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Abstract/Kurzfassung

Abstract
This thesis reports the first observation of the decays Λ0

b → Λ
+
c D0K− and Λ0

b → Λ
+
c D∗(2007)0K− using

data corresponding to an integrated luminosity of 3 fb−1 collected at 7 and 8TeV center-of-mass energies
in proton-proton collisions with the LHCb detector. A future amplitude analysis of these Λ0

b decays
allows to search the Λ+c D(∗)0 system for resonant contributions from P+c pentaquarks. Two of which
have been discovered in 2015 by the LHCb experiment in the J/ψp system. Observing P+c pentaquarks
in the Λ+c D(∗)0 system would allow for further insight to the nature of these resonances.

In addition, the measurement of the Λ0
b→ Λ

+
c D0K− and Λ0

b→ Λ
+
c D∗(2007)0K− branching fractions

relative to the decay Λ0
b→ Λ

+
c D−s is made, resulting in

B(Λ0
b→ Λ

+
c D0K−)

B(Λ0
b→ Λ+c D−s )

= (14.04± 0.58± 0.33± 0.45) %

B(Λ0
b→ Λ

+
c D0∗(2007)0K−)

B(Λ0
b→ Λ+c D−s )

=
�

43.5± 1.4+1.2
−0.8 ± 1.4

�

% .

The first uncertainty is statistical, the second systematic and the third is due to the knowledge of the
branching fractions of D−s → K−K+π− and D0→ K+π−. It is shown that the obtained result agrees with
previously measured B→ DD(∗)0K− branching fractions, as expected from the lowest order approxima-
tion of QCD factorisation.

The developed methods are integral components of the future amplitude analysis ofΛ0
b→ Λ

+
c D(∗)0K−.

These and further algorithms presented here were developed in a modularised way to be applied to a
variety of analyses at LHCb, in particular pentaquark searches.

Kurzfassung
Diese Arbeit dokumentiert die erste Endeckung der Zerfälle Λ0

b→ Λ
+
c D0K− und Λ0

b→ Λ
+
c D∗(2007)0K−

unter Verwendung von Daten die mithilfe des LHCb Detektors bei Schwerpunktsenergien von 7 und
8 TeV in proton-proton Kollisionen aufgezeichnet wurden und einer integrierten Luminosität von 3 fb−1

entsprechen. Eine zukünftige Amplitudenanalyse dieser Zerfälle erlaubt die Untersuchung des Λ+c D(∗)0

Systems auf resonante Beiträge von P+c Pentaquarks. Zwei solcher Resonanzen wurden 2015 beim LHCb
Experiment im J/ψp System entdeckt. Eine mögliche Beobachtung der P+c Pentaquarks im Λ+c D(∗)0

System erlaubt Rückschlüsse auf die Natur dieser Resonanzen.
Zusätzlich wurden die Λ0

b→ Λ
+
c D0K− und Λ0

b→ Λ
+
c D∗(2007)0K− Verzweigungsverhältnisse relativ

zum Zerfall Λ0
b→ Λ

+
c D−s gemessen. Diese betragen

B(Λ0
b→ Λ

+
c D0K−)

B(Λ0
b→ Λ+c D−s )

= (14.04± 0.58± 0.33± 0.45) %

B(Λ0
b→ Λ

+
c D0∗(2007)0K−)

B(Λ0
b→ Λ+c D−s )

=
�

43.5± 1.4+1.2
−0.8 ± 1.4

�

% ,

wobei die erste Unsicherheit statistisch, die zweite systematisch und die dritte aufgrund der gemessenen
Unsicherheiten der D−s → K−K+π− und D0→ K+π− Verzweigungsverhältnisse ist. Die Messung stimmt
mit bereits gemessenen B→ DD(∗)0K− Verzweigungsverhältnissen überein, wie von QCD-Faktorisierung
in niedrigster Ordnung erwartet.

Die hier entwickelten Methoden zur Signalselektion und Effizienzkorrektur sind ein integraler Be-
standteil der Λ0

b → Λ+c D(∗)0K− Amplitudenanalyse. Diese und weitere der hier vorgestellten Algorith-
men wurden modular entwickelt und sind auf andere Analysen in LHCb übertragbar, insbesondere
Pentaquark-Suchen.
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Introduction

Introduction
Protons and neutrons can be thought of as consisting of three quarks, bound by the strong interaction.
Such strongly interacting particles are called hadrons, which the quark model allowed to classify into
baryons, such as protons and neutrons, and mesons, which are bound states of quark- and antiquark.
However, further combinations like a system made of four quarks and one antiquark were anticipated,
known today as pentaquark. Pentaquarks have a loaded history with inconclusive experimental hints
from the 70s and 80s, hyped evidence from about a dozen experiments in the 2000s which were then
overwhelmed by contradicting findings, leaving strong scepticism about the existence of pentaquarks.
That scepticism dictated a cautious analysis of an unusual structure in Λ0

b→ J/ψpK− decays1 observed
by the LHCb experiment during a Λ0

b mass measurement. It turned out that the structure is due to two
pentaquark-resonances, named P+c (4380) and P+c (4450), in the subsystem of J/ψ (cc) and p (uud).

Former studies of the cc system already established another type of hadron that differed from mesons
and baryons, called tetraquark and made of two quarks and two antiquarks. Both, tetra- and pen-
taquarks, allow to probe the quark model and the underlying theory of strong interactions from a new
perspective, since their production, decay and binding mechanism is expected to differ from that of
conventional hadrons. Yet all hadrons eventually have to be described in a coherent framework that
allows to project the phenomenological picture to the fundamental theory of QCD.

The LHCb experiment provides a unique dataset for hadron spectroscopy, in particular pentaquarks.
The discovered P+c (ccuud) pentaquarks are expected to decay to Λ+c (cud) D(∗)0 (uc) as well, but the
nature of their binding will affect the decay rate to this system. The Λ+c D(∗)0 system can be studied in
Λ0

b→ Λ
+
c D(∗)0K− decays, providing access to the full kinematic information. It is thus an important step

to discover the Λ0
b→ Λ

+
c D(∗)0K− decay, and establish methods for selection and efficiency correction for

a subsequent amplitude analysis.
This step, together with a measurement of the Λ0

b → Λ+c D(∗)0K− branching fraction relative to the
known Λ0

b→ Λ
+
c D−s decay is presented here. The branching fraction is of interest in its own right, since

the comparison to B→ DD(∗)0K− branching fractions allows to probe the lowest order approximation of
QCD factorisation. Further, the branching fraction contributes to the total inclusive b→ ccs rate, which
is an important ingredient in model-independent searches for physics beyond the standard model in
B meson decays. On the experimental side, their high yield suggests their presence as background in
other b-hadron decays, which can be estimated with the branching fraction measurement. The decay
Λ0

b → Λ+c D(∗)0K− and the reference Λ0
b → Λ+c D−s decay are reconstructed with the same final state

particles. This choice ensures that many systematic uncertainties cancel, in particular in the correction
for efficiencies due to reconstruction and selection.

This thesis is structured as follows: The first section introduces basic concepts of QCD, assess and
motives pentaquark searches. The LHCb experiment is subject to the second section, introducing the
detector components and outlining the flow from raw data to data for offline analyses. The analysis
strategy is defined in section three, followed by a discussion on software development tools and sta-
tistical methods. Section five describes the development and calibration of classification variables for
non-prompt Λ+c , D0 and D+s hadrons. The selection of Λ0

b → Λ+c D(∗)0K− and Λ0
b → Λ+c D−s decays and

fits to their invariant mass spectra follow. The fits are used for statistical unfolding of the signal com-
ponents, which are input to the efficiency correction detailed in section eight. Systematic uncertainties
are assessed in section nine; all of which are combined to the results of section ten and subject to a
closing discussion.

An additional bibliography for referencing online documentation and code is used. Such references
begin with a C. Further, some of the references are internal to LHCb members. These begin with an I.

1The use of charge conjugation and natural units (ħh= c = 1) is implied unless otherwise stated.
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1 Motivation and theoretical background

1 Motivation and theoretical background
This section starts with a “folkloristic”1 view of the standard model of particle physics with a focus on the
quark model. A more formal view on the topic is presented afterwards. The section closes by discussing
exotic hadron spectroscopy and its impact on the understanding of quantum chromodynamics (QCD).

1.1 Historical introduction
A cornerstone of hadron physics was set in 1909 by Rutherford, Geiger and Mardsen, who conducted
scattering experiments of α particles incident on gold-foil to discover the nuclear structure within
atoms [2]. That nuclei themselves are composite objects was determined in 1917 using the nuclear reac-
tion of pure Nitrogen with α-particles, where Rutherford found hydrogen-like particles. He postulated
that the hydrogen nucleus is a fundamental particle [3], today known as proton (p). To compensate for
the electric repulsion force of protons in nuclei neutrons (n) were hypothesised.

The existence of neutrons was established by Chadwick in 1932 [4], who re-examined and re-
interpreted the known reaction of Beryllium with α-particles. Shortly after, Heisenberg proposed a
new quantum number to explain the observed symmetries between protons and neutrons, like their
mass and interaction strength [5]. This was termed isospin, which marked an important step towards
the quark model.

Until this point, only ordinary matter was experimentally established, and the antimatter solutions
that emerged from the Dirac-equation were considered a theoretical artifact [6]. Surprisingly, antimatter
could be observed in a cloud chamber experiment which detected cosmic rays in 1932. The antimatter
particles left an ionisation trail with a curvature matching the mass to charge ratio of an electron, but
which deflected in the opposite direction [7]. Consequently, antiprotons (p) and antineutrons (n) were
anticipated. It took another 20 years, until they were discovered in fixed target experiments at the
Bevatron – one of the first proton synchrotrons [8, 9].

Another postulated particle was similarly approached with scepticism; the (electron) neutrino (νe).
Pauli postulated its existence in 1930 to solve the conundrum of the radioactive beta decay. In that decay,
the energy spectrum of the electron, emitted by a decaying neutron, is measured to be continuous. This
stood in contrast to the expectation of a two body decay to the visible system of proton and electron.
However, the neutrino, which Pauli claimed to be undetectable, was discovered in a reactor experiment
in 1956; antineutrinos from beta-decays scattered off protons to produce neutrons and positrons [10].

Even though nuclear matter had been established, little was known about the interaction of protons
and neutrons. In a model formulated by Yukawa in 1935, internuclear interactions are described by
the exchange of massive bosons, known as mesons [11]. The first particles consistent with Yukawas
description were discovered in 1947 in cosmic radiation [12]; those were the charged pions (π±).

This set of hadrons and leptons could have completed the picture of (elementary) particle physics,
but there were unforeseen discoveries in the meantime. First, the muon (µ) had been discovered in cos-
mic radiation in 1936 [13]. Because of its mass, it was thought to be the meson predicted by Yukawa,
But later studies with “µ-mesons” showed that they did not interact via the (strong) nuclear force. A
different approach to probe Yukawa’s theory was to study nuclear interaction at short distances, i.e.
higher energies. The attraction between nucleons was larger than expected, which led to the prediction
of further mesons: an iso-scalar scalar( f0(500))2 and iso-scalar and iso-vector vector mesons (ω and
ρ±,0). The zoo of elementary particle began to grow further with the observation of unstable particles.

1That term, and the general idea of the historical introduction, are taken from Ref. [1].
2The nature of the f0(500) (or σ) is still elusive, see e.g. the review on scalar mesons in [14] and references therein.

1



1 Motivation and theoretical background

These were identified by their V-shaped (Λ or K0
S
) or kinked (K±) decay patterns in cloud chamber pho-

tographies [15, 16]. Further studies have shown that these particles were produced in pairs following
certain rules: e.g. a Λ was produced together with a K+, but never with a K−. To explain this behaviour,
a new quantum number was introduced, termed strangeness. Strangeness is conserved in the produc-
tion processes of the strong interaction, but violated in the weak decay. It was realised that such weak
processes are similar to β-decays, where isospin and parity conservation is violated.

More discoveries followed, namely an iso-quadruplet originating from πN interactions, known as
∆-resonances, a strange iso-triplet, known as Σ-baryons, and a doubly strange iso-doublet, known as Ξ-
baryons along with excitations of these states. The number of elementary particles appeared to explode,
as shown in Fig. 1.1. In attempts to find a scheme for all the particles, the ancient concept of elementary
particles eventually led to a breakthrough. In a first model, Sakata extended the isospin formalism by
strangeness, such that the proton, neutron and Λ appeared as building blocks of matter [17]. Five years
later, in 1961, Gell-Mann and independently Ne’eman recycled the ideas of Sakata and formulated an
abstract approach where elementary baryons and mesons did not exist [18, 19]. In his paper, Gell-
Mann established the term “eightfold way” for the group theoretical octet representation of baryons,
along with the term gluon to describe the coupling of the strong force. In addition, he anticipated the
existence of the Ω− baryon – a particle with strangeness −3 and a mass ∼ 1685 MeV which was needed
to complete the spin 3/2 decuplet of baryons [20].

That missing piece, the Ω−, was discovered in 1964 [22]. However, the question why baryons and
mesons fit into the multiplets of the “eightfold way” had still not been answered. From the perspective of
group theory, the fundamental representation of the observed multiplets is a unitary triplet (3). Hence,
Gell-Mann and Zweig independently postulated three new particles: quarks or aces [23, 24, 25].

Despite the elegant description of hadrons by the quark model, the existence of quarks was doubted
by many physicists until the mid 1970s. One objection was that individual isolated quarks could not
be discovered, a phenomenon known as the confinement. The consequences of confinement are now
well understood, but its origin remains elusive (for a comprehensive summary, see Ref. [26]). A second
problem was identified in the “edges” of the baryon decuplet, which seemingly violated the Pauli exclu-
sion principle. To solve this, Greenberg proposed colour charge [27], initially perceived as a technical
sleight.

Figure 1.1: Number of particles considered elementary through time. Taken from Ref. [21] with modifications.
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1.1 Historical introduction

During this time of uncertainty regarding the quark model, high energy experiments at the Stanford
Linear Accelerator Center (SLAC) indicated that protons have substructure [28, 29]. This substructure
has been described by the parton model [30, 31, 32], which avoided to introduce any hypothesis about
the nature of the constituents, e.g. that they are quarks. This was further motivated by the measured fact
that electrically charged partons only contribute about half of the total fraction of the proton momen-
tum. This meant that the remaining half is carried by neutral constituents, and was first circumstantial
evidence for gluons. About ten years later, gluons were established by the observation of exclusive
planar three-jet events in electron-positron collisions at all four experiments of the PETRA electron-
positron collider at DESY [33, 34, 35, 36]. A Feynman diagram and event display of such a process is
shown in Fig. 1.2. Today, quarks and gluons have been identified as the constituents that were found
in experiments by the principle of asymptotic freedom [37, 38].

Even before the discovery of the gluon the quark model had been successfully used to predict a
fourth type of quark, called charm quark. It was needed to explain the observed suppression of flavour-
changing neutral currents in loop diagrams, called the GIM mechanism [40]. Experimental confirmation
came with the discovery of the J/ψ meson in 1974 [41, 42]. The quark model was thus commonly
accepted going forward.

A third generation of quarks was first proposed in 1973 (before the J/ψ discovery). The concept
was one of a few possible solutions by Kobayashi and Maskawa [43] who extended the GIM mechanism
to explain the observed CP violation in kaon decays [44]. Only two years later, in 1975, observation of
the τ lepton [45] marked the first sighting of a member of the third generation of elementary particles.

Just another two years later, owing to ever larger collider experiments, particles consisting of a
third generation down-type quarks, named bottom or beauty (b) quarks, were discovered [46]. The
up-type equivalent, the top quark (t) and the missing τ-neutrino (ντ), were expected to be just around
the corner, but it took more than 20 years to complete the family: with the top quark discovery in
1995 [47, 48] and the first observation of ντ interactions in 2000 [49]. It is known today that there
are three, and only three, light generations of particles due to precision measurements on the Z boson
resonance [50].

Figure 1.2: A leading order Feynman diagram of gluon bremsstrahlung (left), which is experimentally seen as a planar
three-jet event. Such an event is shown in an event display from the JADE experiment (right). Taken from Ref. [39]
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1 Motivation and theoretical background

The Z boson, together with the W± bosons, are the mediators of the weak interaction. They were
discovered in 1983 at the UA1 and UA2 experiments of the proton-antiproton collider at CERN [51,
52, 53, 54]. The UA1 and UA2 experiments were designed for this discovery, since properties of W±

and Z were firmly predicted by a unified theory of electromagnetic and weak interactions. The theory
developed from the attempt to write down a self-consistent gauge theory for weak interactions, in
analogy with quantum electrodynamics (QED). It was realised that this is only possible if the theory
includes QED [55, 56, 57].

Due to the short range of weak interactions, the weak exchange bosons were expected to be massive.
Thus, a unified electroweak theory required a mechanism such that the bosons acquired mass and the
photon remained massless, a mechanism now known as electroweak symmetry breaking [58, 59, 60].
This involves an additional interaction with a new fundamental scalar particle known as the Higgs boson
(H0). The long anticipated discovery of the Higgs boson was announced in 2012 by the ATLAS and CMS
collaborations at the Large Hadron Collider (LHC) experiment at CERN [61, 62].

The mechanism of electroweak symmetry breaking allows for Yukawa-like couplings of chiral fermion-
antifermion pairs to the Higgs field. This coupling gives mass to elementary fermions. However, ele-
mentary quarks are confined in hadrons, and there is another mechanism that drives the generation of
mass at low energies. That mechanism is known since the early 1960s and is at the core of QCD. It is
known as the dynamical chiral symmetry breaking (DCSB) [63, 64, 65, 66]. As a consequence almost
all of the mass in the visible universe, that is, light baryonic matter – protons and neutrons – does not
originate from the coupling to the Higgs field. DCSB is a nonperturbative feature of QCD, generating
mass from nothing, i.e. from QCD itself. Still, QCD is linked to the Higgs sector by the fact that pions
have mass. The pion would be massless in the absence of a mechanism that can generate a current-mass
for at least one light-quark, as e.g. explained in Ref. [67]. In the following, the underlying theoretical
framework of QCD is sketched out.

1.2 QCD and the quark model
QCD shall briefly be introduced in a more formal setting. Its Lagrangian is derived from Yang-Mills
theory, a gauge theory with a non-Abelian symmetry group. Fundamental degrees of freedom of the
QCD Lagrangian are identified and phenomenological concepts are outlined. As an example of the
latter, flavour symmetry is discussed which allows to group hadrons into flavour-multiplets. Such phe-
nomenological tools provide a basic formalism in the description of (exotic) hadrons.

1.2.1 Yang-Mills theory
In 1954, Yang and Mills formulated a gauge theory based on the non-Abelian SU(2) isospin-symmetry
group to explain strong interactions [68]. The formalism can be extended to any compact semi-simple
Lie group, such as SU(N). The theory describes transformation properties of field operators as follows:
let {φr(x)|r = 1, ... f } be a set field operators, denoted as f -dimensional vector φ(x), which transforms
under a N2 − 1-dimensional gauge group SU(N) like

φ(x)→ exp



i
N2−1
∑

a=1

θ a(x)Ta



φ(x) , (1.1)

with the generators of the gauge group Ta. Note that the gauge shift θ a(x) in a local symmetry depends
on space-time, which is not the case in global symmetries. In order to construct a gauge invariant

4



1.2 QCD and the quark model

Lagrangian, the derivatives of the field operators must transform like the field operators themselves.
Using Einstein-summation convention henceforth, the gauge covariant derivative transforms like

Dµφ(x)→ exp [iθ a(x)Ta]
�

Dµφ(x)
�

. (1.2)

It is known from differential geometry that this condition is fulfilled by

Dµφ(x) =
�

∂µ + i gAa
µ(x)Ta

�

φ(x) . (1.3)

Thus the condition of local gauge invariance of the Lagrangian naturally introduces a coupling of φ(x)
to Aµ(x) with strength g and N2 − 1 gauge vector fields Aa

µ(x), whose quanta are the gauge bosons of
the theory. These gauge fields transform like

Aa
µ(x)Ta→ Aa

µ(x)
�

eiθ b(x)Tb Tae−iθ b(x)Tb
�

+
i
g

�

∂µeiθ b(x)Tb
�

e−iθ b(x)Tb . (1.4)

To arrive at a locally gauge invariant Lagrangian, the gauge fields are set in relation to the field strength
tensor F a

µν(x). In a Yang-Mills theory, the field strength tensor is defined by the commutator of the
gauge covariant derivatives

�

Dµ,Dν
�

= −i gTaF a
µν(x) . (1.5)

To solve this equation for F a
µν(x), the property

[Ta, Tb] = i fab
c Tc (1.6)

of the Lie-algebra is used, where fab
c are the groups structure constants. With the help of Eq. (1.3), the

field strength tensor is written as

F a
µν(x) = ∂µAa

ν(x)− ∂νA
a
µ(x) + g f a

bcA
b
µ(x)A

c
ν(x) . (1.7)

It transforms as a gauge vector – is thereby no observable quantity – but the product is the demanded
gauge invariant quantity known as the gauge field Lagrangian:

Lgf(x) = −
1
4

Fµνa (x)F
a
µν(x) . (1.8)

In the presence of a Dirac field φ(x) the Lagrangian is given by

L (x) =Lgf(x) +L0(x) =Lgf(x) +φ(x) (i /D −M)φ(x) , (1.9)

i.e. the gauge field Lagrangian plus the Lagrangian for a free Dirac fermion. In Eq. (1.9)φ(x) = φ†(x)γ0

is the Pauli adjoint spinor and Dµ is the gauge covariant derivative, using the Feynman slash notation
/D = γµDµ. The derivation so far is valid for any N2 − 1-dimensional gauge group SU(N). QCD will be
discussed the following.

1.2.2 QCD in the context of a Yang-Mills theory
QCD is described by a Yang-Mills theory with an underlying SU(3)c colour charge group. Experiments
verified the colour charge hypothesis and determined that the number of colours is Nc = 3. The only
compact semi-simple Lie group having 3-dimensional irreducible real and complex representations is
SU(3). The complex representations are needed to account for anticolour, carried by antiquarks and
gluons.

5



1 Motivation and theoretical background

By applying the SU(3)c colour charge group of QCD to the Lagrangian of Yang-Mills theory, Eq. (1.9),
the Lagrangian of QCD can be written as

LQCD(x) =−
1
4

�

∂µGa
ν(x)− ∂νGa

µ(x)
�

�

∂ µGνa (x)− ∂
νGµa (x)

�

+ qαf
�

i /∂ −M f

�

qαf

+ gsq
α
f /G

a(x)
�

λa

2

�

αβ
qβf

+
gs

2
fa

bc
�

∂µGa
ν(x)− ∂νGa

µ(x)
�

Gµb (x)G
ν
c (x)

−
g2

s

4
f abe fcdeGµa (x)G

ν
b(x)A

c
µ(x)G

d
ν(x) .

(1.10)

Here, α,β are the colour indices, a are the 8 gauge field indices, q f denotes a quark field of flavour f and
µ, ν the Dirac indices. Those were omitted on the fermion spinors for readability. Further, a notation is
chosen in which the flavour quantum number is explicitly conserved. The generators Ta =

λa
2 of SU(3)

are given by the Gell-Mann matrices λa [18]. To link the formal gauge field A and the field operator φ
to QCD, the notation G for the gluon field and q for the quark field was chosen.

The coupling gs is the strong gauge coupling. In the quark mass term −qαf M f qαf the “bare” quark
masses enter. These are the ones generated by the Higgs mechanism. Moreover, it is seen that a term
∼ m2Gµa Ga

µ does not appear, since it would violate gauge invariance (cf. Eq. (1.4)). Thus, gluons, as
any gauge vector bosons in a Yang-Mills theory, must be massless.

The first line in Eq. (1.10) contains the kinetic terms for quark and gluon fields; the second line
describes the colour interaction between quarks and gluons and line 3 and 4 give rise to self-interaction
of 3rd and 4th order of the gluons. These terms come from the non-vanishing commutator of the Lie-
algebra in Eq. (1.7) and appear even in the absence of other fields.

This is in contrast to QED, described by a U(1) Abelian gauge theory, where the force-carrier, the
photon, is not charged and no self-interaction occurs at leading order. The gluon self interaction in QCD
has fundamental consequences: the property of asymptotic freedom at small distances/high energies;
and confinement of colour charges at large distances/low energies. An analytic solution at all distances
is strived for. However, several methods exist that allow to describe observations effectively. Some of
their basic consequences are discussed in the following.

1.2.3 Quark Properties
The description of quantised quark- and gluon fields from first principles is highly non-trivial. The usage
of perturbative methods similar to QED breaks down at low energies. That is because the coupling
strength αs(µ2

R) is a function of an (unphysical) renormalisation scale µ2
R, which is needed to apply

perturbative methods. Below a scale of µ2
R = Λ

2
QCD, called the Landau pole, the perturbative expansion

diverges and QCD becomes a strongly coupled gauge theory. The value of this scale depends on several
parameters and methods, and ranges from ΛQCD ≈ 300− 1100MeV [69].

It is conventional to call quarks heavy if their masses are above ΛQCD, and light below that. But
unlike leptons, quarks are confined inside hadrons and are not observed as physical particles. Their
masses can therefore not be measured directly, such that any quantitative statement must make careful
reference to the particular theoretical framework that is used to define it. Commonly used frameworks
rely on perturbative approaches to calculate quark masses, such as the ones shown in Tab. 1.1.

The table also shows flavour quantum numbers, which were the key to establish the quark model,
as discussed earlier. These quantum numbers are the third component of the isospin I3, strangeness
S, charm C , bottomness/beauty B′ and topness/truth T , and are eigenstates of the strong interaction.
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1.2 QCD and the quark model

They are rotated in flavour-space for electroweak interactions, so that transitions from up-type (u, c, t)
to down-type (d, s, b) quarks and vice versa are allowed.

Because QCD conserves the flavour quantum number (flavour-blindness), hadrons can be labelled
by their minimum (valence) quark content, but are dynamically “dressed” with quarks and gluons. QCD,
in the picture of the quark model, does not states to be qqq-baryons or qq-mesons. So combinations like
tetraquarks (qq)(qq), mesonic molecules (qq)(qq), pentaquarks qqqqq, hybrid mesons qgq, glueballs
g g g, etc. are not forbidden.

bla I nice one II nice one III

u
up

c
charm

t
top

I3 = +
1
2 C = +1 T = +1

2.2+0.6
−0.4 MeV 1.28± 0.03 GeV 173.1± 0.6 GeV

d
down

s
strange

b
bottom

I3 = −
1
2 S = −1 B′ = −1

4.7+0.5
−0.4 MeV 96+8

−4 MeV 4.18+0.04
−0.03 GeV

Table 1.1: Quark Properties. The generation number is given on top. Name, flavour quantum number and the quark
mass are given next to the symbol of the quark. The up-type (u, c, t) quarks carry an electric charge of + 2

3 e and the
down-type (d, s, b) quarks − 1

3 e. The masses were taken from ref. [14] and obtained by calculations using the modified
minimal subtraction (MS) renormalisation scheme [70]

1.2.4 A phenomenological approach to QCD: flavour SU(3) and the quark
model
Historically, QCD was approached in a simpler fashion. There, hadrons were grouped into multiplets,
relying on the approximate mass-degeneration of observed states, and treating quark fields as flavour
symmetric. The flavour group of up, down and strange quarks, SU(3)f, has two independent funda-
mental representations 3 and 3. These representations can be displayed as weight diagrams in the
(I3, Y )-plane (fig. 1.3), where I3 is the third component of the isospin and Y , the sum of strangeness
and baryon number, is the (strong) hypercharge. The nodes in the 3 (3) diagram correspond to the
three quark flavours u, d and s (u, d and s). The black solid lines between the nodes correspond to the
lowering and raising operators which move between the different weight vectors, each forming a SU(2)
subalgebra.

The laws of representation theory are then used to construct hadron multiplets. The hadronic flavour
wave functions are obtained by performing the direct sum decomposition of the tensor product of ir-
reducible representations. This is commonly referred to as coupling the quark flavours. For SU(3)f-
symmetric qq states, this is

3⊗ 3= 8⊕ 1 , (1.11)

for qqq states the decomposition reads:

3⊗ 3⊗ 3= (6S⊕ 3A)⊗ 3= 10S⊕ 8(2)M ⊕ 1A . (1.12)

Here, the subscripts A, S and M denote antisymmetric, symmetric and mixed symmetric flavour repre-
sentations respectively, and the superscript denotes the multiplicity of a multiplet. The weight diagrams
of the decomposed irreducible representations are shown in Fig. 1.4.
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1 Motivation and theoretical background

(a) (b)

Figure 1.3: Weight diagram of quarks and antiquarks. (a) The fundamental 3 representation of the SU(3)f group. (b)
Weight diagram for the 3 representation of SU(3)f.

To relate observed states of mesons and baryons to the SU(3)f-multiplets, their flavour wave function
needs to be coupled to possible spin, spatial and colour wave functions which define the quantum
numbers of the system. In addition, radial excitations emerge when treating hadrons as (effective)
two-body systems in a spatially dependent potential. Due to confinement, the colour wave function
has to be an antisymmetric singlet. Since colour and flavour posses the same group structure, the
decompositions (1.11) and (1.12) apply to colour as well, but only the 1A representation is realised
in nature. The spatial wave function depends on the orbital angular momentum ` ∈ N0, and is either
symmetric (positive parity P = (−1)`) or antisymmetric (negative P). Quark spin has a SU(2) group
structure and needs to be coupled to the flavour state according to representation theory. Since baryons
are fermions, they need to obey Fermi-Dirac statistics, which requires an antisymmetric wave function.

With similar arguments, flavour symmetry can be extended to all quark flavours – apart from the top
quark, which decays before it can form a hadron due to its mass – and the lowest lying states follow the
(qualitative) expectations from the quark model. However, the quark model predicts a large number of
excited states, which are not seen in experiments, cf. the review on the quark model in [14]. Especially
if four- and five-quark configurations are taken into account, the number of expected states seems to
explode.

On the other hand, only relatively few candidates for these states exist. Thus, understanding the
underlying mechanisms which allow or forbid the existence of these hadrons will provide valuable in-
sights to QCD phenomenology. Of course hadronic properties which are derived from flavour symmetry
only treat valence quarks, and any predictive model needs to account for the descriptions of underlying
dynamic processes, either through models or directly from QCD itself.
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1.3 Pentaquarks

(a) (b)

Figure 1.4: Multiplets of SU(3)f-symmetric combinations of qq (a) and qqq (b). These are the weight diagrams corre-
sponding to the flavour wave functions of the states.

1.3 Pentaquarks
This section sketches the field of exotic hadron spectroscopy with a focus on experimental efforts, no-
tably pentaquark searches. Eventually, implications in the search for uudcc pentaquarks in the Λ+c (udc)
D(∗)0 (cu) subsystem of the decay Λ0

b→ Λ
+
c D(∗)0K− are discussed.

The search for hadrons that manifestly contain more than three quarks is as old as the quark model
itself – both Gell-Mann and Zweig anticipated the existence of tetra- penta- and even higher multi-quark
states in their ground-breaking publications [23, 24, 25]. First searches for pentaquarks – called Z+ or
Z0 baryons at the time – were carried out in kaon nucleon scattering experiments, where resonant struc-
tures in partial waves with exotic quantum numbers, i.e. baryon number +1 and positive strangeness,
were searched for. Even though six candidates with weak evidence have been listed in the 1986 edition
of the review of particle physics [71], the claims were seen with scepticism: “the standards of proof must
simply be much more severe here than in a channel in which many resonances are already known to exist.”.

The subject disappeared off the radar until 2002, when the LEPS collaboration claimed evidence for a
light and narrow uudds resonance, calledΘ+ [72]. The search was motivated by the prediction of a light
(1530MeV) and narrow (< 15MeV) pentaquark in the framework of a chiral quark soliton model five
years earlier [73]. The LEPS paper triggered an avalanche of phenomenological studies, most of which
required considerable fine-tuning to accommodate the Θ+, but it also triggered many experimental
searches. About a dozen of experiments found evidence for the Θ+, while an overwhelming majority
did not see the resonance. In retrospective, the claimed Θ+ signals are commonly assumed to be caused
by either statistical fluctuations, kinematic cuts, reflections, experimental artefacts, or a combination
thereof. The history and fate of the Θ+ is comprehensively summarised in Ref. [74].

As pentaquarks were about to disappear a second time, the Belle collaboration observed a puz-
zling state in the study of B± → J/ψπ+π−K± decays [75], termed X (3872). It is a narrow resonance,
consistent with the experimental resolution, in the J/ψπ+π− channel, directly at the D∗0D0 threshold.
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Figure 1.5: Fit projections for the (a) pK− and (b) J/ψp invariant mass systems of a six-dimensional helicity amplitude
analysis including the two P+c states. The uncertainties on the fit results are due to simulation statistics.

Due to this peculiar mass and the narrow width, the state did not fit into the conventional spectrum
of charmonium (cc) resonances. In the following years, the Belle observation has been confirmed, and
further charmonium-like resonances, that are incompatible with quark model expectations have been
observed. Among them, charged resonances with a cc component – an unambiguous indication of a
state consisting of at least four quarks.

Even though tetraquarks were more or less established, pentaquarks were still approached with
scepticism. Hence, the observation of two resonances in the J/ψp system by LHCb in 2015 came as
a big surprise [76]. The resonances, denoted as Pc(4380)+ and Pc(4450)+, have been discovered in
the exclusive Λ0

b → J/ψpK− decay by a six-dimensional helicity amplitude analysis, describing the full
kinematics and the angular structure of the Λ0

b decay. The analysis used efficiency corrected and back-
ground subtracted data, to which the helicity amplitude model was fit. The fit parameters of the model
are the helicity couplings of the resonances, which were at first only Λ∗ resonances in the pK− subsys-
tem. They were described by relativistic Breit-Wigner shapes with fixed masses and widths. However,
fits with only Λ∗ resonances did not describe the data well. Also a fit with a single exotic component
was not satisfactory. Eventually, a fit with two exotic components in the J/ψp subsystem lead to a good
result, for which the pK− and J/ψp mass projections are shown in Fig. 1.5.

The extracted parameters from the helicitly amplitude analysis were the following: The Pc(4380)+

has a mass of 4380± 8± 29MeV and a width of 205± 18± 86 MeV, while the Pc(4450)+ is narrower,
with a mass of 4449.8± 1.7± 2.5MeV and a width of 39± 5± 19MeV. The preferred spin-parity (J P)
assignments are of opposite parity, with one state having spin 3/2 and the other 5/2. The fit fractions
were measured to be 8.4± 0.7± 4.2 % for the Pc(4380)+ and 4.1± 0.5± 1.1 % for the Pc(4450)+.

Further, a model independent analysis of the Λ0
b→ J/ψpK− decay was carried out [77]. The study

supports the need for at least one exotic component to describe the data, and measured the significance
of that component, consistent with the narrow Pc(4450)+, to be grater than 9σ. The Pc(4380)+, due to
it’s large width, could not be confirmed by the model independent approach. A result consistent with the
Λ0

b → J/ψpK− helicity amplitude analysis has been obtained in it’s Cabibbo suppressed analogue, the
Λ0

b→ J/ψpπ− channel [78]. However, due to fewer statistics, the P+c components could not be singled
out. Still, evidence was found for exotic contributions: either the P+c s or the Z(4200)− in J/ψπ−, or
both. The Z(4200)− is one of the charged charmonium-like resonances mentioned earlier and has been
discovered by Belle in B0→ J/ψK+π− decays. [79].
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1.3 Pentaquarks

(a) (b)

Figure 1.6: Illustration of a pentaquark as bound system of diquark and triquark (a) or as meson-baryon molecule (b).

In summary, the P+c ’s decay channel, measured masses, widths and fit fractions clearly indicate that the
states have a minimal quark content of uudcc in the quark model.

The community responded lively to the observation of the P+c s. In contrast to the light and narrow
Θ+, the P+c states fit into the models in a natural way. The most vividly discussed interpretation of the
P+c ’s nature are baryon-meson molecules or strongly bound systems, like genuine pentaquarks, diquark-
diquark antiquark or diquark-triquark combinations. Two of these interpretations are illustrated in
Fig. 1.6. The quark content suggests a decay to Λ+c (udc)D(∗)0 (cu) if they are in fact real resonances
and not be due to kinematic effects like cusps or anomalous triangle singularities, as e.g. hypothesised
in Ref. [80]. Firm predictions whether the P+c states are expected to decay into Λ+c D(∗)0 exist for the
molecular interpretation, depending on the molecular composition as shown in Tab. 1.2. The molecular
compositions have characteristically different decay patterns, so that the observation of P+c states in
different channels is crucial to distinguish them.

Pc(4380)+ decays/partial widths (MeV)

Mode
Ã

Composition Σc(2520)D Σc D∗ J/ψN(1440)

Λc D [7] 1.2 13.7 7

Λc D∗ 3 110.4 28.6 3

J/ψN 3 2.7 19.8 3

Σc(2455)D [7] 0.01 0.09 7

Λc Dπ 3 7.5 − 7

ηc N 7 0.2 0.05 7

ηc∆ 3 − − 7

J/ψ∆ 7 − − 7

J/ψNπ 3 − − 3

ωp – 6.1 1.3 –

Pc(4450)+ decays/partial widths ( MeV)

χc1p Σc D∗ Λc(2595)D J/ψN(1520)

3 [7] 14.9 [3] 7

3 3 16.3 [3] 3

3 3 2.6 3 3

3 [7] 0.2 3 7

3 3 0.5 [7] 3

7 7 0.02 3 7

7 3 − 7 7

7 3 − 7 7

7 3 − 7 3

– – 0.4 – –

Table 1.2: (Qualitative) predictions of decay widths for a hypothesised molecular composition of the P+c s. Composed
from Refs. [81] and [82]. Particle charges are omitted to retain compatibility with the publications, which anticipate
isospin parters of the P+c s. Hence, D∗ means D∗(2007)0 or D∗(2010)−.
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1 Motivation and theoretical background

Apart from the decay to Λ+c D(∗)0 the P+c pentaquarks can be searched for in further decays including
the J/ψp subsystem, such as B0

s → J/ψpp, Ξ0
b → J/ψpK− or Ξ−b → J/ψpK−K−. To probe properties of

the P+c states, decays to different final states, e.g. Λ0
b → χc1pK−, Λ0

b → ηc pK−, Λ0
b → Σ

++
c D−K− are of

interest. And even more: the discovery implies a tower of pentaquarks with different quark content. All
of these searches are feasible with the LHCb experiment and will be carried out in a broad programme
of exotic hadron spectroscopy.

Recent reviews put the observed P+c pentaquarks into context of exotic hadron spectroscopy by
discussing experimental findings, theoretical techniques and possible interpretations [83, 84]. Some of
the striking open questions that have been identified in these reviews are the following:

• No picture/model is able to explain all observed exotic hadrons. Does it exist1?

