2015]. It relates
the conditional probability density function (pdf) of the state given the measurements
p(u]d) (posterior) to the conditional pdf of the measurements given the state p(d|u)
(likelihood) and the pdf of the state p(d) (prior):

_ p(d|u)p(u)

p(uld) = ) (3.1)

In this case of measurements and state, the state w is the variable, while a realization
of the measurements d is already given.

The pdf p(d) is not the pdf of the measurements as such, but the pdf of the mea-
surements before they are actually made [van Leeuwen et al., 2015]. This is typically
hard to determine. Since the measurements are given, p(d) can be calculated as

p(d) = [ pd.u)du= [ pldupw)du (32)

and becomes a normalization constant, but requires p(d) # 0.

3.2 Kalman filter

This section follows van Leeuwen [2015] and Welch and Bishop [2006]. The Kalman
filter is based on the assumption of a linear model of a Markov process and a Gaussian
error distribution. It is a sequential algorithm iterating between a forecast step, which
propagates a state including its uncertainty forward in time, and an analysis step,
which combines the uncertain model information with uncertain measurements at this
time into an optimal estimate of the state. Below, these two steps are explained in
more detail.

Forecast: The spatially discretized representation of the true state wi e at time k—1
is linked to the true state at time k through the forward model M and the model error

n,
Utrue,k = M (utrue,k—l) T N1 = Mk‘—lutrue,kz—l +Mg—1 (33)

where, due to the linear model, the forward propagation can also be represented
through a matrix multiplication. The model error (or process noise) m is assumed
to be Gaussian noise with zero mean and error covariance Q:

n~N(0Q), (3.4)
Q=mm". (3.5)
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3 Ensemble Kalman filter

Through the Gaussian assumption, a state at a specific time including its uncertainty
is characterized by its best guess u; and error covariance matrix Py,

Py = [uk - utrue,k] [uk - utrue,k]T . (3.6)

To propagate a state from a previous analysis at time k& — 1 forward to time k, the
model is applied to it,

ugr = Mg_1Ua k1, (3.7)

where the subscript “f” denotes forecast and the subscript “a” denotes analysis. The

state error covariance matrix is propagated through the linear model as well and it
additionally increases due to the model error with

Pir =M 1Par 1 Mi_| + Q. (3.8)

This way, the state, including its uncertainties, is propagated in time.

Analysis: The analysis combines model information, given through the forecast state
ur, and its error covariance matrix Pyj, with measurement information at this time
k into an analysis state u, ;. For clarity, the subscript % is dropped in this paragraph,
since the complete analysis step is performed at this time.

The measurement vector d is linked to the true state through the measurement
operator H and the measurement error e,

d = Huye + €, (3.9)

where the measurement error is assumed to be Gaussian noise with zero mean and
error covariance R.:

e~N(O,R), (3.10)

R = eel . (3.11)

The measurement operator maps from the state space to the measurement space. The

errors in both are assumed to be Gaussian. Consequently, the measurement operator
has to be linear.

To combine the measurement information with the model information, Bayes’ theo-

rem is applied. It is simplified through the Gaussian assumption of model (prior) and
measurements (likelihood) and the posterior yields

p(uld) o exp [—; [u — g Pt [u — uy] — % [d— Hu]" R™![d — Hu] (3.12)

o exp [—; [ —wa)" P [u—wal (3.13)
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3.3 Ensemble Kalman filter

where Eq. (3.13) is reached through some calculations (see Appendix A.1). The pos-
terior is a Gaussian distribution with the analysis state u, as the best guess and the
error covariance P,. They are derived as

u, = uf + K [d — Huy , (3.14)
P, = [1 - KH] Py, (3.15)
where K is the Kalman gain,
~1
K = P;HT [HPfHT + R] . (3.16)

The Kalman gain weights the forecast error covariance matrix with the total error
of forecast error covariance matrix and measurement error covariance matrix in the
measurement space. It maps back from the measurement space to the state space
based on the covariances in the forecast error covariance matrix. Thus, in Eq. (3.14)
the Kalman gain weights the differences between measurements and forecast state in
the measurement space and transfers them to the state space. The forecast state is then
updated with this weighted difference to the analysis state. Through combining the
information, the uncertainty is decreased. It minimizes the analysis error covariance
matrix given in Eq. (3.15).

By iterating between forecast and analysis, the state is improved sequentially. The
complete Kalman filter cycle is summarized in Fig. 3.1. It requires a description
of a linear forward model and its error covariance matrix, measurements and their
error covariance matrix, and a measurement operator mapping from the state space
to the measurement space. Additionally, an initial guess for the state and its error
covariance matrix are required. The limitations are the assumptions of a linear model
and Gaussian error distributions, which also leads to a linear measurement operator
and linear corrections in the analysis. Through the iterative application, it is also
necessary to assume errors to be uncorrelated in time.

3.3 Ensemble Kalman filter

The EnKF [FEvensen, 1994; Burgers et al., 1998] is the Monte Carlo extension of the
Kalman filter for nonlinear models. The propagation of the state error covariance ma-
trix in Eq. (3.8) is not directly transferable to nonlinear models. The EnKF resolves
this issue by approximating the state uncertainty through an ensemble of states, which
propagates the uncertainty. However, it retains the assumption of Gaussian distribu-
tions in the analysis, even though this assumption does not hold strictly any more for
nonlinear models.

Through the Gaussian assumption, an ensemble of states u” represents a state and
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Figure 3.1: The Kalman filter cycle. It consists of Eq. (3.7), (3.8), (3.14),
(3.15), and (3.16). Modified from Welch and Bishop [2006].

its error covariance with

U~ Ueps = U, (3.17)
P~ Peps = [u" —u"] [u" —u™]", (3.18)
where n denotes the ensemble members with n = 1,..., N for the ensemble size N.

Below, forecast and analysis are described in more detail.

Forecast: In the forecast each ensemble member is propagated forward in time with
the nonlinear model M, to represent the propagation of the uncertainties in the analysis
state. To each ensemble member, a realization of the model error is added to represent
the model uncertainty directly:

ufy = M (ug,k_l) +n". (3.19)

Under the assumption of Gaussian distributions, the uncertainty is characterized through
the error covariance matrix around the mean wug:

Pjons = [y — Ul [uity - @}T : (3.20)
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3.3 Ensemble Kalman filter

Analysis: In the analysis, the measurement information is incorporated. Like for the
state, its uncertainty can be represented through an ensemble

d"'=d+ €, (3.21)
with the measurement error covariance
Rens = €] [e7]" . (3.22)

Again, the subscript k is dropped for clarity. Instead of the approximated covariance
matrix, the exact one can be used as well [Evensen, 2003], which is actually done in
this work.

With the approximated error covariance matrices, the Kalman gain can be calculated
as before,

-1
Kens = PrensH' [HPonH + Rens| (3.23)

Instead of just updating the mean, each ensemble member is updated individually,
leading to the analysis ensemble u],

uy = uf + Keps [d" — Hu?| . (3.24)

Each ensemble member is updated with d”, which includes for each member a realiza-
tion of the measurement error, added to the actual measurement. This is necessary,
so that the analysis ensemble directly resembles the correct analysis error covariance
matrix [Burgers et al., 1998],

Pa,ens = []— - KensH] Pf,ens . (3'25)

However, adding noise to a measurement may seem uncalled-for. A more intuitive
explanation by van Leeuwen [2015] is that the measurement noise is not added to
measurements but to the artificial measurements on the ensemble member Huf, since
the actual measurements d already includes a measurement error. This way, equals
are compared: measurements including a measurement error.

The complete EnKF scheme is summarized in Fig. 3.2. Note that from now on the
subscript “ens” is dropped for clarity.

The additional noise from the measurement ensemble in Eq. (3.24) can be eliminated
by employing square root filters. They perform a deterministic transformation from
the forecast to the analysis ensemble. This is achieved by requiring Eq. (3.25) to hold.
Since the transformation is not unique, several square root filters exist. The resulting
analysis ensembles from these different filters have the same error covariances, but
differ in higher moments [Tippett et al., 2003].

Examples for square root filters are the ensemble square root filter (EnSRF'), which
uses a modified Kalman gain on the differences to the mean to fulfill Eq. (3.25)
[Whitaker and Hamill, 2002]; the ensemble adjustment Kalman filter (EAKF), which

performs the analysis in the space where the forecast error covariance is 1 and the
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Figure 3.2: The EnKF cycle. It consists of Eq. (3.19), (3.20), (3.21), (3.22),
(3.23), and (3.24). Modified from Welch and Bishop [2006].

measurement error covariance is diagonal [Anderson, 2001]; and the local ensemble
transform Kalman filter (LETKF), which performs most of the analysis in the en-
semble member space and is expected to be the fastest filter when the number of
ensemble members is smaller than the number of measurements and the number of
state dimensions [Hunt et al., 2007].

Square root filters can reduce sampling error and improve the accuracy of the es-
timation [Tippett et al., 2003]. However, this is mainly important for small ensemble
sizes. For large ensembles, Lawson and Hansen [2004] found the stochastic EnKF to
be able to handle nonlinearity in the forecast better than deterministic square root
filters. The reason for this is that the stochastic filter reduces non-Gaussian higher
moments, while the deterministic filters tend to maintain them.

In this work, examples are small enough so that a sufficient ensemble size can be
maintained. Consequently, the stochastic EnKF is employed.

3.4 Localization
The forecast error covariance matrix in the EnKF is approximated through an ensem-

ble. Typically, the number of state dimensions is larger than the number of ensemble
members. In atmospheric sciences, the number of measurements exceeds the number of
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3.5 Inflation

ensemble members as well. However, the ensemble can only provide Ne,s — 1 directions
in phase space. This is known as the rank problem [Houtekamer and Zhang, 2016].
Consequently, the signal to noise ratio between state dimensions in the covariance
matrix worsens with decreasing correlations, where correlations will typically decrease
with increasing physical distance [Hamill et al., 2001].

One possibility to reduce this issue is localization [Houtekamer and Mitchell, 1998],
with the idea to separate the complete setting into several local problems. For each
of those the complete ensemble size is available. This can be realized by reducing
covariances with distance through a correlation function p [Houtekamer and Mitchell,
2001]. This alters the calculation of the Kalman gain to

-1
K = (poPry) H [H(poPry) HT +Ry| (3.26)

where p o Pgj denotes the entrywise product of the covariance matrix Pg; with a
correlation matrix C. The entry (C);; of the correlation matrix is determined from
the correlation function p based on the distance between the locations of the state
dimensions ¢ and j.

A typically employed correlation function is the fifth-order piecewise rational func-
tion defined by Gaspari and Cohn [1999:

—1(121/e)° + 3(I2l/0)* + 3 (I21/e)* = §(|2l/e)* +1, 0< |z <e¢,
13(121/6)° = 3(I2l/0)* + 3 (I21/¢)® + § (|21 /e)?

=5(|z|/c) +4 = 5(c/I2]) ¢ < [z] < 2,
0, 2¢ < |z],

(3.27)

where z is the distance between the dimensions and c¢ defines a length scale. The
function is similar to a Gaussian but with local support, which introduces a cutoff
length at distance 2c. The optimal choice of ¢ depends on the problem itself, but also
depends on the ensemble size.

Localization is seen as an essential extension of the EnKF that makes the approx-
imation through an ensemble feasible for large systems. However, it is not part of
the Kalman filter theory and influences details in the analysis. For example, without
localization it is possible to process uncorrelated measurements sequentially without al-
tering the results. With localization this equality does not hold any more [Houtekamer
and Zhang, 2016].

