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Zusammenfassung

Akkretion spielt in einer Reihe von astrophysikalischen Systemen, wie Aktive galak-
tische Kerne (AGN) und Rontgenbinarsystemen (BHXB), eine entscheidende Rolle.
Das Standardscheiben Modell kann die beobachteten Spektren dieser Objekte nicht
befriedigend erklaren. Sie weisen aufler einer Schwarzkorperkomponente, die allgemein
der Standardscheibe zugeschrieben wird, noch eine weitere harte Komponente auf, die
einem Potenzgesetz folgt. Diese letztere wird dadurch erklart, dafl sich in unmittelbarer
Néhe der Standardscheibe heifles, optisch diinnes Gas befindet, welches durch radiale
Advektion statt durch Strahlungsprozesse kiihlt.

Diese Arbeit geht der Frage nach, ob eine innere optisch diinne Scheibe selbstkonsistent
radial an eine auflenliegende Standardscheibe angeschlossen werden kann. Ein erstes
Resultat ist, daB dies in der Tat prinzipiell fiir einen weiten Bereich von Ubergangsradien
moglich ist. Allerdings entwickelt sich der Akkretionfluss so, daf der Ubergangsradius
langsam auswirts driftet, bis dieser ein Maximum erreicht, welches in Ubereinstimmung
mit vorhergehenden stationdren Arbeiten ist. Als weiteres wichtiges Ergebnis findet
man, daf der Ubergangsbereich instabil ist. Oszillierende Moden von Rayleigh-
Instabilitdten dringen in die heifle Scheibe ein, so dafl hydrodynamische Grofien, ebenso
wie das resultierende Spektrum, hochvariabel sind. Die charakteristische Frequenz der
Oszillationen ist von der Groenordnung der Keplerschen Umlauffrequenz und macht
diese somit zu einem moglichen Kandidaten zur Erklarung der quasi-periodischen Os-
zillationen, welche man in den Lichtkurven einiger BHXBs beobachtet.

Abstract

Accretion onto compact objects play a fundamental role in a number of astrophysical
systems like active galactic nuclei (AGN) and black hole X-ray binaries (BHXB). The
standard thin disk model fails to reproduce the spectra of these systems. They exhibit
a blackbody-like component, generally attributed to the cold standard disk, and a hard
power law-like component extending to several 100 keV, which cannot be accounted for
by the standard disk. This situation can be remedied by assuming that the accretion
flow consists not only of the cold standard disk, but also of a hot optically thin plasma
in the immediate vicinity. This hot flow cools through advection rather than through
radiation.

This work addresses the question whether an inner hot optically thin disk can be self-
consistently connected to an outer cold standard disk. We come to the conclusion
that radial transitions between the two flow types are in principle possible for a wide
range of transition radii, which depend on the flow parameters. But while the flow
evolves in time, the transition radius drifts radially outward until this reaches its out-
ermost allowed location, which is in agrement with previous steady models. A second
major result is, that the transition region is highly unstable. Oscillating modes of the
Rayleigh-instability leak into the inner hot low and make its hydrodynamical and spec-
tral properties highly variable. The characteristic frequency of the oscillations is near
to the local keplerian orbital frequency, which makes them a potential candidate for the
high-frequency quasi-periodic oscillations present in the X-ray light-curves of BHXB’s.
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Chapter 1

Introduction

Accretion onto a central object is believed to be one of the most effective energy
release mechanisms in astrophysics. Ambient matter is thereby captured by
a gravitating body out of the surrounding medium. On the way down the
gravitational potential of the central object matter is compressed and possibly
sheared, which leads to heating through dissipative processes. If the central
object is a compact object, like a neutron star or a black hole, a large fraction
of the infalling rest mass energy equivalence will be transfered to heat and
eventually radiated away with an efficiency n = L/ Mc?, where L is the radiative
luminosity, M the rate by which mass is accreted and ¢ the speed of light.

At high luminosities, the flow and particularly the accretion rate will be con-
trolled by the outward momentum transfered from the radiation to the accreting
matter by scattering and absorption. A fundamental upper limit for the radia-
tive luminosity of steady spherical accretion flows is the Eddington luminosity,
L ggq, which results from the equilibrium between outward oriented radiation
pressure and inward oriented gravitational force. The corresponding Eddington
accretion rate is (e.g. Frank et al., 1985)

: M M
Mpgq = 1.39 x 10" (M—> gs 1 =209 x 1078 (M—> Meyr™t,  (1.1)
© ©

where a constant radiation efficiency 7 = 1/10 has been assumed.

In the case of a maximally rotating black hole, the efficiency can be up to
n = 0.42, whereas nuclear fission releases only an relative small fraction n ~
0.01 of the energy. It is therefore a widely accepted paradigm that active
galactic nuclei (hereafter AGN) harbor supermassive black hole as their central
engine. Even our quiet and normal own galaxy has such a black hole with mass
M = 2.6 x 10Mg, (Eckart and Genzel, 1997). There is now also solid evidence
for the presence of black holes in a number of X-ray binaries (see de Zeeuw,
2001, for a review). The spectra we observe from such objects is ultimately
reprocessed radiation from the powering accretion disk.

An accretion disk is an integral part of a number of astrophysical objects.
Some kind of accretion disk will emerge whenever matter with non-negligible
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Figure 1.1: Configuration of the accretion flow in different spectral states
shown schematically as a function of mass accretion rate rn. The ADAF is
indicated by dots and the standard disk by the horizontal bars. The spectral
states correspond to a series of increasing accretion rate 7 and simultaneous
decreasing of the transition radius from the inner ADAF to the outer standard
disk. Figure adopted from Esin et al. (1997).

amounts of angular momentum falls under the influence of a central gravitating
body. These objects differ in the nature of the central body, particularly in
its mass M. But the underlying physical processes should be very similar. If
accretion process is considered from a purely hydrodynamical point of view, the
properties of the accretion flow scale with the mass accretion rate M. They
take a very simple form, which is independent of the mass of the central body,
if the accretion rate is expressed in units of the Eddington mass accretion rate
M Edd, i.e. m = M / M Edd, and all length-scales R, are expressed in units of
the gravitational radius Ry = GM/c?, i.e. R = R,/Rs.

Only by taking into account additional physics, like magnetic fields or detailed
radiative transfer, which may not necessarily scale with mass, is the symme-
try broken. Nonetheless accretion onto stellar mass black holes should be a
good model for the physical processes operating in accretion disk of AGN. The
former are easier accessible to observation, both, with respect to the coverage
of the continuum spectrum and also with respect to the shorter timescales of
variability of the source.

The standard thin disk model proposed by Shakura and Sunyaev (1973) as-
sumes that the half thickness of the disk, H, is small compared to the radius

12
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Figure 1.2: Broadband simultaneous RXTE and BATSE spectra of Cyg X-1
observed during its state transition in 1996. The top panel shows the spectra
at different times during the low to high transition, the middle panel during the
high to low transition. The bottom panel shows a transition sequence predicted
by the model of Esin et al. (1997) with a transition radius decreasing monotoni-
cally from 100 R, (upper line at 100keV) to 3 R, (lower line at 100 keV). Figure
adopted from Esin et al. (1998).

R, ie H/R < 1. This assumption leads to a nearly keplerian angular velocity
with a small radial drift superimposed. This assumption is only consistent, if
pressure gradients are negligible, such that gravitational and centrifugal forces
balance. This in turn means that the temperature of the flow is low and the gas
must cool efficiently, e.g. by optically thick blackbody emission. The standard
disk has ever since been successfully applied to ”high-luminosity-low-energy”
systems like proto-stellar disks or cataclysmic variables, but it completely failed
to reproduce the high-energy X-ray continuum emission of black hole candidate
systems like Cyg X-1. Thorne and Price (1975) demonstrated that the hard
spectrum of Cyg X-1 could be explained if the inner part of the accretion disk
consisted of a hot, optically thin gas instead of a cold, optically thick gas pre-
dicted by the standard disk. This two-zone model has essentially survived to
the present day. The originally proposed hot solution of Shapiro et al. (1976)
later turned out to be viscously and thermally unstable. It has meanwhile been
substituted by the hot advection dominated accretion flow (ADAF) proposed
by Narayan and Yi (1995a), Ichimaru (1977) and its relativistic generalization
(e.g. Peitz and Appl, 1997). A summary of the properties of the standard disk
and some ADAF models will be discussed in chapter

Black hole X-ray binaries (BHXB) are known to exhibit a number of distinct
X-ray spectral states (for review see e.g. Tanaka and Shibazaki (1996); Liang
(1998)). The low/hard state is characterized by a power-law spectrum with
an exponential cut-off at ~ 100keV. The total luminosity is generally below
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Figure 1.3: Model spectra of the source XTE J1118-480 in the low state for
two different sets of parameters. The inset incorporates the effect of a warm

absorber. See Esin et al. (2001) for details. Figure adopted from Esin et al.
(2001).

0.1 Lggq. In the high/soft state the spectrum is dominated by a thermal, soft
blackbody component of ~ 1keV, whereas the luminosity clearly exceeds that of
the low/hard state. Additionally a low-luminosity power-law component may be
present. The quiescence/off state is dominated by a distinctly non-blackbody
spectrum with a photon index somewhat lower than in the low state. The
luminosity is orders of magnitude lower than in the other states. This state
is observed in a sub-class of BHXB, the so called soft X-ray transients (SXT).
Some systems (as Cyg X-1) are seen to undergo state transitions forth and back
between the low and high state, thereby exhibiting the intermediate state. SXT
spend most of their time in quiescence, but occasionally undergo wild outbursts
to the low and even high state.

Narayan et al. (1996, 1997a) were able to show that the spectra of SXT could
be reproduced by a two-zone accretion flow. This consists of an inner optically
thin ADAF part, extending from the black hole horizon out to a transition
radius at ~ 10% Rg, and an outer thin disk beyond that radius. The accretion
rate was estimated to m = 1073. Esin et al. (1997) extended the model to
higher accretion rates and showed that the other spectral states are naturally
explained by the same model. In this model the spectral states of BHXB are
identified with a series of increasing mass accretion rate through quiescence,
low, intermediate and high state, respectively. Simultaneously the transition
radius decreases from ~ 103 — 104Rg down to ~ 3Ry in the same order, as
illustrated in figure 1.1l This model was very successfully applied to the state
transitions observed in Cyg X-1. Both high/low and low/high transitions were
modeled by a varying mass accretion rate and transition radius as shown in
figure Meanwhile this model has been extended to include, among others,
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the iron fluorescence line Fe K, and a hot ADAF-like corona above and below
the standard disk (see Esin et al., 2001, and references therein). This model
reproduces the spectra of BHXB very accurately (e.g. figure 1.3).

While these models work very well, they are not global solutions to an accre-
tion flow. The analytical scaling laws for hot ADAF and standard disk are
concatenated at and arbitrary transition radius. They do not include any phys-
ical transition mechanism nor any assertion if such a transition is physically
possible at this particular radius. The former question has not been widely
studied in the literature. It is also not part of this work and will only be briefly
touched upon in the final discussion. The latter has been recently addressed by
a number of articles Honma (1996); Manmoto et al. (2000); Manmoto and Kato
(2000). These authors studied the availability of ADAF-SSD transition models
in the steady limit. They identified certain connection conditions that must be
satisfied at such a transition and showed that these conditions can be met for
a range of flow parameters. Their results are summarized and re-examined in

chapters 3] and

This work presents a time-dependent generalization of the steady model of
Manmoto and Kato (2000) discussed in chapter [2. Due to the steady nature
of their model, Manmoto and Kato could not make any statements concern-
ing the generic time-dependent behavior of ADAF-SSD transition models nor
concerning their stability. Both questions are addressed in chapter (6] of this
work. A recipe to calculate simple spectra along with the short-comings of this
procedure is presented in chapter [7. Finally, we discuss the results and make
our conclusion in the final chapter

15
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Chapter 2

Theory of Accretion Flows

In the first part of this chapter we present the general form of a conservation law
and apply this to deduce the basic equations of hydrodynamics. The next steps
will be to reduce this system to a feasible level by making further assumptions
appropriate for accretion flows. We begin with symmetry considerations and
vertical integration to reduce the dimension of the problem and the number of
independent variables. Next we fill in the missing pieces like external forces,
sources and sinks of energy, etc. The inclusion of radiative processes forces us
to formulate an additional equation for the radiative energy density u. In the
last sections of this chapter we finally formulate the full set of equations and,
for clearer notation and easier discussion, its steady limit.

2.1 General conservation laws

The laws of fluid dynamics are well established and can be formulated in many
equivalent ways (for an extensive introduction see eg. Landau and Lifshitz,
1959). For instance they can be deduced from the observation that the behavior
of a physical system is completely determined by conservation laws. This cor-
responds to the statement that during the evolution of a fluid a certain number
of properties, such as mass, generalized momentum and energy are ‘conserved’.
In deriving the laws of fluid dynamics we closely follow Hirsch (1988a).

2.1.1 Scalar conservation law

Let us consider a quantity per unit volume U, acting in a volume V' with closed
surface S. The quantity U varies through the effect of fluxes F', which reveal
the contributions from the surrounding points, and through sources ). The flux
vector contains two components, a diffusive contribution F'p and a convective
part F¢. The general form of a conservation law states that the variation per
unit time of the quantity U within the volume V'

9
- /V Udv (2.1)
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is equal to the net contribution of the incoming fluxes through the surface S

- fs F.dS (2.2)

plus contributions of the sources ). These sources can be divided into two
classes, volume sources (v, acting within the volume V', and surface sources
Qg, emanating from the bounding surface S. The contribution to the variation
of U is then

/V Qudv + f[g Q4-dS, (2.3)
where the surface element normal dS points outward.

Collecting terms the general form of the conservation law for the scalar quantity
U is

0
—/ Udv+7§F-dS:/ dev+7§ Qq-dS. (2.4)
ot Jv S v S
Employing Gauss’s theorem for continuous fluxes and surface sources this yields
0
—/ UdV+/ V-FdV:/ dev+/ V.QdV. (2.5)
ot Jv 1% v 1%

The last equation is valid for an arbitrary volume V which leads us to the
differential form of the conservation law

ou

E‘FV'F:QV-FV-QS. (2.6)
An essential aspect of the conservation law (2.4) lies in the fact, that in absence
of volume sources Qy, the variation of U is given uniquely by flux contribution
through the surface S and not by fluxes in the volume V.

Separating the flux vector into its two contributions F'p and F¢ we obtain a
more familiar expression of the general conservation law. The convective flux
vector F'¢ attached to the quantity U in a flow with velocity v, is the amount
of U transported with flow, and is given by

Fc =vU. (2.7)

The diffusive flux is defined as the contribution present in the fluid at rest, due
to molecular thermal agitation. It can be expressed by a generalized gradient
law:

Fp = —kpVu, (2.8)

where p is the specific mass of the fluid, v the quantity U per unit mass, i.e.
U = pu, and k a diffusivity constant. Equation (2.6) can than be stated as
opu

E-&-V-(pvu) = V- (kpVu) + Qv +V-Q,. (2.9)

This is the general form of a transport equation for the quantity U = pu.
As seen from equation (2.6) the surface sources have the same effect on the
system as a flux term, and therefore we might consider them, at least from a
mathematical point of view, as additional sources. However this classification
into fluxes and sources is generally preferred, since it allows a clear physical
interpretation of all contributions to the evolution of the quantity U.

18



2.1.2 Vector conservation law

If the conserved property is described by a vector U, then the Flux becomes a
tensor F, the volume sources a vector @y, and finally the surface sources become
a tensor Qg, also. The general form of a conservation law for vector quantities
is then

3/ UdV+/ V-FdV:/ dev+/ V.QsdV, (2.10)
ot Jv v v v

where we have applied Gauss’s theorem. Again this is valid in an arbitrary
volume V and we gain the corresponding general conservation law for vector
quantities in differential form as

dpu

W—FV-(pv@u) =Qy + V:Qs. (2.11)
Where u is defined by U = pu. We will not make further use of the diffusive
flux tensor Fp,; = —prd;u; and thus drop it. The convective component of the

flux tensor is given by
Fo =vU = pv®u. (2.12)

2.2 Navier-Stokes Equations

The law of mass conservation is a general statement of kinetic nature, that is,
independent of the nature of the fluid or of the forces acting on it. It expresses
the empirical fact that, in a fluid system, mass cannot disappear from the system
nor be created. The general conservation law then becomes in differential form

op+ V-(pv) =0. (2.13)

In order to formulate the conservation law for momentum, it is necessary to
define the sources influencing the variation of momentum. It is known, from
Newton’s laws, that in a physical system these sources are the forces acting
on it. The forces consist of the external volume forces f, and the internal
forces f;. The latter depend on the nature of the fluid considered, i.e. on the
assumptions made about the deformations within the fluid and their relation
to internal stresses. We will assume that the fluid is Newtonian, and therefore
the total internal stresses [1 are taken to be

M= —pl+7, (2.14)
where | is the unit tensor. Here the isotropic pressure tensor component pl

is introduced and 7 is the viscous stress tensor equal to (Landau and Lifshitz,
1959, chapter 2)

2
Tij = HOij = JL <(3in + 0jv;) — 3(V-v)5ij) , (2.15)
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where o is the shear tensor and p is the dynamic viscosity of the fluid. The kine-
matic viscosity v is defined by v = pu/p. This relation is valid for a Newtonian
fluid in thermodynamic equilibrium.

After having specified the forces acting on the fluid we obtain the differential
form of momentum conservation

O (pv) + V- (pvev) =—-Vp+ V-7 + pf.. (2.16)

This equation is commonly referred to as the Navier-Stokes equation of motion.
For an ideal fluid without internal stresses, that is an inviscid flow, this reduces
to the Fuler equation of motion.

The energy content of a system is measured by its internal energy per unit
mass ¢, i.e. the specific energy. The first law of thermodynamics states that
the sources of variation of the specific energy are the work of the internal forces
acting on the system V-(IN-v) and the heat transmitted to the system ¢;. Using
the momentum equation we obtain the conservation of energy in its differential
form

O(pe) + V-(pev) = —pV-v + (7-V)-v + V- (kVT) + qp, (2.17)

The diffusive component (see equation of the energy flux is given by heat
transfer —V(kVT). Heat sources gy, could include radiation, chemical processes
or other physical phenomena. This last equation can also be formulated as an
equation for the entropy s

pT{0is + (v-V)s} = (7-V)-v+ V- (kVT) + qp. (2.18)

The system of Navier-Stokes equations has still to be supplemented by a spec-
ification of the kinematic viscosity v as a function of the other flow variables.
Further more, equations of state p(e, p) and T'(e, p) have to be specified to close
the system. In many instances a compressible fluid can be considered as a per-
fect gas, even if viscous effects are taken into account, and the equation of state

is written -
Himyp

pe,p) =(v—1Vep, Tl(e,p) = (v = D, (2.19)

where v = C)p/Cly is the ratio of specific heats, fim,, the mean molecular weight
times the proton mass and k the Boltzmann constant. For convenience we
define the adiabatic and the isothermal sound-speeds, c,q and cs, as

Op D dp D
c? :(—) =5, c§=<—> ==, 2.20
1= \op), " 7 op)r  p (2.20

Finally we define some convenient quantities as internal energy density e and
momentum density p by

e = pe, p = pv. (2.21)

20



2.3 Symmetries and vertical integrated equations

Unless otherwise noted we work in cylindrical coordinates (R, ¢, z). This is a
the natural choice for disk like flows from an analytical point of view and is also
appropriate for numerical simulations. Cylindrical coordinates are in general
problematic for numerical computations as the Jacobian diverges at the rotation
axes. We do not calculate our models down to the axes, but only to the event
horizon of the Schwarzschild black hole at R = R, so this is no issue.

