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Far-From-Equilibrium Quantum Many-Body Systems: From Universal Dynamics
to Statistical Mechanics
This thesis examines, alongside a series of experiments, the far-from-equilibrium dynamics
of isolated quantum many-body systems. As a model example we study the relaxation of a
single and two linearly coupled one-dimensional Bose gases, brought out off equilibrium
through a rapid change in the system parameters. For the single Bose gas this quench is a
rapid cooling of the system to the one-dimensional regime, leading to a far-from-equilibrium
state. In the subsequent relaxation towards thermal equilibrium we find direct experimental
evidence for a scaling evolution in space and time, signaling the approach of a non-thermal
fixed point and universality far from equilibrium. For the two linearly coupled gases we
demonstrate how the analysis of higher-order correlations and their factorization properties
can be used to determine the validity of effective field theories. In thermal equilibrium we
find the system is described by the sine-Gordon model up to 10th-order correlations. Lastly,
the relaxation of two independent condensates, initialized in a strongly phase-correlated state,
is studied in the context of prethermalization, generalized statistical ensembles, and quantum
recurrences. Our work paves the way for future studies of universality far from equilibrium.

Quanten-Vielteilchensysteme fern des Gleichgewichts: Von universeller Dynamik
zu statistischer Mechanik
Diese Arbeit thematisiert anhand einer Reihe von Experimenten die Dynamik isolierter
Quanten-Vielteilchen-Systeme fernab vom thermischen Gleichgewicht. Als Modellsysteme
werden die Relaxation eines einzelnen sowie zweier linear gekoppelter, eindimensionaler
Bose-Gase untersucht. Durch eine plötzliche Änderung der Systemparameter wird das
Gas in einen Zustand fernab vom thermischen Gleichgewicht gebracht. Diese Änderung
wird für das einzelne Bose-Gas durch schnelles Kühlen in das eindimensionale System
realisiert. In der darauffolgenden Zeitentwicklung hin zum thermischen Gleichgewicht wird
eine Skalierungsentwicklung in Raum und Zeit direkt experimentell bestätigt. Dies deutet
auf die Annäherung des Systems an einen nichtthermischen Fixpunkt hin und zeigt eine
universelle Dynamik fernab vom thermischen Gleichgewicht. Für die linear gekoppelten
Kondensate wird aufgezeigt, dass durch die Analyse von Korrelationsfunktionen höherer
Ordnung und deren Faktorisierungseigenschaften die Validität effektiver Feldtheorien über-
prüft werden kann. Im thermischen Gleichgewicht kann das System bis zu Korrelationen
10-ter Ordnung durch das Sine-Gordon-Modell beschrieben werden. Daraufhin wird die
Relaxationsdynamik zweier unabhängiger Kondensate, welche zu Anfang in einem stark
phasenkorrelierten Zustand präpariert sind, im Kontext von Präthermalisierung, verallge-
meinerter statistischer Gesamtheiten und der periodischen Rückkehr eines Quantensystems
zu seinem Anfangszustand untersucht. Diese Arbeit ebnet den Weg für zukünftige Unter-
suchungen von Universalität fernab vom thermischen Gleichgewicht.
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Chapter 1

Introduction

The relaxation of isolated quantum many-body systems lies at the heart of our understanding
of the emergence of statistical mechanics from the reversible microscopic dynamics governing
a systems evolution. Scientific consensus, drawn from numerous experimental observations,
dictates that a sufficiently complex, macroscopic system will eventually reach some kind of
stationary state, which, despite its complexity, can be described by only a few macroscopic
quantities. The most frequently encountered example thereof are states of thermal equilibrium,
which lead to the undoubted success for the foundations of statistical mechanics [1]. However,
while quantum many-body systems face a plurality of challenges in practical calculations,
the evolution of an isolated system is formally known to follow an energy conserving
Hamiltonian flow. This unitary time evolution, while practically incalculable exactly, reveals
the paradox of how an isolated system can ever reach a steady state.

This conundrum is beautifully demonstrated by the concept of recurrences in the evo-
lution of an isolated, finite size system. First formulated for classical systems [2, 3], the
reconciliation of these seemingly contradictory statements lies at the heart of the emergence
of irreversible processes from reversible microscopic mechanics [4]. The concept of such a
Poincaré recurrence, and its contradiction to the quantum ergodic theorem formulated by von
Neumann [5], were transferred to the quantum regime [6, 7]. The exact unitary evolution of
the system in the energy eigenbasis is a simple rotation of each eigenstate with a frequency
determined by the energy eigenvalue. Since for a finite size system these eigenvalues are
discrete, results for the evolution of quasi-periodic functions immediately dictate that the
system in the course of its evolution will return arbitrarily close to its initial configuration at
some finite time trec. While in the thermodynamic limit these arguments do not strictly hold
as the spectrum becomes continuous, experimental systems necessarily have a finite extent.
This presents us with the question as to how it will ever be possible to observe a steady state
in an isolated many-body system.
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A possibility to resolve this paradox is presented by the immense complexity of the
Hilbert space. Since it scales exponentially with the number of constituents, the time
trec for such recurrences quickly approaches astronomical scales if no regularities in the
spectrum are present [8]. Further, not only the computational complexity but also the
amount of information contained in the system grows at this enormous rate, and even
determination of the exact microscopic state of the system is shifted to the point of elusiveness.
Therefore, as in the foundation of classical statistical mechanics, it is more sensible to
concentrate on observable, universal features rather than the exact microscopic evolution.
The concept of statistical inference [9, 10] provides a formulation which interpolates between
the microscopic and macroscopic properties of the system, and defines emergent statistical
ensembles through the inessentiality of the exact microscopic physics for the level of precision
at which the system is probed.

On the level of a dynamical description of the system, this unimportance of the exact
microscopic evolution is elegantly phrased in the form of effective field theories. These
enable the capture of essential physical properties of the system in terms of effective degrees
of freedom, that do not scale as unfavorably with the system size. In addition, due to their
simplicity, these effective theories often allow for a unified description for the low-energy
behavior of vastly different systems. The emergence of this universality is connected to
a fixed point of the renormalization group [11] which phrases the unimportance of the
microscopic details in terms of relevant and irrelevant operators under the renormalization
group flow. Through the concept of entropy maximization under the constraints inflicted
by the conserved quantities of the effective field theory (see e.g. [12–15]), emergent steady
states of the system at different scales can be phrased in a unified manner.

For a large class of systems and observables the eigenstate thermalization hypothesis
(ETH) gives a quantitative description of the thermalization of many-body systems [16, 17].
The validity of the ETH is closely connected to ergodic behavior of the system, and is
suggested by various results in quantum chaos theory [18]. The basic principle is, that
if the initial state matrix elements of the observable are a sufficiently smooth function of
energy, essentially constant over each microcanonical energy shell, the expectation value
of the observable in the long time limit relaxes to the predictions of the microcanonical
ensemble, independent of the exact configuration in the initial state. ETH has had great
success in explaining the emergent thermal properties of complex quantum many-body
systems, giving stringent validity criteria connected to alternative theories as e.g. the quantum
ergodic theorem by von Neumann [18].

However, not all quantum systems show relaxation to a thermal state and the class of
integrable or near-integrable models leads to the breakdown of the ETH [19]. The absence
of relaxation in a quantum many-body system was famously demonstrated for the first
time in the experiment [20], where colliding clouds of a strongly interacting Bose gas in a
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one-dimensional system practically showed no sign of relaxation over the system’s lifetime.
The reason behind this lack of relaxation is the fact, that the underlying microscopic model
is a close realization of the integrable Lieb-Liniger model [21, 22], describing hard-core
Bosons in one spatial dimension. While integrability, in contrast to the classical regime [23],
is mathematically hard to define in a quantum system [24], it is widely accepted, that therein
a large number of locally conserved quantities strongly restrict the available phase space and
hence hinder the equilibration of the system. Alternative definitions include the possibility of
an exact solution, by use of the Bethe-Ansatz or similar techniques [25–27], or the absence
of diffractive scattering [28] and consequently the fulfillment of the Yang-Baxter equations
for scattering matrix [29, 27]. These restrictions on the systems dynamics, however, do
not exclude the emergence of a steady state. As argued above, if all constraints inflicted
by the integrals of motion are taken into account, a generalized statistical ensemble can be
calculated. The approach of an integrable system to such a Generalized Gibbs Ensemble
(GGE) was first put forward by Rigol et al. for a system of hard-core Bosons [30] and was
subsequently found in a variety of integrable or near-integrable systems [31–33].

In particular, the emergence of a GGE in near-integrable theories reveals the applicability
of emergent statistical descriptions on different time scales during the evolution. The GGE is
therein dominated by approximately conserved quantities of the integrable model, which is the
effective theory on time scales short as compared to the integrability-breaking contributions
[32, 12]. The system therefore, rather than relaxing on a single timescale towards its final
steady state, exhibits multiple stages determined by different effective descriptions during
its evolution. While here this separation of scales is a result of the near-integrability of the
model, the emergence of non-equilibrium quasi-steady states is not bound to near-integrable
systems. This brings the notion of universality into the realm of non-equilibrium physics.

A prominent example hereof is the concept of prethermalization [34–37]. Therein initial
dephasing of eigenmodes in the system leads to a rapid randomization of the state which
becomes independent of the exact initial configuration. During this process certain quantities
relax to the an emergent thermal state, determined by the conserved quantities such as
energy and particle number but independent of the exact initial configuration. Therefore,
while the system in the long term evolution eventually reaches a steady state determined
by the microscopic model, the quasi-steady state is determined only by a few universal
properties. The emergence of such a prethermalized state was observed in [13, 38], where
the theoretically predicted emergence of thermal state in a local light-cone like spread of
correlations [14, 39] was connected to the dephasing of eigenmodes of the integrable effective
field theory describing the evolution of the system.

It has recently been realized, that restriction to a quasi-stationary state is in fact not
necessary for the definition of universality in far-from-equilibrium situations, and the concept
of Non-Thermal Fixed Points [40–42] has been proposed to include time itself as a dynamic
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parameter. In the course of its evolution the system is attracted to this non-thermal fixed point
for a large class of initial conditions. While correlations are non-stationary, their evolution
in the vicinity of this attractor solution is determined only by the universal properties of
the fixed point. Note especially, that in contrast to equilibrium critical phenomena these
non-thermal universality classes are not necessarily related to symmetries in the Hamiltonian,
such that systems showing different critical behavior near equilibrium can fall into the same
universality class far-from-equilibrium. Numerical evidence of such Non-Thermal Fixed
Points was found in systems as diverse as ultracold Bose gases [43–51], relativistic and non-
relativistic field theories [52], (non-)abelian gauge theories [53, 54], early universe inflation
[55], and in the dynamics of holographically constructed superfluids [56]. Their emergence
was often observed together with structure formation, such as vortices, vortex lines, or spin
textures. Due to their generic formulation, these non-thermal attractor solutions currently
encompass a variety of dynamical critical phenomena, ranging from quantum turbulence
[57] to coarsening and phase ordering kinetics [58]. However, the notion of Non-Thermal
Fixed Points is deeply connected to the far-from-equilibrium dynamics of an isolated system
and hence, while they might share common features, are fundamentally different from near-
equilibrium critical phenomena. The question if and how a stringent classification by use
of non-thermal universality classes, similar to the classification of Hohenberg and Halperin
[59], is possible is a topic of intense ongoing research [60–62].

Ultracold atoms, with the ever increasing possibilities to trap, manipulate, and probe them,
present an ideal starting point to investigate these fundamental questions [63]. In this thesis
the above described concepts during the non-equilibrium dynamics of far-from-equilibrium
quantum many-body systems are studied in the context of a one-dimensional (1D) Bose gas
of ultracold 87Rb atoms trapped on an Atom Chip [64]. In particular we consider two distinct
systems: A single 1D Bose gas and a system of two linearly coupled 1D Bose gases, realized
in a double well potential. In contrast to their higher dimensional counterparts no transition
to a true Bose Einstein condensate is present in these systems [65, 66], which leads, even at
the ultracold temperatures necessary to achieve quantum degeneracy, to a rich multi-mode
character of the dynamics.

In chapter 2 we give a theoretical introduction to these models, the theoretical approxi-
mations, and the effective low-energy description of the systems in terms of the Bogoliubov
[67, 68], Luttinger Liquid [69–72], and sine-Gordon [73, 26, 74] model. We further discuss
the possible (quasi-)topological excitations present in the system, which in 1D are determined
by solitonic waves [67, 75, 76]. These non-dispersive solutions to the classical equations
of motion are very stable field configurations expected to emerge during crossing of the
phase transition in a finite time [77]. The second part of chapter 2 describes the numerical
techniques used in this thesis, namely the truncated Wigner approximation, the stochastic
Gross-Pitaevskii equation, and the transfer matrix formalism applicable for one dimensional
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systems. We conclude chapter 2 by examining explicit solutions for the homogeneous and
harmonically trapped system in thermal equilibrium.

In the subsequent chapters we present the combined theoretical and experimental study of
a series of experiments1, which provide comprehensive insight into the relaxation dynamics
of isolated, far-from-equilibrium many body systems.

In chapter 3 we investigate the relaxation dynamics of a single Bose gas following a
strong cooling quench, which rapidly changes the system from a three-dimensional elongated
thermal state to an isolated far-from-equilibrium 1D Bose gas. In accordance with the
Kibble-Zurek mechanism [78–81], which predicts the nucleation of topological excitations
during the crossing of a phase transition, we find the system posterior to the quench to be
dominated by solitonic excitations. Due to the limited spatial resolution these are determined
through their impact on the momentum distribution of the gas, described by an analytical
model of randomly distributed solitonic defects. Changing the speed at which the system
is quenched across the transition we find scaling of the defect density in broad accordance
with the inhomogeneous Kibble-Zurek predictions. Since our system is likely beyond the
Kibble-Zurek regime (as the fastest quench is almost instantaneous) this demonstrates the
stability and universality of defect nucleation.

We continue by focusing on the long-term evolution of the system for the fastest quench
rate. By comparing the experimental momentum distribution to a thermal quasi-condensate
and the predictions of the above random defect model we find a clear preference of the latter
for early times, where the soliton ensemble shows dilution following a power law behavior
in time, and complete thermalization of the system on longer time scales. We subsequently
analyze the system’s dynamics for early times independent of any microscopic model and
show that the observed dilution of the soliton ensemble is connected to the approach of a
non-thermal fixed point. During the course of this evolution the system is solely determined
by a universal function and universal scaling exponents. We identify an emergent conserved
quantity in the infrared (IR) which is transported to lower momenta during the evolution and
connect this to an emergent condensate peak forming in momentum space.

For the remainder of the thesis we then turn our attention to the Bose gas in a double-well
potential. In chapter 4 we first consider the system in and close-to thermal equilibrium.
Based on the fundamental principle that quantum many-body systems are fully characterized
through their correlations [82, 82, 83] we analyze higher-order correlations of the low-energy
effective theory describing the system. The sine-Gordon model, which is a non-Gaussian
field theory and hence requires a description beyond the harmonic approximation of free

1I am grateful to all the experimentalists I had the great fortune to work with. Due to the close collaboration
with the experimental group of Jörg Schmiedmayer at the Technical University in Vienna, all results in this
thesis were obtained in direct collaboration with experimentalists. Special thanks go to the collaborators on
the projects presented in this thesis, in order of the chapters (3-6): Robert Bücker, Thomas Schweigler, Tim
Langen, and Bernhard Rauer
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quasiparticle propagation, was proposed to determine the low-energy behavior of two linearly
coupled quantum wires realized by our system [84]. Matter-wave interferometry gives direct
access to the relative phase between the two condensates, which is the fundamental field
described by the sine-Gordon Hamiltonian. Determining the factorization properties of
higher-order correlations, we show that the system of two linearly coupled quantum wires
(CQW) faithfully describes the sine-Gordon model for correlations up to 10th order. This
gives a stringent, statistically significant validation of the approximations performed to arrive
at the low-energy description. In particular, the experimental validation of Wick’s theorem in
case of a Gaussian effective theory allows for a solution of the many-body problem solely
through the factorization properties of experimentally measured correlations.

We further extend the presented analysis of higher-order correlations to the situation near
thermal equilibrium. By examining different cooling speeds in the experiment, non-thermal
long lived states are found and connected to the presence of solitonic excitations of the sine-
Gordon Hamiltonian. To gain a deeper understanding in the dynamical properties of these
topological defects, we study the condensation mechanism theoretically through numerical
simulations of the stochastic Gross-Pitaevskii equation (SGPE) [85, 86]. In qualitative accor-
dance with the experiment we find the excitation of solitons during condensation. The results
for the full numerical simulations, including in particular interactions between phononic
and solitonic excitations, are subsequently compared to a model of statistically independent
soltions. This reveals different time scales for the thermalization of solitonic and phononic
excitations in the sine-Gordon model, which enables us to describe the experimentally mea-
sured correlations out-of-equilibrium through a model of randomly distributed non-thermal
solitons.

Chapter 5 presents an experiment, in which a single Bose gas is brought out-off equi-
librium by rapidly splitting it into two halves. This coherent splitting of the condensates
constitutes a quantum quench, which leads to a prethermalized state in the subsequent evo-
lution of the system [13, 38]. We discuss in detail the analytical description of the system
in the approximation of a local binomial splitting of the condensate. Of particular interest
are harmonically trapped systems, for which we give the first complete solution of the sys-
tem’s evolution and show that off-diagonal correlations cannot be neglected in the systems
evolution. Comparison to numerical simulations of this binomial splitting process in the
full non-linear model in the truncated Wigner approximation are found to be in excellent
agreement with analytical predictions. Thereafter, we present experimental results, where by
changing the splitting protocol the system is shown to relax to a genuine GGE exhibiting
multiple temperatures. The evolution and approach of this steady state is explained through
quasiparticle dephasing in the integrable low-energy effective theory. Lastly, we give an
interpretation of the systems dynamics in terms of emergent conserved quantities. Based on
the analytical solution for a binomial splitting and numerical simulations of this instantaneous
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splitting process within the SGPE framework we conclude that the emergent prethermalized
or GGE state can be understood through the dephasing of off-diagonal quasiparticle correla-
tions, which leads to emergent conserved quantities different from the ones imposed onto the
integrable system by the splitting process. We conclude by discussing the challenges to a self
consistent description of the splitting process and the emergence of the GGE.

In an effort to overcome these challenges we change the splitting protocol in chapter 6
and consider the splitting of an initially strongly tunnel coupled system in a double-well
potential. Designing the quasiparticle dispersion relation by use of a box-shaped potential,
we present the observation of quantum recurrences in the phase coherence between two split
condensates. After an initial dephasing of quasiparticles and the approach of a transient
thermal like state, correlations of the phase between the two condensates return back close to
their initial configuration. Therefore, by implementing an exact recurrence in the effective
field theory describing the system, we are able to observe the recurrence of long range order
in an interacting many body system containing thousands of interacting particles. Studying
the long time evolution we find a significant damping of the recurrence height, which is
found to be well described by numerical simulations of the experimental system within the
SGPE framework. Exact calculation of the systems dynamics within the harmonic theory,
taking into account all experimental imperfections, reveals that the observed damping is
caused by higher-order coupling terms, breaking the integrability of the effective field theory.

Finally, a summary and outlook on future perspectives in the study of cold atom systems
is presented based on the results and techniques developed in this thesis.
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Chapter 2

Low-Dimensional Quantum Systems

Low-dimensional quantum systems, for decades, have been a cornerstone of theoretical
and mathematical physics [26]. Between exactly solvable and dauntingly incalculable these
systems are an ideal field for the investigation of the foundations of quantum many-body
physics. Recent developments in the experimental implementation and manipulation of
low-dimensional systems enable the detailed study of long standing models of theoretical
physics. In the following we introduce the models relevant for this thesis, which is focused
on one-dimensional Bose gases.

2.1 One-Dimensional Bose Gases

The starting point for the microscopic theory of a Bose gas is the grand-canonical Hamiltonian
in second quantized form [68, 67]

Ĥ =
∫

dr Ψ̂†(r, t)
(
−
ℏ2

2m
∇2 + V(r) − µ

)
Ψ̂(r, t)

+

"
dr dr′ Ψ̂†(r, t)Ψ̂†(r′, t)Ueff(r − r′)Ψ̂(r′, t)Ψ̂(r, t) . (2.1)

Here Ψ̂(r, t) are the time-dependent field operators in the Heisenberg picture obeying bosonic
equal-time commutation relations [Ψ̂(r), Ψ̂†(r)] = δ(r − r′), the external trapping potential is
V(r), and the effective two-body interactions are described by the pseudopotential Ueff(r− r′).
At the temperatures necessary to achieve quantum degeneracy, the low energies and momenta
involved reduce the possible scattering events to simple s-wave scattering determined by a
single parameter, namely the s-wave scattering length as [68, 67]. Interactions are described
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to lowest order by an effective contact potential Ueff(r − r′) ≃ g3Dδ(r − r′), where

g3D =
4πℏ2

m
as . (2.2)

Depending on the sign of the interaction constant g3D, the Bose gas is either attractive (as < 0)
or repulsive (as > 0). Since we will consider in the following chapters, a degenerate Bose
Gas of 87Rb with as ≃ 5.24 nm > 0 [87], we focus our discussion on repulsive Bose gases.

The excellent controllability of the external trapping potential V(r) in modern day cold
atom experiments enables the study of BECs in highly anisotropic geometries. In the
following the potential V(r) = V⊥(x, y) + V(z) is chosen harmonic in the radial V⊥(x, y) =
1
2mω2

⊥(x2 + y2) and generic in the longitudinal direction. To quantify the anisotropy of the
system, we define the transverse oscillator length

l⊥ =

√
ℏ

mω⊥
, (2.3)

and the characteristic length scale of the longitudinal confinement l∥. For elongated geome-
tries l⊥ ≪ l∥ one has a separation of energy scales and the density of states for small energies
is dominated by excitations in the longitudinal direction. If the energy of the first excited
state of the radial trapping potential is greater than the typical energy scales of the system the
quasi one-dimensional regime is reached. In thermal equilibrium these are the temperature
and chemical potential, so that the conditions can be expressed as

kBT , µ ≲ ℏω⊥ . (2.4)

Restriction to the transversal ground state freezes out the dynamics in the radial direction.
This allows to integrate out the time-independent radial part of the wave function and
effectively reduces the dimensionality of the system. The underlying three-dimensional
nature of the system is completely encoded in the scattering properties of the effective one-
dimensional model [88, 89]. For low momenta, the scattering amplitude can be approximated
by a delta potential Ueff(z − z′) ≃ g1Dδ(z − z′), where

g1D = 2ℏasω⊥

(
1 −C

as

l⊥

)−1
as≪l⊥
≃ 2ℏasω⊥ , (2.5)

and C is a constant of order unity1. In order to avoid complications due to resonance in
the effective 1D scattering we consider in the following the second expression in the limit
as ≪ l⊥, which is fulfilled for all parameters considered in this work.

1Note that the definition of the constant C ≈ 1.033 here differs by a factor of 1/
√

2 to the one in [88] due to
differences in the definition of l⊥
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2.1.1 The Lieb-Liniger Model

Taking into account the above simplifications for two-body scattering, the microscopic
Hamiltonian (2.1) for low energies and momenta is well approximated by [88]

ĤLL =

∫
dz ψ̂†(z, t)

(
−
ℏ2

2m
∂2

z + V(z) − µ +
g1D

2
ψ̂†(z, t)ψ̂(z, t)

)
ψ̂(z, t) , (2.6)

where for now we consider the one-dimensional regime defined by Eq. (2.4).
The Lieb-Liniger (LL) model [21, 22], which describes a homogeneous 1D Bose gas

with δ-potential interactions, is one of the prime examples of a non-relativistic quantum
integrable field theory. In the thermodynamic limit, the relevant parameter governing the
strength of the interaction is found through scaling of Eq. (2.6) to be

γ =
mg1D

ℏ2n1D
, (2.7)

where n1D is the linear density of atoms. In contrast to higher dimensions, interactions in
one-dimensional Bose gases become stronger for lower densities. For γ ≫ 1 the system is in
the strongly correlated Tonks-Girardeau regime, which, in the limit γ → ∞, can be exactly
mapped to the spinless free Fermi gas [90]. This correspondence signifies the fundamental
principle that quantum statistics play a far less determinant role in 1D systems [71, 72]. This
becomes immediately apparent by recognizing that the interchange of two particles in one
spatial dimension necessarily leads to interactions between the constituent, and therefore
does not allow for a clear distinction between interactions and quantum statistics. For the
weakly interacting regime γ ≪ 1 the system is well described by Bogoliubov theory (see
Section 2.1.2). An exact solution based on the Bethe Ansatz [25] was found for arbitrary
interaction strength by Lieb and Liniger [21, 22] and was extended to finite temperature by
Yang and Yang by means of the Thermodynamic Bethe Ansatz [91].

At finite temperature, quantum effects become relevant when the de Broglie wavelength
λdB =

√
2πℏ/mkBT is of the order of the mean particle separation n−1

1D, which can be used to
define the degeneracy temperature [92]

Td =
ℏ2n2

1D

2mkB
. (2.8)

Due to the absence of a true phase transition for the 1D Bose gas, this temperature only
defines a broad crossover to the quantum regime. The finite-temperature phase diagram of
the LL model is presented in Fig. 2.1 in terms of the dimensionless temperature T/Td and the
LL parameter γ. Above the degeneracy temperature the system is in the classical ideal gas
regime. For lower temperatures, in contrast to the 3D condensate, the 1D Bose gas exhibits
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Fig. 2.1 Finite temperature phase diagram of the LL model. In the quantum degenerate regime,
several phases exists in the LL model, dependent on the LL parameter γ = mg1D/(ℏ2n1D)
and the dimensionless temperature normalized by Td = ℏ

2n2
1D/(2mkB) [92]. The lines mark

the crossover between the different regimes and the shaded area depicts typical parameters
considered in this thesis.

different phases of quantum degeneracy, which are all loosely connected through a crossover
and not a sharp phase transition. For γ ≫ 1 the system is in the strongly correlated Tonks-
Girardeau regime. In the quantum decoherent regime, both density and phase fluctuations
are large, while for lower temperatures T/Td ≲

√
γ the system enters the quasi-condensate

regime, where density fluctuations are highly suppressed. However, in contrast to a true
Bose-Einstein condensate, fluctuations of the phase are non-negligible for any temperature
and the system regains a multi-mode character. These fluctuations lead to the absence of a
true BEC in the thermodynamic limit [65, 66]. However, for a trapped systems long-range
order can exceed the size of the atomic cloud, leading to the possibility of a true finite size
BEC at low temperatures [93]. For typical experimental parameters considered in this thesis
the system is in the weakly-interacting quasi-condensate regime, and thermal fluctuations are
typically non-negligible within a single condensate.

2.1.2 Bosonization and Tomonaga-Luttinger Liquids

While the exact solution of the LL-model gives valuable insight into the properties of one-
dimensional Bose gases, it is not very convenient to calculate its dynamical properties. A
more promising approach to describe the dynamics is in the form of an effective field theory2.

2For an excellent review, although not in the context of cold atom systems, see [94]
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Before we embark on a detailed discussion of the for our purposes relevant weakly-interacting
regime of the LL model, we give some general remarks on effective field theories for one-
dimensional systems in the harmonic fluid approach [95, 71]. This highlights the importance
and especially the generality of this method, whose development culminated in the work of
Haldane [69, 70], who introduced the new universality class of Tomonaga-Luttinger liquids
(TLLs) important for a large number of non-Fermi liquids [26].

It is interesting to first consider why one-dimensional systems require a fundamentally
different approach to the formulation of an effective low-energy theory as compared to their
higher-dimensional counterparts [71]. Firstly, as evident for the Tonk-Girardeau gas, the
distinction between quantum statistics and interaction properties gets blurred. It is therefore
desirable to formulate a low-energy theory of the system that is independent of both quantum
statistics and the assumption of weak interactions. Secondly, a description of the system in
terms of point quasiparticles, as e.g. the dressed fermions in the case of a Fermi-liquid [96],
is inadequate because collective excitations arise naturally in one spatial dimension. Due to
the inability of particles to freely pass one-another, excitement of a single particle inevitably
leads to interactions with its nearest neighbors which quickly converts the disturbance into a
collective excitation. Lastly, in bosonic systems no phase transition to the BEC phase occurs
at any temperature. Therefore ’traditional’ mean-field and Bogoliubov theory, which breaks
the U(1)-symmetry, cannot be strictly valid in one dimension, and need further justification.

A theoretical framework for this desired unification began with the study of many-Fermion
models [97, 98] in the harmonic fluid approach and resulted in the seminal works of Haldane,
who generalized the results to what is now known as the TLLs fixed point of renormalization
group. The TLL fixed point3 describes a large class of fermionic and bosonic systems with
an algebraic decay of correlations at zero temperature and phononic low-energy excitations,
i.e. bosonic quasiparticles with a linear dispersion relation [71]. Strong and weak interactions
are treated on the same footing, as the low-energy behavior of the system is described by
an effective field theory dependent on phenomenological parameters. These are determined
by the microscopic theory but not necessarily defined by a simple perturbative expansion.
For bosonic systems the appearance of low-energy phononic excitations is expected from
Bogoliubov theory. Note, however, that the TLL is not a mean-field theory and therefore
does not break any symmetries. For Fermions, this is an astonishing result which is still
reflected in the name bosonization often used for the harmonic fluid approach.

In the weakly-interacting regime γ ≪ 1 the TLL Hamiltonian can be derived by a
perturbative expansion [99] of the LL Hamiltonian (2.6). Apart from enabling a direct
definition of the TLL parameters from the microscopic theory, this has the advantage that it
enables the extension of the low-energy approximation beyond the phononic regime and to
inhomogeneous systems (V(z) , 0).

3It is actually a line of fixed points characterized by the Tomonaga-Luttinger parameter [72]
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For a bosonic system the collective degrees of freedom are the density ρ̂(z, t) and phase
θ̂(z, t), which define the field operators in the Madelung representation

ψ̂†(z, t) =
√
ρ̂(z, t) e−iθ̂(z,t) . (2.9)

As equality is imposed on the operator level, the quantum fluid approach requires appropriate
commutation relations for the collective fields, namely[

ρ̂(z) , θ̂(z′)
]
= iδ(z − z′) . (2.10)

Strict definition of a hermitian phase operator θ̂ is only possible in a discretized model [99].
As this usually makes the equations rather cumbersome we will immediately consider the
continuum limit whenever appropriate. A crucial step in the harmonic fluid approach is to find
a suitable low-energy approximation for the density operator ρ̂(z). Since we are interested in
the quasi-condensate regime, i.e. low enough temperatures where density fluctuations are
highly suppressed, it is sensible to write4

ρ̂(z) = ρ0(z) + δρ̂(z) , (2.11)

where ρ0(z) is the ground state density profile. The desired low-energy effective theory is now
obtained through perturbative expansion of Eq. (2.6) in terms of the small density fluctuations
and phase gradients.

To zeroth order in the expansion the Hamiltonian is simply a c-number. This defines the
stationary ground state density profile ρ0(z) through the solution of the time-independent
Gross-Pitaevskii equation[

−
ℏ2

2m
∂2

z + V(z) − µ + g1Dρ0(z)
] √

ρ0(z) = 0 . (2.12)

For now the geometry of the system is left undefined. Specific solutions will be discussed in
Section 2.4. In the following, whenever obvious from the context, we suppress the spatial
and temporal dependence of fields to simplify the notation.

4This simple form of the density operator is sensible in the weakly-interacting regime, as low-energy
fluctuations of the density are correspondent to long wavelengths. In general, the discrete nature of the particles
has to be implemented with more care, as short-wavelength low-energy fluctuations are possible. The density
operator is therefore approximated by introducing the auxiliary field Θ(z), defined by π−1∂zΘ(z) = ρ0(z) + δρ̂(z)
and takes the form

ρ̂(z) = π−1∂zΘ(z)
∞∑

m=−∞

eimΘ(z) .

For the coarse-grained long-wavelength approximation only the m = 0 contribution is taken into account.
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The first order correction vanishes, because ρ0 is a stationary solution of Eq. (2.12) and
terms containing derivatives of the phase field are at least of second order in the perturbative
expansion.

The second order Hamiltonian determines the linearized equations of motion of the
density fluctuations δρ̂ and the phase θ̂. For later convenience we write it in the form

Ĥ(2) =

∫
dz
ℏ2

4m

 − δρ̂
√
ρ0
∂2

z

(
δρ̂
√
ρ0

)
+

δρ̂2

ρ
3
2
0

+
√
ρ0θ̂

2

 ∂2
z
√
ρ0 −

√
ρ0θ̂∂

2
z

(√
ρ0θ̂

) 
+ g1Dδρ̂

2 , (2.13)

where from now on we use the rescaled fields

δρ̂ = δρ̂/
√
ζ , θ̂ =

√
ζθ̂ . (2.14)

For the current case of a single condensate we have ζ = 2. The corresponding Heisenberg
equations of motion for the rescaled canonically conjugate fields are

ℏ∂tθ̂
√
ρ0 =

[
ℏ2

2m
A− 2ρ0g1D

]
δρ̂
√
ρ0

(2.15)

ℏ∂t
δρ̂
√
ρ0
= −
ℏ2

2m
A θ̂
√
ρ0 . (2.16)

where the operatorA = ∂2
z − ρ

− 1
2

0

(
∂2

z
√
ρ0

)
is defined to shorten the notation. The equations

of motion can be further simplified by eliminating the derivative of the ground state density
profile through Eq. (2.12). However, we can make an educated guess for a simple canonical
transformation which maps the equations for a quasi-condensate into the usual Bogoliubov
equations for a condensate [68, 67]. The new fields

B =
1
√

2

(
δρ̂
√
ρ0
+ i
√
ρ0θ̂

)
, B† =

1
√

2

(
δρ̂
√
ρ0
− i
√
ρ0θ̂

)
, (2.17)

have bosonic commutation relations
[
B(z) , B†(z′)

]
= δ(z − z′) and obey the standard Bogoli-

ubov equations

iℏ∂t

 B
B†

 = − ℏ2

2mA + ρ0g1D ρ0g1D

−ρ0g1D
ℏ2

2mA− ρ0g1D

  B
B†

 . (2.18)
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By means of the Bogoluibov expansion of the quadrature field, B
B†

 =∑
m

[ um

vm

 e−iωmtbm +

v̄m

ūm

 eiωmtb†m
]
, (2.19)

the second order Hamiltonian can be diagonalized within the quasiparticle basis. The disper-
sion relation of the quasiparticles ϵm = ℏωm is defined below. Here ū ≡ u∗ is the complex
conjugate. The sum is performed over eigenvectors normalized to

∫
dz

[
|um|

2 − |vm|
2
]
= 1,

which exactly cancels the off-diagonal contributions to the Hamiltonian in the modal ex-
pansion. The quasiparticle Fock operators obey the usual bosonic commutation relations
[bm, b

†

j] = δm j, with all other commutators equal to zero. The zero mode (m = 0), which
is usually considered via the real valued operator for the quantum phase of the field Q̂ and
its conjugate momentum P̂, needs to be included to make the Bogoliubov basis complete
and gives rise to phase diffusion [100]. This results in the modal expansion for the density
fluctuations and phase operators

δρ̂ =

√
ρ0

2

∑
m

[
f +m e−iωmt bm + H.c.

]
+ P̂∂N0ρ0 (2.20)

θ̂ =
1√
2ρ0

∑
m

[
−i f −m e−iωmt bm + H.c.

]
− Q̂ . (2.21)

We defined the mode functions f ±m = um±vm, appearing in the expansion of the hydrodynamic
variables, normalized to

1
2

∫
dz

[
f̄ +m f −m + f +m f̄ −m

]
= 1 . (2.22)

The dispersion relation ϵm and mode functions f ±m are found by inserting the modal expansion
into Eq. (2.18) and are given by

ϵm

 f +m
f −m

 =  0 − ℏ
2

2mA

− ℏ
2

2mA + 2g1Dρ0 0

  f +m
f −m

 . (2.23)

By construction of the Bogoliubov transformation the second order Hamiltonian (2.13) within
the quasiparticle basis is given by a sum of uncoupled harmonic oscillators5

Ĥ(2) =
∑

m

ϵmb†mbm +
1
2

P̂2∂N0µ0 . (2.24)

5We neglected an unimportant constant energy functional E[ρ0] in the definition of H(2) [99]
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Due to the inclusion of the so called quantum pressure term ∼ ℏ2ρ̂−
1
2∂2

z

√
ρ̂ in the equations

of motion the above derivation is valid for energies ϵm > µ and therefore extend beyond the
regime of validity of the harmonic fluid approach. Neglecting the quantum pressure term
relative to the mean field interaction energy constitutes an important simplification in case of
inhomogeneous condensates. This reduces the results obtained in second order perturbation
theory to the predictions of the TLL model.

For the ground state ρ0 this simplification is called the Thomas-Fermi approximation,
where in Eq. (2.12) the kinetic energy is neglected [101]. Consequently the mean field density
profile takes the form of the inverted external potential

ρ0(z) =
1

g1D

[
µ − V(z)

]
(2.25)

whereby the chemical potential µ is defined through the normalization
∫

dz ρ0(z) = N to the
total atom number N.

After neglecting the quantum pressure term Eq. (2.13) reduces to the inhomogeneous
Tomonaga-Luttinger-Liquid model [102]

ĤTLL =
ℏ

2π

∫
dz

[
vN(z)(πδρ̂)2 + vJ(z)(∂2

z θ̂)
2
]
. (2.26)

The density stiffness vN and phase stiffness vJ are defined as [71, 72]

vJ(z) =
πℏρ0(z)

m
(2.27)

vN(z) =
1
πℏ
∂ρ0µ|ρ0=ρ0(z)

γ≪1
=

g1D

πℏ
, (2.28)

and are proportional to the superfluid fraction and the inverse compressibility respectively.
Note that while we derived the TLL Hamiltonian through an additional approximation within
the perturbative expansion, the equations, as discussed at the beginning of this section,
describe the long-wavelength physics of a variety of one-dimensional models, in particular
the LL model for all values of γ. It is further common to introduce the local Luttinger
parameter K(z) =

√
vJ/vN , determining the Luttinger-Liquid fixed point [72] and the velocity

cs(z) =
√

vJvN , which is the phase velocity of the low-energy excitations, i.e. the speed of
sound for the phononic excitations in case of a homogeneous condensate.

Diagonalization of the TLL Hamiltonian proceeds along the same line as before, and can
in the weakly interacting regime be directly obtained from Eqs. (2.20)–(2.24) by approxi-
mating A = ∂2

z and A + 2g1Dρ0 = 2g1Dρ0, as well as using the relation f −m = 2g1Dρ0ϵ
−1
m f +m .

Since the TLL model is only valid in the long-wavelength regime, fields and observables are
necessarily coarse-grained and all sums are restricted to energies ϵm ≲ µ.
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2.1.3 Solitonic Excitations

In the last section we focused on the long-wavelength, small-amplitude oscillations of the
field, which can be described by the linearized equations of motion obtained through a
perturbative expansion of the many-body Hamiltonian. On the classical level6, however,
it is known the the equations of motion host a variety of non-linear field configurations,
minimizing the energy of the system. In the one-dimensional regime, relevant to our study,
these quasi-topological excitations are solitonic waves, given by exact analytical solutions in
the non-linear regime. These spatially localized, non-dispersive waves have a long history.
Solitons have been found to arise in a large number of physical systems [103] ranging from
the earths atmosphere [104] to optics [105] and cold-atom systems [106].

The classical non-linear equation of motion for the many-body Hamiltonian (2.6) is the
Gross-Pitaevskii equation (GPE) [68, 67]

iℏ∂tψ(z, t) =
[
−
ℏ2

2m
∂2

z + V(z) + g1D|ψ(z, t)|2
]
ψ(z, t) , (2.29)

which to date still represents one of the corner stones in the description of bosonic many-
body systems. Exact analytical solutions to Eq. (2.29) can be obtained by use of the inverse
scattering method7 [107] and include exact multi-soliton solutions [108]. In this thesis, we
focus on the solution of a single defect [67]

ϕs(z, t) =
√

n1D

iν + γ−1 tanh
z − νcst
√

2γξs

 eiµt , (2.30)

in a static homogeneous background n1D and repulsive interactions8. The soliton leads to a
localized dip in the density, which is why these defect are referred to as dark solitons. Similar
non-dispersive solutions, which show a localized increase in density and are hence called
bright solitons [67], are found in case of attractive interactions.

The typical shape of a soliton is depicted in Fig. 2.2 for different soliton velocities
vs = νcs, where cs is the speed of sound in the system. In equilibrium, the width ξs of the
density suppression is determined by the healing length ξh = ℏ/

√
2mn1Dg1D. This is the

typical distance over which the wave function returns to its bulk value when subjected to a
local potential perturbation [68, 67]. Since, as we will show explicitly in chapter 3, this is not
necessarily the case far from equilibrium, we leave the defect width as a free parameter. For
a vanishing soliton velocity ν = 0 the density drops to zero at the center of the soliton. These

6Replacing the field operators Ψ̂(†) by classical complex fields Ψ(∗)

7This remarkable chapter of theoretical physics unfortunately lies far beyond the scope of this work. See
[27] for a detailed introduction

8A more detailed discussion of solitonic defects in spinor Bose gases can be found in [109], whose Masters
theses I co-supervised
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Fig. 2.2 Soliton solution of the LL model. The density suppression (left) and phase modula-
tion (right) for solitons of different velocity vs = νcs, for ν = 0, 0.5, and 0.85. The character-
istic width of solitons is the healing length ξh, scaled by the ’Lorentz’-factor γ−1 =

√
1 − ν2.

