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Particle Filters for Nonlinear Data Assimilation: Environmental systems are
nonlinear, multiscale and non-separable. Mathematical models describing these systems
are typically high-dimensional and always have missing physics. Therefore, determining
the system’s state and its future development relies on in situ observations. Information
from models and observations are combined using data assimilation methods, which are
mainly developed for divergent systems as they arise from weather prediction. Applying
them also to convergent systems requires modifications of these methods. I investigated
the differences of data assimilation in convergent and divergent systems and found that
parameter estimation is essential in convergent systems. In this work, I enhanced the
particle filter, an ensemble-based data assimilation method. In contrast to other meth-
ods, the particle filter is able to handle nonlinear systems and to describe the resulting
non-Gaussian probability density functions. However, for parameter estimation modifi-
cations of the resampling, i.e. the renewal of the ensemble, are necessary. I developed a
resampling method that uses the weighted covariance information calculated from the
ensemble to generate new particles. This method correlates observed with unobserved
dimensions and can effectively estimate state and parameters in a convergent system.
To be applicable in high-dimensional systems, particle filters need localisation. The
introduced resampling allows localisation, which further increases the efficiency of the
filter.

Partikelfilter fiir nichtlineare Datenassimilation: Umweltsysteme sind nichtli-
near, vielskalig und nicht separierbar. Mathematische Modelle, die diese Systeme be-
schreiben, sind oft hochdimensional und besitzen nicht représentierte Physik. Die Be-
stimmung des Systemzustandes und dessen zukiinftige Entwicklung benotigt daher in-
situ-Messungen. Informationen aus Modellen und Beobachtungen werden mit Hilfe von
Datenassimilation kombiniert. Da die Methoden hierfiir aus der Wettervorhersage her-
vorgehen, werden sie hauptsichlich fiir divergente Systeme entwickelt. Fiir eine Anwen-
dung auf konvergente Systeme miissen die Methoden modifiziert werden. Ich habe die
Unterschiede von konvergenten und divergenten Systemen im Bezug auf Datenassimila-
tion untersucht, mit dem Ergebnis, dass Parameterschitzung in konvergenten Systemen
essenziell ist. In dieser Arbeit habe ich den Partikelfilter, eine ensemblebasierte Metho-
de fiir Datenassimilation, verbessert. Im Gegensatz zu anderen Methoden ist dieser
flir nichtlineare Systeme und die daraus resultierenden nicht-gaufischen Wahrschein-
lichkeitsverteilungen geeignet. Fiir eine erfolgreiche Parameterschétzung ist es jedoch
notwendig, das Resampling, also die Erneuerung des Ensembles, zu modifizieren. Fiir die
Parameterschitzung habe ich ein Resampling entwickelt, das die gewichtete, aus dem
Ensemble berechnete, Kovarianz verwendet, um neue Partikel zu erzeugen. Diese Me-
thode korreliert unbeobachtete mit beobachteten Dimensionen und kann so den Zustand
und die Parameter in einem konvergenten System effektiv schiatzen. Um Partikelfilter
in hochdimensionalen Systemen einsetzen zu kénnen, benétigten sie Lokalisierung. Das
eingefithrte Resampling macht eine Lokalisierung des Partikelfilters moglich, was die
Effizienz des Filters weiter erhoht.
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1. Introduction

The study of environmental systems differs from the usual systems studied in
the laboratory. In most natural science disciplines, the system is traditionally
studied recursively towards fundamental laws as building blocks. However, this
is not possible in environmental systems (Roth, 2017). “The ability to reduce
everything to simple fundamental laws does not imply the ability to start from
those laws and reconstruct the universe” (Anderson et al., 1972). Environmental
systems are nonlinear, multiscale and non-separable (Roth, 2017). Mathemati-
cal models describing them are typically high-dimensional and they always have
missing physics. This is either because there is no proper physical description or
the description is computationally too expensive, but in most cases it is a combi-
nation of both (Van Leeuwen et al., 2015). To learn about a system’s state and
to predict its development, models are combined with in situ observations of the
system.

Data assimilation combines the information of models with observations to de-
termine the best knowledge of the system’s state. All information is expressed
by probability density functions (pdfs) and joined using Bayes’ theorem. This re-
quires a good representation of the uncertainties of both models and observations
(Liw and Gupta, 2007; Liu et al., 2012). The development of data assimilation
methods is mainly driven in the field of atmospheric science. As the atmosphere
is a divergent system, the distance between two states will increase exponentially
in time, which is why data assimilation in meteorology focuses on state estimation
(Van Leeuwen et al., 2015).

Data assimilation is increasingly applied to convergent systems such as soil hy-
drology. This requires an adaptation of the methods used in atmospheric and
related sciences for hydrology (Liu and Gupta, 2007). In soil hydrology, not only
the state but also the parameters are typically ill-known. For this reason, it
is mandatory to simultaneously estimate both, state and parameters. The en-
semble Kalman filter (EnKF) (Evensen, 1994; Burgers et al., 1998) is an often
applied method for this purpose. It is based on the assumption of Gaussian
pdfs, which greatly simplifies the theory and implementation. Because of its sim-
plicity, it is probably the most applied data assimilation method in geosciences
(Van Leeuwen et al., 2015). Furthermore, including parameter estimation is op-
erationally simple, as the covariance calculated from the ensemble transfers infor-
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mation to parameter space. In hydrology, the EnKF is successfully used for state
and parameter estimation (e.g. Erdal et al., 2015; Shi et al., 2015; Bauser et al.,
2016).

Nonlinear systems violate the assumption of Gaussian pdfs (Harlim and Ma-
jda, 2010; DeChant and Moradkhani, 2012; Van Leeuwen et al., 2015) and the
performance of the EnKF worsens (Lei and Bickel, 2011; Liu et al., 2012; Zhang
et al., 2015). In soil hydrology, the dynamics of the Richards equation, which de-
scribes the unsaturated water flow in a porous medium, are generally dissipative
and the Gaussian assumption is usually appropriate. However, jumps at layer
boundaries, soliton-like fronts during strong infiltration and diverging potentials
for strong evaporation deform the pdf and lead to non-Gaussianity.

Particle filters do not rely on Gaussian pdfs. They directly approximate the
pdfs in Bayes’ theorem using a weighted ensemble and are therefore able to repre-
sent non-Gaussian pdfs. The weights are updated in the analysis with each new
observation. However, the particle filter is prone to filter degeneration, meaning
that one ensemble member accumulates all the weight over time and the ensemble
effectively collapses to this one member. Gordon et al. (1993) introduced resam-
pling to particle filters. The idea of resampling is that after the analysis, ensemble
members having large weights are replicated and ensemble members having small
weights are dropped. This reduces the risk of filter degeneracy.

In the case of parameter estimation, resampling is challenging as it relies on a
specified model error. On the one hand, parameters are often constant in time
and a specification of a model error would be misleading. On the other hand,
without an model error, resampled particles would stay identical and the filter
would degenerate. Therefore, it is necessary to perturb the ensemble members in
parameter space after resampling. Moradkhani et al. (2005a) suggested a random
perturbation in parameter space. Further development was done by Moradkhans
et al. (2012) and Vrugt et al. (2013), who used a Markov chain Monte Carlo
(MCMC) method to generate new particles. Abbaszadeh et al. (2018) extended
this method with an additional genetic algorithm. Even though the MCMC is
accurate, it needs additional model runs, which is computationally expensive.

In high-dimensional systems, resampling alone is not sufficient to prevent par-
ticle filters from degeneration. Another challenge in nonlinear data assimilation
with particle filters is the so-called curse of dimensionality (Bengtsson et al., 2008;
Bickel et al., 2008; Snyder et al., 2008): The necessary ensemble size to prevent
filter degeneracy increases exponentially with the dimension of the system. In
contrast to the particle filter, the EnKF has overcome this issue using localisation
(Houtekamer and Mitchell, 1998, 2001; Hamill et al., 2001). Localisation reduces
the high-dimensional data assimilation problem to local problems and cuts off
spurious long-range correlations, which occur due to a finite ensemble size. Sny-



der et al. (2015) mentions that localisation is the key idea that allows the EnKF to
perform well for different high-dimensional geophysical systems. They conclude
that also the particle filter needs localisation to be effective in high-dimensional
systems. However, the transfer of localisation to particle filters is challenging
(Bengtsson et al., 2003). Calculating local weights results in a local resampling
that introduces discontinuities (Fearnhead and Kiinsch, 2018). These disconti-
nuities cause strong gradients, which typically lead to unphysical behaviour in
geophysical models (Van Leeuwen et al., 2015). Recently proposed localisation
methods (e.g. Poterjoy, 2016; Penny and Miyoshi, 2016; Robert and Kinsch,
2017) for particle filters show good results in numerical simulations. However,
these methods lack the simplicity of the EnKF.

In this thesis, I investigated the challenges and difficulties of data assimilation in
divergent and convergent systems using the Lorenz-96 model (Lorenz, 1996) and
the Richards equation, respectively (Chapter 4). For state and parameter esti-
mation with particle filters, I developed a new resampling technique that uses the
weighted covariance matrix from the ensemble to generate new particles. Using
the covariance, the unobserved parameters of the new particles are correlated to
the observed state dimensions. The effectiveness of this method is demonstrated
with a synthetic case — an unsaturated soil consisting of two homogeneous layers —
by assimilating time domain reflectometry (TDR)-like measurements (Chapter 5).
An advantage of the covariance resampling is that it can be localised similar to the
EnKF. The localisation is tested successfully for the Lorenz-96 model (Chapter 6).
The analysis of divergent and convergent systems shows the fundamental need for
parameter estimation in convergent systems and the covariance resampling allows
an efficient state and parameter estimation with particle filters.






2. Models

Mathematical models are used as an abstract representation of a physical system.
They aim to describe the dynamics and the future development of system states.

The general representation of a physical system, as it used in this work, has
four components: state, dynamics, forcing and parameters. The state is a set of
quantities that characterise the system at one point in time such that future states
can be calculated from it. The dynamics propagates the state forward in time
and is often described by differential equations conditioned on the parameters
and the forcing. The parameters, condense the subscale physics of the system
and quantify the response of it to the described quantities. The forcing is the
embedding in the larger system. It drives the system and couples it with its
environment. It is usually an additional energy term or a boundary condition
and can vary in space and time.

In the following, two models used in this thesis will be introduced. Section 2.1
describes a model for water movement in an unsaturated porous medium and Sec-
tion 2.2 introduces the Lorenz-96 model that mimics some features of atmospheric
circulation.

2.1. Soil hydrology

This section gives a brief introduction to water movement in soils and follows
the description of Roth (2017). For a complete introdcution and an in-depth
treatment please refer to Hillel (2003) or Roth (2017).

Soil can be described as a porous medium. This implies that its volume can be
divided into a soil matrix and fully interconnected pores. Water movement inside
this medium can be described as a two-phase flow, as long as the pores are not
completely saturated with either water or air. In this work, the water movement
is considered to be in the degenerate multiphase regime, where the air has an
arbitrarily large mobility such that both phases are decoupled.
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2.1.1. State

The state of the system is described by the volumetric water content 6 (—) and
the matric potential ¥, (M L™ T?). The volumetric water content is an averaged
macroscopic quantity and is defined for a representative elementary volume. This
is the minimal averaging volume such that the averaged quantity is consistent and
does not change significantly with small changes of the volume. The (volumetric)
water content is the proportion of the total volume V (L*) occupied by water
Vi (L3):

v
=" 2.1
% (2.1)
The water is bound to the soil matrix through surface attraction and the matric
potential is the energy required to remove the water from the soil. The matric
potential is described as pressure difference between water and air v,,, = p,, — Pa
and can be expressed as an equivalent head of water, the matric head h,, (L):

_ Ym

o ;
Pwy

(2.2)

where p, (ML™?) is the density of water and g (L T™?) is the gravitational accel-
eration.

2.1.2. Dynamics

In the degenerate multiphase regime, the water flux j (L T™!) is described by the
Buckingham-Darcy law

Jj= _K*(Q) [Vwm - ng] ) (2'3)

with the hydraulic conductivity tensor K* (M L?T), which is dependent on 6.
The conductivity is usually assumed to be isotropic, such that it can be expressed
as a scalar K*.

This equation is only valid if the local equilibrium assumption holds, which
requires that the time scales of the microscopic processes are much shorter than
those of the macroscopic processes. Furthermore, the hydraulic conductivity has
to be independent of the speed of the macroscopic development of the state.

The conservation of mass of the water phase, assuming incompressibility (p,, =
const), is
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Inserting Eq. (2.4) into Eq. (2.3) results in the Richards equation
00—V - [K*(9) [V — pug]] (2.5)

Using the potential expressed per unit weight (Eq. (2.2)), Richards’ equation
Eq. (2.5) becomes

8,0 —V - [K(0) [Vhy, — 1] =0, (2.6)

where the isotropic hydraulic conductivity K (L T™') has the units of a velocity.

2.1.3. Parameters

To solve Richards’ equation (Eq. (2.6)), it is necessary to know the dependency
of the conductivity and the matric head on the water content. These relations
represent the averaged subscale physics and are called material properties.

Different parametrisations for the material properties exist. One of them is the
Mualem-van Genuchten parametrisation (Mualem, 1976; Van Genuchten, 1980).
It is an often applied parametrisation and will be used in this thesis in its simplified
form:

_1/n]2
m@:mwp—pﬁwwr”], (2.7)
1 /e 1-1/n
M@Zapﬂﬂ—q : (2.8)

with the saturation © (—)

(2.9)

The parameter 6, (—) is the saturated water content and 6, (—) is the residual
water content. The matric head h,, is scaled with the parameter o (L™') that
can be related to the inverse air entry value. The parameter K,, (LT™!) is the
saturated hydraulic conductivity, 7 (—) a tortuosity factor and n (—) is a shape
parameter that determines the sharpness of the air-entry. The parameter n can
also associated with the width of the pore size distribution. Equation (2.7) and
Eq. (2.8) describe the subscale physics with six parameters for a homogeneous
soil layer.

An illustration of Eq. (2.7) and Eq. (2.8) is given in Fig. 2.1. Both functions
are shown for sandy loam and loamy sand with parameters taken from Carsel
and Parrish (1988) (see Table 2.1). Approaching residual water content, the
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Table 2.1.: Mualem-van Genuchten parameters for loamy sand and sandy loam ( Carsel
and Parrish, 1988).

Parameter Loamy sand Sandy loam

0, -] 0.41 0.41
0, [] 0.057 0.065
7 [-] 0.5 0.5
n -] 2.28 1.89
a [m] —124 —7.5

K, [ms™'] 400-107° 1.23-107°

104 1 —— Sandy loam ] —— Sandy loam
] Loamy sand 102 i Loamy sand
‘téw E 10? -
= 1054 g 1
x =< 1
z § 10
> < 3
g e
o T 10-14
S 10794 =103
102 3
10~ . . 1073 . .
0.2 0.4 0.2 0.4
Water content 6 Water content 6

Figure 2.1.: Conductivity K and hydraulic head h,, as function of the water content
0 using the Mualem-van Genuchten parametrisation for sandy loam (blue) and loamy
sand (orange) using the parameters from Carsel and Parrish (1988) (see Table 2.1).
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conductivity goes to zero while the hydraulic head diverges. Towards saturation,
the conductivity approaches the saturated conductivity K, while the hydraulic
head converges to zero.

Combining Eq. (2.7) and Eq. (2.8) results in a conductivity function that de-
pends on the hydraulic head:

[1 = (ahu)" (1 + (b)) 0]

K(hy,) =K,
() (14 (ahy,)n] "™

(2.10)

2.1.4. Forcing

The system is embedded in a larger environment. It is coupled to the atmosphere
and the surrounding soil. In the mathematical model, the coupling is realised
with boundary conditions that can vary in space and time.

The two most commonly used are the Dirichlet and the Neumann boundary
condition. The Dirichlet boundary condition sets the value of the state (e.g.
matric head) at the interface, while the Neumann boundary condition specifies
the derivative of the same (e.g. flux). As a lower boundary, Dirichlet is often used
to represent a ground water table. As long as the soil is not a limiting factor, a
flux boundary is appropriate to describe infiltration and evaporation at the upper
boundary. However, if the infiltration is too strong, the soil cannot absorb the
water, which leads to ponding or surface runoff. If the system is near the residual
water content, an evaporation flux boundary leads to a divergent matric head and
the flux cannot be maintained by the soil. In both cases, a Dirichlet boundary
condition should be used.

2.1.5. Properties

Infiltrations can lead to sharp fronts. This can be seen in the water content form
of Richards’ equation:

8,0+ V(0)-VO—V - [DO)V =0, (2.11)
advection dispersion
with
_ dK _ dhin(9)
V() =" and D(0):= 5 ZK(6) . (2.12)

With the previously described nonlinear parametrisation, the advection term is
nonlinear. This will lead to the formation of shock fronts (a moving discontinuity
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in #), which are smoothed by the dispersion. This leads to a characteristic shape
(soliton).

While the water content is discontinuous across interfaces between different
materials, the hydraulic head is continuous. Therefore, Richards’ equation is
numerically solved in its potential form:

Chom) Db — V- [K (hn) [V — 1] = 0, (2.13)

with the soil water capacity C(h,,):

Clhn) - 00

Using the Mualem-van Genuchten parametrisation, this equation is a nonlinear,
degenerate elliptic-parabolic partial differential equation (List and Radu, 2016).
From their mathematical perspective, the equation transitions from a parabolic
to an elliptic partial differential equation for water contents close to the saturated
water content. Because of this and the highly nonlinear material properties, it
is difficult to solve equation Eq. (2.13) efficiently. A recent review (Farthing
and Ogden, 2017) summarises the challenges and numerical methods for solving
Richards’ equation.

