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Zusammenfassung

Das Ziel dieser Doktorarbeit sind die Erforschung und Entwicklung von Regelungstechniken für die auf
dem organischen Rankine-Kreislauf basierten Abwärmerückgewinnungsyteme (WHR) für Lastkraft-
wagen. Die Systeme sollen so geregelt werden, dass sie möglichst viel Energie rückgewinnen. Aller-
dings ist das keine triviale Aufgabe, denn ihre höchst nichtlineare Dynamik ist von externen Eingän-
gen (Störungen) sehr stark beeinflusst. Zusätzlich müssen nichtlineare Nebenbedingungen eingehal-
ten werden. Um dieses Problem zu behandeln, ist in dieser Doktorarbeit ein dynamisches Modell for-
muliert, das auf Grundsätzen und empirischen Beziehungen der Thermodynamik und der Wärmeüber-
tragung basiert. Dieses Modell entspricht einer DAE von Index 1. Im Hinblick auf die Anforderun-
gen der verwendeten numerischen Methoden, es wurde mit einer für die Modellauswertung erforder-
lichen thermophysikalischen Eigenschaften Auswertemethodik versehen, die auf Splines beruht. Damit
wurde die stetige Differenzierbarkeit der Zustandstrajektorien bezüglich Steuerungen und Zustände
innerhalb des Modellauswertungsbereichs erreicht. Im Anschluss sind ein Optimalsteuerungsproblem
(OCP), ein nichtlineares modell-prädiktives Regelungsschema (NMPC) und ein Zustandsschätzer in
der Form eines bewegten-Horizont-Schätzungsschemas (MHE) formuliert. In dieser Doktorarbeit wer-
den effiziente numerische Methoden benutzt, um das OCP näherungsweise zu lösen und die MHE-
und NMPC-Schemata zu implementieren. Diese Methoden beruhen auf dem direkten Mehrzielver-
fahren für Optimalsteuerungsprobleme (DMS), den Rückwärts-Differenzenformeln zur Lösung von
DAE-Anfangswertproblemen und den entsprechenden Versionen des Echtzeititerationsschemas (RTI).
Die Stabilität einer gleichzeitigen Anwendung von auf RTI basierten NMPC- und MHE-Schemata ist
bereits bekannt.
Mehrere numerische Instanzen der DMS-Methode werden für die vorgeschlagene OCP-, NMPC- und
MHE-Schemata für ein reales Betriebsszenario getestet, das Lastkraftwagenabgasdaten, die während
einer tatsächlich durchgeführten Fahrt aufgenommen worden sind, verwendet. Diese Daten wurden
von unserem Industriekooperationspartner Daimler AG zur Verfügung gestellt. Zudem werden PI- und
LQGI-Regelungstrategien, die innerhalb der regelungstechnischen Literatur von WHR-Systemen weit
verbreitet sind, mit dem vorgeschlagenen Schema verglichen. Ein wichtiges Ergebnis dieser Arbeit ist,
dass das vorgeschlagene NMPC-Schema circa 3 [%] mehr Energie rückgewinnen kann als die PI- und
LQGI-Strategien, wenn der Zustandsvektor als bekannt angenommen wird. Darüber hinaus lassen die
Rechenzeiten des NMPC-Schemas zu, dass die Steuerung in Echtzeit aktualisiert werden kann, wenn
die Abtastzeit 100 [ms] ist. In einem realistischeren Szenario, in welchem der Zustand aus verrauschten
Signalen geschätzt werden muss, führt eine Kombination aus beiden vorgenannten NMPC- und MHE-
Schemata zu einer zusätzlichen Energierückgewinnung von circa 2 [%].
Konkret stellt diese Doktorarbeit neue Ergebnisse und Fortschritte in den folgenden Gebieten vor:

• Ein DAE-Modell für das WHR wurde entwickelt, das aus den Gesetzen der Energie- und Massen-
erhaltung sowie Wärmeübertragungsbeziehungen hervorgeht. Es ist mit einer Auswertungsmeth-
ode für die thermophysikalischen Eigenschaften ausgestattet, womit es die Eigenschaft der steti-
gen Differenzierbarkeit bezüglich seiner Steuerungen und Zustände innerhalb seines ganzen
Auswertungsbereichs besitzt.

• Eine neue, auf Echtzeitoptimierung beruhende Regelungsstrategie für das WHR wurde entwick-
elt. Es besteht aus einer NMPC-Strategie, die auf effizienten Simulations-, Optimierungs- und
Regelungswerkzeugen gründet. Das Schema ist imstande nichtlineare Zustands- und Steuerungs-
nebenbedingungen zu behandeln. Im Gegensatz zu anderen in der Literatur zu findenden In-
stanzen von NMPC-Ansätze für WHR, wird unser Schema durch seine effiziente numerische Be-
handlung echtzeitfähig, sogar wenn die volle nichtlineare WHR-Dynamik berücksichtigt wird.

• Das ist die erste Implementierung, die gleichzeitig NMPC- und MHE-Ansätze für die WHR-
Steuerung miteinbezieht. Die Kombination aus NMPC und MHE führt zu einem stabilen modell-
basierten Regelkreis, der aus realistischen Messungen die Steuerung berechnen kann.
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Abstract

This thesis aims at the investigation and development of the control of waste heat recovery systems
(WHR) for heavy duty trucks based on the organic Rankine cycle. It is desired to control these systems
in real time so that they recover as much energy as possible, but this is no trivial task since their highly
nonlinear dynamics are strongly affected by external inputs (disturbances). Additionally, nonlinear op-
erational constraints must be satisfied. To deal with this problem, in this thesis a dynamic model of a
WHR that is based on first principles and empirical relationships from thermodynamics and heat transfer
is formulated. This model corresponds to a DAE of index 1. In view of the requirements of the employed
numerical methods, it includes a spline-based evaluation method for the thermophysical properties
needed to evaluate the model. Therewith, the continuous differentiability of the state trajectories with
respect to controls and states on its domain of evaluation is achieved. Next, an optimal control prob-
lem (OCP) for a fixed time horizon is formulated. From the OCP, a nonlinear model-predictive control
(NMPC) scheme is formulated as well. Since NMPC corresponds to a state feedback strategy, a state
estimator is also formulated in the form of a moving horizon estimation (MHE) scheme. In this thesis,
we make use of efficient numerical methods based on the direct multiple shooting (DMS) method for
optimal control, backward differentiation formulae for the solution of initial value problems for DAEs,
and the corresponding versions of the real-time iteration (RTI) scheme in order to approximately solve
the OCP and implement the MHE and NMPC schemes. The simultaneous implementation of NMPC and
MHE schemes based on RTI has been already proven to be stable in the control literature.
Several numerical instances of the DMS method for the proposed OCP, NMPC and MHE schemes are
tested assuming a given real-world operation scenario consisting of truck exhaust gas data recorded
during a real trip. These data have been kindly provided by our industry cooperation partner Daim-
ler AG. Additionally, the PI and LQGI control strategies, of wide-spread use in the literature of control
of WHR, are also considered for comparison with the proposed scheme. An important result of this the-
sis is that, considering the highest energy recovery obtained from both strategies as a reference for the
given operation scenario, the proposed NMPC scheme is able to reach an additional energy generation
of around 3 [%] when the full state vector is assumed to be known, and its computational speed allows
it to update the control function in times shorter than the considered sampling time of 100 [ms], which
makes it a suitable candidate for real-time implementation. In a more realistic scenario in which the
state has to be estimated from noisy measurements, a combination of both aforementioned NMPC and
MHE schemes yields an additional energy generation of around 2 [%].
Concretely, this thesis presents novel results and advances in the following areas:

• A first principles DAE model of the WHR is presented. The model is derived from the energy
and mass conservation considerations and empirical heat transfer relationships; and features a
tailored evaluation method of thermophysical properties with which it possesses the property
of being at least continuously differentiable with respect to its controls and states on its whole
domain of evaluation.

• A new real-time optimization control strategy for the WHR is developed. It consists of an NMPC
strategy based on efficient simulation, optimization and control tools developed in previous
works. The scheme is able to explicitly handle nonlinear constraints on controls and states. In
contrast to other NMPC instances for the WHR found in the literature, our scheme’s efficient
numerical treatment make it real-time feasible even if the full nonlinear WHR dynamics are
considered.

• To the author’s knowledge, this is the first implementation that considers both the NMPC and the
MHE approaches used simultaneously in the control of the WHR. The combination of NMPC and
MHE produces a closed-loop, model-based implementation that can treat realistic measurements
as inputs and calculates the corresponding control functions as outputs.
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1 Introduction

In recent decades the urgency to develop strategies to decrease energy and fuel consump-
tion in the transport sector, in particular for heavy duty trucks, has become clear. Heavy duty
trucks combust oil derived fuels, which is associated to air pollution, ozone layer depletion,
greenhouse gases emissions and economic dependency, but at the same time are of crucial
importance to economy. Concretely, in 2015 oil derived fuels supplied 95% of the energy con-
sumed by the transport sector. In turn, the transport sector alone consumed about a third of
the European Union’s final energy consumption1 [148, 149]. Moreover, that same year 75%
of the total freight transport (measured in tonnes-kilometers) was transported on roads, and
79% of the European Union’s road freight transport was performed by heavy duty trucks (road
tractors and semi-trailers) [148].
With regard to the internal fuel consumption of heavy duty vehicles (both trucks and buses),
around one third of the fuel energy is used to effectively move the vehicle, one third is lost
as heat in the vehicle’s cooling system and one third is wasted as warm exhaust gas (see
e.g. [26, 71]). This gives a great potential for energy efficiency improvement in such vehicles.
Several alternatives have been introduced and analyzed, see [26] for an overview. In particular,
the Waste Heat Recovery Systems (WHR) have been introduced to recapture the energy wasted
in the exhaust gases. The recaptured energy can be directly incorporated to the powertrain
so as to ease the engine’s burden or, if the vehicle is hybrid, used to feed its electrical circuit.
Specifically, in this thesis we are interested in WHR based on the organic Rankine cycle (ORC).
We proceed to introduce it briefly for reference in the following discussion, and leave deeper
technical details for Chapters 2 and 3.
Let us consider the most simple system configuration of a WHR based on a Rankine cycle,
illustrated in Fig. 1.1. Therein, the warm exhaust gas coming from the engine enters the evap-
orator, along which some heat at a rate Q̇in is extracted from it. As a result, the exhaust gas
temperature is lower at the evaporator output. The extracted heat is used to evaporate a second
fluid, called the working fluid. For applications of a Rankine cycle of low to medium evaporat-
ing temperatures, the working fluid is typically chosen to be of organic nature, thus justifying
the name organic Rankine cycle. The working fluid is expected to enter the evaporator in a
liquid phase2 at its inlet (B), and is expected to leave it in a vapor phase3 at (C). This va-
por undergoes an increment of its volume as it passes through the expander, thus transferring
mechanical power Ẇout to the latter’s shaft, which in turn can be connected to an electrical
generator or to the vehicle’s powertrain directly. The working fluid, mostly in vapor phase at
the expander outlet (D), is afterwards passed through a condenser, in which some additional
heat is extracted from it at a rate Q̇out. At the condenser output (A), the working fluid is ex-
pected to be found in a liquid phase in order to be pumped again, by means of some energy
input Ẇin, towards the evaporator.
This technology has been also used for waste heat recovery in industry [4, 88, 129, 134, 153],
renewable energy generation [80, 90, 129, 133, 134, 151, 152, 153] and automotive applica-

1Final energy consumption is the total energy consumed by end users, such as households, industry and agri-
culture. It is the energy which reaches the final consumer’s door and excludes that which is used by the energy
sector itself.

2We will define the concept of a phase more precisely in Chapter 2.
3Idem.
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Figure 1.1: Organic Rankine cycle schematic diagram

tions [129, 147, 155, 156, 162]. In heavy duty and passenger vehicles, WHR systems based
on the ORC have been reported to produce reductions of 5-10% in the fuel consumptions de-
pending on the system and the driving cycle [26, 147]. This roughly corresponds to a 4-5%
recovery of the total fuel energy.
An important contrast between WHR for industrial and automotive applications, is that in the
latter the exhaust gas conditions can vary rapidly and in a very wide range. This affects the
whole ORC operation due to the strong coupling between the working fluid and the exhaust gas
taking place in the evaporator. Further, the ORC needs safeguard measures for its operation:
the working fluid at the expander inlet should be in a dry vapor state, since the latter’s blades
could suffer severe damage if impacted by droplets. On the other hand, too high a working
fluid temperature at the expander inlet leads to inefficient operation, and if at some point in the
cycle the working fluid is hotter than a certain maximum temperature, it will degrade due to its
organic nature. Moreover, the pump should receive only subcooled liquid, so as to eliminate the
risk of cavitation4. If the ORC is at risk of entering one of these conditions, the energy recovery
should be stopped, which is not desirable. As pointed out by [60, 106, 156], the ORC transient
effects should be taken into consideration in the efforts towards its performance optimization.
In the literature, the maximization of the ORC performance for a given application has been
done through component-wise experimental analysis [7, 68, 94, 116, 130, 168], component
design [132, 133], working fluid selection [75, 97, 142, 151, 160], and steady state ther-
modynamic analysis [111, 140, 141, 139, 161, 163, 168]. Economic criteria have also been
considered [89, 132]. None of these approaches takes transient effects into consideration. In
contrast, the context of control systems offers a natural environment for the inclusion of tran-
sient effects. As indicated in e.g. [131], important gains in the energy recovery can be achieved
with an appropriate choice of a control strategy for the WHR.
The main focus of this thesis is the application of model-based optimizing real-time control
techniques to the WHR for pursuing the maximization of its energy recovery during a given
driving cycle, while safeguarding the WHR components. In our analyses we explicitly consider
the transient behavior of the ORC. We proceed as follows:

1. To represent the WHR dynamics, a mathematical model is developed. The model is based
on concepts belonging to thermodynamics and heat transfer, and consists of an appropri-
ate connection of models corresponding to each component of the WHR. The resulting

4See Chapters 2 and 3.
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model posseses the structure of a differential-algebraic equation (DAE) of index 1. Essen-
tially this structure arises from a spatial discretization applied to the partial differential
equations corresponding to mass and energy conservation of the working fluid inside
the evaporator, an approach known in the literature as the moving boundary (MB).

The functions constituting the model’s right-hand side as well as its left-hand side matrix
depend on the thermophysical properties of the working fluid and the exhaust gas, which
leads to several challenges:

• Due to the phase change taking place inside the evaporator, some of the working
fluid’s thermophysical properties have non-differentiabilities or even discontinu-
ities with respect to the model’s state vector along certain curves contained in the
evaluation domain. Moreover, the shape of these curves complicates the direct ap-
plication of interpolation methods.

• The evaluation of these properties by means of standard computational methods
involve the solution of nonlinear systems of equations, which can lead to a big
computational effort on each model evaluation.

In order to treat these challenges, in this thesis a special evaluation method for the ther-
mophysical properties of the fluid and the exhaust gas is proposed. The method is based
on cubic and bicubic spline interpolation and on the definition of a special partition of
the properties’ evaluation domain. Moreover, a careful implementation of an extrapola-
tion technique allows for the evaluation of the thermophysical properties outside their
domains of definition without losing differentiability at the latters’ borders. With these
improvements the model’s evaluation speed is increased and its differentiability prop-
erties are enhanced: all functions constituting it are at least continuously differentiable
with respect to the state vector, control, parameters and external inputs.

2. Based on the mathematical model of the WHR, mathematical expressions for the opera-
tional constraints are formulated. The result is the definition of a vector function which
depends non-linearly on the state vector and control. This function defines a feasible
region in the state-control space which is not convex for the working fluid considered
in our studies. Additionally, a mathematical expression for the recovered energy during
a fixed time interval is given in terms of the state vector and control and used as a cost
function. It consists of a Lagrange term whose integrand is a non-linear function of the
state vector and the control.

3. Taking into account the mathematical model of the WHR, the constraints and the cost
function, an optimal control problem (OCP) is mathematically formulated for the WHR.
The problem presents a structure that is challenging to solve by means of analytical
methods. Therefore, a numerical solution is pursued.

4. For these means, the Direct Multiple Shooting (DMS) method (see e.g. [18, 92, 124])
is used. Therewith the OCP can be represented by a non-linear programming problem
(NLP) which is solved numerically instead of the original OCP. In our scheme we solve
the NLP by means of derivative-based methods, in particular the sequential quadratic
programming (SQP). In order to evaluate the functions and derivatives required by it,
we make use of an efficient DAE solver based on the backward differentiation formulae
(BDF). In addition, the computational effort is further reduced in our scheme by resort-
ing to partial reduction and condensing techniques, see [18, 92] and Chapter 4.

5. In addition, we consider a non-linear model-predictive control (NMPC) strategy for the
WHR. The strategy is attractive for this application for its closeness to the OCP for-
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mulation. Concretely, it is a state feedback control strategy that offers the possibility of
defining an objective function, whose minimization is pursued during the system opera-
tion. Further, NMPC is also able to deal with non-linear dynamic models and non-linear
constraints and it permits the incorporation of predictions of the future exhaust gas con-
ditions. For the numerical realization of this technique we resort to the DMS method
explained in the previous item and to the Real-time Iteration scheme (RTI), see [36].

6. Since the dynamic model’s state vector cannot be directly measured, a moving horizon
estimator (MHE) is implemented in order to estimate it from practical sensor measure-
ments5. In contrast to implementations based on the Kalman filter (cf. [79, 28, 102, 103,
104, 121, 123, 170]), in MHE several past measurements are explicitly considered in the
estimation. Moreover, the approach is appealing for our purposes due to its capability
to cope with our nonlinear DAE model explicitly. In our formulation it is assumed that
noise affects the measurements, but the dynamics are undisturbed. In addition, noise
is assumed to be white and Gaussian. Therefore, we choose a least-squares approach to
formulate the MHE, with which the joint maximum likelihood estimates are obtained un-
der the aforementioned hypothesis [76]. In order to implement the MHE we formulate
a tailored instance of the RTI scheme of [42, 86] based on the DMS method previously
mentioned. In [86] it is shown that the MHE scheme is more effective than an extended
Kalman filter (EKF) implementation, with similar computational effort. The stability of
NMPC and MHE working together in an RTI framework has been shown in [166].

7. The proposed strategies are implemented in a simulation environment. In all simula-
tions a scenario comprising exhaust gas massflow and temperature profiles at the WHR
evaporator inlet is considered. The profiles consist of real-world measurements car-
ried out by our industry cooperation partner Daimler AG during a heavy duty truck
trip in Baden-Württemberg, Germany, in 2015. Firstly, numerical experiments are per-
formed in which several instances of the DMS method’s time discretization for OCP and
NMPC are considered. These studies yield results on the computational times, feasibil-
ity and objective function values obtained with the different instances. Further, experi-
ments are performed for evaluating the potential benefit of counting on exact predic-
tions of the future exhaust gas conditions in the NMPC case. Also, the best approx-
imate OCP and NMPC trajectories are qualitatively compared. Next, the NMPC im-
plementation is compared with other control strategies frequently applied to WHR in
the literature. Specifically, we consider LQGI (cf. [103, 104, 105, 169, 170]) and PI
(cf. [6, 59, 74, 103, 104, 119, 120, 121, 122, 123, 131, 144, 156, 167]) implemen-
tations. Finally, the case in which the state is estimated from practical measurements
using the MHE is regarded. First, the estimation quality of the MHE is analyzed for a
particular numerical instance. Next, the results yielded by the NMPC when the state is
assumed to be known are compared with those yielded while using both the NMPC and
the MHE simultaneously. Lastly, the latter results are contrasted with those yielded by
the aforementioned PI and LQGI strategies.

In summary, the numerical results highlight the following:

• The proposed NMPC scheme is capable of controlling the WHR in real-time under
a sampling time of 100 [ms], a typical sampling time for an on-board controller.

• The exact knowledge of the future exhaust gas conditions improves the NMPC per-
formance, but not drastically if the prediction horizon is short.

5Namely, pressure, temperature and massflow measurements of the working fluid and the exhaust gas.
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• MHE can produce precise state vector estimations, resorting to this end to quantities
that are easily measurable in realistic implementations.

• The NMPC-MHE scheme and the NMPC scheme with full state knowledge behave
almost identically.

• The proposed scheme drives the WHR safely, keeping the operational constraints.
Moreover, more energy is recovered using it than using PI or LQGI controllers. In
comparison to the highest energy recovery of the last two, the proposed scheme
recovers around 2 [%] more when the MHE is used and around 3 [%] more when
the state is fully known.

1.1 Aims and Contributions of this Thesis

As previously mentioned, the main goal of this thesis is the control of the WHR of a heavy
duty truck in a real time environment using model-based techniques based on numerical opti-
mization. The achievement of this goal brings with itself the innovations and advantages with
respect to other state-of-the-art solutions listed next.

A tailored evaluation method for an MB model of the WHR: In this work, due to its
good precision with a small number of state variables [164], we make use of a nonlinear,
first-principles based model obtained through the MB approach. In contrast to most works,
we make use of the full nonlinear dynamics in our control formulation. Since, as explained
in Chapter 4, our methods impose differentiability requirements on the model, this aspect has
been carefully investigated, and a tailored scheme for evaluating the model has been developed
(see Section 3.3, cf. [62]). The scheme builds upon the one found in [58], extending it by
means of an additional extrapolation feature.