3.5 Inflation

Localization cannot completely prevent spurious correlations, which reduce the un-
certainty in the EnKF analysis too strong and cause a too small ensemble spread
[Houtekamer and Mitchell, 1998; van Leeuwen, 1999]. Unrepresented errors in the
forecast cause too small uncertainties as well. This effect is also called inbreeding.
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3 Ensemble Kalman filter

It can eventually lead to filter divergence, where the model uncertainty becomes so
small that the state estimation primarily trusts the forecast model and progressively
underweights measurements. Thus, the state can increasingly diverge from the mea-
surements. Inflation methods can counter this issue by increasing the ensemble spread.

3.5.1 Additive inflation

The model error considered in Eq. (3.19) is also called additive inflation. To each
ensemble member n a realization 17" of the model error 7 is added, where 7 is assumed
to be have a Gaussian distribution with zero mean. It is a possibility to directly
represent model errors. In the atmospheric sciences for example, Whitaker et al. [2008]
used a reanalysis of historical weather predictions to determine the additive model
error. Generally, and particularly in soil hydrology, such detailed prior knowledge is
difficult to achieve.

3.5.2 Multiplicative inflation

The spread of the forecast ensemble can be increased through multiplicative inflation.
Therefore, the distance of each individual ensemble member to the mean is increased
with an inflation factor A [Anderson and Anderson, 1999,

ufir = VA (uf — uff) +uf . (3.28)

The inflation factor is applied to the complete augmented state. It increases the values
in the forecast error covariance matrix with P¢j,r = APy, but does not alter the mean
value, uf; ¢ = uf.

The inflation factor has to be tuned for each system. It additionally depends on the
ensemble size [Hamill et al., 2001]. To avoid tuning, Wang and Bishop [2003] estimate
the inflation factor based on the distance between measurements and forecast. Ideally,
this distance is represented through the measurement error covariance matrix and the
forecast error covariance matrix:

(d—Hu}) (d — Hu?)" = HP;;,H' + R.. (3.29)
Therefore, the authors suggest to estimate the inflation factor as

(d— Hup)" (d— Huf) ~ Tx(R)

A= T
Tr(HP{HT)

(3.30)

Similarly, based on Desroziers et al. [2005], Li et al. [2009] additionally use the distance
between analysis and forecast,
(Hu — Huf)' (d — Hup)

A= TP . (3.31)
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However, these inflation factors estimated at one time step can vary strongly between
different time steps. Thus, Wang and Bishop [2003] actually estimate a product of
all previous inflation factors, while Li et al. [2009] use a Kalman filter to smooth the
factors.

Anderson [2007] directly bases the estimation of an inflation factor on Bayes’ the-
orem. For a single measurement ¢ the distance b between measurement and forecast
is

b=|(d), — (Huf),| . (3.32)

Again, this should be equal to the expected distance ¢ based on the uncertainties,

9= \/AHPH), + (R),.

0

(3.33)

Through the assumption that d and Hus are unbiased and normally distributed,
Anderson [2007] assumes that b is also normally distributed with d ~ A (0,9?). Note
that the absolute value taken in Eq. (3.32) actually leads to a half-normal distribution.
However, this only impacts a normalization constant because the distribution of b is
the likelihood in Bayes theorem. Consequently, b is given and A is the variable. Note
that the likelihood is not normally distributed in .

The prior for lambda is assumed to be normally distributed around the previous
inflation factor A ~ N (s, 0%), with the uncertainty o). Keeping this uncertainty
constant is one possibility to avoid a closure problem, where the inflation would require
its own inflation. In this case, it is a tuning parameter. However, Anderson [2007]
shows that the results do not depend on the choice in a wide range. The posterior is
estimated by finding the inflation factor A, that maximizes the product of likelihood
and prior. Anderson [2007] shows that the likelihood is extremely flat compared to the
prior. The distribution around the maximum of the posterior is assumed to be Gaussian
with the constant uncertainty o). By iterating over this scheme, all measurements can
be included in the estimation of the scalar A\, which is additionally constrained to
A> 1

Anderson [2009] extends this method to estimate a vector A, where the inflation is
determined for each state dimension individually based on the correlations between
measurements and states. Therefore, the inflation factor A in Eq. (3.33) is replaced by
a reduced inflation factor )\ based on the correlations,

N= {1+ [\ - 1“2 : (3.34)

where \; is the j-th component of the inflation vector A and r;; is the correlation
between measurement ¢ and state dimension j. If a localization is used, it has to be
included in 7.

With this algorithm, when an inflation is required, the maximum likelihood is at a
stronger inflation for weakly correlated state components than for strongly correlated
ones. However, the likelihood is flatter for weakly correlated states and counteracts
this. Thus, the adjustment speed of the corresponding inflation factor is reduced,
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which actually leads to — as intended — smaller inflation factors in regions with low
correlations to measurements.

3.5.3 Relaxation methods

Relaxation methods attempt to increase the ensemble spread by relaxing the reduction
performed in the analysis. Zhang et al. [2004] introduce a relaxation to prior pertur-
bations, where the distance of an analysis ensemble member to the mean u} — u? is
relaxed back to its forecast distance uf — uf,

Wi — ul = [1— vl [ug —uf]+ v [uf —up], (3.35)
where v is a tuning parameter.
Similarly, Whitaker and Hamill [2012] suggest a relaxation to prior spread according
to
Oainf = [1 — V] 08 +vO7, (3.36)

where o is the vector of standard deviations of the ensemble. The distance to the mean
of each ensemble member is then increased in each state dimension so that Eq. (3.36)
holds. Again, v is a tuning parameter.

Ying and Zhang [2015] expand this idea further and estimate the relaxation by first
estimating a multiplicative inflation factor using Eq. (3.31), which is then translated
into an estimate of v. This way, the distance to measurements is considered. However,
the transfer to individual state dimensions is not directly based on the measurements,
but on the reduction in the analysis.

3.6 EnKF in hydrology

Data assimilation methods have their main application in weather forecasting, which
is consequently the driving force behind many recent advances [van Leeuwen et al.,
2015]. However, hydrologic systems differ fundamentally from atmospheric systems.

In weather forecasting, data assimilation is used to estimate the initial state for
the subsequent prediction. Due to the divergent nature of atmospheric systems, this
is crucial, since differences to the true state lead to increasingly larger errors in the
prediction. This sensitivity to the initial condition is also known as the butterfly effect.

Soil hydrologic systems have a convergent dynamics, and the initial condition will
become less important over time. Instead, the state development strongly depends on
the highly nonlinear material properties and the boundary conditions. This calls for
altered approaches in hydrology.

3.6.1 Augmented state

The state u estimated with the EnKF can be extended to an augmented state u*.
This augmented state can include further components like soil hydrologic parameters
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3.6 EnKF in hydrology

u* = [u, |, where the asterisk * will be dropped from now on. This state augmentation

with an EnKF was first demonstrated in atmospheric sciences [Anderson, 2001] but is
much more common in hydrology.

An augmented state requires a forecast for each component. For the state itself this
remains the dynamics, while the parameters ¢ are typically assumed to be constant
in time:

Pik = Pak—1- (3.37)
The forecast state now also depends on the corresponding parameter set cp;ﬁkfl. This
way, uncertainties in the parameters are propagated as well. The analysis is not altered
by the use of an augmented state. Consequently, state and parameters can be updated
jointly based on the measurements of the state. However, this analysis is linearized,
whereas the relation to the parameters can be highly nonlinear.

Localization (Sect. 3.4) can be directly transferred to the augmented state. It can
specify which measurement is allowed to impact the estimation of each individual
parameter and gives possibilities to introduce additional knowledge into the estimation.

Inflation (Sect. 3.5) is more difficult to transfer to an augmented state. The fore-
cast of the parameters is typically assumed to be constant. Consequently, they are
only changed through the analysis - and the inflation. The dynamics is not able to
compensate possible overinflation. This makes the use of inflation more delicate.

3.6.2 Damping factor

The damping factor [Hendricks Franssen and Kinzelbach, 2008] reduces the analysis
update (Eq. 3.24) by a scalar factor v € [0, 1]:

uy =uy +7v-K[d" — Huf] . (3.38)

For the usage with an augmented state, the damping factor has been extended to a
vector v and an entrywise multiplication [Wu and Margulis, 2011]. This way, different
augmented state components can be treated differently. Typically, parameters are
multiplied with a smaller factor than the state.

The damping factor has similarities to the relaxation methods (Sect. 3.5.3). It lowers
the reduction of the uncertainty and alleviates the inbreeding problem. In contrast to
the relaxation methods, it also influences the mean value. This can alleviate issues
with the linearized analysis at the cost of a suboptimal best guess. This is especially
useful for parameters where the forecast is assumed to be constant. Consequently, the
parameter estimation is just slowed down.

3.6.3 lterative filters

The joint update of states and parameters in the augmented state can lead to inconsis-
tencies between parameters and states through the linearized analysis. Iterative filters
try to reduce this inconsistency. Different approaches are compared for example by
Song et al. [2014], on whom the following brief summary is based.

23



3 Ensemble Kalman filter

The confirming EnKF performs forecast and analysis twice for each time step. In
the first analysis, only the parameters are updated. They are used for an improved
rerun of the forecast. In the second analysis step, only the state is updated.

The restart EnKF is similar and updates only the parameters in a first analysis step
as well. However, the new forecast for the state analysis starts at the beginning of
the complete time interval considered and has to be calculated up to the current time.
To save computation time, Song et al. [2014] additionally introduce a modified restart
EnKF, where the second complete forecast is not performed by the full ensemble, but
only by the mean. Afterwards, the full ensemble has to be rebuilt.

Through these iterative approaches, the consistency of states and parameters can be
improved. For a synthetic case, Song et al. [2014] showed that the restart EnKF can
provide the most accurate results. However, it requires a significantly larger computa-
tion time. Furthermore, this approach cannot consider model errors as well anymore,
since the second forecast in the restart EnKF does not include state updates in be-
tween. Consequently, it is not clear if it improves the results in a real-world application,
and to my knowledge, no improved results in a real-world case have been reported so
far.
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Based on Bauser et al. [2018].

Inflation methods (Sect. 3.5) are used to compensate filter inbreeding in the EnKF,
which is caused by a limited ensemble size and unrepresented model errors. Systematic
model errors are common, for example, in land surface models | Vereecken et al., 2015].
Additionally, in soil hydrology spatially and temporally varying model errors occur
due to un- or ill-represented processes like preferential flow (through violation of the
local equilibrium assumption in the Richards equation) or hysteresis. An insufficient
ensemble spread in the augmented state, caused by these unrepresented errors, is
especially severe for parameters, which are typically not changed through a forward
propagation, and consequently cannot increase their uncertainty again. Due to the
convergent dynamics in soil hydrology, the uncertainty in the state depends strongly
on the parameter spread and can become too small as well.

All inflation methods presented in Sect. 3.5 are developed in an atmospheric sciences
context. Their transfer to soil hydrology is not trivial, due to the spatiotemporally
varying model errors and the typically employed augmented state. For groundwa-
ter research, Kurtz et al. [2012] reported improved results by employing the inflation
method by Anderson [2007], and Kurtz et al. [2014] used the constant inflation by
Anderson and Anderson [1999]. In soil hydrology however, adjusted methods of the
multiplicative inflation (Sect. 3.5.2) have been used: For example, Han et al. [2014]
and Zhang et al. [2017] apply a special case of the inflation method by Whitaker and
Hamill [2012] and keep the parameter spread constant to ensure a sufficient ensemble
spread. Bauser et al. [2016] used the method by Anderson [2009], but adjusted the
inflation of parameters.