In this work, MuPhi (Ippisch et al., 2006), a cell-centred finite-volume scheme
with full-upwinding in space and an implicit Euler scheme in time that linearises
the equation with an inexact Newton method with line search, was used to nu-
merically solve Richards’ equation.

2.2. Lorenz-96 model

The Lorenz-96 model (Lorenz, 1996) is an artificial model and cannot be derived
from any dynamic equation (Lorenz, 2005). It can be interpreted as an unspec-
ified scalar quantity x in a one dimensional atmosphere on a latitude circle on
a linear lattice and was defined by Lorenz (1996) in the course of his study on
predictability. The governing equation is a set of coupled ordinary differential
equations:

dZEZ‘
dt

= (IH—I — xi_g)xi_l —z; +F with 7€ [1, 2, ey J] (215)

with constant forcing F', periodic boundaries (z;,.; = x1) and dimension J. Even
though it is not derived from physical principles, it shares certain properties of
large atmospheric models (Lorenz and Emanuel, 1998). The quadratic terms

10
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Dimension

Time

Figure 2.2.: State as a function of time of the 40-dimensional Lorenz-96 model for
F = 8. The system is started on the attractor and shows irregular waves travelling in
the direction opposite to the counting of the cells.

represent advection and conserve the total energy, while the linear term decreases
the total energy comparable to dissipation. The constant F' addresses external
forcing and prevents the system’s total energy from decaying to zero.

Lorenz (1996) scales the coefficients of the quadratic and linear terms to unity
and assumes that this scaling corresponds to a time unit equal to 5 days. The
system’s behaviour is fully described by the forcing F' and the total dimension J.
Following the analysis of Lorenz and Emanuel (1998), the properties of the often
used 40-dimensional case will be discussed. The system has three regimes:

e [ < 0.894: the solution decays to F
e (0.894 < F' < 4: the system becomes periodic with regular waves
e [ > 4: the system becomes chaotic with irregular waves (see Fig. 2.2)

The Lyapunov exponent quantifies the local speed of separation of two infinites-
imal close trajectories. Analysing the averaged leading Lyapunov exponent for
I = 8 results in a doubling time of 0.42 units or 2.1 days. This doubling time
is similar to the one observed for large atmospheric models (cf. Lorenz, 1982;
Simmons et al., 1995; Simmons and Hollingsworth, 2002). However, the growth
rate in a small interval can be considerably larger or smaller.

The Lorenz-96 model is a popular toy model to test new algorithms in data
assimilation (e.g. Fertig et al., 2007; Li et al., 2009; Anderson, 2012) because
it has similar properties as large-scale atmospheric models but is computational
much more efficient.

11






3. Data assimilation

Parts of Section 3.3.3 are based on Berg et al. (2018).

Mathematical models are used to describe physical systems (see Chapter 2). Ob-
servations are another source of information. Data assimilation is used to combine
these two sources of information to determine the best knowledge of the state.
Observation and model information are incorporated into the current state to
have an optimal estimate of the state of the system.

In data assimilation, information is treated as probability density function
(pdf), therefore the quantification of uncertainty is an essential part (Liu and
Gupta, 2007; Liu et al., 2012). To incorporate an observation as additional in-
formation, it is necessary to combine the pdfs of the observation and the model.
This is done using Bayes’ theorem, which is the fundamental basis of all data
assimilation methods:

P(d})P(w)

P(yld) = =5

(3.1)
In Bayes’ theorem, the prior P(t)), which contains all information of the state 1
before the observation d, is multiplied with the observation pdf P(d|i) to deter-
mine the posterior P(t|d). This product is divided by the marginal distribution
of the observation P(d), which is the pdf of the observation before the actual
measurement is made and not the pdf of the observation itself (Van Leeuwen
et al., 2015). Using the joint probability P (1, d), the marginal of the observation
can be written as:

P(d) = [ dpP.d) = [dpP(dy)P@). (3:2)

Thus, P(d) is a normalisation constant such that the posterior integrates to one.
This factor is hard to calculate directly and is mostly determined by normalisa-
tion.

The development of data assimilation methods is mainly driven in the area of
weather forecasts (Van Leeuwen et al., 2015). The methods can be separated into
two main categories: variational methods and sequential methods. The varia-
tional methods calculate the highest mode, i.e. the most probable value, of the

13
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posterior without an uncertainty estimate. The uncertainty can only be estimated
under high computational cost.

Two main variational data assimilation methods exist: 3D-Var and 4D-Var.
While 3D-Var uses the marginal distribution for every observation, 4D-Var calcu-
lates the posterior over a time window including several observations. Both meth-
ods assume Gaussian distributed prior and observation pdfs and are sophisticated
to implement. Variational data assimilation methods are used in major numeri-
cal weather prediction (NWP) centres (Buehner et al., 2010a; Lorenc, 2011). For
more details about variational data assimilation please refer to e.g. Daley (1993)
and Kalnay (2003).

Sequential data assimilation or filter methods, are primarily ensemble based.
The two mainly used methods are the ensemble Kalman filter (EnKF) (Evensen,
1994; Burgers et al., 1998) and the particle filter, including variations of both.
They are sequential Monte Carlo methods and approximate the pdfs in Bayes’
theorem using an ensemble of states. In the case of particle filters, the ensemble
members are also called particles. The EnKF relies on the assumption of Gaussian
pdfs, which makes it easy to implement. Because of its simplicity, it is probably
the most applied data assimilation method in geosciences (Van Leeuwen et al.,
2015). It is used in meteorology (Houtekamer and Zhang, 2016) and is also applied
in NWP centres (Buehner et al., 2010b; Miyoshi et al., 2010).

In nonlinear systems, the Gaussian assumption is violated (Harlim and Majda,
2010; DeChant and Moradkhani, 2012; Van Leeuwen et al., 2015) and the perfor-
mance of the EnKF worsens (Lei and Bickel, 2011; Liu et al., 2012; Zhang et al.,
2015). This requires to overcome the limitation of Gaussian distributions when
using EnKF,3D-Var or 4D-Var.

Particle filters instead do not rely on Gaussian pdfs. They directly approximate
the pdfs and can therefore use non-Gaussian functions. However, so far they are
only efficient for low-dimensional systems, An application to high-dimensional
systems is still challenging.

This chapter introduces the sequential ensemble-based data assimilation meth-
ods: EnKF and particle filter. Section 3.1 starts with the basis of data assimilation
methods, the recursive Bayes’ theorem, and defines a sequential filter. Section 3.2
introduces the EnKF that is based on the assumption of Gaussian pdfs. Further-
more, a brief overview in the two extensions, localisation and inflation, is given.
Section 3.3 follows with the general approach of importance sampling, which leads
to the particle filter. Section 3.4 introduces the concept of state augmentation
that allows state and parameter estimation using data assimilation methods. This
chapter is closed with a brief description of the data assimilation software devel-
oped and used in this thesis (Section 3.5).
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3.1. Recursive Bayesian estimation

3.1. Recursive Bayesian estimation

This section describes the recursive Bayesian estimation and the assumptions
leading to a sequential filter. Suppose that the state 1 with dimension Ny, is
propagated with a generic model equation:

Pt = f(p*) + B, (3-3)

where f(-) is the deterministic part of the mathematical model, B* is a stochas-
tic model error and k£ denotes a discrete time step. Furthermore, assume a set
of observations d with dimension N4 at discrete times. The sequence of these
observations is defined as:

d** .= (d",d* ...,d"" d". (3.4)

The corresponding sequence of states, including the initial state 1° at time zero,
is also given as:

¢Ok = <¢07 ’lpl? AR 7¢k717 "pk) ° (3'5>

The discrete time can be related to a continuous time t,, where £ is the mea-
surement time of observation d®. A continuous time also results in a continuous
model equation.

Bayes’ theorem (Eq. (3.1)) is used to combine the information from observations
with the information of the model. Data assimilation aims to find the posterior
distribution P(¢°*|d"*) in Bayes’ theorem. With the previous defined set of
observations and states, the posterior is given by:

P(d™ g™ P($™)
P(d"") '

Py*t|d™) = (36)

In a stochastic point of view, the probability is propagated forward in time
using a transition density

™) = P ) Py ). (37)

It is assumed that the development of the state is a Markov process, i.e. all
information for the future state is contained in the present state without additional
information from the past:

Py g™ ) = P(y g™ ). (3.8)
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3. Data assimilation

Nonlinear model, Eq. (3.3)

—_

Mode at ¢, Propagated' mode at t;

Figure 3.1.: Illustration of the problem of strong-constrained 4D-Var for nonlinear
models. The mode calculated at time t; will not be the correct mode at observation
time ;. Modified from Van Leeuwen et al. (2015).

Using this, Eq. (3.7) becomes
P(p™) = P(y" 4" ) P(4™ 1), (3.9)

which is a recursive formula that ends for the initial prior distribution P(24°).
For the further derivation it is assumed that the observations are independent
and only depend on the state at the current time. With this it is possible to write

P(d™|y") = P(dMy*) P(d™ g™ ) (3.10)
and
P(d"*) = P(d")P(d"* ). (3.11)
Using Eq. (3.9), Eq. (3.10) and Eq. (3.11), the posterior Eq. (3.6) becomes

d*|4") P(y" ")
P(d")

P(¢O:k|d1:k) — P( P(¢O:k_1|d1:k_1) ’ (312)

which defines a recursive formula for Bayes’ theorem.

At this point it is necessary to differentiate between smoothers and filters. A
smoother calculates the marginal distribution P(v'|d"*), a state in the past using
observations up to the actual observation d*. This is done, e.g. for 4D-Var, which
calculates the mode of the distribution at time [. For nonlinear systems, the mode
at time [ will not be the propagated mode at time k (Van Leeuwen et al., 2015),
which is illustrated in Fig. 3.1.

In contrast, a filter calculates the current state using the current observation
P(3p*|d""). This allows to assimilate new observations sequentially. The most
prominent filters are the (ensemble) Kalman filter and the particle filter.
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3.2. Ensemble Kalman filter

To calculate the distribution P(p*|d"*), it is necessary to integrate over all
past states such that that Eq. (3.12) only depends on 1"

k
P(¢k|dlk) — d "(,b /d¢k 1P Qb |,¢k 1) ( k—l|dl:k—l). (313)

The filter can be separated into a forecast (prediction) and an analysis (update)
step. The forecast propagates the pdf forward in time to the next observation:

P(U)k‘dl:kfl) — /dwkflp(qjjk‘wkfl)P(,lpkfl‘dlzkfl) ) (314)

The resulting pdf is then updated in the analysis step with the new observation
using

P(d*[4p") P(yp*|d™ )

P(wk‘dlzk) = P(dk) )

(3.15)

which results in the posterior pdf. The forecast and analysis steps are repeated
with every new observation.

This section derived the recursive Bayes’ theorem (Eq. (3.12)) and the se-
quential filter equation (Eq. (3.13)). The filter equation was derived assuming
a Markov process for the state development and observations only dependent on
the state at its measurement time. Without these assumptions, it is still possi-
ble to derive a recursive form of Bayes’ theorem (see Appendix A.1). However,
without the Markov assumption, it is impossible to define a sequential update, as
it would be necessary to start the calculations form the beginning with each new
observation ( Vetra-Carvalho et al., 2018).

3.2. Ensemble Kalman filter

The resulting integrals (Eq. (3.14) and Eq. (3.2)) are hard to calculate directly
without using simplifying assumptions. Before discussing the general approach
with Monte Carlo methods, it is assumed that all pdfs are Gaussian distributed.
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3. Data assimilation

With this assumption the analysis Eq. (3.15) becomes

P(H]d™) ocexp [~ (d — H(H) R (@ — ()]

P(d*|y")

e [~ (h — bR (4 — ) (3.16)
P|di+)

ocexp [t —wh) R (8 - )] (3.17)

with the observation error covariance R, the error covariance matrix P and the
typically nonlinear observation operator H(-), which maps the state from state
space to observation space H : R — RMe. The indices ‘a’ and ‘f’ denote the
analysis and the forecast, respectively.

The analysis state 1, is derived by completing the squares such that the pos-
terior is a Gaussian again. This constrains the observation operator to be linear.
The analysis state becomes:

Pr = of + K* (d" — Hyy) (3.18)
with the Kalman gain
K" = PFHT(HP!HT + R*) !, (3.19)
The posterior covariance is given by
PF = (1 - K'H)P}. (3.20)
For a linear model
PF = MKkl 4 gk (3.21)

where M is a linear map and 8 o< N'(0, Q) a stochastic model error, the forecast
of the error covariance Eq. (3.14) to the next observation is

Pf = M"'P*1(M" 1T + QF. (3.22)

This is the original Kalman filter (Kalman, 1960).

For nonlinear models, however, solving the high-dimensional integral Eq. (3.14)
in a closed form is only possible for some special cases. Therefore, the integral
is generally solved numerically using Monte Carlo methods. In the case of the

18



3.2. Ensemble Kalman filter

Kalman filter, the ensemble Kalman filter (EnKF') was introduced ( Evensen, 1994;
Burgers et al., 1998), which approximates the Gaussian distributions by an en-
semble of states. Each ensemble member is then propagated forward in time with
the nonlinear model Eq. (3.3). The forecast error covariance P§ is then given by
the propagated ensemble:

1 N

Pf= 7 X0k~ D). (3.23)

with the ensemble size N, the forecast state of the i-th ensemble member v,/)f,i and
the mean

_ 1 N
T 324
=0

In the analysis, the Kalman gain Eq. (3.19) is applied to every ensemble mem-
ber. However, it is necessary to add a realisation of the observation error to the
observation for each ensemble member. This changes Eq. (3.18) to

PE, =y, + K* (dF — Hyf, + €f)  with € o V(0,RF) (3.25)

such that the update of the error covariance (Eq. (3.20)) is still correct (Burgers
et al., 1998). For sequential data assimilation, the process of forecast and analysis
is iterated for every new observation. This cycle is visualised in Fig. 3.2 for the
EnKF.

In high-dimensional systems only a small ensemble size O(100) can be afforded,
which leads to rank deficient matrices (Van Leeuwen et al., 2015; Houtekamer
and Zhang, 2016). To counteract this and issues caused by non Gaussian dis-
tributions, methods like inflation (e.g. Anderson and Anderson, 1999; Bauser
et al., 2018; Gharamti, 2018), localisation (Houtekamer and Mitchell, 1998, 2001;
Hamill et al., 2001) and damping (Franssen and Kinzelbach, 2008; Wu and Mar-
gulis, 2011) are introduced to the EnKF.

3.2.1. Localisation

The EnKF approximates the covariance matrix by an ensemble (Eq. (3.23)). In
high-dimensional systems, the ensemble size N is generally much smaller than the
system dimension NV, and often also much smaller than the number of observa-
tions Ng. However, the ensemble can only provide N — 1 directions in phase space
for the calculation of the covariance matrix, which leads to a covariance matrix
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3. Data assimilation

Forecast of the previous analysis Calculate Kalman gain:
to the next observation:

_ K — PFHT [HPFHT + R*] '
Y= fph) +8Y rHT [HP; )

Update of the covariance matrix: Update ensemble:
N

P = 3 (vt ) (vt o) [| 9 v et

A

i=0
Figure 3.2.: Illustration of the forecast and analysis cycle of the ensemble Kalman
filter. The forecast (Eq. (3.14)) of the error covariance is realised by propagating the
ensemble with the nonlinear model equation (Eq. (3.3)) and then calculating the prop-
agated error covariance using the ensemble (Eq. (3.23)). In the analysis (Eq. (3.15)),
the ensemble is updated using the Kalman gain (Eq. (3.19)) and the newest observation
d*. Modified from Welch and Bishop (2006).

that does not have full rank. This issue is called the rank (deficiency) problem
(Lorenc, 2003; Houtekamer and Zhang, 2016).

In physical systems, the correlation between two points in space generally de-
creases with increasing distance. However, due to the rank problem, the noise
of the covariance estimates becomes larger than the actual signal for increasing
distances (Hamill et al., 2001), which leads to spurious long-range correlations.

This problem is addressed using localisation. Localisation reduces the high-
dimensional data assimilation problem to several local problems. Each of these
local problems has N — 1 local directions of the ensemble available. This is done
by introducing a localisation matrix p that reduces the covariance for increasing
distance. The localisation matrix is multiplied with the error covariance matrix

Pf:

P} — poPf, (3.26)
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3.2. Ensemble Kalman filter

where o is the entrywise product (Hadamard product). This changes the Kalman
gain (Eq. (3.19)) to

-1

K* = (po PH)HT [H(po PHHT + R . (3.27)

An often used localisation matrix to relate the distance |z| = |i — j| between
two points (7, ) with a length scale ¢ is the fifth-order polynomial Gaspari and
Cohn (Gaspari and Cohn, 1999) function

—2d® + a0t + 2a® - 2a® + 1 0<a<l
o) ={ e~ dat £ 20+ B sk a—dat 1<as2 (29)
0 else

with a = |z|/c. This function approximates a Gaussian with half-width ¢ and has
a compact support i.e. becomes 0 for |z| > 2¢. For high-dimensional applications,
localisation is an essential component of the EnKF (Hamill et al., 2001; Anderson,
2012) to provide efficient data assimilation with feasible ensemble sizes.

