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Zusammenfassung

Bildsegmentierung und Rauschunterdriickung sind die Schliisselkomponenten moderner
Bilderkennungssysteme. Das Potts Model spielt dabei eine bedeutende Rolle fiir die En-
trauschung von stiickweise definierten Funktionen, und Markov Random Field (MRF)
Modelle die Potts-Terme benutzen sind sehr beliebt bei der Bildsegmentierungen. Wir
prasentieren gemischt ganzzahlige Programme (MILP) fiir beide Modelle und werden
diese mit Hilfe moderne Loser wie CPLEX effizient 16sen.

Zuerst untersuchen das diskrete das diskrete Potts-Modell erster Ableitung (stiick-
weise konstant) mit einem ¢; Data-Anteil. Wir priasentieren eine neue MILP Formulieru-
ng durch Einfithrung bindrer Kantenvariablen, um die Potts Funktion zu modellieren.
AnschlieBend untersuchen wir die Facetten definierenden Ungleichungen fiir das zuge-
horige ganzzahlige Polytop Wir wenden dieses Modell an um Superpixel auf verrauscht-
en Bildern zu erzeugen.

Zweitens prasentieren wir eine MILP-Formulation fiir das diskrete, stiickweise affine
Potts-Modell. Um konsistente Partitionen zu erhalten, ist das Hinzufiigen vom Multicut-
Constraint notwendig. Diese werden iterativ mit Hilfe der Schnittebenenmethode hinzu-
gefiigt. Wir wenden diese Modell fiir die die gleichzeitige Segmentierung und En-
trauschung von Bildern an.

MILP-Formulierungen von MRF-Modellen mit globalen Konnektivitdtsbeschrianku-
ngen wurden zuvor untersucht, aber nur vereinfachte Versionen des Problems wurden
gelost. Wir 16sen dieses Problem mit einer Branch-and-Cut-Methode und prisentieren
einen Benutzer-interaktive Weg zur Segmentierung.

Unsere vorgeschlagenen MILP’s sind im Allgemeinen N P-hard, aber man kann mit
ihnen globale optimale Losungen finden. Wir haben auch drei schnelle heuristische Al-
gorithmen entwickelt die gute Losungen in sehr kurzer Zeit liefern. Die MILPs kénnen
als Post-Verarbeitungsverfahren zusitzlich zu allen Algorithmen benutzt werden, denn
sie stellen eine Garantie fiir die Qualitdt der Losung da, und such auch nach besseren
Losungen innerhalb des Branch-and-Cut-Rahmens der Losers.

Wir zeigen die Stirke und Niitzlichkeit unserer Methoden bei Vergleichsrechnungen
mit anderen State-of-the-art-Methoden auf synthetischen Bildern, Standard - Bilddaten-
sdtzen und auf medizinische Bilder mit trainierten Wahrscheinlichkeitskarten.



Abstract

Image segmentation and denoising are two key components of modern computer vision
systems. The Potts model plays an important role for denoising of piecewise defined
functions, and Markov Random Field (MRF) using Potts terms are popular in image
segmentation. We propose Mixed Integer Linear Programming (MILP) formulations
for both models, and utilize standard MILP solvers to efficiently solve them.

Firstly, we investigate the discrete first derivative (piecewise constant) Potts model
with the ¢; norm data term. We propose a novel MILP formulation by introducing binary
edge variables to model the Potts prior. We look into the facet-defining inequalities for
the associated integer polytope. We apply the model for generating superpixels on noisy
images.

Secondly, we propose a MILP formulation for the discrete piecewise affine Potts
model. To obtain consistent partitions, the inclusion of multicut constraints is necessary,
which is added iteratively using the cutting plane method. We apply the model for
simultaneously segmenting and denoising depth images.

Thirdly, MILP formulations of MRF models with global connectivity constraints
were investigated previously, but only simplified versions of the problem were solved.
We investigate this problem via a branch-and-cut method and propose a user-interactive
way for segmentation.

Our proposed MILPs are in general A/P-hard, but they can be used to generate
globally optimal solutions and ground-truth results. We also propose three fast heuristic
algorithms that provide good solutions in very short time. The MILPs can be applied
as a post-processing method on top of any algorithms, not only providing a guarantee
on the quality, but also seek for better solutions within the branch-and-cut framework of
the solver.

We demonstrate the power and usefulness of our methods by extensive experiments
against other state-of-the-art methods on synthetic images, standard image datasets, as
well as medical images with trained probability maps.
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Chapter 1

Introduction

1.1 Motivation and Overview

In computer vision, image segmentation is a fundamental task that partitions a digital
image into multiple segments (set of pixels). The goal is to change the representation of
an image from pixels into segments that are semantically more meaningful and easier
to analyze. See Figure [I.T]for an example. More precisely, image segmentation is the
problem of assigning labels (e.g., foreground and background labels) to all pixels in
an image such that pixels with the same label share certain properties. It is typically
applied to locate objects and boundaries within an image.

Figure 1.1 — Illustration of an image segmentation: left is the input image, right is a
segmentation into meaningful segments.

Image noise is random variation of brightness or color in an image. The presence
of noise in images is unavoidable, making it difficult to perform any required image
processing tasks. Given a noisy image, image denoising is the operation of estimating
the clean, original image. As can be seen in Figure[I.2] the right image becomes smooth,
but on the downside, the sharp boundaries have also been smeared. Hence, the goal of
any denoising algorithm is to remove the noise while still keeping the image sharp.
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Figure 1.2 — Illustration of an image denoising: left is the input noisy image, right is the
denoised image.

Usually, one first applies denoising method as a pre-processing step before segmen-
tation. But as discussed above, the denoising algorithm may over-smoothen the sharp
boundaries and hence harm the segmentation results.

In this thesis, we first combine these two problems into one framework, and propose
a novel formulation for simultaneously denoising and segmenting a given noisy image.
It is based on the well-known Potts model [1]], and can be either a piecewise constant or
affine model.

Secondly, we allow users to interact with the image, either to manually label some
pixels, or to exclude the known outliers. We propose an interactive image segmentation
approach, where the user is required to draw k scribbles, and the output is exactly &
connected segments. See Figure [I.3]as an example, where the input is the probability
map trained with convolutional neural networks (CNN) of a magnetic resonance image
(MRI), which depicts the abdominal aorta. The formulation is based on the Markov
Random Field (MRF) model [2] and we introduce a global prior which enforces the
connectivity of each label.

All the models in this thesis are formulated as Mixed Integer Linear Programs
(MILPs). It is in general NP-hard to solve a MILP, thus fast heuristic algorithms are
usually beneficial in that they provide initial solutions to the MILP solver, as well as to
the original problem. Sophisticated methods from combinatorial optimization such as
branch-and-cut are implemented by default in any modern MILP solver, to get globally
optimal solutions. The main advantage of our model over heuristics is that they pro-
vide globally optimal solutions if no runtime restrictions are specified, hence provides
ground-truth results that could be used as quality assessment for any algorithms.
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Figure 1.3 — Illustration of an interactive image segmentation: left is the input probabil-
ity map with 2 user scribbles, right is the desired segmentation.

1.2 Contributions

The main contributions of this thesis are the following:

* We propose novel MILP formulations for both piecewise constant and affine Potts
models.

* We explore facet-defining inequalities for the associated integer polytope of the
piecewise constant Potts model.

* We conduct extensive benchmark comparison using several state-of-the-art super-
pixel algorithms applied on noisy images.

* We explore additional constraints that enforce valid segmentation in the MILP
formulation of piecewise affine Potts model.

» We revisit the Integer Linear Programming (ILP) formulation for multi-label MRF
with connectivity priors and solve it to optimality.

1.3 Organization

This thesis is organized as follows: We start in Chapter [2| by giving basic definitions,
starting from graph and polyhedral theory to mathematical programming, linear regres-
sion, and finally to superpixels.

In Chapter [3| we first introduce the MILP formulation of the discrete piecewise
constant (first derivative) Potts model and the multicut problem [3]. We prove that the
multicut constraints are redundant for the the optimal solutions of the Potts model, but
they are facet-defining for a special integer polytope. We also introduce a /; norm fast
heuristic based on the region fusion algorithm [4]. Due to the NP-hardness of the
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corresponding optimization problem, we decompose the original image into rectangu-
lar blocks (patches) and apply our model within each patch for generating superpixels
on noisy images of the BSDS500 dataset [S]] against other state-of-the-art superpixel
algorithms.

Chapter [ is devoted to the more general case where the input image is assumed to
possess piecewise affine features. We propose a MILP formulation for the piecewise
affine Potts model, and prove that the multicut constraints are needed to enforce a valid
segmentation. We adapt the heuristic in [4] for the piecewise affine case which provides
an initial solution to the MILP solver. Synthetic images as well as real depth images are
tested to confirm the usefulness of our model.

In Chapter[5] we focus on the MRF model. We first revisit the ILP formulation of the
pairwise MRF and introduce the concept of connected subgraphs. We then formulate
the MRF with global connectivity as a MILP. For solution techniques, we again adapt
the region fusion algorithm [4] to generate initial feasible solutions. We also discussion
the strategy for selecting the cutting planes in the separation problem. Extensive com-
putational experiments on standard image datasets as well as medical images are carried
out using different variants of our proposed model.

Finally, we conclude this thesis and point out some future research directions in
Chapter [6]



Chapter 2

Preliminaries and Terminologies

This chapter presents basic concepts needed throughout the thesis. Many of them are
standard and can be found in the textbooks of the corresponding field, such as [6, [7].
We include them here to make the thesis more self-contained.

2.1 General Notation

A set is a collection of distinct elements (also known as members). It is usually denoted
by a capital letter, while vectors and scalars use small letters. A set B is called a subset
of A (denoted B C A) if every member of B is also a member of A. If B is a subset of
A but not equal to B, then B is a proper subset of A (denoted B C A). The power set
of A, denoted by P(A), is the set of all subsets in A. The cardinality of a set A, denoted
by | A|, is the number of elements of A. The union of A and B, denoted by AU B, is the
set of all members of either A or B. The intersection of A and B, denoted by A N B, is
the set of all members of both A and B. The Minkowski sum of two sets A and B is the
set of all elements x + y with x € A and y € B. A partition of a set A is a collection
of nonempty sets {4y, As, ..., A}, such that Ur_| A, = A, and A; N A; = 0, for any
ER

We denote the set of real numbers R, the set of nonnegative real numbers R*, the
set of natural numbers N. We also denote [n] the set of integer numbers {1,2,...,n}.

A vector a € R™! is usually a column vector. The transpose of the column vector a,
denoted by a” € R'™, is then a row vector. The inner product of two vectors a =
(a1,a2,...,a,)" and b = (by,ba,...,b,)" is denoted by a'b, and it equals > | a;b;.
The p-norm, also know as the ¢, norm of a vector a € R", is denoted as ||a||, =

(Z?:1|:vi|p)l/p. In particular, the ¢; norm ||al|; := Y., |z;|, and the ¢ norm ||al|; :=
V2 iq =7 In contrast, the £, norm of a vector a is the number of nonzero entries. We
denote a vector of all zeros of appropriate dimensions as 0.

A matrix D = (d;;) € R™*™ is a rectangular array of numbers or any mathematical
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elements where operations like addition and multiplication are defined. The transpose
of the m x n matrix D is denoted D" = (d;) € R™™ where d;; = d;.
For a logical expression ¥, an indicator function 1(99) is 1 if 9 is true and 0 otherwise.

2.2 Graph Theory

All the models in this thesis are defined on undirected graphs. We hence introduce
concepts from graph theory that we will need later. The definitions are mostly taken
from the fundamental part of [8]], which is a good reference for further reading.

2.2.1 Undirected graphs

An undirected graph G = (V, E) (or simply G(V, E)) is a tuple of two basic finite
sets V' and E such that £ C (‘2/) The elements v € V are called vertices (or nodes) and
e € F called edges of the graph G. We denote the set of all nodes by V() and the set
of all edges of a graph G by E(G), respectively. We will denote an edge e = {u,v} € E
simply by uv, so in an undirected graph, e = uv = vu. We call the nodes u and v the
endnodes of e = uv. Two nodes u and v are adjacent if uv € E, and a node w is indident
to an edge e, and vice versa, if v is an endnode of e. The neighborhood of a node u
is the set nb(u) := {v € V | wv € E7}, and the degree of node u is the cardinality of
nb(u). From now on, all the graphs discussed in this thesis are undirected graphs.

A graph G'(V', E') is called a subgraph of G(V, E) if V! C V and £ C E. We
also say G’ is contained in G in this case.

2.2.2 Paths, cycles, and connectivity

In a graph G, a path between two nodes u; and uy (which we call a (uq, uy)-path) is a
subgraph P(Vp, Ep) of G where Vp = {u; € V | i € [k|} and Ep = {wu;41 € E | i €
[k — 1]}. The length of a path P is just |Ep|.

A cycle is a subgraph C(Vi, E¢) of G where Vo = {u; € V | i € [k]} and
Ec = {uwuiyy € E | i € [k — 1]} U {uguy}. The length of a cycle C'is just |E¢|. If
there is a cycle C' in G, then an edge e = uv € E(G) is called a chord of C in G if
u,v € Vg and e ¢ Eq. We call acycle C' C G chordless if there is no chord of C' in G.

Two nodes u, v in a graph G are connected if there is a (u, v)-path in G. G is called
connected if for any pair of nodes in G, there exists a path between them, otherwise it is
disconnected. A connected component of a graph G is a connected subgraph of GG, and
1s maximal with respect to edge inclusion.



2.2.3 Cuts and multicuts

For a graph G(V, E), the cut of G induced by a subset of nodes D C V is denoted
(D) :={uv € E | u € D,v € V\ D}. This definition is extended to disjoint sets
D; Cc V,fori € [n] and n > 2, such that 6(D1, Ds, ..., D,) :={uv € E |u € D;,v €
D;,i # j, i,j € [n]}. We call the set §(Ds, Do, ..., D,) a multicut of G induced
by Dy, Dy, ..., Dy, if Dy, Do, ..., D, is a partition of V. The sets Dy, D>, ..., Dy are
called the shores of the multicut.

2.2.4 Selected classes of graphs

A grid graph of size m x n is a graph G(V, E) such that V' = {(i,7) | € [m],j € [n]}
and £ = {((z,)), (i +1,5)) | i € [m — 1], € [n]} U{((F,4), (.5 + 1)) [ i € [m],j
[n—1]}.

A weighted graph is a tuple G(V, E, w) where G(V, E) is a graph and there exists
an associated weight function w : E — R (or w : V' — R) that assigns a weight w(e)
for each edge of £ (or w(v) for each node of V).

2.3 Polyhedral Theory

The optimization models we formulate within this thesis will be mixed integer linear
programs. However, the algorithms for solving such problems cannot be understood
without some basic knowledge of polyhedral theory. We assume the readers are famil-
iar with the standard linear theory such as the real vector space R, subspaces, linear
independence, scalar product, dimension and so on. The following notations and defi-
nitions are mainly based on [7]].

2.3.1 Convex and affine subspaces

A linear subspace of R is a nonempty set D C R™ such that for all x1, 29 € D and
ay,as € R, a1z1 + asxy is in D. Thus, a linear subspace always contain 0. An affine
subspace of R™ is a subset A = x + D, where x € R™ and D is a linear subspace of
R™. The dimension of an affine subspace is the dimension of its associated linear vector
space.

A linear combination of a set of vectors {x1,zs,...,z,} C R™ is defined by the
scalar product Z?:l a;x;, where a; € R is called the coefficient. It is called affine
combination if 2?21 a; = 1 and convex combination if in addition, a; > 0, for ¢ =
1,2,...,n. The vectors {z1, xs, . . ., x, } are called affinely independent if (x; — x,,), for
i € [n — 1], are linearly independent.



A set S C R™ is called convez if it contains all convex combinations of finitely
many vectors in S. The convex hull of a set S is denoted by conv(S), and is the set of all
convex combinations of vectors in S. The affine hull aff(S) is then defined analogously.

2.3.2 Polytopes and polyhedra

An linear inequality (constraint) a' x < b defines a halfspace {x € R" | a"z < b} and
a corresponding hyperplane H(a,b) = {x € R" | a'x = b}.

A polyhedra P can be defined as the intersection of finitely many halfspaces and is
denoted P = {z € R" | Az < b}, where A € R™*" and b € R™. It is called bounded
if there exists a “box” @ = {z | [ < x; < u,Vi € [n]} C R™ with some [ and u, such
that P C (). A polytope is a convex hull of a nonempty finite set, and it is a bounded
polyhedra. It is clear that both the polyhedron and polytope are convex sets.

There are two ways to describe a polytope: the convex hull of a nonempty finite set,
which is called V-representation, or the bounded intersection of finitely many closed
half spaces, also called H-representation.

2.3.3 Vertices, faces and facets

Consider a polytope P = {x € R" | Az < b}. In order to find out the fewest necessary
inequalities to describe P, we need the following definitions.

An equality a "z < b is called a valid equality for P if it holds for all x € P. Its
corresponding halfspace and hyperplane H (a, b) is called supporting if HNP # (). If in
addition H # P, we call it a proper supporting hyperplane. The set F' := P N H(a,b)
is called the face of the polytope P induced by a'x < b. We call F' a proper face if the
corresponding hyperplane H is proper.

The dimension of a face F' (dim(F")) in P is the dimension of its affine hull aff(F").
We call the face of dimension 0,1 and dim(P) — 1 the vertex, edge and facet of P,
respectively. A vetex v of P is often referred to as an extreme point.

An equality o'z < b is called facet-defining if F = P N H(a,b) is a facet. The
facet-defining inequalities are the most important ones to describe the polytope P. In
fact, every polytope (fully-dimensional) is the intersection of the halfspaces defined by
their facet-defining inequalities. One can show that this description is minimal with
respect to the number of halfspaces.

2.4 Algorithms and Complexity Theory

Complexity theory investigates how difficult is the problem and the efficiency of the
algorithms used to solve it. We briefly introduce the notations to these topics. For
further information, [9] gives a good survey.
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2.4.1 Algorithms, decision problems, complexity

An algorithm can be interpreted as a finite set of instructions on how to solve a problem,
where each instruction contains a sequence of elementary steps on the input data, e.g.,
plus, minus, etc.

We introduce a function ¢, : N — R in order to measure the number of elementary
steps needed by an algorithm, and this function is called the time complexity of the
algorithm, or complexity for short. This function provides for each input of size n € N
the maximal elementary steps t. € R. We denote an algorithm has a complexity of
O(g(n)) if there exists two constants ¢ € RT and ny € N, such that t.(n) < c¢- g(n),
Vn > ng. If g(n) is a polynomial function on n, then we say t. is a polynomial-time
algorithm. Or equivalently, the problem is polynomial-time solvable.

A decision problem can be posed as a “yes” or “no” problem. Decision problems are
mainly divided into two classes, namely classes P and N'P. The set of all polynomial
solvable decision problems is denoted by P. The class NP is defined as the set of
all decision problems for which each input with an answer “yes” can be verified in
polynomial time. Although it is clear that P C NP, it is still an open question if the
opposite holds. That is, we do not know if P equals NP or not.

Given two decision problems D and D*, D is said to be polynomial-time reducible
to D* if there exists a polynomial algorithm that transforms each instance of D to D*
such that they always have the same answer. Informally, we say problem D is not harder
than problem D*.

A decision problem D is called NP-complete if every problem in /P can be poly-
nomial reducible to D. Informally speaking, NP-complete problems are the most dif-
ficult problems in class N'P.

2.4.2 Complexity of optimization problems

An optimization problem (or more precisely, a minimization problem) can be defined as
the following:

min f(z)

zeX

where X is a set of feasible solutions to the problem, and f is a real-valued function
on X.

We then assign the following decision problem to the optimization problem: “Given
a constant ¢ € R, is there an x € X such that f(z) < ¢”. This decision prob-
lem is polynomial-time reducible to the optimization problem. Hence, the notion of
polynomial-time reducible can also be applied to an optimization problem. We call an
optimization problem Opt N P-hard if there exists an N'P-complete decision problem
that can be polynomial-time reducible to Opt. That is, if every decision problem in NP
is polynomially reducible to Opt.



When solving an optimization problem, an exact algorithm is one that always solves
the problem to optimality when no time limit is constrained. On the contrast, a heuristic
algorithm is one that not necessarily finds the optimal solution, or even if it finds the
optimal one, there is no proof for that.

2.5 Mathematical Programming

In mathematics, computer science and operations research, mathematical programming
(MP) or mathematical optimization, is to select a best element (with regard to a certain
criterion) from a given set of available alternatives. We briefly review two special cases
of MP, i.e., linear programming and mixed integer linear programming.

2.5.1 Linear programming

Linear Programming (LP) deals with obtaining the best outcome with respect to some
requirements in forms of linear relationships. More formally, it has the following form:

min ¢'x
s.t. Az <b
r e R,

where A € R™ ™ and b € R™. Other forms of LP, such as maximization instead of
minimization, great than equal to or equal restrictions, can be easily transformed to the
above form.

The entries of the vector z = (x1, za, . .., x,) are called variables of the LP, the m
conditions Az < b constraints, and the linear function x — c¢' x objective function of
the LP. The set S := {x € R™ | Az < b} is called feasible region, and its elements
feasible solutions of the LP. If S # (), the LP is feasible. If an LP is feasible, a feasible
solution z* is called optimal solution if and only if ¢"2* < c'x for any feasible solu-
tion 2. The corresponding value ¢' z* is named optimal value of the LP. Note that it is
possible for more than one feasible solutions z with ¢"z = ¢"z*. If for any o € R,
there exists a feasible solution z such that ¢z > «, then the LP is called unbounded.

