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que hastra lle dan de prestado

a beira por que camiña
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Abstract

Pyramidal cells of the CA1 area in the hippocampus are one of the most studied neurons

nowadays due to their role in memory formation or spatial navigation. CA1 pyramidal

cells possess an apical dendrite which receives excitatory synaptic input mainly from

CA3 axons.

To better understand apical synaptic input to these neurons, a new recording tech-

nique is proposed to measure excitatory synaptic input applied onto neurons. First, the

theoretical derivations are presented. Then, the technique is applied to measure CA1

pyramidal cells and finally a computational model studies in depth the influence of the

distance between synaptic input and recording on the estimation. The conclusion is that

the method cannot improve current experimental techniques.

In addition, in some cases the axon of a neuron stems out of a dendrite rather than

out of the soma. This particular morphology favors synaptic inputs onto this dendrite

to generate action potentials. A computational model is applied to characterize the

propagation of synapses from dendrites to the axon in a neuron with this feature. The

model shows that electronic propagation is responsible of this favorable action potential

generation.

Finally, extracellular stimulation of the axons of CA1 pyramidal cells generates ectopic

action potentials with a bimodal distribution of time to arrive to the soma. The com-

putational model suggests that this bimodal distribution is due to two different sites of

action potential initiation, namely the axon initial segment and the first node of ranvier.

xi





Zusammenfassung

Pyramidenzellen der Region CA1 des Hippokampus sind heutzutage durch ihre Rolle

in der Gedächtnisbildung oder in der rumlichen Navigation eine der meist untersuchten

Nervenzellen. Diese Neurone besitzen Fortsätze, die Dendriten, die sich vom Zellkörper

ausgehend verzweigen und Eingangssignale von anderen Zellen erhalten. Der apikale

Dendrit der CA1 Pyramidenneurone erhält vor allem erregende synaptische Eingangssig-

nale von der Region CA3 des Hippokampus.

Um die Eingangssignale von CA3 näher zu untersuchen, wurden exzitatorischen synap-

tischen Eingänge mit einer neuen Messmethode gemessen. Zuerst wurden die theoretis-

chen Ableitungen dargelegt. Auerdem wurden Messungen mit der neuen Technik an CA1

Pyramidenzellen durchgefhrt. Schlielich konnte mit einem Computermodel der Einfluss

des Abstandes des synaptischen Signals und der Position der Messung analysiert wer-

den. Zusammenfassend, konnte keine Verbesserung der momentanen experimentellen

Techniken durch die neue Methode gezeigt werden.

Das Axon von Nervenzellen stellt eine weitere Art von Fortsatz dar, der das Ak-

tionspotential als Ausgangssignal der Neurone erzeugt. Das Axon kann in manchen

Fllen, nicht wie üblich vom Zellkörper, sondern von einem basalen Dendriten ausgehen.

Diese spezielle Morphologie begnstigt synaptische Eingangssignale auf diese Dendriten

um ein Aktionspotential zu generieren. Mit Hilfe eines Computermodells wurde die

Weiterleitung der synaptischen Eingänge von Dendriten zum Axon in diesen besonderen

Neuronen charakterisiert. Das Model zeigte, dass eine elektrotonische Weiterleitung die

gnstigere Erzeugung eines Aktionspotentials verursacht.

Zuletzt wurden mit dem Computermodel ektopische Aktionspotentiale untersucht.

Extrazelluläre Stimulation des Axons von CA1 Pyramidenzellen generiert ektopische

Aktionspotentiale mit einer bimodalen zeitlichen Verteilung. Das Model zeigte, dass die

bimodale Verteilung auf zwei verschiedene Regionen der Aktionspotential Generierung

zurck zu führen ist. Die zwei Regionen sind das Axon Initialsegment und der erste

Ranviersche Schnürring.

xiii





1 Introduction

1.1 Hippocampal neuroanatomy

The hippocampus is a region of the mammalian brain located in the temporal lobe.

The name derives from its similarity to the seahorse (greek: hippokampos). This area

is generally associated with memory formation and spatial navigation. One of the first

studies that drew attention to the hippocampus and its implications in memory forma-

tion involved the patient H.M. (Scoville and Milner, 1957; Milner et al., 1968). Upon

removal of his medial temporal lobes, the patient experienced serious impairments in

creating new memories, despite keeping other cognitive functions.

The hippocampus is composed of two U-shaped structures named dentate gyrus (DG)

and the cornu ammonis (CA), which is further divided into four regions: CA1, CA2,

CA3 and CA4 (figure 1.1). Anatomically, the hippocampus shares with other cortical

areas the layer division. The dentate gyrus has a granule cell layer, where the somata of

the granule cells reside, and a molecular layer where dendrites are located. The cornu

ammonis is divided in stratum oriens, pyramidale, radiatum and lacunosum molecu-

lare. The hippocampus proper is adjacent to the subicullum, parasubicullum and the

entorhinal cortex. Collectively, these regions are denoted hippocampal formation.

The dentate gyrus is the main input site of the hippocampus. The most important

afferents come from the entorhinal cortex. Projections from layer II of the entorhinal

cortex arrive to the dentate gyrus through the perforant pathway. Another part of

the perforant pathway connects layer III of the EC to the CA1 pyramidal cells in the

stratum lacunosum moleculare. Furthermore, it receives more inputs from the septal

nuclei, hypothalamus and locus coeruleus.

The trisynaptic pathway is seen as the main information flow within the hippocampus.

This pathway starts in the dentate gyrus and projects to the CA3 via the mossy fibers.

Then, CA3 pyramidal cells project to the CA1 area through the schaffer collaterals

1



1 Introduction

CA1

EC

CA3 DG

sc

pp

mf

alveus

Figure 1.1: Overview of the hippocampal formation. The main regions marked in blue:
Entorhinal Cortex, Dentate Gyrus, CA3 and CA1. The main pathways
marked in red: perforant path, mossy fibers, schaffer collaterals and alveus.
Adapted from (Ramón y Cajal, 1911)

(figure 1.1). From CA1, the hippocampus projects back to the entorhinal cortex, with

proximal pyramidal neurons projecting to the medial entorhinal cortex and most distal

ones to the lateral entorhinal cortex (Andersen, 2007a).

The CA1 area is one of the most widely studied structures of the brain. After the

first recording of place fields (O’Keefe and Conway, 1978) from CA1 pyramidal cells, it

became clear that the hippocampal cells act as a cognitive map of the space.

The cornu ammonis is divided in pyramidal cell layer (stratum pyramidale) where the

somata of the pyramidal cells are found. Deeper than the stratum pyramidale is the

stratum oriens, where the basal dendrites and many interneurons are located. Deeper

than the stratum oriens in the CA1 area is the alveus, where bundles of pyramidal axons

project outside the hippocampus . Superficially to the pyramidal cell layer is the stratum

radiatum, where the apical dendrites are located. The most distal apical dendrites are

2



1.2 Biophysics of the neuronal membrane

located in a final layer, named stratum lacunosum moleculare (figure 1.2).

Pyramidal cells constitute the main excitatory population in the CA1 area. These

cells are surrounded by a rich diversity of up to 21 different types of interneurons with

different molecular markers and projections (Klausberger and Somogyi, 2008). The most

important ones are basket cells which provide perisomatic inhibition Also, axo-axonic

chandelier cells regulate spike initiation and timing projecting in the vicinity of the axon

initial segment (AIS).

As explained above, the laminar structure of the hippocampus separates input integra-

tion and output sites spatially. Furthermore, this laminar structure, together with input

synchronicity, allows the small post synaptic currents to collectively create a macroscop-

ically measurable field potential, which can be recorded extracellurarly. This local field

potential (LFP), contains frequencies of up to 400 Hz (Brette and Destexhe, 2012).

1.1.1 Pyramidal cells in the CA1 area

On the dawn of electrophysiology, most of the characterization and analytical modeling

of neurons was applied to motoneurons (Lorente De Nó, 1947; Rall, 1960). In recent

decades, CA1 pyramidal cells gradually replaced motoneurons as the archetypical neu-

ron to measure and model computationally (Spruston et al., 1994; Nevian et al., 2007;

Gasparini and Magee, 2006; Remy et al., 2009). One reason for this shift is that CA1

pyramidal cells have higher cognitive functions than the action potential (AP) relay of

motoneurons. Furthermore, the straightforward laminar structure of the hippocampus

allows to easily identify different targets, namely, basal and apical inputs. Basal den-

drites of CA1 receive mainly afferents from CA2 and interneurons. Apical dendrites

receive afferents from the CA3 in the proximal part (stratum radiatum) and from the

EC in the distal (stratum lacunosum moleculare) (figure 1.2).

CA1 pyramidal cells present a rich variety of ionic channels. The density of these

channels is sometimes distance dependent. For instance, there is an increase density

of A-type potassium channels (Hoffman et al., 1997) and HCN (Lörincz et al., 2002)

channels along the apical dendrite.

3
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100 µm

Figure 1.2: CA1 pyramidal cell and the laminar structure of the CA1 area. Adapted
from (Ishizuka et al., 1995)

Magnitude Typical units Description

cm nF membrane capacity
E mV electric resting potential
RT J/mol thermal energy
F C charge of one mol
P cm/s permeability of the membrane
I/i nA transmembrane current
gl µS leakage conductance
V mV membrane potential
El mV leakage reversal potential
λ µm length constant
gin µS axial conductance
gsyn µS maximum synaptic conductance
τ ms time constant

Table 1.1: Magnitudes described in the introduction

4



1.2 Biophysics of the neuronal membrane

1.2 Biophysics of the neuronal membrane

The cellular membrane is composed of a lipid bilayer. Its main components are am-

phiphilic phospholipids. These molecules possess a lipophilic tail and a hydrophylic

head. They aggregate forming two layers that are bound to one another at the lipophilic

tails, forming the outside surface of the cell. The hydrophilic, polar heads are present

at both sides of the membrane and are in contact with both the cytoplasm and the

extracellular space.
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Figure 1.3: Schematic of the cell membrane and basic circuit behavior. (A) Diagram
of the lipid bilayer with Na+ions in the extracellular space and K+ions in
the cytoplasm. (B) Electric circuit representation of the membrane, where
the membrane and its holes are represented by a capacitor and a resistor,
respectively.. (C) The membrane behaves as a RC circuit where the time
constant (τ = RC) sets the timescale at which the membrane relaxes to the
resting membrane potential. (D) After a current injection, larger (smaller)
values of the time constant make the membrane achieve slower (faster) the
new target potential.
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1 Introduction

As the heads of the lipids have a negative polarity, they can attract positive ionic

charges nearby. Thus, ions with opposite charges accumulate at either side of the mem-

brane. In electrical terms, the membrane is acting as a capacitor, i.e., a charge storage.

The amount of charge (Q) the membrane can store depends on the membrane capaci-

tance (cm) as well as the area (S) of the membrane and the difference of potential (V)

between both sides of the membrane:

Q = S × cm × V (1.1)

In addition to that, the membrane can host a variety of proteins which allow the

passive or active transmission of ions through the membrane. The most important is

the A-type potassium channels which are tonically open and conduct potassium outside

of the cell. Also, the Na+/K+-ATPase plays an important role. This enzyme uses

ATP and pumps 3 Na+ions to the extracellular space while pumping 2 K+ions into the

cytoplasm. Overall there is a net gain of charge in the outside of the cell, and thus the

inside becomes negatively polarized with respect to the extracellular space (usually set

as reference at 0mV ). Typical resting membrane potentials of neurons can range from

−80 to −60mV .

When there is a concentration gradient, two opposing forces are competing. First,

diffusion tends to equilibrate the concentration and thus diffuminate the gradient. On

the other hand, ions also react to an existing electric field and moving towards the

lowest potential. In equilibrium conditions, the two forces balance and there is no net

movement of ions. In such case, there is an equilibrium potential that balances the

gradient and is given by the Nernst equation:

Eion =
RT

F
ln

[in]

[out]
(1.2)

where R is the gas constant, T is the absolute temperature and F is the charge of one

mole of electrons. In the case of the membrane, there are several ionic species, each of

which has a different permeability through the membrane. For that case, the equilibrium

potential can be calculated from the Goldman-Hodgkin-Katz (GHK) voltage equation

(Goldman, 1943; Hodgkin and Katz, 1949), which applied to K+, Na+and Cl−yields

Em =
RT

F
ln

PK+ [K+]in + PNa+ [Na+]in + PCl− [Cl−]in
PK+ [K+]out + PNa+ [Na+]out + PCl− [Cl−]out

(1.3)

6



1.2 Biophysics of the neuronal membrane

where P represents the permeability of different species through the membrane. Plug-

ging into the equation the relative concentrations of these ions measured in the squid

giant axon yields a membrane reversal potential of −60mV (Sterratt et al., 2011).

One important issue of this view is that the current flowing depends not only on the

potential different between cytoplasm and extracellular space, but also on the relative

concentrations at both sites. Thus, current is not completely linear with respect to

potential and the membrane is not ohmic. Assuming that the concentration of both

sites does not change much and within the range where most physiological membrane

potentials occur (−100, 50)mV , the flow of current through the membrane can be further

simplified to follow Ohm’s law:

Im = gl(V − EL) (1.4)

where the current is proportional to the deviation of the membrane potential from the

equilibrium potential from equation 1.3. This proportionality, the leakage conductance,

accounts for the weighted permeability of all ionic species. This approximation is the

standard to apply to the membrane, as it enables to apply all linear circuit theory to

solve for the membrane potential. Nevertheless, attempts to characterize the full solution

of the diffusion-drift problem have been recently made (Pods et al., 2013).

1.2.1 General membrane equation

As stated above the hydrophilic nature of the lipid bilayer can be modeled as a capacitor

between the extracellular space and cytoplasm. Moreover, the permeability of certain

ions through the membrane due to gradients can be modeled as a conductance in parallel

with the capacitor. Thus, the membrane can be simply described in terms of an electric

circuit (figure 1.3 B).

cm
dV

dt
= gl(El − V ) (1.5)

or, equivalently,

dV

dt
=

(El − V )

τ
(1.6)
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1 Introduction

where τ = cm/gl is the membrane time constant of the neuron. For membrane po-

tentials below the leakage reversal potential (hyperpolarized), the rate of change of the

membrane potential (dV
dt

) is positive and thus the membrane potential will depolarize

until the equilibrium is reached. Conversely, for depolarized potentials dV
dt

is negative so

it will repolarize to El (figure 1.3 C). The time constant sets the time scale in which

this process occur, and can also be recorded as the time it takes to respond to a current

injection. Smaller values of τ will yield a faster charging time whereas bigger values of τ

will make the recharging slower (figure 1.3 D). Finally, the ratio between the membrane

potential shift and the injected current that causes the shift is the input resistance of

the neuron.

In summary, a circuit containing a resistor and a capacitor (RC circuit) can be used

to describe the membrane. From the capacitance and the conductance, two magnitudes

of physiological importance can be directly obtained: the time constant (τ = cm/gl) and

the input resistance (Rin = 1/gl).

1.2.2 Cable theory

A B

0 1 2i0 i2

ic ir

Figure 1.4: Cable theory schematic. (A) Spherical soma with a full dentrite (left), a
compartmentalized dendrite (center) and the equivalent circuit (right). (B)
Patch of a cylindrical dendrite of length Δx with axial currents at both ends
(i2 and i0) and resistive and capacitive transmembrane currents (ic and ir).

So far, only two points in space have been considered: The extracellular space and the

cytoplasm. The underlying assumptions have been that either a single compartment cell

8



1.2 Biophysics of the neuronal membrane

is considered, or both the extracellular space and the inside of the neuron are isopotential,

i.e., they have the same potential throughout their extension. Single compartment cells

are powerful and computationally efficient models for implementation in bigger network

models, although they reduce the whole behavior of a cell to a single equation (Dayan

and Abbott, 2005). When considering a cell with a given morphology, it is acceptable to

use a multicompartmental cell,assuming the extracellular space to be isopotential due

to its low resistance (Brette and Destexhe, 2012). However, the internal resistance of

the neuron must be considered.

Multicompartmental computational models recreate neurons as a set of cylindrical

patches of neuronal membrane joined by an internal resistance (Carnevale and Hines,

2006) (figure 1.4 A). Moreover, for simple geometries such as a uniform dendrite, an

analytical solution can be addressed. What follows is the general cable equation based

in the works of Wilfrid Rall (Rall, 1967; Rall, 1969) and can be found in many textbooks

(Johnston and Wu, 1995; Dayan and Abbott, 2005; Sterratt et al., 2011).

Let us first consider a patch of cylindrical dendrite of radius a and length Δx (figure

1.4 B). The patch has a resistance and capacitance per unit area rl and cm, respectively,

and an axial resistivity per unit length ra. Furthermore, being the dendritic diameter

small, it can be safely assumed that the patch is isopotential. The current that traverses

a short dendritic patch is given by Ohm’s law,

ΔV = ra
Δx

πa2
ia (1.7)

taking the limit for small displacements, we have

ia =
∂V

∂x

πa2

ra
(1.8)

which means that the current flows towards the site of the dendrite of lesser poten-

tial. The membrane is not impermeable to current flowing through. Rather, there is a

capacitive current and an leakage current through the membrane. By conservation of

charge, all currents from figure 1.4 B must equal to 0. Thus,

i2 − i1 = ic + ir (1.9)
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or, from equations 1.5, 1.8

∂V2

∂x

πa2

ra
− ∂V0

∂x

πa2

ra
=

∂V1

∂t
cm2πaΔx+ (V1 − El)

2πaΔx

rl
(1.10)

dividing everything by 2πaΔx we arrive at

a

2raΔx

�
∂V2

∂x

∂V0

∂x

�
= cm

∂V1

∂t
+

V1 − El

rl
(1.11)

the right side of the equation, in the limit for short patches is the second derivative of

the membrane potential with respect to position. Furthermore, to express the general

cable equation in the natural units of the system, the following substitutions can be

made: τ = cmrl, λ =
�

arl
2ra

to have

λ2∂
2V

∂x2
= τ

∂V

∂t
+ V − El (1.12)

this equation is the same as a well known physics problem, the heat equation. Al-

though it only applies to a uniform cylinder, many insights can be taken from general

dendritic behavior. First of all, in the case of equilibrium, all derivatives are 0 and

thus V = El, so the tendency of the neuron is to be at its resting membrane potential.

Furthermore, when a perturbation is produced, i.e., as post synaptic potential (PSP)

or an ionic current, it will propagate along the dendrite through time and space while

decaying. The scale at which it decays is given by the natural units of the system, the

length and time constants.

1.2.3 Active conductances

So far, only the capacitance and the tonic component of ionic permeability has been

introduced. Indeed, the membrane also possesses a rich variety of voltage and G-protein

coupled channels with very precise kinetics that account for the excitability of the mem-

brane.

The formalism introduced by Hodgkin and Huxley (Hodgkin and Huxley, 1952) was

the first attempt to describe the kinetics of voltage activated channels. In that study,

they described the ionic currents in terms of a reversal potential for each ionic species and

a variable conductance dependent on two gating variables: activation and inactivation

10



1.2 Biophysics of the neuronal membrane

(only to Na+conductance).

INa+ = m3h(V − ENa+) (1.13)

IK+ = n4(V − EK+) (1.14)

The gating variables are described by first order equation with voltage-dependent

time values and time constant. Finally, there is also a temperature dependent factor.