3.2.2. Inflation

Localisation alone cannot compensate the effects of a finite ensemble size com-
pletely. This leads to underestimated error covariances (van Leeuwen, 1999). Un-
represented model errors in the forecast ( Whitaker and Hamill, 2012; Houtekamer
and Zhang, 2016) and the propagation of the ensemble with a nonlinear model
equation (Eq. (3.3)) increase this effect. In nonlinear systems, the Gaussian as-
sumption is violated (Harlim and Majda, 2010; DeChant and Moradkhani, 2012),
which leads to biases that result in an underestimated error covariance (Lei and
Bickel, 2011). If the ensemble spread becomes too small, the Kalman filter de-
generates. This means that new observations no longer lead to a change in the
states (Kalman gain K = 0), which causes data assimilation to fail.

Inflation methods focus on increasing the ensemble spread again and alleviate
the problem. They can be separated into additive inflation, multiplicative infla-
tion and relaxation methods. A summary of these methods can be found in the
EnKF review of Houtekamer and Zhang (2016). Newest developments focus on
adaptive inflation methods (Bauser et al., 2018; Gharamti, 2018).
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3. Data assimilation

3.3. Particle filter

3.3.1. Importance Sampling

This subsection discusses the importance sampling and follows Van Leeuwen et al.
(2015). The Gaussian assumption does not hold in nonlinear systems (Harlim
and Majda, 2010; Moradkhani et al., 2012) and the performance of the EnKF
worsens (Lei and Bickel, 2011; Liu et al., 2012; Zhang et al., 2015). Without
loss of generality, a scalar random variable z is used in the following, to simplify
the notation. Instead of assuming Gaussian distributions, the integrals can be
approximated with importance sampling. The idea of importance sampling is to
calculate the variable of interest by drawing samples of the distribution P(z)

— / drf(2)P(z). (3.29)

If it is possible to sample directly from the distribution P(x), the distribution can
be approximated by N samples z; ~ P(x)

| N
NZ T —x;), (3.30)

with the Dirac delta distribution §(z — z;). Then the expectation value can be
calculated with

F@h =3 [ def@)ste—a) = 3 3 f(w). (331)

However, drawing samples from an arbitrary distribution can be difficult and
inefficient. Therefore, it can be preferable to draw samples from a proposal dis-
tribution II(z) from which it is easy to draw, e.g. a Gaussian or a uniform
distribution. The expectation value then reads

_ / dx f(x)ll_zgx)ﬂ(m), (3.32)

x)

which is actually a multiplication by one and does not change the mean f(x).
Instead using P(z), samples z; are drawn from the proposal II(x)

N
> 0z — 1), (3.33)

=1

1
N

22



3.3. Particle filter

This leads to:

/ dz f(z nég (z — ;) (3.34)
f

(@)
(ml) (3.35)

such that the distribution P(x) is approximated by a weighted ensemble

T) ~ Zé(:p

with weights w; = HE%; The samples x; are drawn from II(z). It is important that

the support of the proposal is larger than the support of the original distribution,
otherwise a division by zero would occur.

s

’ i - ij 5z — ), (3.36)

3.3.2. Standard particle filter

Particle filters are based on importance sampling. The posterior is approximated
by a weighted ensemble. The ensemble members are also called particles. The
posterior at the previous time step is given as a weighted ensemble

P(¢k|d1k 1 Zwk 15 k—1 wk 1). (337>

Inserting this equation in the filter equation (Eq. (3.13)) results in:
k| gLk (de dipt k—1 k—1 k-1
Pl = PSED S [t Pt o —ut ) 39)

=3 u fl <d(c’l2”)) (). (330

The ensemble is propagated forward in time using the nonlinear model Eq. (3.3).
The transition density then becomes

Pyt yi") = o(4* — ), (3.40)

where wf is the propagated particle including the stochastic model error. Using
this equation and reformulating it such that the posterior P(¢"|d"*) is repre-
sented as a weighted ensemble

P(y*d"™") = iw%(d)k — ;) (3.41)
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3. Data assimilation

the weights are then updated with

P(d* |y}
wf = wf*li( |}f’2> . (3.42)
p(d”)
It is difficult to calculate the pdf P(d¥) directly. However, since the sum of all
weights has to be one, the pdf can be obtained in a normalisation process

N N
Suwb=1 = P(dY) =Y wi Pyl (3.43)
i=0 i=0

Particle filters directly represent the posterior by a weighted ensemble, which
allows to have arbitrarily distributions. However, they tend to filter degeneracy,
which is also referred to as filter impoverishment. The variance of the weights in-
creases and after several analysis steps, one particle gets all statistical information
as its weight becomes increasingly large. The remaining particles only get a small
weight such that the ensemble effectively collapses to this one particle. Because
of this, the filter does not react to new observations and follows the particle with
the large weight. This situation is illustrated in Fig. 3.3.

An estimate for the number of significant ensemble members is given by the
effective sample size (Kong et al., 1994; Doucet, 1998):

1
N 2
>im1 Wi

For example, if one particle accumulates all the weight N.g = 1, the ensemble is
effectively described only by this particle.

Neg = (3.44)

3.3.3. Resampling

The problem of filter degeneration caused a rare usage of particle filters in data
assimilation (van Leeuwen, 2009). Gordon et al. (1993) introduced resampling
to particle filters, a technique that reduces the variance in the weights and has
the potential to prevent filter degeneracy. The idea of resampling is that after
the analysis, particles with large weights are replicated and particles with small
weights are dropped. This helps that the regions with high weighted particles are
represented better by the ensemble, which alleviates the degeneracy of the filter.
The forecast and analysis cycle for a particle filter with resampling is illustrated
in Fig. 3.4.

There are many different resampling algorithms (see van Leeuwen (2009) for
a summary). In the following, two techniques will be presented: the residual
resampling and the stochastic universal resampling.
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forecast  analysis  forecast  analysis

h—

te—1 78 Lrt1

Figure 3.3.: Illustration of a particle filter with filter degeneration. The weights are
shown as green dots. The weight of a particle corresponds to the size of the dot. At time
ti_1 all particles have the same weight. The ensemble is propagated forward in time
from t;_1 to ti. The particles are weighted (Eq. (3.42)) according to the observation
pdf P(d¥|4¥) (red). In this example, three particles get a significant weight and four
particles get a negligible weight. The ensemble is propagated to the next observation
time tx11. After the weighting at t;4; one particle has a large weight and the effective
sample size (Eq. (3.44)) is Neg ~ 1. The filter is degenerated. Modified from wvan
Leeuwen (2009).

Residual resampling The residual resampling was introduced by Liu and Chen
(1998). In this method all weights are multiplied with the ensemble size N.
The floor of the resulting numbers z; = [ Nw;| gives the number of copies of a
particle . Then these integer parts are subtracted from Nw;. The necessary
remaining particles to have an ensemble size of N again are drawn randomly with
probabilities proportional to the residual weights

After the resampling step, all weights are set to N1,

Stochastic universal resampling The stochastic universal resampling (Kita-
gawa, 1996) can be summarised as follows (see also Fig. 3.5): All weights are
aligned on an interval [0,1]. A random number in the interval [0, N~!] is drawn
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forecast  analysis resampling forecast analysis

tr—1 12 ty, Tpt1

Figure 3.4.: Illustration of a particle filter with resampling. The weights are shown
as green dots. The weight of a particle corresponds to the size of the dot. At time t;_1
all particles have the same weight. The ensemble is propagated forward in time from
tp—1 to tx. The particles are weighted (Eq. (3.42)) according to the observation pdf
P(d*|3p¥) (red). In this example, three particles get a large weight and four particles
get a negligible weight. The resampling duplicates particles with large weight and drops
the other particles. After the resampling, all particles are equal weighted again. The
identical particles become distinguishable during the next forecast due to the stochastic
model error (Eq. (3.3)). Modified from van Leeuwen (2009).

w1 Wo w3 WN -1 wWN
Al e
< > | ¢ > ceed | &=———>
0« > 1

Figure 3.5.: Illustration of the stochastic universal resampling process. A random
number z is drawn from a uniform distribution in the interval [0, N~!]. The endpoint
of this number indicates the first particle. Then, N~! is added (N — 1)-times to this
random number, where every endpoint is a particle of the new ensemble. In this il-
lustration, particle one is chosen once, particle two is not chosen and particle three is
chosen twice. This way some particles are replicated and other particles are dropped.
If the model does not have a stochastic model error, it is necessary to perturb the new
particles, otherwise they would be identical and the filter would degenerate.
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3.3. Particle filter

from a uniform distribution. This number points to the first particle of the new
ensemble selected by the corresponding weight. Then, N~! is added (N —1)-times
to x. Each endpoint selects the corresponding particle for the new ensemble. This
way, some particles get duplicated and some particles are dropped. With this ap-
proach, particles with a weight smaller than N~! can be chosen maximally once,
whereas a weight larger than N1 guarantees that the particle is at least chosen
once. If all particles have equal weights, no particle is dropped. The result is a
new set of NV particles. After the resampling step, all weights are set to N~!. The
stochastic universal resampling has the lowest sampling noise compared to other
resampling methods (van Leeuwen, 2009).

3.3.4. Optimal proposal

Similar to the importance sampling, a proposal distribution II can be introduced
in Eq. (3.39):

>y Tt L ) (3.46)

The difference is now, that a sample wf is now generated from the proposal

(i, d") = o(y" — 7). (3.47)

This can be a direct sample from the proposal or can be used to propagate the
ensemble with a different model equation (van Leeuwen, 2010). Representing the
posterior as a weighted ensemble, the weight update Eq. (3.42) changes to:

O G I (o B
opdh) @i dh)

(3.48)

The weights now have an additional term that includes the proposal and the
original transition density.

With this extension, an optimal proposal can be defined that minimises the
variance in the weights (Doucet, 1998; Doucet et al., 2000)

("™, d*) = P(p*lyp ", d") . (3.49)

The optimal proposal can reduce the necessary ensemble size significantly. How-
ever, sampling from the optimal proposal is typically not possible since the pro-
posal distribution is generally unknown because of the conditioning on the future
observation.
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3.3.5. Curse of Dimensionality

Resampling alleviates filter degeneration of the standard particle. However, re-
sampling is not sufficient to avoid filter degeneration in high-dimensional systems.
Based on the work of Bengtsson et al. (2008) and Bickel et al. (2008), Snyder
et al. (2008) showed that the necessary ensemble size N to avoid filter degenera-
tion increases exponentially with the variance of the logarithmic weights 72. This
variance 72 can be regarded as an effective dimension that depends not only on
the state but also on the prior and the observations (Snyder et al., 2008). The so-
called curse of dimensionality is a challenging issue for nonlinear data assimilation
in high-dimensional systems with particle filters.

Van Leeuwen et al. (2015) show in an illustrative example that an increasing
observation dimension results in filter degeneration. This argumentation will be
shown in the following:

Assume a set of N4 observations and two particles at one particular time step.
One particle is always 0.10 away from the observations and the other particle is
always 0.20 away, where o is the standard deviation of each Gaussian distributed
observation. The weights of the particles are calculated using Eq. (3.42):

(d —H(tp,) "R (d — H(3),)

= Aexp[—0.005Ng4] (3.50)

1
w; = Aexp [—2

for the first particle and

(d — H(th,) R"(d — H(%)} — Aexp[-0.02Ng  (3.51)

1
w; = Aexp {—2

for the second particle. The ratio of the weights is

2 _ exp [~0.015N,] . (3.52)

w1

For 1000 independent observations, the ratio is

2 _ expl-15]~3-1077. (3.53)
w1
In this case, the first particle has a negligible weight compared to the second one,
even though both particles are close to the observation. This example shows that
the number of observations is crucial for filter degeneration.

Different methods based on the freedom of the proposal density (Section 3.3.4)
were suggested to lift the curse of dimensionality, e.g. the implicit particle filter
(Chorin and Tu, 2009; Morzfeld et al., 2012; Chorin and Morzfeld, 2013) and the
equal weights particle filter (van Leeuwen, 2010, 2011; van Leeuwen and Ades,

28



3.4. State and parameter estimation

2013). Snyder et al. (2015) showed that the optimal proposal can increase the
efficiency significantly but still needs an exponentially increasing ensemble size
to avoid filter degeneracy. Only the equal weights filter, further studied by Ades
and van Leeuwen (2013, 2015a,b), is partly not covered by the study because the
proposal becomes sharper with increasing ensemble size (Snyder et al., 2015).

Localisation for particle filters is another approach to lift the curse of dimen-
sionality. Metref et al. (2014) and Snyder et al. (2015) argued that localisation
(Section 3.2.1) causes the EnKF to be successful in high-dimensional systems
with ensemble size O(100). They conclude that localisation is also necessary for
high-dimensional particle filtering to limit the influence of the observations and
locally update the ensemble. The curse of dimensionality and particle filters with
localisation will be revisited in Chapter 6.

3.4. State and parameter estimation

The state and parameter estimation is realised by state augmentation. The orig-
inal state 1) is extended with the parameters p to an augmented state

u:<¢> , (3.54)

p

The model equation (Eq. (3.3)) changes to

o ( ¥ ) _ ( fo (¥"7) + B3 ) , (3.55)

p o (PFY) + B

with the deterministic models fy, and fp, as well as, the stochastic model errors
B, and B, for state and parameters, respectively. Parameters are often constant
in time f, (pk_l) = pk-1.

With the augmented state, parameter estimation is straightforward for the
EnKF. The Kalman gain (Eq. (3.19)) transfers the information from observed to
unobserved dimensions using the error covariance (Eq. (3.23)). The augmented
state can also be used to incorporate nonlinear observation operators to the EnKF'.

For particle filters, however, the transfer from state to combined state and
parameter estimation is challenging. Since parameters are often constant in time,
a specification of a model error 8, would be misleading. However, without a
model error, the variety of the ensemble decreases with every resampling since
the resampled particles are identical copies of high weighted particles and will
stay identical during the forward propagation. This leads to filter degeneration
after a few analysis steps.
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Parameter estimation for particle filters will be revisited in Chapter 5 with the
description of a new resampling method.

3.5. Software — KnoFu

During the thesis I developed the data assimilation software KnoFu (Knowledge
Fusion). It is designed to provide a flexible framework for the development of
new ideas in the context of data assimilation for the purpose of knowledge fu-
sion. Knowledge fusion is the idea of a consistent aggregation of all information
pertinent to some observed reality (Bauser et al., 2016).

One part of the flexibility is the augmented state (Section 3.4). The concept of
the augmented state is directly mapped to the software, which allows state and
parameter estimation. It also gives the ability to extend the augmented state to
estimate other model components as well.

The software contains different ordinary differential equation (ODE) solvers,
for instance a fourth order Runge-Kutta method. This has the advantage that
new ODE models can be easily defined. Different ODE models are part of the
package, including the Lorenz-63 model (Lorenz, 1963) and the Lorenz-96 model
(Section 2.2), which are often used toy models to test data assimilation methods.

To perform data assimilation for soil hydrology, KnoFu is coupled to MuPhi
(Ippisch et al., 2006) in cooperation with Jaumann (2018), and DORIE (DUNE-
Operated Richards equation solving Environment) (Riedel et al., 2018), which is
based on DUNE (Distributed and Unified Numerics Environment) (Blatt et al.,
2016). The coupling of DORIE was done by L. Riedel.

For data assimilation, KnoFu provides the ensemble Kalman filter (EnKF),
the ensemble square root filter (EnSRF) (Tippett et al., 2003) and the standard
particle filter. The EnKF and the EnSRF, including localisation, damping and
several inflation methods were implemented to the framework by Bauser (2018).
The particle filter contains different resampling methods including the covariance
resampling and the localised version of the covariance resampling.

KnoFu is part of an ongoing PhD-project by L. Riedel. So far, it was used
for two papers (Bauser et al., 2018; Berg et al., 2018), a finished PhD project
(Bauser, 2018), several finished master theses, a bachelor thesis and two project
practicals (C. Pixius, M. Weiler). Table 3.1 lists the titles and authors of the
bachelor and master theses.

The results in Chapter 4, Chapter 5 and Chapter 6 are all produced using this
software.
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3.5. Software — KnoFu

Table 3.1.: Finished master (MSc) and bachelor (BSc) theses using KnoFu.

Author

Title, Year

Type

K. Mosny

F. Oraschewski

L. Riedel

F'. Riexinger

M. Walch

Enhancing the Particle Filter by Markov-Chain-
Monte-Carlo methods — A performance assessment,
2017

Estimating effective soil hydraulic parameters for
two-dimensional heterogeneous media using the En-
semble Kalman Filter, 2018

Advancing Data Assimilation of Soil Water Flow
with a DG Based Richards Solver - Merging the
KnoFu and DORIE Software Packages, 2017

Food Webs: Augmented State Estimation and Model
Enhancement using the Ensemble Kalman Filter,
2017

A Study On Stochastic Nonlinear Hyperbolic Partial
Differential Equations with Bayesian Filtering Meth-
ods, 2017

MSc

BSc

MSc

MSc

MSec

31






4. Convergent and divergent
systems

Data assimilation methods are mainly developed in meteorology. They are there-
fore designed to meet the challenges in the atmosphere — a divergent system. In
a divergent system, close states will inevitably drift apart, even if the system is
described by a perfect model (Kalnay, 2003). This gives an upper limit to the
predictability in divergent systems (Lorenz, 1982).