Instead of an inflation method, often a damping factor (Sect. 3.6.2), which can
alleviate the issue, is employed. This is done by e.g, Wu and Margulis [2011]; Song
et al. [2014]; Erdal et al. [2014]; Brandhorst et al. [2017]; Botto et al. [2018], where
Erdal et al. [2014] and Brandhorst et al. [2017] combined this method with additive
inflation. Alternatively, neither inflation nor damping is reported [e.g., Li and Ren,
2011; Shi et al., 2015].

This chapter presents a novel multiplicative inflation method specifically designed
for the needs in soil hydrology. The inflation method can vary rapidly in space and
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time to cope with the typically varying model errors and it is capable of a transfer of
the inflation in the state to the parameters in the augmented state. The remainder
of this chapter is organized as follows: Sect. 4.1 describes (i) the proposed inflation
method and (ii) a soil hydrologic test case. Section 4.2 shows the results of my method
applied to the test case, followed by a discussion in Sect. 4.3.

4.1 Method

4.1.1 Multiplicative inflation for soil hydrology

An inflation method for soil hydrology has to be able to work for spatiotemporally
varying model errors and augmented states. Anderson [2009] already proposed a spa-
tiotemporally adaptive multiplicative inflation by estimating a vector of inflation fac-
tors A for the complete augmented state (Sect. 3.5.2). Anderson [2009] uses the corre-
lation between measurements and augmented state dimensions and asks the question:
How much inflation is required in each dimension to explain the observed differences to
the measurements? Anderson [2009] showed that this works excellently for the actual
state. However, I experienced possible over-inflation in parameters (which do not have
any dynamics to compensate for this), which can lead to filter collapses.

To achieve a more conservative inflation method, I ask the question: How much of
the required change of the inflation am I allowed to transfer to the state dimensions
based on the correlation information? This can be achieved by applying a Kalman
filter for the inflation within the EnKF.

In this Kalman filter, the inflation vector is treated as the state variable. As for
parameters, I choose a constant model for the forecast in time:

Atk = Aaj—1 - (4.1)

For convenience, the time subscript k is dropped in the following. Furthermore, I
will use the same symbols as for the EnKF, but denote them with the subscript .
The forecast error covariance matrix for lambda P ¢ is approximated based on the
covariance matrix of the augmented state in the EnKF Py as the normalized absolute
correlation matrix of the augmented state ensemble. The matrix component ¢j is
determined as

(i), = o3| P, | [P0, B0, (12)

where o) denotes the uncertainty of the inflation factors. It is a tuning parameter that
is kept constant over time and is assigned to all state dimensions. It influences how
fast the inflation factors are adjusted. This follows the idea by Anderson [2007, 2009]
to avoid a closure problem, where the inflation estimation would require its own infla-
tion. Instead, the uncertainty is kept constant. Furthermore, only the absolute value
of the correlation is considered, since the inflation is based on differences between mea-
surements and model, but ignores their direction. Note that this presumes that the
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4.1 Method

correlations of the model state can be transferred to the inflation. In the presence
of unknown model errors this assumption may or may not be correct. However, the
estimation at measurement locations will remain meaningful in any case.

For the analysis, the distance d) between mean forecast and measurements is used
as measurement for A:

dA:‘d—H% .

(4.3)

The measurement error covariance matrix Ry of d) can be calculated based on the
error covariance matrices of d and Hug,
b

(R)\)z’j = ’(R)U + (H |:Pf0 {\/Kf\/XfTH HT)Z-]" 7 (4.4)

where the current inflation At is already considered. The entrywise product is denoted
by o and the entrywise square root of A by v/A. Note that similar to Anderson [2007],
a normal distribution is used instead of a half-normal distribution, because a positive
realization of d) is given.

The expected distance between measurements and mean forecast, based on the cur-
rent inflation is

NI

(h)\()‘f))i = [(R)\)u] ) (4-5)

which combines the uncertainties of d and Huf,,; To be able to determine the Kalman
gain, I first calculate the Jacobian matrix Hy of partial derivatives of h) with respect
to A (Appendix A.2):

0
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With this approximated measurement operator H), the Kalman gain K, and the
analysis state A, are obtained as

-1
K, = Py H] [H\P)H] + Ry| (4.8)
Ao = Ar + K [dy — ha(Ag)] - (4.9)

Note that the matrices P r and R can possibly become indefinite, due to the absolute
value in Eq. (4.2) and Eq. (4.4). Consequently, the inverse in Eq. (4.8) could become
unfeasible. However, I never encountered such a case. In a situation with uncorrelated
measurements, the issue can be resolved by reducing o just for that single time step.

With this Kalman filter, the inflation vector is updated at each time step based on
the difference of the mean forecast to the measurements. Following Anderson [2007],
I additionally prohibit a deflation by constraining the inflation values to (A); > 1.
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4 Inflation for soil hydrology

4.1.2 Model

The proposed inflation method is tested on a small hydrologic test case. It is specifically
constructed to require a strong inflation. This makes it possible to explore features of
the inflation in detail on a rather short timescale. Due to a small ensemble size, the
results vary depending on the seed of the random numbers.

For the test, I choose a one-dimensional case with a depth of 50 cm for a time of
6days. A groundwater table is set as the lower boundary condition throughout the
whole time. The initial condition is in hydraulic equilibrium. The upper boundary
condition is no flux, except for a rain event with 2.0-10"" [ms~!] during the fourth day.
For observations, I choose two water content measurements at a depth of 9.5cm and
19.5 cm, as they would be available from TDR probes. The measurement uncertainty
is set to a standard deviation of 0.007 [e.g., Jaumann and Roth, 2017].

For the material properties, the Mualem—van Genuchten parameters of sandy loam
from Carsel and Parrish [1988] are chosen: 5 = 0.41, 6, = 0.065, @ = —7.5m™ !,
n=1.89, Ky =1.23-10°ms~ ! and 7 = 0.5. To introduce heterogeneity, Miller scaling
is used. A scaling factor of & = 0.32 is chosen at the upper measurement position
and & = 3.2 at the lower measurement position. The scaling factors are linearly
interpolated between the measurement positions and constantly extrapolated to the
boundaries.

The forward simulations are performed with a spatial resolution of 1 cm. This cor-
responds to a state with 50 dimensions.

To test the inflation method, a perfect model experiment is performed. The EnKF
estimates the water content state and four parameters (&1, &2, Ko, 7) through the
augmented state u = [6,log;((&1),log(&2),log o (Ko), 7]. I choose to include the loga-
rithm of &1, &, and Ky, because they are expected to show a more linear relation to the
water content state than the actual parameters. For the water content state, the correct
initial condition is used as the mean with an uncertainty of 0.005. The uncertainty is
spatially correlated using Eq. (3.27) with the length scale ¢ = 5 cm. As initial guess for
the parameters, I start with unknown heterogeneity log;,(£1) = log;o(§2) = 0.0 £0.25,

corresponding to two standard deviations away from the true values of log;(§1) = —0.5
and log,¢(£2) = 0.5. For the saturated hydraulic conductivity, I choose a too small
value of logyo(Ko) = —5.5+0.5, Ko in [ms~1], which is about one standard deviation

away from the true value of log,q(Kp) = —4.9. The tortuosity 7 = 0.5+0.5 starts
from the true value.

Through the unrepresented heterogeneity, a model error is mimicked, leading to a
bias towards smaller values for the estimation of Ky during times without dynamics,
which may necessitate inflation. The parameter 7 is expected to have a smaller influ-
ence, since the uncertainty is chosen small and it is already at the true value. This way,
it can act as an indicator parameter for the inflation as it does not require inflation.

The EnKF is set up with a total of 25 ensemble members and damping factor, but
without localization and without iterative approach. For the damping, a damping
vector of v = [1.0, 0.3, 0.3, 0.3, 0.3] is used. It is also applied to the inflation to
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4.2 Results

maintain consistency. For the uncertainty of the inflation factors, I choose o) = 1.0.

4.2 Results

The water content state is estimated together with the four parameters &1, &2, Ko,
and 7 with the EnKF. The development of the water content at the two measurement
locations at a depth of 9.5c¢m and 19.5 cm is shown together with the inflation factor
at these locations in Fig. 4.1. The inflation factor is applied to the forecast ensemble
before the analysis. The standard deviation of the inflated ensemble should describe
the distance of the estimated mean to the synthetic truth. Note that the inflation
factor is not based on this distance and relies on the noisy measurements.

During the first three days without any dynamics, the uncertainty for the upper
measurement is slightly underestimated, while the uncertainty in the lower measure-
ment is slightly overestimated. This leads to an inflation factor of basically 1 for the
lower measurement (factors smaller than 1 are not allowed), while the inflation factor
for the upper measurement is larger. However, due to correlations between the mea-
surement locations, a stronger inflation to fully explain the difference to the truth is
prevented.

The deviation from the synthetic truth is induced through the initial guess of no
heterogeneity and can also be seen in the systematic deviation of the inflated mean
(which is equal to the forecast mean) from the analysis mean. When the infiltration
front reaches the measurements, the deviations from the truth, the underestimation
of the uncertainty, and the inflation factors increase rapidly. All of them are more
pronounced for the upper measurement location. After the main peak, the differences
and also the inflation factors decrease rapidly again.

The inflation factor for the state is shown in Fig. 4.2. It shows the strong increase of
the inflation factor during the infiltration and its fast decrease afterwards. The inflation
is strongest at the measurement location at a depth of 9.5cm. The inflation factor is
transferred to the other state locations through the correlations, which decrease with
distance. Directly below the measurement locations, the inflation factors are increased
less than above. This is due to the chosen interpolation of the Miller scaling factor,
which reduces the correlations from the measurement locations to these state locations.

The development of the Miller scaling factors £ and & at the two measurement
positions (9.5cm and 19.5cm depth) is shown in Fig. 4.3a and b together with the
estimated inflation factor for these parameters. Both initial conditions assume no
heterogeneity and start at log;y(&1) = log;g(&2) = 0.0+ 0.25, corresponding to two
standard deviations away from the true value. At the upper location the true value
of log;(&1) = —0.5 corresponds to a finer material. Consequently, the water content
drops, as seen in Fig. 4.1, leading to a strong correlation with the scaling factor,
and log;o(&1) is adjusted rapidly to lower values. Accordingly, the inflation factor is
increased quickly in the beginning and then reduced back to 1 when the estimation of
log;o(&1) reaches, and eventually underestimates, the true value. The underestimated
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4 Inflation for soil hydrology

(a) Measurement at 9.5 cm depth
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Figure 4.1: Water content estimation at the two measurement locations. The
standard deviation of the inflated ensemble should be able to explain the
differences between the inflated mean and the synthetic truth. The inflation
factor is increased when the ensemble uncertainty is too small.
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Figure 4.2: Inflation factor for the water content state. The inflation is
strongest at the upper measurement location during the infiltration when
the uncertainty is underestimated the most. The inflation factor is trans-
ferred to the other measurement locations through the correlations in the
Kalman gain. The used interpolation of Miller scaling factors impacts these
correlations and leads to the smaller inflation directly below the measure-
ment locations.

scaling factor corresponds to a too fine material, which leads to slower changes in the
water content state and therefore smaller correlations. The scaling factor is corrected
during the rain event on the fourth day, which also leads to an inflation.