• All unambiguously identified exotic hadrons contain cc or bb. Do light, or open flavour exotic
hadrons exist? If not, why are they forbidden?

• Is it a coincidence that most states are observed close to thresholds?

A community white paper has been set up in order to approach these and many other open questions
systematically from both, experimental and theoretical side [86].

1.4 Pentaquark searches in a broader context
Fitting pentaquarks into the hadronic spectrum is a major challenge. It eventually requires a common
understanding of mesons, baryons and QCD exotica in a framework that connects the effective pictures
described above to the pure Yang-Mills sector of QCD. Finding this connection is an outstanding theoret-
ical challenge for which the extension of the hadronic spectrum to exotic states can be valuable input.
The essential questions that need to answered in this process will be those of confinement, dynamical
chiral symmetry breaking (DCSB), and their relation [67]. If these concepts are understood, QCD could
be a self-contained true theory, i.e. a theory that is valid over all scales by confinement and asymptotic
freedom, and which naturally generates a mass scale by DCSB. This paradigm could also be applied to
beyond standard model physics, in which the electroweak sector is generated dynamically; an example
of such a model is extended technicolor [87].

Back to the hadronic spectrum: The best understood part of it is certainly the heavy quarkonium
spectrum – bb and cc. It is well described by non-relativistic quarks in a static potential [88]; usually
pictured as a flux-tube forming colour field between quark and antiquark. However, the picture of flux
tubes and linear potentials in the light meson spectrum, e.g. in the form of Regge trajectories [89], breaks
down [90]. It is however debatable how to interpret Regge trajectories in the light spectrum, since they
work for the majority of the spectrum; see e.g. Ref. [91]. Finding a coherent picture for light mesons
is challenging; a possibility is that quark and antiquark are dynamically dressed by gluons and the
Goldstone modes of the chiral quark condensate. In any case, light quarks move at relativistic velocities
and can therefore not act as static sources of potentials. Moreover would light-particle creation and
annihilation effects disturb the propagation of gluonic fields, such that a flux-tube would dissolve well
within a hadron’s interior.

If the simple constituent quark picture of light mesons does not hold true, which impact does it
have on baryons? In the constituent quark plus flux-tube picture, baryons may be bound by a Y-shaped
flux-tube as shown in Fig. 1.7(a). The illustration also shows a static diquark, a coloured, but confined
qq constituent for which evidence has been found in lattice QCD simulations [92, 93].

1Gell-Mann’s totalitarian principle states: “Everything not forbidden is compulsory.”, i.e. models are expected to mix. Such
hybrid models are e.g. currently discussed for the X (3872) [84] or the Roper resonance [85].
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(a) (b)

Figure 1.7: Illustration of baryons composed of a static diquark and a single quark (a) and an entangled set of dynamic
diquarks (b) in the fashion of Borromean rings. Diquarks are continuously broken up and recreated, and so contributing
to binding.

The static diquark is shown to distinguish it from a modern notion of dynamic diquarks, which are
to be seen as extended objects with internal structure [94]. Recently the picture of the nucleon as a
Borromean bound-state (cf. Fig. 1.7(b)) has been proposed [95]. Whichever picture prevails in the end,
it has to be embedded into the searched for framework linking to the Yang-Mills sector of QCD.

In that regard, tetraquarks and pentaquarks with both, heavy and light constituents bridge the gap
between effective theories of the charmonium regime and the approaches to nonperturbative continuum
QCD. For instance, diquark correlations and flux tubes both play a key role in a picture in which exotic
hadrons are described as composed of dynamically produced diquarks [96, 97]. It seems natural that
such a model predicts a different production cross-section compared to a molecular picture. Can such
models be used to explain why resonances like the Zc(3900)+ → J/ψπ+ [98] or the Zc(4055)+ →
ψ(2S)π+ [99] were only be observed in e+e− production and not in b decays, where they should have
been seen in high statistics analyses of B0 → J/ψK−π+ [79] or B0 → ψ(2S)K−π+ [100]? Will the P+c
pentaquarks be seen in the proposed photoproduction experiment at JLab [101]?

The main points are briefly summarised. Exotic hadrons allow to study the effective degrees of free-
dom in hadrons from a new perspective. This will in first instance lead to a better effective description
of the hadronic spectrum and consequently QCD. This is desirable by itself, since understanding QCD
effects often limits measurements in which they are a nuisance. The more fundamental points, such as
confinement and DCSB, can however only be addressed with advances in the non-perturbative regime
of QCD from theoretical side. A better understanding of this regime, and eventually the link to the pure
Yang-Mills sector, might be gained from effective models. From the experimental side, it is thus crucial
to provide broad – finding as many states as possible – and detailed – examining properties of the states
– measurements of the hadronic spectrum. The work presented in this thesis is part of a programme of
exotic hadron spectroscopy at LHCb, and contributes a small amount to the understanding of QCD in
this context.
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2 The LHCb experiment
First the hardware of the LHCb spectrometer is introduced in a generic way. Afterwards, the flow of
information is followed from proton-proton collisions to a dataset ready for analysis. The focus for
that part lies on four key detector performance figures driving the sensitivity of the analysis shown
later. These are: trigger efficiency, spatial resolution for good reconstruction of vertices, momentum
resolution for clean mass reconstruction and particle identification.

Note that the analysis presented in this thesis uses a dataset corresponding to an integrated lumi-
nosity of 3 fb−1 recoded during Run I of the LHC in 2011 and 2012. Therefore, the descriptions given
here match the conditions during Run I.

The LHCb experiment is one of currently seven experiments at the Large Hadron Collider (LHC)
experiment hosted at the European Council for Nuclear Research (CERN, from “Conseil Européen pour la
Recherche Nucléaire”) astride the Franco-Swiss border near Geneva. LHCb is a dedicated heavy flavour
physics experiment, whose main goal is to search for indirect evidence of processes beyond the standard
model of particle physics (SM) in CP violation and rare decays of beauty and charm hadrons. Given
the experiments success, it is often also referred to as general purpose detector in the forward region.
This work, being part of a programme of exotic hadron spectroscopy, and many other unprecedented
analyses support this notion.

2.1 The LHCb spectrometer
The spectrometer design suits the predominant production mechanism of heavy flavour hadrons at the
LHC via gluon fusion, which boosts the produced system in either forward or backward direction. It has
a forward angular coverage from approximately 15 to 300 (250)mrad in the bending (non-bending)
plane. The spectrometer layout is shown in Fig. 2.1. Most detector subsystems are assembled in two
halves, which can be moved out horizontally for maintenance purposes, as well as to provide access
to the beam-pipe. They are referred to as the detector A- and C-sides. Further, the spectrometer is
conceptually separated into an upstream part from the vertex locator (VELO) to the magnet, and a
downstream part from the magnet to the muon stations. A right-handed coordinate system is defined
with z along the beam axis from the interaction point into the detector and y vertical upward. Positive
(negative) z-direction is also referred to as downstream (upstream).

The core physics programme of LHCb [102] requires excellent vertex, decay time and momentum
resolution, precise particle identification, and a versatile trigger scheme providing a fast and efficient
event selection with low misclassification rate. These requirements are reflected in the design of the var-
ious subdetectors which are briefly introduced in the following. A detailed comprehensive description
of the spectrometer can be found in [103], while its performance during Run I is reviewed in [104].

2.1.1 Magnet
The spectrometer magnet, described in Ref. [105], is needed for a precise measurement of the momenta
of charged particles. It is a warm dipole magnet with saddle-shaped coils in a window-frame yoke with
sloping poles to match the detector acceptance. It provides an integrated field of about 4Tm for tracks
of 10m, accommodating the contrasting needs of low magnetic fields in the RICHs envelope and a field
as high as possible between the VELO and the Trigger Tracker (TT). The magnetic field deflects charged
particles in the horizontal (x − z) plane, and also has an impact on the trajectory of the LHC beams;
this is compensated for with three dipole magnets [106].
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2 The LHCb experiment

Figure 2.1: Schematic side view of the LHCb spectrometer.

To achieve precise track reconstruction, the magnetic field integral is determined with permille-level pre-
cision using Hall probes [I1]. Beside advantages in track reconstruction, the magnet is used to achieve
higher precision in measurements sensitive to detection asymmetries, such as CP violation measure-
ments. This is achieved by inverting the magnet polarity, which was done about every second month
during Run I.

2.1.2 Vertex locator
The VELO measures track coordinates close to the interaction region, and is used to identify primary
interaction vertices and secondary vertices from heavy flavour hadrons. Their average flight distance is
about 1 cm due to the heavy quark production mechanism and the strong boost at LHC energies.

The VELO is a silicon microstrip [107] detector operated in vacuum with sensors moving as close
as 7 mm from the LHC beam. This distance to the beam is smaller than required by LHC operations
during beam injection. Therefore the detector is constructed such, that its halves are moveable in x and
y and the VELO is closed at the beginning of each fill. Due to the proximity to the beam, there is no
beam pipe in the interaction region. In order to maintain the LHC machine vacuum, it is separated from
the detectors by an RF box. The detectors are thus located in a secondary vacuum, mounted within a
vacuum vessel (cf. Fig. 2.2(a)). The RF box surfaces facing the beam are 0.3mm thick corrugated sheets,
known as the RF foil. The VELO is operated in an extreme radiation environment, requiring radiation
tolerant technology [108, 109], and cooling of the sensors to (−7± 2)◦C [110].
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Figure 5.4: Sketch illustrating the rφ geometry of the VELO sensors. For clarity, only a portion
of the strips are illustrated. In the φ -sensor, the strips on two adjacent modules are indicated, to
highlight the stereo angle. The different arrangement of the bonding pads leads to the slightly
larger radius of the R-sensor; the sensitive area is identical.

is 38 µm, increasing linearly to 101.6 µm at the outer radius of 41.9 mm. This ensures that mea-
surements along the track contribute to the impact parameter precision with roughly equal weight.

The φ -sensor is designed to readout the orthogonal coordinate to the R-sensor. In the simplest
possible design these strips would run radially from the inner to the outer radius and point at the
nominal LHC beam position with the pitch increasing linearly with radius starting with a pitch of
35.5 µm. However, this would result in unacceptably high strip occupancies and too large a strip
pitch at the outer edge of the sensor. Hence, the φ -sensor is subdivided into two regions, inner
and outer. The outer region starts at a radius of 17.25 mm and its pitch is set to be roughly half
(39.3 µm) that of the inner region (78.3 µm), which ends at the same radius. The design of the
strips in the φ -sensor is complicated by the introduction of a skew to improve pattern recognition.
At 8 mm from the beam the inner strips have an angle of approximately 20◦ to the radial whereas
the outer strips make an angle of approximately 10◦ to the radial at 17 mm. The skew of inner and
outer sections is reversed giving the strips a distinctive dog-leg design. The modules are placed so
that adjacent φ -sensors have the opposite skew with respect to the each other. This ensures that
adjacent stations are able to distinguish ghost hits from true hits through the use of a traditional
stereo view. The principal characteristics of the VELO sensors are summarized in table 5.1.

The technology utilized in both the R- and φ -sensors is otherwise identical. Both sets of
sensors are 300 µm thick. Readout of both R- and φ -sensors is at the outer radius and requires
the use of a second layer of metal (a routing layer or double metal) isolated from the AC-coupled
diode strips by approximately 3 µm of chemically vapour deposited (CVD) SiO2. The second
metal layer is connected to the first metal layer by wet etched vias. The strips are biased using

– 21 –

(b)

(c)

Figure 2.2: (a) Schematic view of the interaction region with the VELO vacuum tank being cut open, showing the
VELO sensors, hybrids and module support [110]. (b) Sketch of a VELO sensor in the x − y plane illustrating its r −φ
geometry [103]. In the φ sensor, two adjacent modules are shown to highlight the stereo angle between them. (c) Sketch
of the arrangement of sensors in the x − z plane. R(Φ) sensors are shown with solid blue (dashed red) lines [110].

The VELO contains 42 silicon modules arranged along the beam, as shown in Fig. 2.2(c), each providing
a measurement of the r (R sensors) and φ (Φ sensors) coordinates. An R sensor is subdivided into
four segments of approximately 45◦, while Φ sensors have two segments. The inter-strip pitch varies
from approximately 40 to 100µm across the sensor (cf. Fig. 2.2(b)). depending on the strip pitch
and the projected angle, the measured hit resolution ranges from 4µm to approximately 30µm. The
resolution is correlated to the number of fired strips by a traversing particle. Further details on the
VELO performance during Run I are given in [110].

2.1.3 Silicon trackers
The silicon trackers comprise the Trigger Tracker (TT) and the Inner Tracker (IT), which are located
upstream and downstream of the LHCb dipole magnet respectively. Both detector systems use silicon
microstrip sensors with a pitches of 183µm in the TT and 198µm in the IT. The TT consists of one,
the IT of three tracking stations, in which the individual detection layers are arranged in an x–u–v–x
layout to increase the momentum resolution of reconstructed tracks. The strips of the first (x) layer are
vertically aligned, while the u and v stereo layers are rotated by −/+ 5◦, respectively.
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Figure 5.19: Layout of the third TT detection layer. Different readout sectors are indicated by
different shadings.

volume is continuously flushed with nitrogen to avoid condensation on the cold surfaces. To aid
track reconstruction algorithms, the four detection layers are arranged in two pairs, (x,u) and (v,x),
that are separated by approximately 27 cm along the LHC beam axis.

The layout of one of the detection layers is illustrated in figure 5.19. Its basic building block
is a half module that covers half the height of the LHCb acceptance. It consists of a row of seven
silicon sensors organized into either two or three readout sectors. The readout hybrids for all read-
out sectors are mounted at one end of the module. The regions above and below the LHC beampipe
are covered by one such half module each. The regions to the sides of the beampipe are covered
by rows of seven (for the first two detection layers) or eight (for the last two detection layers) 14-
sensor long full modules. These full modules cover the full height of the LHCb acceptance and are
assembled from two half modules that are joined together end-to-end. Adjacent modules within
a detection layer are staggered by about 1 cm in z and overlap by a few millimeters in x to avoid
acceptance gaps and to facilitate the relative alignment of the modules. In the u and v detection
layers, each module is individually rotated by the respective stereo angle.

A main advantage of this detector design is that all front-end hybrids and the infrastructure
for cooling and module supports are located above and below the active area of the detector, outside
of the acceptance of the experiment.

TT detector modules

The layout of a half module is illustrated in figure 5.20. It consists of a row of seven silicon sensors
with a stack of two or three readout hybrids at one end. For half modules close to the beampipe,
where the expected particle density is highest, the seven sensors are organized into three readout
sectors (4-2-1 type half modules).

For the other half modules, the sensors are organized into two readout sectors (4-3 type half
modules). In both cases, the first readout sector (L sector) is formed by the four sensors closest to
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1.3. STRUCTURE OF THIS DOCUMENT 5
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Figure 1.2: Front view of a 0-degree layer in
the TT station. Dimensions are in cm.

bottom ends of the ladder each consist of three
sensors that are bonded together. They are
followed by sectors of two sensors and, for the
ladders to the sides of the beam pipe, a central
sector consisting of a single sensor. The two-
sensor and one-sensor sectors will be read out
via 33 cm respectively 55 cm long low-mass in-
terconnects, as indicated in Figure 1.3. A total
of 832 silicon sensors and 144k readout chan-
nels are used for four detection layers.

33
22

11

12
1

30

Figure 1.3: Side view with a sketch of the read-
out scheme for the TT station. Dimensions are
in cm.

In order to validate this detector concept,
low-mass interconnects have to be designed
and the efficiency and noise performance for
the different readout sectors have to be mea-

sured. The signal-to-noise performance of the
detector will be limited by the large capaci-
tances from long readout strips and kapton in-
terconnects. These will also limit the achiev-
able fall-time of the preamplifier signals. The
“spill-over” of signals to the following bunch
crossings has to be measured and it has to be
shown that it can bekept sufficiently small in
order not to compromise physics performance.

The operating temperature for the silicon
sensors has to be determined, and an appro-
priate cooling concept must be developed. Fi-
nally, ladder supports and station mechanics
have to be designed.

Work on this R&D program has started.
First prototypes of the low-mass interconnects
will be produced by the end of 2002. Inves-
tigations of 33 cm long silicon ladders, and a
single-sensor ladder equiped with a 55 cm long
low-mass interconnect, will be performed in a
cosmics test-stand and in test-beams. A first
complete mechanical design of the station will
be developed by mid-2003. More details on
this conceptual design and on the R&D pro-
gram can be found in [12].

As mentioned previously, the TT station is
not within the scope of this TDR. However, the
size of this sub-project is comparable to that of
the Inner Tracker and therefore has to be taken
into account in the planning of the overall Sil-
icon Tracker project described in chapter 6.

1.3 Structure of this Docu-
ment

This Technical Design Report is intended to be
a concise but self-contained description of the
Inner Tracker. Further details can be found
in the technical notes, which are referenced
throughout.

In Chapter 2, an overview is given of the de-
tector layout, in order to motivate the R&D
program described in Chapter 3. Results from
simulation studies are shown in Chapter 4.
The technical design of the Inner Tracker is
presented in Chapter 5. The TDR concludes
with Chapter 6 on project organisation.
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(b)

Figure 2.3: Schematic front (a) and side (b) views of the TT [103, 112].
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Figure 5.23: View of the four IT detector boxes arranged around the LHC beampipe.

Figure 5.24: Layout of an x detection layer in the second IT station.

IT detector modules

An exploded view of a detector module is shown in figure 5.25. The module consists of either one
or two silicon sensors that are connected via a pitch adapter to a front-end readout hybrid. The
sensor(s) and the readout hybrid are all glued onto a flat module support plate. Bias voltage is
provided to the sensor backplane from the strip side through n+ wells that are implanted in the n-
type silicon bulk. A small aluminium insert (minibalcony) that is embedded into the support plate
at the location of the readout hybrid provides the mechanical and thermal interface of the module
to the detector box.

Silicon sensors. Two types of silicon sensors of different thickness, but otherwise identical in
design, are used in the IT.17 They are single-sided p+-on-n sensors, 7.6 cm wide and 11 cm long,
and carry 384 readout strips with a strip pitch of 198 µm. The sensors for one-sensor modules
are 320 µm thick, those for two-sensor modules are 410 µm thick. As explained in section 5.2.4
below, these thicknesses were chosen to ensure sufficiently high signal-to-noise ratios for each
module type while minimising the material budget of the detector.

17The sensors were designed and produced by Hamamatsu Photonics K.K., Hamamatsu City, Japan.
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layers have vertical detection cells, the u- and
v-layers have detection cells rotated clock-wise,
resp. counter clock-wise, by a stereo angle of
5◦. This layout provides a precise measure-
ment of track coordinates for momentum de-
termination in the bending plane of the magnet
and sufficient resolution for pattern recognition
in the vertical coordinate.

A sketch of the front view of a tracking sta-
tion is shown in Figure 2.1, indicating the sen-
sitive detector elements and the overall dimen-
sions of the active area. The four Inner Tracker
boxes are shown, covering a cross-shaped area
around the central hole through which the
LHC beam-pipe passes the detector. The re-
mainder of the acceptance is covered by long
Outer Tracker straw drift-tube modules. The
Inner Tracker covers only 1.3% of the sensitive
surface of the tracking station, but approxi-
mately 20% of all charged particles that are
produced close to the interaction point and go
through the tracking stations pass through its
area.

595

45
0

Figure 2.1: Front view of a tracking station.
Dimensions are given in cm.

The arrangement of detectors along the LHC
beam pipe is indicated in Figure 2.2 which
shows a sketch of a top view of a tracking sta-
tion. The pp-interaction region is to the left.
As shown in the sketch, the detector boxes of
the Inner Tracker are positioned upstream of
the four detection layers of the Outer Tracker,
and the left/right boxes of the Inner Tracker
are positioned upstream of the top/bottom

boxes. Each Inner Tracker box contains four
detection layers. The sensitive elements of the
different Inner Tracker boxes overlap with each
other and with adjacent Outer Tracker mod-
ules in both horizontal and vertical direction
in order to guarantee full acceptance coverage
and allow for relative alignment of the detec-
tors using shared tracks.

xxvvxx uu

15.5 20.0

1.0

xxvvxxuu

xxvvxxuu

xxvvxxuu

INNER
TRACKER

OUTER  TRACKER

Figure 2.2: Top view of a tracking station. Di-
mensions along the beam axis are given in cm.
Lateral dimensions are not to scale.

2.1.2 Inner Tracker

The concept of a cross-shaped Inner Tracker
station, assembled from four detector boxes
was first described in [8].

The layout of an x-detection layer and of a
stereo layer (u- or v-layer) in station T2 are
shown in Figure 2.4. The effective sensitive
area covered by an x-layer is sketched in Fig-
ure 2.3 and its dimensions for each of the three
tracking stations are summarised in Table 2.2.

The inner acceptance of the Inner Tracker is
described by a square around the LHC beam
pipe. Its size is slightly different for each sta-
tion, as it follows the conical shape of the
beam pipe. The dimensions given in Table 2.2
take into account a distance of 1.2 cm between
the outer radius of the beam pipe and the

LHCb Inner Tracker Technical Design Report — CERN/LHCC 2002-029

(b)

Figure 2.4: Schematic front (a) and top (b) views of the IT [103, 112].

The TT covers the full acceptance upstream of the magnet, while the IT is situated in a 120 cm by 40cm
cross-shaped region around the beam pipe with the highest density of tracks corresponding to around
1.2 % of the total acceptance. The total sensitive area in the TT and IT is 8 m2 and 4.2m2 respectively.
Each of the TT and IT tracking stations are housed in a light tight and thermally and electrically insulated
detector volume, in which a temperature below 5◦C is maintained.

The half-modules of the TT are subdivided into different readout sectors – shown for the v layer
in Fig. 2.3(a) – to compensate for higher particle fluxes close to the beam pipe. Each of the sectors is
read out by a front-end hybrid [111]. These hybrids are stacked at the outer end of a half-module and
connected by Kapton cables to the inner sectors as illustrated in Fig. 2.3(b).

The IT modules consist of either one or two silicon sensors as shown in Fig. 2.4(a) and are mounted
directly in front of the outer tracker modules in each tracking station (cf. Fig. 2.4(b)). The hit resolution
is measured to be approximately 50µm using Run I data [104], depending on the occupancy of the
region. The performance of the silicon trackers during Run I is reviewed in Ref. [113].
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Figure 2.5: (a) Arrangement of OT modules in layers and stations. (b) Sketch of a charged particle that traverses a straw.
(c) Cross section of a straw-tube module. All taken from Ref. [116]

2.1.4 Outer tracker
The largest area of the tracking stations T1–T3 downstream of the LHCb magnet is covered by modules of
the outer tracker (OT). The OT is a drift-tube gas detector, described in Ref. [114]. As for the IT, the OT
has four layers arranged in an x–u–v–x geometry. The total active area of a station is 597 cm×485 cm.
Each detector layer is built from 14 long and 8 short gas-tight straw-tube modules with drift-time read-
out, shown in Fig. 2.5(a). Each module contains two staggered layers of drift-tubes with an inner
diameter of 4.9 mm, shown in Fig. 2.5(c). The drift-tubes are used to measure the arrival time of the
OT readout signals with respect to the LHC clock to infer the drift distance r, and hence the hit position,
as illustrated in Fig. 2.5(b). The signal is read out once per 25 ns on a positive hardware trigger signal,
such that a counting gas that guarantees fast drift times and prevents ageing effects on the anode wires
was chosen [115].

The occupancy of the OT, especially in the inner regions, was larger than originally anticipated, due
to twice larger instantaneous luminosity at LHCb (cf. Sec. 2.2.2). Despite these challenging conditions,
the design single hit resolution of about 200µm could be reached. And it can even be further improved
by taking horizontal displacement per half monolayer during alignment into account. A detailed review
of the OT performance is given in [116].
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Figure 2.6: (a) Schematic side view of the RICH1 detector. Taken from [103]. (b) Cherenkov angle as a function of the
momentum of different particles for the RICH radiators.

2.1.5 RICH

Identification of charged hadrons (π, K , p) in the momentum range from 2 to 100GeV is primarily
achieved by two ring imaging Cherenkov detectors (RICH1 and RICH2). In addition, the RICH sys-
tem contributes to the identification of charged leptons (e, µ), complementing information from the
calorimeter and muon systems. Its information is crucial in rejecting combinatorial physics backgrounds.

RICH1, located immediately downstream of the VELO, covers the low and intermediate momentum
region from 2 to 40GeV over the full spectrometer angular acceptance. While RICH2, located down-
stream of the tracking stations, covers the high momentum region from 15 to 100 GeV over an 15 to
120 mrad range of acceptance. The RICH detectors use low dispersion fluorcarbon gases at room tem-
perature – C4F10 in RICH1, CF4 in RICH2– in which high energetic particles emit Cherenkov radiation
in a cone around their trajectory. Both detectors have a similar optical system to project the Cherenkov
photons onto an array of hybrid photon detectors [117]. It consists of a tilted spherical focusing pri-
mary mirror and a flat secondary mirror to limit the size of the detector along z. The layout of RICH1
is shown in Fig. 2.6(a). An additional radiator made of 16 tiles of silica aerogel was used in RICH1
during Run I to be able to separate kaons and protons at low momentum. The momentum-dependence
of expected Cherenkov angles for given particle types and radiators are shown in Fig. 2.6(b). In order
to distinguish between different types of hadrons, the Cherenkov angle needs to be measured precisely.
Its resolution was determined to be 1.618± 0.002 mrad for C4F10, 0.68± 0.02mrad for CF4 and about
5.6 mrad (FWHM) for aerogel. After RICH reconstruction, the resolutions translate into separation
power to distinguish particle types, as shown later in Sec. 2.2.5 More details on the RICH detector and
reconstruction performance during Run I is given in [118].
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the large hadron collider and the lhcb experiment
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Figure 18: Layout of the SPD/PS, ECAL and HCAL showing the segmentation and

the interactions of different particle species. The relative dimensions of the

ECAL and HCAL are correct, but the z-scale of the SPD/PS is exaggerated.

hadronic interaction lengths to save space. As the hit density varies by several

orders of magnitude with radius in all sections of the calorimeter the detectors

are laterally segmented into zones. Whilst the SPD/PS and ECAL are segmented

into three zones, the HCAL is only segmented into two due to the larger size of

hadronic showers. All sections of the calorimeter are also divided vertically into

two halves to allow for access.

The scintillators consist of polystyrene doped with paraterphenyl and POPOP.

The scintillation light is collected by wavelength-shifting fibres and detected by

PMTs. The gain on the phototubes is scaled according to their radial distance
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Figure 1: Structure of the calorimeters in the plane transverse to the beam axis. The left figure shows
the structure of the SPD/PRS/ECAL and the right figure the structure of the HCAL. The grey lines
represent the boundaries of cells and the black lines represent the boundaries of the area processed by
one Front-End board, in the ECAL (left) and in the HCAL (right).

HCAL cluster and of the ET of this ECAL cluster. If not, it is equal to the ET of the HCAL
cluster.

2. electron candidate: a ECAL cluster with 1 or 2 PRS cells hit in front of it and at least
more than one SPD cell hit in front of the PRS cells. In the Inner area of the ECAL, a
ECAL cluster with 3 or 4 PRS cells hit in front of it is also accepted as electron, but not
in the Middle and Outer areas. The ET of the candidate is the ET deposited in the ECAL.

3. photon candidate: a ECAL cluster with 1 or 2 PRS cells hit in front of the ECAL cluster
and no hit in the SPD cells corresponding to the PRS cells. In the Inner area of the ECAL,
a ECAL cluster with 3 or 4 PRS cells hit in front of it is also accepted as photon, but not
in the Middle and Outer areas. The ET of the candidate is the ET deposited in the ECAL.

The ET of the candidates is compared to a fixed threshold and events containing at least
one candidate above threshold is accepted by the L0. In order to reject busy events which
would saturate the HLT processing farms, a veto is also applied at L0 on events containing
more than 600 hits in the SPD. Table 1 shows the thresholds applied during the 2011 LHCb run
and output rates observed with an instantaneous luminosity of 3.5× 1032 cm−2s−1 and 1296
pairs of proton bunches colliding at the LHCb interaction point which are the typical running
conditions encountered at the end of 2011. The visible interaction rate under these conditions
is approximately equal to 11MHz.

2

(b)

Figure 2.7: (a) Arrangement of calorimeters. The z scale of SPD/PS is exaggerated with respect to ECAL/HCAL [122]. (b)
Lateral segmentation of the SPD/PS and ECAL (left) and the HCAL (right). Grey lines indicate boundaries of individual
cells, black lines correspond to readout segments. [123]

2.1.6 Calorimeters
The calorimeter system selects hadrons, electrons and photons for the hardware trigger (L0) according
to their deposited transverse energy. Furthermore, it provides energy and position measurements and
allows for discrimination between hadrons, electrons and photons.

The calorimeter system, whose arrangement is shown in Fig. 2.7(a), is composed of a scintillat-
ing pad detector (SPD), a preshower (PS), a shashlik type electromagnetic calorimeter (ECAL) and a
hadronic calorimeter (HCAL) [119]. A 15mm lead converter with a thickness of 2.5 radiation lengths
is placed between the planes of rectangular scintillating pads of the SPD and the PS. All subcomponents
follow the same basic principle: scintillation light is transmitted to photomultipliers by wavelength-
shifting fibres. The single fibres for the SPD/PS cells are read out using multianode photomultiplier
tubes, while the fibre bunches in the ECAL and HCAL modules require individual phototubes.

The SPD is designed to identify charged particles; most of which are pions. Those are a background
in the PS and ECAL, which is reduced by a measurement of the longitudinal partitioning of the elec-
tromagnetic shower in the PS detector and the main section of ECAL. The ECAL was designed to reach
optimal energy resolution of high energy photon showers, which are required to be fully contained in
the ECAL’s fiducial volume of 25 radiation lengths. To account for higher occupancy in the inner re-
gion, a segmentation into three different sections has been chosen for the ECAL, with a corresponding
projective geometry for the SPD and PS detectors. The layout is shown in Fig. 2.7(b). The outer di-
mensions match projectively those of the tracking system, while the square hole around the beam-pipe
approximately limits the inner acceptance to 25mrad.

The HCAL is a sampling device made from iron as absorber and scintillating tiles as active mate-
rial, which follow an unconventional arrangement along the beam axis. Given the dimensions of the
hadronic showers, the HCAL is segmented into two zones with larger cell sizes. The thickness of the
HCAL is limited to 5.6 nuclear interaction lengths (λi) due to space constraints.

Performance and resolutions have been determined in Ref. [120] for the electromagnetic calorimeter
and [121] for the hadronic calorimeter.
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Figure 6.46: Side view of the muon system.

Appropriate programming of the L0 processing unit (see section 7.1.2) allows the muon trig-
ger to operate in the absence of one station (M1, M4 or M5) or with missing chamber parts, al-
though with degraded performance (worse pT resolution).

The layout of the muon stations is shown in figure 6.47. Each Muon Station is divided into
four regions, R1 to R4 with increasing distance from the beam axis. The linear dimensions of the
regions R1, R2, R3, R4, and their segmentations scale in the ratio 1:2:4:8. With this geometry,
the particle flux and channel occupancy are expected to be roughly the same over the four regions
of a given station. The (x,y) spatial resolution worsens far from the beam axis, where it is in any
case limited by the increase of multiple scattering at large angles. The right part of figure 6.47
shows schematically the partitioning of the station M1 into logical pads and the (x,y) granularity.
Table 6.5 gives detailed information on the geometry of the muon stations.

Simulation

A complete simulation of the muon system was performed using GEANT4. Starting from the
energy deposits of charged particles in the sensitive volumes, the detector signals were created and
digitized taking into account detector effects such as efficiency, cross-talk, and dead time as well as
effects arising from pile-up and spill-over of events occurring in previous bunch crossings [167].
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Figure 6.47: Left: front view of a quadrant of a muon station. Each rectangle represents one
chamber. Each station contains 276 chambers. Right: division into logical pads of four chambers
belonging to the four regions of station M1. In each region of stations M2-M3 (M4-M5) the number
of pad columns per chamber is double (half) the number in the corresponding region of station M1,
while the number of pad rows per chamber is the same (see table 6.5).

A realistic simulation of the detector occupancy requires the detailed description of the cav-
ern geometry and of the beam line elements and the use of very low energy thresholds in GEANT4.
The CPU time needed for such a simulation would be prohibitive for the stations M2–M5 inter-
leaved with iron filters. The strategy chosen to overcome this problem was therefore to generate
once for all a high statistics run of minimum bias events with low thresholds. The distributions of
hit multiplicities obtained were parametrized and then used to statistically add hits to the standard
LHCb simulated events. The latter were obtained by running GEANT4 at higher thresholds and
with a simplified geometry of the cavern and the beam line [168]. Simulated events have been ex-
tensively used to evaluate the rates in the various detector regions in order to establish the required
rate capabilities and ageing properties of the chambers and to evaluate the data flow through the
DAQ system [169]. At a luminosity of 2×1032 cm−2 s−1 the highest rates expected in the inner
regions of M1 and M2 are respectively 80 kHz/cm2 and 13 kHz/cm2 per detector plane. In the de-
tector design studies, a safety factor of 2 was applied to the M1 hit multiplicity and the low energy
background in stations M2-M5 has been conservatively multiplied by a factor of 5 to account for
uncertainties in the simulation.

Detector technology

The LHC bunch crossing rate of 40 MHz and the intense flux of particles in the muon system [169]
impose stringent requirements on the efficiency, time resolution, rate capability and ageing char-
acteristics of the detectors, as well as on the speed and radiation resistance of the electronics.
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(b)

Figure 2.8: (a) Arrangement of the muon system. (b) Left: front view of a quadrant of a muon station. Each thin framed
rectangle represents one of the 276 chambers, which is divided into logical pads. Right: Pads of the four M1 regions. Finer
(coarser) pad granularity is chosen in M2 and M3 (M4 and M5), where the number of pad columns is in-(de-)creased by
a factor 2. [103]

2.1.7 Muon system
The muon detection system, described in Ref. [124], provides muon identification and constitutes the
hardware trigger together with the calorimeters. The system is composed of five stations (M1–M5) of
rectangular shape, placed along the beam axis with projective geometry (cf. Fig. 2.8(a)). Each of the
stations is equipped with multi-wire proportional chambers (MWPC), except in the highest rate region of
M1, where triple gas electron multiplier (GEM) [125] detectors are used. Stations M2 to M5 are placed
downstream of the calorimeters and are interleaved with 80 cm thick iron absorbers to discriminate
penetrating muons from high energetic hadrons which have not been absorbed in the HCAL.

The hardware trigger requires excellent time resolution in combination with high efficiency, realised
by optimised charge collection geometry and gas mixtures in the MWPCs and GEM chambers. The min-
imum momentum that a muon must have to traverse the five stations is approximately 6 GeV. The total
absorber thickness, including the calorimeters, is approximately 20 nuclear interaction lengths. Station
M1 is used to improve the pT measurement in the hardware trigger, but does not contribute significantly
when the track is matched with the measurements from the tracking detectors in the software trigger
or offline. The stations are divided into four regions, R1 to R4, with increasing distance from the beam
axis, to obtain comparable occupancies in each region (cf. Fig. 2.8(b)). The detector performance is
reviewed in [126].
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2.2 Data taking and reconstruction

2.2 Data taking and reconstruction
This section follows the data flow in LHCb, from proton-proton collisions to an analysis-ready dataset.
First, a brief overview of the LHC accelerator complex is given, highlighting parts which are relevant
for LHCb. Then, the data taking conditions are discussed, followed by an overview of the Run I trigger
system, the reconstruction and simulation chains.

2.2.1 LHC operations
The large hadron collider (LHC) [106, 127, 128] is a proton-proton collider designed to reach centre-of-
mass energies of 14TeV and 30 million proton-proton collisions per second. The two counter rotating
proton beams are guided by strong magnetic fields through two separate accelerator rings with 27km
circumference. To make use of existing infrastructure at CERN, the LHC has been built in the in the
existing tunnel of the precessing large electron positron (LEP) collider. approximately 22 km of the LEP
tunnel consist of curved sections, in which bending dipole magnets and focussing magnets are installed.
The remaining 5 km consist of eight interaction regions that provide space for the experiments, injection
and extraction elements, acceleration and collimation devices.

The length of the existing tunnel and the desired beam energy of 7 TeV per proton beam imply
magnetic bending fields of 8.4 T. Additional constraints come from the relatively small 3.76 m diameter
of the LEP tunnel into which two separate magnet apertures with opposite field orientations had to be
squeezed. Each of the eight arcs of the LHC consists of 46 repeating series of one quadrupole and three
dipole magnets. Each magnet uses niobium-titanium (NbTi)-based superconducting cables, which are
operated at a temperature of 1.9 K. In combination with the high magnetic field, this means that there is
a small margin before the superconducting state is lost. Even if only a section of the NbTi cable becomes
a normal conductor, ohmic losses increase the operating temperature still further. This effect is known
as magnet quench.

The beam of the LHC starts off in the LINAC2 linear accelerator, is passed at 50 MeV to a multi-
ring booster synchrotron for acceleration to 1.4GeV, and then to the 628 m-circumference proton syn-
chrotron (PS). In the PS, the beam reaches 26 GeV and is partitioned into the desired bunch pattern for
the LHC. At full intensity, each beam contains about 1.15 × 1011 protons, and consist of 2808, about
30 cm long bunches, which are separated by about 7.5 m or 25 ns. Another transfer from the PS into
the 7km-circumference super proton synchrotron (SPS) is made, where the beam is further accelerated
to 450 GeV. From the SPS, the beam is injected into the LHC by fast kicker magnets which abruptly
change the beam trajectory to move it down the 3 km transfer line. The acceleration chain is schemat-
ically shown as a part of the CERN accelerator complex in Fig. 2.9. An injection into the LHC takes
about 20 minutes, due to the high impedance in the magnet circuits, the process of increasing the mag-
net current/the beam energy. During this operational phase, the transverse beam dimensions shrink.
Once stable beam conditions are met, the LHCb VELO is closed and data can be recorded.
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Figure 2.9: Schematic view of the CERN accelerator complex as of 2016 to 2018 [129].

2.2.2 Data taking at LHCb
A crucial parameter for collider and experiment is the event rate, which depends the number of col-
lisions, the product of the machine luminosity and the energy-dependent collision cross section. The
luminosity is entirely determined by the beam parameters and given by

L =
frevnbN2

σxσy
F(Φ,σx ,σy ,σs) .

Here, frev is the revolution frequency, nb is the number of bunches, N is the number of protons per
bunch, and F is a geometric function that depends on the crossing angle Φ of the beams, the transverse
r.m.s. beam sizes σx ,σy at the interaction points and the r.m.s. bunch length σs.

