Appendix E:
Faktoranalyse – Koordinationsstrukturen

Ergebnisse der Faktoranalyse mit SPSS 9.0:

Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Analysis N</th>
</tr>
</thead>
<tbody>
<tr>
<td>REL1REV</td>
<td>3.3171</td>
<td>1.1710</td>
<td>164</td>
</tr>
<tr>
<td>REL2</td>
<td>3.5460</td>
<td>1.0579</td>
<td>164</td>
</tr>
<tr>
<td>REL3</td>
<td>3.0976</td>
<td>1.1470</td>
<td>164</td>
</tr>
<tr>
<td>REL4</td>
<td>3.3680</td>
<td>1.0680</td>
<td>164</td>
</tr>
<tr>
<td>REL5</td>
<td>2.6646</td>
<td>1.1996</td>
<td>164</td>
</tr>
<tr>
<td>REL6</td>
<td>2.9024</td>
<td>1.1682</td>
<td>164</td>
</tr>
<tr>
<td>REL7</td>
<td>2.9756</td>
<td>1.1509</td>
<td>164</td>
</tr>
<tr>
<td>REL8</td>
<td>3.2744</td>
<td>1.1040</td>
<td>164</td>
</tr>
<tr>
<td>REL9</td>
<td>3.9512</td>
<td>.8566</td>
<td>164</td>
</tr>
<tr>
<td>REL10</td>
<td>3.9024</td>
<td>.9797</td>
<td>164</td>
</tr>
</tbody>
</table>

Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>REL1r</th>
<th>REL2</th>
<th>REL3</th>
<th>REL4</th>
<th>REL5</th>
<th>REL6</th>
<th>REL7</th>
<th>REL8</th>
<th>REL9</th>
<th>REL10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation</td>
<td>REL1r</td>
<td>1.000</td>
<td>.098</td>
<td>-.041</td>
<td>.071</td>
<td>.054</td>
<td>-.053</td>
<td>.015</td>
<td>.046</td>
<td>.144</td>
</tr>
<tr>
<td>REL2</td>
<td>.098</td>
<td>1.000</td>
<td>.451</td>
<td>.204</td>
<td>.114</td>
<td>.247</td>
<td>.032</td>
<td>.050</td>
<td>.385</td>
<td>.324</td>
</tr>
<tr>
<td>REL3</td>
<td>-.041</td>
<td>.451</td>
<td>1.000</td>
<td>.223</td>
<td>.158</td>
<td>.282</td>
<td>.243</td>
<td>.148</td>
<td>.248</td>
<td>.101</td>
</tr>
<tr>
<td>REL4</td>
<td>.071</td>
<td>.204</td>
<td>.223</td>
<td>1.000</td>
<td>.577</td>
<td>.375</td>
<td>.383</td>
<td>.262</td>
<td>.196</td>
<td>.054</td>
</tr>
<tr>
<td>REL5</td>
<td>.054</td>
<td>.114</td>
<td>.158</td>
<td>.577</td>
<td>1.000</td>
<td>.401</td>
<td>.492</td>
<td>.278</td>
<td>.050</td>
<td>-.002</td>
</tr>
<tr>
<td>REL6</td>
<td>-.053</td>
<td>.247</td>
<td>.282</td>
<td>.375</td>
<td>.401</td>
<td>1.000</td>
<td>.400</td>
<td>.378</td>
<td>.044</td>
<td>-.116</td>
</tr>
<tr>
<td>REL7</td>
<td>.015</td>
<td>.032</td>
<td>.243</td>
<td>.383</td>
<td>.492</td>
<td>.400</td>
<td>1.000</td>
<td>.507</td>
<td>.098</td>
<td>-.111</td>
</tr>
<tr>
<td>REL8</td>
<td>.046</td>
<td>.050</td>
<td>.148</td>
<td>.262</td>
<td>.278</td>
<td>.378</td>
<td>.507</td>
<td>1.000</td>
<td>.021</td>
<td>-.128</td>
</tr>
<tr>
<td>REL9</td>
<td>.144</td>
<td>.385</td>
<td>.248</td>
<td>.196</td>
<td>.050</td>
<td>.044</td>
<td>.098</td>
<td>.021</td>
<td>1.000</td>
<td>.608</td>
</tr>
<tr>
<td>REL10</td>
<td>.284</td>
<td>.324</td>
<td>.101</td>
<td>.054</td>
<td>-.002</td>
<td>-.116</td>
<td>-.111</td>
<td>-.128</td>
<td>.608</td>
<td>1.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>REL1r</th>
<th>REL2</th>
<th>REL3</th>
<th>REL4</th>
<th>REL5</th>
<th>REL6</th>
<th>REL7</th>
<th>REL8</th>
<th>REL9</th>
<th>REL10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sig. (1-tailed)</td>
<td>REL1r</td>
<td>.107</td>
<td>.299</td>
<td>.182</td>
<td>.245</td>
<td>.248</td>
<td>.425</td>
<td>.279</td>
<td>.033</td>
<td>.000</td>
</tr>
<tr>
<td>REL2</td>
<td>.107</td>
<td>.000</td>
<td>.004</td>
<td>.073</td>
<td>.001</td>
<td>.344</td>
<td>.263</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>REL3</td>
<td>.299</td>
<td>.000</td>
<td>.002</td>
<td>.022</td>
<td>.000</td>
<td>.001</td>
<td>.029</td>
<td>.001</td>
<td>.006</td>
<td>.006</td>
</tr>
<tr>
<td>REL4</td>
<td>.182</td>
<td>.004</td>
<td>.002</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.245</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>REL5</td>
<td>.245</td>
<td>.073</td>
<td>.022</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.264</td>
<td>.490</td>
</tr>
<tr>
<td>REL6</td>
<td>.248</td>
<td>.001</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.287</td>
<td>.070</td>
</tr>
<tr>
<td>REL7</td>
<td>.425</td>
<td>.344</td>
<td>.001</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.105</td>
<td>.079</td>
</tr>
<tr>
<td>REL8</td>
<td>.279</td>
<td>.263</td>
<td>.029</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.396</td>
<td>.021</td>
</tr>
<tr>
<td>REL9</td>
<td>.033</td>
<td>.000</td>
<td>.001</td>
<td>.006</td>
<td>.264</td>
<td>.287</td>
<td>.105</td>
<td>.396</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>REL10</td>
<td>.000</td>
<td>.000</td>
<td>.098</td>
<td>.245</td>
<td>.490</td>
<td>.070</td>
<td>.079</td>
<td>.510</td>
<td>.000</td>
<td>.000</td>
</tr>
</tbody>
</table>
Covariance Matrix