The black soliton (ν = 0) presents a sharp phase kink. Solitons are no topological defects
and for increasing velocities get continuously deformed into the unperturbed ground state.

defects are therefore called black, whereas for finite velocities they are referred to as gray
solitons, leading to a minimum density nmin = (1 − ν2)n1D with the dimensionless velocity
|ν| ≤ 1. In addition to the density dip, there is a characteristic phase shift ∆θ = 2 arccos(ν)
across a dark soliton. For a black soliton (ν = 0) the phase shows a localized kink with
∆θ = π where the wave function changes its sign, while for finite velocities (|ν| > 0) the phase
changes continuously over the length γ−1ξs, rescaled by the ’Lorentz-factor’ γ−1 =

√
1 − ν2.

Solitonic excitations represent stable solutions on comparatively long timescales, such
that it is possible to adopt, similar to Onsager’s picture of point-vortices [110], a particle like
representation to describe the dynamics of a solitonic defects [68]. The soliton is thereby,
to first order, treated as a particle of negative mass ms = −4n1Dc−1

s , representing a hole
excitation due to the particles it replaces. Propagation of a solitonic particle is described by
Newtonian mechanics, which e.g. allows to determine the movement in an external harmonic
confinement, showing a reduced oscillation frequencyωs = ω∥/

√
2 [111, 112]. The dynamics

are conveniently described in the extended phase space (z, ν, ξs), where the variable defect
width ξs is included as an additional parameter.

Multi-soliton states are given, to a first approximation and sufficiently separated defects,
as the superposition of single-soliton solutions (2.30). Their interaction properties have
to be determined from the solution to the non-linear wave equation [113–116]. For slow
moving solitons (|ν| < 0.5) interactions are repulsive on a short length scale. The defects
approach each other up to a finite minimal separation during the elastic scattering, before
separating again. The minimal distance decreases with increasing velocity, approaching
zero for |ν| = 0.5. For higher velocities |ν| > 0.5 a distinction of the defects during the
scattering event is no longer possible, revealing their emergent wave character, and only after
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the collision for large separations the solitons are again well defined in terms of Eq. (2.30).
In both cases, the scattering event after a sufficient separation of the defects leads only to a
finite phase shift, resulting in a spatial displacement as compared to the free movement of
the defect. As long as the defect ensemble is sufficiently dilute to allow for a clear separation
in between scattering events ,this enables a statistical description of the multi-soliton state in
terms of particle like excitations. Similar interaction properties are found between solitonic
defects and other types of localized density modulations, as e.g. the edges of a trapped
condensate [116].

The continuous deformation of a soliton to the ground state of the gas, reached for |ν| → 1,
shows that solitonic excitations are not topological defects, and hence not connected to a
degenerate ground state manifold as a result of symmetries in the underlying microscopic
theory. In particular this leads to the possibility of soliton decay9 as they are not protected by
the conservation of any topological charge. Further, the energy of a soliton decreases with
increasing velocity ν, such that any perturbation accelerating the defect may ultimately lead
to its decay. In the special case of a harmonic confinement solitonic defects were found to be
stable [112], reaching a dynamical equilibrium by constantly emitting and absorbing sound
waves during the oscillation. This effect was prominently seen for a slow moving soliton
trapped in a shallow harmonic dimple trap [117]. While slow moving solitons are trapped,
sound waves are able to leave the system which leads to a constant acceleration of the defect
as it cannot reabsorb the emitted phononic excitations. Similarly, interactions with thermal
fluctuations were shown to lead to a gradual decay of solitonic excitations [118, 119] and a
relaxation of the system back to its equilibrium state. This is in line with the possibility of
spontaneous creation, and subsequent decay, of solitonic defects in thermal equilibrium [120],
as any temporary large thermal fluctuations of the density or phase field may develop into a
transient solitonic excitation. Lastly, since solitons are exact solution to the one-dimensional
equations, they are not dynamically stable in elongated three-dimensional condensates, but
decay into more stable field configurations like phonons or vortices. This sneaking-instability
is however strongly suppressed for condensates in the quasi-one dimensional regime if
g1Dn1D/ℏω⊥ ≲ 2.5 [119, 121].

2.1.4 Bose Gases in the Dimensional Crossover

In some results presented in this thesis the one-dimensional limit for elongated condensates
(see Eq. (2.4)) is not completely fulfilled, and radially excited states need to be considered
for an accurate description of the system. The dimensional crossover in thermal equilibrium
from a one-dimensional to an elongated 3D condensate has recently been studied in [122],

9More precisely we mean the decay of a single soliton in a homogeneous system, as compared to the vortex
recombinations where at least two vortices are involved.
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and good agreement was found with the modified Yang-Yang model [123]. At high densities
in the quasi-condensate regime deviations occur due to the transversal swelling of the density
profile caused by the atomic repulsion which renormalizes the 1D interaction constant. Within
this regime good agreement was found with the equation of state for a quasi-condensate
[124, 125]

µ[n1D] = ℏω⊥
( √

1 + 4n1Das − 1
)
. (2.31)

In [125] this was obtained by a variational approach minimizing the chemical potential,
and used to obtain a solution for the mean field density profile ρ0 within local density
approximation.

Radially excited states also have a significant impact on the dynamics of the system,
foremost leading to the breakdown of integrability. This becomes immediately apparent when
considering the simplest scattering process allowed by parity conservation; first exciting
a single particle to the radially excited state, {ϕ0,0,k1 , ϕ0,0,k2} → {ϕ2,0,p, ϕ0,0,k′1}, which subse-
quently scatters back into the radial ground state, {ϕ2,0,p, ϕ0,0,k3} → {ϕ0,0,k′2 , ϕ0,0,k′3}. Adiabatic
elimination of the radially excited state is valid as long as the time between the two scattering
events is short compared to the dynamics in the longitudinal direction. This leads to an
effective three-body interaction {k1, k2, k3} → {k′1, k

′
2, k
′
3} where the two sets of momenta are

mutually different which contributes to diffractive scattering in the radial ground state and
therefore breaks the integrability of the model [126, 127].

Parity conservation enforces the minimum kinetic energy of 2ω⊥ for a collision to transfer
particles into a radially excited state. Assuming the kinetic energy of collisions is below
this threshold, one is inclined to believe that the system is solely described by the one-
dimensional model Eq. (2.6) and retains its integrability. However, due to the time-energy
uncertainty the particle number of radially excited states is not conserved and therefore
virtual excitations of radially excited states need to be included in perturbative calculations
[126]. The above scattering process arises already in second order of perturbation theory
(only the two collisions are needed to bring the system back on the energy shell) and gives
the dominant contribution to effective three-body collisions. After elimination of the radially
excited states the dominant integrability breaking contribution to the Hamiltonian is found to
be [126]

Ĥni = −
ξ

2

∫
dz

[
ℏω⊥a2

s ψ̂
†ψ̂†ψ̂†ψ̂ψ̂ψ̂

]
, (2.32)

where ξ = 4 Ln (4/3) ≈ 1.15 deviates from one due to the inclusion of all radially excited
states in the scattering process allowed by parity conservation. The correction (2.32) is
negative, and the full Hamiltonian Ĥ = ĤLL + Ĥni does not support a stable ground state.
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It therefore needs to be considered as a first correction. Nevertheless, Ĥni represents the
dominant contribution to the violation of integrability and the associated relaxation of the
system. The full effective one-dimensional Hamiltonian contains higher order interaction
terms which stabilize the ground state.

An effective 1D field equation extending beyond the 1D regime can be derived by a
variational approach from the classical, or mean-field, equations of a trapped 3D condensate
[128]. Therein the transversal wave function is assumed to be a broadened Gaussian with
a spatially dependent width σ(z, t). Integrating over the radial direction and minimizing
the classical action functional with respect to σ leads to the relation σ2 = l2

⊥

√
1 + 2as|ψ|2

between the local radial width and the one-dimensional density. The atomic repulsion
broadens the transversal wave function in accordance with [122]. The classical equations of
motion for the field take the form of a non-polynomial Schrödinger equation (NPSE)

iℏ∂tψ(z, t) =

− ℏ2

2m
∂2

z + V(z) − µ + ℏω⊥
1 + 3as|ψ(z, t)|2√
1 + 2as|ψ(z, t)|2

ψ(z, t) . (2.33)

The NPSE reduces to the GPE10 (2.29) when expanded to first order in asn1D.
The classical Hamiltonian for the NPSE is given by

HNPSE =

∫
dz ψ∗(z, t)

(
−
ℏ2

2m
∂2

z + V(z) − µ + ℏω⊥
√

1 + 2as|ψ(z, t)|2
)
ψ(z, t) . (2.34)

In second order in asn1D one recovers the classical analogue of the integrability breaking part
Ĥni with the numerical constant ξ set to one, i.e. only taking into account the lowest radially
excited state. In contrast to the perturbative treatment in the full quantum model, the NPSE
includes higher order corrections to the Hamiltonian leading to a well defined ground state.
The variational approach thereby takes radially excited states into account in an effective,
non-simple way.

The equation of state of the NPSE is given by

µ[n1D] = ℏω⊥

(
1 + 3asn1D
√

1 + 2asn1D
− 1

)
(2.35)

and agrees well with Eq. (2.31), showing small deviations for high densities. The transversal
swelling of the gas leads to a shift of the speed of sound

c2
s =

n1D

m
dµ
dn
=
ℏω⊥asn(2 + 3asn)

m(1 + 2asn)
3
2

. (2.36)

10with the chemical potential shifted by the radial ground state energy ℏω⊥
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Fig. 2.3 Shift in the speed of sound
cs in the dimensional crossover. Be-
yond the one-dimensional approxi-
mation, swelling of the radial density
profile for increasing linear densities
n1D leads to a decrease in the propa-
gation speed of phononic excitations
along the longitudinal direction. For
low densities the GPE and NPSE pre-
dictions coincide and the system only
occupies the radial ground state.

This effect is faithfully reproduced in a perturbative expansion11 of the NPSE Hamiltonian
(2.34). The inclusion of transversally excited states leads to a renormalization of the effective
1D coupling constant in the harmonic approximation

g1D = ℏω⊥as
(2 + 3asρ0)

(1 + 2asρ0)
3
2

, (2.37)

which, to second order in as, is in accordance with the perturbative expansion of the full
quantum calculation including the non-integrable part Ĥni in the limit ξ = 1. In Fig. 2.3 we
show the difference in the speed of sound caused by the inclusion of transversally excited
states. We will see in chapter 6 that this needs to be considered in comparison to cold atom
experiments and demonstrate the validity of the NPSE approach within the semi-classical
field approximation for the far-from equilibrium dynamics of elongated condensates within
the dimensional crossover.

2.2 Coupled Bosonic Quantum Wires

As a second model in this thesis we consider a Bose gas confined to an elongated double-well
potential [38, 67]. In the two mode approximation [67, 129] this system is described by
two separated one-dimensional condensates, located in the left (L) and right (R) well of the
potential, which are linearly coupled by tunneling through the double-well barrier. Due to
the spatial separation of the two condensates intra-species interactions are negligible and the

11The perturbative expansion is equivalent to the 1D case, except for the interaction term which is obtained
to arbitrary order by expanding

√
1 + 2as (ρ0 + δρ) in a double binomial series and taking advantage of the

recurrence relation of the Gamma function Γ(x + 1) = xΓ(x).
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system can be described by two linearly coupled quantum wires [130]

Ĥ =
∑
j=L,R

∫
dz ψ̂†j(z, t)

(
−
ℏ2

2m
∂2

z + V(z) + µ +
g1D

2
ψ̂†j(z, t)ψ̂ j(z, t)

)
ψ̂ j(z, t)

− ℏJ
∫

dz ψ̂†1(z, t)ψ̂2(z, t) + ψ̂†2(z, t)ψ̂1(z, t) . (2.38)

The first part describes the dynamics of each condensate, given by the LL Hamiltonian (2.6),
while the second hopping term J, determined from the overlap integrals of the radial wave
function [129], leads to an additional coupling between the two condensates. Due to the
absence of intra-species interactions the system, in contrast to the Bose mixture [131, 132],
does not have a phase transition or quantum critical point for any value of the coupling J.
Nonetheless, the hopping term introduces a variety of interesting dynamical phenomena
from Josephson oscillations [133, 134, 67], the possibility of matter-wave interference [38]
between the two condensates, to a non-trivial low-energy effective theory [84], on which we
will focus our attention for the remainder of this section.

2.2.1 Perturbative expansion for coupled quantum wires

As in the case of a single condensate, we use the quantum hydrodynamical approach, write
the fundamental fields ψ̂L,R(z, t) in the Madelung representation Eq. (2.9) and a priori assume
small density fluctuations δρ̂L,R(z, t) within each of the condensates. The full Hamiltonian of
the coupled system Eq. (2.38) has the form Ĥ = ĤL + ĤR + ĤJ. Here ĤL,R are given by the
LL Hamiltonian Eq. (2.6), whose perturbative expansion was already discussed for the case
of a single condensate. We therefore refer to Sect. 2.1.2 for details and focus our discussion
on the relevant alterations arising from the non-vanishing hopping term ĤJ coupling the two
systems.

Since the coupling depends only on the relative phase θ̂L(z)− θ̂R(z) of the two condensates
it is advantageous to introduce the common (c) and relative (r) degrees of freedom

δρ̂c(z) = δρ̂L(z) + δρ̂R(z) , θ̂c(z) =
θ̂L(z) + θ̂R(z)

2
, (2.39)

δρ̂r(z) =
δρ̂L(z) − δρ̂R(z)

2
, θ̂r(z) = θ̂L(z) − θ̂R(z) . (2.40)

These fields fulfill canonical commutation relations as well, where the explicit form of the
normalization was chosen for later convenience.

In zeroth order in the density and phase fluctuations (c.f. Eq. (2.12)) the coupling J only
leads to a shift of the chemical potential µL,R = µ0 − ℏJ. Here µ0 is the chemical potential
in the limit J = 0, chosen to be the same for the left and right condensates. Consequently
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we expand the equations of motion of each condensate around the same mean field density
profile ρ0. For µL , µR the coupled system J , 0 shows Josephson oscillations between the
two wells [67, 134, 133], while for the uncoupled system J = 0 the imbalance between the
two condensates leads to a coupling of common and relative degrees of freedom in second
order perturbation theory due to the difference in the speed of sound in each condensate
[135, 136].

Neglecting for the moment the coupling ĤJ, the expansion of ĤL,R to second order in the
density fluctuations and phase gradients leads for µL = µR to the decoupling of common and
relative degrees of freedom

Ĥ(2)
L + Ĥ(2)

R = Ĥ(2)
c + Ĥ(2)

r . (2.41)

Here Ĥ(2)
L,R,c,r are, in terms of the rescaled fields Eq. (2.14), given by Eq. (2.13) with ζL,R = 2,

ζc = 4 and ζr = 1.
The contribution of the coupling ĤJ between the two condensates up to second order in

the density fluctuations is given by

Ĥ(2)
J = −ℏJ

[
2ρ0 + δρ̂c

] (
cos

(
θ̂r

)
− 1

)
+
ℏJ
ρ0
δρ̂2

r cos
(
θ̂r

)
(2.42)

∼eq.
≈ −2ℏJρ0 cos

(
θ̂r

)
+
ℏJ
ρ0
δρ̂2

r . (2.43)

While phase gradients are expected to be small for all values of the coupling J, the phase
field itself needs to be considered non-perturbatively, resulting in the full cosine potential.
This couples the common and relative degrees of freedom already at first order in the density
fluctuations. In, or near, thermal equilibrium however, it is presumed that the coupling of
density and phase fluctuations are negligible and can be neglected in the low-energy regime.
In the following we adopt this approximation of the hopping term Eq. (2.43) and confirm
its validity in chapter 4. This completely decouples the second order Hamiltonian into an
independent sum Ĥ(2) ≃ Ĥc + Ĥr of common and relative degrees of freedom respectively.
The common modes are described by Ĥc = Ĥ(2)

c , i.e. Eq. (2.13) for a single Bose gas, and are
hence independent of the coupling J between the two condensates. For the relative modes on
the other hand, where Ĥr = Ĥ(2)

r + Ĥ(2)
J , the linear coupling J introduces new dynamics, on

which we focus our discussion for the remainder of this and the following sections.
In order to arrive at an analytically feasible description of the system we neglect the

quantum pressure term in Ĥ(2)
r , as we did in the case of a single condensate to reduce it to the

inhomogeneous TLL model Eq. (2.26). For the case of two coupled bosonic quantum wires
we find a similar reduction to one of the fundamental field theoretical models, namely the
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sine-Gordon Hamiltonian [26, 74]

Ĥr =
ℏ

2π

∫
dz

[
vN(z)(πδρ̂r)2 + vJ(z)(∂2

z θ̂r)2 − 4πJρ0 cos
(
θ̂r

)]
. (2.44)

The stiffnesses vJ and vN were defined in Eqs. (2.27) & (2.28) respectively, where the 1D
coupling constant g = g1D + ℏJ/ρ0 is rescaled due to the non-vanishing coupling between the
two condensates. The rich physics of the sine-Gordon model are discussed in the following
Section 2.2.2, but before we continue with a further approximation of the model in case of
strong tunnel-coupling J.

When the potential energy is dominant compared to the kinetic term, i.e. Jρ0/vJ ≫ 1, the
field θ̂r is restricted close to a single minimum of the cosine potential. Due to the periodicity
of the Hamiltonian, i.e. the invariance under a global shift θ̂r → θ̂r + 2πn for n ∈ N, this
is equivalent to the phase field itself being small and contributing to the same order as its
gradient in the perturbative expansion. We can therefore expand the cosine potential to
second order in the phase field, to obtain what we will call the massive TLL model

ĤmTLL =
ℏ

2π

∫
dz

[
vN(z)(πδρ̂r)2 + vJ(z)(∂zθ̂r)2 + 2πJρ0θ̂

2
r

]
. (2.45)

The homogeneous quadratic model can easily be extended to energies E > µ by including
the quantum pressure term, resulting in the full Bogoliubov spectrum [130]. The diagonal-
ization is equivalent to a single condensate, for g = g1D and a shift of the kinetic operator
ℏ2A/(2m)→ ℏ2A/(2m) + 2ℏJ.

Finally, the model of coupled bosonic quantum wires can be extended into the regime
of the dimensional crossover. Starting from the 3D system in a DW-potential this entails
calculating the influence of radial swelling on the overlap integrals to determine the quasi
1D parameters of the model. For an inhomogeneous condensate the 1D parameters acquire
a non-trivial spatial dependence through the local density, as was the case for the contact
interaction g1D in the NPSE Eq. (2.37). We investigated a spatial modulation of the coupling
in numerical simulations but found that it is commonly negligible in comparison to the
experiment. We therefore consider the coupling as an exterior parameter. Using, as for the
NPSE, a variational approach for the width of the radial wave-function in the classical action
the coupling term ĤJ is for µL = µR unchanged by the radial swelling of the condensates.
The system close to the 1D regime is therefore described by replacing ĤL,R with the NPSE
Hamiltonian (2.34)12. In particular this also leads to a shift of the speed of sound for the
relative degrees of freedom.

12Note that in the case of non-vanishing intra-species contact interactions the local width of the condensates
is determined by a polynomial of higher order and cannot be determined analytically. However by Descartes
rule of signs the existence of a unique solution is always ensured.
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2.2.2 Quantum sine-Gordon model

The sine-Gordon model is one of the prime examples of mathematical physics, and one
of only three integrable field theories with an infinite number of higher-order interaction
constants [74]. Its applications are ubiquitous ranging from particle and condensed matter
physics to the motion of rigid pendula and dislocations in crystals [73, 137, 95, 26].

The sine-Gordon Hamiltonian (2.44) can be written in rescaled form

HSG =
1
2

∫
dz

[
Π2 + (∂zϕ)2 − ∆ cos βϕ

]
, (2.46)

commonly used in theoretical studies of the SG model [84, 138]. Here we set ℏ = kB = 1,
rescaled time t → cst, and set cs = 1. Furthermore, we define the conjugate momentum
Π = β δρ, the rescaled phase field ϕ = φ/β, as well as the parameters β =

√
2π/K and

∆ = 8Jm/β2.
The SG model is an exactly solvable field theory [84, 95, 26]. The spectrum of the

Hamiltonian, Eq. (2.46), depends on the value of β. The system undergoes a Kosterlitz-
Thouless transition at the critical point β2 = 8π [139]. For larger values, β2 > 8π, the cosine
term becomes irrelevant and the system is in the weakly interacting regime. The Hamiltonian
therein reduces to the TLL model. As was shown in [140] for β2 < 8π the sine-Gordon model
is equivalent to the zero-charge sector of the massive Thirring model, describing massive
Dirac fermions with local self-interaction. In this regime, the spectrum can be further divided
into two distinct sectors, separated by the Luther-Emery point, β2 = 4π, at which the model
describes non-interacting massive Dirac fermions. For 4π < β2 < 8π, the system is described
by soliton and anti-soliton excitations, whereas for 0 < β2 < 4π, the spectrum contains
additional bound states of (anti-)solitons, called breathers.

These solitonic solutions attracted much attention to the SG model [75]. The single
soliton/anti-soliton solution is given by

φS(z) = 4 arctan

± exp
z − z0 − vSt

lJ

√
1 − (vS/cs)2

 , (2.47)

where z0 is the position and vS the velocity of the soliton, and cs =
√

gn1D/m the speed of
sound (see e.g. [73]). The width of the soliton is given by the length scale lJ =

√
ℏ/4mJ.

Motion of the soliton leads to a contraction of this length scale by the ‘Lorentz’ factor√
1 − (vS/cs)2. These topological defects represent a local phase-twist of 2π, connecting adja-

cent minima of the cosine potential. The parameters applying to our experiment correspond to
the weakly interacting regime, K ≫ 1, typically K = 63 . . . 73, and hence β2 = 0.1 . . . 0.086.
The sine-Gordon model is hence in the strongly correlated regime, and the cosine potential
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can in general not be neglected. This allows for the study of this highly relevant, non-trivial
field theory by use of ultracold Bose gases confined in a DW-potential.

2.3 Semi-Classical Field Approximation

Semi-classical field approximations, and especially their numerical implementation, has
taken a fundamental role in the study of cold-atom systems in theory and experiments alike
[141]. One of the underlying principles of these techniques is the fact, that the full quantum
dynamics of a many-body system is often well approximated by stochastic simulations of the
classical equations of motion. There has also been much progress in numerical simulations
aiming to solve the full quantum dynamics, such as multi-configural Hartree-Fock for Bosons
(MCTDHB) [142, 143], 2-PI effective action [37, 144], time-dependent density matrix
renormalization group (tDMRG) [145], or conformal field theories [56]. However, while the
ever increasing level of controllability in cold-atom experiments drives the necessity of a
deep understanding of the full quantum dynamics, it also requires an increased understanding
for the specifics of the experimental implementation. Numerical techniques based on the
semi-classical description present a good approximation to the non-linear quantum dynamics
in a highly adaptable framework and hence play an important role in the study of quantum
many-body systems.

Since the generalization to a two-component Bose gas is straight forward we consider
in Sections 2.3.1 & 2.3.2 for simplicity a single condensate. Details on the numerical
implementation are given in Appendix B.

2.3.1 Truncated-Wigner Formalism

Probably one of the best known semi-classical approximations is the so called Truncated
Wigner Approximation (TWA) [141, 146]. Based on the phase space formulation of quantum
mechanics an intricate role is played by the Weyl transformation, which defines a one to
one mapping between quantum operators and ordinary functions in phase space [146]. The
transformation of the density matrix ρ̂ is the so called Wigner function W(ψ, ψ∗), where we
immediately adopt the commonly used coherent state representation. In leading order, i.e. to
first order in ℏ which is the TWA, quantum corrections do not affect the classical equations
of motion. This means that in the semi-classical limit only the time independent Wigner
function exhibits corrections due to the quantum nature of the system. Expectation values of
observables are subsequently calculated through the averaged of its Weyl symbol weighted
by the initial state Wigner function. Corrections beyond the TWA include so called quantum
jumps which explicitly add a stochastic noise to the evolution of a single trajectory [146].
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These effects are however highly suppressed near the classical limit where the field ψ has
large occupation, as it is usually the case for the low energy regime of a Bose gas.

The Wigner function is, while not in general, for many initial states positively defined
and can therefore be interpreted as a classical probability distribution. Its time evolution,
given by a classical Liouville equation, can be solved by the method of characteristics, where
each trajectory evolved according to the classical field equations can be interpreted as a
possible realization of the dynamics. Specifically, the procedure is as follows: A single
realization of the field is sampled from the initial state Wigner function W(ψ, ψ∗) using direct
or Monte Carlo sampling. The field configuration is then evolved according to the classical
field equations, in our case the GPE or NPSE equations, up to some time t, after which the
expectation value of an observable O(ψ, ψ∗) is calculated by averaging many trajectories, i.e.

⟨O⟩ =
1
N

N∑
i=1

O(ψi, ψ
∗
i ) . (2.48)

Important initial state Wigner functions are vacuum and thermal states, for which the Wigner
function in the quasiparticle basis is given by a product of uncorrelated complex Gaussian
distributions. Their variance is determined by the thermal and quantum occupation of the
mode given by the Bose Einstein distribution and an additional 1/2 of quantum noise (see
e.g. [141]).

2.3.2 The Stochastic Gross-Pitaevskii Equation

A large part of this thesis is concerned with finite temperature states. Although the sampling
of initial conditions in the TWA can be very efficiently implemented it requires the solution to
the, in general, inhomogeneous Bogoliubov equations and by construction does not account
for higher-order correlation between the quasiparticles.

We therefore consider an alternative approach for finite temperature states of sufficiently
high temperature T , where the system dynamically thermalizes during the evolution of
the so called stochastic Gross-Pitaevskii equation (SGPE) [147–149]13. Applications of
the SGPE, while fewer in number than the TWA, have shown great success in describing
the finite temperature dynamics of cold-atom systems [119, 151, 152, 141, 153]. For a
comprehensive analysis of the validity range of the SGPE and comparison to other finite
temperature approaches see [154].

The derivation of Stoof, which we will adopt here, is based on the Keldysh non-
equilibrium formalism [147, 155] and was first numerically implemented in [156]. The

13There are two distinct formulations of such a nonlinear Lagevin equation, which arise from different
formalisms. For an excellent review see [150]



30 Low-Dimensional Quantum Systems

idea is to separate the system, in a Hartree-Fock-type Ansatz, in a part containing the low-
energy, highly occupied modes well approximated in the semi-classical limit by the field ψ,
and a remainder of high-energy, non-condensed modes described by a quantum Boltzmann
equation. In contrast to the Zaremba-Nikuni-Griffin (ZNG) theory [157] the field ψ here
describes not only the condensate but contains a number of low-energy modes. For simplicity
we will however in the following often refer to ψ simply as the condensate, instead of the
low-energy modes described by the SGPE equation. By integrating out the high-energy
region, the time evolution of the probability distribution for the condensate ψ is given by a
Fokker-Plank equation. The drift coefficient is determined by the unitary evolution of the
system plus a complex source term iR accounting for scattering between the condensed and
non-condensed atoms. The random nature of fluctuations is given by the diffusion coefficient
ℏΣK(z, t), where ΣK is the Keldysh self-energy. These additional terms depend on the explicit
distribution of high-energy particles of energy ϵc, which in the Hartree-Fock Ansatz is an
operator dependent on the non-vanishing mean-field potential |ψ|2. In general this dependence
of the energy on ψ leads to a complicated stochastic equation including multiplicative noise
[119].

An important simplification is to assume that the high-energy region of the system is in
thermal equilibrium. If thermalization of high-energy particles happens on a time scale much
faster than the dynamical processes being modeled, the high-energy region acts as a static
heat bath for the condensate. As a consequence, the noise and the dissipative term in the
SGPE are connected through the fluctuation-dissipation relation

iR(z, t) = −
1
2
ℏΣK(z, t) (1 + nBE[ϵc])−1 . (2.49)

This allows to map the evolution of the field ψ while being in contact with the thermal cloud
to the Langevin equation

iℏ∂tψ =
[
U[ψ, ψ∗] − iR(z, t) − µ

]
ψ + η(z, t) , (2.50)

where the chemical potential µ defines the total atom number in thermal equilibrium and the
operator U[|ψ, ψ∗] determines the unitary evolution of the system, given by either the GPE
(2.29) or NPSE (2.33). The dissipative term R describes particle exchange due to collisions
of condensate and non-condensed atoms, while the stochastic “force” η represents a noise
term due to the random nature of incoherent scattering within the system. Both terms lead to
non-conservation of the particle number in the condensate and are essential to ensure that the
fluctuation-dissipation theorem is satisfied in the final equilibrium state.

To arrive at a numerically feasible theory the SGPE is commonly further approximated
by taking the limit of large-occupation, i.e. approximating the Bose-Einstein distribution
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with the Rayleigh-Jeans limit. With the classical form of the fluctuation-dissipation relation
(2.49), Eq. (2.50) can be written in closed form

iℏ∂tψ =
[
1 − iγ(z, t)

] (
U[ψ, ψ∗] − µ

)
ψ + η(z, t) . (2.51)

Here γ(z, t) = iβΣK(z, t)/4, with the inverse temperature β = 1/kBT . The stochastic force
term η is a complex Gaussian white-noise with zero mean and variance14

⟨η(z, t)η(z′, t′)⟩ = 2γ(z, t)kBTδ(z − z′)δ(t − t′) . (2.52)

Due to the classical form of Eq. (2.49) equilibrium states of the SGPE are stationary states
under further unitary evolution of the GPE or NPSE. This is in contrast to the TWA when
sampled from the Bose-Einstein distribution, which shows further relaxation to the classical
thermal equilibrium state in the long-time evolution. A further common simplification is to
choose the parameter γ(z, t) independent of time and space. The spatio-temporal dependence
can be approximated by direct evaluation in the ergodic approximation or the approximation
using Lerch transcendents (for a comparison see [119]). Note that, if one is only interested
in creating a thermal state of the system, and not in the dynamics during the condensation,
the numerical value of γ is arbitrary (within reasonable limits) as it merely rescales the
condensation time. However, the value should not be chosen to high in order to avoid the
excitation of topological defects during the condensation process which may prevail for
a long time, slowing down the approach to thermal equilibrium. Expectation values for
observables are calculated equivalent to the truncated Wigner approach, by averaging over
many independent realizations.

2.3.3 Transfer Matrix Formalism

The TWA and SGPE discussed in the last Sections are applicable for a wide variety of
systems, including arbitrary dimensions d and inhomogeneous trapping potentials V(z).
However, one-dimensional systems allow for a different approach, based on the Transfer
Matrix Formalism (TMF) developed in [158, 76]. Therein, correlation functions of the
system at temperature T can be calculated within the classical-field approximation. For two
tunnel-coupled superfluids in the harmonic approximation (2.45) this has been analysed
in [159]. In particular, the Gaussian fluctuations of the phase along z have been shown
to be describable by an Ornstein-Uhlenbeck process15. Further developed by I. E. Mazets
in the context of the SG model [160] and recently extended to describe the full system of
Bose gases in a double well potential [161], this non-perturbative method allows for a direct

14More general ⟨η(z, t)η(z′, t′)⟩ = ℏΣK(z, t)δ(z − z′)δ(t − t′)/2
15Note that we deal with stochastic processes evolving in space, along z, but not in time.
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sampling of field configuration from the equilibrium distribution for a homogeneous system
with arbitrary local interactions16. This enables the fast calculation of correlation functions
in thermal equilibrium, as no time is needed for the dynamical equilibration of the system.
We discuss the explicit solution for the SG model in chapter 4, and outline here the basic
principles of this method.

The general model considered in [161, 160] is described by the (classical) Hamiltonian

H =
∫

dz
[ M∑

j=1

(
−
ℏ2

2m
ψ∗j

∂2

∂z2ψ j − µψ
∗
jψ j

)
+ V(ψ∗M, . . . , ψ

∗
1, ψ1, . . . , ψM)

]
, (2.53)

for the M-component Bose field ψ j(z), j = 1, . . . ,M, with an arbitrary local, but not
necessarily pairwise interaction potential V , conserving the total number of atoms, N =∫

dz
∑M

j=1 ψ
∗
jψ j. The transfer-matrix formalism [158, 76] yields the following expressions

for the thermal average and correlation function of operators O(z):

⟨O(z1)⟩ = ⟨0|O(z1)|0⟩, (2.54)

⟨O(z1)O(z2)⟩ =
∑

n

⟨0|O(z2)|n⟩⟨n|O(z1)|0⟩e−(κn−κ0)(z2−z1) (z2 ≥ z1) . (2.55)

The matrix elements with respect to the eigenstates |n⟩ of the transfer operator K̂ (see below),
with eigenvalues κn, are defined as:

⟨n′|O(z)|n⟩ =
∫ ∏

j

dq j Ψ
∗
n′O(z)Ψn , (2.56)

where we define q2 j−1 = Re(ψ j) and q2 j = Im(ψ j) to shorten the notation. The observables
O(z) = O(q0, . . . , q2M)|z can be arbitrary functions of the classical field provided the integrals
exist. The eigenvalues κn and orthonormal eigenfunctions Ψn = Ψn(q0, . . . , q2M) are given by
the Hamiltonian-like hermitian operator [161]

K̂ =
2M∑
j=1

−D
∂2

∂q2
j

− βµq2
j

 + βV(q0, . . . , q2M) , (2.57)

with D = m/2βℏ2. The operator K̂ is directly related to the transfer matrix operator T̂
appearing in the calculation of the classical partition function [158, 76, 161, 134], and has the
same form as a 2M-dimensional quantum Hamiltonian for a single particle of mass ℏ2/2D in
an external potential17. The equilibrium distribution (c.f. Eq. (2.54)) is determined by the

16As long as the system remains dynamically stable
17Therefore, as was argued in [161], Ψ0 has all properties of a Hamiltonian ground state function
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ground (lowest-eigenvalue) state of the operator K̂ [158, 76], via

Weq(q0, . . . , q2M) = |Ψ0(q0, . . . , q2M)|2 . (2.58)

Direct calculation of higher-order correlations (2.55) on the other hand requires the knowledge
of the full spectrum of K̂.

It is, however, possible to construct a Fokker-Planck equation for the classical probability
distribution W(q0, . . . , q2M; z) that describes the same stochastic process as the transfer-matrix
formalism:

∂

∂z
W =

2N f∑
j=1

D ∂2

∂q2
j

W +
∂

∂q j
(Aq jW)

 . (2.59)

The spatial coordinate z here takes the role of time as compared to the common form of the
Fokker-Plank equation. Direct calculation shows that the above stochastic process leads to
the same expectation value as the TMF [161]. The stationarity condition of the equilibrium
solution ∂zWeq = 0 determines the drift coefficients Aq j , for which from Eq. (2.59) follows

Aq j ≡ Aq j(q1, q2, q3, q4) = −D
∂

∂q j
ln Weq = −2D

∂

∂q j
ln |Ψ0| . (2.60)

The last step is to realize, that the Fokker-Planck equation is equivalent to a stochastic process
described by an Itô equation [162]

dq j = −Aq j dz +
√

2D dXz , (2.61)

where dXz is a random term obeying Gaussian statistics with zero mean, ⟨dXz⟩ = 0, and
variance, ⟨dX2

z ⟩ = dz.
Fast sampling of the fields from the full classical equilibrium probability distribution is

possible using Eq. (2.60) and Eq. (2.61), after finding only the ground stateΨ0 of the auxiliary
operator (2.57) instead of the whole spectrum as Eq. (2.55) requires. Expectation values of
an observable O(z), or arbitrary correlations thereof, can subsequently be calculated as in the
truncated Wigner or SGPE approach by averaging over many independent realizations (see
Eq. (2.48)).

Based on the general discussion, we now give explicit results of the transfer matrix
formalism for the sine-Gordon model for a homogeneous condensate V = 0 in thermal
equilibrium. For two linearly coupled quantum wires (M = 2) the interaction potential in
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Eq. (2.53) is given by

V =
g
2

[
(ψ∗1ψ1)2 + (ψ∗2ψ2)2

]
− ℏJ

[
ψ∗1ψ2 + ψ2ψ

∗
1
]
, (2.62)

with the chemical potential µ = gn1D − ℏJ. For the interaction potential (2.62) we get for
the transfer operator K̂, using the Madelung representation for the fields, from the general
formula (2.57)

K̂ = K̂s
1 + K̂s

2 +
ℏJ

kBT
(ρ1 + ρ2) −

2ℏJ
kBT
√
ρ1ρ2 cos(θ1 − θ2), (2.63)

where

K̂s
j = −D

 1
√
ρ j

∂

∂
√
ρ j

√
ρ j

∂

∂
√
ρ j
+

1
ρ j

∂2

∂θ2
j

 + g
2kBT

ρ j(ρ j − 2n1D) (2.64)

is the auxiliary operator for a single superfluid. Note that ρ j here constitutes the full density
field, including perturbations. To reduce the full model to the sine-Gordon Hamiltonian for
the relative degrees of freedom we, in accordance with previous approximations, neglect the
non-linear coupling of the relative phase θr = θ1−θ2 and of the densities ρ1,2. This completely
decouples the relative phase, which is hence fully described by the operator [160]

K̂θr = −
2
λT

∂2

∂θ2
r
−
λT

4l2
J

(cos (θr) − 1) . (2.65)

Upon further expanding the remainder to quadratic order in the density perturbations the
remaining degrees of freedom are determined by the usual Gaussian diffusion and Ornstein-
Uhlenbeck processes [159]. The relative phase, however, is calculated from the anharmonic
model (2.61) by the Îto equation

dθr = −
4
λT

(
∂

∂θr
ln |Ψ0|

)
dz + 2

√
λT dXz , (2.66)

where Ψ0 is the lowest-eigenvalue solution of the corresponding Mathieu equation [134].

2.4 Explicit Results in Thermal Equilibrium

As a last part of this theoretical introduction we discuss the explicit results in thermal
equilibrium for the above discussed models. As the remainder of this thesis is concerned
with the far-from-equilibrium dynamics of quantum many-body systems and their approach
to thermal equilibrium, this forms the basis for the following discussions. We focus here
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on results of the mean-field and harmonic approximations for a single condensate and for
coupled quantum wires.

2.4.1 Mean Field Density

For the homogeneous system the external potential vanishes V ≡ 0 and therefore the
stationary solution to the mean-field GPE equation (2.12) is simply a constant bulk density
ρ0(z) = n0 with the chemical potential µ = n0g1D.

For a harmonically trapped system one commonly considers the Thomas-Fermi (TF)
approximation, neglecting the kinetic energy term in Eq. (2.12). This is an excellent approx-
imation in the limit Nas/a∥ ≪ 1, where a∥ =

√
ℏ/mω∥ is the harmonic oscillator length of

the longitudinal confinement. In the local density approximation (LDA) this approximation
can be generalized to Bose gases in the dimensional crossover. The system is, at each
point in space, considered to be in the homogeneous equilibrium state, described by the
local equilibrium chemical potential µl.e.[ρ0(z)]. The mean field density profile is therefore
determined by

µl.e.[ρ0(z)] +
1
2

mω2
∥z

2 = µ . (2.67)

For the one-dimensional GPE the local equilibrium equation of state is µl.e.[ρ0(z)] = ρ0(z)g1D

leading to the density profile in the Thomas-Fermi approximation (see e.g. [67])

ρ0(z) = n0

(
1 −

z2

R2
TF

)
. (2.68)

The profile has a peak density n0 = µ/g1D and exhibits a sharp cutoff at the Thomas-Fermi
radius R2

TF = 2µ/(mω2
∥
) due to the neglect of the kinetic energy in the mean field GPE (2.12).

The chemical potential is fixed by the total particle number and is given by

µTF =

(
3
4

√
m
2

g1Dω∥N
) 2

3

. (2.69)

Within the dimensional crossover the local equilibrium equation of state is changed due to
the inclusion of radially excited states and given by the NPSE result Eq. (2.35). The density
profile cannot be given in closed form, but can be reduced to a simple integral determining the
only free parameter R2

NPSE of the NPSE mean field solution. Further simplification is possible
by approximating the local chemical potential by Eq. (2.31), for which the integral reduces
to a simple algebraic equation [125]. The inclusion of transversally excited states causes a
radial swelling of the condensate. This leads to a higher peak density n0 and consequently a
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decreased width RNPSE ≤ RTF of the cloud along the longitudinal direction. The functional
form of the density profile however remains rather unchanged and is for a large range of
parameters well approximated by the inverted parabola Eq. (2.68) with shifted parameters n0

and RTF.
The exact numerical results can be calculated through evolution of the classical equations

of motion after a Wick rotation to imaginary time. This is a convenient method to determine
the mean-field density profile and chemical potential for arbitrary external trapping potentials.
In imaginary time the evolution is purely dissipative, and each eigenstate of the Hamiltonian
is damped at a rate proportional to its energy. Therefore, by constantly rescaling the norm of
the wave function, the system relaxes during the evolution to the lowest-energy eigenstate
that has a finite overlap with the initially chosen wave function.

2.4.2 Harmonic Approximation

Homogeneous Condensates

The Bogoliubov-de-Gennes equations (2.23) for a homogeneous background density reduce
by choosing the mode function in the plane wave basis f ±m = f ±k ∼ exp (ikz) to simple
algebraic equations. Together with the normalization condition (2.22) this leads for a system
of length L to the well known solutions [68, 67]

f ±k =
1
√

L

(
ϵk

Ek

)∓ 1
2

eikz , ϵk =
√

Ek(Ek + 2n0g1D) , Ek =
ℏ2k2

2m
, (2.70)

where we consider periodic boundary conditions with momenta k = 2πm/L and m ∈ Z.
The dispersion relation ϵk shows two distinct regimes, separated approximately by the
inverse healing length kξ = ξ−1

h =
√

2mµ/ℏ2. For high energies k ≫ kξ the dispersion
relation is particle like ϵk ≃ ℏ

2k2/(2m) and the quasiparticle excitations are free particles.
For low energies k ≪ kξ the quasiparticles resemble wave-like excitations, showing a
phononic dispersion ϵk ≃ ℏcs|k| with a common speed of sound cs =

√
µ/m. These collective

excitations are the only quasiparticles in the coarse-grained TLL model, thereby reducing
ϵk to the phononic limit. Note that the solutions remain valid for the NPSE Hamiltonian,
leading only to a shift of the chemical potential µ and interaction constant g1D according to
Eqs. (2.35) & (2.37) respectively.