One key observation is that the feasible region of the LP is a polyhedra, and thus
convex. If the LP has an optimal solution, this solution always occurs on the vertex.

There exists efficient algorithms for solving linear programming problems. Namely,
the simplex method, interior point method, and ellipsoid method. The simplex method
has exponential-time complexity in the worst case, while both the interior point and
ellipsoid algorithm are polynomial-time solvable. But in practice, the simplex algorithm
is found be remarkably efficient and the runtime is often polynomial. Hence, it is widely
used to solve LPs.
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Figure 2.1 — The feasible solutions is plotted in black dots, the integer hull P is colored
in red, and is contained in the feasible region P, which is colored pink.

2.5.2 Mixed integer linear programming

A mixed integer linear program (MILP) can be seen as an extension of a linear program,
by exchanging some of its continuous variables to discrete ones. It has the following
form:

min ¢'z+d'y (2.1
st. Ar+ By <e
reR™, yelZ”,

where the requirements y € Z" are called the integrality constraints. If there exist only
discrete variables, it is called an integer linear program (ILP). If y € {0, 1}", we have a
binary linear problem.

A combinatorial optimization problem (COP) is to identify an optimal solution from
a finite set of feasible solutions. It covers a wide range of practical problems. Most
COPs can be formulated based on graphs, and then defined as MILPs.

Despite the similarity to the LPs, MILPs are much harder: general MILPs belong to
the class of A'P-hard optimization problems.

For MILPs, the feasible region is naturally defined as P(A, B,e) := {x € R™, y €
Z" | Az + By < e}, and the LP relaxation of the feasible region as P (A, B,e) :=
{zr eR™, yeR" | Az + By < e}.

If P(A, B,e) is bounded, the feasible region of the MILP is finite. We define the
integer hull P;(A, B, e) as

Pi(A,B,e) :=conv({x € R™, y € Z" | Az + By < e}). (2.2)
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which is the convex hull of the feasible region.
The associated polyhedra P;(A, B, e) satisfies

P(A7BJ€> - PI(A7Bae) - PL(A7B76)7

with the inclusion being proper in general cases. One example is shown in Fig. 2.1}
where we only have integer variables.

2.5.3 Solution methods for MILPs

The solution methods can be grouped into two types: exact and non-exact methods.
Non-exact methods are usually heuristics or approximation methods. For any MILP, one
can usually design a greedy or local search algorithm which can be used to compute an
initial solution. Unfortunately, under the greedy mechanism, one can easily get trapped
in a local minimal. An improved type of heuristic is called meta-heuristics, such as tabu
search and simulated annealing.

We will focus on two of the exact methods, namely, the cutting-plane method and
the branch-and-bound method. Before describing these two methods, we first introduce
the notions of relaxation and separation problems.

A relaxation of an optimization problem min,cx f(z) is the optimization problem
minge x/ f(x), where X C X'. It immediately follows that if 2* is an optimal solution
of the original problem and z’ is an optimal solution of the relaxation, then

f@') < fla), (2.3)

1.e., solving the relaxed minimization problem yields a lower bound for the original one.
The reason for considering the relaxation of the original problem is that the relaxed
optimization problem may be easier to solve. For a MILP

min{ch—i—dTy | Av4+ By <e, x e R™, y € Z"}
a natural relaxation is the so called linear programming relaxation (LP-relaxation)
min {c'z+d'y| Ar + By <e, € R™, y € R"}

which relaxes the integrality constraints of y to y € R".

We adopt the notation P(A, B, e), P;(A, B,e) and P(A, B, e) from Section [2.1{to
denote the feasible set of the MILP, convex hull and LP-relaxation of the feasible set,
respectively.

A separation problem associated with a MILP min{c'z+d "y | z,y € P(4, B,e)}
is the problem: given (z’,y’) € R™* ™, is (z/,y') € Pr(A, B, e)? If note, the separation
problem finds a valid inequality 7' 2 + w'y < 7, for Pr(A, B, e), but violated by the
point (z/,y'). This inequality is then added to the problem that “cuts off” the current
infeasible solution.

12



Cutting-plane method

We briefly describe the cutting-plane procedure: when solving a MILP, we first start
with solving a relaxation of the problem. If the obtained solution (2’,%) satisfies all
the constraints of the MILP, it is then also the optimal solution of the original problem.
However, this is usually not the case. The basic idea of a cutting-plane method is to
come up with a separation problem with respect to the current solution and the original
MILP. The valid inequality of this separation problem is called a cutting plane or simply
a cut, since it “cuts” off (z’,1’) from P;(A, B,e). We then add this valid inequality to
the current relaxation problem and this procedure is iterated, until the obtained solution
satisfies all the constraints. This process is shown in detail in Algorithm[2.1]

The crucial point is how to solve the separation problem efficiently at each iteration,
and if the cutting plane generated could cut off a large area of the relaxation polyhedra
Pr(A, B, e). Ideally, good candidates for such cuts are those which define the facets
of P;(A, B, e). However, one needs to balance the efficiency of finding a cut, and the
quality of the cut. Another thing to note is that it may not be useful to add many facet-
defining inequalities all at once, but only to add those that cut off the current solution of
the relaxation problem. Finally, it is not practical to stop the loop of separation problem
until no violated cuts can be found. For instance, one could stop once the solution of the
relaxation has improved, which could still be useful to the branch-and-bound method to
be discussed in the next section.

There exists different ways of generating the cutting planes, and the first cutting
plane procedure was developed in the 1950s by Gomory [10]. Gomory was able to
specify an easy way to generate such cuts that guarantees to find an feasible solution to
P;(A, B, e) within a finite number of iterations.

Branch-and-bound method

Branch-and-bound method is a general approach for solving MILPs. It is based on the
following two conclusions:

« Consider the objective value z = min,, {c'z +d"y | (z,y) € P(4,B,e)},
let P = PLUP,...U Pk be a decomposition of P into subsests, and let 2k =
min, , {c"z+d"y | (z,y) € P} fork=1,2..., K. Then z = min2".

e Let z* be a lower bound on 2*, and z* an upper bound on z*. Further let z =
min;z* and Z = min,z*. Then z is a lower bound and Z an upper bound on z.

As the name suggests, it consists of two main steps: branching and bounding. The
key idea behind this algorithm is to split the original hard problem into easier smaller
problems, called subproblems. The subproblems can be solved, fathomed or split into
subproblems again. This leads to the constriction of a branch-and-bound tree with the
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Algorithm 2.1 Cutting plane method

1: Initialize : ¢ < 0, P° < Pp(A, b, e).
2: while (stopping criterion not reached) do
3:  Solvethe LP (z,y") = argmin, {c"z +d"y | (z,y) € P'}.

4: if ' € Z™ then
5: («',y") is an optimal solution.
6: break
7: else
8: Solve the separation problem with respect to (z*, y*) and P;(A, B, e).
9: if 3 a valid inequality 7'« + w' 'y < 7!, that cuts off (', ') then
10: P Pin{nt s+ wty < 7t}
11: t<—t+1.
12: else
13: break
14: end if
15: end if

16: end while

LP relaxation of the MILP as the root node. In addition, we keep track of the global
lower and upper bound, which helps to fathom some branches of the tree and also pro-
vides a relative gap called the optimality gap. In a minimization problem, It is computed
as follows:

1z — 2|

optimality gap =

The method terminates if there is no more subproblems to be solved, or if the opti-
mality gap is relativity small. The advantage of this method is that the basic principle is
simple, and it can be adopted to solve any MILP. Moreover, one can use any heuristic
or approximation algorithm to compute an initial solution as an upper bound.

We can then solve the MILP in the following way. First, we solve the LP-relaxation
of the MILP, which serves as the root node of the branch-and-bound tree. If the result-
ing solution satisfies all the integrality constraints, we have already solved the original
problem. If not, we select variable y; for some ¢ € [n] which has fractional value y* in
the LP solution. We then split the current problem into two LP subproblems, one with
constraint y; < |y |, and the other with constraint y; > [y} ] added. We then execute
the same procedure of splitting current node into two new LP subproblems, if the re-
sulting solution is not feasible to the original MILP. Meanwhile, if a subproblem gets a
feasible solution, we update the global upper bound Zz. If it has fractional solution, we
fathom the current node and update the global lower bound z. The process stops when
there exists no unsolved subproblems, or if z = 2. Denote the set of all subproblems P,
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the details of this algorithm can be seen in Algorithm[2.2]

Algorithm 2.2 Branch-and-bound method

1: Initialize : z < —00, Z < +00, P + Pr(A, b, e).

2: while P # () do

3: Choose a subproblem P € P and solve the LP-relaxation. Denote
the optimal solution and objective value as (z*,y*) and z*, if they exist.
{Subproblem selection}

4 if P is infeasible or z* > Z then

5 Fathom P. {Fathoming}

6: else if y* € Z" and z* < Z then

7.

8

9

Z < z*. {Bounding}
Fathom P. {Fathoming}

else
10: Select one fractional variable y; and add two new subproblems: P N {y; <
lyr |} and PN {y; > [y} to P. {Branching}
11: Fathom P. {Fathoming}
12: Compute z* = miny 2" for the LP-relaxation of both subproblems.
13: if z* > 2 then
14: z < z*. {Bounding}
15: end if
16: end if

17: end while

The critical issue in Algorithm [2.2]is how to select the next subproblem in Step [3]
and how to split the current node in Step[I10] Different problem selection and branching
strategies will lead to various branch-and-bound trees, thus different solution time. The
recent paper [11] adopts supervised machine learning approach to learn how to branch
from previous experiences, and it outperforms existing heuristic based branching strate-
gies on benchmark instances.

Branch-and-cut method

Branch-and-cut is a technique that combines the branch-and-bound with the cutting
plane method. It is the building block of many modern MILP solvers, hence is of great
practical importance.

We will only state the basic idea of this method as follows: First, we compute the
LP-relaxation of the MILP. Different from the pure branch-and-bound method, before
branching, we first successively add violated inequalities (cutting planes) to strengthen
the LP relaxation (cutting phase). This phase is stopped when no cuts can be found
or a user-set time limit is hit. Then we begin with the branching phase that works as
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in Algorithm [2.2] and we obtain two new subproblems. The above procedure is then
applied to the next subproblem until no subproblem exists or if the optimality gap is
almost 0.

2.6 Constant and Affine Regression

Given n signals p = (p1,p2, - - ., Pn) in a d-dimensional space, we denote their coordi-
nates z = (2!,...,2")T € R" and intensities y = (yi,...,yn) € R™ In this thesis,
we are interested in the cases d € {1, 2}, and signals p corresponding to pixels in a reg-
ular grid when d = 2. In this case, y; denotes the RGB color grayscale value of pixel p;.
For computational efficiency, we restrict ourselves to the grayscale image in this thesis.

2.6.1 Parametric affine regression

In statistics, affine (linear) regression or linear fitting is a widely used approach to model
the relationship between the dependent variables y and independent variables z. In the
parametric model, the relationship is modeled using linear functions and the unknown
linear parameters (i.e., slopes and intercepts) 3 are estimated from the given data ac-
cording to some objective functions, such as the mean square error (MSE) [12]]. It is
also called linear least squares.

For instance, when d = 1, if we denote the fitting value of signal p; as w;, then the
mean square error S = Y (y; — w;)*. Here w; = By % z; + B and 3 = (01, By) is the
linear parameter of the fitting line, where 3; € R? is the slope (gradient) and 3, € R the
intercept. The only two variables here are 3; and [3y. So, the following minimization

problem

min (Br* zi + Bo — yi)2 (2.4)
B1,80 —

is an unconstrained quadratic programming problem. We can get the analytical solution
by setting its gradient to zero. The partial derivatives of MSE with respect to 3, and /3
are:

8851_0_2221 /81*ZZ+50_y’L)
oS
95 0" 22 (B1* i + Bo — ).

This results in a system of two equations with two unknowns, which can be easily
solved. When f3; = 0, it becomes a constant fitting problem.
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In general, let 1 = (1,1,...,1) € R*and Z = [Z' 1] € R where 7/ =
(21,22 .., 2,)T € R™, The affine least squares is to find the optimal 3 = (3, 8) €
R that has the least mean square error of the following overdetermined system:

(Z272)8=2"y.
Finally, /3 is the coefficient vector of the least-squares hyperplane, expressed as

B=(Z2"2)"Zy.

2.6.2 Nonparametric affine regression

Non-parametric affine (linear) models compute w without explicitly modeling the affine
parameters (3 as variables. Let w = (wy, ..., w,) € R™ be the fitting values (unknown
variables) of the input signals, the non-parametric linear least squares problem becomes

min Y (w;—y;)? (2.5)

=1
W; — 2wi+]_ + Wiyo = O, 1€ [n], @]ﬁ)
w; €R, i€n—2] (2.3p)

where (2.5h]) implicitly enforces all fitting values lie in the same linear function with
respect to the coordinates (to be discussed with more details in Chapter {). If it is a
constant fitting problem, we just need to replace (2.5h)) with the equality constraints
w; — w1 = 0, foralli € [n —1].

Note that we could use any norm other than the ¢/, norm. In this thesis, we will use
the /1 as our data term. We will explain this in more details in the next chapter.

2.7 Decomposition via Superpixels

Nowadays, typical sizes of images easily exceed millions of pixels. In this thesis, we
are mostly dealing with MILPs, which means the number of integer variables could be
millions if we deal with original images. Hence efficient decomposition methods are
crucial to us.

On the one hand, one can use typical integer programming decomposition tech-
niques, such as cutting planes and column generation [[13] method, which decompose a
large problem into simpler ones while still being equivalent to the original. In addition,
they can be applied to any general MILP.

On the other hand, since the main application in this thesis is image processing, we
will introduce a decomposition technique that is solely developed for this task. This
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reduction is implemented on the input data, in particular, a grid of pixels of the image.
This preprocessing cannot be reversed in the optimization step of the reduced model,
implying that it is not an equivalent reformulation: an optimal solution of the decom-
posed model is not necessarily an optimal solution of the original one, thus a trade off
between complexity and accuracy.

2.7.1 Superpixels

While the exact definition is vague, a superpixel is regarded as a group of perceptually
meaningful connected blocks of an image. A superpixel should contain pixels similar
in color or other properties, which are likely to belong to the same physical world ob-
ject. The concept of superpixels was introduced by [14], and was motivated by two
aspects: firstly, a grid of pixels is not a natural representation of real world scenes, but
just a digital imaging “artifact”; and secondly, the huge number of pixels in natural im-
ages prevents many computer vision algorithms being computationally efficient or even
possible.

Superpixels are usually used as a pre-processing step to speed up computations.
Computational efficiency comes from the reduction in the number of elements of a
given image, with the superpixel then being treated as a single variable. Superpixels
thus have been actively applied for a wide range of applications, and there exist many
contributions, see [15}[16] for an overview. Superpixels can be naturally obtained as the
results of some image segmentation algorithms. To decrease the risk of the superpixels
crossing object boundaries, these algorithms are applied in an over-segmentation mode.
Examples are graph based[17], and normalized cuts[/18]].

Ideally, the following properties are desired for any superpixel algorithms, i.e., su-
perpixels (or superpixel algorithms) should

* adhere well to image boundaries,

* be regular in shape and size, with smooth boundaries,

e be able to control its number and size,

* be non-overlapping and thus each pixel is assigned a label,
* represent connected sets of pixels,

* have few parameters, so that it can be easily adjusted,

* be fast to generate.

There are advantages of superpixels with regular shapes and sizes. Apart from visual
appealing, in case a superpixel does cross the boundary, since the size is controlled, the
error rate as well.
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Figure 2.2 — Illustration of the “leakage” of superpixels, which is measured by the un-
dersegmentation error. The ground-truth segment is with the black border, and the red
lines are superpixel boundaries. In this example, the areas shaded pink count towards
the undersegmentation error.

2.7.2 Evaluation metrics for superpixels

Apart from being visually appealing, there are some quantitative measurements to eval-
uate different superpixel algorithms. Given ground-truth image segmentations (usually
annotated by a human), we will introduce and use three of them in this thesis, namely,
the undersegmentation error, boundary recall, and compactness score. Of course, these
are not the only evaluation metrics in the literature. For more details on evaluating
superpixel algorithms, we refer the reader to a recent survey paper [16].

Undersegmentation Error

The undersegmentation error (UE) measures the amount of “leakage” of superpixels
when placed over ground-truth segments, which also implicitly measures boundary ad-

herence. Given ground-truth segments G1, Gs, ..., Gy, and superpixels of any algo-
rithm S1, S5, ..., S , the undersegmentation error UE is defined as
1 .
UE(G, 8) := Y min {[S;NGilL 1S - Gil} | (2.6)
Gi S]'I'-‘IGﬁ’é@

where N is the number of pixels of the image. Overall, lower UE is preferred. This is
illustrated in Figure

Boundary Recall

The boundary recall (Rec) is the most commonly used metric to measure the boundary
adherence of the superpixel to the ground-truth segmentation. It computes the fraction
of pixels on the boundary of ground-truth segments that lies within a small distance of ¢
away from any superpixel boundary, and higher Rec is preferred. Rec is defined as
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Figure 2.3 — Illustration of the boundary recall: The boundary of a ground-truth segment
(black) counts towards the boundary recall (without the dotted black lines) if it is within
a distance of t to the boundary of a superpixel (pink).

>, 1[p € 0G; for some i] - 1 [d(p, 0S;) <t for some j]

>, 1 [p € 9G; for some i . Q7

Rec(G, S) :=

where OG; and 0S; denote the border of the segments, d is the minimal distance of
a pixel p to the border of a segment, and ¢ is a user-defined threshold. In this thesis,
we will follow the convention in the paper [16] and let ¢ = 3. See Figure [2.3| for an
example.

Compactness Score

The compactness score (CO) compares the area A(s;) of each superpixel s; with the
area of a circle with the same perimeter P(s;) of the superpixel. The later forms the
most compact 2-dimensional shape, and a higher CO is usually desired. It is invariant
to the ground-truth segmentations. CO is computed as

| AT A(S;
CO(G,5) = + ; |Si|%. (2.8)
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Chapter 3

Piecewise Constant Potts Model for
Segmentation and Denoising

Image segmentation and denoising are two fundamental tasks in computer vision and
image processing. Graph based models are popular for segmentation and variational
models are employed for denoising. Our approach could address both problems at the
same time. In this chapter, we propose a novel Mixed Integer Linear Programming
(MILP) formulation of the discrete first derivative (piecewise constant) Potts model
with /; data term, where binary variables are introduced to deal with the ¢, norm of
the regularization term. We utilize the branch-and-cut method for global optimum, as
well as a fast heuristic algorithm for approximate solutions that is based on the region
fusion algorithm [4]. The MILP is solved by a standard off-the-shelf MILP solver,
i.e., Cplex [19]. Computational experiments are conducted against the multicut prob-
lem and using different variants of our proposed model. We also apply our method
to generate superpixels on noisy images. Extensive experiments are carried out on the
BSDS500 [20] image dataset and compared with other superpixel methods. Our method
achieves the state-of-the-art in terms of a combined score (OP) composed of the under-
segmentation error, boundary recall and compactness.

3.1 Background

The image segmentation problem, also known as partitioning, grouping, or clustering,
is a fundamental problem in image processing. It contains the task of dividing an image
into either fixed or unfixed number of non-overlapping regions. Problem representations
are usually based on a graph G = (V, E'), where nodes V' relate to pixels or superpixels
in an image, and F represents the set of edges consisting of unordered pairs of nodes
indicating adjacency relations. A segmentation problem can be represented either by

* node labeling: assigning a label to each node v € V, or by
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Figure 3.1 — Two representations of an image segmentation: node labeling (by their
colors) and edge labeling via multicuts (dashed edges).

* edge labeling: a multicut defined by a subset of edges £’ C E, which also results
in a partition of a set of nodes, as can be seen in Figure [3.1]

We assume that the input is an image with pixels located on a grid. An image
segmentation is then a partition of V into sets {Vi, Va, ..., V;} such that UF_,V; =V,
and V;NV; = (), 7 # j. So in graph-theoretical terms, the problem of image segmentation
corresponds to graph partitioning.

One often distinguishes between supervised and unsupervised segmentation. In the
former case, the number of classes (e.g., person, grass, sky, etc) defined by labels is
pre-defined, together with a function (often called the unary data term) measuring how
likely a node belongs to each class. Among many existing supervised models, the
Markov Random Field (MRF) is well studied and applied, interested readers may re-
fer to [21, 122} 2] for an overview of this field. In the latter unsupervised case, such class
information is missing. This introduces ambiguities when node labeling is used. Think
about the node labeling in Figure [3.1] if we permute the labels (colors), it will result
in the same segmentation. However, edge labeling (e.g., by multicuts) does not exhibit
such symmetries and is therefore more appealing in the unsupervised case.

In this chapter, we focus on the problem of partitioning a given image into an un-
known number of segments using edge labeling. Exact optimization algorithms such as
the multicut problem [3, 23] and the lifted multicut problem [24] with positive or nega-
tive edge weights are based on the Integer Linear Programming (ILP) formulation. They
are in general A'P-hard, and globally optimal solutions can be solved iteratively using
branch-and-cut methods. More efficient fusion move algorithm are adopted in [25} 26].