For the rest of this work we make the assumption that all physical variables are
constant in azimuthal direction, i.e. all derivatives with respect to the azimuthal
coordinate vanish, i.e. dy = 0. This allows us to reduce the dimension of the
problem by dropping the azimuthal coordinate. It is thus not possible to resolve
local disturbances in azimuthal direction, like spiral arms or turbulence (which
might very well be a source of viscosity). We assume further that the flow is
symmetric with respect to the equatorial plane and limit our analysis to positive
values of z.

The accretion flow is assumed to be confined within an constant angle 6 = 7/2
around the equatorial plane. This is equivalent to assuming that the vertical
extent of the disk H is less than the radial coordinate, i.e. H/R < 1. Such
disks are sometimes referred to as slim disks. This assumption is less restrictive
than H/R < 1 usually made in standard thin disk theory. In a formal sence we
expand the equations into a taylor series in H/R and drop terms of the order
O(H/R)?.

The radial structure of the disk is calculated from vertically integrated variables.
The vertical integration scheme is used to decouple the vertical and radial direc-
tions. We assume that the radial and azimuthal velocity components together
with their radial gradients are independent of the vertical coordinate z and
equal to the respective value at the equatorial plane, i.e.

(%R ~ 8’03
OR ~ OR
and equivalently for the azimuthal component vg. The vertical integration is

then understood as integration over vertical coordinate with radius dependent
limits z = H(R). Frequently used vertically integrated variables are

vr(R,2z) ~vr(R,z =0), (R, 2) (R,z=0) (2.22)

H(R) H
Y(R E/ pdz:2/ pdz~2H(R)p(R,z=0) (2.23)
—H(R) 0
H(R) H
P(R) = / pdz = 2/ pdz~2H(R)p(R,z=0) (2.24)
—H(R) 0
H(R) H
E(R) = / eds = 2/ edz~2H(R)e(R, > = 0) (2.25)
—H(R) 0

The same vertical integration is performed on the Navier-Stokes equations. We
further assume that vertical integration and partial derivation are interchange-
ble and thus move the integral through the derivatives. We hence obtain a set of
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vertical integrated equations which is formally identical to (2.1342.17), but uses
(X, P, E) instead of (p, p,e). In general we denote vertical integrated quantities
with uppercase letters, while the respective volume densities are denoted with
a lowercase letter.

The vertical structure of the disk und thus the disk-height H is calculated under
the assumption of vertical hydrostatic equilibrium, i.e. the vertical pressure
gradient is balanced by vertical tidal acceleration towards the midplane (see
egs. 2.31}12.32)

D.p = —pd, U = pQ% 2. (2.26)

Let H be the disk-height and the pressure gradient approximated by 0,p ~ p/H,
hence H? = p/(p§3), and using the definition (2.20) of the isothermal sound
speed cg, we obtain an explicit expression for H

= (2.27)

Thus vertical and radial structure are completedly decoupled.

We decompose the vector of momentum density v into three components,
namely, radial momentum Pr = vg, angular momentum L = X[ = Yvgs R
and vertical momentum v, = 0, which vanishes by virtue of the assumed
vertical structure. Hence we drop the vertical momentum equation and retain
the two equations

opr + V-(prv) = —0rP + 2(Q* - Q%R+ (V-T)r (2.28)

atL =+ VL’U = (V-T)¢ R, (229)

for numerical integration.

2.4 Physical essentials

2.4.1 Viscosity prescription

Molecular viscosity turns out to be in disagreement with observed properties
of accretion disk. Angular momentum transfer by molecular viscosity alone is
much too ineffective. Thus cannot be the only source of viscous stresses in the
astrophysical flows.

If one assumes the existence of a small-scale chaotic magnetic field in the accre-
tion disks, which may be sufficiently small as to not affect the dynamics of the
flow, several other sources of viscosity come to mind: magneto-hydrodynamic
and plasma instabilities (Stone and Balbus, 1996), small scale convective tur-
bulance (Kley et al., 1993; Klahr et al., 1999), etc. But up to now there is no
convincing theory describing viscous processes in such plasmas. We have to rely
on phenomenological prescription for viscosity in astrophysical flows of interest.
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Shakura and Sunyaev (1973) proposed the so called a-parameterization, which
has ever after been the standard formulation used in accretion disk theory.
Purely on dimensional grounds they suggested

v=acsH, (2.30)

where « is a pure positive number. The idea is that viscosity is generated
by turbulent motion. The diameter of such turbulent cells cannot be larger
than the typical disk height H. On the other hand, turbulent motion cannot
be supersonic for longer periods of time, otherwise energy would be dissipated
very fast and the typical turbulence velocity would drop below the sound speed.
Hence we conclude that « is smaller than unity by definition, i.e. o < 1.

We note that the a-ansatz can only be an effective spatially and time-averaged
modeling of viscosity. Though this is an ongoing debate, there seems at least
to be consensus on the fact that viscous transport of angular momentum an
energy does vary strongly in time and space. Not only is the magnitude of «
uncertain, but also the sign and therefore the direction of transport (see also
Stone and Balbus, 1996; Klahr et al., 1999; Arlt and Riidiger, 2001; Riidiger et al.,
2002, for recent studies on the subject).

2.4.2 External force

The only external force we consider is the gravitational attraction of the central
black hole due to its gravitational potential ¥. The gravitational force is then
given by pf., = —pV V. To simulate relativistic effects we adopt the pseudo-

Newtonian potential
GM

v = —m, (2.31)
where M is the mass of the black hole, Ry its gravitational radius given by
Ry = GM/c? and 7 = (R? + 22)'/? the distance from the central object. This
potential represents the dynamical aspects of general relativistic effects in the
Schwarzschild metric quite Wellm (Paczynsky and Wiita, 1980) and greatly sim-
plifies the basic equations. The keplerian angular velocity {2x in the equatorial

plane is
o 10V 1 GM

K™ ROR ~ R(R-2R,)?
Qg is the angular velocity of a test particle in orbit around the central mass.
The gravitational force vector pf, has no component along the azimuthal di-
rection and the vertical momentum equation has been dropped as discussed in
section Thus the only remaining component is radial

(pf)r=—pQk R. (2.33)

in the sense that equation (2.31) reproduces exactly the locations of the marginally bound
orbit 7,y = 4Rg and the marginally stable orbit r,,s = 6 Ry of a Schwarzschild black hole.
The efficiency of energy conversion 7 is in good numerical agreement, e.g. at the marginally
stable orbit we have n = 0.0625 using the pseudo-Newtonian potential, whilst the correct
result in the Schwarzschild metric gives n = 0.057.

Q (2.32)

23



We note that the fluid elements in an accretion flow will, in general, not move
like test particles along geodesics, but rather feel the effective gravity

1
gefp = —QV% R+ Q’R ~ —;aRp (2.34)

where the second term QR? is due to the centrifugal force.

2.4.3 Convective turbulence

Anticipating the discussion in section 3.3/ we include an additional cooling term
into the energy equation. We will show that accretion flows may be subject to
convective instability, that is, though the bulk motion will always be radially
inward towards the central black hole, turbulent convective motion may be
superimposed. Convective eddies have at least a 2-dimensional structure, more
likely even 3-dimensional. These clearly cannot be resolved by 1-dimensional
height integrated modelling. On the other hand convection will transport energy
and possibly angular momentum, even after volume and time averaging. While
in 3-dimensional simulations this is included automatically, we must model
such processes in an appropriate way and include corresponding terms into the
respective 1-dimensional height integrated equations.

It is natural to assume that the cooling rate due to turbulent convective motion
Q;b is given by the divergence of the turbulent energy flux Fy, i.e.

Q= —V-Fyy. (2.35)

This has been studied extensively in stellar dynamics, but only recently applied
to accretion flows (Honma, 1996; Manmoto et al., 2000). We follow Manmoto et
(2000) and assume that the turbulent energy flux is proportional to the (nega-
tive of the) entropy gradient,

Fip = —KrpT'Vs = —KrVe + KT'y%Vp. (2.36)

K7 is the turbulent diffusion constant which we parameterize as
2
KT = aT—S, (237)
Qx

with ar <1 as a dimensionless parameter. This is done purely on dimensional
grounds, in analogy to the Shakura-Sunyaev viscosity model.?

2.4.4 Radiative cooling

The fluid cools via radiation or is heated by external radiation fields. The
intensity to which gas of temperature 7" (in local thermodynamical equilibrium)

2 Another possibility is to derive ar from mixing length theory. One result is, that ar ()
is a function of @ (Narayan et al., 2000). See also appendix [A
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exposes its reservoir of internal energy to the radiation field w, is given by the
radiative energy density of a black body of temperature T, i.e.

upp = ar T4, (2.38)

where ap is the Stefan-Boltzmanm radiation density constant.

The rate ¢,qoq at which gas transfers energy to or from the radiation field u is
proportional to the difference of the energy density of the black body and the
radiation field. It can be stated as (Mihalas and Mihalas, 1984)

Qg = 2¢Tp(arT* — u). (2.39)

The constant of proportionality 7p is the Planck-mean of the optical depth 7,
ie.

% 4x B,(T)
= I/ — = 5 .4
Tp pl/o Ky — an T dv =plkp (2.40)

where v is the photon frequency, B, the Planck function, [ the path length and

kp the Planck-mean of the absorption coefficient x,. For numerical evaluation
we use (Cox and Guili, 1968)

kp=0.24x 102 pT~7/2, (2.41)

2.5 Radiative transfer in a nutshell

The radiative cooling rate ¢..q depends on the energy density u of the radi-
ation field. Full radiative transfer requires evolution of 6-dimensional fields,
three spatial coordinates, the photon frequency v and two angles describing the
direction of photon propagation. The evolution of the radiation field in absence
scattering is described by the radiative transfer equation

10 0
{E&_‘_%}IU:EV_K/VII/) (242)
where [, is the intensity of the radiation field at frequency v, €, the emissivity
and k, the absorption coefficient. The three quantities I, €,, k,, are in general
functions of (x,t;n,v), where @ is the spatial coordinate and n a unit vector
pointing along the direction of propagation.

The task of solving the radiative transfer equation (2.42) is considerably less-
ened by assuming that all relevant radiative processes are isotropic, i.e. inde-
pendent of the direction m, such that integration over directions is trivial.

Furthermore the detailed spectral distribution is unimportant for our purposes.
We are only interested in the total energy density w of the radiation field and
its impact on disk dynamics through cooling effects. We thus integrate the
radiative transfer equation over frequency. This is not trivial by itself, as the
material functions ¢, and k, depend strongly on microscopic atomic processes.
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We limit ourselves to free-free electron scattering processes and neglect effects
from individual quantum mechanical transitions within atoms. This allows us
to use simple analytical expressions for the material functions.

The last and most important assumption is that the diffusion approximation is
taken to be valid. If the mean-free-path length A is considerably smaller than
the physical scale of the region of interest [ > A, then photons traveling through
the medium will undergo multiple scattering events and reach an equilibrium
state with the surrounding medium where the evolution of the radiation energy
density can be described by a diffusion equation, i.e.

— + V-Fag = ¢}, (2.43)

where ¢, = q,,q 1s the rate at which thermal energy is supplied to the radiation
field by the surrounding gas (see equation 2.39). The diffusive radiative flux is

A
Fup = —SCTRV’LL. (2.44)

Formally the diffusion equation is obtained from the moment formalism. The
radiative transfer equation (2.42) is multiplied with powers of the directional
vector n and integrated over the unit-sphere. This procedure yields one equa-
tion for every moment u,, F',, etc. The first moment equation is

a;t,, LV.F, = j'{ (ey — Ky 1) dw (2.45)
Uy = f[(m,t, n,v)dw (2.46)
F,= %I(w,t, n,v)-ndw. (2.47)

If the medium is isotropic the radiative flux can be approximated, under the
further assumption of large optical depth, by

Vu, = —B—Vul,. (2.48)

A final integration over frequency yields our expression (2.44). See any textbook
on radiative transfer for a detailed discussion on the topic (eg. Mihalas and Mihalas,
1984; Gracia, 1998).

We decompose F g into fluxes along the radial direction Fj,q and along the
vertical direction. In our height integrated scheme the latter can be easily
calculated using A = H and yields the escape rate (Honma, 1996)
2c H
e = ————— . 2.49
quC 1 + 3/4 TR u ( )
This is the rate at which the radiation field within the accretion disk looses
energy or photons through its upper and lower surface (hence the factor 2).
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The unusual denominator in has purely technical reasons. Formally
the diffusion approximation is only valid in the limit of large optical depth
7, > 1. For numerical computations one can still adopt it if a flux-limiter is
used. For small optical depth 7 <« 1 the last expression without the 1 in the
denominator would diverge and thus lead to unphysical infinite propagation
speeds of photons. The flux limiter ensures that photon propagation speed
does not exceed the speed of light.

The radial (i.e. along the unit vector &,) diffusive flux is explicitly included
into the calculations as
F,..g=——VR5ué,. 2.50
rad 3TR R r ( )
Collecting terms and performing the vertical integration U = 2H u, the radiative
transfer equation takes the form

ou cH
Frai= Qb — Qrpy Fraa = — 2 W5U, 2.51
ot +V d erc Qesc d BTRVRU ( 5 )

_ _ 2cH
:rc = Qrad = QCTP(2HCLRT4 _ U), esc — mlj (252)

2.6 The final system

Assuming axial symmetry and neglecting special relativistic corrections, tran-
sonic accretion flows with radiation field can be described by the set of time-
dependent Navier-Stokes-Equations — namely, continuity, radial momentum,
angular momentum and energy equation — and a radiative transfer equation,
which read

L +V-Xv=0 (2.53)

OXvr + V-Svpv = —9rP + 2(0? — Q%)R+ (V-T)r (2.54)
WX+ V-Slv = (V-1)4 R, (2.55)
HE+V-Ev+PV-v=0Q. +Q, — Q.. (2.56)

U + Quyp = Qure — Qese (2.57)

where ¥ = 2Hp is the vertically integrated surface density with scale-height
H = ¢y /Qk; Pr = Yvp the radial momentum; 2 = vg/ R the angular velocity;
L = pl = pQ)R? the angular momentum; F vertically integrated internal energy
density; U vertical integrated radiative energy density, respectively.

The total pressure P is given by the sum of gas pressure, radiative pressure,
turbulent pressure and possibly magnetic pressure

P = Py + Poq + P + Prag, (2.58)

where we do not consider magnetic fields (Ppq = 0) and neglect turbulent
pressure (P, = 0). Three equations of state are needed, e.g. for gas pressure
P,, temperature T" and radiative pressure P,.,q. We adopt

Pye,X)=(y-1DE=(y—-1)%, (2.59)
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T(e,%) = L2 (v~ 1)e = B2 (5 — 1)

1
Praa = 3U. (2.61)

E
= 2.
= (2.60)

For convenience we define the adiabatic ¢,q and the isothermal sound-speed c;

oP P OP P
2 = —_— == —_— 2 == —_— = —
Cad = <az>s Ty % <82>T R (2:62)

Gravitation enters through the keplerian angular velocity Qg of the pseudo-
Newtonian potential

1 1 M
02~ Logyo LGV

(2.63)
Viscous stresses are described by the viscous stress tensor 7 = po, which is the
product viscosity u times shear tensor o, i.e.

2
Tij = MOij = ,U,[(aﬂ}j + ajvi) — g(V’U)&U] (264)

With the symmetry assumptions the only non-zero components are Tpr and
Tre- Unless otherwise noted we consider both components in our numerical cal-
culations. In the literature it is common practice to neglect the Trr component.
This is usually a save approximation, unless one encounters large gradients in
the radial velocity — which is exactly the case in the transition region we are
interested in. We adopt the a-viscosity (Shakura and Sunyaev (1973)) and set

w=2%v =2YacsH (2.65)

The sources and sink for internal energy and radiative energy are viscous heating
Q.. radiative cooling Q. ,, turbulent convective transport Q;ﬁb, and thermal
emission QF,., radiative losses through vertically escaping photons Q nd

radial diffusion Q;iﬁ

esc a

Fe = (T-V)0 (2.66)
Qg = 2¢7p(2H agT* - U) (2.67)
Qty=-V-Fup, Fip=—KrpIVS=—-KrVE+ KryeVy (2.68)
Qe = Qrag (2.69)
2cH

- 2.70
Qesc 1 + 3/4 TR ( )

vy =V-F Froo= - vuue
Qdiﬁ =V: rad> rad — _EVRU Er. (271)

In deriving these equations we assumed the vertical structure of the flow to be
in hydrostatic equilibrium, i.e. the vertical pressure gradient is balanced by
vertical tidal acceleration towards the disk midplane. The vertical disk height

can then be calculated to c
S

Qx
as discussed in section [2.4.1. This system represents the time-dependent gen-
eralization of Manmoto and Kato (2000).

H = (2.72)
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2.7 The steady limit

In this section we discuss the steady limit of equations (2.53) through (2.57).
We assume that the flow has reached some equilibrium state 9; = 0. Many
important properties of accretion flows reveal themselves in this limit.

First consider the continuity equation (2.53). With 9,3 = 0 and the symmetry
0y = 0, = 0 this yields
1 dEUR N
R dR
We integrate over a cylindrical volume centered at R = 0, of height H and
radius R and recover the accretion rate M as

(2.73)

M = —4nRHpvg = —27RYvg. (2.74)

The accretion rate is constant in space and time (by virtue of the assumption of
steadiness). In a mathematical sense the accretion rate is an eigenvalue of the
problem and does only depend on the boundary conditions, i.e. on the mass
flux at the boundaries (formally at infinity). It is independent of the structure
or operating microphysics of the flow. Furthermore, a steady or even quasi-
steady accretion flow will always adjust its structure such that equation (2.74)
holds. By virtue of the constant accretion rate, the radial infall velocity vr and
surface density ¥ are no longer independant of each other.