In thermal equilibrium the distribution function for these non-interacting quasiparticles is
given by the usual Bose-Einstein distribution

nk =
〈
b†kbk

〉
=

1

exp
(
ϵk

kBT

)
− 1

, (2.71)
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where the chemical potential is set to zero, since adding a quasiparticle to the system does
not change the number of real particles. Bose-Einstein condensation of the system is usually
associated with off-diagonal long-range order, i.e. a finite value of the one-body density
matrix ρ(z, z′) for |z − z′| → ∞. Using the Madelung representation and ab initio neglecting
the small density perturbations, highly suppressed below the degeneracy temperature [93],
the density matrix at low temperatures can be written as

ρ(z, z′) ≈ n0
〈
ei[θ̂(z)−θ̂(z′)]〉 ≡ n0 C

(1)(z, z′) , (2.72)

where we defined the phase correlation function C(1)(z, z′). The appearance of off-diagonal
long range order is therefore determined by the long range phase coherence of the condensate.
For a Gaussian theory, as is the case for the Bogoliubov approximation, the phase correlation

function is C(1)(z, z′) = exp
(
−
〈 [
θ̂(z) − θ̂(z′)

]2 〉
/2

)
dependent only on the variance of the

phase. By use of the modal expansion (2.21) it is18

〈 [
θ̂(z) − θ̂(z′)

]2 〉
=

1
2ζn0L

∑
ϵk≲µ

ϵk

Ek
[1 − cos (kz̄)] (2nk + 1) , (2.73)

where we defined the distance z̄ = z − z′.
For CQW in the limit of vanishing tunneling coupling J, discussed in Section 2.2.1,

the rescaled fields Eq. (2.14) are described by the same Bogoliubov equations for a single
condensate, and thus by Eq. (2.70). The only difference is the rescaling of the fields with ζ,
explicitly included in Eq. (2.73) which therefore describes the coherence function for a single
condensate as well as the common and relative degrees of freedom for CQW with J = 0.

Direct evaluation using the Rayleigh-Jeans approximation nk ≃ kBT/ϵk, where the equality
hold for nk ≫ 1, and expressing the sum as an integral extended to infinity gives [163, 99]

〈 [
θ̂(z) − θ̂(z′)

]2 〉
≈ 2
|z̄|
λT
+

√
γ

π
Ln

(
|z̄|
ξh

)
. (2.74)

The first term on the right hand side stems from the thermal and the second from the quantum
fluctuations of the phase field. In accordance with the Mermin-Wagner-Hohenberg theorem
[65, 66] the enhanced role of fluctuations in one dimension prohibits a true Bose-Einstein
condensate in the thermodynamic limit, and the one-body density matrix shows an algebraic
decay even at zero temperature. For T > 0, long-wavelength thermal fluctuations dominate
the long distance behavior and correlations decay exponentially. The thermal coherence

18We now switch back to the un-rescaled fields, see Eq. (2.14), and explicitly write out factors of ζ
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length

λT =
2ℏ2n0

mkBT
, (2.75)

determines the typical length for the randomization of the phase due to temperature.
The single-particle momentum distribution n(k) = ⟨ψ̂†(k)ψ̂(k)⟩ is given by the Fourier-

transform of Eq. (2.72) which upon neglecting the minor quantum contributions leads to

n(k) =
n0λ

−1
T

λ−2
T + k2

. (2.76)

Extending the above result beyond the phononic approximation reveals a power law decay
n(k) ∼ k−4 for large k ≫ ξ−1

h [99].
Development in the realization of flat bottom, box shaped potentials brings the dynamics

of homogeneous BECs in the realm of experimental possibility. An experimental realization
of such a potential will be discussed in chapter 6 where we also discuss in more detail the
influence of boundary conditions on the dynamics of a finite size system.

Harmonically Trapped System

The Bogoliubov equations (2.23) for a harmonically trapped system reduce after writing
f ±m ∼ (1 − x2)∓(1/2) fm and consistently with the TF approximation for the ground state
neglecting the quantum pressure term in second order of perturbation theory to Legendre’s
differential equation [163]. Neglecting the quantum pressure is equivalent to the TLL
approximation of the Hamiltonian19. The solution are [163]

f ±m (z) =

√
j + 1

2

RTF

[
2µ
ϵm

(1 − x2)
]∓ 1

2

Pm(x) , (2.77)

where Pm(x) are the Legendre polynomials and the dispersion relation is

ϵm = ℏω

√
m(m + 1)

2
. (2.78)

Density fluctuations are again found to be highly suppressed below the degeneracy tempera-
ture [93, 163]. The variance of the phase is given by

〈 [
θ̂(z) − θ̂(z′)

]2 〉
=

ϵ j<µ∑
j

( j + 1/2)µ
2n0RTF

[
P j(x) − P j(x′)

]2
(2n j + 1) , (2.79)

19The full Bogoliubov equations however allow for solutions valid for energies beyond µ.
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Fig. 2.4 Phase correlation function C(1)(0, z) for a thermal quasi-condensate with N = 4000
atoms and ω = 7.5 Hz. Dashed lines represent the analytical result for a trapped system
(Eq. (2.79)) and solid lines are the homogeneous solution (2.74) for the peak density n0.
The dots are the results of sampling of the phase field according to the Îto equation (2.61)
of the TMF averaged over 105 realizations. Explicitly Eq. (2.61) reduces to the Ohrnstein-
Uhlenbeck process which can be solved in LDA. The central part of the cloud is well
described by the homogeneous theory. Deviations occur near the edges of the condensate
due to the decreasing density and the finite size of the system. For higher temperatures finite
size effects are insignificant due to the fast exponential decay of C(1)(0, z).

where the sum is restricted to ϵ j < µ on account of neglecting the quantum pressure term.
The quantum contributions to the phase variances is again negligible at finite temperatures,
showing logarithmic dependence of order

√
γ [163]. The formation of a true BEC with

off-diagonal long-range order is now possible, since for temperatures T ≲ Tϕ = Tdℏω∥/µ

[163] the decay of the coherence becomes negligible over the size of the cloud. These
temperatures are, however, beyond current experimental reach and finite temperature effects
commonly dominate, such that the coherence function C(1)(z, z′) in the central part of the
cloud is well approximated by the homogeneous exponential decay. A comparison of the
phase correlation function for the homogeneous (2.74) and harmonically trapped system
(2.79) system is presented in Fig. 2.4. For comparison we show the results of the harmonic
Ornstein-Uhlenbeck process, for which the spatial dependence of the bulk density is taken
into account in LDA.

To calculate the single-particle momentum distribution we rely on the LDA, for which
we consider the semi-classical distribution [67]

f (k, z) = ρ0(z) nhom
[
k, ρ0(z)

]
. (2.80)
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The normalized momentum distribution nhom for a homogeneous condensate (see Eq. (2.76))
is now a functional of the inhomogeneous mean-field density ρ0(z), because of the spatial
dependence of the thermal coherence length (2.75). The momentum distribution of the
harmonically trapped system is given through integration of Eq. (2.80) over the spatial
coordinate z.

Coupled Quantum Wires

For non-vanishing tunneling coupling J, CQW are considered in the decoupled common
and relative degrees of freedom. The common degrees of freedom in the harmonic mTLL
approximation (2.45) are independent of the tunneling coupling and thus for any value of J
described by the equations for a single condensate (2.70).

The relative degrees of freedom, however, acquire an effective mass, proportional to the
tunneling coupling J. In case of a homogeneous system the Bogoliubov equations are easily
solved [130] by shifting the kinetic energy Ek → Ek + 2ℏJ (see Eqs. (2.45) & (2.70)). This
is possible since the mean field density is simply a constant and the tunneling coupling J
therefore does not couple to any spatial coordinates. The functional form of the Bogoliubov
mode functions hence remains unchanged and only the dispersion relation is modified to

ϵk =
√

(Ek + 2ℏJ) (Ek + 2ℏJ + 2n0g1D) , (2.81)

with Ek defined in Eq. (2.70). In contrast to the phononic dispersion relation ϵk ∼ k, Eq. (2.81)
has a finite gap ϵk→0 = 2ℏJ

√
1 + n0g1D/ℏJ corresponding to an effective quasiparticle mass.

Because of this finite rest energy, true long-range order is possible for the relative degrees
of freedom. In the Rayleigh-Jeans approximation, direct evaluation of Eq. (2.74) gives the
first order coherence function [130]

C(1)(z, z′) = exp
[
−

2lJ

λT

(
1 − e−

|z−z′ |
lJ

)]
, (2.82)

which does not decrease to zero for large separations but approaches the finite value e−2lJ/λT

for |z − z′| → ∞. The two competing length scales are the thermal coherence length (2.75),
describing the randomization of the relative phase θ̂r(z) due to temperature, and the length

lJ =

√
ℏ

4mJ
(2.83)

which sets the scale of the restoration of inter-well coherence due to the finite tunneling
coupling J. This, however, does not mean that the system is a true BEC. Indeed, fluctuations
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Fig. 2.5 Phase correlation functions C(1)(0, z) for the relative phase θr of two coupled quantum
wires. The solid line is the analytical solution in the homogeneous system (Eq. (2.82)) and
the dots are the result of the Ohrnstein-Uhlenbeck process in LDA. The finite tunneling
coupling J leads to phase locking between the two condensates and hence a constant value of
C(1) for large distances. For the trapped system, the decrease in density leads to an increase
in fluctuations (as λT → ∞) which destroys the long-range order.

in each of the two condensates show unlimited growth of phase fluctuations, due to the
influence of the common degrees of freedom, and thus C(1)(z, z′)→ 0 for |z − z′| → ∞ [134].

The influence of randomization and restoration of phase coherence can explicitly be
seen in the stochastic Ornstein-Uhlenbeck process [159], i.e. the harmonic approximation
to the TMF discussed in Section 2.3.3. In this approximation, the drift coefficient Aq j (see
Eq. (2.60)) for the relative phase degree of freedom is given by Aθr = 1/lJ. This acts as a
restoring force term in the Itô equation (2.61) counteracting the random diffusion due to
temperature20. For the common phase, not influence by the finite tunneling coupling J and
therefore equivalent to a single condensate, the drift coefficient Aθc vanishes leading to the
unlimited growth of fluctuations for any T > 0.

For the harmonically trapped system a closed analytical solution is no longer possible
due to the spatial dependence of the mean field density profile ρ0 (see Eq. (2.45)). This
causes a coupling between the spatial coordinates and the linear tunnel coupling J, such
that the spatial dependence of the mode functions are modified. Neglecting the quantum
pressure term the Bogoliubov equations for the hydrodynamic functions f ±(z) can be mapped
to the differential equation for angular spheroidal wave functions. Since no exact analytical
solutions are known, we rely on numerical solutions for inhomogeneous CQW using the
SGPE, that is not limited to the harmonic approximation. The homogeneous solutions

20The diffusion coefficient D = λ−1
T , see Eqs. (2.57) & (2.61)
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however are a good approximation of the inhomogeneous system within the central part of
the cloud, which therefore shows the same qualitative behavior. Significant differences only
arise near the edges where the density decreases and coherence is destroyed by the enhanced
role of thermal fluctuations (see Fig. 2.5).



Chapter 3

Universal Dynamics of a
One-Dimensional Bose Gas

It is an in general open question which guiding principles determine the possible paths an iso-
lated quantum many-body system can take starting from a far-from-equilibrium initial state.
Of particular interest are situations where the evolution of the system, in close connection to
equilibrium critical phenomena, is only determined by a few universal properties, indepen-
dent of the specifics of the initial state. It has been proposed that such non-thermal attractor
solutions are possible during the relaxation of a far-from-equilibrium system [40–42], dis-
playing universal scaling long before any thermalization. In the vicinity of these non-thermal
fixed points the evolution of the system is characterized by only a few universal scaling
exponents and functions independent of the microscopic details of the system. This opens
the possibility for a classification based on universality classes far-from-equilibrium even
in the absence of thermal critical points [83, 164]. While there is mounting theoretical and
numerical evidence of universality far-from-equilibrium, a direct experimental observation
has so far been missing.

In this chapter we present results for the relaxation of a far-from-equilibrium one-
dimensional Bose gas1. The initial state is created via a rapid cooling quench of a three-
dimensional thermal gas to the one-dimensional regime. We characterize the initial state
through an ensemble of randomly distributed solitonic defects, which are determined through
their impact on the single-particle momentum distribution measured through single-atom
resolved measurement of the atomic density in time of flight. By changing the speed at which
the system is prepared, we find scaling of the defect density, in broad accordance with the pre-
dictions of the inhomogeneous Kibble-Zurek mechanism [165, 77]. The short time evolution
is in good accordance with the model of randomly distributed solitonic defects, in particular

1The experimental measurements and pre-analysis of the data was performed by R. Bücker. I performed the
analysis and interpretation of the data and results presented in this chapter.
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revealing the increasing broadening of the density and momentum distribution as well as the
damping of the breathing excitation with increasing quench rates. The latter, in accordance
with the defect picture, shows a transition from frequency-doubling to no-doubling for the
oscillation in momentum space. In the long term evolution the system is found to transition
from the defect dominated state to a thermal quasi-condensate for long times.

During this relaxation the system is found to exhibit universal scaling in space and time.
In the scaling regime the evolution is determined, independent of the exact initial state, by a
single universal function of momentum and a single universal exponent. The non-equilibrium
scaling evolution features the transport of an emergent conserved particle number towards
the infrared, leading to the build up of a quantum degenerate quasi-condensate. The observed
scaling solution is found to be in accordance with the dilution of the soliton ensemble. Our
results provide conceptually new access to the time evolution far-from-equilibrium and
establish universal scaling dynamics in an isolated many-body system. Finally the observed
values for the universal scaling exponents are compared to existing theoretical predictions
revealing the possible emergence of a new universality class far-from-equilibrium.

3.1 Cooling Quench

Ultra-cold atomic gases have proven to be excellent systems with which to study the physics
of quantum many-body systems. The techniques necessary to achieve the ultra-cold tem-
peratures in these systems, although experimentally well established, to date still bare open
questions, as to how exactly a system reaches its final equilibrium state [166]. One of
the standard procedures used to ultimately cool a system below the critical temperature
is evaporative cooling, see e.g. [167–170]. Therein a small fraction of the most energetic
particles are removed from the system. As long as the energy of the removed particles is
higher than the mean energy per particle in the system, the latter is effectively reduced and
elastic collisions lead to a subsequent rethermalization of the system. Repetition of this
process, on a time scale slow as compared to the time needed for rethermalization, leads to
an increase in phase-space density on account of particle loss, and ultimately in our case to
the formation of a Bose-Einstein condensate. Differences in the cooling mechanism occur
once the gas reaches the dimensional crossover to a quasi one-dimensional system, where
the absence of thermalizing collisions negate the above cooling mechanism. Cooling of
a one-dimensional system was considered in [171, 172]. Therein homogeneous particle
dissipation and many-body dephasing resulted in a substantial cooling beyond the transition
to a one-dimensional system, through a constant squeezing of the rotating Wigner function
along the density quadrature.
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Fig. 3.1 Schematic visualization of the experimental cooling quench procedure. The system is
prepared in a deep trapping potential at a temperature T , closely above the critical temperature
Tc for Bose condensation. During the quench, the RF-knife is linearly ramped to its final
value during a variable time τq, thereby lowering the trap depth in the radial direction x. The
final value lies below the first radially excited state (indicated by the dashed lines). The
RF-knife is subsequently held at its final position for τh ≈ 0.5 ms and faded out in τf ≈ 1 ms,
thereby raising the trap depth again, leading to a degenerate far-from-equilibrium Bose gas.

In contrast to the cooling mechanisms described above, which all rely on sufficiently slow
cooling to allow for a redistribution of energy within the system, we study in the following the
relaxation dynamics following a rapid cooling quench. Therein fast removal of high-energy
particles2 constitutes an almost instantaneous quench of the system beyond the dimensional
and quasi-condensate crossover, resulting in a far-from equilibrium one-dimensional Bose
gas.

The experimental procedure is outlined in Fig. 3.1. The system of N = 5.5 · 104 atoms
is prepared initially in an elongated, ω∥ = 2π · 23 Hz and ω⊥ = 2π · 3.3 kHz, deep trapping
potential Vi ≈ h · (130 − 160) kHz in thermal equilibrium at a temperature T ≈ 780 nK. The
thermal cloud is both above the dimensional crossover to an effective one-dimensional system
(c.f. Eq. (2.4)) and the critical temperature Tc for the phase-transition to a 3D Bose-Einstein
condensate, and therefore has a large excess of particles in transversally excited, high-energy
states. During the quench, the trap depth is reduced to its final value Vf at a variable constant
rate Rq = (Vi − Vf)/τq = h · (2 − 25) kHz/ms, by applying radio-frequency (RF) radiation at
a time dependent frequency (RF-knife), leading to an energy-dependent transition of atoms
from a trapped to an untrapped spin state [67]. This allows the high-energy particles to
leave the trap, on a time scale τq, short as compared to the typical collision times needed for
re-equilibration of the system. The final trap depth Vf ≈ h · 2 kHz lies below the first radially
excited state of the trapping potential Vf < ℏω⊥. At the end of the cooling ramp, the RF-knife

2The removal of particles is fast as compared to the typical collision times needed for re-equilibration of the
system
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is held at its final position for τh = 0.5 ms before it is faded out within τf ≈ 1 ms, thereby
raising the trap depth3 to V ≈ h · 20 kHz. The system is therefore rapidly quenched to the
quasi one-dimensional regime, occupying only the transverse ground state. The resultant
far-from equilibrium state is held for variables times up to t ≃ 1 s, during which the universal
dynamics develops and takes place.

In order to probe the relaxation dynamics of the system, the cloud is allowed to freely
expand, by rapidly switching of the external trapping potentials at a time t. Due to the highly
elongated trap geometry, the system undergoes a rapid expansion along the tightly confined
radial direction leading to a fast dilution of the system and therefore an almost ballistic
expansion in the elongated longitudinal direction. The influences of finite interactions
between atoms during expansion can be considered within a hydrodynamic approach [67],
but lead to no significant differences for the parameters considered here. This enables
the time resolved measurement of the longitudinal in-Situ (iS) density distribution ρ(z, t)
and of the single-particle momentum distribution n(k, t), for short (ttof = 1.5 ms) and long
(ttof = 46 ms) expansion times, respectively. The former is applicable, since the expansion
for ttof = 1.5 ms is predominantly along the transversal direction, leaving the longitudinal
density distribution unchanged. For the latter, the rapid dilution and consequent ballistic
expansion, leads to the conservation of the single-particle momentum distribution during the
free expansion. Therefore, the measured density distribution after ttof = 46 ms resembles
the original momentum distribution of the gas. The density after ttof = 46 ms time-of-
flight is measured with fluorescence imaging [175], which has a high spatial resolution and
single-atom sensitivity.

This can be seen explicitly within the semiclassical approximation, for which the dis-
crete set of eigenfunctions of the Hamiltonian is approximated by a smooth density dis-
tribution f (z, k, t) in phase-space. The distribution is normalized to the total atom number!

dzdk/2π f (z, k, t) = N. Integration over the position (momentum) variable gives access to
the one-particle momentum distribution (density distribution) of the gas. The density after
ballistic expansion then takes the form [67]

ρ(ztof) = α−1
∫

dz f
(
z, k = α−1(ztof − z), t

)
. (3.1)

Here t is the time the gas was released from the trap and α = ℏttof/m stems from the free
expansion ż = αk of a particle with momentum p = ℏk for a time ttof. From Eq. (3.1) it
follows that αρ(ztof)→ n(k = α−1ztof, t) for ttof → ∞, making the single-particle momentum
distribution accessible through measurement of the expanded density profile. We therefore

3Additionally, since the RF-knife slightly reduces the radial trapping frequency, this leads to a small
interaction quench of the 1D system
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define for finite expansion times ttof the pulled-back (pb) momentum distribution

n(k, t) ≡ αρ
(
α−1ztof

)
=

∫
dz f

(
z, k − α−1(z + vttof), t

)
. (3.2)

The pb momentum distribution at high k-values converges rapidly towards the true momentum
distribution of the gas. For low momenta the finite in-Situ size of the cloud does not allow
for a clear separation of different momentum modes as atoms of different momenta overlap
in the measured density after time-of-flight. This means that for a cloud of size R, particles
with momentum k ≲ kiS = α

−1R do not have enough time to propagate sufficiently far outside
the in-Situ bulk density to be clearly separated. Therefore the pb momentum distribution for
k ≲ kiS resembles the in-Situ density profile rather than the actual momentum distribution
of the gas. These low-momentum modes can be made accessible in experiments using
condensate focusing [176]. Therein a hydrodynamic velocity profile is imposed on the gas
which focuses particles with zero momentum to a single point after a finite expansion time
ttof (rather than in the limit ttof → ∞). We included such a non-vanishing velocity profile
v ≡ v(z, t) in Eq. (3.2), which can also e.g. be caused by a breathing excitation [177, 178] of
the bulk.

Further simplification of Eq. (3.2) is possible within the local-density approximation, for
which the system locally follows the solution for a constant bulk density n(k, n1D), and hence
f (z, k, t) ≈ ρ(z, t)n(k, ρ(z, t), t). Additionally, to account for the finite imaging resolution in
the experiment [179], we include a convolution of the theoretical profiles with a Gaussian
point-spread function (PSF), with measured variances σiS = 6.8 µm and σtof = 8 µm for
the density profile in-Situ and in time-of-flight, respectively. The latter corresponds to an
effective width σpb = 0.238 µm−1 of the PSF for the pulled-back momentum distribution
(3.2). Before comparing the experimental data to explicit theoretical predictions for f (z, k, t),
we first give an overview of the experimental results.

3.1.1 In-Situ Measurements

As a first step toward characterizing the non-equilibrium state, we investigate the measured
density distribution after ttof = 1.5 ms. The time evolution for the normalized4 density
distribution for different quench rates, measured over the first 27 ms following the quench, is
shown in Fig. 3.2a. For low quench rates a strong breathing excitation is visible, leading to
an oscillatory compression and expansion of the cloud. For a one-dimensional system the
breathing frequency is ωb =

√
3ω∥ [67], such that the presented time interval corresponds to

4The maximum densities within the time region are max[ρ0(z, t)] = 74, 72, 67, 58, 51, 38, 29, 21 µm−1,
respectively for increasing quench rates
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Fig. 3.2 Time evolution of the in Situ density for variable quench rates Rq. a The atomic
density ρ(z, t) is depicted in color, where for each quench rate the density is normalized
to its maximum value. Note the non-linear color scale to highlight the spatial extent of
the cloud rather than its peak density. The suppression of the breathing excitation for
increasing Rq is clearly visible. b Mean broadening δR = R̄/R̄TF (red) and breathing
amplitude r = (Rmax − Rmin)/2R̄ (blue) of the density profile as a function of the quench rate
Rq. The solid line is a power-law fit, the mean broadening of the cloud increasing with an
exponent ≈ 0.33 while the breathing amplitude decreases. For the highest quench rates r
quantifies the exponential decay rather than the oscillation amplitude. c Time evolution of the
density radius R for exemplary quench rates Rq = 1 kHz/ms (left panel, red), 12.5 kHz/ms
(left panel, blue) exhibiting a breathing oscillation and Rq = 17.5 kHz/ms (left panel, red),
25 kHz/ms (left panel, blue) showing exponential decay. The solid and dashed lines are a fit
of Eq. (3.4) to the experimental data. Errors denote the standard deviation.

approximately one breathing period. Despite the increasing width of the cloud for higher
quench rates, a clear suppression of the breathing excitations is visible.

In order to quantify the broadening of the gas, we compare the experimental results to the
analytical predictions for the density of a pure condensate (see Section 2.4). The breathing
excitation is taken into account via the scaling Ansatz

ρ(z, t) = b(t)−1ρ0(z/b(t)) , (3.3)

which follows from the hydrodynamic equations for a harmonic confinement of the gas
[178, 180]. We fit the experimental density distribution at each time step with the NPSE
predictions, using Eq. (3.3) with the scale factor b(t) as the only free parameter. Subsequently,
we extract the mean broadening δR = R̄/R̄TF and breathing amplitude r through R(t) = b(t)R̄TF

with

b(t) = δR
[
1 + re−γt cos(ωt + ϕ0)

]
. (3.4)
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Because of atom number fluctuations in the experiment we define the scale factor b(t) in
relation to the time-averaged, equilibrium Thomas-Fermi radius R̄TF of the cloud over the
first breathing period. The breathing around the broadened mean is quantified by r =
(Rmax − Rmin)/2R̄ [176], where we included an exponential damping of the amplitude. The
initial phase ϕ0 and frequency of the breathing oscillation are fitted freely, the latter being in
good agreement with the theoretical expectation ω = ωb.

The results allow us to identify different regimes where the dynamic properties of the
bulk change noticeably (see Fig. 3.2b). For slow quenches Rq ≲ 5 kHz/ms we find a constant
broadening δR ≈ 1.2, whereas for higher quench rates the mean extent of the cloud grows
compatible5 with a power-law δR ∼ R0.33

q . The breathing amplitude, however, decreases
rapidly with the growing quench rate. Within this regime damping of the oscillations
is negligible during the first breathing period. For Rq ≳ 15 kHz/ms however the cloud
ceases to oscillate and shows a rapid decay towards a static broadened density profile with
δR ≈ 1.4. For these values r characterizes the amount of decay within the first breathing
period rather than the amplitude of the oscillation. The time evolution of R(t) is shown in
Fig. 3.2c for Rq = 1, 12.5 kHz/ms, which marks the edges of the oscillating regime, and
Rq = 17.5, 25 kHz/ms, which exhibit monotone exponential decay.

The breathing oscillation for slow quenches allows us to exploit self-focusing effects
to gain access to the momentum distribution at low momenta. The hydrodynamic velocity
profile for the breathing excitation is given by v(z, t) = z ḃ/b (see e.g. [67]). If the focusing-
condition (

1 +
ḃ
b

ttof

)
= 0 (3.5)

is fulfilled, the pb momentum distribution (3.2) converges for all momenta within a finite
time ttof.

3.1.2 Time-of-Flight Measurements

We now turn to the measurements after ttof = 46 ms time-of-flight. The time evolution of the
pb momentum distribution for different quench rates is presented6 in Fig. 3.3b.

For slow quenches the breathing frequency in momentum space is doubled as compared
to the in-Situ oscillation [178]. This is a result of the hydrodynamic velocity imposed by the

5Due to the small range of the data the scaling should be taken as a qualitative behavior rather then a
quantitative estimate. For this reason we also decided against plotting the data on a log-log scale, as it is usually
common for power-law behavior.

6As for the in-Situ density, the data for each quench rate is again normalized to its maximum value within
the first breathing period max[n(k, t)] = 1590, 1880, 1183, 889, 642, 420, 259, 183 µm, for increasing quench
rates respectively.
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Fig. 3.3 Time evolution of the momentum distribution n(k, t) for variable quench rates Rq a
Normalized momentum distribution n(k, t) depicted in colors. Note again the non-linear color
scale to highlight the extent of the cloud. b Full-width-half-maximum ∆kFWHM measured
at the focus point (red) and breathing amplitude r = (∆kmax − ∆kmin)/2∆̄kFWHM (blue) for
varying quench rates Rq. The solid line is a power-law fit, the FWHM increasing linearly
with Rq (note the double logarithmic scale). c Mean kinetic energy Ēkin per particle in the
IR (|k| ≤ 5 µm−1) for the exemplary quench rates of Fig. 3.2. The dashed lines depicts the
respective time evolution of the in Situ radius R. The quench rates shown represent the
frequency-doubling (left panel, red), no-doubling (left panel, blue), and effectively frozen
regime (right panel). Errors denote the standard deviation.

breathing excitation, which broadens the momentum distribution, regardless of a contraction
or expansion of the cloud. The breathing in momentum space therefore has a minimum at the
positions where the cloud has its maximum or minimum extent and hence shows a frequency-
doubling. Note that due to the finite expansion time of the gas the breathing oscillation in the
pb momentum space is asymmetric. This can be clearly seen for Rq = 1 kHz/ms. Firstly, the
width of the momentum distribution is not symmetric, but broader for the maximum outwards
breathing (t ≈ 16 ms) than the maximum inwards breathing (t ≈ 4 ms) cloud. Secondly, the
oscillation period is asymmetric, showing an apparent longer oscillation time for the outward
than the inward breathing cycle. This effect is a result of the condensate self-focusing, due
to which the pb momentum distribution has a minimum width for a non-vanishing velocity
v(z, t). This shifts the minimum of the oscillation in momentum space slightly after (before)
the point of maximum (minimum) extent of the cloud in-Situ (c.f. Eq. (3.5)).

Notably, the momentum distribution for the slowest quench rates Rq = 1, 3 kHz/ms
displays a strong double-peak structure, appearing only during the outwards breathing phase
(t ≈ 13, 18 ms). This might be explained by a slight anharmonicity of the longitudinal
trapping potential. While rather negligible for a static cloud, this can lead to the observed
double-peak structure for large breathing amplitudes [116]. Further it is unclear if the
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hydrodynamic approximation for the collective breathing excitation (3.3) remains valid for
the non-equilibrium state in the experiment. In any case, this complicates a quantitative
comparison of the experimental data to theoretical predictions and in general leads to large
errors in the following analysis.

As the quench rate increases we find a strong damping of the breathing oscillation. We
quantify the breathing through the time evolution if the full-width-half-maximum (FWHM)
∆kFWHM of the momentum distribution. In Fig. 3.3b we show the breathing amplitude
r = (∆kmax − ∆kmin)/2∆̄kFWHM, where ∆̄kFWHM is the time averaged width of the distribution.
As for the iS density we find a fast decay of the breathing amplitude for Rq ≲ 10 kHz/ms.

Contrary to the iS density, we quantify the mean broadening of the momentum distribution
through the FWHM at the focus point, because rather then oscillating around the mean value,
the momentum distribution gets broadened twice (during the inwards and outwards breathing
phase). Therefore the mean broadening of the distribution is given by the measurement
in focus, rather then the time averaged value. Explicitly, to minimize the effect of further
dynamics during the first breathing period, we show in Fig. 3.3 the FWHM at the best focus
point7 within the first half of the breathing period. We find a power-law scaling of the
width with the quench rate with an exponent ζFWHM = 0.99(6). For Rq > 12.5 kHz/ms the
experimental data flattens and starts to deviate from the scaling expression.

Closer investigation of the time dependent breathing amplitude shows that the system
undergoes a transition from frequency-doubling to no-doubling to a “frozen” momentum
distribution. In Fig. 3.3c we present the mean kinetic energy per particle in the IR for
Rq = 1, 12.5 kHz/ms (left) and Rq = 17.5, 25 kHz/ms (right). For slower quench rates
a clear transition from frequency doubling to no-doubling is visible. For the latter the
momentum distribution oscillates out-of-phase with the iS density. Rather then having its
maximum width at the points of maximum in-/outwards velocity, the momentum distribution
becomes strongly broadened due to the spatial compression of the gas. For higher quench
rates, the momentum distribution becomes effectively frozen and no clear connection to the
bulk dynamics is visible. The transition from frequency-doubling to no-doubling for the
momentum distribution of a thermal condensate exhibiting a breathing excitation was studied
in [178]. Here a similar transition occurs in a far-from equilibrium system, which further
exhibits transition to an effectively “frozen” regime.

3.2 From Solitonic States to Thermal Equilibrium

Based on the general theoretical understanding of the evolution of systems exhibiting a phase
transition, namely the Kibble-Zurek mechanism [165, 77], we expect the nucleation of (quasi-

7Meaning at the time, where the discrete data best fulfills the focusing condition Eq. (3.5)
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)topological defects within our system. As discussed in Section 2.1.3 the relevant topological
defects in one spatial dimension are solitons. Their creation during the phase transition
has been studied theoretically, see e.g. [153, 173], and was observed in the experiment
[181]. Commonly, the system posterior to the quench is allowed to fully equilibrate which
allows the solitonic excitations to fully form before the measurement. In the quasi one-
dimensional regime this may be aided through additional slow evaporative cooling. The
system hereby redistributes or looses particles in the high energy modes, such that the
momentum distribution is determined by the in Situ width of the remaining defects.

Here we consider a cooling quench of the system which is on the order of two orders of
magnitude faster than the quenches considered in [181]. Additionally, our system is probed
directly following the end of the cooling quench which prevents full equilibration an/or
further decay of solitonic defects. Together with the limited experimental resolution, the
expected high probability of defect nucleation prevents the direct observation of solitons in
the density profile. Therefore the presence of solitonic excitations in the system must be
determined through their impact on other observables, as e.g. the single-particle momentum
distribution.

3.2.1 The Random Defect Model

In the following, we derive an analytical formula of the one-body momentum distribution
n(k, t) =

〈
|ψ̂(k, t)|2

〉
for a thermal Bose gas bearing an ensemble of randomly distributed

solitonic defects (RDM8). The following generalized calculations are based on our previous
results on the characterization of solitonic states [116] and their emergence following an
interaction quench [182].

We consider the particle-like interpretation of a single solitonic defect and characterize a
multi-soliton state through its probability distribution PNs(z, ν, ξs, t) ≡ PNs(z1, ν1, ξ1, . . . , t) in
the previously defined extended “phase-space” (z, ν, ξs). This determines the spectrum at an
arbitrary but fixed time t = t0 solely by the distribution PNs(z, ν, ξs, t0), whose time evolution
can in principle be calculated by taking into account the elastic scattering of solitons. In
many cases however, the dynamics of the soliton ensemble is sufficiently ergodic that the
probability distribution can be approximated by its time average PNs(z, ν, ξs, t) ≃ Perg(z, ν, ξs),
at least below the time-span of significant soliton decay.

We first consider a dilute ensemble of solitons on a homogeneous background ψ0(z) =
√

n1D at T = 0, for which we can write the total wave-function as a product Ansatz

ψ(z) = ψ0(z)
Ns∏
i=0

ϕνi(z − zi) , (3.6)

8Random defect model
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over the normalized single soliton solution ϕνi(z − zi) at position (zi, νi) in phase-space. As
we derived in [182] the finite width ξ of the defects can be considered within a local density
approximation. This relates the full one-body momentum distribution for the solitonic state

ns(k) =
[

k/kξs

sinh(k/kξs)

]2

nξs→0(k) , (3.7)

to the spectrum for an ensemble of infinitely thin (phase) defects nξs→0(k). The second
factor is a result of the local density suppression connected to a single solitonic defect and is
obtained through the Fourier transform of Eq. (2.30). The momentum kξs =

√
2/(πξsγ) is

related to the width ξs of a single defect, beyond which the local density suppression leads to
a sharp decline of the spectrum.

The long-wavelength behavior nξs→0(k) is given by the Fourier transform of the first order
coherence function g1(z1, z2) calculated in the limit of infinitely thin defects, i.e. for distances
|z̄| = |z1 − z2| ≫ ξs. The presence of a soliton therefore constitutes only a phase change of the
field

ψ0(z2) = exp

−i
∑

i

β(νi)

 ψ0(z1) , (3.8)

where the sum runs over the number of solitons enclosed in the interval [z1, z2]. The influence
of the soliton ensemble is completely encoded in the probability distribution PNs(z, ν, ξs) and
their influence can in principle be determined exactly. However, in order to get an analytically
feasible model, we consider the case of an uncorrelated multi-soliton state in accordance
with Eq. (3.6). The probability distribution is given by PNs(z, ν, ξs, t) =

∏Ns
i=1 Pi(zi, νi, ξi, t)

and, assuming ergodicity, completely described by the probability distribution of a single
soliton P(z, ν, ξs). The first order coherence function then takes the form [116]

g1(z1, z2) = n1D

[
1 −

2
L
IL(z1, z2)

]Ns

, (3.9)

where the probability integral IL for a system of size L is defined as

IL =
L
2

∫ (z2,+1)

(z1,−1)
dz dν P(z, ν)

[
1 − eiβ(ν)

]
= L χ

∫ z2

z1

dz P1(z) . (3.10)

The second form of the integral is given for later convenience and is valid under the assump-
tion of statistical independence of the soliton position and velocity, i.e. P(z, ν) = P1(z)P2(ν).
Therein we defined χ = 1

2

∫
dν P2(ν)

[
1 − eiβ(ν)

]
to shorten the notation, which determines the

influence of non-vanishing velocities of the soliton ensemble. Since IL is finite in the limit
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of an infinitely large system L→ ∞, as P(z, ν) ∼ L−1, we get

g1(z1, z2) = n1D e−2nsIL→∞(z1,z2) , (3.11)

for a constant soliton density ns = Ns/L. This exponential form of the first-order coherence
function is also a good approximation for a finite size system with a sufficiently large number
of solitons Ns [116].

As an illustrative example of the typical shape for a soliton dominated Bose gas we give
explicit results for a flat distribution in space P1(z) = L−1. Evaluating Eq. (3.10) for a fixed
soliton density ns and taking into account that IL ≥ 0 results in IL = χ|z1 − z2|. Explicit
evaluation of Eq. (3.9) for a finite size system shows fast convergence towards the exponential
form of the first-order coherence function Eq. (3.11) for an increasing number of defects Ns.
However, drastic changes can arise for a finite size system containing only a small number
of defects which lead to a typical multi-peak structure of the spectrum [116]. Since in the
following we are mainly interested in states with Ns ≫ 1 we can safely use the exponential
form even for a finite size system, for which Eq. (3.7) yields

ns(k) =
[

2n1Dkns

k2
ns
+ (k − k0)2

] [
k/kξs

sinh(k/kξs)

]2

, (3.12)

Here kns = 2ns Re(χ) = 2nsγ̄
−2 and k0 = 2ns Im(χ) = −2nsν̄γ̄

−1 correspond to the mean
distance between the defects and the mean overall momentum carried by the soliton ensemble
and χ, γ̄, ν̄ are averaged variables with respect to P2(ν). Apart from an overall shift of the
spectrum due to k0, the finite velocity of defects only leads to a rescaling of the relevant
scales kns , kξs with γ̄.

In the IR the spectrum takes a Lorentzian shape due to the random nature of phase
fluctuations and therefore is similar to the thermal quasi-condensate profile Eq. (2.76).
Utilizing this similarity we can define the coherence length λs and effective temperature Ts

of the soliton ensemble

λs =
γ̄

2ns
=

2ℏ2n1D

mkBTs
. (3.13)

In the UV for k ≫ kξs the second parentheses in Eq. (3.12), originating from the local
density modulation of the defect, leads to an exponential suppression of high-energy modes
n(k) ∼ exp

(
−2k/kξs

)
. The linear exponential decay of the distribution is determined by the

defect width and presents a distinct non-thermal feature of the momentum distribution. In
between these two scales the system exhibits scaling behavior n(k) ∼ k−2, which for ξs → 0
extends to infinity.
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These results can be extended to inhomogeneous bulk-densities n1D(z) and finite tempera-
tures T . Defining the local defect width ξs(z) and neglecting correlations between thermal
and solitonic fluctuations, we decompose the full field ψ(z) ≃ ψ0(z,T )ψs(z, P), where ψ0(z,T )
is the inhomogeneous background field at finite temperature T and ψs(z, P) describes an
ensemble of solitonic defects distributed according to the probability distribution P on a
homogeneous background. By use of the convolution theorem and the previous results we
immediately get the full one-body momentum distribution

n(k) =
∫

dns p(ns) [n0(k,T ) ∗ ns(k, ns)] , (3.14)

where ∗ denotes the convolution in Fourier space and we allowed for fluctuations of the
soliton density according to the probability distribution p(ns). Note in particular that deep in
the IR, the full spectrum retains its Lorentzian shape, with λ−1

Teff
= λ−1

T + λ
−1
s .

3.2.2 Defect Nucleation in Shock Cooled BECs

The relevant scales, ns and ξs, are determined through a least-square fit of the RDM to the
experimental momentum distribution. In order to take into account the finite expansion time
and hydrodynamic velocity profile of the experiment, we use Eq. (3.2) within the LDA with
f (z, k, t) = ρ(z, t) nRDM(k, t). Here nRDM(k, t) is the normalized single-particle momentum
distribution of the RDM for a homogeneous system (see Eq. (3.12)) and we consider ρ(z, t)
as a pure condensate in the TF-approximation. The effects of a finite velocity of the ensemble
are absorbed into the scales ns and ξs, which therefore include the constant rescaling due to
γ̄ , 1. Note especially that any scaling properties remain unaffected and only absolute values
are slightly shifted as compared to the effective scales.

The results of the fitting procedure for different quench rates are presented in Fig. 3.4.
Depicted are the defect width and density determined at the previously discussed best focus
point within the first half of the breathing period (red diamonds). The errors are given by the
least-square fit to the experimental data. At these points the density after a finite expansion
time best resembles the momentum distribution of the condensate and hence most accurately
determines the actual value of the scales ns and ξs. For comparison the mean value over
the full breathing period (blue dots), its standard deviation (blue shaded region), as well as
the minimum and maximum values within the first breathing period (green shaded region)
are calculated to quantify the additional defect decay and the expected fluctuations of the
relevant scales during the first breathing period.