Altogether, these equations can describe the dynamics of action potential initiation and

propagation along the giant squid. Although initially these equations were only im-

plemented to fit experimental data, functional meaning was given later. For instance,

the delayed rectifier potassium channel is composed of four subunits, and all need to

be open in order for the channel to permeate. If n is the probability that a subunit

is open, and the opening of individual subunits is independent, then n4 is the proba-

bility that all four subunits are open simultaneously. The notion that the kinetics of

individual subunits and channels is independent allows for stochastic treatment. How-

ever, recently it has been proposed that cooperation of sodium channels can acceler-

ate onset of action potentials and thus process signals of frequencies up to frequen-

cies in the order of kilohertz (Naundorf et al., 2006; Tchumatchenko and Wolf, 2011;

Huang et al., 2012). Analogous studies have been made to characterize other ionic

channels (Hille, 2001).

Synaptic inputs are along with gap junctions the mechanisms by which neurons receive

inputs from other neuron. There is a big variety of neurotransmitters and receptors. The

two most common receptors are the glutamatergic AMPA receptor and the GABAergic

GABAA receptor. Their kinetics are again modeled by a conductance change and a

reversal potential which is close to 0mV for excitation and the reversal potential of

Cl−for inhibition. The conductance change is modeled by the sum of two exponentials,

one fast which is the opening and a slower decay.

The analytical solution of active conductances is intractable. However, the addition

of active mechanisms to computational models is straightforward and allows for com-

prehensive characterization of the behavior or neurons.
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1.3 Theoretical techniques

1.3.1 Computational Modeling

The main idea underlying the definition and applications of the instantaneous time

constant deals with how excitatory conductances change the passive properties of neu-

rons. The pioneer works of Rall (Rall, 1957; Rall, 1959; Rall, 1960) set the foundations

of electrical propagation of signals within neurons. This work has been followed my

many other who have contributed to the understanding of this field (Koch et al., 1983;

Koch et al., 1990; Segev and Rall, 1998; Shepherd et al., 1985).

In parallel of the passive understanding of the neurons the work of Hodgkin and Huxley

(Hodgkin and Huxley, 1952) laid the foundation of active generation of action potentials.

In their 1952 study (Hodgkin and Huxley, 1952), they characterized quantitatively for

the first time the generation and propagation of action potentials in the squid giant axon.

The analytical treatment proposed in their works opened the door to the characterization

of voltage dependent ionic channels and has been deeply influential over decades. Their

works have been followed my many others (see (Hille, 2001; Sterratt et al., 2011; Catterall

et al., 2012) for extensive details), which applied the formalism of Hodgkin and Huxley

to quantify the dynamics of voltage and concentration gated channels. Many of these

characterization were possible thanks to the technical breakthrough of the patch clamp

technique (Neher and Sakmann, 1976), which allowed for massive data recording on

single and multiple channels.

All the knowledge of passive and active components of neurons has been incorporated

into computational models, among which the NEURON environment stands out (Hines,

1984; Hines and Moore, 1997; Carnevale and Hines, 2006; Hines et al., 2009). This

framework has led to the construction of complex biophysical models on which state of

the art computational models have been built (Jarsky et al., 2005).

As the complexity of these models grows, it increases its capacity to imitate the

normal physiological functioning of the neuron. On the other hand, this complexity also

obscures the synthesis of the biophysical principles into magnitudes easy to interpret

and to measure experimentally.

In this aspect, several magnitudes have been proposed, like the shunting level (SL,

(Gidon and Segev, 2012)), passive normalization (Jaffe and Carnevale, 1999) or a rule

of non linear summation (Hao et al., 2009). All these magnitudes follow directly from
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theoretical principles and try to reduce it to a magnitude easy to interpret from a

physiological point of view and also easy to test experimentally.

(Gidon and Segev, 2012) have proposed the shunting level, with is defined as the

change in input resistance that an arbitrary synapse exerts onto a particular location.

Its value ranges between 0 (no effect) and 1 (completely cancels the input resistance

at that location). Using their formalism, they arrive to the conclusion that inhibitory

inputs are most effective when they are not located between the excitatory inputs and the

soma. This contradicts the intuitive notion that inhibition is most effective when located

between excitation and soma (on-path inhibition, (Koch et al., 1983)), yet conclusive

evidence about off-path inhibition is yet to come.

(Jaffe and Carnevale, 1999) have extensively studied the transfer between excitatory

synaptic inputs at their application site and a fixed point (soma in most cases). The

careful application of this formalism to different reconstructed morphologies has shown

that the synaptic processing and transmission may fall into two categories. In arbors

such as CA3 or dentate gyrus all inputs cause more or less the same depolarization in the

soma, independent on their origin. They name this feature as passive normalization. On

the other hand, in morphologies like in CA1, the somatic effect of synapses is location

dependent, with a strong decay with distance. It is known that active mechanisms can

counteract this passive decay (postulated in (Anderson et al., 1987), evidence in (Jarsky

et al., 2005; Nevian et al., 2007; Remy et al., 2009)).

1.3.2 Deep Learning

Deep learning has recently drawn attention as a set of tools to generalize the information

of a data set. The underlying idea is analogous to the operation of the cortex, where

the output of some areas project to others in a hierarquical process. Analogously, deep

networks are built of several layers, in which the the outputs are the inputs of the higher

layers. Each layer is composed of a set of neurons. As biological neurons, these neurons

receive inputs. This input is a set of real numbers as opposed to synaptic input. They

perform a linear operation with all this inputs and then perform a non-linear operation.

The most typical operations are sigmoids and rectified linear units (linear if the result

is greater than zero, zero otherwise). Figure 1.5 illustrates the flow of information in

a deep network. Starting with the input (marked in blue), it is fed to the first hidden

layer. There, a linear operation (matrix multiplication and bias addition) is performed,
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and output is passed to a non-linear operation (relu in the figure). The resulting output

is passed on to the successive layers until the final layer, the network output is reached.

Then the output is measured against a loss function and yields an error. The weights

of the network are recalculated so as to minimize the resulting error. This procedure is

analogous to plasticity and is repeated in an iterative process so that the final error is

minimized. In order to know how the weights of all the network are adjusted to reduce

the error, an optimizer is necessary. An optimizer is an algorithm that calculates the

synaptic weight update needed to minimize the loss.

The most straightforward optimizer is to calculate the total error for the whole dataset

and, as this error can be written analytically as a function of the weights, calculate its

gradient with respect to all the parameters. The gradient then indicates the direction

in which all parameters must change in order to reduce the error, and thus update them

following the direction of the gradient. How much are the parameters updated? This is

a hyperparameter given, denoted learning rate. Hyperparameters are those parameters

in a deep learning model that deal with how to regulate the parameters of the model

(weights and biases). The higher the learning rate, the more the weights are updated

after each run. However, given that the error is a complex function depending on many

parameters, updating too much from a single step may push the system away from the

global solution. On the other hand, too small updates may go go in the right direction

but the time taken for optimization might be too large. Thus, choosing the appropiate

learning rate is problem-dependent.

The procedure described above is named gradient descent. To apply it, the full dataset

needs to be passed through the network in order to calculate the gradient. This is not

computationally efficient. It has been shown that choosing a subset of the full data

and updating the weights more times is as reliable as with the full dataset, while being

computationally much faster. This is denoted Stochastic Gradient Descent (SGD). SGD,

however, does not work well with deep models for a number of reasons. The main one is

that the parameters of the outermost layer depend solely on the error, and they can be

well optimized. Nevertheless, the weights of the subsequent layers depend not only on the

error, but also on the weights of the layers between the given layer and the output. Thus,

the amount of error remaining to the deeper layers is decreasing. This is known as the

vanishing gradient problem (Hochreiter, 1998). To overcome that, more sophisticated

algorithms have been proposed in the recent years. For this study, I implemented two

state of the art optimizers, Adam (Kingma and Ba, 2014) and Adadelta (Zeiler, 2012)
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to train the artificial neural network.

1.4 Aims of the study

The following study has two main lines of research.

The first one is related to the propagation of synaptic currents from their input site,

the dendrites towards the soma. To measure the conductances due to synaptic input

in a patch clamp recording in the soma of neurons, I have developed a novel method

based on the measurement of the time constant as a function of time. The method is

based on the injection of a current of sinusoidal waveform and the application of the

RC circuit properties to the neuron. Based on it, a readout of excitatory conductances

can be made. Furthermore, as the synaptic conductance changes influence the time

constant, which is the timescale in which the membrane potential changes, its effects

on synaptic integration are explored. Finally, an extension of the method is applied to

estimate excitatory and inhibitory conductances during sharp wave ripple oscillations.

Secondly, two experimental findings on the nature of AP initiation in CA1 pyrami-

dal cells have been made in the lab of Prof. Dr. Andreas Draguhn . The first one is

characterization of neurons whose axon emanates from a basal dendrite, and the en-

hanced efficacy of that input towards AP generation. The second one is the existence

of a bimodal AP timing distribution for antidromic action potentials. Computational

studies where carried out to provide support for those experiments and further study

the underlying mechanisms of their synaptic propagation and action potential initiation.
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input
hidden layers
output

Figure 1.5: Schematic of general deep network. Inputs (blue) feed the first hidden layer
of neurons (top row in brown). The inputs are multiplied by a weight matrix
and a bias is added. The result is passed through a rectified linear operation
and this output is the input of the following layer. Layers may contain several
nodes and the network may have several layers (depicted as . . . in the figure).
The information traverses the network forward until the output is reached
(red). The output is fed to a loss function, and then is used to give feedback
to the network on how the weights and biases should be updated to minimize
the error in a backpropagating manner.
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2.1 Experimental Procedures

All experimental procedures were performed in accordance with the regulations of the

states of Baden-Württemberg and Nordrhein-Westfalen.

2.1.1 Preparation

Young adult (p21-28) male mice were used for the experiments. After being anesthetized

with CO2, they were beheaded and their head was kept in artificial cerebro spinal fluid

(ACSF, see table 2.1). The brain was carefully removed from the cranium and the most

rostral and caudal parts thereof were sectioned with a razor blade. After that, a thin

slice of the dorsal part was sectioned to ensure a flat surface. Then, the remaining brain

was set in a vibratome chamber VT1200S (Leica Camera AG, Wetzlar, Germany) .

Horizontal slices of 300µm width were sectioned in the presence of sucrose ACSF (table

2.1). This sucrose ACSF contains low sodium and greater concentration of sucrose to

avoid neuronal damage during slicing. After extraction, the slices were incubated for 30

minutes at 32oC and for a further 60 minutes at room temperature.

2.1.2 Patch Clamp Recordings

Patch clamp is a technique developed in the 70s by Neher and Sakmann (Neher and

Sakmann, 1976) to measure from a patch of membrane. By gently approximating a mi-

cropipette to the membrane and then applying a negative pressure, a patch of membrane

is trapped in the pippete (gigaseal) and an electrode inside the pipette can record the

channels inside it. The configuration used in the experiments was whole cell. In this

configuration, the membrane is opened and the pipette has direct electrical contact to

the inside of the neuron.
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ACSF Sucrose ACSF

[mM] [mM]

NaCl 124 60
KCl 3 2.5
NaH2PO4 1.25 1.25
CaCl2 1.6 1
MgCl2 − 5
MgSO4 1.8 −
NaHCO3 26 −
Glucose 10 20
Sucrose − 100

Table 2.1: Preparation recipes

[mM]

potassium gluconate 140
KCl 3
NaCl 4
HEPES 10
EGTA 0.2
MgATP 2
Na2GTP 0.1

Table 2.2: Intra solution recipe. pH was adjusted to 7.2 by addition of KOH.

Neurons were visually selected via confocal microscope (RIM Scope II, LaVision

Biotec, Bielefeld, Germany) and then patched with pipettes obtained from GB200F glass

tubes. The glass tubes were pulled with an DMZ universal puller (Zeitz Instruments,

Martinsried, Germany) , and had input resistances between 2 and 6 MΩ.

The patch pipette contained an intracellular solution (table 2.2). To visualize the

neuron, 150µM Alexa 488 (Thermo Fisher Scientific, Waltham, USA) was added to the

intracellular solution.

The signal was measured with an ELC03XS amplifier (npi electronic, Tamm, Ger-

many) . In order to obtain the greatest voltage and current ranges, the amplifying

factor was set to 50. Raw data was low pass filtered at 8 kHz.

Finally, raw data was acquired with Igor in its proprietary binary formats. The traces

were read and further processed with custom made python tools.

In order to isolate the effect of AMPA synapses, NMDA-r were blocked with 30µM
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Figure 2.1: Overview of patch clamp experiment. (A): Maximum projection of z-stack
of a patched CA1 pyramidal cell filled with Alexa 488 and and imaged with
a two photon microscope. Iontophoresis pipette was placed nearby an apical
dendrite. (B) Neuron’s response to constant current injections. (C) Neuron’s
response to a train of iontophoretic stimulations.

AP5 (Häusser and Roth, 1997).

Synaptic events where triggered by iontophoresis (Müller and Remy, 2013). This

technique consists of filling a pipette with glutamate and maintaining it inside the pipette

by an electric field. Then, a short squared pulse of the opposite polarity releases the

neurotransmitter with high spatio-temporal precision.

The iontophoresis pipettes (GB150-F (Science Products, Hofheim, Germany) ) were

pulled with a DMZ puller. In order to prevent glutamate spillage, the opening of the

pipette needs to be smaller than the resolution of the 60x microscope. Thus, quality

of the pipette needs to be assessed after the whole cell recording is established and the

iontophoresis pipette is approximated to the neuron. If the baseline noise is incremented,

there is glutamate spillage and the pipette is discarded.

The iontophoresis pipette was filled with a solution containing 150µM glutamic acid

and its pH was adjusted to 7.2 with NaOH. Then, it was filled with 150µM Alexa 488

be visible with the two photon microscope.
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The iontophoresis pipette was controlled by an MVCS-C-02 stimulator (npi electronic,

Tamm, Germany) . This unit has an embedded capacity compensation circuit to ensure

the application of square pulses despite the capacitive loss of the pipette. The amplitude

of the pulses was tuned to ensure an EPSP waveform of around 5-10 mV amplitudes

and a physiologically looking waveform.

2.1.3 Network oscillation recordings

Network oscillations were also recorded. These experiments, performed by Martin Kaiser

in the lab of Prof. Dr. Andreas Draguhn . Acute slices were prepared as described

above, with the difference of having a thickness of 450µm. They were incubated for two

hours in an interphase chamber and then the local field potential was recorded with an

extracellular glass electrode (tip diameter > 5µm; filled with ACSF and acquired with

an EXT-10-2F amplifier (npi electronic, Tamm, Germany) .

Additionally, intracellular recordings were measured in the vicinity of the extracellular

electrode with SEC-05 LX amplifier (npi electronic, Tamm, Germany) in bridge mode.

Data was acquired with Spike2 (CED, Cambridge, United Kingdom) and stored in its

binary format. Data was further analyzed and processed using custom made python

tools.

2.2 Computational Modeling

2.2.1 Theoretical model

To test the obtention of the instantaneous time constant in a simple, controllable en-

vironment, I created a single compartment passive neuron from the general membrane

behavior.

All the equations on the theoretical model were solved using the ode module of scipy

(Jones et al., 2001 ). They were solved using the Dormand-Prince method, which belongs

to the Runge-Kutta family of fourth order. The time step for this theoretical model was

set to dt = 0.1ms, which corresponds to a frequency of 10 kHz. Although this was

smaller than the experimental sampling rate, it was more than an order of magnitude

higher than the fastest process to occur in the cell (AMPA decay constant, 5ms (Spruston
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parameter value description

gl 0.01 µS leakage conductance
cm 0.2 nF capacity
gin 0.5 µS axial conductance
El −65 mV leakage reversal potential
gsyn 0.005 µS maximum synaptic conductance
τ1 0.2 ms synaptic rise time
τ2 2 ms synaptic decay time

Table 2.3: Theoretical model parameters

et al., 1995)). Furthermore, the absence of noise helps to keep the traces stable. The

comprehensive parameter values are given in table 2.3.

Synapses were modeled with a double exponential (equation 2.1), where τ1 and τ2 are

the rise and decay times, respectively, and K is a normalization constant so that gsyn,max

is the maximum conductance. This only applies for positive times. Otherwise, it is set

to zero to avoid the exploding exponential.

gsyn(t) = gsyn,max ×K ×
�
e−t/τ2 − e−t/τ1

�
(2.1)

Two computational models of CA1 pyramidal cells were used for this study. The first

one comes from a reconstructed CA1 pyramidal cell extensively used in the literature

(Jarsky et al., 2005) and the second one is a simplified CA1 pyramidal cell designed by

Dr. Alexei Egorov .

All simulations were carried out with the NEURON simulation environment (Hines

and Moore, 1997; Carnevale and Hines, 2006). The NEURON version 7.4 was compiled

from source and its python module was used ((Hines et al., 2009)) for simplicity of inte-

gration with further stages of analysis. Data coming from the simulations was processed

and analyzed with tools from the scipy stack (Jones et al., 2001 ) trough custom-made

applications. Finally, figures were designed and implemented with the matplotlib plot-

ting library (Hunter, 2007). Most of the simulations where carried out in a Core i7

desktop computer with 16GB RAM.

The time step for the simulations was set to dt = 0.01ms. This time step is an order

of magnitude higher than the theoretical model to allow higher precision in highly non

linear calculations of the ionic channels. Although a variable time step might have been

computationally more optimal, the duration of the simulations was not impractically
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large (see below), and having a constant time step facilitated the implementation of

trace-wide operation (i.e., calculating the derivative, or locating and comparing onsets

or peaks of APs).

2.2.2 Computational model: Instantaneous time constant

B

100 µm

1
0

 µ
m

A

100 µm

Figure 2.2: Schematic of computational cells. (A) Model of AcD cell (adapted from
(Thome et al., 2014). (B) Model of the cell used in the instantaneous time
constant and in the ectopic simulations adapted from (Jarsky et al., 2005).

Following from the theoretical single compartment model described above, a more

complex model was needed to study the effects of post synaptic potential propagation

and effects of active conductances of CA1 pyramidal cells.

Morphology and biophysics

The morphology used was the same as in (Jarsky et al., 2005). Regarding the biophysical

tuning, the model mostly followed the parameters from the original model. This model

consists of three types of ionic channels: the fast sodium channel, the delayed-rectifier

potassium channel and the A-type potassium channel. The latter one has two variants,

22



2.2 Computational Modeling

the proximal and the distal . The distal one is only present in the apical dendrite and

increases with the distance to the soma (Hoffman et al., 1997).

Sodium channel density was increased (to 0.24S/cm2) in the AIS to ensure this is the

AP onset site. As this model is able to produce dendritic spikes, sodium channels were

reduced on the dendrites so as not to interfere with the passive propagation of EPSPs

and add a further source of variability. Further, both the capacitance in the myelinated

parts of the axon was reduced (from 0.75 to 0.04 µF/cm2) to model the insulation of

the myelin sheath. Comprehensive information about the biophysics is shown in table

2.5

Simulation settings

Excitatory synapses were implemented with a double exponential (τrise = 0.2ms, τdecay =

2ms) and reversal potential of 0mV . The peak conductance was 0.2nS). The number of

synapses was adjusted to have a peak EPSP amplitude in the absence of the sinusoidal of

5mV or, if that amplitude was not reached, 257 synapses. A sinusoidal current injection

of 10Hz frequency and amplitude of 10pA was applied. The same synaptic input was

elicited for 10 uniformly distributed phases. Further, for comparison, the soma was

clamped to −70mV and the same synaptic input was elicited in the absence of the

sinusoidal current.