A new real-time optimization control strategy for the WHR: In [49, 131, 167, 168, 173] it
has been concluded, under the assumption of a steady state, that the ORC reaches an optimal
efficiency when the working fluid at the expander inlet (point (C) of Fig. 1.1) is in a saturated
vapor state6 while keeping a high evaporating pressure. Under the additional consideration
of an appropriate safety margin, set points for the corresponding controllers are generated.
In some articles, the set points are fixed [50, 49, 48, 51, 103, 131, 167, 168]. This approach
is suitable when the WHR is used in industrial processes, in which waste heat conditions can
be precisely controlled. However, in automotive applications, where the exhaust gas exhibits
a highly dynamic behavior and thus a steady state is hardly reachable, it is more suitable that
the controller leverages transient conditions. To this end, in [119, 122, 131, 156, 173, 174] the
set point is varied in accordance to the current working fluid and exhaust gas conditions. As
pointed out in [30, 48], these enhancements can be further improved if an NMPC strategy is
considered. In this thesis we propose an NMPC scheme based on efficient simulation, optimiza-
tion and control tools developed in previous works (see e.g. [124, 17, 8, 92, 36]). Our scheme
is able to explicitly handle nonlinear constraints on controls and states. In contrast to other
NMPC instances for the WHR found in the literature, our scheme’s efficient numerical treat-
ment make it real-time feasible even if the full nonlinear WHR dynamics are considered. To
illustrate this, a test scenario consisting of real-world data provided by Daimler AG is presented
in which the scheme reaches computational times faster than 100 [ms] (a typical sampling time
for an on-board controller) for different configuration settings.

6See Chapter 2.
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The first NMPC-MHE control scheme for WHR: To the author’s knowledge, this is the first
implementation that considers both the NMPC and the MHE approaches used simultaneously
in the control of the WHR. The combination of NMPC and MHE produces a closed-loop, model-
based implementation that can treat realistic measurements as inputs and calculates the cor-
responding control functions as outputs.

1.2 Structure of this Thesis

In Chapter 2 the thermodynamic concepts that allow us to evaluate the system’s performance
are introduced. In particular, mass and energy conservation laws are introduced, as well as
the role that main thermophysical properties play in the aforementioned processes. Numeri-
cal methods for the evaluation of those properties are briefly explained. Additionally, a brief
introduction to the phenomena of forced convection and two-phase flow is done. The Rankine
cycle in its original version is described and analyzed.
In Chapter 3, the general principles of Chapter 2 are applied to a specific case of the WHR. First,
the topology of the WHR under consideration is introduced, and afterwards a phenomenolog-
ical dynamic model for it is derived. The resulting model has the structure of a differential-
algebraic equation system (DAE) of index 1. The properties of this model are discussed, after
which an optimal control problem (OCP) based on it is stated. The problem solution depends
continuously on the initial value of the WHR state and on the driving pattern. The latter is rep-
resented by the massflow and temperature of the exhaust gas entering the evaporator. With the
OCP formulation as a basis, a nonlinear model-predictive control (NMPC) strategy is proposed
for implementing a state-feedback controller for the WHR. Since the involved state cannot
be fully measured, a state estimation problem is defined, and a moving horizon estimation
(MHE) approach is proposed to address it. At this point, the OCP and NMPC problems are still
formulated in function space.
Since the infinite dimensional problems introduced in Chapter 3 are difficult to solve analyt-
ically with the desired level of detail, in Chapter 4 the numerical methods used in this thesis
for their approximate solution are revised. First, the direct multiple shooting method is intro-
duced to parametrize the problems in a suitable way. As a result, finite dimensional nonlinear
programming problems (NLP) arise. These NLPs can be efficiently solved using the structure-
exploiting techniques that are described subsequently. Then, the real-time iteration scheme
(RTI) is introduced for the NMPC and MHE problems. The scheme is introduced to improve
the response speed of the NMPC and MHE schemes by exploiting the continuous dependency
of the optimal control and state estimation problems on the differential state and the mea-
surement data, respectively. Additionally, the PI and LQGI control strategies are introduced for
later comparison with our scheme.
Chapter 5 shows the results obtained from applying the procedures described in Chapter 4 to
the problems defined in Chapter 3, using a typical instance of the WHR model and a repre-
sentative vehicle driving profile (scenario). Several numerical solutions of the OCP, obtained
using different instances of the direct multiple shooting method’s time discretization, are ana-
lyzed. An analog procedure is followed for an NMPC instance which does not include a MHE,
i.e. in which it is assumed that the full state vector is available. The results are compared with
the solutions of the OCP. Additionally, the effect of the prediction quality of the vehicle driving
profile on the results is analyzed. To this end, two scenarios are presented whose only differ-
ence is the degree of knowledge of the vehicle driving profile. In one scenario, the prediction
matches the actual profile perfectly, and in the second the prediction is made by extrapolating
the profile along a given prediction horizon by a constant function whose value equals to the
last profile measurement.
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Later in Chapter 5, a brief study on the speed of response of the NMPC is done, with the aim
of assessing the method’s feasibility for real-time applications. Finally, the state uncertainty is
included by considering the use of the MHE. The estimator performance is studied for differ-
ent window lengths (and thus number of measurements entering it), taking again real-time
feasibility into account. Next, the whole MHE-NMPC ensemble performance is evaluated by
comparison of the control trajectories and energy recovery against those obtained with the
NMPC without MHE, which assumes the state can be measured with perfect accuracy.
Finally, selected results of the tests mentioned above are compared with those obtained using
the alternative strategies defined in Chapter 4.
Chapter 6 states this thesis’ main conclusions and gives an outlook of future development
possibilities.
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2 Thermodynamics and Heat Transfer

In this chapter, we give basic concepts on thermodynamics. They will be used extensively
throughout this work in order to define the model in Chapter 3, explain the considered meth-
ods for the evaluation of thermophysical properties in Section 3.3 and to physically analyze the
numerical results in Chapter 5. We begin by introducing fundamental definitions. Afterwards,
rather intuitive thermophysical fluid properties such as pressure, temperature and specific vol-
ume are introduced. Afterwards, the laws of thermodynamics are introduced, with which the
horizon opens and further properties might be introduced, such as enthalpy and entropy. Fi-
nally, the Rankine cycle is introduced. An idealized version of it is analyzed, in the search
for theoretical maximum efficiencies. This Chapter is largely based on the textbooks [24]
and [113].

2.1 Basic Definitions

In thermodynamics, a system is nothing more than the physical object of study. It is distin-
guished from its surroundings by means of an arbitrarily chosen boundary. This boundary may
be fixed or moving. If mass transfers through the boundary are allowed, the system is said to
be an control volume. Otherwise it will be denoted as a closed system. In particular, an isolated
system is one that does not interact with its surroundings in any way.
A thermophysical property is a macroscopic characteristic of a system to which a numerical
value can be assigned at a given time without knowledge of the previous history of the system.
The different thermophysical properties give information about the thermodynamic state of
the system, which is the condition it is found at a given time. Often, relationships between the
different thermophysical properties exist, so only a reduced amount of them are sufficient to
determine the state of a system.
A thermodynamic system is said to be in steady state if none of the system’s properties changes
with time. If any system properties change, the system is said to have undergone a process.
A sequence of processes that begins and ends at the same thermodynamic state is called a
thermodynamic cycle.
From the definition of thermophysical property, a quantity can only be considered as such if
its change in value between two states is independent of the process.
A thermophysical property is said to be extensive if its value for a given system equals the
sum of the property’s values for its constituting parts. A thermophysical property is said to
be intensive if its value does not depend on the extent or size of a system and may vary from
place to place within the system at any time. As a consequence, intensive properties may be
functions of position and time, whereas extensive properties may be only functions of time.
A phase is a quantity of matter that is homogeneous throughout in chemical composition and
physical structure (i.e. all the matter is solid, or all liquid, or all gas). In a system, one or more
phases may be found. If there are more than one, they are separated by the corresponding phase
boundaries. A pure substance is one that is uniform and invariable in chemical composition. It
can have many phases, but the chemical composition must be the same for each phase.
An equilibrium state is one in which no macroscopically observable changes would take place
if the system was isolated from its surroundings. A quasiequilibrium processes is a process in
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which the departure from a thermodynamic equilibrium is at most infinitesimal.

2.2 First Thermophysical Properties

In this section, the particular thermophysical properties known as specific volume, pressure
and temperature are defined. Their simplicity and intuitiveness allow the reader to have a quick
understanding of many phenomena studied in this work and give a solid ground to continue
the definition of other important thermophysical properties and laws in further sections.

In this work all mathematical modeling of matter is done under the continuum hypothesis,
which is the assumption that matter is distributed continuously throughout a region. This
assumption is of practical usefulness for macroscopic analysis. Moreover, experience indicate
that the resulting description of the behavior of matter is in agreement with experimental data
at the scales relevant in this work. This assumption allows to speak of intensive properties "at
a point" of the system.

If around a point in space a small volume V is considered, and the mass contained in this
volume is denoted by m, the density of matter at that point is defined as

% = lim
V→V ′

(m/V ),

where V ′ represents the smallest volume for which statistical mean values are meaningful and
the mass-volume ratio is defined. At that point, the specific volume is defined as the reciprocal
of the density: v = 1/%.

A very important property in fluids (in this work, gases or liquids) is pressure. Consider a fluid
at rest. If a plane with area A passing through a point in it is considered, this plane, independent
from its orientation, is subject to two forces perpendicular to it, of equal magnitude Fnormal and
opposingly directed. The fluid’s pressure at that point is defined as

p = lim
A−>A′

(Fnormal/A).

In this case, A′ is chosen in the same sense as V ′.

In order to introduce the concept of temperature, it is necessary to introduce the concept of
thermal equilibrium. If two systems are brought into contact through a wall, an interaction
between both systems might take place (in which case the wall is said to be thermally conduct-
ing; on the contrary the wall is said to be adiabatic), and some properties of both may undergo
changes. At some point in time, these changes will cease, and the properties in both systems
will reach new values. Both systems are then said to have reached a thermal equilibrium.

Even before introducing temperature, we can introduce the

Theorem 2.2.1 (Zeroth Law of Thermodynamics) If two systems are in thermal equilibrium
with a third one, then they are in thermal equilibrium with each other as well.

We define thus the temperature of a system as the physical property that tells whether two
systems are in thermal equilibrium. If two systems are in thermal equilibrium with each other,
their temperatures are equal. As stated, the definition of temperature is independent of the
sensorial perceptions of "hot" and "cold", but recovers the intuition, as two systems in thermal
equilibrium with one another do feel "equally hot".
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2.3 First Law of Thermodynamics

This work’s main concern is the energy efficiency. Basically, the first law of thermodynamics
states that energy is conserved along all processes. This statement is mathematically formal-
ized in this section, and gives a solid background for performing calculations concerning the
important concept of energy. The formalization requires a proper definition of work, internal
energy and heat, also given.
From Newton’s second law of motion it is possible to arrive at the concepts of kinetic energy,
potential energy and mechanical work. These establish the basis for the conservation of energy
in mechanics. In thermodynamics, the concept of energy and its conservation principles are
extended to cover more complex systems and interactions in a tractable way. We give first a
thermodynamic definition of work as follows: work is defined as any quantity that flows across
the boundary of a system during a change in its state and is completely convertible into the
lifting of a weight in the surroundings. In this thesis we assign the symbol W to work. The rate
of energy transfer by work per unit time is known as power and it is assigned the symbol Ẇ .
Given the power on a time interval [t1, t2], the energy transfer by work during this interval is
given by

W =

∫ t2

t1

Ẇdt. (2.1)

Notice that the definition of work actually includes a variety of energy transfer modes, such as
compression or expansion of gases or fluids, extension or compression of solids, mechanical
energy transmission through a shaft, electric current within a voltage difference, electric po-
larization, magnetic polarization, and so on. The inclusion of the corresponding hypothetical
converting devices to the aforementioned process allows the intepretation. The application
of work implies energy transfer. All energy transfers by work between a given system and its
surroundings may be added to yield a net total.
It is clear that work is not a property, since it depends on the process being applied. Also, notice
that works appears only at the boundary of a system, appears only during a change of state,
and is manifested by an effect on the surroundings. Since an energy transfer by work implies
a change of state in the system, we can evaluate the energy transfered by the process between
the initial (say, 1©) and the final (say, 2©) states as

W =

∫ 2©

1©
d̄W.

Since the integral needs in general detailed knowledge about the process involving the energy
transfer, we say that the quantity d̄W is an inexact differential: the dashed d (d̄) has the same
mathematical meaning as the usual (exact) differential d, but it is used to denote the need of
the knowledge of process details in order to evaluate the integral. Moreover, as with inexact
differentials, it makes no sense to talk about the value of the integral above as W2−W1: work
is not a property, and thus not possible to associate with a state. 1

We define the internal energy of a system as the sum of all energy stored in the system on its
different forms. It can include microscopic forms of energy such as molecular kinetic energy in
forms of vibration, rotation and motion, chemical linkages on each molecule, intermolecular
forces, and so on, but also macroscopic forms. It is an extensive property. Its symbol in this
work is U . All extensive properties are proportional to the system’s mass. Therefore, dividing

1Compare with the work definition used in mechanics as the line integral of a force along a given path.
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by it, a form of the property, denoted specific, may be obtained. The result is independent of
the system’s mass, thus intensive. In this thesis, the specific form of an extensive property is
denoted with the corresponding lower case symbol: the specific internal energy’s symbol is
thus u.
The next definition corresponds to heat. For clarity, keep in mind the defintion of thermal
equilibrium and temperature. We define heat as a quantity that flows across the boundary of a
system during a change in its state in virtue of a difference of temperature between the system
and its surroundings and from a point of higher to a point of lower temperature. In this thesis,
we assign heat the symbol Q. As with work, the rate of heat transfer is assigned the symbol Q̇.
Given the rate of heat transfer on a time interval [t1, t2], the energy transfer by heat during
this interval is equal to

Q =

∫ t2

t1

Q̇dt. (2.2)

The lower case symbol q̇ is assigned to the heat transfer rate per unit of system surface area,
also known as heat flux.
It is again clear that heat cannot be a property since it depends on the details of the process
involved. We assign denote thus its inexact differential as d̄Q. There are three heat transfer
modes: conduction, convection and radiation. These are treated with more detail in 2.7.
After having defined the internal energy, the work and the heat, we can formulate the first law
of thermodynamics as follows

Theorem 2.3.1 (First Law of Thermodynamics) If a system is subject to any thermodynamic
cycle, the work produced in the surroundings is equal to the heat withdrawn from its surroundings.
Mathematically,

∮

d̄Q =

∮

d̄W,

where the symbol
∮

denotes the integration of the corresponding differentials along all the pro-
cesses constituting the thermodynamic cycle.

The fact that the integral of d̄Q − d̄W cancels along a closed integral for each possible path
suggests that there is a property whose exact differential is precisely that quantity: we rec-
ognize here the internal energy. An alternative differential formulation for Theorem 2.3.1 is,
therefore,

dU = d̄Q− d̄W.

In other words, all changes in a system’s internal energy might be summarized as energy
transfers to and from the environment by heat and work.
This definition may be also extended to a time rate form as

dU
dt
= Q̇− Ẇ .

So far we have not considered mass transfers across the system’s boundary, i.e. we have only
treated closed systems in our analysis. To expand the first law of thermodynamics to this im-
portant subclass of systems, we consider first the mass conservation principle. In a time rate
form, if at a given instant the control volume contains an amount of mass m, receives mass
through one of its openings at a rate ṁi and loses mass through another one at a rate ṁo, then
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it holds that

dm
dt
= ṁi − ṁo. (2.3)

In this work we call quantities ṁi and ṁo input and output massflows, respectively. For the
case in which more than one opening exists, we may use i and o as indices for the incoming
and outgoing massflows, respectively, and sum along all openings, so the mass conservation
principle reads

dm
dt
=
∑

j

ṁi, j −
∑

j

ṁo, j . (2.4)

A given fluid massflow may be obtained by knowing, for example, the fluid’s density at the
boundary and then multiplying by the volume of fluid displaced by unit of time. If a volume
V is displaced with frequency f , then the massflow is given by

ṁ= %V f . (2.5)

Equivalently, if the mass transfer occurs through an opening of area A, and the fluid velocity
at the exit is V, it holds that

ṁv = AV. (2.6)

Whenever there is mass exchange across the control volume’s boundaries at a rate ṁ, there is
an energy transfer which consists of the internal energy contained by the amount of mass being
transfered ṁu on the one side, and of work associated with the displacement of fluid under
the influence of pressure on the other. If the pressure at which the mass transfer takes place
is p, the corresponding force-velocity product is (pA)V. Using Eq. (2.6), the work corresponds
to ṁpv. Therefore, the mass exchange implies a total energy transfer of ṁ(u+ pv).
With the previous considerations, we have that the first law of thermodynamics, formulated for
a control volume in which mass enters with massflow ṁi, with internal energy ui and specific
volume vi, at a pressure pi; and mass exists the control volume with massflow ṁo, with internal
energy uo and specific volume vo, at a pressure po, in a time rate form is

dUcv

dt
= Q̇cv − Ẇcv + ṁi(ui + pivi)− ṁo(uo + povo). (2.7)

The subscript ’cv’ stands for "control volume". Ucv denotes the total internal energy contained
inside its boundary; Q̇cv denotes the total heat transfer occurring across its boundary and Ẇcv
denotes all energy transfers by work occurring across its boundary that are not related to mass
transfer.
At this point it makes sense to define the enthalpy of a system with volume V as the quantity

H = U + pV.

The enthalpy is an extensive property. Dividing by the system’s mass and recognizing the spe-
cific volume and the specific internal energy, the specific enthalpy is thus defined as

h= u+ pv. (2.8)

Since on the definition of the specific enthalpy only intensive properties appear, it is also an
intensive property. Enthalpy in itself has no physical meaning, and its definition is only for
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operational convenience. On the previous equation, the energy balance may be stated as

dUcv

dt
= Q̇cv − Ẇcv + ṁihi − ṁoho. (2.9)

If there are many openings through which the system may exchange mass with its surround-
ings, we may sum upon all openings as done before and state

dUcv

dt
= Q̇cv − Ẇcv +

∑

j

ṁi, jhi, j −
∑

j

ṁo, jho, j , (2.10)

which is the time rate version of the first law of thermodynamics for control volumes of prefer-
ence in this thesis.

2.4 Second Law of Thermodynamics

The first law of thermodynamics is insufficient to treat complex real world problems since it
does not provide criteria for distinguishing which processes are possible from those that are
not; nor it is able to predict the direction of a given process. Experience shows, however, that
some processes do take place instead of others, even if the energy balances are in all cases con-
sistent. The second law of thermodynamics, to be introduced in this section, provides means
to make these distinctions. Additionally, it can be used to evaluate the maximum performance
of a power cycle, which is of interest in this work.
The second law of thermodynamics can be formulated in several equivalent ways. We start with
the Clausius formulation, which is easy to accept, and then state the more practical Planck-
Kelvin formulation. That both laws are equivalent is partly demonstrated in [113].

Theorem 2.4.1 (Second Law of Thermodynamics (Clausius)) It is impossible for any sys-
tem to operate in such a way that the sole result of its operation would be an energy transfer
by heat from a cooler to a hotter body.

For the Planck-Kelvin formulation, the concept of a thermal reservoir is needed. A thermal
reservoir is a system whose temperature always remains the same in spite of energy transfers
by heat. These are in fact ideal systems, but in nature there are systems that approximate them
closely, such as big masses of air or water or two-phase systems (see 2.5).

Theorem 2.4.2 (Second Law of Thermodynamics (Planck-Kelvin)) It is impossible for any
system to operate in a thermodynamic cycle and deliver a net amount of energy by work to its
surroundings while receiving energy by heat transfer from a single thermal reservoir.

Since, from the first law of thermodynamics, we can define the work performed by a system
undergoing a thermodynamic cycle on its surroundings as

Wcycle =

∮

d̄W =

∮

d̄Q =Qcycle,

the Planck-Kelvin formulation may be stated mathematically as

Wcycle ¶ 0, (2.11)

under its statement’s conditions.
We say that a processes is irreversible if, after its realization, the initial state of the system
considered and its surroundings cannot recovered. A process is reversible if both the system
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and its surroundings can be returned to their initial states. For example, letting an hot object
cool down to a lower atmospheric temperature would take place, increasing the surrounding
air’s temperature; the spontaneous cooling of the surrounding air for reheating the object to
its starting temperature will not take place; and if it was desired to bring the object back to
its temperature, additional energy would need to be taken from the surroundings, with the
consequent difference in the surrounding’s final and initial states. This is basically what the
Clausius formulation of the second law of thermodynamics formulates.
All real processes are irreversible. A process will be irreversibly if it is performed in the pres-
ence of irreversibilities, such as heat transfer through finite temperature differences, electric
resistance, free expansion of a gas or liquid into a smaller pressure, diffusion and mixing pro-
cesses, spontaneous chemical reactions, magnetization under hysteresis, mechanical friction,
and so on.
An idealizations of real processes can be introduced to allow an easier mathematical manipu-
lation of complex processes: an internally reversible process is one in which no irreversibilities
are found within the system. The system’s state is assumed to move through a sequence of
equilibrium states, and the irreversibilities are assigned to the system’s surroundings. Using
the Planck-Kelvin statement of the second law of thermodynamics it can be shown that a ther-
modynamic cycle satisfying its conditions is internally reversible if and only if Wcycle = 0.
Continuing the analysis, we state the Clausius inequality: For any thermodynamic cycle it holds
that

∮

(d̄Q/T )boundary
def
= −σcycle ¶ 0. (2.12)

The subscript ’boundary’ means that the integral is evaluated at the system’s boundary. The
closed integral means that the evaluation also takes place along the whole cycle. The proof
follows from the Planck-Kelvin formulation of the second law of thermodynamics and is par-
tially done in [113]. Following the reasoning in the previous paragraph, the value of σcycle
is positive for irreversible processes, and zero for reversible processes. We call this term the
cycle’s entropy production due to irreversibilities. Now, since in internally reversible cycles the
system is free from irreversibilities (and, in particular, the system’s temperature is uniform),
a new, extensive property called entropy can be defined, and the symbol S can be associated
with it, so that its change between states 1© and 2© is defined as

S2 − S1 =

�

∫ 2©

1©
d̄Q/T

�

int. rev.