It is common practice to measure the accretion rate in units of the Edding-
ton acretion rate M ggq as proposed in the introduction, i.e. m = M / Mgaq -

The Eddington accretion rate is the limit at which outward radiation drag by
Thomson-scattering compensates inward accelaration due to gravity (Frank et al.,

1985), i.e

. 1L 147GM
Mpgq = ~—21 = - t ; (2.75)
2
n c 1N KesC

where M is the mass of the central object, n = 1/10 the efficiency of rest-mass
to radiation conversion and k.5 the Thomson-scattering cross section.

The angular momentum equation in the steady limit can be expressed asE

10 10 00N
RaR(RElvR) R@R( R38R> (2.76)

Integrating over radial coordinate and substituting the accretion rate M this

yields
300

OR’

where [y is formally an integration constant and can be identified with the spe-
cific angular momentum swallowed by the black hole at the inner disk boundary.

M(l—ly) = —4nSvR3 — (2.77)

3We have neglected the 7rr component of the stress tensor for illustrative purpose. This
is usually a safe asumption away from the transition region. For numerical computations this
component is always taken into account and turns out to be very important in the transition
region.
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Angular momentum transport by viscosity is given by the right hand side and is
oriented down the angular velocity gradient. Hence viscosity tries to drive the
system towards a state of uniform rotation. For € o 2k angular momentum is
transported inward.

The steady limit of the energy equation is
V.-Ev+ PV.v = Q;dv = Q:—sc + Q;b - Q;(zcb (278)

where we have defined the advective cooling rate ()_,, , i.e. the amount of
entropy carried with the flow towards the black hole. The turbulent convec-
tive cooling rate Qz;b has been totally neglected in the literature until recently
(Manmoto et al., 2000). The two main solution types of accretion disks, namely
the standard thin disk (Shakura and Sunyaev, 1973) and advection dominated
accretion flows (Narayan and Yi, 1994), are recovered by neglecting different

cooling channels, advective cooling @, and radiative cooling @ _,,, respec-
tively. This will be elaborated on in the next chapter.
In our model the steady version of radiative transfer reads

Quig = Qire — Quse: (2.79)

Hence energy which is transfered from the plasma to the radiation field, i.e
Qe = Q> Will be either radiated away through the surface of the disk Q.
or transported radially by diffusion of photons due to Q;iﬁ.
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Chapter 3

Standard Disk and Advection
Dominated Accretion Flow

Accretion disk theory has a long history. This chapter will try to discuss some
important models. Different assumptions or targeted physical applications lead
to different equations and thus different solutions. Their exact derivation has
been thoroughly discussed in the literature and will only be sketched. Most
important are the properties of the various accretion models and later chapters
will draw heavily on them.

3.1 Shakura-Sunyaev Standard Disk

Shakura and Sunyaev (1973) found a self-consistent analytic solution for geo-
metrically thin (H/R < 1) and optically thick (7>> 1) accretion discs, which
generally is referred to as the “standard thin disk” or “Shakura Sunyaev Disk”
(SSD). This solution was generalized to the Kerr-metric for rotating Black Holes
by Novikov and Thorne (1973) and Riffert and Herold (1995). The standard
thin disk model successfully fits the emission properties of “low energy accret-
ing systems”, i.e. systems where hard spectral components are absent. Here I
briefly summarize the essential features of the solution (see Frank et al., 1985,
for a detailed review).

The gas moves along nearly keplerian orbits, with a very small radial velocity
component due to viscous stresses superimposed (e.g. v% < v%() Formally the
keplerian velocity is a solution of the radial Euler equation if the radial
acceleration vgpdvr/OR and the radial pressure gradient p~10p/OR are negligi-
ble compared to the gravitational and centrifugal forces. In the Schwarzschild
or Kerr metric stable keplerian orbits exist only outside of the marginally stable
circular orbit R,,s, and therefore the inner disk edge is located at (assuming an
non-rotating black hole)

Rin = Rpms = 6R,. (3.1)
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Following Shakura and Sunyaev (1973) the vertically integrated viscous stresses
are parameterized by v = acsH in cold disks. A no-torque condition is (artifi-
cially) assumed at the inner edge. We define an auxiliary function F(R) by

Ik (Rin) Rin\ '/
]—"(R):I—KTzl—(R) . (3.2)

Using the assumption of keplerian orbits, rather than merely circular orbits,
reduces the viscous stress tensor component Tf to

Ty =VR—— = —-vQk (3.3)

and the angular momentum equation yields an algebraic expression for vpg.
vg can then be eliminated with the continuity equation and we finally get a
non-linear diffusion equation for the surface density X

3d (o d  opo1y2 > _
RdR(R SRR =0, (3.4)

where v is still a function of radius.
To make further progress we need to specify an equation of state

KT 4
e il o (3.5)
pmy 3¢

including gas pressure on the left and radiation pressure on the right and find
some expression for the temperature 7. If the disk is in vertical hydrostatic
equilibrium this can be related to opacity 7 by

d0T*  3GMM
3r  S1R3

T = XKR. (3.7)

F(R) (3.6)

The final system is still algebraic and can be solved for every radius. Again,
see Frank et al. (1985, eq. (5.45)) for explicit scalings.

As has been noted before, the standard thin disk has an inner edge at Rj;,.
Thus the maximal energy which can be extracted is the binding energy at the
last stable orbit and the total outward energy flux is given by

3GMM
Wssp = 5—¢

> 0. (3.8)

3.2 Advection Dominated Accretion Flow

In deriving the SSD we have assumed that local radiative cooling is very ef-
ficient. Advection Dominated Accretion Flows (hereafter ADAF) are in some
respect the opposite limiting case. It is assumed that local radiative cooling

32



is not the dominant cooling channel. Viscous heating will then be stored as
internal energy in the disk and will be advected with the accretion flow towards
the central object. The gas will be driven to higher temperature which will lead
to vertical thickening of the disk. Pressure forces will also become important
and the effective gravity will increase accordingly and the disk material will
likely rotate sub-keplerian such that the radial infall velocity will no longer be
negligible.

First steps to understand such flows have been done by Narayan and Yi (1994)
(hereafter NY)) who presented the following self similar solutions for optically
thin accretion flows. Mathematically they extend from R =0 to R = oo, while
physically appropriate boundary conditions must be imposed. Later global
solutions (Peitz and Appl, 1997; Chen et al., 1995; Narayan and Yi, 1995a,b)
turned out to be in very good agreement away from the boundaries. The basic
properties can all be easily studied in the NY solutions and provide us with a
thorough understanding of such advective accretion flows.

Following NY we consider the following system of partial differential equations

di]l%(pRHvR) =0, (3.9)

UR% _?R= -2 — ;;;(pcg), (3.10)

’L)R%(QRQ) = pR%H% (%%) : (3.11)

ZvRTj—; = 3—;362/)1{1132—0‘5 — 2C§HUR§—Z = Qe — Q- (3.12)

In (3.12), the left-hand side is the advected entropy, where T is the temperature
and s the entropy, while the right-hand side gives the difference between energy
input per unit area due to viscous dissipation Q. and the energy loss through
radiative cooling Q. ;. For convenience we have defined a parameter € = (5/3 —
v)/(y — 1), where ~ is the ratio of specific heats; note that ¢ = 0 in the limit

v=5/3 and € =1 when v = 4/3.

Next we assume that a fixed fraction f = (Qf,. — Q,,q)/Qis of dissipated
energy is radiated away. Therefore the parameter f measures the degree to
which the flow is advection-dominated. In the extreme limit of no radiative
cooling we have f = 1, while in the opposite limit of very efficient cooling
f =0. It is convenient to introduce a new parameter é = ¢/ f. Substituting the
viscous dissipation rate for Q. the right-hand side of (3.12) yields

vsc

n _ 2apc2R*H (0 20pc2R?H (00
Q’USC - QTad - 0o 0.

2 3 2
Qi ﬁ) ~ =S ﬁ)' (319

We seek a self-similar solution for this system of ordinary differential equations,
i. e. all relevant quantities should scale with powers of radius. The only charac-
teristic time-scale is the keplerian angular velocity Qx o« R~3/2 with associated
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keplerian orbital velocity vx o R~Y2. Narayan and Yi (1994) showed that
equations (3.9) - (3.12) permit a self-similar solution (see also Ichimaru, 1977;
Spruit et al., 1987) of the form

P = pPo R3/2, vp =vg R™Y2, Q=Qy R/, =R (3.14)

s =
where the constants satisfy the following relations
M

-, 02 =¢éc?, vy = —= Qch. 3.15
47rc(2)v0 0= € 0 0 ( )

PO =

The overall normalization is fixed by

2(5+2¢) g(a,é) 2

2
= ~ 3.16
“ 9 a2 5+ 2 (3.16)
1/2
; 1802

In equation the first relation gives the exact solution, while the second
corresponds to the limit when a < 1.

3.2.1 Properties of the self-similar ADAF solution

In the limit of very efficient cooling f — 0 and é = oo, the solution given
in equations (3.14)—(3.17) corresponds to a standard thin accretion disk with
VR, Ccs K vg and € — Q. Its properties have been discussed in the previous
chapter.

In the opposite limit where f is a reasonable fraction of unity and e ~ ¢é < 1,
equation (3.16]) shows that the sound speed is comparable to the Keplerian
speed vy, which means, that the temperature of the accreting gas is nearl

virial. The disk height H is comparable to R and the flow is quasi-spherical 1.

The radial velocity of the accreting gas is proportional to o and is determined by
how fast angular momentum can be transported outwards by viscous processes.
Since vg ~ ac? vk the radial velocity tends to be much larger in ADAFs than
in thin disks. This underlines the importance of inertial terms in our equations.
The Bernoulli parameter Be can be calculated to

i 02RO R - =~ . 3.18
vk (2”R+2 KR+ %) Ry ae (3.18)

It is well known, that Be is conserved in adiabatic flows in the absence of
viscosity. Therefore, whenever Be is positive and gas could flow somehow adi-
abatically outward, it would reach infinity with a net positive energy. On the
other hand if Be is negative gas cannot escape spontaneously to infinity. Equa-
tion (3.18) shows that Be is positive in advection-dominated flows for all values

'In the limit é —0, which corresponds to v —5/3, Q vanishes and the solution matches on
to the Bondi spherical accretion solution (see|Chakrabarti, 1990).
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of a and for any v < 5/3 as long as f > 1/3. This gave much cause to contro-
versial discussion in the literature, whether powerful outflows like wind or jets
could originate from ADAFs (eg. Blandford and Begelman, 1999; Yuan et al.,
2002).

Another very similar quantity is the vertically integrated total energy flux W
which in our case is given by

W = —1nBe+ Wy (3.19)
/1 1 0% ds)
= —m (51)%% + 59232 — Q% R% + ﬁcz) — 4WR3HMEQ

This quantity will later proof very useful in understanding the properties of
ADAF-SSD transitions. From conservation of energy immediately follows that
W must be constant throughout the disk. Kato and Nakamura (1998) showed
that if one neglects the left-most radial kinetic energy term, W vanishes, i.e.
there is no net energy flux through the disk. On the other hand as the radial
kinetic energy flux is directed inward, we conclude

Wapar <O0. (3.20)

Advection-dominated accretion flows as proposed by INY do show a net inward
energy flux.

Another interesting property of advection-dominated flows is revealed after close
examination of the entropy equation (3.12). The gradient of the entropy, which
is given by

ET:Z—; = —%aMech_gﬂ <0 (3.21)
is negative and entropy increases toward smaller radii. ADAF's therefore satisfy
the Schwarzschild criterion for convection and are subject to possible convective
instabilities. This issue of convective energy transport and its consequences for

the total energy flux W will be discussed in section [3.3.

3.2.2 Real world advection-dominated flows

As has been already mentioned earlier this self-similar solution extends formally
from R = 0 to R = co. Real world accretion flows have a finite radial extent.
Some physical boundary conditions must be imposed on the inner edge, which
is usually the event horizon of the black hole, and on the outer edge. This will
modify the structure of the flow. Numerical simulations like those presented in
figure (3.1 show that away from the boundaries the self-similar solution is a very
good approximation to global solutions with proper boundary conditions. As
has been explicitly shown by Narayan et al. (1997b) the influence of the outer
boundary decays rapidly for any physically reasonable prescription at the outer
boundary as shown in figure

Small deviations arise from several reasons. First, numerical simulations usually
mimic the influence of the central black hole by adopting a different so called
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log(lv|/c), log(e,/c)

log(R/R,) log(R/R,)

Figure 3.1: Global ADAF solutions with SSD outer boundary conditions for
six values of o = (0.001,0.003,0.01,0.03,0.1,0.3). In the left panel « increases
from bottom to top. Solid lines show variation of radial velocity vg. Dashed
lines show isothermal sound speed cs. The dotted lines correspond to the ex-
pected self-similar solution. The right panel illustrates the variation of specific
angular momentum | = Q R? as solid lines. Here, o decrease from bottom to
top. The dotted line represents the expected self-similar value and the short
dashed line the keplerian specific angular momentum [x. Figures adopted from
Narayan et al. (1997b).

pseudo-Newtonian potential ¥ = 1/(R — 2R4) which has been first introduced
by Paczynsky and Wiita (1980). Thus the self-similarity is broken at the inner
edge and the flow becomes transonic at small radii. This is what one would
expect anyway. Second, this solution is purely analytical. To keep things easy
one neglects all but the r—¢ components of the viscous stress tensor 7. The r—¢
component is responsible for the transport of angular momentum. Numerical
simulation usually include additionally at least the » — r component because of
technical reasons. This enlarges somewhat the energy dissipation rate and in
return the flow is hotter.

Self-similar ADAF solutions are in principal available for any physically mean-
ingful set of (1, «, 7, f). Up to now the fraction f of advected energy has been
assigned arbitrarily. In general f will be a function of radius and determined
by the relative efficiency of advective and radiative cooling. The later depends
strongly on the optical depth 7 and thus the accretion rate M. The previously
presented solutions are thus not self-consistent.

Rees et al. (1982) noted that there is an upper limit to the mass accretion rate,
such that only below this limit is optically thin advection-dominated accre-
tion possible. Above the limiting M, the cooling is too efficient and the only
configuration allowed for the flow is the SSD. After global self-consistent solu-
tions became available, several authors (eg. Chen et al., 1995; Narayan and Yi,
1995b; Honma, 1996; Kato and Nakamura, 1998) reported various approxima-
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Figure 3.2: Stationary ADAF-SSD transition models obtained by
Manmoto and Kato (2000). The dashed lines correspond to SSD solutions,
while the solid lines to ADAF-SSD transition models. The transition is located
at Ry = 80 Rg, where Rg = 2R, is the Schwarzschild radius. Left: Temper-
ature, T. Middle: Density, p. Right: Specific angular momentum, [, in units
of cRg. The dotted line in the right panel represents the Keplerian angular
momentum lx. Figure adopted from (Manmoto and Kato, 2000).

tions for the critical accretion rate which depend on the details of included
radiative processes. On the other hand they share the basic proportionality

The o a? R™1/2 (3.22)

Turning this relation around we get, for a fixed accretion rate, a critical ra-
dius R, beyond which only SSD solutions are available. Below this R, both,
ADAF and SSD solutions are possible. It is widely believed that nature chooses
advection-dominated flow wherever possible (Narayan and Yi, 1995b). This
was the first theoretical hint to possible coexistence and transitions from and
inner ADAF to an outer SSD.

3.3 ADAF with convection

The previous section showed that ADAFSs are generally subject to convective in-
stabilities. In that case one would expect some turbulent motion superimposed
on the radial infall. This turbulent motion will also transport energy. We fol-
low Manmoto et al. (2000) and Narayan and Yi (1994) and assume that the
turbulent energy flux is proportional to the (negative of) the entropy gradiem@

ds
Fop = —pKpT — 2
trb pETT -, (3.23)

where K is an unknown diffusion constant which we parameterize as

62

KT = CKT—S. (324)
Qk
2This is similar to the prescription used to model convective heat transport in stellar
interiors.
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This has been done purely on dimensional grounds in analogy to the Shakura-
Sunyaev model of viscosity. ar < 1 is a dimensionless parameter. We stick to
the notation of the previous section and write the flux F},, and the turbulent
heating rate Q;;b as

arpctdc?  2arct dp

Firp = —3(1 - , 3.25
wo =304 "k T 0k dr (3.25)
n 1 d
Qtrb = _EE(QRHFM%) (326)
Our new entropy equation including turbulent convective transport Q;b reads
Quaw = f Qusc + QL1 (3.27)

Again this system of equations permits a self-similar solution (see Manmoto et al.,
2000) of the form (3.14) where the constants satisfy the following relations

M 2 2 ar , 92 3 2
po = “Incuy’ 05 = (1 — §;> écg, vo = — 5 acq. (3.28)
The overall normalization is fixed by
2[5+ ¢ — (4/3)(ar/a)é] g(a, €)
= 5 " (3.29)
1/2
18a?
) =1 — 1. .
90 =\ B 5e— a/3)(ar /a)é)2] (3:30)

This reduces to the original self-similar solution of NY in the limit of ap = 0.
Alternatively one can also redefine the parameter é = (¢/f) (1 — (2/3)(ar/a))
and use the relations (3.14)- (3.17). The primary effect of convective energy
transport is thus to reduce the value of the parameter é . This means that the
various properties of ADAFs become even more pronounced.

3.3.1 Properties of the extended convective ADAF solution

The one crucial difference of the NY models from convective ADAFS is revealed
after examination of the vertically integrated energy flux Wy, due to convective
energy transport. This is given by

Wiy = AmRH Fyp = 10 2¢ L2 (3.31)
@
This quantity is rather large, such that the total energy flux
W = —m Be + Wyee + Wi (3.32)

is also positive. The exact value (see Manmoto et al., 2000) is somewhat lengthy
and we merely state that

Wapar > Wssp >0 (3.33)
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for a wide range of parameters. An ADAF with convection can therefore sup-
ply a SSD with enough energy on its inner boundary. Manmoto and Kato
(2000) were the first to obtain stationary self-consistent models with ADAF-
SSD transitions (see figure 3.2)). Their main result could be confirmed with our
time-dependent approach (see chapter [5) while new generic time-dependent
properties of such models are described in chapter (6] of this work.

Some authors (e.g. Narayan et al., 2000) do also consider energy dissipation
by convective micro-turbulence as a source of energy and model this after the
viscous dissipation such that

QT = Qe + Qfy = (a4 ar)

2 2 2H [9) 2
&@ > . (3.34)

Qx  \OR

This modifies the result only quantitatively and the conclusions still apply, if «
and ar are not too small, eg. > 0.05. For the opposite case, where o and ar
are small, Narayan et al. (2000) together with Quataert and Gruzinov (2000)
found a new branch of accretion flows, where convection totally dominates the
flow properties. This Convection Dominated Accretion Flow (CDAF) is briefly
described in the appendix [A.
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Chapter 4

Numerical Aspects

In this chapter we discuss briefly some aspects of the numerical techniques
to solve the proposed system of coupled differential equations. Most of the
material presented in this part is standard textbook knowledge and can be read
up in e.g. (Potter, 1973; Hirsch, 1988a).