For the double input experiments, the same sinusoidal input was applied. A target

apical dendrite was chosen and it received 20 synaptic inputs. Along this input, another

input was chosen from the same dendrite, a nearby dendrite and an apical dendrite. The

timing between both inputs was set between 0 and 10ms in a logarithmic scale.

2.2.3 Computational model: Axon carrying Dendrites

It has been shown (Thome et al., 2014) that in 50% of CA1 pyramidal cells, the axon

stems out not from the soma but from a dendrite, the Axon carrying Dendrite (AcD).

Therefore, a model to mimic this behavior was constructed.
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Figure 2.3: Calculation of AP threshold. In accordance to the experimental data, it was
calculated as the first peak of the second derivative (D, red square). Compare
the point with the membrane potential (A), phase plot (B) or first derivative
(C).

Morphology and Biophysics

A simplified model of a CA1 pyramidal neuron was employed. It consists of a somatic

compartment (30µm diameter), a single apical dendrite (400µm length, 2− 4µm diam-

eter) branching into two tuft dendrites (150µm length, 2µm diameter) and two basal

dendrites.

The first basal dendrite, AcD , has the axon stemming out of it at a variable distance,

axon distance. The second, nonAcD, has the same morphology as the AcD and has a

branching dendrite similar to the axon to keep the electrotonic symmetry between AcD

and nonAcD.

On the basal area, there are two basal dendrites. The first one, the AcD (150µm

length, 1.4µm diameter), has the axon attached to it. The distance to the soma at

which the axon is located is the main independent variable of this set of simulations

and is denominated axon distance. As a control, there is another basal dendrite, the

nonAcD, which has the same length and diameter as the AcD and acts as a control

for synaptic inputs forced to be propagated through the soma. In order to ensure
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2.2 Computational Modeling

electrotonic symmetry, the non AcD has a dendritic branch connected to it at the same

distance as the axon, and whose length is (100µm).

The axon is divided into two compartments, the AIS (33µm length, 1.22µm diameter),

and the rest of the axon. (500µm length, 1.2µm diameter).

The compartments are divided into segments for numeric integration of the equations.

A typical segmentation is to make the length of the segments one order of magnitude

smaller than the length constant of the compartments (Carnevale and Hines, 2006),

which was used throughout most of the neuron. Still, this segmentation does not properly

resolve high frequency events (i.e., the rise time of the synapse) (Carnevale and Hines,

2006). To avoid that, I set a segment size of 0.5µm on the 5µmu closest to the synaptic

application site.

The biophysical properties were taken from (Cutsuridis et al., 2010; Hu et al., 2009).

All used parameters are included in table 2.4. The most salient characteristics is that

this model has an increased sodium channel density in the AIS, 0.5S/cm2, to ensure

these unit to be the initiation site of the AP (Yu et al., 2008). Comprehensive details

are given in table 2.4.

Excitatory synapses were modeled via 2 exponentials (τrise = 0.5ms, τdecay = 3ms)

and reversal potential of 0mV . Low maximum conductance values were used (5pS) to

allow for a continuum of inputs.

Simulation settings

In the first set of experiments, the axon start was set at distances from 0 to 15µm in

steps of 0.5µm. For each distance, the minimum input to elicit an AP was calculated.

Inputs were AcD and nonAcD inputs at 50µm from the soma and constant current

injection into the soma. For comparability, inputs appear normalized in the figures with

respect to their values with no axon distance in the first experiment: 5149 synapses and

0.3735nA. For all inputs, the threshold of AP initiation was calculated (figure 2.3) like

in the experimental data (Thome et al., 2014). The threshold was defined as the first

local maxima of the second derivative, which accounts for the maximum acceleration of

the change of membrane potential.

To model the effects of the electrotonic distance, the axial resistance was reduced pro-

portionally to the increase in the axon distance (Baranauskas et al., 2013). Perisomatic

inhibition was implemented by increasing chloride conductance to account for 30% re-
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basal soma AIS axon radTprox radTmed radTdist lm

L(µm) 150 30 33 500 100 100 200 150

diam (µm) 1.40 30.00 1.22 1.20 4.00 3.00 2.00 2.00

leak resistivity (Ωcm2) 25000 25000 25000 25000 25000 25000 25000 25000

Cm(µF/cm
2) 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0

Ra(Ω/cm) 200 200 200 200 200 200 200 200

Na+ conductance (S/cm2) 0.0025 0.0500 0.5000 0.0700 0.0070 0.0070 0.0070 0.0070

delayed rectifier K+ conductance (S/cm2) 0.0009 0.0100 0.0200 0.0140 0.0009 0.0009 0.0009 0.0009

proximal A-type K+ conductance (S/cm2) 0.0256 0.0075 - - 0.0150 - - -

distal A-type K+ conductance (S/cm2) - - - - - 0.030 0.045 0.049

K+(Ca2+) sAHP conductance (S/cm2) 0.0005 0.0005 - - 0.0005 0.0005 0.0001 -

medium AHP K+ (BGP) conductance (S/cm2) 0.0330 0.0908 - - 0.0330 0.0330 0.0041 -

M-type K+ conductance (S/cm2) - 0.0012 0.0012 - 0.0012 - - -

HVA L-type Ca2+ conductance (S/cm2) 0.00003 0.00070 - - 0.00003 0.00316 0.00316 -

LVA T-type Ca2+ conductance (S/cm2) 0.0010 0.0001 - - 0.0001 0.0001 0.0002 -

HVAm R-type Ca2+ conductance (S/cm2) 0.00003 0.00003 - - 0.00003 0.00003 0.00006 -

Ih conductance (S/cm2) 0.00002 0.00002 - - 0.00005 0.00005 0.00020 0.00035

Table 2.4: Parameters used in AcD model.
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2.2 Computational Modeling

duction of input resistance. A more distal location (90µm from the soma) was chosen to

elicit dendritic spikes. The inputs were normalized to the value of the AP experiments.

2.2.4 Computational model: Ectopic AP generation and

propagation

Ectopic action potentials are action potentials whose origin is not somatic depolarization

and thus, they lack the somatic predepolarization that usually precedes APs (Bähner et

al., 2011). They are believed to be of axonic origin and gap junctions play a role on its

generation (Vladimirov et al., 2013). This model is meant to study how synaptic input

can affect the generation of AP at remote locations, not only in the AIS, but also in the

middle of the axon, at the nodes of ranvier.

Morphology and Biophysics

As with the τ� model, the reconstructed CA1 pyramidal neuron from the Spruston

Lab (Jarsky et al., 2005) was adapted. Here, to fully study the mechanisms of AP

propagation, we redesigned the axon to fit our experimental data. First, the AIS was

set to have a length of 33µm (Thome et al., 2014). The AIS is followed by a piece

of unmyelinated axon of 100µm. After that, the myelinated part starts, with nodes of

ranvier separated 100µm each, in accordance with experimental observations in the lab

(Dr. Alexei Egorov , data not published). Axon diameter was set to 0.9µm. This is in

accordance with the literature and produced comparable node-soma propagation delays

to our experimental data.

Excitatory synapses were designed as in section 2.2.2 and they were randomly applied

to the oblique apical dendrites. Inhibitory synapses were used with reversal potential of

−75mV . They were modeled with a double exponential (τrise = 2ms and τdecay = 18ms

and the maximum conductance was set to 0.2nS.

Simulation settings

The alvear stimulation was simulated by a current between two points separated 75µm,

mimicking the two tips of the stimulation electrode in the experiments. This current

generated distance dependent dipolar field and this field caused a depolarization in
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soma apical basal AIS non myelinated axon myelinated axon node

rm (Ωcm2) 40000 40000 40000 40000 40000 40000 50
cm (µF/cm2) .75 .75 .75 .75 .75 0.04 .75
Ra (Ωcm) 200 200 200 200 200 200 200
gNa (S/cm

2) .04 0.004 0.004 0.24 0.04 0.0008 3
gKdr (S/cm

2) 0.04 0.04 0.04 0.04 0.04 0.04 0.04
gKap (S/cm

2) 0.048 0.048 0.048 0.048 0.048 0.096 0.096
gKad (S/cm

2) - 0.048 - - - - -

Table 2.5: Parameters for τ� and ectopic model

the membrane. The first simulations dealt with the characterization of that alvear

stimulation and AP generation.

The second run of simulations consisted on taking a constant alvear stimulation

strength 1pA for late spikes and 1.6pA for and run it against changes of input of biophys-

ical parameters to see the transition from one kind of spike (early or late, see results)

to the other. In that manner, somatic current injection, excitatory input, perisomatic

inhibition and change of AIS sodium channel density were performed.

Finally, to quantify the modulation effect of synaptic or current injections, simulations

were run in the absence of other input. Then, the minimum input necessary to make the

transition between no AP and late spike or between late and early spike were calculated.

This was used as the normalization constant for other inputs. Then, somatic current

injection, or post synaptic potentials were applied, and the minimum input to ellicit the

same transition was calculated.
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3 Results

3.1 Theoretical derivation of the instantaneous time

constant

‘

This chapter describes the theory by which the instantaneous time constant can be

calculated and, from it, the kinetics and amplitude of excitatory synaptic inputs can be

calculated.

3.1.1 Passive cell with excitatory input

As seen in section 1.2.1, the membrane can be described by an electric circuit composed

of a capacitance in parallel with a resistor (figure 1.3 B). The behavior of an active

element (i.e., synapse or ionic channel) can be model by another conductance in parallel

to these two. This active conductance may be dependent on membrane potential or

ionic concentration. Thus, in the case of an excitatory synapse, the equation becomes

cm
dV

dt
= gl(El − V ) + gsyn(t) (Eexc − V ) (3.1)

here, Eexc stands for the reversal potential for excitatory synapses. As this is equal

to 0mV , it can be taken out of the equation. Here we can see three currents that must

be balanced. The first one is the tonic leakage current (gl(El − V )) that sets the resting

membrane potential, the second is the synaptic current, whose reversal potential is zero

(gsyn(t) (Eexc − V )). Finally, the capacitive current (cm
dV
dt

) accounts for the movement

of ions that the other two cause. Without synaptic conductances, the time constant was

immediate (τ = cm/gl). Now let us find the analog of the time constant in the presence

of a time varying excitatory conductance. If we combine together both the leakage and
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Magnitude Typical units Description

cm nF membrane capacity
E mV electric resting potential
RT J/mol thermal energy
F C charge of one mol
I/i nA transmembrane current
gl µS leakage conductance
V mV membrane potential
El mV leakage reversal potential
λ µm length constant
gin µS axial conductance
gsyn µS maximum synaptic conductance
τ ms time constant

Table 3.1: Magnitudes described in the introduction

the synaptic current to make it resemble equation-1.6, we have

dV

dt
=

El × τ�
τ
− V

τ�
(3.2)

where

τ� =
τ

1 + gsyn(t) /gl
(3.3)

is the instantaneous time constant. At any time point, the membrane has a time

constant that depends of the conductance state at that very instant. This time constant

depends not only on the resting properties of the membrane (cmand gl) but also on the

opening of the synaptic receptors.

When there is no synaptic input, gsyn(t) = 0, there is no influence of transient

conductances on the instantaneous time constant and thus τ� equals τ . Equation 3.2

becomes equation 1.6. On the other hand, when there is synaptic input, there is a

positive value of gsyn(t) . As this conductance is in the denominator of the definition

of the instantaneous time constant, the value of τ� decreases. This decrease has two

consequences in the equation. Firstly, the target potential (towards which the membrane

potential is evolving, i.e., Elτ � /τ) is not El but tends towards the synaptic reversal

potential, 0 mV. This target potential is closer to 0mV the greater the synaptic input.

Secondly, the characteristic time at which this process occurs is now given by τ� . This
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3.1 Theoretical derivation of the instantaneous time constant

means that the activation of synaptic input not only changes the target equilibrium

value of the membrane potential but also, as the time constant of the membrane has

been reduced, it evolves faster towards this target potential.

As the relationship between τ� and gsyn(t) is straightforward (equation 3.3), if we can

measure τ� as a function of time during depolarization due to synaptic input, we could

determine gsyn(t) without the obligation of fixing a neuron to a holding potential, and

measuring the current, like in voltage clamp recordings. This has the difficulty that

synaptic conductances have a small decay constant (for example ∼ 5ms for AMPA

(Spruston et al., 1995)) in comparison with the time constant of the neuron (∼ 30mV

(Wheeler et al., 2015)). Therefore, if tried to determine the instantaneuous effects of

synapses to the time constant, they will be blurred by the slower dynamics of the resting

state membrane time constant (Borg-Graham et al., 1998; Häusser and Roth, 1997).

We have seen that the membrane has a capacitive current, a leakage current and a

synaptic current. We can also add fourth current to the equation. This current can

have the meaning of a current coming from a nearby location in the neuron (see in the

introduction) or from a patch pipette in current clamp. The equation-3.4 has now a

more general view and can be used to calculate the instantaneous time constant

cm
dV

dt
= gl(El − V ) + gsyn(t) (Eexc − V ) + Iinj (3.4)

3.1.2 Determination of the instantaneous time constant

The question that arises is how we can calculate the instantaneous time constant (and,

thus, the excitatory conductance) from equation-3.2. The first step is to rearrange

equation 3.4 so that it includes the instantaneous time constant:

dV

dt
=

El

τ
+

I

cm
− V

τ�
(3.5)

here, we have two magnitudes that can be obtained directly from an experimental

recording: The membrane potential, V , and the injected current, I. The derivative of the

membrane potential, dV
dt

can, in turn, be obtained indirectly from V . In addition, there

are three parameters, namely El

τ
, cm and τ� . The first one, El/τ includes the leakage

reversal potential and the time constant and the second, cm, is the capacitance of the

neuron. Together, these parameters represent the static components of the membrane
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equation and are not expected to change throughout the recording. The third one is the

instantaneous time constant, τ� , and, in contrast to the previous ones, it is dependent

on time. From equation 3.3, the change of excitatory conductance can be inferred from

the change in τ� .

From equation 3.5, the parameters (El/τ , cm, τ�) could be obtained from the recorded

magnitudes, (I, V , dV
dt

). As both the recorded magnitudes and the instantaneous time

constant are time dependent, it must be applied independently to each time point. Thus,

we have three unknowns for three known values and this yields no algebraically unique

solution. A further refinement is that knowing that the two first values (El/τand cm)

are common to all time points, we could try to solve them all simultaneously. In this

case, for Nt time points (the whole recording), we would have Nt+2 values to calculate,

and Nt equations. Again, this case yields no unique solution.

In summary, the problem is that more information is needed per time point than what

we currently have. The solution is to make several recordings with a small perturbation

added. This perturbation needs to provide some variability to the recordings so that

it enables to determine the parameters from equation 3.5 but it remains subtle enough

so we can still assume that the physiological state remains the same across trials (the

receptors behave the same way).

The first possible solution would be to have several recordings of the same event.

Sadly, those recordings alone would provide essentially the same information (albeit

recording noise), and thus would be useless. Therefore, some kind of perturbation is to

be added in a way that changes the values of our recording measurements (I, V , dV
dt

) to

ensure enough variability to have several different equations that can be simultaneously

solved and still subtle enough so that every trial can be considered equivalent to the rest

(i.e., neglect effects of openness of voltage gated ion channels or recording noise).

The simplest perturbation would be to add small current steps ΔI for every trial,

which by Ohm’s law would shift the resting membrane potential From this point, we

could then estimate the conducting changes by recording several synaptic events with

different current injections and calculating the slope of the I − V curves for every time

point. Despite its theoretical feasibility, this approach has three main drawbacks. First

of all, we can see from 3.6 that the current step makes no change in derivative of the

membrane potential. As all dV
dt
are the same for every trial, we are disregarding one third

of the total information we can have. Secondly, in an experimental setting, we need to

account for recording noise, thus, we may only have current steps that ostensibly make
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3.1 Theoretical derivation of the instantaneous time constant

changes greater that this noise. Finally, if we are to reliably estimate the conductance,

we would need a higher number of points in the I − V . As this can only be achieved

by going further away from the starting point, at some point our assumption that our

recordings were in the same electrophysiological state will hold no more. A similar

approach has been tried (Borg-Graham et al., 1998) (see discussion).

Instead, a dynamic perturbation is preferred. This allows to remain within a small

membrane potential range, as well as using the full variability of the derivative of the

membrane potential. From circuit theory, it is known that dynamic perturbations lead

to transient states that are difficult to solve or track analytically. There is however one

exception: periodic signals. When a linear system (and we assume the neuron to be such)

is perturbed with a periodic signal, there is a decaying transient state (in this case, its

amplitude decays with the time constant of the neuron) plus a static/equilibrium state

which oscillates with the same frequency as the input signal.

From fourier analysis, it is known that every periodic signal can be decomposed as a

sum of sinusoidals of the same frequency (main one) and its multiples. For simplicity,

let us choose a pure sinusoidal wave as the injection current, in exponential notation

I = I0e
ıωt1, where ω is the angular frequency (ω = 2πf). Then, the transformation

results in

I = I0 + Iampe
ıωt (3.6)

V = V0 + Vampe
ıωt+φ (3.7)

dV

dt
= ıωVampe

ıωt+φ (3.8)

(3.9)

the phase shift between the current and the membrane potential is due to the impedance

of the membrane. This impedance depends both on the capacitance and the conductance

of the membrane and can be summarized by

tanφ = −ωτ (3.10)

where the minus sign means that the membrane potential is delayed with respect to the

1in exponential notation, sine, cosine and exponential by eıx = cos(x) + ı sin(x)

33



3 Results

�� � �� ��

��

�

��
��
��

�
�

�� � �� ��

������

��

��

��

�
��
�
�
�

�� � �� ��

���

���

���

���

�
�
��
��
��

�
��

�
�

������
������������

������

��
��

��

�
�
��
����

�
��

�
�

���
���
���

�� � �� ��

������

�

�

��

��

��
�
�
�

� � � �� ��

������

���

���

���

���

�
�
��

�
��
�
�
�

� �

� �

� �

Figure 3.1: Calculation of τ� on a model cell. (A) Multiple sinusoidal current injections
(grey) and average (blue). (B) Membrane potential response to current in-
jection and EPSP (each trial in grey, average in blue). (C) Derivative of
membrane potential in (B). (D) I-V-dV/dt phase space of two trials (ver-
tical bars in A-C). (E) Calculated τ� using the procedure described in the
text. (F) Normalized waveforms of V, dV/dt, τ� and gsyn(t) .

current. This phase shift is a well known result from circuit theory and electrophysiology

and can be also used to estimate the time constant of a membrane (Van Oosterom et al.,

1979). More generally, the ratio between Vamp and Iamp is given by the full impedance

Vamp

Iamp

=
1/gl

1 + ıωτ
(3.11)

which is the low pass filter representation of the membrane. The low pass filtering

already suggests to avoid high frequencies in our injection current, as the denominator

of the impedance will be big and thus the membrane potential response to the injected
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3.1 Theoretical derivation of the instantaneous time constant

current will be smaller.

Another advantage of using a sinusoidal current is that phases are uniformly dis-

tributed, their average is zero. In this way, we may record the trials with the sinusoidal

perturbation to further apply our analysis, and then average them out to remove this

oscillatory part.