. (2.13)

The subscript ’int. rev.’ indicates that the process connecting states 1© and 2© needs to be an
internally reversible process. We define hence the entropy differential as

dS = d̄Q/T.

The lower case symbol s denotes the specific entropy.

Remark 2.4.3 Notice that for an internally reversible process the entropy change (and the en-
tropy differential) can have any sign, or be zero. The Clausius inequality precludes the possibility
of a positive integral for the particular case of a cycle only.

Remark 2.4.4 Notice as well that, as for the enthalpy, no direct physical meaning is associated
to it. The entropy is introduced as a tool for the thermodynamic analysis.
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Given a process between states 1© and 2©, which may be irreversible, let us think of an inter-
nally reversible process that would bring the system from 2© back to 1©. The sequence of both
processes constitutes a thermodynamic cycle, subject to the Clausius inequality. The integral
along the whole cycle may be decomposed in accordance to the irreversible and reversible
segments, and the definition of entropy may be used to obtain the entropy balance for closed
systems,

S2 − S1 =

∫ 2©

1©
(d̄Q/T )boundary +σ, σ ¾ 0. (2.14)

Since the theoretical internally reversible process between states 2© and 1© is free from irre-
versibilities, the cycle’s entropy production σ is due to the first process only, and therefore the
subscript ’cycle’ is dropped. In accordance to the Clausius inequality, σ is not allowed to be
negative. As previously discussed, the equation’s left-hand side is the entropy change due to
the process. The integral’s subscript ’boundary’ indicates again that the integral is evaluated at
the system’s boundary, where the heat transfer d̄Q is locally transfered at temperature T (not
necessarily uniform throughout the system’s boundary). Therefore, the whole integral can be
interpreted as an entropy transfer between the system and its surroundings, and may have any
sign in accordance to the direction of the heat transfer. Essentially, the identity above tells that,
for a closed system, the change in its entropy due to the realization of a process equals the
amount of entropy transfered to or from the surroundings plus the entropy produced by the
process’ internal irreversibilities. Notice that in the equation above, energy transfer by work
does not appear. Work does not transfer entropy.
The corresponding time rate form of the entropy balance for closed systems is

dS
dt
=
∑

j

Q̇ j/T j + σ̇, σ̇ ¾ 0, (2.15)

where the sum is made in such a way that the whole system boundary is covered. To index
j corresponds a boundary sector in which heat transfer takes place under an instantaneous
temperature T j at a rate Q̇ j . σ̇ corresponds to the time rate of entropy production due to
irreversibilities within the system.
A particular case of a closed system is an isolated system. In that case, no heat transfer takes
place, and therefore entropy production is only the source of entropy change. Only processes
which increase the system’s entropy are allowed. Now, since entropy is an extensive property,
if the isolated system is divided in a subsystem and its surroundings, then entropy may locally
decrease as the result of a process, but the sum of all entropy changes due to that process has
to be positive.
Starting from the entropy balance for closed systems, the entropy balance for control volumes
includes terms for entropy transfer accompanying mass flow. In a time rate form, if at a given
instant mass enters the control volume at a boundary region i at time rate flow ṁi having
specific enthalpy si; mass leaves the control volume at a boundary region o at time rate flow
ṁo having specific enthalpy so; and the heat transfers take place as described for the entropy
balance for closed systems, the entropy balance for control volumes in its time rate form is

dScv

dt
=
∑

j

Q̇ j/T j +
∑

j

ṁi, jsi, j −
∑

j

ṁo, jso, j + σ̇cv, σ̇cv ¾ 0, (2.16)

where Scv refers to the total entropy contained within the control volume, and σ̇cv indicates
the rate of entropy production within the control volume due to the process execution.
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After having briefly discussed the first three fundamental laws of thermodynamics in this sec-
tion, we proceed in the next one to describe the thermophysical properties of matter with
further detail. The facts presented in both sections will prepare us to perform thermodynamic
analysis on thermodynamic cycles in Section 2.6.

2.5 Thermophysical Properties of Fluid States of Matter

In this section, the concepts, definitions and laws of thermodynamics introduced in Sections 2.3
and 2.4 are applied to systems in gas or liquid forms. Since for such systems mathematical
relationships between several of their thermodynamic properties exist, the knowledge of only a
reduced subset of them is sufficient to specify their thermodynamic state. This makes it possible
to calculate the system’s remaining thermodynamic properties and to represent the system’s
thermodynamic state in a graphical way using diagrams. These two aspects are the topic of
this section. They will be of crucial importance for performing the calculations needed in our
model, which is to be introduced in Chapter 3, and the corresponding analysis in Chapter 5.
We close the section with a brief discussion on the state of the art concerning the search for
an optimal fluid for the energy recovery system considered in this thesis.

2.5.1 Degrees of Freedom in Simple Compressible Systems

Retaking from Section 2.1, the state of a closed system is its condition as described by the
values of its properties. Nevertheless, from observation of many thermodynamic systems it is
known that not all properties are independent of one another. In this thesis, we are particularly
interested in simple compressible systems: those are systems that consist of pure substances, or
uniform mixtures of nonreacting gases. From Gibbs’ phase rule (see e.g. [24] for its derivation)
it is known that the number of properties F (also known as degrees of freedom) that determine
the state of a simple compressible system consisting of C components and a number of phases
in thermal equilibrium P must satisfy the relationship

F = C − P + 2.

Thus, for a pure simple compressible substance, the number of degrees of freedom is two on
single-phase thermodynamic states and one in two-phase thermodynamic states.
For the rest of the section, the discussion will cover only pure simple compressible substances.
Experience shows that in those systems both the temperature (T) and the specific volume
(v) can be considered as independent, and the pressure p can be obtained as a function of
both, (i.e. p = p(T, v)). This gives rise to the p-v-T surface. These are the p− v − T values the
substance would assume in thermal equilibrium. Fig. 2.1 shows the p-v-T surface for ethanol.

Remark 2.5.1 The only aspect defining a phase in pure, simple compressible systems is the phys-
ical structure matter can assume. Therefore, both terms may be used interchangeably in this case.

As previously discussed, in single-phase regions of the p-v-T surface it is enough to know the
value of any two properties of the set {p, v, T} to fix the state and thus be able to obtain the third
one. In two-phase regions of the p-v-T surface the pressure is only a function of temperature
(i.e. p = p(T )), thus the state can only be fixed by means of the specific volume v and a property
of the set {p, T}. There exists also a region in which three phases coexist in equilibrium: this is
the so-called triple line. The only degree of freedom along this line corresponds to the specific
volume.
On the p-v-T surface, the thermodynamic states at which a phase change begins or ends are
are called saturation states. The vapor dome is the region of the p-v-T surface where liquid
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Figure 2.1: p-v-T surface for ethanol

and vapor phases are found in equilibrium. The lines bordering it are called saturated liquid
and saturated vapor lines. They both meet at the critical point, which is characterized by a
fixed point (vc , Tc , pc) on the p-v-T surface. These coordinates receive the name of critical pres-
sure, critical specific volume and critical temperature, respectively. In practice, two-dimensional
projections of the p-v-T surface are often used for representing the thermodynamic state and
evaluating some relevant properties. These correspond to the p-v, T-v and the p-T planes. The
latter is also known as the phase diagram, since the projections of the two-phase regions on
this plane take the form of curves, and the triple line reduces to a point. On this plane, any
point not belonging to a line corresponds a single-phase state. On Fig. 2.2 the p-v and p-T
planes for ethanol are plotted. In this thesis we do not consider the T-v plane.
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Figure 2.2: p-T and p-v planes for ethanol

On the phase diagram, the (p, T ) coordinates corresponding to any of the depicted curves
receive the name of saturation pressure and saturation temperature, respectively, and they des-
ignate the pressure and temperature at which a phase change process takes place.
Since we are interested in fluid phases, the p-v plane on Fig. 2.2 does not include information
related to solid states. On the p-v plane, the vapor dome is represented by the bell-shaped
region. Additional curves known as isotherms can be added. They represent the set of ther-
modynamic states having a particular temperature. Along isotherms corresponding to tem-
peratures lower than the critical temperature, on single-phase regions, pressure decreases at

17



CHAPTER 2

�

� T H E R M O D Y N A M I C S A N D H E AT T R A N S F E R

fixed temperature for increasing specific volume, but it stays constant as the two-phase liquid-
vapor region is traversed. On saturation states, these isotherms have no defined slope. For
temperatures equal or higher than the critical temperature at the critical point, the associated
isotherms do not cross the two-phase liquid-vapor region and the pressure is always decreasing
with the specific volume. Moreover, their slope is always defined. For the critical temperature,
the coordinates (pc , vc) represent an inflection point on the associated isotherm.

2.5.2 Phase Changes

On the following discussion phase changes between liquid and vapor states are considered,
and thus only thermodynamic states corresponding to temperatures lower than the critical
temperature. In those cases, when pressures are relatively high or the specific volume is rela-
tively low, the system is found in a liquid state, also known as subcooled liquid state. If pressure
is kept constant, but the substance is, for example, heated until the corresponding saturation
temperature is reached, the substance reaches a saturated liquid state. Additional heat addi-
tion results in formation of vapor, with considerable increment of volume and no increase of
temperature. The new droplets are found in a vapor state, with which the substance is now
found in a two-phase liquid-vapor mixture state. In thermal equilibrium, the vapor part reaches
a saturated vapor state, whereas the liquid part keeps on a saturated liquid state. If the heating
process continues, more and more amount of liquid turns into vapor until the whole system
reaches the saturated vapor state (thus becoming single-phase again). If therefrom the heat-
ing at constant pressure is continued, the system’s temperature would increase again, and the
system would enter a superheated vapor state.
For two-phase liquid-vapor mixture states, the quality x is the ratio of the mass of substance
found in a vapor phase to the system’s total mass,

x = mvapor/(mvapor +mliquid). (2.17)

This quantity is useful for evaluating the mixture’s intensive properties. For example, if the
specific volumes for the saturated liquid and saturated vapor states associated with the same
pressure are v′ and v′′, respectively, then the system’s specific volume is given by

v = (1− x)v′ + x v′′ = v′ + x(v′′ − v′). (2.18)

Similarly, under the same conventions, the system’s specific enthalpy, internal energy and en-
tropy are given by

u= (1− x)u′ + xu′′ = u′ + x(u′′ − u′), (2.19)

h= (1− x)h′ + xh′′ = h′ + x(h′′ − h′), (2.20)

s = (1− x)s′ + xs′′ = s′ + x(s′′ − s′). (2.21)

The following relationships hold as well for a phase change at a fixed temperature T (or pres-
sure p = p(T )):

s′′ − s′ = (h′′ − h′)/T, (2.22)

u′′ − u′ = (h′′ − h′)− p(v′′ − v′), (2.23)
�

dp
dT

�

sat
=

h′′ − h′

T (v′′ − v′)
, (2.24)

where the left-hand side of the last identity indicates the slope of the pressure with respect to
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the temperature in two-phase liquid-vapor mixture states. The information we are lacking at
this moment is where to obtain numerical values the saturated states’ properties from, or what
to do at single-phase states to evaluate the properties mentioned above, or others. Until now,
we have been focused on given qualitative descriptions concerning the physical structure of
matter. The goal of the next subsection is to give the elements that also allow a quantitative
description of it.

2.5.3 Numerical Evaluation of Thermophysical Properties

From Section 2.1 we have that a property os a macroscopic characteristic of a system to which
a numerical value can be assigned. In this work we are interested in using numerical tools to
solve model-based problems and thus the concrete numerical values the thermophysical prop-
erties of a system under study take are of key importance. The goal of this subsection is to
briefly introduce where does each value come from. It is clear that some quantities like pres-
sure, temperature or specific volume can be obtained by direct measurement with appropriate
devices, and these data may be summarized in tables for each substance. However, other prop-
erties such as entropy, enthalpy and internal energy in their specific variants, also needed for
numerical evaluations, are not that easy to obtain. Moreover, since collected data are not con-
tinuous, a concrete way must be found to obtain the property values at states not necesarilly
included in the collected data.
As seen in Section 2.5.1, pure simple compressible systems can be characterized by their p-
v-T surface. This characterization can be done through diagrams and tables (the so-called
steam tables), but also analytically, in what is called an equation of state, which is a functional
form relating the three magnitudes. These equations, often deduced empirically, often reach
complex forms. The software REFPROP [93], which we make use of in this thesis, provides the
computational implementation of several kinds of equations of states for the evaluation of the
thermophysical properties of a wide range of substances, which is of great convenience when
a large number of high-accuracy evaluations are required. One equation of state implemented
in this software for the case of ethanol corresponds to the volume-translated Peng-Robinson
equation of state [118]:

p =
RT

v + cPR − bPR
−

aPRαPR(T,ω)
(v + cPR)2 + 2bPR(v + cPR)− b2

PR

, (2.25)

where R = 8.314472
�

m3Pa/K mol
�

is the universal gas constant, T is the temperature in
Kelvins, and v is the specific volume. Substance-dependent magnitudes aPR and bPR depend
on the respective critical temperature Tc and pressure pc; cPR corresponds to an empirical
constant:

aPR = 0.457235528921R2T2
c /pc; bPR = O.0777960739039RTc/pc; cPR = 0.0043733.

Function αPR(T,ωPR) has the expression

αPR(T,ωPR) = (1+ κPR(ωPR)
�

1+ (T/Tc)
1/2
�2

, (2.26)

where

κPR(ωPR) = 0.37464+ 1.54226ωPR − 0.26992ω2
PR. (2.27)

ωPR is known as the acentric factor, and is a substance-dependent scalar parameter. In the
case of ethanol, its value is 0.644 [-]. The correlation is valid between 250− 650 [K] and for
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pressures up to 280 [MPa]. The volume translation is computed so that density at Tr = 0.7
the Helmholtz equation of state for in [43].
This way, an analytical correlation between p, v and T is implemented. In this case, since p can
be directly obtained when T and v are known, it is said that the relationship is explicit in the
pressure. This is not true for the temperature nor the specific volume, since a nonlinear equa-
tion needs to be solved in order to obtain the corresponding magnitude from the other two.
Another important property satisfied by this equation is that the partial derivatives of all three
properties with respect to the other two may be expressed analytically as function of properties
that are easy to measure, such as p, v and T . This is used in combination with several gen-
eral thermodynamic identities resulting from the first and second laws of thermodynamics and
from the theory of exact differentials to obtain more useful relationships between the partial
derivatives and the measurable properties. Further, we introduce the specific Helmholtz’s free
energy a, and its dimensionless version α as

a
def
= u− Ts, α

def
= a/RT. (2.28)

As enthalpy and entropy, a and α are intensive properties, and need not have a physical mean-
ing. They are introduced for notational convenience. Helmholtz’s free energy has the important
property of being a fundamental function, which means it can provide a complete description
of the substance’s thermodynamic state. Important identities exist that relate it and its partial
derivatives to important properties, and their partial derivatives2. For this reason, it is de-
sirable to count on analytical expressions for Helmholtz’s free energy whose high accuracy is
proven on a wide domain. The approach implemented in REFPROP used in this work utilizes
the empirically obtained relationships from [43] and [150]. In the following, we (only) sum-
marize those found in [43]. The corresponding empirical constants’ values can be found there.
The expression used for the dimensionless Helmholtz’s free energy is

α(δ,τ) = α0(δ,τ) +α(δ,τ), (2.29)

where the functions’ arguments are the reduced density δ = vc/v and the reciprocal reduced
temperature τ= Tc/T . α0(δ,τ) is the function that yields the dimensionless Helmholtz’s free
energy for an ideal gas. The function is corrected by means of α(δ,τ), explained briefly. The
expression for the dimensionless Helmholtz’s free energy for the case of an ideal gas is

α0(δ,τ) =
h0

0τ

RTc
−

s0
0

R
− 1+ ln

�

δτ0

δ0τ

�

−
τ

R

∫ τ

τ0

c0
p(T )

τ2
dτ+

1
R

∫ τ

τ0

c0
p(T )

τ
dτ. (2.30)

Arbitrary reference values T0 = 273.15 [K], p0 = 0.001 [MPa], h0
0 = 45800 [J/mol] and

s0
0 = 180 [J/K mol] are considered3. Values δ0 = vc/v0 and τ0 = Tc/T0, where v0 is the ideal

gas specific volume at (p0, T0). The ideal specific heat capacity c0
p(τ) is assigned an empirical

relationship, namely

c0
p(T ) = R

�

d1 +
5
∑

i=2

di
(θi/T )2 exp(θi/T )
(exp(θi/T )− 1)2

�

. (2.31)

In this expression, d1 and di ,θi for i in {2, . . . , 5} are empirical constants. With respect to the

2The reader is pointed to [24, 113] for an extensive list.
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real-gas correction, the corresponding expression, again empirical, is

α(δ,τ) =
m
∑

k=1

Nkδ
ikτ jk exp

�

−γδδ
lk
�

. (2.32)

Coefficients Nk and γ, and exponents ik, jk and lk are fitted for ethanol using a specific set of
data.
Having the analytic expressions for Helmholtz’s free energy, many thermophysical properties
can be evaluated including, but not limited to, the following4:

Pressure
p
%RT

= 1+δ
�

∂ α

∂ δ

�

τ
, (2.33)

Internal energy
u

RT
= τ

��

∂ α0

∂ τ

�

δ

+
�

∂ α

∂ τ

�

δ

�

, (2.34)

Enthalpy
h

RT
= τ

��

∂ α0

∂ τ

�

δ

+
�

∂ α

∂ τ

�

δ

�

+δ
�

∂ α

∂ δ

�

τ
+ 1, (2.35)

Entropy
s
R
= τ

��

∂ α0

∂ τ

�

δ

+
�

∂ α

∂ τ

�

δ

�

−α0 −α. (2.36)

Notice that α is basically parametrized as a function of the temperature and the specific volume
(or density). Together with the fact that analytical forms are available, the pressure, enthalpy,
internal energy and entropy can be directly evaluated using Eqs. (2.33) to (2.36) when both
properties are available. When this is not the case, additional algebra and/or the solution of
nonlinear equations needs to be performed. For convenience, in this thesis we are interested
in evaluating properties given knowledge of pressure-entropy and pressure-enthalpy pairs.

Properties as Functions of the Pressure and the Entropy. In case the pressure and the
entropy are given, say p = p∗, s = s∗, the rest of the thermophysical properties can still be
evaluated, but if the Helmholtz’s free energy is used as the fundamental function, particular
algorithmic steps need to be taken. Concretely, consider first Eqs. (2.33) and (2.36) as a sys-
tem of nonlinear equations in (τ,δ) of the form F1(τ,δ; p∗, s∗) = 0. Solving for those values
yields the associated τ∗,δ∗. The temperature and the specific volume (or density) can be thus
evaluated, along with the internal energy and the enthalpy using Eqs. (2.34) and (2.35). In
this work we are mostly interested in the enthalpy in these circumstances.

Properties as Functions of the Pressure and the Enthalpy. In case the pressure and the
entropy are given, say p = p∗, h= h∗, analogous to the previous case, consider first Eqs. (2.33)
and (2.35) as a system of nonlinear equations in (τ,δ) of the form F2(τ,δ; p∗, h∗) = 0. Solving
for those values yields the associated τ∗,δ∗. The temperature and the specific volume (or den-
sity) can be thus evaluated, along with the internal energy and the entropy using Eqs. (2.34)
and (2.36). In this work we are interested in evaluating the temperature, the entropy, the
density, and the latter’s partial derivatives with respect to enthalpy and pressure this way.
In summary, each time REFPROP receives a query for the evaluation of thermodynamic prop-
erties, the corresponding systems of nonlinear equations have to be solved, the corresponding

3The choice of the reference entropy and enthalpy does not have any impact on physically meaningful calcu-
lations, since on them the property values themselves are not relevant, but the differences between property values
belonging to different thermodynamic states.

4The notation for the partial derivatives (∂ α/∂ x)y is to be read "the derivative of α with respect to x while
keeping y constant".
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derivatives are evaluated and a set of identities needs to be applied. Since for our purposes
these evaluations may have to be repeated on numerous ocasions, it is convenient to count on
a fast way of accessing this important information. In Section 3.3 the above presented numer-
ical approach will be complemented so as to allow for a faster computation of the different
fluids’ thermophysical properties.
Having introduced the different states of matter and the way the thermophysical properties
can be evaluated at each thermodynamic state, we are in conditions of introducing a concrete
thermodynamic cycle for power production: the Rankine cycle, which will be done in the next
section. This cycle has the distinctive feature that an important component of it, the working
fluid, undergoes a phase change from subcooled liquid to superheated vapor. In this work, we
are interested in a particular version of this cycle, to be introduced in Chapter 3.