4.1 Discretization

Following (Potter, 1973) let us consider a system defined by the state vector
u(x,t), in the space domain R = R(z). If u = u" is defined at time ¢ = 0, and
if u is defined on the surface S of R for all times ¢, we wish to determine u for
all times ¢ in R. The state of the system may be obtained as a solution of the

initial value equation

ou

— = Lu. 4.1

T (4.1)
In general L is a non-linear spatial differential operator. For numerical compu-
tations some discretization procedure has to be applied to equation (4.1), both

spatial and in time.

The state will be calculated at discrete points in space x; , ie. on a grid, where
the grid spacing Ax is given by x;41 = x; + Az. Hence at each grid point j
the spatially discretized equations

Guj

ot
have to be solved. These equations may be coupled to (1) adjacent grid points
through the operator L, as will be discussed later, and (2) to different compo-
nents or state variables “u of the state vector uw. These could for example be
density p, velocity v or energy e.

= Luj (4.2)

The state vector is further only calculated at discrete times t™, where time is
advanced in discrete time-steps At, such that t"*! = ¢ + At. One possible
time discretization is as follows:

u™ =" 4 Lu"(1 — 0)At + Lu™T19AL, (4.3)
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where u™ and u™*! are the state vectors at adjacent time-points, while 6 is an
interpolation parameter 0 < 6 < 1. In the special case when 8 = 0, the new
state vector u" 1! is defined explicitly by the known state w”. In this case the
method is called explicit, while otherwise if § % 0 the method is called implicit.
Further if # = 1/2 this method is generally called Crank-Nicolson scheme, which
is of second-order accuracy in time.

Explicit schemes are only stable if the size of the time step is restricted by the
famous Courant-Friedrichs-Levy condition, which says, that no information is
allowed to travel more than one grid zone within a single time step. Depen-
dent on the problem under consideration information could propagate with the
velocity of the flow or the sound speed, to mention two examples. Implicit
schemes with 6 > 1/2 are generally stable for any size of the time step. Hence
the Crank-Nicolson scheme is only marginally stable. It is common practice
to use a 0 somewhat larger then the critical value, to retain approximately
second-order accuracy, while avoiding unstable numerical schemes. We employ
6 =0.61.

The operator L will in general include derivatives of the state vector w with
respect to the coordinate x, which are not available algebraically. Therefore
spatial derivatives have to be discretized also. The underlying idea of the finite
difference method is to estimate the derivative by the ratio of the differences at
adjacent points according to the definition

ou . u(z+ Azx) —u(zx)

uxE%EDu:AliEo Az

(4.4)

If Az is small but finite the expression of the right-hand side will be a approx-
imation to the exact value of u,. By reducing Ax the approximation will be
improved while the truncation error will tend to zero. The power of Ax with
which the error tends to zero is called the order of the difference approxzimation.
The procedure to generate difference approximation of any order is based upon
Taylor series expansion of u(z + Ax) (Hildebrand, 1956).

Following (Hirsch, 1988a, ch. 4.2) we define a number of difference operator by
their action on the state variable u; evaluated at node j.

Displacement operator E:
Etuj = uj+t

Central difference operator §:
duj = Ujt1/2 — Uj—1/2

It is easily seen, that § = E1/2 — E=1/2 where the half-valued displacements
are to be interpreted as interpolation between grid nodesﬁ Then one simple
discretization for the derivative operator is

AzD =6, (4.5)

lor as in our case onto the corresponding intermediate staggered grid
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such that the derivative of the state variable is evaluated at node j through

Ouj  Ujyi/2 —Uj1/2
Ar Az

(ug)j = Duj = . (4.6)
This representation is second-order accurate in space. Similar expressions for
multiple derivatives like (uz,); can be derived by multiple application of the last
expression. This is very nicely illustrated and generalized to higher-order accu-
racies in (Hirsch, 1988a). Our code uses second-order accurate approximations
for all spatial derivatives.

Another method, which is specially well-suited for conservation laws, is the
finite volume method. From section [2.1 we know that conservation laws can
generally be stated as

%/Vudm]{sf-dszfvczdv, (47)

where u is a state and f the associated flux. This is also true for any subdivision
of the total volume V into smaller regions €2;. Moreover, if two sub-volumes
Q4 and Qp have a common surface, the fluxes from A to B, fap, and B to A,
fBa, through the interface will exactly cancel each other as fag = —fpa. This
effectively suppresses the growth of numerical truncation errors due to internal
volume sources of the finite difference method.

The numerical computational domain is discretized by subdivision into discrete
control volumes €2;. The surface integral is the evaluated as sum over all sides
of the control volume, ie.

O w0+ Y (18) = Q1 (4.9

sides

There are a number of possible choices for the approximation of the fluxes f.
The obvious choice would be to average the fluxes, e.g fap = %(fj_l/g +fit1/2)-
This central scheme has the drawback, that odd- and even-numbered nodes
are separated, which introduces strong oscillations between adjacent nodes as
discussed in (Hirsch, 1988a, ch. 6.2.1).

Another possibility is to approximate the flux at the cell interfaces by the flux
upstream of the interface. This is call a upwind scheme. One of its properties
is that it does not propagate information to upwind nodes, but only in the
downwind direction and thus preserves physical causality. The simplest such
scheme is the donor-cell scheme, where fap is taken to be equal to the flux
of the donor-cell. Higher-order schemes introduce interpolations of the upwind
flux. We employ second-order van Leer-slope (Stone and Norman, 1992) with a
slope limiter called MUSCL (monotonic upwind-scheme for conservation laws,
see Hirsch, 1988b, chapter 21). Though in principal all fluxes could be treated
with this scheme, we only employ it for advection of the flow variables, ie.
V- (uv).
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Figure 4.1: The Hujeirat-Rannacher algorithm as implemented in Nemesis.
Figure courtesy Keller.
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4.2 Physical splitting and time-step control

Hujeirat and Rannacher introduced a new algorithm (see Hujeirat and Rannacher,
1998; Hujeirat, 1998, for a slightly modified version thereof) to solve the Navier-
Stokes equations which consist of the so called physical splitting. The implicit
finite difference or finite volume method can be summarized as

AU = b, (4.9)

where U is a vector containing the state vector at the new time-step u’j”l for
all nodes j, b contains the state vector at the old time-step uj and possibly
additional sources for all nodes j. The matrix A is build up to represent the
discretization of the differential operator L and also contains the time advance-
ment through At. The solver is required to invert the matrix A yielding A~! to
solve for the new state vector. A is a sparse matrix, because the discrete version
of operator L only includes a finite number of next neighbors arranged along the
diagonal of A, while the coupling between the state variables “u is represented
as off-diagonal entries. Direct solvers for sparse matrices are computationally
very costly.

If the time-step At is low, the off-diagonal entries will have only small weight
in the computations of U. So the idea of the physical splitting is to divide the
vector U up into smaller units ?U (where each U contains one or more state
variables “u;) depending on the strength on the coupling between them. The
same is done with the matrix A, thus obtaining a number of sub-matrices #A.
The matrices PA have very simple structure and are only populated around the
diagonal, at least in the best case where § = «. Hence they can be inverted
very efficiently. In this way we reduced the large problem into smaller
portions, e.g.
PAPU = *b

VEAVE]] = vep (410)

where f = (1 = p would solve the continuity equation and 8 = (2 = (v,e)
would solve the coupled momentum and energy equations, respectively. The
drawback of this procedure is, that the coupling between the state variables “u
may be neglected. It is thus necessary (1) to update all dependant variables
after each [-solver and (2) to globally iterate the whole system of (-solvers
until the coupling between the state variables converges.

In this context we stress, that the order in which the equations are solved has
a large impact on the convergence behavior. For instance. we solve in the
order (I, p,e,pr,u), where [ is the angular momentum, p density, e internal
energy, pr radial momentum and wu radiation density. Changing this scheme
to (I, p,pr,e,u) does not significantly change the convergence behavior, while
the order (I, p,pr,u,e) results in a average time-step, which is two orders of
magnitude lower. The problem is further severed by the fact, that the optimal
order depends on the type of application (e.g. cold disk, spherical flow, etc).
As a rule of thumb one should evaluate the equation with the most couplings
last. This would in our case be the energy equation. But in this particular
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application of ADAF-SSD transitions, the radiative transfer is strongly coupled
to energy equation in the transition region. There the balance of radiative
cooling and turbulent convective heating is very delicate. The consequence is,
that the time-step is very low if u is not solved for last.

The efficiency in terms of large time-steps At of this method will in general
be lower than that of a full solver, which uses the full matrix A. On the other
hand, the efficiency in terms of computing resources necessary to invert the
matrices A may be considerably higher depending on the problem and the
employed splitting of the equations. It is very difficult to estimate a priori
the optimal time-step At where the algorithm is most efficient in terms of
overall advanced physical simulation time over computational CPU-time. This
is further complicated by the fact that the optimal At may change during the
simulation as a result of changing flow properties. For example the flow might
initially be very steady, but later self-consistently develop strong turbulence,
which would require smaller time-step in order to lessen the number of iterations
needed.

In order to circumvent this problem, one may use an adaptive time-step control.
If the full system does not reach global convergence within a pre-defined number
of iterations, the state variables are reset to their old values u™, the time-
step At lessened and the global iteration restarted. On the other hand, if
the system reaches convergence very fast for a number of consecutive time
steps n, the time-step advancement Af is increased. Another possibility to
improve the efficiency is to make an explicit estimate for the new state variables
before entering global iteration. Depending on the error of the explicit estimate
compared to the implicit calculations, one can also increase or decrease the
time-step advancement At.

This time-step control (in German Zeitschritt Kontrolle, ZSK) together with
the physical splitting is, what we call the Hujeirat-Rannacher algorithm, which
is illustrated in figure The implementation of this algorithm by Keller
(2000) is described in the next section.

4.3 The numerical code Nemesis

The numerical code we used has been developed by Christof Keller (ITA, Hei-
delberg) an was simply called System1D. Originally, it did not include an energy
equation, neither for gas nor for radiation. We adapted the code to our needs
and implemented the missing energy equations. This branch of the code has
meanwhile been named Nemesis?

The code consists of three main parts, illustrated in figure [4.2. The first one
implements a tensor product grid (TPG) on a staggered mesh. The module
Mesh is responsible for the initialization of the grid. It also provides many

2simply because it is the final fate of the gas to vanish into the blackhole (and because it
gave me sometimes such hard time, also ;-)
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Figure 4.2: Structure of the numerical code Nemesis. Figure courtesy Keller.
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additional properties of the grid, like volume, face surface area, etc, for the
individual nodes. These are made available to the upper layers.

The second part consists of two modules. The first called Var2D implements
scalar type variables, centered on the grid nodes, and vector type variables,
living on the zone edges. The second called Matrix does likewise for band
matrices. These modules do also provide a large range of operators which
act on the data type. The range of operators starts from simple ones as the
product of two variables or interpolation onto the staggered mesh, and ends with
complicated calculation like the Jacobian of the general diffusion operator. The
advective scheme, implemented as a finite volume method, is split off into the
module Muscl (Monotonic Upstream-centered Scheme for Conservation Laws).
Note that these three modules and the underlying Mesh do in principal support
2-dimensional data space. This has not been tested and at the moment the
second dimension is only one zone wide.

The third part consists of the physical equations to be solved. Every equa-
tion is implemented in separate module (called Continuity, Momemtx2, AngMom,
Energy and Radiation), which provides calculation of the defects and a local
solver. The calculation of the shear tensor and its various derivatives is split
off into the module Viscosity. They totally rely upon the underlying modules
Var2D and Matrix to do the dirty work.

These three parts are framed by the main module System2D which, after some
initialization, enters the main loop and does also provide the times-step control
System.

4.4 Test problems

The foundations of the code have been extensively tested by Keller (2000, 2002).
It was originally meant to be applied to cold disks, which are very well described
by cylindrical geometry. The largest uncertainty at the beginning of this work,
was how the code would cope with essentially spherical flows like Bondi ac-
cretion or quasi-spherical flows like ADAFs or slim disks, generally. Another
possible pitfall was the behavior of the code at critical sonic points, where the
flow undergoes a transition from sub-sonic to super-sonic. At the sonic point
the nominator and denominator, N and D, of the derivative of velocity, diverge
simultaneously. For numerical stationary models this is a non-trivial problem
(see e.g. Peitz and Appl, 1997). The last question is how the code operates
when large gradients, like in ADAF-SSD transitions, are present.

We thus present a selection of two test problems. The first is the spherical
Bondi accretion, where a central mass spherically accretes matter from infinity.
This tests the quality of the spherical flows in cylindrical coordinates, and the
behavior at the sonic point. The analytical solution to this problem is discussed
in detail by Chakrabarti (1990).

The second test is an ADAF, where the outer boundaries are taken to be SSD-
like. Therefore large gradient are present near the outer boundary. The flow is
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Figure 4.3: Test problem: spherical Bondi-accretion. Comparison between numerical computation (crosses) and analytical solution
(lines). The individual panels show from left to right and top to bottom: density p, accretion rate 1 = 47 v pR?, pressure p, specific
internal energy € = p/e, infall velocity v and sound speed ¢;, mach number m = v/cs.
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Figure 4.4: Test problem: Global transonic ADAF solutions with SSD outer
boundary conditions for three values of & = (0.01,0.03,0.1). « increases from
bottom to top in both panels. The left panel shows radial velocity vy (solid)
and sound speed ¢, (dotted), and the analytical values of the self-similar solution
(Narayan and Yi, 1994), respectively. The right panel shows specific angular
momentum [ (solid) and for comparison the keplerian counterpart {x. This
figure can be directly compared to figure 3.1

also transonic and quasi-spherical, such that all three uncertainties are present
simultaneously. Narayan et al. (1997b) studied this problem numerically.

Our numerical calculations are illustrated in the figures and For the
Bondi problem the primary variables density and energy density (which is pres-
sure times a numerical factor, only) are very well represented by the numerical
results. The radial velocity is underestimated a bit in the inner parts. This
discrepancy is best seen in the mach number M. The accretion rate is not con-
stant at first glance, but the relative deviation from the analytical value is better
than 3 x 10~* and of the order of the demanded numerical accuracy. There are
no problems at the sonic point. The small bumps near the outer boundary
can be explained by the fact that we use constant values at the boundary’s
ghost cells. Linear extrapolation, or, if available, analytical values improve this
significantly.

The results of the second test problem shown in figure can be directly
compared to the numerical models of Narayan et al. (1997b), shown in figure
[3.1. The fluid velocity and sound speed are, away from the boundaries, very well
described by the self-similar solution of Narayan and Yi (1994). The specific
angular momentum in the inner part shows the same behavior as the models
found by Narayan et al. (1997b). Only at the outer boundary [ drops too fast.
This simulations did only run for short time. It is a common observation, that
our code needs fairly long to relax the specific angular momentum near the
outer boundary. This is due to the larger azimuthal revolution time of the flow.
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Chapter 5

Stationary ADAF-SSD
Transitions

There have been a number of arguments to suggest that an accretion flow around
a black hole may undergo a transition from a standard disk on the outer part
to an ADAF on the inner part. The transition radius Ri between the two
zones has been estimated in some X-ray binaries by inferring the location of
the innermost radius of the standard disk, either by fitting the soft component
in the spectrum or from the width of the Ha line wings. The transition radius
has also been estimated from the hard component of black hole X-ray binary
(BHXB) spectra. Narayan et al. (1997a) showed that the spectra of quiescent
BHXBs are well reproduced by an ADAF model with a large transition radius,
Ry ~ 103 — 10" Ry

ADAF and SSD have very different dynamical and energetic structure. It is
not evident that they can coexist in a small volume. The next section will
discuss the requirements that an ADAF must satisfy in order to connect to an
outer standard disk. Then we present numerical simulations of such ADAF-
SSD transitions and look in detail into the dynamical and energetic structure
of the transition region. In the last section we discuss the allowed range for the
location of the transition radius. Throughout this chapter we will concentrate
on the quasi-stationary structure of the accretion flow. The discussion of the
time-dependent behavior will be reserved for the next chapter.

5.1 Connection conditions

Again we note that the physical state of accreting gas in an ADAF is very well
described by the self-similar solution found by Narayan and Yi (1994) (e.g.,
Chen et al., 1995). If an inner ADAF is to be connected to an outer SSD, it
must satisfy certain connection conditions. Three of them have been identified
in the literature (e.g., Manmoto et al., 2000).

o1



0.001 10

0.0001 F SSD E

1le-05

ADAF

1e-06 -
100 100
RIRg] RIRg]

Figure 5.1: Numerical calculations of the structure of the transition region.
Left panel: pressure p in the transition region. Dashed lines illustrate the
trend of the analytical solutions. Right panel: specific angular momentum [
(solid )and the keplerian value i (dashed). Whenever the transition region is
narrow, pressure takes both, a minimum and a maximum, near the transition.
This results in super-keplerian rotation in the transition region. (See text for
detailed discussion.)

According to the self-similar solution, the temperature of the accreting gas is
close to the virial temperature and the radial velocity is approximately o times
the free-fall velocity. This is a direct consequence of the advective nature of
the accretion flow. On the other hand these quantities are orders of magnitude
smaller at the same radius for a standard disk. So the first and most evident
connection condition is that thermodynamical quantities like temperature and
dynamical like radial velocity must change by orders of magnitude in the tran-
sition region. This is somewhat realized in global stationary ADAF models
where thin standard disk-like outer boundary conditions are imposed. See for
example the results of Narayan et al. (1997b) and our results in figures and
[4.4, respectively.

The second requirement concerns the rotation of the flow. Let us denote the
finite radial extent of the transition region by §. Abramowicz et al. (1998) noted
that the accreting gas in an ADAF near the transition radius must rotate at
super-keplerian angular velocity whenever the transition region is narrow, i.e.
0 < Rytr. As can be seen in figure5.1] the pressure takes necessarily two extrema
— and thus vanishing gradient — in the transition region. After neglecting the
inertial term in the radial force balance, g P = %(Q? — Q% )R, it follows that
the angular velocity crosses the keplerian value twice. Hence we have ) > Qp
in the transition region.

The last and most important requirement is that an ADAF which is connected
to an outer SSD must have an outward energy flux (Kato and Nakamura, 1998).