To ensure good detector performance for the targeted precision measurements in LHCb, it is cru-
cial to control the visible pile-up µvis. Pile-up is defined as the average number of visible interactions
per bunch-crossing [130]. The luminosity and pile-up as a function of time during Run I is shown in
Fig. 2.10(a). Due to the lower number of bunches in 2010, the visible pile-up clearly exceeded the
LHCb design value, while the luminosity was still below that. It was demonstrated that the trigger
and reconstruction work efficiently under such harsh conditions and that the physics output was not
compromised, such that, at an increased number of bunches, LHCb took data at up to twice its design
luminosity in 2011 and 2012.
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(a) (b)

Figure 2.10: (a) Pile-up and instantaneous luminosity as a function of time. The dotted lines show the design values.
(b) instantaneous luminosity for ATLAS, CMS and LHCb during a long fill. After ramping to the desired luminosity at the
LHCb interaction point, the luminosity is kept stable by adjusting the transversal beam overlap. After about 15 hours, the
luminosity decreases for LHCb as well, due to the difference in the final focusing at the collision points. Taken from [104].

In 2011 a luminosity levelling procedure was introduced at the LHCb interaction point. By adjusting the
transverse overlap of the beams at LHCb, the instantaneous luminosity could be kept stable to within
about 5 % during a fill, as illustrated in Figure 2.10(b). The luminosity levelling procedure minimises
the effects of luminosity decay, allowing to maintain the same trigger configuration during a fill and to
reduce systematic uncertainties due to changes in the detector occupancy.

The integrated luminosity recorded by LHCb was 1.11 fb−1 in 2011 at a centre-of-mass energy of
7TeV and 2.08 fb−1 in 2012 at 8 TeV. Luminosity calibrations were carried out with the LHCb detector
for the various centre-of-mass energies at which data has been taken. A statistical combination of a van
der Meer scan [131] and beam-gas imaging [132] luminosity calibration methods were employed [133].
The combined method is the most precisely measured luminosity at the LHC.

2.2.3 Trigger system
The LHCb trigger, described in Ref. [134], is a two-level system. The first is implemented in hardware
(level zero – L0), followed by the two-stage software level trigger, called high level triggers HLT1 and
HLT2. The L0 trigger is designed to reduce the event rate from the nominal LHC bunch crossing rate of
40MHz to a maximum of 1.1MHz. During Run I the rate of visible interactions was about 13MHz [135].
The complete detector is read out on a positive L0 decision and the data is sent to the software trigger,
that is implemented on the event filter farm (EFF), which had about 30000 processing cores in 2012.

In Run I, the bulk of data is selected by five L0 selection streams, selecting events with either high
pT muons or large transverse energy deposits in the calorimeter. On a positive L0 decision, the read-
out boards (trigger electronics level 1 board – TELL1) of the individual detectors send data through a
switching network to the EFF nodes [136]. There, dedicated algorithms, referred to as trigger lines,
compute a HLT1 decision, which decrease the event rate to about 70 kHz. Due to limited computing re-
sources the algorithms rely on a partial event reconstruction. The HLT1 trigger line used in the analysis
presented in this thesis is the inclusive beauty and charm line, Hlt1TrackAllL0. It selects good quality
track candidates based on their transverse momentum and displacement from the primary vertex. This
trigger line gets the dominant part of the HLT1 bandwidth allocated: about 58kHz.
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The HLT2 decision is then based on several inclusive or exclusive selection algorithms, relying on an
offline-like event reconstruction. Fully hadronic trigger lines are of particular interest for the analysis
presented in this thesis. These lines make use of multivariate classification algorithms, constructing
two-, three- and four-track vertices [137, 138]. These so-called topological trigger lines are based on a
modified Boosted Decision Tree with discretised input variables [139].

In 2012 the trigger system was improved further by introducing the concept of a deferred trig-
ger [140]. This trigger stores about 20 % of all L0 accepted events on the local disks of the HLT farm
nodes. The buffered events are processed if farm nodes are idle, e.g. during interfill gaps of the LHC.
The increased effective computing power allowed for higher quality reconstruction and looser selection
criteria. Not only such improvements, but also the data taking environment, computational resources
and physics goals cause changes in trigger lines. These have been summarised and studied in [141] for
2011, and [142] for 2012 data taking.

When combining the output of trigger lines, the following terms, defining the trigger logic in LHCb,
are introduced:

• TIS (triggered on signal) : particles of a given signal decay chain caused a positive decision on a
given (combination of) trigger line(s)

• TOS (triggered independent of signal) : other particles than those of the signal decay chain in the
event caused a positive decision on a given (combination of) trigger line(s)

• TOB (triggered on both) : neither TIS nor TOS. Only a combination of signal and non-signal
particles caused a positive decision on a given (combination of) trigger line(s)

• TISTOS : the logical AND of TIS and TOS

2.2.4 Track reconstruction
The LHCb reconstruction algorithms define different track types, shown in Fig. 2.11(a). These are VELO
tracks, which have hits in the VELO; upstream tracks, which have hits in the VELO and TT; T tracks,
which have hits in the T stations; downstream tracks, which have hits in TT and the T stations; and long
tracks, which have hits in the VELO and the T stations. The latter tracks can additionally have hits in TT.
Long tracks are the highest quality tracks comprising all available information from the trackers and are
therefore used in most physics analyses. Downstream tracks mainly play a role in the reconstruction
of daughters from long-lived particles which have decayed after the VELO (usually weakly decaying
strange hadrons, such as Λ or K0

S
). Track reconstruction can be subdivided into a track finding/pattern

recognition part and a track fitting part.
The basic track finding algorithms, called VELO tracking [143] and T seeding [144], reconstruct

VELO and T track candidates which are used as seeds for upstream, long and downstream tracks. Long
track candidates are found by two dedicated algorithms. The first, called forward tracking [145], starts
with VELO tracks and searches for corresponding hits in the T stations. The second, called track match-
ing [146, 147], uses both VELO and T tracks as input and matches them in the magnet region. Down-
stream tracks use T tracks as seed and searches for corresponding hits in the TT [148]. The outputs of
all algorithms are merged, eliminating candidates that were found twice.

The track fit is done by a Kalman filter [149], taking into account multiple scattering and corrects for
energy loss due to ionisation [150, 151]. In a typical bb event, such as the one shown in Fig. 2.11(b),
the algorithms reconstruct a sizeable fraction (up to 20 % in high occupancy events) of fake tracks, i.e.
charged tracks that do not correspond to a real particle which passed through the detector. Fake long
tracks can originate from falsely reconstructed track segments in the VELO or the T stations, from a
mismatch of VELO and T station segments or from hadronic interaction of particles with the detector.
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(a) (b)

Figure 2.11: (a) Track types in LHCb [152]. (b) Display of reconstructed tracks and assigned hits from a 2011 B0
s →µ

+µ−

candidate event. The insert shows the corresponding VELO region [C14]

The rate of fake tracks is significantly reduced in a dedicated offline filtering algorithm based on a neural
network classifier [I2]. Mismatched track segments are due to the long lever arm between the tracking
stations up- and downstream of the magnet and remain to be the most abundant category after fake
track rejection.

Detector alignment
To provide an optimal momentum resolution, the position and orientation of the LHCb tracking detector
elements in the global reference frame must be known with an accuracy significantly better than the
single hit resolution: the detectors need to be well aligned. The alignment of the LHCb tracking de-
tectors uses information from optical and mechanical surveys and from reconstructed charged particle
trajectories. On software level, alignment is based on the Millipede algorithm [153] and a track fit-based
algorithm [154]. The former uses a simplified track model, converges within one iteration, but can align
only one sub-detector at once. The latter includes the alignment parameters in the track fit model and
finds the optimal alignment parameters by minimizing the χ2 calculated on all the tracks considered as
input. The alignment proceeds in four steps, in accordance to the aligned detectors: VELO [155, 156],
tracking stations [157], RICH mirrors [118], and muon stations [126], with each step detailed in the
given references.
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Performance of track reconstruction algorithms
Several measures characterise the performance of the LHCb track reconstruction. A short summary
of performance parameters of interest for this work is given. In the analysis described later, almost
the entire topological selection1 is done directly after reconstruction in an LHCb-wide pre-processing
campaign. This is opposed to an offline selection, and demonstrates how clean a topological selection
based on good track reconstruction is.

• The track reconstruction efficiency measures the probability that the trajectory of a charged particle
that has passed through the full tracking system is reconstructed. A data driven tag-and-probe
method, using J/ψ →µ+µ− is used, which determined track reconstruction efficiencies above
96 % for largest parts of the experimentally covered kinematic phase space [158].

• Primary vertex (PV) and impact parameter (IP) resolutions are important measures in the recon-
struction of the decay topology, i.e. the spatial resolution of the reconstructed tracks. As such they
are driven by the detector performance and the reconstruction algorithms of the VELO.

The PV resolution is measured by randomly dividing an event into two samples of tracks of equal
size. The PV is reconstructed independently in both samples, which is then used to infer the
resolution. The x and y resolutions are shown in Fig. 2.12(c). Due to the boost in z–direction
and the arrangement of VELO layers, the PV resolution is worse in z. For a PV with 25 tracks, a z
resolution of 71µm was measured.

The IP of a track is defined as its distance from the PV at its point of closest approach. Transverse
IPx and IPy distributions of tracks originating from a PV that is made up of at least 25 tracks are
measured as a function of a variable of interest. Here, the variable of interest is 1/pT, and the
linear dependence of the IP resolution is a consequence of multiple scattering and the geometry
of the vertex detector. In each of the 1/pT bins, the IPx and IPy distributions are approximately
Gaussian, and their width is consequently plotted as resolution shown in Fig. 2.12(d).

• Good mass and momentum resolution are essential parameters, providing high discriminating
power between signal and background processes. The momentum resolution is measured with
J/ψ →µ+µ− and is related to the mass resolution, in the limit of massless muons which have
similar momentum, via the approximation

�

δp
p

�2

= 2
�σm

m

�2
− 2

� pσθ
mθ

�2
.

Here, m is the invariant mass of the J/ψ candidate and σm is the Gaussian width obtained from a
fit to the mass distribution. The second term is a correction for the opening angle, θ , between the
two muons, where σθ is the per-event error on θ which is obtained from the track fits of the two
muons. The relative momentum resolution is shown in Fig. 2.12(a). The relative mass resolution
has been measured with dimuon resonances and is shown in Fig. 2.12(b).

The momentum resolution of a mother particle in decay chains involving intermediate metastable par-
ticles, can further be improved by a kinematic fit [159], known as decay tree fit (DTF) within LHCb.
The algorithm parametrises a decay chain in terms of vertex positions, decay lengths and momentum
parameters, and then fits these parameters simultaneously using a Kalman filter. In the fit, the decay
vertex of a particle is obtained by including its hypothesised origin and mass. Kinematic constraints
such as the measured parameters of the final state tracks, 4-momentum conservation at each vertex etc.
are taken into account.

1Some variables related to the decay topology and reconstruction are input to the D-from-B BDTs, but those are dominated
by PID variables.
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Figure 2.12: Performance of the LHCb track reconstruction: (a) Momentum resolution of long tracks from J/ψ →µ+µ−
decays [104]. (b) mass resolution obtained from invariant mass fits to dimuon resonances [104]. (c) primary vertex
(PV) resolution for events with one reconstructed PV as a function of the track multiplicity N . The grey histogram shows
the distribution of N per PV in arbitrary units for all events that pass the HLT [110]. (d) Impact parameter resolution in
x-direction [110].

2.2.5 Particle identification

In this work, decays with six hadrons in the final state will be studied, for which most of the separation
power against combinatorial background in the offline analysis came from informations of the particle
identification (PID) detectors.

The PID for hadrons is obtained by combining the Cherenkov angle information of the RICH de-
tectors with the track momentum provided by the track reconstruction. All tracks in the event are
considered simultaneously by an overall event log-likelihood, allowing for optimal treatment of tracks
where Cherenkov cones overlap. The minimisation procedure of that event negative log-likelihood
(NLL) starts with the assumption, that all particles are pions, since they are the most abundant species
in high energy pp collisions. The event NLL is then computed under this assumption, using the distri-
bution of photon hits in the HPDs, the associated tracks and uncertainties as input. Then, the NLL is
recomputed, changing the mass hypothesis of a single track to e, µ, π, K , p, leaving all other hypotheses
unchanged. The particle hypothesis of the track which caused the largest descent of the event NLL is
then fixed, and the procedure is repeated until no further improvement in the event NLL is found.
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Figure 2.13: (a) Kaon identification efficiency and pion misidentification rate for two different requirements of the
difference in log-likelihood [118]. (b) Comparison of difference in log-likelihood and neural network response for pro-
tons [104].

In practice, some modifications to this algorithm have been implemented to increase its speed [118].
The final result of the PID algorithm is the difference in log-likelihood (∆ log L(X − π)) when a track
is assigned the pion mass hypothesis compared to another mass hypothesis X . The performance of
the difference in log-likelihood is measured with data driven tag-and-probe methods in which large
samples of genuine π, K , p tracks are exclusively reconstructed using kinematic selections only. The
decays providing this information were chosen to be K0

S
→π+π−, D∗+→

�

K−π+
�

D0 π
+ and Λ0 →pπ−.

The performance of the difference in log-likelihood of kaon and pion using the D∗+ calibration sample is
shown in Fig. 2.13(a). It should be noted that the performance not only depends on kinematic measures,
such as the momentum, but also on the track multiplicity of the event, correlated to the RICH occupancy.

Further information on the PID come from the muon stations and the calorimeters. Their informa-
tions are used to calculate a combined log-likelihood. Moreover, using additional information from the
tracking detectors, an artificial neural network has been developed, whose response for a particle type
X is referred to as ProbNNX [I3][104]. The performance of the neural network response compared to
the difference in log-likelihood for protons is shown in Fig. 2.13(b). It performs significantly better than
the log-likelihood difference.

Efficiencies of PID variables

Simulating responses of PID detectors is non-trivial, as it requires well modelled kinematics of traversing
particles, detector occupancy, and changing experimental conditions such as alignment, temperature
and gas pressure. This holds true in particular for the simulation of variables like ProbNNX, which
combine many informations from the PID detectors. This motivates the use of data driven techniques
to measure efficiencies of PID response variables. The most common tool in LHCb providing such a
data driven efficiency measurement is called PIDCalib [160]. It allows to extract the PID efficiency as a
function of a set of calibration variables, usually p,η and nTracks (the number of tracks in the event),
by estimating yields of clean calibration sample signals before and after PID selection. The calibration
sample in the analysis presented in this work is D∗+ →

�

K−π+
�

D0 π
+, which is used to determine the

efficiency of a cut on ProbNNk> 0.18. Hence, neglecting technicalities described in detail in Ref. [160],
the ratio of D∗+ yield after and before the cut on ProbNNk> 0.18 gives the efficiency.
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Another approach is the re-sampling or correction of PID variables in simulation samples. These ap-
proaches, described in Ref. [I4], are known as PIDGen and PIDCorr respectively, and have been inte-
grated in PIDCalib. In essence, again omitting technical details, the probability density function (p.d.f.)
of set of calibration and PID variables, e.g. p,η, nTracks and ProbNNk, is obtained on a clean calibra-
tion sample with the help of kernel density estimators from the Meerkat package [161]. In PIDGen, a
new PID variable is now sampled according to the calibration sample p.d.f., replacing the PID variable
of the simulation sample. PIDCorr on the other hand first needs the p.d.f. of the simulation sample
corresponding to the one obtained on the calibration sample. Then PIDCorr corrects the PID variable in
the simulation sample with a variable transformation, which uses the p.d.f.s obtained from simulation
and calibration samples. The transformation shifts the value of the PID variable, and hence preserves all
simulated relations to other variables in the sample. Both approaches allow to extract PID efficiencies
from the transformed simulated samples.

This work will introduce further PID-like variables for decaying particles, for which efficiencies need
to be obtained as well. This is described in detail in Sec. 5.

2.2.6 Data processing and simulation
The data flow, described in the LHCb computing model [162], from detector data to the trigger system
has been discussed in Sec. 2.2.3. The output of the trigger, the so called RAW data, is transferred to the
CERN Tier 0 centre, archived on tape, copied and distributed to the six LHCb Tier 1 sites. There, and at
CERN, a first pass reconstruction is executed shortly after the data is taken. Another full reconstruction
is run at the end of each year’s data taking. In 2012 the reconstruction procedure has been optimised to
also use computing power of the Tier 2 sites [163]. Each reconstruction pass, labelled by a Reco version
number [C24], is followed by a stripping pass [C43], where several hundreds of different physics group
selections are executed. The selected events are written to one or more of about ten output streams.

The reconstruction output (FULL.DST – DST stands for data summary “tape”) contains a copy of
the RAW data. The DST after the stripping pass contains the same information as FULL.DST for events
selected by the stipping line, as well as additional information stored by the stripping algorithms. Many
exclusive analyses however only require information relating the few reconstructed particles of the se-
lected decay tree. A microDST format has been developed containing this reduced information, reducing
the required storage space from ∼120 kB/event on DST to ∼13 kB/event on microDST [163]. These
stripped datasets are the input to user analysis and to further centralized processing by physics working
groups, such that analysts do not need to access RAW data or the non-stripped reconstruction output.
The described data flow is illustrated in Fig. 2.14.

Figure 2.14: Data flow and associated applications in LHCb [164].
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The applications associated to this data flow, MOORE [C42], BRUNEL [C39] and DAVINCI [C40], are
based on the GAUDI architecture [165] and the LHCb event model [I5].

Simulation in LHCb is performed with the Gauss package [166][C41]. It interfaces PYTHIA [167,
168] with a specific LHCb configuration [169]. Decays are described by EVTGEN [170], in which final
state radiation is generated by PHOTOS [171]. The interaction of generated particles with detector ma-
terial, hits and deposits in the detector are modelled with GEANT4 [172, 173]. After digitisation [C41],
i.e. the application of the detector response to previously created hits and deposits, simulated and real
data use the same software.
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3 Analysis strategy
This work reports the first observation of the decays Λ0

b → Λ+c D0K− and Λ0
b → Λ+c D∗(2007)0K−, and

the measurement of their branching fraction relative to the decay Λ0
b → Λ+c D−s . That decay is chosen

as reference channel because it has been measured before with relatively large signal yield [174] and
contains the same set of particles in the final state, so that many systematic uncertainties cancel. The
reconstruction chain for the decays read:

(signal) Λ0
b→ Λ

+
c D0K− with Λ+c → pK−π+ and D0→ K+π− ,

Λ0
b→ Λ

+
c D∗(2007)0K− with Λ+c → pK−π+ , D∗(2007)0→ D0π0 or D0γ and D0→ K+π− ,

(reference) Λ0
b→ Λ

+
c D−s with Λ+c → pK−π+ and D−s → K−K+π− .

Here, final state particles are highlighted in green, and particles which are not reconstructed are marked
in red. Throughout the document, the terms signal and reference channel are used according to the
name given in parenthesis. The D∗(2007)0 decay chain is treated as signal, but due to the missing
particles in the reconstruction chain sometimes referred to as partially reconstructed decay. Throughout
the documentation of the analysis in this work D∗(2007)0 is denoted as D∗0 for brevity.

Both, signal and reference channel require the reconstruction of six hadrons for which particle iden-
tification plays a crucial role. For this reason the selection after the LHCb-wide stripping, introduced
in Sec. 2.2.6, is essentially driven by dedicated PID-like variables for charm hadrons, termed D-from-B
BDTs. These were first developed in Refs. [I6][175, 174], and it has been shown in Λ0

b→ Λ
+
c D−s decays

that their discriminating power is far superior compared to combining standard PID variables for each
final state particle [176]. The D-from-B BDTs have been re-trained, embedded into a software package
and calibrated in the course of this work. This is detailed later in Sec. 5.

After optimisation of the selection (Sec. 6), the signal yields of Λ0
b → Λ

+
c D(∗)0K− and Λ0

b → Λ
+
c D−s

are determined (Sec. 7). The next step towards the relative branching fraction, R (∗)
Λ0

b
, is to correct for

detector- and reconstruction-induced effects. These can all be conflated into efficiency corrected yields
Ncorr of Λ0

b→ Λ
+
c D(∗)0K− and Λ0

b→ Λ
+
c D−s , such that the relative branching fraction reads

R (∗)
Λ0

b
=

N
Λ0

b→Λ
+
c D(∗)0K−

corr

N
Λ0

b→Λ
+
c D−s

corr

B(D−s → K−K+π−)

B(D0→ K+π−)
. (3.1)

It is hence a simple ratio of two numbers, the efficiency corrected yields Ncorr, and a correction for the
branching fractions of D−s → K−K+π− and D0→ K+π−, which is taken from the PDG [14].

The efficiency correction compensates for various acceptances, selections and inefficiencies in the
reconstruction. This does however not mean that Ncorr can be interpreted in a straightforward manner
as the total number of produced Λ0

b → Λ+c D(∗)0K− or Λ0
b → Λ+c D−s decays. Estimating this number is

more involved, since efficiencies which cancel in the ratio of Eq. (3.1) would have to be taken into
account as well. Here, the efficiency corrected yield of a decay d, is computed on an event-by-event
basis as

Nd
corr =

∑

i

sPd(µ i)
∏

k εk(ωi,k)
∀{µ i ,ωi,k} ⊂ x i

�

∩kcd
k

�

. (3.2)

The formula is understood as follows: the sum runs over all reconstructed and selected events i; the
reconstruction and selection procedure is put into formula on the right: the event i is part of a sample
x which depends on the conjunction of reconstruction and selection steps for decay d, cd

k . Each of these
k steps have to be corrected for with a corresponding efficiency εk.
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The efficiencies are measured as a function of calibration variables ω. In practice, a look-up table of
efficiencies as function of ωk is created with the help of a calibration sample. An example of this is the
creation of a look-up table from a simulation sample in ωTrigger = (pT, y)T , i.e. transverse momentum
and rapidity, for the efficiency correction of the trigger selection. Then, for each event i in the signal
sample, the measured value for ωk determines where the value of εk is read off from the look-up table.

But not each of the events in the sample x is a signal event. This is taken into account by removing
the background with an unfolding algorithm, that allows to give each event a weight sPd(µ i): the
sWeight (cf. Sec. 4.2.4). It depends on the set of discriminating variables µ. For example, in the case
of Λ0

b→ Λ
+
c D−s these are the invariant masses of the decay products of Λ0

b, Λ+c and D−s . Note that both,
efficiency and sWeight implicitly depend on selection and reconstruction steps cd

k , but it is the analysts
obligation to ensure that the efficiency corrected yield does not.

After accounting for systematic effects in the computation of Ncorr, the relative branching fraction
RΛ0

b
is obtained according to Eq.(3.1). The computation of R∗

Λ0
b
, i.e. the relative branching fraction

of Λ0
b → Λ+c D∗0K−, requires another step in which the D∗0 decay channels, D∗0 → D0π0 and D∗0 →

D0γ, are combined. This is necessary for kinematic reasons, which lead to different reconstruction and
selection efficiencies.
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4 Analysis tools
Much effort of this work went into scalable software development to provide a framework for future
analyses. The concepts and developed tools are introduced in the first part of this section. The second
part is then dedicated to statistical tools used throughout this work.

4.1 Software development
Software development in high energy physics often escapes focus, even though a large portion of time
is spent on it. This paradigm gradually shifts, but much more effort is needed to provide efficient, well
tested, portable and easy to use tools suiting the needs of analysts. To be able to develop such tools,
common steps in typical analysis workflows need to be identified. The tool would then provide a flexible
and well documented solution to that problem, in a way that the analyst would only have to change a
minimal amount of settings to be able to integrate it into a different analysis.

An example for this would be a package to perform fits, or one to make plots which can be fully
configured at runtime, i.e. by making changes in a configuration file, and not in the source code. Flexible
in this context then means, that most configurable parameters are optional and pre-set to the most
common use-case. The ideal case of such modularised software would be, that the analyst would only
have to provide a file which defines the workflow and interfaces the modules, and another file providing
individual configurations for the modules, like fit model, settings for plots etc.

For this work, a large part of the software is already released in a modularised manner. All of
the modules described in the following have been developed in the course of this work. In fact,
most modules were already used in the bachelor thesis of Christoph Otte [177], the master thesis of
Florian Reiß [176] and diploma thesis of Christopher Vahl [178], leading to the first observation of
Λ0

b→ J/ψΛφ [I7]. All of theses tools are part of repositories hosted by the CERN GitLab platform [C9],
offering code review, collaborative features and services for reproducibility which are detailed later. The
repositories are accessible by all members of the LHCb collaboration.

Some of the modularised, portable tools based on the C++ standard library [C28], ROOT [C30] and
boost [C7] are briefly introduced here. The scripts of the tools are written to be configurable at runtime
with the help of the boost property tree INFO parser [C8].

IOjuggler [C17] is a header-only library at the base of most tools. It parses command line options and
facilitates the usage of ROOT objects.

ntuple-gizmo [C22] includes scripts to

• make histograms from various ROOT storage formats

• make plots from various objects

• manipulate ROOT TTrees (a specific storage format)

• automatically produce plots for studying misidentification backgrounds (cf. Sec. 5.1.3)

• optimise cuts (cf. appendix B.2)

• train and apply a classifier or regressor with TMVA [179]

EffDalitz [C12] is a library to create, apply and plot efficiency maps (cf. Sec. 8)

2DAdaptiveBinning [C2, C1] includes a simple algorithm to generate an adaptive binning in two di-
mensions, and provides a custom histogram class that reproduces the essential functions of the
standard implementation of a two-dimensional histogram in ROOT. It is fully supported in the
EffDalitz and ntuple-gizmo packages.
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Figure 4.1: Excerpt of the directed acyclic graph of rules (steps in the analysis) executed by Snakemake to produce
the branching ratio measurement. Note that systematic uncertainties, producing input datasets, cross-checks and the D-
from-B BDT workflow are not included. Each coloured box corresponds to a rule, the arrows illustrate the dependencies
between rules. Scalability is handled by the use of wildcards, e.g. the data taking period in the top nodes.

beef [C5] is a wrapper package around ROOFIT, the ROOT fitting framework, and is used for fitting
and plotting. To ensure good fit quality, fits presented throughout the document are checked to
return with a good status code from the Hesse minimisation, with accurate covariance matrix,
and the best fit value of every fit parameter had to be more than 3 naïve σ away from its domain
limit. To facilitate these checks, beef prints warning messages, can highlight fit results, large
(anti-)correlations and examine the pull distribution of a plot with a Wald-Wolfowitz runs test or
a simple check whether a configurable number of bins are above a configurable threshold.

The modules and dedicated scripts of the analysis are interfaced by the snakemake workflow manage-
ment system [180]. Snakemake is used to create the workflow of the analysis in a reproducible and
scalable way via a Python based language. The workflow of this analysis is shown as a directed acyclic
graph in Fig. 4.1.

A related, more widely discussed topic is reproducibility, see e.g. [181, 182, 183, 184, 185, 186].
Within LHCb, there is an effort to provide reproducibility of analyses, summarised in the “LHCb Anal-
ysis Preservation Roadmap” [187]. The analysis presented in this thesis is fulfilling the requirements
labelled “best practices” in the LHCb Analysis Preservation Roadmap, and is a pioneering analysis in
this regard [188].
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4.2 Statistical methods
From a statistics point of view, the main objective of the analysis presented here will be the following:
given the observed data, provide an estimate ÒR (∗)

Λ0
b

of the relative branching fraction R (∗)
Λ0

b
, that has the

so-called best properties. The term is defined in the context of parameter estimation in Sec. 4.2.1. Fur-
thermore, a well defined statistical uncertainty of ÒR (∗)

Λ0
b

needs to be estimated. This is done in terms of

a frequentist interval estimation, which needs to have good coverage properties (cf. Sec. 4.2.3). Another
uncertainty, the systematic uncertainty, is introduced by inaccuracies in the process, strategy or method
of a measurement. This uncertainty is often difficult to estimate due to its complexity or limited amount
of possibilities to probe the process/strategy/method. It should therefore be understood in the context
of Bayesian statistics as the analysts best (subjective) estimate. While observer bias should in principle
be avoided, e.g. by doing a blind analysis [189], minimisation of the uncertainty – or equivalently, max-
imisation of the statistical power – is desired. Beside a careful evaluation of systematic effects to reduce
the systematic uncertainty, methods to increase the statistical power by an optimised selection, and by
making optimal use of the selected data will be utilised. The later employed methods are introduced in
Secs. 4.2.5 and 4.2.4.

4.2.1 Parameter estimation
The procedure of estimating a parameter’s value given the sample (the observed data) x is called
parameter fitting. The best fit value, or estimate θ̂ , of the true parameter θ ∗ is inferred from a function of
the data: the estimator. There is no fundamental rule dictating how an estimator must be constructed.
Therefore, in the frequentist notion, it is tried to choose the estimator which has the best properties, i.e.
is consistent, unbiased, efficient, and robust. Where consistency means that the estimate θ̂ converges
to θ ∗ in the limit of large sample sizes. An unbiased estimator returns an estimate that does not deviate
from θ ∗ if an experiment with limited sample size would be repeated asymptotically many times, i.e. in
the limit of a large number of independent and identically distributed (i.i.d.) experiments. The efficiency
of an estimator is given by the ratio of its own variance over the variance calculated by the Cramér-Rao
lower bound. Since the variance of a biased estimator might be lower than that of a less (or un-) biased
one, a combination of bias and variance of the estimator is commonly used to measure its quality. Robust
estimators are not affected by outliers or other small departures from model assumptions. A more formal
definition is e.g. given in [190, 14, 191]. Next, an estimator with good properties is introduced: the
maximum likelihood estimator.

4.2.2 The method of (extended) maximum likelihood
The method of maximum likelihood is a technique for estimating a parameter’s value given a finite
sample of data. Under certain conditions, detailed e.g. in Ref. [190], it can be shown that the maximum
likelihood estimator is consistent, unbiased, efficient and robust. The likelihood function of n measured
values x1 . . . xn is given by the product of the individual conditional probability density functions (p.d.f.s)

L(θ ) = f (x1|θ ) · . . . · f (xn|θ ) =
n
∏

i=1

f (x i|θ ) , (4.1)

that is the joint p.d.f. of i.i.d. measurements x i . The condition, that the measurements are independent
allows to write the joint p.d.f. as a product – i.e. the individual p.d.f.s factorise.
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For mainly technical reasons, it is more convenient to use the negative log-likelihood

`(θ ) = − log L(θ ) = −
n
∑

i=1

log f (x i|θ ) . (4.2)

The maximum likelihood estimate θ̂ for the parameter(s) θ is the value that maximises L(θ ), or min-
imises `. This means it is solution to

∂θ`(θ ) = 0 . (4.3)

Since L(θ ) is the product of probability measures given the data, it is intuitively comprehensible that a
maximum of this product selects the best estimate.

In this work, the minimisation (4.3) is done with the C++ equivalent of the MIGRAD subroutine
within MINUIT [192], based on Newton’s method. Furthermore, the sample size n itself is a Poisson
distributed random variable in all fits carried out in this work. To account for the sample size, the
likelihood is extended:

L(ν,θ ) =
νn

n!
e−ν

n
∏

i=1

f (x i|θ ) . (4.4)

The extended likelihood (4.4) shares many of the properties and advantages of the standard maximum
likelihood method, and can lead to improved estimators θ̂ if the parameter of the Poisson distribution
ν is given as a function of θ [193].

4.2.3 Uncertainty estimates
This section introduces methods to obtain statistical uncertainties and confidence intervals in this work.
In the frequentist sense, the variance of an estimator is a measure of how widely the estimates would be
distributed if the experiment were to be repeated many times with the same sample size. This should not
be confused with a probability that the true value of the parameter is found within the interval – in the
frequentist notion, it either is, or it’s not. In most cases, the square root of the variance – the standard
deviation σ – is reported as statistical uncertainty. The limitations of this approach are discussed and
the statistically cleaner notion of a confidence interval is introduced.

Statistical uncertainty

In the large sample limit, it can be shown (under certain conditions), that the maximum likelihood
estimator is normal [190], i.e. described by a Gaussian p.d.f.. And in fact, for most practical problems,
the maximum likelihood estimates are Gaussian distributed. As a consequence, the standard deviation
(covariance matrix) of a (multidimensional) estimator effectively summarises all of the information
about how repeated experiments would be distributed.

Assuming an efficient and unbiased estimator of a scalar parameter θ , the varianceV of the estimator
is given by the endpoint of the Cramér-Rao lower bound, i.e.

V
�

θ̂
�

≥ E
�

∂ 2
θ `
�−1

. (4.5)

The right hand side of Eq. (4.5) can be solved analytically, i.e. by carrying out the integrals to get the
expected value (E [X ] =

∫

x f (x)dx). Here however, extending the problem to a multidimensional
parameter θ and using the invariance under change of parameter of the maximum likelihood solution,
the entries i, j of the inverse of the estimated covariance matrix V̂ are given by

�

V̂
−1
�

i j
= ∂ 2

θi ,θ j
`
�

�

�

θ=θ̂
. (4.6)

In this work, the second derivative is calculated numerically using the HESSE subroutine of MINUIT [192].
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Figure 4.2: Confidence intervals for a ratio of two numbers ε = k
n , where n= 1000 and k ∈ [950,1000].

(a) Propagation of uncertainty assuming k and n are independent Poisson distributed variables, with estimated standard
deviation σ̂(k) =

p
k; n analogous.(b) Confidence interval1 of ε, assuming that k is binomial distributed.

1The plot shows a Clopper-Pearson interval [195] as implemented in ROOT [C37].

Confidence intervals

In cases, where the conditions for asymptotic normality of the maximum likelihood estimator are not
fulfilled, a confidence interval that is defined by Eq. (4.6) will have bad properties. The interval [a, b]
(which depends on the estimator) is the (1−α)·100% (two-sided) confidence interval for θ if it contains
the true value θ ∗, i.e. if

P
�

a(θ̂ )≤ θ ∗ ≤ b(θ̂ )
�

= 1−α . (4.7)

Estimated intervals are called valid, if the coverage probability P
�

a(θ̂ )≤ θ ∗ ≤ b(θ̂ )
�

is equal to, or
slightly larger than the confidence level 1− α as the number of experiments goes to infinity. The case
P
�

a(θ̂ )≤ θ ∗ ≤ b(θ̂ )
�

> 1−α is called overcoverage, the contrary P
�

a(θ̂ )≤ θ ∗ ≤ b(θ̂ )
�

< 1−α is called
undercoverage.

If the p.d.f. of the estimator is known, e.g. by means of a Monte Carlo study, “exact” confidence
intervals – in the sense that they do not undercover – can be constructed; this is known as Neyman
construction [194, 191]. In practice, most methods to construct confidence intervals are derived from
approximations of estimator properties, which can be validated by pseudo-experiments.

In this work, confidence intervals will be used in the context of efficiencies. This means if the
term uncertainty is related to efficiencies later, it actually means a 68.27 % confidence interval, i.e. the
equivalence of the standard deviation (1σ) of a Gaussian estimator. However, estimators for efficiencies
should be binomial and not Gaussian. In the exaggerated example shown in Fig. 4.2, an efficiency is
once treated as ratio of two random variables, and the other time as parameter in a binomial process.
By adding this information, it is seen that the estimator is much more efficient. Moreover, the domain of
the variable is respected (ε > 1 is not defined). Finally, it is seen that the Gaussian estimators produce
straight parallel limiting lines, while the estimator derived from the binomial distribution forms a curved
confidence interval at the domain limit. A more technical discussion of estimators for efficiencies is
diverted to appendix A.
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4.2.4 sPlot
A tool to unfold data distributions called sP lot [196] is presented. In this work it is used to subtract
signal from background components in a statistically optimal way. The tool makes use of a discriminating
variable in which the distribution of all sources of events is known. The discriminating variable allows
to infer control variable distributions of the individual sources of events. An example for this is the
following: signal and background are defined by a fit to an invariant mass spectrum; that fit can then
be used to infer the signal- or background pT distribution. In this case signal/background are the sources
of events (denoted as d in the following), the invariant mass is the discriminating variable (µ), and pT
is the control variable (ω).

The formalism is now introduced along the lines of the original publication [196], with notation
adapted to this work. There is an important limitation to the method, which needs to be made clear
first: Unfolded distributions can only be obtained if the control variable p.d.f. M(ω) and the p.d.f. of
the discriminating variable(s) f (µ) factorise. That is, the joint p.d.f. f (ω,µ) can be written as product
of two p.d.f.s M(ω) · f (µ). If this requirement is not fulfilled, the resulting unfolded distributions will
likely be wrong. A way to test this, is to plot the discriminating variable in intervals/bins of the control
variable and see if the shape (not the normalisation) of all sources is the same.

The task of unfolding for a specific source of events d, is to estimate the distribution of a control
variable ÒMd(ω). The ansatz here is to find a weight Pd that projects out that distribution of source
d from the distribution in which all nd sources are mixed M(ω) =

∑nd
l=1 Ml(ω). A first guess to such

a weight would be the fraction of events of type d in a small region δω with mean value ω. That is
nothing else than choosing (small) intervals in ω, and making a fit in each of these intervals to get the
fit fractions of source d. If the fit is an extended maximum likelihood fit, the fit fraction of d in δω is
the estimated number of events Nδωd . Putting this into a formula, the searched weight of event i in the
interval δω is

Pd(µ i) =
Nδωd fd(µ i)

∑nd
l=1 Nδωl fl(µ i)

∀
�

µ i|ωi ∈ δω
	

.

Here, the expression
�

µ i|ωi ∈ δω
	

states, that the measured variables µ i and ωi of the event i is
contained in the interval δω. This weight Pd (µ i) now allows to estimate the projected (normalised)
distribution of the control variable in δω:

NdÒMd(ω)δω=
∑

i

Pd(µ i) ∀
�

µ i|ωi ∈ δω
	

.

By letting the size of the intervals δω become infinitesimal, and taking the expected value of N , the
true distribution M∗(ω) is retained:

E
�

NdÒMd(ω)
�

=

∫

dµ
nd
∑

l=1

Nl fl(µ)δ(ω(µ)−ω)Pd(µ) (4.8)

= Nd

∫

dµ fd(µ)δ(ω(µ)−ω) = NdM∗d(ω) .