2.6 Thermodynamics on Power Cycles

Ways have been devised in which thermal energy may be transformed into work. One of those
is the Rankine cycle, to be introduced in this section. The Rankine cycle is by far the estab-
lished standard for vapor power systems. In particular, the heat recovery system for heavy duty
trucks that is the object of study of this dissertation is a particular variant of this cycle. As any
physical system, it is subject to the laws of thermodynamics described in previous sections of
this chapter. We begin this section by exploring the corollaries that apply to the special case
of power cycles like this. Afterwards, a basic variant of the cycle is introduced: the different
thermodynamic processes are described, a thermodynamic analysis is performed for each one,
and a brief description of the physical components carrying them on is supplied. Integrating
the single processes, statements are made with respect to the cycle’s efficiency and main design
factors. We close the section by giving a brief overview of different variants of the cycle.

2.6.1 General Corollaries

A first thermodynamic analysis of power cycles can be made using Theorem 2.3.1 to evalu-
ate the performance of a general thermodynamic power cycle, that is, a thermodynamic cycle
whose goal is to deliver a positive net work to its surroundings while being thermally com-
municated with a hot and a cold body. We already know from Theorem 2.4.2 that this would
impossible to achieve if the system was thermally communicated with a single thermal reser-
voir, but the presence of the second body makes this possible. On Fig. 2.3, the directions in
which heat and work are considered positive are included.

Hot Body

Cold Body

Cycle

Figure 2.3: Energy transfer direction convection. When heat is transfer from the hot body to the cycle,
or from the cycle to the cold body, its sign is possitive. Likewise, work performed by the
cycle to its surroundings is assigned possitive sign.
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With the conventions from Fig. 2.3 it follows from Theorem 2.3.1 for closed systems that

Wcycle =Qin −Qout,

where Wcycle is the cycle’s net work on its surroundings, Qin represents the amount of heat
transfered from the hot body to the system during the cycle and Qout represents the amount
of heat transfer from the system to the cold body during the cycle. In power plants, typically
Qin is obtained from the combustion of a fuel or from a controlled nuclear reaction. In the
case of this thesis’ system of interest, the source of Qin is hot exhaust gas from a heavy duty
truck. In power plants, Qout is usually delivered to the environment by means of a near lake
or a cooling tower. In the case of this thesis’ system of interest, Qout is delivered to the truck’s
coolant. Qin may therefore be seen as an energy source, whereas Qout as an energy waste. The
cycle’s thermal efficiency is thus defined as

ηTH
def
=Wcycle/Qin = 1−Qout/Qin. (2.37)

With the help of the second law of thermodynamics, more can be said about power cycles
thermally communicated with two thermal reservoirs.

Corollary 2.6.1 No thermodynamic cycle delivering a positive net work to its surroundings while
being thermally communicated with a hot and a cold reservoir can reach a thermal efficiency of
100%.

Proof. For such a cycle to reach a thermal efficiency of 100%, heat transfer Qout should fade in
(2.37), making the system actually in thermal contact with only one reservoir and thus violat-
ing Theorem 2.4.2. �

Further, from the same law, the following corollaries can be demonstrated (see e.g. [113] for a
proof). As a previous concept, a reversible power cycle is a power cycle in which no irreversibil-
ities within the system are found as it undergoes the cycle, and in which all heat transfers
between the system and the thermal reservoirs occur reversibly.

Corollary 2.6.2 (Carnot Corollaries for Power Cycles) The following two statements hold
true:

1. The thermal efficiency of a reversible power cycle is greater than one of an irreversible power
cycle when both are operating between the same two thermal reservoirs.

2. All reversible power cycles operating between the same two thermal reservoirs have the same
thermal efficiency.

Since neither the system characteristics nor the cycle details play a role in the derivation of the
corollaries, and the actual factor that makes the heat transfers take place is the temperature
difference between both reservoirs, it follows that the thermal efficiency of a reversible power
cycle operating between two thermal reservoirs must be a function only of their temperatures.
By choosing the Kelvin temperature scale, the ratio between the heat transfers between a
system executing a reversible power cycle and two thermal reservoirs at temperatures θH and
θC

56each is given by
(Qout/Qin)rev. cycle = θC/θH.

As a consequence, the maximum thermal efficiency that any power cycle in thermal contact
6In this thesis, we use the symbol θ to denote the numerical value of a temperature in the Kelvin scale. In

contrast, the letter T denotes the temperature as a property, independent of its scale.
6Subindex ’H’ is associated to the hot reservoir, subindex ’C’ is associated to the cold reservoir.
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with two thermal reservoirs can obtain corresponds to that of the reversible cycle in thermal
contact with the same thermal reservoirs, which is given by the expression

ηTHmax = 1− θC/θH. (2.38)

It follows that both a low cool reservoir temperature and a high hot reservoir temperature
improve the power cycle’s maximum theoretical thermal efficiency.

2.6.2 Rankine Cycle

The Rankine cycle is an example of a thermodynamic power cycle thermally connected to
two bodies at different temperatures. Since the idealization of these bodies corresponds to the
thermal reservoirs used on Section 2.6.1, the associated deductions and definitions are valid
for this case too. On its simplest form, the Rankine cycle consists of four processes applied to
a fluid circulating through several components, also known as the working fluid. On Fig. 2.4,
the components responsible of the realization of each process, their connections and the con-
ventions of positive energy transfer directions (mass and energy flowing in the direction of the
arrows are considered to be positive) are depicted. Additionally, in Fig. 2.5(a), the working
fluid’s intermediate thermodynamic states, denoted by A©- D©, are represented on a p-v plane
for a typical case. Since temperature and entropy are also thermodynamic properties, the val-
ues associated to states A©- D© can be also represented in a T-s diagram, which is extensively
used to describe thermodynamic cycles. Fig. 2.5(b) shows a T-s diagram for a typical Rankine
cycle. As explained briefly, it is important that states A© and C© correspond to subcooled liquid
and superheated vapor, respectively.

Evaporator

Condenser

Pump Expander
Working 

fluid cycle

CoolantCoolant

A

B

D

C

(Actuator)

Figure 2.4: Rankine cycle: components, conexions and energy transfer direction conventions

The processes constituting the Rankine cycle correspond to:

• A©- B©, Pumping: the working fluid is circulated by the pump. As a result, its pressure at
B© is higher than that at A©, and the working fluid enters the evaporator with massflow

ṁin.

• B©- C©, Heating: the working fluid enters the evaporator, where it is heated by an ex-
ternal heat source, so that it undergoes a phase change from a subcooled liquid to a
superheated vapor state.
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Figure 2.5: Rankine cycle: working fluid thermodynamic state representations on p-v and T-s planes

• C©- D©, Expansion: the working fluid vapor is expanded in a turbine (also called ex-
pander), delivering work as it flows through it. Consequently, the working fluid suffers
a reduction on its pressure and temperature, and some condensation may take place.

• D©- A©, Cooling: so as to close the cycle and thus reinject the working fluid into the
pump inlet, a condenser is included, through which the working fluid is cooled down
until a subcooled liquid state is reached again.

It is important to keep the working fluid at a subcooled liquid state at A©. If bubbles are present
at the pump’s inlet (i.e. fluid is in a two-phase state), the phenomenon of cavitation takes place.
This phenomenon takes place when the bubbles implode as a result of the high pressure found
near the pump’s outlet, thus generating a shock wave that impacts the face of the impeller,
affecting performance and reducing its lifespan. Eventually, the succession of implosions may
even destroy the impeller. Additionally, the working fluid at C© needs to be at a superheated
vapor state since the mass of even small droplets is considerably higher than the same volume
of vapor, causing a great impact in the expander blades. As with pumps, this is also cause of
lower performance, lifespan reduction and eventually of device destruction.

Remark 2.6.3 Unless stated otherwise, in this work we assume that the heat transfer from the
hot body is big enough bring the working fluid from a subcooled liquid state B© to a superheated
vapor state C©. On power plants the fuel injection can be controlled to fulfill such a requirement.
However, as explained later in Chapter 3, it is not always possible control this in the system under
study. When the heat transfer is not enough, a different operational mode is activated in which a
bypass throttle parallel to the expander is opened, so that the working fluid traverses it instead of
the expander. The system does not generate power during this period.

We introduce the following nomenclature: an adiabatic process is one in which no heat transfer
between the system and its surroundings takes place; an isentropic process as one in which the
entropy change is zero; an isobaric process is one performed at constant system pressure; an
isothermal process is one performed at constant system temperature.
Having defined the processes performed on a real Rankine cycle, we proceed to introduce the
following idealizations, which ease its mathematical handling. Since they yield a reversible
cycle, statements may be done on the real cycle’s maximum theoretical efficiency.

• A©- B©: the pump has no friction and its machining tolerances are perfect. The working
fluid does not exchange heat when inside the pump. Therewith, this process is considered
isentropic.

• B©- C©: the heat transfer and fluid displacement take place at constant pressure through
the evaporator.
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• C©- D©: the working fluid’s expansion is carried out reversibly, in a quasiequilibrium
process. No heat exchange with the environment takes place during the expansion. This
process is thus considered isentropic.

• D©- A©: the heat transfer and fluid displacement take place at constant pressure through
the condenser.

Pumping and Expansion Processes

Applying Eqs. (2.3) and (2.9) to the pumping process, recognizing that the process is adia-
batic (Q̇cv = 0), and considering the system as in steady state inside the pump (dUcv/dt = 0,
dm/dt = 0), the power input ẆA→B the pump needs to bring the system from state A© to state
B© is

ẆA→B = ṁA→B(hB − hA), (2.39)

where ṁA→B is the massflow imposed by the pump in steady state, and hA and hB represent
the enthalpy associated to states A© and B©, respectively.
The exact same reasoning applies for the ideal expander. Therefrom it follows that the amount
of power delivered by it to its surroundings corresponds to

ẆC→D = ṁC→D(hC − hD), (2.40)

where ṁC→D is the massflow flowing through the expander on steady state, and hC and hD
represent the enthalpy associated to states C© and D©, respectively.
Until now, only the first law of thermodynamics (Theorem 2.3.1) has been applied to these
processes, under the hypothesis that they are adiabatic and operate in steady state7. From
Eq. (2.39), for a given, fixed state A©, the work required by the pump per unit mass
�

ẆA→B/ṁA→B

�

decreases with hB. Considering the second law of thermodynamics through
Eq. (2.16) for this process,

σ̇A→B = ṁA→B(sB − sA)¾ 0. (2.41)

Since for pumps ṁA→B ¾ 0, this tells us that state B© is only allowed to have specific entropies
greater or equal to those of state A©. As a consequence of the first Carnot corollary, Corol-
lary 2.6.2(1), the minimum allowed work required by the pump per unit mass is obtained in
the limit case where no irreversibilities are found in the process (σ̇A→B = 0), ergo, when the
process is isentropic (sB = sA). Since in reality this is not the case, a new, theoretical state
B©is (B isentropic) with the property that sB,is

def
= sA is introduced. A second property of B©is,

usually pressure, is assigned from B©, e.g. pB,is
def
= pB, so that the enthalpy at state B©is, hB,is,

may be evaluated following the procedures from Section 2.5.3 using sB,is and pB,is, and the
minimum allowed work required by the pump per unit mass to circulate the working fluid
between pressures pA and pB corresponds to

�

ẆA→B/ṁA→B

�

is = hB,is − hA. (2.42)

Since on real processes irreversibilities do appear, the isentropic efficiency for the pump is de-

7These assumptions are realistic, since the component’s boundaries are too small to allow for big heat leaks,
and the energy transfers by work due to the process are greatly superior to them.
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fined as

ηp,is =

�

ẆA→B/ṁA→B

�

is
�

ẆA→B/ṁA→B

� =
hB,is − hA

hB − hA
. (2.43)

Experience shows that for actual pumps, ηp,is reaches values between 0.75 and 0.85. In prac-
tice, this value is considered a given fixed parameter associated with the device. Given state
A© and pB, hB is evaluated using ηp,is as

hB = hA+
1
ηp,is

�

hB,is − hA

�

. (2.44)

The previous reasoning can be applied to the expander as well, with the appropriate sign
conventions. In that case, the given state corresponds to C©, and the pressure from D©, pD, is
given. A new theoretical state D©is is defined with the same entropy as C© and the pressure
of D©, e.g. sD,is

def
= sC and pD,is

def
= pD. The corresponding enthalpy hD,is is evaluated using sD,is

and pD,is with the procedure of Section 2.5.3. Therewith, the maximum work delivered by
the expander per unit mass is obtained for the isentropic process C©- D©is, and corresponds to
�

ẆC→D/ṁC→D

�

is, given by

�

ẆC→D/ṁC→D

�

is = hC − hD,is. (2.45)

The isentropic efficiency for the expander ηex,is is introduced to account for irreversibilities as

ηex,is =

�

ẆC→D/ṁC→D

�

�

ẆC→D/ṁC→D

�

is

=
hC − hD

hC − hD,is
. (2.46)

Typical values for ηex,is are between 0.7 and 0.9. ηex,is is in practice used as a given fixed
parameter associated with the device. Given state C© and pD, hD is evaluated using ηex,is as

hD = hC −ηex,is

�

hC − hD,is

�

. (2.47)

Further, the expander volumetric efficiency ηex,V accounts for internal working fluid leakages.
For an expander in which the expansion chamber volume is Vex, if it operates at a rotational
frequency f and a working fluid whose density at the inlet is % flows through it with massflow
ṁ, the volumetric efficiency is given by the expression

ηex,V =
ṁ

% f Vex
. (2.48)

Heating and Cooling Processes

Applying Eqs. (2.3) and (2.9) to the heating process on a steady state analysis (dUcv/dt = 0,
dm/dt = 0), since no work is performed on heat exchangers (Ẇcv = 0), one obtains that the
heat transfer from the surroundings to the working fluid between states B© and C© is given
by

Q̇B→C = ṁB→C(hC − hB). (2.49)
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Since the process is considered isobaric, it holds that pC = pB. Additionally, for an internally
reversible process, Eq. (2.16) (dScv/dt = 0, σ̇cv = 0)

�

Q̇B→C

�

int. rev. = ṁB→C

∫ C

B
T dS = ṁB→C TB→C(sC − sB). (2.50)

If the process is isothermal, TB→C corresponds to the process’ temperature. Otherwise, it cor-
responds to the process’s mean temperature.
Considering the cooling process, the same analysis applies to conclude that the heat transfer
from the working fluid to the surroundings between states D© and A© is given by

Q̇D→A = ṁD→A(hD − hA). (2.51)

For isobaric processes it holds that pA = pD. If the process is considered internally reversible

�

Q̇D→A

�

int. rev. = ṁD→A

∫ A

D
T dS = ṁD→ATD→A(sA− sD). (2.52)

If the process is isothermal, TD→A corresponds to the process’ temperature. Otherwise, it cor-
responds to the process’s mean temperature.
In practice, knowing hB, ṁB→C and Q̇B→C , the enthalpy hC can be obtained using Eq. (2.49).
Analogous for given hD, ṁD→A and Q̇D→A, using Eq. (2.51). The heat transfers Q̇D→A and
Q̇B→C taking place inside the heat exchangers (the evaporator and the condenser) are treated
with more detail in Section 2.7. They follow very complex relationships dependent on fluid
thermophysical properties, massflow and heat exchanger geometry.

Thermal Efficiency

The Rankine cycle’s thermal efficiency can be evaluated using Eq. (2.37) to obtain an expres-
sion involving the different state enthalpies

ηTHRankine = 1−
Qout

Qin
= 1−

hD − hA

hC − hB
. (2.53)

From the same equation, if the heat transfers are assumed to be internally reversible, and both
the pumping and expansion processes are isentropic, the whole cycle is internally reversible,
and the maximum allowed Rankine cycle thermal efficiency may also be expressed as a func-
tion of the mean heating and cooling temperatures as

ηTHmax,Rankine = 1− TD→A/TB→C . (2.54)

This result is similar to Eq. (2.38). The temperatures TC and TH appearing there were the cool
and hot reservoir temperatures of an idealized power cycle. On the contrary, temperatures
TD→A and TB→C on Eq. (2.54) refer to the working fluid, and correspond to mean temperatures
associated to a specific kind of process. Therefore, neither the external heat source nor the heat
sink need to be thermal reservoirs. The conclusion is, in spite of this, similar to the case of a
general power cycle connected to two thermal reservoirs: a high mean heating temperature
and a low mean cooling temperature increment the cycle’s maximum theoretical efficiency.
It is also interesting to observe the effect of the heating and cooling pressures pB and pD
on the maximum theoretical efficiency. As seen on Section 2.5.1 (see Fig. 2.2), in two-phase
liquid-vapor mixture states, the temperature and pressure on a simple compressible system are
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related. It can be shown that the slope of the corresponding p-T curve is always positive, i.e. the
saturation pressure increases with temperature. Additionally, on single-phase regions, for the
same entropy, it can be shown that an increase in pressure implies an increase in temperature.
With these arguments, incrementing pressures pB and pD has the same effect as increasing
TB→C and TD→A, respectively.
Thus far we have considered general thermodynamic principles and have applied them to
the particular cases of simple compressible systems and power cycles. In particular, we have
considered a simple topology of a Rankine cycle. In our analyses we have considered the heat
transfers with the environment as given. In the following section, we give more insight on heat
transfer modes, which will be useful when the evaporator model is extended in Section 3.2 to
include transient operation modes.

2.7 Heat Transfer: Two-phase Flow

In this section, the heat transfer mode known as convection is introduced. In this work we are
interested in the particular case of internal forced convection boiling, also known as two-phase
flow. We proceed by firstly introducing the ruling equation for all convection processes: New-
ton’s law of cooling. It turns out that one of its parameters depends heavily on the particular
case the equation is applied to. Therefore, we continue by making an introductory explanation
of the underlying physics and close with this work’s main assumptions in this topic, which will
be summoned in Chapter 3. The interested reader can find details in [11, 52].
The term convection is understood as that kind of heat transfer that takes place between a sur-
face and a moving fluid when they are at different temperatures. The fluid’s motion may be of
a molecular, random nature; a macroscopic, bulk nature, or be constituted of the superposition
of both. The fluid motion nature influences the internal local energy transfers, and therefore
both mechanical and thermal aspects appear strongly coupled, so appropriate considerations
need to be taken. All heat transfer processes by convection are described, regardless of their
nature, by Newton’s law of cooling: the convective heat flux from a surface at temperature Tsurf.
to a fluid at temperature T∞ far enough from it8q̇conv., is given as

q̇conv. = α(Tsurf. − T∞), (2.55)

where α is the convection heat transfer coefficient. This coefficient depends on the surface
geometry, the nature of the fluid motion, and the fluid thermophysical and transport properties.
In particular, in forced convection the flow is caused by external means, such as a pump. The
term internal flow refers to one for which the surface confines the fluid. This influences the
fluid’s spatial velocity and temperature distributions. In this work we are interested on internal
forced convection boiling, which is said to happen as the fluid experiences a phase change from
liquid to vapor in its flow direction.

2.7.1 Internal Flow in Circular Tubes

In the following, we will consider only the case of two-phase flow along circular tubes. If that’s
the case, a configuration like that the one depicted in Fig. 2.6 is observed, where we focus on
a laminar flow regime (that is, the fluid flows in laminae or layers, and no macroscopic mix-
ing among layers is observed). Therein, the tube’s internal radius is denoted as R, the radial
coordinate from a cylindrical coordinate system is denoted by r and the longitudinal coor-
dinate is denoted by z. The radial velocity and temperature distributions V(r, z) and T (r, z)

8In the specialized literature this distance is known as the thermal boundary layer.
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along the tube are depicted. Suppose that at z = 0, the fluid enters the tube with a uniform

Inviscid flow region Boundary layer region

Hydrodynamic entrance region Fully developed region (H)

Thermal entrance region Fully developed region (T)

Figure 2.6: Hydrodynamic and thermal boundary layers in internal forced convection. Adapted
from [11].

velocity distribution. At the contact with the tube’s surface, effects associated with the fluid’s
viscosity cause the fluid velocity to become zero at the tube’s surface (i.e. at r = R), and the
velocity distribution suffers a distortion. Before the fluid traverses a distance ze known as the
hydrodynamic entrance length, its velocity increases as r decreases until eventually the orig-
inal velocity is recovered at r = rb(z). The region of space in which the original velocity is
not affected receives the name of inviscid flow region, whereas the one with the distorted ve-
locity distribution is called the hydrodynamic boundary layer region. The latter’s radial width,
δb(z) = R− rb(z), increases with z until the inviscid flow region disappears. The velocity distri-
bution keeps changing with z until z = ze, after which the flow is said to be hydrodynamically
fully developed. The shape of the velocity distribution in the fully developed region is different
depending on the flow’s degree of turbulence.
Thermally, a similar phenomenon is observed. If the fluid enters the tube with a uniform tem-
perature, i.e. T (r, 0) = T0 for all r ∈ [0, R], and the tube surface is at a temperature Tsurf. > T0,
heat transfer by convection begins to take place and the fluid’s temperature in regions close
to the tube surface rises, creating a thermal boundary layer, whose inner boundary is defined
by the radial distance rb,T(z) so that T (rb,T(z), z) = 0.99Tsurf.. The thermal boundary layer’s
radial width, δb,T(z) = R − rb,T(z), as δb, increases with z until eventually the whole radial
temperature distribution is above T0. The axial coordinate ze,T from which the relative shape of
the radial temperature distribution stops changing with z is called the thermal entrance length,
and the fluid is said to be thermally fully developed from that point on. The radial temperature
distribution shape on the thermal fully developed region may be different according to if the
surface is imposed to have constant temperature Tsurf. or a constant heat flux. In Fig. 2.6 only
the first case is depicted.