- Determinant = .377

KMO and Bartlett's Test

<table>
<thead>
<tr>
<th>Kaiser-Meyer-Olkin Measure of Sampling Adequacy.</th>
<th>.702</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bartlett's Test of Sphericity</td>
<td></td>
</tr>
<tr>
<td>Approx. Chi-Square</td>
<td>415.120</td>
</tr>
<tr>
<td>df</td>
<td>45</td>
</tr>
<tr>
<td>Sig.</td>
<td>.000</td>
</tr>
</tbody>
</table>

- Based on correlations

Communalities

<table>
<thead>
<tr>
<th></th>
<th>Raw</th>
<th>Rescaled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial</td>
<td>Extraction</td>
</tr>
<tr>
<td>REL1REV</td>
<td>1.371</td>
<td>1.033</td>
</tr>
<tr>
<td>REL2</td>
<td>1.119</td>
<td>.759</td>
</tr>
<tr>
<td>REL3</td>
<td>1.316</td>
<td>.898</td>
</tr>
<tr>
<td>REL4</td>
<td>1.141</td>
<td>.596</td>
</tr>
<tr>
<td>REL5</td>
<td>1.439</td>
<td>.916</td>
</tr>
<tr>
<td>REL6</td>
<td>1.365</td>
<td>.771</td>
</tr>
<tr>
<td>REL7</td>
<td>1.325</td>
<td>.836</td>
</tr>
<tr>
<td>REL8</td>
<td>1.219</td>
<td>.536</td>
</tr>
<tr>
<td>REL9</td>
<td>.734</td>
<td>.368</td>
</tr>
<tr>
<td>REL10</td>
<td>.960</td>
<td>.609</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Component Analysis.
Total Variance Explained