From the first to the second line, it is used that the weightPd(µ) projects out the contribution of species
d. However, the so defined weights suffer from the implicit dependency of the control variableω on the
discriminating variable µ, which enter via the delta-function δ(ω(µ)−ω). This dependency forces to
stick to the paradigm of performing fits in (infinitesimally) small intervals of δω. The sP lot formalism
provides a solution to overcome this problem.
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The line of thought is as follows: assume that the (unknown) true distribution M∗(x ) can be factored
out from Eq. (4.8), as

E
�

NdÒMd(ω)
�

=

∫

dµ

∫

dω
nd
∑

l=1

Nl fl(µ)M
∗
l (ω)δ(ω−ω)Pd(µ)

= Nd

nd
∑

l=1

M∗l (ω)

�

Nl

∫

dµ
fl(µ) fd(µ)

∑nd
l ′=1 Nl ′ fl ′(µ i)

�

. (4.9)

It can be seen from this expression that the true control variable distribution of species d (NdM∗d(ω))
can only be projected out if fd(µ) is fully discriminating (i.e. a simple cut can be applied which only
selects species d). However, there is a statistical solution that can correct for the term in parenthesis in
Eq. (4.9). It is given by the expectation value of the inverse of the covariance matrix of the extended
maximum likelihood estimator. Having found this relation is at the core of sP lot.

So after inserting back that solution to the equations above and solving for the searched weight, it
is seen that this weight – which projects out the control variable distribution NdÒMd(ω) – is given by:

sPd(µ i) =

∑nd
l=1

bVdl fl(µ i)
∑nd

l ′=1 Nl ′ fl ′(µ i)
. (4.10)

This is the sWeight. Here, bV is the estimated covariance matrix found by an extended maximum like-
lihood fit. Statistical uncertainties of sWeighted distributions are given by the sum of squared sWeights
Æ
∑

i(sPd(µi))2 in the asymptotic limit.

4.2.5 Gradient boosted decision trees
Suppose, as in case of sP lot, a sample composed of multiple sources of events is given, e.g. signal and
background. The task is to predict whether an event is signal or background based on a set of input
variables x . This task is called classification, and there exist a variety of tools which do this classification
in a statistically optimised way. A widely used classification tool are boosted decision trees, which are
literally decision trees that are boosted. Both terms, the decision tree and the boosting will be discussed
in this section. In this work, it has been found that gradient boosting algorithms yield superior results
compared to other types of boosting, such that this specific boosting algorithm is detailed.

Decision trees

Up to now, only the task, a sample with multiple sources of events and a set of input variables have been
introduced. It is not clear and how the classification is done. In principle, there are two options to this
how: they go by the name of supervised and unsupervised machine learning. Here, supervised learning
is used. That means that a training sample in which the inputs variables and their corresponding class
(signal or background) are known. With the help of this sample, a set of rules is created, which in the
case of a decision tree (DT) is just a series of simple cuts, like the ones shown in Fig. 4.3. This part is
usually called growing a DT. The way how a DT is grown depends on the boosting algorithm and will
thus be explained later.
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Figure 9.1: Example of a full grown decision tree. The numbers are
to be understood as absolute numbers of signal and background
events in the training data, xi are event variables, ci are constants
which determine which branch to follow.

After a training iteration i, the error rate3 ei of the training is computed and the
weights of the training events are updated. The speed at which the weights are
updated is steered by the predefined parameter β:

(wi+1)j = (wi)j ·




1 event j is classified correctly in iteration i(

1−ei
ei

)β

event j is classified wrongly in iteration i
.

In the next iteration, a decision tree is trained with the updated weights ~wi+1 and the
procedure is repeated. The number of iterations, N , is predefined and usually at the
order of a few hundreds.

Once all training iterations are performed, the boosted decision tree response y(j)
of an event j is computed as a weighted average of the individual tree responses hi(j)
using the error rate ei.

hi(j) =

{
0 event j reaches a background leaf in the tree from iteration i

1 event j reaches a signal leaf in the tree from iteration i
(9.1)

y(j) =
1

N

∑

i

ln

(
1− ei
ei

)β

hi(j) (9.2)

3e = N(incorrect decisions)/(N(correct decisions) +N(incorrect decisions))
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Figure 4.3: (a) Schematic view of a decision tree. The numbers are to be understood as the sum of weights in signal and
background categories. The constants ci , which are obtained in the training, determine if an event with parameter values
x i ∈ x will be classified as signal or background in this DT. Taken from [197].
(b) A DT obtained with TMVA during studies described in Sec. 5. The sums of weights in signal (S) and background
categories (B) were normalised the root node of the DT. In contrast to the schematic tree, this tree is not fully grown, i.e.
not every event of training sample has been classified correctly.

The DT shall now be examined by taking the path of an input sample. Starting at the top, the root node1,
both classes, signal (S) and background (B), are evenly distributed during training. Note that this is not
a mandatory requirement of the training sample; if the number of signal and background events is not
the same, the samples can be weighted to contain the same sum of weights. From the root node, the
sample is split into subsamples that pass or fail a given cut/selection rule. In the example of Fig. 4.3(b)
all events with a value of atan_Lc_p_RichDLLp greater than 1.49 take the path to the right, while
the rest of the events take the left path. In both examples of Fig. 4.3 the right path has a higher signal
purity, but this is not a strict rule. Splitting of the sample continues until certain stopping criteria are
fulfilled. These can usually be configured by the user. If no stopping criteria would be defined, the
splitting would continue until every single event of the training sample is classified correctly. In such
a case, the tree is fully grown, as the one shown in Fig. 4.3(a). In other words: all terminal nodes are
either classified as signal or background.

After training, which grows the DT, the DT is applied to real or test data. Assume, that the test data
contains an event with atan_Lc_p_RichDLLp= 1.53, atan_Lc_K_RichDLLk= 1.40 (and many other
variables) to which the DT in Fig. 4.3(b) should be applied. It does not matter what these variables mean
right now, but they are explained in Sec. 5.2. Here they are used to deduce what the output of the DT
will be. On the root node, the right path would be taken, since the measured atan_Lc_p_RichDLLp
value is in fact greater than 1.49. At the next node, the DT checks if atan_Lc_K_RichDLLk is greater
than 1.41. In the example this is not the case, so the left path is taken. The purity S/(S + B) in the
training sample at this stage is 0.491. This is a terminal node, where the DT has to return its decision.
Given the default settings of the software that produced the plot, that decision would be “background”.
In practice, the output signal or background is translated to +1 or −1 respectively.

1Unlike trees in nature, DTs grow from top to bottom.
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The example implies that a single decision tree, returning a binary output, has several drawbacks. One
is that the example event will be classified as signal, since atan_Lc_K_RichDLLk = 1.40 pushes it into
a signal-like terminal node. But it is clear from the purity figures that this decision will more likely be
wrong than that of a signal or background event in the leftmost or rightmost terminal nodes respectively.
Another issue is that of overtraining. In the example case, the value of atan_Lc_K_RichDLLk is very
close to the cut value which decides whether the event is classified signal or background. A statistical
fluctuation, either in the training sample, leading to a “wrong” rule, or in the test sample by e.g. a
resolution effect, can easily push the event to the signal- or background side of the DT.

These problems are overcome by using many DTs, and combining their outputs by boosting. When
their outputs are combined, each DT still returns +1 or −1, but the boosting algorithm will give them
a weight, such that the response from a training or test sample will be a distribution between −1 and
+1. A boosted decision tree (BDT) is thus not a tree in the literal sense, but rather a decision forest. The
algorithm of gradient boosting requires the trees to be grown as regression trees, which are introduced
next.

Regression trees

Even though it is the goal to train a BDT for a classification task, gradient boosting relies on regression
trees in the minimisation that is detailed later. A regression tree has the same basic structure as the DTs
introduced above. The difference is, that regression trees will return a real valued rather than a boolean
response.

The open question of how to grow a DT is now addressed in the context of regression trees. In
supervised learning, the system under study is consisting of a multi-dimensional vector of input variables
x and a response variable y . In the training phase, the pairs of inputs x i and responses yi are known.
This knowledge allows to grow the tree. The growing algorithm now needs to decide automatically
on the splitting variables an the split points. The resulting tree will be fully described by its terminal
nodes, since they partition the input space into disjoint regions R j , each with response b j . This can be
expressed as

T (x ) =
J
∑

j=1

b j1R j
(x ) , (4.11)

where 1R j
(x ) is 1 if the input x is in region R j and 0 otherwise. An example is shown in Fig. 4.4, for

which the regression model might be written as

T̂ (X) =
5
∑

j=1

b j1R j
((X1, X2)) .

When growing a regression tree that should predict a response in a region R j , it makes sense to
estimate

b̂ j = ave(yi|x i ∈ R j) , (4.12)

i.e. that the response of the regression tree is the average of the training responses in each region. This
also minimises the sum of squares

∑

i(yi− T (x i))2. For finding the regions, the least squares method is
computationally not feasible and binary splits considering only one input variable, as in Fig. 4.4, rather
than the whole input space are performed. The regions are searched by a greedy algorithm that probes
all dim(x ) input variables at split points t using the whole training sample. For simplicity, take a single
split into regions R1 and R2, which should solve

min
l,t



min
b1

∑

x i∈R1(l,t)

(yi − b1)
2 +min

b2

∑

x i∈R2(l,t)

(yi − b2)
2



 . (4.13)
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two-dimensional feature space by recursive binary splitting, as used in CART,
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Figure 4.4: A DT (a) partitions an input space in two dimensions X1 and X2 by four splits t1 . . . t4 into five regions R1 . . . R5

(b). Taken from Ref. [198].

Here, l labels one of the input parameters, i.e. l ∈ 1 . . . dim(x ). The inner minimisation is solved by the
averages of the training responses (4.12), and the outer minimisation is solved by scanning a predefined
number of splits in each input variable1. It is straight forward to expand the minimisation to arbitrary
trees (4.11).

To summarise: regression trees are grown by a greedy algorithm that scans for splits in the input
parameter space that minimise the squared difference between training response and tree output. Sev-
eral of such trees shall be used in the following. Experience has shown that the combination of the
order of a thousand such trees, each relatively small and therefore called weak learner, leads to better
results than any combination of larger trees. How this combination is done is subject to the following
paragraph.

Gradient boosting

The boosting algorithm defines the parameters of a BDT during training. It is briefly summarised here
how this is done in TMVA [179], the software used in this work. Their algorithm is based on the original
publication on gradient boosting, Ref. [199].

Gradient boosting stars from a problem that is common to any algorithm in supervised machine
learning. The goal is to obtain an estimate F̂(x ) of a function F∗(x ) that maps the input x to the
response y in a statistically optimised way. To find the optimal estimate for F∗(x ), a loss function
L(y, F(x )) is introduced, which penalises misclassification of events during training. That loss function
can e.g. be the squared error L(y, F(x )) = (y − F(x ))2. The statistically optimal function F∗(x ) thus
minimises the expected value of that loss function:

F∗(x ) = argmin
F
Ex ,y [L(y, F(x ))] . (4.14)

The function optimisation problem, Eq. (4.14), shall be solved numerically by incremental functions
(boosts).

1In TMVA, this configurable parameter is called nCuts.
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That numerical solution is gradient-descent, which iteratively follows the steepest local gradient to
arrive at a global minimum. Gradient-descent introduces recursively defined local gradients gm at step
m, with step size ρm. Using gradient-descent, the searched optimal function can be written as

F∗(x ) =
M
∑

m=0

−ρm gm(x ) = −ρm ∂F(x )Ex ,y [L(y, F(x ))]
�

�

F(x )=Fm−1(x )
.

Note how the function of the previous step Fm−1(x ) enters in the loss function.
It is worthwhile to back-pedal at this point to get a global view. The function that optimally maps

the classifier inputs to the response is searched in a function minimisation problem (4.14). The iterative
method of gradient descent allows to search that minimum by stepping towards the direction of steepest
descent. This direction is given by the local gradients −gm, but the step sizes, given by the ρms need to
be known as well. They are the solution to line search:

ρm = arg min
ρ
Ex ,y [L(y, Fm−1(x )−ρgm(x ))] . (4.15)

Thus, the function minimisation became a iterative parameter minimisation problem.
The solution to the line search problem (4.15) can be approximated by fitting regression trees to

the negative gradients. That is because the loss function is maximally reduced by the gradients, each
pointing from the prediction of the previous estimate Fm−1(x ) toward the direction of the true response.
The parameters Θ = (b j , R j) of a regression tree fitting the negative gradients are given by

Θ̂m = argmin
Θ

N
∑

i=1

(−gim − T (x i;Θ))
2 . (4.16)

The gradients at each training event gim are also called residuals or pseudo-responses, and are given by

ỹi,m = −gm(x i) = −∂F(x i) [L(yi , F(x i))]
�

�

F(x i)=Fm−1(x i)
.

The derivative of the loss function is simple to calculate, such that, choosing a binomial log-likelihood
loss function as in TMVA, the residuals are

ỹi,m =
2yi

1+ e2yi Fm−1(x i)
.

Note that this loss function to determine the step sizes ρm is different from the loss function that has
been used to grow the regression trees, which has been chosen as squared error loss in (4.16). In TMVA,
the standard settings for the loss functions are binomial log-likelihood and Huber loss [200], a hybrid
of squared and absolute loss to be less sensitive to outliers.

In summary, classification with gradient boosting estimates a function that maps a set of input pa-
rameters to a real valued response. The function is obtained using the numerical method of gradient-
descent. At each iteration, a regression tree is fitted to minimise the residuals of the previous step. The
resulting classifier response, the estimate F̂(x ), is a weighted sum of shallow decision trees.
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Hyperparameters and Regularisation

So far, the classifier response is fully determined by the training sample, the number of boosting step-
s/DTs M , and the loss functions. There are however several settings, also known as hyperparameters,
that TMVA and other packages provide to steer the training. Apart from the number of trees, the size
of trees and nodes can be configured. Further options concern the regularisation: the stability of the
algorithms performance and the prevention of overfitting. One of the hyperparameters to regularise
gradient BDTs is the shrinkage ν, sometimes also called learning rate, which damps the weight of each
boost

Fm(x i) = Fm−1(x i) + νρmT (x i;Θm) , 0≤ ν≤ 1 . (4.17)

There is a trade-off between shrinkage and the number of boosting steps (and thus also with computa-
tional power), so that these should be monitored simultaneously in hyperparameter optimisation. An
additional method to prevent overfitting, is called bagging – short for bootstrap aggregating. Bagging
uses a resampled training dataset at each boosting step. In TMVA this is done by assigning a weight
according to a Poissonian random number with the bagging-fraction (0.6 by default in TMVA) as mean
parameter to each training event.
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5 Identification of non-prompt charm hadrons
This section describes the development and calibration of PID-like variables for the identification of non-
prompt Λ+c → pK−π+, D0 → K−π+ and D+s → K+K−π+ decays. The variable can thus be understood
as a portable classification tool for a decay, contrary to the ProbNN PID variables for single particles
(cf. Sec. 2.2.5). The new variables play a crucial role in the offline selection of Λ0

b → Λ+c D(∗)0K− and
Λ0

b→ Λ
+
c D−s decays.

In order to classify non-prompt charm hadrons, a multivariate selection based on supervised machine
learning algorithms is used. Those algorithms are known to produce better background rejection at a
given signal efficiency when compared to standard cut-based or likelihood-based selections. Machine
learning tools are widely used in LHCb, the prime example being the ProbNN PID variables to classify
π, K , p, e and µ candidates.

The idea for a generic non-prompt charm hadron selection, termed “D-from-B BDTs”, has been devel-
oped in Ref. [I6] and applied to the analysis of beauty hadron decays into pairs of open charm particles
in Refs. [175, 174]. It could be shown in these analyses, that a selection based on such D-from-B BDTs
outperforms a selection using the ProbNN PID variables and kinematic variables in a standard way. The
D-from-B BDTs not only draw strength from combining PID and kinematic variables in an optimised
way by exploiting the correlations of the charm hadron daughters; but also from using information
from especially the RICH, but also muon and tracking detectors directly.

After their first application in Ref. [175], the D-from-B BDTs were updated for Ref. [174]. For this
work, they are updated once more1, and they need to be applicable to Run II data in the near future.
Moreover, an update of the D+→ K−π+π+ BDT is planned. Also, the concept can be expanded to further
charm hadrons, like Ξc and ηc , but also to other decay channels, excited states, or other secondary
intermediate states, like the φ meson or other strange hadrons. To minimise the amount of effort
needed to develop and calibrate such BDTs, an efficient and scalable software framework is needed.

The task of developing such a software has been picked up by the Heidelberg LHCb group, and a
successful implementation was done in the bachelor thesis of Christoph Otte [177], which has been
tested in the master thesis of Florian Reiß [176]. However, a dependence on the year of data taking
has been found, as well as imperfections in the efficiency correction for tight selections. The workflow
is revisited and improved in this work. The data is split by data taking period and it is shown that the
efficiency correction of the revisited D-from-B BDTs works over a wide range of cuts.

During the efficiency correction procedure, a known problem has been encountered, namely that
common binomial confidence intervals are not valid for data-driven efficiencies. That is because the
signals which are needed to measure the efficiencies have to be separated from backgrounds, which
distort the commonly used intervals. A solution to this problem is proposed in appendix A, and has
been integrated into beef, the custom-build fitting framework (cf. Sec. 4.1).

The D-from-B are trained and evaluated on calibration data, namely the decays Λ0
b→ Λ

+
c π
−, B−→

D0π− and B0
s → D+s π

−. The procedure is entirely data-driven, i.e. no information from simulation is
used. Calibration channel selection before the BDT training procedure is detailed in Sec. 5.1. Input
variables and hyperparameter settings of the BDT training are described in Sec. 5.2, followed by details
on the individual Λ+c → pK−π+, D0 → K−π+ and D+s → K+K−π+ BDTs. The most challenging part is
the efficiency calibration in Sec. 5.6, followed by a closure test on the Λ0

b → Λ
+
c D−s channel. The code

related to this section is available in a GitLab repository [C11].

1The earlier BDTs have been trained on a different stripping version (v20, now: v21). A global cut on a figure correlated
with the RICH occupancy has been relaxed (nLongTracks from 250 to 500). Since the PID efficiencies depend on the
occupancy, the BDTs needed to be re-trained.
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Figure 5.1: Decay topology of X b → X cπ
− decays used as BDT calibration channels. Primary vertex (PV), X b and X c

decay vertices are typically measured to be well separated due to dilated decay lengths of the boosted beauty and charm
hadrons. The size of the ellipse at the vertices implies different spatial resolutions, which become more precise with a
larger number of particles emerging from a vertex.
Final state particles are drawn as thick lines with arrows; their tracks are reconstructed as approximately straight lines in
the interaction region as indicated by the thinner back-extended lines. The spatial trajectory of intermediate particles is
drawn as black dashed line, while their momenta, as combined from the respective daughter particles, might not point
into exactly the same direction (the dotted magenta line). The cosine of the angle between the two vectors is known as
direction angle (DIRA).
Impact parameters (IPs) of all final state and intermediate particles help to further discriminate against combinatorial
backgrounds; here, only the IP of the bachelor pion is drawn.

5.1 Calibration channel selection
The selection of the D-from-B BDT calibration channels is described in detail in the following. The
calibration decays Λ0

b→ Λ
+
c π
−, B−→ D0π− and B0

s → D+s π
− are collectively referred to as X b→ X cπ

−

decays in the following. The trigger and stripping selection of the X b→ X cπ
− and the Λ0

b→ Λ
+
c D(∗)0K−

and Λ0
b→ Λ

+
c D−s decays are based on a common module which is described here.

The section is subdivided into a brief discussion of the decay topology of b hadrons (Sec. 5.1.1),
the LHCb-wide stripping selection (Sec. 5.1.2), an offline selection strategy for all calibration channels
(Sec. 5.1.3), and the strategy to define signal- and background samples for BDT training (Sec. 5.1.4).

5.1.1 Event topology of b-hadron decays
Some basic considerations of the decay topology of b hadrons in LHCb are put in front of the detailed
description, since the selection of X b → X cπ

− decays is almost exclusively based on geometrical and
kinematic variables describing the topology. The X b→ X cπ

− decay topology is illustrated in Fig. 5.1.
Through the predominant b-hadron production mechanism at the LHC via gluon fusion, the system

is strongly boosted in either forward or backward direction. Consequently, typical b-hadrons decay
lengths are dilated to the order of a centimetre and can be measured as well separated from the primary
vertex (PV) by the VELO. Typical impact parameters (IPs) of stable final state particles from secondary
vertices are in the order of a millimetre, which is large compared to the IP resolution of the order of
50µm (cf. Sec. 2.2.4), and can therefore be well separated from particles that emerge from the PV.
Further suppression of backgrounds come from requiring that particle momenta and track trajectories
point to their decay vertex. If this concerns a weakly decaying particle, the cosine of the angle between
the reconstructed momentum vector and the vector between production and decay vertex, known as
direction angle (DIRA), should be close to 1.
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5.1.2 Trigger and Stripping selection
At the trigger stage, candidates are required to be either triggered on signal (TOS) by the L0 hadron
trigger line or triggered independent of signal (TIS) by any other of the physics trigger lines at L0.
The HLT1 selection is implicitly encoded in the HLT2 selection required by the stripping module and
draws from the inclusive charm and beauty line, HLT1TrackAllL0 (cf. Sec. 2.2.3). At the HLT2 stage,
candidates are required to be TOS or TIS on the logical OR of the topological and inclusive φ trigger
lines, constituting about 40 to 45 % of the overall HLT2 output rate [C26]. In summary, the trigger lines
are chosen to select inclusive hadronic b-hadron decays.

Next, the stripping selection is summarised, beginning with the LHCb specific condensed infor-
mation, which is explained in the following. All selection steps, or cuts, are numbered and listed in
Tabs. 5.1–5.3. The tables are divided into global and track selection, selection of intermediate particles
and finally selection of the b-hadron candidate. The stripping is based on the Beauty2Charm module
using the following lines:

Λ0
b
→ Λ+c π− StrippingLb2LcPiNoIPLc2PKPiBeauty2CharmLine [C35]

B−→ D0π− StrippingB2D0PiD2HHBeauty2CharmLine [C33]

B0
s → D+s π

− StrippingB02DPiD2HHHBeauty2CharmLine [C32]

The lines are part of the BhadronCompleteEvent stream of the 2014 legacy stripping of Run I data
(Stripping21(r1)) [C43], based on the official production version Reco14 [C27, C24].

Track selection

# Cut Applied to Purpose

0
Hlt2Topo.*Decision OR
Hlt2IncPhi.*Decision global HLT2 selection stream

1 CloneDist > 5000 all tracks Clone track rejection

2 TRCHI2DOF < 3 all tracks Good track quality

3 nLongTracks < 500 global Remove outliers, limit combinatorics

4 TRGHP < 0.4 all tracks Fake track rejection

5 P > 1000 MeV all tracks Remove low momentum tracks

6 PT > 100 MeV all tracks Remove low transverse momentum tracks

7 MIPCHI2DV(PV) > 4.0 all tracks Reject tracks from any primary vertex

Table 5.1: Global and track based selection used at stripping level.

Using the triggered events as input (#0), the stripping selection starts from proto-particles; these are
objects summarising the reconstruction information. Further objects of importance are tracks, used
as a synonym for a reconstructed trajectory of a charged particle, in contrast to particles, which can
be charged tracks with a mass hypothesis, but also neutral and/or intermediate particles. In case of
the calibration channels the proto-particles are required to be reconstructed as long tracks, passing a
clone track rejection (CloneDist > 5000, #1) and a track quality cut (TRCHI2DOF < 3, #2). The clone track
rejection is based on the Kullback-Liebler divergence which measures the difference in information
content between two track candidates [201].
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The track quality cut is already applied in the reconstruction of long tracks and requires tracks to have
a good χ2/nDoF, which is calculated by the Kalman filter track fit [202, 203]. The total number of
long tracks in the event is limited to 500 (nLongTracks < 500, #3), removing outliers which cause large
combinatorics.

The fake track rate is reduced by a cut on the track ghost-probability (TRGHP < 0.4, #4). The track
ghost-probability is the response of an artificial neural network. The version used in Run I is documented
in Ref. [I2]. The cuts on momentum and transverse momentum can be seen as loosest selection possible
given the reconstruction chain, since multi-body beauty and charm decays tend to produce at least one
soft particle. The last track related cut removes tracks from primary vertices (PVs) by a cut on the
minimal impact parameter (IP) χ2 of a track projection with respect to all PVs (MIPCHI2DV(PV) > 4.0,
#7). The IP is the distance of closest approach of a track projection to a PV calculated by a vertex
fit [C21]. The corresponding χ2 may be understood as increase of χ2 of the PV vertex fit when the
track is added to the vertex [C19]. It behaves similar to IP/(∆ IP) and is calculated using a Kalman
filter. After the generic selection of tracks, the proto-particles are promoted to particles by assigning the
mass hypothesis of the respective candidate.

Charm hadron selection

# Cut Applied to Purpose

8 ASUM(PT) > 1800 MeV c daughters Fast soft background rejection

9
TRCHI2DOF < 2.5 &
PT > 500 MeV &
P > 5000 MeV

at least one
c daughter

Require leading track

10 ACUTDOCA < 0.5 mm c daughters Save CPU time

11 PIDp > -10 p from X c Reduce combinatorics

12 PIDk > -10 K from X c Reduce combinatorics

13 PIDk < 20 π from X c Reduce combinatorics

14 VCHI2/VDOF < 10 X c c daughters emerge from same space point

15 BPVVDCHI2 > 36 X c Reject prompt charm hadrons

16 BPVDIRA > 0 X c Decay vertex downstream of PV

Table 5.2: Stripping selection of charm hadron candidates. As detailed in the text, there is a subtle difference between
combination cuts, such as 8, and mother cuts (14-16). That is that the combination cut is applied to the combination of
daughter particles, whereas the mother cut requires a vertex fit before the cut can be applied [C44].

Charm hadron candidates are built in the stripping and shared among all of the Beauty2Charm lines.
A common set of cuts is used that is summarised in Tab. 5.2. The first cut listed there is the sum of
scalar transverse momenta, which is applied before the vertex fit. This allowed to relax the cuts on the
(transverse) track momenta (#5 and #6), since much background is rejected before the CPU intensive
vertex fit. The physical reason to cut on the sum of scalar transverse momenta is the following: beam
and flight direction of the beauty and charm particles are strongly correlated due to the b production
mechanism at the LHC. Therefore, the sum of track pT is correlated to the masses of the mother particles.
In fact, if the beauty and charm hadrons have low pT, the scalar sum of daughter pT is close to the
mothers mass. For this reason

∑

pT > 5(1.8)GeV for beauty (X b) and charm candidates is chosen
(ASUM(...PT) > 5000 MeV, #17; ASUM(PT) > 1800 MeV, #8).
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Further soft background is reduced by selecting a leading track, produced in the decay of the heavy
hadron. This is done by tighter selections on trackχ2, p, pT – and IP in case of a b hadron – (TRCHI2DOF < 2.5

& PT > 500 MeV & P > 5000 MeV, #9; TRCHI2DOF < 2.5 & PT > 1700 MeV & P > 10000 MeV & MIPDV(PV) > 0.1 mm,
#18). To save computing resources, a cut on the maximum distance of closest approach between tracks
forming a charm candidate is placed (ACUTDOCA < 0.5 mm, #10). The last cuts before performing the
vertex fit of the charm candidate are PID cuts on the combined DLL variables (cf. Sec. 2.2.5), which
are chosen as loose as possible (PIDp > -10, #11 for a proton candidate; PIDk > -10, #12 for a kaon
candidate; PIDk < 20, #13 for a pion candidate).

The vertex fit [C21] is done with a loose vertex quality requirement (VCHI2/VDOF < 10, #14). The
resulting vertex is required to be inconsistent with (BPVVDCHI2 > 36,#15) and downstream (BPVDIRA > 0,
#16) of the PV. The former of the cuts is the χ2 of the distance of PV to the decay vertex of the charm
candidate [C20]. The latter is known as direction angle: here, it is the cosine of the angle between the
c hadron momentum and the spatial vector from PV to decay vertex. Values close to 1 are desired; they
indicate that both vectors point in the same direction.

Beauty hadron selection

# Cut Applied to Purpose

17 ASUM(PT) > 5000 MeV b daughters Fast soft background rejection

18

TRCHI2DOF < 2.5 &
PT > 1700 MeV &
P > 10000 MeV &
MIPDV(PV) > 0.1 mm

at least one
b daughter

Require leading track

19
TRCHI2DOF < 2.5 &
PT > 500 MeV &
P > 5000 MeV

bachelor track Loose kinematic selection

20 (5200 < AM < 6000) MeV Λ0
b combination Fast invariant mass cut

21 (4750 < AM < 7000) MeV B−/B0
s comb. Fast invariant mass cut

22 VCHI2/VDOF < 10 X b b daughters emerge from same space point

23 BPVIPCHI2 < 25 B−/B0
s Candidate produced in PV

24 BPVDIRA > 0.999 B−/B0
s Candidate points back to best PV

25 BPVLTIME > 0.2 ps X b Reject combinatorial background

Table 5.3: Stripping selection on the beauty hadron and bachelor pion candidates.

The beauty hadron candidate is formed from a charm hadron candidate of the previous step and a
pion candidate: the bachelor track. It is selected with loose kinematic cuts only (TRCHI2DOF < 2.5 &

PT > 500 MeV & P > 5000 MeV, #19). An invariant mass cut before the b vertex fit is carried out to save CPU
time ((5200 < AM < 6000) MeV, #20 forΛ0

b candidates; (4750 < AM < 7000) MeV, #21 for B−/B0
s candidates).

The b vertex fit is done with a loose vertex quality requirement (VCHI2/VDOF < 10, #22). The beauty
hadron candidate is further required to be consistent with emerging from (BPVIPCHI2 < 25, #23) and
pointing back (BPVDIRA > 0.999, #24) to the PV. Note that these cuts are not applied to the Λ0

b →Λ
+
c π
−

candidates to be able to use them as intermediate particles from other weak decays, e.g. Ξ−b →Λ
0
bπ
−.

Finally, the decay time of the b hadron candidate is required to be larger than 0.2 ps (BPVLTIME > 0.2 ps,
#25). The decay time is computed by a dedicated decay time fitter [C25]

51



5 Identification of non-prompt charm hadrons

5.1.3 Offline selection of Xb→ Xcπ
− decays

An offline selection to reject combinatorial, Cabibbo suppressed, misidentification and prompt back-
grounds is carried out. It is required to not apply too restrictive cuts during offline selection, in partic-
ular on the charm subsystem. The reasons for this strategy are the following: The BDT should do the
selection work – any cut applied before training will have to be made on the sample where the BDTs are
going to be used. A similar argument is to keep as much signal as possible, so that later analyses can
profit from high signal efficiency. The last argument is practical: each cut introduces a new selection
efficiency that needs to be understood.

The strategy particularly requires cautious studies of misidentification backgrounds, which were
done in a generic way described in a paragraph below. These backgrounds mainly come from single
misidentified1 particles in the decay chain. If the misidentified particles come from another decay chain
and form narrow resonances, they can be vetoed. Such vetos can however be inefficient, or shape the
kinematic phase space by introducing kinks and edges. This means that vetos, especially on the charm
daughter system, should be avoided if possible. On the other side they have to be taken into account
when defining signal and background samples, i.e. in the fitting procedure detailed later.

From a different point of view it is plausible to argue that the BDT itself should be able to classify
misidentified particles as background. This holds true for the charm system, as the BDT only classifies
displaced X cs. If the charm system is not affected, a veto is applied if a resonance due to misidentification
persists after applying the nominal selection cuts and an additional signal invariant mass cut.

The offline selection is carried out with the above guidelines. The pool of cuts for all three calibration
channels can be summarised in a compact table 5.4 and the effect of all cuts is shown in Fig. 5.2. The
columns of the table are understood as follows:

π− PID Cabbibo suppressed backgrounds are rejected by a PID selection of the bachelor π− candidate,
using a combination of pion and kaon PID variables (ProbNNpi(1-ProbNNk) > 0.05). Note that the
Cabibbo suppressed b decays could be kept in principle and also trained on, but they complicate
the fitting. With more rigorous descriptions of the backgrounds, it might be feasible to include
them in future versions of the package.

ψ veto Vetos on J/ψ (and ψ(2S) in B−→ D0π−) from double misidentification of pion candidates are
required in all channels. The J/ψ peak is seen in the combination of the bachelor pion and an
oppositely charged pion from the charm system. The vetos are very efficient (cf. e.g. Fig. 5.10(b)),
due to excellent µ–π separation with PID variables. Hence, only a selection on the bachelor
pion candidate within J/ψ and ψ(2S) mass windows is needed (ProbNNpi*(1-ProbNNmu) > 0.2 OR

ProbNNmu < 0).

c veto In the B0
s → D+s π

− calibration channel, misidentification backgrounds from Λ+c → {K
+ →

p}K−π+ and D+ → {K+ → π+}K−π+ are vetoed. The notation {K+ → p} implies that the K+

candidate is in fact a proton. The vetos had to be applied, since the B0
s → D+s π

− invariant mass
spectrum is swamped by Λ0

b → Λ+c π
− and B0 → D+π− decays, which make fitting infeasible;

in particular with regard to the determination of efficiencies. The veto again made use of PID
variables within a 25MeV mass window around the misidentified Λ+c and D+ peaks. In addition,
signal efficiency is retained by requiring a tight cut on the invariant mass of the K+K− subsystem
of the D+s candidate (ProbNNk*(1-ProbNNp(i)) > 0.05 OR abs(mKK-1019.416) < 5 MeV, where ProbNNp
vetoes Λ+c and ProbNNpi vetoes D+)

1Given the very loose PID selection in the stripping, the term misassigned would be more appropriate. However, misidentified
is kept to avoid confusion.
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5.1 Calibration channel selection

Xb–PV IP χ2 The cut on the IP χ2 of X b w.r.t. the best PV is further reduced compared to the stripping
selection (#23). The cut reduces prompt backgrounds in the Λ0

b →Λ
+
c π
− and B0

s →D+s π
− cali-

bration channels (BPVIPCHI2 < 12). It is not surprising that the cut removes much combinatorial
background in the Λ0

b →Λ
+
c π
− channel, since no IP χ2 cut has been applied in the stripping.

Xb–PV DIRA To further reduce combinatorial background in the B0
s →D+s π

− decay, it was decided to
tighten the DIRA cut (BPVDIRA > 0.9999, cf. #24).

Channel/Cut π− PID ψ veto c veto X b–PV IP χ2 X b–PV DIRA

Λ0
b→ Λ

+
c π
− 3 3 7 3 7

B−→ D0π− 3 3 7 7 7

B0
s → D+s π

− 3 3 3 3 3

Table 5.4: Offline selection of D-from-B BDT calibration channels. The cut values are listed in the text or the code [C18]

Generic method to spot misidentification backgrounds
A method to search for misidentification backgrounds in multi-body decays is described. It makes use
of the fact, that swapping the mass hypotheses of a single particle in the decay chain can be fully
described by the invariant mass of the combined system with original mass hypothesis M and a single
particle momentum asymmetry β [I8]. Resonances consisting of a misidentified particle will emerge
as curved band in a 2D plot of M and β . Similar plots are known from two-body systems. These are
Armenteros-Podolanski plots [204], where the longitudinal momentum asymmetry is plotted against the
transverse momentum of either decay product; and a plot of the signed momentum imbalance [205]
α = q1(1− p1/p2) against the invariant mass of the system, where p1 (p2) is the lower (higher) of the
particle momenta and q the respective charge. Examples of both plots are shown in Fig. 5.3.

The generalised single particle momentum asymmetries which allow to produce similar plots for
multi-body decays can be written as

βi =
−pi1 +

∑dim(i)
j=2 pi j

∑dim(i)
l=1 pil

, (5.1)

with index vector i = (i1, ..., idim(i))T . The computation and plotting have been released in a custom-
built easy to use tool [C10] which defines and evaluates all possible invariant mass and single particle
momentum asymmetry-combinations (MI ,βi) in an n-body final state. The index vectors I and i are
2 to n-dimensional and always contain the same set of (respectively different) indices. The difference
between I and i comes from the fact, that the first index in i labels the misidentified particle, i.e.
permutations in the indices play a role for β , but not for M .
To give an example, consider the three-body combination I = (2,3, 6)T of a six-body final state. It has
M -β combinations (abbreviated for readability): (M236,β236), (M236,β362), (M236,β623). Applying this

example to the signal channelΛ0
b→Λ

+
c D0 K− , with the final state

1
p

2
K−

3
π+

4
K+

5
π−

6
K− the combination 236

would label the Λ+c daughters K− and π+, and the bachelor K−. That example illustrates the numbering
scheme, but as no structure is seen in this particular case, the combinatorially dull case (M123,β123) of
the decay B0

s → D+s π
− is given as showcase example in Fig. 5.4. The plot clearly illustrates that the

D+s signal is swamped by D+ and Λ+c as stated before. Note that the plot shows data directly after the
stripping selection.
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Figure 5.2: Offline selection of D-from-B BDT calibration channels for the 2012 data-taking period. The plots show the
beauty candidate invariant mass systems on the left, the charm candidates on the right. Events passing all cuts are plotted
in blue. Events which have been removed by a specific cut, but pass all other selection criteria are plotted in various
colours as indicated by the plot-labels.
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We incorporate kinematic and particle identification

information in an unbinned likelihood fit [11,14] to

determine the fraction of each mode and the charge

asymmetries, uncorrected for instrumental effects, ~ACP ¼

½Nb!f � N �b! �f�=½Nb!f þ N �b! �f� of the flavor-specific de-

cays B0 ! Kþ��, B0
s ! K��þ, and �0

b ! p��, pK�.

For each channel, Nb!f (N �b! �f) is the reconstructed num-

ber of decays of hadrons containing the b ( �b) quark into the
final state f ( �f). The decay flavor is inferred from the

charges of final state particles assuming equal numbers

of b and �b quarks at production (dominated by the strong

interaction). Any effect from CP violation in b–meson

flavor mixing is assumed negligible [19].

The whole kinematic information is summarized by

three loosely correlated observables [11]: the mass m��;

the signed momentum imbalance � ¼ ð1� p1=p2Þ � q1,
where p1 (p2) is the lower (higher) of the particle mo-

menta, and q1 is the sign of the charge of the particle of

momentum p1; and the scalar sum of particle momenta

ptot ¼ p1 þ p2. Particle identification relies on measure-

ment of the specific ionization (dE=dx) in the drift cham-

ber. For charged kaons and pions the dE=dx response was

calibrated with a sample of 1:5� 106 D�þ ! D0�þ de-

cays, using the charge of the pion from D�þ decay to

identify the products of the Cabibbo—favored D0 decay.

For protons we used 124 000 � ! p�� decays, where the

kinematics and the momentum threshold of the trigger

allow unambiguous identification of the decay products

[18,20]. Identification information for each particle

is summarized by a single observable in our fit (‘‘kaon-

ness’’), defined as � ¼ ðdE=dx� dE=dx�Þ=ðdE=dxK �
dE=dx�Þ, where dE=dx is the observed response, and

dE=dx�ðKÞ is the average responses expected for pions

(kaons). The separation betweenKþ�� or p�� final states

and their charge—conjugates is in excess of 2:1� (Fig. 2).