Remark 2.7.1 The thermal and hydrodynamic entrance lengths need not coincide.
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Remark 2.7.2 As both temperature and velocity change in space, in practice, mass and energy
conservation principles can be used to develop expressions linking mean values for temperature and
massflow, which are easier to measure and manipulate mathematically and the aforementioned
microscopic fluid velocity and temperature distributions. Our modeling in Chapter 3 uses these
mean values as the basis for its calculations.

2.7.2 Two-Phase Flow in Circular Tubes

If the fluid suffers a phase change from liquid to vapor as it traverses the tube, a configuration
similar to the one depicted in Fig. 2.7 is observed. Therein it is assumed that tube is placed
horizontally, which is relevant due to gravity’s effect on the spatial distribution of the different
phases. Along the first stretch, the fluid is found in a subcooled liquid state. Along the last
stretch, the fluid is expected to be in a superheated vapor state. On these regions, the heat
transfer takes place as explained in Section 2.7.1. Between both stretches, the fluid undergoes
boiling. In the presence of forced convection boiling, the flow promoting convection not only

Annular flow
Wavy 
flow

Slug 
flow

Plug
flow

Liquid 
forced 

convection

Mist
Vapor 
forced 

convection

Tube wall dry

To expander
From 
pump

Evaporator

B C
Intermittently dry

Bubbly
flow

Liquid
Vapor

Figure 2.7: Two-phase flow in horizontal circular tubes. Adapted from [154].

is due to the fluid’s bulk motion, but also due to the underlying buoyancy effects. In addition,
the fluid’s thermophysical properties such as its density suffer major changes during the phase
change, which also presents different modes as explained briefly. The combination of all these
factors is the reason why the fluid’s heat transfer coefficient αF can also vary dramatically as
the fluid traverses the tube.
Initially the fluid is in a subcooled liquid state, and convection takes place under the forced
convection mechanism explained in the previous section. This stage recieves therefore the
name of liquid forced convection. Eventually, the saturation temperature is reached at the tube’s
surface, and first bubbles appear there: The stage known as bubbly flow begins. In horizontal
tubes, the bubbles tend to distribute on the upper half of the tube. In the plug flow stage, these
bubbles have increased their size, so that liquid plugs separated by elongated gas bubbles can
be identified. Later, in the slug flow stage, the elongated bubbles have increased their diameters
until they have become comparable to the tube’s diameter, so that portions of the upper half
of the tube are no longer in contact with the liquid. The bubbles are separated by liquid slugs
similar to large amplitude waves. The wavy flow stage is characterized by the aparition of
waves at the liquid-gas interface. They are noticeable, but do not reach the top of the tube.
The annular flow stage is characterized by the aparition of a continuous liquid annular film
around the perimeter of the tube. Small amplitude waves and vapor droplets that get dispersed
into the gas core also appears. The upper part of the tube becomes dry before the lower part.
In the mist flow stage, no more liquid is found next to the tube wall. Instead, small droplets
appear in a continuous gas phase. With their eventual transformation into saturated vapor, the
whole tube cross section is occupied by vapor, which starts the vapor forced convection stage.
In this stage, the fluid is heated further for obtaining a superheated vapor at the exchanger
outlet.
In order to give more insight into the different stages the fluid goes through as it undergoes
two-phase flow, we notice that, since there is no mass accumlation inside the tube, except for
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very short transients, for a given fluid massflow ṁ entering the tube, if the latter’s length is L,
it must hold that

ṁ=

∫ r=R

r=0

∫ ϕ=2π

ϕ=0

%(r, z)V(r, z) rdϕdr, ∀z ∈ [0, L], (2.56)

where %(r, z) corresponds to the fluid’s density at coordinates (r, z). From Eq. (2.56) it can be
easily seen that, as the fluid undergoes phase change, and in particular in the saturated flow
boiling stage, the strong drop in density9causes an increase on the fluid’s mean velocity by
several orders of magnitude. This improves the conditions for heat transfer by convection.
In the saturated flow boiling stage, we define also the mean quality, dependent on the axial
position z, as

x̄(z) =
1
ṁ

∫ r=R

r=0

∫ ϕ=2π

ϕ=0

%(r, z)V(r, z)x(r, z) rdθdr. (2.57)

where x(r, z) can be defined for an infinitesimal control volume centered on coordinates (r, z)
in a similar fashion as in Eq. (2.17). This magnitude increases through the saturated flow
boiling stage. It has been observed that, as it approaches unity near the end of the stage, heat
transfer by convection may be favored or disfavored, depending on the surface material and
the fluid.
Summarizing the previous two paragraphs, the heat transfer coefficient α usually higher when
the fluid is in subcooled liquid states as when it is found in saturated vapor states, varies along
the saturated flow boiling stage, greatly increasing its value first (experience shows that it may
become around one order of magnitude greated than in the liquid forced convection stage) to
then, depending on the surface material and the fluid, increase or decrease to the value found
in the vapor forced convection stage. In the case of interest in this work, experience shows that
the heat transfer coefficient is lower in the vapor forced convection stage than in the liquid
forced convection stage.

Chapter Summary

In this chapter we have introduced the basic nomenclature, concepts and laws concerning
thermodynamics, the thermophysical properties of matter, power cycles and heat transfer by
convection. After introducing the particular application we are interested in and its associated
challenges, the next chapter builds upon these blocks to expand the evaporator model to tackle
them more effectively, which results in a mathematically challenging dynamic model. In later
chapters the formulated goals find their mathematical formulation, the numerical methodolo-
gies used to solve the underlying problems are introduced, and numerical results are presented.
In this latter stage the concepts introduced in this chapter will play again a relevant role by
allowing thermodynamic analyses to be performed on the computed results’.

9Since gases are several orders of magnitude less dense than liquids.
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3 The Organic Rankine Cycle

The goal of this chapter is the mathematical formulation of the problems treated in this thesis,
namely, the optimal control problem (OCP), the nonlinear model-predictive control strategy
(NMPC) and the moving horizon estimation scheme (MHE). Firstly, we give an overview on
modeling, control and estimation schemes that have been so far applied to the WHR in the
literature. Next, our ORC model is formulated and our scheme of evaluation of thermophysi-
cal properties is described. Finally, using the model, the OCP, NMPC and MHE problems are
formulated. Later, in Chapter 4, the numerical methods used to solve those problems are dis-
cussed.

3.1 Literature Review

In this section, for the reader’s convenience, we give a brief overview on the approaches for
modeling and control of ORC-based WHR and the distinctive features of our approach are
indicated.

3.1.1 Models for the WHR

There exist several ways to represent the WHR. Typical approaches use those representations
to build a model-based controller or tune a controller of a given structure. The system rep-
resentations vary in accordance with the available actuators, the controlled variables and the
data available as measurements.
One important family of model representations correspond to identified input-output mod-
els. These approaches have in common that little physical insight is used for their deriva-
tion. Their structure is often fix and their parameters are adjusted in a statistical way. An
important branch of the modeling approaches are linear input/output structures. One simple
scheme consist in identified two-input, two-output (TITO) transfer functions such as those
found in [120, 121, 156] (the approach has been inspired by [3], who used it for vapor com-
pression systems). TITO approaches model the relationship between the system inputs and
outputs by means of a system of two linear ODEs, the parameters of which are determined
by fitting techniques. Typical inputs correspond to combinations of pump massflow, turbine
speed and the position of certain available bypass valves, and the outputs are often chosen as
the turbine inlet temperature (TIT) and/or the turbine input pressure (TIP). First-order-plus-
time-delay (FOPTD) transfer functions as used by [59, 119, 123] assume an uncoupled set
of delayed linear ODEs to model the input/output dynamics, where the delay and the ODE
coefficients are again identified through fitting techniques. In [59], several sets of parameters
are obtained which correspond to several operating points and a switching model is proposed.
Linear input-output blackbox models (see [98] for an introduction, [99] for a deep treatment)
are also found in the literature [172, 174]. In those works, the Controller Auto-Regressive In-
tegrated Moving-Average structure (CARIMA) has been considered. These discrete-time struc-
tures possess a great flexibility since they include terms for inputs, outputs, external inputs
and colored noise. Moreover, nonlinear functions of one or several inputs or outputs can be
included, although the model keeps being linear in the parameters.
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State-space models are also found in the literature. In most papers, nonlinear ODE models
arise from first principles formulations based on PDE formulations of the energy and mass
conservation laws for fluids inside the evaporator. These models are attractive due to the intu-
itive phenomenological interpretation they offer to the experienced user. Depending on how
the spatial dimension is discretized in order to obtain the ODE system, the model variant
may belong to a moving boundary (MB) (see e.g. [20, 23, 31, 29, 57, 74, 78, 77, 109, 128])
or finite-volume (FV) (see e.g. [10, 21, 46, 47]) kind. For a comparison of both approaches,
see [10, 35, 164]. Nonlinear models have been mainly used exclusively for the simulation of
the real WHR behavior [59, 103, 104, 119, 120, 121, 122, 123, 174]. Only few publications,
such as [30, 48], have used the full nonlinear models in the control formulation. Other works
consider them only partially [59, 119, 120, 121, 122, 123]. Most works make use of linear
ODE models. These models are usually obtained from the nonlinear models by means of lin-
earization around some fixed operation point, typically a steady state [49, 50, 103, 104, 170].
See Chapter 3 for more details. To include nonlinearity, in [48, 49, 50, 51] several operating
points are considered, giving rise to a switched linear model structure. One disadvantage of
this approach is that extensive experimentation needs to be done before the best operational
points for linearization can be obtained, including the statistical determination of the most
frequent engine operational modes. Also, care should be taken in the definition of a switching
algorithm to prevent chattering and keep fidelity in critical operational regions.
In this work, due to its better precision with a small number of state variables [164], we make
use of a nonlinear, first-principles based model obtained through the MB approach. In contrast
to most works, we make use of the full nonlinear dynamics. Since, as explained in Chapter 4,
our methods impose differentiability requirements on the model, this aspect has been care-
fully investigated, and a tailored scheme for evaluating the model has been developed (see
Section 3.3, cf. [62]). The scheme builds upon the one found in [58], adding an additional
extrapolation feature.

3.1.2 Control of the WHR

In this thesis, we use the term output to refer to a quantity that is measured and whose behavior
can be influenced follow a desired pattern. In ORC applications, typical outputs are superheat-
ing, evaporation temperature, evaporator pressure, and evaporator outlet vapor quality. On
the other hand, the term control is used to describe a quantity influencing the output and that
can be directly changed by a controller. In ORC applications, typical controls are the pump
massflow, the expander speed and bypass valve positions for both the exhaust gas and the
working fluid. Further, we use the term external input to denote a physical magnitudes affect-
ing the output over which no influence can be exerted. In our case the external inputs are the
exhaust gas characteristics at the evaporator inlet.
With regard to the control strategies used, the approaches found in the literature are varied.
Most approaches can be clasified in two big groups, one consisting of approaches implementing
a feedback loop only in which the computation of the controls results from comparing the
outputs with a given reference1, and the external inputs are not considered for those means;
and one consisting of approaches implementing a feedforward scheme together on top of a
feedback loop, which allows the exploitation of a known correlation between the external
inputs and the outputs in the control computations and thus the consideration of external
input measurements by the controller, which allows the controller to react in a more agile way.
These schemes have been considered since feedback controllers alone have had difficulties due
to delays associated with transport along the evaporator (see e.g. [119]).

1i.e. fed back, see Chapter 4 for a brief introduction
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With respect to feedback loops, the most widespread alternative corresponds to the Proportional-
integral-derivative (PID) controller family2. Since this method is well established, it can be
found as a core part of the proposed solutions, as in [59, 74, 103, 104, 119, 120, 121, 122, 123,
131, 144, 156, 167], or as a counterpart for comparing a proposed scheme, as in [48, 49, 50].
Usually, the controller parameters are fixed, and several tuning methods are used. In contrast,
in [59, 120, 121, 122, 123], several gain-scheduled PID strategies are proposed. In these ap-
proaches, the controller parameters vary as functions of certain measured quantities. This pro-
vides an improved adaptivity of the controller, which has a linear structure, to the strong ORC
nonlinearities. Also, if equipped with an anti-windup strategy (see e.g. [96]), PID controllers
are able to handle box constraints on the controls. PID controllers consider in general only the
control/output dynamics. When there has been more than one control and/or output, decen-
tralized controller structures have been used based in the pairwise strongest control/output
couplings, which implies that the remaining coupling effects are neglected.
Another approach found corresponding to feedback loops corresponds to linear-quadratic
controllers, mainly in the form of linear-quadratic-Gaussian controllers with integral action
(LQGI). See Chapter 4 for an introduction, and [105, 169] for an advanced discussion. These
state-space approaches have been applied in [103, 104, 170]. They superseed the decentral-
ized PID schemes in their ability to handle multi-input, multi-output (MIMO) control tasks3

directly. This can have a critical importance, since decentralized schemes may even become
unstable if the system is put under the influence of large perturbations [171]. Moreover, the
obtained control is optimal with respect to a performance index made up of an integral of
quadratic forms in the state and the control under the assumption that the system is appropri-
ately described by a linear ODE model; and has a known closed form as a function of the state.
The integral action term helps in tracking a given set point. In comparison to PID controllers,
a more sofisticated structure is required in this case, since an observer is needed to yield es-
timates of the state vector from sensor information. LQGI controllers make use of a Kalman
filter for this task. One known limitation of these methods is their assumption of linear dynam-
ics. As we have previously mentioned, this assumption does not hold for ORC-based systems.
Another drawback of LQGI controllers for our application is their inability to directly consider
constraints. This applies to the PID family as well.
Linear model-predictive control (LMPC) approaches (see e.g. [69, 107]) are also found in
the literature. Similarities between these approaches and linear-quadratic approaches are the
assumption of linear system dynamics, and the consideration of an underlying optimization
problem with an objective function consisting of an integral or sum of quadratic forms in the
controls and states. LMPC adds, in contrast, the posibility to consider linear constraints on
those quantities. Additionally, since LMPC considers predictions of the system trajectories for
its computations, it can be naturally extended to a feedforward scheme, as in [174].State-space
MPC has been investigated for the ORC at the regulatory level. In [171] both unconstrained
and constrained settings have been considered, and in [48, 49, 50, 51, 104], constraints have
been included. In those works resorting to linear black-box models, the generalized predictive
control (GPC) approach (see e.g. [27]) has been proposed with the inclusion of constraints
in [174], and without them in [172]. In all these works, the squared deviation between the
output predicted behavior and a reference set point is minimized. In all works considering
LMPC with constraints, these have not been more complex than bounds on controls, control
steps, and outputs. In spite the important improvement of including linear constraints, im-
portant constraints such as the maximum working fluid temperature are inevitably left out of
the formulations. The dynamics keep being assumed linear. Using the switched linear models,

2See Chapter 4 for a brief introduction, see [6] for a deep discussion.
3i.e. a control taks in which several controls and outputs are considered simultaneously.
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in [48, 49, 50, 51] a switched MPC formulation is implemented that improves the controller’s
performance. Nevertheless, in [48] it is shown that a nonlinear model-predictive control ap-
proach can still improve the results.

Nonlinear model-predictive control (NMPC) approaches (see e.g. [61, 107, 108]) superseed
LMPC approaches in that they can easily deal with problems in which the system dynamics
and/or constraints are not necessarily linear, and the cost function can be more general than
an integral or sum of quadratic forms in states and the controls. This greater flexibility allows
in general the use of more accurate models, the introduction of economic cost functions and
the treatment of complex operational constraints. NMPC can be extended to a feedforward
scheme the same way LMPC can. NMPC may thus be, in summary, more adequate for some
applications, in particular for the control of the WHR. To our knowledge, in the literature of
control of the WHR, NMPC has been used in [30, 48]. In a conventional NMPC approach,
a sequence of nonlinear programming problems (NLPs) is posed and each is solved until a
convergence criterion is satisfied. Therefore, suitable NMPC implementations must properly
deal with the fact that the NLP algorithm used to compute a solution may take too long to
converge to an optimum. In [48] the SQP solver used for the NMPC strategy is simply regarded
as computationally too expensive and it is left for comparison only, even if it produces better
results than the switched MPC strategy presented there. On the other hand, in [30] a meta-
heuristic particle swarm optimization implementation is used to solve the raising NLPs. This
approach is not suitable for real-time applications.

We can think of a theoretical limit case in which the truck’s driving time between two positions
and both the massflow and temperature of the exhaust gas entering the evaporator are com-
pletely known along the truck’s trajectory. In that case it is interesting to know how should the
WHR be operated (i.e. which values should the control function take on each time instant) so
as to generate as much energy as possible while the operational constraints are being satisfied.
Posed this way, the problem corresponds to an Optimal Control Problem (OCP). Pontryagin’s
Maximum Principle [125] (see also e.g. [22]) gives first order optimality conditions that help
solving such problem in functional spaces. However, for complex engineering problems like
the one under study in this thesis, an analytical solution to the problem may not be easy to
obtain. In contrast, in this work we consider numerical solutions, as they can readily provide
practical control values and performance estimations. To the knowledge of the author, the only
references focusing on the optimal control of the WHR correspond to [122] and [62]. In [122],
the use of an approach based on Dynamic Programming (DP) is proposed. The approach is able
to consider nonlinear operational constraints in a DAE context. In [62], the numerical solution
of the optimal control problem is achieved by means of the Direct Multiple Shooting (DMS)
method (see e.g. [18, 92, 124]). In contrast to DP implementations, the DMS method does
not suffer from the curse of dimensionality and is therefore well suited for models with higher
number of states and finer time discretizations.

In contrast to the previously listed control approaches, in this thesis we propose one consisting
of an NMPC scheme that explicitly takes nonlinear dynamics and constraints into considera-
tion. The scheme’s efficient numerical treatment, explained in detail in Chapter 4 makes it
possible to carry out control updates within short times, making it applicable in the consid-
ered real-time environments. This is particularly advantageous considering the highly transient
nature of the exhaust gas conditions. To illustrate this, in Chapter 5 a test scenario consisting
of real-world data provided by Daimler AG is presented in which the scheme reaches compu-
tational times faster than 100 [ms] (a typical sampling time for an on-board controller) for dif-
ferent configuration settings. For this application, the proposed scheme makes use of exhaust
gas measurements in order to produce accurate WHR behavior predictions and deals with the
nonlinear optimization problem of maximizing the WHR net generated energy directly. With

36



T H E O R G A N I C R A N K I N E C Y C L E

�

� CHAPTER 3

the proposed scheme, the WHR is able to recover around 3% more exhaust gas energy than
with standard control strategies. Additionally, an approximated local solution for the optimal
control of the WHR is obtained for comparison under the same exhaust gas conditions by using
different numerical instances of the DMS method.

3.1.3 State Estimation for the WHR

State-space control strategies determine the control values from knowledge of the correspond-
ing model’s state vector. Since the state vector cannot always be directly measured, a state
observer is needed in order to produce an estimation of it from the available measurements
which can be fed to the controller. When the models are linear, Luenberger observers [100]
or the Kalman filter [79] can be used for these means. As explained before, Kalman filters
are the method of choice in approaches like the LQGI, which can be found applied to WHR
in [103, 104, 170]. The Kalman filter has been used in connection with other strategies
in [48, 49]. The extended Kalman filter (EKF) [28] is an extension of the Kalman filter to the
nonlinear case which has been applied to the WHR in [102, 104, 121, 123]. On the other hand,
in [25] a structure resembling a Luenberger observer but considering a nonlinear model of the
evaporator has been proposed. In most publications considering state-space control strategies
applied to the WHR, the state is assumed known and no observers are considered.

In this thesis we consider a technique for estimating the state which to our knowledge has not
been tested in the literature for WHR, namely the moving horizon estimation (MHE). In contrast
to approaches based on the Kalman filter, in which the state vector at some instant is estimated
using the previous estimate and the measurements corresponding to that same instant only, in
MHE a time window is defined in which several past measurements can be considered in order
to obtain the best possible state estimate according to some criterion, typically a least-squares
objective function. As time passes, the latest measurements are included in the window and the
oldest are discarded. In order to summarize the information previous to the last measurement
entering the window, an additional term known as arrival costs is usually considered. In MHE,
nonlinear dynamics and constraints can be fully taken into account, and model parameters
can be naturally estimated if needed. Similar to NMPC, in MHE a sequence of NLPs is defined,
and each member of the sequence can be solved until the satisfaction of some convergence
criterion. MHE has been analyzed under this assumption in [110] for unconstrained nonlinear
systems, in [135] for constrained linear systems and in [136, 138] for constrained nonlinear
systems. In the case of MHE it is also desirable to obtain state estimates as fast as possible, but
the computational burden of solving the complex NLPs makes that a nontrivial task. In this
thesis we implement MHE by resorting to an adequate real-time iteration (RTI) algorithm as
proposed in [42, 86]. In [86] the MHE scheme is shown to be more effective than an extended
Kalman filter (EKF) implementation with comparable computational times. A stability proof
for the scheme is given in [166].