Concentrating first on the slow quenches Rq ≲ 5 kHz/ms, we find large fluctuations of
the defect width and density. Notably, for the presented data we already excluded points
where the condensate velocity exceeds the threshold |1 + τtof ḃ/b| > 2.5 (c.f. Eq. (3.5)) above
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Fig. 3.4 Defect nucleation for varying quench rates Rq. Defect width ξs (left panel) and
density ns (right panel) determined by the RDM. Red diamonds present measurements at
the best focus point within the first half of the breathing period, best resembling the actual
values of the scales. The errors denote the std determined from the least-square fit. The mean
value over the first breathing period (blue dots), its standard deviation (blue shaded region),
and the minimum/maximum values (green shaded region) are depicted for comparison. The
defect width deviates for Rq > 5 kHz/ms from the expected equilibrium width of solitonic
defects (black triangles). The solid black (dashed blue) line is a power-law fit of the defect
density in focus (mean) with exponent ζ = 1.09 ± 0.04 (1.20 ± 0.07).

which the RDM fails to accurately describe the experimental data. This failure is to be
expected because, as we already saw in Section 3.1, the system exhibits dynamics beyond
the hydrodynamic approximation. Most prominently, the large double-peak structures in
the momentum distribution cannot be explained through the hydrodynamic prediction of a
scaling solution for the breathing dynamics. The RDM trying to cope with these inaccuracies
leads to the observed large fluctuations. While we find the results within their errors to be
in accordance with the expected behavior determined for higher quench rates, a statistically
significant determination of the relevant scales for the available data is hindered by the
absence of a clear separation of the dynamics. Therefore, in this regime, further experiments
are needed to determine the cause for the observed deviations from the hydrodynamic solution
and to devise an appropriate theoretical description of the systems dynamics.

For increasing quench rates Rq ≳ 5 kHz/ms, due to the suppression of the breathing
amplitude, these effects become less pronounced and the system is well described within the
hydrodynamic approximation. This allows us to accurately determine the defect width and
density for all times, reflected in the decreasing errors in Fig. 3.4.

The defect width is found to converge to a constant value ξs ≈ 0.1 µm, independent of the
quench rate and final atom number. For equilibrated solitons the width is determined by the
local healing length ξh ∼ n−1/2

0 , and hence it would increase for lower densities (see black
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triangles in Fig. 3.4). The observed defect width in the experiment has therefore not yet
reached its final equilibrium value for Rq > 5 kHz/ms, the difference increasing for higher
quench rates. The slower exponential decay of the momentum distribution (c.f. Eq. (3.12))
results in an overpopulation of high energy modes. Hence the system is described by an
ensemble of randomly distributed defects with an effective width determined by the quench.

Equilibration of the defect width may be prevented because the system is probed immedi-
ately after the end of the cooling ramp. Hence, for faster quench rates defects are unable to
fully equilibrate before the system becomes isolated. Further, as defect nucleation is expected
to take place predominantly near the phase transition, the defect width during creation is
determined by the atomic density at the critical point. Any further near homogeneous atom
loss of the system leads to a further decrease of the healing length and a re-equilibration of
the defect width. Both effects contribute to a defect ensemble in an isolated system for which
the defect width has not yet reached its final equilibrium value. The absence of diffractive
two-body scattering in an isolated system, however, strongly suppresses the redistribution
of particles in momentum space. This leads to the observed discrepancy between the defect
width in position and momentum space, as increasing fluctuations of the condensate retain
the overpopulation of high energy states as the defect adjusts its width.

The defect density is not influenced by the above non-equilibrium width of the soliton
ensemble, and the measurement directly following the quench allows us to test the predictions
of defect nucleation unhindered by any possible defect decay posterior to the quench. Turning
to the measurement in focus, we find power-law scaling of the defect density with an exponent
ζ = 1.09 ± 0.04. This is in good agreement with the theoretical mean-field prediction of
ζIKZM = 1 for the inhomogeneous Kibble-Zurek mechanism, and clearly deviates from the
predictions ζHKZM = 1/4 for a homogeneous condensate. The averaged defect density over
the first breathing period shows similar scaling behavior, with a slightly increased exponent
ζ = 1.20 ± 0.07. Despite the influence of the breathing excitation, the decay of defects, and
the limited resolution in the IR due to the finite expansion time the averaged results are in
reasonable agreement with the predictions in focus.

The approximately linear scaling of the defect density with the quench rate further ex-
plains the observed scaling in the in Situ width and the FWHM of the momentum distribution,
as discussed in Section 3.1. Considering a soliton to effectively increase the atom number by
the particles it displaces, we have Neff ∼ ns ∼ Rq. Together with the scaling of the in Situ size
of the cloud within the Thomas-Fermi approximation RTF ∼

√
µ ∼ N1/3, we find scaling of

the mean extent of the cloud R ∼ R1/3
q as observed in Fig. 3.2. Scaling of the FWHM of the

momentum distribution for the RDM is given by Eq. (3.12), which for low defect densities is
given by ∆kFWHM ∼ ns ∼ Rq determined by the Lorentzian distribution. For increasing defect
densities, i.e. if kns ≈ kξs , the second factor in Eq. (3.12) stemming from the localized density
suppression associated with the defect leads to deviations from the above scaling and for a
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fixed defect width to the upper bound ∆kFWHM ≃ 1.49 kξs for ns → ∞. This is in excellent
agreement with the observed scaling and the deviations for fast quench rates in Fig. 3.3.

Lastly the suppression of the breathing amplitude is explained by the increasing density
of defects. As discussed in Section 2.1.3 interactions between deep, slow-moving solitons
(ν < 0.5) are repulsive. Compression of a gas bearing a random ensemble of defects therefore
increases the energy of the system due to the increasing density of the soliton ensemble. This
leads to the observed transition from frequency-doubling to no-doubling for the FWHM of
the momentum distribution. At the transition, the increase in energy due to compression
of the soliton ensemble exceeds the energy at the points of maximum inwards/outwards
velocity and the momentum distribution oscillates out-of-phase with the in Situ density.
Increasing the density of defects even further results in the observed “stiffness”, because
further compression of the gas becomes energetically unfavorable [116].

3.2.3 Relaxation to Thermal Equilibrium

In the previous section we were mainly concerned with the initial far-from equilibrium state
as well as the short term dynamics for variable quench rates Rq. We found that the system
exhibits a plurality of effects, making it essential to find a comprehensive analysis, which
allows us to ascertain and distinguish between the underlying fundamental mechanisms
determining the dynamics of the system. To this end we will now focus our attention on
the long-term evolution of the system following a fast cooling quench Rq = 25 kHz/ms. As
we described in the last section the system thereby enters a regime, where the density and
momentum distribution become “stiff”, which separates the additional dynamics caused by a
breathing excitation from the fundamental relaxation mechanisms of the system.

The long-term dynamics are determined through a separate measurement of the system,
for which the hold time t is chosen at logarithmically equidistant points. This allows to
determine the systems evolution for up to t ≈ 1 s. The initial state is prepared by the same
cooling mechanism described in the previous section. The system prior to the quench is
prepared in thermal equilibrium with N = 3 · 104 atoms at T ≈ 550 nK. At the end of the
cooling ramp the atom number decreased to N = 1700. Expectation values are calculated by
averaging over different experimental realizations, where the measurement is repeated ≈ 55
times for each hold time t.

The evolution of the in-Situ density ρ(z, t) and the single-particle momentum distribution
n(k, t) is depicted in Fig. 3.5. We account for atom loss during the long-term evolution
by normalizing the distributions to the total atom number N(t) at each time step. At the
end of the evolution t ≈ 1 s the atom number has dropped by ≈ 60%. We find that atom
loss becomes significant at t ≈ 100 ms (c.f. Fig. 3.7). For short times the system shows
the previously discussed broadened distributions in position and momentum space. For
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Fig. 3.5 Long-term evolution of the in Situ density ρ(z, t) (upper panel) and momentum
distribution n(k, t) (lower panel) for Rq = 25 kHz/ms. The distributions at each time are
normalized by the total atom number N(t) to account for atom loss at late times. Note the
linear color scale to highlight the peak density. The emergence of a peak at low momenta in
the momentum distribution is clearly visible, signaling the emergence of a quasi-condensed
state.

later times however the momentum distribution narrows and a clear peak emerges at low
momenta, signifying the condensation of the system. The normalization reveals the effective
transference of atoms to the IR, such that the relative occupation of low momentum modes
grows significantly. Note that due to the enhanced role of fluctuations in one-dimensional
Bose gases, the system retains a multi-mode character in contrast to the formation of a true
BEC in higher dimensions.

We quantify the approach to thermal equilibrium by comparing the experimental data at
each time t to the theoretical predictions of the momentum distribution (3.2) for the RDM
(3.12) as well as a thermal quasi-condensate (2.76). In the RDM we take the density to
be a broadened condensate in the TF-regime. The defect width is fixed to ξs = 0.087 µm,
determined by the mean value over the first breathing period. This is done because once
the two scales kns and kξs are of the same order they become correlated if both scales are
fitted freely. We found in the last section that the defect width is rather independent of the
quench and conserved in the subsequent evolution. Thereby, by keeping the defect width
fixed, we can accurately determine the evolution of the defect density. For the QC the
density profile is determined through simulation of the stochastic GPE and we additionally
take into account the thermal occupation of radially excited states in the ideal Bose gas
approximation [183]. In [184] it was shown that the resultant density distribution describes
the system over the full crossover regime from a thermal to a quasi-condensate and is in very
good accordance with the modified Yang-Yang model [123, 122]. The chemical potential
is determined self-consistently through the experimental atom number. The QC model is
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Fig. 3.6 Experimental momentum distribution and model fits. Comparison of the RDM
(red) and QC (blue) predictions to the experimental momentum distribution (gray dots)
for different times during the evolution. The errors denote the standard deviation of the
mean. The experimental data is averaged over ±k and binned over seven adjacent points in
momentum space for n(k) ≲ 1 to reduce fluctuations. The thermal occupation of radially
excited states in the QC model is given by the dashed blue line. The vertical line marks the
momentum corresponding to the first radially excited state.

expected to only describe the low-energy states of the system and leads to an overestimation
for the occupation of high energy particles. We therefore restrict the analysis to energies
E ≤ ℏω⊥ for which the QC model is expected to accurately describe the system.

The momentum distribution for selective times during the evolution are shown in Fig. 3.6.
At high energies the spectrum is binned over 7 adjacent momenta to lower the experimental
noise in the regime of low occupation. At early times, t = 0 and t = 75 ms, the system shows
excellent agreement with the RDM (solid red line), while the thermal QC fails to describe the
data. The observed linear exponential decay of the momentum distribution spanning over two
orders of magnitude and extending well beyond the energy of the first radially excited state
(dashed vertical line) is a striking confirmation of solitonic defects within the system. For
small momenta k < kiS deviations occur, as the expanded density is not fully converged to the
momentum distribution. Differences can be caused by the assumption of ballistic expansion
of the gas, since for these highly excited states the free expansion of the gas may become
more involved. Further, these momenta probe the system on a length scale comparable to the
system size and hence will be influenced by the exact spatial distribution of defects within
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Fig. 3.7 Approach to thermal
equilibrium. Time evolution
of the characteristic scales for
the RDM (red, log-log scale)
and QC (blue, log-lin scale)
fits (upper panel). The defect
width ξs = 0.87 µm is fixed
and determined by the aver-
age over the first breathing pe-
riod. The solid black line is a
power-law fit to the defect den-
sity, showing dilution of the de-
fect ensemble with an exponent
β = 0.15 ± 0.02. The qual-
ity of the two fits is compared
through log

(
χ2

qc/χ
2
RDM

)
(lower

panel, black squares), showing
positive values if the RDM fit is
preferred and negative values for
the QC. The system clearly devi-
ates from the RDM predictions
once atom loss (green triangles)
becomes relevant.

the system. A quantitative determination of the probability distribution PNs describing the
defect ensemble is not possible due to the large degree of freedom. However the relevant
properties of the system, including the determination of the characteristic scales of the RDM,
are well captured by assuming a homogeneous distribution of defects. At late times during
the evolution, t = 429 ms and t ≈ 1 s, the reverse happens and the system shows excellent
agreement to the QC predictions while the RDM fails to describe the state. This confirms the
relaxation of the system to a thermal equilibrium state for late times.

To ascertain the approach of the final equilibrium state we show in Fig. 3.7 the time
evolution of the relevant scales ns and T (upper panel) over the full relaxation period. For
early times, the QC model captures the broadening of the density and momentum distribution
through a high temperature of T ≈ 200 nK. The subsequent collapse of the distributions
leads to a monotone decrease in temperature which for late times continues due to increasing
atom loss in the system. For the latest times the system is fully thermalized at a temperature
T ≈ 100 nK. We compare the quality of the fit for the different models by use of the reduced
χ2 calculated over the momentum range where the models are expected to accurately describe
the data. We find χ2

RDM ≈ 1 (5) and χ2
QC ≈ 20 (1), for the earliest (latest) times respectively.

The transition from a preference of the RDM to the QC model is clearly visible in the
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lower panel of Fig. 3.7 showing the time evolution of log(χ2
QC/χ

2
RDM) (black squares). This

compares the quality of the two fits, with a positive value preferring the RDM and a negative
value preferring the QC fit. We find clear preference of the RDM for t ≲ 100 ms beyond
which the system begins to relax towards a thermal QC. Deviation from the RDM become
significant beyond the time where atom loss in the system can no longer be neglected (green
triangles). This suggests that the thermalization is driven by atom loss leading to an open
system. At early times, for which the RDM describes the system, we find significant defect
decay of ≈ 50%. The defect density, after a short initial period, shows a power-law decay
proportional to t−β with β = 0.15 ± 0.02, spanning approximately two orders of magnitude
from t = 1 . . . 100 ms. This means that in contrast to the observed exponential decay of
solitonic defects [181], the dilution of the ensemble for these highly excited states follows
a power-law behavior. This difference in the relaxation mechanism of the system is far
more than a singular observation for specific initial conditions, but in fact is connected to
fundamental principles of universal dynamics far-from equilibrium.

3.3 Universal Dynamics Far-From Equilibrium

In the last sections we found that following a strong cooling quench to the quasi one-
dimensional regime the system quickly develops into a far-from equilibrium state, determined
by an ensemble of randomly distributed solitonic defects. During the subsequent evolution
we determined the coarsening of the soliton ensemble follows a power-law behavior, before,
aided by atom loss, the system relaxes to a thermal equilibrium state.

It is an in general open question which relevant guiding principles distinguish the possible
paths an isolated quantum many-body system can take, starting from a given far-from
equilibrium initial state. Of particular interest are evolutions which, similar to equilibrium
critical states, are determined by only a few universal properties. Therein the system, after
a transient non-universal evolution, enters a regime where the dynamics of the system is
described by a universal scaling function fS(x), independent of the initial state of the evolution.
The universal character of such a non-thermal attractor solution shows up in the form and
evolution properties of correlation functions in both space and time [52, 50]. This allows
to classify the system, in close connection to equilibrium critical phenomena, by only a
few universal scaling exponents and functions. For example, the single-particle momentum
distribution n(k, t) of a Bose gas can develop the form

n(k, t) = (t/t0)α fS

[
(t/t0)βk

]
, (3.15)

determined only by the scaling exponents α , β and the scaling function fS(k). The reference
time t0 is any time that lies within the period where the system shows the universal behavior
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(3.15). The possibility to describe the immensely complex microscopic dynamics of thou-
sands of particles through the rather simple scaling relation (3.15) is a truly remarkable result.
Similar phenomena are expected to be relevant for a large variety of quantum and classical
systems for which only a few symmetry properties determine the far-from equilibrium evolu-
tion of the system. We establish in the following the existence of such universal dynamics
during the relaxation of our quantum many-body system. This provides direct experimental
evidence for a conceptually new access to time evolution far-from equilibrium.

3.3.1 Self-Similar Dynamics and Scaling Exponents

Based on the observed power-law dependence of the defect density ns ∼ (t/t0)−β (see
Fig. 3.7) we expect the system to exhibit self-similar scaling dynamics. Extending the RDM
momentum distribution (3.12) to include a time dependence of the relevant scales leads in
the IR to the scaling solution

n [k, t, ns(t)] ∼ (t/t0)βn
[
(t/t0)βk, t0, ns(t0)

]
. (3.16)

Here we inserted the observed power-law dependence of ns and neglected for k ≪ kξs the
second term in Eq. (3.12) caused by the density modulation of the defect.

It is expected that the universal properties change for different inertial ranges [52, 50]
due to global particle and energy conservation in the isolated system. This means that the
scaling properties in the IR will in general differ from the behavior in the UV, and one does
not expect the distributions to be described by a single universal scaling function and/or
exponents over the whole momentum range. This is the reason for the limitation of Eq. (3.16)
to the IR, which allowed us to eliminate the second, non-universal scale kξs . We therefore
expected that the defect width determines the characteristic scale below which the scaling
relation Eq. (3.15) is satisfied.

The scaling solution of the RDM has the same form as Eq. (3.15) with α ≡ β > 0. This
relation between the scaling exponents is, in general, determined by the particle conservation
within the scaling region9 [52, 50]. The predicted inverse particle cascade towards the IR
is in accordance with the experimental observations (c.f. Fig. 3.5). Thus we expect the two
exponents not to be independent and it is advantageous to rather consider the approximately
uncorrelated exponents β and δαβ = α − β, i.e. α = δαβ + β, for the scaling analysis and error
estimation.

We now turn to confirming the validity of the scaling dynamics (3.15) in a model-
independent way, directly from the time evolution of the experimental data. This has the
advantage that the analysis is independent of any theoretical approximations and allows us to

9More generally in d spatial dimensions particle conservation the relation is α = dβ
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test the systems evolution simply through its universal properties. The scaling exponents are
determined using the maximum likelihood function [185]

L(δαβ, β) = exp
[
−

1
2
χ̄2

(
δαβ, β

)]
, (3.17)

where

χ̄2(δαβ, β) =
1

N2
t

Nt∑
t,t0

∫
|k|≤k0

dk χ2(δαβ, β, k, t, t0)∫
|k|≤k0

dk
. (3.18)

The local χ2 value given by

χ2(δαβ, β, k, t, t0) =

(
(t/t0) δαβ+βn[(t/t0) βk, t0] − n[k, t]

)2

σ((t/t0) βk, t0)2 + σ(k, t)2 , (3.19)

where σ(k, t) is the standard deviation of the mean for the experimental data. The momentum
distributions are normalized by the atom number N(t) to minimize the effect of particle
number fluctuations. To assess the discrete momentum distribution for continuous momenta
(t/t0) βk we use a linear interpolation of the experimental data and its error for each reference
time t0. The local squared residuals (3.19) are integrated over momentum space and averaged
over all times t and all reference times t0 within the period where the system exhibits universal
behavior. We include a high momentum cutoff k0 in Eq. (3.18), as to only determine the
scaling exponents in the IR. For the data presented we find k0 ≈ 6.5 µm−1 which indeed is
compatible to the scale kξs = 5.2 µm−1 determined by the defect width.

The maximum of the likelihood function determines the most probable exponents δαβ
and β which minimize the local residuals (3.19). The global value χ̄2 hereby determines the
quality of the scaling hypotheses over the whole scaling period. The errors are estimated
by a Gaussian fit to the marginal likelihood functions10 given by integrating over one of the
exponents, e.g. L(δαβ) =

∫
dβ L(δαβ, β).

The results of the scaling analysis are depicted in Fig. 3.8. The measured (left panel) as
well as the scaled momentum distribution according to Eq. (3.15) (right panel) are shown for
all times within the scaling region t ∈ [0.7, 75] ms. We choose the reference time t0 = 3.8 ms,
for which the spectrum is given by the solid gray line. For better visibility the data is
averaged over seven adjacent points in momentum space (see Fig. A.2 for full resolution).
Despite the rather slow dynamics we find clear deviation between n(k, t0) and n(k, t) giving
χ̄2(0, 0) = 4. By drawing the scaled momentum distribution (t/t0)−α n(k, t) as a function of

10We find good accordance of the Gaussian fit for all experimental realizations. Therefore the Gaussian
estimate is equivalent to the general definition of a decrease of 1/2 of the likelihood function
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a b

Fig. 3.8 Universal scaling dynamics. Time evolution of the measured (left panel) and
momentum distribution scaled according to Eq. (3.15) (right panel). The data is averaged
over ±k and, for better visibility, binned over seven adjacent points in momentum space. The
time is encoded in colors (from blue to red). The reduced χ2 value measuring deviations from
the momentum distribution at the reference time t0 = 3.8 ms (gray line, thickness is arbitrary)
shows clear deviations within the rescaling region in k (below the dashed vertical line) for
the measured data. The exponents α = 0.09 ± 0.05 and β = 0.10 ± 0.04 are determined
via Eq. (3.17) and show that the scaling evolution is consistent with a conserved particle
transport towards the IR. The reduced χ2 shows perfect agreement for the scaled data.

the scaled momentum (t/t0)β k all times collapse to a single curve. The scaling exponents
β = 0.10 ± 0.04 and δαβ = −0.01 ± 0.03, giving α = 0.09 ± 0.05, are in good agreement
with the expectation α ≡ β and are compatible with the exponent determined by the RSM.
Considering the theoretical approximations employed this further validates our description
of the system by use of the RDM. For the most probable values we get χ̄2(−0.01, 0.1) = 1.1
and therefore perfect agreement of the scaled momentum distribution with n(k, t0) within
the experimental errors. The small deviations for the zero-mode k = 0 are caused by the
finite expansion time, such that the expended density is not fully converged to the momentum
distribution. In the UV, for momenta k > k0, the scaled curves show the expected deviation
from the universal scaling form.

3.3.2 Initial Conditions and Universal Scaling Function

One of the most striking features of universality far-from-equilibrium is the fact that the
dynamics are independent of the specifics of the initial state. The universal properties near
the fixed-point therefore do not require any fine-tuning of parameters, as it is for example the
case in equilibrium critical phenomena where critical scaling only applies near the critical
point [59, 164].
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Confirming the universality of the observed scaling dynamics we consider three different
experiments11 for varying initial conditions prior and posterior to the quench. The initial
thermal cloud of N = 2.7 . . . 3.2 · 104 atoms at a temperature T = 530 . . . 600 nK is cooled
by the same cooling ramp with Rq = 25 kHz/ms resulting in a one-dimensional far-from-
equilibrium state of N ≈ 800 . . . 2800 atoms. The measurement is repeated 30 . . . 55 times
for each experimental realization and hold time t. We determine the likelihood function and
scaling exponents as described in the last section. We find excellent agreement of the scaling
exponents for each individual measurement (see Fig. A.2).

This allows us to increase the statistics by averaging the results of the separate measure-
ments. For statistically independent events the combined likelihood function is given by the
product of L(δαβ, β) calculated for each measurement. The resultant likelihood function as
well as the marginal likelihood functions are presented in Fig. 3.9a. We find the statistically
significant12 non-vanishing scaling exponents

β = 0.10 ± 0.03 (3.20)

δαβ = −0.01 ± 0.02 , (3.21)

fulfilling α = β well within the observed errors.
Far-from-equilibrium universal scaling dynamics in isolated Bose gases following a

strong cooling quench or for equivalent initial conditions have been studied by means of
non-perturbative kinetic equations [52, 50]. A scaling analysis of the kinetic quasiparticle
transport yields the exponent β = 1/2 independent of dimension d. This result, however,
does not necessarily apply to the case d = 1, where due to the kinematic restrictions from
energy and momentum conservation the transport is expected to vanish. Furthermore, taking
into account that our system is a close realization of the integrable Lieb-Liniger model of a
one-dimensional Bose gas with contact interactions, elastic two-body scattering is expected to
be absent. As a result, currently, no existing theoretical prediction accounts for the observed
non-zero value β ≈ 0.1. An anomalous scaling exponent has been found in [132, 49] for a
two-dimensional Bose gas and has been connected to scattering properties of topological
excitations in the system, i.e. the dilution of a vortex ensemble. This suggests that a similar
connection to quasi-topological excitations could be possible in our system, for which
we established the presence of quasi-topological solitonic excitations in the last sections.
Additionally the question arises if the system is truely in the 1D regime, or if transversally
excited states may contribute to the observed scaling exponents. While the value of the
parameter β was found to be independent of the spatial dimension, it is an open question if
e.g. fractal dimensions d = 1 + ϵ lead to a smooth interpolation from the finite value in d = 2

11Including the experimental set discussed in the previous sections
12The scaling exponent β is non-zero within 3σ deviation.
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Fig. 3.9 Scaling exponents and global observables. a Maximum likelihood function L(δαβ, β)
averaged over three different initial conditions. At the sides the marginal likelihood functions
shown (solid lines) which are in excellent agreement with a Gaussian fit (dashed lines). b
The averaged scaling exponent determined for each reference time t0 separately agree well
with the mean predictions β = 0.1 and δαβ = −0.01 (solid and dashed line). c Scaling of
the global observables (3.22) and (3.23) (for n = 2). The fraction of particles in the scaling
region N̄ (left panel) becomes approximately conserved (solid line) during the scaling period
(gray shaded region). Therein the mean energy per particle in the scaling region M̄2 (right
panel) shows the expected power-law behavior ∼ (t/t0)−2β (solid line).

to zeros in d = 1. Further theoretical studies in a non-perturbative field theoretical description
may shed light on the observed scaling exponents in quasi one-dimensional systems.

In addition, we determine the scaling exponents and errors for each reference time t0

separately, by omitting the average over t0 in Eq. (3.17). The exponents for each reference
time t0 agree well with the averaged predictions (3.20) (see Fig. 3.9b). This confirms the
independence of the scaling relation for different reference times t0.

In order to assess the temporal extent of the scaling regime it is advantageous to determine
the validity of the scaling hypotheses by the use of global observables. Assuming a scaling
Ansatz according to Eq. (3.15) we find scaling of the averaged observables

N̄ =
1

N(t)

∫
|k|≤t̃−βk0

dk n(k, t) ∼ t̃ −δαβ (3.22)

M̄n≥1 =
1

N̄N(t)

∫
|k|≤t̃−βk0

dk |k|nn(k, t) ∼ t̃ −nβ . (3.23)

Note the dependence of the integration ranges on the scaling exponent.
Particle number conservation is reflected in Eq. (3.22), which describes the fraction

of particles in the region of momentum space where the system shows scaling behavior.
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Fig. 3.10 Universal scaling function. The normalized momentum distributions (t/t0)−αn(k, t)
as a function of the dimensionless momentum (t/t0)βk collapse for varying initial conditions
(blue, red, green) to a single universal function fS = 1/

(
1 + k̃ζ

)
with ζ = 2.28 ± 0.12 (gray

solid line). The experimental data is binned over seven adjacent points in k for clarity. The
small deviations for low momenta are due to the finite expansion time of the gas. The inset
shows the measured initial momentum distributions at t = 0.

A non-vanishing exponent δαβ therein leads to particle transport outside/inside the scaling
region and an explicit dependence of N̄(t) on time. The time evolution of N̄, averaged over
the different measurements, is presented in Fig. 3.9c (left panel) for the full time period up
to t ≈ 1s. After a short non-universal evolution, N̄ ≈ const within the scaling period (gray
shaded region) and decays for late times during the approach of thermal equilibrium. This
reveals the emergence of an approximately conserved quantity, which is transported towards
the IR during the scaling dynamics, which is another hallmark behavior of the dynamics near
a non-thermal fixed point.

For the observables (3.23) the momentum distribution is weighted by a certain power
of |k| and normalized by the fraction of atoms in the scaling region. Most importantly M̄1

and M̄2 measure the absolute mean momentum and kinetic energy per particle in the scaling
region, respectively. Note that the normalization with N̄N(t) eliminates the dependence of
M̄n on the scaling exponent δαβ. This enables the separate measurement of the exponents
through the scaling analysis of mean observables. Apart from further validating the scaling
dynamics of the system, this allows us to clearly identify the scaling period t ≈ 0.7 – 75 ms
through deviations of the experimental results from the above predicted power-law behavior
(see Fig. 3.9c, right panel).
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Rescaling the experimental data for each measurement and taking into account the non-
universal normalization and momentum scale, all measurements for all times within the
scaling period collapse to a single universal function fS(k̃) (see Fig. 3.10). The dimensionless
momentum k̃ = k/knu is normalized by the non-universal momentum scale knu. This is the
only parameter apart from an overall normalization which encodes the specifics of the initial
state. In comparison to the RDM knu is determined by the defect density, which was found
to be the relevant non-universal scale in Eq. (3.16). The dependence of this scale on the
specifics of the initial state and/or quench is in accordance with the Kibble-Zurek picture of
defect nucleation during a phase transition. Therein the absolute number of defects created
during the quench depends on the actual values of e.g. the atom number at the point of
the transition. We find a similar behavior for the defect density, despite the fact that our
system is most likely not in the validity regime of the Kibble-Zurek mechanism. Universality,
however, completely determines the scaling evolution of the system through the function fS

and exponents α and β. To fully characterize the former we fit the generic function (1 + k̃ζ)−1

[52, 50, 49] to the experimental data for which we find ζ = 2.28 ± 0.14. The observed
exponent deviates slightly from the predicted universal function of the RDM ζ = 2 and the
general predictions in [50] of ζ = d + 1. Since the universal function is known to depend
on the dimensionality of the system, the deviations measured in the experiment might show
dynamics beyond the one-dimensional regime.

3.4 Summary

In this chapter we studied the relaxation dynamics of a one-dimensional Bose gas following
a strong cooling quench. We identified the emergent far-from-equilibrium state of the system
as a quasi-condensed gas bearing an ensemble of randomly distributed solitonic defects.
This allowed us to describe the systems properties within a model of randomly distributed
quasi-topological defects (RDM).

Probing the system immediately at the end of the cooling ramp, which, for the fastest
quench rates Rq are approximately two orders of magnitude faster than any previous exper-
imental investigations, we determined the presence of solitonic excitations through their
impact on the single-particle momentum distribution. We believe this approach provides a
clean setup for the study of defect nucleation during quench dynamics as it enables us to
probe the system before any additional defect decay. At early times, we found the system to
be characterized by solitonic defects of an approximately constant non-equilibrium width.
We attributed this to the absence of equilibration of the defect ensemble, caused by the rapid
quench and subsequent isolation of the system.
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Varying the rate Rq at which the cooling ramp was performed we found scaling of
the defect density ∼ R1.09

q . Defect nucleation hence closely follows the predictions of the
inhomogeneous Kibble-Zurek mechanism [165, 77]. However, for the fastest quench rates
considered in the experiment the system, in contrast to the Kibble-Zurek calculations, is at no
point during the quench near its thermal equilibrium state. Our observations therefore reveal
the perseverance of Kibble-Zurek-type scaling of defect nucleation beyond its strict range
of validity. The determined scaling of the defect density allowed us to explain the observed
(model-independent) properties of the system, such as scaling for the width of the density
and momentum distributions.

We further found that, similar to thermal equilibrium states [178], these solitonic states
lead to a transition for the breathing frequency of the gas from frequency-doubling to no-
doubling in momentum space. We explained this behavior based on the repulsive interactions
of slow-moving solitons, which suppresses compression of the gas for increasing defects
densities. Increasing the density of defects even further we observed a transition to a
“stiff” condensate, showing an almost stationary, strongly broadened density and momentum
distribution. We like to highlight that the observed transition happens entierly in the quasi-
condensed phase of the gas and is not connected to the transition of the system to a free Bose
gas.

In the second half of this Chapter, we turned our attention to the long-term relaxation of
the system, for hold times up to t ≈ 1 s. To minimize the influence of additional dynamics, as
e.g. the strong breathing excitations observed for slow quench rates, we focused our attention
on the fastest quenches, with Rq = 25 kHz/ms.

We quantified the approach to a thermal equilibrium state by comparing the momentum
distribution for each time during the evolution to the theoretical predictions of the RDM
and a thermal quasi-condensate. A χ2 analysis revealed the preference of the RDM for
times t ≲ 100 ms, beyond which the system begins to deviate and finally approach a thermal
equilibrium state, well described by the quasi-condensate model. During the time that the
RDM accurately describes the system, we found a dilution of the defect ensemble leading
to a transport of particles towards the IR and the emergence of a quasi-condensed peak in
the momentum distribution. The decay of defects hereby followed a power-law behavior
∼ t1.50±0.02, which indicates the emergence of universal behavior in the system.

We therefore investigated in the last Section the emergence of universal dynamics far-
from-equilibrium for these strongly quenched systems. These scaling evolutions are char-
acterized by only a few universal scaling exponents and scaling functions, independent of
the details of the initial state. We found that the system for varying initial conditions, after a
short transient evolution, indeed enters such a scaling regime characterized by the universal
function fS = (1+ kζ) with ζ = 2.24± 0.12 and scaling exponents α ≈ β = 0.1. We connected
the evolution to the emergence of a conserved quantity, transported towards the IR. Our
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results present striking evidence for the direct experimental observation of non-equilibrium
scaling dynamics and the approach of a non-thermal fixed point in an isolated quantum
many-body system.





Chapter 4

Characterizing Many-Body Systems via
Higher-Order Correlations

Quantum many-body systems are fully characterized through their correlations [82, 82].
While this concept forms the basis of the introduction to theoretical studies of Quantum Field
Theory its implementation in an experimental system has so far been mostly lacking. Higher-
order correlations, and their factorization properties i.e. how they can be decomposed into
lower-order correlations, are known to provide important information about the underlying
structure of the field theory, its interactions and its complexity [186, 83, 187]. Nonethe-
less, experimental systems are up to now mostly probed through lower-order correlations.
However, with the rapid progress in cold atom experiments [63] measuring higher-order
correlations is now within reach [188–190, 15]. Studying their factorization properties gives
direct access to highly non-trivial field theoretical calculations. In the limit of equal times,
the N th order correlations of the fundamental fields contain the combined effect of all possible
scattering events containing N particles. In theoretical calculations this usually involve an
infinite series of Feynman diagrams which need to be evaluated [186, 83, 187]. Determining
in experiments up to which order these correlations have a significant contribution to the
systems properties, allows for a stringent comparison to theoretical calculations and gives
valuable information about the possibly irrelevant operators which renormalize to zero in
the low-energy description of the system. In particular, observing complete factorization
according to Wick’s theorem [191, 83, 187, 186], proves without any further theoretical
calculations, that the diagonalizing degrees of freedom are found and the system is described
by a quadratic Hamiltonian.

We implement these concepts through a detailed analysis of the factorization properties
of the relative phase between two linearly coupled quantum wires, realized in a double-well
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potential1. Matter-wave interferometry [192] gives direct access to the spatially resolved
relative phase, which is described by an effective field theory, the sine-Gordon model [84].
By adjusting the tunneling rate through the double-well barrier, the relevance of higher-order
coupling terms in the SG model can be tuned, shifting the model from a Gaussian state to a
strongly correlated system. Detailed comparison of the factorization properties of higher-
order correlations up to 10th order reveals the validity of the SG model as the low-energy
effective theory to an unprecedented accuracy over the whole range of coupling parameters.
In limiting cases complete factorization of higher-order correlations is found, proving the
validity of the quadratic low-energy approximations commonly employed in the description
of ultracold Bose gases.

By changing the speed at which the condensate is cooled into the double-well, we
can further study the near-equilibrium properties of correlation functions in the SG model.
Analysis of the full distribution functions of phase differences, containing the combined
information of all higher-order correlations, solitons are found to prevail in these long lived
non-thermal states as remnants of the fast condensation dynamics. Establishing through
numerical simulations of the condensation dynamics in the SGPE framework the rapid
thermalization of fluctuations around these highly non-linear solutions and the approximate
decoupling of phononic and solitonic excitations we explain the observed non-equilibrium
higher-order correlations through a model of randomly distributed solitons. Our findings
underline the precision higher-order correlations offer in the analysis of quantum many-
body system, which therefore are an essential tool for reading, verifying, and characterizing
quantum simulators [193].

4.1 Parameter Space and Lower-order Correlations

Coupled quantum wires are an excellent starting point for the investigation of non-Gaussian
field theories. Their low-energy description, the SG model (2.44), has an infinite number
of higher order coupling terms, which cannot be neglected in the description of the system
[84, 194].

Examining low-order correlations in thermal equilibrium demonstrates the need for a
description beyond the harmonic Bogoliubov approximation. The simplest of these is the

1This chapter is based on and contains parts of [160]. I contributed to the theoretical calculations, interpre-
tation of the theoretical results and experimental data, performed numerical simulations, and contributed to
writing of the manuscript.
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Fig. 4.1 Coherence factor C(0)(z = 0) as a
function of the parameter q = λT/lJ. The
harmonic theory (blue) agrees well with the
full SG model (red) for vanishing q → 0
and large q ≫ 1 tunneling coupling. In the
intermediate regime clear deviations signal
the relevance of higher-order correlations.
Black dots show the result of the SGPE sim-
ulation which clearly reproduce the full non-
linear model. The green diamonds are are
the parameter discussed in Section 4.4.

coherence factor

C(0)(z) =
〈
ψ̂†L(z)ψ̂R(z)

〉√〈
|ψ̂L(z)|2

〉〈
|ψ̂R(z)|2

〉 ≃ 〈
exp

(
iθ̂r(z)

) 〉
, (4.1)

which quantifies the amount of phase locking between the two condensates [130, 194, 38].
For the approximate equality we again neglected the highly suppressed density fluctuations.
For a translation invariant system, Eq. (4.1) is independent of the spatial coordinate z
and related to the finite value of the first order coherence function at large separations,
C(0) =

√
C(1)(z, z′)||z−z′ |→∞ (see e.g. (2.82)).

The deviations between the Bogoliubov predictions and the exact result obtained through
the transfer matrix formalism signal the need for a description of the system beyond the
harmonic approximation (see Fig. 4.1). Hereby, he parameter q = λT/lJ is the only relevant
parameter determining the behavior of local observables [194]. For the Bogoliubov theory
this is evident from the analytical solution C(0) = exp(−lJ/λT ) [130]. This remains valid in
the TMF since the expectation value of local observables depends only on the ground state
wave function Ψ0 (and not its eigenvalue κ0), for which the transfer matrix operator (2.65) can
be rescaled, leaving q as the only relevant parameter. In the limit q→ 0 the coherence factor
approaches zero, because for the decoupled system the phase between the two independent
condensates is completely random. For q ≫ 1 the coherence factor approaches unity. Here
the strong hopping between the two condensates locks their relative phase, restricting the
dynamics close to the minimum of the cosine potential in the SG Hamiltonian. In both these
limits the Bogoliubov theory agrees well with the TMF predictions, as expected from the
mTLL approximation of the SG Hamiltonian (see Section 2.2.1). For intermediate values,
however, clear deviations arise signaling the relevance of higher-order coupling terms in the
effective field theory description.
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The fact that local observables only depend on a single parameter allows us to greatly
decrease the available parameter space. While non-local observables will show dependence
on the independent scales lJ and λT , and for the latter will ultimately break into a dependence
of n1D and T once the density decreases and density fluctuations are no longer negligible,
the relevance of non-Gaussian fluctuations is predominantly determined by q. For the
question of non-Gaussianity the parameter space is therefore approximately reduced from
(T, n1D, J) to (λT , lJ) and ultimately only determined by q. This has a second advantage, as
it is therefore possible to classify experimental measurements through the coherence factor
(4.1). While an independent measurement of the thermal coherence length is necessary to
fully determine the position of a measurement in the parameter space, and especially the
explicit dependence of non-local observables, classification in terms of q enables comparison
of different measurements solely through the study of correlation functions.

4.2 Correlation Functions in the sine-Gordon Model

Although lower-order correlations are able to determine the breakdown of the Gaussian
approximation, little information is gained about the relevant parameters that need to be
included in the effective description of the system. Higher-order correlation functions thereby
allow for a stringent and statistically significant analysis of the structure and validity of such
a coarse-grained model. They thus give valuable information about the relevance of coupling
terms in the effective field theory as well as the underlying microscopic model, enabling
us, in direct connection to quantum field theoretical calculations, to quantify the influence
of non-linear couplings in the effective Hamiltonian order by order. Further, an analysis of
their factorization properties is not bound to any theoretical predictions and the validity of
theoretical approximations can be tested based only on experimental measurements. In the
following, we discuss the general properties of higher-order correlations in the SG model
and their connection to quasiparticle interactions before giving a detailed description of their
factorization properties that form the basis for their detailed analysis in the remainder of this
Chapter.

4.2.1 Relation to quasiparticle interactions

Expanding the cosine potential we write the SG Hamiltonian (2.44) as

HSG =

∫
dz :

gδρ̂2
r +
ℏ2n1D

4m

(
∂θ̂r

∂z

)2

+ ℏJ̃n1Dθ̂
2
r

 : −
∫

dz :

2ℏJ̃n1D

∞∑
n=2

(−1)n

(2n)!
θ̂2n

r

 :

= H0 + V , (4.2)
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where we split the Hamiltonian into a free part H0, which is quadratic in the fields, and an
interaction part V = V4 + V6 + . . . , which contains all higher-order terms. We wrote the
Hamiltonian in its normal-ordered form (where all creation operators are to the left, denoted
by : :) which leads to a multiplicative renormalization of the coupling J → J̃, and we dropped
an irrelevant constant (see e.g. Ref. [140]). All information about the system is contained in
correlations of the form

⟨θ̂(t1, x1)θ̂(t2, x2) · · · θ̂(tN , xN)⟩ ≡ Tr
{
ρD T̂ θ̂(t1, x1)θ̂(t2, x2) · · · θ̂(tN , xN)

}
, (4.3)

where ρD denotes the density operator specifying the system at a given time, and the trace
is taken over the time-ordered product of field operators as indicated by the time-ordering
operator T̂ .