The total energy flux passing through a cylindrical surface at radius R is positive
and equal to (3/2)(GM M /R) for every steady thin disk model (see eq [3.8).
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This quantity, in contrast, is negative for the self-similar ADAF solution (see
eq/3.20). Hence an ADAF that is connected to a SSD at radius R¢, must have a
positive total energy flux larger than (3/2)(GM M /Ry;). Otherwise the ADAF
cannot connect thermally to the outer standard disk, since radiation losses will
inevitably occur at the transition radius.

Honma (1996) was the first to construct steady state models which satisfy the
connection condition. Later Manmoto et al. (2000) and Manmoto and Kato
(2000) extended his work and presented self-consistent stationary models with
ADAF-SSD transitions. This present work reanalyzes their results and con-
tinues further along this track to study the generic time-dependency of such
models in the next chapter.

5.2 Dynamics of the transition

The most important ingredient for ADAF-SSD transitions is energy transport
by turbulent convection (see eqs[3.31 and [3.33). This makes the total outward
energy flux of convective ADAFs positive and satisfies the third connection
condition for a wide range of parameters.

We study the dynamics of ADAF-SSD transition using numerical simulations.
As a first step we do not solve the full system of equations (2.53/-2.72), but
ignore radiative transfer. The transition radius is treated as a free parame-
ter. While solving the energy equation (2.56) we neglect radiative losses in
the ADAF (R < Ry,), and further assume that viscous heating and radiative
losses exactly balance in the SSD, ie. @ ;= Q;rzs for R > Ryt;. We call this
the ”dynamical approach” as it reproduces locally the dynamical structure of
ADAF and SSD solutions, respectively. Turbulent convection is taken into ac-
count, but has only small impact on the dynamical structure of the flow away
from the transition. This global model is clearly not self-consistent, though
Manmoto and Kato (2000) showed that this procedure describes very accurate
the dynamics of ADAF-SSD transitions if the transition radius is known a
priori. In the next section [5.3 we contrast the dynamical approach with the
solution of the full system of equations and discuss its impact on the energetics
of the transition region.

We calculated ADAF-SSD transition models with different transition radii Ry,
and for comparison additionally pure SSD models extending down to the event
horizon. Figure [5.2] illustrates the numerical results. The SSD behaves as
expected. At the marginally stable orbit (where lx is minimal) the disk is
truncated and gas flows essentially in free-fall into the black hole. Here the
inertial terms in the radial momentum and energy equations become dominant,
so that both temperature and density drop.

ADAF-SSD models reproduce very accurate pure SSD models in the outer parts.
Inward of the transition they agree very well with transonic ADAF solutions.
At the transition radius the disk thickens in vertical direction. Density drops by
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Figure 5.2: ADAF-SSD transition models for different transition radii Ry, = 0,
i.e. pure SSD models (short dashed), Ryy = 60R, (dashed) and Ry, = 160 R,
(solid). The individual panels show temperature T' (upper left), density p (upper
right), relative disk height H/R (lower right), specific angular momentum [ and
the keplerian specific angular momentum g (lower left), respectively.

several orders of magnitude, thereby radiative processes become very inefficient
and the temperature increases accordingly. In the transition region gas rotates
at super-keplerian velocities as expected (see also figure [5.1 for a close-up),
immediately inward of the transition the specific angular momentum [ drops
far below lx. The flow is no longer stabilized by rotation so that the radial
velocity also increases by several orders of magnitude such that pressure support
is reached.

The radial extent of the transition region § depends on the adiabatic index
(Manmoto and Kato, 2000). In general we assume an ideal gas with v = 5/3,
but even fully ionized pressure dominated plasma will deviate significantly from
this value in the presence of weak magnetic fields so that v = 4/3 seems often
more appropriate. The adiabatic index determines the radial dependency of the
entropy and thus of convective energy flux through the transition. We expect
broader transition regions ¢ for smaller ~.

The radial force balance is plotted in figure[5.3. The structure of the SSD part
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Figure 5.3: Radial force balance of ADAF-SSD transition model (here Ry, =
160Rg). The individual terms of the radial momentum equation are iner-
tia YvrOrvr (solid), pressure gradient —OgrP (dot-dashed), effective gravity
—X(Q% — Q%) R (dashed), and internal viscous stress (V-7)g (dotted). The left
panel shows contributions with positive sign. In the transition region all forces
but inertia change sign. This is shown in a close-up on the transition region in
the right panel.

is given — as expected — by exact balance of effective gravity and radial pressure
gradient, i.e. gep = —Q%(R + Q2R = —1/¥0RP. Inertia and viscous stress are
completely negligible. In the ADAF the sum of pressure gradient and effective
gravity is balanced by inertia, only in the innermost parts, where the flow is
transonic, does gravity take over and the pressure gradient is almost negligible.

The situation in the transition region is again different. Effective gravity
changes sign as does the pressure gradient. This is a direct consequence of
the super-keplerian rotation. Surprisingly, force balance is established with the
internal viscous stress (V-7)g rather than inertia (which does not change sign
and drops off sharply). The internal viscous stress is a non-neglible contribution
to the force balance in the transition region. With our symmetry assumptions,
the only non-vanishing contribution to the radial internal stresses is the Trgr-
component of the total stress tensor. In this regard our model is more com-
plete than previous calculations in the literature, including Manmoto and Kato
(2000), who consider the Trg-component in the angular momentum equation,
only. We conclude that it is essential to include all components of the stress
tensor for a complete understanding and consistent modeling of ADAF-SSD
transition models.

5.3 Energy budget of the transition

So far we did not solve the full energy equation nor the radiative transfer
equation. A self-consistent model requires solving the full system (2.53£2.72).
Nonetheless it is interesting to contrast both approaches. Figure [5.4 shows
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Figure 5.4: Energy balance of ”dynamical approach” ADAF-SSD solutions
where the transition radius is a free parameter (here Ry, = 60 Rg). The contri-
butions are advective cooling @, (solid); viscous heating Q. (long dashed);
turbulent convective transport Q. (dotted) and —Qj, (dot-dashed). The ra-
diative cooling rate @, (short dashed) is not (self-consistently) included in the
calculations and only shown for comparison. The numerical resolution in the

transition region is poor as indicated by the dots on top of Q;ﬁb.

the individual contributions to the energy balance for the purely dynamical
approach, while[5.5 illustrates the energy balance for the full system.!

In the inner ADAF advective cooling @), and viscous heating are of the same
order of magnitude while turbulent convective energy transport is only a minor
but non-negligible contribution. Turbulent convection transfers energy outward
as expected. Radiative cooling in the inner ADAF part is dynamically negligible
as seen from figures[5.4 and /5.5

In the outer SSD part we have previously assumed that viscous heating and
radiative cooling balance exactly. This is clearly not the case and hence the
”dynamical approach” model fails to reproduce the correct solution. There the
plasma is still much to hot and cooling does not match heating. The exact
treatment shows that the plasma is rapidly cooled down to its equilibrium state
as can be seen in figure @E Advective cooling and turbulent convection are
completely negligible in the SSD, both for the dynamical approach and the full

!The results of the dynamical approach have been used as initial conditions for the full
self-consistent modeling.

2The outermost parts did not reach equilibrium at the time of this snapshot, but do so at
later times.
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Figure 5.5: Energy balance of self-consistent ADAF-SSD solutions (here Ry, ~
60Rg). The contributions are advective cooling @, (solid); viscous heat-
ing Q.. (long dashed); turbulent convective transport Q;, (dotted) and —Q;,
(dot-dashed). The radiative cooling rate @, , (short dashed) is treated self-
consistently by solving the full system. The numerical resolution in the transi-
tion region is poor as indicated by the dots on top of Q;b.

model.

The most interesting part is the transition region. There advective cooling
drops off by 3-4 orders of magnitude. The flow is much slower in the outer parts.
Turbulent convection on the other hand changes sign and rises steeply. This
is due to a sudden drop of temperature in the transition which implies a very
low and ineffective energy flux. Energy is accumulated by convective transport
in the transition region. The only possibility to shed this energy surplus is
by increased radiative losses. As seem in figure [5.5 the radiative cooling rate
also increases strongly in the transition region and does provide the needed
cooling mechanism. The exact treatment shows that radiative cooling Q. ,
and turbulent convection balance to a high degree in the transition region. The
strong increase of the radiative cooling rate is even observed in the dynamical
model, though it does not exactly balance Q;;b as expected. (We note that our
model could benefit from higher resolution in the transition region by better
resolving the large gradients of all physical variables.)

The energy density of the radiation field u is plotted in figure [5.6. It is strongly
peaked in the transition zone as expected. Radial diffusion from the adjacent
SSD deposits lots of photons in the transition region. A second maximum is
located near the inner boundary.
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Figure 5.6: Radiation field energy density u of ADAF-SSD models with different
transition radii Ry, = 60R, (solid) and Ry = 160 R, (dashed). A prominent
peak appears in the transition radius. A second maximum is located near the
inner boundary.

Further insight into the energetics of the transition region is revealed by study-
ing the balance of sources and sinks of the radiation field u. The corresponding
cooling and heating rates are shown in figure In the SSD part thermal
sources Q7 . = Q,,q and radiative losses through the upper and lower disk sur-
faces @), are perfectly balanced. Radial diffusion does not play any role. In
the ADAF part thermal sources are only a minor contribution. The bulk of
photons is injected radially from the transition region and streams through the
optically thin flow. Only at the inner boundary are Qf,.. and —Q;Zﬁ compara-
ble. In the transition region the radial diffusion rate changes sign, such that the
radial diffusion flux takes its local minimum. Q;Zﬁ peaks sharply and balances
the thermal sources. Most of the radiation thus originates from the transition
region. It is either radiated directly or streams through the ADAF and escapes

ultimately near the black hole.

The energetical structure of ADAF-SSD transitions is thus far from being sim-
ple. On one hand turbulent convection transfers internal energy from the inner-
most ADAF into the transition region and hence heats the cold SSD material.
Simultaneously the radiation field is supplied with thermal photons from the
transition region. The intensity of the radiation field on the other hand is fur-
ther amplified by radial injection of photons from the cold SSD. This obviously
delicate balance of multiple cooling and heating channels is what determines
the position of the transition radius.
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Figure 5.7: Balance of inputs and outputs of the photons in ADAF-SSD tran-
sition models (here Rty = 40Rg). The individual contributions are thermal
sources Q7. (solid), vertical irradiation through the surfaces Q.. (long dashed)
and radial diffusion Qg (short dashed) and —Q . (dotted), respectively. In
the ADAF part thermal sources are only a minor contribution, photons are
instead injected radially from the transition region and stream through the
ADAF. Only near the inner boundary is Q7. comparable with —Q;iﬁ. In the
SSD part radial diffusion does not play any role. Photons escape through the
surface of the disk. In the transition region radial diffusion changes sign and
peaks strongly to balance the thermal sources. In this snapshot, this is barely

resolved as indicated by the dot on top of Q;zﬁ

5.4 Location of the transition radius

Honma (1996) and especially Manmoto and Kato (2000) were the first to con-
sider stationary ADAF-SSD transitions with turbulent convective transport as
main ingredient. They found strong dependency of the possible location of the
transition Ry, on mass accretion rate 1 and the parameter ar/a (see figure[5.8).
Surprisingly they found many possible transition radii for a given parameter set

(m7 o, ar, ’Y)

For large accretion rates these are continously distributed between a maximum
and a minimum Ry,. Even more surprising, when 7 is small, however, there is
a forbidden zone between them (see right panel of figure[5.8). They also found,
that ADAF-SSD transitions are only possible if a7 is larger than some critical
value, i.e. ap > 0. For large ap/a the range of possible transition radii is wide.
For smaller ar/a this range narrows until the maximum and the minimum
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Figure 5.8: Location of the possible transition radii R, (indicated as dashed
area) as function of ap/a (left panel) and m (right panel). For the left panel
a = 0.4 and 7 = 0.01, for the right panel ar = a = 0.4 have been used. See
discussion in the text. Figure adopted from (Manmoto and Kato, 2000).

transition radius coincide. For lower values of ar/a a ADAF-SSD transition
model is no longer found and the SSD extends down to the immediate vicinity
of the black hole.

To understand this behavior lets take again a look at the energy flux near the
transition region. Let W (R) be the vertical integrated energy flux, which is the
sum of fluxes related to kinetic, thermal and gravitational energy and fluxes
due to viscous heating and convective transport, respectively (see eq. [3.32).
Then the energy equation can be summarized as

1 d

Eﬁ(RW) =—Q .4 (5.1)

If the the transition is to occur at radius Ry, the relation
QWRtr(WADAF — Wssp) = 2mRy, / Q;ad dR = 27R:Wiaa (5.2)

must be satisfied at the transition radius Ry;, where the integration is performed
over the narrow transition region. Here, Wapar and Wggp are the vertical
integrated energy fluxes just inside and outside of the transition.

As has been shown in chapter[3.3] Wapar — Wssp is mainly given by Wy, and
the transition radius Ry, will thus be given approximately by

Wtrb(Rtr) = Wrad<Rtr)- (53)

This is illustrated in figure[5.9, where we show a ADAF-SSD model with Ry, &~
60R on the left panel and Wy, (Rr) and Wy 4q(Ryy) as functions of Ry, on the
right panel. From the right panel we see, that condition for a transition (eq
5.3) is satisfied at two radii — the maximum and minimum transition radius.
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Figure 5.9: Energy flux W in ADAF-SSD models. The left panel shows total
energy flux through the disk for a model with R, ~ 60Rs. Plotted are the
energy flux of the ADAF Wapar (short dashed) and the SSD Wgsp (long
dashed), their difference Wapar — Wssp (solid), which is approximately given
by the turbulent flux Wy, (dot-dashed) and the radiation energy flux W,
(dotted). The right panel is adopted from (Manmoto and Kato, 2000) and shows
the dependency of Wy (solid) and W,..q (dotted) on Ry, if the transition is
assumed to occur at Ri;. There are two possible transition radii where Wy, =
Wrad-

So far we have only accounted for two possible locations of the transition. This
due to the fact that we have neglected the influence of radiative cooling in
the ADAF part in our analysis. If this is taken into account, the flow can
adjust itself such that part of the turbulent convective energy is radiated in
the ADAF part and need not be radiated in the transition zone. This effect
broadens the interval of possible transition locations in the sense that radiation
is strong enough to allow a transition in the vicinity of the maximum and
minimum transition radius, also. This is also seen in the left panel of figure
5.9, where immediately inward of the transition Wy, (or Wapar) is still larger
than Wggp, such that their difference is still positive. Hence if part of Wy
would be radiated, the transition condition could also be satisfied for smaller
radii (down to approx R =~ (30 — 40)Rg, where Wapar < Wgsp) than the
present transition radius R ~ 60R, .

Radiative efficiency in the ADAF does strongly depend on the accretion rate
m, since density and optical depth scale with 7. It is most effective for large m
and the transition is possible for a wide range of radii. For lower accretion rates
only a small part of W, can be radiated and the possible locations of transition
are restricted to values near to the minimum and maximum value, respectively.
Hence even the prohibited zone the possible transition radius interval can be
understood from this rather simple analysis.

From figure 5.8 we see that the spacing between the minimum and maximum
transition radius grows with increasing ag /. This quantity is a measure for
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the relative strength of turbulent heating Q;ﬁb to advective cooling @), . Only if
it is larger than a certain value does convection in the ADAF transport enough
energy outward such that Wapar > Wgsgp — a necessary condition for ADAF-
SSD transitions — in the first place. Hence there are no transitions for small
values of ar/a. If ap /av grows, there is an increasing amount of energy supplied
to the outer SSD, such that the minimum transition radius is locate far inward,
where Wy, is still rising, or far out, where Wy, is dropping again relative to
Wiaq- In this way the dependency of the location of the transition radius on
a7 can be understood, also.

We conclude by summarizing that after choosing a parameter set (1, «, ar, ),
the transition condition (5.2 can be either not satisfied at all, hence a pure SSD
solution, or satisfied for a range Ry (min) < Ry < Ryr(maz). The reason is the
availability of different cooling channels which allow for a thermal equilibrium
for different transition radii Ryy, where the availability and effectivity of the
cooling channels depend on (1, ar/a).
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Chapter 6

Time-dependent ADAF-SSD
Transitions

This chapter is devoted to the time-dependent longterm evolution of ADAF-
SSD transition models. The general behavior of our simulations is described
first and we identify several properties of the solution. Some of these properties
are discussed in detail before we conclude by revisiting the subject on possible
locations of the transition radius. Throughout this chapters we measure time
in units of keplerian orbital revolution times Py (R) = 2mrR/vk(R), either at
the outer radius Pk, or at the transition P} .

6.1 The general picture

The longterm evolution of self-consistent ADAF-SSD transition models has
been studied for a number of parameters. We used the models of the hy-
drodynamical approach as initial conditions. That is, our initial conditions do
exhibit a transition from an inner ADAF to an outer SSD at a certain radius
Rtr. Thus we cannot say anything about the onset of the transition or the
mechanism which causes such transitions in the first place. We can only state
whether self-consistent global solutions with transition at Ry, are possible and
if so, how they evolve in time. We are specifically interested if the transition
radius changes with time, i.e. Ry = Rer(2).

We note that in the hydrodynamical simulations the transition radius was de-
fined by being the radius inward of which we assumed @, = 0 and outward
of which Q,,, = Q},., respectively. That is in the language of Narayan and Yi
(1994), f =1 for R < Ry, and f = 0 for R > Ry¢,. The transition radius was
a free parameter which had to be explicitly specified. In contrast here to, in
our self-consistent models the transition radius does change according to the

adjustment of the flow and has to be determined. For technical reasons! we use

'and also because this is what is usually done in the literature (eg. Manmoto and Kato,
2000)
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Figure 6.1: Location of the transition radius Ry, (dotted) in time. The crosses +
and stars x mark the innermost and outermost position of the transition. The
latter is fitted by an analytical function (solid) and identified with the intrinsic
location of the transition, while the former is treated as a perturbation due to
the oscillations in the transition region.

a slightly different definition of the transition radius based on the optical depth
and define it as the radius at which the optical depth is unity, i.e. 7r(Ry;) = 1.
Conceptually this should be the same, at least in the limit of infinite numerical
spatial resolution. In practice there might be small quantitative differences.

We further define the transition region by the radius interval where the rotation
is super-keplerian, i.e. [ > lx. This is, according to the second connection
condition (see section [5.1), a necessary condition for the existence of narrow
ADAF-SSD transitions. We refer to the radial extent of the transition region
as .

This said, let us turn to figure [6.2] which illustrates the evolution of a ADAF-
SSD transition model where the transition was initially located at Ry (0) ~
60Rg. The transition is perhaps most easily seen in the temperature distri-
bution, where the temperature changes from very high (orange) to very low
(blue) without noticeable intermediate values. The transition zone is shown in
the lower left panel, where only the transition region is colored. The total time
shown is ¢t = 0.42 Py, approximately half a keplerian orbital revolution at the
outer boundary, this corresponds to roughly 80 orbital periods at the initial
transition radius (¢ = 78 P/ (60)).