From the meteorological perspective, the major limit for long time predictions is
an unknown initial condition because its error will increase exponentially. There-
fore, data assimilation in operational weather forecasting primarily focusses on
state estimation (Reichle, 2008; Van Leeuwen et al., 2015).

Data assimilation methods are also increasingly applied to convergent systems
such as soil hydrology. In a convergent system, nearby trajectories will stay nearby
and even become more similar. If the model to describe such a convergent system
is perfect, this results in a high predictability (Lorenz, 1996). An error in the
initial state will decay towards the truth after some transient phase. However,
this is only true if the parameters are perfectly known and the model is correct,
which is usually not the case for environmental systems. In many systems, the
parameters are ill- or unknown. This can lead to a bias and the state converges
to a wrong state. The convergence of the system also favours filter degeneration.
This difference to divergent systems, where the ensemble spread increases expo-
nentially, makes the direct transfer of data assimilation methods from divergent
systems to convergent systems challenging.

The developed methods are often adapted to prevent filter degeneracy. For
example, in the field of hydrology, Shi et al. (2014) and Rasmussen et al. (2015)
kept the ensemble spread constant. However, this does not directly address the
issue. Liu and Gupta (2007) and Liu et al. (2012) pointed out that, in contrast
to atmospheric science, parameter estimation is an important part in hydrology.
They discussed the importance of correct error representation for successful data
assimilation.

This chapter investigates the differences and challenges of ensemble data as-
similation methods in divergent and convergent systems. The divergent case is
illustrated using the Lorenz-96 model (Section 2.2). For the convergent case, a
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4. Convergent and divergent systems
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Figure 4.1.: Illustration of the Kalman update (Eq. (3.25)) of the ensemble mean
(orange) and the ensemble (light orange) for one observation (purple) for different en-
semble spreads (a): 02 = 0.1 (b): ¢ = 0.4. The uncertainty of the observation is
03,,s = 0.5 and the ensemble size is N = 100.

soil hydrological system (Section 2.1) is used.

4.1. Case study

For this study the ensemble Kalman filter (EnKF) is used. In contrast to the par-
ticle filter, it has the advantage that it does not require a model error. Therefore,
it can be applied in a perfect model scenario. On the downside, the EnKF as-
sumes Gaussian pdfs in Bayes’ theorem. However, this is not limiting here, since
the behaviour of the spread is examined and the best possible representation of
the pdf is not necessary.

The behaviour of the EnKF is briefly outlined, in order to understand the
cases in this chapter qualitatively. Figure 4.1 shows the behaviour of the EnKF
for different ensemble spreads for one assimilation step in one dimension. The ob-
servation has a value d = 0 and the observation error is 03, = 0.5. In Fig. 4.1a
the ensemble has a variance of 02 = 0.1, which leads to a much smaller correc-
tion than in Fig. 4.1b, where the ensemble spread is 02 = 0.4. For an accurate
observation with equal ensemble spread, the correction of the ensemble members
is larger than for an inaccurate observation.

For the following cases, an ensemble size of N = 100 was chosen. The EnKF is
used without any extensions. Furthermore, the model error in Eq. (3.3) is set to
Zero.
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4.2. Divergent system

The cases will be analysed with the variance of the ensemble in one state
dimension o2 and the mean variance of the ensemble over all dimensions o2

The variance in one dimension j is:

N
Uiim, i Nl_l ; (¢2] - 717])2 (4.1)
with the ensemble mean
. 1 X
P, = = Z (4.2)
The mean variance is defined as:

Z Udlm,J ) (43>

1/)]1

where N, is the state dimension. In the following the index j will be omitted.

4.2. Divergent system

The data assimilation behaviour for a divergent system is demonstrated with a
40-dimensional Lorenz-96 model. The model is solved using a fourth order Runge-
Kutta method with a time step of At = 0.01.

To generate an initial state for the data assimilation run, the model was run
until time 2000 with an initial state x; = 4.0 Vi € [1,2,...,39] and 249 = 4.001,
with the typical value F' = 8 for the forcing parameter (Lorenz and Emanuel,
1998). The final state of this run is used as the initial state for the data assimila-
tion. This ensures that the state is on the attractor without the initial transient
phase.

The observations are generated by a forward run, using the true value and
perturbing it with a Gaussian with zero mean and a standard deviation of oy =
1.0. Observations are generated in each dimension at 5 different times with an
observation interval of Atons = 0.5. This observation interval is chosen rather
large, compared to other studies (e.g. Nakano et al., 2007; van Leeuwen, 2010;
Poterjoy, 2016), to ensures a large divergence of the system.

In the following, two different cases for the assimilation run are illustrated. For
both cases, the initial ensemble is generated by perturbing the true initial state
with a Gaussian N(0,1). In the first case, the ensemble is propagated with the
true model that was used to generate the observations. In the second case, the
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4. Convergent and divergent systems

same observations are assimilated but the ensemble is propagated with a model
that has a changed model parameter F' = 10, to show the behaviour of a divergent
system for an unrepresented parameter error.

In Appendix A.2 three additional cases are shown. The numbering of the cases
from this chapter will be continued. Divergent case 3 (DC3, Appendix A.2.1)
propagates the ensemble with F' = 6. In divergent case 4 (DC4, Appendix A.2.2)
the ensemble is propagated with /' = 10. The observation interval is reduced to
Atops = 0.05. This intervalwd is often used in other studies (e.g. Nakano et al.,
2007; van Leeuwen, 2010; Poterjoy, 2016). Due to the frequent observations, the
system cannot develop its full divergent behaviour and the Kalman gain keeps
the variance at a low level. In divergent case 5 (DC5, Appendix A.2.3), observa-
tion interval is also Atops = 0.05 but the parameter error is represented by the
ensemble.

4.2.1. Divergent case 1 (DC1) — true parameter

In this case, the ensemble is propagated with the same parameter (F' = 8) as the
observations are generated. Figure 4.2a shows the time development of one state
dimension of the Lorenz-96 model and Fig. 4.2b shows 03, and 0. The ensemble
has a sufficient ensemble spread such that the EnKF is able to correct the states
and to follow the truth.

The mean ensemble spread o? increases exponentially between two observa-
tions. At each observation, the EnKF updates the ensemble and the variance
decreases.

The behaviour of o3, differs from the behaviour of o?. During the forecast,
o3, sometimes increases, decreases or stays approximately constant. This hap-
pens because the Lorenz-96 model is bounded and has, therefore, convergent and
divergent directions. A local linear stability analysis shows that the Lorenz-96
model has 13 positive Lyapunov exponents (Lorenz and Emanuel, 1998). So 13
directions of the eigenbasis are divergent, while the other 27 directions are con-
vergent.

4.2.2. Divergent case 2 (DC2) — wrong parameter

In this case, the ensemble is propagated with a wrong parameter of F' = 10 instead
of F' = 8. The Lorenz-96 model with F' = 10 has 14 positive Lyapunov exponents
instead of 13 as the truth. Furthermore, the doubling time, the time the distance
between two nearby states doubles, decreases from 0.42 time units to 0.3 units
(Lorenz, 1996), which also decreases the predictability of the system. So the
ensemble is propagated with a model that is more divergent than the synthetic
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4.2. Divergent system
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Figure 4.2.: Divergent case 1 (DC1): the ensemble is propagated with the same pa-
rameter as the truth and the state is estimated. (a): The ensemble mean (orange) and
the ensemble (light orange) in the data assimilation run for state dimension 2. The
observations (purple), generated from the truth (black dashed line), and the ensemble
are propagated with the same model parameter F' = 8. (b): Mean variance o2 (light
blue) of the ensemble over all dimensions and variance o3, (black) of state dimension
2.
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Figure 4.3.: Divergent case 2 (DC2): the ensemble is propagated with F' = 10 instead
of F' = 8 and the state is estimated. (a): The ensemble mean (orange) and the ensemble
(light orange) in the data assimilation run for state dimension 2. The observations
(purple) and the truth (black dashed line) are generated with F = 8. (b): Mean
variance o2 (light blue) of the ensemble over all dimensions and variance o3, (black)
of the dimension 2.

truth, from which the observations are taken. This can be seen in Fig. 4.3b.
Compared to DC1 (Fig. 4.2b), the o2 and o3, increase faster and the ensemble
spread reaches higher values. Propagating the ensemble with this different model
leads to a larger deviation of the ensemble mean from the truth (see Figure 4.2a)
than in DC1. However, since the ensemble spread increases faster, the Kalman
gain is larger and the corrections of the EnKF stronger, which compensates the
wrong parameter and leads to a worsened but still good estimation of the truth.

The behaviour is also tested for a smaller value of F' = 6 (see Appendix A.2.1).
In DC3 the system is more convergent and the corrections of the EnKF are smaller.
Sometimes the ensemble does not represent the truth anymore but the filter does
not degenerate.
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4.3. Convergent system

4.3. Convergent system

For the case studies of data assimilation in a convergent system, a homogeneous
soil of loamy sand is used with an extent of 1m.

Following Chapter 2, the description will be separated into dynamics, param-
eters, forcing and state. The model of the considered system is described in
Section 2.1 in more detail.

Dynamics: The dynamics in an unsaturated porous medium can be described
by the Richards equation (Eq. (2.6)). The resolution for the numerical solver
MuPhi (Ippisch et al., 2006) is set to 1cm, which results in a 100-dimensional
water content state.

Parameters: For these case studies the Mualem-van Genuchten parametrisation
(Egs. (2.7) and (2.8)) is used. For the true trajectories and the observations,
parameters by Carsel and Parrish (1988) for loamy sand are used (see Table 2.1).

Forcing: A Dirichlet condition with zero potential (groundwater table) is used
as the lower boundary. The upper boundary condition is chosen as one infiltration

over the whole observation time with a flux of 5-10~7 m s~ 1.

State: [Initially, the system is in equilibrium and will be forced by the bound-
ary condition. The initial state is shown in Fig. 4.4. Four time domain re-
flectometry (TDR)-like observations are generated equidistantly at the positions
(0.2,0.4,0.6,0.8) m. The observation error is chosen to be oops = 0.007 (e.g.
Jaumann and Roth, 2017). Observations are taken hourly for a duration of 30 h.

To generate the initial ensemble, the equilibrium state is perturbed by a cor-
related multivariate Gaussian. The main diagonal of the covariance matrix is
0.0032. The off-diagonal entries are determined by multiplying the variance on
the main diagonal with the Gaspari and Cohn function (Eq. (3.28)) using a length
scale of ¢ = 10cm. The distance for the Gaspari and Cohn function is is the dis-
tance of the off-diagonal entry from the main diagonal. This ensures a correlated
initial state, which increases the diversity of the ensemble. If instead uncorrelated
Gaussian random numbers with zero mean were used, the dissipative nature of
the system would lead to a fast dissipation of the perturbation

In the following, four cases will be studied. In convergent case 1 (CC1), an
interpolated state is used as the initial state for the ensemble and the ensemble
is propagated with the same model as the truth without any estimation. In the
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Initial state
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Water content 0

Figure 4.4.: Initial state for convergent case 2, 3 and 4. The ensemble (light green)
with 100 ensemble members is generated by perturbing the initial truth (black dashed
line), which is used for the observations (purple), with a spatially correlated Gaussian.

other three cases, the initial ensemble shown in Fig. 4.4 is used. The ensemble is
propagated with a changed parameter n. Convergent case 2 (CC2) estimates the
state but not the parameter, convergent case 3 (CC3) represents the error in the
parameter and convergent case 4 (CC4) estimates the state and the parameter
simultaneously.

4.3.1. Convergent case 1 (CC1) — no estimation

In this case, an interpolated initial condition is used for the ensemble. The obser-
vations at time zero are interpolated linearly. Additionally, the saturated water
content for loamy sand, which is 0.41, is taken as the lower boundary. The ap-
proximated state is used as the ensemble mean for the EnKF. This state is then
perturbed with the same correlated Gaussian as in Fig. 4.4. The initial ensemble
represents the uncertainty of the water content in most parts (see Fig. 4.5).

The ensemble is propagated with the true model. The temporal development
of the water content in 20 cm depth, the position of the uppermost observation,
is shown in Fig. 4.6a. The initially broad ensemble slowly collapses to the truth.

The ensemble variance in this depth o3, and the ensemble variance over all
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4.3. Convergent system

CC1 - Initial state
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Figure 4.5.: Initial state for convergent case 1 (CC1). Observations (purple) at time
zero are connected linearly and set constant towards the upper boundary. For the
lower boundary, the saturated water content 6, = 0.41 of loamy sand is used for the
interpolation. The ensemble (light green) with 100 ensemble members is generated
by perturbing the interpolated state with a spatially correlated Gaussian. The initial
truth, which is used for the observations, is shown as a black dashed line.

2 2

dimensions o“ are shown in Fig. 4.6b. The variance o7, increases when the
infiltration front reaches 20 cm. Because of the nonlinear conductivity function
(Eq. (2.7)), the different initial water contents lead to a different arrival time of
the infiltration front at the first observation position. This leads to an increase
in the ensemble spread.

For increasing water content, the ensemble collapses faster since the conductiv-
ity increases (see Fig. 2.1), which leads to a faster convergence to the truth. The
variance o2 decreases slowly and will reach zero after some time. If the system
would have been started with a higher water content instead of equilibrium, this
collapse would have been faster.

This case shows that the predictability for a perfect convergent system is in-
finite. After a transient phase, the states converge to the truth as discussed by
Kalnay (2003). However, in real systems, the model parameters are uncertain,
which leads to difficulties.
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Figure 4.6.: Convergent case 1 (CC1): forward run without data assimilation, using
an interpolated initial condition (see Fig. 4.5). (a): The ensemble mean (orange) and
the ensemble (light orange) during the forward run at the depth of the uppermost
observation (20 cm). The truth, which is used to generate the observations (purple), is
shown as a black dashed line. (b): Mean variance o2 (light blue) of the ensemble over
all dimensions and variance o (black) at the depth of 20 cm.
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4.3. Convergent system

4.3.2. Convergent case 2 (CC2) — state estimation, wrong
parameter

In this case, the state is estimated but the ensemble is propagated with a wrong
parameter for n. Instead of ny.,e = 2.28, n is chosen to be n = 2.68. In Fig. 4.7a
the temporal development of the water content in the depth of the uppermost
observation (20cm) is shown. A larger n results in a higher conductivity. The
infiltration front reaches the depth of 20 cm earlier for the ensemble than for the
truth. The EnKF tries to correct the ensemble but fails because the variance of
the ensemble is too small and cannot represent the truth. Due to the convergent
system, o2 decreases constantly while 0% = decreases fast to zero after the infil-
tration front reaches the depth of 20 cm (see Fig. 4.7b). This convergence leads
to a false trust in the model and the filter degenerates.

This case illustrates that a wrong parameter in a convergent system can lead
to filter degeneration. This is in direct contrast to DC2 (Section 4.2.2) and DC3
(Appendix A.2.1), where the filter is still able to estimate the state. However, if
the observation interval in the Lorenz-96 model is too short such that it cannot
develop its full divergent behaviour, the filter will also degenerate for a wrong
parameter (see Appendix A.2.2).

4.3.3. Convergent case 3 (CC3) — state estimation,
represented error

In this case, the parameter error is represented with the ensemble but not es-
timated. Each ensemble member has a different parameter n. The parameters
are Gaussian distributed with N(2.68,0.4?) such that the truth lies within one
standard deviation.

Figure 4.8a shows the temporal development of the water content in a depth
of 20cm. The infiltration front reaches this depth at different times due to the
different parameter n for each ensemble member. This increases the variance
in the ensemble both, in this depth and overall (see Fig. 4.8b). The variance
increases rapidly between the observations, similar to the divergent cases. This
way, the ensemble spread stays large enough such that the EnKF can correct the
states. The ensemble can follow and represent the truth. This behaviour can
also be observed for the Lorenz-96 model with a short observation interval (see
Appendix A.2.3).

Representing the model error adds a divergent part to the convergent model.
This allows the EnKF to correct the state and follow the truth. However, the
predictability of the system decreases since each ensemble member converges to a
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Figure 4.7.: Convergent case 2 (CC2):

the ensemble is propagated with n = 2.68

instead of nyrye = 2.28 and the state is estimated. (a): The ensemble mean (orange) and
the ensemble (light orange) in the data assimilation run at the depth of the uppermost
observation (20 cm). The truth, which is used to generate the observations (purple), is
shown as a black dashed line. (b): Mean variance o2 (light blue) of the ensemble over
all dimensions and variance o (black) at the depth of 20 cm.
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Figure 4.8.: Convergent case 3 (CC3): the parameter error is represented by the
ensemble using A(2.68,0.4%) and the state is estimated. (a): The ensemble mean
(orange) and the ensemble (light orange) in the data assimilation run at the depth of the
uppermost observation (20 cm). The truth, which is used to generate the observations
(purple), is shown as a black dashed line. (b): Mean variance o2 (light blue) of the
ensemble over all dimensions and variance o3, (black) at the depth of 20 cm.
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Figure 4.9.: Estimation of parameter n in convergent case 4. The ensemble mean is
shown in orange and the ensemble in light orange. The truth is a black dashed line.

different fixed point apart from the truth. To increase the predictability, param-
eter estimation is necessary.