Although a lower dE=dx separation is available between

pK� and �pKþ, due to similar ionization rates of protons

and kaons, sufficient discrimination is achieved from their

greater kinematics differences. The background model

allows for independent contributions of positively and

negatively charged pions, kaons, protons, and electrons,

whose fractions are determined by the fit. Muons are

indistinguishable from pions with the available 10% frac-

tional dE=dx resolution and are therefore incorporated into
the pion component.

The signal yields from the fit (Table I) are corrected for

different detection efficiencies to determine the physical

asymmetries, ACPðb ! fÞ, defined as

Bðb ! fÞ �Bð �b ! �fÞ

Bðb ! fÞ þBð �b ! �fÞ
¼

Nb!f � cfN �b! �f

Nb!f þ cfN �b! �f

; (1)

where cf ¼ "ðfÞ="ð �fÞ is the ratio between the effici-

encies for triggering and reconstructing the final state f
with respect to the state �f. The cf factors correct for
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FIG. 2. Joint kaonness distribution for the positive (abscissa)

and negative (ordinate) final state particles in B0 ! Kþ��

decays as determined from the calibration data of charm decays

(top left). Dipion mass as a function of � for simulated

�0
b ! pK� decays (top right). Mass of D0 ! hþh0� candidates

with pion assignment to both final state particles (bottom left).

Same quantity as a function of � for simulated D0 ! hþh0�

decays (bottom right).

TABLE I. Raw signal yields determined by the fit and final results. The first uncertainty is statistical, the second is systematic.

Absolute branching fractions are derived by normalizing to the known value BðB0 ! Kþ��Þ ¼ ð19:4� 0:6Þ � 10�6, and assuming

the average value at high energy for the production fraction fs=fd ¼ 0:282� 0:038 [19].

Mode Nb!f N �b! �f ACPðb ! fÞ (%) Relative B Absolute Bð10�6Þ

B0 ! Kþ�� 1836� 61 2209� 64 �8:6� 2:3� 0:9 � � � � � �

B0
s ! K��þ 160� 26 70� 22 þ39� 15� 8 � � � � � �

�0
b ! pK� 80� 14 36� 11 þ37� 17� 3 � � � � � �

�0
b ! p�� 40� 10 38� 9 þ3� 17� 5 � � � � � �

B0 ! �þ�� 1121� 63 � � � BðB0!�þ��Þ
BðB0!Kþ��Þ

¼ 0:259� 0:017� 0:016 5:02� 0:33� 0:35

B0
s ! KþK� 1307 � 64 � � � fs

fd

BðB0
s!KþK�Þ

BðB0!Kþ��Þ
¼ 0:347� 0:020� 0:021 23:9� 1:4� 3:6

PRL 106, 181802 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
6 MAY 2011

181802-5

(b)

Figure 5.3: (a) Armenteros-Podolanski plot from two charged tracks. The big arc is due to K0
S
→π+π− decays; The small

arcs due to Λ→ pπ− and Λ→ pπ+ decays have been vetoed. Here, α =
p+L −p−L
p+L +p−L

, and a pT cut has been applied. (b) Mass

of D0 → h+h′− candidates, with pion assignment for both hadrons h, as a function of the signed momentum imbalance α.
Plots taken from Refs. [206, 207] respectively.
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Figure 5.5: Background rejection as a function of signal
efficiency obtained on a test sample with a BDT which has
been trained using sWeights from 1D and 2D fits.

Sample
signal background

2011 2012 2011 2012

Λ0
b→ Λ

+
c π
− 87294 208415 62784 161456

B−→ D0π− 308316 749964 134855 374451
B0

s → D+s π
− 41023 102435 118294 326226

Table 5.5: Yields per category of TMVA input samples.
Given for orientation.

5.1.4 Strategy to define BDT training samples

Both signal and background samples for BDT training are defined from the exact same events, but are
weighted differently, using sWeights (cf. Sec. 4.2.4 and Ref. [196]). The strategy to obtain the weights
is discussed here, the individual fits are carried out later in Secs. 5.3– 5.5.

All three calibration channels are clean enough to define a clear beauty hadron signal with almost
fully efficient and well understood PID information used on the charm daughters (cuts #11 – #13 in the
stripping). The corresponding invariant mass distributions of beauty and charm candidates after offline
selection are used as discriminating variables to obtain sWeights. This choice differs from previous
versions of the D-from-B BDTs, which used only the beauty candidate invariant mass as discriminating
variable. That this choice leads to superior performance of the BDTs is shown by comparing sWeights
from one- vs. two-dimensional fits in the D0 BDT training in Fig. 5.5. The performance is measured by the
receiver operating characteristic (ROC) curve, which relates signal efficiency to background rejection.
The plot is interpreted as follows: In a 1D fit, there is a invariant mass cut selecting the X c , and that
dimension is integrated out. In the 2D case however, events left and right of the X c peak get smaller
weight to account for the fact that they are more likely to be background.

The further strategy is to fit in a wide invariant mass range of the X b first to define shape parameters
of the heuristically chosen functions. Which functions are chosen is detailed later in the individual
sections of the BDTs. Subsequently a narrow range about the X b signal with fixed shapes is fitted to
define the sWeights. This staged procedure facilitates to disentangle various background contributions
and to eventually get a smaller spread of weights, stabilising the BDT training.

The signal sWeights are extracted from the X b→ X cπ
− signals only, while the background sWeights

are computed from the sum of combinatorial and misidentified backgrounds, meaning that the small
portions of partially reconstructed and Cabbibo suppressed backgrounds are omitted from the training.
In fact, changing the definitions for signal and background could lead to further improvements and will
be studied in the future. One of the changes was mentioned already: that is the addition of the Cabibbo
suppressed modes to the signal. Another change concerns the background, where the combinatorial
background from real charm hadrons is added implicitly. These could however emerge from other b
decays and should thus not be treated as background.

For orientation, the fitted yields are summarised here in Tab. 5.5. The sum of sWeights used in the
training is slightly lower than that, since outliers and long tails in input parameter-space with very low
statistics are removed to stabilise the BDT training.
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5.2 BDT training

5.2 BDT training
The BDTs are trained with the toolkit for multivariate analysis with ROOT (TMVA) [179]. Here, input
and hyperparameter settings of the BDT training are specified. Both, parameters and settings are used
in the same way in all three BDTs.

5.2.1 BDT input variables
Input variables to the BDTs are summarised in Tab. 5.6. Some of these variables have already been used
in the selection, others need further explanation given in the following. Selected input variables, which
are among the three variables of highest importance to the Λ+c , D0 and D+s BDTs are shown in Fig. 5.6.

BDT input variables from the charm candidate concern its kinematics and topology. Basic kinematic,
topologic, raw PID and track reconstruction information is then provided by the charm daughter candi-
dates. It has been found in the first report on the D-from-B BDTs, Ref. [I6], that the BDT performance
strongly profits from using some of the input variables to the ProbNN classifier directly, rather than the
ProbNN response itself.

Variable Particle

log(ENDVERTEX_VCHI2) X c
log(FDCHI2_OWNPV) X c
log(IPCHI2_OWNPV) X c , h
log(P) X c
log(PT) X c , h
beta X c

atan(RichDLL{e,mu,k,p,bt}) h
RichAbove{Ka,Pr}Thres h
UsedRich{1,2}Gas h

Variable Particle

UsedRichAerogel h
isMuon h
atan(MuonLL{mu,bg}) h
MuonNShared h
VeloCharge h
log(TRACK_GhostProb) h
log(TRACK_VeloCHI2NDOF) h
log(TRACK_TCHI2NDOF) h
log(TRACK_MatchCHI2) h

Table 5.6: Input variables to the D-from-B BDTs. There are 6 kinematic variables for the charmed hadron X c and 21
variables for each daughter track h= p, K ,π.

No variables involving the beauty mother are put into the BDT training to be able to use the classifiers
in kinematically different b decays. The first variables listed as input are therefore kinematic variables
of the charm candidate. The variables ENDVERTEX_VCHI2 and IPCHI2_OWNPV have been introduced
in the selection using a different notation. That is, because the stripping and the nTuple production
interface different algorithms in which the variable names differ. Thus, ENDVERTEX_VCHI2 is the X c
decay vertex χ2 similar to stripping cut #14, and IPCHI2_OWNPV is the X c IP χ2 w.r.t. its own best PV,
similar to #15. The flight distance χ2 (FDCHI2_OWNPV) is the geometrical distance between primary
and X c decay vertex in units of χ2 = (VPV − VX c

)T (ΣPV +ΣX c
)−1(VPV − VX c

), with vertices V and their
covariances Σ [C20].

Further X c input variables are the (transverse) momentum and the momentum asymmetry β , Eq. (5.1),
of the X c daughters, with the p, K−, K+ candidates being the potentially misidentified particle for the
Λ+c , D0 and D+s BDTs respectively. Using this new variable instead of the momentum of each daugh-
ter increased the performance of each BDT. This is remarkable, since two, respectively three variables
could be replaced by a single one without loosing information, but rather increasing the BDTs separation
power.
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Figure 5.6: Weighted input variable distributions from the 2012 training samples; distributions from 2011 are not shown,
but similar. Each of the variables is among the three variables of highest importance to the classifier. The top row shows
the transformed proton and kaon DLL distributions for the proton candidate of the Λ+c . The IP χ2 distributions of D0 and
π+ candidates are plotted in the middle row. Note the cut at log(4)≈0.6 in the distribution of the π+ candidate from the
stripping selection. The last row shows the transformed kaon DLL distribution of the K− candidate in the D+s , and the
momentum asymmetry β123 of the D+s system (cf. Fig. 5.4)

The following variables all concern single final state particles. First are the delta log-likelihood (DLL)
variables from the RICH reconstruction (cf. Sec. 2.2.5). It is clear that e.g. the RichDLLp of the proton
candidate in the Λ+c BDT will be among the most important training variables. But also the RichDLLk
of the proton candidate is of importance and is even, after the RichDLLp, the second most important
input for the Λ+c BDT. This example shows how powerful the DLL variables are, even if they do not
directly relate to the hypothesised ID of the candidate. Following the recommendation of Ref. [I6],
all considered hypotheses of the RICH reconstruction, e,µ, K , p,bt, are used during training. Here, bt
denotes the hypothesis of the track being below threshold velocity to emit Cherenkov radiation.
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5.2 BDT training

Boolean variables of the RICH reconstruction follow; RichAbove{Ka,Pr}Thres is true if K or p hy-
potheses were above Cherenkov radiation threshold and the associated track traversed at least one
active radiator; UsedRich{1,2}Gas and UsedRichAerogel are true if the candidate has information
from RICH1, RICH2 gas radiators (C4F10,CF4) and from the RICH1 aerogel radiator, respectively.

Four input variables are related to the muon detector. These are isMuon, a boolean for muon
identification using hit information in the muon stations [208]; MuonLL{mu,bg}, the likelihood of
muon or non-muon (bg) hypothesis using information of the muon stations only and MuonNShared,
which is the number of hits in the muon stations that the candidate shares with others in the event.

The last set of input variables come from track reconstruction algorithms. The VeloCharge variable
estimates the number of particles that contributed to the energy loss measured in the VELO associated to
a VELO track candidate. For a standard track, this variable is close to 1, while it is close to 2 for photons
that created an electron-positron pair. The track ghost-probability has been introduced earlier as mea-
sure to reject fake tracks (#4). The remaining variables, TRACK_VeloCHI2NDOF, TRACK_TCHI2NDOF
and TRACK_MatchCHI2 are χ2 values, which are computed by a track Kalman-fit [202, 209] of the
VELO and T station segments, and the breakpoint between T and TT stations respectively.

Compared to earlier version of the BDTs, it was found that an arcus-tangens or logarithmic prepro-
cessing on some of the (strongly peaking) variables helps with the numerical stability of the training.
For the same reason, outliers in input variable distributions are removed from the training.

5.2.2 Tuning of BDT hyperparameters
All classifiers are gradient boosted decision trees, that have been trained with the same hyperparameter
settings, summarised here in Tab. 5.7. The settings have been chosen to perform best with large input
samples as given by the calibration samples. This is especially reflected in the small learning rate,
Shrinkage introduced in Sec. 4.2.5, and the relatively large number of trees and cuts. The number
of cuts, nCuts, determines the scanned values for determining the splits of a regression tree according
to Eq.4.13. Due to the large number of trees and the low learning rate, very shallow trees have been
chosen. This is reflected in the MaxDepth = 2 parameter, which allows the root node to split, and
the tree is terminated after splitting the resulting nodes another time. The node size, or the size of the
region, is not allowed to contain less than 2 % of the input events. Overtraining is avoided by using the
bootstrap aggregation method mentioned in Sec. 4.2.5. Despite its name, the option to treat negative
weights has been well tested and found to work as expected. As per default, the training samples are
split in half for training and performance evaluation in order to avoid biases.

Property Value

BoostType Grad
Shrinkage 0.05
NTrees 1600
nCuts 80
MaxDepth 2
MinNodeSize 2 %
UseBaggedBoost true
NegWeightTreatment Pray

Table 5.7: BDT training parameters deviating from the default settings given in [179]
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Figure 5.7: (a) Mass vs. momentum asymmetry of the two pion candidates. A J/ψ signal is visible as horizontal band
in the 3GeV region. This plot is produced directly after the stripping selection. Other structures seen in this plot vanish
after the offline selection.
(b) Di-muon invariant mass of the pion candidates. The J/ψ signal is rejected by the applied veto. Events shown in this
plot must pass all remaining selection criteria and lie in a 15(25)MeV window around the X c(X b) candidate.

5.3 Λ+c BDT
The Λ+c BDT is trained on data using Λ0

b→ Λ
+
c π
− decays with Λ+c → pK−π+. The data is preselected as

described in Sec. 5.1. Beside the bachelor PID cut, which is the same for all calibration channels, a J/ψ
veto in the invariant mass of the two oppositely charged pion candidates, which have been assigned
the muon mass, has been applied. The mass vs. momentum asymmetry plot in which this peaking
background has been identified and the respective invariant mass plot are shown in Fig. 5.7.

As outlined in Sec. 5.1.4, sWeights are used to label events for BDT training. They are extracted from
two-dimensional fits in the charm and beauty candidate invariant mass systems. The fits are carried out
in two stages, in which shape parameters are extracted first, and are fixed in a fit to a narrower X b mass
range, leaving the X c mass range unchanged. The BDT training is stabilised by this procedure since the
sWeights are less scattered.

The fit uses pre-defined probability density functions (p.d.f.s) in ROOFIT to describe all shapes in
an heuristic manner. This approach is opposed to extract p.d.f. shapes from simulation as it is done
for e.g. the partially reconstructed Λ0

b → Λ+c D∗0K− decay in the signal channel fit. Due to this, the
fitted spectra should be taken with a grain of salt, especially when it comes to the yields or fit-fractions
of partially reconstructed, misidentified or Cabibbo suppressed decays. For the purpose of defining
sWeights for BDT training, this approach is good enough and leads to valid results (cf. Sec. 5.7). In the
future, it is planned to model these backgrounds by centrally produced or fast simulation techniques,
like RAPIDSIM [210].

Decays that feed into the Λ+c π
− invariant mass spectrum have been taken from a previous LHCb

analysis [211]. Those are B0→ D+π−, B0
s → D+s π

−, Λ0
b → Λ

+
c K− and a partially reconstructed compo-

nent dominated by Λ0
b → Λ

+
c ρ
−. The shapes of B0 → D+π−, B0

s → D+s π
− and Λ0

b → Λ
+
c K− decays are

modelled as Gaussian p.d.f.s

G(M ;µ,σ) =
1

p
2πσ2

e
(M−µ)2

2σ2 (5.2)

whose shape parameters (µ,σ) have been extracted from fits to data in the Λ+c π
− invariant mass M =

Minv(Λ+c π
−) with a selection suiting the misidentified or Cabibbo suppressed channel.
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5.3 Λ+c BDT

Partially reconstructed background is modelled by a Novosibirsk function [212]with positive tail/asym-
metry parameter η

N(M ; Mp,η,σE) = exp

�

−
1

2σ2
0

ln2
�

1−
M −Mp

σE
η

�

−
σ2

0

2

�

. (5.3)

The remaining parameters of the function are the peak value Mp and the resolution or width σE; σ0 is
given by (2/ξ) sinh−1(ηξ/2)with ξ= 2

p
ln4≈ 2.36. The original use of the function was the Compton

photon energy spectrum, and convolutes the theoretical Compton spectrum with a logarithmic Gaussian.
The Λ0

b → Λ+c π
− signal and the Λ+c → pK−π+ signal in the charm candidate mass projection are

respectively modelled by the sum of two Gaussian p.d.f.s with common mean

DG(M ;µ,σ, fσ, fG) = fGG(M ;µ,σ) + (1− fG)G(M ;µ, fσ ·σ) . (5.4)

Here, the previous definition of the Gaussian p.d.f., Eq. (5.2), has been used. The combinatorial back-
ground in both mass representations is modelled by exponential functions

E(M ;τ) = eMτ .

These building blocks, Eq. (5.2)–(5.3), are now used to construct the two-dimensional p.d.f. It is con-
venient to define

Fsig,Λ0
b

:= DG
�

Minv(Λ
+
c π
−);µΛ0

b
,σΛ0

b
, fσ,Λ0

b
, fG,Λ0

b

�

Fsig,Λ+c
:= DG

�

Minv(pK−π+);µΛ+c ,σΛ+c , fσ,Λ+c
, fG,Λ+c

�

Fbkg,Λ0
b

:= E
�

Minv(Λ
+
c π
−);τΛ0

b

�

Fbkg,Λ+c
:= E

�

Minv(pK−π+);τΛ+c
�

(5.5)

FPR,Λ0
b

:= N
�

Minv(Λ
+
c π
−); Mp,PR,ηPR,σE,PR

�

FmisID,B0 := G
�

Minv(Λ
+
c π
−); µ̃B0 , σ̃B0

�

FmisID,B0
s

:= G
�

Minv(Λ
+
c π
−); µ̃B0

s
, σ̃B0

s

�

FCS,Λ0
b

:= G
�

Minv(Λ
+
c π
−); µ̃CS, σ̃CS

�

,

where parameters with a tilde have been fixed in the fits. With that, the full fit model in the Λ+c π
−

invariant mass is given by

FΛ+c π− = NΛ0
b→Λ

+
c π
−Fsig,Λ0

b
Fsig,Λ+c

+ NΛ0
b→Λ

+
c X

�

fΛ0
b→Λ

+
c K−FCS,Λ0

b
Fsig,Λ+c

+ (1− fΛ0
b→Λ

+
c K−)FPR,Λ0

b
Fsig,Λ+c

�

+ Nbkg

�

fB0
s
FmisID,B0

s
Fbkg,Λ+c

+ rB0
s /B

0 fB0
s
FmisID,B0Fbkg,Λ+c

(5.6)

+ fcomb. Λ+c
Fbkg,Λ0

b
Fsig,Λ+c

+
�

1− fB0
s
(1+ rB0

s /B
0)− fcomb. Λ+c

�

Fbkg,Λ0
b
Fbkg,Λ+c

�

.

Fit projections of this model to data in the full invariant mass range are shown in Fig. 5.8. As indicated in
Eq. (5.6), the Cabibbo suppressed and partially reconstructed decays define a separate category beside
the signal (only the Λ0

b→ Λ
+
c π
− component) and background (everything else) categories for extracting

the sWeights.
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Figure 5.8: Fit projections of the two-dimensional fit to the Λ+c π
− and pK−π+ invariant mass for 2011 (top) and 2012

data (bottom).
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Figure 5.9: Distributions of Λ+c BDT responses in 2011 (left) and 2012 (right) test and training samples.

After the fits, the sWeighted data is passed to the BDT training. There, the input variables with highest
importance to the Λ+c BDT are related to proton identification, namely RichDLLp and RichDLLk of
the proton candidate, followed by the Λ+c to PV IP χ2 and the three-body momentum asymmetry β123.
The variables ranked below differ in 2011 and 2012 samples and both contain RichDLLk of the kaon
candidate, the Λ+c flight distance χ2, the proton track ghost-probability and the pion pT among the 10
highest ranked variables. The superimposed BDT response distributions of training and testing samples
is shown in Fig. 5.9, where no signs of overtraining are seen. The BDT is thus ready to be tested on
Λ0

b→ Λ
+
c D−s data.
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Figure 5.10: (a) Mass vs. momentum asymmetry of the two pion candidates. The J/ψ and ψ(2S) signals are visible as
horizontal bands in the 3-4 GeV region. This plot is produced directly after the stripping selection. Other structures seen
in this plot vanish after the offline preselection.
(b) Di-muon invariant mass of the pion candidates. Signals of J/ψ and ψ(2S) are rejected by the applied veto. Events
shown in this plot must pass all remaining selection criteria and lie in a 15(25) MeV window around the X c(X b) candidate.

5.4 D0 BDT

The D0 BDT is trained on data using B− → D0π− decays with D0 → K−π+. The data is preselected
as described in Sec. 5.1. The stripping selection for this calibration channel is already very clean, such
that, apart from the bachelor PID cut, only a J/ψ and ψ(2S) veto in the di-muon invariant mass of
the two oppositely charged pion candidates has been applied. The corresponding mass vs. momentum
asymmetry plot in which this peaking background has been identified and the respective invariant mass
plot is shown in Fig. 5.10.

The signals in both mass representations are modelled by the sum of two Gaussian p.d.f.s with com-
mon mean, Eq. (5.4). The combinatorial background in either mass is described by exponential p.d.f.s,
(5.3). Partially reconstructed decays are modelled by a Novosibirsk function with floating parameters,
Eq. (5.3). The Cabibbo suppressed decay B−→ D0K− has a asymmetric, but peaking shape (c.f. [213])
and is thus modelled by a Crystal Ball function [214]. The Crystal Ball function is a Gaussian with mean
µ connected to an exponential tail at α ·σ of the Gaussian. The sign of α determines if this happens on
the left (+) or right (−) side. The slope of the exponential is given by n. The functional form used in
the fit is

CB(M ;µ,σ,α, n) =
1

σÑCB

(

exp
�

− (M−µ)
2

2σ2

�

, for M−µ
σ > −α

�

n
|α|

�n
· e−α

2/2 ·
�

n
|α| − |α| −

M−µ
σ

�−n
, for M−µ

σ ≤ −α ,
(5.7)

with a normalisation factor

ÑCB =
ne−α

2/2

|α|(n− 1)
+
s

π

2
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|α|
p
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��

.
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Figure 5.11: Fit projections of the two-dimensional fit to the D0π− and K−π+ invariant mass for 2011 (top) and 2012
data (bottom).

Analogous to Λ0
b→ Λ

+
c π
−, Eq. 5.5, the individual components of the fit are redefined as

Fsig,B− := DG
�

Minv(D
0π−);µB− ,σB− , fσ,B− , fG,B−

�

Fsig,D0 := DG
�

Minv(K
−π+);µD0 ,σD0 , fσ,D0 , fG,D0

�

Fbkg,B− := E
�

Minv(D
0π−);τB−

�

Fbkg,D0 := E
�

Minv(K
−π+);τD0

�

FPR,B− := N
�

Minv(D
0π−); Mp,PR,ηPR,σE,PR

�

FCS,B− := CB
�

Minv(D
0π−); µ̃CS, σ̃CS, α̃CS, ñCS

�

,

where fixed parameters are again accentuated by a tilde. The fit model in the D0π− invariant mass
reads

FD0π− = NB−→D0π−Fsig,B−Fsig,D0 + NB−→D0X

�

fB−→D0K−FCS,B−Fsig,D0 + (1− fB−→D0K−)FPR,B−Fsig,D0

�

+ Nbkg

�

fcomb. D0Fbkg,B−Fsig,D0 + (1− fcomb. D0)Fbkg,B−Fbkg,D0

�

. (5.8)

Although the model is improvable, as already discussed for the Λ0
b→ Λ

+
c π
− fit, it provides robust results

for defining sWeights and evaluating the efficiencies. Fit projections of this model to data in the full
invariant mass range are shown in Fig. 5.11. As indicated in Eq. (5.8), the Cabibbo suppressed and
partially reconstructed decays define a separate category beside the signal and background categories
for extracting the sWeights.
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Figure 5.12: Distributions of D0 BDT responses in 2011 (left) and 2012 (right) test and training samples.

After the fits, the sWeighted data is passed to the BDT training. There, the input variables with highest
importance to the D0 BDT are the RichDLLk of the kaon candidate, followed by the D0 to PV and π+

to PV impact parameter χ2s, the isMuon decision of the pion and he RichDLLk of the pion candidate.
The variables ranked below differ in 2011 and 2012 samples and both contain the K−−π+ momentum
asymmetry, the kaon track ghost-probability, K− to PV IP χ2 and the pion pT among the 10 highest
ranked variables. The superimposed BDT responses of training and testing samples is shown in Fig. 5.12.

5.5 D+s BDT
The D+s BDT is trained on data using B0

s → D+s π
− decays with D+s → K+K−π+. The data is selected

as described in Sec. 5.1. The B0
s → D+s π

− channel is the most challenging of the calibration channels
described here, because of large backgrounds from B0→ D+π− and Λ0

b→ Λ
+
c π
− which feed into the D+s

and B0
s signals. In contrast to the situation for the Λ+c BDT, where the level of misidentified background

is moderate, the B0 → D+π− and Λ0
b → Λ

+
c π
− decays make up a large fraction of events in the signal

region. A veto to reject D+ and Λ+c decays is used to reduce these backgrounds. Another veto on the
bachelor and charm daughter pion candidates, similar to theψ vetos for the Λ+c and D0 BDTs, is applied
as well. One mass vs. momentum asymmetry plot of this calibration channel has already been shown
in Fig. 5.4. Further plots of the offline selection are shown in Fig. 5.13.

The signals in both mass representations are modelled by the sum of two Gaussian p.d.f.s with com-
mon mean, Eq. (5.4). The combinatorial backgrounds are modelled as double and single exponential
p.d.f.s in the beauty and charm candidate masses respectively. The double exponential function is given
by

DE(M ;τ1,τ2, fE) = fE E(M ;τ1) + (1− fE)E(M ;τ2) .

Partially reconstructed decays, like B0
s → D∗+s π

− and B0→ D∗+π−, are again modelled by a Novosibirsk
function, Eq. (5.3). Crystal Ball functions are used to model Cabibbo suppressed and misidentified
decays, Eq. (5.7). The shapes are motivated by MC simulated shapes shown in Figs. 8.3 and 8.4 of
Ref. [215]. The B0→ D+π− and Λ0

b→ Λ
+
c π
− decays are modelled by a Novosibirsk function with fixed

parameters and an exponential function in the K+K−π+ invariant mass system. A small CKM suppressed
B0→ D+s π

− component is modelled by a Gaussian signal with fixed parameters.
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Figure 5.13: (a) Mass vs. momentum asymmetry of the pion candidates. The J/ψ signal is visible as horizontal band
in the 3 GeV region. (b) Di-muon invariant mass of the pion candidates. The J/ψ signal is rejected by the applied veto.
(c)/(d) Invariant mass of the charm system where the proton/pion mass is assigned to the K+ candidate. Events shown
in the veto plots must pass all remaining selection criteria and lie in a 15(25)MeV window around the X c(X b) candidate.

Analogous to Λ0
b→ Λ

+
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�

Fsig,B0 := G
�

Minv(D
+
s π
−); µ̃sig,B0 , σ̃sig,B0

�

FmisID,B0
s

:= CB
�

Minv(D
+
s π
−); µ̃misID,B0

s
, σ̃misID,B0

s
, α̃misID,B0

s
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b

�

FmisID,Λ+c
:= E
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Minv(K
+K−π+);τmisID,Λ+c

�

.
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5.5 D+s BDT

Fixed parameters are again accentuated by a tilde. The fit model in the D+s π
− invariant mass reads

FD0π− = NB0
s→D+s π

−Fsig,B0
s
Fsig,D+s

+ NX b→X c X

�

fB0
s→D+s K−FCS,B0

s
Fsig,D+s

+ fB0→D+s π
−Fsig,B0Fsig,D+s

+
�

1− fB0→D+s π
− − fB0

s→D+s K−

�

FPR,B0
s
Fsig,D+s

�

(5.9)

+ Nbkg

�

fB0FmisID,B0FmisID,D+ + rΛ0
b
FmisID,Λ0

b
FmisID,Λ+c

+ fcomb. D+s
Fbkg,B0

s
Fsig,D+s

+
�

1− fB0
s
− fΛ0

b
− fcomb. D+s

�

Fbkg,Λ0
b
Fbkg,D+s

�

.

Fit projections of this model to data in the full invariant mass range are shown in Fig. 5.14. As indicated
in Eq. (5.9), the CKM suppressed and partially reconstructed decays define a separate category beside
the signal and background categories for extracting the sWeights.
After the fits, the sWeighted data is passed to the BDT training. There, the input variables with highest
importance to the D+s BDT are the RichDLLk of the K+ candidate, followed by the 3 body momentum
asymmetry β123 and the RichDLLk of the K− candidate. The variables ranked below differ in 2011 and
2012 samples and both contain the D0 to PV and π+ to PV impact parameter χ2s, the D+s flight distance
χ2, the K+ and π+ track ghost-probabilities, and the K− pT among the 10 highest ranked variables. The
superimposed BDT responses of training and testing samples is shown in Fig. 5.15.
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Figure 5.14: Fit projections of the two-dimensional fit to the D+s π
− and K+K−π+ invariant mass for 2011 (top) and 2012

data (bottom).
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Figure 5.15: Distributions of D+s BDT responses in 2011 (left) and 2012 (right) test and training samples.

5.6 BDT efficiencies
To be able to apply a certain BDT response cut and correct for it, as it is done later for the Λ0

b →
Λ+c D(∗)0K− and Λ0

b → Λ+c D−s channels, the efficiency of such a cut needs to be evaluated. Here, this
is done by creating two-dimensional adaptively binned histograms, which store the efficiency in the
form of a lookup table as a function of calibration variables (ω in the formula for efficiency correction,
Eq. (3.2)). The efficiency in each bin is estimated in a data-driven manner by fits to the calibration
channels. Since the calibration channel fits include backgrounds, efficiency confidence intervals can not
be estimated by common approaches. An effective method to estimate binomial confidence intervals in
the presence of backgrounds is presented here for the first time in appendix A.

The efficiency lookup tables presented in the following are evaluated for BDT response cuts of−0.15
and −0.25 for Λ+c and D0/D+s BDTs respectively. This set of cuts corresponds to the optimised Λ0

b →
Λ+c D(∗)0K− and Λ0

b → Λ+c D−s selection, which is detailed later in Sec. 6. The calibration variables ω
were chosen to be the logarithm of the flight-distance χ2 from the X c candidate to its own best primary
vertex and the number of tracks in the event (nTracks). The former is chosen, to account for the
fact that the lifetime acceptance of the X b hadron can differ for different decay modes, and is properly
accounted for in X b decays to double open charm [I9]. The nTracks variable is chosen since the
occupancy in the RICH detectors has an impact on the number of detected photoelectrons and hence
the reconstruction quality in the RICH [118]. A kinematic variable like the X b hadron (transverse)
momentum is not needed, since the kinematics of the calibration samples are similar to those of the
decays under study [176]. This is due to the fact that the lab-frame kinematics are mostly due to the
boost from the b-hadron and not the b-hadron rest frame kinematics of the c-hadron [I9]. The choice
of variables is validated in Sec. 5.7.

An adaptive binning in these variables is chosen. The algorithm has been developed by the author for
studies of the track reconstruction asymmetry [I10], where a common optimal binning for positive and
negative tracks was simultaneously searched for. The algorithm [C2] recursively splits a fine-binned two-
dimensional histogram in its median along one axis, alternating the axis in every step. The parameter
that determines the “resolution” of the binning is the minimal number of events per bin. The minimal
number of events in a signal region around the nominal X b- and X c masses passing the BDT cut chosen
here is 1920. This rather odd number ensures that all six combinations of data-taking period and
calibration channel have a fluctuation-free binning. Fluctuations in the binning scheme can occur if
certain bins contain just a little less than two times the minimal number of events whereas other bins
contain more than that and will therefore be split again. These fluctuations can easily be seen when
plotting the resulting binning (cf. Fig. 5.16).
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Figure 5.16: Binning in log(FD χ2 OWNPV) and nTracks. Each bin has roughly the same number of signal events.

Once a suitable binning is found, the efficiency is measured by two-dimensional simultaneous unbinned
extended maximum likelihood (EML) fits to the orthogonal samples of candidates which have been
accepted (“pass”) or rejected (“fail”) by the BDT cut in every log(FD χ2 OWNPV)–nTracks bin. This
rather costly procedure is chosen for two reasons: First, the efficiencies are defined as lookup tables, so
that the calibration samples do not have to be reprocessed by the user. This is opposed to re-weighting
strategies, where the user would re-weight variables in the calibration sample, so that they match the
distribution of the signal sample they should be applied to. In the future, the lookup tables are foreseen
to be fitted to provide a continuous description of the efficiencies.

The second reason concerns the fact that a fit in every of the log(FD χ2 OWNPV)–nTracks bins
is needed. This approach is different from the one taken e.g. in PIDCalib [160], where calibration
variable-integrated fits are carried out, and the efficiency in each bin is extracted from the corresponding
sWeights. This can not be done in the present case, since the shape of background p.d.f.s changes as
a function of the calibration variables, violating the requirement of p.d.f. factorisation in sP lot, cf.
Eq. (4.9). This is demonstrated for the B0

s → D+s π
− case in Fig. 5.17.
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Figure 5.17: Fit projections in the D+s π
− invariant mass of the 2D simultaneous unbinned EML fit to the “pass” (left) and

“fail” (right) categories in two different log(FD χ2 OWNPV)–nTracks bins (top and bottom).
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5 Identification of non-prompt charm hadrons

Some adjustment to the fit model had to be made to account for the lower statistics in each bin. The
fits are again carried out in two dimensions, using the narrow X cπ

− invariant mass range described
above. The sum of two Gaussian signals is replaced by a single Gaussian shape. Beside the signal and
background yields, the fractions of peaking and combinatorial X c backgrounds are split between the
“pass” and “fail” categories. That is, because these components are part of the background model, but
do not scale as the efficiency of the combinatorial background. Some components were omitted: the
B0→ D+π− in the Λ0

b → Λ
+
c π
− calibration channel, and the Λ0

b → Λ
+
c π
− and B0→ D+s π

− components
in the B0

s → D+s π
− calibration channel. Since the Cabibbo-suppressed components fluctuated around 0

in the in the “fail” category of the Λ0
b→ Λ

+
c π
− and B0

s → D+s π
− channels and caused unstable fits, these

components were set to zero.
Another detail of the fitting procedure concerns the validity of the efficiency confidence interval.

Since the signals in “pass” and “fail” categories are affected by nuisances like backgrounds it is not
straight-forward to calculate a valid confidence interval for this binomial process. The result of this
work is only marginally affected by the size of the efficiency confidence interval. Thus, the discussion
of the proposed solution is diverted to appendix A.

The resulting efficiency lookup tables are shown in Fig. 5.18, which show a clear trend of lower
efficiency in the region of low log(FD χ2 OWNPV) and large nTracks. The efficiency drop for low
log(FD χ2 OWNPV) is attributed to the fact that the BDTs make use of the topological separation be-
tween X c signal and background. The signal, due to it’s longer lifetime compared to most backgrounds,
is therefore easier to select in the long-lived region at large log(FD χ2 OWNPV). The efficiency drop
towards a larger number of tracks is less pronounced, and affects the RICH reconstruction, which is less
efficient for higher detector occupancies.

5.7 BDT efficiency validation
The BDT efficiency calibration obtained in the previous section from Λ0

b → Λ
+
c π
− and B0

s → D+s π
− will

be used to estimate efficiency-corrected yields of Λ0
b → Λ+c D−s decays. The doubly open charm decay

Λ0
b → Λ+c D−s is kinematically different from the calibration channel decays and allows to probe both
Λ+c and D+s BDT response cuts simultaneously. This is feasible due to the Λ0

b → Λ
+
c D−s decay topology,

allowing to determine a signal yield even if no BDT response cuts have been applied. The validation
will probe if the efficiency corrected yield is constant over a wide range of applied cuts, and hence if
the calibration is valid.

The event-by-event efficiency correction as introduced in Eq. (3.2) is used. On condition that the
Λ0

b→ Λ
+
c D−s signal candidates pass all prior selection and reconstruction steps, the efficiency corrected

yield reads

N
Λ0

b→Λ
+
c D−s

corr =
∑

i

sPΛ0
b→Λ

+
c D−s

�

�

Minv(Λ+c D−s ), Minv(pK−π+), Minv(K−K+π−)
�T

i

�

∏

k={Λ+c ,D+s BDTs} εk

�

(log(FDχ2),nTracks)Ti,k
� (5.10)

∀
¦

�

Minv(Λ
+
c D−s ), Minv(pK−π+), Minv(K

−K+π−), log(FDχ2),nTracks
�T

i

©

⊂ x
Λ0

b→Λ
+
c D−s

i

�

∩kc
Λ0

b→Λ
+
c D−s

k

�

.

As already stated in Sec. 3, it is the analysts obligation to ensure that the efficiency corrected yield does

not depend on the applied selection c
Λ0

b→Λ
+
c D−s

k . The selection enters implicitly in the sWeights and the
measured calibration variables via the events i. It is probed here, if the efficiency corrected yields are
truly independent of the selection. This is done by applying many combinations of Λ+c and D−s BDT
response cuts and correcting by efficiencies measured with the Λ0

b→ Λ
+
c π
− and B0

s → D−s π
+ calibration

channels (cf. Sec. 5.6). For brevity this procedure is called “scan” in the following.
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Figure 5.18: D-from-B BDT efficiency lookup tables for 2011 (left) and 2012 data (right). The top row shows efficiencies
of Λ+c BDT response cut larger than −0.15, the middle and lower rows show efficiencies of D0 and D+s response cuts larger
than −0.25 respectively.

The first step is to measure the yield without applying BDT response cuts. The corresponding three-
dimensional unbinned EML fits in the Λ+c D−s , pK−π+ and K−K+π− invariant masses are described in
detail later (Sec. 7.4). Fit projections of the Λ+c D−s invariant mass for 2011 and 2012 data are shown
in Fig. 5.19. Due to the much larger background compared to the data with nominal Λ+c and D−s BDT
selection, it can be challenging to estimate nuisance parameters like the background shape and yield.

If nuisance parameters are furthermore (anti-)correlated with the signal yield, efficiency corrected
yields might appear biased w.r.t. the reference yield. That is because the bulk of background is rejected
with relatively loose cuts, leaving samples which contain the same candidates over a wide range of cuts.
In these samples, the fit will measure similar nuisance parameters values.
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Figure 5.19: Fit projections of the 3D unbinned EML fit to 2011 (top) and 2012 (bottom) Λ0
b → Λ+c D−s test channel

candidates without D-from-B BDT response cuts. The fit with floating signal shape is shown. No significant difference to
the other systematic studies (fixed or constrained signal shape) was seen by eye.