The quadratic Hamiltonian H0 is given by the mTLL model (2.45), whose exact diagonal-
ization within the Bogoliubov quasiparticle basis was discussed in Section 2.2.1. There we
argued that in the limiting cases of zero or very strong tunneling coupling J the interaction
potential V vanishes, for the latter due to smallness of the fluctuations θ̂r(z). In this approxi-
mation direct calculation of the trace in the quasiparticle Fock basis leads to factorization
of correlations. This is expected for a free theory since, due to the absence of interactions,
only quasiparticle propagation contributes to the correlation functions. This result can be
generalized to arbitrary order by use of Wick’s theorem for thermal states [187].

The calculation of correlation functions becomes increasingly more complicated for a non-
vanishing interaction potential V , due to the non-vanishing commutator [H0,V]. In thermal
equilibrium, the correlation functions of the phase can be calculated in perturbation theory
in the imaginary-time (Matsubara) formalism2. One defines the time-ordered correlation
functions in imaginary time τ (Matsubara Green’s functions)

⟨T̂ θ̂H(τ1, z1) . . . θ̂H(τN , zN)⟩ ≡
Tr

[
e−βH0 T̂ U(β, 0)θ̂I(τ1, z1) . . . θ̂I(τN , zN)

]
Tr

[
e−βH0U(β, 0)

] , (4.4)

where θ̂H(τ, z) = eτHSG θ̂r(z)e−τHSG are the Heisenberg field operators in imaginary time τ, and
θ̂I(τ, z) = eτH0 θ̂r(z)e−τH0 are the fields in the interaction picture (denoted by the subscript
I), evolving in imaginary time with the free Hamiltonian H0. The time evolution operator

2Be aware that, in this thesis, we do not anticipate to solve the problem using perturbation theory in any way,
and hence do not concern ourselves with the inevitable problems of divergencies occurring in the perturbative
expansion, and their solutions using well-established field-theoretical tools as resummation, renormalization,
and summation of divergent series. For details of the presented methods see any book on (statistical) field
theory, e.g. [83, 187].
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U(β, 0) fulfills

∂τU(τ, 0) = −VI(τ)U(τ, 0) , (4.5)

whose solution can, e.g. , be written as the Dyson series [187]

U(τ, τ′) = T̂e−
∫ τ
τ′

dτ′′VI (τ′′) =

∞∑
n=0

(−1)n

n!

∫ τ

τ′
dτ1· · ·

∫ τ

τ′
dτn T̂ VI(τ1) . . .VI(τn) . (4.6)

Therewith correlation functions (4.4), up to any order in VI , are expressed through a diagram-
matic expansion in Feynman diagrams [83, 187].

The sine-Gordon Hamiltonian, Eq. (4.2), represents a scalar field theory with an infinite
number of polynomial interaction terms. Standard results of quantum field theory allow to
distinguish between three distinct types of diagrams. First, all diagrams in which the fields of
the interaction potential V are contracted among themselves and are otherwise disconnected
(vacuum diagrams). These vacuum diagrams are exactly canceled by the denominator in
Eq. (4.4) to all orders in the perturbative expansion. Second, all diagrams which are not fully
connected only contribute to the disconnected part of the correlation function, and can be
factorized into full, lower-order correlation functions. Third, the fully connected diagrams
describe genuine N-body quasiparticle interactions and constitute the connected part of the
correlation function.

The above time-ordered imaginary-time correlation functions are only directly related
to physical observables for equal times τ1 = · · · = τN , for which they coincide with the
equal time correlation functions discussed in this thesis3. However, the Matsubara Green’s
functions may be analytically continued to the real-time axis to determine the physically
relevant real time correlation functions (4.3).

Since the correlation functions in thermal equilibrium become time-translation invariant,
employing a Fourier transformation with respect to times, one can represent the N th-order
correlation as

⟨θ̂(t1, x1) · · · θ̂(tN , xN)⟩ =
∫

dω1

2π
· · ·

dωN

2π
ei(ω1t1+···+ωN tN ) 2π δ(ω1 + · · · + ωN)

G(N)(ω1, . . . , ωN−1; x1, . . . , xN) . (4.7)

Here G(N)(ω1, . . . , ωN−1; x1, . . . , xN) denotes the N th-order correlation amplitude with external
frequenciesωi at spatial points xi, for i = 1, . . . ,N. Diagrammatically, they can be represented

3Note that, in general, the limit τ1, . . . , τN → τ needs to be taken with care as the time-ordered Matsubara
Greens-functions might be discontinuous at equal times, due to non-vanishing commutators [187]. Since, for
the correlations considered here, the equal-time commutator vanishes no further problems occur in taking the
equal-time limit.
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as:

.
. .

ω1, x1

ω2, x2

ωN – 1, xN – 1

ωN = –ω1 – ...–ωN – 1, xN

G
(N)

The 4th-order amplitude G(4)(ω1, ω2, ω3; x1, x2, x3, x4), for instance, describes all possible
quantum processes with |ωi| injected (ωi > 0) or taken out (ωi < 0) at points xi for i = 1, 2, 3
such that the total energy is conserved with −ω1 − ω2 − ω3 at x4. For two-body interactions
and the case of a real scalar field, this involves standard scattering processes with Feynman
diagrams having two incoming and two outgoing lines, but also diagrams with one line in
and three lines out, the conjugate process (three in, one out), or even all lines in (or all lines
out).

From the Fourier representation (4.7) one observes that an N th-order equal-time correla-
tion function (t = t1 = t2 = · · · = tN) represents the sum over all the different processes with
N external lines

⟨θ̂(t, x1) · · · θ̂(t, xN)⟩ =
∫

dω1

2π
· · ·

dωN−1

2π
G(N)(ω1, . . . , ωN−1; x1, . . . , xN) . (4.8)

More precisely, equal-time correlation functions for bosonic fields measure the sym-
metrized (anti-commutator) part of the time-ordered correlators (4.3). For the real scalar
field operator considered here, this can be directly observed from the definition of the
time-ordering operator, as e.g. for the 2nd-order correlation:

⟨T̂ θ̂(t1, x1)θ̂(t2, x2)⟩ = ⟨θ̂(t1, x1)θ̂(t2, x2)⟩Θ(t1 − t2) + ⟨θ̂(t2, x2)θ̂(t1, x1)⟩Θ(t2 − t1)

=
1
2
⟨
{
θ̂(t1, x1), θ̂(t2, x2)

}
⟩ +

1
2
⟨
[
θ̂(t1, x1), θ̂(t2, x2)

]
⟩ sgn(t1 − t2) .

Here the step function is defined by Θ(t > 0) = 1 and Θ(t < 0) = 0 and the sign function
is sgn(t) ≡ Θ(t) − Θ(−t). Since the equal-time commutator vanishes, [θ̂(t, x1), θ̂(t, x2)] = 0
for the real scalar field operator, the symmetrized part is given by the anti-commutator
{θ̂(t1, x1), θ̂(t2, x2)} ≡ θ̂(t1, x1)θ̂(t2, x2) + θ̂(t2, x2)θ̂(t1, x1) at equal times t1 = t2.

Since the experimentally measured phase fields are linear in the quasiparticle cre-
ation/annihilation operators, N th-order correlation functions are a direct measure of the
combined effect of the N-body quasiparticle interaction (to all orders in the coupling). This
allows for a direct comparison to highly non-trivial field-theoretical calculations, and gives
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valuable information about the convergence of the perturbative expansion, the validity of
non-perturbative theoretical methods, and the summation of divergent series. Measurements
of equal-time correlation functions represent a powerful tool to quantify the combined effect
of all possible quantum processes that contribute to an N th-order correlation — no matter
how high the order of a process in terms of powers of Planck’s constant h may be, or whether
the contribution is of non-perturbative origin.

4.2.2 Phase Correction and Full Distribution Functions

Since the phase field is defined on a circle S 1 care has to be taken when evaluating the path
integral where the topological constraints need to be taken into account. The integration
over all possible paths on the circle is consequently replaced by a the sum over all paths
resulting in the same action [195], for which the phase is smoothly extended to the interval
(−∞,∞) and the final point is summed over all periodic repetitions in order to ensure the
cyclic invariance of the phase correlations.

This phase correction can also be understood by realizing that the phase θr(z) itself is not
a uniquely defined physical observable, but is only defined modulo 2π. Consequently, in the
experiment, matter-wave interferometry only allows us to determine the phase up to ±2πn,
where n ∈ Z. This corresponds to the degenerate vacuum states of the SG model, where the
Hamiltonian is invariant under a shift θ̂r → θ̂r ± 2πn. The phase differences

φ(z, z′) = θ̂r(z) − θ̂r(z′) , (4.9)

however, are, after the phase has been smoothly extended to the interval (−∞,∞), a well
defined observable. The extension of the phase, as was considered in [160], is depicted
in Fig. 4.2. The phase field θr(z) is shifted to remove the unphysical jumps across the
boundary, which occur when the phase has wrapped once around the circle S 1. Practically

Fig. 4.2 Correction of the phase profile.
Depicted is the correction performed to
obtain unbound phase differences. The
original phase profile (blue) crosses the
boundary twice at z1 and z2, visible in
the instantaneous jump of 2π. Shifting
the phase by θr(z) → θr(z) + 2π (4π) for
z > z1 (z > z2) leads to the smooth, un-
bound phase (red) free of any kinks. Soli-
tons are unaffected by the correction, and
are clearly visible in the extended phase
profile.
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this is done by enforcing that neighboring points on the spatial grid have a phase difference
|θr(z)− θr(z+∆z)| ≤ π. This leads to a well defined hydrodynamic velocity field v ∼ ∂zθr, free
of any poles. By considering phase differences the remaining global ambiguity of 2πn for
the phase field is eliminated.

The advantage of this extended phase scheme is two-fold and is best illustrated by
considering the full distribution functions (FDFs) of phase differences. These probability
distributions contain all information about the higher order correlation functions, and are
given by the Boltzmann weight exp(−βH) after integrating out the remaining, completely
decoupled degrees of freedom. The difference of the FDFs before and after the smooth
extension of the phase profile is shown for two distinct cases in Fig. 4.3.

The distribution function for the uncorrected phase differences is, as the phase itself,
only defined on the circle S 1. In case of a free field theory it takes the form of a wrapped
normal distribution [196]. Expectation values are only well defined for periodic (circular)
observables, which, as we will explicitly show below, has disadvantages when considering the
factorization properties of higher-order correlations. The FDF of phase differences calculated
from the corrected phase field, are not limited by the periodicity of the observables and reveal
the Gaussian distribution expected for a free field theory.

Further, as discussed in Section 2.2.2, the SG model has solitonic solutions, which
represent a localized rotation of the phase by 2π. The wrapped distribution of the uncorrected
phase profile is only sensitive to the localized rotation of the phase, and not the absolute
change of 2π due to the connection of two minima in the SG potential. Circular observables
are hence far less sensitive to these highly non-linear field configurations, as they cannot
distinguish between the degenerate vacuum states of the SG model. In the presented example
of three shifted Gaussian distributions the wrapped distribution is approximately Gaussian,
masking the highly non-Gaussian fluctuations of the phase. In the FDFs for the corrected
phase profiles the degenerate vacuum states become clearly separable, due to the removal of
unphysical jumps4.

FDFs present a powerful method to compare the combined results of higher-order cor-
relations. They contain valuable information of the shot-to-shot fluctuations. FDFs have
previously been used in the context of full counting statistics of the measured contrast of
interference fringes in the interference of two one-dimensional Bose gases [197–199] and
were used to determine the relaxation of the system to a prethermalized state [13, 200]. While
all information about the state is contained in the FDFs, studying its correlations and espe-
cially their factorization properties reveals, order by order and independent of any theoretical
predictions, the relevance of contributions that drive the system beyond the harmonic regime.

4Note that solitons always have a finite width and hence are not removed in the phase correction as long as
their width is larger than the spatial resolution.
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Fig. 4.3 Schematic comparison of full distribution functions for phase differences of the
circular and corrected phase profiles. The green area depicts fluctuations outside the bound
interval [−π, π) which for the circular distributions are folded back in the central region.
Upper row: For large Gaussian fluctuations of the unbound phase field (left) representing a
free field theory the circular distributions (right) are distinctly non-Gaussian. Lower row: In
case of a mixture distribution of the unbound phase field representing solitonic excitations,
the circular distribution is approximately Gaussian. The two examples clearly show, how
FDFs of the circular phase distort the notion of Gaussian phase fluctuations and hence the
direct connection to quasiparticle interactions.

4.2.3 Phase Correlation Functions

We define the N th-order5 phase correlation function for the corrected phase differences

G(N)(z, z′) =
〈
φ(z1, z′1) . . . φ(zN, z′N)

〉
, (4.10)

with coordinates z = (z1, . . . , zN) and z′ = (z′1, . . . , z
′
N) along the length of the system. The

first-order correlation function, as well as all other correlation functions where N is an odd
positive integer, vanish by symmetry. While all information is contained in the N th-order
correlation function it is more insightful to consider their decomposition in connected and
disconnected parts

G(N)(z, z′) = G(N)
con(z, z′) + G(N)

dis (z, z′) . (4.11)

5The correlation function is actually dependent on 2N spatial points, however still of N th order in the field
operators φ and/or θ̂r
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This separates the genuine new information at this order G(N)
con from the redundant information

contained in lower-order correlations G(N)
dis . We introduced the disconnected correlation

functions as the sum over all possible combinations of correlations with a total of N external
lines containing at least two completely disconnected Feynman diagrams. This defines,
through Eq. (4.11) and simple combinatorics, the general formula for the connected part
[196]

G(N)
con(z, z′) =

∑
π

(|π| − 1)! (−1)|π|−1
∏
B∈π

〈∏
i∈B

φ(zi, z′i)
〉
. (4.12)

Here, the sum runs over all possible partitions π of {1, . . . ,N} with |π| the number of parts
in the partition, the first product runs over all blocks B of the partition and the second
product over all elements i of the block. It is possible to simplify Eq. (4.12) by using central
moments, i.e. shifting φ→ φ −

〈
φ
〉
, thereby eliminating all terms containing the first-order

correlation function. Connected correlation functions are also called cumulants or, in a
generalized form, semi-invariants [196]. For our system the sum is further simplified as
only correlation functions where N is an even positive integer contribute, which leads to
G

(2)
con(z, z′) = G(2)(z, z′) and, e.g., for the 4th-order connected correlation function:

G(4)
con(z, z′) = G(4)(z, z′) −

〈
φ(z1, z′1)φ(z2, z′2)

〉〈
φ(z3, z′3)φ(z4, z′4)

〉
−

〈
φ(z1, z′1)φ(z3, z′3)

〉〈
φ(z2, z′2)φ(z4, z′4)

〉
(4.13)

−
〈
φ(z1, z′1)φ(z4, z′4)

〉〈
φ(z2, z′2)φ(z3, z′3)

〉
.

Whenever not explicitly stated otherwise, we will in this thesis always assume vanishing
odd-order correlation functions in the decomposition into connected and disconnected parts6.
Higher-order connected correlation functions are easily obtained through Eq. (4.12), since
they become rather cumbersome we will not show their explicit form here.

For Gaussian states, all higher-order connected correlation functions (N > 2) vanish,
i.e. G(N>2)

con (z, z′) ≡ 0. Hence, all correlation functions factorize and one recovers Wick’s
theorem [83] stating that, for a Gaussian state, all correlation functions with (N > 2) are
determined by second-order correlations. Explicitly, the Wick decomposition is given by

G(N)
wick(z, z′) =

∑
π2

∏
B∈π2

〈
φ(zB1 , z

′
B1

)φ(zB2 , z
′
B2

)
〉 . (4.14)

6Note however that in the numerical evaluation of connected correlation functions we always use the general
formula Eq. (4.12) containing all orders of correlation functions. This is especially advantageous if odd-order
correlation retain a finite, but always small, value due to limited statistics or experimental noise
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Here the sum runs over all possible partitions π2 of {1, . . . ,N} into blocks of size 2. The
product again runs over all blocks B of the partition (see [196]).

Choosing coordinates z ≡ z1 = z2 = . . . = zN and z′ ≡ z′1 = z′2 = . . . = z′N , the above
formulas simplify as we are considering only correlations which are powers of a single
random variable φ = φ(z, z′). Here we suppress the spatial argument to shorten the notation,
as we will do in the following whenever all spatial arguments are the same. In this case, the
N th-order connected correlation function can be determined by the recursion formula

G(N)
con(z, z′) = G(N)(z, z′) −

N−1∑
m=1

(
N − 1
m − 1

)
G(m)

con(z, z′)G(N−m)(z, z′) . (4.15)

Specifically for the lowest orders we get

G(2)
con(z, z′) =

〈
φ2〉 ,

G(4)
con(z, z′) =

〈
φ4〉 − 3

〈
φ2〉2

, (4.16)

G(6)
con(z, z′) =

〈
φ6〉 − 15

〈
φ4〉〈φ2〉 + 30

〈
φ2〉3

.

For a Gaussian state, we get from Wick’s theorem

G(N)
wick(z, z′) =

〈
φ2〉N/2(N − 1)!! , (4.17)

where (. . . )!! is the double factorial. These simplified formulas will be helpful in the next
section, where we discuss the factorization properties of commonly used periodic observables.

4.2.4 Periodic Correlation Functions

We extend upon the previously defined coherence factor C(0) and first order coherence
function C(1) by defining the general N th-order periodic correlation function [15]

C(N)(z, z′) =
〈
ψ̂L(z1)ψ̂†R(z1)ψ̂†L(z′1)ψ̂R(z′1) . . . ψ̂L(zN)ψ̂†R(zN)ψ̂†L(z′N)ψ̂R(z′N)

〉
∑N

n=1

√〈
|ψ̂L(zn)|2

〉〈
|ψ̂R(zn)|2

〉〈
|ψ̂L(z′n)|2

〉〈
|ψ̂L(z′n)|2

〉 . (4.18)

These correlations do not rely on the correction of the phase profile and are therefore simpler
to calculate from experimental or numerical data.

In order to isolate the contributions of N-body quasiparticle interactions to C(N) we
seek a functional relation to the connected correlation functions of the relative phase G(N),
extending beyond the commonly used harmonic approximation. Defining the random variable
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ΦN(z, z′) =
∑N

i=1 φ(zi, z′i) the N th-order periodic correlation function can be written as

C(N)(z, z′) ≃
〈

exp
(
iΦN(z, z′)

) 〉
. (4.19)

We again neglected the highly suppressed density fluctuations, for which the correlations
(4.19) are equivalent to vertex operators of the SG model [84]. Using Eq. (4.15) the cumulant
generating functional KN(λ) for the random variable ΦN is

KN(λ) = Ln
(〈

eiλΦN
〉)
= exp

 ∞∑
m=1

(−λ)m

(2m)!
〈
Φ2m

N
〉

con

 . (4.20)

Realizing that KN(1) ≡ C(N) determines, by use of the multi-linearity of joint cumulants7,
the desired connection between the periodic correlation functions and G(N). As again the
formulas get increasingly cumbersome with the number of spatial coordinates, we give here
only the explicit formula for the first-order coherence function

C(1)(z, z′) = exp

 ∞∑
m=1

(−1)m

(2m)!
G(2m)

con (z, z′)
 . (4.21)

Periodic correlation functions are not directly related to N-body interactions of quasiparticles
and even the first-order correlation function contains contributions arising from N-body
quasiparticle interaction up to arbitrary order N in a non-simple way.

Corresponding to free quasiparticle propagation the harmonic approximation truncates
the above sum at m = 1,

C
(1)
wick(z, z′) = exp

[
−

1
2
〈
φ(z, z′)2〉] , (4.22)

7The general formula 〈
(X + Y)n 〉

con =

n∑
j=0

(
n
j

)〈
X, . . . , X︸   ︷︷   ︸

j

,Y, . . . ,Y︸   ︷︷   ︸
n− j

〉
con

is easily extended to an arbitrary sum of random variables X,Y, . . . . For ΦN =
∑N

i=1 φ(zi, z′i) this relates
〈
Φn〉

con
to the correlations of the phase G(N≤n)
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Due to the periodicity and the resulting restricted (finite) domain of these correlation functions
the correct Wick decomposition of periodic higher-order correlations thereby takes the form

C
(N)
wick(z, z′) =

N∏
m,n=1

C
(1)
wick(zm, z′n)

m<n∏
1≤m,n≤N

C
(1)
wick(zm, zn)C(1)

wick(z′m, z
′
n)

. (4.23)

4.3 Equilibrium Results and Factorization

We begin our analysis of higher-order correlation functions in the thermal equilibrium state
for two coupled quantum wires. Our system is a Bose gas of 87Rb atoms, cooled in a static
double well potential with an adjustable barrier (see Section 2.2). Tunneling through the
barrier leads to a linear coupling J between the two 1D systems. This allows us to tune the
coupling constant of the cosine potential entering the SG Hamiltonian, and therewith the
relevance of non-Gaussian fluctuations. Matter wave interferometry gives direct access to
the spatially resolved relative phase between the two condensates. This corresponds to the
fundamental field θ̂r(z) of the effective field theory, which allows us to directly calculate
higher-order correlation functions in analogy to theoretical calculations in quantum field
theory. The expectation value is calculated by averaging over 290 . . . 2800 (typically 1000)
experimental measurements. By adjusting the double-well barrier we explore different
regimes of the SG model and determine the relevance of higher-order connected correlation
functions.

We show in Fig. 4.4 the 4th order correlation function G(4)(z, z′) as well as its decomposi-
tion into disconnected G(4)

dis(z, z
′) and connected G(4)

con(z, z′) parts for different values of the
phase locking strength q. For uncoupled (q = 0) and strongly coupled (q = 6.1) condensates
we find complete factorization of the correlation function according to Eq. (4.11). The
connected part completely vanishes and all information is contained in the second-order
correlation functions, determining the disconnected part G(4)

dis(z, z
′) of the correlation function.

This means that the system is well described by a set of non-interacting quasiparticles
and higher-order couplings in the Hamiltonian become irrelevant. For vanishing tunneling
coupling J the factorization would be expected on the level of the effective field theory,
as the SG model reduces to the quadratic TLL model. However, even in this regime, we
neglected an infinite series of higher-order coupling terms in the perturbative expansion
of the microscopic Hamiltonian (2.38) to arrive at the TLL model. The validity of these
approximations is confirmed by the observed factorization of higher-order correlations. The
factorization for large q is a non-trivial result even on the level of the effective field theory
itself and explicitly confirms the irrelevance of higher-order couplings in the SG Hamiltonian.
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Fig. 4.4 Experimental factorization of the 4th-order correlation G(4)(z, z′) into connected
and disconnected parts. The increase in the tunneling coupling is quantified through the
increasing coherence factor ⟨cos(θr)⟩. We randomly chose z3 = −z4 = 14 µm and z′ = 0
to visualize the high dimensional data. For vanishing and strong tunneling (⟨cos(θr)⟩ =
0.01, 0.92) the connected part G(4)

con vanishes and all information is contained in the lower
order correlations. The system is therefore in a Gaussian state, described by non-interacting
quasiparticles. We hence found the degrees of freedom that diagonalize the Hamiltonian.
For intermediate tunneling coupling a significant connected part remains, revealing the
non-Gaussian fluctuations of the relative phase field. Figure adapted from [160].

The complete factorization of higher-order correlation functions, even without knowledge
about the underlying theoretical model, shows that we have found the degrees of freedom
within which the system can be described by a free field theory. Therefore, based only on
factorization properties of experimental correlation functions, the structure of the effective
Hamiltonian is determined to take the form of the mTLL model. This explicitly shows that a
vast number of possibly irrelevant operators renormalize to zero in the low-energy theory
describing thermal equilibrium.

When the tunneling coupling is tuned to an intermediate regime, a significant connected
part remains and the relative phase field in thermal equilibrium exhibits non-Gaussian fluctu-
ations. The system is therefore no longer solely described by free quasiparticle propagation.
The observed connected part of the 4th order correlation function is a direct result of the
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combined effect of two-body quasiparticle interactions, which therefore remains a relevant
coupling and hence cannot be neglected in the low-energy description of the system.

For a quantitative comparison of the relevance of higher-order connected correlation
functions, we turn to spatially averaged observables, taking into account the full 4th order
connected correlations. The relevance of the connected correlation function is usually
measured by comparing its local value to the disconnected part of the correlation function.
Due to experimental noise it is however advantageous to determine the relevance of connected
higher-order correlation in comparison to the full correlation and compare global, i.e. spatially
integrated, values rather than a local comparison of G(N)

con and G(N). To mitigate this problem,
we therefore define the measure

M(N) =

∑
z |G

(N)
con(z, 0)|∑

z |G
(N)(z, 0)|

. (4.24)

The absolute value is introduced because for phase differences of the extended phase the
sign of the correlation function depends on the fixed coordinates (see the cross structure in
Fig. 4.4). While a locally defined measure G(N)

con(z, 0)/G(N)(z, 0) is always positively defined,
positive and negative parts of the correlation cancel one another in Eq. (4.24) since the
integration over the connected and full correlation is performed separately. Note that due to
the absolute value in Eq. (4.24), the measure is not an unbiased estimator of the connected
correlation function calculated from the true probability distribution. Considering, e.g. , a
finite random sample drawn from a Gaussian distribution higher-order connected correlations
fluctuate around zero and summing over their absolute values leads to a non-zero measure
M(N).

We compare the results for the experimental data with predictions of the SG model,
solved exactly for a homogeneous system in the classical limit by use of the TMF explained
in Section 2.3.3. As we are now interested in non-local observables, the second relevant
scale λT = 15 . . . 20 µm must be determined independently through speckle patterns in time
of flight [201]. We determine the solution in the TMF through the stochastic Îto process
(2.66), completely defined by the two scales q and λT and only dependent on the ground
state solution of the corresponding Mathieu equation (see Section 2.3.3). We further take
into account the finite experimental resolution by convolution of the unbound phase field8

with a Gaussian PSF of measured standard deviation σPSF = 3 µm.
Practically, a single realization of the phase field is calculated by sampling an initial

value of the phase from the equilibrium distribution (2.58), calculating the evolution in space

8Note that the correction for unphysical jumps is essential here, as due to the convolution these jumps
acquire a finite width. They therefore become fictitious solitons in the phase profile, drastically altering the
results.
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Fig. 4.5 Relative size of the 4th-order connected correlations in thermal equilibrium. Red
dots are the integral measure M(4) (Eq. (4.24)) calculated from the experimental data for
different phase locking strengths ⟨cos(θr)⟩. The measure quantifies the size of the connected
correlations G(4)

con as compared to the full correlation G(4). The experimental data is in good
agreement with the theoretical predictions of the SG model, calculated using the TMF
(2.66). For intermediate phase locking a significant part of the correlation G(4) is given
by the connected part. The shaded area depicts the estimated spread of the experimental
parameters. The errorbars represent the 80% confidence interval calculated by bootstrapping
[202]. Figure adapted from [160].

according to the Îto equation (2.66) on a discrete spatial grid9, and finally convolving the
phase profile with the Gaussian PSF. The correlation functions are calculated by averaging
over typically 105 independently sampled field configurations.

In Fig. 4.5 the dependence of M(4) is shown for increasing tunneling coupling J, quantified
through the experimentally measured coherence factor ⟨cos(θr)⟩ (c.f. Eq. (4.1) for vanishing
odd order correlations) calculated at the center of the longitudinal trapping potential. The
theoretical predictions for the SG model are calculated for the measured spread of the thermal
coherence length λT , and are in excellent agreement with the experimental observation over
the full range of parameters. The finite value for ⟨cos(θr)⟩ ≈ 0 in the experiment is due to
the finite statistics and the above explained bias of the measure (4.24). For the experimental
data, only the central, nearly homogeneous10, part of the cloud is used for the analysis. We
can therefore neglect the spatial dependence of q due to the spatially dependent bulk density
ρ0(z).

9Depending on the spatial resolution of the grid the stochastic propagation in space is performed on a finer
grid to achieve numerical convergence of (2.66)

10The density variation within this region is ≈ 25%, which is similar to the considered spread in λT
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Here, direct comparison of the experimental system to its predicted effective field theory
provides stringent proof for the validity of the low-energy description. It is important
to remember, that for the presented analysis only one parameter, λT , has to be measured
independently. Comparison to the theoretical predictions is otherwise solely performed on
the level of measured correlation functions.

Measuring and calculating higher-order connected correlation functions, N > 4, is an
experimentally and computationally much more challenging task. Firstly, statistically signifi-
cant results demand an ever increasing number of realizations. Secondly, the computational
demand scales enormously with the order of the correlation. The number of partitions in
Eq. (4.12) is given by the Bell number11 [196]. Further the dimension of the N th order
correlation is nN

g for a given spatial grid of ng points. These numbers can be reduced by use
of central moments, which reduces the Bell number as sets of length one do not contribute,
and exploiting the symmetry of the correlation function, which is a fully symmetric tensor
and hence has

(
ng+N−1

N

)
unique elements. Nonetheless, we still had to reduce the number of

points considered in the integral measure (4.24), and consider only every second, third, and
fourth point for N = 6, 8 and 10 respectively.

A comparison of these connected higher-order correlations is shown in Fig. 4.6. For
increasing N deviations occur, which are explained by the finite statistics of the experiment
and the biased estimator Eq. (4.24). Note that while higher-order correlations become
irrelevant for small coherence factors ⟨cos(θr)⟩ ≲ 0.2, they retain a significant contribution
to the full correlation function in the intermediate regime, such that in terms of the free
quasiparticles the system represents a strongly interacting field theory (see Section 4.2.1).
We emphasize that the experimentally measured higher-order cumulants give access to
information about N-particle interactions, within a given basis, beyond perturbation theory,
and do not rely on the smallness of the coupling constants.

The commonly used periodic correlations C(N) are not well suited for the presented
analysis of higher-order correlations. While for Gaussian fluctuations a form of Wick’s
theorem can be recovered by use of the correct factorization relation (4.23), in a non-
Gaussian theory even the second-order correlation C(2) receives contributions of higher-order
connected correlations G(N)

con up to arbitrary order N. The fact that G(N)
con enters in an alternating

series masks the relevance of higher-order corrections, e.g. for the first-order coherence
function (4.21) where in the strongly correlated, intermediate coupling regime long-range
order is restored through a detailed canceling of higher-order connected correlations. This
is in contrast to the Bogoliubov predictions, where the long-range order is connected to the
amplitude of two-point correlations of the relative phase.

11The first few Bell numbers are BN = 2, 15, 203, 4140, 115975, 4213597 for N = 2, 4, . . . 12
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Fig. 4.6 Integral measure M(N) for higher-order correlations N = 6, 8, 10. Th experimental
data is given by the red dots with the errorbars representing the 80% confidence intervals
calculated by using bootstrapping [202]. The theoretical predictions of the SG model for
a large sample size (105 realizations) is given by the blue shaded region, while the green
bars represent the results of the TMF for the experimental sample size. The latter are in
good agreement with the experimental data up to 10th-order correlations. Note, in particular,
that the finite values of the measure for zero tunneling coupling are a result of the finite
experimental sample size and the bias of the estimator M(N) (see text for details). Figure
adapted from [160].

4.4 Relaxation Towards Equilibrium

So far we have discussed data that was prepared by very slow cooling, which was fully
equilibrated and could be described by the equilibrium predictions of the SG model. We now
turn our attention for the remainder of this Chapter to the dynamics during condensation and
the near-equilibrium regime of CQW.

Calculating the non-equilibrium evolution of the SG model is a highly non-trivial task
and we can no longer rely on the TMF of Section 2.3.3 which is only applicable in thermal
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equilibrium. Further, while the SG model is expected to be, to some degree12, a sensible
approximation of the non-equilibrium physics of CQW, e.g. following a quench in the
parameters [84, 203], the evolution during the condensation is dominated, at least for some
initial time, by the dynamical equations of the fundamental fields ψ̂L,R(z). The SGPE
introduced in Section 2.3.2 allows us to simulate the condensation process of CQW, and
hence enables us to describe the approach of thermal equilibrium and the emergence of the
low-energy effective description of the system.

4.4.1 Fast Cooling and Non-Thermal States of CQW

Experimentally, the need for a description of the system beyond thermal equilibrium is
demonstrated by changing the cooling speed with which the system is prepared. We compare
the results of the last section with data, produced by increasing the cooling speed by a factor
of 1013.

The FDFs allow us to quantify the combined deviations of the non-thermal state. In
Fig. 4.7 we compare for the slow and fast cooled data the FDFs of the relative phase difference
φ(z, z′) for a fixed distance z = −z′ = 20 µm, chosen symmetrically around the center of
the trap. In accordance with the analysis of higher-order correlations in Section 4.3 we
find good accordance between the slow cooled data and the equilibrium distribution of the
SG model (red lines). In particular, for strong phase locking between the two condensates
(⟨cos(θr)⟩ = 0.92), as anticipated from the validity of the Wick decomposition, the distribution
is Gaussian. For the fast cooled data, however, clear differences are visible. For small
tunneling coupling the distribution is broadened and has a lower probability of small phase
fluctuations. With increasing tunneling coupling, clear peaks in the FDF emerge, located
at ±2π, while the central peak of the distribution shows reasonable agreement with the
equilibrium predictions. Note that only the FDFs of the unbound phase differences are
capable of distinguishing between these subtle differences, since the circular distributions,
as discussed in Section 4.2.2, fold these side-peaks back into the interval [−π, π), onto the
central peak.

The appearance of well separated side-peaks in the FDFs shows that the phase field
exhibits a well defined rotation, multiples of 2π. Therefore phase fluctuations do not simply
increase, leading to an overall broadening of the distribution, but instead exhibit localized
twists. We already encountered such a twist in the soliton solution of the SG model (see
Section 2.2.2). Indeed by comparing phase profiles contributing to the central and side
peak of the distribution, we find such solitonic excitations to be present in the system (see

12Far from equilibrium coupling of the density and phase fluctuations can in general no longer be neglected,
driving the system beyond the SG physics. We will discuss these effects in more detail in Chapters 5 & 6

13The evaporation rates for the slow cooling in Section 4.3 amount to a few percent per 10 ms at the end of
the cooling ramp, and a few 10% for the fast cooled data. See [160]
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Fig. 4.7 Comparison of FDFs for the unbound phase differences φ(z, z′) for different cooling
speeds in the experiment. The FDF for the slow cooled data (left column) discussed in
Section 4.3 are in good agreement with the theoretical predictions of the SG model (red
lines). The inset for the largest tunneling coupling clearly shows the Gaussian distribution
in accordance with the observed factorization of higher-order correlations. The FDF is
displayed for z = −z′ = 20 µm. Increasing the cooling speed (right column) the system shows
clear deviations from the SG equilibrium model. For higher tunneling couplings pronounced
peaks at ±2π emerge. For ⟨cos(θr)⟩ = 0.94 the inset reveals reasonable agreement of the
central peak to the thermal equilibrium results. Figure adapted from [160].

Fig. 4.8). While these isolated solitons cannot be clearly distinguished from other fluctuations
for smaller tunneling couplings, this strongly suggests that the observed broadening of the
distribution is connected to additional solitons excited by the fast cooling of the gas.

The excitation of topological excitations during the crossing of a phase transition in-
evitably brings us back to the discussed Kibble-Zurek mechanism. The nucleation of solitons
is a direct consequence of the order parameter locally choosing one of the degenerate vacuum
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Fig. 4.8 Interference patterns and SG solitons. Studying individual interference patterns
(phase profiles) for the fast cooled data reveals solitons as the reason for the side peaks in the
FDFs. These defects are clearly visible in the interference patterns and the extracted phase
profiles. Figure adapted from [160].

states of the SG Hamiltonian. Causality prevents spatially dislocated parts of the system to
adjust to a single value for the order parameter, and at the interface between such uncorrelated
vacuum states topological defects are created. The observed side-peaks are therefore a direct
visualization of the degenerate minima of the SG Hamiltonian, smoothly connected through
solitonic excitations.

4.4.2 Solitons and Topological Ordering

Solitons constitute highly non-linear field configurations in terms of these quasiparticle
excitations, defined by the quadratic mTLL Hamiltonian. Therefore their presence leads to
significant connected higher-order correlations G(N)

con, which can already be inferred by the
distinctly non-Gaussian shape of the FDF. This shows that the Hamiltonian is not diagonal
within this quasiparticle basis and suggests a highly interacting system, whereas in the soliton
basis the only change due to their interactions is an additional shift of their coordinates [75].

We therefore extend the study of higher-order correlations by explicitly separating the
influence of statistically independent, non-interacting solitons to the phase field θr(z). Similar
to the RDM in Section 3.2.1, the field in this random soliton model (RSM) is defined as

θr(z) = θ̃r(z) +
Ns∑
i=1

ϕs(z − zi
s) . (4.25)

Here zi
s is the position of a soliton, given by the probability distribution Ps(z). The remaining

phase fluctuations θ̃r around the classical solitons also include the breather solutions, which
cannot be clearly separated from the fluctuating phase field. Expectation values of phase
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correlation functions (4.10) can be expanded as

G(N)(z, z′) =
Ns∑

i=−Ns

piG
(N)(z, z′)|Q=i . (4.26)

The topological charge Q measures the difference of kink and antikink solutions in the volume
defined by z, z′, and pi is the probability of such a state in the ensemble. The decomposition
in connected and disconnected correlation functions within each topological sector proceeds
as outlined in the last sections. The N-th order connected correlation thereby separates into
an independent sum of N-th order connected correlations for the multi-soliton state and the
remaining phase fluctuations14.

The main contribution of solitonic excitations to G(N)
con stems from the finite phase dif-

ference for large separations |ϕs(z) − ϕs(z′)| = 2π for |z − z′| → ∞. The finite width of the
solitons ∼ lJ only has minor contributions. In the limit lJ → 0 the full distribution function
of phase differences takes the form of a mixture distribution

F(φ(z, z′)) =
Ns∑

i=−Ns

pi(z, z′)Pi(φ̃(z, z′), µi) , (4.27)

given by the weighted sum of probability distributions Pi(φ̃, µi), defined within each topo-
logical sector. These only depend on the remaining phase fluctuations φ̃ around the solitons,
while each distribution is shifted to a mean value µi = 2πi due to the finite value of the topo-
logical charge Q. This leads to the characteristic multi-peak structure of the full distribution
function as observed in Fig. 4.7. The weights are the probability pi(z, z′) of states with a
topological charge Q within the ensemble15, fulfilling

∑
i pi(z, z′) = 1. Therefore, excitation

of soliton reduces the probability p0 and decreases the central peak of the distribution. This
suggests, while not visible in the side peaks of the broad distribution, that the weakly tunnel
coupled state ⟨cos(θr)⟩ = 0.5 has a large number of additional, non-thermal solitons.

Of particular interest is the strong coupling limit (J ≫ 1), where solitons and phononic
fluctuations are well separated. While for a thermal state the probability of exciting a soliton
approaches zero, the same is in general not true away from thermal equilibrium. Solitonic
excitations may prevail for very long times, as remnants of previous far-from equilibrium
dynamics of the system. During the relaxation, the system near thermal equilibrium is
described by Eq. (4.27) with Gaussian distributions Pi(φ̃, µi) (see Fig. 4.8). Higher-order
connected correlations within this model are calculated from Eq. (4.15) and the central

14As for statistically independent random variables X and Y the joint cumulants vanish, i.e.
〈
XnYm〉

c = 0
15Alternatively one can label the states by the soliton number in the volume rather than the topological charge

Q. In this case each distribution Pi≥1 itself is a mixture distribution of states |Q|, |Q| − 2, · · · − |Q| + 2,−|Q|
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moments for the Gaussian mixture distribution, given by

⟨(φ̃ − µ) j⟩ =

Ns∑
i=−Ns

j/2∑
k=0

j!
2kk!( j − 2k)!

(µi − µ) j−2k pi σ
2k
i . (4.28)

Here σi =
〈
φ̃2〉|Q=i is the phase variance in a topological sector. For an equal probability

pi = p−i for kink and antikink solutions the mean value µ vanishes.

4.4.3 Condensation within the SGPE Formalism

To gain deeper understanding of the influence of solitons on higher-order correlations and
determine the validity and limitations of the above RSM we study the condensation of
CQW within the SGPE framework. The evolution of the system is described in terms of
the fundamental fields ψ̂L,R(z) which evolve according to the coupled Lagevin equations (c.f.
Eq. (2.51))

iℏ∂t

ψL

ψR

 = [1 − iγ(z, t)]
H(|ψL|

2) −ℏJ
−ℏJ H(|ψR|

2)

 ψL

ψR

 + ηL

ηR

 , (4.29)

where H(|ψ|) defines the unitary evolution of a single condensate according to the GPE
(2.29) or NPSE (2.33). We take a single parameter γ = γL,R, independent of space and time,
corresponding to equal scattering rates between the thermal cloud and each condensate. The
variance of the complex Gaussian white noise ηL,R is given by Eq. (2.52), for which Eq. (4.29)
evolves towards the stationary thermal state.

While the random noise η has Gaussian statistics, the unitary evolution is defined by
the exact non-linear equations, and hence the system in thermal equilibrium exhibits non-
Gaussian fluctuations of the relative phase in accordance with the predictions of the SG model
(see Fig. 4.9a). The remaining fields, i.e. the relative density ρr and the common degrees of
freedom, in accordance with theoretical assumptions show Gaussian statistics for any value
of the tunneling coupling. This confirms the approximations which we a priori assumed in
Sections 2.2.1 & 4.3 to arrive at the SG model as the low-energy effective theory. Further, the
SGPE extends beyond the TMF as it is applicable for inhomogeneous condensates. The data
given corresponds to typical parameters of [160]. We find that the system is well described
within the LDA16. In particular, the alterations due to the inhomogeneity are small for the
central part of the cloud considered in the analysis of the experimental data, which explains
the observed accordance with the homogeneous SG model. Near the edges of the cloud
differences occur, due to the increasing role of fluctuations for small densities.