Denoising of images is one of the most basic image restoration problems. While
some denoising approaches [27, 28] either estimate every pixel separately by fusing
other “similar” neighboring pixels, or denoise several similar patches simultaneously.
Global models like the total variation model [29] by Rudin, Osher, and Fatemi is one of
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the best known variational denoising model. Let D € R¢ denote the signal domain, and
y : D — R denote the given signals’ intensity values possibly with noise. Total vari-
ation [29] basically approximates the input signals y with a piecewise smooth function
w: D — R, and is stated as

min /(w(z) _ y(z))de+)\/ V' w|d=. 3.1)
w D D

Here, z denotes the coordinate system of the signals (horizontal and vertical-axis if the
input is a 2D image), and the first part represents the data fidelity term (how well w fits
y), while the second is the regularization term, with A > 0 the user defined penalty term.
Recall that V! = (9,,, 0.,) represent the differential operation of the first order in the
2D case.

With (3.1)) being convex, it can be efficiently solved with structured convex solvers.
However, the /; regularization term sometimes over-penalizes the sharp discontinuities
between two distinct regions in an image. In these cases, denoising approach with Potts
priors [[1] is designed to preserve the sharp discontinuities while removing noises and
thus more desirable.

Given two nodes p,q € V, their continuous values w(p), w(q) and a constant A,
that depends on p, g, the Potts function

Opg(w(p), w(q)) = Apg - L(w(p) # w(q))

is discontinuity-preserving and widely used in computer vision. Recall that 1(-) is 1 if
its argument is true and O otherwise.

We are most interested in the discrete setting of the Potts model [1]]. Given n sig-
nals [n] (recall that [n] denotes the discrete set {1,2,...,n}), the classical (discrete)
piecewise constant Potts model (named after R. Potts) has the form

min [Jw — y[le + AV wllo, (3.2)

where w, y denotes the n array vector, the data term measures their ¢, norm difference,
and the regularization term measures the number of oscillations in w. Recall that the
discrete first derivative V1w of a vector w € R" is defined as the n — 1 dimensional
vector (wy — wy, w3 — Wy, . . ., W, — w,_1) and the ¢, norm of a vector is its number of
nonzero entries. Various modifications and improvements have been made for the Potts
model, see [30] for an overview.

In general, solving the discrete version of the Potts model (3.2) is also N P-hard.
Approximate algorithms such as local greedy methods [4] and alternating direction
method of multipliers (ADMM) [31] are used instead. Recently, [32] utilizes a MILP
formulation to deal with a similar problem in statistics called the best subset selection
problem. These papers all use the ¢, data term, i.e., & = 2. In 1D, the Potts model
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with ¢, data term can be efficiently solved by dynamic programming. An O(n?logn)
algorithm is given in [33], an O(n?) algorithm in [34], and an O(nk) algorithm in [33]],
where n is the number of input signals, and k£ < n is the number of unique values in the
signals.

Motivated by the discrete Potts and the work of [31]], we will look into the prob-
lem of simultaneously segmenting and denoising images. However, different from [4,
31] where /5 norm is used and only approximate solutions are solved, we focus on the ¢,
data term and the exact algorithms which leads to globally optimal solutions of (3.2).
This is possible in terms of a MILP formulation which is NP-hard. Hence we further
introduce a fast region fusion [4] based heuristic with ¢; data term.

Highlights of this chapter.

* We propose a MILP formulation for the discrete Potts model (3.2) with ¢; data
term, which solves it to global optimum.

* We prove the multicut constraints [3] are redundant for the optimal solutions of
MILP formulation, but also facet-defining for the associated integer polytope.

* We propose a fast region fusion based heuristic algorithm for solving the Potts
model with ¢; data term.

* We apply our proposed method for generating superpixels on noisy images, and
achieve state-of-the-art results on the proposed OP score.

3.2 MILP Formulation of the Piecewise Constant Potts
Model

Given n signals [n] in some interval D C R? with intensities y = (y1,...,yn). We
are most interested in the case when d = 2, where signals become image pixels and y
represent pixels’ color or gray-scaled values.

We call a function f piecewise constant over D if there exists a partition of D into
subintervals D+, ..., D, such that D = UleDZ-, where D; N D; = (), and f is constant
when restricted to each D;, for i € [k]. Throughout this chapter, we assume the input
signals or images contain noises. We treat the task of segmentation and denoising input
signals as a piecewise constant fitting problem. We denote the fitting value for signal ¢

as w; = f(7).

3.2.1 Formulation of 1D signals

For the 1D signals case, the associated graph G(V, E) simply becomes a chain graph,
where V = {i|i € [n]}and E = {e = (4,1 + 1) | i € [n — 1]}. Denote two end nodes
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Figure 3.2 — 1D piecewise constant fitting, with 3 segments and 2 active edges.
of an edge e as h, and ¢.. We would like to formulate the Potts model (3.2) as a MILP,

this is achieved by introducing n — 1 binary variables

1, if he, t. are in different segments
Te = .
‘ 0, otherwise,

and the following properties should hold

Viw,=0< 1. =0, Ve € E, (3.3)
Viw, #0< 2z, =1, Ve € E. (3.4)
Here, Viw, := wy,, — w;,. The edge e is called an active or jump edge if z, = 1,

otherwise it is dormant. Upon the above assumptions, the fitting values w satisfy the
piecewise constant property that we desire, i.e., the signals between two active edges
define one segment whose fitting values w share the same intensity and the number of
segments equal ) . x. + 1. See Figure. for one example, where there are two
active edges and three segments.

The properties can be modeled via Mixed Integer Programming (MILP)
using the “big M technique, which leads to the following formulation:

min > Jwi—yi| + Az (3.5)

eV ecE
|V'w,| < Mz., VecE, (3.5p)
w; € R, VieV, (3.5b)
r. €{0,1}, Ve€eE, (3-3k)

where the first part of the objective function is the data fitting term, and the second is the
regularization term. To prevent the model from over-fitting, a user defined parameter
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A > 0 is introduced to indirectly control the number of segments. The constant M
in (3.5B) is usually called a ”’big M” constant, and it should be large enough so that (3.5h)
is always valid when V!w, # 0 .

Lemma 3.1. The optimal solutions (w*,z*) of problem (3.5)) satisfy properties
and

Proof. LetV = Y.\, |w; — yi| + A .. Te be the objective value of problem (3.5),
we proof sufficient and necessary conditions of [3.3]and [3.4]

1. Viw, = 0 = 2z, = 0. If V'w, = 0, by constraint (3.38), x, can be either 0 or
1. But the optimality of the solution will enforce x. = 0 since problem (3.5)) is a
minimization problem and A > 0, and this makes ¢} smaller.

2. . = 0 = V'w, = 0.If z, = 0, then it immediately follows by constraint (3.3g)
that V%'w, < 0, and hence V!w, = 0.

3. Viw, # 0 = z, = 1. If V'w, # 0, it immediately follows by constraint (3.3R)
that z. = 1, where M is assumed to be big enough for (3.54) to hold.

4. . =1 = V'w, # 0. If 7. = 1, suppose we have Vw, = 0, then by part[1] of
this lemma, x. = 0, thus a contradiction.

]

Now we have proved that the optimal solution to (3.5) satisfies the piecewise con-
stant property that we desire. Note that we use the /; norm because it is more robust
to outliers than /5 [36]. Moreover, it can be easily modeled with linear constraints.
Namely, constraint (3.58) is firstly replaced by the two constraints V'w, < Mz, and
—V'w, < Mz,. Secondly, the term |w; — y;| is replaced by € + ¢, where w; — y; =
el —e; andef,e; > 0.

i i<

Problem (3.5]) is then formulated as the following MILP

min Z(d%—e;) + A Z T, (3.6)

eV eck
Viw, < M., Ve € E, (3.6h)
—V'w, < Mz, Ve € F, (3.6b)
wi—yi=¢f —g, 1€V, (3:60)
ef,e; € RT, VieV, (3.61)
w; € R, Vi eV,
z. € {0, 1}, Ve e E.
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Lemma 3.2. The MILP formulation (3.6) is equivalent to (3.5))

Proof. The equivalence of constraint (3.5a) with constraints (3.6} [3.6p) is quite obvi-
ous. Here, we concentrate on proving the second replacement.

Suppose w; > y;, let w; — y; = ¢ where ¢ is a constant, so we have |w; — y;| =
w; — y; = c. By constraint 3.6), ¢ —¢; = w; —y; = c¢. Thene; = ¢; + ¢, and
el +e =2 +c

Since problem is a minimization problem and by constraint (3.6d), the optimal
solution will have ¢; = 0 and £ = c. Hence, ;" + ¢; = ¢ = |w; — y;|, which makes
the objective function of problem (3.6) and (3.5) the same.

The case when w; < y; can be proved similarly, and we omit the proof here. [

Note that this technique of equivalently transforming (3.5) to (3.6) will be used
widely in this thesis, and from now on, we will just specify the MIP formulation in the
form of (3.5).

The optimal solution of gives the fitting value w; for the node (signal) 7 and the
boundaries of two segments (when x. = 1). The segmentation is uniquely defined by
the optimal solution x, and we obtained denoised signals with value w simultaneously.

3.2.2 Formulation of 2D images

Given a 2D gray-scaled image, following notations from the previous section, the as-
sociated graph G(V, F) is a grid graph. The first derivative Potts model in 2D is again
modeled as a MIP, and could be formulated using exactly the same notation as (3.5).
However, we propose to formulate it a bit differently as we will need it for introducing
the cardinality constraints in Section (3.3.3)).

Since G is a grid graph, we divide £ into its row (horizontal) edge set £” and column
(vertical) edge set E° so that E = E" U E° and E" N E¢ = (). Suppose the input 2D
image is of size m x n. We further denote £ = {E{, E}, ... E" }, where E is the set
of row edges in the i-th row and ¢ € [m]. Similarly, we have E° = {E{, ES, ... E]}.

Our proposed MIP in 2D is then obtained by formulating the 1D case per row
and column of the grid.

min Y |wi—y;| + Az (3.7)

eV ecE
Viw,| < Mx., Vec€ EJ, Vi€ [m] B7Th)
Viwe| < Mz., Yee Ej, Vjen] (B.7b)
w; €R, VieV, BT
z. € {0,1}, Ve € E. (3.7d)

Recall that V'w, := Wy, — wy,, and Lemma still hold true for each row and column
of the 2D image grid. The solution of (3.7) again gives the fitting value w; for each
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node (pixel) ¢ and the boundaries of two segments (when z. = 1). We will prove in the
next section that the image segmentation is uniquely defined by the optimal solution x

of problem (3.7).

3.3 Redundant Constraints and Additional Cuts for the
MILP in 2D

It is quite common to add redundant constraints to a MIP for computational speedup.
A constraint is called redundant to a mathematical programming formulation if it is not
necessarily needed for the formulation to be valid. However, it may be beneficial to
add them because they forbid some fractional solutions during the branch-and-bound
approach, where the MIP solver iteratively solves the linear programming (LP) relax-
ation. Or sometimes, these constraints impose a structure that help shrink the search
space. One example is the symmetry-breaking constraints [37] that are widely used in
combinatorial optimization problems.

On the other hand, if one knows some prior knowledge about the problem struc-
ture, it usually helps to add them into the formulation. One example is the user input
in the interactive image segmentation [38, [39, 40], where the input is formulated as
additional constraints in the mathematical formulation. We will just call these addi-
tional constraints as “cuts”, since they “cut off” some original feasible but not optimal
solutions.

3.3.1 The multicut problem

The multicut problem [3] is an unsupervised image segmentation problem, where no
unary data term is present. Given the corresponding graph G(V, F), recall that for
a partition V = {V, V5, ..., Vi} of V, the multicut induced by V is the edge set
Vi, Va,..., V) = {ww € E | 3i # jwithu € V;andv € V;}. It formulates the
graph partitioning problem as an edge labeling problem, and the result corresponds
one-to-one to an image segmentation.

Like in Section [3.2.1] binary edge variables . are introduced and the multicut can
be represented by a set of active edges. Let the edge weight ¢ : & — R represent the ab-
solute differences between two pixels’ intensities, the ILP of the multicut problem reads

min =Y oo+ » A, (3.8)

c€E ceE
Z Te > T, VeyclesC C E, e €C, (3-8n)

eeC\{e'}
z. € {0,1}, Ve € E, (3.8b)
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where constraints (3.8p) are called the multicut constraints and they enforce the con-
secutiveness of the active edges. As a result of (3.8), the multicut uniquely define an
image segmentation, and each maximal set of vertices induced only by dormant edges
corresponds to one segment.

One example is shown in Figure where the multicut of 8 dashed edges uniquely
defines a partition of the 4 x 4-grid graph into 3 segments.

The multicut problem is N"P-hard in general and the number of inequalities (3.8p)) is
exponentially large with respect to | E|. One can solve[3.1]in a cutting plane manner, i.e.,
first ignore the multicut constraints (3.8f), and check the feasibility of the current integer
solution. If it is infeasible, violated constraints can be found efficiently using shortest
path algorithms. These cuts are added iteratively until the solution is feasible [3}41].

3.3.2 Cuts and redundant constraints

Let S := {(w, ) | (w, x) is feasible to problem (3.7)} be the set of all feasible solutions
to the discrete Potts model (3.7)), and S; := {z| (w, x) € S} denotes the integer set of .S.
Further denote S° to be a subset of S, where (w, z) € S° has to satisfy the property
and[3.4] Finally, we let S¢ be the projection of (w,z) € S to z.

We first prove that the multicut constraints (3.8p) are redundant (thus valid) for S¢
of the Potts model (3.7). We then point out that the multicut constraints (3.8g]) are facet-
defining for the convex hull of SY.

Theorem 3.3. The multicut constraints (3.8g) are redundant for S¢ of the Potts model (3.7)).

Proof. We prove this by stating that every = € S satisfies the multicut constraints (3.8g).
As discussed in [3], the multicut constraints (3.8f) are equivalent to

er #1, Vcycles C C E.
ecC

Suppose there exists one solution (w,z) € S° and a cycle C' = {1,2,...,n} of
length n — 1 (here, node 1 and n represent the same node) such that there is only one
active edge e = (i, +1) € C' ,i € [n — 1] (i.e., z; ;41 = 1). By the definition of S°,
we have w; # w;1.

Since all the other edges in cycle C' are dormant (z. = 0), by constraints (3.7p[[3.7p)),
we have w; = wy = ... = w; and w; = w41 = ... = w,. Since node 1 and n represent
the same node, we have w; = wy = ... = w,, thus w; = w;,1, and a contradiction. []

Let (w*, z*) be an optimal solution to the MIP (3.7)). Similar to the proof in Lemma re-
flemmal, property and also hold true. Hence the optimal solutions (w*, z*)
of lies in S°, and z* € S9.

While the multicut constraints (3.8h) are redundant for the optimal solutions set
(may not be unique) of (3.7)), it is not necessarily valid for the feasible set of (3.7). For
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instance, for the active edge cycle C’ we constructed in Theorem 3.3} the solution where
Ti;+1 = 1 and w; = w; 44 is feasible to (3.7). This means there exists a solution 2’ € Sy
and correspond to this solution, there is one cycle C’ such that ) __., z. = 1. This
obviously violates the multicut constraints (3.8a). Hence the multicut constraints (3.8p)
“cuts away” some feasible but non-optimal solutions of (3.7).

Since we know the multicut uniquely defines an image segmentation [3]], we can
now conclude that the optimal solution of the Potts model also defines a unique
segmentation.

Theorem 3.4. Let S, be the set of all feasible solutions to the multicut problem(3.8)
with respect to the Potts model (3.7), then S,, = SY.

Proof. By Theorem we know S¢ C S,,. The opposite also holds since for any
feasible solution = € S, of (3.8)), x also defines a valid segmentation in the Potts
model (3.7)), and we can compute the corresponding w by by fitting a constant function
within each segment. Thus we have constructed a feasible solution (w, x) € S°, which
implies the existence of z € SY. ]

Hence, we can also conclude that z* € S,,,, where z* is the optimal solution of (3.7).

It is well known that if a cycle C' € G is chordless, then the corresponding multicut
constraint (3.8)) is facet-defining for the multicut polytope (convex hull of \S,,) 3} 41].
In a 2D grid graph, the number of such constraints is still exponential. In Section we
will test the simple strategy of adding the following 4-edge chordless cycle constraints
(see the cycle eg — e; — e — eg in Figure [3.1]for an example)

Y we>wa, VeyclessC CE,|C|=4,¢ €C (3.9)
ecC\{e'}

to the Potts model (3.7). Because firstly, it is the simplest (in terms of the number of
edges) chordless cycle in a grid graph. Secondly, the number of such constraints is only
linear to the number of edges.

Of course, there exists more complicated strategy on finding and selecting such cuts,
but this is beyond the focus of this chapter. Interested readers may refer to [42) 43|
44]] for more information. Finally, although we have defined the set of facet-defining
inequalities for S?, we leave the further properties of the chordless cycles constraints
with respect to S° for future research.

3.3.3 Cardinality constraints as additional cuts

If the user has some prior knowledge about the problem and solution, one can add
additional cuts to reduce the search space.
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One example is the cardinality constraints. In 1D signals case, if one has some prior
knowledge or good guess on the number of segments, it may be beneficial to add the
following cardinality constraints

Za;e <k, (3.10)

where k& denotes the upper bound on the number of jumps. For instance, in Figure
if the user knows the number of segments is less than 3, then by adding > z. < 2 to
(3.3), one shrinks the search space of the combinatorial optimization problem from 2"
to 2l 4oy
2 2 :
When working on 2D images, one can add the above cardinality constraints per
row and column. We need some strategy of automatically computing the upper bound &
though. We will show computational experiments in Section[3.5|on the effects of adding

the above two types of constraints (3.9} [3.10) to the MILP (3.7).

3.4 Solution Techniques

Since the resulting MIP problem is in general N'P-hard to solve, we first present a
fast heuristic that could provide a feasible solution in short time. Then it can be adopted
as a starting point for the MIP solver, which is then proceeded using the standard branch-
and-cut algorithm.

3.4.1 Region fusion based heuristic with /; data term

The authors of [4] present a region fusion based greedy algorithm that efficiently solve
the Potts model (3.2)) with ¢, data term.

In this chapter, we are interested in the the Potts model (3.2]) with ¢; data term, and
the corresponding energy function similar to that of the paper [4] reads

miny~ (sz‘ —yilly + D A - ij0> ,
eV JEN;
where A is the regularization parameter and N; denotes the neighboring pixels of .
(recall that in a grid graph, we assume four-connected pixels.)
The algorithm starts with every pixel ¢ belongs to its own group (segment) V;, and at
every iteration, the algorithm just examine the energy of two neighboring groups with
current regularization parameter ~. The energy of two groups V;, V; equals

min 7 ||w; = Yilly + 75 [[w; = Yjlly, + r [ = willy (3.11)

where 7; denotes the number of pixels in group V;, and ;; represents the number of
neighboring pixels between two groups V; and V;. We use Y; to indicate the mean of
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image data (e.g., color) within group V;, w; to denote the fitting value of V; and x express
the current regularization parameter that increases in every iteration (up to \).

Three growing strategies are reported in [4], and it is shown that the following non-
linear strategy with growing rate 2.2 achieves the overall best result

(iter, K, \) — (Zt%)“)\,

where K denotes the maximum iteration number and iter is the current iteration num-
ber.

At every iteration, the following condition is checked
7|1V = Yl < mvig (i +75) - (3.12)

If satisfied, two groups 7, j are merged which results in a lower energy, and w;, for
the new merged group ¢’ is computed as

Yia if Ti Z Tjs
Wy = ) (3.13)
Y;, otherwise,

which makes (3.11)) minimum. If not, the iteration continues and the above condition is
again checked. The overall approach is described in Algorithm

3.4.2 Exact branch and cut algorithm

In this chapter, as well as the whole thesis, we use a standard MIP solver (such as Cplex)
to solve the resulting MILP problem off the shelf. The main algorithm inside the “black
box” solver is the branch and cut method described in Section

The main problem to solve is the MILP formulation of the discrete Potts model (3.3)),
with or without the 4-cycle multicut constraints (3.9) as additional cuts.

The advantage of solving a MILP as opposed to any approximate algorithms is that,
the MIP solver can use any feasible solution as an initial solution to start with. And
by solving the LP-relaxation of the MILP, we obtain an optimality gap (defined in Sec-
tion [2.5.3)) that serves as a quality evaluation for the feasible solution.

The solver seeks for better solutions as the branch-and-cut trees proceeds, and one
can set any time limit for the whole procedure. When the time limit is reached, one
obtain a best feasible solution (given the time limit) as well as an optimality gap. Note
that the separation problem with respect to the cutting plane algorithm inside the branch-
and-cut is designed within the “black box” solver, and we have little control over it.
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Algorithm 3.1 /, region fusion algorithm with ¢; data term

Input: Signals of length P, the regularization parameter A
1: Initialize: V; < {i},Y; < y;, 7 < 1

2: N; as four-connected neighboring pixels
3: v, =1 ifj€N;, ;=0 otherwise
4: K+ 0,iter <0
5: repeat
6: 141
7: while : < P do
8: forall j € N; do
9: iszTgH}/z_Y;Hl < K55 (Ti—i-Tj) then
10: if T > T then
11: Y, <Y,
12: else
13: Y, Y;
14: end if
15: Vi< VUV
16: T < T + T
17: Remove j in IV; and delete ; ;
18: forall k € N; \ {i} do
19: if £ € N; then
20: Vik < Vik + Vik
21 Vi < Vik T Vik
22: else
23: N; < N; U{k}
24: N +— N, U {Z}
25: Vik < Vik
26: Vii € Vik
27: end if
28: Remove j in IV, and delete vy ;
29: end for
30: Delete V;, N;, 7;
31: P+ P-1
32: end if
33: end for
34: 1+1+1
35: end while
36: iter < iter + 1
37: K < g (iter, K, \)
38: until Kk > \
39:
40: fori =1+ Pdo
41: for all j € V; do 33
42: Wy Y;
43: end for
44: end for

Output: Fitting value IV of length P




3.5 Experiments on Small Instances

In this chapter and the whole thesis, all computational tests are performed on an Intel
15-4570 quad-core desktop with 16GB RAM. If MILP problems are present, we use
IBM Cplex [19] of version 12.6.1, which is a standard commercial MIP solver.