Since these parameters are best estimated on a sample with large statistical power, the nominal set of
BDT cuts, Λ+c BDT > −0.15 and D+s BDT > −0.25, is used to measure nuisance parameters. The scan
will thus be performed by fixing all signal shape parameters to this reference-measurement, by using a
Gaussian-constraint on these parameters, or by letting them float.

The results of the D-from-B BDT efficiency validation are shown in Figs. 5.20 and 5.21. The statistical
uncertainty on the reference yield is drawn as a blue band. Since the scanned points are statistically
fully correlated to the reference yield, only systematic uncertainties are shown. Those are merely visible,
since most markers are larger. The systematic uncertainties come from propagating upper and lower
limits of the 68.27 % confidence intervals of the lookup tables to the efficiency corrected yield1.

It can be derived from Fig. 5.20, that the Λ0
b → Λ

+
c D−s sample contains a larger number of false Λ+c

candidates, since the Λ+c BDT rejects up to twice as much background as the D−s BDT. This is expected,
since no strict proton selection is in place and protons are less abundant compared to kaons. The Λ+c
BDT shows a slight downward trend in the efficiency corrected yield, meaning that the efficiencies tend
to be over-estimated with tighter cuts. This could be due to under-estimated partially reconstructed or
misidentified backgrounds in the Λ0

b → Λ+c π
− calibration channel. The effect is however too small to

justify further systematic studies. Moreover, the same Λ+c BDT cuts are applied in Λ0
b→ Λ

+
c D(∗)0K− and

Λ0
b → Λ+c D−s selections, such that systematic effects cancel to first order. Higher order effects depend

on relative differences in signal unfolded calibration variable distributions of Λ0
b → Λ+c D(∗)0K− and

Λ0
b→ Λ

+
c D−s decays.

The plots show that the proposed method of efficiency correction leads to results which are well in
agreement with the reference yield. It is concluded that the D-from-B BDT efficiencies have been prop-
erly calibrated and that D-from-B BDT response cuts can be applied in the Λ0

b → Λ
+
c D(∗)0K− selection.

However, this does not mean that the D-from-B BDTs can be blindly applied in every selection. It should
be noted, that all X b→ X cπ

−, Λ0
b→ Λ

+
c D(∗)0K− and Λ0

b→ Λ
+
c D−s channels are based on the same trigger

and a similar stripping selection, based on the Beauty2Charm module.

1The corresponding formula, Eq. (9.1), is shown later in a more general context, since the effect here is marginal.
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Figure 5.20: Efficiency corrected yields as a function of the background efficiency from a scan through equidistant Λ+c
and D−s BDT cut values on the Λ0

b → Λ
+
c D−s test sample. The step-size was chosen to be 0.05. The Λ0

b signal becomes purer
from right to left. Here, either a Λ+c or D−s BDT response cut has been applied. The reference yield from a sample without
BDT cuts is shown as blue line, the corresponding statistical uncertainty as blue band. As the statistical uncertainties on
the scanned points would be 100 % correlated to the reference point, only uncertainties due to limited calibration channel
statistics have been propagated. Those are usually smaller than the markers of the scanned points. The Λ+c (D+s ) BDT
scan for 2011 and 2012 data are shown in the top (second) and third (bottom) row respectively. The left column shows
the scan where nuisance parameters were left floating, while the right column shows fits with fixed nuisance parameters
from the nominal signal fit.
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Figure 5.21: Efficiency corrected yields as a function of the background efficiency when both, Λ+c and D−s BDT cuts
have been applied to the test sample. The step-size was chosen to be 0.2. The Λ0

b signal becomes purer from right to
left. The reference yield from a sample without BDT cuts is shown as blue line, the corresponding statistical uncertainty
as blue band. As the statistical uncertainties on the scanned points would be 100 % correlated to the reference point,
only uncertainties due to limited calibration channel statistics have been propagated. Those are usually smaller than the
markers of the scanned points. The BDT scan for 2011 data is shown on the top two plots, that for 2012 data on the
bottom two. The left column shows the scan where nuisance parameters were left floating, while the right column shows
fits with fixed nuisance parameters from the nominal signal fit.
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6 Selection of signal and reference channel

6 Selection of signal and reference channel
The selection for bothΛ0

b→ Λ
+
c D(∗)0K− andΛ0

b→ Λ
+
c D−s decays for the branching fraction measurement

is described. The trigger and stripping selection is mostly covered by that of the D-from-B BDT calibra-
tion channels in Sec. 5.1.2, because the same trigger and a similar stripping selection for X b → X cπ

−,
Λ0

b→ Λ
+
c D(∗)0K− [C36] and Λ0

b→ Λ
+
c D−s [C34] based on the Beauty2Charm module are used.

Differences are introduced in the Λ0
b candidate selection, where no additional cuts on the bach-

elor kaon are required, so that it must only pass the common track selection in Tab. 5.1. The in-
variant mass combination of the Λ0

b → Λ+c D(∗)0K− daughters before the vertex fit is required to be
(5200 < AM < 9000) MeV (cf. cut #20 in Tab. 5.3); for Λ0

b → Λ
+
c D−s it is (5200 < AM < 7000) MeV. Moreover,

both Λ0
b candidates need to pass IP χ2 and direction angle cuts (BPVIPCHI2 < 25, #23 and BPVDIRA > 0.999,

#24 in Tab. 5.3), which were not required for the Λ0
b→ Λ

+
c π
− calibration channel. A set of fiducial cuts

in pT,Λ0
b

and yΛ0
b
, to facilitate the efficiency correction, is applied offline as shown in Fig. 6.1.

Up to this point, only loose PID information (cuts #11–#14 in Tab. 5.2) is used. Cuts on the D-from-
B BDTs and the PID variable ProbNNk of the bachelor kaon have thus been studied in a cut optimisation
scan using a custom-built generic algorithm described in appendix B.1. The values found there have
been rounded to the values in Tabs. 6.1 and 6.2. The rounding effect is negligible, since the gradients of
signal- and background efficiencies in the cut parameter space are small around the chosen cuts, result-
ing in a small variation in the number of selected candidates. This is qualitatively understandable, since
the classifier responses in Figs. 5.9, 5.12, 5.15 and page 29 of Ref. [I3] are relatively flat and sparsely
populated around the cut values. Initially, alternative selection strategies including more variables were
considered. Those are summarised in appendix B.2

TheΛ0
b→ Λ

+
c D(∗)0K− andΛ0

b→ Λ
+
c D−s decays involve six final state particles and are therefore prone

to misidentification backgrounds. More than 50 combinations [C38] that were likely to exhibit narrow
mass peaks have been studied with the help of single particle momentum-asymmetries, cf. Sec. 5.1.3.
Surprisingly, also due to the excellent performance of the D-from-B BDTs in rejecting these backgrounds,
only four misidentified peaks remained in the Λ0

b → Λ+c D0K− sample, and two in the Λ0
b → Λ+c D−s

sample. Three of the six peaks were due to φ mesons where a K+ has been misidentified as proton;
two peaks were due to D∗(2010)− decays where the bachelor π− has been misidentified as K−; and one
peak in the Λ0

b → Λ
+
c D−s sample is due to D+s decays, where the K+ is misidentified as a proton. These

combinations have been vetoed with the cuts shown in Tab. 6.1 and 6.2. The corresponding plots are
shown appendix B.3. To avoid confusion, the offline invariant mass ranges used for fitting are tabulated
as well. The cuts are also used to create Fig. 6.1 and the plots in appendix B.3.
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Figure 6.1: Candidates passing all but the fiducial selection in pT,Λ0
b

and yΛ0
b

for Λ0
b → Λ

+
c D(∗)0K− (left) and Λ+c D−s decays

(right). The fiducial cut removes candidates in the hatched region.
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6 Selection of signal and reference channel

Type Variable Range/Cut

Fiducial
pT,Λ0

b
∈ [5.5, 30]GeV

yΛ0
b

∈ [2.5, 4.0]

Veto

Minv(K−Λ+c
{p→ K+})

/∈ [1011.7, 1027.7]MeV
Minv(K−bachelor{p→ K+})
Minv(D0{K−bachelor→ π

−})
/∈ [2010.4, 2013.4]MeV

Minv(D0{K−
Λ+c
→ π−})

PID
Λ+c BDT > −0.15
D0 BDT > −0.25
K− ProbNNk > −0.18

Mass
Minv(pK−π+) ∈ [2258, 2318]MeV
Minv(K+π−) ∈ [1822, 1912]MeV
Minv(Λ+c D0K−) ∈ [5350, 5850]MeV

Table 6.1: Summary of Λ+c D0K− selection cuts applied on top of the stripping selection.

Type Variable Range/Cut

Fiducial
pT,Λ0

b
∈ [5.5, 30]GeV

yΛ0
b

∈ [2.5, 4.0]

Veto
Minv(K−Λ+c

{p→ K+}) /∈ [1011.7, 1027.7]MeV

Minv(K−Λ+c
π+
Λ+c
{p→ K+}) /∈ [1938.3, 1998.3]MeV

OR pProbNNp·(1−pProbNNk)> 0.05

PID
Λ+c BDT > −0.15
D+s BDT > −0.25

Mass
Minv(pK−π+) ∈ [2258, 2318]MeV
Minv(K+K−π−) ∈ [1935, 2005]MeV
Minv(Λ+c D−s ) ∈ [5420, 5820]MeV

Table 6.2: Summary of Λ+c D−s selection cuts applied on top of the stripping selection.
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7 Mass fits

7 Mass fits
Fits to invariant mass spectra associated to the Λ0

b → Λ+c D0K− and Λ0
b → Λ+c D−s decays are detailed.

The challenging part of the fits is to determine which components feed down into the b-hadron mass
spectra. Considerations to these components are presented in Secs. 7.1–7.3 and in appendix C.1. Fit
results are presented in Sec. 7.4.

7.1 Feed-down backgrounds in the Λ+c D0K− invariant mass
In addition to combinatorial and misidentification backgrounds, which were subject to the previous sec-
tion, there are partially reconstructed decays which populate the invariant mass distribution ofΛ+c D0K−.
Both, the Λ0

b→ Λ
+
c D∗0K− and Λ0

b→ Λ
+
c D0K− branching ratio measurements are affected by these feed-

down backgrounds. Recall that the Λ0
b → Λ+c D∗0K− decay is only partially reconstructed itself, but

it dominates the spectrum by far. In the selected invariant mass range, real feed-down, i.e. without
misidentified particles in the decay chain, is expected from Λ0

b decays with missing photons, a single
missing pion or Ξb decays with missing photons and one or two missing pions. The only feed-down
decay considered in the nominal fit is Λ0

b →
�

Λ+c π
0
�

Σc(2455)+ D0K−. For systematic studies, the de-

cays Λ0
b → Λ+c D0

�

K−π0
�

K∗(892)− , Λ0
b →

�

Λ+c π
0
�

Σc(2520)+ D0K− and Ξ−b → Λ+c
�

D0π−
�

D∗(2010)− K− were
considered. These decays are discussed in the following. A more detailed estimation of the level of
feed-down from these and other channels can be found in appendix C.1.

Since the Λ0
b → Λ+c D∗0K− signal is a feed-down decay itself, it has to be disentangled from other

resonant and non-resonant components in the four-body Λ0
b → Λ+c D0K−π0 decay. The largest con-

tributions beside Λ0
b → Λ+c

�

D0π0
�

D∗0 K− are expected from Λ0
b → Λ+c D0

�

K−π0
�

K∗(892)− and Λ0
b →

�

Λ+c π
0
�

Σc(2455)+ D0K− decays. Even though the Λ0
b → Σc(2455)+D0K− component is similar to that of

Λ0
b → Λ+c

�

D0π0
�

D∗0 K−, as shown in Fig. 7.1, the fit is able to separate them. However, sizeable anti-
correlations (down to −0.5) are measured between their fit fractions. Such large anticorrelations can
affect the fit stability, which is tested in appendix C.2 and found to give consistent results.

The Λ0
b→

�

Λ+c π
0
�

Σ(2520)+c
D0K− component, shown in Fig. 7.1, is omitted due to an insignificant fit

fraction. Further, only the high mass tail of Λ0
b→ Λ

+
c D0

�

K−π0
�

K∗(892)− contributes and is not separable
from combinatorial backgrounds. In fact, adding the component to the nominal fit yields a negative
fit fraction compatible with a statistical fluctuation. However, both decays are taken into account for
evaluation of the systematic uncertainty.

Possible feed-down background into the Λ0
b signal region comes from Ξb decays missing a pion.

These backgrounds are estimated to be up to ∼2 % relative to the signal yield (cf. appendix C.1). The
decay Ξ−b → Λ

+
c

�

D0π−
�

D∗(2010)− K− (Fig. 7.1(f)) is expected to contribute most. Since the fit finds neg-
ative fit fractions, the component is only taken into account for evaluation of the systematic uncertainty.

In a Λ+c D0K− invariant mass range below ∼5350 MeV, decays with two missing pions can con-
tribute. The spectrum is expected to be dominated by Λ0

b →
�

Λ+c π
−π+

�

Λ∗+c
D0K− decays, where Λ∗+c

essentially means Λc(2595)+ and Λc(2625)+. The data in this region is available, but shows a smooth
turn-on around 5200 MeV. This is due to a mass combination cut in the stripping line and interme-
diate steps like the decay tree fit. The turn-on is not reproduced in generator level simulations of
Λ0

b →
�

Λ+c π
−π+

�

Λ∗+c
D0K− decays, due to the missing simulation of detector response, reconstruction

and stripping. Consequently, these models can not be used for fitting, such that the Λ+c D0K− invariant
mass range is chosen to be [5350,5850]MeV.
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7 Mass fits
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Figure 7.1: Simulated feed-down decays in the Λ+c D0K− invariant mass. The raw simulated sample size and the selected
data is shown. The distributions are thus not to scale. (a) Λ0

b → Λ+c
�

D0γ
�

D∗0
K−. (b-e) Resonant modes in the four-

body decay of Λ0
b → Λ+c D0K−π0. (f) The largest expected Ξb feed-down: Ξ−b → Λ+c

�

D0π−
�

D∗(2010)− K−. Both Λ0
b →

Λ+c
�

D0π0
�

D∗0
K− and Λ0

b → Λ
+
c

�

D0γ
�

D∗0
K− simulation samples were produced in the centralised LHCb simulation chain.

Samples for the other decays are generator level phase space simulation, i.e. the output of PYTHIA and EVTGEN without
simulation of the detector response is taken and the decay matrix element is constant.

7.2 Feed-down backgrounds in the Λ+c D−s invariant mass
The feed-down background dominating the Λ+c D−s invariant mass is Λ0

b → Λ+c
�

D−s γ
�

D∗−s
, where the

photon is not reconstructed. This is the only background which is taken into account, but further
considerations are briefly sketched.
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7.3 Λ0
b decays into single- and no charm

Decays to higher excited D−s states are expected to be suppressed by roughly a factor 5 with respect to
the Λ0

b→ Λ
+
c

�

D−s γ
�

D∗−s
decay1.

Decays with a single missing pion are only expected from excited D−s states, and not from Λ0
b →

�

Λ+c π
0
�

Σ
(∗)+
c

D−s due to isospin conservation of the spectator quark system [216]. Still, modelling and
composing the components with correct proportions would require a dedicated thorough study, since
Λ0

b polarisation effects are expected to play a role [217].

s

b
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s

c

d

c
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W−
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D
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s

Σ
(∗)
c /Λ+

c

Figure 7.2: Feynman diagram of Ξ0
b → Λ

+
c /Σ

(∗)+
c D(∗)−s decays.

Contrary to the Λ0
b → Λ+c D0K− channel,

Ξb feed-down into the signal mass region of
Λ0

b→ Λ
+
c D−s decays is expected to be negligible,

because of CKM-, colour- and fragmentation
fraction-suppression ( fΞ0

b
/ fΛ0

b
≈ 0.2 [218]).

Accounting for selection efficiencies in addition,
the most likely decays of the diagram in Fig. 7.2
are expected to be as low as ≈ 0.1% compared
to the Λ0

b→ Λ
+
c D−s yield.

7.3 Λ0
b decays into single- and no charm

Decays that peak at the Λ0
b mass in the Λ+c D0K− and Λ+c D−s invariant mass spectra, but not in one

or both X c invariant mass systems are examined. Namely, these are the decays Λ0
b → Λ+c K+π−K−,

Λ0
b→ pK−π+D0K−, Λ0

b→ pK−π+D−s and Λ0
b→ pK−π+π−K+K−. Their yields can be measured directly

in three-dimensional fits to the X b and X c systems. It is argued here, that only Λ0
b→ Λ

+
c K+π−K− decays

need to be taken into account.
Some general thoughts concerning suppression of single- and no charm rates from the imposed

selection and enhancement due to charm branching fractions are discussed first. Foremost, the non-
resonant decay products of single- and no charm decays have to be in their respectively selected invariant
mass region (cf. Tab. 6.1). This means for instance, that the invariant mass of the K+π− pair in a single
charm decay Λ0

b → Λ
+
c K+π−K− has to be within [1822,1912]MeV. This suppresses these background

substantially, but the rate of suppression is difficult to estimate without resorting to simulation.
Further suppression is expected from other charm hadron selection criteria from the D-from-B BDTs

and in the stripping. However, the variables used there do not explicitly require a geometrical separa-
tion of the X c w.r.t. the X b vertices. The selection effects are counter-balanced by the charm hadron
branching fractions which are typically in the order of 5 % and thus increase the yield of non-charmed
decays by a factor 20. It will be shown later, that the suppression from the selection efficiency is an
order of magnitude larger than the enhancement from charm branching fractions.

The individual decays shall be discussed now in brevity. The decay Λ0
b → Λ

+
c K+π−K− is similar to

the D-from-B control channel decay Λ0
b→ Λ

+
c π
−, where a K+K− pair is created from vacuum. High total

rates, up to factors of 50 (5) compared to Λ0
b → Λ+c D0K− (Λ0

b → Λ+c D−s ) are expected, including the
mentioned factor 20 from the charm branching fractions. So, even if the selection efficiency is as low as
a few per-mill (few per-cent) in the Λ0

b → Λ
+
c D0K− (Λ0

b → Λ
+
c D−s ) channel, a rate could be measured.

The decays are thus taken into account in the nominal fits.
The decays Λ0

b → pK−π+D0K− and Λ0
b → pK−π+D−s are neither tree-level nor penguin-processes

and thus expected to be highly suppressed. The no-charm decay Λ0
b→ pK−π+π−K+K− is doubly CKM

suppressed and further suppressed by the invariant mass range of the charm system. Both decays are
thus not taken into account.

1For instance B0→ D−D+s compared to B0→ D−Ds0(2317)+/Ds1(2460)+
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7 Mass fits

7.4 Fit model and results
The fits are carried out in three dimensions, spanned by the X c and X b invariant mass systems. It
has the disadvantage that the relatively wide sidebands in the X c invariant mass distributions increase
the amount of combinatorial background. On the other hand, there are no mass cuts which introduce
inefficiencies, and the Λ0

b→ Λ
+
c K+π−K− single charm contribution discussed in the previous section, as

well as the type of combinatorial background, can be extracted directly. The D-from-B BDTs improved
the rejection of combinatorial background to a level which makes three-dimensional fits feasible.

Signal contributions in all dimensions are modelled by the sum of two Crystal Ball functions [214],
Eq. (5.7), with a common mean and symmetric tail parameters. The functional form used in the fit is

DCB(M ;µ,σ,α, n, fCB, fσ) = fCBCB(M ;µ,σ,α, n) + (1− fCB)CB(M ;µ, fσ ·σ,−α, n) . (7.1)

The parameters fCB,α, n and fσ, listed in Tab. 7.1, are determined from fits to the signal simulation
samples, shown in Fig. 7.3.

Parameter
Signal Reference

Λ0
b Λ+c D0 Λ0

b Λ+c D−s
fCB 0.62 ± 0.03 0.59 ± 0.04 0.76 ± 0.02 0.55 ± 0.05 0.45 ± 0.05 0.52 ± 0.06
α 2.33 ± 0.08 2.26 ± 0.09 2.94 ± 0.12 2.08 ± 0.14 2.48 ± 0.20 2.39 ± 0.19
n 1.76 ± 0.18 1.09 ± 0.29 0.22 ± 0.16 2.34 ± 0.43 0.47 ± 0.33 0.57 ± 0.33
fσ 1.67 ± 0.03 1.87 ± 0.04 2.00 ± 0.04 1.46 ± 0.09 1.92 ± 0.08 1.77 ± 0.06

Table 7.1: Signal shape parameters determined by fits to simulated signal samples.

Combinatorial backgrounds are modelled with exponential p.d.f.s, E(M ;τ) = eMτ, in the nominal
fit. The partially reconstructed background in the reference channel, which is dominated by Λ0

b →
Λ+c
�

D−s γ
�

D∗−s
decays, is well separated from the Λ0

b → Λ+c D−s signal. Therefore it only has a minor

effect on the branching fraction measurement and is chosen to be modelled by a heuristically chosen
Novosibirsk p.d.f. [212], Eq. (5.3). The feed-down backgrounds in the signal channel have been dis-
cussed above and in appendix C.1. They are modelled with kernel density p.d.f.s, KDE(M |xd), from the
RooKeysPdf class [C29], whose shapes are determined from the simulation samples xd corresponding
to decay d, as shown in Fig. 7.1.

Similar to the fit models of the D-from-B BDT control channels, Secs. 5.3–5.5, the mentioned building
blocks are now used to construct the three-dimensional p.d.f. It is convenient to define

Fsig,Λ0
b

:= DCB
�

Minv(Λ
+
c D0K−);µΛ0

b
,σΛ0

b
, α̃Λ0

b
, ñΛ0

b
, f̃CB,Λ0

b
, f̃σ,Λ0

b

�

Fbkg,Λ0
b

:= E
�

Minv(Λ
+
c D0K−);τΛ0

b

�

,

with analogous definitions for the Λ+c and D0 components, as well as the Λ0
b,Λ+c and D−s components

in the Λ0
b → Λ

+
c D−s decay. The parameters with a tilde have been fixed to their best fit estimates from

simulation, listed in Tab. 7.1. Further, the Novosibirsk- and kernel density p.d.f.s are abbreviated as

FPR,Λ0
b

:= N
�

Minv(Λ
+
c D−s ); Mp,PR, η̃PR, σ̃E,PR

�

FΛ0
b→Λ

+
c [D0π0]D∗0 K− := KDE

�

Minv(Λ
+
c D0K−)

�

�

�xΛ0
b→Λ

+
c [D0π0]D∗0 K−

�

,

with analogous definitions for the Λ0
b→ Λ

+
c [D

0γ]D∗0 K− and Λ0
b→ Σc(2455)+D0K− components.
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7.4 Fit model and results

Two parameters of the Novosibirsk p.d.f. had to be fixed and are accentuated by a tilde. This is done
because the three parameters, Mp,PR, ηPR and σE,PR are highly correlated in floating fits (ρMp,PR,ηPR

=
0.993, ρMp,PR,σE,PR

= 0.980, ρηPR,σE,PR
= 0.993). The high correlation leads to a faulty estimate of the

covariance matrix. As the uncertainty on the signal yield, despite a globally bad covariance matrix in
some fits, did not change when either combination of these parameters are fixed, it is concluded that
fixing the two parameters is legitimate.
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Figure 7.3: Projections of the three-dimensional Λ0
b → Λ

+
c D0K− (left) and Λ0

b → Λ
+
c D−s fits (right) to the respective signal

simulation samples.
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7 Mass fits

With the above definitions, the full fit model in the Λ+c D0K− invariant mass is given by

FΛ+c D0K− = NΛ0
b→Λ

+
c D0K−Fsig,Λ0

b
Fsig,Λ+c

Fsig,D0

+ fΛ0
b→Λ

+
c K+π−K−NΛ0

b→Λ
+
c D0K−Fsig,Λ0

b
Fsig,Λ+c

Fbkg,D0

+ NΛ0
b→Λ

+
c [D0π0]D∗0 K−FΛ0

b→Λ
+
c [D0π0]D∗0 K−Fsig,Λ+c

Fsig,D0

+ NΛ0
b→Λ

+
c [D0γ]D∗0 K−FΛ0

b→Λ
+
c [D0γ]D∗0 K−Fsig,Λ+c

Fsig,D0 (7.2)

+ fΛ0
b→Σc(2455)+D0K−NΛ0

b→Λ
+
c D0K−FΛ0

b→Σc(2455)+D0K−Fsig,Λ+c
Fsig,D0

+ Ncomb. bkgs

�

fcomb. D0Fbkg,Λ0
b
Fbkg,Λ+c

Fsig,D0

+ fcomb. Λ+cFbkg,Λ0
b
Fsig,Λ+c

Fbkg,D0

+ fcomb. Λ+c D0Fbkg,Λ0
b
Fsig,Λ+c

Fsig,D0

+ (1− fcomb. D0 − fcomb. Λ+c − fcomb. Λ+c D0)Fbkg,Λ0
b
Fbkg,Λ+cFbkg,D0

�

.

In a similar way, the nominal Λ+c D−s model is given by

FΛ+c D−s
= NΛ0

b→Λ
+
c D−s
Fsig,Λ0

b
Fsig,Λ+c

Fsig,D−s

+ fΛ0
b→Λ

+
c K+π−K−NΛ0

b→Λ
+
c D−s
Fsig,Λ0

b
Fsig,Λ+c

Fbkg,D−s

+ NPRFPRFsig,Λ+c
Fsig,D−s

(7.3)

+ Ncomb. bkgs

�

fcomb. D−s
Fbkg,Λ0

b
Fbkg,Λ+c

Fsig,D−s

+ fcomb. Λ+cFbkg,Λ0
b
Fsig,Λ+c

Fbkg,D−s

+ (1− fcomb. D0 − fcomb. Λ+c )Fbkg,Λ0
b
Fbkg,Λ+c

Fbkg,D−s

�

.

The combinatorial Λ+c D−s background is not included in the nominal fit, since its fit fraction came out
negative. This component is accounted for in the fit stability tests in appendix C.2 and the determination
of the systematic uncertainty (cf. Sec. 9.1). Resulting fits to signal and reference channel are shown in
Figs. 7.4 and 7.5; and the best fit estimates are tabulated in Tabs. 7.2 and 7.3. These fits are used
directly for the computation of sWeights which are needed to determine efficiency corrected yields.
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7.4 Fit model and results
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Figure 7.4: Fit projections of the three-dimensional Λ0
b → Λ

+
c D0K− fit. Note that most of the combinatorial background

stems from the charm candidate sidebands.

Paramter Λ0
b Λ+c D0

µ 5621.01± 0.30 MeV 2287.42± 0.12 MeV 1866.15± 0.12 MeV
σ 6.29± 0.25 MeV 4.67± 0.10 MeV 7.20± 0.11 MeV
τ (−1.19± 0.09) · 10−3 MeV −1 (−1.4± 0.7) · 10−3 MeV −1 (−2.9± 0.6) · 10−3 MeV −1

NΛ0
b→Λ

+
c D0K− 1020± 40

fΛ0
b→Λ

+
c K+π−K− 0.029± 0.022

NΛ0
b→Λ

+
c [D0π0]D∗0 K− 1870± 80

NΛ0
b→Λ

+
c [D0γ]D∗0 K− 1120± 90

fΛ0
b→Σc(2455)+D0K− 0.11± 0.08

Ncomb. bkgs 7770± 110
fcomb. Λ+c 0.047± 0.010
fcomb. D0 0.439± 0.014
fcomb. Λ+c D0 0.021± 0.011

Table 7.2: Best estimates of floating parameters in the Λ+c D0K− model.
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Figure 7.5: Fit projections of the three-dimensional Λ0
b → Λ

+
c D−s fit

Paramter Λ0
b Λ+c D−s

µ 5623.43± 0.18 MeV 2287.59± 0.06 MeV 1969.66± 0.07MeV
σ 10.81± 0.14 MeV 4.14± 0.04 MeV 5.12± 0.05MeV
τ (−2.51± 0.09) · 10−3 MeV −1 (8± 6) · 10−4 MeV −1 (2.5± 0.5) · 10−3 MeV −1

NΛ0
b→Λ

+
c D−s

7400± 110
fΛ0

b→Λ
+
c K+π−K− 0.037± 0.008

NPR 6520± 110
Ncomb. bkgs (1.306± 0.016) · 104

fcomb. D−s
0.272± 0.009

fcomb. Λ+c 0.274± 0.009

Table 7.3: Best estimates of floating parameters in the Λ+c D−s model.
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8 Efficiencies

8 Efficiencies
This section details the generation of efficiency lookup tables to be able to compute efficiency corrected
yields for the branching ratio measurement (cf. Eq. (3.2)). The lookup tables are a crucial input for the
amplitude analyses of Λ0

b→ Λ
+
c D0K− and Λ0

b→ Λ
+
c D∗0K−.

Several types of efficiencies must be considered, to account for detector acceptance, trigger, recon-
struction, stripping and offline selection. The first selection and reconstruction steps up to the offline
selection are well modelled by simulation. These steps are mainly based on geometrical and kinematic
selections and well understood properties of the detector to which the simulation is adapted to [169].
This part of the efficiency correction is thus called kinematic efficiency and also includes fiducial and
veto cuts listed in Tabs. 6.1 and 6.2. The mass cuts in these tables are included in the procedure as well,
but are 100 % efficient.

The main discriminating power of the following offline selection steps come from cuts on PID vari-
ables. These are the D-from-B BDTs and the ProbNNk cut on the bachelor kaon of the signal channel.
Both, D-from-B BDTs and ProbNNk rely on a multitude of input variables and also exploit correlations
between them. Although the simulation is reasonably good at simulating these (cf. Fig. B.5), it is not
good enough for the targeted precision. For this reason, the efficiency of these selection steps is eval-
uated in a data-driven manner. All calibration samples and calibration variables are listed in Tab. 8.1.

Step calibration sample
calibration variables

Λ0
b→ Λ

+
c D(∗)0K− Λ0

b→ Λ
+
c D−s

Fiducial cuts

simulation Dalitz plot pT , rapidity

Acceptance
Trigger
Reconstruction
Stripping
Vetos
X c BDTs X b→ X cπ

− data log(FDχ2), nTracks
PID K− D∗+→

�

K−π+
�

D0 π
+ data p,η, nTracks –

Table 8.1: Calibration samples and variables for signal and reference channel for each selection or reconstruction step.

Note that efficiency corrected yields of signal and reference channel by themselves can not be interpreted
as the number of such decays produced in pp collisions at the LHCb interaction point. That is, because
efficiencies and systematic effects which are expected to cancel in the master formula of the relative
branching fraction, Eq. (3.1) are not taken into account.

Still, order of magnitude estimates of integrated signal weighted efficiencies are given. The ac-
ceptance efficiency ranges from about 92 % in Λ0

b → Λ+c
�

D0π0
�

D∗0 K− decays to 99 % in Λ0
b → Λ+c D−s

decays within the pT–y fiducial region, which selects about 8 to 9 % of the candidates in both, signal and
reference channel. Within the LHCb acceptance and the fiducial region, the trigger efficiency is about
20 % for Λ0

b → Λ+c D(∗)0K− and slightly lower for Λ0
b → Λ+c D−s (18 %). Reconstruction and stripping

efficiencies are about to 19 % for Λ0
b→ Λ

+
c D(∗)0K− and 14 % for Λ0

b→ Λ
+
c D−s . The vetos are about 98 %

efficient in all channels. Finally, the combined D-from-B BDT selection efficiencies are about 93 % for
Λ0

b→ Λ
+
c D(∗)0K− channels and 88 % for the Λ0

b→ Λ
+
c D−s channel, while the bachelor kaon PID selection

is also about 93 % efficient for the Λ0
b→ Λ

+
c D(∗)0K− channels.
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8 Efficiencies

8.1 Kinematic efficiencies
Lookup tables for the kinematic efficiencies are created from simulation samples. In the process, fiducial
and acceptance cut efficiencies are separated from the combined trigger to vetos efficiency.

Efficiencies from simulated samples are computed as the ratio of truth-matched reconstructed and
selected candidates over the number of generated signal decays within the fiducial region as a function
of either the Dalitz plot or pT and y . The term truth-matching refers to the procedure that associates
simulated to reconstructed particles. In this work, this information is obtained with the background
classification tool [C3] described in [219]. Note that truth-matching introduces a selection on simulated
samples, whose systematic effects are expected to cancel in the ratio of efficiency corrected yields.

The efficiencies of the partially reconstructedΛ0
b→ Λ

+
c D∗0K− decays are evaluated separately for the

D∗0→ D0π0 and D∗0→ D0γ final states. It turned out that both integrated efficiencies are compatible
within uncertainties. However, this is partly only due to compensation of individual components of the
efficiencies, as shown later.

Evaluating efficiencies as a function of certain calibration variables makes implicit assumptions.
Either the efficiency is constant as a function of any other variable; Or the efficiency corrected p.d.f.
of the phase space that has been integrated out has the same shape in signal and calibration sample;
Or both effects lead to a balanced integrated efficiency, which factorises as a function of the chosen
calibration variables. Integrating out pT and y of the Λ0

b candidate in the signal channel, is justified by
a good description of the variables in simulation (cf. Fig. 8.1).
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Figure 8.1: Comparison of data and simulation in pT and y (top). An adaptive binning with the same number of bins is
used to compare the two-dimensional distribution (bottom). This is done because the comparison of two conventionally
binned two-dimensional distributions by eye is difficult. Especially in this case, where the data-distribution has few entries.
The adaptive binning is to be interpreted as a density profile, since all bins contain approximately the same number of
events. For data the sum of weights is about 31 per bin, while for simulation there are about 840 events per bin.
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8.1 Kinematic efficiencies

The computation of the efficiencies as a function of calibration variables is done by choosing an opti-
mised binning scheme in the two-dimensional calibration variable space. The binning relies on the same
algorithm that has been used to generate binning schemes for the D-from-B BDT efficiency lookup tables
in Sec. 5.6. In each bin, a 68.27 % confidence interval of the efficiency is computed, using a binomial
interval estimator, namely the Wilson confidence interval. The interval is detailed in appendix A and
computed with the TEfficiency class in ROOT [C37].

When applied to data, the calibration variables of the exclusive Λ0
b → Λ+c D0K− and Λ0

b → Λ+c D−s
decays are calculated after a dedicated decay tree fit (cf. Sec. 2.2.4), which now includes the world-
average Λ0

b mass. Such a fit can not be used for the calibration variables of the Λ0
b→ Λ

+
c D∗0K− decays

because it would try to constrain the four-momentum of the visible system to that of a Λ0
b.

8.1.1 Fiducial and acceptance cuts
The acceptance cut is applied at generator level in simulation; i.e. after an event is generated and the
decays are simulated, but before propagation through the spectrometer (cf. Sec. 2.2.6). There, the
spectrometer acceptance is a cut on the opening angle θ , namely 10 mrad< θ < 400mrad for charged
and 5mrad < θ < 400mrad for neutral particles. Since θ is highly correlated with pT and y , the
efficiency of the fiducial cut is evaluated as single integrated number before the acceptance cut.

From kinematic considerations it is likely that the efficiency of this cut varies across the Dalitz plot.
Especially in its corners, where one daughter is produced almost at rest. Hence, the LHCb simulation
package, GAUSS, is manipulated such that a sample is written to disk before and after the acceptance cut
is applied. Now, the acceptance efficiency can be evaluated as a function of the Dalitz plot, as shown in
Fig. 8.2. However, a flat acceptance cut efficiency is observed in all cases, meaning that the kinematics
is driven by the boost of the Λ0

b. On the other hand, a clear difference between Λ0
b→ Λ

+
c

�

D0π0
�

D∗0 K−

and Λ0
b→ Λ

+
c

�

D0γ
�

D∗0 K− is seen supporting separated efficiency correction of these decays.

8.1.2 Trigger to offline selection
The least amount of simulation statistics is available for the trigger to offline selection steps. It is thus
crucial to select a binning which optimally reproduces the efficiency profile. Former studies have shown
that the choice of equally populated over equidistant binning is far superior – especially if the variables
show any kind of dependence or correlation [I10, I11][213]. The adaptive binning algorithm introduced
in Secs. 4.1 and 5.6, performs binary splits and uses one parameter to steer the binning granularity. Finer
binning schemes lead to larger confidence intervals, while coarser binning schemes tend to be biased,
since the true efficiency distribution cannot be resolved; think of a steep slope that gets averaged out
in a bin where calibration and signal channel distributions are different. Finding an optimal binning
scheme, even with the adaptive algorithm at hand, is a non-trivial task, leading to the systematic study
detailed in Sec. 9.2.

It has been found that a good minimum number of reconstructed, selected and truth-matched events
per bin is 64 for all Λ0

b → Λ+c D(∗)0K− decay modes, leading to 128 or 256 bins across the Dalitz plot
depending on period and mode. Less simulated events are available in the sample of the Λ0

b → Λ
+
c D−s

reference decay channel. The minimum number of events is reduced to 16 and 32 for the 2011 and
2012 simulation samples, resulting in 64 and 128 bins respectively.

Efficiency lookup tables for the trigger to offline selection are shown in Fig. 8.3. Note that the
fiducial cut efficiency is computed in a separate step. The PIDCorr technique, cf. Sec. 2.2.5 and Ref. [I4],
based on kernel density p.d.f.s from the Meerkat package [161] has been used to transform the ProbNN
variables used in the highly efficient D+s veto in the Λ0

b→ Λ
+
c D−s selection (cf. Fig. ??, Tab. 6.2).
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Figure 8.2: Simulated acceptance cut efficiencies for 2011 (left) and 2012 (right) data taking periods, given the fiducial se-
lection (5.5< pT < 30 GeV and 2.5< y < 4.0). The top row showsΛ0

b → Λ
+
c D0K−, the second rowΛ0

b → Λ
+
c

�

D0π0
�

D∗0
K−,

the third row Λ0
b → Λ

+
c

�

D0γ
�

D∗0
K− and the last row Λ0

b → Λ
+
c D−s decays.