4.3.4. Convergent case 4 (CC4) — state and parameter
estimation

In this case, the error in the parameter n is not only represented but also es-
timated. Therefore, an augmented state w (Section 3.4) is used. The model
equation (Eq. (3.3)) thus changes to Eq. (3.55) with a constant model for the
parameters

p"=p"! (4.4)

and Richards’ equation as fy(-). Note that both stochastic model errors of
Eq. (3.55) are set to zero. The initial parameter set is Gaussian distributed
with N(2.68,0.4%) such that the truth is located within one standard deviation.

The estimation of n is shown in Fig. 4.9. The ensemble converges to the truth
in a fast way because only one parameter is estimated, so every deviation from
the truth is mainly caused by this parameter.

The mean variance o2 increases (see Fig. 4.10b) because at the beginning, the
parameter has not been sufficiently improved such that the ensemble members
still have different n. This leads to a divergent ensemble in state space during
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Figure 4.10.: Convergent case 4 (CC4): simultaneous state and parameter estimation.
(a): The ensemble mean (orange) and the ensemble (light orange) in the data assim-
ilation run at the depth of the uppermost observation (20cm). The truth, which is
used to generate the observations (purple), is shown as a black dashed line. (b): Mean
variance o2 (light blue) of the ensemble over all dimensions and variance o2, = (black)
at the depth of 20 cm.
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4. Convergent and divergent systems

the infiltration similar to CC3 (Section 4.3.3). While the parameter is estimated,
the variance of the ensemble decreases fast and the convergent property of the
system becomes dominant.

The temporal development of the water content in a depth of 20 cm is shown in
Fig. 4.10a. In contrast to CC3 (Section 4.3.3), the corrections of the EnKF to the
state are much smaller. The mean of the parameter n comes close to the true value
and the uncertainty of it decreases. This causes the forward propagation to come
close to the true model as well. The propagation with an almost correct model
supports the state estimation because of the convergent nature of the system that
forces the state to the true value.

4.4. Summary and discussion

For the divergent Lorenz-96 system, the EnKF is able to estimate the state for
the true model as well as for the case with a wrong parameter. In a divergent sys-
tem, the volume of the prior in phase space increases during forward propagation
(Evensen, 1994). For the EnKF, this is directly connected to the ensemble spread,
which increases rapidly between the observations. This prevents a collapse of the
ensemble even in the presence of an unrepresented parameter error. However, if
the observation interval is too small such that the system cannot develop its full
divergent behaviour, the EnKF leads to a decrease in the ensemble spread such
that the filter collapses in the case of an unrepresented parameter error.

In a convergent soil hydrological system, the volume of the prior distribution
decreases during forward propagation such that the prior becomes more certain
during the forward propagation even without an observation or data assimilation.

For a perfect model, the predictability and state estimation in a convergent
model are trivial. The initial ensemble will converge to the truth after some time,
even with a rough approximation. In this case, data assimilation is not necessary.

In the case of wrong parameters the situation is different. The ensemble con-
verges to a wrong state, the filter degenerates and data assimilation fails. In-
creasing the ensemble size can only improve the performance marginally since all
ensemble members will converge to the same fixed point.

Representing the parameter error by assigning each ensemble member a dif-
ferent parameter, increases the divergence of the system and the filter is able to
estimate the state again. Between the observations, the ensemble spread increases
rapidly because the ensemble members diverge to different fixed points apart from
the truth. This results in a finite predictability. By representing the parameter
error, Richards’ equation behaves more similar to the Lorenz-96 model. However,
in the case of the Lorenz-96 model, it is possible to estimate the state without rep-
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4.4. Summary and discussion

resenting the parameter error. In the case of a convergent system, it is necessary
to represent the parameter error, otherwise the ensemble collapses.

To increase the predictability of the system again, it is necessary to not only
represent but also estimate the wrong parameters. If the parameters are estimated
to the true values, the convergent property of the system supports the state
estimation. With the true parameters the system converges to the true state and
the predictability increases. Therefore, parameter estimation is important for
convergent systems. For divergent systems parameter estimation also increases
the predictability but the predictability is limited by divergent system dynamics.

For the application of data assimilation to real data, there is still the problem
of unrepresented model errors. In hydrology, the model error is typically ill-
known (Li and Ren, 2011) and can vary both in space and time, which can
lead to filter degeneracy and wrong parameters. In this case, inflation methods
(see Section 3.2.2), can help to increase the ensemble spread and avoid filter
degeneracy. For example, Zhang et al. (2017) keep a constant ensemble spread
for the parameters to provide a sufficient spread in state space. However, keeping
the spread constant prevents the EnKF from reducing the prediction uncertainty.
Zhang et al. (2017) describes that they accept this disadvantage in order to prevent
filter degeneration. This procedure is similar to the case shown in Section 4.3.3.
Even in the absence of a real parameter error, keeping an ensemble spread in the
parameter space adds a divergent component to the system that results in an
increased ensemble spread in state space.

Adaptive inflation methods (e.g. Bauser et al., 2018; Gharamti, 2018), are more
sophisticated to ensure a sufficient ensemble spread. However, if the parameters
are estimated during a time interval where the model is correct or almost correct,
an estimation during an time interval where the model cannot describe the dy-
namics leads to biased parameters. In those cases it is useful to apply a closed-eye
period (Bauser et al., 2016). In the closed-eye period, the parameters are kept
constant during the time of unrepresented dynamics and only the state is esti-
mated. If then the model can describe the dynamics correct again, the state fits to
the observations and the parameters do not contain a bias through unrepresented
model dynamics.

If state and parameters are already converged to the truth and a case of un-
represented model errors occurs, the ensemble is already too small and will not
be able to incorporate the new observations anymore. This collapse is difficult to
prevent by inflation or the closed-eye period. In a divergent system, this will not
occur because the system dynamics prevents this case and inflation methods will
work more effectively, as they do not have to work against the dynamics.

Data assimilation methods require a divergent part in the model to keep a
sufficient ensemble spread and prevent filter degeneration. While in divergent
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systems this is inherent to the system, in convergent systems it has to be added.
This makes the transfer to convergent systems challenging. Methods to increase
the ensemble spread artificially or the representation of errors adds a divergent
part to the system and avoids filter degeneracy. In the case of parameter errors,
estimating the parameter is helpful for state estimation.

The difference and challenges of data assimilation were highlighted for the
Lorenz-96 model and Richards’ equation. I expect that the results of this chapter
can be transferred to other convergent and divergent systems.
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5. Covariance resampling

This chapter is based on Berg et al. (2018).

In soil hydrology both, state and parameters, are typically ill-known and have
to be estimated. The ensemble Kalman filter (EnKF) (Section 3.2) is a popular
data assimilation method in hydrology. It has the advantage of using the ensemble
covariance to correlate dimensions with observations to unobserved dimensions.
The EnKF with parameter estimation is successfully applied to several hydrologi-
cal systems. Moradkhani et al. (2005b) used the EnKF for a rainfall-runoff model
and Chen and Zhang (2006) for saturated flow modelling. For systems based on
Richards’ equation, the EnKF is mostly applied in synthetic studies (e.g. Wu and
Margulis, 2011; Song et al., 2014; Erdal et al., 2015; Shi et al., 2015; Man et al.,
2016). However, some applications to real data exist (e.g. Li and Ren, 2011;
Bauser et al., 2016; Botto et al., 2018).

Nonlinear systems violate the EnKF assumption of Gaussian probability den-
sity functions (pdfs) (Harlim and Majda, 2010; DeChant and Moradkhani, 2012).
The dynamics of Richards’ equation is generally dissipative and the Gaussian as-
sumption is appropriate. However, jumps at layer boundaries, soliton-like fronts
during strong infiltration and diverging potentials for strong evaporation deform
the pdf and lead to non-Gaussianity, which results in poorer performance of the
EnKF (Lei and Bickel, 2011; Liu et al., 2012; Zhang et al., 2015). In this case, the
pdf requires higher statistical moments to be described correctly. Particle filters
(Section 3.3) can accomplish this task.

Parameter estimation with particle filters is challenging. Resampling (Sec-
tion 3.3.3) generates identical copies of particles with large weights. During the
forecast, the stochastic model error is added to each particle, which makes them
distinguishable. Parameters are typically constant in time. Thus it is difficult to
define a stochastic model error. Resampled particles stay identical and the filter
degenerates.

If a model does not have a model error, which also happens because the error
unknown and therefore set to zero (Poterjoy, 2016), it is necessary to perturb the
copied particles after resampling. Even in the presence of a model error it can
be useful to perturb the particles. For example, if the model error is ill-known or
structurally incorrect, it can help to guarantee a sufficient ensemble spread and
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diversity. In hydrology, the model error is typically ill-known and can vary both,
in space and time.

To apply the particle filter for parameter estimation, Moradkhani et al. (2005a)
suggested to perturb the parameters using Gaussian noise with zero mean after
the resampling step. They used an unweighted variance of the ensemble modified
with a damping factor such that the ensemble spread did not become too large.

This method or similar has been used for state and parameter estimation land
surface models (Qin et al., 2009; Plaza et al., 2012), rainfall-runoff models ( Weerts
and El Serafy, 2006) and soil hydrology (Montzka et al., 2011; Manoli et al., 2015).
However, with only a rough initial guess of the initial state, perturbing only the
parameters does not guarantee a sufficient ensemble spread in state space for
small water contents (see Section 4.3.3) and the filter can degenerate.

Additional development of resampling for parameter estimation was done by
Moradkhani et al. (2012) and Vrugt et al. (2013). They used a Markov chain
Monte Carlo (MCMC) method to generate new particles. This method was fur-
ther used by e.g. Yan et al. (2015) and Zhang et al. (2017). The latter compared
the performance of this method to an EnKF and the particle filter presented by
Moradkhani et al. (2005a) and found that the performance of the filters were
similar with slight advantages for the EnKF. While the MCMC is accurate, it is
also expensive, as it requires additional model runs. To increase the efficiency,
Abbaszadeh et al. (2018) additionally combined it with a generic algorithm.

This chapter introduces the covariance resampling, a resampling method that
generates new particles using the ensemble covariance. This method conserves
the first two statistical moments in the limit of large numbers while partly main-
taining the structure of the pdf in the retained ensemble. Using the covariance,
the unobserved parameters of the new particles are correlated to the observed
state dimensions. The particle filter with covariance resampling (PFCR) is able
to estimate state and parameters in case of a difficult initial condition without
additional model evaluations.

5.1. Method

Different approaches where suggested to perturb the particles using the ensemble
covariance, however without application for parameter estimation. Pham (2001)
proposed to sample new particles by perturbing the identical particles using a
Gaussian with the (damped) ensemble covariance matrix as covariance. Xiong
et al. (2006) sampled the whole ensemble from a Gaussian using the first two
moments specified by the ensemble (full covariance information), which neglects
the particle filter ability to use non-Gaussian distributions.
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The covariance resampling neither perturbs the duplicated states nor draws a
complete new ensemble. It uses the stochastic universal resampling (Section 3.3.3)
to choose the ensemble members that are kept. For this step, other resampling
methods like the residual resampling (Section 3.3.3) can be equally used. In
this work, the stochastic universal resampling is used because it has the lowest
sampling noise (Van Leeuwen et al., 2015).

Instead of duplicating the particles and setting the weights to N~!, the weight
of the particles is changed to

w; = % with i€ {1,2,.,N'}, (5.1)
where the particle i is chosen z-times and N’ is the number of kept particles. This
ensures that the estimated statistical moments are conserved.

The total ensemble reduces to N’. To have N ensemble members again, N — N’
new particles have to be generated. These particles are sampled from a Gaussian
N (m,P) with the weighted mean

N
i=1
and the weighted covariance
1 N
P=— ) wiu, —ulu, —au|", 5.3
g v (53)
where the factor +2 is Bessel’s correction for a weighted covariance. The

mean and the covariance of the ensemble are calculated using the updated weights
before resampling (Eq. (3.42)).

Sampling only the dropped particles from a Gaussian conserves the first two
statistical moments in the limit of large numbers with the advantage that infor-
mation of the non-Gaussian pdf is partly conserved in the retained ensemble (see
Section 5.2). A weight of N~! is assigned to each of the new particles, which
results in a sum of all weights being larger than one. Therefore, it is necessary to
renormalise the weights. The whole resampling process is illustrated in Fig. 5.1.

New particles are generated using a Cholesky decomposition of the covariance
matrix. The calculation of the covariance from the ensemble can result in small
numerical errors that have to be regularised, otherwise the decomposition would
fail. For details about the generation of new particles and regularisation of the
covariance matrix see Appendix A.4.

Pham (2001) and Moradkhani et al. (2005a) introduced a a tuning parameter to

modify the covariance matrix or the variance, respectively. They used the tuning
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Figure 5.1.: lllustration of the PFCR. The green bars show the weight of each ensem-
ble member (ten in this example) and the black dots their position. (a) The prior is
represented through the ensemble. (b): The ensemble is propagated to the next obser-
vation (depicted as Gaussian, red curve). (c): The particles are weighted according to
the observation. At this point, some particles have already negligible weight. (d): The
universal resampling drops particles with low weight (three in this example). Instead
of adding new particles at the same position, only the weights of the kept particles are
changed. If a particle is resampled k-times, it will get the weight &k N~'. The ensemble
size is reduced and new particles have to be added to conserve the ensemble size and
avoid filter degeneration. (e): The new particles are drawn from the full covariance
of the ensemble (Eq. (5.3)) and their weight is set to N~1. Since new particles with
weights are added to the ensemble, it is necessary to renormalise the weights to one.
This results in the posterior or the next prior, respectively.
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factor to reduce the amplitude of the perturbation. For the covariance resampling,
I also introduce a tuning parameter. The covariance matrix is modified by a
multiplicative factor ~

P’ = (y77) o P, (5.4)

where o is the entrywise product (Hadamard product).

If the model dynamics does not support a sufficient spread for the ensemble,
the perturbation of the covariance resampling has to be large enough to prevent
the ensemble from collapsing. For example, in the case of constant parameters it
is beneficial to chose a factor larger than one to prevent filter degeneracy.

5.2. Non-Gaussian distribution

To visualise the behaviour of the covariance resampling for non-Gaussian distri-
butions, it is illustrative to look at the analysis step for a one dimensional case.
The covariance resampling is compared with the EnKF and the standard particle
filter. This study follows the comparison of deterministic and stochastic Kalman
filters by Lawson and Hansen (2004).

Since the goal of this section is to investigate the behaviour of the algorithms
for non-Gaussian distributions, a bimodal distribution is chosen as the prior. The
bimodal distribution is constructed with two equally probable Gaussian distribu-
tions:

Plz) = Nl% (exp [—;(x _ 93)2] +exp [—;(g; +x)2D , (5.5)

where 7 is the offset of each peak from zero. In the following example 7 is chosen
as T = 4. For the calculation of the Kalman gain (Eq. (3.19)), the bimodal prior
with zero mean and a variance of o3, = 17, is equal to a Gaussian with these
two statistical moments (N(0,02...,)).

Using Eq. (5.5) a rather larger ensemble (IV = 5000) is generated. This ensem-
ble size is used to observe the behaviour of the filters without large statistical noise.
The prior distribution, including the generated ensemble, is shown in Fig. 5.2.

The analysis is calculated for an observation d at d = 3.5, with three different
observation errors 03,,. The observation errors are chosen as 63, = 0pio;/2
Ops = by and 03, = 20%,,,- Figure 5.3 shows the resulting analytical pos-
terior distributions calculated using Bayes’ theorem (Eq. (3.1)) and the posterior
ensemble of the EnKF, the particle filter and the PFCR.

The particle filter without resampling can sample the posterior accurately for
all three cases. However, the variance of the weights increases and after some
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Figure 5.2.: Prior bimodal distribution P(z) (black, Eq. (5.5)) and histogram of the
5000 ensemble members (green).

assimilation cycles the particle filter would degenerate. For example, in the case
of high accuracy observation (left), the effective sample size (Eq. (3.44)) reduces
from the forecast Nqg = 5000 to Neg ~ 2454 in the analysis.

In the case of an accurate observation o3,, = 02, /2 (left), the observation
determines the right mode of the bimodal prior as the posterior. The EnKF cor-
rects the states towards the observation and the posterior becomes approximately
Gaussian but with a mean shifted to lower values and a larger variance compared
to the truth. The PFCR can describe the posterior excellently. It does not need
to shift the ensemble members of the left mode to the observation like the EnKF,
instead almost 50 % of the ensemble members are dropped and resampled. This
resampling is effective because the covariance resampling samples from a Gaussian
distribution and the posterior is approximately Gaussian.

In the case of a less accurate observation 03, = o3, (middle), the observa-
tion information is less dominant and the bimodal structure of the prior is partly
visible. For the EnKF, the ensemble members of the left mode are shifted to-
wards the observations such that the posterior becomes unimodal. The bimodal
structure cannot be described by the EnKF properly. The PFCR can sample
both posterior peaks with the retained ensemble. The new particles, however, are
generated with a mean that lies in between both peaks, such that some of the
new particles are located between the modes.