3.5.1 Multicut problem versus discrete Potts model (3.7))

Both the multicut problem and the Discrete Potts model are MILPs and N'P-
hard to solve. However, as we will see later in this section, computational efforts to
solve the two problems differ a lot.

We compare three different formulations in this section. The experiments are based
on two images from [45]], and we resize them to 40 x 40 and 41 x 58 respectively. We
add Gaussian and salt and pepper noise, and set a time limit of 100 seconds.

 Formulation 1: the multicut problem (3.8).

* Formulation 2: MILP of the discrete Potts model (3.7)), with and without the 4-
edge cycle constraints (3.9).

» Formulation 3: MILP of the discrete Potts model (3.7)) with both (3.9) and (3.10).

Parameter setting. There are in total 3 parameters, i.e., the regularization parame-
ter A in both (3.8) and (3.7), the big M constant in (3.7), and the upper bound on the
number of jumps & in (3.10).

We first compute the average intensity of each 4 x 4 pixels block of the input im-
age, and then calculate the absolute difference of its maximum and minimum value
(denoted Y*). Hence Y* somehow represents the “global contrast” of the image. We
set the A in to }101 Y™, where o0, is a user defined parameter, and let the constant M
equals Y*. When there exists an extreme outlier, model tends not to treat the outlier
as a single segment, since doing so would incur a penalty as large as 4\ (equals oY ™).

Denote Y;" as the vector of pixels’ intensities in row ¢ of the image grid, the con-
stant &7 in (3.10) of row 1 is then set to the number of elements in V'Y that are greater
than o2Y*, where 0 < 05 < 1 is some suitably chosen parameter. Constant k:j 1S com-
puted similarly for each column j. Since the input image is supposed to contain noise,
in this setting, we take only the edges with weights greater than o,Y ™* as potential active
ones.

Figure [3.3] shows the input images, detailed setting of the parameters, and the seg-
mentation results for the 3 formulations. As we can see from Figure [3.3] Formulation 1
is sensitive to the parameter A and it is hard to control the desired number of segments.
As a result, it is often over segmented and prune to the presence of outliers. On the
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Figure 3.3 — Computational results of three formulations. S: number of segments. t:
running time. G: optimality gap when it hits the time limit of 100 sec.

other hand, although requiring more computational time, Formulation 2 and 3 are ro-
bust to noise, less sensitive to parameters, and give overall better segmentation results.
We report detailed comparison as follows.

With and without (3.9). We first report that Formulation 2 with the 4-edge cycle
constraints (3.9) saves 0.9 second in the second instance, and reduces 23.5% of the
optimality gap on average (where Cplex hits the time limit in the other two instaces),
compared to without (3.9).

In addition to the experiments shown in Figure [3.3] we conduct 10 more experi-
ments with images taken from BSDS500 (resized to 40 x 50, with 5% salt and pepper
noise, time limit 50 seconds). We report that constraints (3.9) help reduce the average
optimality gap from 66% to 37%, compared to without them. Hence, we will denote
Formulation 2 as (3.7) with (3.9) by default from now on.

Running time and optimality gap. Formulation 1 is very fast to solve, takes less
than 0.1 second in all three instances. Formulation 2 and 3 take 2.4 and 4.5 seconds in
the second instance and both hit the time limit of 100 seconds in the other two. The
optimality gaps for Formulation 2 and 3 on the first and the third instance are 5.5%,
27.8%, 1.8% and 28.1% respectively.

Formulation 2 versus 3. We keep the value of o7 the same when comparing the
effects of adding (3.10) to (3.7). As can be seen from Figure [3.3] there is no clear

35



Method 1 Method 2 Method 3
Time 0.15 50 50
Gap Null 23.3% 19.7 %
Energy 289.0 280.0 273.8

Table 3.1 — Average time, optimality gap and energy of 3 proposed methods out of 5
computational tests.

advantage of adding the cardinality constraints from the 3 reported instances. For
example, it enlarges the optimality gap in the third instance while the solution is visually
better (with fewer segments).

Hence, we conclude that it is beneficial to add the 4-edge cycle constraints (3.9),
while there is no clear conclusion on whether to add the cardinality constraints (3.10)
to (3.7). And we report that when tuning the parameter of oy, we found out that by
setting o5 too large would result in infeasible solutions to (3.7).

3.5.2 Discrete Potts model: heuristic versus MILP

In this section, we will compare the following 3 different methods.

* Method 1: uses only the ¢, region fusion algorithm 3.1 with ¢; data term.

* Method 2: uses only MILP of the discrete Potts model (3.7) with 4-edge cycle
constraints ((3.9).

* Method 3: similar to Method 2, except we use the result of algorithm [3.1] as initial
solution of the MIP solver.

We choose 5 images out of BSDS500, and resize them to 40 x 50. We add 10% salt
and pepper noise, and set o7 = 1.8 for 4 images and 1.5 for one image. A time limit
of 50 seconds is set for the MIP solver. For the ¢, region fusion algorithm 3.1} we use
the nonlinear growing strategy described in Section [3.4.1] and set the iteration number
equals 100 and A = 0.8.

The average running time and MIP gaps, as well as the energy function values are
reported in Table Note that both Method 2 and 3 of the MILP formulation of
with 4-edge cycle constraints are in general very slow to converge. They both
reach the time limit of 50 seconds in all 5 instances. We did not report the MIP gap of
the heuristic solution, and set it to “Null”.

We can conclude from the table that the ¢, heuristic algorithm [3.1}is very efficient.
It takes only 0.15 second on average, but provides feasible solutions with not very good
quality (equals on average 289.0). While hitting the time limit of 50 seconds, Method 2
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Figure 3.4 — Denoising results of Method 3. From first to third column: the input images
of size 40 x 50, with 10% salt and pepper noise, denoised image using Method 3. The
first row uses o7 = 1.5, while o7 = 1.8 for the other two.

provides a better solution than Method 1 (average energy equals 280.0) and has an av-
erage optimality gap of 23.3%. Finally, Method 3 adopts the solution of Method 1 as
a starting point for the MIP and this increases the overall performance. The average
optimality gap reduces from 23.3% to 19.7%, and the average energy further reduces
to 273.8, making Method 3 the best over all.

Since from an optimization point of view, the energy (objective function value) is
more important than visual appearance of denoising and segmentation. Hence, we only
report 3 sample denoising results of Method 3 for illustration purpose in Figure [3.4]
The images from left to right columns are original images, images with noise, denoised
images using Method 3, respectively. And the first row uses o; = 1.5, while o7 = 1.8
for the other two. In general, larger o, penalizes more on the number of segments and
tends to further smoothen the image. We shall see that in the denoised image of the first
row (o1 = 1.5), there exists two one-pixel segments.

We conclude from Figure [3.4] that the MILP formulation of (3.7) with 4-edge cycle
constraints (3.9) gives overall satisfying results, which is quite robust to noise.
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Figure 3.5 — Top left: RGB image. Top right: gray-scale image with 0.5 Gaussian noise.
Bottom left: superpixel results of PMcut. Bottom right: denoised output.

3.6 Application on Generating Superpixels

In this section, we first describe our superpixel algorithm (denoted PMcut) that is based
on the Discrete Potts model (3.7) with the 4-edge cycle constraints (3.9). Then we
present a detailed evaluation of our superpixel algorithm towards 4 other state-of-the-art
algorithms on noisy images, both quantitatively and qualitatively. The tested superpixel
sizes (approximately) are 600, 1200, 1800 and 2400, respectively.

The Berkeley Segmentation Dataset (BSDS500) [20] consists of 500 images (size
321 x 481) splitting into 200 training, 100 validation and 200 test images. We conduct
extensive parameter training before testing on the competing algorithms. For testing,
we choose 100 test images to add 0.3 Gaussian noise, and the rest 100 to add 15% salt
and pepper (S&P) noise. The test sets are thus divided according to these two types
of noises. The superpixel segmentation results are compared with the provided five
ground-truth segmentations per image of the BSDS500.

While ours did not train the parameter o (we set it to 0.5), and the inputs are gray-
scaled images (others uses RGB images), we show that it still achieves the best results on
noisy images in terms of a combined score (OP) against other algorithms with optimized
parameters.
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3.6.1 Our superpixel algorithm

The superpixel algorithm is quite straightforward. Like in [46] we start from decompos-
ing the input image into K - L rectangular patches, where K and L are user defined pa-
rameters approximating the number of desired superpixels. We then apply PMcut within
each image patch. Different from [46], the size of our superpixel is upper bounded by
the size of the image patch. See Figure[3.5]as an example of applying PMcut to generate
superpixels on a noisy image. It meanwhile denoises the image (shown at the bottom
right of the figure).

Since PMcut is N'P-hard, smaller image patches (hence smaller MILP problem size)
are desired for the sake of computational efficiency. In practice, we notice that with the
increase of the number of image patches, the overall computational time decreases since
the patch size shrinks.

Note also that every image patch is computed separately, thus parallelism can be
fully adopted. In practice, one can also set a time limit or a MIP optimality gap threshold
within each patch. As a matter of fact, we often notice the segmentation results are
already quite good even though PMcut has not arrived at the optimal solution. For
example, in the second experiment of Figure PMcut find the output solution in less
than 2 secs, but the gap is still more than 1% when it hits the 100 seconds time limit.
Hence it also makes sense to create a stopping criterion when the solution is already
good enough based on a user defined optimality gap.

3.6.2 Competing superpixel algorithms

We review some state-of-the-art superpixel algorithms, which are either highly ranked
in terms of UE and Rec scores, or give regular shapes (high CO score), according to a
recent survey paper [16].

ETPS - Extended Topology Preserving Segmentation [47] partition the image into
a regular grid as initial superpixel segmentation, and then exchanges pixels between
neighboring superpixels iteratively. It uses a coarse-to-fine energy update strategy, and
uses block coordinate gradient decent to minimize the energy. However, it produces
superpixels with irregular sizes and shapes.

SLIC - Simple Linear Iterative Clustering [[15] uses k-means clustering algorithm.
It initializes by seeding pixels as cluster centers, and uses color and spatial information
for updating. Post-processing is needed to ensure connectivity. This approach offers
control over the number of superpixels and the compactness.

CW - Compact Watershed [48] is based on SLIC and [49], and contains two mod-
ified algorithms. The first one speeds up SLIC, while the second creates uniformly
shaped superpixels as opposed to [49]. It is computational very efficient, takes only 10-
33 milliseconds (ms) for segmentation an image of size 321 x 481.
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SEEDS - Superpixels Extracted via Energy-Driven Sampling [46] proposed an ap-
proach based on a simple hill-climbing optimization. It starts from an initial super-
pixel partitioning (e.g., rectangular patches), then continuously refines the superpixels
by modifying the boundaries. The energy function is based on enforcing color similarity
between the boundaries and the superpixel color histogram. It can control the number
of superpixels but not the compactness.

While these superpixel algorithms may work well on clean images, they do not have
a systematical way of dealing with noisy images and may suffer from the presence of
noise. Moreover, to the best of our knowledge, there have not been any comprehensive
comparisons on superpixels algorithms applied on noisy images.

3.6.3 Evaluation benchmark

Among other metrics, the Under-segmentation Error (UE), Boundary Recall (Rec) and
Compactness (CO) are probably the most widely used ones. They are standard measures
for segmentation boundary adherence.

Given a superpixel segmentation and a ground-truth, under-segmentation error mea-
sures the fraction of superpixels that “leak” across the boundary of a ground-truth seg-
ment. We adopt the updated formulation of UE (2.6) in [[16], that does not over-penalize
superpixels which only overlap slightly with ground-truth segment. Overall, under any
formulation of UE, the lower score is better.

Boundary Recall measures what fraction of the ground-truth edges fall within
a local neighborhood of size ¢ - ¢ of a superpixel boundary. Like in [[16], here we set
t = 3. As superpixels are expected to adhere to boundaries, high Rec score is desirable.

The Compactness Score (2.8) compares the area A(s;) of each superpixel s; with
the area of a circle with the same perimeter P(s;). The higher CO score means the
superpixels are more regular, and hence more desirable.

While UE and Rec depends on the ground-truth segmentation, CO is invariant to it.
We again refer readers to [[16] for more detailed information on UE, Rec and CO scores.

3.6.4 Parameter optimization and post-processing

Before testing, we optimized parameters of the competing algorithms on 100 training
images where half are added with Gaussian noise and another half with S& P noise.
The noise level is chosen to be the same as the testing images. We conduct discrete grid
search, jointly optimizing UE, Rec and CO, i.e., OP = 0.4x(1-UE) + 0.4x Rec + 0.2+CO.
For implementation details, readers can refer to [16].

Since some superpixel algorithms do not ensure connectivity, a connected compo-
nent algorithm is proposed and used as post-processing by [[16]], which results in many
tiny superpixels. Hence [16] additional propose a merging algorithm, which is designed
to merge tiny superpixels into larger neighboring ones. We set the merging threshold
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Figure 3.6 — Undersegmentation error of each method (lower is better). Horizontal axis:
number of superpixels. Vertical axis axis: UE score.

(minimum number of pixels in any superpixel) to be 10. We adopt the code from [16]
for both parameter optimization and post-processing.

3.6.5 Quantitative comparison

For computing the Rec and UE socre, the superpixel results are compared with the
provided five ground-truth segmentations per test image, and we choose the best and
average out of 5. We then compute the average score of all test images. Since CO is
independent of ground-truth, we just compute the average CO score of all test images.

The under-segmentation error (UE)

Figure 3.6 plots the UE score (vertical axis) of each method against the increasing num-
ber of superpixels (horizontal axis). The first row depicts results on the 100 images taken
from BSDS500 with S& P noise, and the second row another 100 images with Gaussian
noise. These results were obtained by averaging the 100 images of the maximum and
average score out of the 5 ground-truth segmentations. PMcut is the clear winner on
UE score, especially on images with Gaussian noise. SLIC comes the next place, which
even beats PMcut on images with S& P noise on 1800 superpixels. Meanwhile, CW is
the clear loser, which achieves the worst scores in almost all scenarios.
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Finally, there is a clear tread that with increasing number of superpixels, UE score
tend to get better (lower).

The boundary recall (Rec)

The boundary recall of each method is plotted similarly in Figure Superpixels gen-
erated by ETPS demonstrated the overall best boundary recall performance, and SEEDS
comes the second place. PMcut also performs quite well, rank 2nd place in 6 scenarios
and 3rd in rest. CW performs worst on images with S& P noise in all scenarios, while
SLIC becomes worst on images with S& P noise in almost all scenarios.

Finally, there is also a tread that with increasing number of superpixels, REC score
gets better, with the exception on SEEDS and PMcut in certain cases.

The compactness score (CO)

Furthermore, we evaluate the compactness of superpixels. The comparison result is
illustrated in Figure[3.§]

In comparison with other algorithms, the CO score computed by our proposed
method (PMcut) show a significant advantage over all competing algorithms, with only
one scenario out of eight beaten by SEEDS. On the other hand, although achieving the
bset result in terms of Rec, ETPS has the worst CO score amongst all. We will see in
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Figure 3.8 — Compactness score of each method. Horizontal axis: number of superpix-
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Section [3.6.6] that the superpixels generated by PMcut are very regular and compact,
while those by ETPS are irregular.

The joint score (OP)

Since all the competing algorithms are trained according to OP, it is thus the most impor-
tant score in this section. We report that PMcut achieves the 1st place in all 24 scenarios
(according to number of superpixels, different noise types and ways to compute scores).

Table [3.2] depicts one of 24 scenarios of the OP scores of 5 superpixel algorithms.
In this case, the test images contains Gaussian noise and the methods produce approxi-
mately 600 superpixels. We first compute the average score out of 5 ground-truth seg-
mentation and then average all 100 tested images.

Cw SLIC SEEDS ETPS PMcut
0.71 0.76 0.76 0.77 0.83

Table 3.2 — The combined OP score of 5 superpixel methods in one scenario.

Table [3.3] shows the average OP score amongst all 24 scenarios. Recall that OP is
computed as 0.4x(1-UE) + 0.4% Rec + 0.2xCO.
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Cw SLIC SEEDS ETPS PMcut
0.75 0.80 0.79 0.79 0.84

Table 3.3 — Average OP score of 5 superpixel methods.

Computational time

Another important aspect of superpixel algorithms is computational time. While all the
other superpixel algorithms take less than 1 sec, the running time of PMcut is doomed
by the N'P-hard nature of the MILP formulation. Among those, CW and SEEDS are
the fastest, on average takes only 0.01 second and 0.05 second.

The running time of PMcut is, on average, as follows. The time limit for each rect-
angular patch is 8 secs, 2 seconds, 0.5 second, and 0.2 second, for the desired superpixel
size (also the number of MILPs to solve) of 600, 1200, 1800 and 2400 respectively. The
corresponding total running time for the whole image is 272, 134, 40 and 27 seconds.
Finally, the average Cplex optimality gap is 12.2%, 9.8%, 10.3% and 9.8%, respectively.

One can notice that as the number of rectangular patches increases, the total time
as well as the average Cplex gap decreases. In practice, one can also set different time
limit and MILP gap threshold, so that Cplex will terminate earlier to achieve a better
running time performance. In addition, parallelism can be fully adopted to speed up
computation.

3.6.6 Qualitative comparison

Visual quality can be determined by considering compactness, regularity and smooth-
ness. Here, compactness refers to the area covered by every superpixel, regularity cor-
responds to both the size and the arrangement of each superpixel, and smoothness refers
to the superpixel’s boundary.

Figure shows superpixel results on three images (with both noises) using all
superpixel algorithms, with approximate superpixel number equals 600 and 1200. Note
that these two images are intended to be representative, however, keep in mind that
superpixel segmentations may vary across different images.

Most of the algorithms provide solid adherence to salient image boundaries, espe-
cially when the number of superpixels is large. Compactness and smoothness varies a
lot across algorithms and a compactness parameter is beneficial to control the degree
of compactness which allows to trade boundary adherence for compactness. Ideally,
compactness (CO) should be increased while only slightly sacrificing boundary recall
(Rec).

At a first glance, the superpixels generated by PMcut and SLIC are visually more
appealing than those of ETPS, SEEDS and CW. Superpixels of PMcut are initialized
and bounded by each rectangular image patch, since most of them consist only of back-
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Figure 3.9 — Superpixel results of 5 methods on images with Gaussian and S& P noise.

ground, the resulting superpixels become the rectangular patches themselves. Hence
most of the superpixels are compact and regular in size. PMcut also benefits from the
penalty term A on the boundary length, thus creating smooth superpixels. Although
SLIC is also compact and regular in size, it sometimes loses track of some boundary
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Figure 3.10 — Comparing superpixel methods applied on both Gaussian and denoised
images (PMcut only on noisy images), number of desired superpixels: 1200

details, e.g., the helmet in the third image.

In contrast, although being able to capture most of the object boundaries (with high
Rec), ETPS and SEEDS produce highly irregular and non-smooth superpixels. Their
superpixel size varies a lot, with many tiny superpixels and yet huge ones. One can
hardly recognize the original image if the number of superpixel is large, e.g., ETPS and
SEEDS segmentation results in the second image.

In conclusion, we find that the evaluated ETPS and SEEDS algorithms show inferior
visual quality. On the other hand, PMcut and SLIC demonstrate good superpixel visual
quality at the expense of missing some object boundaries.

3.6.7 Competing algorithms applied on denoised images

We conduct additional experiments by first applying a denoising algorithm [S0] (we
set the two parameters o; = 5 and h = 0.550,, where o,, is the noise variance of
n pixels.) to denoise the 100 BSDS500 images with Gaussian noise. The competing
superpixel algorithms are then run on the 100 denoised images, then we compare their
segmentation results against the results obtained by PMcut directly applied to the noisy
images. The comparison is shown in Figure [3.10, where the approximate number of
superpixels equals 1200 and the scores are computed according to the best of 5 ground-
truth segmentations. The blue line denotes the results on images with Gaussian noise,
while the red one on noisy images.

As one can probably notice, compared with the results on noisy images, almost all
the competing algorithms perform better on the UE and CO scores on denoised images.
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Figure 3.11 — Top: PMcut on S& P images with different o, # = 1200. Bottom: PMcut
on Gaussian images with different time limit, # = 1800.

However, this does not hold on the Rec score, and it actually becomes worse for all
competing algorithms. We think it may be because of the fact that the denoising algo-
rithm smooths the boundary too much. The average running time for the sophisticated
denoising algorithm is over 60 secs per image, hence our running time is superior in this
case.

47



3.6.8 Parameter tuning on PMcut

Finally, we conduct experiments of using PMcut on adopting different values for the
regularization parameter o (0.4, 0.5 and 0.6) and time limit (0.05, 0.1 and 0.15 second)
within each rectangular patch of the input image.