The superimposed Dalitz plot boundaries for the two Λ0
b → Λ

+
c D∗0K− decay modes are calculated heuristically. This means

that the mother mass has been reduced by (slightly more than) the D∗0 − D0 mass difference (due to resolution effects).
The width of the simulated Λ0

b → Λ+c D∗0K− distribution washes out the Dalitz plot boundary; therefore the D0 mass is
reduced by 10 MeV in the calculation of the boundary.
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Figure 8.3: Combined efficiency for trigger, reconstruction, stripping and offline selection stages evaluated within the
LHCb acceptance. The efficiency of the fiducial cuts is not included.
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8.2 PID efficiencies
The efficiencies of the D-from-B BDTs have been discussed in Sec. 5.6 and validated in Sec. 5.7. The
remaining selection step is on the ProbNNk variable of the bachelor kaon. The efficiency lookup tables
are obtained from data-driven calibration samples from D∗+→

�

K−π+
�

D0 π
+ decays provided by LHCb

PID working group in the PIDCalib package, cf. Sec. 2.2.5 and Ref. [160].
Here, the PID selection efficiency is evaluated as a function of the number of tracks in the event,

momentum and pseudo-rapidity of the bachelor kaon. The efficiency lookup tables are produced in five
bins of the number of tracks in the event, with bin-edges 0, 100, 200, 300, 450, 650. Within each of
these bins, a two-dimensional adaptive binning in pT and pseudo-rapidity (η) with at least 512 events
per bin that pass the ProbNNk selection is created.

This is a much larger number compared to the previously chosen one for the trigger to offline se-
lection efficiency lookup tables. Still, due to the huge statistics of the calibration sample, the adaptive
binning created efficiency lookup tables with more than 10,000 bins in the nTracks = 100–200 and
200–300 bins of the 2012 sample. On the other hand, choosing a larger number of events per bin
compared to the case where simulation samples are used is necessary, because the efficiency lookup
tables are created from sWeighted quantities and subject to statistical fluctuations. These fluctuations
can even be observed with at least 512 events per bin. In regions, where the efficiency is close to 1, rare
(< 0.1% of the cases) fluctuations above 1 occur. They are corrected for by setting the numerator to
the denominator value in the efficiency calculation to still have a reasonable estimate of the uncertainty
in the bin.

Figure 8.4 shows the highest occupancy bin, which is least populated. In other bins, the binning is
too fine to be able to see the bin contents without zooming in. Not surprisingly, the area of regions with
high efficiency grow larger with smaller occupancy.
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Figure 8.4: PID efficiency lookup tables for the least populated nTracks bin from 450 to 650 for 2011 (left) and 2012
data (right).
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9 Systematic uncertainties

9 Systematic uncertainties
Due to the simplicity of the master formula (Eq. (3.1)), and the carefully chosen offline signal selection,
the list of systematic uncertainties is relatively short. The dominant systematic uncertainties are the
choice of fit model and the binning of calibration variables for the efficiency correction. Furthermore,
the limited simulation and calibration sample size are taken into account. It is demonstrated that these
effects are negligible in the overall uncertainty-budget.

9.1 Fit model
Several choices concerning the fit model have been made in Sec. 7, all of which are tested here systemat-
ically. This includes not only variation of the signal and background p.d.f.s, but also adding statistically
insignificant components, which are expected to be seen with more data (c.f. Secs. 7 and C.1). Differ-
ences of nominal and alternative models are summarised in Tabs. 9.1 and 9.2. The resulting systematic
uncertainties are negligible for the measurement of the Λ0

b→ Λ
+
c D0K− branching fraction, but sizeable

for Λ0
b→ Λ

+
c D∗0K−.

One of the alternative models replaces the nominal signal shape with the sum of two Gaussian
distributions with a common mean, Eq. (5.4). Similar to the nominal procedure, the simulation samples
are fitted to determine fit fraction fG and resolution-factor fσ.

To test a more flexible – but physically less motivated – background distribution, the fits are carried
out with a 3rd order Chebychev polynomial. Relatively large (up to +0.725) correlations between the
second Chebychev coefficient in the X c mass and the fraction of Λ+c and D0/D−s combinatorial back-
ground have been observed. That is because the best estimate of that coefficient is negative, describing
an inverse parabola, such that it resembles the signal shape.

Next, components with small fit fractions are removed in the signal channel fit. These are labelled
minor components in Tab. 9.1, and comprise the Λ0

b→ Σc(2455)+D0K−, the combinatorial Λ+c D0 back-
ground and the single charm Λ0

b → Λ
+
c K+π−K− component. Since the single charm component shares

the p.d.f.s in the Λ+c D0K− and pK−π+ invariant masses with the signal component, there is a sizeable
anticorrelation of −0.369, and a larger signal yield when the component is excluded. Similar holds true
for the Λ0

b → Σc(2455)+D0K− component, whose fit fraction is anticorrelated to the partially recon-
structed Λ0

b→ Λ
+
c D∗0K− components: −0.332 (D∗0→ D0γ) −0.532 (D∗0→ D0π0).

On the contrary, partially reconstructed components which have been omitted from the nominal fit
are added back for systematic studies. These components (cf. Tab. 9.1) have been described in Sec. 7 and
areΞ−b → Λ

+
c D∗−K−,Λ0

b→ Σc(2520)+D0K− andΛ0
b→ Λ

+
c D0K∗(892)−. Their inclusion leads to sizeable

anticorrelations between the fit fraction of the added component and the yield of similarly shaped
components in the same mass range. Especially the fit fraction of the Ξ−b → Λ+c D∗−K− component is
strongly anticorrelated to the signal yield (−0.658), and the nominally omitted Λ0

b → Λ+c D0K∗(892)−

component is anticorrelated to the Λ0
b→ Σc(2455)+D0K− component (−0.614).

The problem of large anticorrelations with the Λ0
b → Λ

+
c [D

0π0]D∗0 K− yield was initially tackled by
fixing the ratio of D∗0 partial widths to RD∗ = Γ (D∗0 → D0π0)/Γ (D∗0 → D0γ) = 1.83 [14]. This is
now included as a systematic study and leads to a larger fit fraction of the D∗0→ D0π0 component and
simultaneously a lower fit fraction of the D∗0→ D0γ component. That is because the ratio is estimated
to be lower in the nominal fit: RD∗ = 1.67± 0.17. This corresponds to Γ (D∗0→ D0γ) = 0.375± 0.023,
assuming π0 and γ decay modes sum up to unity and is in better agreement with former world averages
listed in the PDG database (e.g. [220]).
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9 Systematic uncertainties

Model variation Λ+c D0K− ∆Nsig ∆NPRπ0 ∆NPRγ

Double Gaussian signal −9 +4 −7
Chebychev background −22 −29 −61

Excluding minor components +26 +40 +99
Including all omitted components +10 +5 −10

Fix RD∗ −3 +44 −75

Table 9.1: Difference of signal yields obtained in systematic studies and nominal yields∆N = Nsyst−Nnominal. The abbrevi-
ations Nsig, NPRπ0 , NPRγ and RD∗ are used for NΛ0

b→Λ
+
c D0K− , NΛ0

b→Λ
+
c [D0π0]D∗0 K− , NΛ0

b→Λ
+
c [D0γ]D∗0 K− and Γ (D∗0→ D0π0)/Γ (D∗0→

D0γ) = 1.83 respectively. The terms minor and omitted components are detailed in the text. The largest deviations are
printed in boldface.

Model variation Λ+c D−s ∆NΛ0
b→Λ

+
c D−s

Double Gaussian signal −9
Chebychev background −144
Excluding Λ0

b→ Λ
+
c K+K−π− +176

Including combinatorial Λ+c D−s background +38

Table 9.2: Difference of Λ0
b → Λ

+
c D−s yields from systematic studies compared to nominal yields ∆N = Nsyst − Nnominal.

In order to estimate systematic uncertainties, models with large deviations from the nominal yield –
printed bold in Tab. 9.1 – are propagated through the analysis chain with a “matching” Λ+c D−s model, as
tabulated in Tab. 9.3. Not surprisingly, the largest systematic uncertainty comes from excluding insignif-
icant components. In particular for the Λ0

b → Λ
+
c D∗0K− decay because there are no components in the

Λ+c D−s fit model which could compensate the effect. For the Λ0
b→ Λ

+
c D0K− signal such a compensation

is observed for the exclusion of the single charm component.

The deviations from the nominal yields mostly cancel in the ratio of efficiency corrected yields for the
Chebychev background model. The effect is larger for the Λ0

b → Λ
+
c D∗0K− branching fraction, because

the partially reconstructed components cover a wider invariant mass range, in which a flexible back-
ground has a larger impact. Fixing RD∗ in the fit model yields large deviations in the individual partially
reconstructed yields; but these cancel in the combination of the Λ0

b → Λ+c D∗0K− branching fraction.
The largest positive and negative deviations are taken as upper and lower systematic uncertainty.

Λ+c D0K− model Λ+c D−s model ∆RΛ0
b
[%] ∆R∗

Λ0
b
[%]

Excluding minor components Excluding Λ0
b→ Λ

+
c K+K−π− +0.054 +1.027

Fix RD∗ nominal −0.016 −0.331
Chebychev background Chebychev background −0.013 −0.450

Table 9.3: Impact of fit systematics on the ratio of branching fractions R (cf. Eq. (3.1)).
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9.2 Binning of calibration variables

In this work, efficiencies are computed in bins1 of calibration variables, cf. Sec. 8. The outcome of the
analysis under systematic variation of the binning schemes of the efficiency lookup tables with the least
statistical power is studied here. The study shows that the choice of binning in the Λ0

b → Λ+c D0K−

branching fraction measurement is the single dominating systematic uncertainty. It could be reduced
with larger simulation samples and a thorough study of the involved binning schemes. This is not done
here, since the measurement is dominated by the statistical uncertainty, and will in future be dominated
by the limited knowledge of D0 and D+s branching fractions.

Efficiency lookup tables with different binning schemes are propagated through the entire analysis
pipeline. The procedure is similar to the fit model uncertainties; meaning only compatible binning
schemes of signal and reference channel lookup tables are evaluated. Compatible implies that signal
and reference lookup tables are required to contain a similar amount of events per bin, or a similar
number of bins. This is done to emulate the analysts choice. It would for example not make sense to
evaluate the branching fraction with a coarse binning scheme in the signal channel and a fine binning
scheme in the reference channel or vice versa.

Since the adaptive binning algorithm is fairly primitive, i.e. only performs binary splits, the number
of “reasonable” binning schemes, balancing systematic bias against statistical uncertainty, is limited.
The efficiency lookup table with the fewest “reasonable” binning schemes is the 2011 Λ0

b → Λ+c D−s
trigger to offline selection lookup table, with only 1393 truth-matched events passing all reconstruction
and selection steps. Since there is no strong correlation between pT and rapidity in Λ0

b → Λ+c D−s and
since binary splits are performed, the number of bins are powers of two. In this specific case, binning
schemes with 64 and 32 bins are considered “reasonable”, containing about 22 or 44 reconstructed,
selected and truth-matched events per bin. Clearly, a lower number of events per bin would limit the
statistical precision of the efficiency estimate, while a coarser binning can lead to a bias, since the
efficiency gradient (mainly from low to high pT, cf. Fig. 8.3(g)) is not reproduced.

Here, two “reasonable” binning schemes for 2011, four for 2012 Λ0
b→ Λ

+
c D−s data and five schemes

for each of 2011 and 2012 Λ0
b → Λ

+
c D(∗)0K− data are found manually. The numbers differ because of

the available simulation statistics. In the future it is planned to automate this procedure by monitoring
a figure of merit which would indicate if a binning scheme produces “unreasonable” results. This figure
of merit could be the relative uncertainty on the weighted mean of efficiencies in the lookup table.

Even though the number of “reasonable” binning schemes is small for single samples, the fact that
efficiency lookup tables are created per year and channel make for larger combinatorics. Eventually, 31
combinations of binning schemes have been chosen. This number is doubled by inverting the axes of
calibration variables when creating the binning scheme; such that the adaptive binning algorithm starts
to split the input histogram in the median of the y- instead of the x-axis.

Since none of the binning scheme combinations is clearly superior – as opposed to the choice of fit
model driven by a physics motivation – the mean of the resulting distribution of relative branching ratios
is taken as final result. The standard deviation of this distribution is taken as systematic uncertainty.

1 Further commonly used methods are re-weighting of simulation/calibration sample, or finding a parametrisation of the
efficiency lookup table. In the case of re-weighting, the choice of a binning scheme implicitly enters in the actual method of
re-weighting; and can be complex in case of re-weighting with gradient boosted decision trees, where the binning enters in
the growing of regression trees, cf. Sec. 4.2.5. A parametrisation of the efficiency lookup table is the most desirable, but also
most complex case, since a robust parametrisation, whose choice introduces a further uncertainty, has to be found.
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Figure 9.1: Result of the systematic study of binning scheme combinations for the relative branching ratios.

9.3 Calibration and signal sample sizes
Uncertainties arising from the limited size of simulated, D-from-B BDT and PIDCalib samples are eval-
uated. Further, marginal sample sizes differences of signal and reference channel, due to processing
errors from distributed computing when in the production of datasets for offline analysis, is taken into
account. These uncertainties are propagated to the efficiency corrected yields, Eq. (3.2), as

∆Nd
corr =

√

√

√

√

∑

i

�

sPd(µ i)
∏

k εk(ωi,k)

�2 �

1+
∑

k′

�

∆εk′(ωi,k′)

εk′(ωi,k′)

�2�

. (9.1)

The first term in this formula is the statistical uncertainty using the asymptotic properties of sWeights
∆Nd,asymptotic =

q
∑

i(sPd(µ i,d))2, and the second term contains the uncertainties on the efficiencies in
each bin of lookup table k′. These are the statistical uncertainties of simulation and calibration sample
sizes, which are evaluated here. The uncertainty attributed to the efficiencies, ∆εk′(ωi,k′), is evaluated
per efficiency lookup table-bin using the 68.27 % Wilson confidence interval as described in Sec. 8.
Differences in signal and reference channel sample sizes are corrected for by evaluating the ratio of
integrated luminosities. Their uncertainties are propagated.

The results from calibration and signal sample size uncertainties are shown in Tab. 9.4, which sum-
marises all systematic uncertainties affecting the relative branching fraction measurement of Λ0

b →
Λ+c D(∗)0K−. The uncertainties from the efficiency lookup table binning and the fit model uncertainty
for the Λ0

b→ Λ
+
c D∗0K− branching fraction measurement dominate.

Type of uncertainty ∆RΛ0
b
[%] ∆R∗

Λ0
b
[%]

Fit model +0.535
−0.159

+10.265
−4.495

Binning ±3.173 ±5.682

Simulation sample size ±0.794 ±1.958

BDT calibration sample size ±0.082 ±0.311

PID calibration sample size ±0.061 ±0.215

Relative data sample sizes ±0.116 ±0.361

Table 9.4: Systematic uncertainties on the relative branching ratios R (∗)
Λ0

b
.
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10 Results
The last steps to obtain the results for the relative branching fractions R (∗)

Λ0
b
=
B(Λ0

b→Λ
+
c D(∗)0K−)

B(Λ0
b→Λ

+
c D−s )

are de-

tailed. Further, implications of the branching ratio measurement are discussed and a comparison with
similar decays from b-mesons is made.

10.1 Correction of statistical uncertainties
Statistical uncertainties are propagated from the invariant mass fits to the master formula (3.1) using
the asymptotic properties of sWeights. The problem with this procedure is, that the effect of nuisance pa-
rameters on the signal yield is not propagated. That is, because these are fixed to their best fit estimates
when using the ROOSTATS implementation of the sP lot technique, which follows the recommendation
given in the original sP lot publication [196].

The correction uses the difference of yield uncertainties from the nominal and a subsequent fit,
where shape parameters have been fixed. This difference is added in quadrature to the uncertainty of
the sWeights in the asymptotic limit, ∆Nd,asymptotic =

q
∑

i(sPd(µ i,d))2, such that

∆Nd =
√

√

∑

i

�

sPd(µ i,d)
�2
+
�

∆N2
d −∆N2

d,fixed shapes

�

. (10.1)

The formula has been derived in Ref. [221] and is validated with a toy Monte Carlo study in appendix D.
Propagating ∆Nd to the uncertainty on the efficiency corrected yield (9.1) leaves

∆Nd,corr =

√

√

√

√

∑

i

�

sPd(µ i,d)
∏

k εk(ωi,k)

�2 �

1+
∑

k′

�

∆εk′(ωi,k′)

εk′(ωi,k′)

�2�

+
N2

d,corr

N2
d

�

∆N2
d −∆N2

d,fixed shapes

�

. (10.2)

This formula allows for separate treatment of the uncertainties due to the sP lot formalism, the here
introduced correctionterm and the simulation and calibration channel statistics, which enter as uncer-
tainties in each bin of the respective efficiency lookup table. The latter uncertainty has already been
accounted for in Sec. 9.3. So the statistical uncertainty on the efficiency corrected yields, and thusR (∗)

Λ0
b
,

is given by the sP lot formalism- and correction-terms.

10.2 Combination of Λ0
b→ Λ+c D∗0K− decay modes

Since different efficiencies for Λ0
b → Λ+c

�

D0π0
�

D∗0 K− and Λ0
b → Λ+c

�

D0γ
�

D∗0 K− have been observed
(cf. sec. 8.1), it was decided to treat the two D∗0 decay modes separately, and only combine them
in the final step of the analysis workflow. This means that individual relative branching fractions for
Λ0

b→ Λ
+
c

�

D0π0
�

D∗0 K− and Λ0
b→ Λ

+
c

�

D0γ
�

D∗0 K− with respect to Λ0
b→ Λ

+
c D−s are computed and added

for the final result, assuming that both D∗0 decay modes sum up to 1.
Several exceptions have to be taken into account in the combination. First, the correlation of Λ0

b→
Λ+c
�

D0π0
�

D∗0 K− and Λ0
b→ Λ

+
c

�

D0γ
�

D∗0 K− fit fractions have to be taken into account. This correlation
is −0.239, and leads to a smaller combined uncertainty compared to an uncorrelated propagation of
uncertainty. Next, systematic uncertainties have to be combined according to method and calibration
sample.
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10 Results

Systematic uncertainties due to the fit model are propagated through the whole analysis chain, and
the difference between each studied combined relative branching fraction (R∗

Λ0
b ,fitsyst

) and the nominal

combined relative branching fraction (R∗
Λ0

b ,nominal
) is computed in a dedicated step before the actual

combination step. The largest deviation is taken as systematic uncertainty.
Combined binning scheme uncertainties can be obtained in two ways. One would be similar to

the combination of fit model systematic uncertainties. This is realised in Sec. 9.2, where the combined
relative branching fractions are filled into a histogram and fitted. The other method leads to the same
result and fills the individual relative Λ0

b → Λ+c
�

D0π0
�

D∗0 K− and Λ0
b → Λ+c

�

D0γ
�

D∗0 K− branching
fractions into a histogram and combines mean values and widths by propagation of uncertainty without
correlation; since separate simulation samples are used. For the same reason, the simulation sample
size uncertainty is added in quadrature as well.

The combination of D-from-B BDT systematic uncertainties is done assuming 100 % correlation.
This conservative assumption holds to first order; it would be reduced by the normalised integral of
non-overlapping distributions in the BDT calibration variables log(FD χ2) and nTracks. The same
consideration is true for the systematic uncertainty due to the PID calibration sample size.

Eventually, the uncertainty due to the D−s /D
0 branching fraction ratio and the uncertainty due to

the luminosities of signal and reference channels are treated as fully correlated, i.e. the relative uncer-
tainties, which are equal for both D∗0 channels, are conserved.

10.3 Results for the relative branching fractions
The resulting relative branching fractions amount to

RΛ0
b
=
B(Λ0

b→ Λ
+
c D0K−)

B(Λ0
b→ Λ+c D−s )

= (14.04± 0.58± 0.33± 0.45) %

R∗
Λ0

b
=
B(Λ0

b→ Λ
+
c D∗0K−)

B(Λ0
b→ Λ+c D−s )

=
�

43.5± 1.4+1.2
−0.8 ± 1.4

�

% ,

where the first uncertainty is statistical, the second uncertainty is systematic and the third is due to the
knowledge of the branching fractions of D−s → K−K+π− and D0→ K+π−.

10.4 Implications and comparison to similar b-hadron decays
The decay Λ0

b→ Λ
+
c D−s is a two body tree-level decay, shown in Fig. 10.1(a), that has been observed by

LHCb [174]. The decaysΛ0
b→ Λ

+
c D(∗)0K− are three-body decays and are colour suppressed with respect

to Λ0
b → Λ+c D−s (cf. Fig. 10.1(b)), but can as well proceed via a doubly colour suppressed diagram, as

shown in Fig. 10.1(c) which is not possible for theΛ0
b→ Λ

+
c D−s decay. The naïve expectation from colour

factors of the diagrams in Fig. 10.1, 1
9+

1
81 ≈ 12.3 %, is close to above measured value ofRΛ0

b
. However,

it could not be expected that this crude approximation holds true to this level of precision, since RΛ0
b

depends in addition on the available phase-space and the hadronisation fractions of the virtual W to
D−s or D0K− [222].
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Figure 10.1: Tree-level Feynman diagrams of (a) Λ0
b → Λ

+
c D−s and (b),(c) Λ0

b → Λ
+
c D(∗)0K−.

The results obtained are compared to similar mesonic X b → X c D(∗)0K− decays. In such decays, the ud
quark pair of the Λ0

b are replaced by one antiquark: u, d, s or c. It is expected that the double ratio

R (∗)
Λ0

b
/R (∗)X b

=
�

B(Λ0
b→Λ

+
c D(∗)0K−)

B(Λ0
b→Λ

+
c D−s )

�

À
h

B(X b→X c D(∗)0K−)
B(X b→X c D−s )

i

is close to unity, with small deviations due to the

available phase space. The results of this comparison are shown in Tab. 10.1 with the results of this
work included. It is seen that the assumption holds within uncertainties.

The values forR (∗) have been calculated taking the ratio of the respective branching fractions from
the PDG database [14]. Their uncertainties are obtained by error-propagation using the uncertainties
on the world averages. The world-averages of the reference decays B0 → D+D−s and B− → D0D−s are
dominated by measurements of the B-factories. The branching fraction of the decays B0→ D+D(∗)0K−

is determined in a BaBar measurement [223], while the same measurement dominates the world av-
erage of the B− → D0D(∗)0K− branching fraction. For the B−c decays, only the LHCb measurements of
B(B−c →J/ψD−s )
B(B−c →J/ψπ−) [224],

B(B−c →J/ψD0K−)
B(B−c →J/ψπ−) and

B(B−c →J/ψD∗0K−)

B(B−c →J/ψD0K−)
[225] were taken into account.

Decay Q value RX b
R∗X b

B0→ D+D(∗)0K− 3410MeV 14.9± 2.3% 48± 7%
B−→ D0D(∗)0K− 3414MeV 16± 4 % 70± 9%
B0

s → D+s D(∗)0K− 3398MeV no data
Λ0

b→ Λ
+
c D(∗)0K− 3333MeV 14.0± 0.8% 43.5+2.3

−2.1 %
B−c → J/ψD(∗)0K− 3179MeV 15± 6 % 80± 40%

Table 10.1: Summary of X b → X c D(∗)0K− decays. The energy release (Q value) being available for the virtual W decay is
given by M(X b)−M(X c), in accordance to [222].

More general implications of the here presented measurement are discussed in the following. Both
Λ0

b → Λ+c D(∗)0K− and Λ0
b → Λ+c D−s are tree-level b → ccs transitions. For Λ0

b decays, these transitions
are dominated by the decay Λ0

b → Λ
+
c D−s X , where X should be read as additional pions or excitations

of Λ+c or D−s . The inclusive decay rate b→ ccs is an essential ingredient for model- and decay channel
independent search for new physics and was estimated to be 23± 2% [226].

A lower rate could be expected in Λ0
b decays, due to the internal W capture mechanism of the form

bu→ cd. These contributions would be non-factorising [227] and lead to an enhancement of DN final
states [222]. On the other hand, if u-quark and d-quark in the Λ0

b are treated as (ud) diquark, the Λ0
b

could be treated similar to a meson. This implies that the diquark can be treated as spectator in lowest
order approximation of factorisation approaches [228, 229].
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This can be tested here, using the estimated absolute Λ0
b→ Λ

+
c D−s branching fraction [174]

B(Λ0
b→ Λ

+
c D−s ) = 1.1± 0.1% .

The absolute branching fractions of Λ0
b→ Λ

+
c D(∗)0K− would then be given by

B(Λ0
b→ Λ

+
c D0K−) = (1.5± 0.2) · 10−3 and B(Λ0

b→ Λ
+
c D∗0K−) = (4.8± 0.5) · 10−3 .

These can be compared to

B(B0→ D+D0K−) = (1.07± 0.07± 0.09) · 10−3,B(B0→ D+D∗0K−) = (3.46± 0.18± 0.37) · 10−3

andB(B−→ D0D0K−) = (1.45± 0.33) · 10−3, B(B−→ D0D∗0K−) = (6.32± 0.19± 0.45) · 10−3 .

Hence, both Λ0
b → Λ

+
c D0K− and Λ0

b → Λ
+
c D∗0K− branching fractions agree with their mesonic equiva-

lent under the assumption of the lowest order approximation of factorisation.
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11 Summary and Outlook
This thesis reports first observation of the decays Λ0

b → Λ+c D0K− and Λ0
b → Λ+c D∗(2007)0K− and

presents the measurement of their branching fraction relative to the decay Λ0
b → Λ+c D−s . A dataset

corresponding to an integrated luminosity of 3 fb−1 collected at 7 and 8TeV center-of-mass energies in
proton-proton collisions with the LHCb detector has been used. The results obtained are

B(Λ0
b→ Λ

+
c D0K−)

B(Λ0
b→ Λ+c D−s )

= (14.04± 0.58± 0.33± 0.45) %

B(Λ0
b→ Λ

+
c D0∗(2007)0K−)

B(Λ0
b→ Λ+c D−s )

=
�

43.5± 1.4+1.2
−0.8 ± 1.4

�

% ,

where the first uncertainty is statistical, the second uncertainty is systematic and the third is due to
the knowledge of the branching fractions of D−s → K−K+π− and D0 → K+π−. About 1000 and 3000
Λ0

b → Λ
+
c D0K− and Λ0

b → Λ
+
c D∗(2007)0K− decays have been reconstructed respectively. These signals

have been established with an overwhelming statistical significance.
The obtained result agrees with previously measured B→ DD(∗)0K− branching fractions, as expected

by the lowest order approximation of QCD factorisation, which implies that quarks not participating in
the weak process can be treated as spectators. In a wider context, the Λ0

b → Λ+c D(∗)0K− branching
fraction contributes to the total inclusive b → ccs rate. The precise measurement of this rate is an
important ingredient in model-independent searches for physics beyond the standard model in B meson
decays.

This thesis additionally documents an important stepping stone towards the amplitude analyses
of Λ0

b → Λ+c D0K− and Λ0
b → Λ+c D∗(2007)0K−, which enables the search for P+c pentaquarks in the

Λ+c D0 and Λ+c D∗(2007)0 systems. The amplitude analyses profit from the algorithms developed here
for signal selection and efficiency correction. On the selection side, a powerful tool to select non-
prompt decays of charm hadrons has been developed and calibrated (cf. sec. 5). It effectively provides a
variable to identify charm-hadron decays and can be applied to any analysis involving secondary charm
hadrons. On the efficiency correction side, a flexible algorithm to compute efficiencies as a function
of calibration variables has been developed. It interfaces a custom-built class that creates and handles
two-dimensional adaptively binned histograms to harness more of the sample’s statistical power.

The tools of selection, efficiency correction, and others used throughout the work, have been made
available as portable modules. Currently, many of these modules are used in the amplitude analysis
of Λ0

b → Λ+c D0K− and the analyses of Λ0
b → J/ψΛφ and Λ0

b → Λ+c D−K−π+ decays. In essence, the
methods developed here are expected to be integrated and improved in many future analyses and so
help to contribute to the programme of LHCb, in particular in the search for pentaquarks. Pursuing
such spectroscopic searches will lead to a better effective description of the hadronic spectrum. In
the long term, hadron spectroscopy will help to strengthen the link between effective models and the
non-perturbative regime of QCD. A better understanding of this sector enables to address fundamental
points, such as dynamical chiral symmetry breaking and confinement.
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A Binomial confidence intervals in the presence
of background
This section discusses the derivation of an estimator for data-driven efficiencies, i.e. binomial processes.
The problem faced here is the following: A valid binomial confidence interval has to be inferred from
data, which contains background. First, well established concepts of binomial confidence intervals in
the signal-only case are introduced. The simplest one, the Wald approximation, will then be used to
derive an estimator that yields better coverage in the presence of background. It is then shown that
the new estimator and the signal-only Wald approximation can be used to scale the input parameters
of signal-only estimators with better properties, to be able to use them in the presence of background.

The so derived effective intervals are tested with toy studies that sample from data of the D-from-
B BDT efficiency lookup tables. Two approaches to generate toy data are introduced and compared.
It could be shown that the modified confidence intervals provide better coverage than the signal-only
intervals, but that both toy-generation approaches have shortcomings which are qualitatively under-
stood. However, small undercoverages were still observed, so that a conservative approach is taken and
the measured uncertainties on data will be artificially inflated by a factor corresponding to the largest
measured deviation for each D-from-B BDT efficiency lookup table.

A.1 Confidence intervals for binomial processes
The process of selecting signal events from the sample of recorded data is a series of Bernoulli trials,
whose probability measure is modelled by the Binomial distribution. Because the binomial distribution
is a discrete probability distribution and difficult to calculate for large numbers of trials, a variety of
approximations to estimate confidence intervals exist.

The simplest approximation is the normal – because the estimator is approximated by a normal
distribution – or Wald approximation. It is given by

ε̂ ± z

√

√ ε̂(1− ε̂)
n

, (A.1)

where ε̂ is the estimate of the binomial probability (the anticipated efficiency), z is the 1−α/2 quantile
of the standard normal distribution and n the number of trials. The interval can be derived from the
central limit theorem, which is used later to derive the new estimator. But even in the large sample
limit is known to have invalid coverage.

Another approximation that is derived from the central limit theorem is the Wilson interval [230].
The difference to the Wald interval is that Wilson “inverted the hypothesis test”. This means, that he took
the range of values θ0 as confidence interval for which the hypothesis θ0 = θ ∗ would not be rejected at
significance level α. For the upper endpoint, one uses the largest value εu such that εu−z

p

εu(1− εu)/n
contains ε̂. The analogous done for the lower limit, such that the solutions for the resulting quadratic
equations give the confidence interval

ε̂ + z2

2n

1+ z2

n

±
z

1+ z2

n

√

√ ε̂(1− ε̂)
n

+
z2

4n2
. (A.2)

This interval is known to have asymptotically good, but invalid coverage properties.
A valid (for that reason recommended by the PDG) but mostly overcovering interval has been derived

by Clopper and Pearson [195]. The interval does not use the asymptotic approximation but is rather
based on the cumulative probabilities of the binomial distribution. In practice, the Clopper-Pearson
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interval is calculated using quantiles of the beta-distribution in ROOT [C37]. Properties of the intervals
have been discussed e.g. in Refs. [231, 232].

A.2 Modification of the Wald approximation
Extracting data-driven efficiencies is a challenging task. There are several sources of potential systematic
uncertainties. The presence of combinatorial background, non-factorisation of signal and background
p.d.f.s as a function of calibration variables, statistical fluctuations and nuisance parameters due to
unknown p.d.f. shapes.

This section introduces an effective modification of the Wald approximation, and its implementation
into the custom-built wrapper package for ROOFIT used in this thesis. Initially, the efficiency fitter has
been a standalone tool called effi [C13], which has now been integrated into the beef package [C16].

A.2.1 Model setup and notation
The algorithm uses simultaneous extended maximum likelihood fits to “pass” and “fail” categories of
a sample. The yields of these categories are estimates of the number of candidates passing or failing
the probed selection criterion. In order to extract signal and background efficiencies, the fit has to be
parametrised in the form

f (µ;θ ) = S fs(µ;θ s) + B fb(µ;θ b) , (A.3)

where f denotes a p.d.f., µ the observable(s), θ = (S, B,θ s,θ b) the fit parameters with the number of
signal and background events S, B. The model is defined in a config-file that is read in by the algorithm
at runtime. The simultaneous p.d.f. is built automatically taking into account a configurable set of
parameters which are split between “pass” and “fail” categories.

With a model in this form, the Wald approximation is modified. The 68.27 % confidence interval of
the Wald estimator is given by

σ̂(ε̂) =

√

√ ε̂(1− ε̂)
n

, (A.4)

where ε̂ is the estimated efficiency, and n is the total number of independent trials in a binomial process.
The Wald approximation makes use of the central limit theorem in which n is the mean and variance
of a Poisson-distributed random variable. In the outlined case of data-driven efficiency-estimation, the
random variable will not be Poisson-distributed due to nuisance parameters.

The fit will however provide estimators of mean and variance of all relevant random variables. For
measuring a signal efficiency, the model in Eq. (A.3) is split into “pass” and “fail” categories, where the
parameter S becomes Spass and Sfail. For simplifying the notation, the random variables corresponding
to Spass and Sfail are denoted by P and F with true expected values E(P) := µ∗P , E(F) := µ∗F . Best

estimates returned by the fit are denoted by bE(P) := p̂, bE(F) := f̂ and bV(P) :=Ó∆p
2
, bV(F) :=d∆ f

2
. The

fit does not know that it should measure a binomial process, so that the estimated efficiency is written
as a function of two independent random variables

ε(P, F) =
P

P + F
. (A.5)

This is the implementation in the code, and has the advantage, that P and F are orthogonal, i.e. do not
share events. Equivalently, “total” T and “pass” P categories could be defined

ε(T, P) =
P
T

, (A.6)

This form of the efficiency will now be used to derive the Wald approximation.
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A.2.2 Derivation of the Wald approximation
In the following, the Wald approximation will be derived as limiting case from the propagation of un-
certainties. The definition of variance for any bivariate function f (X , Y ) is

V [ f (X , Y )] = E
�

( f (X , Y )−E[ f (X , Y )])2
�

.

The standard way of propagating uncertainties is a Taylor expansion of f (X , Y ) around the expected
values θ ∗ := (µ∗X ,µ∗Y ) of X , Y . Up to first order, and using E[ f (X , Y )] = f (θ ∗), this is

V [ f (X , Y )] = E
�

�

f (θ ∗) + ∂X f (θ ∗)(X −µ∗X ) + ∂Y f (θ ∗)(Y −µ∗Y )− f (θ ∗)]
�2�

= E
�

(∂X f (θ ∗))2(X −µ∗X )
2 + (∂Y f (θ ∗))2(Y −µ∗Y )

2 + 2∂X f (θ ∗)∂Y f (θ ∗)(X −µ∗X )(Y −µ
∗
Y )
�

.

Using variance V[X ] = E
�

(X −µ∗X )
2
�

and covariance C[X , Y ] = E
�

(X −µ∗X )(Y −µ
∗
Y )
�

leads to

V [ f (X , Y )] = (∂X f (θ ∗))2V[X ] + (∂Y f (θ ))2V[Y ] + 2∂X f (θ ∗)∂Y f (θ ∗)C[X , Y ] . (A.7)

Up to this point, this is the standard formula for propagation of uncertainty of a bivariate function.
The efficiency defined in Eq. (A.6) will now be plugged into Eq. (A.7) to derive the Wald approx-

imation. Thus, f (X , Y ) becomes ε(T, P) = P/T , θ ∗ = (µ∗T ,µ∗P), ∂Tε(θ ∗) = −
µ∗P
µ∗T

2 , ∂Pε(θ ∗) =
1
µ∗T

and
Eq. (A.7) reads

V [ε(T, P)] =
µ∗P

2

µ∗T
4
V[T] +

1
µ∗T

2
V[P]− 2

µ∗P
µ∗T

3
C[T, P] . (A.8)

The covariance term can be re-written as

C[T, P] = E[T P]−E[T]E[P] ,

where E[P] = µ∗εµ
∗
T is the expected value from a binomial distribution, or equivalently a binomial

hierarchy model with random variable T . This implies that ε and T are uncorrelated, because E[P] =
E[εT] = E[T]E[T] +C[ε, T] = µ∗εµ

∗
T . Hence, the covariance of T and P is

C[T, P] = µεE[T2]−E[T]µεE[P] = µεV[T] .

Inserting back into Eq. (A.8) yields

V [ε(T, P)] =
µ∗P

2

µ∗T
4
V[T] +

1
µ∗T

2
V[P]− 2

µ∗P
µ∗T

3
µ∗εV[T]

=
1
µ∗T

2
V[P]−

µ∗P
2

µ∗T
4
V[T]

=
1
µ∗T

2

�

V[P]−µ∗ε
2V[T]

�

,

where µ∗ε = µ
∗
P/µ

∗
T has been used. Letting P and T be Poisson-distributed with expected value and

variance of t̂ = Ó∆t
2
→ µ∗T = V[T], p̂ = Ó∆p

2
→ µ∗P = V[P] in the asymptotic limit yields the Wald

approximation:

bV [ε(T, P)] =
1
t̂2

�

p̂− ε̂2 t̂
�

=
1
t̂

�

ε̂ − ε̂2
�

. (A.9)
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A.2.3 Using the fit estimates
Now, the same strategy will be applied, but taking the best estimates from the fit. This means that P and

F are not Poisson-distributed, but where the estimates of expected values p̂, f̂ and variance Ó∆p
2
, d∆ f

2

have been measured.
The actual model is set up to use “pass” and “fail”, Eq. (A.5), instead of “total” and “pass”. The

ingredients for the variance are thus f (X , Y ) = ε(P, F), θ = (p̂, f̂ ), ∂Pε(θ ) =
f̂

(p̂+ f̂ )2
, ∂Fε(θ ) = −

p̂
(p̂+ f̂ )2

,

leading to

bV [ε(P, F)] =
1

(p̂+ f̂ )4

�

f̂ 2
Ó∆p

2
+ p̂2

d∆ f
2
− 2 p̂ f̂ bC(P, F)

�

.

For the covariance term, P and F are defined as P = εT and F = (1− ε)T using the auxiliary random
variable T ≡ t(P, F) = P + F . The covariance is approximated as

bC(P, F) = bE(PF)− bE(P)bE(F)

= bE[ε(1− ε)T2]− bE(εT]bE[(1− ε)T]

≈ ε̂(1− ε̂)
�

bE(T2)− bE(T )2
�

(A.10)

= ε̂(1− ε̂)bV(T ) .

With this definition of the efficiency, the covariance term unfortunately contains another bivariate vari-
ance, leading to a infinite (but convergent) recursive term:

bV [t(P, F)] =Ó∆p
2
+d∆ f

2
+ 2 bC(P, F) .

Here, the propagation of uncertainty (Eq. (A.7)) has been used again.
In the algorithm, the recursion is stopped by an approximation at second order where the asymptotic
Poissonian approximation bV(T )≈ p̂+ f̂ is used, leaving the modified Wald approximation:

bV [ε(P, F)]≈
f̂ 2
Ó∆p

2
+ p̂2

d∆ f
2
− 2 p̂ f̂

�

ε̂(1− ε̂)
�

Ó∆p
2
+d∆ f

2
+ 2 ε̂(1− ε̂)(p̂+ f̂ )

��

(p̂+ f̂ )4
. (A.11)

Measured yields can then be scaled by a ratio of the Wald- and the modified Wald-approximation

reff =
ε̂(1− ε̂)/(p̂+ f̂ )

bV[ε(P, F)]
(A.12)

in order to compute a confidence interval with better coverage properties provided by the TEfficiency
class in the algorithm. Due to the influence of the nuisance parameters, the scaling typically acts as a
damping of the measured yields and can be understood as representation of their effective statistical
power.