To the author’s knowledge, this is the first implementation that considers both the NMPC and
the MHE approaches used simultaneously in the control of the WHR. The combination of
NMPC and MHE produces a closed-loop, model-based implementation that receives realistic
measurements as inputs and calculates the corresponding control functions as outputs. The
proposed scheme’s performance is evaluated considering MHE estimate accuracy. In Chap-
ter 5, the proposed approach is compared with an NMPC strategy in which the state vector is
perfectly known. The proposed scheme enables the WHR to generate around 2 [%] more en-
ergy than standard PI and LQGI controllers. These results have been accepted for publication
in [63].
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3.2 Model Formulation

The WHR in onboard applications is subject to a highly transient heat source, and therefore it
is advantageous to take dynamic phenomena into account for the design of a control strategy.
In this section, the WHR dynamic model used throughout this thesis is introduced and its main
assumptions are indicated. The WHR components performing mainly mechanical work (pump,
expander) are modeled in steady state using previously introduced equations, whereas a dy-
namic model based on the moving boundary approach is introduce to model the evaporator.
Since the evaporation and condensing processes are highly decoupled, a simplified model for
the condenser is used.

For details concerning the evaluation of thermophysical properties such as densities, entropies,
enthalpies and their derivatives with respect to pressure and enthalpy, see Section 3.3.

3.2.1 Pump

For the pump we make use of the previously introduced Eqs. (2.39) and (2.44), since its dy-
namics are much faster than those of the heat exchangers. Moreover, under the assumption of a
positive-displacement technology, the pump’s outlet massflow is assumed to be the control, i.e
u(t)

def
= ṁin(t). The fixed parameters corresponding to the pump are pp =

�

pA, hA,ηp,is,ηp,el

�

.
Notice that the first two correspond to the simplified condenser model to be introduced in
Section 3.2.3. At the pump outlet, the pressure is denoted as pB, which will be introduced in
Section 3.2.4 as one of the model’s dynamic states. Recapitulating, the following equations
summarize the pump’s model:

sA = ssubc.liq. (pA, hA) , (3.1a)

hB,is = hsubc.liq. (pB, sA) , (3.1b)

hB = hA+ (hB,is − hA)/ηp,is, (3.1c)

Ẇin = ṁin (hB − hA)/ηp,el. (3.1d)

In Eq. (3.1), the subscript ’subc.liq.’ denotes the evaluation of a property at a subcooled liquid
state. In normal operating conditions this is trivially satisfied since the values of the function
arguments completely define the state and thus the phase. However, as will be explained in
Section 3.3, this is not necessarily the case when the model is numerically evaluated, so that
the notation can be used to relate the quantities to their corresponding fields according to the
evaluation method to be introduced in Section 3.3.4.

3.2.2 Expander

As for the pump, the expander dynamics are much faster than those of the heat exchangers,
therefore we make use of Eqs. (2.45), (2.47) and (2.48), to model the expander, which has
been assumed of a positive-displacement type. The fixed parameters corresponding to the
expander are pex =

�

ηex,is, pD, nex,ηex,V, Vex,ηex,el

�

. The expander inlet pressure pC (the same
as for the pump outlet) is to be introduced in Section 3.2.4 as one of the model’s dynamic
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states. The following equations summarize the expander’s model:

%C = %suph.vap. (pC , hC) , (3.2a)

sC = ssuph.vap. (pC , hC) , (3.2b)

ṁout = nexηex,VVex%C , (3.2c)

hD,is = hsuph.vap. (pD, sC) , (3.2d)

hD = hC −ηex,is

�

hC − hD,is

�

, (3.2e)

Ẇout = ηex,elṁout(hC − hD). (3.2f)

As in Eq. (3.1), in Eq. (3.2) the subscript ’suph.vap.’ denotes the evaluation of a property at
a superheated vapor state. This notation can be used to relate the quantities to their fields
according to the evaluation method to be introduced in Section 3.3.4.

3.2.3 Condenser

The condenser is assumed to be able to bring the working fluid from any inlet thermodynamic
state specified by (pD, hD) to a fixed thermodynamic state specified by the fixed parameters
(pA, hA). These assumptions are valid as a first approximation if the condenser includes an
internal receiver.

3.2.4 Evaporator

As previously introduced, the system dynamics are modeled in the evaporator. In this section,
the nonlinear dynamic model based on the Moving Boundary approach [77, 164] used to
model it are introduced. Starting from the model presented on [23], modifications are intro-
duced as in [62, 64] to match the requirements for successful application of the algorithms to
be introduced in Chapter 4.
The evaporator is considered to be a cylindrical concentric counterflow heat exchanger of fixed
length L, see Fig. 3.1. The outer tube is considered as perfectly isolating, so heat transfers to
the surroundings are neglected. The exhaust gas flows along the space between both tubes,
whereas the working fluid does it in the oposite direction along the inner tube’s cavity. The
inner tube is thus called wall. Its inner and outer diameters are di and do, respectively, which
result in a transverse metal section area of

AW = π(d
2
o − d2

i )/4,

and inner section area
A= πd2

i /4.

With respect to the concepts introduced next, we have included Fig. 3.2 for the reader’s con-
venience. Since it is expected that the working fluid undergoes a phase change along the
evaporator, with which its thermophysical properties are prone to strong variations, the evap-
orator is therefore divided into three zones with variable lengths L1, L2 and L3 = L− L1− L2,
inside which the fluid is assumed to be found in subcooled liquid, two-phase liquid-vapor
mixture, and superheated vapor states, respectively. At the zone boundaries the working fluid
is assumed to be found in the corresponding saturated states. The evaporating pressure pev

(
def
= pB

def
= pC , see Eqs. (3.1) and (3.2)) and the output enthalpy hC are used for the eval-

uation of the working fluid’s properties inside the evaporator. Temperatures θW,1, θW,2 and
θW,3 account for each zone’s mean wall temperatures. These variables form the state vector
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Inner flow
(working fluid)

Outer flow
(exhaust gas)

(a) Perspective view. (b) Longitudinal view.

Figure 3.1: Concentric counterflow heat exchanger

xev =
�

L1, L2, pev, hC ,θW,1,θW,2,θW,3

�

, on which the following calculations will be based. The
evaporator’s working fluid inlet massflow corresponds to ṁin, which is the control (see Sec-
tion 3.2.1). The working fluid leaves the evaporator with massflow ṁout (see Section 3.2.2).
On the other hand, the exhaust gas inlet massflow ṁG,in and temperature θG,in constitute
the external input vector, w =

�

ṁG,in,θG,in

�

. The evaporator’s fixed parameter vector is
pev = ( L, di, do,%W , cW ,αF,1,αF,2,αF,3, αG,1,αG,2,αG,3, pG ), where %W and cW are the wall’s
density and heat specific capacity, respectively, and αF, j , αG, j are the working fluid and exhaust
gas convection heat transfer coefficients corresponding to zone j ∈ {1,2, 3}, respectively.

1 2 3

Subcooled liquid Two-phase Superheated vapor

Outer tube

Inner tube

Figure 3.2: Volume control for the exhaust gas energy balance

For both the working fluid and the exhaust gas, the pressure drops along the evaporator, which
are due to fluid viscosities and momentum changes are neglected. Therefore the pressure is
considered equal to pev all along the evaporator, so that pB

def
= pC

def
= pev. Hence, the mean

zone pressures p̄ j also satisfy p̄1 = p̄2 = p̄3 = pev. The associated saturated liquid and vapor
enthalpies h′ and h′′ , densities %′, %′′, their derivatives with respect to pressure dh′/dpev,
dh′′/dpev, d%′/dpev and d%′′/dpev, and θF,2 are all evaluated at pev. The evaporator inlet
working fluid enthalpy hB is obtained as in (3.1c). Since hA is a fixed parameter, it follows
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that its time derivative is given by

dhB

dt
=

1
ηp,is

∂ hB,is

∂ pB

dpev

dt
. (3.3)

∂ hB,is/∂ pB has the same arguments as hB,is. We calculate the zone mean enthalpies as h̄1 :=
0.5

�

hB + h′
�

, h̄2 := 0.5
�

h′ + h′′
�

and h̄3 := 0.5
�

h′′ + hC

�

. For j ∈ {1,3}, the corresponding
working fluid temperatures θF, j , local densities %̄ j and their derivatives with respect to pressure
and enthalpy, ∂ %̄ j/∂ p̄ j and ∂ %̄ j/∂ h̄ j , are evaluated at (p̄ j , h̄ j). For the evaluations of quantities
corresponding to j = 1 and j = 3, the subcooled liquid and superheated vapor surfaces are
used as will be explained in Section 3.3, respectively.
For the two-phase zone, the density ratio, the mean void fraction γ̄(pev), the local mean density
%̄2 and the mean enthalpy per unit volume %h2 are calculated as follows:

µ= %′′/%′, (3.4a)

γ̄=
1−µ2/3

�

1+ log(µ−2/3)
�

�

1−µ2/3
�2 , (3.4b)

%̄2 = %
′ + γ̄(%′′ −%′), (3.4c)

%h2 = %
′h′ + γ̄(%′′h′′ −%′h′). (3.4d)

At the inner zone boundaries, the wall temperatures are defined as

θW,L1
= (L2θW,1 + L1θW,2)/(L1 + L2), (3.5a)

θW,L1+L2
= (L3θW,2 + L2θW,3)/(L2 + L3). (3.5b)

Together with the exhaust gas zone mean temperatures θG, j , which are derived briefly from
the energy balance for the exhaust gas, the convection coefficients αF, j and αG, j can be used
for calculating the heat transfers from the exhaust gas towards the wall Q̇GW , j and from the
wall towards the working fluid Q̇W F , j as

Q̇GW , j = πdo L jαG, j

�

θG, j − θW, j

�

, (3.6a)

Q̇W F , j = πdi L jαF, j

�

θW, j − θF, j

�

, ∀ j ∈ {1, 2,3}. (3.6b)

Remark 3.2.1 In [11, 23, 157] expressions for the convection coefficients are given which in-
volve the zone lengths, wall diameters, Nusselt, Reynolds and Prandtl numbers of each zone and
consider appropriate corrections for the two-phase zone. The expressions depend in a very nonlin-
ear fashion on the aforementioned physical quantities and on the fluid’s physical state and flow
regime in a discrete way. Although the direct inclusion of such expressions represents no obstacle
for the purpose of simulation, special considerations have to be taken into account if derivative-
based optimization is pursued. For instance, the model presented in this chapter can be carefully
expanded by means of the inclusion of a proper switching function to include all the correct em-
pirical correspondences.

Exhaust Gas Energy and Mass Balances

In this model formulation it is assumed that, along the tube, the exhaust gas flow is unsteady
and uniform, i.e., its velocity does not change with the position in the stream, but allowed to
change in time [52], and that it is found in a thermodynamic steady state, i.e. control volumes

41



CHAPTER 3

�

� T H E O R G A N I C R A N K I N E C Y C L E

do not accumulate energy nor mass. A direct consequence of this is that

ṁG,out = ṁG,in.

As the exhaust gas enters evaporator zone j with temperature θ+G, j at z = L+j , it makes contact
with the zone’s wall, assumed at an homogeneous temperature θW, j and then, due to the corre-
sponding heat transfer, exits the zone at z = L−j at a temperature θ−G, j . Under the assumptions
above, a differential equation in the tube’s longitudinal dimension can be formulated from
which θ−G, j and an expression for the zone mean temperature θG, j can be obtained. To this
end, consider a control volume of length dz placed at position z like the one in Fig. 3.3. The

Figure 3.3: Volume control for the exhaust gas energy balance

exhaust gas enters the volume with a specific enthalpy hG(z+dz) and leaves it with a specific
enthalpy hG(z). From Eq. (2.9),

ṁG,in (hG(z + dz)− hG(z)) = Q̇GW , j(z).

At constant pressure, it holds that

hG(z + dz)− hG(z) = cG, j(θG, j(z + dz)− θG, j(z)).

Also, we incorporate Newton’s law of cooling Eq. (2.55) to express Q̇GW , j(z), so that

ṁG,incG, j

�

θG, j(z + dz)− θG, j(z)
�

= πdodzαG, j

�

θG, j(z)− θW, j

�

.

Reordering terms and taking limit for dz→ 0 we obtain the initial value problem

dθG, j

dz
(z) =

πdoαG, j

ṁG,incG, j

�

θG, j(z)− θW, j

�

, (3.7)

θG, j(L
+
j ) = θ

+
G, j . (3.8)

Equation (3.7) can be solved analytically to yield

θG, j(z) = θW, j

�

1− exp

�

πdoαG, j(z − L+j )

ṁG,incG, j

��

+ θ+G, j exp

�

πdoαG, j(z − L+j )

ṁG,incG, j

�

. (3.9)
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From Eq. (3.9) we calculate the exhaust gas zone mean temperature as

θG, j =
1

L+j − L−j

∫ L+j

L−j

θG, j(z)dz

= θW, j + (θ
+
G, j − θW, j)

ṁG,incG, j

πdoαG, j L j

�

1− exp

�

−
πdoαG, j L j

ṁG,incG, j

��

. (3.10)

Equation (3.9) can as well be used to obtain the downstream border temperature

θ−G, j = θG, j(z = L−j )

= θW, j + (θ
+
G, j − θW, j)exp

�

−
πdoαG, j L j

ṁG,incG, j

�

. (3.11)

Observing that θ+G,3 = θG,in, that θ+G, j = θ
−
G, j+1 for j ∈ {1, 2} and that θ−G,1 = θG,out, we can

rename some of those quantities as θG,L1

def
= θ+G,1 and θG,L1+L2

def
= θ+G,2. Defining K j :=

πdoαG, j L j
ṁG,incG, j

we have

θG,L1+L2
= θW,3 + (θG,in − θW,3)exp(−K3), (3.12a)

θG,L1
= θW,2 + (θG,L1+L2

− θW,2)exp(−K2), (3.12b)

θG,out = θW,1 + (θG,L1
− θW,1)exp(−K1), (3.12c)

and

0= −θG,3 + θW,3 + (θG,in − θW,3)(1− exp(−K3))/K3, (3.13a)

0= −θG,2 + θW,2 + (θG,L1+L2
− θW,2)(1− exp(−K2))/K2, (3.13b)

0= −θG,1 + θW,1 + (θG,L1
− θW,1)(1− exp(−K1))/K1. (3.13c)

Equations (3.13a) to (3.13c) make up a nonlinear system of equations in the mean zone ex-
haust gas temperatures θG, j in which the fixed parameter vector p =

�

pex, pp, pev

�

, the exhaust
gas conditions w and the state vector xev take part. From the latter, the components corre-
sponding to the wall temperatures and the zone lengths are present. In turn, it will be seen
later that Q̇GW , j from Eq. (3.6a) also influences the wall temperature dynamics. Therefore, this
general formulation gives rise to a DAE system [64]. However, the model can be evaluated in
a computationally much less expensive way if the exhaust gas’ specific heat capacities cG, j ,
j ∈ {1,2, 3} are evaluated at each zone’s upstream border, i.e. at θ+G, j [64]. instead of at θG, j .
Therewith, Eqs. (3.12) and (3.13) look like

θG,3 = θW,3 + (θG,in − θW,3)(1− exp(−K3))/K3, (3.14a)

θG,L1+L2
= θW,3 + (θG,in − θW,3)exp(−K3), (3.14b)

θG,2 = θW,2 + (θG,L1+L2
− θW,2)(1− exp(−K2))/K2, (3.14c)

θG,L1
= θW,2 + (θG,L1+L2

− θW,2)exp(−K2), (3.14d)

θG,1 = θW,1 + (θG,L1
− θW,1)(1− exp(−K1))/K1, (3.14e)

and the exhaust gas temperatures θG, j can be sequentially evaluated as functions of xev, p
and w . Here cG, j is evaluated at (pG ,θG,in), (pG ,θG,L1+L2

) and (pG ,θG,L1
) for j ∈ {1, 2,3},

respectively.
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Wall Energy Balance

In the case of the wall, no mass transfer takes place, albeit its energy balance results of cru-
cial importance at the same time. In the following it is assumed that the wall within each
zone j, i.e. between z = L−j and z = L+j , for j ∈ {1, 2,3}, the wall possesses an infinite ther-
mal conductivity. Thus, therein is temperature is homogeneous. We denote its value as θW, j .
Notwithstanding, the wall temperature is allowed to be discontinuous at the zone boundaries,
although we neglect heat conduction between zones.
Similar to the exhaust gas energy balance, we consider a toroidal control volume over the wall
in zone j of length dz, internal diameter di and external diameter do at position z and write
down Eq. (2.9). Both the geometry and the convention directions for positive heat transfer are
depicted in Fig. 3.4. No work is done, and the only heat transfers with the surroundings are
with the exhaust gas and the working fluid.

Figure 3.4: Volume control for the wall energy balance

Additionally, since the control volume corresponds to a solid, its internal energy dU j can be
expressed as a function of temperature as

dU j = %W cWθW, jdV (3.15)

Ergo, for the volume corresponding to zone j,

U j =

∫ z=L+j

z=L−j

∫ r=do/2

r=di/2

∫ ϕ=2π

ϕ=0

%W cWθW, j rdϕdrdz = %W cW AWθW, j L j . (3.16)

Additionally, if the control volume boundaries change with time, a different amount of mass
will be contained within them. Concretely, if the wall is found at a temperature θ+W, j at the
boundary corresponding to L+j , the specific enthalpy associated to it corresponds to

h+j = cWθ
+
W, j . (3.17)

Additionally, if L+j changes with rate
dL+j
dt , the equivalent increment in the system’s mass cor-

responds to

ṁ+j = %W AW

dL+j
dt

. (3.18)

44



T H E O R G A N I C R A N K I N E C Y C L E

�

� CHAPTER 3

An analogous reasoning can be used for the other boundary position, L−j , associated to a tem-
perature θ−W, j . This leads to the wall energy balance from Eq. (2.9):

%W AW cW
dθW, j

dt
= Q̇GW , j − Q̇W F , j +%W AW cWθ

+
W, j

dL+j
dt
−%W AW cWθ

−
W, j

dL−j
dt

. (3.19)

Equation (3.19) applies to all zones, recognizing that
dL−1
dt = 0 and

dL+3
dt = 0, with which θ−W,1

and θ+W,3 lose relevance, and that θ+W, j = θ
−
W, j+1 for j ∈ {1,2}, so we can rebaptize θW,L1

def
= θ+W,1

and θW,L1+L2

def
= θ+W,2.

Concretely, we have

%W AW cW

�

L1

dθW,1

dt
+ (θW,1 − θW,L1

)
dL1

dt

�

= Q̇GW ,1 − Q̇W F ,1, (3.20a)

%W AW cW

�

L2

dθW,2

dt
+ (θW,L1

− θW,L1+L2
)
dL1

dt
+ (θW,2 − θW,L1+L2

)
dL2

dt

�

= Q̇GW ,2 − Q̇W F ,2, (3.20b)

%W AW cW

�

L3

dθW,3

dt
+ (θW,L1+L2

− θW,3)
d
dt
(L1 + L2)

�

= Q̇GW ,3 − Q̇W F ,3, (3.20c)

Remark 3.2.2 Regarding the choice of the wall boundary temperatures θW,L1
and θW,L1+L2

, a
number of alternatives are available in the literature, and some of them are discussed in [77].
All alternatives have advantages and disadvantages regarding physical criteria such as energy
conservation and numerical criteria such as dynamic chattering or undesired transients. The choice
made by [77] is based on the fulfillment of energy conservation, in spite of the modelled behavior
being against the measured trends. Moreover this choice, namely

θW,L1
=

¨

θW,1 if d
dt L1 < 0

θW,2 if d
dt L1 ¾ 0

θW,L1+L2
=

¨

θW,2 if d
dt (L1 + L2)< 0

θW,3 if d
dt (L1 + L2)¾ 0

, (3.21)

has the structural drawbacks of introducing both an implicit nonlinear dependency on the state
derivatives and a source of nondifferentiability in the model. Both drawbacks can be tackled by
formulating the model structure as a fully-implicit DAE and introducing mixed-integer program-
ming techniques, however [77] also shows that other alternatives such as Eq. (3.5) (this work’s
choice) yield similar results. In contrast to Eq. (3.21), our choice does not introduce nondifferen-
tiabilities and does not involve the state derivatives in a nonlinear fashion. It has been observed
that model evaluations are performed significantly faster using this variant.

Working Fluid Energy and Mass Balances

In the following analysis, we consider mass and energy balances for zone j. For these means,
a cylindrical control volume is considered as in Fig. 3.5. We begin by the mass balance, con-
sidering Eq. (2.3).
The total working fluid mass contained in the control volume corresponds to

m j =

∫ z=L+j

z=L−j

∫ r=di/2

r=0

∫ ϕ=2π

ϕ=0

%(r,ϕ, z)rdϕdrdz

= AL j%̄ j , (3.22)

On the other hand, the mass transfer to the control volume and viceversa has two sources.
One, associated to advecting terms corresponding to mass transfer crossing the boundaries,

45



CHAPTER 3

�

� T H E O R G A N I C R A N K I N E C Y C L E

Figure 3.5: Control volume for the working fluid in zone j. The arrows indicate heat and mass transfer
positive sign conventions.

described as ṁ−j and ṁ+j , and another one due to the displacement of the boundaries itself.
Similar to the analysis performed to obtain Eq. (3.18), if boundaries L+j and L−j move with

speed
dL+j
dt and

dL−j
dt , and the fluid densities therein correspond to %+j and %−j , respectively, the

mass conservation principle applied to zone j reads

d
dt

�

AL j%̄ j

�

= ṁ−j − A%−j
dL−j
dt
− ṁ+j + A%+j

dL+j
dt

. (3.23)

Likewise, from Eq. (2.8) we have that, the working fluid’s internal energy per unit volume
corresponds to

%u= %h− p.