The initial guess for the scaling factor at the depth of 19.5 cm underestimates the
scaling factor. Again, the correlations are small. The value increases slowly during
the dry period in the beginning, but is inflated and adjusted strongly during the rain
event.

The saturated hydraulic conductivity Ky (Fig. 4.3c) was chosen to start a little
more than one standard deviation below the true value. Due to the unrepresented
heterogeneity in the beginning, the value decreases even further. The inflation remains
very small due to correlations to both measurement locations. However, as soon as the
infiltration event reaches the first measurement location, the value is corrected towards
the true value. At the same time, the too small uncertainty causes an increase of the
inflation factor. After the rain event, the inflation factor drops rapidly back to one.
The hydraulic conductivity remains below the true value. Another rain event would
be required to improve the estimation further.

The tortuosity 7 (Fig. 4.3d) also influences the hydraulic conductivity function,
but has in this case much smaller impact and consequently smaller correlations to
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4 Inflation for soil hydrology

(a) Miller factor at 9.5 cm (b) Miller factor at 19.5cm
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Figure 4.3: Development of Miller scaling factors & and &, saturated hy-
draulic conductivity Ky, and tortuosity 7 together with their corresponding
inflation factors during the estimation with the EnKF.
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4.3 Summary and discussion

the measurements than K. I use it as an indicator parameter and start at the true
value. During the infiltration event, the value is changed due to its correlations. The
corresponding inflation factor is increased as well, but remains small enough and drops
back to 1 quickly enough to not cause any over-inflation of the parameter.

To emphasize the need of a fast adapting inflation factor, the uncertainty of the
inflation factors is reduced to o, = 0.5, to slow down their adjustment. The results
are summarized in Fig. 4.4. The inflation of the water content state (Fig. 4.4a) shows
that the inflation factor does not reach values as high as before (see Fig. 4.2). To
compensate for this, the inflation acts over a longer period of time. The same effect
is also observed in the inflation of the parameters (Fig. 4.4b and c¢). This leads to a
smaller inflation during the rain event and consequently, a too small uncertainty. At
later times, when the cause of the error is not active any more, the correlations to
measurement locations are reduced, leading to a slower reduction of the inflation in
the parameters. In the indicator parameter 7, the beginning of an over-inflation can
be seen towards later times. This necessitates a more rapid inflation when correlations
are used to update inflation information.

The results for the parameters Ky and 7 of a run without inflation (and only damp-
ing) are shown in Fig. 4.5. Again, Ky moves further away from the true value due to
the unrepresented heterogeneity and comes closer to the true value during the infil-
tration event. However, due to the wrong direction in the beginning, the uncertainty
eventually becomes too small and in the end the mean is over 5 standard deviations
away from the true value.

4.3 Summary and discussion

The proposed spatiotemporally adaptive inflation method uses a Kalman filter to es-
timate inflation factors within the EnKF. It is based on the difference between mea-
surements and mean forecast state. It transfers correlations from the forecast of the
augmented state in the EnKF to the inflation. Consequently, the performance will be
limited if model errors are structurally not represented in the forecast error covariance
matrix. The estimation of the inflation factors with a Kalman filter is, like the EnKF
itself, based on a linearized analysis. The use of a damping factor can alleviate issues
with estimating parameters with nonlinear relation to the measurements. To keep the
inflation consistent with the analysis in the EnKF, the same damping factor is applied
for both.

The inflation was explored with a small synthetic hydrologic test case. This test case
mimics a model error through initially unrepresented heterogeneity. I designed the test
case so that a strong temporally varying inflation is necessary, as it can occur with real
data. A short time was chosen so that the details of the behavior of the inflation can
be explored. The method shows that it is capable of inflating states and parameters.
The inflation is adjusted fast and differentiates between parameters with strong and
not so strong correlations. No over-inflation of weakly correlated parameters occurred.
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(a) State inflation
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Figure 4.4: Development of the inflation factor for the water content state and
saturated hydraulic conductivity Ky and tortuosity 7 together with their
corresponding inflation factors for an estimation with a reduced inflation
factor uncertainty of oy = 0.5.
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Figure 4.5: Development of saturated hydraulic conductivity Ky and tortuosity
7 for an estimation without inflation.

In this specific test case the estimation with inflation is far superior to an estimation
without inflation.

The fast adjustment speed of the inflation factor is important because of the fast
changing model errors and correlations to parameters. The adjustment speed is de-
termined by the standard deviation of the inflation factor, which is set to a constant
value and has to be adjusted. For all cases I explored, a value of o) = 1 was sufficient,
but larger values were possible too. The need for such a fast adjustment is shown
by estimating the same case with a reduced uncertainty of o) = 0.5, which leads to a
slower adaptation of the inflation factor. This results in smaller inflation factors, which
are compensated by maintaining them for a longer period of time. In this test case,
this leads to inflation at times after the infiltration front has passed the measurement
locations already and the model error is small again. This can cause over-inflation of
weakly correlated parameters.

Fast dropping correlations between measurements and parameters are a limit for the
method. An example could be a multiplicative parameter only acting on the infiltration
boundary condition. After the infiltration is over, correlations to this parameter drop
to zero and the inflation factor for this parameter is not changed any more. If the
inflation factor is not equal to 1 at this time, the ensemble spread for this parameter
will keep increasing. In such a case, when there is no correlation, the parameter should
be excluded from the estimation and consequently also from the inflation.

The method is in principle capable of compensating unrepresented model errors.
However, this is limited to errors that can be represented with the augmented state. If
parameters are included in the estimation in the augmented state and have correlations
to measurement locations with consistently underestimated forecast uncertainties, the
inflation will keep increasing the parameter spread until the forecast uncertainties
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4 Inflation for soil hydrology

are increased sufficiently. This is the case when the parameters have an insufficient
influence on the state uncertainty. An example are measurement uncertainties chosen
too small. Then the dynamics would not be able to follow the measurement noise. A
rather heuristic solution could be a decay of the inflation factor towards values of 1,
as already proposed by Anderson [2009].

The inflation method was specifically designed for soil hydrology. It is capable of
adjusting the inflation factors rapidly in space and time and proved to be stable in
combination with parameters. This leads to better state and parameter estimations in
soil hydrology. Nevertheless, I expect the inflation method to work in similar systems
as well and to generally improve data assimilation with the EnKF.
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5 | Application

In parts based on Bauser et al. [2016].

This chapter focuses on a real-world case to address the challenge of knowledge fusion.
Section 3.1 defined knowledge fusion as the consistent aggregation of all information
pertinent to some observed reality. This is exercised on a small example: a 1-D soil
profile equipped with TDR probes measuring water content, during a time period of
less than 2 months. For this specific situation, knowledge fusion would require the
quantitatively correct description of all uncertainties in the representation and the
subsequent optimal reduction of these uncertainties based on all additionally available
information. For the measurement part, these are primarily the water content data
from the TDR probes, but any other information, even expert knowledge, should be
incorporated as well. So far, however, this goal is only partly feasible. Therefore, 1
focus on describing and reducing the key uncertainties with the EnKF. Nevertheless,
this requires a qualitative assessment of all uncertainties.

The remainder of the chapter is organized as follows: Sect. 5.1 introduces the test
site for the real-world case. The uncertainties for the representation of this specific
situation and the according setup of the EnKF are described in Sect. 5.2 and Sect. 5.3.
Section 5.4 introduces three stages to reduce the uncertainties: (i) improving the prior,
(ii) standard EnKF and (iii) closed-eye EnKF and compares the prediction capabilities
of standard and closed-eye EnKF. Sect. 5.5 discusses the results.

5.1 Test site

The Grenzhof test site is a former agricultural field located close to Heidelberg, Ger-
many (49°25’ N, 8°37" E). Since 2003, experiments have been conducted at the test
site. In 2004, a weather station (Fig. 5.1a) was built, which measures precipitation
and further atmospheric data (wind, temperature, incoming and outgoing long- and
shortwave radiation, relative humidity and air temperature) in 10min intervals. A
detailed description of the test site can be found in Wollschliger et al. [2009].

In 2009, a soil profile was equipped with 11 TDR probes which measure water
content hourly. The soil profile itself, described explicitly by Schenk [2011], is depicted
in Fig. 5.2. It consists of four different soil layers up to the depth of 1.4 m. The top
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Figure 5.1: Grenzhof test site close to Heidelberg, Germany with (a) weather
station and (b) water content measurements under grass and bare sur-
face. In this work, the measurements under the bare surface are used (see
Fig. 5.2).

three layers are equipped with three TDR probes each and the bottom layer with two
TDR probes. The profile is kept free of vegetation at the surface (Fig. 5.1b).

The complete time period considered comprises 60 days from 1 October 2011 (day 1)
until 29 November 2011 (day 60). The boundary condition, along with the water
content measured by the topmost TDR, is shown in Fig. 5.3.

5.2 Representation

For this specific soil profile, I formulate the soil hydraulic representation consisting of
the four components (dynamics, subscale physics, superscale physics, and response)
described in chapter 2. For each I give the a priori description, as well as a qualitative
assessment of the uncertainties due the corresponding assumptions.

Dynamics: The Richards equation (Eq. 2.12) describes the change of the volumet-
ric water content. The equation itself is process-based and is expected to describe
the actual physics adequately as long as its underlying assumptions are fulfilled: it
assumes the soil water movement to be a single-phase process. Hence, the Richards
equation is expected to fail in very dry or wet conditions. Both are not observed at the
Grenzhof test site during the time period considered. The corresponding uncertainties
are small. The Richards equation further assumes local equilibrium, which is assumed
to be violated during strong infiltration events, e.g., during heavy rainfall leading to
preferential flow. I expect local non-equilibrium at the Grenzhof test site, but it is a
priori not clear how strong the forcing has to be or how to describe these cases. This
creates uncertainty in the dynamics during rain events.

For this specific situation, I additionally assume that horizontal flow is negligible
and that I can describe the system one-dimensionally without additional sources or
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Figure 5.2: Soil profile at the Grenzhof test site [Schenk, 2011]. It consists of
4 different soil layers and is equipped with 12 temperature probes and 11
TDR probes. The surface is kept free of vegetation.

sinks. The flat terrain and horizontal layering at the Grenzhof test site supports this
assumption. Still, heterogeneity might introduce two-dimensional flow.

Subscale physics: The Richards equation requires a description of the material prop-
erties. In this work the Mualem—van Genuchten parameterization is employed. I do
not expect significant uncertainties due to assuming this particular parameterization
with its specific functional forms, because the observed water contents stay in a rather
small water content range.

The large-scale structure for this soil profile is made up of four soil layers. An
individual parameter set is assigned to each layer. The layers were observed during
the installation of the probes and corresponding uncertainties are considered small.
For each of the layers, a set of parameters is required to describe the Mualem—van
Genuchten parameterization. In this case, I can use the soil parameters determined
by Wollschliger et al. [2009] through an inversion for a soil profile in close proximity.
They are expected to differ from the soil hydraulic parameters at the represented soil
profile due to spatial heterogeneity.