<table>
<thead>
<tr>
<th>Component</th>
<th>Initial Eigenvalues<sup>a</sup></th>
<th>Extraction Sums of Squared Loadings</th>
<th>Rotation Sums of Squared Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total % of Variance Cumulative</td>
<td>Total % of Variance Cumulative</td>
<td>Total % of Variance Cumulative</td>
</tr>
<tr>
<td>1</td>
<td>2.081 17.357 48.460</td>
<td>2.081 17.357 48.460</td>
<td>2.139 17.841 46.825</td>
</tr>
<tr>
<td>3</td>
<td>1.106 9.227 70.304</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.885 7.383 77.687</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>.794 6.625 84.312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>.602 5.023 89.335</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>.534 4.455 93.790</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>.473 3.942 97.732</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>.272 2.268 100.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.081 17.357 48.460</td>
<td>1.998 19.979 48.950</td>
<td>1.939 19.392 46.027</td>
</tr>
<tr>
<td>2</td>
<td>1.512 12.617 61.077</td>
<td>1.150 11.497 60.446</td>
<td>1.442 14.419 60.446</td>
</tr>
<tr>
<td>3</td>
<td>1.106 9.227 70.304</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.885 7.383 77.687</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>.794 6.625 84.312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>.602 5.023 89.335</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>.534 4.455 93.790</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>.473 3.942 97.732</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>.272 2.268 100.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Extraction Method: Principal Component Analysis.

^a When analyzing a covariance matrix, the initial eigenvalues are the same across the raw and rescaled solution.

Scree Plot

![Scree Plot](image-url)
Component Matrix

<table>
<thead>
<tr>
<th></th>
<th>Component 1</th>
<th>Component 2</th>
<th>Component 3</th>
<th>Component 1</th>
<th>Component 2</th>
<th>Component 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>REL5</td>
<td>.891</td>
<td></td>
<td></td>
<td>.742</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REL7</td>
<td>.851</td>
<td></td>
<td></td>
<td>.739</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REL6</td>
<td>.831</td>
<td></td>
<td></td>
<td>.711</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REL4</td>
<td>.750</td>
<td></td>
<td></td>
<td>.703</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REL8</td>
<td>.657</td>
<td></td>
<td></td>
<td>.595</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REL10</td>
<td></td>
<td>.756</td>
<td></td>
<td></td>
<td>.771</td>
<td></td>
</tr>
<tr>
<td>REL9</td>
<td></td>
<td>.571</td>
<td></td>
<td></td>
<td></td>
<td>.667</td>
</tr>
<tr>
<td>REL2</td>
<td>.393</td>
<td>.695</td>
<td>-.349</td>
<td>.371</td>
<td>.657</td>
<td>-.330</td>
</tr>
<tr>
<td>REL1REV</td>
<td></td>
<td>.517</td>
<td>.872</td>
<td>.441</td>
<td>.744</td>
<td></td>
</tr>
<tr>
<td>REL3</td>
<td>.569</td>
<td>.445</td>
<td>-.613</td>
<td>.496</td>
<td>.388</td>
<td>-.535</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Component Analysis.

a. 3 components extracted.

Rotated Component Matrix

<table>
<thead>
<tr>
<th></th>
<th>Component 1</th>
<th>Component 2</th>
<th>Component 3</th>
<th>Component 1</th>
<th>Component 2</th>
<th>Component 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>REL7</td>
<td>.912</td>
<td></td>
<td></td>
<td>.793</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REL5</td>
<td>.944</td>
<td></td>
<td></td>
<td>.787</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REL4</td>
<td>.722</td>
<td></td>
<td></td>
<td>.676</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REL8</td>
<td>.727</td>
<td></td>
<td></td>
<td>.658</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REL6</td>
<td>.768</td>
<td></td>
<td></td>
<td>.657</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REL2</td>
<td>.858</td>
<td></td>
<td></td>
<td>.811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REL3</td>
<td>.881</td>
<td></td>
<td></td>
<td>.768</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REL9</td>
<td>.500</td>
<td>.343</td>
<td></td>
<td>.584</td>
<td>.400</td>
<td></td>
</tr>
<tr>
<td>REL1REV</td>
<td></td>
<td>1.009</td>
<td></td>
<td>.862</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REL10</td>
<td></td>
<td>.469</td>
<td>.601</td>
<td>.479</td>
<td>.613</td>
<td></td>
</tr>
</tbody>
</table>

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 5 iterations.

Component Transformation Matrix

<table>
<thead>
<tr>
<th>Component</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.928</td>
<td>.372</td>
<td>.002</td>
</tr>
<tr>
<td>2</td>
<td>-.302</td>
<td>.751</td>
<td>.587</td>
</tr>
<tr>
<td>3</td>
<td>.217</td>
<td>-.546</td>
<td>.809</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.