Figure. [5.3] shows the results of the two experiments. The first one with the number
of approximate superpixels equals 1200 and the second one with 1800. Judging from
the plots, it is obvious that when the regularization parameter o grows, the Rec and UE
scores of PMcut become worse while CO better. Also, when the time limit increases,
almost all three scores benefit,. Thus, it is a trade-off between running time and bench-
mark scores. We also report that the average MILP gap when adopting the reported 3
time limits are 12.8%, 10.3% and 9.5%, respectively.

3.7 Conclusions and Future Work

We have presented a combined unsupervised image segmentation and denoising frame-
work that is basically the first derivative Potts model and based on the piecewise constant
assumption. We formulate it into a MILP and add the 4-edge cycle multicut constraints
to cut off feasible but non-optimal solutions. We then apply it for superpixel generation,
where each rectangular patch of the original image needs to solve a MILP. We conduct
extensive experiments on BSDS500 image dataset with noises. Even without parame-
ter training, our method achieves the best performance against 4 other state-of-the-art
superpixel algorithms with optimized parameters on the combined OP score.

Since image noise is unavoidable and there has been so far little work that addresses
superpixel algorithms applied on noisy images, we believe this is a research direction
that deserves the community’s attention.

In the future, better strategies of selecting cuts of PMcut should be investigated. On
the other hand, since our MILP formulation of the piecewise constant Potts model is
guaranteed to get the optimal solution (if no time limit is specified), it is also interesting
to apply it to generate ground-truth results, which could be served as benchmarks for
any fast approximate algorithms.
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Chapter 4

Piecewise affine Potts Model for
Segmentation and Denoising

In this chapter, we assume that the input signals or images contain noise and possess lin-
ear trends. The task of segmentation and denoising is then transformed into a piecewise
linear fitting problem in 2D and 3D.

The Potts model is a classical segmentation and denoising model. However it is
based on the piecewise constant approximation. Many types of images such as disparity
maps (inverse of depth images) have linear trends so that piecewise affine models are
more suitable. Also, robustness to outliers is often desirable which suggests the use of
the ¢, data terms.

In this chapter, we propose a novel solver for the piecewise affine Potts model with
the ¢; data fidelity. The key idea is to formulate the problem as a mixed integer program
(MIP) which uses edges as binary variables. To obtain consistent partitions (segmenta-
tion), the inclusion of the multicut constraints is proposed. Since the resulting problem
is NV"P-hard to solve, we propose a fast region fusion based heuristic that could provide
initial solutions for the MIP solver. An advantage of the approach is that it can be used
on top of any heuristic algorithms and provide an optimality gap for the quality control.
We conduct experiments by some synthetic images as well as some real world disparity
maps. We also apply it for over-segmentation, i.e., generating superpixels.

4.1 Overview

Let D € R? denote the signal domain, and y : D — R denote the given signals’
intensity values possibly with noise. We are most interested in the case when d = 2,
and y corresponds to natural or depth images.
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Figure 4.1 — Fitting a noisy ramp using model (4.1I), where the stair-casing effect is
present. Image taken from [S1]].

For denoising input signals, we recall the total variation (TV) model [29]

min / (w(z) — y(2))*dz + ATV (w) 4.1)
w D

where the first part is the data fitting term, and second part the regularization term.
Here, z represents the coordinates of the input signals (z; and zy-axis if the input is an
2D image), and A > 0 the user defined regularization term. The TV regularizers can be
either isotropic or anisotropic, they are mathematically given by

TV, () = / V10 wP 10wl dz,
D

and

TVam(w) - / (|az1w| + |azzw|) dZ?
D

where 0., represents the partial derivative of w with respect to z;, for i = 1, 2.

Being a first order model, TV model (4.1)) has some shortcomings, most notably the
starircasing phenomenon when the input signals contain linear trend (see Figure 4.1])
or the true (depth) image contains slanted regions [S1, 52]. In this case, the gradient
discontinuities of the data cannot be extracted.

Lysaker and Tai [S3]] provide two second-order regularizers

— 2 2 2 2
Rl(w) - / \/wzlzl + wzlzg + w22Z1 + wZQzQ dZ?
D
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and
Ro(w) = /D (] + [0202a]) d=.

We will adopt a variant of the discrete version of R in this chapter.

We call a function f piecewise affine over D if there is a partition of D into subsets
Dy, ...,Dy where D; N D; = 0 and D = UleDi, and furthermore, f is affine when
restricted to D; (denote the function restricted to D; as f%). Let D be the set of all
partitions of D, and F be the set of all piecewise affine functions over D, then any
choice of f € F pre-defines D' € D. Moreover, if the partition D’ is known, the
corresponding f € F can be easily calculated by conducting an affine regression within
each region D;, for any i € [k].

In this chapter, we are interested the problem of estimating a piecewise affine func-
tion f € F. In contrast to model (3.2), we consider a piecewise affine Potts model,
which we first present the following geometry form of the problem:

smin D%:D/ /Di |(f*(2) —y(2)|dz + APer (D). (4.2)

Here, we adopt the ¢; (absolute) data fidelity term and Per(D;) denotes the perime-
ter of D;.

Apart from denoising, we also look into the segmentation problem. The problem
is often formulated as an energy minimization problem, which is often derived in the
context of Markov Random Fields [54]. The minimum of the energy corresponds to
a maximum a posteriori (MAP) labeling of each pixel. We focus on decomposing an
image into a previously unknown number of segments which do not belong to a prede-
fined set of categories, i.e., the unsupervised image segmentation, where no prototypical
features of the image are available.

Recent notable approaches are the (lifted) multicut problems [324,155] based on the
ILP formulations, which label edges instead of pixels and have exponentially many con-
straints. It is solved by a commercial ILP solver using the cutting plane approaches [3l.
The multicut approach is appropriate when one assumes that the input signals y is ap-
proximately piecewise constant or differs only a little within a segment. Most of the
literature deals with this problem type [3, 23 39,55, 56], including the Mumford-Shah
model [57].

In this work, we propose a novel MILP formulat for the piecewise affine Potts model
with the ¢; data fidelity term (#.2). We will show later that the discrete version of (4.2))
alone does not necessarily impose a unique or even valid segmentation in our setting.
The inclusion of the multicut constraints is then necessary to obtain consistent partitions.

Figure 4.2 shows a synthetic image with noise that has linear trends and its 3D view,
where the horizontal axes (z; and 25) represent the coordinates of the image pixels. The
desired outputs are first a denoised image, and second, a segmentation of the image into
background and four segments.
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Figure 4.2 — A synthetic 2D image with noise that has linear trend and its 3D view.

4.1.1 Related work

The piecewise affine or second order TV model is not new. Back in [58]], Blake and Zis-
serman proposed a second-order variational model. The work of [59]] studies a TV based
piecewise affine regularization problem, and they propose a standard convex program-
ming method by employing the augmented Lagrangian and primal and dual variables.
Recently, [60] generalized the result of [58] to an arbitrary higher order case.

Since the ¢; regularization term over-penalizes the sharp discontinuities between
two regions in an image, Potts model [1] is usually more desirable, but also compu-
tationally costly. The discrete Potts is in general NP-hard to solve. [54] was one of
the first works to utilize the Potts model with ¢, data fidelity. Recently, [31] adopted
the alternating direction method of multipliers (ADMM) method to efficiently solves
the Potts model with ¢5 data term. In contrast, Potts estimators with ¢; data terms has
drawn significantly less attention mainly because of its non-differentiability and hence
computationally harder. The authors of [35]] propose efficient algorithms (based on the
Viterbi algorithm that exploits the special structure of the Potts penalty [61]) that com-
pute Potts estimators of ¢; data terms for real-valued scalar as well as for circle-valued
data.

In applications with regard to depth image, stereo matching and motion estimation,
the input data usually comprises of linear trend, hence piecewise affine models are more
suitable. [62, 63 have incorporated depth information on top of the RGB image, which
largely improves RGB-D image segmentation accuracy when occlusion is present by
modeling the depth image of slanted planars as linear functions. The Blake-Zisserman
model is applied in [64] to a digital surface segmentation, and iterated methods based on
simple thresholding are used. The work of [52] approximates nearest neighbor of each
pixel according to an affine plane in 3D, it achieved top performance among all the local
methods in stereo matching with slanted support windows. Recently, [65] proposes a
new method to estimate piecewise affine motion fields directly without intermediate
segmentation.
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Finally, the problem of piecewise affine regression is also studied in the Operations
Research community. Continuous piecewise linear fitting models are studied in [66]],
where the domain partition is in a sense pre-defined, and the fitting function f is re-
stricted to be continuous over the signal domain D. Both parametric (2.4)) and nonpara-
metric models are studied. A more general n-dimensional data sets with piecewise
linear features have been studied in [67], and formulated using MILP as a parametric
model. But the assumption that the segments are linearly separable from each other
does not hold in many practical applications.

It is worthwhile to highlight some contributions of our method:

* A novel MILP formulation is proposed for the discontinuous piecewise affine
Potts model, which aims for global optimum.

* It adopts the /; norm of the data fidelity term of the Potts model, which is more
robust to outliers than the ¢, norm.

* We add multicut constraints to achieve a valid (depth) image segmentation.

* We propose an approximate and non-parametric model for solving the piecewise
linear regression problem.

4.2 MIP of the piecewise affine Potts model: 1D

We first restrict ourselves to the simple 1D signals case, and our goal is find a piecewise
linear function f (possibly discontinuous over D) that best fits the original data y. We
prefer to work on the discrete space where the signals lie in [n], and similar to Sec-
tion our MIP formulation is also based on graph G(V, F).

4.2.1 Modeling as a MIP

The associated graph G(V, E) for the 1D signals is a chain, and we denote V' = {i | i €
]}, E = {e; = (i,i+ 1) | i € [n — 1]}. We again introduce n — 1 binary variables
defined on edges to indicate if an edge is active or not.

7

{1, if nodes ¢ and 7 4 1 are in different segments,
Lo, =

0, otherwise.

Recall that an edge e is an active or jump edge if x. = 1, otherwise it is dormant. In this
section, we will denote the binary variable z., as x; for simplicity.

Our goal is to fit a piecewise linear function f € F to the input data y, and we
denote the fitting value w; := f(z;), for i € [n]. Similar but different to the piecewise
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Figure 4.3 — An example with 3 linear pieces and 2 jump edges (blue crosses for ¥, red
circles for w, blue pluses for V2w, and blue stars for z.).

constant Potts model in Section [3.2.1} we need the following implications:

Viw =0z 1=2;,=0, i €[2:n—1],
v2wi7é0<:>l’i71—|—l’i21, 1€ [22%—1], 4.3)

where VZw; := w;_; — 2w; +w;, 1, and [2 : n— 1] denotes the discrete set {2,3,...,n—
1}.

The above implications can be modeled via MIP using the “big M technique, which
leads to the formulation

n n—1
min Zi:1|wi -yl + A Zi:l T (4.4)
|V2w;| < M(zi_1 +2;), i €2:n—1], #-4p)
w; €R, i€ [n), @.4p)
z; €{0,1}, i € [n—1], @A)

where A > 0 is the regularization term for the Potts model and again serves as penalty
for the number of jumps.

Following the same trick in Section [3.2.1] by introducing two nonnegative variables
e/ and €] to represent |w; — y;|, one can formulate (#.4)) as a MILP. As a result of (#.4),
we get w; as the fitting value for signal ¢, and x; = 1 as the boundary edges between
two partitions. The pixels between two active edges define one segment, and the signals
within one segment share the same linear slope. Although being nonparametric, the
linear parameters 3 for each partition can be easily computed afterwards using w and
their coordinates z. The number of segments equals Z?:_ll x; + 1.
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Figure 4.4 — An example where outlier exists, i.e., both e; and e,. are active.

Lemma 4.1. The optimal solution x* of problem (@.4)) satisfies properties

Proof. The proof is similar to the proof of Lemma 3.1} and we skip it here. [l

Two obvious implications of Lemma are: if V2w; # 0, then x;_, +x; must be at
least one. On the other hand, if VZw; = 0, the optimal binary variables x satisfy z;_; +
x; = 0 since (4.4) is a minimization problem with positive weights on z. Hence, the
signals within the same segment share the same linear function, and different segments
are separated by active edges. We can conclude that (4.4) indeed corresponds to a
piecewise linear fitting model.

The image on the top of Figure shows an example with 3 partitions and 2 active
edges. The second row shows the value of VZw;, where there are 4 non-zeros, and the
third row the value of binary edge variables x;. Note in this example, the cases where
V2w,; # 0 actually induces optimal binary variables x satisfying z;_; + z; = 1, for
some ¢ € [2,n — 1]. This is again because of the nature of the minimization problem.
However, there exists instances where z;,_; + x; = 2 for V2w; # 0. See Figure
for an example, where the node at position 5 is an outlier (an one signal segment), and
Te, + T, = 2.

Finally, we observe that problem (4.4) does not necessarily have unique optimal
integer solution x. One example is shown in Figure 4.5 where either z., or z., can be
active (but not both), and they yield the same optimal objective value. In this case, the
piecewise linear function f is continuous, and the node at position 2 can be either in the
first or second partition.
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Figure 4.5 — An example with two segments where the optimal solution is not unique,
i.e., either ¢; or e, can be active, but not both.

4.3 MIP of the Piecewise Affine Potts Model: 2D

Given an m X n-grid of pixels with coordinates z; ; = (4,j) € Z? for pixel (i, j) and
the matrix Y = (y; ;) € R™*" of intensity values (i.e., depth information) of the image,
the piecewise affine Potts model is to find a fitting matrix W = (w; ;) € R™*", that
approximates a piecewise linear function f € F.

In contrast to the 1D case, where w; = f(z;), we will show that the fitting values w
within each segment does not necessarily form an affine plane with respect to their co-
ordinates z. Hence, the approach is not exact, but only an approximation of a piecewise
affine regression problem.

4.3.1 Modeling as a MIP

We again divide the edge set £ of the grid graph into its horizontal (row) edge set E"
and its vertical (column) edge set E°. So E = E" U E¢, and E" N E° = (). Denote
ej ; € E" to present edge ((4,7), (4,7 + 1)) and e ; € E* to represent ((i, 7), (i + 1, j)).
Again for simplicity, we denote the binary edge variables z7 ; := Ter, and 7 ; = Teg, -

The approximate piecewise affine Potts model for 2D is obtained by formulating (4.4))
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per row and column

min Zil Z::1 lwi;j — yij| + A ZeEE Te 4.5)

|v72~wi,j| < M(x:,jq +x:j)7 i€m], je2:n—1] (4.5p)
Viw | < M(a5_ ; +a5;), j€nl, ie2:m—1], [#.3b)
wy; €R, i €[m], j€n], (4.5c)

z.€{0,1}, e€ E, (#.5d)

where M is again the big-M constant. Here, V2w, ; = w; ;1 — 2w;; + w; j+1, and
V?wm = W;—1,; — 2w; ; + w;t1 ;. Thatis, the discrete second derivative with respect to
21 and z9-axis.

Upon solving (4.5)), it serves for the purpose of image denoising by computing w.
But two questions still remain: does the integer solution x represent a valid segmen-
tation? If so, does the fitting value w within segment 7 share the same affine function
f?

The answers to both questions are “no”, unfortunately. We will show in the next
two sections that, the first “no” could be fixed by adding the multicut constraints. But
the second one could be only addressed as post-processing, thus making the resulting
model an approximate one.

4.3.2 Multicut constraints for consistent segmentation

We first illustrate one counter-example where the optimal solution x to (4.5) does not
form a valid segmentation.

Lemma 4.2. The optimal solution x* of problem (4.5)) does not necessarily satisfies the
multicut constraints (3.8p)), thus does not form a valid segmentation.

Proof. We prove this lemma by constructing a counter-example as follows:

In the left image of Figure [4.6] the intensities y of all 15 pixels lie exactly on two
affine planes with respect to their coordinates z = (z1, 25). The affine function of the
left plane is y = 4 — 2, and the right one is y = zo. We shall see that the 3 pixels with
intensities y = 2 lie on both affine planes with respect to the coordinates z.

If we project each column of the pixels in 3D into the 2y, y-space, the intensities y
of each five pixels lie in the same straight line, hence no jumps occur. If we project it
into the 29, y-space, for every row (5 pixels) of the image grid, it is exactly the case we
studied in Figure4.5] We have showed there that the optimal solution is not unique. For
instance, either ¢; or e, can be active, but not both.

Since we construct the problem without adding any noise, the optimal fitting error
between w and f (the data term of the Potts model) equals zero, and the objective func-
tion value equals 3\. Note that there are multiple optimal solutions that can achieve the
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Figure 4.6 — A counter-example where model (4.5]) does not form a valid segmentation.
Left image: 3D view of input image. Right image: the corresponding graph.

same objective value. For example, the two blue edges plus one red edge in the right im-
age of Figure[4.6] However, this solution does not satisfy the multicut constraints (3.8,
since there exists one cycle (e.g., cycle eg-e1-e2-e3) that violates it. Hence, we have
found an optimal solution z to (4.5]) that does not form a valid segmentation. [l

Note that in the above illustrated example, it may be possible for the MIP solver to
reach at an optimal solution which is also feasible with respect to segmentation (i.e., the
2 dashed blue edges plus the black one in the same column are active). However, this
can not be guaranteed, since the two solutions have the same optimal objective value
3. This is usually referred to as symmetry in combinatorial optimization, and hence the
multicut constraints (3.8R) are, in a sense, symmetry-breaking inequalities with respect
to the denoising problem of problem (4.5]). For more literatures on symmetry-breaking
constraints in combinatorial optimization, please see [37].

4.3.3 The main formulation in 2D

We thus need to add the multicut constraints (3.8R]) to the piecewise affine Potts model (#.3])
to form a valid segmentation.

The main formulation of this chapter is then obtained by adding the multicut con-

straints (3.8) to the Potts model (4.5))
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Figure 4.7 — An example with a 9-pixel segment.

min (1= 2) Zi:l Zj=1|wi’j ~ Yisl + A ZeeE e (4.6)
[Viw; ;| < M(zi;_ +aj;), i€m], je2:n—1], @6h)
V2w | < M(xf ;4 a5), jeh, i€2:m—1], @bb)

> T C !
ZeEC’\{e’} Te > T, VeyclesC C E e € C, (4.6c)

W5 € R, 1€ [m], J € [TL], @i)
z. €{0,1}, ec E. (@.6e)

Note that the number of multicut constraints (#.6f)) is exponential, hence is not pos-
sible to include into (4.6) at one time. We will discuss about the solution techniques in
Section4.4] as well as the strategies for computing all the parameters of (4.6)).

4.3.4 Approximate model for piecewise affine regression

In this section, we show that formulation (4.6) in 2D does not necessarily correspond
to an exact piecewise affine fitting problem as in (2.4) or (2.5)), hence an approximate
model.

Theorem 4.3. The optimal solution w* of problem (4.6) does not necessarily corre-
sponds to a feasible solution in the nonparametric piecewise affine fitting problem (2.5).

Proof. We prove this theorem by constructing a counter-example where the optimal
solution w* of (#.6) within one segment does not form an affine plane with respect to
the coordinates z.

Suppose an optimal solution z* produce the resulting segmentation in Figure
where 9 pixels on the top left form one segment. We restrict ourselves to this segment
where the coordinates of the pixels range from (0, 0) to (2, 2).
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By constraint (.6R)), the w* of 3 pixels on each row satisfy the same linear function.
Assume in the first row, the linear function ¥ = a,2; + b1, and y = asz; + by for the
second row. Then the fitting value w of the 6 pixels on the first two rows can be easily
computed, and shown as follows:

b1 CL1+bl 2a1+b1
bg a2+b2 2a2+b2 '

According to constraint (#.6p), we can compute w5 using the values of wgy and ws,
and woy = 2wy — woy = 4as + 2by — 2a; — by. We then test if the w* of 3 diagonal
pixels of W € R3*3 lie in the same linear function, where

Woo — 2w11 + woy = 2(as — ay).

For any constants a; # as, the both sides of equation do not equal to 0, hence the
fitting value w* of the 9 pixels does not lie in the same affine function.
O]

Note that although the optimal solution w* of the main model does not nec-
essarily satisfy any piecewise affine function f € F, we can still fit an affine function
within each segment once we have a valid segmentation. Hence, we get a valid piece-
wise affine function f € F as post-processing.

4.3.5 Cardinality and bounding constraints

If one has prior knowledge about the MIP problem and its solutions, one can add addi-
tional cuts to reduce the feasibility solution set.

Similar to Section [3.3.3] one of such cuts is the cardinality constraint. When work-
ing on 2D images, one can add cardinality constraints (3.10) per row and column. In
addition to that, we could also add the lower and upper bound constraints for the fit-
ting variable w. Denote the lower and upper bound of w;; variable L;; and U;;. The
corresponding bounding constraints for w;; is then the following

Wsj S [sz>U2j]

This strategy was reported to achieve better results in [32].

We need some strategy of automatically computing the bounds on the number of
jumps k (of the cardinality constraints) and the fitting value w. We will show com-
putational experiments in Section [4.5] on the effects of adding the above two types of
constraints to the MIP formulation (4.6)).
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4.4 Solution Techniques

The resulting problem is again a MILP and in general A/P-hard to solve, hence a
fast heuristic is desired to provide a feasible solution as a starting point for the solver.