I do not include a description of hysteresis, leading to additional uncertainties con-
nected with the parameterization. By assuming the parameters to be constant in
time, wettability, density and dynamic viscosity of water are assumed constant and
the soil matrix is assumed to be incompressible. Although these assumptions may

39



5 Application

T'T' 10 NG D 0.5 )
5 =
= i9)
g 07 A= 0.4
= -
2 13 @
£ 10 1 - 0.3
z =z
g g
OS: —90 - 0.2 g
~ N -
g 5
3 =
= =30 - 0.1 2
—

o —_
5
g /
M 40 . . . . . 0.0

0 10 20 30 40 50 60
Time [day]

Figure 5.3: Boundary condition and topmost TDR from 1 October (day 1)
until 29 November (day 60) at the Grenzhof test site. I distinguish 4 sec-
tions: A (day 1-2), B (day 3-17), C (day 18-22) and D (day 23-60). The
evaporation is calculated using the reference FAO Penman—Monteith equa-
tion. Before the first rain, the evaporation is set to 0, due to a previous dry
period of over a month. The precipitation is displayed with a 6 h resolution.

lead to additional uncertainties, they are justified by the short time period of less than
2 months.

The texture within the layers is described through Miller scaling. It is based on
the assumption of geometric similarity, which does not necessarily hold and leads to
some uncertainties. The scaling factors themselves are a priori unknown. Initially
no heterogeneity (scaling factors of 1) is assumed, which is most likely wrong and
introduces large uncertainties.

Superscale physics: For the upper boundary condition, the on-site weather station
measures rain. Unfortunately, the rain gauge had not been calibrated during the
period of consideration. Because of that, uncertainties for the precipitation are large.
The further meteorological data from the weather station is used to calculate the daily
mean evaporative water flux using the reference FAO Penman—Monteith equation. This
estimation of the evaporation is highly uncertain. In dry conditions, the evaporation
is limited by the soil, which leads to additional uncertainties. Minor moss growth
was observed at the bare soil surface during the time period considered, which may
influence the upper boundary condition further.
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5.3 EnKF settings

There are no measurements of the lower boundary condition at the site. However,
constant water content measurements in the lowest soil layer during the observed time
period indicate that the dynamics is decoupled from the groundwater table. Therefore,
I follow Wollschlager et al. [2009] and add a fifth layer with soil parameters for sand
from Carsel and Parrish [1988] up to a depth of 4m in the representation. The sand
layer decouples the dynamics from the groundwater table, which is kept constant at
the depth of 4m. This leads to uncertainties, which are expected to be negligible.

The initial condition is difficult to estimate. A simple approach is to use the mea-
sured water contents and interpolate them linearly with constant extrapolation to layer
boundaries. This leads to large uncertainties in between.

Response: Dynamics, material properties, and forcing can be used to describe the
temporal development of the states, which in this case is the water content. These
states will have large uncertainties due to the uncertainties in the other components.
Additionally, the assumption of local equilibrium in the Richards equation has to be
met on the grid size of the numerical model as well. I choose a resolution of 1cm.
For the represented soil and boundary conditions, this resolution is sufficient to resolve
the occurring fronts smoothly, so that effects caused by the numerical solver can be
neglected.

Water content determined with TDR probes will be used to improve the represen-
tation. I assume an unbiased uncertainty of 0.01 for the water contents. This is the
largest noise observed with the TDR probes, except for the probe in a depth of 98 cm.
There the measurement noise is larger and an uncertainty of 0.015 is assumed.

The assumptions made for the representation of soil water movement at the Gren-
zhof test site are summarized in Table 5.1. The second column gives a qualitative
assessment of the uncertainties: small — no need to represent the uncertainty explic-
itly; intermediate — it might be necessary to represent these uncertainties, and I decide
not to but rather keep them in mind; large — uncertainties must be represented with
the goal of reducing them. The findings depend on this uncertainty assessment and
might be affected if it does not hold.

5.3 EnKF settings

I aim to describe and reduce the uncertainties classified as “large” in Table 5.1 with
the EnKF and decided to neglect the ones classified as “intermediate” or “small”.
Below, the corresponding settings of the EnKF are specified.

Uncertainties are represented and estimated directly with the EnKF, if they can be
incorporated into the augmented state. I choose to include the water content state, soil
hydraulic parameters, Miller scaling factors, and a scaling factor of the upper boundary
condition.
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Table 5.1: Prior uncertainties of the representation of soil water movement
at the Grenzhof test site during October and November 2011. I assess the
uncertainty caused by assumptions in a qualitative way: small — no need to
represent the uncertainty explicitly; intermediate — it might be necessary to
represent these uncertainties, and I decide not to but rather keep them in
mind; large — uncertainties must be represented with the goal of reducing

them.
Assumption Uncertainty
Dynamics
Single phase description (Richards equation) small
Local equilibrium (Richards equation) small-large
1-D, no sources and sinks intermediate
Material properties
Mualem—van Genuchten parameterization for material properties small
Mualem—van Genuchten parameter values from Wollschliger large
et al. [2009]
Mualem—van Genuchten parameters constant in time small
No hysteresis intermediate
Large-scale architecture described with layers small
Small-scale architecture described with Miller scaling intermediate
Miller scaling factors are 1 large
Forcing
Upper boundary condition from rain gauge and FAO large
Penman—Monteith equation
Lower boundary condition constant groundwater table decoupled small
with soil layer
Linear interpolation for initial condition large
Response
Numerical representation small
Water content measurements without biases and uncertainty intermediate

of 0.01 (or 0.015 respectively)
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5.3 EnKF settings

Adding components to the augmented state increases its dimension, which in turn
requires a larger number of ensemble members and leads to a higher computational
effort. To minimize this effect, I keep the added components as small as possible.

Regarding the parameters to be incorporated, I choose «, n, and Kq for each of the
four layers as well as the saturated water content 65 for layers 3 and 4. For the upper
two layers, the measured water contents were far away from 65 and 6, estimated by
Wollschldger et al. [2009]. Thus, they are irrelevant for the estimation, as changes in
fs and 0, can be compensated by the other parameters. For the bottom two layers,
measurements exceeded 6. Thus, it has to be added in the augmented state. I do
not include the tortuosity 7, since the observed water content ranges are rather small.
For other situations however, incorporation of 7 might improve the results. Since the
EnKF assumes Gaussian distributions and linear correlations, I do not directly use Ky
and instead use the logarithm (to which the water content response behaves more
linearly).

The dimensions of the Miller scaling factors are reduced as well. Only the scal-
ing factors at measurement locations are added. The whole Miller scaling field is
determined by linear interpolation between measurement locations inside a layer and
a constant extrapolation towards layer boundaries. As the measurements yield only
little information about the small-scale architecture away from their location, I expect
that this assumption has only a slight influence on the results. Again, the logarithm
of the parameter is used in the augmented state. The linear interpolation is performed
in the logarithm space as well.

The upper boundary condition is not incorporated directly into the augmented state,
but added as a scaling factor of the boundary condition.

The expansion to an augmented state changes the propagation in time. Each compo-
nent requires an individual forward propagation. I assume the soil hydraulic parame-
ters and Miller scaling factors to be constant in time. This is not possible for the scaling
factor of the upper boundary condition, which can change over time. Therefore, it is
assumed to be piecewise constant. The forward model switches the parameter about
daily and at transitions between precipitation and evaporation. This means that a set
of scaling factors is estimated, where the estimation of each scaling factor is restricted
to a short time interval. The estimation of the boundary condition ensures that there
is no global bias on the parameter estimation during the rain event.

Uncertainties, that are not explicitly represented, should be incorporated into the
process noise 1, which is difficult to quantify, however. I set the process noise of all
augmented state components to 0.

With this choice of augmented state and process noise, I represent and reduce all
uncertainties classified as “large” in Table 5.1 directly, except for uncertainties caused
by the local equilibrium assumption, which is expected to only hold outside of strong
rain events. I decided to not represent “intermediate” and “small” uncertainties.

The inflation method presented in chapter 4 is employed to account for the effect
of spurious correlations and the unrepresented uncertainties. Here, this is mainly the
uncertainties from the local equilibrium assumption. The uncertainty of the inflation
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factors itself, which determines how fast it is adjusted, is chosen in accordance with
chapter 4 with o, =1.0.

Localization (Sect. 3.4) is used to reduce spurious correlations. For the water content
state, the covariances are reduced with increasing physical distance with Eq. (3.27),
with a very large empirical value of ¢ =75 cm for the length scale. The soil parameters
are localized more strongly by only allowing covariances (entries of 1) between param-
eters and measurement locations in the respective soil layer and the first measurement
locations in the neighboring layers. For the Miller scaling factors, only covariances to
the corresponding measurement locations are kept, and for the scaling factor of the
boundary condition only the measurements in the uppermost layer are used. All other
entries are set to 0.

A damping factor (Sect. 3.6.2) is used to reduce the impact of the linearization
of nonlinear dependencies. The value of the factors is a tuning parameter. Hen-
dricks Franssen and Kinzelbach [2008] investigated damping factors between 0.1 and
1.0, while Erdal et al. [2014] employed a damping factor of 0.3 for the parameters.
The smaller the value, the better a nonlinearity can be handled, but the slower the
estimated value approaches the optimal value. I choose v={[vg, Yo, Yes Ybel =[1-0,
0.1, 0.1, 0.1]. This means that, based on the water content measurements, there is
no damping for the update of the water content state, but a strong damping for soil
hydraulic parameters, Miller scaling factors and upper boundary condition.

I additionally iterate the whole EnKF scheme and start the next iteration with
the final estimation of soil parameters, Miller scaling factors and scaling factors of
the upper boundary condition of the previous iteration. These iterations differ from
the typically applied iterative EnKFs presented in Sect. 3.6.3. The full iterations are
required to estimate constant augmented state components even with a small damping
factor and a rather short time period of data. This is especially important for the
upper boundary condition, where the time periods for each scaling factor are short.

The operational assumptions of the method lead to a sub-optimal estimation of the
state in each time step. Furthermore, due to the nonlinear dynamics, the assumption
of Gaussian distributions does not hold. It is not clear how this affects the EnKF
performance in detail. The Gaussian assumption leads to a linearized state update in
the analysis step. This induces erroneous updates of those augmented state compo-
nents with dominant nonlinear relation between augmented states and measurements.
These errors are alleviated by employing the damping factor, which reduces the up-
date but as a consequence also reduces the incorporation of measurement information.
Furthermore, I use the largest observed measurement noise to characterize the TDR
uncertainties. This leads to possibly too-large measurement uncertainties, which have
a similar effect as an additional damping factor.

I do not expect a strong influence from this sub-optimal state estimation on the
mean value of the results for the soil hydraulic parameters, Miller scaling factors and
scaling factor of the upper boundary condition. However, the final value will be ap-
proached more slowly than in an ideal estimation. This effect is handled by the iterative
approach.
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On the downside, incorporating the same measurement information several times
will lead, together with the other limitations, to incorrect quantitative uncertainties.
However, the inflation method ensures that measurements and states agree with each
other within their uncertainties. This is only a partial solution, however, as the in-
formation is only propagated through the correlations to the measurement locations.
Therefore, I will not interpret the uncertainties of the ensemble in a quantitative way.
Nevertheless, I do expect them to hold qualitative information that can be interpreted.

5.4 Results

The complete time period considered comprises 60 days and ranges from 1 October
(day 1) until 29 November (day 60). The boundary condition, along with the water
content measured by the topmost TDR, is shown in Fig. 5.3. The whole time period
is separated into four sections: A (day 1-2), B (3-17), C (18-22), and D (23-60).

Since soil parameters can only be estimated within the observed water content range
and will not be valid outside of this range, a rather large rain event is desirable. On the
other hand I do not represent uncertainties associated with the assumption of local
equilibrium by the Richards equation, which is violated during strong rain events.
Time period C (18-22 October 2011) combines both: a rather large total rain amount
(18.2mm) and a small maximal intensity (0.7 mm in 10 min).