16This includes a spatial dependence on the linear tunneling coupling J between the two condensates.
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Fig. 4.9 Approach of thermal equilibrium during SGPE evolution. a Full distribution function
of the relative phase difference for the final equilibrium state reached by the SGPE. The
parameters for the evolution are N = 5000 atoms per well, λT = 15 µm, and J = 1, 22 Hz
leading to ⟨cos(θr)⟩ = 0.49, 0.91. The red line is the predictions of the equilibrium SG model
calculated using the TMF, and is in good agreement to the full non-linear model of two
CQW. b SGPE evolution and approach of thermal equilibrium. The inset shows the time
evolution of the FDF (with the probability density depicted in color). For strong tunneling
coupling a pronounced mixture distribution emerges and slows down the approach to thermal
equilibrium. The FDF for three different times are depicted in the main figures. For low
tunneling coupling a clear overpopulation around φ = 2π remains visible signaling the
presence of non-thermal solitons.

The time evolution during the relaxation of the system is presented in Fig. 4.9b for two
values of the phase locking ⟨cos(θr)⟩ = 0.5 (0.9), chosen in the intermediate (strong) coupling
regime. The thermal coherence length λT = 15 µm was chosen within the experimental
uncertainty. We consider the system initially in the unbroken symmetry phase, obtained
through evolution of the SGPE for µ < 0 [153]. At t = 0 we instantaneously quench the
chemical potential to its final value, determined through imaginary time evolution of the
coupled system. The slight shift of µ with temperature is negligible for our parameters. The
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system is subsequently evolved with Eq. (4.29) up to t = 2 s, for which we found convergence
to the final equilibrium state for any parameter λT and lJ.

For strong tunneling coupling the FDF relaxes through soliton decay from a pronounced
mixture distribution towards the thermal equilibrium result. The high probability of exciting
a soliton at the onset of condensation is due to the dependence of q on the atomic density.
While the condensate forms, q rises. Therefore, at early times, excitation of a soliton is
energetically easy as the cosine potential in the SG Hamiltonian is very shallow. Once the
amplified scattering into the condensate leads to a quick rise of the density, these solitons
become frozen because of the increasing depth of the cosine potential. After the condensate
has formed these solitons represent very stable field configurations connecting the degenerate
minima of the SG Hamiltonian. Their decay happens mostly near the edges of the condensate,
where large density and phase fluctuations drive the system beyond the SG model and solitons
are no longer topologically protected.

When the tunneling coupling is lowered a clear separation of the side peaks is no longer
possible due to the increasing width of solitons (∼ lJ) and of the FDF (due to the increased
role of thermal fluctuations). Nonetheless, a clear broadening of the distribution and a
decrease of the central peak are clearly visible and, in accordance with the experimental
observations, show the increase of phase fluctuations away from equilibrium.

Notably, the relaxation times for strong and weak phase locking are significantly differ-
ent, with the latter showing comparatively fast relaxation towards its thermal equilibrium
state. While it is plausible, that the increased role of thermal fluctuations in the weakly
coupled system leads to a faster decay of solitons and consequently a faster relaxation time,
quantitative estimates of this time scale are hindered by the non-linearity of the problem
and the immense parameter space. The latter, while in equilibrium approximately reduced
to the parameter q, shows explicit dependence on all scales n1D, T , and J, due to the noise
term η in the SGPE evolution, which only depends on the temperature T . Further, although
the final equilibrium state of the SGPE evolution is independent of the parameter γ, the
dynamics during condensation show a highly non-linear dependence. This is to be expected,
as γ determines the growth and damping of the evolution, and therefore contributes to both
defect creation and decay [152]. While the atom number growth still allows for a scaling of
time with γ [119], the relative phase fluctuations relax on a different time scale due to the
nucleation of topological excitations. This leads to additional explicit dependences on the
initial state prior to condensation, the rate at which the transition to the quasi-condensate
regime is crossed, and the parameter γ.

The approach of thermal equilibrium for the strongly coupled system is drastically slowed
down by the high probability of exciting a soliton during the initial growth of the condensate.
Note that this effect is even more pronounced in the homogeneous system, as solitons are
unable to decay near the edges of the cloud where they are no longer topologically protected.
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In accordance with the experimental observations, prominent side peaks emerge in the
FDFs for faster condensation as an increasing number solitons is created during the onset
of condensation. However, for a quantitative comparison of the condensation dynamics to
the experiment, additional data, such as the initial temperature and the experimental rate of
condensation, would be required to match the condensate growth in the SGPE evolution to
the experimental observations.

Here it shall suffice, since we are more interested in the influences caused by the presence
of solitons than their exact number counting statistics, to choose a constant value γ = 0.05,
keeping in mind that the time in the SGPE evolution does not necessarily correspond to the
physical time of the experiment. Nonetheless, interactions between solitons and thermal
fluctuations are accurately described in the SGPE formalism, and we can ask the question
to what extent the non-equilibrium state can be described by an access of statistically
independent, non-thermal solitons.

For the topological ordering of field configurations, we use a soliton detection algorithm.
Therein, possible solitons are first detected by scanning the phase profiles for phase differ-
ences |φ(z, z′)| ≥ 1.8π for increasing distances |z − z′|, where the threshold for a possible
soliton is slightly lowered from its theoretical value 2π because of thermal fluctuations of
the phase field. If for given values z, z′ the threshold is exceeded the local region is labeled
to contain a possible soliton, and the remainder of the phase profile is searched accordingly.
Thereafter, for each region containing a possible soliton we compare the residuals of a local
least-square fit of the full soliton solution (2.47) within this region to a fit using a quadratic
polynomial. If the former leads to smaller residuals, the state is labeled a soliton, otherwise
the state is considered non-conclusive. Phase profiles can subsequently be ordered into the
topological sectors. This gives access to the full counting statistics of solitons, their width,
topological charge, and spatial distribution. In case of strong tunneling coupling the detection
algorithm gives excellent results, due to the separation of scales for the solitonic and thermal
fluctuations, while for decreasing phase locking between the condensates, the detection of
solitons becomes less clear, and only well separated solitons can be detected.

Given the full counting statistics of solitons we can test the validity of the RSM through
comparison to the out-off-equilibrium results of the SGPE evolution. In Fig. 4.10 we show
the FDFs calculated within the RSM and directly from the numerical data, for an early
time t = 180 ms. In the RSM the results of the soliton detection algorithm were used to
sample field configurations according to Eq. (4.25), where the remaining fluctuations θ̃r were
sampled from the equilibrium distribution using the TMF. The good agreement between
the two models reveals, that fluctuations around the solitons thermalize on a much more
rapid time scale. Most notably, for the strongly coupled system, this shows that fluctuations
around the solitons are already Gaussian and hence well described by a set of non-interacting
quasiparticles. Solitons can therefore be interpreted as false vacua of the phononic excitations
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Fig. 4.10 Non-equilibrium FDFs in the random soliton model. Comparison of the SGPE data
for t = 180 ms to the predictions of the RSM (4.25) shows good agreement. The RSM was
calculated imposing additional solitons in a thermal background sampled from the TMF. This
shows that the system relaxes on two timescales, while non-thermal solitons are still present,
fluctuations around these defects have already thermalized on a much shorter timescale.
The slight differences for low tunneling coupling are attributed to the problem of accurately
detecting solitons in the increasingly fluctuating background.

[204]. The deviations in the weakly coupled regime are attributed to the increase in non-
conclusive fits in the detection algorithm, which makes a clear distinction between solitonic
and thermal fluctuations impossible. Nonetheless, the RSM is in reasonable agreement with
the non-equilibrium distribution, which shows that clearly separable solitons are the main
cause of the broadened FDF.

4.4.4 Higher-Order Correlations Out-Of-Equilibrium

Based on the analysis of the last Section, we can ask the question if the experimental non-
equilibrium data can be described by an excess of non-interacting solitons and otherwise
thermal fluctuations of the phase. Since for the experimental data, excitation of multiple
solitons is highly suppressed (see Fig. 4.7) we limit our analysis to the zero- and one-soliton
sector and vary the probability ps for a soliton within the ensemble. We calculate the measure
M(4) for the RSM using phase profiles determined by stochastic sampling from the TMF,
adding randomly distributed solitons according to Eq. (4.25).

In the limiting case of a mixture distribution (4.27), analytical insight can be gained by
calculating the local measure M(4)(z, z′) in the one-soliton sector (see Eq. (4.24) omitting the
integration and absolute values). The most striking feature therein is, that dependent on the
relative amplitude for the full and connected correlation of the field θ̃r, the local measure in
the RSM has a maximum at a finite soliton probability ps. This leads, in certain regimes, to a
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Fig. 4.11 Influence of non-thermal solitons on the integral measure M(4). Comparison of
the equilibrium predictions for λT = 15 µm to the results of the RSM as a function of
the coherence factor and the soliton probability ps within the ensemble. The difference
M(4)

RSM − M(4)
thermal is depicted in color. Within the black contour line the measure is negative,

i.e. additional soliton lower the relevance of higher-order correlations. a Difference for the
same coherence factor in thermal equilibrium. b Difference for the same coherence factor
(including the influence of solitons in the RSM). Note, in particular, that the white area
is physically undefined as solitons lead to an upper bound of the coherence factor and no
numerical artifact.

counterintuitive decrease of higher-order connected correlations due to additional fluctuations
caused by non-thermal solitons.

This effect is also visible in the integral measure Fig. 4.11a, where we compare the results
of the full RSM to the thermal predictions. A negative value corresponds to a lower value
for M(4) caused by non-thermal solitons. For a comparison to the experiment it is important
to bare in mind, that solitons also decrease the coherence factor ⟨cos(θr)⟩. Since this is the
determining, independently measured factor in the experiment, we also compare in Fig. 4.11b
the results for the same value of ⟨cos(θr)⟩, calculated before and after solitons have been
imposed, rather than the same value of q in thermal equilibrium. Note especially, that the
white area for large coupling and soliton numbers is no numerical artifact, but is physically
not defined as the large number of solitons truly limits the phase locking between the two
condensates.

A fit of the RSM predictions to the experimental non-equilibrium data shows excellent
agreement (see Fig. 4.12). We find two distinct branches for the soliton probability within the
intermediately coupled regime ⟨cos(θr)⟩ ≲ 0.8. The soliton probability is either increasing
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Fig. 4.12 Experimental results for non-equilibrium correlations. The non-equilibrium experi-
mental data obtained by fast cooling (blue diamonds) clearly deviates from the equilibrium
experimental data (red dots) and TMF predictions (black dashed line). Fitting the soliton
probability in the RSM through comparison of M(4) for the fast cooled experimental data we
find good agreement for all values of the coherence factor (green solid line). The thermal
fluctuations used in the RSM are given by the black dashed line. The determined soliton
probability is depicted in the right panel. We find two distinct branches, with increasing and
decreasing soliton probability, for the intermediately phase locked data, where the measure
M(4) is lowered as compared to the equilibrium values. In the strongly phase locked regime
only a low soliton probability can explain the observed increase in of the connected correla-
tions. Therefore, the soliton probability decreases with increasing phase locking. The black
line is a free fit to the determined soliton probabilities, extrapolated with a constant value to
⟨cos(θr)⟩ = 0, used for the line in the left panel (green solid line). The errors represent the
standard deviation.

or decreasing with ⟨cos(θr)⟩, but both branches show a regular behavior. Within this regime
the connected correlation function is lowered as compared to the equilibrium result. At the
upper most value (⟨cos(θr)⟩ ≈ 0.8) the SG model in thermal equilibrium is almost maximally
correlated and any additional fluctuations in the RSM lead to a decrease of the connected
correlation function (c.f. Fig. 4.11a). Above this point the situation reverses, and we find an
increase of M(4) as compared to equilibrium. Notably, this enormous increase from practically
zero to almost one is caused only by a very low probability of solitons and is the result of the
narrow Gaussian distribution of thermal fluctuations. This further allows us to determine the
preferred branch of the soliton probability, which thereby shows a continuous decrease for an
increasing phase locking. This shows the precision and sensitivity higher-order correlations
present for the study of many-body systems. Detailed studies of the condensation process
are needed to determine the observed difference between the experimental and SGPE results
for the soliton probability in the strongly coupled regime. Apart from the discussed need for
detailed experimental parameters, comparison to three-dimensional SGPE simulations of the
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full double-well potential may shed light on the influence of radially excited states during the
condensation process.

4.5 Summary

In this Chapter we presented a detailed calculation of the factorization properties of higher
order correlations in the SG model. This allowed us to determine the validity of the SG
model as the low-energy effective field theory describing the system of two linearly coupled
quantum wires in and close-to thermal equilibrium. In certain regimes we found complete
factorization of higher-order correlations and therefore the exact solution to the quantum-
many body problem solely through the experimental measurement and analysis. This revealed
in particular that a large number of possibly irrelevant operators indeed renormalize to zero
in the low-energy description and the system in thermal equilibrium approaches the TLL
fixed point.

As a consequence of the finite domain of the phase, we argued that a correction of the
phase field, in close analogy to the extended zone scheme in the path integral, needs to
be performed in order to accurately determine the factorization properties of higher-order
correlations. After discussing the general connection to quasiparticle interactions we gave ex-
plicit formulas for the factorization into connected and disconnected correlations. We further
connected the commonly used periodic correlations and their higher-order generalizations
C(N) through a cumulant expansion to the fundamental correlations of the phase field. This
explicitly showed, that quasiparticle interactions influence these correlations already at first
order in a non-trivial way, which makes them less suited to the study of non-Gaussian field
theories. In case of a Gaussian field theory this expansion allowed us to determine the correct
form of Wick’s theorem for periodic correlations.

Comparing experimentally measured higher-order correlations in thermal equilibrium
to predictions of the SG model we were able to determine the validity of the low-energy
description for connected correlations up to 10th order. The equilibrium results of the SG
model were obtained by sampling of individual field configurations from the Îto equation
of the TMF. This non-perturbative method facilitates the fast calculation of higher-order
correlations through direct sampling from the equilibrium distribution. The method presented
is an important step towards the solution of complex many-body systems by experiment
(see also chapter 7) and hold large promise in the unbiased and unambiguous verification of
future quantum simulators.

The phase correction further allowed us to define the unbound full distribution functions
of phase differences, which unlike the wrapped distributions for the bound phase variable,
reveal the connection of distinct vacuum states of the SG model through solitonic excitations.
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By changing the speed at which the condensates are cooled into the double-well, we found
long lived non-thermal states. The FDFs revealed an excess of non-thermal solitons, which
are remnants of the fast condensation process.

Simulation of the cooling process within the SGPE framework confirmed the excitation
of these topological defects during the condensation of the system. During the rapid growth
of the condensate, the cosine potential in the SG Hamiltonian rises quickly, freezing these
excitations in the phase. Their long life time lead to a separation of scales, and fluctuations
around these defects are found to decouple and thermalize on a much shorter time scale.
Therefore, in the strongly coupled regime where solitons and phonons are clearly separated,
solitons can be interpreted as false vacuum states for the remaining phase fluctuations.
We found good accordance of the FDFs between the SGPE and a model of randomly
distributed solitons in a thermal background, which enabled us to explain the experimentally
observed non-equilibrium higher-order correlations for any value of the coupling through
this random soliton model. As a striking result we confirmed the experimentally observed
decrease (increase) of the fourth-order connected correlation function within the regime of
intermediate (strong) phase locking for the non-equilibrium SG model.



Chapter 5

Prethermalization and Generalized
Gibbs Ensemble

The connection between the microscopic dynamics of an isolated quantum many-body
system and the foundation and emergence of a statistical mechanics is a fundamental open
problem. Of particular interest are systems, that during their course of evolution approach
an intermediate long-lived state and do not simply relax to thermal equilibrium on a single
timescale. Therein, an important role is played by integrable models, where a large number
of locally conserved quantities strongly inhibits the thermalization of the system. Instead of
relaxing to thermal equilibrium, described by the usual thermodynamic ensembles, it was
proposed that these systems relax to a so called Generalized Gibbs Ensemble (GGE) [30].
Based on the fundamental principle of entropy maximization [9, 10] GGEs encompass a
large number of commonly used statistical ensembles, including the thermodynamic Gibbs
or diagonal ensembles, and allow for the incorporation of the restriction inflicted by non-
trivial conserved quantities on the dynamics of the system. This enables a clear definition
of emergent statistical descriptions as a form of statistical inference based on the level of
precision.

In this chapter we investigate the emergence of such a Generalized Gibbs state during
the relaxation of two decoupled one-dimensional Bose gases1. By rapidly splitting a single
condensate in two halves the system is quenched in a far-from-equilibrium initial state.
This leads to an initially almost perfectly correlated phase between the two systems, whose
evolution is probed through the full first-order coherence function C(1)(z, z′). In the ensuing
evolution the emergence of a steady state appears locally, traversing the system in a light
cone like fashion [14, 39]. This local spread of correlations is connected to the dephasing

1This chapter is based on and contains parts of [15]. I contributed to the theoretical calculations, interpre-
tation of the theoretical results and experimental data, performed numerical simulations, and contributed to
writing of the manuscript.
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of eigenstates in the integrable effective field theory, the TLL model, which describes the
relative degrees of freedom between the two condensates. Based on a model of local binomial
splitting we calculate the time evolution within the harmonic theory for the homogeneous
and harmonically trapped system. While the former relaxes to a prethermalized state, well
described by an effective temperature defined by the splitting process, we find for the latter
that off-diagonal quasiparticle correlations prevent the system from reaching a steady state.
These off-diagonal correlations, through a second light cone-like dephasing, are found to
contribute to the phase correlation function on the same order as the diagonal quasiparticle
occupations. In contrast, we find in the experiment relaxation of the system to a steady state
determined by the conserved quantities of the integrable model. By changing the splitting
protocol, this quasi-steady state can be tuned from a prethermalized state, described by a
single temperature, to a genuine GGE, exhibiting at least two distinct temperatures. In the
last section we discuss the apparent problems of the binomial splitting model, and propose
a solution based on emergent conserved quantities in a finite temperature system, studied
within the SGPE framework. Finally we comment on the challenges for a self consistent
numerical simulation of the exact dynamics during the splitting of the gas, which is essential
for a detailed understanding of the emergence of the observed GGE.

5.1 From unitary dynamics to statistical mechanics

Relaxation to a stationary, possibly thermal, state of closed quantum systems is to date still
an open and interesting question [32]. The unitary time evolution and the discreteness of
states of these systems lead to the conservation of the overlap-coefficients Cm of the initial
state with the eigenstates of the system. The long-time average of any observable Ô can be
calculated by considering the trivial time evolution of the eigenstates |m⟩. By expanding the
initial state wave function in the eigenstate basis |ψ(t)⟩ =

∑
m Cme−iEmt/ℏ|m⟩, this leads to

⟨Ô⟩∞ = lim
T→∞

1
T

∫
dt ⟨ψ(t)|Ô|ψ(t)⟩ =

∑
m

|Cm|
2Omm , (5.1)

where we, for simplicity, assumed that the eigenstates are non-degenerate, such that off-
diagonal contributions vanish in Eq. (5.1) in the long time average. The long time average
Eq. (5.1) defines the “diagonal ensemble” ⟨Ô⟩∞ = Tr[Ôρdiag], where ρdiag :=

∑
m Pmρ0Pm is

determined by the initial state density matrix ρ0 = |ψ⟩⟨ψ| and the projection operators onto
the eigenstates Pm = |m⟩⟨m|. Note that if a stationary state exists, which we will assume
henceforth, its value is given by the diagonal ensemble. Nevertheless ρdiag can hardly be
thought of as a statistical description of the system, since all the information of the initial state
is encoded in the overlap-coefficients. One fundamental assumption of statistical mechanics
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is that the equilibrium state of the system can be described by only a few thermodynamic
variables such as e.g. the mean energy (and particle number). Equilibrium properties of such
systems are well described by the canonical (or grand canonical) ensemble. This poses the
question, if and how the relaxed state of a closed quantum systems can ever be described
statistically.

As discussed in chapter 1, ETH explains the emergence of the microcanonical ensemble
from Eq. (5.1) through dephasing of eigenstates and the assumption that the matrix elements
Omm are restricted and approximately constant over an energy window ∆E [18]. These
assumptions, however, are commonly violated in integrable systems which leads to the break-
down of the ETH [19]. Extending to these systems, information theory provides a powerful
framework for the analysis of emergent statistical phenomena from the microscopic laws
governing the dynamics of the system. In particular, the principle of entropy maximization
[205, 9, 10] interconnects both of these descriptions by viewing statistical physics as a form
of statistical inference dependent on the available information about the system [9]. Al-
though to date no conclusive proof of its validity exists, the approach of sufficiently complex
systems to such a maximum entropy state is deeply rooted in our everyday experiences
and constitutes one of the fundamental assumptions of statistical physics. One of the most
promising approaches for a generalized statistical description, was proposed by Rigol et
al. [30] and termed “generalized Gibbs ensemble” (GGE). Maximization of the entropy
S = Tr[ρLn (1/ρ)] under the constraints inflicted by the integrals of motion leads to the
probability distribution [205, 9, 10]

ρ̂ = Z−1 e−
∑

m λmIm . (5.2)

Here {Im} is a full set of integrals of motion and the partition function Z = Tr[e−
∑

m λmIm] nor-
malizes the density matrix. The Lagrange multipliers (chemical potentials) λm are determined
by the maximization of the entropy under the condition that the average of the respective
conserved quantities are set to their correct initial value ⟨Im⟩ = −Z−1∂λmZ. One can readily
see, that the GGE encompasses the above mentioned ensembles. If the the mean energy is the
only conserved quantity, Eq. (5.2) reduces to the well known canonical, or Gibbs, ensemble,
leaving as the only Lagrange multiplier the inverse temperature β. On the other hand, if the
projectors Pm = |m⟩⟨m| are chosen as the integrals of motion, the Lagrange multipliers given
by the constraints become λm = −Ln

(
|Cm|

2
)
, and the GGE resembles the diagonal ensemble.

These examples alone show that the GGE is formally capable of incorporating the statistical
descriptions from only a few conserved quantities to the “quasi-statistical” description given
by Eq. (5.1), for which the sum over m has the same dimension as the Hilbert space. Which
form of the GGE is applicable certainly depends on the system in question [8].
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5.2 Coherent Splitting as a Quantum Quench

Coherently split condensates offer an excellent starting point to investigate relaxation and
equilibration in closed quantum systems. This far-from equilibrium state can be well isolated
and reliably (re)produced in cold atom experiments and therefore renders the study of
dynamics of the system possible for vastly different time scales, shedding light on the
fundamental relaxation dynamics of isolated many-body systems.

The initial system is a 1D Bose gas in thermal equilibrium at a temperature T . The
system is split along one of the radial directions (at a time t = −τs) by a smooth deformation
of the harmonic confinement into a dressed-state DW potential (see [38] and references
therein). The decoupling of the two superfluids takes place on a time scale τd ≪ τs. For
energies E < ℏτ−1

d correlations along the longitudinal direction can be neglected and the
splitting process is analogue to a local beam splitter in optics. This constitutes a rapid change
of the systems parameters and can therefore be considered as a quantum quench of the
system leading to quasiparticle creation. At the end of the splitting ramp (t = 0), the two
superfluids are completely decoupled and the subsequent evolution of the system is described
by Eq. (2.38) for vanishing tunneling coupling J.

In the following we discuss the expected time-evolution and basic theoretical framework
for a generic system from the initial to the fully equilibrated state. The relaxation dynamics
for a homogeneous and harmonically trapped system are discussed in detail in the subsequent
sections Sections 5.3 & 5.4 respectively.

Initial State

The initial state can be well defined in the limit of a splitting ramp which is fast as compared
to the longitudinal dynamics of the system. Herein the initial thermal fluctuations are
completely inherited by the symmetric degrees of freedom, while the probability of each of
the N atoms to go into either of the two wells is random and uncorrelated. The probability of
finding NL (NR) atoms in the left (right) well is given by a binomial distribution

P(NL; N, pL) =
(

N
NL

)
pNL

L (1 − pL)NR , (5.3)

where pL is the probability of an atom being found in the left well and NR = N − NL.
For an evenly split condensate (pL = 1/2) the variance of the atom number difference
∆N = (NL − NR)/2 is therefore ⟨∆N2⟩ = N/4. In a coarse grained model [135] we can write,

〈
δρ̂r(z)δρ̂r(z′)

〉
= ξn(z)

√
ρ0(z)ρ0(z′)

2
δ(z − z′) , (5.4)
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due to the absence of correlations in the longitudinal direction. Here ρ0 is the mean density
in each of the two condensates. Due to the build up of correlations during a finite splitting,
we further included a possible number squeezing ξn(z) locally reducing the fluctuations in
number difference below that of a coherent state [206, 207]. In the limit τs → 0 for an
instantaneous quench of the system we recover the continuous formulation of the above
binomial splitting model with ξn(z) ≡ 1. As a further consequence of the fast splitting as
compared to the longitudinal dynamics of the system, the initial phase profile remains rather
unchanged during the splitting process and is imprinted onto both condensates [38]. The
relative phase profile θ̂r(z) is therefore close to zero with the variance determined by the
minimum uncertainty state

〈
θ̂r(z)θ̂r(z′)

〉
= ξ−1

n (z)
1

2
√
ρ0(z)ρ0(z′)

δ(z − z′) . (5.5)

For sufficiently high densities in a coarse grained model, the binomial distribution is well
approximated by a Gaussian distribution and the above variances completely define the
system posterior to the decoupling. The initial state in the relative degrees of freedom is a
highly squeezed state, with a huge excess of fluctuations in the relative density and highly
suppressed relative phase fluctuations.

Observables

The above constitutes the simplest model of the splitting process and completely eliminates
the dependence on the radial direction. We discuss the validity of this approximations in
Section 5.6 in comparison to experimental measurements. Considering for now the binomial
splitting, we are able to describe the system, analytically as well as numerically, within the
framework of a single or two completely decoupled one-dimensional Bose gases. As stated
above, due to the central limit theorem, the initial state has insignificant to no connected
higher-order correlations and therefore remains Gaussian at all times. Hence, we are able to
analyze the system by use of the simpler periodic correlation functions Eq. (4.18), which for
Gaussian fluctuations are determined by the phase variances ⟨θ̂r(z, t)θ̂r(z′, t)⟩. By use of the
first-order coherence function

C(z, z′, t) =
〈

cos
(
θ̂r(z, t) − θ̂r(z′, t)

) 〉
= e−

1
2

〈
θ̂r(z,t)−θ̂r(z′,t)

〉
, (5.6)

we simply circumvent the need to correct the phase profile for unphysical jumps across the
boundary. We will confirm this approximation later on, numerically as well as experimentally,
by analyzing the factorization properties of higher-order correlations.
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Within the harmonic approach we can readily calculate the time-dependent variance of
the phase difference ∆θ̂(z, z′, t) = θ̂r(z, t) − θ̂r(z′, t), which for a general state is given by〈
∆θ̂(z, z′, t)2〉 = (5.7)

1

2
√
ρ0(z)ρ0(z′)

[∑
m=1

B1
m,m(z, z′)

(
2⟨b†mbm⟩ + 1

)
−

(
e−2iωmt B2

m,m(z, z′) ⟨bmbm⟩ + H.c.
)

+
∑
n=2

n−1∑
k=1

k,(n−k)

e−iδω−k,(n−k)t B1
k,(n−k)(z, z

′) ⟨b†kbn−k⟩ − e−iδω+k,(n−k)t B2
k,(n−k)(z, z

′) ⟨bkbn−k⟩ + H.c.
]
.

The first sum represents the diagonal and the latter the off-diagonal contributions of the
matrices

B1
n,m(z, z′) = F∗n(z, z′)Fm(z, z′) (5.8)

B2
n,m(z, z′) = Fn(z, z′)Fm(z, z′) , (5.9)

where Fn(z, z′) := f −n (z) − f −n (z′). Both matrices are symmetric under the exchange of the
spatial coordinates z, z′. Additionally B1

n,m is hermitian and B2
n,m is symmetric. Based on

these properties, the calculations are greatly simplified once a specific geometry (i.e. external
potential) of the system is chosen. Further we define the frequency sum and differences
as δω±k,(n−k) = ωn−k ± ωk, emergent with the off-diagonal elements of the B matrices. We
explicitly separated these in Eq. (5.7) as they are often neglected in the literature [208], which
is in general not justified for a generic far-from equilibrium state.

Quasi-particle creation and GGE for weakly interacting Bose gases

In order to introduce physical meaning to the time evolution described by Eq. (5.7) we need
to calculate the initial conditions in terms of the quasiparticles for which the time evolution
constitutes a simple rotation with frequency ωm. This amounts to expanding the density and
phase fluctuations in the eigen-basis of the new Hamiltonian. The inversion of Eqs. (2.20)
& (2.21), using the normalization condition Eq. (2.22), results in the expression for the
quasiparticle operators

bm =

∫
dz

1√
2ρ0

f̄ −mδρ̂ + i
√
ρ0

2
f̄ +m θ̂ , (5.10)
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where b†m is given by the Hermitian conjugate of Eq. (5.10). The desired quasiparticle
correlations are given by

〈
b†mbn

〉
=

1
2

"
dz dz′

 f −m (z) f̄ −n (z′)
〈
δρ̂(z)δρ̂(z′)

〉[
ρ0(z)ρ0(z′)

] 1
2

+
f +m (z) f̄ +n (z′)

〈
θ̂(z)θ̂(z′)

〉[
ρ0(z)ρ0(z′)

]− 1
2

 − 1
2
δm,n (5.11)

〈
bmbn

〉
=

1
2

"
dz dz′

 f̄ −m (z) f̄ −n (z′)
〈
δρ̂(z)δρ̂(z′)

〉[
ρ0(z)ρ0(z′)

] 1
2

−
f̄ +m (z) f̄ +n (z′)

〈
θ̂(z)θ̂(z′)

〉[
ρ0(z)ρ0(z′)

]− 1
2

 . (5.12)

To shorten the notation we dropped the terms containing correlations between the density
and phase fields, as they have vanishing contributions for all states considered in this thesis.
The remaining correlations are given by the commutation relations of the quasiparticle Fock
operators and the Hermitian conjugate of Eqs. (5.11) & (5.12) respectively.

In accordance with the diagonal ensemble, we can calculate the steady state of the system
through the long-time average of the observable. As the quasiparticle occupation numbers
nm = ⟨b

†
mbm⟩ are the only time-independent, non-oscillatory contributions to the sum in

Eq. (5.7), where now and in the following we will always assume that the spectrum is
non-degenerate, the long time average is given by

〈
∆θ̂(z, z′)2〉

∞
= lim

T→∞

1
T

∫
dt

〈
∆θ̂(z, z′, t)2〉

=
1

2
√
ρ0(z)ρ0(z′)

∑
m=1

B1
m,m(z, z′)

(
2⟨b†mbm⟩ + 1

)
. (5.13)

This relaxed state can be described by a GGE

ρ̂GGE =
1
Z

e−
∑

m λmb†mbm , (5.14)

completely defined by the conserved quasiparticle occupation numbers Îm = b†mbm. The
Lagrange multipliers λm are given by

λm = Ln
(
1 +

〈
b†mbm

〉−1
)
. (5.15)

Since expectation values of conserved quantities can be evaluated at any time, the GGE is
fully determined by the initial conditions Eq. (5.11).

Note that while Îm are conserved they are neither local nor extensive. It is however
always possible to construct local and extensive conserved quantities linearly related to the
mode occupations which justifies the Generalized Gibbs state in the form of Eq. (5.14). For a
non-interacting theory in the presence of additional symmetries of the dispersion relation
the quasiparticle occupation numbers do not form a complete set of conserved charges.
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The constraints inflicted on the system by these additional conserved quantities need to be
considered in the maximum entropy state and alter the form of the GGE as compared to
Eq. (5.14) [8].

While in the harmonic theory the long time average of the phase correlation function
Eq. (5.7) is by definition described by Eq. (5.14), the question remains if and for how long
the system is actually close to the predictions of this GGE. In other words, does the long
time limit of an observable converge to Eq. (5.13). In the thermodynamics limit and in the
absence of regularities in the spectrum this is commonly the case. However, as we will see
explicitly below for the harmonically confined system, finite size effects and regularities in
the spectrum can lead to strong deviations and can prevent the system from reaching the
steady state predictions in the long time limit.

Long Time Evolution and Non-linear Relaxation

In case of a harmonic system the above calculations would constitute a full discussion of
the relaxation dynamics. However, in our system of two coupled quantum wires the GGE
Eq. (5.14) is based only on approximately conserved quantities and the system is expected to
deviate from the Bogoliubov predictions on larger time-scales. Higher-order corrections in
the perturbative expansion couple the symmetric and relative degrees of freedom which leads
to a further relaxation of the system driven by physics beyond the harmonic approximation
[209, 210, 194, 211]. Considered in terms of the quasiparticles, this long-term relaxation is
connected to the breaking of integrability of the harmonic model. While the effect of weak
integrability breaking perturbations is a well studied topic in classical systems, culminating
in the Kolmogorov-Arnold-Moser (KAM) theorem [23], no general results are available in
the quantum regime [32, 24]. The non-linear dephasing of the two condensates constitutes a
truly one-dimensional effect which arises due to the coupling of different Bogoliubov modes
in higher-order perturbation theory, while the system is still described by the integrable
Lieb-Liniger model. The subsequent relaxation is therefore only a manifestation of the fact
that Eq. (5.14) is not based on the conserved quantities of the full model [12]. It is an open
question whether the system relaxes to a GGE determined by the full Lieb-Liniger model,
reduces for all practical purposes to a simple Gibbs ensemble defined by the equipartition
of energy, or if e.g. another set of quasi-conserved quantities emerges that determines the
statistical properties of the system on intermediate time-scales.

5.3 Homogeneous Systems and Prethermalization

After this general introduction we will now specify our system. As a first example we consider
the most simple case of a homogeneous condensate with periodic boundary conditions. We
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choose the system to be sufficiently large to be able to neglect finite size effects or influences
due to the discreteness of the spectrum. These effects, of high interest in themselves, will be
discussed in chapter 6.

Let us first evaluate the general equations discussed in the last section for this specific
system. Since the bulk density is spatially independent ρ0(z) = n0, where n0 is the density in
a single condensate after the splitting, Eqs. (5.11) & (5.12) together with the orthogonality of
the mode functions lead to the only non-vanishing quasiparticle correlations

〈
b†kbk

〉
+

1
2
=

1
4

[
ϵk

Ek
+

Ek

ϵk

]
(5.16)

〈
bkb−k

〉
=

〈
b†kb†

−k

〉
=

1
4

[
ϵk

Ek
−

Ek

ϵk

]
. (5.17)

The correlations are dominated by the first term inside the brackets which stems from the
binomial density fluctuations. The highly suppressed second term Ek/ϵk ≪ 1 accounts for
the vacuum fluctuations of the phase due to the uncertainty principle. Due to the conservation
of the total momentum quasiparticles are created by the quench in correlated pairs of ±k and
the system is therefore in a highly two-mode squeezed state.

The time-evolution of the phase correlation function is given by Eq. (5.7) which upon
evaluation for the above initial quasiparticle correlations takes the form

〈
∆θ̂(z, z′, t)2〉 = 4mg

ℏ2L

∑
k

[
sin(ωkt)2

k2
(1 − cos(kz̄)) +

ℏ2

4mgn0
(1 − cos(kz̄))

]
, (5.18)

where we used B1
k,k = B

2
−k,k = 2(1 − cos(kz̄)) with the distance z̄ = z − z′. The second term

stems from the vacuum fluctuations in the minimum uncertainty state. We neglect these minor
quantum fluctuations in the following, which is justified since ϵk ≥ Ek and therefore their
contribution to the sum is always smaller than the vacuum fluctuations in a single condensate.
Further as its contribution is time-independent it merely represents a constant shift of the
phase correlation function, slightly decreasing the coherence of the state in accordance with
the uncertainty principle. The remaining first term fully determines the dynamics of the
system. Astonishingly it is equivalent to the Luttinger-Liquid predictions (c.f. [208, 135, 38])
although Eq. (5.18) is also valid for ϵk > µ, i.e. beyond the linear regime.

The time-evolution is determined by the oscillation of each quasiparticle mode, leading
to an initial growth of the phase variance as fluctuations rotate from the density into the phase
quadrature. As a result of the different oscillation frequencies ωk, the quasiparticle modes
dephase which leads to a randomization of the phase profile [208]. It is this quasiparticle
dephasing that gives rise to the local emergence of relaxed correlations in the system. In case
of a common speed of the excitations this randomization traverses the system in a light-cone
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like fashion, leading to the emergence of the relaxed state for distances z̄ < 2cst. This can be
seen by taking the derivative with respect to time of Eq. (5.18), which in the phononic limit
ϵk = ℏcsk leads to [208]

∂t
〈
∆θ̂(z, z′, t)2〉 = 4cs

λTeff

Θ (z̄ − 2cst) , (5.19)

with the Heaviside function Θ(x) = 1 for x > 0 and zero otherwise2 and we in foresight
defined λTeff = 2ℏ2/(mg). The phase variance increases linearly for times 2cst ≤ z̄ (for a
fixed distance z̄) after which the time derivative Eq. (5.19) vanishes and the phase variance
is locally conserved (strictly only in the thermodynamic limit, see chapter 6). From the
light-cone like time-evolution of the phase variance (5.19) we can immediately infer the
emergence of a thermal distribution for the relaxed state of our system. Integrating Eq. (5.19)
in time and using the fact that the correlations become stationary at times t = |z̄|/(2cs) allows
us to write the final relaxed state for the phase correlation function

C∞(z̄) ≡ exp
(
−

1
2

lim
t→∞

〈
∆θ̂(z, z′, t)2〉) = exp

(
−
|z̄|
λTeff

)
. (5.20)

While we could have gotten this relaxed state by taking the long time average3 of Eq. (5.18),
using this approach the emergence of exponentially decaying two-point correlation functions
simply connected to the presence of a sharp light-cone effect [39]. We therefore expect these
results to transfer to more complicated systems and geometries, at least up to times where
e.g. boundary effects in a finite size system can be neglected.

Comparing the relaxed form of the correlation function (5.20) to the predictions of a
thermal state Eq. (2.74) we can identify λTeff with en effective thermal coherence length
defining an effective temperature

kBTeff =
n0g
2
=
µ

2
, (5.21)

for the relative degrees of freedom [13, 212, 14, 38]. In particular Teff is independent of the
initial temperature T of the system prior to the splitting and the complete system remains in
a non-equilibrium state, even after all correlations have taken their quasi-stationary, relaxed
form. This effect of the emergence of apparent thermal correlations, long before the system
had time to fully equilibrate, was first encountered in the context of heavy-ion collisions and
termed prethermalization [34, 35].

We will now show explicitly that the steady state of the system is in the most general case
defined by a GGE determined from the conserved quantities. The emergence of the above

2More specific we get Θ(x) = 1
2
(
1 + sgn(x)

)
3Upon neglecting the small quantum contributions (second term) and performing the k integration.
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prethermalized state will thereby be related to the reduction of the GGE to an effective Gibbs
ensemble. This allows us to connect the phenomenon of prethermalization to the approach of
a maximum entropy state determined by quasi-conserved quantities of an underlying near-
integrable model. The GGE is defined by its Lagrange multipliers (5.15) determined for the
initial state values of the conserved quantities of the system. In the harmonic approximation
we found the quasiparticle occupation numbers to define a suitable complete, local, and
extensive set of conserved quantities, for which we get the Lagrange multipliers

λk = Ln
(
1 +

〈
b†mbm

〉−1
)
= Ln

1 + (
1
4

[
ϵk

Ek
+

Ek

ϵk

]
−

1
2

)−1 . (5.22)

These are exact within the harmonic approximation and describe the long-time steady state of
the system within the full Bogoliubov theory. We can however, due to the high occupation of
quasiparticle modes in the phononic regime neglect the quantum contributions to Eq. (5.22)
to get the approximate result

λk ≃ Ln
(
1 +

4Ek

ϵk

)
≃

4Ek

ϵk
= βeffϵk , (5.23)

where we expand the logarithm, i.e. taking the Rayleigh–Jeans limit of the Bose-Einstein
distribution valid for high occupation numbers, and define the effective, k-independent,
inverse temperature β−1

eff = kBTeff. Therewith the GGE Eq. (5.14) reduces in the phononic
limit to the usual Gibbs ensemble

ρ̂GGE ≃
1
Z

e−βeff
∑

m ϵkb†mbm =
1
Z

e−βeffH , (5.24)

described by just a single Lagrange multiplier4, the effective inverse temperature of the
system corresponding to the conservation of the total energy. The quench therefore leads to
an instantaneous equipartition of energy among the different modes.

5.4 Harmonically Trapped Systems and Off-Diagonal Cor-
relations

After our discussion of the homogeneous system we now turn our attention to an experimen-
tally more relevant configuration of a harmonic external potential V(z) = mω2z2/2. We will
again first discuss the analytical results within the harmonic theory before comparing them
to the numerical simulations of the relaxation dynamics within the full non-linear model.

4In the grand canonical ensemble the conservation of the particle number introduces a second Lagrange
multiplier µ, corresponding to the chemical potential
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Due to the spatial dependence of the bulk density the initial state density-density correla-
tions within the Thomas-Fermi approximation now take the shape of an inverted parabola〈

δρ̂r(z)δρ̂r(z′)
〉
=

n0

2RTF

(
1 − x2

)
δ(x − x′) =

n0

3RTF
(P0(x) − P2(x)) δ(x − x′) , (5.25)

where we used the scaled length x = z/RTF with the Thomas-Fermi radius RTF and the
peak density n0 = µ/g. For the last equality, we expressed the inverted parabola through
the Legendre polynomials P0,2. This is advantageous when calculating the initial state
quasiparticle correlations, as the relevant spatial dependence of the mode functions is given
by f ±m (z) ∼ Pm(x). Note that while the mode functions in general contain the spatially
dependent terms (1 − x2)∓, these do not influence the correlations of quasiparticles due to the
spatially dependent bulk density ρ0(z) (see e.g. Eq. (5.10)).