4.4.1 Region fusion based heuristic for piecewise affine regression

Like in Section [3.4.1] we adopted the region fusion based greedy algorithm in [4] to
provide an initial solution for the piecewise affine Potts model (4.6). The modified
algorithm is similar to Algorithm [3.1] except for the following three changes:

* The algorithm starts with all groups of 2 x 2 squared pixels belonging to one su-
perpixel V;. If the image can not be perfectly divide by squares, we just merge the
rest pixels to their nearest group. We then perform a parametric affine fitting
within each group V;, and denote ° = (i, 3}) as the affine coefficients, where
Bi € R% We then let Y; in Algorithm [3.1| equals (3, and hence is a vector of
length 3.

* The merging criteria (3.12)) is still
Tl Yi = Vil < ki (7 4 75)

where Y; = 3° € R? is the affine coefficients of group 7 after we conduct an affine
regression within the group.

* If the above condition holds, we merge group V; and Vj into Vi, and the updated
wy is obtained by conducting an affine fitting of the new group V.

As apposed to Section [3.4.1] the above method to compute the fitting matrix ¥ no
longer corresponds to a minimizer of the following Potts mode:

min 7 [Jw; = Yilly + 75 [Jw; = Yl + s [ = wylly -

However, since we would like Y; to represent the slope of group V/, this is a better way
to preserve the slope of the resulting group. We will adopt the same growing strategy
for parameter « in Section 4.5}

4.4.2 Exact branch and cut algorithm

Different from the piecewise constant Potts model (3.7]), the MILP formulation of the
piecewise affine Potts model (4.6)) has exponential many constraints. This is due to the
presence of the multicut constraints (4.6f).
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Hence, apart from the usual branch-and-cut algorithm inside the MIP solver as de-
scribed in Section[2.5.3] we will focus on the cutting planes method that iteratively add
constraints of type (@.6L)) in this section.

Cutting planes. Similar to the cutting planes method that solves the multicut prob-
lem ((3.3.1) as described in [3]], we start solving the MILP (4.6)) by ignoring constraints
(4.6(), or with few of them (e.g., the 4-edge cycle constraints (3.9)). We then check the
feasibility of the resulting solution. If it is already feasible with respect to ([@.6), we
are done and the optimal solution to is achieved. Otherwise, we identify current
separation problem and then add the corresponding violated constraints (cuts) to (4.6))
(to cut off the current infeasible solution). We then resolve the resulting MILP, and this
procedure is repeated until the solution of the MILP is feasible.

Separation problem. Although the separation problem for constraints (4.6F) is
generally AV/P-hard, it is polynomial to separate integer infeasible solutions at every
iteration. As the branch-and-cut algorithm proceeds within the MIP solver, one gets
an integer solution of (@.6)) without the multicut constraints (.6(). A simple algorithm
mapping the edge labeling to node labeling of the graph is invented and applied. One
can then test the feasibility of the current integer solution (with respect to the multicut
constraints (4.6)) by checking if there exists an active edge (z. = 1) where the two end
nodes have the same label.

If so, the current integer solution is infeasible and the separation problem then tries
to seek an violated constraint to be added into the original problem, to cut off the current
infeasible solution. This could be done by conducting a breath-first search algorithm
where the start and end node are just the two nodes of the active edge. For more details
on how to detect the feasibility of the current integer solution and identify the violated
constraints, please see [23].

Finally, there are two things that could be looked into in future research. Firstly,
the cutting plane method could be also applied on fractional solutions, where the user
needs to set a threshold so that the edges above it are considered active and vise versa.
This way, more cuts will be added. Secondly, the breath-first search algorithm in the
separation problem adds a valid inequality to the multicut polytope (.5,,), but not nec-
essarily a chordless cycle constraint. As we already know in Section [3.3.2] if the cycle
is chordless, the corresponding multicut constraint is facet-defining. Hence, one may
design an algorithm that is guaranteed to find a chordless cycle. However, this may
increase the complexity of the separation problem. A detailed study is beyond the scope
of this chapter and we leave it for future research.

4.5 Computational Experiments on Synthetic Images

Based on the MILP formulation of the piecewise affine Potts model (4.6)), we develop
and compare several variants and report their computational results. We also compare
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model (4.6) against the total generalized variation model [60]]. The experiments in this
section are based on 2 synthetic images with size 32 x 32 and 28 x 32 as shown in
Figure [4.8]and [4.9] We normalized the pixels’ intensities y to [0, 1].

Figure 4.8 — A synthetic image with 4 affine pieces and with Gaussian noise, 2D and
3D view.

Figure 4.9 — A synthetic image with 4 affine pieces plus background and with Gaussian
noise, 2D and 3D view.

We will conduct comparisons of the following variants of models:

MP: The MILP formulation of the piecewise affine Potts model (4.6)), solved
using cutting plane method described in Seciton4.4.2]

MP-LP: The linear programming relaxation of problem MP.

MP-4C (MC): Problem MP with the 4-edge cycle multicut constraints as initial
inequalities, which we will later denote MC for simplicity.

MC-C: Problem MC with cardinality constraints introduced in Sectiond.3.5]
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* MC-B: Problem MC with bounding constraints on the fitting value w, also intro-
duced in Section [4.3.5]

* MC-M: Problem MC which uses different parameter to compute )/ automati-
cally.

* MC-H: Problem MC which adopts the solution of our heuristic as an initial input
for the MILP solver.

* TGV: The total generalized variation model introduced in [60], which we will
use the second derivative model here.

4.5.1 Automatic computation of parameters

Parameter M is for the “big M” constraint in problem MP (#.6). In principle, it should
be big enough so that the “big M” constraints (4.6pJ4.6b) are always valid. On the other
hand, it should be not too big, or it may harm the tightness of the LP relaxation. Denote
M as the big M constant for row 7, and MJC for column 7, further denote y. be the
vector of y values in row i, and yj; for column j. We compute M separately for every
row and column, and set M to the largest value of |V?y!'| for the row i, and M i to
the maximum of |V?y¢|. Here, the absolute functional of a vector |(z1, z3, ..., y)| =
(|z1|, |z2l, - - -, |xn|). Recall that the discrete second derivative V*y of a vector y € R"
is defined as the n — 2 dimensional vector (y; — 2ys + Y3, Y2 — 2ys + Ya, - - -, Yn—2 —
2Y,—1 + yn). We further multiply it by an user defined factor &; to make M big enough.
So M} = & -max; |V?yf|, and M{ = & - max; [Vys].

Parameter A is the regularization term employed to avoid over-fitting in problem
MP (4.6). We will set \ independently for each row and column, denoted A} and \§. We
let A} = 3& - max; [V?y7| and X = &, - max; |V?y5|, where & is another user defined
parameter.

As we assume the input image contains noise, when there exists an outlier at pixel
(4, 7), MP will tend not treat it as a one-pixel segment. Since otherwise, the four associ-
ated edges to (i, j) are then all active , which will incur the penalty value of 2(A] + Af).

Parameter L and U are the lower and upper bound on the fitting value w associated
with the bounding constraints in Section 4.3.5] Denote the upper and lower bound of
variable w;; in (4.6) L; ; and U, ;. We let L; ; be the smallest y value of the neighboring
8 pixels plus w;; itself, and U; ; be the largest. We further multiply (divide) U; ; (L; ;)
by an additional user defined factor {3 > 1 to ensure feasibility.

Parameter J is the upper bound on the number of active edges (jumps) associated
with the cardinality constraints in Section[4.3.5] Let J! denote the upper bound on the
number of jumps in row ¢, and J; for column j, respectively. The user then selects a
threshold &,, and J7" is computed as the number of entries in |V?y!| that is no less than
&, - max; |[V2y7|. That is, we neglect small values in |V?y7| that is below the threshold
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second derivative value, and only consider those with large values as potential active
edges. The values of J; are computed similarly for every column j.

4.5.2 Detailed comparison of different models
MP versus MP-LP

We first conduct computational experiments on solving MP-LP against MP. When it
comes to the separation problem of MP-LP, we will treat any edge with x. > 0.0001 as
an active edge, and then the algorithms run just like MP. We set the parameter M to 1, L
to 0 and U to 2 to ensure feasibility of (4.6). We further set {&; = 1 for the regularization
parameter A. We are most interested in the percentage of fractional solutions of the
binary edge variables z* of MP-LP.

The percentage of fractional solutions for the 2 images are: 74.5% and 75.9%. The
running time of MP-LP for the 2 images are: 0.10 and 0.07 second.

Because of the big M constraints ({#.6a/4.6b) and the assumption that M is big
enough, constraints (4.6pl4.6p) will hold even if x is very small. This cause a very
high percentages of fractional solutions when we just solve the LP. Hence, sophisti-
cated rounding methods must to be applied as post-processing, hoping to get an integer
feasible solution of the Potts model (.6). However, the optimality is not guaranteed,
not even the feasibility. On the other hand, by solving MP, we not only get a feasible
solution, if no time limit is given, we will also get the optimal solution of (4.6)).

We will report the computational analysis of MP in the next section.

MP versus MP-4C (MC)

We conduct computational experiments on solving MP with and without the 4-edge
cycle multicut constraints as initial inequalities. Starting from this section, we set a
time limit of 50 seconds for the MIP solver. We further let M/ = 1 and & = 0.5 for
computing \.

Without these constraints, the MIP solver failed to find any active cuts in both images
within the time limit, i.e., all x equals 0 and the segmentation contains only the whole
image as one segment.

We report the energy, MIP gap and running time of all 4 scenarios in Table [@.1]
As we can see, MP-4C greatly improves the results, e.g., reducing the MIP gap from
82.1% to 20.2% in the first experiment. The segmentation results of MP-4C are plotted
in Figure .10

Since in both experiments, MP-4C shows promising results. From now on, we will
make it a baseline for competing against other models.
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Figure 4.10 — Segmentation results of MP-4C.

Image 1 w/o Image 1 w. Image 2 w/o Image 2 w.
Energy 511.3 109.8 534.9 38.2
Gap 82.1% 20.2% 94.8% 34.8%
Time 50 50 50 50

Table 4.1 — Statistics of MP with and without the 4-edge cycle constraints.

MC versus MC-C

In this section, we will test if adding the cardinality constraints (introduced in Sec-
tion to MC speeds up the computation. We let {4, = 0.4 for computing the upper
bound on the number of jumps. And we again set M/ = 1 and & = 0.5.

We report the energy, MIP gap of all 4 scenarios in Table 4.2 We can see that in
both cases, MC-C has worse energy and MIP gap. The segmentation results of MC-C
are plotted in Figure {.T1]

Note that we also tried to set £, very high (thus the upper bound J becomes small),
and this resulted in unwanted solutions. For example, we encountered an extreme sce-
nario where J; = 0 in Figure[4.9] i.e., it is constrained that there is no active edge in the
first row of the image grid (which should be two ideally).

Image 1 w/o Image 1 w. Image 2 w/o Image 2 w.
Energy 109.8 154.4 38.2 38.9
Gap 20.2% 43.2% 34.8% 38.8%

Table 4.2 — Statistics of MC with and without the cardinality constraints (MC-C).

MC versus MC-B

We test if adding the bounding constraints (introduced in Section 4.3.5)) to MC speeds
up the computation. We let {3 = 3 and 1.5 for computing lower and upper bounds for
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Figure 4.11 — Segmentation results of MC-C.

variables w. And we set M = 1 and & = 0.5.

Table [.3|reports the energy, MIP gap of 5 different scenarios. We can see from the
table that MC-B achieves better performance in terms of both energy and MIP gap on
the first image. However, on the second image, only the energy (best feasible solution)
improves when &3 = 1.5. The segmentation results of MC-C are plotted in Figure

30

35

Imgl Imgl, Img?2 Img?2, Img?2,
{3 =3 £ =3 £ =15

Energy 109.8 106.9 38.2 41.4 37.8
Gap 20.2% 15.7% 34.8% 47.7% 38.6%

Table 4.3 — Statistics of MC with and without the bounding constraints (MC-B).

Note that in theory, we prefer L and U to be as tight as possible. However, this is not
possible in practice, as we encountered an extreme scenario with small {5 where Cplex
failed to find any feasible solution within the time limit.
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Figure 4.12 — Segmentation results of MC-B with {5 = 3 and 1.5 for the second image.
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Figure 4.13 — Segmentation results of MC (£, = 0.5) and MC-M (&, =
second image.

2.5) on the

MC versus MC-M

In this section, we conduct computational experiments on changing values of M and we
are interested if this affects the computation. We let & = 1.5, 2 and 2.5 for comput-
ing M. We again let £&; = 0.5 for computing \.

The energy and MIP gap of 5 different scenarios are reported in Table f.4] where
we notice MC-M improve both scores in the first image. Although both models achieve
more or less the same energy (38.2) on the second image, the segmentation results of
MC and MC-M are plotted in Figure .13] showing a significant difference.

Img 1 Img 1, Img 2 Img 2, Img 2,
& =2 & =25 &=15
Energy 109.8 106.9 38.2 38.2 64.8
Gap 20.2% 17.6% 34.8% 39.5% 60.9%

Table 4.4 — Statistics of MC with different big M value.

Note that in theory, M should be big enough for constraints (#.6pl4.6p) to hold.
However, if M is too big, it may harm the effectiveness of the LP relaxation. On the
other hand, if we set & too small, it may happen w could not take its desired value
because the right hand side of constraints is not big enough. Hence, cares must be taken
when choosing the right value for &;.

MC versus MC-H

In this section, we test the effects of adding initial solutions computed by our region
fusion based heuristic (introduced in Section [#.4.T]) to the MIP solver. We are interested
if this could help improve the computational results. We again let M/ = 1 and £ = 0.5,
and the time limit is 50 seconds.
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Figure 4.14 — Segmentation results of MC-H.

Our heuristic algorithm is fast to compute, only takes 0.12 and 0.09 second on the
tested two images. Keep in mind that we only provide the MIP solver with initial so-
lutions to the binary variables x of problem (@.6). Hence it takes time for the solver to
compute the resulting continuous variables w by solving a linear program. We report
that it takes 1.1 and 0.8 seconds for the solver to get feasible solutions with objective
value 416.9 and 129.4. Moreover, the MIP solver is able to search for new feasible
solutions based on the provided initial solutions, and the user can control the efforts of
the search by setting different parameters in the solver. We report that the MIP solver
found better solutions with objective 142.9 and 52.6 in 5.2 and 4.6 seconds on the first
and second image, respectively.

The energy and MIP gap of 4 different scenarios are reported in Table 4.5 where
the row “Initial” denotes the energy of the initial solution found by MIP solver’s default
heuristic (column “w/0”) and by our designed heuristic (column “w.”). We notice that
our region fusion based heuristic provides the MIP solver an initial solution with much
lower energy, and this help improve scores on the first image. While it is not beneficial
on the second image, we argue it may be related to the extra effort on exploring new
solutions based on the initial input. In addition, different branching strategies due to the
given initial solution may also cause different computational behaviors.

The segmentation results of MC-H based on initial solutions computed by our region
fusion based heuristic are plotted in Figure [4.14]

Image 1 w/o Image 1 w. Image 2 w/o Image 2 w.
Initial 511.3 416.9 534.9 129.4
Energy 109.8 109.2 38.2 50.6
Gap 20.2% 19.7% 34.8% 52.2%

Table 4.5 — Statistics of MC with and without the initial solution (MC-H).
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Figure 4.15 — Results of MC-M-B on the first image, 2D and 3D plot.

MC-M-B versus TGV

While TGV is designed for denoising, it does not have a systematical way to parti-
tion the given image. Our model, apart from denoising, treats image segmentation as
an edge labeling problem, where the active edge denote the boundary edge between
two segments. In this section, we present a comprehensive comparison between TGV
against our model MC-M-B (MC-M with the bounding constraints).

For the first image, we set §; = 1.5, £, = 0.5, {3 = 1.5 and time limit to 50 seconds.

The solution of MC-M-B plotted in Figure i.15]is found in less than 1 second, and
the MIP gap equals 12.4% upon hitting the time limit.

The solution found by TGV is plotted in Figure[4.16] both in 2D and 3D. We choose
the parameters 0y = 0.8, 02 = 0.1, and the number of iterations is set to be 5000.

Figure 4.16 — Output of TGV on the first image, 2D and 3D plot.

For image 2, we have the same parameter as the first image. The solution of MC-
B-M plotted in Figure is found in 41 seconds, and the MIP gap equals 27.6% upon
hitting the time limit of 50 seconds.
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Figure 4.17 — Results of MC-B-M on the first image, 2D and 3D plot.

The solution found by TGV is plotted in Figure[4.18] We set the parameters of TGV
01 = 0.6, 02 = 0.05, and the number of iterations is again set to be 5000.

35 30
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

Figure 4.19 — Segmentation results of MC-B-M on two synthetic images.

Concluding from the above comparisons, our model presents approximate piecewise
affine results, while TGV does not. However, note that each piece out of our model is
not necessarily affine. One example could be seen in the right image of Figure 4.17]
where the front red piece is not affine.

Finally, the segmentation results of MC-B-M on both images are plotted in Fig-
ure 4.19] presenting a “perfect” partitioning of the input two synthetic images.
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Figure 4.20 — Photo taken by a normal camera of HCIBOX (left) and inverse of the
depth image (right).

4.6 Computational Experiments on Depth Images

4.6.1 The HCIBOX depth instances

Additional computational tests are carried out on the HCIBOX depth instances [68]]
(Figure [4.20).

The left image is taken using a normal camera. A time of flight camera is used to
produce a depth image of the same scene, where each pixel now represents the distance
of the object to the camera. The right image is obtained by taking the inverse of the
depth image. As we can see from the 3D plot in Figure #.21] it exhibits the piecewise
affine property with respect to its coordinates. The image is of size 158 x 158.

ol ww"‘ﬂ!!'wuﬂnn .

Figure 4.21 — 3D plot of the HCIBOX instance.

We resize the image to 50 x 50, and adopts MC-M-B for the task of segmentation
and denoising. We set &; = 15, & = 6, &3 = 10 and the time limit to 200 seconds. The
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Figure 4.22 — Segmentation result of HCIBOX using MC-M-B.

MIP solver loaded our heuristic solution with objective value 284.9 in 0.86 seconds, and
found a better one with reduced objective 56.4 in 12.8 seconds. It did not find any better
solution, with MIP gap equals 94.0% given the 200 seconds time limit.

The segmentation results of the HCIBOX instance based on the initial solution com-
puted by our heuristic is plotted in Figure [d.22] where the red lines denote active edges
in the left image. As we can see from the result, our model characterize most of the
affine shapes, while still missing some details. For example, the top left dark blue piece
should be ideally divided into two.

4.6.2 The Middlebury Stereo Dataset

We further conduct experiments using the Middlebury Stereo Datasets in [69], where
the instance of “Teddy” is tested. Figure[d.23|shows the original color image along with
its disparity map. The later is produced using two images of the same scene taken from
different locations.

Figure 4.23 — The Teddy image (left) and the disparity map (right).
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Figure 4.24 — Left: segmentation result using our heuristic. Right: MC-M-B-C result.

We add salt and pepper noise to the ground-truth disparity map. We again resize the
image to 50 x 50, and first apply our region fusion based heuristic, where A = 0.2. The
heuristic takes only 0.2 seconds, and the segmentation result of the heuristic is plotted
in the left image of Figure {.24]

We adopt MC-M-B-C (MC-M-B with the cardinality constraints) to solve it. We set
& =05,8& = 0.6, & = 5and £ = 0.2 for the cardinality constraints. The time limit is
set to 200 seconds.

Due to the presence of the cardinality constraints, the initial solution provided by
our heuristic is not feasible to MC-M-B-C. However, the MIP solver is able to “fix” the
initial solution and find one with the objective value 96.2 within 10 seconds. It did not
find any better solution, and the MIP gap equals 82.1% upon hitting the 200 seconds
time limit. Again, some details have not been segmented, like the teddy bear in the top
right.

The segmentation results of both our heuristic and MC-M-B-M on the “Teddy” in-
stance is plotted in Figure .22 where the blue and red lines denote active edges in the
segmentation.

4.6.3 Strategies towards larger images

Since all our models are NP-hard to solve, the computational experiments are so far
implemented only on small images up to size 50 x 50. When dealing with larger im-
ages, we could first divide the image into subimages and apply our model within each
subimage. Just like in Section[3.6] it could then be used to generate superpixels on depth
images or disparity maps.

One example is presented in Figure[d.25] which generates superpixels on the “Teddy”
instance. The image is of size 881 x 734. Here, 180 subimages are first created, then
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Figure 4.25 — Superpixel generation on the Teddy disparity map.

MC is applied within each subimage, with £&; = 0.2.

Due to certain environments which lack object’s color information, there have been
recently active research efforts on generating superpixels on depth image, without using
any RGB features. Examples are the works by [70, [71]. An extensive comparison
between our methods with them will be conducted in future research.

4.7 Conclusions

In this chapter, we have presented a combined unsupervised image segmentation and
denoising framework that is based on the approximate piecewise affine Potts model. We
formulate it as a MIP and solve it with a standard optimization solver.

We conducted extensive experiments on different variants of models and study the
effects of adjusting parameters. We have introduced its application to depth image de-
noising and segmentation, as well as superpixel generation on depth images. Potential
fields such as stereo reconstruction and stereo matching are both applicable, since they
often meet the piecewise affine assumptions (e.g., slanted surfaces in [72]]).