In summary, we have chosen to inject a sinusoidal current (figure 3.1 A) via our

patch pipette. The amplitude of this perturbation is small to avoid a change in the

electrotonic state of the neuron. This procedure is repeated several times with the

phase of the sinusoidal with respect to the synaptic input being shifted. In this manner,

the sinusoidal oscillation. The voltage response to the combined oscillation and synaptic

input has the shape of an EPSP distorted by the sinusoidal oscillation (figure 3.1 B). Due

to the uniform distribution of the phases, averaging the trials removes the oscillatory

component and yields the EPSP waveform (blue trace in figure 3.1 B). Moreover, the

derivative of the membrane potential also has the oscillatory component of the sinusoidal

plus a part that accounts for the conductance change (figure 3.1 C).

To obtain the instantaneous time constant out of this dataset, each time point is

analyzed separately. For each time point, each trial has different values of membrane

potential, injected current and derivative due to the shift in phase. A time point repre-

sented in the phase plane (I, V , dV
dt

) forms an ellipse (figure 3.1 D). The inclination of

this plane is given by the parameters (El/τ , cm, τ� ).

In order to obtain the values for τ�, and the static parameters, we apply a minimization

to equation-3.5. As this equation is linear on all parameters, we can apply linear least

squares. Moreover, given that two of the parameters, El/τ and 1/cm, are independent of

time, we can use the same value for them throughout the whole time window. Thus, the

quantity to be minimized is shown in equation-3.12, where i stands for trials of different

phase, and j refers to the time points. In our case, cj = −1/τ � j is the parameter we

are most interested in, and a = El/τ and b = 1/cm.

S2 =
�

ij

�
dV

dt ij
− a− bIij − cjVij

�2

(3.12)

Using this linear fit, a value for the instantaneous time constant can be recovered

for each time point (figure 3.1 D). Let us carefully examine the evolution of τ� for

our excitatory input model (figure 3.1 E. Prior to the onset of the synaptic input, the
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instantaneous time constant is equal to the resting state time constant, namely the 20

ms that were given a priori for this parameter. Furthermore, at the onset of synaptic

input, the value of the instantaneous time constant is reduced, indicating that there has

been a conductance increase. After the peak is reached, τ� decays back to its resting

state value, i.e., the normal time constant. As the relationship between τ� and gsyn(t) is

known and straightforward (eq-3.3), we obtain the waveform of the synaptic receptor

opening, which is a perfect correspondence to the synaptic kinetics given a priori (figure

3.1 F).

Furthermore, with this framework, one insight of the passive properties becomes clear.

Excitatory synaptic input is not only causing a depolarization, but also changing the

time constant that the neuron has exactly when the conductance is active. In the case

of inhibitory input, the non-linearity of shunting is well known (Rall, 1967; Dingledine

and Langmoen, 1980). In this case, the opposite feature is produced, that the change in

time constant comes along with the change of the effective reversal potential, and thus

it helps to integrate the signal towards more depolarized values.

In conclusion, I have here derived a new magnitude, the instantaneous time constant,

τ� , which is a function of the total and time dependent conductance of the neuron. It

is related to the time-relaxing dynamics of the membrane and thus through sinusoidal

perturbations upon the neuron, we can obtain a readout of its excitatory conductance

change.

3.1.3 Extension to inhibitory synaptic input

After the application of the instantaneous time constant to measure excitatory conduc-

tances, the next immediate question is whether this approach can also be used analo-

gously to calculate inhibitory conductances along with excitation. Adding an inhibitory

current to equation 3.4 yields

cm
dV

dt
= gl(El − V ) + gexc(t) (Eexc − V ) + ginh(t) (Einh − V ) + I (3.13)

as before, Elis the resting membrane potential (or close to it), around −60mV and

Eexcis the excitatory synaptic reversal potential, ∼ 0mV . As opposed to excitation,

the inhibitory reversal potential is rather close to the resting membrane potential (∼
−70mV ), mostly due to the chloride reveral potential (Huguenard and Alger, 1986).
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3.1 Theoretical derivation of the instantaneous time constant

Here, gexc(t)and ginh(t)stand for the synaptic conductances for excitation and inhibition

and are time dependent. Rewriting the former equation as is 3.3, we have

dV

dt
=

El + ĝexc(t) Eexc + ĝinh(t) Einh

τ
− V

τ�
+

I

cm
(3.14)

where here ĝexc(t) = gexc(t) /gl, ĝinh(t) = ginh(t) /gl and now τ� includes also the

inhibitory contribution:

τ� =
τ

1 + ĝexc(t) + ĝinh(t)
(3.15)

here we see that the target potential towards which the membrane potential evolves

(at rate τ� ) is bound between Eexcand the minimum of Eland Einh. It can be that an

increase in inhibition severely reduces the value of τ� , yet maintaining the target poten-

tial close to El. This phenomenon is already well studied and denominated inhibitory

shunting (Rall, 1967; Dingledine and Langmoen, 1980). This means that, as opposed to

the excitatory-only case, here the instantaneous time constant accounts for information

regarding excitation and inhibition and is thus not possible to disentangle it.

Nevertheless, we can still use apply the same procedure of sinusoidal current injec-

tion as a readout of conductance, both for excitation and inhibition. In this case, we

have 4 static parameters, namely El/τ , cm, Eexcand Einh, and two dynamic parameters,

ginh(t) and ĝexc(t) . The equation to be fit is now of the form

dV

dt
=

El

τ
+ ĝexc(t)

Eexc

τ
+ ĝinh(t)

Einh

τ
− (1 + ĝexc(t) + ĝinh(t) )

V

τ
+

I

cm
(3.16)

and the value of τ� is obtained indirectly from its definition (eq-3.15. Two practical

problems, however, arise. First, there are parameters that are multiplied in the equation

(conductance times reversal potential). As the equation is not anymore linear on its

parameters, the least squares procedure applied in the last section is no longer applicable.

Second, for the excitation-only case, there were two driving forces, towards excitation

and resting potential. Now, there are three driving forces competing against each other,

two of them (Eland Einh) close to one another, which makes attempts to fit it more
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complicated as it will be difficult to distinguish these two close driving forces.

dV

dt
τ =

I

gl
+ (V − El) + ĝexc(t) (V − Eexc) + ĝinh(t) (V − Einh) (3.17)

To overcome this difficulty and estimate the excitatory and inhibitory components

when acting simultaneously (i.e., network oscillations), a deep learning fitting was de-

signed. The aim is to determine the underlying average conductances during sharp wave

ripples that would respond to the passive model with excitation and inhibition (equation

3.16, see theory). For that, the deep network was designed as in figure 3.2.

The input of the system is the time course of the sharp wave and the output is the

parameters of the model. There are three subsets of parameters to be determined:

the general passive properties, gl, Eland cm; the reversal potentials for excitation and

inhibition, Eexcand Einh, and the conductances gexc(t) , ginh(t) . As the first two subsets

are not expected to change during the course of the recording, the input of that part

of the network does not depend on time. Moreover, as this parameters do not have a

time dependence, the network here was simplified (two layers of 20 nodes each). On the

other hand, solving for the conductances required a more complex network (10 layers,

100 nodes each layer). The output of the network was plugged into equation 3.16 along

with the measured quantities (I, V, dV
dt

) and its error was backpropagated to the weights

and biases of the network.

Two more considerations are important. The system has a tendency to the trivial

solution (all parameters are equal to zero, and thus the total error is zero). To avoid

that, estimates of the passive parameters where calculated from the linear model outside

the sharp wave and were added as an auxiliary loss. Also, a third loss was added making

the reversal potential tend to 0mV for excitation and −90mV for inhibition. The loss

for the reversal potential was 10% the weight of the other two. The final consideration is

that, as the recordings were too noisy, measurement errors outside from the sharp wave

were disturbing the artificial neural network. To overcome that, the loss was weighted

with a contrast like function ((1 − t2)/(1 + t2)), so that the values closer to the center

of the sharp wave would contribute more to the minimization than those away from the

ripple.
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3.1 Theoretical derivation of the instantaneous time constant

t

2 Layers,
50 nodes each

2 Layers,
50 nodes each

10 layers,
500 nodes each

c m, gl, El

loss0 loss1 loss2 loss3

2 Layers,
50 nodes each

x0 x0

Ee, Ei ge(t), gi(t)

input
hidden layers
output
pre-training
training

Figure 3.2: Schematic of the architecture chosen to estimated conductances. Input is
the normalized time (blue). The network is divided in three deep columns.
The first two yield the two sets of non time dependent parameters (passive
parameters and reversal potentials). They are composed of two layers of 50
nodes with a relu output. The third one has 10 layers of 100 nodes each
and will determine the time dependent conductances. A step of pre-training
is performed adjusting the passive parameters and reversal potentials to es-
timates (violet losses). After pre-training is done, these losses are kept to
ensure the system abides within physiological values and equation 3.16 is
added to determine the conductances
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3 Results

3.2 Use of τ� to estimate excitatory synaptic input

In the previous section, I demonstrated that the instantaneous time constant can be

used to estimate the excitatory conductance change in a theoretical passive single com-

partmental model. The next question is whether this formalism can be applied in a

more realistic context, such as a physiological neuron onto which synaptic input is ap-

plied. To that aim, patch clamp recordings of CA1 pyramidal neurons where carried

out. Afterwards, computational simulations of a reconstructed CA1 pyramidal neuron

are perform to study to which extent this method is valid.

3.2.1 Single stimulus, glutamate iontophoresis

The first effort was to repeat the analysis of the instantaneous time constant in physio-

logical neurons. Traces were recorded from 12 CA1 pyramidal cells from acute slices of

hippocampal mice. The cells where patched and filled with Alexa 488 for locating the

dendritic arbor. After the neuron was filled, an iontophoretic pipette was placed next to

an apical dendrite to elicit glutamate pulses of 50µs width that produced excitatory post

synaptic potentials. As with the theoretical approach, a sinusoidal current injection of

10Hz was provided by the patch pipette. Its amplitude was adjusted at the beginning

of the experiment to ensure an oscillation of ∼ 2mV amplitude in membrane potential

3.4 B). 40 trials were recorded in two rounds of 20 uniformly distributed stimulations

along the oscillation cycle (5 ms delay applied or, equivalently, 18 degrees within the 10

Hz stimulation).

Trial selection

The membrane potential recordings (figure 3.3 A) contain four different components.

Firstly, a baseline given by the resting membrane potential of the neuron and the subse-

quent average current injection. Secondly a 10 Hz sinusoidal signal due to the oscillatory

part of the injected current. On top on these two, an EPSP waveform triggered by the

glutamate release. Due to the stochastic nature of the synaptic receptors, there is vari-

ability between trials and different EPSP waveforms. Finally, there is a recording noise

component.

In order to ensure that only the most suitable trials are passed on the analysis, quality

criteria must be taken. Regarding the stability of the baseline, it is customary to set
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Figure 3.3: Trial selection for τ� . (A): Raw data of EPSP with sinusoidal current in-
jections of different phases (grey lines, sample traces marked in colors). (B)
EPSP amplitude is not dependent on phase. (C) Cumulative distribution of
membrane potentials shows elements to discard.

a variance threshold on the baseline . Here, as the oscillatory component cannot be

detached from the signal, the oscillation will overestimate the threshold and thus include

trials with poor baseline. To overcome this difficulty, the stability of the baseline was

assessed with the aid of the cumulative membrane potential distribution (figure 3.3 C).

From this cumulative distribution we can see the that the lowest values correspond

to extreme events (i.e., stimulation artifacts). After that, a steady part comes, where

around 90% of the data points abide in a 3-4 mV region (oscillation of the sinusoidal,

plus noise). This is where the baseline is, along with the sinusoidal oscillation. The

remaining part (10% of the data points, and the most depolarized potentials) is where

the EPSPs come into place. Based of this distribution, we can discern and quantify

extreme events to discard them from the analysis, such as unstable baseline (red trace,

figure 3.3) or extreme EPSP amplitude (pink trace). Quantitatively, the criteria where

set to 3 median absolute deviations (MAD) for baseline and for amplitudes. After these

quality criteria, the trimmed dataset was not severely diminished (range from 61% to

90% of accepted trials). i

Does the phase of the oscillation with respect to the onset of the synapses have an
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Figure 3.4: Experimental calculation of τ� . (A) Raw recordings (grey lines) and average
(blue). (B) Sinusoidal current injection at each trial (grey lines) and average
(blue). (C) Another experiment recording of EPSCs from the same cell (grey
lines) and average (pink). (D) Calculated waveform of τ� . (E) Normalized
waveforms of membrane potential (blue), EPSC (pink) and τ� (red).

influence on the EPSP amplitude? The average amplitude and phase EPSP × eıφ did

not significantly differ from the shuffled data (10000 iterations, 5% confidence interval,

figure 3.3 B) suggesting the the phase of the oscillation and, thus, different states of

voltage gated active channels did not affect the EPSP amplitude.

τ� via the linear model

The traces portrayed in figure 3.3 A also include a stimulation artifact. As this stimula-

tion disturbs the calculation of τ�near the onset of the EPSP waveform, it was removed

by linear interpolation of the membrane potential in a window of 0.55ms from the stim-

ulation point (figure 3.4 A). Moreover, this removal also improved the quality of the

derivative calculated by a variational method (Chartrand, 2011a).

This membrane potential recordings (figure 3.4 A), along the injected current (figure

3.4) and the derivative (not depicted) are used to calculate the values of the instantaneous

time constant (figure 3.4 D). The calculated signal has two identifiable parts: baseline

and waveform. According to the theoretical derivation (see section 3), the baseline is
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Figure 3.5: Comparison of magnitudes of τ� . (A): Synaptic rise time from τ� (red) and
EPSC (pink). (B): Synaptic decay time from τ� (red) and EPSC (pink).

the calculated part in the absence of synaptic input and represents the value of the

biophysical time constant. No significant differences where found between the time

constant measured as the baseline of τ� and by the kinetics of square pulse injections.

Secondly, the waveform corresponds to the kinetics of the synaptic conductance change.

After the stimulation (time 0 in figure 3.4 D), the waveform of τ� has a decrease of the

value of the instantaneous time constant. This decrease corresponds to the increase in

overall conductance due to the opening of the synaptic receptors. After the peak con-

ductance is reached, the receptors close and thus the instantaneous time constant decays

back to the default value, in the absence of synaptic conductances.

As opposed to the theoretical calculations, in the experimental setting is impossible

to know the exact conductance change due to synaptic input. As a comparison, I also

recorded excitatory post synaptic currents (EPSCs) from the same neuron in voltage

clamp and without a sinusoidal current (figure 3.4 C).

Comparing the waveforms of EPSPs, EPSCs and τ� (figure 3.4 E), we can see that

the rising phase of the EPSPs concurs with the phases of highest value of both the

EPSCs and τ� , suggesting that both are showing the activity of the excitatory driving

force. The kinetics of the of τ� seems faster as the kinetics of EPSCs. Indeed, rise times
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(figure 3.5 A) and decay times (figure 3.5 B) where significantly faster in the case of τ� ,

suggesting the effect of space clamp is reduced for the instantaneous time constant with

respect to excitatory post synaptic currents.

3.2.2 Computational Characterization

It was seen in the previous section that the instantaneous time constant can calculate

the waveform of excitatory synaptic input with faster kinetics than EPSCs. The next

question is to what extent this calculation is affected by space clamp. To this aim, a

computational model was built.

The computational model combines some of the advantages of the theoretical and the

patch clamp approach. As with the patch clamp, a complex morphology, and active

conductances are present. As in the theoretical model, all synaptic inputs can be set a

priori a repeated with the same value. Further advantages is that in the computational

model each place in the neuron is subject to be recorded, and that the location of the

synaptic inputs can be set.

Distance dependence of τ�

In this set of simulations, an excitatory synaptic input was applied onto a single site

along the apical dendrite (figure 3.6 A) . The aim is to study how the calculation of

τ� depends on the electrotonic distance between the application site (the dendrite) and

the patch pipette (the soma). For comparability, the number of synapses was adjusted

to produce an EPSP of 5mV recorded in the soma.

Thus, the amplitude recorded in the soma did not differ between distal (figure 3.6

B) and proximal (figure 3.6 C) application, though a low pass filtering of the distal

application is visible due to space clamp. As expected from cable theory (Rall, 1960),

the distal application produces a higher amplitude on site in distal locations (figure 3.6

D) than in proximal (figure 3.6 E). The recorded EPSCs are higher in amplitude for the

proximal application (figure 3.6 G) in comparison to the distal application (figure 3.6

F). Similarly, the same effect is seen in the instantaneous time constant (figure 3.6 I vs

H). As in the EPSP waveform, the low pass filtering of distal applications is observed

for EPSCs and τ� .

We see, then, that the behavior of τ� is qualitatively analogous to EPSCs. To study
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3.2 Use of τ� to estimate excitatory synaptic input

A

100 µm

1 2

Figure 3.6: τ� decays with distance from the applications site. (A) Morphology of the
computational neuron. (B) Membrane potential of a distal EPSP measured
at the soma. (C) Membrane potential of a proximal EPSP measured at the
soma. (D) Same as (B) but measured in the application site. (E) Same as
(C) but measured in the application site. (F) EPSC measured at the soma
for same synaptic input as in (B) (G) EPSC measured at the soma for same
synaptic input as in (C) (H) τ� measured at the soma for same synaptic
input as in (B) (I) τ� measured at the soma for same synaptic input as in
(C)

the quantitative behavior of the instantaneous time constant, the main features of the

waveform (amplitude and rise and decay kinetics) were studied in terms of distance to

soma. The amplitude of τ�correlates well with EPSCs (figure 3.7 A), indicating that the

amplitude of the instantaneous time constant is a good indicator of the amount of synap-

tic input applied. To the contrary, the rise (figure 3.7 B) and decay (figure 3.7 C) show

a systematically lower values for τ�with respect to the EPSCs. The distance dependent

increase is justified by the low pass filter properties of the membrane. Nevertheless, the

lower values of the instantaneous time constant starting from the lowest electrotonic

distance (where the effects of space clamp are lowest) suggests that τ� underestimates

the kinetics of synaptic input.

In summary, the amplitude of the waveform faithfully represents the amount of synap-

tic input being applied, whereas the waveform itself is faster than the synaptic input.
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Figure 3.7: Distance dependent behavior of EPSCs and τ� . (A) Correlation of ampli-
tudes between EPSCs and τ� . Color scale reflects the electrotonic distance
(non dimensional). (B) Rise time of EPSCs and τ� dependent on electro-
tonic distance. (C) Decay time of EPSCs and τ� dependent on electrotonic
distance.

Double input

The short-lived change in the passive properties during the opening of the synaptic

receptors remains to be studied. In particular, I wanted to assess whether this reduction

of the time constant affects the integration of two synaptic inputs from two different

source. To that aim, I chose a reference stimulation in an apical trace (figure 3.8 A,

blue trace) and three secondary stimulation sites at the same location, another apical

dendrite, and a basal dendrite (figure 3.8 A). The simulations were performed with

timings between both stimuli ranging from 0 to 10ms. For the same timing between

both applications, far away inputs (figure 3.8 D) result in greater EPSPs amplitude

than close ones (figure 3.8 B), with the two apical stimulations in the apical arbor in a

middle point (figure 3.8 C). The concurrent opening of the synaptic receptors from both

stimulations can be seen from the overlap of the two waveforms both in the instantaneous

time constant (figures 3.8 E-G) and EPSCs (figures 3.8 H-J).