It is immediately evident that both, the location of the transition radius (see
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Figure 6.2: Evolution of ADAF-SSD transition models. On each panel radius R = (2R - - - 2000R,) increases from left to right on a
logarithmic scale, while time ¢ = (0---0.42 Pg) runs from bottom to top on a linear scale. The individual panels show logarithm of
temperature log T (upper left), logarithm of density log p (upper right), specific angular momentum [/l x in units of the keplerian value
l;; in the zone of super-keplerian rotation, ie. the transition zone (lower left) and logarithm of vertically integrated radial momentum

density logpr (lower right).
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Figure 6.3: Evolution of ADAF-SSD transition models as function of time at
a fixed radius R = 40Ry inward of the transition. The individual panels show
temperature 7' (upper left), density p (upper right), specific angular momentum
[ (solid) and the keplerian value i (dashed) (lower left) and accretion rate
(lower right).

also figure [6.1) and the radial extend § of the transition zone, vary in time.
We distinguish two major phase. The first is characterized by nearly constant
transition radius. During this phase the flow tries to relax the imposed initial
condition into a physical self-consistent global solution of the system of equa-
tions one uses. We call this the relaxzation phase. In the course of this phase,
momentum density pr or mass accretion rate m x prR and density p drop con-
tinuously. This is because no matter is injected from the SSD into the ADAF,
but rather accumulated in the transition region. The plasma in the ADAF part
is rapidly drained and vanishes through the inner boundary. One could say that
during this relaxation process, the ADAF and the SSD are not thermally and
dynamically connected, but rather separated by an unphysical discontinuity.

This phase is computationally very costly as the time-step is very low. Some
models do never leave this phase and cease to converge at all or do so at unac-
ceptable low time-steps only. In this case no physical ADAF-SSD transition at
or near to the initial transition radius is possible in our model.

The relaxation phase ends with the first blob of matter invading the ADAF
from the SSD and restoring the mass accretion rate to its nominal value. One
would expect that the further evolution of the model goes on continously along
series of quasi-stationary solutions, where the transition radius and the other

66



9000 T 45000

1.23 PK(R,)

X 40000 -

8000 M

35000

7000 X
30000

/el

)

25000

-3

o
)

Btge [
X
Dtoee [R,

5000 - 20000

X 15000
4000 4

X 10000

3000 -
5000 [

2000 L L L
50 60 70 80 90 100 110 0 50 100 150 200 250 300

Ry [rgl Re[Ry
Figure 6.4: Dependence of the time interval between oscillation events At,s. on
the transition radius R¢;. The left panel shows the result of a specific model
with parameters (1, o, o/, y) = (0.023,0.4,1,1.5). For the right panel the
data of all models has been combined into one large pool.

flow parameters change slowly on the viscous timescale. The numerical simu-
lations show the contrary. Rapid variations on the local dynamical timescale
(comparable to the orbital revolution time P}) of the flow variables in the
transition region are observed. The transition region is highly unstable and the
transition radius Ry, oscillates rapidly around its equilibrium value (this is best
seen on figure[6.1). Due to this behavior we call this the oscillation phase.

These oscillations in the transition region seem to have their origin in instabili-
ties arising in the transition region. Close examination of the data reveals that
the instabilities are also present during the relaxation phase, though they are
difficult to perceive in the images due to the low contrast and the inappropriate
scaling of the time axis. It has been long known that instabilities, both stable
and unstable, are present in cold standard disks (see Nowak and Lehr, 1998;
Wagoner, 1999, for reviews on this topic).

Matter inflow rate i from the SSD to ADAF is not continuous but modulated
with the same pattern as the oscillations. It seems that blobs of cold matter
periodically invade the ADAF from the transition region. During this injection
the transition region as defined by [ > [ reaches far into the ADAF.

Apart from this rapid oscillations, the location of the transition radius also
drifts outward slowly. The SSD shrinks in radial size, while the ADAF grows.
In the present model the transition radius moves from initially R¢,(0) = 54 R,
to R (0.42 Pg) = 123R,. The radial outward drift velocity decreases with
increasing Ry, or increasing time. That is, the transition moves slower outward
at late times. This behavior is perceived in all models and is the most enigmatic
feature.

This particular model ceased to converge at ¢ = 0.42 Py, where the time-step
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Figure 6.5: Epicyclic frequency in the transition region as a function of radius
R. The solid line represents the square of the epicyclic frequency 2 in units of
the keplerian angular velocity Q%{ as calculated from one of our models. The
dashed line corresponds to a flow with pure keplerian rotation Q2 = Qg. The
inner and outer limits of the transition region are marked with filled circles,
while the location of the transition radius is indicated by the open circle.

dropped drastically from At ~ At“FL to At = 0 and the code threw a numerical
exception. In the parameter range which has been studied, we did not find any
model which converged for all times. We argue that this is not a numerical
problem but rather a breakdown of the physical model, i.e. at some point there
is no physical solution to the system of equations (or physical model) and the
parameters (1, «, at, Riy) we — or in the case of Ry, the flow itself — chose. This
is an important issue and will be discussed while reexamining the location of
the transition radius in section [6.3.

6.2 Oscillations in the transition region

Our numerical models show rapid variations of the transition radius Ry, as
shown in figure [6.1. They look very regular and their period increases with
increasing transition radius. To analyze this behavior quantitatively we identi-
fied the minimum and maximum transition radius during an oscillation event
as indicated in figure[6.1 by the crosses and stars, respectively. The outer ra-
dius was treated as the generic or true location of the transition and fitted by
an analytical function yielding Ry, (¢), while the inner one as a perturbation
due to the oscillation event. Next we calculated the time interval between two
oscillations At,s. as marked by the position of the minimal transition radii.

Figure 6.4/shows the dependence of At,s. on the assumed true transition radius
Rir(t). The period between oscillation events coincides very well with the local
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Figure 6.6: Snapshots during an oscillation event. The lower right panel in-
dicates the location of transition radius in the R — ¢ plane. The horizontal
lines indicate the time of the snapshots for the other three panels. The first
snapshot (solid) is taken before the oscillation event; the second (dashed) dur-
ing the oscillation roughly at the time of the reflection at the sonic point; the
third snapshot (dot-dashed) is taken while the flow relaxes into its unperturbed
configuration. The remaining panel show temperature T' (upper left), density
p (upper right) and specific angular momentum and the keplerian value (lower
left).

Keplerian orbital revolution time P}’ (Ry(¢)) times a numerical factor a of the
order of O(1). The numerical factor is a = 1.23 £+ 0.03 2 and does not depend
systematically on the initial transition radius R, (0), nor the model parameters
(m, o, ). To demonstrate this, we collect the data from all our models into
one pool and recover the same relation as shown in the right panel of figure[6.4.
It is immediately evident that one function fits all models simultaneously. The
slight difference of the numerical factor has purely technical reasons. We cannot
calculate a common analytical fit to the true transition radius for all models
and thus plotted At,s. against the last known maximum transition radius (the

2The given error is the statistical scatter between different models.
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Figure 6.7: Dynamics of the oscillations in the ADAF-SSD transition region. On each panel radius R = (2R - - - 2000R) increases
from left to right on a logarithmic scale, while time ¢ = (0---0.92 P}!(62)) runs from bottom to top on a linear scale. The individual
panels show logarithm of temperature logT" (upper left), logarithm of vertically integrated radial momentum density log pr (upper
right), specific angular momentum [/l in units of the keplerian value l; in the zone of super-keplerian rotation, ie. the transition
zone (lower left) and the total pressure gradient O Pr in arbitrary units (lower right).
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one marked by the stars x in figure .

The only parameter which seems to have a small influence on the proportionality
factor a is the local numerical resolution, i.e. the spacing between adjacent grid
nodes. We find higher values of a = 1.35 for lower numerical resolution, but
the effect is only about 10% while the resolution is 50% worse.

Nonetheless we believe that these oscillations are not due to numerical instabil-
ities, but rather due to physical instabilities in the transition region which do
not depend on the global properties of the flow as a whole, e.g. (1, , o, 7).

Let us assume that some physical quantity in the transition region is perturbed
and obeys the wave equation, such that the amplitude of the perturbation will
be proportional to exp(—wwt). In a rotating medium the wave frequency w is
bounded by the epicyclic frequency x defined by

o0
2 =20 (29 —) 1
K + R(?R (6.1)

such that the perturbation will preferably grow or decay with w? ~ k2, ., where
Kmaaz 18 the local extreme of k. As Kato and Manmoto (2000) and Kato (2001)
showed, whenever the specific angular momentum ! decreases outward (like in
the transition region), the flow is in principal subject to Rayleigh instabilities.
Whether these instabilities develop a catastrophic growing mode or merely an
oscillating, depends on the strength of the restoring and displacing forces, i.e.
pressure and centrifugal force. This manifests itself in the epicyclic frequency.
If k? < 0 is negative the flow is locally and dynamically unstable such that the
perturbation will grow and eventually develop a full scale instability. If K2 > 0
is positive however, the perturbation will merely oscillate with a frequency given
by w? near k2,,,. Kato and Manmoto (2000) also showed that the perturbation,
whether oscillating or growing, will be trapped within the transition region
because w will be less than the epicyclic frequency outside of the transition
region and thus the perturbations do not propagate.

Figure[6.5 shows the situation in a typical model during the relaxation phase.
In the outer parts of the transition region x> has a negative maximum, i.e. a
growing mode, which is only present in the relaxation phase and vanishes in the
oscillation phase Simultaneously x? has a positive maximum in the inner part
of the transition region, such that the development of an oscillation is expected.
From the figure we see that the oscillation frequency has an upper limit given
by w2,,./Q% = 2 which means that the oscillation period a has a lower limit
given by i = 1/v/2 = 0.70. This is right order of magnitude and surprisingly
close to the value a = 1.23 we found in our models.

We mentioned earlier that the perturbations in the transition region are sup-
posed to be effectively trapped within the same. As usually, this simple picture

3These growing modes detach as perturbations from the transition region and move radi-
ally outward through the SSD and decay thereby slowly. This is most evident in the radial
momentum plot (lower right) of figure[6.2, where 4-5 perturbations are seen as brighter orange
regions.
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does not survive the confrontation with numerical experiments entirely un-
harmed. The perturbation of the flow in the transition region back-reacts with
the flow. Figure 6.7 illustrates the dynamical evolution of the flow during an
oscillation event at high resolution in time, while figure 6.6/ shows snapshots at
three different points in time.

The oscillation event is initiated by a perturbation in velocity field and pres-
sure gradient (as seen in the upper and lower right panel of figure re-
spectively) hitting the inner boundary of the transition region as defined by
I > lg. The perturbation leaks into the ADAF part while a blob of cold
matter detaches from the transition region and invades the ADAF. In this
way the ADAF is periodically refilled with matter. The ejected blob carries
nearly constant angular momentum, such that the region of super-Keplerian
rotation [(R)/lx(R) ~ l(Rt;)/lx(R) > 1 reaches far into the ADAF. The cold
blob initially mixes with the hot ADAF plasma and the temperature profile is
broadened near the transition region. When the perturbation reaches the sonic
radius, it is reflected as an outgoing acoustic wave with higher temperature. In
continuation the ADAF relaxes slowly back into its unperturbed state while the
perturbation is advected radially. Hence the evolution of our models is strongly
affected by the existence of oscillation in the transition region.

6.3 Location of the transition radius revisited

One of the main results of Manmoto and Kato (2000) was that the transition
from an inner ADAF to an outer SSD is not allowed to happen at all radii.
Rather the transition radius Ry, is limited to certain range of allowed locations.
The range of the allowed transition radii is a function of the accretion rate 1,
the fraction ap/a and the viscosity paramater a.? The mass of the central
black hole M and the ratio of specific heats v might also have an influence, but
this has not been studied systematically, neither by Manmoto and Kato (2000)

nor in this work.

Formally, ADAF-SSD transition models live in a 4-dimensional parameter space
(Rir, M, o/, ). Following Manmoto and Kato (2000) we use the generic val-
ues (1, o¢/a,a) = (0.01,1,0.4) unless otherwise noted. Manmoto did only
study steady ADAF-SSD models, while this work treats fully time-dependent
models. In this sense our parameter space is 5-dimensional. But we rather
interpret this as an evolution in time of our models within the 4-dimensional
parameter space (R, m, ¢/, ). All models have M = 10Mg and v = 1.4
in common. The rest of the model parameters of the calculated models are
summarized in the following table.

4See chapter (5.4 for a discussion of these dependencies.
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Figure 6.8: FEvolution tracks of time-dependent ADAF-SSD transition
models in the (Rg,mm)-plane (left panel) and the (Rgr,/a)-plane (left
panel). The shaded area indicates the allowed transition radii according to
Manmoto and Kato (2000). All models evolve from left to right along the solid
lines. The initial and final transition radii are marked by various symbols as
described in the text. The color indicates that the model parameters deviate
from the values given at the top, i.e. m (red), a; (green), o (blue) or various
(magenta). The individual models are identified with an uppercase letter next

to the initial transition radius. (See text for detailed discussion.)

model | (1, ar/a,a)  Ry'[Rg] Rif[Rg] | remarks
A | (0.021,1,0.4) 55 123 reaches Ry, ™"
B | (0.023,1,0.4) 34 108 reaches Ry ™"
C | (0.011,1,0.4) 162 319 reaches Ry, ™"
D| (0.16,1,0.4) 55 no transition
E | (0.0008,1,0.4) 63 no transition
F | (0.005,1,0.4) 63 108 reaches Ry, ™
M | (0.0008,1,0.4) 10.7 12.3 reaches R
O | (0.022,1,0.4) 6.3 no transition
G| (0.028,1,0.1) 55 94 reaches Ry, ™%
H | (0.012,1,0.25) 55 no transition
I| (0.013,1,0.8) 63 298 could run further
P | (0.01,1,0.3) 39 no transition
K | (0.019,0.5,0.4) 59 67 ceases to converge
L | (0.01,0.5,0.4) 17 55 could run further
J | (0.0075,0,0.4) 59 115 no turbulance, could run further
N | (0.028,0,0.1) 51 94 no turbulance, could run further

This 4-dimensional parameter space is visualized by 2-dimesional cuts. Manmoto and Kato
(2000) explicitely showed cuts in the (Rgy, 72) and (Ryy, ap/a)-planes at (ap, a) =
(1,0.4) and (rn, ) = (0.01,0.4), respectively. We do likewise in figure[6.8. Due
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Figure 6.9: Evolution tracks of time-dependent ADAF-SSD transition models
in the (R¢r, @)-plane. All models evolve from left to right along the solid lines.
See caption of figure 6.8| for a key to the symbols and colors. (See text for
detailed discussion.)

to the limited number of models available we show projections onto the respec-
tive plane, rather than cuts along the plane. Models which lie exactly on or
near the respective plane are indicated by their black color. Models which lie
outside of the plane are projected onto the plane and indicated in red or blue
color.

Our models start with the transition radius initially located at R¢’. As our
models enter the relaxation phase they will undergo one of three possible evo-
lutions.

(1) the model never leaves the relaxation phase, either because it does not
converge at all, or it does so only at unacceptable low time-steps At ~ 0. This
is interpreted such that there is no transition allowed at or near Ry’ We mark
these models with an open square at Ry’

(2) The model eventually leaves the relaxation phase and enters the oscillation
phase. These models are indicated with a filled circle at Re,’. The transition
radius evolves in time and moves generally outward. We have found no exam-
ple, where the transition radius moves inward for sustained period of time. The
calculations are either artificially stopped at a final transitions radius Ri/ or
reach a final transition radius R/, where the time-step again decreased dra-
matically, by themselves. In the former case the model could very well evolve to
larger transiton radii, such that Ref is only a lower boundary (this is marked
by an open circle at R/ ). While the latter case is interpreted as the transi-
tion having reached its outermost allowed location Ry,"**. At this point our
physical model is assumed to break down in the sense, that no solution of the
adopted system of equations with the parameter Ry, > Ry,*" is available. This
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Figure 6.10: Location of the transition radius R, of model G (dotted) in time.
The crosses + and stars X mark the innermost and outermost position of the
transition. The latter is fitted by an analytical function (solid).

is indicated by a filled circle at Re/ = Ry,™?2.

(3) either something peculiar happens during the oscillation phase, such that
the model is deliberately not calculated further, or the code throws a numerical
exception at some point. These models are indicated with a filled circle at Ry,
and an open square at Re, .

Our models A through F, M and O lie exactly in the (Ry,)-plane shown in
the left panel of figure Thereof models D,E and O do not converge at all
and we conclude, that no ADAF-SSD models are possible for these parameters.
This is in agreement with Manmoto’s allowed region. Models A,B,C,F and
M reach their outermost transition radius. For A, B and M this is in perfect
agreement with Manmoto. C and F deviate slightly, though if one takes into
account, that 7 is also a function of time, this can be brought into accordance.
Model M is some regard peculiar. This is the only model which reaches its
outermost transition radius during the relaxation phase before the oscillations
in the transition region proper start to leak into the ADAF. The range of
allowed transition radii is simply so narrow, that our model evolves beyond
that region within a few keplerian revolution times P} before oscillations have
any chance to grow considerably. The remaining models are located outside of
the considered plane as indicated by their color.

The (Ryr, ¢ /)-plane is very sparsely populated by our models (see right panel
of figure [6.8. Only L has m = 0.01 exactly. Therefore we plot those models,
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which have approximately (within a factor of 1.5) the desired accretion rate,
in black also. We did further only calculate models with either a;/a = 1 or
ar/a = 0.5. Non withstanding we did not find any ADAF-SSD transition
model which projects outside of the steady allowed region. On the other hand
model K converges only at low time-steps At and slowly drops below our lower
limit (At = 1073 Atorr) without any apparent reason and far away from any
boundary of the allowed region. All other models can be accounted for, although
none of them really defines an upper boundary to the transition radius in this
particular plane.

Manmoto and Kato (2000) did not discuss any dependency of the possible loca-
tions of the transition radius on the viscosity parameter o and did only present
models with the generic value « = 0.4. Our results are illustrated in figure
6.9, which shows the (R, «)-plane at (m ~ 0.01,;/a = 1). The situation
here seems to be much more complicated. On one hand the range of allowed
transition radii is very broad at o = 0.8 and extends to at least as large radii
as at @ = 0.4 (see models I and C respectivelly). On the other hand we do not
find any transitions at o ~ 0.25 (models P and H), while at even lower values,
a = 0.1 we do find again a transition in model G. Our model G is off-plane
because of m = 0.028, but this only worsens the situation, because the allowed
region tends to broaden with decreasing v (at least at a = 0.4). There seems
to be a forbidden region, or at least a hole, between o = 0.4 and a = 0.1.