Since our model deals with the more general piecewise affine fitting problem, appli-
cations beyond the scope of computer vision are also of interest and will be investigated
in the future.
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Chapter 5

Multi-label MRF with Connectivity
Priors for Interactive Segmentation

Integer Linear Programming (ILP) formulations of Markov random field (MRF) models
are standard in computer vision, usually with only local priors [24, 39, 41, 156, [73].
Global connectivity priors were investigated previously [74} [75]], but they all restricted
themselves to Linear Programing (LP) relaxations [74, [75] or simplified versions [40].
In this chapter, we investigate solving the ILP of the multi-label MRF with connectivity
priors to globally optimal solutions, based on some user scribbles input. Since the
resulting problem is A/P-hard, we propose a fast heuristic algorithm that is adapted
from the region fusion method [4]]. The commercial ILP solver such as Cplex can thus
utilize the solution provided by the heuristic as an initial solution. Since it provides
globally optimal solution, it can be used off-line to generate ground-truth labeling, that
serves as quality check for any fast heuristic algorithms. Although segmentation serves
as the main application in this chapter, denoising could be achieved easily afterwards.
We demonstrate the power and usefulness of our method by extensive experiments on
the BSDS500 [S)] and PASCAL [76] image datasets, with and without noise. We also
test on medical images with trained probability maps.

5.1 Overview

In contrast to unsupervised and fully supervised image segmentation, interactive im-
age segmentation deals with partitioning an image based on user-provided input, which
could be treated as semi-supervised (only a small part of the data is labeled). It is widely
used, i.e. almost all major image editing softwares (Adobe Photoshop, GIMP etc.) fea-
ture some interactive segmentation algorithms.

Like the name suggests, interactive image segmentation needs human interactions.
One has to provide information on what he would like to segment, usually by drawing
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Figure 5.1 — Two ways to provide user input for an interactive image segmentation: the
left image uses bounding boxes, while the right one uses scribble based tools.

rectangular bounding boxes [38], 39, scribbles [39, 77, [78], or just single dots [40] on
the input image, as illustrated in Figure[5.1] The bounding box is one of the most eco-
nomical in terms of user interactions. It takes only two mouse clicks and the assumption
is, the desired segmentation should be close to each side of the bounding box. The seg-
mentation algorithm then automatically assigns labels to unlabeled pixels and produces
a segmentation result based on this input.

Many vision problems, including (semi-)supervised image segmentation, can be for-
mulated using Markov Random Field (MRF). The maximizing a posteriori in an MRF
(MAP-MREF) has proven to be successful for many computer vision problems. Applica-
tions include image segmentation, denoising, tracking and stereo, among others. Please
see [2, 21}, 22]] for an overview of MRF optimization algorithms and applications in
vision.

In the standard version of MRF with pairwise relations (potentials), we have an
undirected graph G = (V, F) and the following energy minimizing problem:

E(x) = ZPGV 0, () + Z@,@@ By (2, T,).- (5.1)

Here, z,, denotes the label of node p € V' got assigned, which belongs to a pre-defined
finite set £ = [k| representing k classes (Recall that [k] = {1,...,k}). 6,(x,) is usually
called unary potential or data term, and is derived from the observed data (like pixels’
color information), and it measures how likely label z,, fits node p. 6,,(z,, z,) is often
referred to as pairwise potential. It measures the cost of assigning labels z,, z, to the
adjacent nodes p, q. Typically, this term is used to impose spatial smoothness and to
align the solution to object boundaries. The goal is to find a labeling x (i.e., a mapping
from V' to £) of all nodes that minimizes &€ (x), which corresponds to MAP-MRF.

At object boundaries, adjacent nodes often have different labels and it is crucial
that £ does not over-penalize such labellings. This requires that ,, be a nonconvex
function of |z, — z,|, and this property is called discontinuity-preserving. Given two
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classes «, § € £ and a constant )\, that depends on edge (p, ¢), the Potts function

Opg(cr, B) = Apg - L # B)

is discontinuity-preserving and widely used in computer vision, among many other
models. Recall that 1(-) is 1 if its argument is true and 0 otherwise. However, min-
imizing energy with Potts function is a difficult problem (N P-hard in general).

Because of its A/P-hardness, it is common in vision to solve the approximations
of (5.1). For example, message passing algorithms [[79, [80] and «a-expansion [56] with
guaranteed approximation ratio of 2. The corresponding condition for the later algo-
rithm is nonnegative edge weights and the so-called submodularity, which can be ex-
pressed as

Opq(B,7) + Opg(r, ) < 0pg(, ) + Opq(r, ),

for all labels «, B,y € L.

The standard model in imposes a limited class of constraints on the solution,
since it only incorporates unary and pairwise potentials. Due to this reason, there is
an ongoing research effort in computer vision towards encoding high-order constraints
in MRF. These include, for example, shape compactness [81], shape convexity [82],
curvature regularization [83]] and label connectivity [40, (74, [75], among many other
high-order priors.

In this chapter, we investigate exact connectedness priors imposed on each label,
with one additional “background” label that is possible to be disconnected. More pre-
cisely, we are interested in solving (5.1)) to global optimality, while adding a high-
order (global) prior to (5.I) to explicitly enforce the connectivity of each label (to
be made more precise in Sec. [5.3.1). A k-label segmentation of the image in this
chapter is a partition of the corresponding graph G(V, E') into k connected subgraphs
{G1(V1, Ey),Go(Va, E), ..., Gi(Vi, Ex)} such that UY_ | V; = V,and V; N V; = 0, for
any ¢ # j. Without loss of generality, we will assume that the node set V; of partition G
is assigned with label /, and we will not distinguish an image segmentation from a graph
partitioning.

5.1.1 Related work

Interactive image segmentation is very popular in vision, among which scribbles based
user input [39,[77, 78] is widely used. Users are supposed to have some prior knowledge
about the segmentation, and the provided annotation can either label certain pixels, or
exclude outliers in the image.

Image segmentation under connectivity constraints has been considered in the lit-
erature [40, 75, 184} 185], but most of them only solve local or approximate solutions.
In [40], a binary MRF with connectivity is considered, and a simplified version (only
the user-provided pairs of nodes must be connected) of the problem is proposed. The
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problem is then solved with a heuristic-based graph cut algorithm [86], obtaining con-
nected foreground segmentation.

Exact global connectivity potentials are formulated as an ILP in [75], where the
authors introduced the connected subgraph polytopes. Due to the high computational
cost of solving the corresponding N P-hard problem, the authors of [75] only examined
the LP relaxations of the ILP. Although the general ILP formulation works for multi-
label MRFs, the authors applied it only to binary MRF problems, and showed the LP-
relaxation works well in practice (only a small portion of variables remain fractional).
In [85]], the authors optimized a linear (unary-potential) objective function subject to
connectivity constraint in a binary (two-region) segmentation problem. It is claimed
that two medical benchmark datasets are solved to optimality for the first time. The
model does not consider the general multi-label pairwise MRF objective in (5.1)), which
is of wide interest in computer vision applications.

Finally, it is worth to mention that the subgraph connectivity problem has also at-
tracted much attention in the operations research community. For instance, it has been
applied in the forest planning problem [84], where each subregion of the forest is con-
strained to be connected.

5.1.2 Contribution

This chapter extends [40, [74}[75) 185] and investigates interactive multi-label MRF with
connectivity constraints. To solve the resulting ILP problem to optimality, we propose a
branch-and-cut method, which provably finds globally optimal solutions. This method
enforces connectivity priors iteratively by a cutting plane method, where the separation
problem at each iteration can be solved efficiently using a breadth-first search algorithm.

To solve the resulting A/P-hard problem more efficiently, we propose a fast simple
heuristic adapted from [4] that produces very good feasible solution as an initial input
for the ILP solver. The solver provides better solutions as the branch-and-cut method
proceeds and a guarantee on sub-optimality (in terms of the optimality gap) even if
we terminate it earlier. Unlike [74, [75], which examines LP-relaxations of the ILP,
our method provides feasible solutions at any time and also global optimum guaran-
tee. Different from [40], we consider exact and global connectivity and do not reduce
the problem to connectivity between a given pair of nodes. The proposed ILP is quite
general, and can be applied as a post-processing method on top of any existing multi-
label segmentation approach with connectivity priors. Furthermore, it can also be used
to generate ground-truth proposals for any state-of-the-art weakly supervised semantic
segmentation techniques. For instance, those based on partial scribble-based annota-
tions [[87]].
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5.2 MRF with Pairwise Priors

We first review the standard ILP formulation of the pairwise MRF. Following the nota-
tion of [73]], where d(a, b) denotes any label distance on a, b € L, the ILP of the general
pairwise MRF reads

min, > Y Oy(a)zy(a) + Y Ay Y dla,b)ay(a,b) (5.2)
(

acL peV p,q)EE a,beL

Z zp(a) =1, VpeV, (5.2p)
=x4(b), Yoe L, (p,q) € E, (5.2b)

=x,(a), Yae L, (p,q) € E, (.2k)
c {0,1}, (5.24d)

where the binary variable z,(a) indicates if vertex p is assigned label a, and x,,(a, b)
indicates if vertices p, ¢ are assigned label a,b. The first constraint (5.2) express the
fact that each vertex must receive exactly one label, and constraints (5.2p) and (5.2E)
maintain consistency between variables z,(-), z,(-) and 2,,(-, -).

In this chapter, we assume the label distance function d(a, b) is a Potts function, and
Apq remains the same for every labels pair. Further assume |V'| = n and |£| = k, then
the corresponding ILP formulation (5.2)) boils down to

k n k
min, (1 —X\) Z Z clat + ) Z Z |2t — xﬁ (5.3)
=1 i=1 =1 (i,j)eE
k
Yo, wi=1 Vien, (B3
z; €{0,1}, Vi€ [n], (€ [K], 5-3p)

where the binary variable x¢ indicate whether node i is assigned label £ (z{ = 1 in this
case), ct denotes the unary data term for node i assigning label ¢, and A € [0, 1] is a
positive constant weighting the pairwise smoothness term. Constraint (3.3p) enforces
that each node is assigned exactly one label.

The resulting problem (5.3) is nonlinear because of the absolute term |z —x¢|. Using
the same trick as in Section[3.2.1} it can be transformed into an ILP. It is in general N'P-
hard to solve (5.3)) to optimality, hence it is common in vision to solve the corresponding
LP relaxation [73} 88]] by relaxing constraint (5.3p) into ¢ € [0, 1]. However, we are
interested in solving the ILP to global optimum.
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5.3 MRF with Connectivity Priors

Apart from the standard pairwise prior, we are interested in adding a global (high-order)
connectedness priors imposed on each label, to explicitly enforce the connectivity of
each label (to be made more precise in Sec. [5.3.1). The mathematical programming
problem of enforcing the connectivity prior is proven to be N"P-hard in [40].

5.3.1 Connected subgraph polytope

In this section we introduce the connected subgraph polytope, where a connected sub-
graph G,(Vy, Ey) is a subgraph of G where all the nodes in V; are labeled ¢ and is
connected.

Connected subgraph. Without loss of generality, we assume the graph G(V, E) is
connected. Otherwise, we can add corresponding edges that have 0 pairwise cost, so
that the energy function of (5.3) remains unchanged. We call G,(V;, E;) a connected
subgraph with label ¢ if G, is connected, where V, = {i € V : zf = 1} and E, =
{(i,j) € E :i,j € V,}. Recall from Section that a subgraph G'(V', E') is
connected if for all pairs of nodes i,j € V', there exists a path in G’ that connects i
and j. We call anode ¢ € V active in label ¢ if xf =1, i.e., if it is labeled /.

Connected subgraph polytope. Denote x° := (24,25, ... 2%) € {0,1}", for / €
[k], then x := (x!,x?%,...,x*) € {0,1}*". Let C = {x : G¢(V}, E;) connected, V/ €
[k]} be the finite set of labellings such that every subgraph G/, is connected. Further
let C, = {x* € {0,1}" : G¢(Vi, E;) connected} denote the finite set of connected
subgraphs in label ¢. Then we call the convex hull conv(C,) the connected subgraph
polytope of label /. It is shown in [40] that optimizing over this polytope is N P-hard.

Vertex-separator set. Given a subgraph G, = (V;, E;), for any pair of active nodes
i, € Vo, i # 4, (i,7) ¢ E, theset S, C V' \ {i,7} is said to be a vertex-separator
set with respect to vertices {i, j} and label /, if the removal of S, from G disconnects i
and j in the original graph G/(V, E'). It also means that there will exist no path between
vertices ¢ and j in the reduced graph G’ = (V'\ Sy, E'\ (S¢ x V')) upon removing S,. As
an additional definition, a set Sy is said to be a minimal vertex-separator set in label ¢
if it is a vertex-separator set with respect to a pair of active nodes {i, j} in V; and any
strict subset 7, C Sy is not.

Let Sy(i,5) = {S¢ C V : S, is a vertex-separator set with respect to active vertices
pair {7, j} in V; } be the collection of all {7, j} vertex-separator sets in label ¢, and let
Si(i, ) C Si(i, j) be the collection of all minimal vertex-separator sets.

It is proved in [75] that conv(C,) can be described exactly by the following set of
linear inequalities:

CR

it —1<) o T Vi jEVi(i]) ¢ B, VS €Silig), (54
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where xf € {0,1},4 € V. In other words, if two nodes 7 and j are active in V; (left hand
side of (5.4) becomes 1), then any vertex separator S, must contain at least one active
node in V,. Otherwise, 7, 7 cannot be connected in (G, since any path in G, from ¢ to j
must pass through at least one node in .S.

In [75]], the authors also prove inequalities (5.4) are facet-defining for conv(Cy) if
Si(i,7) is replaced by S(i,j). Hence we have characterized the convex hull of the
connected subgraph polytope. However, in general the number of linear constraints (5.4))
is exponential with respect to |V/|.

5.3.2 Rooted case

Following the work of [85]], we assume every label has a so called root node. This is
reasonable in our setting, since in this chapter we require the user to draw scribbles for
all labels, so that at least one root node (denote r, the root node for label /) is identified
within each label. Then, it suffices to check connectivity of every active node ¢ to the
root node 7, instead of all pairs of active nodes (as in (5.4)). Thus, constraints is
reduced to

t < ¢ ' (e E ' .
x; < ZSES@ xy, YieV:(i,r) ¢ E, VS, € Si(i, 1), (5.5)
where S;(i,7,) is the set of all {i,r,} vertex-separator sets in label /. In practice, the
number of constraints (5.5)) is still exponentially large for any label ¢, hence cannot be
considered all simultaneously for graphs of large sizes.

Theorem 5.1. It is still N"P-hard to optimize over the connected subgraph polytope C,
even if one root node ry is given.

Proof. Consider the problem of binary MRF with connectivity, and we only enforce the
connectivity on the foreground label. This problem is proved to be A/P-hard in [40].
Suppose by fixing one root node, this problem becomes polynomial solvable. Then
we can randomly assign a node v € V' to be the root node r;, and solve the resulting
problem in polynomial time. Since there are n (n = |V|) possible root nodes, by trying
out all n possible root nodes in polynomial time, we are sure to find the optimal solution.
Thus a contradiction. 0

Despite the NP-hardness and the need of exponentially many constraints (3.3)) to
exactly model conv(C,), given an integer labeling x¢, we can identify a subset of the
violated constraints (vertex-separator sets) in polynomial time. We then iteratively add
them to the ILP while searching for new integer solutions. This is known as cut gener-
ation in the cutting plane approach. We will look into this in detail in Sec.[5.4.2]
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5.3.3 Proposed model: ILP-PC

Once we have the exact mathematical description of the connected subgraph polytope,
we can model this problem exactly using mathematical programming, i.e., using MIP.

Let y; denotes the observed image feature (e.g., gray-scaled color) at spatial location
(pixel or superpixel) . We assume the user draws k scribbles as seeds for the £ labels, as
shown in the left image of Fig.[5.5] We assume image observations follow a piecewise
constant model within each regiorﬂ Let £} denotes the average color of the seeds that
are label £. In this case, unary potential ¢! = |y; — Fy| represents how well label ¢ fits
node :.

The MIP of the multi-label MRF with connectivity constraints becomes

k n k

min, (1 —\) Z cixt + /\Z Z |zt — x§| (5.6)

=1 i=1 (=1 (i,j)eE

k

Yo, w=1 vien, (5-6h)
2t =1, Vi within the scribble of label ¢, ©.6b)
x' e, Vlelk], (.60)
zf € {0,1}, Vi€ [n], € € [K], G.64d)

where constraints (5.6p)) denotes that the nodes of scribbles (seeds) are manually labeled
by the user as hard constraints, and the connectivity constraints (5.6 can be expressed
by the rooted vertex-separator constraints (5.5). Following the trick in Section[3.2.1] we
can introduce two nonnegative variables /" and £{~ to model |z{ — xﬁ , and the MIP
becomes an ILP.

In the case of a superpixel graph (which we adopt in the computational experiments),
we represent relations between neighboring superpixels by introducing the correspond-
ing Region Adjacency Graph (RAG) G = (V, E), where V is the set of superpixels, and
E’ contains edges between pairs of adjacent superpixels. We then multiply the unary
and the pairwise data term in (5.6) by 7; and ;;. Here, 7; represents the number of pix-
els contained in node (superpixel) 7, and ~;; denotes the number of neighboring pixels
between ¢ and j.

When we deal with depth or disparity images, where the underlying assumption is
piecewise affine, a few changes have to be made on the data term ¢! in formulation (5.6).
In this case, y; denotes the observed image feature (e.g., pixel’s depth information), and
let 3¢ be the affine coefficients of the seeds that are labeled / (i.e., we conduct an affine
regression on the scribbled pixels). The unary potential ¢! then equals |y; — 3°z|, where
z = (21, 29, 1) and (21, 22) present pixel’s coordinates.

"We assume a piecewise constant model for simplicity. However, our formulation extends to any
other probabilistic assumptions of observation models, e.g., piecewise linear.
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5.3.4 ILP-PCB: ILP-PC with background label

In many images, it is reasonable to assume a background (not necessarily connected)
exists, and the connectivity constraints can be ignored on this specific label, which we
call the background label.

One example is shown in the left image of Fig. where the black background
is allowed to have 4 disconnected components. On the other hand, the right image
of Fig. depicts results without the background label.

5.3.5 ILP-PCO: ILP-PC with ordering prior

If one has some prior knowledge about the ordering (with respect to the number of
pixels) of the label, one can add the following ordering constaints

¢ l+1 —
Ziev x; > Ziev x; 7, Ye[n—1]. (5.7)

Here, one assumes that the number of pixels in segment /¢ is at least as large as that of
segment ¢ + 1. In case of a superpixel graph, one needs to multiply every variable z;
by 7; (the number of pixels in superpixel 7).

These constraints are redundant if no unary data is present (un-supervised), and they
impose a structure in the solution that breaks symmetries, thus enforcing an order of
the segments that is generally beneficial to eliminate symmetric solutions [37]. Indeed,
without constraints (5.7)), two solutions obtained by swapping labels in any pair of seg-
ments ¢, k are perfectly equivalent.

In case of a supervised MRF (5.6), it might still be beneficial, but sometimes also
harmful, as will be shown in Section[5.3]

5.4 Solution Techniques

In this section, we first propose a fast greedy heuristic algorithm that can provide a
feasible solution to the MIP formulation (5.6). We then introduce a strategy that finds
a subset of the vertex separator sets that could be used to formulate constraints (5.5) in
polynomial time. This allows us to implement the cutting plane method which grantees
global optimum if no time limit is present.

5.4.1 Ly-H: aregion fusion based heuristic

Although originally designed for the Potts model (unsupervised), we again adopted the
idea of the heuristic from the region fusion algorithm [4]]. Our algorithm works by
iteratively merging groups of nodes until exactly £ groups remain, and we ensure con-
nectivity constraints at each iteration.
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At the beginning, every scribble of seeds and all other nodes not covered by any
scribbles are in their own groups. Then at every iteration, we merge two neighboring
groups, if the following condition holds and if the merging does not result in the seeds
of two different scribbles being in the same group:

7T |Vi = ViI* < Ry (7 + 7)) (5-8)

Here 7; denotes the number of pixels in group (segment) 7, and ;; represents the number
of neighboring pixels (also known as boundary length) of two groups ¢ and j. We use
Y; to indicate the mean of image data (e.g., color) within group 7, and  to express the
regularization paramter at each iteration.

By increasing « in (5.8) in every iteration (to possibly large enough) , we terminate
the algorithm when exactly k£ groups remain. Let iter be the current iteration number and
7 be a user-defined parameter, we adopt the following exponentially growing strategy
in our algorithm:

K = (%)2.2

Having a good heuristic is two-folded. On the one hand, we get a good feasible
solution at any time. On the other hand, this solution will be an upper bound (in a
minimization problem) to the branch-and-bound method the MIP solver uses, thus helps
to prune a lot of unnecessary branching nodes, and improve the running time of the
solver. We will show in Section[5.5|that Ly-H is fast and generates good results most of
the time, sometimes even optimal.

5.4.2 Branch and cut method: towards global optimum

The most widely used exact method for solving an ILP is branch and cut. In this section,
we focus on the cutting plane method because the branch-and-bound method is imple-
mented by default in any modern ILP solver. We are interested in exact connectivity via
cutting plane method and we focus on the rooted case (3.5)), since we assume at least
one root node 7, is fixed for each label ¢ by the user scribble.

Cutting plane method

We concentrate on enforcing the connectivity prior (5.6c) for one label only (e.g., la-
bel /). Then, the same approach will be repeated for other labels until they are all
connected. In the case of a background label, we ignore its connectivity and simply
jump to the next label.