Evaluation of the correlations for the above local binomial splitting one is faced with
the problem of diverging phase fluctuations at the edges of the cloud |z| → RTF, when
considering the minimum uncertainty state Eq. (5.5). This seeming contradiction is based
on the inevitable breakdown of the harmonic approximation near the edges of the cloud.
On the other hand, since the mean field density is vanishing, density and phase fluctuations
approach their respective values for a vacuum state and hence the phase fluctuations remain
finite. They therefore, equivalent to the homogeneous case, raise only minor corrections to
the initial correlations within the central part of the cloud. We will hence ab initio neglect the
influence of the initial state minimum uncertainty phase fluctuations and confirm the validity
of this approximation later on when comparing to numerical simulations of the full model.

Another difference of the harmonically trapped system as compared to the homogeneous
condensate is the introduction of another scale RTF connected to the bulk density, in addition
to the chemical potential µ. In the homogeneous system the solutions of the bulk density are
smoothly connected by a simple rescaling of the interaction constant g. In other words when
changing the mean field density ρ0 the equations of motion for the bulk are invariant after a
shift in µ. In the harmonically trapped system on the other hand, the additional length scale
requires the adjustment of a second parameter. To counteract the halvening of atoms during
the splitting process we therefore consider an instantaneous dressing of the longitudinal
trapping frequency ω→ ω/

√
2, to avoid the excitation of a breathing mode. The mean field

density ρ0(z) in each of the wells consequently remains a stationary solution of the mean field
equations, allowing us to continue the usage of the standard Bogoliubov equations discussed
in chapter 3.

Before discussing the full time evolution of the phase correlation function we first
calculate the steady state predictions described by the GGE. Calculating the quasiparticle
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occupation numbers under the above assumptions we obtain

nm =
µ

2ϵm

[2
3

(
1 −

m(m + 1)
(2m − 1)(2m + 3)

)]
=

µ

2ϵm
Am , (5.26)

where the eigenstates are now labeled by the discrete index m ∈ N\{0}. The factorAm is a
result of the spatial dependence of the density-density fluctuations (5.25), rapidly approaching
the limit Am → 0.5 for m ≫ 1. Direct calculation of the associated Lagrange multipliers
(5.15), using again the Rayleigh-Jeans limit for high occupations, leads to

λm ≃
2
Amµ

ϵm →
m≫1

4
µ
ϵm . (5.27)

Astonishingly the long time average of correlations is described approximately by a Gibbs
ensemble with an effective temperature kBTeff = µ/4, which dropped by a factor of two as
compared to the homogeneous system due to the spatial dependence of the bulk density. In
[208] the same effective temperature µ/2 as in the homogeneous system was found as a result
of the assumption of homogeneous density-density correlations proportional to the peak
density of the trapped system. Therewith, f ±m (z) ∼ Pm(x) are the only spatially dependent
parameters entering the quasiparticle correlations, which together with the orthonormality of
the Legendre polynomials leads to similar predictions for harmonically trapped and homo-
geneous condensates, in particular the only non-vanishing initial quasiparticle correlations〈
b†mbm

〉
≃

〈
bmbm

〉
=

〈
b†mb†m

〉
.

The effective temperature Eq. (5.27), while indisputable for time-averaged observables
within the above model, raises the question how the discontinuity in temperature can be
resolved when approaching the homogeneous limit. Upon taking the thermodynamic limit,
ω→ 0 (µ = const.), the effective temperature Eq. (5.27) does not change, while the system
approaches a homogeneous bulk density. We therefore find different effective temperatures
for the homogeneous, infinite system based on the way the thermodynamic limit was taken,
which is a highly unsatisfactory result. To resolve the apparent inconsistency we now
calculate the full time evolution of the phase correlation function to study its approach to
the GGE prediction. First note that upon neglecting the minor quantum contributions to the
quasiparticle integrals we get 〈

b†mbn
〉
≃

〈
bmbn

〉
=

〈
b†mb†n

〉
. (5.28)

Using Eq. (5.25) the quasiparticle correlations are given by integrals of the form

〈
b†mbn

〉
∼

∫
dx Pm(x)Pn(x) (P0(x) − P2(x)) . (5.29)
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These integrals, for any value of n,m, can be evaluated in closed form resulting in the general
expression for the initial state correlations

⟨b†mbn⟩ =



µ

2ϵm
Am if m = n

−
2µ
3

√
(m+1/2)(n+1/2)

ϵmϵn

2 m n

0 0 0


2

if m , n

, (5.30)

where (. . . )2 is the square of the Wigner 3 j-symbol given by the second term (∼ P2(x)) of
the integrals (5.29). The first term proportional to P0(x) = const contributes only to the
diagonal part m = n, due to the orthogonality of the Legendre polynomials. We therefore
find that in general any spatially dependent modulation of the density-density correlations,
especially also a local position dependent squeezing ξn(z) of the state, will introduce non-
vanishing off-diagonal correlations between quasiparticle modes. Evaluating the general
form of the time-dependent phase correlation function (5.7), accounting for the fact that
for the harmonically trapped system B1 ≡ B2, due to the real mode functions f ± ∈ R, and
explicitly taking into account the off-diagonal contributions we find

〈
∆θ̂(z, z′, t)2〉 = gµ

RTF

∑
m

{
2m + 1
ϵ2

m
∆Pm(x, x′)2 sin2(ωmt)Am

}
−

{
4(2m + 1)(2m + 5)

3ϵmϵm+22 m m + 2
0 0 0

2

∆Pm(x, x′)∆Pm+2(x, x′) sin(ωmt) sin(ωm+2t)
}
. (5.31)

Here we defined ∆Pm(x, x′) = Pm(x) − Pm(x′) to shorten the notation and used the triangular
inequality for the Wigner 3 j-symbol to re-arrange the double sum in Eq. (5.7) connected to
the off-diagonal contributions. For the considered case of a local binomial splitting of the
condensate we find from Eq. (5.31) that the quench introduces non-vanishing quasiparticle
correlation between modes with index m and m + 2.

To gain some analytical understanding for the time evolution of the phase correlation
function, we factor out the contribution of a thermal state with an effective temperature µ/2,
corresponding to the first term in Eq. (5.31) withAm ≡ 1, and define the remainder

δTm(x, x′, t) = Am −
4(2m + 5)

3

2 m m + 2
0 0 0

2
ωm sin(ωm+2t)∆Pm+2(x, x′)
ωm+2 sin(ωmt)∆Pm(x, x′)

, (5.32)

as an effective mode, time, and spatially dependent scaling of this effective temperature.
Considering first the thermodynamic limit to see if the inclusion of correlations between
the different quasiparticle modes has resolved the problem of the difference in temperature



5.4 Harmonically Trapped Systems and Off-Diagonal Correlations 119

between the homogeneous and harmonically trapped condensates. For ω → 0 we can
linearize the sinusoidal time-dependence in Eq. (5.32) while the validity of the mode functions
2ϵm < µ can be extended to m → ∞. Significant decay of the phase correlation function
occurs at small scaled distances |x| ≪ 1 and retains dominant contributions only from high m
modes. We can therefore Taylor-expand ∆Pm(x, x′) around a variable but fixed x = x0 for
which the leading order contributions in |x′ − x0| ≪ 1 are

∆Pm(x0, x′) =


∂xPm(x)|x=x0 = −

2
√
π

Γ(−m
2 )Γ( m

2 +
1
2 )

m = odd

1
2∂

2
xPm(x)|x=x0 = −

2m−1Γ( m
2 +

3
2

Γ(m)Γ( 1
2−

m
2 )

m = even

. (5.33)

Evaluating the mode dependent scaling of the temperature (5.32) within the approximation
(5.33) we get δTm(x, x′, t) → 1 for m ≫ 1 and hence the harmonically trapped system in
the thermodynamic limit approaches a steady state determined by an effective temperature
kBTeff = µ/2. Together with the agreement of the thermal state phase correlation function5 for
the harmonically trapped and homogeneous condensates (see Fig. 2.4) we find a consistent
effective temperature in the thermodynamic limit.

The above emergence of differences between the conserved quantities in the thermody-
namic limit reveals the problem for the harmonically trapped system. It is usually assumed
that a steady state exists, which for a finite size system is because of the discreteness of the
spectrum not necessarily fulfilled. The convergence of observables to the GGE prediction
for most of the time during the evolution is directly connected to the condition that time-
dependent oscillatory parts of correlation functions have vanishing contributions in the long
time limit. The time-dependence of the phase correlation function (5.7) is given by general
integrals of the form6 ∫

dk F (k)ei(kz+αω(k)t) =

∫
dk F (k)eiΦ(k,t) , (5.34)

with an arbitrary real function F (k). For a generic gapped, k-dependent frequency ω(k)
vanishing contributions in the long time limit are shown by the stationary phase approx-
imation [213]7. For a gapless dispersion relation the stationary phase argument does not

5For small temperatures the deviations at the edges of the cloud for |x| → 1 are irrelevant as the phase
correlation function in the thermodynamic limit is dominated by |x| ≪ 1

6For convenience we will work in the continuum limit
7Herein the phase Φ(k, t) is Taylor-expanded to second order around the saddle-point k0 defined by

∂tΦ(k, t)|k0 = 0. The integral Eq. (5.34) is then given by∫
dk F (k)eiΦ(k,t) ∼ |F (k0)|

√
1

|∂2
tΦ(k0(t), t)|

cos
(
Φ(k0, t) ±

π

4

)
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Fig. 5.1 Short time dephasing dynamics for coherently split, harmonically trapped conden-
sates. Depicted is the time evolution of the first order coherence function C(1)(z, t) for the first
12 ms after the local binomial splitting in steps of 1 ms (from blue to red) obtained through
simulations of the GPE equation. The parameters are N2500 atoms per well, ω = 7.5 Hz,
and T = 0 in the initial state prior to the splitting. Dephasing of quasiparticle excitations
leads to a light-cone like spread of correlations following the local speed of sound cs in
the trapped system (arrows depict the theoretical values). The analytical solution (5.31)
is in good agreement with the full non-linear simulation. Notably, correlations inside the
light-cone approach a thermal state of temperature kBT = µ/2 (orange line), which is a factor
of two larger than the effective temperature of the GGE (5.27). This additional decrease of
correlations is caused by a second light-cone stemming from the off-diagonal quasiparticle
correlations caused by the local binomial splitting of the condensate.

straightforwardly apply, however generically the contributions vanish in the long time limit
and the system converges to the GGE predictions. In our case of a homogeneous system
the decay of these oscillatory terms is connected to the dephasing of quasiparticle modes.
In the thermodynamic limit the spectrum is continuous, such that no recurrences occur. For
the harmonically trapped system, however, the general form of the time-dependent phase
correlation function (5.7) exhibits contributions from the off-diagonal quasiparticle correla-
tions

〈
b†mbm+2

〉
, whose time-dependence is in part determined by the frequency differences

δω−m,m+2 = ωm+2 − ωm. The remaining off-diagonal contributions evolve with the frequency
sums δω+m,m+2 which are explicitly dependent on m and hence vanish in the long time limit on
account of the stationary phase method. Due to the near linearity of the dispersion relation
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ωm ∼
√

m(m + 1) we find an approximately constant frequency difference δω−m,m+2 ≃ ω and
the stationary phase approximation is no longer applicable, since ω(k) = const and the time
dependence can be taken out of the integral. These contributions hence do not vanish in
the long time limit and their contribution to the phase variance is of the same order as the
conserved quasiparticle occupations. This lowers the effective temperature of the GGE as
compared to the homogeneous case. In the thermodynamic limit the frequency of these
off-diagonal oscillations approaches zero and the system, after the initial dephasing, shows
no sign of recurrent behavior. The approach of the prethermalized state, however, now is
not simply connected to the conserved charges of the harmonically trapped system, but new
conserved quantities emerge in the limit ω→ 0 connected to the occupation numbers of a
homogeneous system.

In Fig. 5.1 we show the time evolution of the first-order coherence function C(1)(0, z, t)
for the short time dephasing dynamics over the first 12 ms after the decoupling of the two
condensates. We compare the analytical solution (5.31) (black solid lines) to numerical
simulations of the full non-linear wave equation for temperature T = 0 within the TWA.
The initial state is a single Bose gas for which the TWA quantum noise is sampled in the
Bogoliubov basis, adding on average half a particle in each mode. The system at t = 0 is split
coherently, following a local binomial distribution of atoms in the left and right well and the
corresponding minimum uncertainty fluctuations of the relative phase, and subsequently the
uncoupled condensates are propagated according to the classical equations of motion.

The relative phase between the two condensates is initially almost perfectly correlated,
leading to the observed value of C(1)(0, z) ≈ 1 over the whole extent of the cloud. The slight
decrease in the central part and the rapid decay towards the edges of the cloud are the result
of the minimum uncertainty phase fluctuations, which in particular lead to a completely
random phase between the two condensates once the density approaches zero. Although
these contributions are neglected in the analytical equation we find good agreement between
the numerical and analytical results, which confirms our previous assumption that also in
the case of harmonic confinement phase fluctuations raise only minor corrections to the
dynamics of the system.

The system follows the predicted light-cone like spreading of correlations, leading to
a decay of C(1) up to a distance z = 2cst, after which long-range order is still present in
the system as can be seen by the constant value of C(1). The light-cone follows the local
speed of sound in the trapped system, slowing down towards the edges of the condensate.
In the homogeneous system correlations inside the light cone were relaxed to their final
steady state predictions. Here, however, we find that off-diagonal contributions lead to a
second light-cone that spreads through the system with the same velocity as the diagonal
contributions. The correlation function C(1) therefore does not approach the GGE predictions
(5.27), but dephases in the short time dynamics towards the final temperature state of the
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Fig. 5.2 Long time evolution of C(1)(z, t) for the trapped system. The long time evolution
reveals strong revivals of phase coherence in the harmonically trapped system, caused by
the rephasing of off-diagonal quasiparticle correlations. The analytical solution (5.31) is in
good agreement with the full numerical simulation of the GPE equation. For comparison
we show the results of [208], assuming constant density-density correlations caused by the
splitting process. Therein off-diagonal correlations are absent and the system after dephasing
stays close to the GGE predictions. Large recurrences of phase coherence at t ≈ 200, 275 ms
caused by rephasing of the diagonal quasiparticle correlations are visible in all figures.

homogeneous system, given by a temperature kBTeff = µ/2 (solid orange line). This shows
that also in an inhomogeneous finite size system the local relaxation hypotheses [39, 14]
holds for time scale t ≲ L/cs below the system size L, but may be more complicated than the
simple dephasing of uncorrelated quasiparticle modes.

In the limit ω → 0 this second light cone leads to the system approaching the correct
thermodynamic limit. Here on the other hand, the finite trapping frequency leads to periodic
recurrences of phase coherence due to the rephasing of off-diagonal contributions. In the long
term evolution Fig. 5.2 this rephasing is prominently visible as low frequency oscillations,
which lead to a restoration of phase coherence at times ωt = (2n+1)π/

√
2, following from the

frequency-differences δωm,m+2. Apart from these off-diagonal contributions, two recurrences
of phase coherence are clearly visible at t ≈ 200, 275 ms. These are caused by the rephasing
of the diagonal quasiparticle correlations, dominated by the lowest lying modes (as higher
modes approximately approach a linear dispersion relation ωm ∼ m). For comparison we
show the results of [208] where homogeneous density-density correlations were assumed,
and hence only diagonal quasiparticle correlations are present. Therein, equivalent to the
homogeneous case, the system relaxes during the initial dephasing to the GGE predictions
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kBTeff = µ/2, leading again to a well defined prethermalized state. It is however unclear
how such a state could be realized, given the diverging squeezing ξn = (1 − x2)−1 towards
the edges of the cloud. In the full analytical model, assuming local binomial splitting, the
observed large oscillations lead to the predicted decrease of the effective temperature in the
GGE by a factor of two for the long time average, and the approach of the prethermalized
state for temperature T = 0 is only transient.

5.5 Experimental observation of a Generalized Gibbs En-
semble

We now turn to the experimental implementation of the splitting process [15]. Our experiment
starts with a phase fluctuating 1D Bose gas which is prepared and trapped using an atom chip
[64]. The trap frequencies are ω⊥ = 2π ·(2.1±0.1) kHz and ω∥ = 2π ·(10±0.5) Hz. The initial
temperature, atom number, and chemical potential are T = 30 . . . 110 nK, N = 5000 ± 500,
and µ = ℏ · (1.3 ± 0.1) kHz respectively, such that the 1D condition (2.4) is well fulfilled.
The coherent splitting of the gas is achieved through smooth deformation of the trap in
a dressed state double-well potential by superimposing the static trapping potential with
linearly polarized RF radiation with a time dependent amplitude [38, 214, 215]. The splitting
ramp is performed in two segments τ1 and τ2, where during the first period the longitudinal
trapping potential is rapidly changed to its final value ω∥ = 2π · 7.5 Hz. At the end of the
splitting ramp the trap has a measured radial frequency of ω⊥ = 2π · (1.4 ± 0.1) kHz. While
the longitudinal potential is dressed by approximately a factor of

√
2, the excitation of a

breathing mode is inherent to the experimental splitting process due to the finite splitting
time. However, since the breathing period is ≈ 75 ms and symmetric in both condensates
it can be neglected for the time scale of the experiment presented in this Section. The
decoupling of the two gases happens approximately 3 ms before the end of the splitting ramp
within a time period of less than 500 µs. The completely decoupled far-from-equilibrium
system is afterwards held for a time t, after which the system is probed through matter-wave
interferometry [13, 14, 215, 212], giving access to the spatially resolved relative phase θr.
The system has a typical length of approximately 100 µm of which we use the central 60 µm
for our analysis. For further details on the experimental implementation see [38].

We start by analyzing the time evolution of the non-translation invariant first order
coherence function C(1)(z, z′, t) (see Fig. 5.3). The system was coherently split by a slow
first ramp τ1 = 30 ms followed by a fast increase of the RF amplitude during the second
stage in τ2 = 12 ms. Shortly after the splitting process the system is almost perfectly
phase correlated leading to C(1)(z, z′, 0) ≈ 1 for the entire system. During the course of
the evolution the correlations decay in a light-cone like fashion ultimately leading to a
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Fig. 5.3 Relaxation dynamics of a coherently split Bose gas to a prethermalized state described
by a single temperature. Time evolution of the two-dimensional first-order coherence function
C(1)(z, z′, t), with the amount of correlation depicted in colors. The evolution shows the
described lite-cone like decay of correlations away from the diagonal and a characteristic
maximum along the diagonal as each point is perfectly correlated with itself. After t = 8 ms
the steady state is reached. The experimental observations (top row) are in good agreement
with the theoretical predictions assuming a single effective temperature kBTeff = µ/2. Figure
adapted from [15].

quasi-steady state, reached after t ≈ 8 ms. As discussed in the last sections, this state is
expected to be described by a GGE with the quasiparticle occupation numbers nm =

〈
b†mbm

〉
as the conserved quantities Im of the integrable low-energy effective theory. Fitting the
stationary state correlation function with the theoretical predictions of a GGE (5.13) for
the harmonically trapped system we find for the low-energy modes a constant effective
temperature kBTeff = µ/2, independent of the initial temperature of the gas before the
splitting. Therefore while a GGE in principle Eq. (5.14) reduces in this case to a simple
Gibbs ensemble defined by a single effective temperature Teff. Calculating the full time
evolution of the correlation function (5.7), where initially all fluctuations are assumed to be
in the density quadrature8 and we take into account only the diagonal contributions, we find
good agreement to the experiment over the complete relaxation period. The emergence of
this steady state is due to prethermalization [13, 135, 35–37] which here is described by the
dephasing of phononic excitations [36, 216, 198, 135].

To obtain direct experimental signatures of a GGE dependent on multiple distinct La-
grange multipliers we alter the experimental splitting procedure and split the gas by linearly
increasing the RF amplitude to its final value in a single 17 ms ramp (corresponding to
τ1 = 5 ms). The results of this splitting protocol are presented in Fig. 5.4 and show a clear
difference to the previous evolution. While again a light-cone like decay of correlations

8This implies
〈
b†mbm

〉
≃

〈
bmbm

〉
=

〈
b†mb†m

〉
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Fig. 5.4 Relaxation dynamics of a coherently split Bose gas to a genuine GGE described by
multiple temperatures. Time evolution of the two-dimensional first-order coherence function
C(1)(z, z′, t), showing an additional maximum of correlations along the anti-diagonal. The
experimental observations (top row) are well described by the theoretical model (bottom
row) with mode dependent Lagrange multipliers. The quasiparticle occupation numbers for
the depicted time evolution are obtained from a fit to the steady state (see Fig. 5.5). The
non-translation-invariant state clearly cannot be described by a single temperature. Figure
adapted from [15].

is visible during the evolution, a strong maximum remains along the anti-diagonal. This
corresponds to enhanced correlations of point z = −z′, and reveals that correlations were
imprinted outside of the relaxation light-cone. This effect can only arise in finite size or
inhomogeneous systems since translation invariance prohibits the emergence of such a state
in the thermodynamic limit.

The position of the additional maximum of the correlation function located symmetrically
around the center of the longitudinal trap suggests an imbalanced population of quasiparticle
modes that are even/odd under mirror reflection with respect to the trap center. Within
a first approximation the stationary state can be described by two distinct temperatures
(Lagrange multipliers), β−1

2m = kB(Teff + ∆T ) and β−1
2m−1 = kB(Teff − ∆T ), for the even and odd

modes respectively. A least χ2 fit to the experimental data yields kBTeff = (0.64 ± 0.01) · µ,
kB∆T = (0.48±0.01) ·Teff , and a reduced χ2

r ≈ 6. In [38] the observed temperature imbalance
was found to increase for shorter splitting times τ1. While significantly improved from the
predictions of a single temperature, with fitted kBTeff = (0.38 ± 0.01) · µ and χ2

r ≈ 25, more
insight can be gained by directly fitting the GGE prediction.

We therefore increase the number of freely fitted modes (starting from the lowest energy
m = 1) and fit the remaining high energy modes with a single effective temperature. By
including 9 + 1 freely fitted parameters in the GGE, where the lowest 9 modes are fitted
freely and the remaining high-energy excitations are thermally occupied at a single effective
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Fig. 5.5 Mode occupations for
the GGE state. Occupation num-
bers nm of quasiparticle modes
with index m, determined from
a fit with 9 + 1 free parame-
ters applied to the data from
Fig. 5.4. The plot clearly re-
veals how the occupation of the
lowest even (odd) modes are in-
creased (decreased) as compared
to the single-temperature state
from Fig. 5.3 (dashed line).

temperature, we find perfect agreement (χ2
r ≈ 1) to the experimentally measured steady state

(see Fig. 5.4). The fact that only 10 parameters are needed to describe the system is in good
agreement with the decreasing influence of high-energy excitations on the phase correlation
function and the experimental resolution of the phase profile. This is a beautiful example
of statistical inference, which tells us that for the information contained in this specific
observable, only a limited number of parameters need to be known out of the infinite set of
conserved quantities (Lagrange multipliers) present in the microscopic theory. Interestingly,
equivalent to the above prethermalized state the determined mode occupation numbers allow
us to describe the full dephasing dynamics of the system.

Notably, our fitting results for the GGE exhibit strong correlations between the different
even modes and the different odd modes, respectively. This demonstrates the difficulty in
fully and independently determining the parameters of such complex many-body states. In
fact, any full tomography of all parameters would require exponentially many measurements.
The results thus clearly show the presence of a GGE with at least two, but most likely many
more temperatures.

It is important to remember, that the determined GGE is defined through the integrable
low-energy effective theory of the system. This includes in particular the conserved quantities
Im =

〈
b†mbm

〉
which are not exactly conserved in the underlying microscopic theory, for which

Im in general include higher-order operator products [217]. While it is always possible to
define complex enough observables which deviate strongly from the predictions of our GGE,
the degree to which this reduced ensemble describes the observed steady state of the system is
an interesting question. We determined in chapter 4 that deviations to an effective low-energy
description can be tested in high precision through higher-order correlation functions. We
therefore compare in Fig. 5.6 for both splitting protocols the experimentally measured higher-
order correlations C(N) to predictions of the GGE. As previously for the two-point function
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Fig. 5.6 Higher-order correlations for the prethermalized and GGE state. Examples of
higher-order 4-, 6-, and 8-point phase correlation functions C(N) for N = 2, 3, and 4 (see
Eq. (4.18)) for the prethermalized (a) and GGE (b) state are in good accordance with the
theoretical predictions. As the GGE Eq. (5.14) defines a Gaussian theory in terms of the
quasiparticles, the observed accordance with the experimental data is equivalent to their
complete factorization into two-point correlations Eq. (4.23). This further confirms the
description of the steady state in terms of a Gaussian GGE. From left to right, coordinates
are C(2)(z, 10, z′, 10), C(2)(z,−12, z′, 14), C(3)(z, 10, 10, z′,−20, 10), C(3)(z,−8, 8, z′,−24,−20),
C(4)(z, 4, 10, z′,−8, z2,−22,−18, 10,−4) and C(4)(z,−22,−8, z′,−22,−26,−22, z2,−26,−24).
All coordinates are given in µm and were randomly chosen to illustrate the high-dimensional
data. Figure adapted from [15].

we find excellent agreement up to 10th order9. Since the GGE per definition does not include
correlations between the Im, and these are defined through the quasiparticle occupation of the
harmonic theory, it defines a Gaussian state of the relative phase. Consequently, higher-order
correlations calculated with the GGE factorize into one- and two-point functions and all
higher-order connected correlations vanish identically. The observed accordance of the

9see [38] for additional correlations
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experimental correlations to the GGE predictions therefore directly confirms the factorization
of experimentally measured higher-order correlations according to Eq. (4.23).

5.6 Integrable Dynamics or Emergent Conserved Quanti-
ties

The great success of the integrable model in describing the experimental observations bears
the question how these results can be brought into accordance with the analytical calculations
presented in Section 5.4. Given the quasiparticle occupations determined from the experiment,
and the accordance with the observed time evolution, we can evolve the GGE state back in
time to determine the initial density-density correlations. For the observed prethermalized
state this leads to homogeneous density-density correlations

〈
δρ̂r(z)δρ̂r(z′)

〉
= (n0/2)δ(z − z′),

where n0 is the peak density. This however, cannot be strictly valid as it would entail that
near the edges of the condensate density fluctuations exceed the maximum possible level
(n(x)ξh)2, where we consider coarse-grained fluctuations on a length scale of the healing
length ξh. This divergence is not surprising, as it results from the extension of the low-energy
description beyond its regime of validity ϵm ≲ µ. However, as we showed in Section 5.4, the
low-lying modes are well approximated by the analytical equations and any deformation
of the density-density correlations from a constant value leads to off-diagonal quasiparticle
correlations.

As a possible explanation to the above inconsistencies we retain the binomial splitting
and study the influence of finite temperature on the dynamics of the system. As discussed in
[209, 210, 194, 211] higher-order corrections to the equations of motion lead to a coupling
of the common and relative degrees of freedom, which causes further dephasing of the
two condensates and hence deviations from the integrable low-energy theory. In [194] the
non-linear relaxation of the system was calculated through the dephasing of wave packets
caused by random fluctuations in the speed of sound between the two condensates due to
thermal fluctuations in the common degree of freedom. We therefore expect, although we
like to point out that currently no theory exists describing the relaxation of discrete states
in a finite size system, that these effects also to have an influence on the recurrent behavior
of off-diagonal correlations, as these rely on an exact relation between the quasiparticle
energies.

We hence consider the local binomial splitting of a finite temperature initial state, to
determine the influence of this non-linear relaxation on the dynamics of the system. The initial
state is created by propagation with the SGPE Eq. (2.51), with a constant value γ = 0.05,
until convergence to the thermal equilibrium state is reached. The system is then coherently
split as in Section 5.4, taking into account the minimum uncertainty phase fluctuations. The
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Fig. 5.7 Finite temperature simulations of the binomial splitting model. Simulations of
the GPE for the parameters of Fig. 5.1 with an initial state temperature T = 0 . . . 100 nK
obtained through evolution with the SGPE (2.51). a The time evolution of C(1)(0, z, t) for
increasing temperatures shows large damping of the off-diagonal quasiparticle oscillations.
For intermediate temperatures a clear plateau emerges in the evolution signaling the approach
to a quasi-steady state. b Time evolution of the effective temperature obtained by a fit to
the first-order coherence function. For T = 0 the system approaches the effective temper-
ature kBTeff = µ/2 (dashed black line, see also Fig. 5.1) before rephasing of off-diagonal
correlations leads to a decrease in temperature. Increasing the temperature in the initial state,
a prethermalization plateau emerges, its length (gray shaded area) as well as the effective
temperature increasing with the initial temperature before the splitting. The black solid line
shows the evolution for the experimental temperature spread.

time evolution of the first-order coherence function for different temperatures is presented
in Fig. 5.7. We find a significant damping of the long range oscillations with temperature,
showing that off-diagonal correlations experience dephasing beyond the integrable model.
Notably, in the short time evolution a plateau emerges, for which C(1)(0, z) is approximately
constant. While for higher temperatures non-linear effects become non-negligible even for
the short time dynamics, for which high energy modes already show an increased temperature
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during the initial dephasing, the long range behavior of the first-order correlation function
still shows a clear plateau. Note, in particular, that the conserved quasiparticle occupations
in the relative degree of freedom are still determined by the binomial splitting process, and
hence would lead to a temperature of kBTeff ≈ µ/4.

In order to quantify the emergence of this prethermalization plateau, we fit the phase
correlation function at each time with the predictions of a thermal state for the harmonically
trapped system. For T = 0 the system after dephasing reaches the prethermalized state
kBT = µ/2 observed in the experiment, but the off-diagonal contributions quickly lead
to a decrease in the effective temperature. For increasing temperatures we find a clear
prethermalization plateau emerging. The effective temperature explicitly depends on the
temperature of the initial state, which shows that this emerging prethermalization plateau
is not simply defined through the conserved quantities of an effective integrable model, but
quasi-conserved quantities emerge dynamically in the interplay of off-diagonal rephasing and
non-linear relaxation. Taking the average over the experimental temperature spread, reveals
an emergent prethermalized state extending up to t ≈ 15 . . . 20 ms, with a slightly increased
temperature as compared to the experimental observations. Interpretation of the experimental
observations within this model suggests that additional squeezing, known to arise in realistic
splitting protocols [218–220], leads to a a reduction of fluctuations induced by the coherent
splitting of the condensates. Since atom number squeezing increases with the local density
[221] we expect the initial density-density correlations to be predominantly squeezed in
the central part of the trap. This further flattens the density-density correlations, thereby
decreasing the off-diagonal contributions (increasing the relative occupation of diagonal
elements), which leads to a further damping of the long range oscillations in the PCF. Along
this line, it is an open question whether the experimentally observed prethermalized state is a
result of dephasing in an integrable low-energy theory or the result of conserved quantities
dynamically emerging during the evolution which slow down the dynamics of the system.

Calculating the initial density-density correlations for the observed GGE, we again find
along the diagonal diverging correlations near the edges of the condensate, while in the
central part of the cloud we find atom number squeezing below the shot noise level. As in the
case for the relaxation to a prethermalized state described by a single temperature, limiting the
atom number fluctuations at the edges to physically realizable values leads to a reduction of
the quasiparticle occupation number by a factor of two, while large correlations between even
2m, 2m+2, 2m+4 and odd 2m+1, 2m+3, 2m+5 modes appear in the initial state. Due to the
dephasing of off-diagonal correlations these again lead in the short time dephasing dynamics
to indistinguishable result for the PCF. Given the reasoning above the same question arises,
whether the observed GGE is a result of emergent conserved quantities in the non-integrable
model. This shows the difficulty in a full state tomography for inhomogeneous systems.
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Fig. 5.8 Initial state density-
density correlation reconstructed
for the GGE of Fig. 5.4. The
diagonal part (white area) is
masked to show the small off-
diagonal correlations present in
the initial state density-density
correlation ⟨δρr(z)δρr(z′)⟩ of the
relative density. The observed
quasiparticle imbalance is im-
printed by the splitting process
and already present in the den-
sity correlations after the split-
ting.

Notably, the initial state density-density correlation shows long-range off-diagonal cor-
relations Fig. 5.8, leading to the observed temperature imbalance and the emergence of the
GGE. The diagonal contributions are approximately a factor of ten larger. This shows that the
imbalance is imprinted by the splitting process. The initial state density-density correlations
⟨δρr(z)δρr(z′)⟩ show enhanced correlations for points located symmetrically around the center
of the trap, and anti-correlations between the trap center and points towards the edges. These
correlations may be caused by a breathing excitation or the dislocated nature of particles in a
condensate.

Determining the exact microscopic origin of the observed GGE requires a detailed
simulation of the experimental splitting process. In this context, splitting into a double-
well potential has previously been simulated using classical field methods or (Multi-Layer)
Multiconfigurational Time-Dependent Hartree for Bosons (MCTDHB) [142, 143, 222].
However, a full theoretical model including the longitudinal degree of freedom has so far
remained elusive. Classical fields can only account for thermal fluctuations using stochastic
methods or determine the non-linear evolution in the TWA, which requires knowledge of the
exact initial state Wigner function. While semiclassical simulations here provided detailed
knowledge that the observed GGE is not the result of any mean field effects during the
splitting10, all these simulations rely on the binomial splitting model. A self consistent
simulation of the coherent splitting process is herein not possible, without a better theoretical
understanding of the processes leading to the observed GGE. While MCTDHB has been
used to study the creation of squeezing during the splitting of gases containing up to O(100)
particles in zero dimensions, a modeling of the experimental splitting process involving

10To this end numerous simulations were performed including local and local time dependent decoupling of
the condensates, excitation of a breathing oscillation before, during, and after the splitting, and imbalanced
condensates.
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the 1D direction and thousands of particles would require significantly more self-consistent
orbitals and is thus far beyond reach of current computational resources. Consequently, we
understand our measurements as an important benchmark for future simulations of quantum
many-body systems.

5.7 Summary

We demonstrated in this Chapter the emergence of statistical mechanics from the unitary
evolution of an isolated many-body systems. Based on the integrable low-energy effective
theory, the emergent steady state of the system was defined by the conserved quasiparticle
occupations. We observed a genuine GGE exhibiting multiple temperatures by changing
the splitting protocol in the experiment. This constitutes an important step in the validation
of this generalized statistical description of integrable models and confirms the principle of
entropy maximization as the fundamental principle of emergent statistical phenomena.

After a general introduction in the expected evolution of coherently split condensates, we
presented a detailed calculation of the systems evolution within the harmonic theory. The
evolution of the system was described by the first-order coherence function C(1). Of particular
interest was the harmonically trapped system, for which we showed that within a model of
local binomial splitting of the gas off-diagonal quasiparticle correlations prevent the system
from reaching a true steady state. We connected this breakdown to the regularity of the
spectrum, which lead to periodic revivals due to the rephasing of off-diagonal correlations.
Comparison to the T = 0 simulations of the full non-linear equations of motion within the
TWA revealed good accordance with the analytical solutions.

In the following section we analyzed the relaxation of the experimental system by use
of the integrable TLL model. For both, the prethermaized state described by a single
temperature and the genuine GGE, the full time evolution of the system was well described
by the dephasing of the diagonal contributions of quasiparticle modes. Herein, the emergent
statistical ensemble was fully defined by the conserved quantities of the integrable model,
determined by the experimental splitting process. In the spirit of statistical inference, we
showed that for the GGE including only 9 + 1 parameters was sufficient for an accurate
description of the system. While for such a truncated GGE it is in general always possible to
define observables that deviate strongly from the ensemble predictions, the question remains
if such deviations are practically accessible and therefore if and when such a truncated
description is sufficient.

In the last section we reconstructed the initial state density-density correlations from the
experimentally measured quasiparticle occupation numbers determined at the steady state.
This revealed an apparent problem as correlations diverged near the edges of the condensate,
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which in a self consistent reconstruction of the initial state inevitably lead to off-diagonal
quasiparticle correlations. Extending the binomial splitting model to finite temperature states,
we found that a possible explanation for the observed steady states could be the appearance
of dynamically conserved quantities as a result of non-linear relaxation and off-diagonal
quasiparticle dephasing. This clearly signals the difficulties in a complete state reconstruction
for inhomogeneous finite size systems and highlights the need for the development of exact
numerical simulations capable of simulating the experimental splitting process.





Chapter 6

Quantum Recurrences

The expectation that a non-equilibrium system evolves towards thermal equilibrium is deeply
rooted in our daily experience. So far, in this thesis, while during the relaxation of the system
towards such a thermal state complex dynamical processes arose, there was in a sense always
a constant direction of time. The system quickly relaxed from some far-from-equilibrium
initial conditions towards a state, determined only by a few parameters. From universality far-
from-equilibrium to emergent generalized statistical ensembles once such a state is reached,
details of the initial configuration the system started with are irrelevant. This reasoning
formed the beginning of statistical mechanics [1]. However, as formulated by Poincaré
and Zermelo, a finite isolated physical system will recur arbitrarily close to its initial state
after a long but finite time [2, 3]. Therefore, although the system appears to have forgotten
its initial configuration, the apparently relaxed intermediate state is highly correlated. The
reconciliation of these seemingly contradicting statements forms the basis of the emergence
of irreversible processes from reversible microscopic mechanics [4].

The above can be transferred to the quantum regime, where already von Neumann
formulated a quasi-ergodic theorem for the evolution of the wave function [5]. However, also
in the quantum regime, a general recurrence theorem can be proven [6, 7], which immediately
follows from the unitary evolution and the discrete energy eigenstates of a finite size system.
The equilibration of isolated quantum systems thereby grew into an active field of research
[223].

Here we demonstrate that by designing the spectrum of the effective field theory, we are
able to observe the recurrence of coherence and long range order in an interacting many-body
system containing thousands of particles1. This is a striking demonstration of the above

1This chapter is based on and contains parts of [224]. I contributed to the theoretical calculations, interpre-
tation of the theoretical results and experimental data, performed numerical simulations, and contributed to
writing of the manuscript.
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recurrence theorem, where after an initial relaxation to a maximum entropy state, the system
returns back close to its initial configuration.

6.1 Recurrent Dynamcis in Finite Size Quantum Systems

From a theoretical point of view, it is a well known result that a finite isolated system will
never show true relaxation, but always exhibit a return close to its initial configuration. This
becomes immediately apparent, when considering the solution to the equations of motion
in the energy eigenbasis, where unitary evolution of the wave function is simply a rotation
of each energy eigenstate. The frequency is given by the energy eigenvalue En, and for a
discrete set of eigenvalues there will always be a time trec for which the wave function returns
arbitrarily close to its initial state.

The main challenge to observe such recurrent dynamics, is simply a matter of scales. For
small systems, a beautiful example of recurrences is the predictions [225, 226] and observa-
tion [227] of collapse and revivals in the Jaynes-Cumming model. Therein interactions of a
single atom with a coherent light field lead to the collapse and subsequent revival of finding
the atom in the excited state. Further, collapse and revivals were observed for interacting
systems of a few atoms trapped in optical lattices [228, 229]. However, if the number of
constituents is increased, the time of the recurrence quickly approaches astronomical scales.
Since the dimension of the Hilbert space grows exponentially with the number of constituents,
the time at which all eigenstates have exactly performed a full rotation, i.e. Entrec/ℏ = 2πn
with n being an integer number, becomes practically impossible to observe in an actual
experiment. This enormous time scale is also the reason that allows us to infer the thermody-
namic properties from numerical simulations of a finite size system. The only exception are
systems for which the spectrum of the Hamiltonian has a highly commensurate structure, e.g.
equidistant energy levels En = E0 + n∆E with n a positive integer, or shows a certain degree
of regularity, as is for example the case for conformal field theories [8, 230, 231]. We will,
however, assume in the following that the microscopic Hamiltonian is sufficiently complex.

Apart from this, there is a second barrier to the observation of quantum recurrences.
Assuming for the moment we have found a non-trivial system, which shows a full recurrence
of the wave function back to its initial state on an experimentally feasible time scale. While
theoretically a well defined problem, from an experimental point of view this raises the
question how the recurrence of the system can even be confirmed. Due to the increasing
complexity of the Hilbert space, an exponentially growing number of measurements, assum-
ing that these would even be experimentally possible, are needed to determine the exact
state of the system. For complex many-body systems this is experimentally not possible and
instead one investigates the system through measurements of (local) few-body observables
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O. This shifts the question to if and under which conditions the experimental observation
of recurrences becomes possible. The system does not necessarily have to return arbitrarily
close to its initial configuration, but only has to give the same results under the measurement
of certain observables O.

While not a recurrence of the microscopic model in the strict mathematical sense, this
approach facilitates the experimental observation of recurrent dynamics in large interact-
ing quantum many-body systems. This definition allows us to interpolate between a full
recurrence, where the system returns to its initial configuration for any observable O, and an
effective description, where the system only returns close to its initial state under a certain
class of observables. The implementation of recurrent behavior in a subset of the Hilbert
space thereby permits the detailed study of the underlying microscopic dynamics. By tuning
the system to return close to its initial configuration for certain observables, deviations to
the predicted recurrence can be measured on time scales far longer than the initial relaxation
time of the system. Recurrences thereby provide a clear measurable signal in experiments
and thus give valuable insight in the coherent evolution of the full interacting many-body
system.