We find more indications for holes in the allowed region. Figure shows the
location of the transition radius of model G as a function of time. Again we find
a slow radial outward drift and superimposed oscillations. But the oscillations
are missing between 0.07 Px < t < 0.1 Px and to lesser extent at ¢t =~ 0.2 Pk.
There the flow behaves much more like during the relaxation phase. This could
be interpreted such that no transition is allowed at the respective locations,
ie, R~ 63Rg---T2R; and R ~ 82R,. We do not observe such behaviour for
models with large a.
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Chapter 7

Implications for the Spectral
Properties

We have so far only briefly mentioned the properties of the radiation field in
ADAF-SSD transitions. For the purpose of hydrodynamical simulations we
are only interested in frequency integrated total cooling rates which enter the
energy equation. We assume that it is sufficient to work with the appropriate
frequency integrated opacities, namely the Rosseland mean kg and the Planck
mean kp. This is a fair assumption since the temperature of the systems we
are interested in is so high, that the plasma is fully ionized and effective cooling
through individual spectral lines seems very unlikely.

Nonetheless the only possibility to test theoretical models is to compare them
to observations. In order to do so we need to translate the hydrodynamical
models into some appropriate spectral map of the source. This might be an
image in a certain spectral filter if the source can be resolved observationally,
or otherwise, as in this case, a spatially integrated total spectrum.

The outline of the chapter is as follows. We first present a recipe to calculate
simple spectra from our hydrodynamical models and discuss limits of this pro-
cedure. In the second part we apply this to our models and study some aspects
of the spectral properties of ADAF-SSD transitions.

7.1 Calculation of spectra

Following Narayan and Yi (1995b) and Manmoto et al. (1997) we consider three
processes: bremsstrahlung, synchrotron radiation and Comptonization of soft
photons. In order to obtain the spectrum generated by the accretion flow, we
need to solve the global radiation transfer problem in the radial and in the
vertical direction. We treat such complicated problems in a rather simplified
way: (1) we assume a locally plane-parallel configuration at each radius, and
(2) we separated the Compton scattering process from the rest of the radiation
processes, ie., emission and absorption.
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We first estimate the spectrum of the unscattered photons at a given radius
by solving radiative diffusion equation in that direction. For the isothermal
plane-parallel gas atmosphere the density is given by (eg. Frank et al., 1985)

22
p(z) = p(0) exp (—2H2> : (7.1)

Assuming the Eddington approximation, which is valid for isotropic radiation
fields (and even for slightly non-isotropic, (see Rybicky and Lightman, 1979, ch.
1.8), the radiation field in the vertical direction is described by the radiative
diffusion equation (Rybicky and Lightman, 1979, eq 1.121):

2
%88—;]3” =J,+ B, (7.2)
where B, and J, are the source function for thermal emission and scattering,
respectively. and 7, the optical depth from the surface of the accretion flow.
There is no well defined surface of the accretion flow, since the density tends to
zero with increasing z without ever being equal to zero. However, the optical
depth 7, in the vertical direction is finite, and hence can be used the define
the surface of the accretion flow. Note that 7, = 0 at the surface, 7, = 7 =
(71/2/2) k,,(0) H at the equatorial plane and 7, = 27 at the other surface.

The diffusion equation can be solved with appropriate boundary condi-

tions. We take
1 aJ,

ﬁﬁ—ﬂ, =J, (r, =0), (7.3)
oJ, .
ar, =0 (v =1,). (7.4)

The boundary condition at the surface assumes that there is no irradiation onto
the surface of the accretion flow, while at the equatorial plane outward and
inward radiative flux cancel each other. According to Manmoto et al. (1997),
the solution of equation with these boundary conditions is

_\/gTu
J, =B, [1 _C 5 (e72V3(—m) 4 1) . (7.5)
The energy flux F,, on the surface of the accretion flow is given by
4 0J, 27
F,(0)= ———— =—=B,|1- —2 |- .
O=35: =7 [1 - exp(—2v3r)] (7.6)

With the last equation the problem of vertical radiative transfer is essentially
solved at each radius R. The total spectral luminosity is obtained by integrating
over the surface of the disk. We did only consider the face-on case sini = 1 and
thus

F,=4r [ F,(R)dR. (7.7)
disk
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So far our recipe to calculate spectra had to go without meat, the absorption co-
efficient x, at the equatorial plane, which enters into the vertical optical depth
through 77 = (7'/2/2) k,(0)H. Assuming local thermodynamical equilibrium
(LTE), we can write x, = x,,/(47 B,), where x, = x¥¢™* 4 x3¥7" is the emis-
sivity due to the bremsstrahlung and synchrotron radiation processes. These

are, among others, function of the electron temperature 7.

Our models use a one-temperature description, where it is assumed, that energy
transfer between electrons and ions is efficient, such that T, = 7T; = T. In
contrast hereto, two-temperature models drop this strict assumption and allow
inefficient energy transfer between electron and ions, such that in general T, #
T;. Narayan and Yi (1995b) showed that the electron temperature deviates
from the proton temperature significantly only in the innermost region of an
ADAF, where the electron temperature saturates at about 7"** ~ 5 x 10°K
(Esin et al., 1997). The maximal electron temperature depends on the accretion
rate and the cooling model. It slightly increases with decreasing accretion rate
m. Though Esin et al. (1997) gave no explicit dependency the approximation

(7.8)

0.01\ /2
) K
m

T =5 x 10° <

is a good estimate. We do not know of any reasonable procedure to otherwise
deduce the electron temperature T, from the total temperature T' a posteriori
and thus either use T, = T or use equation (7.8). On the other hand, at least for
the moment being, we only want to make a qualitative estimate of the spectral
properties of our models and not a thorough quantitative analysis — for which
our method would not be accurate enough anyway.

7.1.1 Bremsstrahlung emission

Narayan and Yi (1995b) argue that in the innermost hot region of ADAF's the
electron temperature is so high that electron-electron bremsstrahlung may dom-
inate electron-ion bremsstrahlung. Therefore the cooling rate due to brems-
strahlung emission ¢, is written as

Ty = Goi T+ Qe (7.9)

We adopt the analytical expression given in (Stepney and Guilbert, 1983) and
use
QQ = 1'25ngUTCO‘fmeC2Fei(®e)a (710)

where n, is the electron number density, ay the fine structure constant, m.
the electron mass, and o7 the Thomson-scattering cross-section. The function
F.;(©.) is approximated by

1/2
Fi(©.) = 4 ({%) / (14 1.7816%34), 0. <1

5 (7.11)
= 22<[In(1.1230, + 0.48) + 1.5], O, > 1,
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where ©, = kgT./(m.c?) is the electron temperature over the electron rest-
mass energy. The electron-electron bremsstrahlung is calculated according to
(Svensson, 1982), ie.

_ 3/2

Goe = mnlerfagc? 97210/2 (44 — 3%2)96/
x (1+1.10, + 02 — 1.2502/%), 0. <1 (7.12)

Goe = nierfapc®240.(In1.1230, + 1.28), O, > 1.
With this cooling rate, we can write the emissivity x2¢™* as
- hv
b —

Xorems = g, G exp (kBT) , (7.13)

where G is the Gaunt factor, which is given by (see Rybicky and Lightman,
1979)

~ _ _h_ (3kpT. kpT.

G = om (% ho )’ s <1 (7.14)

a — h @1 4 kpTe kpTe - )
= kel M\ ) h )

where ( is a constant of the order of unity.

7.1.2 Synchrotron radiation

In the presence of magnetic field, charged particles will be accelerated along
the field lines and loose energy due to synchrotron radiation. Our models do
not include the evolution of any large scale magnetic fields. Small scale chaotic
magnetic field could nonetheless make themselves felt through additional mag-
netic pressure without influencing the dynamical behavior otherwise. It is thus
assumed that the magnetic field is in the order of the equipartition magnetic
field. The magnetic pressure pp,qq is then written as
1-9 B

Pmag = 3 Pgas = 877[" (715)

where 8 = pgas/p is the fraction of gas pressure to total pressure. We set
B = 1/2, ie. equipartition. From equation (7.15) we calculate the magnetic
field strength B, which goes into the following expressions.

The optically thin synchrotron emissivity by a relativistic Maxwellian distribu-
tion of electrons was first considered in Pacholczyk (1970) and later improved
upon by Narayan and Yi (1995b) who give the following analytical expression

4mnev dmmecr
syneh = 4.43 x 107% T ( : ) 7.16
X % K>(1/0.)" \3eBO?2 (7.16)
where K5 is a modified Bessel function and I'(z) given by
4.0505 0.4  0.5316
! _ 1/3

Although these formulae are only valid in for relativistic temperatures ©, > 1,
we use them at all temperatures. In our model the synchrotron emission always
comes from the relativistic electrons in the tail of the Maxwell distribution, so
this approximation is reasonable.
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7.1.3 Comptonization

Comptonization is in general a very delicate problem as it is a intrinsically non-
local process. Photons which where generated at some point in space travel for a
fraction of the mean-free-path length and then are scattered off free electrons.
Part of the energy of the electron may be transfered to the incident photon
(Compton effect) or vice-versa (inverse-Compton effect).

We make use of the idea of the energy enhancement factor, which was derived
by Dermer et al. (1991) and modified in part by Esin et al. (1996). The energy
enhancement factor n is defined as the average energy boost of a photon, if
the incident photon energy was hy; the outgoing photon will carry the energy
hv, = n hy;. The prescription for 7 is

n= exp(s(A - 1)) [1 - P(.]m + 1, AS)] + nmaazp(jm + 1, 5), (7'18)

where P(a,x) is the incomplete gamma function, and

A=1+40, + 1602,  s=Te + 72 (7.19)
3kpTe . In rmaq

maxr — ; m = . 7.20

K hv J In A ( )

A is the average increase of energy in each scattering by a Maxwellian distribu-
tion of electrons of temperature O, 7es = 2n.orH the Thomson optical depth,
jm is the number of scatterings required for the maximal energy enhancement
Nmae and v is the incident frequency of the photon.

Since the spectrum of soft photons, ie. synchrotron photons, strongly peaks
at a frequency vy, it is s a first approximation sufficient to calculate n at v,
only. The peak frequency can be estimated from v2 = H xeynehc? | (2rkpTy)
(Esin et al., 1996), or directly taken from the numerical calculations. The pho-
tons which scatter more then j,, times do saturate and obey the Wien distribu-
tion ~ v3exp(—hv/kpT.) (see also Coppi and Blandford, 1990, for a detailed
treatment of multiple scattering).

Often this treatment is too simple, specially if accurate predictions of X-ray
flux at energies in excess of 10keV are necessary. In this case one must also
take into account, that photon do not only move vertically, but also radially.
Non-local scattering processes where the photons scatter at regions with dif-
ferent densities and temperatures will play a role. If such processes are to be
modeled accurately, it is necessary to solve the Kompaneets equation (see eg.
Hujeirat et al., 2002).

7.2 Spectral Properties

We calculated spectra for our models using the simple approach described in
the previous section. We have neglected the comptonization of soft photons in
all calculations. The reason will be discussed later.
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Figure 7.1: Spectrum of the standard disk for different accretion rates. The SSD
extends from R = 2 x 103 R, down to the marginal stable orbit. The different
lines correspond to the accretion rates i = (0.015,0.03,0.1,0.3, 1) and increase
from the bottom to the top line.
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Figure 7.2: Influence of the electron temperature on the spectrum of a transonic
ADAF at different accretion rates. For the left panel the electron temperature
is taken to saturate at T/"az = 5 x 10°K, while for the right panel 7% is
given by equation (7.8). The different lines correspond to the accretion rates
m = (0.015,0.03,0.1,0.3,1) and increase from the bottom to the top line.
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Figure 7.3: Spectra of ADAF-SSD transition models at different transition radii.
The transition is located at Ry, = 58Rg (dotted), Ry, = 73Ry (dot-dashed),
Rir = 83Rg (short-dashed), Ry = 93R, (long-dashed) and Ri = 108Rg (solid),
respectively. The left panel shows the spectra if the electron temperature is
taken to be the proton temperature, i.e T, = T. The right panel shows the
spectra if T, is limited by 7."**, as described in the text.
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Figure 7.4: Influence of the oscillation event on the spectrum of ADAF-SSD
transition models. The lines correspond to three points in time immediately
before the oscillation event(dotted), during the relaxation back into the unper-
turbed state (dashed) and at the hight of the oscillation, respectively. These
are the same points in time as in figure [6.6l The left panel shows the spectra
if the electron temperature is taken to be the proton temperature, i.e T, = T.

The right panel shows the spectra if T¢ is limited by 7}"**, as described in the
text.
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Figures 7.1 shows a comparison of the spectra of pure SSD models of differ-
ent accretion rates . The SSD is optically thick at all radii, therefore the
spectrum is a superposition of black-body emission of local temperature T'(R),
sometimes referred to as multicolor blackbody. The SSD extends to the outer
radius Ry = 2 x 102 Rg, where the temperature is lowest. The tempera-
ture takes its maximum T},,, near to the inner boundary. At the low-energy
end hv < kT(Rpy) the flux F, is proportional to v? — the Rayleigh-Jeans
law. While at high energy hv > kT4, the flux cuts off as v exp(—hv/kT) —
the Wien law. The characteristic signature of the multicolor blackbody is the
flat profile at intermediate frequencies. There the flux is proportional to v/3
(Frank et al., 1985). This intermediate section is more pronounced for higher
fractions Tynae/Tout- The local temperature T'(R) of a standard disk is an in-
creasing function of accretion rate rh. Therefore the flux increases with the
accretion rate also.

The spectrum of the ADAF consist of two components. At the low-energy end
the synchrotron peak is centered around v, ~ 10 Hz. The bremsstrahlung
emission extends as a power law to its upper cut-off at hv/kyT =~ 1. The peak
frequency of the synchrotron emission shifts to lower energies with decreasing
accretion rate. This is because v, oc B scales with v, o« m'/2, by virtue of the
assumption of equipartition.

The flux scales approximately as F, o« m?. It also is strongly affected by

the temperature of the electrons. If the electron temperature is taken to be
equal to the ion temperature, i.e. T, = T, then the flux is over-estimated by
at least 4 orders of magnitude. We argued that the electron temperature of
the order of 5 x 109K, but depends also on the accretion rate m. The peak
frequency of synchrotron emission is affected by the saturation temperature of
electrons. Figure (7.2 compares the the crude estimate 77" = 5 x 10K to the
approximation given in equation (7.8). In the latter case both amplitude and
peak frequency differ significantly from former case. The cut-off frequency of
the bremsstrahlung emission varies strongly also. The amplitude of the flux is
unaffected by electron temperature at intermediate frequencies only. But this
region will in general be also populated by comptonized synchrotron photons,
such that the total flux is again subject to the electron temperature. This is
the reason why we did not include comptonization in our model spectra yet.

Barring the problem of the estimation of the electron temperature, our sim-
ple recipe reproduces the spectral components of ADAF and SSD quite well.
Optically thick blackbody emission, bremsstrahlung emission and synchrotron
radiation can be clearly separated and their depandence on the flow parameters
is understood (see eg. Esin et al., 1997; Manmoto et al., 1997, for comparison).
But their relative weight can only calculated accurately from 2-temperature
models, where the electron temperature is allowed to differ from the ion tem-
perature. We note, that the electron temperature increases with decreasing
mass accretion rate, 1, such that at very low accretion rates, 1 ~ 1076, the
1-temperature description is appropriate (Esin et al., 1996).

The spectra calculated from our ADAF-SSD transition models consist of three

84



components, the multicolor blackbody of the cold SSD, the synchrotron peak
and the bremsstrahlung power law. Again we did not include comptoniza-
tion. Figure [7.3] shows the spectrum of model B at varies transition radii,
58Rg < Rty < 108R,. The multicolor blackbody component is merely affected,
the difference of temperature at the inner edge of the SSD is simply to small
(Tssp(R) o< R™3/%). Tt is further obfuscated by warm gas in the transition
region. The figure again compares the cases where the electron temperature
is equal to the ion temperature or saturates, respectively. The difference is
dramatic. While in the latter case the synchrotron emission from the ADAF
is barely visible as small peak at v ~ 10'3 Hz, it almost exceeds the cold disk
emission in the former case, such that a double peak structure emerges at
v ~ 1015 Hz. The same is true for the bremsstrahlung cut-off. Only at interme-
diate frequencies v ~ 10'® Hz is the spectrum unaffected.

The last figure [7.4 illustrates the situation during an oscillation event. Espe-
cially the synchrotron emission is highly variable. Dense gas of high-pressure
and thus magnetic field invades the ADAF from the transition region. In our
simple analysis the electron temperature rapidly reaches its saturation value,
while pressure and density are still high. This leads to a strong increase of the
synchrotron emission. Whether this is visible over the cold blackbody emission
depends crucially on the overall amplitude and the peak frequency, both given
by the electron temperature in the transition region. Interestingly our model
spectra pivote around v ~ 10'8 Hz or hv ~ 10keV such that the spectral slope
is inverted, independent of the assumptions on T,. We conclude by noting that
accurate estimates of the electron temperature are crucial for the calculation of
ADAF-SSD transition models.
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Chapter 8

Discussion

8.1 Availability of ADAF-SSD transitions

One of the necessary connection conditions for ADAF-SSD transitions is that
the total outward energy flux, W, of the ADAF is positive and larger than the
corresponding energy flux of the SSD at the transition radius, i.e. (Wapar >
Wssp). Otherwise, the ADAF cannot supply the SSD with enough energy
and both regions are not thermally connected. The standard ADAF model
(Narayan and Yi, 1994) does not meet this requirement. The standard model
was extended (Honma, 1996; Manmoto et al., 2000) to include outward convec-
tive energy transfer along the entropy gradient. This model could in princi-
ple remedy the situation, and indeed Manmoto and Kato (2000) found steady
global ADAF-SSD transition models. They found that the transition is not
allowed to happen at any radius, but limited to a certain range of allowed tran-
sition radii which depends on the model parameters (m, ap/a). They did not
study the dependence on the viscosity parameter a.

This work presents a generalization of Manmoto’s model for time-dependent
flows. In our models the transition radius is allowed to vary as a function of time
and thus the models evolve in the parameter space spawned by (Ry;, 1, ap/«).
We found that the region of allowed transition radii of time-dependent models
is consistent with steady models. One common result is that self-consistent
ADAF-SSD transition models cannot exist below a certain minimal oy/a. We
do find models which technically converge for apr = 0, but their total outward
energy flux Wapar does not exceed Wggp at any radius, nor is it even positive
at any radius. Also the flow switches from one grid node to the next from
ADAF-like to SSD-like, without any intermediate values. This is not observed
for any other model. The conclusion is that these models are not a physical
solution to the problem, however a mathematical.