The basic idea is similar to that of Algorithm [2.1] When solving problem (5.6), we
first omit (5.6K) (i.e., constraints (5.3), since they are exponentially many) initially and
explore the branch-and-bound tree (since it is an ILP) of the system until an integer
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Figure 5.2 — The K -nearest cut generation strategy. Active nodes are shown in black,
and the two separator sets are marked in red and blue.

solution is found. Then we check the feasibility of this solution (i.e., if 2¢ € C%). If
not feasible, violated constraints are identified (to be discussed in next section) and
added to (5.6), to “cut off” the current infeasible solution. This procedure is repeated
until z¢ € C°.

Algorithm 5.1 Cutting plane method for solving problem (5.6))

1: Initialize: Solve (5.6) without the connectivity prior (3.6c) and obtain an integer
solution x

2: while (3¢,s.t. 2 ¢ C*) do

3: Identify subsets of the vertex-separator sets S; € Sy of the current solution and
add the corresponding cuts (5.5)) to (5.6).

4: Solve the resulting ILP system (5.6).

5: end while

Here, we treat each individual connected component as one entity (see Figure [5.2]
where the left two black nodes form one entity), since establishing connectivity between
all nodes in one component and r, automatically connects all the nodes. Identifying
violated constraints (5.6) then boils down to finding a vertex separator set Sy between
each active disconnected component and the root component (which contains 7,) of the
current solution.

At the heart of the cutting plane technique is that only a subset of constraints (5.6f])
will be needed at the optimum of (5.6). However, depending on the choice of the vi-
olated inequalities that we choose in each step, we may require a different number of
them and the number of iterations will vary.

An overview of the cutting plane algorithm for solving (5.6) is listed in Algo-
rithm [5.11

86



The separation problem and cut generation strategies

So far, we still need an algorithm for the separation problem in the cutting plane method,
i.e., given z‘ ¢ C, identify subsets of the vertex-separator sets S; € S, of the current
solution. Among the many ways of selecting such cuts in the rooted case, we list two
strategies among the many proposed in [75,185]]. We denote the set of active components
of label ¢ as { H§, H{, ...}, where H! is the component that contains the root node 7*.

Minimal separator strategy. Given 2 ¢ C’ and an active components H, one
first construct a directed graph with duplicated vertices and edge capacities (see [[73]
for more details). The minimal vertex separator set Sy is then obtained by solving a
max-flow problem. This strategy was applied in [[75]].

K-nearest strategy. In the K -nearest strategy, one first runs a breath-first search
on any active component H/ to collect K (disjoint) sets composed of all nodes with
identical distance. The search terminates if & equals the number of nodes in H’ or if
another active node is reached. The idea is illustrated in Figure [5.2] where the active
nodes are depicted in black and r denotes the root node. The two vertex separator sets
are marked in red and blue. Here K = 2 since it is the number of nodes in H,..

This strategy is reported in [85] to be one of the most successful (among five) in
terms of solved instances and computational efficiency. We will adopt this strategy in
this chapter and integrate this into Algorithm[5.1]

5.5 Computational Experiments

In this section, we show computational experiments on medical images, where the unary
potentials are based on the probability maps of each pixel belonging to given labels,
which were trained using convolutional neural networks (CNN) [89]. The sizes range
from 96 x 96 to 256 x 256.

We also use images from the Berkeley Segmentation Dataset [20] (BSDS500) of size
321 x481 and the PASCAL VOC 2012 set [[/6] (PASCAL, image size around 500 x 400).
We first apply the SLIC [[15] superpixel algorithm on them to get an over-segmentation,
where the number of superpixels is around 1000.

Using superpixels instead of pixels has several advantages. First, the complexity
of the optimization problem (5.6)) is drastically reduced with only a negligible segmen-
tation accuracy loss (especially when the superpixels number is large ). Second, the
information in each superpixel is more discriminative, and also help reduce the effects
of outliers. As shown in a recent survey paper for superpixel algorithms [16], a few ad-
vanced superpixel algorithms can achieve very accurate over-segmentation results with
around 1000 superpixels.
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List of models to be compared
We will conduct a comprehensive comparison of the following different optimiza-
tion models:

* Lo-H: Our proposed L region fusion based heuristic, which was motivated by
[4] and we modified it to generate exactly k connected segments.

* ILP-PC. Our proposed ILP formulation (5.6) of multi-label MRF with the global
connectivity constraints.

* ILP-PCB: ILP-PC with the “background” label, where this special label is not
required to be connected.

e ILP-PCO: ILP-PC with the ordering constraints (5.7]), where the number of pixels
is constrained to not increase when the label grows.

* LP-PC: The LP relaxation of ILP-PC, which was introduced and applied in [75,
83l

e ILP-P: The ILP formulation of (5.6) without the connectivity constraints (5.6g)),
which is widely used in vision (e.g., graph cuts [56]).

In this section, if there is no further explanation, the default setups are the following:
the pairwise term A is 0.2, the time limit for ILP-PC and its extensions (e.g., ILP-PCB
and ILP-PCO) are 100 seconds , and the Ly-H parameter 7 is 0.1. When we report
energy E, we use the objective function of (5.6).

5.5.1 Ground-truth generation

Although our proposed ILP solver is A/P-hard, it provides globally optimal solution
for the multi-label MRF with connectivity prior. Thus, it could be used to generate
ground-truth labeling on the input images, which serves as a quality check for any fast
algorithms.

We conduct experiments on three instances taken from the PASCAL dataset, where
the scribbles of all 11k training images are online available and provided by the authors
of [87]. We set A equals 0.2 for the first two image and 0.3 for the third one. We use ILP-
PC, and it takes only 0.08 and 0.15 second on the first two instances and 31.3 seconds
on the third one to get the global optimal solution. The optimal energies are 5927.4,
12220.1 and 28238.5 respectively. The outputs are shown in Figure
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Figure 5.3 — Ground-truth generation on 3 images taken from PASCAL. Computation
time ¢ = 0.08, 0.15 and 31.3 secs, and energy 2 = 5927.4, 12220.1 and 28238.5.

5.5.2 Detailed comparison of different models

In this section, we first report a detailed computational experiment on a medical image
with probability maps using the proposed 5 models. We then compare ILP-PC with and
without using the initial solution provided by Ly-H on an image from BSDS500. We
finally report 3 more experiments on BSDS500 images.

Medical images with probability maps

We report a medical image segmentation example, whose unary term is based on the
probability maps of each pixel belonging to different labels. The probability map was
trained using convolutional neural networks (CNN) in [89]. One wants to obtain a bi-
nary (two-region) segmentation of an magnetic resonance image (MRI), which depicts
the abdominal aorta [81]. In this example, the CNN probability maps yielded unsatisfy-
ing disconnected region due to imaging noises, the lack of boundary contrast and also
limited training datasets.

The input image is of size 111 x 111, and the computation time is reported in Fig-
ure In this example, it takes Ly-H 0.83 second to converge. Given the initial so-
lution provided by Ly-H, ILP-PC, ILP-PCB and ILP-PCO all failed to converge within
the time limit, with 2.8%, 2.8%, and 0.9% optimality gap respectively. On the other
hand, LP-PC takes 1.19 seconds to solve the LP-relaxation, and it is surprising to see
that ILP-P (with no connectivity prior) only takes 0.46 second to find the optimal solu-
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(a) A medical image. (b) User scribbles. (¢) Lo-H,t=0.83s.

(d) ILP-PC, t = 100s. (e) ILP-PCB, t= 100s. (f) ILP-PCO, t=100s.

(g) LP-PC, t=1.19s. (h) ILP-P, t = 0.46s. (1) The ground-truth.

Figure 5.4 — Comparison of all 5 models on an MRI, where user scribble is applied on
the probability map. Their energies are reported in Table. [5.1] and t denotes the time
spent. In LP-PC, 0.62% of the pixels remains unlabeled (fractional) , and are colored
in white. Both ILP-PC and ILP-PCB have 2.8% gap, while ILP-PCO has 0.9% , with

lower energy (but not necessarily closer to the ground-truth).

tion. The solution provided by Ly-H is of high quality, only within 1.22% of the best

solution found by ILP-PC in 100 seconds.
As we see in Figure LP-PC has 0.62% fractional solution (depicted in white).

Although a post-processing rounding heuristic can be applied, it is not guaranteed to
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even find a feasible solution. The result of ILP-P gives two separated regions (since no
connectivity prior is enforced), which is far away from the ground-truth.

The energies of all 5 models are reported in Table [5.1] We notice that both LP-PC
and ILP-P give lower energy than ILP-PC, where LP-PC is the LP-relaxation and ILP-P
is the relaxation on the connectivity prior. Hence, they both provide lower bounds for
ILP-PC.

Lo-H ILP-PC ILP-PCB ILP-PCO LP-PC ILP-P
864.5 854 854 839 829.5 826.8

Table 5.1 — Energy values of 5 proposed models.

The inclusion of background label is not beneficial in this example, with the same
energy and optimality gap. While the ordering constraints (5.7) help find lower energy
which reduces the optimality gap of ILP-PC from 2.8% to 0.9%, it does not necessarily
means the solution is closer to the ground-truth. It is worth to mention that unwanted
solutions like ILP-PCO in this case can be avoided by drawing slightly different scrib-
bles.

Superpixels of images from BSDS500

In this section, we introduce another model which we call ILP-PCW. It is exactly the
same mathematical model as ILP-PC, but without using the initial solution provided by
Lo-H. The purpose here is to test whether the ILP solver is able to achieve good results
by itself.

While it does support our argument, Figure [5.5| depicts an example, where ILP-PC
with Ly-H does not converge within the time limit (100 seconds) but ILP-PCW finds
the provably global optimal solution in 61 seconds. Note that ILP-PC and ILP-PCW
have the same energy, meaning they found exactly the same solution, but ILP-PC failed
to get the tightest lower bound, with an optimality gap of 0.3%. A closer look into
the log file of Cplex shows that, given the initial solution of Ly-H, ILP-PC found the
“best solution” in less than 1 sec, while ILP-PCW found the same solution in 18 sec.
However, ILP-PCW found the best lower bound quicker than ILP-PC.

The solution time and energies are reported in Figure 5.5 Among the 5 reported
models, Ly-H is the fastest, takes only 0.04 second, followed by ILP-P and LP-PC,
which takes 0.08 and 0.27 second, respectively. The energy of the starting solution
provided by Lo-H is again very good, within 1.76% of the optimal solution (found by
ILP-PCW).

The inclusion of the integrality constraints and the connectivity prior greatly im-
proves solution quality. As many as 5.9% superpixel values of LP-PC are factional
(depicted in white in the right figure of the second row). In the output of ILP-P, the blue
and black labels have several disconnected regions, resulting in a much worse solution.
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(a) Input with 3 user brushes. (b) Lo-H, t =0.04s, E=16088.

o
il |

(c) ILP-PC, t=100 s, E=15804.9. (d) LP-PC, t=0.27 s, E=15560.9.

P o

dbelily .
(e) ILP-P, t=0.08s, E=15232.5. (f) ILP-PCW, t=61s, E=15804.9.

Figure 5.5 — Comparison of 4 models on an image from BSDS500, plus ILP-PCW (
ILP-PC without initial solution from Lq-H). t: time spent, E: energy. Note that 5.9% of
the nodes remains unlabeled in LP-PC, colored in white. The Ly-H’s solution is within
1.76% of the optimal solution found by ILP-PCW.

More experiments on BSDS500 images

We report computational results and their illustrations on 4 more BSDS500 images in
Figure Note that in the first column, the pairwise term A is set to 0.1 to encourage
segmenting thin branches of the tree. All the other parameters remain at their default
values.

In these experiments, we draw much fewer scribbles in the right two columns, to
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Figure 5.6 — More experiments on 4 BSDS500 images. The pairwise term A is set to
0.1 to encourage segmenting thin branches of the tree in the first column, while all other
parameters remain default. The user draws fewer scribbles in the right two columns on
purpose. The while areas in LP-PC denote fractional solutions, and ILP-P is without
connectivity constraints.

show the robustness of our models (to be discussed in Section [5.5.4] with more details).
Note again that the white areas in the row of LP-PC denote fractional solutions, and
ILP-P is without connectivity prior, thus allowing disconnected regions with the same
label. We observe that Lj-H gives again quite good results in the right two images, but
not so satisfying in the left two cases.

Finally, we conclude that our proposed model ILP-PC achieves the best overall re-
sults.
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5.5.3 Quantitative comparison on 5 models

In this section, we conduct a detailed analysis of all the 5 models with respect to energy,
computational time (optimality gap if not converge in 100 seconds time limit) and some
other parameters. They are based on computational experiments of 15 images from
BSDS500 and 4 real medical images with probability maps from [81].

Time, ILP optimality gap and fractional solutions of LP-PC

We report the average running time of all models in the second row of Table [5.2] If
one experiment hits the time limit of 100 seconds, we just set 7' = 100 seconds. The
average ILP optimality gap is shown in the third row of Table where “Null” means
no optimality gap exists (e.g., it is not an ILP).

Lo-H ILP-PC | ILP-PCB | ILP-PCO | LP-PC ILP-P
Time 0.7 62.3 39.2 71.8 1.4 0.3
Gap Null 3.7% 1.9% 2.1% Null 0

Table 5.2 — Average time and optimality gap of 5 proposed models.

We can observe that ILP-P without connectivity prior is the fastest method (0.3
sec on average) amongst all, followed by Ly-H which takes on average 0.7 second.
On the other hand, ILP-PC often hits the 100 seconds time limit and has an average
running time of 62.3 seconds. The inclusion of the “background label” clearly helps on
improving computational efficiency, reducing the average solving time to 39.2 seconds.
However, the ILP-PCO with the ordering constraints spends 9.5 seconds more time than
ILP-PC on average.

The model ILP-P is surprisingly fast and solve every instance to optimality, despite
its A"P-hardness. On the other hand, it takes ILP-PC a lot of effort to enforce the con-
nectivity prior, and given the 100 seconds time limit, the average optimality gap is 3.7%.
Moreover, the inclusion of the “background label” (ILP-PCB) and ordering constraints
(ILP-PCB) both help in reducing the optimal gap, to 1.9% and 2.1% respectively.

Apart from running time and optimality gap, we also report that among all the tested
images, an average of 3.5% pixels found by LP-PC remain unlabeled (they have frac-
tional solutions). Hence, we argue that LP-PC is not applicable in practice.

ILP-PC against L,-H

In the conducted 15 experiments, Ly-H is fast to solve and could provide a feasible
solution to the ILP solver as an initial solution. ILP-PC adopts this initial solution, and
tries to finder better ones as the branch-and-cut tree proceeds. On average, the ILP-PC
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is able to improve 6.4% solution quality based on the initial solution provided by Ly-H
within 100 seconds time limit.

More experiments with 2 seconds time limit

We further conduct experiments on the same 15 instances by setting the time limit of
the ILP solver to 2 seconds. Ly-H is again applied as pre-processing, thus providing
an initial solution to the solver. We observe that ILP could improved 12 out of the 15
instances, and on average improve 4.4% of the given initial solutions.

Hence, we argue that our proposed ILP model can be beneficial even within very
short time, and thus applicable in much wider scenarios.

ILP-PCB against ILP-PC

Based on the computational experiments, we report the gain and loss on introducing
additional background label (ILP-PCB) against ILP-PC. The scores are calculated as
follows.

If both ILP-PC and ILP-PCB solve the problem to optimality, we report the compu-
tational time difference. If both models failed to solve the problem within the time limit,
we report the ILP optimality gap difference. In the cases where one model solves the
problem to optimality while the other reaches the time limit of 100 seconds, we report
the computational time difference (we treat the latter takes 100 seconds).

On 12 instances where the background label makes sense, 8 instances benefit, 3
lose while one instance remains the same. The average net gain in computation time
equals 28.6 seconds, where there exist two instances that reduce the running time of 100
seconds (reaches the time limit) from ILP-PC to less than one second. The average net
gain in ILP optimality gap equals 0.9%. This computational efficiency gain results from
“relaxing” one connected label, thus no separation problems (5.5]) need to be solved on
this label.

Apart from the speed gain, it can be beneficial in practice to use ILP-PCB when
a clear background with disconnected regions exists. See Figure for an example
where the images in the bottom row has a background label colored in black.

ILP-PCO against ILP-PC

We use the same methodology as above. On 10 instances where the ordering con-
straints (ILP-PCO) make sense to be applied, 7 instances benefit while 3 lose. The
average net loss on computation time equals 1.2 seconds, while the average net gain in
ILP optimality gap is 1.6%. Although we do not observe a clear advantage of applying
ILP-PCO, it often works better on hard instances (in which the ILP solver converges
very slowly and hits the time limit).
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Figure 5.7 — Segmentation results with different user scribbles on the same superpixel
image. Second row: ILP-PC with E=9544.2 and 13422.8, both reaching 100 seconds
time limit. Bottom row: ILP-PCB with E=8615.3 and 10482.3, t= 2.1s and 0.4s. Note
that the background label (shown in black) can be disconnected, while the other labels
(blue and green) are enforced to be connected.

It is worth to mention that we encounter one instance where no obvious ordering
exists, it took ILP-PCO 100 seconds and the solver still did not find any feasible solution.
Hence it is not advised to use ILP-PCO if one is not sure about the ordering of the label.

5.5.4 Analysis on using different user scribbles

The user scribbles, on the one hand, are used to compute the average color of each label,
which is used in the ILP formulation (5.6)) as the unary term. On the other hand, they
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also enforce hard labeling constraints (5.6p)) into the ILP, which helps fix some of the
binary variables. It thus helps pruning the branch-and-bound search trees within the ILP
solver. Moreover, in case of difficult situations (such as outliers), scribbles can also be
used to exclude outliers from one label.

We show in Figure[5.7]that changing the user scribbles does not result in significantly
different segmentations, hence our model is quite robust. While ILP-PC in the second
row reaches the time limit in both cases, ILP-PCB gets the reported optimal solution in
only 2.1 (bottom left) and 0.4 (bottom right) seconds. The energy differences between
the two cases are due to two factors: different scribbles resulted not only in different
hard labeling constraints, but also different unary terms.

5.5.5 Analysis on different (- parameters

Lo-H 1s very fast to compute, only taking 0.7 seconds on average to produce a feasible
solution. It is then used as an initial solution for the ILP solver. Other than its efficiency,
the quality in terms of energy is on average only 7.20% with respect to the best solution
ILP-PC can find within 100 seconds time limit.

For all previous experiments reported in this chapter, the Ly-H parameter 7 is set to
be 0.1. Figure. [5.8| shows an experiment on adopting different . We adopt 5 different
values of 7, ranging from 0.1 to 0.7, with an interval of 0.15 between each pair of suc-
cessive values. The computation time decreases when we increase 7, reducing gradually
from 0.08 to 0.05 second. One can observe from Figure. |5.8|that Ly-H is also robust to
its parameter 7), with only slight changes in the segmentation results.

5.6 Conclusions

In this chapter, we revisit the ILP formulation of the multi-label MRF with connect-
edness priors, and propose a cutting plane method to exactly enforce the connectivity
constraints. A fast region fusion based heuristic is designed to provide a good initial
solution for the ILP solver. Although N P-hard to solve, the ILP formulation provides
a feasible solution (often better than the initial solution) with a guarantee on the sub-
optimality even if we terminate it earlier.

The ILP can also be applied as a post-processing method on top of any existing
multi-label segmentation methods. It seeks for better solutions during its search in the
branch-and-bound tree within the ILP solver. Furthermore, our ILP model can be ap-
plied to generate ground-truth labeling and segmentation, thus providing a quality as-
sessment for any fast algorithms.

We demonstrated the power and usefulness of different variants of our ILP model
by extensive experiments in the BSDS500, PASCAL datasets, and medical images with
trained probability maps. We show that with moderate-sized images or superpixels
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Figure 5.8 — Experiments on Ly-H with different parameter 7. From top left to bottom
right: superpixel image with scribbles, segmentation results with parameter 7 changes
from 0.1 to 0.7 (with interval 0.15). The computational time reduces from 0.08 to 0.05
sec.

(thousands of them) of large ones, our proposed model achieves the best overall perfor-
mance, yielding provably global optimum in some instances.
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Chapter 6

Conclusions and Future Work

Recent years’ hardware improvements plus the algorithmic advances in solving Mixed
Integer Programming (MIP) problems have resulted in a enormous speedup in solving
MIPs. In this thesis, we (re)visited the MIP formulations of three classical models,
namely, the piecewise constant and affine Potts models, and the maximum a posteriori
of the Markov Random Field (MRF) model.

The MIPs are based on the associated graph of the input image, and we have charac-
terized the convex hulls of the corresponding integer polytopes in terms of facet-defining
inequalities. Although the number of inequalities are exponential with respect to the
number of edges (or nodes), it is polynomial to generate the separation problem at each
iteration.

The proposed MIPs are in general A/P-hard to solve, and can be applied as a post-
processing method on top of any algorithms. We design fast heuristic algorithms that
are well suited for the above three problems, and the MIP solver provides a guarantee
on the quality upon solving the linear programming relaxation. Besides, the MIP solver
seeks for better solutions and can be stopped at anytime. Furthermore, the MIPs can
be applied to generate ground-truth results, thus providing a quality assessment for any
fast algorithms.

We have demonstrate the power and usefulness of our models by synthetic images,
and instances from standard datasets. We have also compared them with some state-of-
the-art methods, and showed the advantages of our methods.

In the future, we will study better separation strategies of selecting cutting planes.
Besides, MRF with connectivity priors can be applied, for instance, to generate ground-
truth benchmarks in the field of semantic segmentation. Furthermore, since the under-
lying problems of our proposed formulations are piecewise constant (affine) regression,
applications beyond image processing are also of great interest.
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