I designed a three-stage approach (Fig. 5.4) to improve the representation by incor-
porating the information from the water content measurements of the 11 TDR probes:
(i) improving the prior information during time periods A and B, (ii) a standard EnKF
approach, and (iii) a closed-eye EnKF approach, both during time period C with the
considered rain event. The three stages are discussed in the following sections, with
results analyzed through forecasts in time periods B, C, and D.

5.4.1 Stage 1: improving the prior

Highly uncertain properties can exacerbate the performance of the EnKF. For example,
Huber et al. [2011] showed that the state estimation with an EnKF is superior in case
of properly precalibrated model parameters. For the representation at Grenzhof, there
is no prior knowledge about small-scale heterogeneity, which can lead to difficulties
in the estimation process: in a uniform layer, the water content is typically higher in
deeper locations. Heterogeneity can reverse this and can lead to higher water contents
above lower water contents inside a layer. Until the infiltration front of the rain
event reaches these positions, the EnKF cannot distinguish between heterogeneity
and an infiltration front propagating at very low speed. This can easily lead to too-
small saturated conductivities, especially in lower soil layers that are not reached by
the infiltration front. Even upper layers can require a tuned relation of the prior
uncertainties of Miller scaling factors and saturated conductivity.

To avoid too-small saturated conductivities, I improve the prior of the heterogeneity
using the measurements from time interval A. Prior to A, there had been 1 month
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Improving the prior

Stage 2:
Standard EnKF

- EnKF with 40 ensemble members
- estimation of states and Miller

i scaling factors
50 iterations

 —

improved Miller scaling factors
(mean and standard deviation)

-

time
period

improved Miller scaling factors
(mean values)

+ EnKF with 100 ensemble members
- estimation of states only

time
period

improved initial conditions
for time period C

- EnKF with 100 ensemble members
+ estimation of states, soil parameters,

Miller scaling factors and upper
boundary condition

—

10 iterations —y

improved soil parameters,
Miller scaling factors and
upper boundary condition
(mean and standard deviation)

improved soil parameters, Miller scaling factors

and upper boundary condition
(mean and partly standard deviation)
time interval for closed-eye period

time
period
Cc

Stage 3:
Closed-Eye EnKF

+ Closed-Eye EnKF with 100

+ estimation of states, soil parameters,

ensemble members

Miller scaling factors and upper
boundary condition

10 iterations

improved soil parameters,
Miller scaling factors and
upper boundary condition
(mean and standard deviation)

-

time
period
Cc

}

final estimation of believed true soil parameters,
Miller scaling factors and upper boundary condition

Figure 5.4: Block diagram illustrating the three-stage approach. The different
time periods are shown in Fig. 5.3.
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Figure 5.5: Mean values of the Miller scaling field. Soil layers are indicated
by different gray scales. The heterogeneity is a priori unknown and the
according prior is set to 1. The logarithm of the scaling factors is estimated
at the measurement locations and interpolated linearly between (with con-
stant extrapolation to layer boundaries). Already the improved prior can
describe the main features. The further estimations with the standard and
closed-eye EnKF lead to further small changes mainly in the first layer. For
the closed-eye EnKF the standard deviation of the ensemble indicating the
uncertainties is additionally shown.

without rainfall leading to little dynamics during A. I start with the soil parameters
estimated by Wollschiiger et al. [2009] and linearly interpolated initial condition (with
constant extrapolation to layer boundaries). Parameters and boundary condition are
kept constant, but states and Miller scaling factors are updated with an EnKF of
40 ensemble members, where the initial uncertainty of the logarithm of the scaling
factors was chosen to be 0.2.

As time interval A is only a 2-day period, the filter is not able to reach constant
Miller scaling values during this short time. Therefore, I iterate 50 times over this
period, which then does lead to constant scaling factors. The resulting scaling field of
the improved prior (Fig. 5.5) shows that there is heterogeneity within each layer that
requires a representation. Layer 4 in particular exhibits a strong heterogeneity, which
is already observable in Fig. 5.2.

Additionally, a good initial state can improve the estimation. Therefore, I guide the
state with an EnKF (only state estimation) with 100 ensemble members through time
period B, and achieve a better representation for the initial state for time period C
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Table 5.2: Soil hydraulic parameters as estimated by Wollschlager et al. [2009]
and the initial uncertainties for the standard EnKF.

Layer a  log;o(Ko) n Os O, T
[m] [ms~]

1 —4.8+2.0 —46+1.0 1.61£0.20 0.39 0.020 0.5

2 —-11.0+£20 —-53+£1.0 1.80+0.20 0.40 0.070 0.5

3 —74£+20 —-6.0x+10 143£0.20 0.40£0.02 0.090 0.5

4 —-29+£20 -54+10 136£0.10 0.41+£0.02 0.100 0.5

5 —14.5 —4.1 2.68 0.43 0.045 0.5

Parameters without uncertainty are not included in the augmented state and are not
estimated. The saturated water contents 05 of the layers 3 and 4 were already
estimated during the prior estimation in time period A, because measurement values
exceeded the value of 0.36 determined by Wollschliger et al. [2009].

than interpolating between the measurements there.

5.4.2 Stage 2: standard EnKF

During time period C, I improve the representation with the following uncertain compo-
nents: improved initial condition, soil hydraulic parameters estimated by Wollschldiger
et al. [2009], improved Miller scaling factors, and scaling factor of 1 of the upper bound-
ary condition from precipitation measurements and estimated with the reference FAO
Penman—Monteith equation. I improve soil parameters, Miller scaling factors, and
upper boundary condition along with the states. The estimated mean values and
standard deviations of soil parameters, Miller scaling factors, and scaling factor of the
upper boundary condition are used to generate the ensemble for the next iterations.
The initial condition is kept the same. I iterate 10 times over time period C. This
estimation is performed with an ensemble size of 100 members and will be referred to
as the standard EnKF.

The initial ensembles of initial condition and Miller scaling are determined as de-
scribed in stage 1. For the Miller scaling factors the uncertainty is increased again
compared to the estimations in the prior, since they were estimated under the as-
sumption of fixed soil parameters. Now, they have to be able to adapt to changing
parameters. The uncertainty of the logarithm of the scaling factors is chosen to be 0.05.
For the scaling factor of the boundary condition shown in Fig. 5.3, an uncertainty of
20% is assumed. The initial soil hydraulic parameters and their uncertainties are
summarized in Table 5.2.

In order to check the improved results, I do not show the states from the last
iteration but actually run another iteration, however, this time without incorporating
the measurement information. This corresponds to an ensemble of forward runs during
time period C. It is a much more strict test for the quality and objectivity of the
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Figure 5.6: Forecast at the measurement positions of the four different layers
during time period C. The solid lines show mean and standard deviation
of a total of 100 different forecasts, with soil parameters, Miller scaling pa-
rameters, and boundary condition sampled from the distributions estimated
with the standard EnKF and the initial condition, which was actually used
for the estimation itself. The dashed lines show results from the original soil
parameters by Wollschliger et al. [2009]. The dots show the measurements,
which were recorded hourly. Occurring data gaps were interpolated linearly.
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Table 5.3: Results for the soil hydraulic parameters estimated with the stan-

dard EnKF.

Layer a logo(Ko) n 0s 6, T
[m] [ms™]

1 —5.0+£0.3 -5.21£0.05 1.46+0.02 0.39 0.02 0.5

2 —11.0£0.8 —4.37+0.17 1.70+0.03 0.40 0.07 0.5

3 —-8.1+1.1 —-6.72£0.29 1.38£0.02 0.39+£0.01 0.09 0.5

4 —224+04 -593£0.32 1.34+£0.02 0.40+£0.01 0.10 0.5

Parameters without uncertainty are not included in the augmented state and are
consequently not estimated.

assimilation, because the states now cannot be adjusted. In fact, allowing incorporation
of measurements leads to a much better agreement with the measurements. The results
for all four layers are shown in Fig. 5.6. The graphs show that the measurements can be
represented well by the ensemble, but deviations occur, mainly during the infiltration.

There is heterogeneity inside the layers. For example, in the first layer, the middle
TDR shows the highest water content. This effect is strongest in layer 4. Here, the
water content of the TDR about 25 cm above the next has a water content almost 0.1
larger. The results calculated with soil parameters by Wollschliger et al. [2009] with
the assumption of homogeneous soil layers are not able to describe the measured water
content.

The results for the estimated Miller scaling factors are shown in Fig. 5.5. The
Miller scaling factors were adjusted along with the hydraulic parameters during this
standard EnKF approach. This is necessary, because changing parameters require
adjusted Miller scaling factors as well. The largest changes occur in layer 1, where
information is introduced by the water content changes during the infiltration.

The estimated soil parameters, including their uncertainties, are summarized in
Table 5.3. Although the uncertainties are quantitatively incorrect, they still indicate
how much information about each parameter is in the measurements. This can be
seen especially well for Ky. The estimation of K requires dynamics. Therefore, the
smallest uncertainty is observed in layer 1 and increases with the layers. In layer 4
the uncertainty of log;q(Kp) was reduced least, but still from 1.0 to 0.32. This shows
the difficulties of the EnKF and the necessity of inflation methods. As no change in
water content was observed, it is unlikely that any flux was introduced during the rain
event. Nevertheless, the uncertainty was reduced, which can lead to difficulties when
there actually is information.

The development of the parameters Ky, «, and n of the first layer are shown in
Fig. 5.7. Towards later iterations, all three show the same feature: the value increases
during the rain event and decreases before and after, but does not change significantly
between initial and final values. Since I added the boundary condition into the esti-
mation, effects due to a bias in the precipitation to cause this parameter shift can be
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Figure 5.7: Development of mean, standard deviation, and ensemble of the
parameters Ky, «, and n of the first layer during the estimation with stan-
dard EnKF and the closed-eye EnKF for all iterations (a, c, €) and the

last iteration (b, d, f).
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Figure 5.8: Boundary condition along with the topmost TDR water content
measurements during time period C. The closed-eye time period was deter-
mined based on the changes in parameter Ky (Fig. 5.7). During this time
the dynamics cannot describe the water content measurements any more,
most likely because of the violation of the local equilibrium assumption.
The dashed, vertical lines indicate the time intervals for the scaling fac-
tor of the boundary condition. During each interval an individual factor is
estimated.

excluded.

I interpret the parameter shift during the rain event as follows: the assumption of
local equilibrium during the rain event is wrong, which leads to preferential flow. The
infiltration is thus too fast for the actual parameters (Fig. 5.6). The preferential flow
leads to an apparent increase in the saturated hydraulic conductivity during the rain
event, which is reduced again afterwards.

The apparent increase of the parameters starts slow at around day 18 and becomes
stronger a few hours later. This detail is in agreement with the assumed violation of
the local equilibrium assumption. Preferential flow requires local saturation to set in.
In the beginning of the rain event, the soil is at a more negative matric head and is
capable of a stronger water uptake. Additionally, the rain intensity is smaller during
the first 2 hours (Fig. 5.8) and can be further decreased through interception by the
moss at the surface. The strongest apparent increase of the parameters occurs, when
the infiltration reaches the second measurement location only a short time after it has
reached the topmost measurement.

The observed preferential flow is not represented in the dynamics. This shows that
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Table 5.4: Results for the soil hydraulic parameters estimated with the closed-

eye EnKF'.