Does this overlap of conductance play a role in synaptic integration? Normalizing

the peak EPSP amplitude to the case of synchronous stimulations, we can see that
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Figure 3.8: Integration of two inputs. (A) Schematic of the cell and the input sites.
Average EPSP recorded in the soma for same dendrite input (B), proximal
input (C) and distal input (D). Calculated τ�for same dendrite (E), proximal
dendrite (F) and distal dendrite (G) input. EPSCs for same dendrite (H),
proximal dendrite (I) and distal dendrite (J) input. (K). Peak EPSP of
integrations as a function of the time delay between inputs. Data normalized
to amplitude when inputs are simultaneous.

when the conductances are overlapping (first milliseconds) the EPSP peak amplitude is

maintained. In particular, for inputs in the same dendrite, a mild increase in the peak

amplitude can be observed (figure 3.8 K). This suggests that the overlap of conductances

indeed helps synaptic integration.
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3.3 Measurement of conductances during network

activity

We found in section 3.2.1 that, under very specific conditions, a sinusoidal current injec-

tion helps recover the conductance changes due to excitatory input. The next question

is whether this approach can also be applied to more complex patterns of activity, such

as network oscillations. Hence, extracellular potentials were recorded during SPW-r

activity in the pyramidal layer of CA1 from wild type mice. Simultaneously, a CA1

pyramidal cell was recorded intracellularly with sharp electrodes. Through the pipette

we injected a sinusoidal current of sufficient amplitude to produce ∼ 2−3mV oscillation

was injected. These recordings were kindly provided by Martin Kaiser, in Prof. Dr.

Andreas Draguhn ’s lab. The aim of this test dataset is to check whether the formalism

of sinusoidal current injection can detect complex patterns of synaptic activities. In

particular applying the extension to inhibitory synaptic input described in section 3.1.3.

3.3.1 Data recording

The sharp wave ripple complexes were detected based on the minimum of a bandpass

filter of the local field potential (Bähner et al., 2011). Windows of 200ms around the

center were taken to include a long baseline and allow to calculate the tonic conductance

of the events, i.e., the passive terms depicted in equation 3.14. These terms remain

constant throughout the recording and its accuracy is essential to obtain readouts of the

conductances during the SPW-r proper.

Windows that contained more than one SPW were discarded. Besides, trials were

discarded based on baseline instability, or noise (see section 3.2.1). Furthermore, as the

neuron was subject to ongoing synaptic inputs, it fired action potentials. Windows that

included APs were also discarded.

Afterwards, SPWs were averaged. If averaged together, the underlying ripple patterns

patterns can be seen (figure 3.9 A). Furthermore, the spectrogram clearly presents two

frequency bands of activity: The sharp wave, till 60 Hz and the ripple 200-300 Hz (figure

3.9 C), which matches literature values (Bähner et al., 2011).

Intracellular recordings also present a depolarization pattern during the SPW complex

(figure 3.9 B). Moreover, the average intracellular membrane potential shows ripple-
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Figure 3.9: Overview of SPW-r recordings. (A): Extracellular recording of SPW-r events
(light colors) and their average (darker). (B): Intracellular recording of a
CA1 pyramidal cell during the recording in (A). Note the repeated pattern
with the SPW. (C): Average wavelet spectrum of the total SPW-r. (D):
Oscillatory current injected via the intracellular pipette (grey lines) and its
average (blue lien). Note that averaging events reduces but not eliminates
the oscillating component.

frequency pattern, though milder than the extracellular recording . The fact that the

intracellular recording contains higher variability synchronized with the ongoing sharp

wave suggests that intracellular membrane potential may contain enough information to

determine the conductances.

3.3.2 The linear model and its limitations

The linear model described in section 3.1 was applied to the intracellular recordings

(figure 3.9). Firstly, and for comparison purpose, the linear model for excitatory input

applied in the previous sections was used (τ�model), although the presence of inhibitory

currents is known and they are not considered inthis model. Then, the linear model with

the inhibition component (described in section 3.1.3) is used to determine the inhibitory

components along with excitation.

Indeed, direct application of the τ�model to the recorded membrane potentials (figure

49



3 Results

��� ��� � ��� ���

���
���
���
���

�
�
��
�
�
�
��
�
��
��
�
��
�
�
�

�� �� � �� ��

���
���
���
���

��� ��� � ��� ���

������
������
������
������

�� �� � �� ��

������
������
������
������

��� ��� � ��� ���

����
����
����

�
�
�
��
�
��
�
�

�� �� � �� ��

����
����
����

��� ��� � ��� ���

����
����
����

��
�
��
��
��
�

�� �� � �� ��

����
����
����

� �

� �

� �

� �

Figure 3.10: Limitations of the linear model to SPW-r recordings. (A) Membrane poten-
tial during events (same as figure 3.9 A). (B) Same, but zoomed out. (C)
1/τ� obtained by the linear model . (D) Same, but zoomed out. (E) Exci-
tatory conductance obtained by the extended linear model. (F) Same, but
zoomed out. (G) Inhibitory conductance obtained by the extended linear
model. (H) Same, but zoomed out.

3.10 A) yields a waveforms which varies the most during the sharp wave, with high

frequency oscillations corresponding to the ripples (figure 3.10 C, zoom in D, portrayed

the inverse of τ� ). In this manner, some information about the conductance is stored in

the waveform, yet it contains several limitations. First of all, it has a noisy background.

Secondly, τ� refers to the time constant and must be always positive. As the output

of the linear model is the inverse of the time constant, and this changes sign, it would

yield a negative time constant (or infinite when 1/τ� is zero) and thus it carries no

physiological meaning.

Another refinement is to include in the previous linear model a term for inhibition.

The main problem of the extension to inhibition is the necessity to set a priori values

from for the reversal potentials both for excitation and inhibition. Taking from the

literature Eexc = 0 ((Hestrin et al., 1990)) and Einh = −64 ((Huguenard and Alger,

1986)), the linear minimization was applied. In this case, we can recover a value for the

excitation (figure 3.10 E, zoomed out in F) and the inhibition (figure 3.10 G, zoomed

out in H). It can be seen from the traces than the main problems of the τ� model are
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3.3 Measurement of conductances during network activity

still present whereas the ability to recover the ripple pattern is diminished.

Together, these results show that the linear model of τ� does not suffice to estimate

the conductance during complex network oscillations. Main problem is the presence

of non tonic inhibition. The appearance of SPW-r alike patterns in the conductance

estimations suggests, nonetheless, that the information is there and might be retrieved

with a more powerful technique than a linear minimization.

3.3.3 Construction of a deep learning model
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Figure 3.11: Deep learning model for noiseless simulated data correctly predicts the con-
ducances. (A) Membrane potential response to injected current and sinu-
soidal input. (B) Loss of the deep learning model decreases with the num-
ber of epochs run. Colored squares depict the represented waveforms below.
(C) True excitatory input (solid line) and reconstructed input (dashed) (D)
True inhibitory input (solid line) and reconstructed input (dashed) through
the deep learning model for different number of epochs.

To overcome the limitations of the linear model, a deep learning model was applied.

The full details of the functioning and the architecture were presented in section 3.1.3.

The first step is to assess whether this model can recover the excitatory and inhibitory

signals under the most simple conditions. To that aim, excitation and inhibition where

artificially constructed from a random distribution resembling the physiological emer-
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Figure 3.12: Deep learning model for variable inputs and white noise underestimates the
value of the conductances.. (A) Membrane potential of all trials (grey lines)
and average (blue). (B) Loss of models with Adam optimizer (black lines)
and RMSprop (grey lines), and learning rate (lr = 0.001 (solid) and 0.0001
dashed lines). (C) True excitatory input (solid line, average) with standard
deviation (shadows) (D) True inhibitory input (solid line, average). Note
that the slower dynamics and higher maximum conductance makes the
shadows indiscernible. (E), (F) Excitation and inhibition for Adam and lr
= 0.001 (G), (H) Excitation and inhibition for RMSProp and lr = 0.001 (I),
(J) Excitation and inhibition for Adam and lr = 0.0001 (K), (L) Excitation
and inhibition for RMSProp and lr = 0.0001

gence of synaptic inputs during sharp wave ripples and applied to a single compartment

neuron (figure 3.11 A). With this approach, the recovered conductances can be compared

with the original values applied to the computational neuron. After letting the model

process the data for 100 epochs, the minimization of the loss started to converge (figure

3.11 B), suggesting that the procedure was close the minimum it can reach Indeed, the

values of the calculated excitatory (figure 3.11 C) and inhibitory (figure 3.12 D) are in

close resemblance with their real counterparts (solid red lines).

In summary, for noiseless data, the deep learning model can recover the conductances

from SPW-r like events.
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Figure 3.13: Deep learning model applied SPW-r to recordings has higher loss as sim-
ulated data. (A) Membrane potential of all trials (grey lines) and average
(blue). (B) Loss of models with Adam optimizer for learning rates 0.0002
(solid), 0.0001 (dashed) and 0.00005 dotted. (C), (D) Predicted excitation
and inhibition for lr = 0.0002. (E), (F) Predicted excitation and inhibi-
tion for lr = 0.0001. (G), (H) Predicted excitation and inhibition for lr =
0.00005.

Deep learning model with noisy data

The next necessary refinement for the deep learning model is to add variability. In

experimental conditions, it is unavoidable to have a certain amount of recording noise.

Furthermore, it is not possible to have exactly the same amount of synaptic input from

trial to trial.

Hence, a noisy dataset was created. In this dataset all synaptic events where inde-

pendently chosen each trial, so that each trial has the same number of synapses and the

same time distribution, yet there is trial to trial variability. Furthermore, white noise

with 0.1 mV amplitude was added to mimic the electronic recording error. The trial
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to trial variability is clear in the membrane potential traces, where the same pattern

of activity is seen, in this case with a component of noise (figure 3.12 A, compare to

figure 3.11 A). As for the synaptic input, the trial to trial variability is clearly seen in

the excitatory conductances (figure 3.12 B, lighter color). However, due to the higher

amplitude of inhibitory conductances and its slower kinetics, the inhibitory variability

is more uniform (figure 3.12 D).

The model as previously described did not converge to credible conductance values

(data not shown). Thus, two changes were implemented in the deep network to better

fit the data. The first one was to add to the loss function a weight in the form of a

time dependent factor ((1 − t2)/(1 + t2)). The deep learning model tries to minimize

an equation like in 3.14. In its current form, the drive to optimize at the baseline is

the same as in the center of the sharp wave. Thus, in the borders, of the recording,

where the phasic conductance is minimal and the signal to noise ratio is the highest, the

optimization is biased away from the best solution. With this enhancement, the values

of the baseline are still taken into account, but more importance is given to the window

of the sharp wave, where the phasic conductances are happening.

Secondly, the network tended to the trivial solution. This means that if all the param-

eters would be zero, then the equation to be minimized will result in 0 = 0 (equation

3.14 with parameters set to 0) and thus the solution is achieved. In the presence of

noise or synaptic variability were, no perfect solution can be reached and thus the model

tended more pronouncedly towards this trivial solution. To discouraged the system into

that trajectory, the weight of the static loss (see figure 3.2) was changed from its value of

0.1 to 1. In this manner, the system two driving forces. The first one to find an optimal

solution for the conductances and the second to maintain the passive parameters within

reasonable values.

Furthermore, the nature of the data in this system is different from the noiseless

case. Therefore, two state of the art optimizers (Adam (Kingma and Ba, 2014) and

Adadelta (Zeiler, 2012)) were employed. They were tried with several learning rates

(0.0002, 0.0001, 0.00005) to explore the responses. This values start from the optimal

values published (Chollet and others, 2015) and decrease to increase their effectiveness

(Goodfellow et al., 2016).

In general, the loss with these experiments is systematically higher than in the noiseless

case (figure 3.12 B). Noise and variability are most likely responsible of this increase.

Furthermore, the predicted conductances do not converge near the real values in any
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3.3 Measurement of conductances during network activity

case. Nevertheless, we can observe better performance of RMSprop with respect to

Adam (figures 3.12 E-L, right side vs. left side) and higher learning rates with respect

to lower (figures 3.12 E-L, top vs. bottom). The most resembling solution is thus

RMSprop with learning rate 0.001.

The predicted conductances show, nevertheless, some qualitative resemblances with

the true conductances. The ratio between excitation and inhibition is well predicted,

and the absolute value of the conductances is underestimated. Some time dependent

oscillation behavior in the frequency range of ripples is observed, but its kinetics are

faster and more extreme than voltage clamp recordings during SPW ((Maier et al.,

2011))

Application to experimental data

The model described in the previous version was finally applied to the intracellular

recordings. During preliminary experiments, it was found that, as opposed to the noisy

simulated data, the Adam optimizer performed better than the RMSprop (data not

shown). Applying the deep learning model to the sample recording (figure 3.13 A) for

different learning rates shows a descend in the loss function, yet the absolute values

remain orders of magnitude higher than with the test data (figure 3.13 B). This result

shows that the amount of noise is higher than in the theoretical data and also that

further patterns of activity are present that cannot be conveyed in the equation to be

minimized.

However, inspection of the reconstructed excitatory and inhibitory conductances shows

that they present waveforms that qualitatively correspond to the expected patterns of

conductances. In the case of excitatory conductances, the different learning rates did

not affect much the final conductance waveform and amplitude (figures 3.13 C, E ,G).

On the other hand, inhibition was more influenced by the election of learning rate, with

lower values yielding smoother responses (figure 3.13 H) and higher learning rates yield

solutions with sharp oscillations (figure 3.13 D).

Quantitatively, the amplitudes calculated by the deep learning model are around 7nS

for excitation and ∼ 50nS for inhibition. We must point out that, as in the presence

of noise the model underestimated the theoretical conductances, these results are most

likely also an underestimation of the real conductance happening in the neuron. More-

over, some known features of conductances during sharp wave ripples are present in
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these reconstructed waveforms: the value of inhibition in several times greater than the

value of excitation and also the onset of inhibition comes with certain delay with respect

to the onset of excitation.

In summary, the deep learning model can recover some qualitative features of conduc-

tances during sharp wave ripples. Still, more refinements will be necessary to recover

quantitatively reliable data.

3.4 Inputs onto AcD cells are privileged towards AP

generation

Recently it was shown (Thome et al., 2014) that in 50% of CA1 pyramidal neurons, the

origin of the axon is attached to a basal dendrite, rather than to the soma, as it generally

happen. This dendrite that connects axon and soma is denoted Axon carrying Dendrite

(AcD). This morphological feature has electrophysiological implications. Firstly, the

isolation of the AIS from the soma makes input coming from the AcD trigger action

potentials more efficiently. Secondly, this dendrite shows higher propensity of dendritic

spikes. To explore the underlying mechanism, a computational model was constructed.

The main questions to address were to reproduce the efficiency to trigger action poten-

tials from AcD input and how electrotonic properties or perisomatic inhibition influence

this efficiency. Finally, the higher propensity to dendritic spikes in the AcD is studied

in terms of sodium channel density.

3.4.1 Reduction of AP threshold by AcD input

The first question to address is how the isolation of the AIS from the soma makes

AcD input more efficient to trigger action potentials as input from other dendrites. For

this aim, the computational neuron had a basal dendrite, AcD, to which the axon was

connected at a variable distance from the soma (axon distance, a.d.). The first series

of experiment consisted on finding the minimum input (number of synapses or current

injection) to generate an action potential. This procedure was repeated for axon distance

lengths from 0µm to 15µm, in steps of 0.5µm. For the case where the axon was attached

to the soma (a.d. = 0µm) the calculated input was 5196 synapses for AcD, 5187 for

nonAcD input and 0.375nA for current injections. For comparison, these values were
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Figure 3.14: Axon distance elongation reduces current and threshold for AcD input.
Data for current injection (black), AcD input (red) and nonAcD input
(green). (A) Action potentials for a.d. = 0µm have same waveform. (B)
Action potentials for a.d. = 15µm show decreased threshold for AcD input.
(C) Phase plots for a.d. = 0µm have same waveform. (D) Phase plots for
a.d. = 15µm show decreased threshold. (E) Threshold of AP initiation
is reduced for elongated axon distance. (F) Input applied (normalized to
a.d. = 0µm) increases for nonAcD input while decreases for AcD input.

used to normalize all further inputs.

For no axon distance, all three kinds of input show a similar AP waveform (fig 3.14

A), although somatic input needs more time (∼ 10ms) to achieve an AP in comparison

to synaptic input (∼ 8ms). This is an effect of the injection procedure; synapses are all

applied at a fixed time point (4ms in the experiment), whereas current injection starts

at a fixed point (2ms) and continues thereafter. Thus, less current injected for a longer

time leads to the same waveform of AP. Closely examining the phase plot shape (figure

3.14 C) also shows no difference between the three cases considered. All of them show

two components in the phase plot. The first one, starting at a polarized state is due to

the invasion of the AIS-generated AP and is responsible for the first onset of the AP. At

this point, the depolarization in the soma opens the sodium channels and the full blown

somatic AP is generated, depicted in the second component of the phase plot.

The similarity between waveforms is broken when the axon steps away from the soma
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via the AcD. In this case, although somatic current injection and nonAcD input resemble

one another, the onset of the AP for AcD input comes at a more hyperpolarized state

(figure 3.14 B). Furthermore, the separation between AIS an soma shifts the axonic in-

vasion to the soma to more polarized states, i.e., lowers the threshold, while maintaining

the other component unchanged (figure 3.14 D).

Quantitatively, somatic or nonAcD input results in similar threshold of AP initiation

when there is no axon distance. In contrast, the threshold decreases monotonically for

longer axon distances, with a threshold difference up to −6mV for an axon distance of

15µm (figure 3.14 E). Similarly, less AcD input is needed for AP generation for longer

axon distances, with 40% of the original input needed with a.d. = 15µm. Conversely,

an enlarged basal dendrite between AIS and soma requires more input (up to 20%

more) of nonAcD synapses to achieve an AP. The input remains constant for somatic

current injection (fig 3.14). In the case of non AcD input, the elongation of the axon

distance increases the electrotonic distance between input site and AIS. Thus the number

of synapses must increase in the basal dendrite to elicit the same depolarization. In

the case of AcD, the electrotonic distance between synaptic application site and AIS

remains similar regardless of the axon distance. However, as the axon separates from the

capacitive sink of the soma, the resistance to go into that direction increases. Therefore,

a bigger ratio of the EPSP traveling through the AcD goes into the axon and thus the

reduction in input.

Taking all together, synapses reaching AcDs need less input that their nonAcD coun-

terparts to set an action potential and, as a consequence of the lesser depolarization

caused in the soma, the threshold of AP initiation is reduced.

Is this difference in somatic action potential caused by the propagation from its ini-

tiation site, the AIS, to the soma or by other factors? To answer than question, we

can observe the traces of soma and AIS for all the measured lengths and both synaptic

inputs.

Recordings in the soma for AcD input show that: (i) the predepolarization is smaller

for longer axon distances due to reduced input; (ii) the onset is shifted towards previous

times, due to the facilitation of AP generation and also to the electrotonic detachment

of the AIS from the soma and (iii) there is no alteration of the full blown AP waveform

(figures 3.15 A, C). From the point of view of the AIS, the isolation from large capacitive

surface of the soma diminishes the amount of current flowing from the AIS to charge

the somatic membrane and continues depolarizing the AIS, leading to a higher maxi-
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3.4 Inputs onto AcD cells are privileged towards AP generation

mum membrane potential and also faster onset (figure 3.15 D). Moreover, the isolation

also makes the propagated AP from the soma milder when it reaches the AIS (second

component of the AP, figure 3.15 B).