For limited statistics and efficiencies near the domain endpoints, the Wald approximation is known
to strongly undercover. This results in a very small scaling parameter (reff < 0.05) or strongly skewed
confidence intervals ( ε̂−εlower

εupper−ε̂
/∈
�2

3 , 3
2

�

). In the algorithm this is effectively handled by scaling directly to

the lower limit if ε̂ > 0.5 or upper limit if ε̂ < 0.5 of the desired type of interval1. The coverage of these
limits has been tested by dedicated standalone [C31] and project-integrated [C15] toy studies, which
are detailed in the following.

1In a planned update, the scaling would be done to the Wilson interval [230] equivalence of Eq. (A.11)
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A.3 Standalone toy Monte Carlo
The derived modification is tested for potential biases and coverage properties. A standalone script that
generates toy datasets and passes them to the algorithm has been set up [C31].

The script starts by reading in a model. After the model has been loaded, a fit to a sample that
was generated using the starting-parameters of the model is carried out. The covariance matrix of
this fit is then used to sample sets of all floating fit-parameters for the individual toy experiments by
eigendecomposition. Signal and background datasets are then generated separately by their individual
p.d.f.s (cf. Eq. (A.3)) using the respective set of parameters from the preceding step. Entries of the so
obtained signal and background samples are then rejected by importance sampling. The sampling rate
is with the respective true signal or background efficiency. The decision whether an event has been
accepted or rejected is stored in a variable that is added to the generated dataset.

Signal and background samples are then merged and passed to the fitting algorithm. The procedure
is repeated several hundred times to be able to study bias and coverage. The quantity of interest in
these studies is the pull, defined by

Pull=

¨

ε̂−ε∗
ε̂−εlower

, if ε̂ < ε∗

ε̂−ε∗
εupper−ε̂

, otherwise

The true efficiency ε∗ is the aforementioned sampling rate. On the other hand, for each toy experiment,
there is a unique sampled efficiency. It will be argued in the following that the sampled efficiency leads to
distorted pull distributions which are explicable by the method of sampling, rather than the modification
of the interval. The unique sampled efficiency is a random variable that depends on the number of
generated signal events and the importance sampling. In the presence of nuisance parameters, the
number of generated signal events is not Poissonian any more, effectively increasing the variance of the
sampled efficiency.

This happened on the sampling side; on the side of the fit, the estimated (symmetric) variance of
the efficiency using the modified Wald approximation, Eq. (A.11), only depends on the central values
and measured uncertainties of “pass” and “fail” yields, which are sampled accurately. The effect will
therefore be seen in the asymmetry of the confidence interval limits with respect to the central value,
or - in terms of Bayesian statistics - higher moments of the efficiency posterior distribution. In the toy
study, this is seen as left-right asymmetry around 0 in Fig. A.1, in particular for the scaled Clopper-
Pearson and Wilson intervals, where the effect is overcompensated due to the effective scaling, but also
less pronounced and sign-flipped in the Wald pull-distributions due to the symmetry of the interval.

In the following, the results of a scan through 15 different sets of signal and background efficien-
cies (εsig > εbkg) will be discussed. The model used for generating toy data and fitting is sum of two
Gaussian p.d.f.s with shared mean as signal and a first order Chebychev polynomial as background. The
parameters are chosen to be similar to those obtained by a one-dimensional fit to the Λ+c D−s spectrum
in a narrow range around the Λ0

b signal. The sample size has been decreased compared to the Λ+c D−s
data to 2000 signal and 3000 background events in order to save CPU time and pronounce the effects
of limited statistics.

The results of this study, and also from a variation of the yields, can be summarised by the four pull
histograms shown in Fig. A.1. The working point of εsig = 97% and εbkg = 75% was chosen from the
scan, because these values are representative for regions of the BDT efficiency lookup tables (cf. Sec. 5.6).
The pulls show that the Wald approximation drastically undercovers. The bias (µ = −0.18± 0.09) in
this plot is likely to be caused by entries out of the plotting range and the asymmetry in the pull’s numer-
ator discussed above. This asymmetry is less pronounced in the approximated uncertainty-propagation
(Eq. (A.11)) due to larger measured uncertainties. It is overcompensated by the asymmetry of the
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Figure A.1: Comparison of pull distributions obtained by the toy Monte Carlo studies described in the text. The top row
shows Wald and modified Wald approximations. The bottom plots show pulls from Clopper-Pearson and Wilson intervals,
whose input parameters have been scaled by the effective factor reff Eq. (A.12).

Clopper-Pearson and Wilson limits due to the scaling, which effectively degrades the input statistics to
the calculation. It is seen that the distribution of lower limits (pulls < 0) is more narrow than the dis-
tribution for upper limits, i.e. the lower limits are larger than the sampled ones, while the upper limits
show good coverage in the Clopper-Pearson case and slightly undercover when using Wilson-limits. To
overcome the imperfect sampling, another method, embedded in the D-from-B package is studied in the
next section.

A.4 Toy Monte Carlo studies for the D-from-B package
The toy Monte Carlo studies described in the previous paragraph will now be used on a fit-result ob-
tained on data from the D-from-B efficiency evaluation. This means that the toys discussed below are
generated from the measurement directly – by generating “pass” and “fail” samples based on the nui-
sance parameter sampling – as opposed to generating a “total” signal- and background-dataset and
adding “pass” and “fail” categories by importance sampling. Both methods have advantages and disad-
vantages, which are easiest explained with the help the results from this study.

The toy studies have been carried out in certain bins of the efficiency lookup tables standing out
by e.g. low statistics, large efficiency uncertainties or large background yields. The studied bins under-
covered by about 30 % up to at most 66 % using the above described scaling factor on Clopper-Pearson
intervals and the integrated sampling method.

The largest potential source of undercoverage stems from the implementation of the model, because
“pass” and “fail” yields are treated as random variables with a covariance that is measured by the fit. In
most cases this covariance is much smaller than the expectation from the underlying statistical model,
i.e. from using the knowledge that “pass” and “fail” datasets are orthogonal.
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Figure A.2: Pull distributions of the two different toy Monte Carlo approaches studies described in the text.

The situation is further complicated by the complexity of the model, which introduces additional effi-
ciencies for the partially reconstructed and Cabibbo-suppressed backgrounds. The imperfect modelling
not only enters in the fit itself, but also when sampling nuisance parameters and generating toy samples.
For this reason, it could well be, that the observed undercoverage is due to improperly generated toy
samples, and that the effect in the fit itself is not as striking.

The undercovering D-from-B toys have been cross-checked with toys from the standalone script,
essentially supporting the above statements. A exemplary comparison is shown in Fig. A.2. There, the
bins of the efficiency lookup tables, for which the largest undercoverage was measured is shown in the
top row. The bottom row shows the bin with the least signal events from the 2012 D0 efficiency lookup
table. A relatively large signal efficiency of 95.61+0.56

−0.63 has been measured in the latter bin, where the
asymmetry in the numerator becomes evident again in the standalone toy study.

However, a conservative approach is taken and the measured uncertainties will be artificially inflated
by a factor corresponding to the largest measured factor for each efficiency lookup table.

A.5 Approaches to use the efficiency as fit-parameter
In an earlier version of the fitting algorithm it was tried to include the efficiency as fit-parameter. In-
vestigated methods and their shortcomings will be discussed in the following. The method is not used,
but the lessons learned here are worthwhile to be discussed briefly.

The strategy was to perform sequential fits to ”total“ and ”pass“ datasets. When fitting the ”pass“
dataset, (additional) constraints to fit-parameters can be applied. One strategy was to constrain shape
parameters by a Gaussian p.d.f. using results from the fit to the ”total“ sample and by additionally
adding a dependency on the signal and background efficiency. Constraints like

G(θp;µ= θ̂t ,σ = δθ̂t(1− ε̂)) (A.13)
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Figure A.3: Profile log-likelihood as function of the signal efficiency. The likelihoods were generated from a fit to the
2012 Λ0

b → Λ
+
c π
− calibration data in the lowest rightmost bin of the efficiency lookup table. The best fit values for ε are

highlighted with arrows. Vertical lines show the estimated uncertainty from the MINOS algorithm [192], nicely in line
with the expectation from the profile log-likelihood indicated by the horizontal dashed line.

improved the sensitivity on the resulting efficiency. Here G is a Gaussian p.d.f. in a shape parameter
of the ”pass“ fit θp. The mean µ is fixed to the best fit value of the fit to the ”total“ sample. The width
σ penalises values of θ̂p which are far from θ̂t by a heuristic factor δ. Another potentially superior ap-
proach, which has not been realised for technical reasons, would be to directly manipulate or constrain
the covariance matrix in the “pass” fit.

Moreover, it was tried to constrain signal and background efficiency parameters. The effect of these
constraints on the profile log-likelihood1 is shown in Fig. A.3. The binomial constraint works as follows:
first, a fit to the “pass” sample is carried out and the best fit value of the number of “pass” events
ŝpass = ε̂ · ŝtot is obtained. In a subsequent fit, again to the “pass” sample, a binomial p.d.f. with fixed
yields, at p̂, t̂, and floating ε is used as external constraint. Fixing the yields at their best fit value results
in a too optimistic constraint and therefore undercovers.

It was tried to scale the yields in the binomial p.d.f., which did not result in the desired coverage. If
this scaling factor approaches 0, the likelihood tends to the likelihood from the unconstrained fit (the
red approaches the black line in Fig. A.3) except near physical boundaries. In Fig. A.3 the scaling factor
was set manually to 0.01. Constraints with a beta distribution tend to introduce a bias as shown in
Fig. A.3, where Beta(ε;α = 1.2,β = 1.2) was used. On the other hand, beta distribution-constraints
can stabilise fits with efficiencies close to 0 or 1.

The uncertainties returned by the MINOS algorithm coincide with the expectations from the profile
likelihood function (which is considerably slower to evaluate) in every tested scenario, but it was not
possible to obtain valid intervals from this in a range of tests. Also more involved statistical methods from
the ROOSTATS package have been tried without success. At an early stage, simultaneous fits including
the efficiency as parameter have been examined and tended to be very unstable.

1 Because of its asymptotic properties, the likelihood function can be used to estimate confidence intervals [191]. Being
close to the parameter domain spoils asymptotic normality of the maximum likelihood, leading to wrong predictions for the
variance of the estimator (cf. Eq. 4.6). A likelihood that is independent of all other parameters of the model but ε, is given
by the profile likelihood Lp = L(ε, ˆ̂ν(ε)). The double-hat notation indicates the profiled values of the nuisance parameters ν,

defined as the values, which maximise the likelihood for the given ε. The profile likelihood ratio is given by λ(ε) =
Lp(ε)
L(ε̂,ν̂)
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B Selection of signal and reference channel
This appendix supplements Sec. 6 with details on the cut optimisation procedure, a discussion on alter-
native selection strategies and plots of veto cuts.

B.1 Optimisation of binary cuts
The optimisation procedure is done with a custom-built script that automatically scans a range of simple
cuts with a defined step-size in the phase space spanned by the set of variables [C6]. A simple cut is
defined by a relational operator>, <, ==, !=, >=, <= and a value. The script interfaces the custom-
built beef wrapper package for fitting. To avoid observer bias, a k-fold cross-validation can be chosen.

The fits are used to calculate a figure of merit at the current position of the scan, which defines a
cut-value for each variable (referred to as cutset). The scanning procedure is entirely automated and
configurable; its runtime options are provided in a configuration file. The whole scan ends after a given
amount of steps. A step is finished if the figure of merit of all possible combinations of cut-values in
a given phase space range has been evaluated and a maximum was found. If this maximum has been
found at the a boundary of the configured range, it is automatically extended by one step-size if possible.

The phase space range of the next step is then given by the neighbouring points of the current
optimum. In addition, the number of additional intermediate cut-values between the new boundaries
and the optimal point are configurable. An illustration of this procedure is shown in Fig. B.1.

Each variable can be scanned separately (referred to as 1D scan), as part of the phase space spanned
by the set of variables (full scan), or as combination of both. During the 1D scan, the variables are
processed successively, such that the order of processing might change the result. Additionally, the cuts
of all variables except the one under study are fixed at pre-defined values. These are either given in the
configuration file for the first step ( x̃), or are set to the optimum that was found by the previous step.

The full scan simply considers every combination of cuts in the phase space range given the step size
of each variable, and can thus be pictured as a multidimensional grid with each node representing a
cut-set. A full scan requires more fits and suffers from the curse of dimensionality, but is not affected by
possible correlations among cuts with respect to the figure of merit, because the cut values are scanned
simultaneously.

Signal and background yields for the calculation of the figure of merit are obtained by a properly
normalised integral of the signal and background p.d.f.s in a fixed range - the (fixed) signal region.

Step 0:

x T x0 x T x0 + δx

δx

x T x0 + (nopt − 1)δx =: x̂

. . .

x T x0 + (ncuts − 1)δx

. . .

Step 1: x′0 := x̂− δx , δx′ := δx
nint+1

x T x′0 x T x′0 + (nint + 1)δx′ ≡ x̂ x T x′0 + (2nint + 2)δx′ˆ̂x

. . .
δx . . . . . .

Figure B.1: Sketch of the cut optimisation for a variable x in 1D. The figure of merit is illustrated by the brightness
of the points and gets darker for a larger figure of merit. The convention of notation is in-line with the code. The
hyperparameters ncuts, nint, δx , x0, for the number of cuts, the number of intermediate cuts in subsequent steps, the
step-size and the loosest cut respectively, as well as the relational operator are configurable. Optimal cut values for step
0 and 1 are represented by x̂ and ˆ̂x respectively.
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B Selection of signal and reference channel

Alternatively, the range
[µ̂− nσ · σ̂, µ̂+ nσ · σ̂] , (B.1)

with signal mean µ̂, width/resolution σ̂ and a configurable parameter nσ, defines the (floating) signal
region of each fit individually. The hyperparameter settings for the signal channel optimisation can be
looked up in Ref. [C23]. It was found that the figure of merit is almost constant over a relatively wide
range of cuts, resulting in a negligible effect from the choice of the final set of cuts.

B.2 Discussion on offline selection strategies
In order to achieve the best possible sensitivity, the final selection of events has to be optimised. The op-
timal working point is obtained by maximising a suitable figure of merit, which for all studies described
here was chosen to be S/

p

(S + B). Additionally, the optimisation must not bias the final result, which
could be the case if the optimisation is conducted directly on data. The risk in such a scenario is that
the miss-classification rate of background events in the signal region as signal (type I error) is larger
than what is estimated by the efficiency correction, leading to an over-estimated branching fraction.
The signal optimisation strategy is now carefully chosen such that both criteria – high sensitivity and
an unbiased result – are fulfilled.

Several techniques to find this optimal working point have been examined and are summarised
here. Eventually, a relatively simple k-fold cross-validated optimisation of binary cuts on the D-from-
B BDT responses and ProbNNk of the bachelor kaon was chosen. The gain in sensitivity from more
sophisticated selection methods involving multivariate classification tools has been too low to justify
its use. Especially in spite of additional uncertainties introduced by the computation of the classifier
response cut efficiency and the overhead of systematic studies, contributing additional uncertainties.

Separating the final selection step into three PID-like variables and the kinematic MVA has not been
the prime choice, since a multivariate analysis including all inputs would have potentially been supe-
rior to the described rectangular cut scan. When training a classification algorithm, several challenges
have to be met to be able to successfully apply it to data. Concerning the performance of the classi-
fier, hyperparameter-settings and input variables (including potentially performance-enhancing trans-
formations) have to be chosen carefully. More critical challenges, in the sense of whether a classifier is
eventually applicable to real physics data, are the choices of (labelled) input data to the multivariate
algorithm. Probably the most common choice is the use of simulation as signal and sideband data as
background input. Further options that have been examined are discussed in the following.

• Training a classifier on signal data – avoiding bias by cross-validation techniques – is ruled out;
mainly because the statistics for training is too low. The problem is further complicated by the fact
that the distributions of the input variables would have been obtained using the sP lot technique,
for which the p.d.f. factorisation discussed in Sec. 4.2.4 has to be studied. After any reason-
able pre-selection to calculate sWeights, there is still a large number of background events, which
enhances small non-factorisable effects, manifesting itself in distributions with negative bin con-
tents. For this analysis this would practically mean to train a classifier on maximally 12001 events,
and using input variables with regions where the distribution becomes negative. Despite the fact
that the sP lot technique breaks down in such a scenario, it was found that no classifier was able
to produce a convincing result with such input.

• It was tried to generate the classifier input with the help of a (conditional) generative adversarial
network [233, 234] on sWeighted data. Similar issues as described for training directly on data
forced the use of a different strategy.

1with 1200 being the sum of sweights
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B.2 Discussion on offline selection strategies

• A simpler way to generate signal input data is to sample the variables from sWeighted data. If
all considered variables would have been taken into account, the sampling would have corre-
sponded to a 26-dimensional Monte Carlo integration – a computationally too expensive task with
unknown chances of success. Instead, all variables have been sampled from spline interpolated
data individually. The splines have been obtained from smoothed sWeighted histograms. The
smoothing became necessary to flatten out statistical fluctuations in sparsely populated regions,
which eventually gets picked up in the training of the classifier. The compatibility of the sampled
data with its sWeighted input was tested with Kolmogorov-Smirnov tests for each variable. The
sum of Kolmogorov-Smirnov test-scores served as a qualitative measure for the 1D compatibility
of sampled and real data and was used to adjust parameters in the used algorithms.

• The best results have been achieved by training a classifier using only kinematic variables from
simulation and background data from the Λ0

b sidebands.
The sideband regions, 5560 < Minv(Λ+c D0K−) < 5595 and 5645 < Minv(Λ+c D0K−) < 5680
are shown in Fig. B.2. A cut on the resulting classifier-response was then chosen together with the
remaining D-from-B BDT and kaon PID variables in a 4D cut optimisation procedure as described
above. The variables used for training are listed in table B.1. Kolmogorov-Smirnov test-scores
were evaluated for simulated data w.r.t. sWeighted data. The resulting scores were significantly
lower compared to spline sampled data described above. It was tried to improve the compatibility
of simulation and data by re-weighting variables that deviated most. A re-weighting in one and
two dimension resulted in better accumulated Kolmogorov-Smirnov scores, but only marginal
differences were seen in the final result (compatible with uncertainties from the following optimi-
sation scan). The receiver operator characteristic (ROC) curves from the here described training
are shown in Fig. B.5(a). Note that due to differences in data and MC, a higher area under curve
does not necessarily correspond to a better figure of merit when applying the classifier to data. An
interesting observation is made in Fig. B.5(b), showing a training where a classifier was trained to
distinguish MC and spline sampled from sWeighted data. It shows that the re-weighting only leads
to a marginal improvement. In contrast, it clearly seen how large the impact of correlations is
for this data. The classifier can easily distinguish between sWeighted data and 1D spline sampled
distributions, which agree better when judging from projections and the Kolmogorov-Smirnov
test-scores only.

The strategy described in the last bullet-point has been studied in greater detail, such that also hyperpa-
rameters and input variable transformations were examined. Contrary to the D-from-B package, it was
found that the recently integrated class of deep neural networks into TMVA resulted in slightly higher
ROC area-under-curves than a BDT. Still, bagged gradient BDTs with a large number of trees and a small
learning rate have been chosen here as baseline solution.

The 1D projections of sweighted data and simulation of the input parameters as well as the result-
ing classifier response have been monitored throughout the studies. Some of the 22 classifier input
variables, as well as the classifier output clearly deviated from data. So a more conservative solution,
including only 10 input variables with good data-MC agreement and good separation power was tested
as well. The comparison of one dimensional projections of these variables between sWeighted data and
simulation are shown in Fig. B.3. The BDT responses in simulation and data are shown in Fig. B.4.

Before proceeding with this ansatz the comparison to a fully cutbased analysis was carried out. The
results of this comparison is summarised in Tab. B.2. The table shows that the cut optimisation favoured
a higher background rejection over a larger signal efficiency when maximising the figure of merit. But
most importantly, the comparison shows, that the kinematic classifier will not improve the sensitivity of
the final measurement to an extent, where it would compensate for additionally introduced systematic
uncertainties. In conclusion, a relatively simple high level selection is favoured, using only binary cuts.
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B Selection of signal and reference channel

Variable Particle(s) Description

log(BPV IPχ2) Λ0
b,Λ+c ,D0,K− Impact parameter χ2 w.r.t the best PV computed by a Kalman-

filter based vertex fit [C21]

log(BPVPDS) Λ0
b Path distance significance w.r.t. the best PV

log(BPVτ) Λ0
b Lifetime of the particle in ns

log(∆M) Λ0
b Dispersion of M2 from the particle 4-vector and the covarinace

matrix

log(pT) Λ0
b,Λ+c ,D0,K− Transverse momentum

log(∆pT) Λ0
b,Λ+c ,D0,K− Transverse-momentum dispersion

log(1−DIRA) Λ0
b Direction angle (i.e. the cosine of the angle between momem-

tum and vector from origin- to end-vertex)

arctan(cτ sign) Λ+c ,D0 cτ sign = cτ
∆cτ with lifetime distance cτ and its uncertainty∆cτ

log(DIRAQ) Λ+c ,D0 DIRAQ = (1 − DIRA) ·∆DIRA with ∆DIRA from the position-
momentum covariance matrices

αAP D0 Longitudinal momentum asymmetry

log
�

ProbNNghost
1−ProbNNghost

�

K− ANN (TMVA MLP) output using PID variables and track ghost
probability [I2] to reject fake tracks, described here

Table B.1: Summary of variables used in the kinematic MVA. All variables except the ghost probability use variables after
a kinematic fit, in which the Λ+c and D0 have been fixed to their nominal masses and the decay chain points back to the
best primary vertex. Variables coloured in green are used in the reduced MVA.

Selection Nsig Nbkg (full range)

Cutbased 978± 46 3761± 124
Full MVA 945± 42 2799± 110
Reduced MVA 939± 43 3150± 114

Table B.2: Comparison of signal and background yields
after cut optimisation between a high level selection
based on D-from-B BDTs and kaon PID with and without
kinematic MVA.
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Figure B.2: Definition of background data used to train
kinematic MVAs.
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Figure B.3: Comparison of signal MC and sweighted data. The sweights have been obtained from a one dimensional fit
to a cut-based selection in a narrow range around the Λ0

b mass.
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Kinematic MVA Response
1− 0.5− 0 0.5 1

Sc
al

ed
 E

ve
nt

s

50−

0

50

100

150

200

250

300

350
LHCb internal

sWeighted data

Signal MC

Figure B.4: Comparison between the BDT responses in data and simulation. The BDT was trained on the reduced set of
input variables as described in the text.
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Figure B.5: (a) ROC curves of a BDT using (rewighted) Monte Carlo simulation data as input for signal and data from
the Λ0

b sidebands as background.
(b) ROC curves of a classifier being trained to discriminate sweighted data from the plotted signal data definitions. The
area under curve is 0.5 in the asymptotic limit if the classifier can not distinguish the samples.
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Figure B.6: Vetos applied in the selection of Λ0
b → Λ

+
c D(∗)0K− (a)–(d) and Λ0

b → Λ
+
c D−s candidates (e) and (f). The x-axis

labels the misidentified particles.
Plots (a),(b),(e) show invariant mass distributions of K+K− in which the φ(1020) signal is vetoed.
Plots (c) and (d) show invariant mass distributions of D0π− in which the D∗(2010)− signal is vetoed.
Plot (f) shows the invariant mass distribution of K+K−π+ in which the D+s signal is vetoed.

115



B Selection of signal and reference channel

116



C Mass fits

C Mass fits
This appendix supplements Sec. 7 with details on feed-down backgrounds, and a stability test of the
nominal fits to signal and reference channel.

C.1 Feed-down estimates
Decays feeding down into the invariant mass spectrum of Λ+c D0K− are discussed, expected feed-down
fractions are estimated and summarised in Tab. C.1. The feed-down fraction defined over the feed-down
and signal yields as

ffd =
Nfd

NΛ0
b→Λ

+
c D0K−

. (C.1)

The calculations are to be understood as a guess to whether a feed-down background should be ac-
counted for or not. It should be stated that the observed feed-down will not only depend on the physics
of the decay, but also on detector acceptance and selection efficiencies. As the selection has been op-
timised to select Λ0

b → Λ+c D0K− decays, it is anticipated that the selection efficiencies of feed-down
decays is lower, leading to a lower observed feed-down.

Decay feeds into Λ0
b expected ffd

Λ0
b→ Λ

+
c D0

�

K−π0
�

K∗(892)− 7 0.2–0.4

Λ0
b→

�

Λ+c π
0
�

Σ
(∗)+
c

D0K− 7 0.12

Λ0
b→

�

Λ+c K−π0
�

Ξ∗0c
D0 7 < 0.01

Ξ0
b → Λ

+
c D0K−π0 3 < 0.01

Ξ−b → Λ
+
c

�

D0π−
�

D∗(2010)− K− 3 0.025

Ξb→ Ξc D0h− 3 < 0.01

Table C.1: Potential Λ0
b and Ξb decays which feed into the Λ+c D0K− invariant mass distribution. The second column

indicates if the decay feeds into the Λ0
b → Λ

+
c D0K− signal region (3), or not (7). Particles in red are not reconstructed.

Λ0
b
→ Λ+c D0

�

K−π0
�

K ∗(892)− Unfortunately there is no measurement on corresponding doubly open
charm channels from b-mesons to make an estimate based on factorisation. Also channels involv-
ing the same quark structure, but hadronising into hidden charm have not been measured yet.
However, several measurements of b-mesons to single open charm allow for an order of magni-
tude comparison between K− and K∗(892)− modes, which range between 1.3 (B0 → D−s K(∗)−)
and 2.4 (B0 → D−K(∗)−). Only the upper tails of the Λ+c D0K− invariant mass distribution of the
Λ0

b → Λ+c D0
�

K−π0
�

K∗(892)− decay feed down into the fit-region starting at 5350 MeV. The frac-
tion of events in this region is about 0.15 (in phase-space MC without detector simulation). This
means that the expected feed-down fraction roughly lies between 0.2 and 0.4.

Λ0
b
→
�

Λ+c π
0
�

Σ
(∗)+
c

D0K− These decays proceed via the same tree-level diagrams as the signal decay, as
shown in Fig. C.1. But unlike the signal decay, the digram in Fig. C.1(a) is forbidden since the
isospin of the Λ0

b spectator quarks/diquark would not be conserved [216]. This statement is based
on the factorisation of electroweak and strong contributions in internal and external W -exchange
diagrams [235].
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Figure C.1: Leading order Feynman-diagrams of Λ0
b → Σ

(∗)+
c D0K−. Diagram (a) is forbidden by isospin conservation of

the spectator quarks, while diagram (b) is doubly colour suppressed.

The hypothesised ud diquark in theΛ0
b has to be split up and hadronise in different decay products.

Such a diquark-splitting process is measured in the charm-sector in Λ+c → Σ+π0 decays. The
branching ratio of this decay is – within uncertainties – equal to the branching ratios of Λ+c →
Σ0π+ and Λ+c → Λπ+ [236]. This means that a suppression from splitting the diquark is not
expected. In addition, these decays show that the decays to Σ(I = 1) and Λ(I = 0) happen at
a similar rates. For this reason, it can be assumed that Λ0

b →
�

Λ+c π
0
�

Σ
(∗)+
c

D0K− happens at the

same rate as Λ0
b → Λ

+
c D0K− in the subleading, doubly colour suppressed diagram C.1(b). Based

on these considerations a feed-down fraction of 1+1/9
9 ≈ 12 % can be estimated.

The contribution of Σc(2520)+ compared to Σc(2455)+ is estimated to be less than a third, based
on an LHCb measurement of Λ0

b→ Λ
+
c π
+π−π− [237].

The Σ(∗)+c modes can however be enhanced by Λ0
b →

�

�

Λ+c π
0
�

Σ
(∗)+
c

K−
�

Ξ∗0c

D0 decays, which are

discussed in the following point.

Λ0
b
→
�

Λ+c K−π0
�

Ξ∗0c
D0 The decay Λ0

b → Ξ
0
c D0 is the internal-W -emission-equivalent of Λ0

b → Λ+c D−s ,
thus suppressed by one colour factor. Further suppression comes from the requirement to decay
into the excited Ξc(2980) or Ξc(3080) baryons. Quantifying this suppression is challenging and
leads to widely varying results. Hints towards the order of magnitude come from analyses of the
semileptonic Λ0

b and Ξb decays.

In Ref. [238]
N(Λ0

b→[Λ+c π−π+]Λc (2765/2880)+µ
−νµ)

N(Λ0
b→Λ

+
c µ
−νµ)

in the order of ® 0.1 % has been measured. This

measurement can be related to Ξ∗0c s as follows: The Ξc(2980) could, according to [239], be the
first radial excitation of the Ξc baryon, and have similar properties as the Λc(2765)+, while the
Ξc(3080) is proposed to be a J P = 5

2
+

state whose partner would be the Λc(2880)+.
An internal study including decays to excited Ξc baryons [I12], suggests that the yield of both
exclusive X b→

�

Λ+c K−π+
�

Ξc(2980/3080)∗0 µ
−νµ decays together is in the order of 1 % compared to

the inclusive X b→ Ξcµ
−νµ mode. With the colour suppression factor from internal W -exchange,

B(Λ0
b→Ξ

0
c D0)

B(Λ0
b→Λ

+
c D−s )

, and the counteracting colour suppression in the ratio of signal and reference-channel

B(Λ0
b→Λ

+
c D0K−)

B(Λ0
b→Λ

+
c D−s )

, feed-down fractions from the permill region up to the order of 1 % are anticipated.

This is too small to be measured in the given sample. Note that Ξc(2980) and Ξc(3080) are likely
to decay via

�

Λ+c π
0
�

Σ
(∗)+
c

K−, thus being a resonant mode in the Λ0
b→ Λ

+
c K−π0D0 four-body Dalitz

decay that potentially enhance the Σc modes.
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Figure C.2: Leading order Feynman-diagrams of resonant Ξ0
b → Λ

+
c D0K−π0 decays (a) and Ξ−b → Λ

+
c

�

D0π−
�

D∗(2010)− K−

(b).

Ξ0
b
→ Λ+c D0K−π0 For all Ξb modes discussed in this and the following points, it is assumed that a
π0 or π− has not been reconstructed. Ξb decays with missing pion are problematic, since their
phase-space threshold is around 5655MeV, such that resonances with a small energy-release, e.g.
D∗, create peaking structures in the Λ0

b signal region.
The Ξ0

b → Λ
+
c D0K−π0 decay is very similar to the already discussed Λ0

b → Λ
+
c D0K−π0 four-body

decay, and should be dominated by the D∗0→ D0π0 component, even though the Σc mode does
not suffer from isospin conservation of the spectator quarks. The lowest-order Feynman-diagram
is shown in Fig. C.2(a), which is suppressed by a colour- and CKM-factor compared to the signal

decay. Furthermore, the fragmentation fraction ratio fΞ0
b
/ fΛ0

b
≈ 1

5 [218] and
B(Ξ0

b→Λ
+
c D∗0K−)

B(Ξ0
b→Λ

+
c D0K−)

=

fΛ+c D∗0K− ≈ 3 (including the D∗ mode with a missing photon) are taken into account, leading to

fΞ0
b→Λ

+
c D∗0K− ≈

3
9 · 20 · 5

≈ 0.3 % . (C.2)

Even with K∗(892)− and unsuppressed Σc modes, fΞ0
b→Λ

+
c D0K−π0 should be well below 1 %.

Ξ−
b
→ Λ+c

�

D0π−
�

D∗(2010)−
K− This decay proceeds via an external W emission and therefore does not

suffer the additional colour-suppression of the Ξ0
b → Λ

+
c D0K−π0 decays. The estimation follows

the one above, but the branching ratio of D∗(2010)−→ D0π− (0.677≈ 2/3) has to be accounted
for in addition. This leads to

fΞ−b→Λ+c D∗(2010)−K− ≈
3 · 2/3
20 · 5

≈ 2% . (C.3)

Because this background peaks in the Λ0
b signal region, it has a direct influence on the branching

ratio measurement and needs to be studied. The shapes of this decay and Ξ0
b → Λ

+
c

�

D0π0
�

D∗0 K−

are statistically not separable, but the observed yield should be dominated by the charged mode.

Ξb → ΞcD0h− These decays proceed via singly colour suppressed Feynman-diagrams, analogous to
Λ0

b → Λ
+
c D0K−, but are CKM-suppressed The Ξb → Ξc D0h− decay with highest similarity to the

signal decay is Ξ0
b →

�

pK−π+π0
�

Ξ+c
D0K−. It is suppressed by the fragmentation fraction ratio
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C Mass fits

fΞ0
b
/ fΛ0

b
≈ 0.2 [218], and the pK−π+ invariant mass selection, which, using phase-space simu-

lation, is ≈ 0.1. The Ξ+c decay to pK−π+π0 has not been observed yet, but should be on the
same level as, or slightly enhanced, compared to the Cabibbo suppressed decay Ξ+c → pK−π+. To
close the loop back to Λ0

b → Λ
+
c D0K−, a conservative estimate of the relative branching fractions

B(Ξ+c →pK−π+π0)
B(Λ+c→pK−π+) ® 0.51 lead to a feed-down fraction of ® 0.01.

Moreover, the selection efficiency of the pK−π+ system should be significantly smaller when com-
ing from a Ξ+c decay with a missing π0 compared to the signal case, where the pK−π+ system
comes from the Λ+c . The decrease in efficiency should mainly be due to the topological selection
from vertex-related quantities.
Other Ξb → Ξc D0h− decays like Ξ−b →

�

pK−π+π−
�

Ξ0
c

D0K− or Ξ−b →
�

pK−K−π+
�

Ξ0
c

D0π− can

be excluded for similar reasons, and have an additional colour suppression factor.

C.2 Fit stability test
Several components with low fit fractions are included in the nominal fit. These are the single charm
Λ0

b → Λ+c K+π−K− decays in both signal and reference channel, the combinatorial Λ+c D0 background
and the partially reconstructed Λ0

b → Σc(2455)+D0K− decay in the signal channel. Even though these
components are compatible with no contribution to the overall fit, it was decided to include them to
provide an unbiased estimate on the signal yields. The term biased in this context anticipates the fol-
lowing scenario: If the components are added back in a systematic study on the signal yields, such as
described in Sec. 9.1, the signal yields would be lower, and the resulting uncertainty would be unreason-
ably asymmetric towards lower yields. On the other hand, the fit fraction of theses small components
were expected to be this low, and there is good physical motivation to include them.

The fit stability is tested with a variant of bootstrap aggregation (bagging). In the conducted bagging
test [C4], 20 % of selected events are rejected randomly, and a fit is carried out on the remaining sample.
This is repeated 500 times and the resulting estimates of floating fit parameters are histogrammed. Bad
fits are sorted out automatically according to the status code or the quality of the covariance matrix
returned by the minimisation algorithm. If the fit is stable, the resulting histograms of estimates of
floating fit parameters should be asymptotically Gaussian. The mean of this Gaussian would be the best
estimate from the fit to data; and the width would be the estimated fit uncertainty times a correlation
factor of

p
0.2≈ 0.45, to account for the fraction of events that are thrown away by the bagging method.

The results of this test are shown in Fig. C.3 using the nominal signal fit model to produce the plots in
the top and lower left plots, and the reference fit with an additional combinatorial Λ+c D−s background
component to produce the lower right plot.

It is concluded that the inclusion of components with low fit fractions lead to stable fits with an un-
biased estimator for signal and reference yields. The reduction and “symmetrisation” of the systematic
uncertainty, mentioned in the beginning of this section, comes at a price of a larger statistical uncer-
tainty. That is because the additional Λ0

b → Λ+c K+π−K− and Λ0
b → Σc(2455)+D0K− components are

anticorrelated to the signal components and the partially reconstructed Λ0
b → Λ

+
c [D

0π0]D∗0 K− compo-
nent respectively, and therefore increase the statistical uncertainty on their yields.

1Cabibbo suppressed Ξ+c decays could be enhanced by the fact that some Cabibbo-allowed decays of the Ξ+c seem to be
forbidden [240].
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Figure C.3: Fit stability tested with a variant of bagging for the parameters (a) fΛ0
b→Λ

+
c K+π−K− (b) fΛ0

b→Σc (2455)+D0K− and (c)
fcomb. Λ+c D0 of the nominal signal channel mass fit. The parameter fcomb. Λ+c D0 of a dedicated fit to the reference channel is
shown in (d). The solid red lines mark the best estimate from a fit to the full sample, while the filled area corresponds to
the expected asymptotic standard deviation of the histogram, as described in the text.
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D Toy Monte Carlo studies for the signal-fit

D Toy Monte Carlo studies for the signal-fit
A Monte Carlo study has been set up in order to validate the method of correcting the uncertainty on
the efficiency corrected yield when using sWeights, Eq. (10.2). The fit result of the nominal 3D signal
fit, as described in Sec. 7.4, is used to sample toy datasets. These datasets are then input to the nominal
fitting procedure, where a first fit is executed to get sWeights and compute pulls for a cross-check of this
fit itself. These pulls are defined by

Pullfit =
Nsig,toy − Nsig,data

∆Nsig,toy
, (D.1)

with the best fit values of the signal yield on data Nsig,data, or Nsig,toy and the respective uncertainty
∆Nsig,toy determined by fits to the generated datasets.

In a subsequent fit, all shape-parameters – i.e. floating fit parameters which are not defined as
yield of a species d in the sP lot computation – are fixed to their best fit values. The uncertainty
∆Nsig,toy,fixed shapes on the signal yield from that fit are used to compute the pulls of the uncertainty
correction

Pullcorr =
Nsig,toy − Nsig,data

√

√

√

∑

i∈toy−dataset

�

sPsig(µ i,sig)
�2
+
�

∆N2
sig,toy −∆N2

sig,toy,fixed shapes

�

. (D.2)

The signal sWeights are denoted by sPsig(µ i,sig), where µ are the three invariant masses in which the fit
is carried out.

The result of this study is shown in Fig. D.1 and validates the method. In fact, only a minor bin-
migration is observed just left of Pull = +1, showing that both definitions of the uncertainty are almost
equivalent in this analysis.
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Figure D.1: Pulls from a toy Monte Carlo study of the nominal signal fit (left) and pulls from the uncertainty correction
when using sWeights (right). Both methods are statistically equivalent.
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