A natural choice for the class of observables O in a quantum many-body system is
to choose them to represent the collective excitations of the underlying field theoretical
description. This greatly reduces the complexity, from the infeasible large number of
eigenstates in the microscopic description to a much smaller number of populated modes
determining the relevant low-energy behavior of the system. By designing the spectrum of
these collective excitations to have a commensurate structure, we show that the observation
of recurrences in an interacting many-body system containing thousands of particles becomes
experimentally feasible.

6.2 Experimental Observation of Recurrences

As a model system we study the decay and return of coherence and long range order in CQW.
Similar to the system presented in chapter 5, we consider in the following the evolution of
the system following a rapid decoupling of the two condensates. However, there are two
major differences for the present system.

First, the initial strongly phase correlated state is obtained by evaporative cooling in a
dressed double-well potential, with a strong tunneling coupling J. As we established in
chapter 4 the system in thermal equilibrium is strongly phase locked (⟨cos(θr)⟩ ≈ 1) and
shows Gaussian statistics, and is therefore very similar to the initial state of coherently split
condensates. The difference is that while for the latter the excitations in the relative degrees
of freedom, and especially the effective temperature of the relaxed state, are only determined
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Fig. 6.1 Recurrences of long range order in the evolution following a rapid decoupling of two
condensates. The upper panel shows the time evolution of C(1)(z̄, t), averaged over all points
z, z′ in the central part of the condensate with z̄ = |z − z′|. The initial strongly phase locked
state dephases quickly to a prethermalized state. In the subsequent evolution two recurrences
of phase coherence between the two condensates are clearly visible. The lower panel shows
the time evolution C(1)(t) for a cut through the correlation functions at z̄c = 27.3 µm (dashed
black line in the upper panel). The vertical blue (red) lines are the predicted recurrence times
for the first (second) recurrence. The inset shows the spatial dependence C(1)(z̄) for different
times depicted in color. In between the recurrences (green dots) the system has relaxed to
a transient thermal state (black solid line). The error bars represent the 68% confidence
intervals obtained by a bootstrapping [202]. Figure adapted from [224].

by the quantum noise of the splitting process the system in thermal equilibrium is dominated
by thermal fluctuations of the initial state. This allows us to directly compare the results to
numerical simulations suing the SGPE formalism, as we do not have to rely on the local
beam-splitter approximation of the splitting process.
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Second, instead of the harmonic confinement, the system is now confined to a box-shaped
potential along the longitudinal direction. This is achieved by adding hard walls to a very
weak harmonic confinement with the help of a blue-detuned optical dipole potential. An
exchangeable wire mask blocking a stripe of variable width from the intensity in the central
part of the beam, enables to change the length L of the box-confinement. At the walls
the potential rises in 3.1 µm from 10% to 90% of its total height, which is approximately
1.3 kHz. For details on the experimental implementation see [224]. Typical samples have
linear density of 70 atoms per µm, and dependent on the box length 2300 . . . 4800 in each
well.

Since we are initially in the strongly phase locked regime, and at this point mostly
interested in the revival of phase coherence between the two condensates, we study the
evolution of the system through the periodic correlation functions. In particular, we use the
spatially averaged first order coherence function C(1)(z̄ = |z−z′|), where for the approximately
translation invariant system the spatial average is performed over all point z, z′ in the central
part of the condensate with |z − z′| = z̄.

The time evolution of the first order coherence function for a box of length L = 49 µm is
presented in Fig. 6.1. The system is initially strongly phase correlated showing long range
order with C(1)(z̄) ≈ 1 over the whole central part of the cloud. At t = 0 the system is
abruptly decoupled and coherence decays in a light cone like fashion due to quasiparticle
dephasing. After t ≈ 10 ms the completely dephased state is reached which is well described
by a thermal ensemble (see inset). For a system in the thermodynamic limit L→ ∞ or for
incommensurately spaced modes this dephased state persists for a long time, showing as
discussed in chapter 5 the emergence of statistical mechanics from the unitary evolution of
the system. Here on the other hand two partial revivals of phase coherence are clearly visible
in the subsequent evolution. The system therefore, after relaxing to a transient thermal like
state, shows a recurrence close to its initial configuration, spontaneously restoring long range
order in the system. The vertical lines correspond to the theoretically expected revival times,
which we examine in the following section.

6.3 Theoretical Discussion

The origin of the observed recurrence can be understood by recognizing that long range
order, i.e. the observable employed to test the system, is dominated by the long-wavelength
low-energy modes of the system. These are expected to be in a first approximation well
described by the harmonic approximation. We discussed the general solutions for the time
evolution after the decoupling of the condensate in Section 5.2. Here, we consider a box-
shaped trapping potential U(z) = U0[Θ(−z) + Θ(z − L)] of length L, neglecting the influence
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of the finite wall steepness and the deformation of the bulk density close to the boundaries.
The latter corresponds to the TF approximation, neglecting the kinetic energy and hence the
deformation on a length scale of the healing length. The explicit solutions to the Bogoliubov
equations (2.23) for an arbitrary tunneling coupling J then is

f ±k,J =
(

ϵk,J

Ek + 2ℏJ

)∓1/2 √
2
L

cos(kz) (6.1)

ϵk,J =
√

(Ek + 2ℏJ) (Ek + 2ℏJ + 2µ0) , (6.2)

where we chose Neumann boundary conditions ∂zθr |z=0,L = 0 to have vanishing particle flux
at the boundary. The discrete states are labeled by the momentum k = πn/L with n being an
integer number, and µ0 is the chemical potential in the absence of tunneling coupling J. At
the time t = 0 the tunneling coupling J is quenched to zero and the system evolves according
to the uncoupled Hamiltonian. In particular, the time evolution of the first order coherence
function is given by Eq. (5.7) with the initial conditions determined by projecting the initial
thermal state onto the new basis. Direct calculation for an initial temperature T , inserting
the modal expansion of the density and phase field in Eqs. (5.11) & (5.12), leads with the
orthonormal eigenfunctions (6.1) within the Rayleigh-Jeans limit to the only non-vanishing
quasiparticle correlators
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†
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kBT
2ϵk

(
Ek
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(6.3)
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(†)
k b(†)

k ⟩ =
kBT
2ϵk

(
Ek

Ek + 2ℏJ
−

Ek + 2µ0

Ek + 2ℏJ + 2µ0

)
, (6.4)

where ϵk = ϵk,0 is the dispersion relation for the uncoupled condensates. The system is again
in a highly squeezed state, showing reduced phase fluctuations (first term in the parentheses)
and an access of density fluctuations (second term in parentheses). Inserting the quasiparticle
correlations in Eq. (5.7) we get the time evolution of the phase variance:

⟨φ(z, z′, t)2⟩ =
1

Ln1D

∑
ϵk,0>0

ϵk

Ek

[
cos(z) − cos(z′)

]2
[
nk + mk − 2mk sin2(ωkt)

]
. (6.5)

In the short time evolution this leads to the discussed emergence of a maximum entropy state,
described by a GGE, through the dephasing of quasiparticle modes. However, in contrast to
the thermodynamic limit L→ ∞where the dispersion relation becomes a continuous function
of k it is here discrete, in particular having a finite lowest energy for k , 0. In the phononic
limit the dispersion relation has a highly commensurate structure ωk = csk = nπcs/L, which
is even equally spaced with ∆ω = πcs/L. Therefore after a time t = 2π/∆ω = 2L/cs all
modes have performed an even number of rotations, ωkt mod 2π = 0, and the system has
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returned to its initial configuration. Half-way to this full recurrence the system rephases to
the mirrored state, where all odd quasiparticle modes have performed half integer rotations.
As we start initially from an almost flat relative phase profile, and our observable C(1) is
insensitive to the transformation θr(z)→ θr(−z), this point is equivalent to the full recurrence.
The expected recurrence time for the correlations is therefore

trec =
L
cs
. (6.6)

Therefore, by designing the spectrum of quasiparticle excitations, the recurrence time for
phase coherence in the system is reduced to experimentally feasible timescales. This can
be compared, e.g. , to the case of a harmonic confinement, where the mode frequencies
ω j = ω

√
j( j + 1)/2 are non-commensurate. While partial revivals due to the rephasing of a

limited number of modes or the off-diagonal elements appear, the first clear revival happens
at t ≈ 3π/ω. This lies, for typical experimental parameters, on the order of hundreds of
milliseconds and observation of these recurrences is not possible due to the further relaxation
of the system, driven by physics beyond the harmonic approximation.

For a quantitative comparison to the experiment, it is important to remember that in the
quasi 1D regime, radial swelling of the condensate leads to a shift in the speed of sound (see
Section 2.1.4). Using the NPSE prediction to account for this effect the speed of sound is
given by Eq. (2.36), which for the experimental parameters is typically 20% smaller than the
bare value cs =

√
n0g1D/m predicted by the GPE (see Fig. 2.3). The recurrence times trec for

the first and second recurrence are the theoretical predictions shown in Fig. 6.1. Note that,
while the shift in cs is due to the limited resolution harder to ascertain in the initial dephasing
lite-cone dynamics, it is clearly visible on the longer time scale of the recurrence.

To validate the predicted scaling (6.6) of trec with the system size, we present in Fig. 6.2
the recurrence position for varying length L of the box trap. The time axis was rescaled by
the theoretical speed of sound to make measurements with slightly different atom numbers
comparable. The recurrence times are extracted from the experimental data, by fitting
a Gaussian function to each peak in the time dependent first order coherence function
C(1)(z̄ = zc, t) for a fixed distance zc = 27.3 µm. The value of zc was chosen such that the
equilibrium correlation function (in between the recurrences) is sufficiently low as to provide
a clear signal of the recurrence, while the distance remains in the central part of the cloud
even for the smallest system size considered to minimize the influence of boundary effects.
The Gaussian shape near the recurrence peak follows from Eq. (6.5) since near the recurrence
the sinusoidal time dependence can be Taylor-expanded to second order. The first order
coherence function for fixed coordinates z, z′ near the recurrence is therefore given by a
product of Gaussian functions with k-dependent widths, decreasing with temperature. As the
product of Gaussian functions is again a Gaussian we can extract the height and position of



142 Quantum Recurrences

Fig. 6.2 Scaling of the recurrence time with the size of the system. a Time evolution of
phase correlations for three different box lengths. The time axis is scaled with the theoretical
prediction for the speed of sound cs to make measurements with slightly different atom
numbers comparable. b Recurrence time for the first (blue) and second (red) recurrence
as a function of the box length L. The recurrence times are extracted from the correlation
function at a distance z̄c = 27.3 µm. The experimental data agrees well with the predicted
linear scaling for an ideal box trap (dashed line). The shaded areas are the predictions of a
TLL simulation taking into account the experimental imperfections in the trapping potential
and the uncertainty in the decoupling time (vertical extent). The error bars represent the 68%
confidence intervals obtained by a bootstrapping [202]. Figure adapted from [224].

the recurrence through a Gaussian fit of the first order coherence function C(1)(zc, t). We find
excellent agreement with the predicted linear scaling for the first and second recurrence.

It is important to note, that the observed recurrence of long range order happens globally
throughout the whole system. It is therefore related to the properties of the spectrum of
quasiparticles, rather than an artifact of light-cone like spreading of correlations in a finite
size system. The latter generically leads to peaks and/or minima in two-point correlation
functions due to the reflection of the light cone at the boundaries [8, 232]. In contrast to a
revival, the appearance of these traversals is position dependent and their amplitude remains
exponentially small in the system size. Adopting a quasiparticle picture [39], the difference
between traversals and recurrences is depicted in Fig. 6.3. At t = 0 at each point in space, the
quench produces counter-propagating quasiparticle pairs. For fixed points z, z′ this leads to
the occurrence of a light cone in the two-point function at time t0 = |z−z′|/2cs, where cs is the
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Fig. 6.3 Traversals and recurrences. Time evolution of the phase correlation function in an
ideal box trap according to Eq. (6.5) for a cut through the spatially averaged correlation
C(1)(z̄c, t) (red line) and for coordinates z = L/2 and z′ = L/4 (blue line). The vertical
lines depict the light-cone (dashed-dotted), the recurrence time trec (solid), and the traversal
expected for coordinates z = L/2 and z′ = L/4 (dashed line). The traversal is visible as a dip
in the correlation for the blue curve. These effects are washed out by the spatial averaging,
while the recurrence happens globally and is visible for both curves. The lower panel is
a schematic of the time evolution in a quasiparticle picture. Two pairs (orange and green)
are created at different positions and the gray solid lines depict the spatial coordinates. The
occurrence of the light-cone, traversals, and the mirrored state recurrence are explained
through the propagation and reflection of quasiparticles in a finite size system.

propagation velocity of quasiparticles. The first traversal occurs at the time t1 = (z + z′)/2cs.
This corresponds to the situation where a quasiparticle pair was created at position y and
travels in opposite directions. The left particle gets reflected from the boundary before
reaching z at the time t1, while at the same time the right moving particle has moved in
a straight line from y to z′. In our system the traversals appear as dips rather than a peak
in the temporal evolution of the phase correlation function, since the Neumann boundary
conditions lead to a phase shift of π for excitations reflected from the boundary. Would
Dirichlet boundary conditions θr(0) = θr(L) = 0 be used instead, the traversals would show
up as a maximum. It is clear that this effect can happen generically in any finite size system,
as only a quasiparticle pair originating from a single point has to appear at the position z, z′.
A recurrence requires all quasiparticle pairs to have returned close to their initial position,
which therefore happens on a global scale all throughout the system. In the experimental
parameter range these traversals are rather small, and their visibility is further diminished by
the experimental imperfections of the trapping potential and the finite imaging resolution. We
therefore used the spatially averaged correlation function C(1)(z̄, t), for which the traversals
are washed out and only global recurrences of phase coherence remain.
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Fig. 6.4 Evolution of the coherence
factor. No recurrences are visible due
to phase diffusion caused by random
atom number fluctuations between
the two condensates. This leads to a
global phase accumulation and hence
averaged interference picture shows
no recurrence of high contrast fringes
(inset). Figure adapted from [224].

As we stated above, because we designed the system to exhibit recurrent behavior on the
level of the low-energy description, not all observables return close to their initial value. This
can already be seen on the level of the effective field theory, since e.g. as presented in Fig. 6.4
the time evolution of the coherence factor ⟨cos(θr)⟩ shows no recurrence. It relaxes from its
finite value during the initial dephasing time to a value close to zero, where it remains for the
remainder of the evolution. This results from small atom number imbalances between the
two condensates. The particle number imbalance originates in the thermal fluctuations of the
initial state and possible imperfections of the experimental splitting process. This corresponds
to a fluctuating population of the k = 0 mode, described by the operator P̂. Note that even
at zero temperature quantum fluctuations lead to a finite spread of the particle imbalance as
otherwise the phase operator Q̂ diverges. The random nature of particle imbalance in the
experiment leads to a constant phase accumulation, or phase diffusion [100], that is different
for each realization. Therefore the coherence factor vanishes as the average is performed
over a phase with large global fluctuation. This is equivalent to the observation that, while
for each experimental realization interference pictures show a return of high contrast fringes,
an averaged interference picture shows no revival thereof due to the random spatial offset
caused by the accumulated global relative phase (see inset of Fig. 6.4). In contrast the
two-point phase correlation function C(1) is insensitive to a global offset of the phase field
and recurrences of excitations on top of the field can be observed.

6.4 Damping of recurrences

While the recurrences are clearly visible in the experiment and their origin and time trec

well described within the harmonic theory, the height of the recurrence rapidly decreases,
making the observation of a third recurrence infeasible for most experimental parameters.
As discussed in Section 5.6, finite temperature effects drive the system beyond the harmonic
approximation and lead to complete relaxation between the common and relative degrees of
freedom. For a quantitative comparison of the observed damping of recurrences we therefore
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focus our attention on the influence of finite temperature in the initial state, and analyze
the decay of recurrences for experimental measurements at different temperatures T in a
box potential with L = 49 µm. The tunneling coupling J is increased accordingly to have
comparable results with ⟨cos(θr)⟩ ≈ const.

From a theoretical point of view the damping of recurrences in our system can have
two distinct origins. First, even within the harmonic theory a perfect recurrence of phase
coherence back to its initial value is only expected within the TLL approximation for an
idealized box potential within the TF approximation. Any deformation of the quasiparticle
dispersion relation from this perfectly commensurate spectrum ωk = csk leads to a damping
of the recurrence height, as not all modes will perfectly rephase at the time trec. These are
purely mean-field effects that arise only due to the extension of the low-energy description to
energies ϵk > µ or through experimental imperfections. The dependence on temperature is
only indirect through the thermal occupation number of quasiparticle modes.

For the extension of the harmonic theory to the full Bogoliubov dispersion relation, the
particle like branch ωk = ℏk2/2m does not have the same commensurate structure as the
phononic part of the spectrum, and hence does not show recurrences for the time trec. Since
the high energy modes are free particle like excitations, their recurrence time is independent
of the bulk density and only determined by the system size and the atomic mass. However,
trec = 2mL2/ℏπ grows unfavorably with the system size and for the experimental L = 49 µm
box already shifts the recurrence of high energy modes to trec ≃ 2.1 s. Further, in the transition
regime between the phononic and particle like branch non-commensurate frequencies appear,
that shift the recurrence to exceedingly long time scales. However, the phase correlation
function C(1) is most sensitive to the long-wavelength modes described by the TLL and
hence the dephasing of these high-energy modes leads only to a minor constant offset for
the correlation function. In addition to this, considering the solutions on top of the exact
experimental density profile leads to a small deformation of the spectrum due to the inclusion
of the kinetic energy term and the finite wall steepness. These deformations are, however, on
length scales much smaller than the system size L and therefore do not strongly influence the
long-wavelength excitations dominating the observed recurrence.

The main source of damping within the harmonic theory is caused by the experimentally
fluctuating total atom number and particle imbalance between the two condensates. Both of
these effects cause a random shift in the speed of sound, which leads to a loss of coherence.
For the fluctuations in the total atom number this is merely a statistical effect. The shift
in cs is global which leads to a random shift in the position of the recurrence trec for each
experimental realization. The shape of the coherence function C(1)(z̄, t) near the recurrence is
a Gaussian and averaging over realizations with a random displacement of the recurrence
peak in time leads to a decrease of the recurrence height. Since the width of the recurrence, i.e.
the variance of the Gaussian function, decreases with temperature this effect becomes more
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pronounced for increasing T . Due to the difference in cs between the left and right condensate
the particle number imbalance, on the other hand, leads to a dephasing of quasiparticles in
each individual realization. We discussed in Section 2.2.1 that particle number imbalance,
i.e. µ1 , µ2, leads to a coupling of the common and relative degrees of freedom. Since,
however, the tunneling coupling J vanishes for t ≥ 0 the two condensates in the left/right
basis, decouple independent of the particle number imbalance. Since for a homogeneous
system the spatial dependence of the mode functions is independent of the density, we
can determine the time dependence of the quasiparticle operators in the relative degree of
freedom2

br(k, t) =
e−ic̄kt

√
2

[(cL

c̄

) 3
2

e−i(cL−c̄)kt bL(k) −
(cR

c̄

) 3
2

e−i(cR−c̄)kt bR(k)
]
. (6.7)

Here we inserted the modal expansion (2.21) of the left and right phase field in θr = θL − θR

and factored out the dependence on the mean speed of sound c̄s = c̄. For a balanced splitting
cL = cR = c̄ the time dependence inside the parentheses vanishes and the time evolution
reduces to a constant rotation, leading to perfect recurrence to the initial state. For imbalanced
condensates the time independent operators bL,R(k) accumulate a relative phase due to the
difference in cs, which leads to a decrease of coherence in the relative degree of freedom.
While for the typical experimental imbalance spread of ≈ 2% the effect is small on the
completely dephased state, its contribution cannot be neglected for the evolution of the
recurrence height. Note that this effect is generic in the grand canonical ensemble and will
always contribute to the damping of the recurrences.

The second contribution to the damping of recurrences is caused by the non-linear
dynamics of the system. While we find a stable recurrence on the level of the effective
field theory, the microscopic description of the system is at all times still determined by
the full non-linear equations of motion. Processes beyond the harmonic approximation
therefore drive the system towards thermal equilibrium. Quasi-particle interactions lead to an
irreversible loss of coherence in the system and inevitably lead to damping of the recurrence.
The dephasing of completely decoupled condensates having different temperatures for the
common and relative degrees of freedom was studied in [194, 211]. However, the theoretical
model, describing the loss of coherence in the relative phase through the dephasing of wave
packets caused by random fluctuations in speed of sound due to thermal fluctuations in the
common degrees of freedom, is only strictly applicable in the thermodynamic limit or for
sufficiently high energies. For our system the discretness of the spectrum is essential for the
observation of recurrences, and therefore the model provides only a rough order of magnitude
prediction for the damping of recurrences. We therefore compare the experiment to finite

2We concentrate here on the relevant phononic regime
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Fig. 6.5 Results of the finite temperature NPSE simulations taking into account the experi-
mental trapping potential and spread of parameters. a Time evolution of C(1)(z̄, t) for three
different effective temperatures Teff obtained through a thermal fit to the coherence function
in between the recurrences. The damping of the recurrence height with temperature is clearly
visible. b Time evolution for a cut through the phase correlation function at z̄c = 27.3 µm,
taking into account the experimental resolution of the imaging system. Red lines are the
result of a multi-Gauss fit to determine the recurrence height and position. The recurrence
times trec (green lines) are in good accordance with the theoretical TLL predictions for an
ideal box taking into account the transverse broadening of the wave function.

temperature numerical simulations of the full non-linear model for the exact experimental
trapping potential. We again rely on the SGPE formalism to produce the initial thermal
state of the strongly tunnel coupled system. To avoid the excitation of solitons during the
condensation process, which in this nearly homogeneous system drastically slow down the
approach to thermal equilibrium, we begin the evolution with a finite occupation of the
condensate obtained through imaginary time evolution. The system is afterwards evolved
with the Lagevin equation (4.29) until convergence to thermal equilibrium is reached. In the
experiment the splitting ramp is ≈ 1.9 ms, during which the system decouples on a much
shorter time scale, such that for the numerical simulations we consider an instantaneous
quench in the tunneling coupling J → 0, completely decoupling the two condensates3. At
the same time the contact to the heat bath is removed, such that, following the quench, the
unitary evolution for each condensate is determined by the NPSE (2.33). For a quantitative
comparison to the experiment, it is essential to include the additional statistical effects

3In the numerical simulations no significant differences were found for a finite splitting time when checked
for selected parameters.
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contributing to the damping of recurrences discussed above. The particle number imbalance,
due to the random nature of the SGPE evolution, is already included in the initial state and
agrees well with the experimental observation. We implement the experimental fluctuations
of the total atom number through a fluctuating chemical potential µ for each realization of the
SGPE. The total atom number N is sampled from a Gaussian distribution with experimentally
determined variance σN = 425 from which, in accordance with the experimental post
selection, the central 20% of the distribution are taken for the analysis. The results of the
numerical simulations for three different temperatures are shown in Fig. 6.5. In particular,
the recurrence times fit well with the harmonic prediction for all temperatures T , as long as a
recurrence can be detected.

The height of the correlation is measured as compared to the value of the correlation
function at the completely dephased state t = trec/2. We fit, in experiment and numerics alike,
a multi-peaked Gaussian

f (t) = Cbase +
∑
n≥1

C
(n)
fit exp

(
−

(t − n trec)2

2σ2
n

)
, (6.8)

to the temporal evolution of the correlation function C(1)(z̄c, t), at the fixed distance z̄c =

27.3 µm. Here Cbase is the base line correlation, averaged over the times in between re-
currences, C(n)

fit is the absolute height of the nth recurrence with width σn, and the sum is
performed over all detected recurrences showing increased correlations above the base line.
From this fit we define the recurrence height

H(n)
rec =

C
(n)
fit − Cbase

C(1)(z̄c, 0) − Cbase
, (6.9)

normalized to the access of correlations in the initial state. The measure is one for a perfect
recurrence back to the initial state and zero if no significant correlation above the base line
can be detected. For the theoretical phase profiles the finite imaging resolution has to be
taken into account by convolution with a Gaussian PSF with σPSF = 3 µm, since the measure
(6.9) is not independent of the resolution.

The experimental and theoretical results are compared for the same effective temperature
Teff, measured in between the recurrences. For the theoretical calculations Teff is extracted
from a thermal fit to the phase correlation function C(1)(z̄, trec/2) and is practically indistin-
guishable from the initial temperature of the gas prior to decoupling. In the experiment, due
to the limited resolution, the temperature is inferred from the full distribution function of
the measured contrast C of integrated interference patterns [233, 197, 234, 13, 200, 212].
Specifically, the FDFs of the normalized squared contrast C2/⟨C2⟩ for different integration
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Fig. 6.6 Temperature dependence of the recurrence height. The experimentally determined
recurrence height Hrec for the first (blue dots) and second (red dots) recurrence in a box of
length L = 49 µm for different effective temperatures Teff are in good agreement with the
NPSE simulations of the splitting process (solid lines). In both experiment and numerics,
the recurrence height is extracted with a multi-Gaussian fit to the phase correlation function
at z̄c = 27.3 µm and the effective temperature is determined at t = trec/2, in between the
recurrences. The shaded area indicates the uncertainty due to the limited experimental
statistics (1σ deviation). Comparison to the TLL predictions (dashed lines), taking into
account the experimental trapping potential and fluctuations in the parameters, reveals that
the damping of recurrences is dominated by processes beyond the harmonic approximation.
Figure adapted from [224].

lengths s are compared to results form simulated phase profiles of the TMF4 in a χ2 fit.
Notably, the temperatures of the dephased state are systematically higher than the initial
temperature determined through the longitudinal density speckle patterns forming in the
time-of-flight (TOF) expansion [235, 236]. This suggests that the experimental splitting
process adds additional energy, thus increasing the amount of fluctuations in the system.
Since an increasing temperature influences the damping of recurrences, we compare all
results (experiment and numerics alike) with respect to Teff determined after the splitting.

In Fig. 6.6 the temperature dependence of the recurrence height for the first and second
recurrence is presented for the experimental data and compared to the numerical results of the
SGPE and the exact solution within the harmonic theory. The latter is solved numerically (see
Appendix B) taking into account the exact mean-field density profile for the experimental
trapping potential as well as the spread in the total atom number and atom number imbalance.

4More precise the sampling is performed using the harmonic Ohrnstein-Uhlenbeck process.
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It is clearly visible that these effects alone cannot account for the experimentally observed
damping of the recurrence height. Therefore, already at comparatively low temperatures,
the system deviates from the integrable low-energy effective description and quasiparticle
interactions lead to the non-linear relaxation of the system towards thermal equilibrium.
As the temperature is increased these processes become more relevant leading to stronger
deviations between the harmonic theory and the experiment. This non-linear relaxation is
faithfully incorporated in the SGPE formalism, which shows very good agreement to the
experimental results over a wide range of temperatures. As expected from the semi-classical
approximation in the derivation of the SGPE equation, accordance to the experiment improves
for higher temperatures.

6.5 Summary

Through designing of the dispersion relation in the effective field theory we demonstrated in
this chapter that the observation of quantum recurrences becomes experimentally feasible for
many-body systems containing thousand of interacting particles.

Based on the immense complexity of the many-body state we argued in the first part, that
the experimental observation of recurrences is more suitably defined by a class of observables
accessible in experiments. By choosing the observables to reflect the collective degrees of
the underling effective field theory, we were able to observe the recurrence of long range
order in the evolution of two decoupled one-dimensional Bose gases, long after they have
reached an apparent prethermalized state. The experimentally observed recurrence time was
in good agreement with the theoretical predictions of the harmonic theory. Noticeably, the
radial swelling of the condensate had to be taken into account for an accurate description of
the experiment.

Recurrences provided a clear measurable signal during the long time evolution, which we
used to study the non-linear relaxation of the system. By comparison of the damping in the
recurrence height to numerical simulations of the harmonic and NPSE equations, taking into
account the experimental uncertainties and fluctuations, we were able to show that physics
beyond the low-energy effective description is non-negligible even for comparatively low
temperatures in the initial state. We found good agreement with the numerical simulations of
the NPSE, which confirms its validity in the far-from-equilibrium dynamics of Bose gases in
the dimensional crossover regime.



Chapter 7

Outlook

In this thesis we explored the relaxation of far-from-equilibrium quantum many-body systems
through a series of experiments on one-dimensional Bose gases. The topics presented spanned
a wide range of phenomena at the heart of the field of non-equilibrium dynamics. Our results
demonstrate for the first time various characteristic aspects predicted to emerge during the
relaxation of these systems.

In chapter 3 we studied the relaxation of a single Bose gas, which was quenched to the
one-dimensional regime by a rapid removal of transversally excited states. Following this
cooling quench we found that the system quickly enters a regime dominated by solitonic
excitations. While these defects could not be directly observed, we were able to determine
their presence through their characteristic impact on the momentum distribution [116, 182].
Based on a model of randomly distributed defects we were able to determine scaling of the
defect density with the experimental quench rate and found agreement with the predicted
scaling of the inhomogeneous Kibble-Zurek mechanism [165, 77]. Since for the quench rates
considered the applicability of the Kibble-Zurek arguments are not strictly fulfilled, our results
reveal the preservation of scaling for defect nucleation beyond the Kibble-Zurek regime to
strongly quenched far-from-equilibrium systems. Based on the determined increase in the
defect density, we explained the observed scaling of the width of the density and momentum
distributions, as well as the observed damping of the breathing excitation. Further we found
a transition from frequency-doubling to no-doubling for the oscillation of the momentum
distribution in a far-from equilibrium system, neither connected to the transition to the ideal
gas regime nor the predicted transition in the quasi-condensate regime [178].

We subsequently studied the long time relaxation dynamics following a strong cooling
quench and found that the system, before relaxing to a thermal state, shows universal scaling
dynamics far from equilibrium [40–42, 52, 50]. During this time period we found the
evolution of the system, independent of the initial conditions, to be determined by a single
universal scaling exponent and function. We connected the presence of this scaling solution
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to an emergent conserved quantity, the particle number in the infrared, and its transport to
lower wave numbers. Within the model of solitonic defects, we connected the universal
scaling dynamics to a dilution of the defect ensemble following a power-law in time. The
direct observation of the approach of such a non-thermal fixed point during the relaxation of
a far-from-equilibrium quantum many body system constitutes an important step towards
the classification of universal behavior far-from-equilibrium, similar to the results of [59]
in thermal equilibrium. In this context it is important to note that the observed scaling
exponent can not be explained by current theoretical predictions [50, 52], and further studies
are necessary to determine the nature of the observed fixed point. Whether an explanation
based on the dynamics of solitonic defects, similar to the connection of non-thermal fixed
points and vortices in higher dimensions [43–49], or the continuity of scaling exponents
based on effective dimensions within the dimensional-crossover during the approach of the
one-dimensional regime, where current understanding predicts vanishing exponents [50]
based on the integrability of the model, our findings further the understanding of universal
dynamics far-from-equilibrium. The observation of universal dynamics with statistically
significant non-zero scaling exponents α and β in general is an important step towards the
discovery of new non-equilibrium universality classes.

In chapter 4 we examined the equilibrium and near-equilibrium properties of two linearly
coupled quantum wires, experimentally realized through a Bose gas in a double-well potential.
Through a detailed study of the factorization properties of higher-order correlations we were
able to prove that the the relative phase between the two condensates is in thermal equilibrium
described by the sine-Gordon model. Analyzing the validity of an effective field theory
order by order through the factorization properties of higher-order correlations, presents a
statistically significant and unbiased method to determine the relevance or irrelevance of
operators [83, 11] and the verification of future quantum simulators [193]. The measurement
and evaluation of higher-order correlation functions can easily be generalized to other
systems and experimental techniques, e.g. single site detection in optical lattices or generic
observables like density, spin, or magnetization. It is further not limited to the quantum
regime and can e.g. be transferred to study the onset of non-linear dynamics in classical fluid
systems.

We extended the analysis of higher-order correlations to near-equilibrium states. Ex-
perimentally, by changing the speed with which the gas was cooled into the double well,
non-equilibrium states were found to deviate strongly from the sine-Gordon predictions.
Based on the full distribution functions of unbound phase differences we found solitons
to be present in the system. Based on simulation of the condensation dynamics using the
stochastic Gross-Piteavskii equation we validated the excitation of these topological de-
fects during the initial growth of the condensate. While a strong non-thermal distribution
of solitons was found, we showed that fluctuations around these defects thermalized on a
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much shorter timescale. This allowed us to determine the near-equilibrium correlations in a
model of statistically independent, randomly distributed solitons in a thermal background, for
which we found good agreement to the numerical as well as experimental non-equilibrium
data. The topological nature of these defects makes the system ideal for future study of the
Kibble-Zurek mechanism.

Further we see our results as a crucial step towards the solution of many-body prob-
lems via experiments. We showed explicitly that in the case of complete factorization of
higher-order correlations one has found the diagonalizing degrees of freedom, effectively
solving the many-body problem. In a next step this can be extended to determine the one-
particle irreducible correlations, which are fundamental in the theoretical study of quantum
and statistical field theory [83]. This would ultimately allow to determine the full (equal-
time) quantum effective action [237–239], with the exact, possibly momentum dependent,
couplings determined directly through experimental measurements.

In the remaining chapters we concentrated on the dynamics following a rapid decoupling
and subsequent relaxation of two strongly phase correlated condensates. Their low-energy
effective description, the integrable Tomonaga Luttinger-Liquid model, enabled us to study
fundamental principles of statistical physics and their connection to the unitary time evolution
of near-integrable quantum-many body systems. In chapter 5 the far-from-equilibrium initial
state was prepared by coherently splitting a single condensate into two halves. By changing
the experimental splitting protocol, we extended the previous results of the relaxation of
the system to a prethermalized state [13, 212, 14, 38, 135, 34–37] and showed that in
the most general case the non-thermal steady state is described by a generalized Gibbs
ensemble dependent on multiple parameters [15]. Our results are the first direct observation
of such a generalized statistical ensemble and provide further evidence for the principle
of entropy maximization [9, 10]. Based on the common model of local binomial splitting
of the condensate we presented a detailed calculation of the relaxation dynamics in the
integrable low-energy effective theory. Our main focus was on the harmonically trapped gas,
where we extended previous calculations [208] and revealed the relevance of off-diagonal
quasiparticle correlations in the systems evolution. This resolved the apparent problems of
the approach to the thermodynamic limit through the emergence of new conserved quantities
through the dephasing of off-diagonal quasiparticle correlations. Based on a reconstruction
of the initial state from the experimentally measured correlations, we discussed the problems
associated with these off-diagonal correlations arising in a self consistent analysis of the
systems dynamics within the low-energy description. Through numerical simulations at
finite temperature we demonstrated how the intricate interplay of non-linear relaxation
[209, 210, 194, 211] and off-diagonal quasiparticle rephasing can lead to a prethermalization
plateau, defined through dynamically emerging quasi-conserved quantities. Our results
demonstrate the difficulties in achieving a full state tomography for inhomogeneous finite
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size systems and reveal the need for the development of new, exact simulation techniques
capable of simulating the full experimental splitting process in a self consistent way. Further
studies are needed to determine whether the experimentally observed relaxation dynamics
are indeed determined by the integrable model or if integrability-breaking contributions to
the Hamiltonian lead to a more complex structure for the observed non-thermal quasi-steady
state, determined by emergent conserved quantities during the evolution. We therefore see
our observations as a benchmark for future simulations.

In chapter 6 we demonstrated that by designing the spectrum of the low-energy effective
theory describing the system, it is possible to measure quantum recurrences in an interacting
many-body system containing thousands of particles. This is a striking demonstration of
unitary dynamics and demonstrates the detailed knowledge of the initial conditions that
can still be present in the system, but are hidden through the dephasing of eigenstates. The
recurrence of long-range order in the system provided a clearly measurable signal during the
long time evolution. This enabled us to show that already for moderate temperatures physics
beyond the integrable low-energy theory can not be neglected. By splitting the condensate
from an initial thermal state in a strongly tunnel coupled double-well potential, a direct
comparison to semi-classical field simulations was found to be a good description of the
relaxation dynamics. This confirmed the applicability of the non-polynomial Schrödinger
equation [128] for the relaxation of far-from-equilibrium one dimensional Bose gases, and
further strengthens the results obtained in chapter 5. Future studies of the combined analysis
of recurrences and mode occupations will shed light into the fundamental relaxation processes
of one-dimensional Bose gases and the influence of integrability breaking contributions. In
connection to chapter 4 the study of recurrences of higher-order correlations show great
potential in determining the underlying structure of complex many-body Hamiltonians [240],
the validity of approximate models [160], and the verification of coherence in quantum
simulators [193].

Our results clearly demonstrate the great success and future opportunities cold-atom
systems offer in the search for an answer to the fundamental guiding principles of far-from-
equilibrium quantum many-body dynamics, which is an open, interesting, and important
problem for systems on all scales.



Appendix A

Additional Results of Chapter 3

Here we present additional results of the scaling analysis presented in Section 3.3, performed
separately for each of the three different initial conditions.

a b c

Fig. A.1 Likelihood function of the scaling analysis for different initial conditions. a,b,c
correspond to the experimental realizations 1, 2, 3 of Fig. 3.10
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a

c

b

Fig. A.2 Scaling evolution of the momentum distribution for the different initial conditions.
a,b,c correspond to the experimental realizations 1, 2, 3 of Fig. 3.10
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a

c

b

Fig. A.3 Dependence of the scaling exponents on the reference time t0 for different initial
conditions. a,b,c correspond to the experimental realizations 1, 2, 3 of Fig. 3.10

a b c

Fig. A.4 Time evolution of global quantities N̄ and M̄2 for different initial conditions. a,b,c
correspond to the experimental realizations 1, 2, 3 of Fig. 3.10. The solid black lines are the
predictions according to the determined scaling exponents δαβ and β for each experimental
realization.





Appendix B

Numerical techniques

Here we give details and practical information on the numerical implementation of the
discussed simulations. A large part of this thesis was the development of a classical field
library for the simulation of the semi-classical field equations for a single, and two linearly
coupled Bose gases.

Based on the close collaboration with experimental physicists, all units in this thesis were
given in the international system of units (SI-units). This has during the course of this work
also proven to be the most accessible unit system for the input of parameters. Internally,
during the solution of the field equations, the classical field equation is brought into a
dimensionless form by use of a complete set of dimension-full quantities {aG,m, ℏ, kB}. The
grid spacing aG is hereby the only free adjustable dimension-full parameter and determines
the energy cutoff of the numerical simulation. The time spacing is conveniently chosen as
ωG = ℏ/ma2

G which sets the numerical factor for the kinetic energy to a constant 1/2.
The system of linearly coupled quantum wires can be efficiently numerically integrated

with the Fourier-Spectral-Split-Step method. Therefore, the Hamiltonian H = T + V is split
into the kinetic T and potential V contributions, diagonal in the Fourier and spatial basis
respectively. This allows for a fast numerical implementation based on the operator splitting
method

ψ(z, t + ∆t) = e−iH∆tψ(z, t)

= e−i(T+V)∆tψ(z, t)

= e−iT ∆t
2 e−iV∆te−iT ∆t

2 ψ(z, t) + O(∆t3) , (B.1)

where in the last line the Baker-Campbell-Hausdorff formula is used to separate the kinetic
and potential operators. Since the kinetic operator is diagonal in the Fourier basis and the
operator V is diagonal in real space, fast solution of the equation is possible by use of the
Fast Fourier Transform. Thereby, in between each operation one changes from Fourier to
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real space (and back) where the respective operators reduce to a simple multiplication. Since
this algorithm is based on spectral methods and not on discrete derivatives, it is numerically
very stable and further exactly conserves the norm of the wave function (i.e. the particle
number). In case of coupled condensates, the hopping term J can be efficiently implemented
by absorption in the kinetic energy term T . Since this is a static operator the non-diagonal
matrix exponential, in the left right field basis, only has to be calculated once during the
evolution. The SGPE introduces an additional noise term to the equations of motion but can
be implemented in the same way [119]. The code in the course of this thesis was developed
in C using the fftw3 [241], GSL [242], and HDF5 [243] libraries. The code is parallelized
for multicore architectures with openMP [244]. Apart from the mentioned libraries this code
was completely written during the course of my doctoral studies. It has not made public yet,
but will most likely be made available including the graphical interface written for ease of
use. The code can be obtained upon personal communication and reasonable request.

The simulation parameters are chosen in accordance with the experimental parameters
and are given in the main text. Depending on the experimental parameters the numerical
gridsize was between 211 . . . 214 gridpoints with a gridspacing of aG = 0.01 . . . 0.5. For all
presented data independence of the gridcutoff on the numerical results was tested.

Exact Solution in the Harmonic Approximation

Credit for the idea of solving the harmonic theory in the following way goes to Thomas
Schweigler. The algorithm is as follows: We consider the spatially discretized system, where
φ and δρ are vectors of the discrete lattice model used to approximate the continuous quantum
field theory. Since density and phase fluctuations are completely decoupled the density matrix
for a thermal state can be written in matrix form as

ρ =
1
Z

exp
[
−βH

]
=

1
Z

exp
−β (

φ δρ
)T

K 0
0 L

  φ
δρ

 , (B.2)

where β = 1/kBT is the inverse temperature, Z = Tr
[
exp(−βH)

]
is the partition function, and

K, L are matrices defined by the discretization of the Hamiltonian H. The density matrix
is given by a Gaussian multivariate distribution and density and phase variances can be
numerically determined in the classical field approximation by inverting the matrices K and
L. As off-diagonal elements are zero, correlations between the density and phase fluctuations
vanish identically. The subsequent time evolution can be readily calculated for this exactly
solvable model. The major advantage is the stability of this method for inhomogeneous
condensates, for which a direct numerical diagonalization of the Bogoliubov equations is far
more time consuming. The mean field density profile is obtained through imaginary time
evolution.
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