For nonAcD input, no clear distinctions of AP somatic waveform are observed for

different axon distances (figure 3.15 E). Nevertheless, there is a slight reduction of the

AIS component due to the electrotonic distance between soma and AIS that can be

observed in the phase plot (figure 3.15 G). On the other hand, the AIS shows the same

enhancement in peak and onset observed for AcD input (figures 3.15 F, H).

In summary, the electrotonic detachment of the AIS from the soma changes the AIS

onset and its propagation to soma, although only in the case of AcD input the relation-

ship between synaptic input, and AP generation is changed.
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Figure 3.15: Overview of distance dependency from soma to AIS on AP waveform. Col-
ors range from a.d = 0µm (black) to a.d. = 15µm for AcD input (red) or
nonAcD input (green). (A) Somatic membrane potential shows a decrease
in threshold for AcD input. (B) AIS membrane potential shows an earlier
AP generation for increased axon distances and AcD input. (C) Somatic
phase plot shows a decreased threshold for increased axon distances and
AcD input. (D) AIS phase plot shows greater excitability of AIS with iso-
lation from soma. (E) Somatic membrane potential shows no change in
waveform for increasing axon distance. (F) AIS membrane potential for
non AcD shows increased excitability of AIS but no change in threshold.
(G) Somatic phase plot shows no changes in somatic waveform with axon
distance. (H) AIS phase plot shows greater excitability of AIS with isolation
from soma.
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3.4.2 Passive propagation is responsible for the reduction in

threshold
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Figure 3.16: Axon distance effect diminished for compensated Ra. Data for current
injection (black), AcD input (red) and nonAcD input (green). (A) Action
potentials for a.d. = 0µm. (B) Action potentials for a.d. = 15µm do not
change from (A). (C) Phase plots for a.d. = 0µm. (D) Phase plots for
a.d. = 15µm do not change from (C). (E) Threshold of AP intitiation
does not change with axon distance. (F) Input applied (normalized to
a.d. = 0µm from non-compensated experiments) changes less than in the
non compensated case.

As seen in the previous section, the separation of the AIS from the soma reduced the

threshold of AP initiation for AcD driven input. A plausible cause is that the increase in

electrotonic distance is responsible of reducing the somatic depolarization at the time of

AP onset. To test this hypothesis, the experiments were repeated with a compensated

electrotonic distance. In this manner, the experiments are performed starting with an

axon distance a.d. = 0.5µm. Then, for each increase in axon distance, axial resistance

is reduced proportionally (Baranauskas et al., 2013),

Ra = Ra0 ×
L0

L
(3.18)

leaving the product L×Ra constant, while changing the other biophysical magnitudes
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(leak resistance, capacitance, and ionic channel densities), so that the only difference

between these and the former experiments is the axial resistance.

With this compensated axial resistance, the elongation of the dendrite between soma

and AIS does not change the predepolarization or the subsequent AP for AcD input

with respect to nonAcD input or current injection (figures 3.16 B, D). Consequently,

the threshold of AP initiation remains unchanged for different lengths in the case of

AcD input, as well as its nonAcD or current injection counterparts (figure 3.16 E). It is

noteworthy that the inputs necessary for AP generation do follow the trend observed in

the previous experiments, though reduced in magnitude. In this fashion, the reduction of

AcD input was of 30% (as opposed to 60% for normal axial resistivity) and the increase

for nonAcD input was 10% (20% in the previous case) (figure 3.16 F, compare to figure

3.14 F).

Thus, the observed shift in the AcD threshold with increasing axon distance is mostly

due to the axial resistance whereas the shift in input involves other biophysical factors.

Indeed, when the current flows inside the dendrite between AIS and soma, the resistance

to flow outwards (leak resistance) is the same as before, while the resistance to flow

through (axial resistance) has been reduced proportionally to the length. Thus, in this

scenario, more current will flow from the AcD towards the soma than towards the AIS,

being needed more input to fire an AP. Conversely, due to the reduced axial resistance

towards the AIS, current will flow more easily, resulting in the reduction of input.

3.4.3 Perisomatic inhibition enhances the threshold difference of

AcD and nonAcD input

During network oscillations, the inhibition of basket cells acts onto basal and somatic

areas of CA1 pyramidal cells (Klausberger et al., 2003). This perisomatic inhibition

reduces greatly the input resistance of the pyramidal cells (Bähner et al., 2011). As

AcD synapses the somatic compartment and travels directly to the AIS, it is likely that

it is more decoupled from perisomatic inhibition than other synaptic inputs.

To test test this hypothesis, tonically open chloride channels were implemented, with

reversal potential of−75mV were adjusted to produce a 30% decrease in input resistance.

With this model perisomatic inhibition, the axon distance was varied and the threshold

and input necessary to trigger action potentials were measured.
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Figure 3.17: Perisomatic inhibition enhances the effect of axon distance. Data for current
injection (black), AcD input (red) and nonAcD input (green). (A) Action
potentials for a.d. = 0µm. (B) Action potentials for a.d. = 15µm show
decreased threshold for AcD input. (C) Phase plots for a.d. = 0µm. (D)
Phase plots for a.d. = 15µm show reduced threshold for AcD input. (E)
Threshold of AP initiation. The difference is greater for AcD input than
in the absence of inhibition while remaining unchanged in the other cases.
(F) Input applied (normalized to a.d. = 0µm without inhibition). Starting
from higher values, for AcD input and long distances, the input without
inhibition is recovered.

For no separation between soma and AIS, there was no difference in the corresponding

thresholds (figures 3.17 A, C). For longer axon distances, the same lessened predepolar-

ization and shift of the axonic onset (figures 3.17 B, D) were observed. In this case, the

effect of the inhibition reduced the AP threshold more than without it, leading up to

−8mV (figure 3.17 E). The input necessary to trigger an AP was also reduced shift.

Moreover, perisomatic inhibition requires twice as much excitatory input and 50%

more current injection to overcome the inhibition and trigger an AP in the case of no

axon distance. For increasing axon distances, the tendency observed without inhibition

is preserved, with AcD input decreasing, nonAcD input increasing and current injection

slightly increasing (figure 3.17 F). Strikingly, for the longest separations, AcD input tends

to the same input necessary without inhibition, meaning that the effect of perisomatic

inhibition does not affect AcD input due to the physical separation between AcD-AIS
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and soma.

3.4.4 Facilitation of dendritic spikes
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Figure 3.18: Additional dendritic sodium channels account for enhanced excitability in
the AcD. Inputs range from 22% to 34% of the input to trigger an action
potential. (A) Several EPSPs recorded in the soma for AcD input. Color
ranges from black (weakest) to red (strongest). A mild increase in ampli-
tude is observed when a dendritic spike is triggered. (B) Several EPSPs
recorded in the soma for nonAcD input. Color ranges from black (weakest)
to green (strongest). A mild increase in amplitude is observed when a den-
dritic spike is triggered. (C) Several EPSPs recorded in the soma for AcD
input and enhanced Na+ density. Color ranges from black (weakest) to red
(strongest). A stronger increase in amplitude is observed when a dendritic
spike is triggered. (D) Summary I/O curves from (A)-(C). Note that the
non-linear jump is the transition from passive summation to dendritic spike.

Dendritic spikes are a powerful mechanisms of on-site dendritic integration and pro-

cessing, mostly due to active sodium or calcium conductances. Experimental work found

that AcDs are more likely to fire dendritic spikes than regular basal dendrites (Thome

et al., 2014).

To test whether the higher likelihood of dendritic spikes in AcD is due to its mor-

phological feature or to other factors, the input-output curve for synaptic input was
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3.5 Bimodal distribution of ectopic action potentials upon alvear stimulation

constructed. A stimulation site was set at 15µm from the soma for both AcD and

nonAcD dendrites. Then, synaptic inputs were applied to this location with amplitudes

ranging from 20% to 35% of the input to trigger and action potential and the resulting

somatic EPSP was measured (figure 3.18 A-B). Dendritic spikes were easily recognized

by a peak in the first derivative or by a non linearity in the I/O curve . Both AcD and

nonAcD behaved qualitatively the same for increasing input showing a dendritic spike

threshold at 31% of the input (figure 3.18 D). Nevertheless, immunohistochemistry im-

ages showed that there might be an increased sodium channel density in the AcD. To

test if this increase can explain the higher propensity of dendritic spikes, we increased

the sodium channel density by 20% (figure 3.18 C). Here, for increased input, a sharper

increase in the EPSP amplitude can be observed. Moreover, the I/O curve in this case

leads also to a reduced threshold of activation (figure 3.18 D). In summary, the enhanced

DS excitability of the AcD with respect regular dendrites may be caused by an increased

sodium channel density.

Taking these results together, the difference in electrotonic distance alone accounts

for the reduction of the threshold of AP activation for AcD input. Higher propensity

of dendritic spikes is unaffected but might be explained by a local increase in sodium

channel density. Finally, the model predicts that AcD input for long axon distances is

decoupled from perisomatic inhibition so as to trigger action potentials.

3.5 Bimodal distribution of ectopic action potentials

upon alvear stimulation

Ectopic action potentials are a kind of action potentials whose origin arises deep in the

axon, rather than from somatic depolarization (Spencer and Kandel, 1961). Therefore,

they present a sharp onset seen in the trace and also in the phase plot. They have been

studied in vitro in sharp wave ripples (Bähner et al., 2011), as well as in epileptic states

(Velazquez and Carlen, 2000). Although they have been proposed to be the synchro-

nization mechanism of CA1 pyramidal cells during sharp wave ripples (Vladimirov et

al., 2013), they are yet to be recorded in vivo during sharp wave ripples.

It was shown by Dr. Christian Thome that extracellular alvear stimulation in the

alveus produces a bimodal distribution of ectopic spike times in CA1 pyramidal cell

recordings (data not shown). In one case, for small stimulation strengths, triggers spike

65



3 Results

B

0 5 10 15

50

-50

0

-100

100

m
p 

(m
V

)

time (ms)

depol.

A

0 5 10 15

50

-50

0

-100

100

m
p 

(m
V

)

time (ms)

increased
alvear stim. 

-60

-40

-20

0

20

m
p 

(m
V

)

1 ms

+ EPSPC

Figure 3.19: Summary of ectopic action potential experiments. Experimental data
adapted from Thome et. al.(not published). (A): Increasing stimulation
strength switches from late spikes (black) to early spikes (red). (B): Depo-
larizing current injection switches from late spikes (black) to early spikes
(red). (C): Excitatory post synaptic potentials switches from late spikes
(black) to early spikes (red).

peak around 2.5ms after the stimulation. This is denominated as late spike. For stronger

stimulation strengths, the AP peak comes at 1.5ms after the stimulation (early spikes)

(figure 3.19 A). Electrophysiological experiments have shown that synaptic stimulation

can modulate a transition between both states.

The experimentalist hypothesized that this bimodal spike timing distribution mirrors

two ectopic action potential initiation sites, namely the AIS and the first node of ranvier.

To gain a deeper understanding on how these two kinds of action potential are generated

in the axon, how they are backpropagated towards the soma and how synaptic stimu-

lation couples with the axon to trigger action potentials, I constructed a computational

model to mimic the experiments and be able to record on multiple sites simultaneously

along the axon

The model follows the pyramidal cell presented in section 3.2. As the axon is a critical

part of this study, its morphology was adapted to to have a more detailed axon. Its

length was extended, and the biophysical properties that model the myelin sheath were

finely tuned (see methods). The precise lengths were taken from immunohistochemistry

observations of Dr. Alexei Egorov .

The extracellular alvear stimulation was modeled by two points set 75µm apart, act-

ing as the tips of a bipolar stimulator. A current flowing between both electrode tips

generates a distance dependent electric field that affects the active parts of the axon,

namely the nodes and the AIS (figure 3.20 A). For small stimulation strengths, a short

lived depolarization appeared in the nodes, and the axon quickly recovered its polarity

due to the capacitive currents (figure 3.20 B). Although the peak depolarization was high
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Figure 3.20: Experimental stimulation setting. (A): Schematic of the somatoaxonic axis
of the neuron, along with tips of the bipolar stimulator (black dots). The
stimulation generates a distance dependent field (color coded in the figure)
that decays with distance. Thus, the stimulation received at the first node
is greater than in the AIS. (B): A subthreshold stimulation creates a stimu-
lation artifact in the node (red) but does not trigger an AP anywhere. (C):
A suprathreshold stimulation generates an AP in the first node of ranvier
(red) that is propagated first to the AIS (orange) and then to the soma
(blue).

enough to open sodium channels in the node, its rapid recovery to resting membrane

potential prevented the triggering of an action potential. For greater stimulations, the

depolarization lasted enough to ensure the sodium channels will open, and therefore set

the initiation of an AP (figure 3.20 C). From the traces, we can see that the first spike

occurs at the first node of ranvier, followed by the axon initial segment and finally arriv-

ing at the soma. This suggests that the initiation site is the node of ranvier. Moreover,

the time of the peak recorded at the soma (∼ 2.5ms) is in agreement with the late spikes

from the experimental data.

With this calibration experiment, we can see that the extracellular stimulation can

trigger ectopic action potentials.
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3.5.1 Modulation of early and late spikes
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Figure 3.21: Stimulation intensity a bimodal distribution of AP timings. (A): Increasing
stimulation intensity (red strongest) switches from no action potential to
late spike to early spike in the soma. (B): Increasing stimulation intensity
(red strongest) switches from no action potential to late spike to early spike
in the AIS. (C): Somatic phase plot shows no difference in waveform (except
stimulation artifact) for both spikes.. (D): Bimodal distribution of peak of
AP depends on stimulation intensity.

With the model being able to generate ectopic action potentials, can the strength

of stimulation affect the timing of action potentials? To test that, the experiment was

repeated for different currents in the extracellular stimulator (figure 3.21 A). As described

in the methods, the reference for the spike generation was set to be the peak of the spike,

rather than the more cumbersome onset. Small stimulation strength yield no spike; for

stimulations greater that 0.5nA, a spike was generated, with a delay around 2ms with

respect to the stimulation. Furthermore, for even greater stimulations (above 1.4nA), the

stimulation yields another set of spikes with a considerable smaller delay time, around

1.2ms (figure 3.21 D). A careful look at the phase plots from the traces recorded at

soma shows the typical behavior of an antidromic spike (figure 3.21 C), with two clear

components: The first one is the passive invasion of the sodium-driven activity in the

AIS, and is characterized by a bump in the derivative while remaining in the polarized

regime. The second, moreover, shows the active opening of the somatic sodium channels
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3.5 Bimodal distribution of ectopic action potentials upon alvear stimulation

and the achievement of full depolarization. The phase plots also show that both early

and late spikes show as similar shape, with the exception of the stimulation artifact,

which is greater for early spikes and gets merged with the AIS component of the phase

plot. This shows that both early and late spikes look mostly the same from the point

of view of the soma, with the exception of the onset of the AP, which is affected by the

stimulation strength.

The data above shows that there are two distinct timings of somatic spikes, yet their

AP properties are rather alike from the phase plots. To investigate further details of this

phenomenon, a detailed response along the axon is to be studied. The traces along time

at every position of the somatoaxonic unit are plotted (figure 3.22) for early (A) and

late (B) spikes The polarized value of the membrane is depicted in violet-like colors. At

t = 0ms, we see a short lived depolarization due to the stimulation artifact. In the case

of the late spike (figure 3.22 A), the spike is generated in the node, which is the place

where the earliest full depolarization can be seen. From there, the spike is propagated

(forward in time, downward in the figure) towards the distal part of the axon and also

back propagates toward the soma. On the axon, some bumps on depolarization can

be distinguished, which correspond to the active nodes within the insulating myelin.

Also, the clear delay that this propagation experiences to reach the soma is due to the

capacitive currents necessary to fully charge the large soma. Similarly, in the case of an

early spike (figure 3.22 B), the generation of a spike in the node can be seen, as well as

its propagation towards the distal axon. In this case, however, the stimulation was also

strong enough to generate a second spike the AIS, which is propagated (again, forward

in time, downward in the plot) to the rest of the axon, and towards the soma. When

the two spikes, one generated in the AIS and the other in the first node, encounter each

other in the axon, none of them can further propagate as the sodium channels required

for propagation have been inactivated by the other spike. Therefore, no effect of the

node-initiated spike can reach the soma, and the trace recorded there includes only the

spike generated in the AIS.
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Figure 3.22: Propagation of an ectopic AP along the axon in space and time. (A) A
late spike is generated first in the node (uppermost warm colors) and then
propagated orthodromically through the axon and antidromically towards
the soma (forward in time, downward in the figure). (B) The early spike
is generated in the AIS (uppermost warm colors on the left) and the prop-
agated to the soma, where an AP is generated in less time than in (A).
Although a second ectopic AP is generated in the node, it cannot reach the
soma as the sodium channels in between have already been inactivated by
the AIS spike.
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Figure 3.23: Polarity dependence of early and late spikes. (A) Somatic membrane po-
tential for different current injections (color coded) and an extracellular
stimulation of AA (B) Time of peak AP recorded in soma. Note the dis-
continuous jump at −72.5mV . (C) Somatic membrane potential for dif-
ferent EPSP amplitudes (color coded) and an extracellular stimulation of
AA (D) Time of peak AP recorded in soma. Note the discontinuous jump
at 5mV . (E) Somatic membrane potential for different IPSP amplitudes
(color coded) shows bimodal distribution. (F) Time of peak AP recorded
in soma. Note the discontinuous jump at −1mV .
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3.5.2 Synaptic modulation of AP generation

Once we have seen that early and late spikes can be triggered depending on the stimula-

tion strength, the next question is whether, under a constant alvear stimulation strength,

other mechanisms can make a transition between these two states, like depolarization of

post synaptic potentials did on experimental data (figures 3.19 B, C, like depolarization

of post synaptic potentials did on experimental data (figures 3.19 B, C)

The first attempt to study how late and early spike generation is dependent on mem-

brane state is to check how membrane polarity affects its modulation. For that, several

somatic current injections were applied and checked against the same extracellular stim-

ulation (1pA, figure 3.23 A). The stimulation was chosen so that it falls within the late

spike range and may potentially switch to early spike or to failure. Stronger, more pos-

itive current injections lead to increased depolarization. This depolarization, in turn,

switches to an early spike at −72mV of membrane potential at the time of alvear stimu-

lation (figure 3.23 B). On the other hand, negative currents cause hyperpolarization and

delay the spike time. As opposed to varying the strength of the extracellular stimulation,

the current injection is changing the state of the membrane and thus, the activation or

inactivation of ionic channels. Therefore, the AP waveform and kinetics are changed

as a function of membrane potential and the time of the AP peak shows a steady de-

crease trend (figure 3.23 B) apart from the stark jump seen at −72mV . Besides, as a

consequence of this trend, the timing difference between early and late spikes is smaller

(0.5ms vs 1.2ms ) as the difference when changing the extracellular stimulation strength

(see figure 3.21).