Layer o log(Ko) n 0s 6, T
[m™ [ms™]

1 —54+0.3 -—-544+£0.08 1.444£0.01 0.39 0.02 0.5

2 —11.0+£0.5 —4.314+0.07 1.69£0.01 0.40 0.07 0.5

3 —-8.3+0.7 —6.76+0.18 1.37£0.01 0.38£0.01 0.09 0.5

4 —21£03 —-589£0.18 1.33£0.01 0.40+£0.01 0.10 0.5

Parameters without uncertainty are not included in the augmented state and are
consequently not estimated.

the initial assumption of zero process noise is wrong. The uncertainty introduced by
the dynamics is not represented.

5.4.3 Stage 3: closed-eye EnKF

The EnKF is enhanced with a closed-eye period during times when the local equilibrium
assumption of the Richards equation does not hold. During this time, soil hydraulic
parameters and Miller scaling factors are not adjusted but kept constant. In contrast,
the water content state is continuously updated. In this way, the state is guided on the
basis of measurements through times with uncertain dynamics without incorporating
the dynamics uncertainties into the parameter estimation. The estimation of soil
hydraulic parameters is only performed before and after this closed-eye period.

I use an identified non-constant parameter to define the closed-eye period. I choose
Ky, because it shows the changes in the parameter value most prominently and it can
be directly related to observed physics. The closed-eye period is defined as the time
period between the minimum and the maximum value of Ky during the last iteration
with the standard EnKF'. It begins at the same time as the infiltration front reaches
the first measurement location (Fig. 5.8).

To perform the closed-eye EnKF estimation, I add another 10 iterations to the
previous standard EnKF iterations, but with the closed-eye period for the first layer.
I continue with the previously estimated mean values, but increase the uncertainty for
the first layer again (to half the initial uncertainty) to allow the new values to deviate
from the standard EnKF results. The closed-eye period is not applied to the layers
2 to 4, since no significant deviations to the measurements and no preferential flow
occurred there.

The additional iterations result in new soil parameters and Miller scaling factors.
The Miller scaling factors changed only marginally compared to their regular estimates
(Fig. 5.5). Changes in the parameters of the first layer are larger (Fig. 5.7). Two
features can be recognized: first, the values differ from each other. For n and «
the changes are rather small, but for K the difference is significant. The closed-eye
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Figure 5.9: Material properties at the three measurement locations in the first
layer for the soil hydraulic parameters and Miller scaling factors estimated
with the standard EnKF (solid lines) and closed-eye EnKF (dashed lines).
The dark colors indicated the observed water content range during the es-
timation at each location, for which the estimated material properties are
deemed valid.

estimation yields approximately half the hydraulic conductivity as before. Second, the
parameters now are constant over time and do not show fluctuations any more.

This indicates that it was possible to extract times when the Richards equation is
actually valid and to determine soil hydraulic parameters that resemble the believed
true material properties. This means, I believe, that if the parameters are constant
in time, the parameters can represent reality in the observed water content range
during times when the underlying assumptions hold. There is an apparent downside,
though. The measurements during the closed-eye period cannot be used to estimate
the parameters. This leads to a smaller observed water content range, limiting the
parameter estimation possibilities. I call this “apparent”, because the corresponding
interval does not contain valid information about the modeled system in the first place.

As a related aspect, the estimation of the scaling factor of the upper boundary
condition is not meaningful during the closed-eye period any more. Consequently only
an estimation of the evaporation before and after the rain event is possible. Due to
the short time interval and small evaporation flux, in this case the effect is negligible.

The soil hydraulic parameters estimated with the closed-eye EnKF are summa-
rized in Table 5.4. The changes for mean values estimated for the layers 2 to 4 are
small compared to the standard EnKF (Table 5.3). However, the uncertainties are
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Figure 5.10: Forecast at the measurement positions of the four different layers
during time period C with the results from the closed-eye EnKF. The solid
lines show mean and standard deviation of a total of 100 different forecasts,
with soil parameters, Miller scaling parameters, and boundary condition
sampled from the distributions estimated with the closed-eye EnKF and
the initial condition, which was actually used for the estimation itself. The
dots show the measurements, which were recorded hourly. Occurring data
gaps were interpolated linearly.
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reduced further. For the first layer, the resulting material properties from soil hy-
draulic parameters and Miller scaling factors at the three measurement locations for
the standard EnKF and the closed-eye EnKF are shown in Fig. 5.9. They show only
small differences in the soil water characteristics, but significant ones for the hydraulic
conductivity function.

The forecast during time period C (analogous to the standard EnKF) is shown
in Fig. 5.10. The performance is acceptable, but worse than the standard EnKF
(Fig. 5.6). This is exactly what is expected. The standard EnKF incorporates errors
in the dynamics partly into the parameters, e.g., by estimating a too-large hydraulic
conductivity, which can represent preferential flow up to a point. By introducing the
closed-eye period, these errors are not incorporated into the parameters any more.
The parameters are thus believed to be closer to the believed true material properties.
Obviously, however, these parameters fail to describe rain events that lead to hydraulic
non-equilibrium.

Guiding the states through the closed-eye period is a challenge. A representation
of the dynamics’ uncertainty would be required to estimate optimal states. I did
not do this. The covariance inflation (chapter 4) reduces the issue by increasing the
ensemble spread when measurements cannot be explained by combined measurement
and ensemble uncertainty (Fig. 5.11). It was designed to follow rapid changes and is
able to adjust the inflation factor fast to larger values during the closed-eye period.
Still, it cannot solve the problem completely, since it is based on the correlations in
the ensemble. These correlations are not necessarily valid any more, when a major,
spatially structured uncertainty is not represented. In cases with stronger rain (and
stronger non-equilibrium) and larger deviations of representation and measurements,
a description of the dynamics uncertainties could possibly become mandatory.

5.4.4 Prediction capabilities

I investigate the predictive capabilities of the standard EnKF and closed-eye EnKF
during the combined time period of B and C as well as time period D. As the closed-eye
EnKF added another 10 iterations for the estimation, I compare it to standard EnKF
results with additional 10 iterations as well.

During time period B the total amount of rain was 23.2 mm with a maximal flux of
2.5mm in 10min (compared to a total of 18.2mm with a maximal flux of 0.7mm in
10 min for time period C). As I already assume local non-equilibrium during the rain
event in time period C, I expect an even stronger effect during time period B.

The forecast results for time period B and C for soil parameters and Miller scaling
parameters from the standard EnKF and closed-eye EnKF are depicted in Fig. 5.12a
and b (there is no improved estimation of the upper boundary condition during time
period B and I did not use the improved boundary condition from time period C).
I performed a spin-up with an EnKF with state estimation during time period A to
achieve a good initial condition. Neither standard EnKF nor closed-eye EnKF is able
to predict the water contents during the rain event in time period B in detail. However,
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Figure 5.11: Inflation factor A in the first layer during the last iteration of the
standard EnKF and closed-eye EnKF. The covariance inflation increases
the inflation factor around a measurement location when the deviations
due to the infiltration reach the corresponding TDR. The deviations and
consequently the inflation are stronger for the closed-eye EnKF, as the pref-
erential flow is not incorporated into the parameters any more.
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Figure 5.12: Forecast at the measurement positions of the first layer during
time period B and C for the measurement based boundary condition (a, b)
as well as a modified boundary condition (c, d), where a rainfall on day 6 is
removed, since it is not observed in the measurements. The solid lines show
mean and standard deviation of a total of 100 different forecasts, with soil
parameters and Miller scaling parameters sampled from the distributions
estimated with the standard EnKF (a, c¢) and closed-eye EnKF (b, d).
The dots show the measurements, the dashed line the lowest water content
measured during time period C, indicating the lower limit of the water
content range, for which the parameters are deemed valid.



5.4 Results

the standard EnKF describes the rain event in time period C better. The closed-eye
EnKF is not able to predict the water contents during rain events as, for both, local
non-equilibrium is expected, which is not incorporated into the parameter estimation.
For the standard EnKF only the rain event from time period C is partly incorporated
into the parameters and it predicts this rain event better. However, it fails to predict
the stronger rain event in time period B showing that the local non-equilibrium in
different rain events affects the dynamics differently. Hence, their effects should not
be incorporated into parameters, but rather considered separately. The uncertainties
are large for both EnKFs. The reason for this is the large uncertainty in the boundary
conditions.

Both predictions, with the standard EnKF and closed-eye EnKF', show an increase
in the water content for the topmost measurement location after a rainfall on day 6.
This increase is not observed in the actual water content measurements. It is an
indication, that the assumption of constant parameters is actually violated at this
time. A possible explanation is the formation of a surface crust at the bare surface
during the previous dry period. Such a crust can lead to surface runoff and prevent
infiltration. To investigate a possible effect on the predictive capabilities, 1 perform
another forecast for time period B and C, where this rainfall is removed from the
boundary condition (Fig. 5.12c and d). The altered boundary condition changes the
predictions quantitatively and the constant water content after the rainfall on day 6
is described better, especially by the closed-eye EnKF. However, the water content
is below the observed water contents in time period C. Consequently, the estimated,
heuristic material properties cannot be expected to hold in this range. The qualitative
statements about the predictive capabilities for the rain events, found in Fig. 5.12a
and b, are not altered through the modified boundary condition, though.

I emphasize that the standard EnKF excels if the goal is to guide some partly flawed
representation with a stream of data. However, if the additional goal to estimate
objective parameters for the representation within its range of applicability, then the
closed-eye EnKF must be used, at the cost of a lower heuristic performance.

The forecast during the dry time period D is depicted in Fig. 5.13a and b. Here, 1
used the final state of the last iteration in the standard EnKF and closed-eye EnKF
estimation as the initial condition. In the observed water content range both perform
well, but the closed-eye EnKF performs better than the standard EnKF. This is the
result that I expected. The closed-eye EnKF was able to estimate the believed true
material properties in the observed water content range and can make predictions in
this range as long as the basic assumptions of the Richards equation are met.

Both EnKFs can describe the topmost TDR better than the lower TDRs. This
is expected as well, since the first TDR measures the strongest dynamics and hence
dominates the parameter estimation. The small deviations in the other TDR sensors
show that the assumption of Miller similarity, including the linear interpolation in
between, is capable of improving the representation. It cannot represent heterogeneity
completely, however.

Below the observed soil water content I do not expect predictive capabilities, since
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Figure 5.13: Forecast at the measurement positions of the first layer during
time period B and C for the measurement based boundary condition (a, b)
as well as a modified boundary condition (c, d), where a single scaling
factor is estimated for the evaporation. The solid lines show mean and
standard deviation of a total of 100 different forecasts, with soil parameters
and Miller scaling parameters sampled from the distributions estimated
with the standard EnKF (a, c¢) and closed-eye EnKF (b, d). The dots
show the measurements, the dashed line the lowest water content measured
during time period C, indicating the lower limit of the water content range,
for which the parameters are deemed valid.
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the material properties are heuristic and hence cannot be applied outside of the cal-
ibrated range. Nevertheless, the closed-eye EnKF does describe the topmost TDR
acceptably. Again, there are deviations in the two lower TDR sensors, this time even
stronger. Again, I attribute this to the limited description of the heterogeneity with
Miller scaling.

I investigate the possibility of improving the results by estimating a single multiplica-
tive factor to the uncertain evaporation in (Fig. 5.13c and d). This factor improves
the estimation of the topmost TDR towards later times, but does not change the
qualitative results above.

5.5 Summary and discussion

In this chapter, I improved the representation of soil water movement in a 1-D soil
profile at the Grenzhof test site close to Heidelberg, Germany with an EnKF based on
water content measurements from TDR probes.