Our parameter study also includes variations of the viscosity parameter . We
found that the range of allowed transition radii at & = 0.8 is at least as large as
for « = 0.4. This suggests that the allowed region broadens with increasing o.
This is consistent with Honma’s estimate of the outermost radius Roys ox o* i =2
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at which convective turbulence still transfers energy outward (Honma, 1996).
For intermediate values of o ~ 0.25 we do not find ADAF-SSD transition
models with m = 0.01, as expected. Interestingly, for even lower a = 0.1 we
do again find a transition model. This model (G) is in some regard peculiar.
It does not show continuous oscillations as observed in all other models, but
rather seems to repeatedly re-enter what we called the relaxation-phase, during
which the flow relaxes into a solution of the imposed system of equations. The
radial dependence of the outward energy flux W varies strongly with time, but
turbulence transfers enough energy outward to make it positive at all times. On
the other hand it is less than the respective energy flux of a SSD for most times.
Energy is accumulated at the outer parts of the ADAF until enough is stored
to supply the SSD with the necessary flux. If such a situation is physically
meaningful remains to be answered. The availability of ADAF-SSD transitions
at low viscosity parameter « is thus inconclusive and needs further study.

8.2 The evolution of the transition radius

Our models show that the location of the transition radius Ry, is a function
of time. Surprisingly, our models do not evolve smoothly through a series
of quasi-stationary states, and neither does the transition radius change slowly.
We observed two effects: (1) a slow radial drift of the transition radius, which is
always directed outward and (2) rapid perturbations, during which the location
of the transition moves rapidly inwards and in continuation relaxes slowly back
into its undisturbed configuration. We call this behavior oscillation event.

The latter are most likely not due to numerical instabilities. We showed that
the frequency of the oscillations, w, is in the range expected from analysis of
rotational instabilities in the transition region (Kato and Manmoto, 2000). We
find that w is near the local maximum of the epicyclic frequency kpqz- The
value of K4 depends on the relative strength of restoring and displacing forces,
i.e. pressure gradient and centrifugal force, in the transition region.

The purpose of (Kato and Manmoto, 2000) was to explain the quasi-periodic
oscillations (QPO), observed in a number of X-ray transients, by trapped low-
frequency oscillations in the transition region. They were particularly inter-
ested in the system GRS 19154105 which shows a QPO with varying fre-
quency 15Hz — 1Hz. Markwardt et al. (1998) suggest that the transition ra-
dius changes from 10R; to 2R, and causes the change of the QPO frequency.
Kato and Manmoto (2000) noted that this would yield w/Qx ~ 1072. The
frequency of the oscillation events in our models are much larger w/Qx ~ O(1)
and cannot account for the QPO is this system (unless our models behave
differently at such low transition radii).

There are two possibilities to solve this dilemma. (1) Our models also show,
apart from the oscillation events, variability on larger timescales with a similar
amplitude. We suspect, that this is due to higher modes of the oscillations in the
transition region, though this has not been investigated in detail. Such higher
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modes could very well produce a QPO of the right frequency. (2) the maximum
epicyclic frequency Kmq, 1S very sensitive to the gradients of angular momen-
tum or pressure, respectively. Our models have generally low resolution in the
transition region, such that the gradients are underestimated. This results in
a epicyclic frequency, which is to high. Another aspect of the same problem
is the procedure of vertical integration itself. It is thereby assumed that H/R
is constant and the vertical integration thus commutates with derivatives with
respect to R. In the transition region this assumption is obviously not satisfied
and corrections to the equations are necessary. But even so, the vertical struc-
ture of the transition region can in principle not be modeled accurately with
height-integrated equations. We feel that this and the modeling of convective
energy transport are the weakest points of our model. Both could be remedied
with 2-dimensional simulations.

The radial outward drift of the transition region is not well understood also.
Narayan and Yi (1995b, and others) showed that there is an upper limit R, to
the radial extent of an ADAF. At every radius R > R, the optical depth is
larger than unity and radiative transfer is efficient, such that the ADAF solution
is no longer available and the flow transits to a SSD. Inward of R, both types
of solutions are available in principle. Narayan and Yi (1995b) further argued
that the ADAF should extent as far as possible. That is, whenever there is an
ADAF solution available at a radius R, the flow will switch to the ADAF mode.
This hypothesis is known as the strong ADAF principle. Indeed our models do
support this principle. The transition radius Ry, (t) does always move outward
until it reaches the outermost allowed location.

But why should nature prefer an ADAF over a SSD? One possible answer is
related to the entropy of ADAF and SSD, respectively. For a given set of
parameters, the specific entropy of the ADAF is, at any reasonable radius R,
larger than the specific entropy of the SSD. If ADAF and SSD are connected
at some radius, the specific entropy s will decrease outward at the interface. In
our model we assumed that energy in transported along the negative entropy
gradient. So the interface will always be supplied with energy from the inside.
As long as this energy surplus cannot be completely shed by radiative processes,
the transition region will be heated nearly to its virial temperature and the
flow switches to the ADAF mode. The SSD is slowly evaporated radially at
the transition to the inner ADAF. This process does not stop until radiative
energy shedding in the transition region completely dominates energy supply by
convection — exactly the definition of the outermost allowed transition radius.

If this picture is correct and the specific entropy gradient is indeed the driving
force behind the radial drift of the transition region, then one would expect
that the rate at which the transition radius Ry, changes, is proportional to the
entropy gradient at Ry, i.e.

Os
8Rtr '

This is currently investigated and will be published in a future work (Gracia et al.,
2002).

Ry (t) o

(8.1)
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In this context it would also be interesting to investigate if the flow properties
down-stream of the transition could be related to properties up-stream of the
transition by means of conserved quantities, at least in the steady limit. One
of them is certainly the mass accretion rate . Another is possibly the total
energy including contributions of the radiation field or some conversed energy
flux. Such relations would in some sense correspond to generalized Rankine-
Hugoniot relations. One could start to look for such relations at the outermost
allowed location for the transition where the structure of energy budget and
force balance in the transition is less complicated.

8.3 Possible transition mechanisms

The physical mechanism which causes a transition from an outer SSD to an
inner ADAF, in the first place, is not subject of this work. This is a long
standing issue and has been much debated in recent times, though there is
upto now no conclusive theory. We will try to sketch some of the proposed
models.

One idea is the vertical evaporation of the SSD (Meyer and Meyer-Hofmeister,
1994). Thereby it is assumed, that the SSD is sandwiched between a hot,
friction-heated corona from above and from below. Vertical electron heat con-
duction could supply the cold disk with enough energy as to heat the plasma.
The disk would then thicken vertically, become more tenuous and eventually
the optical depth is so low, that the flow is radiative inefficient. The flow is then
advection dominated. The efficiency of vertical heat transfer is a function of
radius. Meyer et al. (2000) predict the maximum efficiency at some 100R,. A
transition farther in is inconsistent with their model. At high accretion rates,
the cold disk will survive until the last stable orbit. Rézarniska and Czerny
(2000) followed along similar tracks and investigated the conductive and radia-
tive coupling of the hot corona with the underlying cold disk and come to very
similar conclusions.

Shapiro et al. (1976) showed that the standard cool disk is thermally and vis-
cously unstable if the total pressure is dominated by radiation rather than gas.
They proposed a new hot solution (called after the authors SLE-disk), where
electrons and ions have different temperatures. This solution was calculated
under the assumption that radiative cooling and viscous heating still balance
locally, but cooling mainly affects the electrons, while heating the ions. This so-
lution later turned out to be thermally unstable by itself. Recently Gu and Lu
(2000) proposed that the thermally unstable thin disk would not switch to the
also unstable SLE solution, but rather to the stable ADAF solution. By using
a bridging formula, to describe radiative cooling in the optically thick and thin
case simultaneously, they were able to build global ADAF-SSD models.

Another proposal was again made by Narayan and Yi (1995b) based on the
vertical structure of the standard disk. They argued, that the upper layers of
a cold thin disk will always be tenuous and thus has poor radiative cooling
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efficiency. If viscosity dissipates any energy in this low-density optically thin
material, the gas has no way of radiating the energy and has to heat up. This is
exactly the thermal instability described by Shapiro et al. (1976), but applied
to the upper layers of the disk, rather than to the radial innermost region. The
gas will heat to the virial temperature and switch to the ADAF accretion mode
forming a differentially rotating corona onto the cold disk. Once the top layer
of the disk has been boiled of in this way, the process will start anew. In this
way the disk surface will be boiled off until the whole cold disk is turned into
a hot ADAF. This mechanism depends on the vertical structure, in particular
the viscous dissipation of the cold disk.

8.4 Concluding remarks

This work presents the first time-dependent self-consistent ADAF-SSD transi-
tion models using height-integrated equations. The physical mechanism, which
makes the transition from an inner ADAF to an outer SSD possible is outward
convective energy transport from the ADAF into the transition region.

Our results confirm the availability of ADAF-SSD transitions in the (7, ar /)
parameter space obtained from steady state models (Manmoto and Kato, 2000).
The availability of such solutions as a function of o has been studied, also. Our
results indicate that the region, where the solution is available, might be larger
for time-dependent models than for steady state models. We conclude that our
model is at present state is fit to further explore the available parameter space,

e.g. (v, M).

Our models show for the first time explicitly that ADAF-SSD transitions are dy-
namically unstable. An outward decreasing specific angular momentum causes
the flow to be subject to Rayleigh instabilities. Oscillating modes of frequency
close to Omegag are excited in the transition region. They leak radially in to
the ADAF, but do not propagate into the SSD. These oscillations give rise to
rapid periodic modulations of the flow properties in the ADAF, which could
possibly be identified with QPOs observed in X-Ray transient systems. At
present our models seem to over-estimate the oscillation frequency. This is due
to the limited numerical resolution, both radially and vertically. 2-dimensional
models could drastically improve this.

Our models do also show that, though the transition is possible at a wide
range of locations, the flow prefers the outermost possible radius. This confirms
the “strong ADAF principle” hypothesis of Narayan and Yi (1995b). Again
convective energy transfer is the clue to understanding. The SSD is radially
evaporated until the transition reaches its outermost allowed location.

Our calculations treat convective energy transport in a simplified way and in-
troduce a free parameter ap. 2-dimensional or 3-dimensional calculations could
make this parameter obsolete. This would also address uncertainties regarding
the causality of diffusive nature of convective energy transport. Furthermore
the vertical structure of the transition region would also become accessible.
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We present a recipe to calculate simple spectra from our hydrodynamical mod-
els. These turn out to be over-simplified. Our models do not distinguish be-
tween temperature of electrons and ions, such that the resulting spectra are
only qualitative estimates, but do not allow sophisticated quantitative analysis
or predictions of spectral properties of ADAF-SSD transition models. For this
a two temperature description is essential. Comptonization of soft photons is
believed to be crucial for the complete understanding of the high-energy spectra
of X-ray transients. This process can only be accurately taken into account if
the vertical structure of the flow is known.

We conclude by noting, that our models accurately describe the dynamical prop-
erties of ADAF-SSD transition models. The quantitative analysis of instabilities
of the transition region needs improved numerical resolution, i.e. 2-dimensional
models. While quantitative analysis of the spectra of ADAF-SSD transition
models need a 2-temperature description. Both extensions could in principle
be done without obvious obstacles and will be initiated as future work.
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Appendix A

Convection Dominated
Accretion Flow

So far we have included convection as an energy transport mechanism only.
But convective eddies could also transport angular momentum. Unfortunely
there is upto now no consensus on how it operates. Even the direction in which
angular momentum is transported — inward or outward — is under debate.

Ryu and Goodman (1992) showed that linear modes in a convectively unstable
thin accretion disk transfer angular momentum inwards if the entropy in an ac-
cretion disk is stratified vertically. Kley et al. (1993); Stone and Balbus (1996)
used numerical simulations to study the nonlinear version of the problem. They
found that angular momentum was transported either very weakly inward or
not at all. These are significant results, but their relevance to ADAFSs is a little
uncertain. As NY emphasized, the entropy gradient in a SSD model is in the
vertical direction, whereas the angular momentum gradient in the horizontal
direction. In ADAFSs, on the other hand, both the entropy gradient and the
angular momentum gradient are in the radial direction. This might conceivably
cause some differences in the physics.

Despite these theoretical studies, the basic question of how angular momen-
tum transport actually operates in a convective ADAF remains open (see also
Klahr et all, 1999; Arlt and Riidiger, 2001; Riidiger et al., 2002, for recent stud-
ies on the subject). Specifically, it is unclear how important azimuthal pressure
perturbations are in these systems, and whether angular momentum is trans-
ported inward or outward. Only future three-dimensional numerical simulation
will answer this question. One empirical fact is worth noting; the convection
zone in the Sun is closer to being in a state of constant angular velocity than a
state of constant angular momentum.

Narayan et al. (2000) (hereafter NIA) studied convection angular momentum
transport in ADAFs. Their first improvement was to employ mixing-length
theory to determine the parameter ap = ar(a, cg). Under certain assumptions
ar is no longer a free parameter, but a function of o and the temperature
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T which enters through the normalization ¢. The second and most impor-
tant improvement was to allow inward angular momentum transport. They
found a totally new branch of accretion solutions, which they called convective-
dominated accretion flow (CDAF). Their self-similar analytical solution will be
briefly discussed here.

Following NIA we seek a self-similar solution which satisfies the following scal-
ings for angular velocity €2 and isothermal sound speed c:

Q=0Qx x R73/2, ¢ =civg x B! (A.1)

s pu—
exactly as in the NY/solution. Furthermore we allow p and vg to scale as:
P = po, R_av VR = Yo Ra_2 = Vo Ra_3/2 VK, (AZ)

where a is free parameter. The original self-similar solution is obtained if a =
3/2. However under appropiate conditions a very different solution is possible,
which has a = 1/2.

In the radial momentum equation, we assume for simplicity that U%—i < v%(,
which corresponds to the condition that the Shakura-Sunyaev viscosity coeffi-
cient is small o < 1. This allows us to ignore the ram-pressure term vrO0vg/OR
in the radial momentum equation which then simplifies to a simple bal-
lance between gravity, centrifugal forces and thermal pressure gradient. This
gives

1d
O2R—-Q’R=———pc? A3
K depCs7 ( )
which leads to the condition
Q2 =1—(a+1)c. (A.4)

We make further use of the convective energy flux F},;, as defined in equations
(3.23)-(3.24) and quote NIA in stating

P T Ny
T—aTQ = 4( eﬁ) ’ ()

where L3, is the characteristic length scale of convection and Nep the effective
Brunt-Viiséla frequency for a differentially rotating medium (for details see
Narayan et al., 2000, and references therein). NIA find that

(1+a)[(y+1) - (=14
gl

N2 = {— s+ 1} Q0% (A.6)

From this last equation it is obvious, that ar is no longer a free parameter, but
a function of ¢3 — still to be determined — and implicitly a.
As previously discussed, transfer of angular momentum by convection is a com-

plex subject. We consider two extreme possibilities. In one limit we assume,
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that convection behaves like normal viscosity, meaning that we write the flux
of angular momentum as

jT = aT_s RS—. (A?)
K

This corresponds to the assumption that the convective angular momentum
transport is oriented down the angular velocity gradient, i.e. that convection
tries to drive a system towards a state of uniform rotation. For € oc Qp, it
corresponds to outward transport of angular momentum. Equation (A.7) also
assumes that the diffusion constant for angular momentum transport is equal to
that for energy transport, hence the use of the same constant ar. In this case
the only valid self-similar solution is the one found by INY]. Only the relations
between the constants ¢, o and vg are slightly modified over (3.28) - (3.30)
due to the inclusion of (3.25).

An alternative possibility is that the convective angular momentum flux scales
as

. 2 _d(QR?)
= 5 ) A.
Jr = ar Ox pR IR (A.8)

This means that the convective angular momentum flux is oriented down the
specific angular momentum gradient, i.e. that convection tries to drive a sys-
tem toward a state of uniform specific angular momentum. For Q o« Qp, it
corresponds to inward transport of angular momentum. Since advection moves
angular momentum inward, and since we have assumed that convection also
moves angular momentun inward, the only way to have a consistent self-similar
accretion solution is for a viscosity to move an equivalent amount of angular
momentum outward. If the parameter « is very small (a < af), the viscous
flux is unable to cope with the inward flux due to convection, and there is no
consistent accretion solution. INIA showed that the critical value is

c c l?n 5 — 37 12

a—aT—%( 5 ) , (A.9)
where o is the value of the convective ar when a = a“. However, when
a is small, a completely different solution with a = 1/2, p R~ Y2 is pos-
sible. This is a non-accreting solution with vg = 0 (at least in the limit of
perfect self-similarity), which is generally referred to as “convective envelope”
or “convection-dominated accretion flow” (hereafter CDAF). Figure illus-
trates the dependancy of ar on « and the availability of the various solution
regimes.

Since vg = 0 in this solution, the advected angular momentum flux Jade vaD-
ishes. Therefore we must have Jysc + Jr = 0. This leads to the following
condition on c3:

o=

1/2
laT: I [3(74'3)0(2)_1} / ‘
3 27V2¢E | 4y

If o and thus ar are very small, we have a flow which is marginally stable to
convection, with c2 = 4v/3(y + 3). This last equation allows us to solve for a,

(A.10)
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as a function of o and ~y. Interestingly, there is a consistent solution only if « is
less than a critical value a®?. This critical value is obtained by setting 3 equal
to the largest value allowed c3 = 2/3 (as follows from equation (A.4)). This

gives

1 B (3—~7\Y?

a? = gog? = % <—7> . (A.11)
v

Note that the CDAF is technically no accretion flow at all, but rather a static
configuration. In practice however the central black hole will accrete a small
amount of mass from the inner parts of the convective envelope, which will
have to be replenished from the outer parts and thus will drive a small amount
of accretion. In contrast to the prior discussed real accretion flows, where
the mass accretion rate is determined by the conditions on the outside, in the
convective envelope the accretion rate is determined entirely by the conditions
on the inner boundary and therefore also sensitive to the position of the inner
boundary. Similar to the extended convective ADAF presented in section 3.3
the convective envelope has a significant outward flux of energy carried by
convection. The energy flux is constant and originates near the center, where a
fraction of binding energy of the residual accreted matter is diverted outward
and transported to large radii.
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Figure A.1: Variation of the convective coefficient o as a function of the vis-
cosity coeflicient « for three values of the adiabatic index . The lines on the
right refer to a solution of the self-similar form derived by INY], in which the
density scales as p R~3/2. This solution is only available for a greater than
a critical value a, which depends on 7. The line on the left correspond to the
envelope solution discussed in the text, in which p oc R~/2. This solution is
only available for « less than a critical value a?, which again depends on 7.
The solid lines correspond to the height-integrated version of the theory as used
in the main text of NIA (this work also), while the dashed lines correspond to
a more detailed analysis described in the appendix of NIA. Figures adopted
from Narayan et al. (2000).
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