When injecting a constant current from the soma, the membrane potential is changed

throughout the neuron. Post synaptic potentials, on the other hand, produce a sharp

potential change at the site of application, which is propagated with delay and waveform

low pass filtering towards other regions of the neuron. The procedure was repeated for

the same extracellular stimulation strength (1pA) and excitatory synaptic application in

the apical dendrite. A 5mV EPSP amplitude switches the spike from early to late (figure

3.23 D), with no other visible changes in the shape of the AP (figure 3.23 C). Further-

more, IPSPs elicit the opposite transition, from early spike to late spike. The procedure

was repeated, choosing an extracellular stimulation of 1.6pA, to ensure an early spike,

and IPSPs of increasing amplitude were applied. Due to the reversal potential of GABA

being closer to the membrane resting potential, IPSPs amplitudes were smaller than

EPSPs (figure 3.23 E). Nevertheless, at −1mV amplitude, there is a transition between
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3.5 Bimodal distribution of ectopic action potentials upon alvear stimulation

early and late spike.

Qualitatively, these results show that membrane potential within the neuron can mod-

ulate the onset of early and late spikes. Moreover, synaptic input can further cause

analogous behavior.

Quantification of modulation on AP generation

In the previous section I have shown that, under the same extracellular stimulation,

somatic current injections and post synaptic potentials act as a switch between early and

late spikes. Three questions remain to be answered. The first one is whether synaptic

input can also make a transition between an extracellular stimulation that elicits no

spike (failed stimulation) and a late spike. Second, how is the synaptic/current input

quantitatively related to the alvear stimulation. Third, are the AIS and the first node

of ranvier the initiation sites of early and late spikes, respectively?

Thus, the next experiment deals with the transition between failed spike and late

spike from a quantitative point of view. In order to quantify the relationship between

alvear and other input, the threshold of late spike generation is used. This threshold is

the amount of alvear stimulation needed to elicit a late spike under other inputs (either

excitatory or inhibitory synapses, or somatic current injection). For ease of comparison,

values of the threshold are normalized to the alvear input necessary to trigger an early

spike in the absence of any other input. The simulations were carried out using different

amounts of somatic current injection and, in the case of synaptic input, different number

of synapses as well as different timings with respect to the alvear stimulation were used.

Different amounts of current injection, or synaptic input produced similar AP wave-

forms as well as similar peak AP timings (figure 3.24 A). When depicted the threshold

of late spike generation against the membrane potential in the soma at the time of

alvear stimulation, we can see a negative correlation between them (figure 3.24 B). This

result is intuitive: The more depolarizing drive present in the soma, the less input is

necessary for the alvear stimulation to depolarize until the AP is generated. Conversely,

the more hyperpolarizing drive in the soma, the more input is necessary to overcome

that hyperpolarization and generate an AP. There are, however, some cases in which the

same membrane potential in the soma require different amounts of alvear stimulation

to trigger a late spike. The correlation between membrane potential due to synaptic

input in the soma and threshold is almost linear for the same timing, and the steepness
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depends on the timing. The closer the synaptic stimulus is to the alvear stimulation,

the flatter the slope is. This suggests that membrane potential in the soma is related to

the threshold of activation, but this correlation is blurred by timing factors.

Comparing the membrane potential in the axon initial segment to the threshold (fig-

ure 3.24 C), there is an increase of the correlation, yet there are still different slopes,

depending on the synaptic timings. On the other hand, the membrane potential at the

first node of ranvier shows a much higher correlation, with the differences in timings

disappearing (figure 3.24 D). As the effect of the synaptic input onto the first node of

ranvier does not depend on the timings and is the same as the one due to tonic current

injection, the membrane potential recorded there is the best predictor of the threshold

of late spike generation and, thus, it is likelier that the AP is generate at that location.
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Figure 3.24: Quantification of polarity onto AP generation (A): sample traces with dif-
ferent current injections (black), EPSP (red) and IPSP (blue) and their
subsequent late spikes. (B) Scatter of input and membrane potential in
the soma shows a slight correlation. (C) Scatter of input and membrane
potential in the AIS shows higher correlation than in the soma. (D) Scatter
of input and membrane potential in the node is highest suggesting that it
there where the influence of membrane potential is highest.

74



3.5 Bimodal distribution of ectopic action potentials upon alvear stimulation

� � � � �

������

��

��

�

�
��
�
�
�

�� �� �� ��

���

���

���

���

��
�
�
�

����

�� �� �� ��

���

���

���

���

��
�
�
�

���

�� �� �� ��

������

���

���

���

���

��
�
�
�

����

� �

�

�

Figure 3.25: Early spikes under synaptic input. (A): sample traces with different current
injections (black), EPSP (red) and IPSP (blue) and their subsequent early
spikes. (B) Scatter of input and membrane potential in the soma shows
correlation. (C) Scatter of input and membrane potential in the AIS shows
highest correlation suggesting it is there where the influence of membrane
potential is highest. (D) Scatter of input and membrane potential in the
node is lower than in the AIS.

Quantification of modulation on late to early transition

For the quantification of the threshold between late and early spikes, the same simula-

tions were carried out. In this case, the alvear stimulation was chosen so as to have the

peak of the action potential within 1.2ms after the alvear stimulation.

In this case, the stimulation artifact is more pronounced, due to the stronger stimula-

tion required to trigger an early spike (figure 3.25 A). Moreover, the range of thresholds

is broader than in the case of late spike (120% to 27%, figure 3.25 B). When compared

to the membrane potential in the soma, the different slopes dependent on the timings

of the synaptic input are not as pronounced for the membrane potential in the soma

(figure 3.25 B). The same applies to the axon initial segment (figure 3.25 C). On the

other hand, the slopes are tilted depending on the timing for the membrane potential

recorded in the first node of ranvier (figure 3.25 D). This tilt occurs in the opposite

direction than in the case of late spike generation: Less timing between synaptic input
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Figure 3.26: Correlation of input and membrane potential along the somatoaxic axis.
(A) For late spikes, correlation is highest at the first node, showing that the
effect of membrane potential is highest there for excitation (red) inhibition
(blue) and current injection (black). (B) For early spikes, correlation is
highest at the AIS, showing that the effect of membrane potential is highest
there for excitation (red) inhibition (blue) and current injection (black).

and alvear stimulation produces more tilted lines.

Together, this suggests that for early spike generation, the best predictor lies in the

soma-AIS area, as the correlation is higher. The different behavior of the slopes can be

understood by the morphology and its propagation effects: When the AP is generated in

the node, the modulating post synaptic potentials must pass first through the AIS and

the soma. For short timings, the low pass filtering of the PSPs through the axon is more

accused. This forces excitatory post synaptic potentials with short timings to have more

amplitude in the soma and AIS to produce the same depolarization in the first node of

ranvier. The higher amplitude in the soma for the short timings produces the flatter

lines in figure 3.24 B. The opposite effect occurs in the case of early spike. The key

region in this case is the axon initial segment. Short delays are more passively filtered

than longer delays, so by the time they reach the first node of ranvier, their amplitude is

less than those with longer timings, for the same amplitude in the AIS. Thus, the slopes

for shorter timings are more tilted than the ones for longer timings when measured in

the AIS. The same reasoning can be applied to inhibitory postsynaptic potentials.
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3.5 Bimodal distribution of ectopic action potentials upon alvear stimulation

So far we have only considered the AIS and first node of ranvier as sites of modulation

of late and early spike. Although the greater sodium channel concentration of these to

regions makes them the most likely sites, any another place along the axon might be

the modulating site. As seen before, the higher correlation between minimum input to

elicit a spike and membrane potential at a given site determines the modulating site.

To further test that AIS and first node of ranvier are the generating sites of early and

late spikes, respectively, I computed the correlation between threshold alvear input and

membrane potential throughout the axon. Late spikes have the highest correlation in the

first node of ranvier, whereas this correlation decreases towards the distal parts of the

axon and also decreases more abruptly towards the soma (figure 3.26 A). This change in

correlation is more accused towards the soma due to the distortion that the charging of

the somatic region causes. On the other hand, early spikes show the greatest correlation

in the axon initial segment, and then it decays from there towards the soma and along

the axon (figure 3.26 B).

Taken together, these results show that extracellular stimulation in the axon can

reproduce ectopic action potentials in a bimodal distribution. This bimodal distribution

is caused by different initiation sites (node and AIS), and the initiation site can be

modulated by synaptic action.

Modulation of early spikes by sodium channel density

Action potential initiation in relies critically on the high sodium channel density in the

AIS (Yu et al., 2008). How does this sodium channel density affect the modulation

of early and late spikes? To study this effect, I varied the sodium channel density in

the axon initial from 0 to 0.30S/cm2 and tested the response for an alvear stimula-

tion (1.5pA) than produces an early spike under the normal sodium channel density

(0.24S/cm2). Increasing the sodium channel density in the AIS does not affect the AP

shape (figure 3.27 A), but an earlier peak time is observed (figure 3.27 B). Decreasing

the density also delays the time of the peak. At gNa+ = 0.17S/cm2 (30% reduction of

the default density), the transition between a late spike (figure 3.27 C) and an early

spike (figure 3.27 D) occurs. This transition is marked not only by the initiation site by

also by the jump between peak times (figure 3.27 B). Finally, very low sodium densities

in the AIS prevent the ectopic action potential from propagating to the soma. Instead, a

widened bump can be recorded (figure 3.27 A). In summary, modulation of early spikes

is also dependent on the AIS intrinsic excitability.
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Figure 3.27: AIS sodium channel density can switch between late and early spikes (A)
Membrane potential at soma responding to same stimulus for various AIS
sodium channel densities (red highest and blue lowest) (B) Time of peak of
trace as a function of sodium channel density in the AIS shows failed spikes
(left), late spikes (middle) and early spikes (right). The color scale is the
same as in (A). (C), (D) Position-time color plots of AP initiation for low
sodium channel ((C), left black square on (B)) and high ((D), right black
square on (B)) to show differential initiation sites
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4 Discussion

4.1 The instantaneous time constant and the biophysics

of the membrane

The main aim of this thesis was to measure the excitatory synaptic inputs onto pyra-

midal cells with the aim of simultaneously measuring the depolarization experienced by

the neuron and the currents which drive that depolarization. To that aim, a new mag-

nitude is proposed, the instantaneous time constant, τ� . This new magnitude follows

the intention of expressing excitatory input in terms of a simple magnitude, the time

constant. In this manner, excitatory inputs can be seen by its two main features. First

the presence of a driving force to depolarize the neuron. Second, a change in the passive

properties (i.e., the time constant). This approach has been used to the time constant

of shunting (Schiller and Schiller, 2001; Dayan and Abbott, 2005). As the time constant

is a magnitude that speaks for the integrating rate, a reduction of its value is to increase

the integrating speed and therefore contribute to the integration. Furthermore, as a well

established magnitude within the physiology, yields values that are easy to interpret.

The change in passive properties by synaptic input has been dealt in (Gidon and Segev,

2012), where off-path inhibition changed the membrane in a way that dampened more

effectively synaptic input than in-path. As opposed to that study, I have focused on

the excitatory effect inputs exert on those changes in passive properties. The distance

dependent behavior has also been studied. As shown in (Jaffe and Carnevale, 1999),

excitatory inputs onto apical dendrites of CA1 pyramidal c ells exhibit a distance de-

cay. Although in their study they only focused on amplitudes, the capacitive term of

the impedance causes the widening of the EPSP shape as well as the reduction of its

amplitude. Corrections of this widening are beyond the scope of this study.

Regarding the ionic currents, the current clamp setting does not allow to disregard

them with the same confidence as in voltage clamp. The linear behavior of the mem-

79



4 Discussion

brane at potentials close to the resting membrane potential is ubiquitous (Rall, 1960;

Koch et al., 1990; Gidon and Segev, 2012). To ensure that the linearity is maintained,

the frequency of the sinusoidal was chosen to 10Hz, higher than the resonance of Ih

current (1 − 2Hz,(Hutcheon and Yarom, 2000)) to avoid interferences from this res-

onance. Moreover, maximum depolarizations (including sinusoidal and EPSP compo-

nents) being below −55mV make it unlikely that sodium (Magee and Johnston, 1995;

Hoffman et al., 1997), calcium (Jaffe et al., 1994; Magee and Johnston, 1995) or NMDA

(Schiller and Schiller, 2001) conductances are active. Moreover, APV was applied to the

recordings for blocking of NMDA receptors.

4.1.1 Measurements of conductances

I have covered in the previous sections the formalism regarding single compartment pas-

sive neurons, both for excitation and inhibition. Although this model, with the addition

of a binary action potential (integrate and fire neurons) is reliable to describe the basic

cell physiology, as has been widely used to model its behavior (Dayan and Abbott, 2005),

it presents some limitations with respect to others with more sophisticated morphologic

and biophysical models.

The main assumptions that they have been made are the following: First, it is possible

to elicit trials that are identical except in the phase of the oscillation, disregarding effects

of synaptic variability and recording noise. Second, that the membrane remains in the

linear regime without the presents of non tonic conductances and thus the neuron can

be described as a RC circuit. Third, that the propagation of EPSPs along the dendrites,

although has a well known attenuation does not prevent the method from working. All

these assumptions will be checked during the experiments and then commented in the

discussion.

Neurons receive most of their synaptic input via their dendrites, from where they

are propagated to the soma, where the main integration of the inputs takes place. As

explained in the introduction, during this propagation process, the transmission of the

signals is attenuated due to the cable properties of the dendrites (Rall, 1970).

Therefore, it is necessary to assert to which extent this attenuation or distortion will

affect the instantaneous time constant. Starting from the schematic dendritic compart-

ment described in section 1.2.2

In order to calculate the value of τ� at a give point of the synaptic input, the values
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4.1 The instantaneous time constant and the biophysics of the membrane

of the three electrical magnitudes, I, V , and dV
dt

need to be measured. Nevertheless, it

is not enough to determine three parameters with only three magnitudes. To overcome

that, a small sinusoidal oscillation is used.

Sinusoidal oscillations have been classically used in electrophysiology to measure impedance

changes from the phase delay (Van Oosterom et al., 1979; Ferreira-Filho and Martins-

Ferreira, 1982). Also, they have been used in neurons to measure frequencies of resonance

(Hutcheon and Yarom, 2000; Zemankovics et al., 2010). The limitation of this approach

is that the timings to be measured need to be slower than the frequency applied. There-

fore, to measure synaptic kinetics in the order of milliseconds, applied frequencies in

the order of KHz would be expected. However, it is known that the impedance at

those frequencies is much higher than at lower frequencies (Zemankovics et al., 2010;

Jaffe and Carnevale, 1999), thus making the voltage variation too small to measure.

The approach taken in this study is to assume that the synaptic input elicited at each

stimulation is comparable to the other. This assumption is reasonable as it is the stan-

dard approach to average EPSCs in voltage clamp to reduce the noise (Numberger and

Draguhn, 1996). From there, a larger set of points I, V, dV
dt

are available for fitting the

equation and thus obtaining τ� . The amplitude apply needs to be small enough to

ensure that the linear regime is maintained (Dayan and Abbott, 2005), yet greater so

that it is greater than the noise. For the experiments, amplitudes around 3− 4mV were

sufficient to clearly see the oscillation, while not being big enough to cause a difference

in amplitudes of EPSPs of different phases.

Another approach taken theoretically is to assume that τmembrane >> τsyn. With that,

the currents due to the membrane time constant can be considered decoupled (Koch et

al., 1990). As the time constant for CA1 pyramidal neurons is one order of magnitude

bigger than the dynamics of AMPA receptors (Wheeler et al., 2015). Therefore, the

assumption that during the synaptic input, the membrane constant is too slow to cause

an effect must be taken with care.

Other methods to estimate conductance changes have been proposed, such as (Borg-

Graham et al., 1998; Häusser and Roth, 1997).

In his work, Borg-Graham provided a method to calculate the conductance changes

during visual tasks of a cat. Data was collected from VC recordings at four different

holding potentials under the same sensory stimulus. Based on Ohm’s law, the con-

ductance is estimated as a function of time, and also an effective reversal potential is

estimated. In that study, they claim the same procedure can be applied to current
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clamp recordings, though it brings two problems. The first one is the presence of capac-

itive currents, which are slower than synaptic ones; and the second one is the plausible

presence of ionic currents. Using τ� and the sinusoidal current approach, the capacitive

currents are integrated in the model so that their action does not blur the obtention

of the conductance. Other active currents are not accounted for and the assumption

is that in the voltage ranges applied, the linear regime remains. This assumption has

been often taken (Poirazi and Mel, 2001). Nevertheless, the main drawback between

τ� and the method of Borg-Graham is that it only applies to excitatory synaptic inputs,

as opposed to both excitatory and inhibitory synaptic inputs.

Another very powerful method is the one presented in (Häusser and Roth, 1997).

Combining voltage jumps at different timings with respect to the synaptic stimulation

in voltage clamp, they estimated the kinetics of the synaptic input. In addition, this

method can also estimate the timing delay due to the space clamp problem (Armstrong

and Gilly, 1992). Despite the great accuracy of this procedure, the two main drawbacks

procedure are the lack of a value of the conductance magnitude and that to obtain the

kinetics, an a-priori waveform is to be provided. τ� , on the other hand, provides an

estimate of the magnitude due to the change in the instantaneous time constant. In

the case of a single compartment neuron, the value of the conductance can be directly

estimated from the input resistance. In the case or a real neuron or a multicompartment

model there is no analytic relation. Nevertheless, they are proportional and thus relative

weights can be compared. Furthermore, τ� , within its biases, retrieves the waveform of

the excitatory conductance, without any a-priori shape needed.

The estimation of conductances changes through the instantaneous time constant

conveys two main challenges, one of theoretical nature, and one recording problem. In a

neuron with morphology, not only the transmembrane currents are present, which are the

only ones accounted in the model. There is another internal current, which equalizes

the membrane potential across the neuron. (Rall, 1969). A method to characterize

these currents is to include several time constants, calculating the next, larger, after

substracting the component of the previous in “peeling” process (Holmes et al., 1992).

As the model presented here only includes the greatest contribution, i.e., the capacitive

current, the fitting process has a bias that leads to τ� underestimating the kinetics of

the conductances. An analytical compensation term may be possible but it is beyond

the scope of this study. Another approach would be to take this bias and use it, along

with EPSC recordings to measure the electrotonic length of a particular synaptic input.
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4.1 The instantaneous time constant and the biophysics of the membrane

The greatest technical caveat present in this study is the importance of obtaining a

reliable value of the derivative of the membrane potential. By extending the classical

ohmic treatment of the cell to include directly the capacitive currents, the role the

derivative plays in the model is analogous to the membrane potential. However, this

magnitude can only be obtained by deriving the trace of the membrane potential. In

this process, the noise inherent to any recording is amplified, as the derivative deals with

the local differences, and these are noise. Smoothing processes are not desirable as they

low pass the data, and therefore some of the fast-timing information of the conductances

may be lost. Additionally, it was mentioned above that the amplitude of the sinusoidal

needs to stand out from the noise. This is also necessary for the derivative, requiring

either high SNR recordings or increasing the amplitude of the sinusoidal which, in turn,

may push the membrane outside of the linear regime. The variational technique applied

in this study (Chartrand, 2011b), which tries to find a function where smoothness and

similarity to the derivative are balanced. This solution obtained satisfactory readouts of

τ� , which are comparable to the post synaptic currents recorded in voltage clamp. Still,

the noise in the derivative remains the single greatest source of error for the calculation,

especially on experimental data.

In summary, τ� with the aid of sinusoidal current injections can estimate both the

waveform and magnitude of excitatory conductances, yet the morphology and the sub-

sequent space clamp problem creates a bias towards the underestimation of the values

with respect to analogous recordings of excitatory post synaptic currents in voltage

clamp.