For 03, = 203, (right), the posterior is similar to the prior with a less likely
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Figure 5.3.: Analysis ensemble (green) for EnKF (second row), particle filter (third
row) and PFCR (bottom row) for a bimodal prior (Fig. 5.2), for observations (top row,
red) with different observation errors: o, = o03.,./2 (left column), o3, = 03,
(middle column) and o3, = 203, (right column). The true posterior (black) is
calculated with Bayes’ theorem. In case of the PFCR, 49.7% (left), 32.6 % (middle)
and 10.0 % (right) particles are resampled.

o7



5. Covariance resampling

left mode. The large uncertainty makes it impossible to confidently decide in
which peak the truth lies. The EnKF retains the bimodal distribution of the
prior because the Kalman gain becomes small if the observation error is large,
which leads to a small correction in the analysis step. The PFCR describes the
posterior almost as accurate as the standard particle filter. The particles have
approximately equal weights because of the large observation error. Therefore,
only 10.0% of the particles are resampled which reduces the effect that particles
are generated in between the peaks as in the case 03, = o3, (middle).

The particle filter can sample the posterior distribution accurately, however the
filter would degenerate without resampling. The PFCR is superior in approxi-
mating the posterior distribution compared to the EnKF for all cases. Additional
experiments with different distributions are shown in Appendix A.3.

5.3. Case study

In Section 5.2 one analysis step was examined. This section describes the set-
tings for a full data assimilation run with state and parameter estimation in a
hydrological case.

The covariance resampling is tested for a one-dimensional unsaturated porous
medium with two homogeneous layers. The system has a vertical extent of 1m
with the layer boundary in the middle at 50 cm.

Following Chapter 2, the description is separated into dynamics, parameters,
forcing and state. The model of the considered system is described in Section 2.1
in more detail.

Dynamics: The dynamics in an unsaturated porous medium can be described
by the Richards equation (Eq. (2.6)). The resolution for the numerical solver
MuPhi (Ippisch et al., 2006) is set to 1cm, which results in a 100-dimensional
water content state.

Parameters: In this case study, the Mualem-van Genuchten parametrisation
(Egs. (2.7) and (2.8)) is used, where the parameters «, n and K, are estimated
for each layer. The conductivity function (Eq. (2.10)) incorporates all estimated
parameters.

For the true trajectories and the observations, parameters for loamy sand (upper
layer, layer 1) and sandy loam (lower layer, layer 2) are taken from Carsel and
Parrish (1988). The true parameter values are given in Table 2.1. In the following,
the parameters will have an index representing their corresponding layer.
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Figure 5.4.: Upper boundary condition for the data assimilation case. Four rain
events (blue) each followed by a dry period (orange) are used for the test of the data
assimilation run. After this run, two additional rain events and dry periods are used
in a free run to test the assimilation results (grey background). Note the different axes
for infiltration and evaporation.

Since state and parameters are estimated, an augmented state w (Section 3.4) is
used. The model equation (Eq. (3.3)) thus changes to Eq. (3.55) with a constant
model for the parameters

p"=p"! (5.6)

and Richards’ equation for fy(-). Note that both stochastic model errors of
Eq. (3.55) are set to zero.

Forcing: A Dirichlet condition with zero potential (groundwater table) is used
as the lower boundary. The upper boundary condition is chosen as a flux bound-
ary (Neumann), representing four rain events with increasing intensity and dry
periods in between (see Fig. 5.4). Using infiltrations with an increasing intensity
has the advantage that the system has more time to adjust the parameters. This
way, less observations are necessary to resolve the infiltration front and the infor-
mation of the observations can be incorporated in the state and the parameters.
The stronger infiltration front at the end of the assimilation run is used to test
the robustness of the estimation.
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Figure 5.5.: Initial state for the data assimilation run. Observations (purple) at time
zero are connected linearly and set constant towards the layer and upper boundary. For
the lower boundary, the saturated water content 6, = 0.41 of sandy loam is used for
the interpolation. The ensemble (light green) with 100 ensemble members is generated
by perturbing the interpolated state using a spatially correlated Gaussian. The initial
truth that is used for the observations (purple) is shown as a black dashed line.

State: Initially, the system is in equilibrium and will be forced by the boundary
condition. The initial state is depicted in Fig. 5.5. Six time domain reflectometry
(TDR)-like observations are taken equidistantly in each layer at the positions
(0.1,0.25,0.3) m for layer 1 and (0.6,0.75,0.9) m for layer 2. The measurement
error is chosen to be oops = 0.007 (e.g. Jaumann and Roth, 2017). Observations
are taken hourly for a duration of 160 h.

For the initial state of the data assimilation, the observations at time zero
are used. The measured water content is interpolated linearly between the mea-
surements and kept constant towards the boundary. Additionally, the saturated
water content for sandy loam, which is 0.41, is taken as the lower boundary. The
approximated state is used as the ensemble mean for the particle filter. This
procedure is a viable option for real data although it represents a rather crude
approximation of the real initial condition.
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Table 5.1.: True Mualem-van Genuchten parameters and range of the uniformly dis-
tributed initial guess. The true values are taken from Carsel and Parrish (1988).

Parameter Truth Lower Upper
ny [—] 2.28 2.2 3.5
ny [—] 1.89 1.8 3.2
a; [m] -124 -14 -12
Qs [m] -7.5  -10.5 -6.5
log(Ky1), Ky in [ms™!  -4.40 -7 -4
log(Kys2) Ky in [ms™']  -4.91  -7.5 -4

The approximated state is perturbed by a correlated multivariate Gaussian.
The main diagonal of the covariance matrix is 0.003%2. The variance is chosen
such that the ensemble represents the uncertainty of the water content in most
parts (see Fig. 5.5). The off-diagonal entries are determined by the following
two steps: (i) All covariances between the two layers are set to zero to ensure no
correlations across the layer boundary. (ii) The remaining entries are the variance
of the main diagonal multiplied with the Gaspari and Cohn function (Eq. (3.28))
The distance for the Gaspari and Cohn function is is the distance of the off-
diagonal entry from the main diagonal and a length scale of ¢ = 10cm is used.
This way, the water content is only correlated in the range of 20 cm.

The use of the covariance increases the diversity of the ensemble and also helps
to avoid degeneration. Using uncorrelated Gaussian random numbers with zero
mean would result in a fast degeneration of the particle filter caused by the dis-
sipative nature of the system. The perturbation would simply dissipate and the
ensemble would collapse.

The initial parameters for the ensemble are uniformly distributed. The ranges
of the uniform distributions are given in Table 5.1. Note that the logarithm of the
saturated conductivity K, is used for the estimation, so K, spans three orders
of magnitudes.

The data assimilation run is performed with 100 ensemble members. The mul-
tiplicative factor Eq. (5.4) is set to:

v = Hgﬂ : (5.7)

where the index denotes the dimension. The covariance in the 100-dimensional
state space is unchanged. For the parameter space a factor of 1.2 is used to
compensate the missing dynamics.
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After the assimilation, the final ensemble is used to run a forecast without data
assimilation. In this run two additional infiltration events and evaporation periods
are used to test the forecasting ability of the estimated states and parameters (see
Fig. 5.4) . The mean of this forward run is calculated from the ensemble with the
weights of the last assimilation step.

5.4. Results

The development of the parameters is depicted in Fig. 5.6. The saturated con-
ductivity K, (Fig. 5.6a) can be estimated quickly because the infiltration front
induces dynamics in the first layer which is strongly dependent on K. Instead
K2 (Fig. 5.6b) is not sensitive to the dynamics in the first hours, as the infil-
tration front did not reach the second layer yet. At around 46 h, the infiltration
front reaches the first observation position in the second layer and the estimation
for K, » improves quickly.

If dynamic is induced in the system, the ensemble spread in the water content
space increases because of different parameter sets. This makes the particles
and their corresponding parameter sets distinguishable and parameter estimation
possible. The parameters n; and ny (Fig. 5.6¢ and d) as well as as (Fig. 5.6f) can
be estimated well. One exception is a; (Fig. 5.6e). This parameter is insensitive
to the observations. The effect of a on the trajectory of the ensemble members is
limited to a small region next to the layer boundary. Further away, wrong values
can be compensated by n. The parameter a; jitters randomly around a value
slightly larger than the truth.

In a synthetic case, the estimation of a; can be improved easily by having
observations directly next to the boundary. This way a different value for a;
would have a direct influence on the trajectory and a; would become sensitive to
the observations. However, in reality it is not feasible to change the measurement
position or measure directly next to the layer interface. I decided to retain these
positions to illuminate an often encountered practical difficulty.

To see the effect of the parameters on the forward propagation, it is necessary
to have a closer look at the conductivity function Eq. (2.10). This function is
used for the model forward propagation and many parameter sets can effectively
describe the same situation in a limited regime of the hydraulic head. The function
is shown in Fig. 5.7 for both layers and reveals that the difference between the
truth and the estimated parameters is small.

The final water content state agrees with the synthetic truth in a narrow band
(see Fig. 5.8). The estimated state is slightly biased to higher water contents.
It was checked that the direction of the bias is a random effect and is different

62



5.4. Results

Layer 1 Layer 2
10—2 .
@) L [®
107+
- 107440, o o R L e
|
£ 1076 1076
3 10-8 - === Truth
Estimated 1078 1
5 5
(c) (d)
4 4
< 34 3
2 I T T T B TEeeemm——
1 T T T 1 T T T
1(e) ()
5 6
|E 10~ e ™M P Py v o e
3
~151 10
—20 1 , , — 12 : : :
0 50 100 150 0 50 100 150
Time [h] Time [h]

Figure 5.6.: Estimation of K, n and « of the Mualem-van Genuchten parametrisation
(Egs. (2.7) and (2.8)) for both layers ((a): Ky , (b): Kya2, (¢): ni, (d): na, (e): a,
(f): a2). The ensemble mean is shown in orange and the ensemble in light orange. The
truth is a black dashed line.
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Figure 5.7.: Conductivity function K (hy,) (Eq. (2.10)) for (a): layer 1 and (b): layer
2. In Eq. (2.10), all estimated parameters are represented. The initial ensemble and the
mean are shown in light green and green, respectively. The truth (black dashed line) is
almost congruent with the estimated mean (orange), such that only the final ensemble
(light orange) is visible.

for different seeds. The observation of a bias instead is caused by long-range
correlations of the model. In this case, the system has started to relax after the
last infiltration and a higher water content in one part results in a higher water
content in the rest of the layer. The ensemble spread next to the layer boundary
is caused by the large spread of a.

To analyse the ensemble, it is useful to take a closer look at the effective sample
size (Eq. (3.44)) and the number of resampled particles. Figure 5.9 shows the
effective sample size and the number of new particles over time. The effective
sample size drops every time new information is available and the number of
resampled particles increases. For times ¢t < 15h, the effective sample size drops
to small values. The infiltration front propagates through the first layer, which
leads to a large ensemble spread caused by unknown parameters and only a few
particles have a significant weight. The filter assimilates the information from the
observations and resamples particles with low weight. This improves the state and
parameters and leads to an increasing effective sample size until the infiltration
front reaches the second layer (¢t ~ 46h). The effective sample size decreases
rapidly because the parameters in the second layer are still unknown and lead to

64



5.4. Results

Final state
0.0 <
@QN Truth (b)
\ .
0.2 1 \‘ Estimated |
\\
\
— \
£ 0.4 1 i _
< ~ N
A 0.6 \ i
\
\
\\\
08 7 \\\\ .
1.0 . . N | .
0.1 0.2 0.3 0.4 0.000 0.001
Water content 0 Difference

Figure 5.8.: (a): Final water content state after the assimilation run. The truth (black
dashed line) is almost congruent with the estimated mean (orange), such that only the
final ensemble (light orange) is visible. The final ensemble with the corresponding
weights is used to start a free forward run afterwards. (b): The difference (red) of the
estimated water content and the synthetic truth lies in a narrow band, with a small
bias to larger water contents.

a large ensemble spread again. This variation of the effective sample size occurs
every time the filter gets new information that leads to a discrepancy between
states of the particles and the observations.

The effective sample size is a crucial parameter for the covariance resampling. If
it drops to low values the filter can degenerate because effectively too few particles
contribute to the weighted covariance (Eq. (5.3)) and the covariance information
becomes insignificant.

For further analysis, the RMSE is calculated based on the difference of the true
water content and the weighted mean at every observation time. This includes
also the unobserved dimensions. The RMSE shows a similar behaviour as the pa-
rameters and the effective sample size (see Fig. 5.10). During the first infiltration,
the state and the parameters are improved, the RMSE becomes smaller. Then the
infiltration front reaches the boundary interface. The parameters of the second
layer and «; are still wrong and diverse. This leads to a spread of the ensemble
by the system dynamics and also a shift of the mean away from the truth. The
parameters in the second layer are estimated and the state is corrected, which

65



5. Covariance resampling

Resampling information

100 4 I New particles

—e— Effective sample size
n 80 7
R]
:E) ‘ 1
3 60 "," ' !‘
G 1 | l
8 l | : \ r‘
g 40 l 1. ‘ : I ‘
= ‘ 1 ln y

20

0 25 50 75 100 125 150
Time [h]

Figure 5.9.: Amount of particles that are resampled (orange) and the effective ensem-
ble size (green dots). The lines connecting the dots are for better visibility of the time
dependent behaviour. The effective sample size increases while the number of resam-
pled particles decreases. Every infiltration reduces the effective sample size and leads
to more resampled particles.

leads to a decrease in the RMSE. The increase for the next infiltration events
becomes smaller since state and parameters are already improved.

The forward run without data assimilation shows that the RMSE oscillates in
a narrow range. These oscillations are part of the unobserved space next to the
boundary and are mainly caused by the wrong value of « for the first layer. In
the beginning, the RMSE stays small, but when the infiltration front reaches the
boundary of the two layers, the mean state and the truth begin to deviate from
each other (limited to the boundary interface). After the infiltration front passed,
the state starts to equilibrate and is increasingly defined by the whole parameter
set, which has a certain distance to the true equilibrium.
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Figure 5.10.: The RMSE of the water content calculated between the truth and the
estimated mean of the forward propagated ensemble. The mean includes observed and
unobserved dimensions. After 160 hours, the free run starts (grey background). During
this forward run, the RMSE is about 1073. For the assimilation and the free run, the
RMSE increases with each infiltration.

5.5. Discussion

In this chapter, I introduced a resampling method for particle filters that uses the
covariance information of the ensemble to generate new particles and effectively
avoids filter degeneracy. The covariance connects information between observed
and unobserved dimensions. This has some similarity to the ensemble Kalman
filter (EnKF) but the covariance resampling partly maintains information of the
non-Gaussian pdf in the retained ensemble. This was shown for bimodal prior
distribution in an one dimensional example for one analysis step. In this example,
the covariance resampling was superior to the EnKF in representing the posterior
distribution.

The method was also tested in a synthetic one-dimensional unsaturated porous
medium with two homogeneous layers. Even with just a rough initial guess, a
broad parameter range and only 100 ensemble members, the estimation shows
excellent results. After the assimilation, the results are verified in a free run
with the final results. Even tough the RMSE of the water content includes the
unobserved state dimensions, it stays in a narrow range (RMSE is about 1073)
during the forecast. With every infiltration, the RMSE shows excursions caused
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by a wrong value of parameter « in the first layer that results in a wrong state
near the layer boundary during the infiltration.

Transferring the information to the unobserved dimensions helps the filter to
not degenerate when only a rough initial guess is available. The states and pa-
rameters are both altered actively. For the used initial condition, perturbing the
parameters only (Moradkhani et al., 2005a), can lead to filter degeneracy because
the state is only changed by the dynamics of the system, which does not guarantee
a sufficient ensemble spread for low water contents (see Section 4.3.3). Compared
to the particle filter with MCMC resampling (Moradkhani et al., 2012; Vrugt
et al., 2013), the covariance resampling presented in this study has the advantage
that it does not need additional model runs to generate new particles. However,
the covariance resampling has to calculate the covariance matrix and perform a
Cholesky decomposition every assimilation step. Similar to localisation for the
ensemble Kalman filter (Houtekamer and Mitchell, 2001; Hamill et al., 2001), it
is possible to localise the covariance in the resampling to increase the efficiency.

The effective sample size (Eq. (3.44)) is a crucial parameter for this method.
The covariance resampling needs a sufficient effective sample size, otherwise the
calculation of the covariance matrix (Eq. (5.3)) becomes inaccurate and the filter
may degenerate. In such a situation, the filter can be improved by resetting
the weights to N~! or increasing the ensemble size. In our example this was not
necessary because the effective sample size was critical only for single assimilation
steps.

Different parameter sets can approximately describe the same conductivity
function (Eq. (2.10)) in a certain matric head regime. Model dynamics is nec-
essary to differentiate between those sets. If the infiltration covers only a small
regime, the conductivity function is only significant in the observed range and
can differ from the truth otherwise. This is also reflected in the chosen bound-
ary condition. Starting with infiltrations with low intensity but longer duration
helps the filter to explore the water content range slowly and the observations can
resolve the infiltration front.

The covariance resampling connects observed with unobserved dimensions to
effectively estimate parameters and prevent filter degeneracy. It conserves the first
two statistical moments in the limit of large numbers, while partly maintaining
the structure of the pdf in the retained ensemble. The method is able to estimate
state and parameters in case of a difficult initial condition without additional
model evaluations and using a rather small ensemble size.
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6. Localised covariance resampling

The particle filter with covariance resampling (PFCR) is able to effectively es-
timate state and parameters in soil hydrology (see Chapter 5). However, the
particle filter and also the PFCR suffer from the curse of dimensionality (Sec-
tion 3.3.5).