Therefore, the internal energy contained inside the control volume is

U j =

∫ z=L+j

z=L−j

∫ r=di/2

r=0

∫ ϕ=2π

ϕ=0

(%h(r,ϕ, z)− p)rdϕdrdz

= AL j(%h j − p̄ j). (3.24)

Since the wall is considered rigid, the control volume performs no work on its surroundings.
Besides, the heat transfer at the boundary corresponds to Q̇W F , j . The energy transfer terms
by advection, if the fluid enters the control volume at L−j with enthalpy h−j and massflow
ṁ−j , and leaves it at L+j with enthalpy h+j and massflow ṁ+j , are given by ṁ−j h−j and ṁ+j h+j .

The boundaries’ movement, which takes place at speeds
dL+j
dt and

dL−j
dt , respectively, produces

changes in the accumulated energy given by A(%+j h+j − p)
dL+j
dt and A(%−j h−j − p)

dL−j
dt . Therewith,

the energy conservation for the control volume reads

d
dt

�

AL j(%h j − p̄ j)
�

= Q̇W F , j+ṁ−j h−j +A(%+j h+j − p̄ j)
dL+j
dt
−ṁ+j h+j −A(%−j h−j − p̄ j)

dL−j
dt

. (3.25)

The next step in the formulation is to identify the terms in Eqs. (3.23) and (3.25) for each
zone, which is done in Table 3.1. Notice that densities %−1 and %+3 are not needed due to the
fact that their respective borders are fixed, and thus are not evaluated. On the other hand, the
following equalities hold, and the involved terms are assigned the quantities in parenthesis.
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From those, the only ones not introduced thus far are ṁ′ and ṁ′′. Expressions for them in
terms of the other terms are given briefly.

ṁ+1 = ṁ−2 (
def
= ṁ′), ṁ+2 = ṁ−3 (

def
= ṁ′′),

%+1 = %
−
2 (

def
= %′), %+2 = %

−
3 (

def
= %′′),

h+1 = h−2 (
def
= h′), h+2 = h−3 (

def
= h′′),

L+1 = L−2 , L+2 = L−3 .

Table 3.1: Term identification for the working fluid energy and mass balances for all three zones

Symbol Zone 1 Zone 2 Zone 3

ṁ−j ṁin ṁ′ ṁ′′

ṁ+j ṁ′ ṁ′′ ṁout

%−j −− %′ %′′

%+j %′ %′′ −−
L−j 0 L1 L1 + L2

L+j L1 L1 + L2 L
d
dt L−j 0 d

dt L1
d
dt (L1 + L2)

d
dt L+j

d
dt L1

d
dt (L1 + L2) 0

h−j hB h′ h′′

h+j h′ h′′ hC

%h j %̄1h̄1 %h2 %̄3h̄3

The working fluid mass balances for each zone individually thus read:

• Zone 1:

d
dt
(AL1%̄1) = ṁin − ṁ′ + A%′

dL1

dt
. (3.26)

• Zone 2:

d
dt
(AL2%̄2) = ṁ′ − A%′

dL1

dt
− ṁ′′ + A%′′

d
dt
(L1 + L2). (3.27)

• Zone 3:

d
dt
(AL3%̄3) = ṁ′′ − A%′′

d
dt
(L1 + L2)− ṁout. (3.28)

On the other hand, the working fluid energy balances for each zone individually read

• Zone 1:

d
dt

�

AL1(%̄1h̄1 − p̄1)
�

= Q̇W F ,1 + ṁinhB + A(%′h′ − p̄1)
dL1

dt
− ṁ′h′. (3.29)
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• Zone 2:

d
dt

�

AL2(%h2 − p̄2)
�

= Q̇W F ,2+ṁ′h′+A(%′′h′′− p̄2)
d
dt
(L1+L2)−ṁ′′h′′−A(%′h′− p̄2)

dL1

dt
. (3.30)

• Zone 3:

d
dt

�

AL3(%̄3h̄3 − p̄3)
�

= Q̇W F ,3+ ṁ′′h′′− ṁouthC −A(%′′h′′− p̄3)
d
dt
(L1+ L2). (3.31)

From Eqs. (3.26) and (3.28) expressions for both ṁ′ and ṁ′′ in terms of already defined terms
can be obtained:

ṁ′ = ṁin −
d
dt
(AL1%̄1) + A%′

dL1

dt
, (3.32)

ṁ′′ = ṁout +
d
dt
(AL3%̄3) + A%′′

d
dt
(L1 + L2). (3.33)

These expressions can be used in Eqs. (3.29) to (3.31) to eliminate these quantities. Addi-
tionally, Eqs. (3.26) to (3.28) can be summed up to produce the working fluid’s global mass
balance. After some algebra, the evaporator dynamics can be then summarized in the following
equations:
From mass conservation of the working fluid along the tube, we have

d

dt

 

3
∑

j=1

AL j%̄ j

!

= ṁin − ṁout. (3.34)

Energy conservation for the working fluid for the subcooled liquid zone yields

d

dt

�

AL1(%̄1h̄1 − p̄1)
�

− h′
d

dt
(AL1%̄1) + Ap̄1

dL1

dt
= Q̇W F ,1 − ṁin

�

h′ − hB

�

. (3.35)

Energy conservation for the working fluid for the mixed zone yields

d
dt

�

AL2(%h2 − p̄2)
�

+h′
d
dt
(AL1%̄1)+h′′

d
dt
(AL3%̄3)+Ap̄2

dL2

dt
= Q̇W F ,2−

�

ṁouth
′′ − ṁinh′

�

. (3.36)

For the superheated vapor zone, energy conservation leads to

d

dt

�

AL3(%̄3h̄3 − p̄3)
�

− h′′
d

dt
(AL3%̄3) + Ap̄3

dL3

dt
= Q̇W F ,3 − ṁout

�

hC − h′′
�

. (3.37)

Equations (3.34) to (3.37) can be further expanded to yield expressions depending only on
the components of xev and the fixed parameters. For those means, we require the following
derivatives:

dh̄1

dt
(pev) =

1
2

�

dhB

dpB

�

�

�

�

pev

+
dh′

dpev

�

�

�

�

pev

�

dpev

dt
, (3.38a)

dh̄3

dt
(pev) =

1
2

�

dh′′

dpev

�

�

�

�

pev

dpev

dt
+

dhC

dt

�

, (3.38b)

∂ γ̄

∂ µ
(pev) =

2
3

�

(1+µ2/3) log(µ2/3) + 2(1−µ2/3)
µ1/3(1−µ2/3)3

�

, (3.38c)

dµ
dp
(pev) =

1
%′2

�

%′
d%′′

dpev
|pev
−%′′

d%′

dpev
|pev

�

, (3.38d)
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d%̄1

dt
(pev, h̄1) =

�

∂ %subc.liq.

∂ p

�

�

�

�

(pev,h̄1)

dpev

dt
+
∂ %subc.liq.

∂ h

�

�

�

�

(pev,h̄1)

dh̄1

dt

�

, (3.38e)

d%̄2

dt
(pev) =

�

(1− γ̄)
d%′

dpev

�

�

�

�

pev

+ γ̄
d%′′

dpev

�

�

�

�

pev

+ (%′′ −%′)
∂ γ̄

∂ µ

dµ
dp

�

�

�

�

pev

�

dpev

dt
, (3.38f)

d%̄3

dt
(pev, h̄3) =

�

∂ %suph.vap.

∂ p

�

�

�

�

(pev,h̄3)

dpev

dt
+
∂ %suph.vap.

∂ h

�

�

�

�

(pev,h̄3)

dh̄3

dt

�

, (3.38g)

d%′h′

dpev
(pev) = h′

d%′

dpev

�

�

�

�

pev

+%′
dh′

dpev

�

�

�

�

pev

, (3.38h)

d%′′h′′

dpev
(pev) = h′′

d%′′

dpev

�

�

�

�

pev

+%′′
dh′′

dpev

�

�

�

�

pev

, (3.38i)

d(%h2)
dt

(pev) =

�

(1− γ̄)
d%′h′

dpev

�

�

�

�

pev

+ γ̄
d%′′h′′

dpev

�

�

�

�

pev

+ (%′′h′′ −%′h′)
∂ γ̄

∂ µ

dµ
dp

�

�

�

�

pev

�

dpev

dt
. (3.38j)

It can be seen that both pev and hC have a particular importance as the most relevant functions
include them as arguments. Inserting Eq. (3.38) into Eqs. (3.34) to (3.37), performing the
required algebra4and joining with Eqs. (3.20a) to (3.20c), we obtain a semi-implicit ODE
system with the structure

Mev(xev, p)
dxev

dt
= bev(xev, u, p, w ).

Matrix mev and vector bev have the following structure,

Mev(xev, p) =





















M1,1 M1,2 M1,3 M1,4 0 0 0
M2,1 0 M2,3 0 0 0 0
M3,1 M3,2 M3,3 0 0 0 0
M4,1 M4,2 M4,3 M4,4 0 0 0
M5,1 0 0 0 M5,5 0 0
M6,1 M6,2 0 0 0 M6,6 0
M7,1 M7,2 0 0 0 0 M7,7





















, (3.39a)

bev(xev, u, p, w ) =
�

b1 b2 b3 b4 b5 b5 b7

�T
, (3.39b)

where the entries correspond to the following expressions: From mass conservation of the
working fluid along the inner tube, we have

M1,1 = A(%̄1 − %̄3) (3.40a)

M1,2 = A
�

%′ + γ̄
�

%′′ −%′
�

− %̄3

�

(3.40b)

M1,3 = A

�

L1

�

∂ %̄1

∂ p̄1
+

1
2
∂ %̄1

∂ h̄1

�

dh′

dpev
+

dhB

dpB

�

�

+L2

�

d%′

dpev
+ γ̄(

d%′′

dpev
−

d%′

dpev
) + (%′′ −%′)

∂ γ̄

∂ µ

dµ
dp

�

+L3

�

∂ %̄3

∂ p̄3
+

1
2
∂ %̄3

∂ h̄3

dh′′

dpev

��

(3.40c)

M1,4 =
1
2

AL3
∂ %̄3

∂ h̄3
(3.40d)

b1 = ṁin − ṁout, (3.40e)
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Applying energy conservation to the working fluid for the subcooled liquid phase zone yields

M2,1 =
1
2

A%̄1

�

hB − h′
�

(3.41a)

M2,3 = AL1

�

1
2
(hB − h′)

∂ %̄1

∂ p̄1
+

1
2
(%̄1 +

1
2
(hB − h′)

∂ %̄1

∂ h̄1
)(

dhB

dpB
+

dh′

dpev
)− 1

�

(3.41b)

M2,3 = AL1

�

1
2
(hB − h′)

∂ %̄1

∂ p̄1
+

1
2
(%̄1 + (hB − h′)

∂ %̄1

∂ h̄1
)(

dhB

dpB
+

dh′

dpev
)− 1

�

(3.41c)

b2 = Q̇W F ,1 + ṁin

�

hB − h′
�

. (3.41d)

Energy conservation for the working fluid for the mixed phase yields

M3,1 = A(%̄1h′ − %̄3h′′) (3.42a)

M3,2 = A
�

%′h′ + γ̄(%′′h′′ −%′h′)− %̄3h′′
�

(3.42b)

M3,3 = A

�

L1h′
�

∂ %̄1

∂ p̄1
+
∂ %̄1

∂ h̄1

1
2
(

dh′

dpev
+

dhB

dpB
)

�

+L2

�

d%′h′

dpev
+ γ̄(

d%′′h′′

dpev
−

d%′h′

dpev
) + (%′′h′′ −%′h′)

∂ γ̄

∂ µ

dµ
dp
− 1

�

+L3h′′
�

∂ %̄3

∂ p̄3
+

1
2
∂ %̄3

∂ h̄3

dh′′

dpev

��

(3.42c)

b3 = ṁinh′ − ṁouth
′′ + Q̇W F ,2. (3.42d)

For the gas phase, energy conservation leads to

M4,1 =
1
2

A%̄3(h
′′ − hC) (3.43a)

M4,2 =
1
2

A%̄3(h
′′ − hC) (3.43b)

M4,3 = AL3

�

1
2
(hC − h′′)

∂ %̄3

∂ p̄3
+

1
2

dh′′

dpev
(%̄3 +

1
2
(hC − h′′)

∂ %̄3

∂ h̄3
)− 1

�

(3.43c)

M4,4 =
1
2

AL3

�

%̄3 +
1
2
(hC − h′′)

∂ %̄3

∂ h̄3

�

(3.43d)

b4 = ṁout

�

h′′ − hC

�

+ Q̇W F ,3. (3.43e)

For the energy balance in the inner tube itself holds, for the first region,

M5,1 = %W AW cW (θW,1 − θW,L1
) (3.44a)

M5,5 = %W AW cW L1 (3.44b)

b5 = Q̇GW ,1 − Q̇W F ,1. (3.44c)

The second region yields

M6,1 = %W AW cW (θW,L1
− θW,L1+L2

) (3.45a)

M6,2 = %W AW cW (θW,2 − θW,L1+L2
) (3.45b)

M6,6 = %W AW cW L2 (3.45c)

b6 = Q̇GW ,2 − Q̇W F ,2. (3.45d)
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In the third region, the energy balance leads to the terms

M7,1 = %W AW cW (θW,L1+L2
− θW,3) (3.46a)

M7,2 = %W AW cW (θW,L1+L2
− θW,3) (3.46b)

M7,7 = %W AW cW L3 (3.46c)

b7 = Q̇GW ,3 − Q̇W F ,3. (3.46d)

3.2.5 Model Reduction

As discussed in [168], for high molecular weight organic fluids the ORC’s maximum efficiency
is obtained when the working fluid is in a saturated vapor state at the expander inlet. In
particular, this means it is desired that the third zone fades out (L3 = 0, hC = h′′) and only the
first two-zones become active in the model. From Eqs. (3.40d), (3.43d) and (4.39) it is possible
to see that matrix mev becomes singular when this takes place. On the other hand, in practice,
the working fluid is still superheated by a small amount in order to give the system a security
margin in case unexpected disturbances push the working fluid thermodynamic state at the
expander inlet towards the vapor dome. On the one hand, it is possible to model this security
margin as a hard constraint on L3, to be introduced in Section 3.5.1. In spite of that, external
disturbances or the trial of some control function values during computations may still cause
L3 to fade out with the consequent numerical difficuties implied by mev’s rank loss. The model
can be thus further robustified by introducing the following model reduction: assume that the
working fluid at zone 3 is found in a thermodynamic steady state. Concretely, time derivatives
are eliminated from Eqs. (3.28) and (3.31) to produce

• Zone 3’s steady state mass balance:

0= ṁ′′ − ṁout, (3.47)

• Zone 3’s steady state energy balance:

0= Q̇W F ,3 + ṁ′′h′′ − ṁouthC . (3.48)

With these changes, performing similar algebraic steps, Eqs. (3.34) to (3.37) become

d
dt

 

2
∑

j=1

AL j%̄ j

!

− A%′′
d
dt
(L1 + L2) = ṁin − ṁout (3.49)

d
dt

�

AL1(%̄1h̄1 − p̄1)
�

− h′
d
dt
(AL1%̄1) + Ap̄1

dL1

dt
= Q̇W F ,1 − ṁin

�

h′ − hB

�

(3.50)

d
dt

�

AL2(%h2 − p̄2)
�

+ h′
d
dt
(AL1%̄1) + A%′′h′′

dL3

dt
+ Ap̄2

dL2

dt
= Q̇W F ,2 −

�

ṁouth
′′ − ṁinh′

�

(3.51)

0= Q̇W F ,3 − ṁout

�

hC − h′′
�

. (3.52)

Eqs. (3.20a) to (3.20c) and (3.49) to (3.52) form a nonlinear semi-implicit DAE system with
differential state vector x =

�

L1, L2, pev,θW,1,θW,2,θW,3

�

, algebraic state vector z = (hC), con-
trol vector u and external input vector w . The system’s only algebraic equation corresponds
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to (3.52), whose left-hand side is denoted as g (x , z, p). The system structure is

M(x (t), z(t), p)
dx
dt
(t) = b(x (t), z(t), u(t), p, w (t)), (3.53a)

0= g (x (t), z(t), p), (3.53b)

x (t0) = x0. (3.53c)

This formulation is advantageous since no terms multiplied by L3 are present in M and hence
it doesn’t undergo rank loss, even if L3 approaches zero. The output enthalpy hC remains on
the superheated vapor zone as long as L3 > 0 and the corresponding wall temperature remains
higher than the mean working fluid temperature.
This DAE system is of index 1, highly nonlinear, and stiff. Concrete model parameter values
used in this thesis are given in Chapter 5.

3.2.6 Model Outputs

Besides the model’s dynamic equations, we are interested on two kind of output functions. On
the one hand, the model measurements are defined as

y(x , z, w , p) =
�

pev, θC , θG,out

�T
, (3.54)

with θG,out from Eq. (3.12c), and θC = θC(pev, hC) is evaluated as explained in Section 3.3.
This measurement vector will be used for the state estimator defined in Section 3.5.3. On the
other hand, the superheating has been used by several authors (see e.g. [131, 167, 46]). It is
defined as

ySH(x , z) = θC(pev, hC)− θF,2(pev), (3.55)

and will be retaken in Section 4.3, when alternative controllers are introduced. and is partic-
ularly useful for

3.3 Evaluation of Thermophysical Properties and External Inputs

In order to evaluate functions M , b and g in (3.53), it is necessary to evaluate the thermo-
physical properties corresponding to the exhaust gas and the working fluid. For the latter,
properties may correspond to single-phase or saturated states (see Chapter 2). In this thesis,
properties corresponding to single-phase states are evaluated using pressure-enthalpy (p, h)
and pressure-entropy (p, s) pairs, whereas properties corresponding to saturated states, and
the two-phase state temperature, are evaluated using the pressure p. The working fluid cor-
responds to ethanol. Additionally, the external inputs are considered as functions of time. Ta-
ble 3.2 summarizes all quantities to evaluate, their nature and dependencies. For the exhaust
gas a mixture of 74% nitrogen, 13% CO2 and 13% water vapor is considered. Since it is a
single-phase fluid, the pressure-temperature pair (p,θ ) is used for evaluations.
As explained in Section 2.5.3, it is possible to evaluate the required thermophysical properties
using the software REFPROP [93]. One option would be to resort to this software every time
functions M , b and g are evaluated. In order to achieve evaluation speed gains, our course
of action is as follows: REFPROP is used only once, offline, to calculate the properties’ values
for selected fixed values of pressure, temperature, entropy and enthalpy as appropriate. Af-
terwards, suitable functions are obtained that represent the data. The model implementation
makes use of those functions to evaluate the thermophysical properties as required. Important
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Table 3.2: Thermophysical properties and their evaluation arguments

Working fluid: Single-phase states Working fluid: Saturated and two-phase states

Property Evaluated at Property Evaluated at

θF,1, %̄1, ∂ %̄1/∂ p̄1, ∂ %̄1/∂ h̄1

�

p̄1, h̄1

�

h′, h′′, %′, %′′ (pev)
θF,3, %̄3, ∂ %̄3/∂ p̄3, ∂ %̄3/∂ h̄3

�

p̄3, h̄3

�

dh′/dpev, dh′′/dpev,
d%′/dpev, d%′′/dpev

(pev)

θC , %C , sC (pC , hC) θF,2 (pev)
sA (pA, hA) Exhaust gas properties
hD,is (pD, sC) Property Evaluated at
hB,is, ∂ hB,is/∂ pB (pB, sA) cG,1

�

pG ,θG,L1

�

External inputs cG,2

�

pG ,θG,L1+L2

�

Property Evaluated at cG,3

�

pG ,θG,in

�

ṁG,in (t)
θG,in (t)

speed gains can be obtained by proceeding this way if the representing functions are cheap
to evaluate. Since piecewise linear and bilinear interpolation techniques have yielded poor
results when combined with the algorithms to be presented in Section 4.1, an approach is pro-
posed that uses cubic and bicubic splines to construct the representing functions. The approach
builds upon [58], adding a new extrapolation feature.