4.1.2 Integration of EPSPs

The current understanding of integration of excitatory signals shows that there is a

range of low depolarizations in which inputs are integrated more or less linearly, fol-

lowed by larger depolarizations, in which the inputs are added supralinearly aided by

active conductances (Poirazi and Mel, 2001; Remy et al., 2009; Thome et al., 2014).

Under the linear regime, inputs are assumed to follow the passive properties of the

membrane. However, Rall postulated that a depolarization may significantly reduce the

driving force of excitatory potentials and thus, reduce the total depolarization sublin-

early (Rall, 1969). More recently, computational characterization showed that under

particular morphologies, such as CA1 pyramidal cells, synapses act as current sources

and thus not affected by the change in driving force (Jaffe and Carnevale, 1999). Active
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conductances may however play a role in maintaining the linear regime (Cash and Yuste,

1999). A major challenge is that small active currents may contribute at the dendritic

location but remain invisible in the soma (Spruston et al., 1994).

Besides, the time coupling is crucial for synaptic integration. Precise patterns of

excitation and inhibition are fundamental for the sustainment of network oscillations

and overall brain function (Buzsáki and Draguhn, 2004). Furthermore, cortical neurons

can encode synaptic stimuli into action potentials in the millisecond timescale (Tchu-

matchenko et al., 2011; Huang et al., 2012). In contrast, many presynaptic processes

are stochastic such as neurotransmitter release, diffusion or binding to receptor. Thus,

it is necessary that neurons have mechanisms to promote the synchrony of their inputs.

Regarding the case timing differences between two excitatory inputs, the theoreti-

cal prediction is that the total peak amplitude decreases monotonically as the inputs

desynchronize (Rall, 1970). Evidence on this prediction is contradictory, with one study

showing sublinear integration for coincident events for oriens and apical stimulation of

CA1 pyramidal cells (Cash and Yuste, 1999) and other showing supralinear integration

in a window of 10 ms and a sublinear window between 10 and 50ms (Margulis and Tang,

1998). Both studies were carried out in hippocampal cultures.

In (Cash and Yuste, 1999) the experimental design follow the works of Rall (Rall, 1964)

and the authors were expecting a 40% sublinearity due to the reduced driving force and

the shunting caused by the reduction of the input resistance. However, the peaks of

their EPSPs were 10mV , thus not far away from the resting membrane potential and

also, as shown in chapter 3.1, the shunting effect of excitation changes also the effective

reversal potential and thus may enhance the integration. This is consistent with the

computational experiments shown in section 3.2.2.

Furthermore the supralinearity for the 10ms window shown in (Margulis and Tang,

1998) was attributed to an sodium currents. TTX application and voltage clamp record-

ings at −45mV to inactivate sodium channels both showed that the supralinearity was

attenuated. Although other active currents like calcium or NMDA are be involved,

these results also suggest that the overlap of conductances may play a role in enhancing

coinciding integration.

In summary, conductance overlap and the subsequent change of the time constant

might be a mechanisms by which inputs close to synchrony are rewarded in depolariza-

tions below the threshold of activation of ionic channels or NMDA receptors.
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4.1.3 Extension to inhibition

In the previous sections, the behavior of τ�for excitatory synaptic input has been consid-

ered. The underlying principle is that there are two competing forces in the membrane.

The first one is the tendency of the membrane to its resting potential, which can be

considered constant in time and the second is the force towards depolarization driven by

excitation, whose reversal potential is 0mV (Hestrin et al., 1990). Taken together, this

allows to synthesize all conductance behavior into a single magnitude, the instantaneous

time constant.

However, inhibition and its interplay with excitation is fundamental for synaptic inte-

gration (Hao et al., 2009), precise action potential timing (Tchumatchenko et al., 2011)

and maintaning network state (Buzsáki and Wang, 2012). Therefore, obtaining a read-

out of inhibitory conductances along with excitation is a crucial issue to measure a

working neuron.

This poses an addition of complexity. As opposed to the case where only excitation

is considered, here there are three forces acting together. Inhibition, like excitation,

is time dependent and its reversal potential is close to the resting potential (Hugue-

nard and Alger, 1986). Thus, the effect of inhibition is mainly shunting rather than

hyperpolarizing (Schiller and Schiller, 2001). With inhibition included, the changes in

the membrane cannot be reduced to a single parameter, like τ� , but the combina-

tion of a time constant and an effective reversal potential (Dayan and Abbott, 2005;

Borg-Graham et al., 1998). After this step, the effects of conductances cannot be sum-

marized into a single parameter. Thus, no clear analogy to a basic passive element can

be made, as with the time constant and excitatory synaptic input. A study of the com-

bined effects of shunting and effective reversal potential can start from this point and

might be subject of further study.

4.1.4 Calculation of conductances during network oscillations

As explained in the previous section, in order to account for inhibitory input, the single

parameter of the instantaneous time constant can no longer be used. Nevertheless,

the approach of applying a sinusoidal current injection via a patch pippete or a sharp

electrode can still be used.

Sharp wave ripples are high frequency oscillation events present in vivo in spatial
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navigation (Singer et al., 2013) and memory formation (Buzsáki, 1989) tasks. The have

been reproduced in vitro setting (Maier et al., 2003; Both et al., 2008) which is a better

setting to test their underlying mechanisms.

The construction of a deep learning model was able to reliably recover conductances

for test data without noise. However, when trial to trial variability and gaussian noise

was added, the calculated values of the excitatory and inhibitory conductances were

underestimated by 50%.

Additionally, the loss in the experimental did not converge satisfactorily. Estimates

reproduce two main features of conductances during SPW. First, excitation arrives first,

followed by a strong inhibition. Second, the ratio of inhibition to excitation is 5, con-

sistent with other measurements. Finally, the value of the measured conductances is

in range with other measures (Maier et al., 2011). Nevertheless, as the procedure has

shown to underestimate the values of the conductances, these calculated conductances

must be taken with care.

What can be done from the experimental point of view to improve the data processing?

First, all deep learning applications rely of big datasets to extract the main features

(Goodfellow et al., 2016). As the recordings where made during 10 minutes, with 3Hz

event frequency, and many where discarded due to quality criteria. It is noteworthy to

mention that, although the emergence of sharp wave ripples is random, the events fell

well distributed withing the face of the sinusoidal, which helps for the analysis.

Another major concern is the resting membrane potential. The recordings analyzed

were taken at −80mV membrane potential, below the reversal potential of inhibition.

To better discern between excitation and inhibition, recordings should be taken at mem-

brane potentials above the reversal chloride potential.

Deep learning approach

The linear model has failed to retrieve the conductances during network oscillations.

This failure has many causes. First, the original linear model does not user an in-

hibitory component. Once included this inhibitory conductance coexists along with the

excitatory. This means that for every time point, two values exist (gexc(t) and ginh(t) ).

This makes the solutions unstable, as a variation in one of the conductances, can be

overcome by an opposite change in the other. This leads to ovefitting and, indirectly, to

more noise (or the higher SNR measured in the previous section).
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In general, the linear model provides the best minimization at each time point, regard-

less of previous parameters. Basic electrophysiological and biophysical already gives us

some information about the nature of the solution that the linear model cannot include.

First of all, by definition, both values of gexc(t) and ginh(t) are always positive. Secondly,

if we assume that the conductance outside the ripple is tonic, then all conductances in

the baseline are incorporated into the leakage and thus gexc(t) and ginh(t) are zero (or

close to it). Also, the conductances are assumed to be smooth, i.e., without sharp edges

and with low signal to noise ratio.

Some non-linear minimization techniques could be used like the Levemberg-Marquardt

algorithm ((Levemberg, 1944; Moré, 1978) ). Furthermore, deep learning has emerged

lately (Goodfellow et al., 2016) as a widely used technique for extracting underlying

information from patterns, with applications mostly developped in classificaction tasks

such as object or speech recognition.

As the complexitity addition of inhibition makes the model untractable for the linear

minimization, a deep learning approach was taken. Deep learning consists of creating

representations of a data set through an artificial neural network. The term of artificial

neuron comes from its origins, where networks were designed to resemble real neural

networks such as a model of the visual cortex to image pattern recognition (Fukushima,

1988). However, in more recent times, due to lack of a full understanding of neuroscien-

tific neural networks, its design has diverged towards the field of engineering (Goodfellow

et al., 2016). They have industrial applications in finance, natural language processing,

computer vision or speech recognition (Deng et al., 2014).

The quintessential dataset for deep learning is the MNIST (LeCun et al., 2010), a

collection of images of handwritten digits. Most of the literature in the field assesses the

efficacy of the method by how well the digits can be classified. Although application of

deep methods to regression (a continuous function as output) is possible, there is lesser

literature on this field than in classification.

Usually in deep learning models, the output of the last layer is the magnitude to

predict. The predicted value is compared against the measured value and the difference

is the loss by which the network is optimized. With our datasest, the (normalized) time

was used as input, and the output was the time dependent values of the conductances

and the constant passive parameters and reversal potentials. This output, along with

the membrane magnitudes for each timepoint (I, V, dV
dt

) was applied to equation 3.17,

which acted as the loss function. This network was designed in that way so that the
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magnitudes to be predicted (excitatory and inhibitory conductances) appear explicitly

in the model. Furthermore, using two recorded quantities (from (I, V, dV
dt

)) as input as

the remaining one as output has the problem that the network may try to minimize

based on basic electrical properties. For instance, if the derivative is the output, by

learning to derive the membrane potential trace, a good minimization is achieved.

When training deep networks, a validation set is needed to prevent overfitting. This

means that the network should generalize beyond the training set and not only memorize

the given data (Goodfellow et al., 2016). The usual procedure is to leave a subset of

the total data outside of the training and then measure the performance of the trained

network with it. Given the nature of the data, where a sinusoidal waveform was applied

and the goal being to see the behavior in the absence of the sinusoidal, the validation

set used here was the average across trials.

For the optimization algorithm chosen to train the network, stochastic gradient de-

scent is the simplest implementation, which consists of update the weights according

to the direction of maximum gradient for a subsample of the dataset (Goodfellow et

al., 2016). This algorithm, however, has been proven poor on deep networks, as the

gradients on the deepest networks tend to become smaller and smaller (Goodfellow et

al., 2016). Recently, more sophisticated algorithms have been introduced. I tried all

the optimization algorithms available in the keras library (Chollet and others, 2015).

Among them, Adam (Kingma and Ba, 2014) and Adadelta (Zeiler, 2012) were the most

succesful for this optimization problem.

When designing the network, a key requirement was for the network to yield time

dependent outputs (the conductances) as well as constants (the passive parameters and

the reversal potentials). This was implemented by having a part of the network input-

independent. This decission was made to remain with within the simpler feed forward

networks framework. More sophisticated solutions would have been possible, such as

long short term memory units (LSTMs) (Gers et al., 1999), although they are more

complicated to optimize (Goodfellow et al., 2016).

Another possible approach would be to measure an effective conductance and effec-

tive reversal potential (Dayan and Abbott, 2005; Borg-Graham et al., 1998). With

these magnitudes, excitation and inhibition could be inferred by independent compo-

nent analysis (ICA) (Hyvärinen and Oja, 2000). This approach, informally known as the

cocktail party problem, consists of extracting the most statisctically independent compo-

nents that form a set of signals, like the voices of different people from the background
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sound of a gathering. ICA has been successfully used for disentangling signals from

different pathways in the hippocampus (Makarov et al., 2010; Makarova et al., 2011;

Mart́ın-Vázquez et al., 2015). In the case study of SPW-r, this approach is not feasi-

ble. Firstly, the connectivity between pyramidal cells and intereurons in the CA1 area

(Andersen, 2007a) suggests that the excitatory and inhibitory input are not statistically

independent. Secondly, ICA can only disentangle up to a constant. In this case, it

means that the waveform of the conductances can be detected, but its magnitude could

be smaller or bigger by having a bigger or smaller reversal potential. Thus, either a

value of the reversal potential needs to be given a priori, or no solution can be reached.

Finally, the deep network constructed so far only reflects the passive conductances of

sharp wave ripples. Noise minimization and the addition of elements inside the network

to account for active mechanisms might reduce the error and thus infer the behavior of

conductances during sharp wave ripples.

4.2 AcD input and output

A recent study has found that the axon of around 50% of CA1 pyramidal cells emanates

from a basal dendrite, rather than from the soma (Thome et al., 2014). Moreover, elec-

trophysiology experiments show that synapses onto these axon carrying dendrites elicit

more efficiently action potentials (Thome et al., 2014). The computational study made

during this thesis complements and enlarges our understanding of this phenomenon.

From the two port theory framework presented in (Jaffe and Carnevale, 1999), the

transmission of post synaptic potentials from their initiation site to other neuronal re-

gions can be seen in two ways: either a depolarization is caused at the synapse site

and this depolarization is transfered to other regions via the voltage transfer ratio

(VB = kA→BVA) or the current entering at the synapse is propagated towards the target

region in term of the tranfer impedance (VB = ZcIA). The computational characteriza-

tion of this study shows that CA1 pyramidal cells can be better represented by transfer

impedance than by voltage ratio. In this framework, nonAcD inputs must traverse the

soma in order to reach the AIS. Due to the large surface (and thus capacity) to the

soma, the transfer impedance from nonAcD to soma is higher than the equivalent from

AcD to AIS, and thus total depolarization elicited in the AIS is greater for the same

input if it is coming from the AcD.
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AIS location within the axon is plastic and its location modulates overall neuronal

excitability (Grubb and Burrone, 2010). A change of location of AIS is thought to home-

ostatically regulate somatic AP (Hamada et al., 2016). This homeostatic modulation

accounts for nonAcD inputs, whereas AcD inputs would be affected to a lesser extend

by this reallocation of the AIS.

The computational model also predicts that perisomatic inhibition is innocuous to

AcD input for AP generation. Intrincated patterns of excitation and inhibition are

crucial for the sustainment of network oscillations. In each oscillation type different types

of interneurons provide specific kinds of inhibition (Klausberger et al., 2003; Klausberger

and Somogyi, 2008). Therefore having an input insensible to the ongoing perisomatic

inhibition of basket cells might contribute to switching from one network state to another

in a context of high perisomatic inhibition. Experimental support for this hypothesis

is needed. On the other hand, it has recently been proposed that off-path inhibition

might shunt more efficiently than on-path (Gidon and Segev, 2012). As that prediction

is based on the end conditions of dendrites, this off-path inhibition is most likely to

act in dendrites and thus, the off-path effect exerted by perisomatic inhibition to AcD

input is sharply reduced, as the simulations show. Inhibition in the AIS mediated by

chandelier cells, on the other hand, is not likely to be different.

Finally, the higher propensity of dendritic spikes in AcD branches cannot be explained

by the morphology. Indeed, the electrotonic properties of AcD and the control nonAcD

are the same. Active mechanisms in dendritic signaling are important for generating

dendritic spikes, either trough sodium, calcium (Jaffe et al., 1994; Magee and Johnston,

1995) or NMDA (Schiller and Schiller, 2001) receptors.

4.3 Long range synaptic interaction in the axon

Ectopic action potentials (eAPs) in CA1 pyramidal cells are present in epileptic form

activity (Velazquez and Carlen, 2000). Spikelets suggesting the presence of AP in the

axon have been reported in vivo (Epsztein et al., 2010). The presence of gap junctions is

necessary for the maintenance of SPW-r in vivo (Maier et al., 2003), despite evicence in

vivo is yet to come. Due to the sparsity of pyramidal to pyramidal synaptic connections

(Andersen, 2007b), gap junctions and their generated eAP have been proposed as a

mechanism for excitatory cells synchrony during SPW-r (Traub et al., 2012; Vladimirov

et al., 2013).
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Our computer simulations reproduce the bimodal pattern of eAPs seen in the electro-

physiological experiments. Careful inspection to the axon-wide waveforms confirmed the

hypothesis that the late spikes are initiated in a node of ranvier, whereas the early spikes

are initiated in the AIS. This is probably due to their high concenctration of sodium

channels which makes them These the most excitable sites of the axon.

Furthermore, the simulations confirm the coupling between synaptic input and eAP

generation. The first node of ranvier is located 250µm away from the soma. Thus

the distance between synapses proximal to the soma and the node is well below the

space constant (λ = 612µm, (Koch et al., 1990)). Thus, those PSPs arrive at the node

with enough amplitude to modify the membrane potential of the node. Furthermore,

the correlation between membrane potential and input necessary to trigger an eAP

was maximum in the node for late spikes and the AIS for early spikes. As the axon is

electrotonically connected, the correlation will be present throughout the axon. However,

the place with the highest correlation is the most likely where the interaction is present,

whereas the correlation of other sites comes from the axial propagation of PSPs. This

interaction is indirect, and thus the correlation is reduced.

The threshold of action potential activation shown in the study refers to either the

generation of an eAP in the node, or the generation of of two eAP, in the node and

in the AIS. There was no case in which a spike would be generated in the node and,

due to large inhibition in the AIS, had its backpropagation blocked to reach the soma.

This is consistent with experiments on rats (Fabian Roth, personal observation). Back

propagating action potentials are important to depolarize the dendritic compartments

after the AP generation (Nevian et al., 2007) and may be important in providing feedback

for mechanisms of hebbian plasticity (Hebb, 1949).

To sum up, the long range passive propagation of postsynaptic potentials can couple

to active sodium channels in the enriched nodes of ranvier or AIS to generate AP. This

may interact with gap junctions to generate eAPs.

4.4 Future Experiments

One of the complications of using the instantaneous time constant to measure excitatory

conductances is the difficulty of knowing the real value of the post synaptic current in

experimental conditions. Double patching of the soma and an apical dendrite could
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be a solution to this problem: The dendritic patch could inject current pulses of the

shape of an EPSC and the same waveform could be repeated several times with minimal

trial to trial variability. Then, the somatic patch could measure the instantaneous time

constant. Finally, the electrotonic distance between the applied pulse and the somatic

recording could be easily determined via the two patches.

Another approach to improve the reliability of the incoming post synaptic current to

assess the quality of the instantaneous time constant would be dynamic clamp (Robinson

and Kawai, 1993). With this technique, a single patch pippete in the soma would produce

the incoming waveform and the sinusoidal current to detect it. Some theoretical analysis

would be needed beforehand, to ensure that the principles under which dynamic clamp

works are not altered by adding a sinusoidal current within the same pippete.

The deep learning network proposed in this thesis has produced preliminary results

with the obtention of the conductances during network oscillations. A better design is

however needed to reliably estimate the values and time courses of the conductances.

Long short term memory units (LSTMs) (Hochreiter and Schmidhuber, 1997) are a

type of artificial neurons that not only apply a nonlinearity onto the input to produce

the output but also combine it with a memory of past events. Using these neurons as

building blocks of the artificial neural network could help to store the time information

of the conductances and thus improve the algorithm.

Nevertheless, the successful application of a deep learning algorithm deeply relies on

the quality of the input dataset. To improve the quality of the network oscillations

recorings, a preprocessing step could be added to classify the sharp wave ripples into

alike categories (Reichinnek et al., 2010). These alike categories could be used in different

instances of the deep learning network and thus each network would have less variability

and the conductances could be better estimated.
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the thesis. We are a good team.

Last, to the ”la Caixa” foundation who together with DAAD funded the first stage of

this study and to the SFB 1134, who did afterwards.
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