I assessed key uncertainties of this specific representation. These are initial condition,
soil hydraulic parameters, Miller scaling factors (describing small-scale heterogeneity),
upper boundary condition, and the local equilibrium assumption by the Richards equa-
tion. These are accounted for in the process. Other components are deemed to be of
lesser importance and are neglected. The most noteworthy neglected uncertainties are
hysteresis, violations of the 1-D assumption, and measurement biases, which might
affect the results.

A three-stage approach enabled the direct representation and estimation of all key
uncertainties, except for errors caused by the local hydraulic equilibrium assumption.
These intermittent errors were handled by introducing a closed-eye period. Through
an iterative approach within each stage the estimation could be performed on a single
rain event.

The first stage improves the prior. In the specific situation this is the initial water
content distribution and Miller scaling factors. A good prior for the Miller scaling
proved particularly beneficial, because during phases without dynamics, water content
distributions generated by heterogeneity cannot be distinguished from low hydraulic
conductivities.

The second stage iteratively applies a standard EnKF with an augmented state to
improve the representation. This augmented state consists of soil water contents, soil
hydraulic parameters, Miller scaling factors, and the upper boundary condition. This
approach partly incorporates possible errors in the dynamics into the augmented state
components. Due to the iterative approach, an intermittent violation the local equi-
librium assumption in the dynamics can be detected from fluctuations of parameters
which are assumed constant: during later iterations, the variations of the parameters
within an iteration are larger than the change from initial to final value. The changes
in the direction of the parameter update determine the closed-eye period.

The third stage applies a closed-eye EnKF that only estimates the full augmented
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states outside of the closed-eye period, when and where I assume the dynamics to
be correctly represented. Within the period, I “close an eye” and do not estimate
the previously varying parameters. In this way, the state is guided through this ill-
represented phase and the full estimation is picked up afterwards again.

The study shows that assuming diagnostic soil layers to be homogeneous is not suffi-
cient to represent heterogeneity. I was forced to also assume small-scale heterogeneity
by observations of consistently higher water contents at probes that are located higher
up within a soil layer. This emphasizes the role of heterogeneity, which must be con-
sidered more extensively in studies that rely on local measurements like the used TDR
measurements.

The simplified representation of heterogeneity by estimating Miller scaling factors at
measurement locations and interpolation between them was able to capture the main
features in this work. Miller scaling is not capable of representing the heterogeneity
completely, however. Predictions for the first layer show that measurements from
the topmost TDR. can be predicted better than the measurements of the second and
third TDR probes. I attribute this to limitations of the Miller scaling. The parameter
estimation is primarily influenced by the topmost TDR, where the largest water content
changes occur. Describing the other measurements within the same layer with the same
parameter set scaled by the Miller factor cannot fully describe the material properties.

The iterative standard EnKF successfully estimated soil parameters, Miller scaling
parameters and upper boundary condition. It was capable of predicting the rain event
that was used for its calibration well. However, it fails at the prediction of a different
rain event. The reason is the violation of the local equilibrium assumption by the
Richards equation during strong rain events. Non-represented errors are incorporated
into the parameters. Since these errors are different for different rain events (with
different strengths and different local non-equilibrium), they cannot be predicted.

The closed-eye EnKF prevents the incorporation of the model structural errors in
the parameters and is a generally applicable concept. In the presented study, it yields
better predictions during periods when the underlying assumptions are fulfilled: the
drying period after a rain event when there is local equilibrium, showing the strength
of the Richards equation there. As a consequence, however, its predictions are worse
during rain events, that violate the local equilibrium assumption.

During the closed-eye phase, a description of these uncertainties caused by the non-
equilibrium is desirable to be able to optimally guide the states through this phase.
In the presented case, the method performed well without such a description, as the
errors were small enough to be compensated by the covariance inflation.

The approach is capable of finding parameters closer to the believed true material
properties of the soil than a standard EnKF. Predictions during rain events would
require an additional representation of the fast dynamics during the event, though.
Still, the approach shows a way to limit the incorporation of errors into parameters
and is one step towards the goal of knowledge fusion.
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Soil water movement is a key process in several provisioning and regulating ecosys-
tem services. The representation of soil water movement exhibits uncertainties in all
model components. Soil hydraulic parameters describing the material properties in the
subscale physics are considered to have the largest uncertainties. Furthermore, e.g.,
the violation of the local equilibrium assumption of the Richards equation, hysteresis,
or unrepresented heterogeneity cause spatially and temporally varying model errors,
which are difficult to describe. Nevertheless, information about each model component
is available. This calls for knowledge fusion, the consistent aggregation of all available
information pertinent to some observed reality.

Data assimilation methods combine information from models and measurements into
an improved representation. They can — at least in principle — account for all uncer-
tainties, but require a quantitative description of these uncertainties. Data assimilation
methods are designed for state estimation, but have been extended to estimate further
components, like parameters through an augmented state. A popular and powerful
data assimilation method is the ensemble Kalman filter (EnKF).

Unrepresented model errors and a limited ensemble size can cause filter inbreeding,
which deteriorates the performance of the EnKF. Inflation methods can compensate
the unrepresented errors and prevent filter inbreeding. In this work, I proposed a
spatiotemporally adaptive inflation method, specifically designed for soil hydrology.
The inflation method is based on a Kalman filter acting within the EnKF. The method
is capable of rapid adjustments of inflation factors, treating each augmented state
dimension individually. This rapid adjustment is required due to temporally varying
model errors.

The use of the inflation method was demonstrated in combination with a damping
factor on a synthetic hydrologic example. The inflation method proved to be stable in
combination with parameter estimation. The performance of the estimation improved
and parameter uncertainty remained consistent. The method requires that model
errors can be represented through the augmented state. The example demonstrated
that the inflation even works for only weakly correlated parameters. 1 expect the
inflation method to generally improve data assimilation with the EnKF and to thus,
lead to better state and parameter estimations in soil hydrology.

With the goal of knowledge fusion, the EnKF was applied to a real world example.
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I assessed the key uncertainties for the specific hydraulic situation of a 1-D soil profile
with TDR-measured water contents. These key uncertainties are: initial condition,
soil hydraulic parameters, small-scale heterogeneity, upper boundary condition, and
the local equilibrium assumption by the Richards equation.

The EnKF with an augmented state was employed in three stages to directly rep-
resent and estimate all key uncertainties, except for the intermittent violation of the
local equilibrium assumption, which was bridged by introducing a closed-eye period.
First, prior uncertainties of initial condition and small-scale heterogeneity were re-
duced. Second, with a standard EnKF, water content states, soil hydraulic parameters,
small-scale heterogeneity and upper boundary condition were estimated based on the
TDR measurements during a single rain event. This was possible due to an iterative
approach within each stage. Based on the development of soil hydraulic parameters
during the estimation, times when the local equilibrium assumption did not hold could
be identified. Third, a closed-eye period was introduced to bridge these times. The
EnKF guides the water content states through this phase. The full estimation is only
performed outside of the closed-eye period.

Introducing the closed-eye period ensured constant parameters, suggesting that they
resemble the believed true material properties. This improves predictions during pe-
riods when the local equilibrium assumption is met, but consequently worsens pre-
dictions when the assumption is violated. A description of the dynamics during local
non-equilibrium phases remains an open challenge.

The situation of partial knowledge about each component in a representation is
typical in geosciences. I expect that the presented approach to use data assimilation
methods with the goal of knowledge fusion can be transferred to other representations,
for example a more complete description of interlinked processes in soils. However, I
also expect the closed-eye period to become predominant when underlying assumptions
are decreasingly met due to increasing complexity of the described processes. With
limited training data availability as a major challenge, machine learning could present a
possibility to improve the closed-eye period through: (i) identification of the closed-eye
period, (ii) an improved estimate of the uncertainties and (iii) eventually the prediction
of the response during the closed-eye period.
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A | Derivations and calculations

A.1 Analysis equations in the Kalman filter

This section shows the calculation to reach the analysis equations for the Kalman filter
in Sect. 3.2:

pluld) x exp [—; e — ] TPy [ — ] % d—HuTR'[d—Hul| (A1)
X exp [—; [u — ua]T Pa_1 [u —ual| , (A.2)
with
u, = ur + K[d — Huy] | (A.3)
P, = [1 — KH| Py, (A.4)
and »
K = PHT [HPfHT + R} . (A.5)

To show the step from Eq. (A.1) to Eq. (A.2) some preparatory steps are useful. First,
the Kalman gain (Eq. A.5) is rephrased:

K = PHT [HPfHT T R] -

= [Pi'+ H'R'H] o P!+ H'R™'H| PH" [HPH + R o

-1 -1
=[P’ +H'R'H|  [H'R'HPH" + H'R'R| [HPH + R]
-1
=[P’ +H'R™'H| H'R. (A.6)
The analysis error covariance matrix (Eq. A.4) is rephrased as well:

P, =[1 - KH]P;

1
P, [P' +H'R'H| H'R'HP,

[P;l T HTR—1H} - pr—l 1 HTR—1H} P;— HTR—1HPf}

[P +H'R'H] (A7)
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Inserting Eq. (A.7) into Eq. (A.6) yields,
K=P,H'R'. (A.8)

Note that, since P, is symmetric, K" = R"'HP,.
In a next preparation step, u¢P; L4+ d"R'H is expressed with u, and P,:

wP;!' +d'R'H = uP;' + 'R 'HP,P,’

(AZS) ufPFZL + dTKTP;1

A0 P! + dTKTP! + d"KTHTR'H

= uP;! +d"K"P;! + d"K"H'R™'H + o/ H" [R™'H - R™'HP, P,

= P!+ d"K'P; + d"KTH'R'H + o/ BT [R'H - K'P; |

P! + d"K'P; + d'KTHTR T H +
W H'R'H + o/ A K'P; ' + o/ H'K"H'R'H
= P!+l H'R™'H + [d — wH]" KTP;! + [d — uH]" KTH'R™'H

uf + [K[d-wH])"| [P;' + H'R™'H]

@3 T [P;l T HTR—lH}
a
(A.9)

(A:'7) ungl .
We can now transform Eq. (A.1) to Eq. (A.2),
1 1
pluld) o exp |~ [~ " P fu— u — | [d~ Hul R [d - Hu]] ,
with UTPf_l’U,f = u{Pf_lu
1
—~u” [P+ H'RH] w+ [uf 7+ d"R7H| u -

X exp
R U R
5u?Pf Yug — 5dTR 1d]
(1
cexp |—sul [Pr'+ H'R™H| u + [uf P!+ d"R™H]| u + const]
AT 71
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A9 1
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1 1
X exp {—UTPa’U, + uZP;lu — §uzP;1ua + const}
(A.10)
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A.2 Jacobian matrix in the inflation method

This section briefly shows the derivation of the Jacobian matrix Hy for the inflation

developed in this work (Sect. 4.1.1). Again, the entrywise product is denoted by o and
the entrywise square root of X by v/A:

(H/\)ij =

= a()\f ] l ZZ+ZZ m zk Pf) [()‘f)m]% [(Af)k];‘|

= 2 S (0, () (P g [0, (301

(Ap),
= [2(ha(A), " H),, (H), Py, - 5m-7[()‘f)’“]%1 +0 4[()‘97”]}]
[ ( )\( f))z] %:zk:( )lm( )zk( f)km2[ j[()\f)m]i kj [()\f)k]i
= [21007F (A X () (B, (Pr),, (M), (A11)
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