Snyder et al. (2015) state that localisation is the key idea that allows the en-
semble Kalman filter (EnKF) to perform well for different geophysical systems.
Localisation utilises a common property in geophysical systems that state vari-
ables with a large spatial distance are nearly independent. They conclude that
also particle filters need localisation to be effective in high-dimensional systems.
This conclusion is supported by the recent analysis of Morzfeld et al. (2017).

Bengtsson et al. (2003) investigated the possibilities for localisation in particle
filters and note the complications due to a lack of spatial smoothness. The cal-
culation of local weights results in a local resampling that introduces discontinu-
ities (Fearnhead and Kinsch, 2018). These discontinuities cause strong gradients,
which typically lead to unphysical behaviour in geophysical models ( Van Leeuwen
et al., 2015).

To circumvent the problem of local resampling, Lei and Bickel (2011) pro-
posed the nonlinear ensemble adjustment filter (NLEAF). The NLEAF utilises a
particle filter to correct the bias of the EnKF, which occurs for nonlinear data
assimilation. This allows to use the localisation of the EnKF and avoid resam-
pling completely. Another method is the local ensemble Kalman particle filter
(LEnKPF) introduced by Robert and Kiinsch (2017), which is based on the en-
semble Kalman particle filter (EnKPF) (Frei and Kinsch, 2013). The EnKPF
makes a continuous transition between the EnKF and a particle filter update.
Robert and Kiinsch (2017) proposed two approaches to localise the EnKPF. One
calculates local analysis pdfs for each dimension, using only observations close
to this dimension and ignoring dependencies between the dimensions. This ap-
proach still has discontinuities. The second approach divides the observations
into blocks, which are assimilated sequentially. Only state dimensions that are
directly influenced by the observations in one block are updated. The remaining
dimensions are divided into the ones correlated with the updated dimensions and
those which are not. The correlated ones are updated such that potential discon-
tinuities to the uncorrelated dimensions are smoothed out. This is repeated until
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all blocks are assimilated.

Other suggestions are local particle filters that rely on transformations sim-
ilar to the ensemble transform Kalman filter (ETKF) (Bishop et al., 2001) or
its localised form (Hunt et al., 2007). The transformation is used to transform
the forecast ensemble to an analysis ensemble. The transform interpretation of
the particle filter has been explored by Reich (2013) and Metref et al. (2014).
Localised particle filters based on the transformation of the ensemble are the lo-
cal particle filter (LPF) (Penny and Miyoshi, 2016) and the nonlinear ensemble
transform filter (NETF) (Tddter and Ahrens, 2015; Tédter et al., 2016). The
LPF augments the particle filter with an observation-space localisation approach,
which calculates an independent analysis at each grid point. The local weights
are interpolated to smooth the transition between neighbouring points to pre-
vent large gradients. The NETF is comparable to the NLEAF by Lei and Bickel
(2011). Using a transformation, both construct an analysis ensemble from the
forecast ensemble with a mean and a covariance that exactly match the particle
filter estimates. The difference between the NETF and the NLEAF is that the
NETF uses a deterministic update, while the NLEAF uses a stochastic update.

Poterjoy (2016) calculated local weights for each dimension and localises these
weights with a defined correlation function. The applied resampling merges re-
sampled particles with prior particles in the localisation region. The resulting
ensemble is corrected for higher order moments with probability mapping. The
filter is successfully tested for different high-dimensional systems (Poterjoy and
Anderson, 2016; Poterjoy et al., 2017).

This chapter introduces localisation for the covariance resampling. This lo-
calisation is similar to the localisation of the EnKF, is easy to implement and
mathematically simple compared to the other suggested filters. It also has the
advantage that including parameter estimation is straightforward. The localised
covariance resampling is tested with a divergent 40-dimensional Lorenz-96 model.

6.1. Method

The covariance resampling can be localised analogous to localisation for the EnKF
(Section 3.2.1). The weighted covariance matrix P (Eq. (5.3)) that is used to
generate new particles after resampling is multiplied with a localisation matrix p

Plocalised =po P ) (61)

where o is the entrywise product (Hadamard product).
By multiplying the covariance matrix with the localisation matrix, it is possible
to cut off the spurious correlations that emerge from small ensemble sizes. How-
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ever, in contrast to the EnKF, it does not reduce the high-dimensional problem to
a local problem. In the EnKF, the forecast covariance is localised and the Kalman
gain for the analysis is then calculated using this covariance (see Eq. (3.27)). In
the case of covariance resampling, the analysis weights are already calculated and
the localisation is used to generate localised new particles.

6.2. Case study

The localised covariance resampling is tested with a 40-dimensional Lorenz-96
model (see Section 2.2). The model is solved with a fourth order Runge Kutta
scheme with a time step of At = 0.01.

To generate an initial state for the data assimilation run, the model is run until
time 2000 with an initial state x; = 4.0 Vi € [1,2,...,39] and x40 = 4.001 using
the typical value for the forcing parameter F' = 8 (Lorenz and Emanuel, 1998).
The final state of this run is used as the initial state for the data assimilation.
This ensures that the state is on the attractor without the initial transient phase.
For all data assimilation runs, the initial ensemble is generated by perturbing this
final state with a Gaussian N (0, 1).

The observations are generated by a forward run. Every second dimension is
observed using the true value, which is perturbed using a Gaussian with zero
mean and a standard deviation of o,,s = 1.0. The observation interval is equal to
the typical forecast length of Atgps = 0.05 (corresponding to 6 h (Lorenz, 1996)).
The chosen values are comparable to those used in other studies (e.g. Nakano
et al., 2007; van Leeuwen, 2010; Lei and Bickel, 2011). The observations are
generated for 200 times.

For small effective sample sizes, the perturbation of the covariance resampling is
small, which can lead to filter degeneration. This can be alleviated by increasing
the perturbation using the tuning parameter v (Eq. (5.4)). Since the Lorenz-96
model is a divergent system, a small increase is sufficient. In this chapter, the
factor is chosen to be v = 1.15.

To determine the minimum ensemble size to prevent filter degeneration, the
RMSE is calculated over all dimensions and time steps, including the unobserved
dimensions. Because of the stochastic nature of the PFCR, the RMSE and there-
fore the minimum ensemble size are strongly seed dependent. The simulations
are performed for 40 different seeds and, similar to Kirchgessner et al. (2014),
the MRMSE is defined as the mean of the RMSE over all realisations to reduce
statistical noise.

In the following, three cases will be regarded to test the covariance localisation.
In case 1, the PFCR is used to assimilate the observations. In case 2, localisation
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is used with different localisation radii and ensemble sizes to find the optimal
localisation radius. In case 3, this localisation radius (¢ = 4.5) is used to compare
the efficiency of the localised covariance resampling with case 1.

The particle filter’s performance is dependent on the tails of the observation
pdf, which can lead to degeneration. This can be alleviated by increasing the ob-
servation error for the calculation of the weights (van Leeuwen, 2003). Therefore,
all three cases are performed for the actual observation error and a larger assumed
observation error to investigate the behaviour of the particle filter for a broader
distribution. The generation of the observations is still done with oo, = 1 but for
the calculation of the weights an observation error ¢,ssumed = 1.6 0ons is assumed.
This broadens the Gaussian distribution and leads to higher weights for distant
particles. The factor 1.6 was determined after a rough analysis of the RMSE for
one ensemble size and different o,ssumeq- For too large values, the RMSE of the
estimated mean increases despite the convergence of the filter since the observa-
tion information is assumed to be uncertain. For too small factors, the increase
of the probability in the tails is too small to result in a significant effect on the
weights.

A thought experiment to illustrate this behaviour: Assume a Gaussian ob-
servation with a small error, such that the probability is approximately a delta
distribution. This distribution correctly describes the observation error and the
true value. The EnKF would directly correct the state to the observation and
the truth would be estimated. In contrast, the particle filter would degenerate
because the observation has an infinitesimally small volume in phase space and
the probability that a particle lies in this observation is close to zero. This leads
to degeneracy despite an almost perfect observation.

The localisation matrix for case 2 (Section 6.3.2) and case 3 (Section 6.3.3)
is constructed using the Gaspari-Cohn function (Eq. (3.28)). The localisation
matrix should resemble the real correlation structure of the used model. Following
Anderson (2007) and Anderson (2009), the distance |z| for the localisation matrix
is chosen as

|z| = min(|k —i],40 — |k —1|), (6.2)

where ¢ and k are the dimensional indices. This distance function reflects the
periodic boundary of the Lorenz-96 model.
This localisation matrix is illustrated in Fig. 6.1 for a localisation radius of

¢ = 7. The periodic structure is well recognisable for dimensions around one and
40.
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Figure 6.1.: Localisation matrix p using the Gaspari-Cohn function, the distance
function z = min(|k —i|,40 — |k —i|) and a localisation radius of ¢ = 7 in 40 dimensions.

6.3. Results

In all case studies the MRMSE is calculated from 40 realisations. To compare the
cases for convergence, I defined the minimum ensemble size to be the ensemble size
for which the MRMSE stays smaller than the true observation noise (oops = 1).

6.3.1. Case 1 — no localisation

In this case, the PFCR is applied without using localisation. Figure 6.2 shows
the mean (red) and median (blue) of the RMSE and the corresponding 70 %-
quantile (darker blue) and the 100 %-quantile (light blue) for a different number
of particles.

In the case of of Gassumeda = Tobs (Fig. 6.2a), the minimum ensemble size is
approximately 1400. For this ensemble size, the 70 %-quantile stays smaller than 1
but still some realisations degenerate as the 100 %-quantile stays almost constant.
For more than approximately 1100 particles, the median drops rapidly, but the
mean decreases much slower. The median and mean deviate from each other also
for ensemble sizes larger than 1500 because at least 4 realisations still have an
RMSE larger than one (see Fig. 6.3a).
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Figure 6.2.: Mean and median of the RMSE for different ensemble sizes for the PFCR
without localisation using an assumed observation error of (a): CTassumed = 0Obs and
(b): Oassumed = 1.6 - 0ons. The blue areas represent the 70 %-quantile (darker blue) and
the 100 %-quantile (light blue), respectively. Note the different scaling of the x-axes.

Oassumed — O Obs Oassumed — 16- O0bs
40 A -
o (a) (b)
.©
§ 30 + .
.E
« 20 .
15
0]
£ 10 1 .
jun
=2
0 T T T T T T
500 1000 1500 200 400 600
Ensemble size Ensemble size

Figure 6.3.: Amount of realisations with an RMSE larger than the true observation
error cops = 1.0 for the case of the PFCR without localisation using an assumed
observation error of (a): Gassumed = 00bs and (b): Cassumed = 1.6 - oops. Note the
different scaling of the x-axes.
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Figure 6.4.: MRMSE for different ensemble sizes and localisation radii ¢ using the
localised PFCR.
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In the case of Gassumea = 1.6 - 0ops (Fig. 6.2b), the efficiency increases signifi-
cantly. The minimum ensemble size is approximately 420. For larger ensemble
sizes, the mean and median are almost equal. For ensemble sizes larger than 480
only one realisation has an RMSE larger than one (see Fig. 6.3b). The 100 %-
quantile shows that the RMSE of this one realisation is also decreasing.

6.3.2. Case 2 — determine localisation radius

In this case, the localised PFCR is used. The simulations are performed with
varied localisation radii and ensemble sizes to investigate the behaviour of the
localisation and to determine an optimal localisation radius. The observation
error is oops = 1. In the case of a larger assumed observation error ossumeq =
1.6 - oops the result for the localisation radii is similar but shifted towards smaller
ensemble sizes.

In Fig. 6.4 the MRMSE is shown for different localisation radii and ensemble
sizes. The smallest MRMSE can be found for localisation radii in the interval
[3.5,5.5]. For smaller localisation radii, the necessary ensemble size to keep the
MRMSE constant increases because the reduction of the covariance by the local-
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Figure 6.5.: Mean and median of the RMSE for different ensemble sizes using the
PFCR with localisation. A localisation radius of ¢ = 4.5 is used. The observation
error is assumed to be (a): Gassumed = 00bs and (b): Tassumed = 1.6 - 0ops. The blue
areas represent the 70 %-quantile (darker blue) and the 100 %-quantile (light blue),
respectively. Note the different scaling of the x-axes.

isation matrix is too strong. For example, in the case of a localisation radius of
¢ =1, only the covariance of the directly adjacent dimension is used to generate
a new particle and this covariance is multiplied by a factor of 0.5. This results in
new particles that are almost randomly perturbed in each dimension.

For localisation radii larger than 5.5, the necessary ensemble size to keep the
MRMSE constant increases with increasing localisation radii because the effects
of the spurious correlation are increasing again. The increase of the necessary
ensemble size is slower. In this case, if no knowledge is available it is better
to choose a larger localisation radius than one that is too small since it can be
compensated using an increased ensemble size.

6.3.3. Case 3 — localisation

In this case, the PFCR is used with the localisation. As the MRMSE is smallest
for localisation radii in the interval [3.5,5.5] (cf. Fig. 6.4), the localisation radius
is chosen to be ¢ = 4.5. This radius is similar to those used for the EnKF e.g.
¢ = 4 (Anderson, 2007, 2009). Figure 6.5 shows the mean (red) and median
(blue) of the RMSE and the corresponding 70 %-quantile (darker blue) and the
100 %-quantile (light blue) for different ensemble sizes.
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Figure 6.6.: Amount of realisations with an RMSE larger than the true observation
error oops = 1.0 for the case of the PFCR using localisation. A localisation radius of
¢ = 4.5 is used. The observation error is assumed as (a): Gassumed = 00Obs and (b):
Oassumed = 1.6 - 00bs. Note the different scaling of the x-axes.

In the case of of Gassumeda = Tobs (Fig. 6.5a), the minimum ensemble size is
approximately 280. Without localisation five times more particles are necessary
for the same result (see Fig. 6.2a). Furthermore, the 70 %-quantile converges to
the median much faster and the 100 %-quantile starts to converge. Mean and
median are closer to each other since the number of realisations with an RMSE
larger than 1 drops fast for increasing ensemble sizes and sometimes reaches zero
(see Fig. 6.6a).

Similar to the case without localisation, the efficiency increases for an assumed
observation error of c,ssumed = 1.6 - 0ops. The minimum ensemble size is approx-
imately 110 (Fig. 6.5b). The convergence of the realisations improves similar to
the case without localisation. The RMSE of the 100 %-quantile decreases and
for ensemble sizes larger than 180 no realisation has an RMSE larger than 1 (see

Fig. 6.6b).
Fig. 6.7 compares the MRMSE for the case with localisation (dashed lines),
without localisation (solid lines), as well as, for Gussumea = 0obs (red) and a

Oassumed = 1.6 - 0ops (blue). Localisation significantly reduces the necessary en-
semble size. For the case 0.ssumea = 0ops the efficiency increased by a factor of
5 (compare red lines) and for the case Gassumea = 1.6 - oops by a factor of ap-
proximately 3.8 (compare blue lines). Using a larger assumed observation error
increases the efficiency for the case without localisation by factor of approximately
3.3 (compare solid lines). For the case with localisation the necessary ensemble
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Figure 6.7.: Comparison of the MRMSE for the case of the PFCR with localisation
(dashed lines), without localisation (solid lines), as well as with an assumed observation
error of assumed = 00bs (red) and oassumed = 1.6 - oops (blue).

size reduces by a factor of approximately 2.5 (compare dashed lines).

6.4. Summary and discussion

This chapter introduced a localisation method for the PFCR. Using the covariance
resampling (introduced in Chapter 5) allows to define a localisation for the particle
filter, which is very similar to the one already applied to the EnKF (Section 3.2.1).
The spurious long-range correlations that originate from small ensemble sizes are
cut off by the localisation matrix. However, the problem is not divided into
small subproblems as suggested by Snyder et al. (2015) because the localisation is
applied after the weighting step and only the newly sampled particles are localised.
This is in contrast to the EnKF, where the localisation is applied to the forecast
covariance and the analysis is calculated with an already localised covariance.
The localised covariance resampling still suffers from the curse of dimension-
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ality. Not all particles end up close to the observation such that the effective
sample size decreases to very small values and the covariance matrix is effectively
described by only a few particles. This can also be seen in the strong dependence
on the width of the observation distribution. Assuming an observation error of
1.6-times the original error increased the efficiency of the PFCR by a factor of 2.5
with localisation and a factor of 3.3 without localisation (see Fig. 6.7).

The efficiency of the PFCR increased significantly using localisation. For the
case without localisation five times more particles are necessary to obtain a con-
verging result. The PFCR with localisation is able assimilate the Lorenz-96 model
with 280 particles.

It is difficult to compare this outcome with the results of other studies because
the filters have been tested for different models or the observations were generated
differently. Robert and Kinsch (2017) used a model based on a modified shallow
water equation (Wirsch and Craig, 2014) and Tédter and Ahrens (2015) used a
80-dimensional Lorenz-96 model with Laplace distributed observations. Studies
based on a 40-dimensional Lorenz-96 model with Gaussian distributed observa-
tion errors obtained good results for ensemble sizes of 40 (Penny and Miyoshi,
2016) to 200 (Poterjoy, 2016) particles. However, Penny and Miyoshi (2016) used
randomly distributed observations such that observations can occur between two
dimensions. They also applied Gaussian noise in the forecast and the observation
error was oons = 0.5 compared to oops = 1.0 in this study. The more accurate
observations increase the predictability for an estimated state but are also more
prone to filter degeneration. In this case, the initial state is more important.
The most comparable study is possibly Poterjoy (2016), who used randomly dis-
tributed observations like Penny and Miyoshi (2016). The performance of the
PFCR with localisation is in the same order of magnitude.

The decisive advantage of the localised covariance resampling is the more ac-
cessible mathematics and the resulting much easier implementation compared to
other methods. While the other filters have not been tested for simultaneous
state and parameter estimation, the PFCR has been demonstrated successfully
for both tasks (as shown in Chapter 5), which can also be done using localisation.

79
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Three topics were addressed in this thesis: first, the differences and challenges
of data assimilation in convergent and divergent systems. Second, parameter
estimation with particle filters, for which a new resampling method has been
introduced and third, a localisation approach for the new resampling technique.

This work recognises the fundamental differences between divergent and con-
vergent systems for data assimilation. These differences are studied using the
divergent Lorenz-96 model and the convergent Richards equation. Successful
data assimilation in the presence of a model error, in this study represented by
an incorrect parameter, relies on unstable dimensions. These unstable dimen-
sions keep the ensemble spread large enough to assimilate new observations and
prevent filter degeneracy. This behaviour is inherent to divergent models such
as the Lorenz-96 model, which allows state estimation despite an incorrect pa-
rameter. In a convergent system, the ensemble converges to a wrong state due
to the incorrect parameter and the filter degenerates. Therefore, the convergent
model must be transformed into one with divergent dimensions. This can be
done by increasing the ensemble spread artificially using inflation methods or by
representing parameter errors with the ensemble using an augmented state. The
latter case leads to a diverging ensemble members and thus, to a larger ensemble
spread. However, this reduces the predictability of the system. To increase the
predictability again, it is necessary to estimate the parameters. In summary, a
good representation of model errors and parameter estimation is essential for the
success of data assimilation methods in convergent systems.

In soil hydrology, parameters are typically ill-known and need to be estimated.
Parameter estimation for particle filters is challenging, since it is necessary to
perturb the ensemble members in parameter space to avoid them being identical
after resampling, which leads to filter degeneracy. In this thesis, I developed a
new resampling method, the covariance resampling. Instead of duplicating par-
ticles, new particles are generated using the weighted covariance calculated from
the ensemble. The covariance matrix correlates observed with unobserved dimen-
sions to effectively estimate parameters and to prevent filter degeneracy. The
covariance resampling conserves the first two statistical moments in the limit of
large numbers, while also partly retaining the overall structure of the posterior
distribution in the kept ensemble. The effective sample size is a crucial parameter
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for the covariance resampling, as for small effective ensemble sizes, the calcula-
tion of the covariance matrix becomes inaccurate and the filter may degenerate.
The method is successfully demonstrated for state and parameter estimation in
a synthetic one-dimensional unsaturated porous medium with two homogeneous
layers.

Particle filters suffer from the curse of dimensionality. Localisation is the key
to successfully apply particle filters to high-dimensional nonlinear systems (Sny-
der et al., 2015; Morzfeld et al., 2017). However, the direct transfer of locali-
sation from the EnKF to particle filters is challenging because of discontinuities
resulting from local resampling. An advantage of the covariance resampling is
that it allows localisation analogous to the one used for the EnKF. However, the
localised covariance resampling still suffers from the curse of dimensionality be-
cause the localisation is applied to the analysis covariance and not to the forecast
covariance as in the EnKF. The localisation reduces the influence of spurious
long-range correlations and for the test case of a Lorenz-96 model it increases
the efficiency of the particle filter with covariance resampling by a factor of five.
This reduce the minimum ensemble size for convergence to 280. It is difficult to
compare the performance with other studies because the filters have been tested
on different models or the observations were generated differently. Studies us-
ing the Lorenz-96 models show good results for ensemble sizes of 40 (Penny and
Miyoshi, 2016) to 200 (Poterjoy, 2016) ensemble members but are still hardly
comparable. Both studies used randomly distributed observations and Penny
and Miyoshi (2016) additionally used more accurate observations. Compared to
other localisation methods introduced to the particle filter (e.g. Poterjoy, 2016;
Penny and Miyoshi, 2016; Robert and Kiinsch, 2017), the localised covariance re-
sampling has the advantage of more accessible mathematics and therefore easier
implementation. In addition, the particle filter with covariance resampling has
been successfully demonstrated for state and parameter estimation and can be
extended by localisation.

With the new methods for resampling and localisation introduced in this the-
sis, an important step towards nonlinear data assimilation with particle filters
for large convergent systems has been made. This opens the path to handle also
highly nonlinear systems that are hard for the EnKF. Examples of such systems
include soil water flow, as demonstrated in this thesis, but also transport of reac-
tive solutes, surface runoff processes and interaction networks in ecosystems.
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A. Appendix

A.1. Recursive Bayes’ theorem

In this section the recursive Bayes’ theorem is derived without the assumption of
independent observations (Eq. (3.10)) and without the assumption of Markovian
state development (Eq. (3.8)) made in Section 3.1.

First some general relations are defined for the random variables a, b and c,
such that they can be used for the further derivation. The joint probability is:

P(a,b) = P(a|lb)P(b) = P(bla)P(a). (A1)
Using Eq. (A.1), the following relations can be defined:
P(a,b,c) = P({a,b},c) = P(a,b|c)P(c) (A.2)
P(a,b,c) = P(a,{b,c}) = P(a|b,c)P(b,c) = P(alb,c)P(blc)P(c), (A.3)
which directly leads to:
P(a,b|c) = P(a|b,c)P(b|c) . (A.4)

The starting point of the derivation is Bayes’ theorem for a set of discrete
observations and states (Eq. (3.6)). The observations d"* can be sub grouped
such that the observation pdfs change to:

PHg) = P g (4.5)
Eq.éAA)P(dk’dl:kfl’ ¢0;k>P<d1:k71‘¢0:k) (A.6)

and
Pd™) = P(d" L d) (A7)
Eq;AA)P(dk’dmil)p(dl:kfl) ‘ (A.8)

Inserting Eq. (A.6) and Eq. (A.8) in Eq. (3.6) results in:

P(dk|d1:k—17 ,(/)O:k:)P<d1:k—1|¢O:k)P(,¢0:k)

P("PO:k‘dl:k) = P(dk‘dlzkfl)P(dl:kfl)
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Using Bayes’ theorem (Eq. (3.1)) for P(d"*~![p%%):
P(Tbo:k’dl:kfl)P(dl:kfl)

P(d1:k_1|'¢0:k) _ / : (AlO)
P(yp"")
Eq. (A.9) becomes
. . P dk dl:k—l 0:k P 0:k dl:k—l
P(d*|d™"")

Sub grouping the forecast pdf P(¢%*|d**7!), it becomes:
P(¢0:k|d1:k—1) — P(¢0:k—1’ ¢k|d1:k_1) (A12)
Eq~:(A-4)P<¢k|d1:k71, ¢1:k71)P(¢0:k71|d1:k71) (A.13)

Inserting Eq. (A.13) in Eq. (A.11) results in the general recursive Bayes’ theo-
rem:

P(dk|d1:k_1, ¢0:k)P(¢k|dl:k—l7 wl:k—l)P(¢0:k—l|d1:k—l)
P(dk’dl:k—l) ’
The difference of the recursive Bayes’ theorem (Eq. (3.12)) in Section 3.1 using

the assumption of independent observations and the assumption of Markovian
state development to (Eq. (3.12)) is:

P[Py ") P ) Pyt
P(d") P(d"|d"* 1) '

The pdfs are now dependent on the previous observations and states, such that it
is impossible to define a sequential filter. For every new observation, it would be
necessary to propagate the ensemble from the initial prior P(v°) again ( Vetra-
Carvalho et al., 2018).

Py*|d™) =

(A.14)

(A.15)

A.2. Divergent system

This section shows three additional runs for the study of data assimilation in
convergent and divergent systems (Chapter 4). These three cases are using the
divergent Loren-96 model (Section 2.2). The numbering of Chapter 4 will be
continued. Divergent case 3 (DC3) is an addition to the investigation of the
influence of a wrong parameter DC2 (Section 4.2.2). Instead of F' = 10 the
ensemble is propagated with F' = 6, while the observations are still taken with
F = 8. In divergent case 4 (DC4) and divergent case 5 (DC5) the observation
interval is reduced to Atops = 0.05, to study the behaviour in a more linear regime
of the Lorenz-96 model.
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DC3 - Dimension 2
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Figure A.1.: Divergent case 3 (DC3): the ensemble is propagated with F' = 6 instead of
F = 8 and the state is estimated. (a): The ensemble mean (orange) and the ensemble
(light orange) in the data assimilation run for state dimension 2. The observations
(purple) are generated with the true model run using F' = 8. The truth is shown
as a black dashed line. (b): Mean variance o2 (light blue) of the ensemble over all
dimensions and variance o3, (black) of dimension 2.

A.2.1. Divergent case 3 (DC3) — wrong parameter

The observations and the settings are the same as in DC2 Section 4.2.2, except
the ensemble is propagated with a forcing parameter of F' = 6. This results in
a less divergent forward propagation. The ensemble spread, o3, and o2, (see
Fig. A.1b) stays lower than in the case of F' = 10 (see Fig. 4.3b). This leads to
smaller corrections of the EnKF and sometimes the truth is not covered by the
ensemble anymore (see Fig. 4.3a). However, due to the divergent system dynamics
the filter is able to follow the truth.
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DC4 - Dimension 2
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Figure A.2.: Divergent case 4 (DC4): the observation interval is reduced to Atops =
0.05, the ensemble is propagated with F' = 10 instead of FF = 8 and the state is
estimated. (a): The ensemble mean (orange) and the ensemble (light orange) in the
data assimilation run for state dimension 2. The observations (purple) are generated
with the true model run using F' = 8. The truth is shown as a black dashed line. (b):
Mean variance o2 (light blue) of the ensemble over all dimensions and variance o3,
(black) of dimension 2.
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A.2.2. Divergent case 4 (DC4) — small interval, wrong
parameter

In this case, the observation interval is reduced to Atg,s = 0.05. The high
frequency of analysis steps, where the Kalman update reduces the variance in
the ensemble, prevents the Lorenz-96 model to develop enough divergence to
increase the ensemble spread sufficiently (see Fig. A.2b). Although the ensemble is
propagated with a more divergent model (F' = 10), the divergence is not sufficient
and the filter degenerates (see Fig. A.2a).

A.2.3. Divergent case 5 (DC5) — small interval, represented
error

In this case, the parameter error is represented by the ensemble. Each ensemble
member has a different parameter F'. The forcing parameter F' is drawn from a
Gaussian N (8,22). The true value lies within one standard deviation. Represent-
ing the error increases the variance only slightly (Fig. A.3b) compared to DC4
(Appendix A.2.2 and the minimal variance in the dimension has higher values.
This helps the filter enough such that it does not degenerate (Fig. A.3a).

Representing the parameter error in the case of frequent observations prevents
filter degeneracy. This is similar to the convergent CC3 in Section 4.3.3.

A.3. Experiments with different distributions

This section extends the study in Section 5.2 and illustrates the behaviour of
the EnKF and the particle filter with covariance resampling (PFCR) for two
additional prior distributions. The first prior is a Gaussian and the second a
lognormal distribution.

For all cases 5000 ensemble member are used such that the behaviour of the
filter can be shown without statistical noise. The analysis step is calculated
for an observation at d = 3.5 with three different observation errors o3,, =
02../2, 08, = 0%, and 03, = 20%.... The variance o3, is 02, = 17. The
particle filter without resampling is not shown in both cases because it samples the
posterior almost perfectly, however it would degenerate after several assimilation
steps.
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DC5 - Dimension 2
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Figure A.3.: Divergent case 5 (DC5): the observation interval is reduced to Atops =
0.05, the parameter error is represented by the ensemble using N (8,22) and the state
is estimated. (a): The ensemble mean (orange) and the ensemble (light orange) in the
data assimilation run for state dimension 2. The observations (purple) are generated
with the true model run using F' = 8. The truth is shown as a black dashed line. (b):
Mean variance o2 (light blue) of the ensemble over all dimensions and variance o3,
(black) of dimension 2.
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Figure A.4.: Prior Gaussian distribution P(z) (black, AV(0,17)) and histogram of the
5000 ensemble members (green).

A.3.1. Gaussian prior

The prior Gaussian distribution is chosen such that it has the same mean and
variance as the bimodal prior (Eq. (5.5)) in Section 5.2. So the initial ensemble is
sampled from N(0,17). The prior with the initial ensemble is shown in Fig. A.4.
Fig. A.5 shows the analysis for the EnKF and the PFCR. With a Gaussian prior
the EnKF assumptions are valid and the representation of the posterior is in all
cases excellent. The PFCR shows similar results. Since the posterior is Gaussian
and the covariance resampling conserves the first two statistical moments in the
limit of large ensemble sizes, newly generated particles fit well to the posterior.

A.3.2. Lognormal prior

In this section the lognormal distribution is used as a prior. This distribution has
some similarity with those observed in soil hydrology for an initially Gaussian
distributed ensemble in state and parameter space. An initial Gaussian becomes
skewed during an infiltration and is limited in the range. The minimal possible
water content is the residual water content 6, and the maximum value is the
saturated water content 6,. However, the exact shape was not analysed in detail
such that the lognormal distribution is used at this point for easier calculations.
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Figure A.5.: Analysis ensemble (green) for EnKF and PFCR for a Gaussian prior
(Fig. A.4), for observations (red) with different observation errors: o, = 0.,/2 (left
column), 03, = 03, (middle column) and 03, = 203, (right column). The true

posterior (black) is calculated using Bayes’ theorem. In case of the PFCR, 47.5 % (left),
23.8 % (middle) and 8.8 % (right) particles are resampled.
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Figure A.6.: Prior lognormal distribution P(z) (black, Eq. (A.16)) and histogram of
the 5000 ensemble members (green).

The lognormal distribution is defined as

1 _ (In(z)—p)?
P(z) = { V2o P FEGRE] w0 (A.16)
0 <0

where p and A\ are the mean and standard deviation of the natural logarithm of
x. The values for are chosen as ;1 = 0.2 and A = 0.8. For those values the EnKF’s
capabilities in representing the posterior decreases strongly. For a less skewed
function ( A < 0.5) the EnKF is capable in representing the posterior since the
function becomes more Gaussian. The prior with the chosen parameters and the
generated ensemble is shown in Fig. A.6

Fig. A.5 shows the analysis for the EnKF and the PFCR. The EnKF shifts the
maximum of the distribution to the observation. This results in a bias towards
the observation. Except for the inaccurate observation oy, = 207, parts of the
prior are conserved since the Kalman gain (Eq. (3.19)) becomes small for large
observation errors.

The PFCR can sample all posteriors with only small deviations because max-
imal 16.2 % of the particles were resampled, such that the prior distribution is
conserved in the retained ensemble.
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Figure A.7.: Analysis ensemble (green) for EnKF and PFCR for a lognormal prior
(Fig. A.6), for observations (red) with different observation errors: o, = 0.,/2 (left
column), 03, = 03, (middle column) and 03, = 203, (right column). The true

posterior (black) is calculated using Bayes’ theorem. In case of the PFCR, 16.2 % (left),
4.2% (middle) and 0.6 % (right) particles are resampled.
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A.4. Generation of correlated random numbers

This section is based on Berg et al. (2018).

A.4.1. Cholesky Decomposition

Correlated random numbers are generated using the Cholesky decomposition. We
use the LDLT decomposition which is part of the Figen3 library (Guennebaud,
Jacob et al., 2010). Decomposing the covariance matrix Q leads to

Q=LDLT, (A.17)

where D is a diagonal matrix and L is a lower unit triangular matrix. The LDLT
form of the decomposition is related to the LLT-form by

Q=LL" with L':=LD:. (A.18)

To draw a random vector y from a Gaussian distribution N (p, Q) with mean p,
we first generate a normal distributed (N (0,I)) random vector @ . This vector
is multiplied with L’ and the mean p is added:

y=L'z+p (A.19)

To verify that this gives the correct result the covariance matrix of y is calculated:

(y—p)(y—p)"=Lx(l/z) = LexTL™ = L'ILT = Q (A.20)

yields Q as required.

A.4.2. Regularisation of the ensemble covariance matrix

The calculation of the Cholesky decomposition (LDLT-version) is only possible
if the matrix is not indefinite. Mathematically, a covariance matrix has to be
positive semidefinite:

vTQu =0T (y; — p)(y; — p)Tv (A.21)
=> v (y; — p)(y; — v (A.22)
=> (v'(y;, —p)*>0 with veR?, (A.23)

but the covariance matrix calculated from our ensemble is occasionally indefinite.
The reason for the covariance matrix being indefinite is a numerical error in the
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calculation of this matrix. In fact, the calculation of the eigenvalues A results in
negative values in the order of O(1072Y).

For this purpose, the identity matrix I, which is multiplied by a scalar Ay, is
added to the covariance matrix. The value of A\, is in the order of magnitude
of the largest negative eigenvalue of Q. Thus, the regularised covariance matrix
reads

QReg. = Q + )\maxI . (A24)

In the experiments of Chapter 5 and Chapter 6, the smallest variance on the
main diagonal of the covariance matrix is still 16 orders of magnitude larger than
Amax such that the influence of this correction is negligible and does not change
the results.
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