3.3.1 Cubic and Bicubic Splines

Following the lines of [13, 33, 143], let the values of a function f : [τ0,τn] ⊂ R → Rn at the
mesh points π

def
= {τ0 < τ1 < . . . < τn} (also known as joints), be denoted as yi = f (τi), and

the values of its first derivatives at the borders d f /dτ(τ0) and d f /dτ(τn), be known (the latter
can be approximated by finite differences on the first and last intervals, respectively). The cubic
spline s(τ;π, f ) : [τ0,τn] ⊂ R→ Rn interpolating such values (i.e. s(τi) = yi ∀i ∈ {0, . . . , n})
is a piecewise cubic polynomial of class C2[τ0,τn] of the form

s(τ;π, f ) =
3
∑

j=0

ai
j(τ−τi)

j if τ ∈ [τi ,τi+1], for some i ∈ {0, . . . , n− 1}, (3.56)

with coefficients ai
j ∈ R

n ∀ j ∈ {0, . . . , 3}. In [33] it has been shown that there is exactly one
cubic spline satisfying the aforementioned properties. Moreover, the set S(τ;π) of functions
of class C2 on [τ0,τn] that are equal to cubic polynomials on each interval [τi ,τi+1] forms
a linear space of dimension n + 3. Additionally, the spline s(τ;π, f ) is the solution to the
variational problem

min
u∈C2[τ0,τn]

∫ τn

τ0

�

d2u/dτ2(τ)
�2

dτ

s.t. u(τi) = yi , ∀i ∈ {1, . . . , n}.
(3.57)

This is an attractive property of the spline interpolation, since it is also related with the curva-
ture of the interpolating function. The integral in Eq. (3.57) can be considered as a linearized
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approximation to the strain energy of a thin beam,

∫ τn

τ0

�

d2u/dτ2

(1+ (du/dτ)2)3/2
(τ)

�2

.

This result was proven by [70] for the case where the second derivatives at the borders
d2 f /dτ2(τ0) and d2 f /dτ2(τn) both fade. In [159] the proof was extended for periodic func-
tions, and in [34] this fact has been extended for splines of arbitrary odd degree and prescribed
first derivatives at the borders. The result can be interpreted as the spline "trying to keep the
shape of a beam" subject to the interpolation constraints.

Further, regarding its approximation properties, in [34] it is proved that, if f ∈ C2[τ0,τn], the
spline s(·;π, f ) minimizes

∫ τn

τ0

�

d2

dτ2
( f (τ)− s(τ))

�2

dτ (3.58)

among all the piecewise functions of degree at most three and class C2 on [τ0,τn]. This solution
is not unique, since s plus a polynomial of degree at most one will also satisfy it.

Another interesting property of the cubic splines is their convergence: defining

I = {0, . . . , n−1}, ∆τi = τi+1−τi i ∈ I , |π| def
=max

i∈I
∆τi , and Mπ = |π|/min

i∈I
∆τi , (3.59)

in [12] it is shown that if f ∈ C4[τ0,τn], then there exist constants Kr(Mπ) depending on the
mesh-ratio bound Mπ alone such that









d(r)

dτ(r)
( f − s(·;π, f ))









¶ Kr









d(4) f
dτ(4)









|π|4−r , ∀r ∈ {0, . . . , 3}, (3.60)

where ‖ f ‖ def
=maxτ∈[τ0,τn] f (τ). A similar bound can be found in [67].

The aforementioned properties make cubic spline interpolation very attractive for applications.
This has motivated the introduction of the bicubic splines for the bivariate case. An original
approach was proposed in [14] and improved later in [33]. Consider the function u : [x0, x I]×
[y0, yJ] ⊂ R2 → R, defined on a rectangular region. Consider the mesh points πx

def
= {x0 <

x1 < . . . < x I} and πy
def
= {y0 < y1 < . . . < yJ}, and let the following characteristics of u be

known:

• The function values at the meshpoints, i.e.
ui j

def
= u(x i , y j) ∀i ∈ {0, . . . , I}, j ∈ {0, . . . , J}

• The function’s first order derivatives at the mesh’s boundary points, i.e.
pi j

def
= ∂ u/∂ x(x i , y j) ∀i ∈ {0, I}, j ∈ {0, . . . , J}, and

qi j
def
= ∂ u/∂ y(x i , y j) ∀i ∈ {0, . . . , I}, j ∈ {0, J}

• The function’s crossed derivatives at the four corners of the mesh, i.e.
si j

def
= ∂ 2u/∂ x∂ y(x i , y j) ∀i ∈ {0, I}, j ∈ {0, J}
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The bicubic spline c(x , y;πx ,πy , u) : [x0, x I]× [y0, yJ] ⊂ R2→ R satisfying

c(x i , y j) = ui j ∀i ∈ {0, . . . , I}, j ∈ {0, . . . , J},
∂ c/∂ x(x i , y j) = pi j ∀i ∈ {0, I}, j ∈ {0, . . . , J},
∂ c/∂ y(x i , y j) = qi j ∀i ∈ {0, . . . , I}, j ∈ {0, J}, and

∂ 2c/∂ x∂ y(x i , y j) = si j ∀i ∈ {0, I}, j ∈ {0, J},

(3.61)

is a piecewise bicubic polynomial of the form

c(x , y) =
3
∑

m=0

3
∑

n=0

ai j
mn(x − x i)

m(y − y j)
n if (x , y) ∈ Ri j = [x i , x i+1]× [y j , y j+1],

for some i ∈ {0, . . . , I − 1} and some j ∈ {0, . . . , J − 1}.

(3.62)

The information concerning derivatives can be approximated by finite differences. In [33] it
is shown that the bicubic spline satisfying these conditions exists and is unique, and that it
actually belongs to the tensor product of the spline spaces associated to each dimension, i.e.
c(x , y;πx ,πy , u) ∈ S(x;πx)⊗ S(y;πy). As such, they inherit the property of being of class C2

on the rectangular region [x0, x I]× [y0, yJ]. As stated in [13], the bicubic splines satisfy the
variational property of minimizing

∫∫

[x0,x I ]×[y0,yJ ]

�

∂ 4u
∂ x2∂ y2

�2

dxdy +

∫

∂ ([x0,x I ]×[y0,yJ ])

�

∂ 2u
∂ s2

�

ds, (3.63)

where ∂ ([x0, x I] × [y0, yJ]) denotes the rectangle edge and ∂ /∂ s denotes the tangential
derivative. In the same reference, a property analogous to Eq. (3.60) has been given:

‖u(x , y)− c(x , y)‖= o(|πx |4 + |πy |4), (3.64)

using analogous definitions as Eq. (3.59).
In summary, the aforementioned properties of the splines make them a very suitable option
to represent the data obtained by REFPROP. In the univariate case, in contrast to the usual
Lagrange interpolation for equidistant meshes, splines minimize the oscillations. Moreover,
since the degree of each piecewise polynomial remains three, the number of floating point
operations required on each evaluation is smaller. These properties are also inherited in the
bivariate case. On the other hand, the good spline convergence qualities makes it possible to
reduce the |π|, |πx | and/or |πy | if more precision is desired. This is supported by the smooth
functional forms of Eqs. (2.33) to (2.36).

3.3.2 Saturated and Two-phase Properties

Based on the previous section, we represent the properties corresponding to saturated and
two-phase states in Table 3.2 as follows: the vector function

d : [pmin, pmax]→ R4

p→ d(p) :=
�

h′(p) h′′(p) %′(p) %′′(p) θF,2(p)
�T (3.65)

depends only on the process pressure p. We apply thus a univariate cubic spline approach to
represent the data. For these means, a pressure mesh πp = {pmin = p0 < p1 < . . . < pNp

=
pmax} is defined on which vectors yi = d(pi), i ∈ {0, . . . , Np} are evaluated using REFPROP.
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Next, the cubic spline s(p;πp, d) interpolating the pairs {pi , yi}
Np

i=0 is obtained using the ap-
proach described in [33] (cf. [146]). Once its coefficients are known, the spline can be eval-
uated in [pmin, pmax] using Horner’s method (cf. [117]), whenever model functions M , b and
g of Eq. (3.53) are evaluated, to obtain the components of d. Whenever the derivatives w.r.t.
pressure, dh′/dpev, dh′′/dpev, d%′/dpev and d%′′/dpev are needed on [pmin, pmax], they are
obtained directly from the spline, using its analytic expression.

Extrapolation. In Chapter 4 the iterative dynamic optimization algorithms model Eq. (3.53)
is subject to are explained. As they converge, the thermophysical properties may be evaluated
at points laying outside the domain of definition of the corresponding splines. It is, therefore,
appropriate to consider an extrapolation scheme for those cases. The extrapolation scheme
should yield values of the corresponding properties that deviate from those at the domain of
definition’s borders with a suitably bounded change rate, so that evaluations can be safely
performed far from away the border. In addition, changes of signs are not desired, and the
monotonicity of the extrapolation with respect to its arguments should resemble the one of
the data close to the border. For the properties corresponding to saturated and two-phase
states, the corresponding spline is expanded by means of linear affine functions defined on
each side that match the splines’ slope and value at the corresponding border. Concretely, if
s(·;πp, d) is the spline interpolating the values of d on πp, we consider the function

f (p) =











s(pmin;πp, d) + (p− pmin)ds/dp(pmin;πp, d) , if p < pmin

s(p;πp, d) , if p ∈ [pmin, pmax]

s(pmax;πp, d) + (p− pmax)ds/dp(pmax;πp, d) , if p > pmax.

(3.66)

to represent the data for all p ∈ R.

3.3.3 External Inputs

The continuous-time model Eq. (3.53) requires a continuous-time representation of the ex-
ternal input vector w (t), i.e for all t in the simulation interval, the value of w (t) should be
defined. This can be done in several ways, and even real-world data can be represented. In
scenarios based on real-world data, which have been provided by our industry cooperation
partner Daimler AG and correspond to exhaust gas temperature and massflow data recorded
during several test drives of a real heavy duty truck, we proceed similarly as in Section 3.3.2
in order to represent them, but since the amount of data under consideration is large, a mesh
much coarser than the data sampling time is used and the external inputs are not interpolated
but approximated by a cubic spline. The spline knots are fixed, and uniformly spaced on a
predetermined time interval. For these scenarios, the model is not evaluated at times outside
the aforementioned time interval, so the extrapolation feature is not used.

3.3.4 Single-Phase and Exhaust Gas Properties

As shown in Table 3.2, the working fluid single-phase properties are parametrized with respect
to pressure-enthalpy (p, h) and pressure-entropy (p, s) pairs. Depending on this, the treatment
of the data varies, as explained in the following paragraphs. For a better understanding of the
choices made in this subsection, it is important to have in mind the discussion about states of
matter, phase changes and thermophysical properties on Section 2.5.
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Functions Depending on Pressure-Enthalpy Pairs. We begin by defining pmin, pmax, hmin
and hmax so that pmin < pmax and hmin < hmax. The latter are chosen so that a portion of
the projection of the vapor dome on the p-h plane is contained in [pmin, pmax]× [hmin, hmax].
We proceed to obtain the required thermophysical data from REFPROP on set of coordinates
contained in [pmin, pmax] × [hmin, hmax]. In principle, we could directly define a rectangular
mesh on the region and proceed to construct the corresponding bicubic splines. However, the
physical nature of the functions to represent poses difficulties for the achievement of satisfac-
tory results: both the temperature and the density derivatives with respect to the enthalpy are
discontinuous at the saturation curves. Also, in the two-phase region, the density decreases
violently as h increases. To make things worse, the saturation curves are not parallel to any of
the axes of the p-h plane. As pointed out in [13], cubic and bicubic splines of class C2 are not
local, which means that the values of the resulting representing function at some specific co-
ordinates in the domain of definition depend on all the input data. A direct implementation of
the bicubic spline approach described in Section 3.3.1 would result in unexpected oscillations
even far away from the saturated states, and, furthermore, in inconsistent values close to the
saturated states themselves, which is particularly critical since terms involving saturated and
non-saturated states interact heavily in our model. The problem persists even if the mesh is
refined.

On the other hand, if pressure pmax is bounded below the critical pressure pc , it holds that
h′(p) < h′′(p) for all p ∈ [pmin, pmax]. We can thus partition the rectangle [pmin, pmax] ×
[hmin, hmax] into three non-rectangular regions

SL = {(p, h)/p ∈ [pmin, pmax], hmin ¶ h¶ h′(p)}
V D = {(p, h)/p ∈ [pmin, pmax], h′(p)< h< h′′(p)}
SV = {(p, h)/p ∈ [pmin, pmax], h′′(p)¶ h¶ hmax}

associated with the subcooled liquid region (SL), the vapor dome (V D) and the superheated
vapor region (SV ). The regions are depicted in Fig. 3.6. These regions are each homeomorph
to a square S = [0, 1]× [0, 1]. We introduce the transformations

x(pL) = (pL − pmin)/(pmax − pmin), y(pL , hL) = (hL − hmin)/(h
′(pL)− hmin), (3.67)

mapping the coordinates
�

pL , hL
�

∈ SL onto (x , y) ∈ S, and

x(pV ) = (pV − pmin)/(pmax − pmin), y(pV , hV ) = (hV − h′′(pV ))/(hmax − h′′(pV )) (3.68)

mapping the coordinates
�

pV , hV
�

∈ SV onto (x , y) ∈ S.

The inverse transformations are also available. Namely,

pL = pmin + x(pmax − pmin), hL = hmin + y(h′(pL)− hmin), (3.69)

mapping the coordinates (x , y) ∈ S onto
�

pL , hL
�

∈ SL, and

pV = pmin + x(pmax − pmin), hV = h′′(pV ) + y(hmax − h′′(pV )), (3.70)

mapping the coordinates (x , y) ∈ S onto
�

pV , hV
�

∈ SV .

We proceed therefore as follows: consider an equidistant rectangular mesh of Np × Nh points
on the square S = [0, 1] × [0, 1], and the index sets II = {1, . . . , Np} and IJ = {1, . . . , Nh}.
Each point

�

x i , y j

�

on this mesh can be mapped onto SL using Eq. (3.69), and onto SV using
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Eq. (3.70). This way, the meshes

SLm =
¦

(pL
i , hL

j ), i ∈ II , j ∈ IJ

©

⊂ SL and SVm =
¦

(pV
i , hV

j ), i ∈ II , j ∈ IJ

©

⊂ SV, (3.71)

are formed. We use REFPROP to evaluate temperature, density and entropy at all meshpoints
in SLm and SVm. Let us denote for each property the obtained values by X L

i, j for SLm and X V
i, j for

SVm, for all i ∈ II , j ∈ IJ . For each property X ∈ {%,θ , s} and triplet set {(x i , y j , X L
i, j)/(i, j) ∈

II × IJ} and {(x i , y j , X V
i, j)/(i, j) ∈ II × IJ}, the coefficients ai j

mn of the interpolating bicubic
spline are obtained using the method proposed by [33] (see also [145]). Let us denote them
by subcooled spline and superheated spline, respectively. These splines are the ones used in the
model for the evaluation of each property on the corresponding region. For evaluating sA, θF,1
and %̄1, the (p, h) pair where the property is to be evaluated is firstly mapped onto (x , y) ∈ S
using Eq. (3.67). The subcooled spline is evaluated at (x , y) then. The density derivatives
∂ %̄1/∂ p̄1 and ∂ %̄1/∂ h̄1 at (p, h) are obtained from the spline directly and applying the chain
rule. The evaluation process is analogous for θF,3, %̄3, ∂ %̄3/∂ p̄3, ∂ %̄3/∂ h̄3, %C and sC , using
Eq. (3.68) to transform the coordinates and evaluating the superheated spline instead.
On each case, since the meshes are equidistant, the indices i and j corresponding to each cell
in the transformed square can be readily computed. At this point the evaluation takes thus no
longer than six sums and multiplications per function.

Enthalpy

Pressure Saturated vapor lineSaturated liquid line

Superheated 
vapor region 

SV

Subcooled 
liquid 

region SL

Vapor dome 
VD

Figure 3.6: Representation of a typical p-h diagram for a working fluid. Definition of interpolation re-
gions SL, V D and SV

Functions Depending on Pressure-Entropy Pairs. The enthalpies hB,is and hD,is, which are
parametrized on (p, s) pairs, do not suffer from the irregular behavior described previously,
so we can proceed directly proceed by defining smin and smax and a rectangular mesh PSm of
Np×Ns points on PS = [pmin, pmax]×[smin, smax]. REFPROP is used to evaluate the enthalpy on
each meshpoint. With the resulting (p, s, h) triplets, an interpolating bicubic spline is obtained
and used for evaluation inside PS The derivative ∂ hB,is/∂ pB is obtained directly from the
spline, as above.

Extrapolation. Since the actual range of values the input pairs (p, h), (p, s) can take during
simulation and optimization is not necessarily known in advance, it is necessary to define an
adequate extrapolation strategy, as discussed previously. We propose the following approach:
Let us denote the spline evaluation pair as P = (P1, P2). If one or both spline arguments fall
outside regions S or PS, as the case may be, evaluate the spline at the closest point at the
border (in a norm-1 sense), called P̃, obtaining X̃ ; then, calculate the spline gradient at P̃,
denoted by ∇X̃ = (∂ X/∂ P1, ∂ X/∂ P2), and then add a correction term equal to ∇X̃ T (P − P̃)
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to X̃ . The spline derivatives are given by ∇X̃ . This extrapolation approach shows advantages
over directly evaluating the spline outside its domain of definition, since the obtained values
do not suffer from oscillations and their change rate is moderate, allowing for evaluations also
far away from the border. This approach is illustrated in Fig. 3.7. Notice that in the case of
pressure-enthalpy pairs, we refer to the borders the square S.

Figure 3.7: Extrapolation approach

Exhaust Gas Properties. For the exhaust gas properties we proceed as in the case of the
working fluid properties depending on (p, s) pairs, but parametrize with respect to (p,θ ) pairs.
On the [pG,min, pG,max]× [θG,min,θG,max] region a NpG ×NθG rectangular mesh is defined upon
which the properties are evaluated and the splines are obtained.

3.3.5 Summary

The substance used as the working fluid in the ORC is the responsible for the energy transfer
taking place inside it. Therefore, the numerical values of its thermophysical properties, given
each thermodynamic state it is found at should be known with accuracy and become avail-
able as computations take place. Specialized software exists for these means, upon which we
have relied for our implementation. In order to obtain computational speed gains, however,
we have implemented a scheme based on both uni- and bivariate splines that interpolate the
data obtained from the specialized software. Adequate transformations have been found that
overcome oscillatory phenomena and inconsistencies that would otherwise rise is splines were
constructed directly from available data. Moreover, we have implemented an extrapolation
scheme that expands the evaluability region of model Eq. (3.53) in its state and parameter
space. This proves valuable for the convergence of the optimal control algorithms to be intro-
duced in Chapter 4.

3.4 Model Properties

In this subsection a set of properties of the model described by Eq. (3.53) will be studied. This
will be useful to establish whether or not the current formulation satisfies the assumptions
required by the numerical algorithms to be introduced in Chapter 4. The properties considered
are also of interest for alternative control algorithms used for comparison. Some properties are
explored numerically in Chapter 5.

Mass Matrix Invertibility and Condition. The structure of matrices Mev and M in Eq. (4.39)
permits the derivation of sufficient conditions for its invertibility.
A careful of scaling of Mev and M should be considered so as to avoid numerical difficulties
during the integration process. In this thesis we express the mass balance in [g] and the energy
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balances in [kW]. This influences bev and g as well. The state variables are also internally
scaled to have units of [m] (L1, L2), [MPa] (pev), [MJ/kg] (hC) and [hK]5 (θW,1, θW,2, θW,3).
The columns of Mev and M are scaled accordingly.

DAE Index. The algebraic expansion of ∂ g/∂ z leads to the condition

∂ g
∂ z
=−

1
2
πdi L3αF,3

︸ ︷︷ ︸

(+)

∂ θF,3

∂ h̄3

�

�

�

�

(h̄3,pev)
︸ ︷︷ ︸

(+)

−nexηex,VVex

︸ ︷︷ ︸

(+)

∂ %C

∂ hC

�

�

�

�

(h̄3,pev)
︸ ︷︷ ︸

(−)

�

hC − h′′(pev)
�

︸ ︷︷ ︸

(+)

− nexηex,VVex%C(h̄3, pev)

︸ ︷︷ ︸

(+)

6= 0 (3.72)

to ensure the DAE Eq. (3.53) is of index 1. On normal operating conditions, the different
summands in Eq. (3.72) have the signs indicated on the same equation. The highly nonlinear
dependence of the involved partial derivatives makes it difficult to characterize the region
where the condition holds analytically. However, given the characteristics of most substances,
in particular the one we use, it can be claimed that this condition is unlikely to be violated on
a normal operating trajectory. In this thesis we assume that the DAE index is 1.

Equilibrium States. Assuming that matrix M(x , z) is invertible, x and z are equilibrium
states (i.e. dx/dt = 0) if and only if the following equalities are satisfied:

0= ṁin − ṁout (3.73a)

0= πdi L1αF,1

�

θW,1 − θF,1

�

− ṁin

�

h′ − hB

�

, (3.73b)

0= πdi L2αF,2

�

θW,2 − θF,2

�

−
�

ṁouth
′′ − ṁinh′

�

, (3.73c)

0= πdi L3αF,3

�

θW,3 − θF,3

�

− ṁout

�

hC − h′′
�

. (3.73d)

0= doαG,1

�

θG,1 − θW,1

�

− diαF,1

�

θW,1 − θF,1

�

, (3.73e)

0= doαG,2

�

θG,2 − θW,2

�

− diαF,2

�

θW,2 − θF,2

�

, (3.73f)

0= doαG,3

�

θG,3 − θW,3

�

− diαF,3

�

θW,3 − θF,3

�

. (3.73g)

These equalities have been formed by imposing the components of Eq. (3.39b) to be zero,
while incorporating Eqs. (3.12) and (3.13). The latter set of equations impose a challenging
nonlinear coupling between state variables, parameters, control and external disturbances. For
this reason, in this thesis Eq. (3.73) are treated numerically. For the same reason, it may not be
true that any given combination of controls and external disturbances inside usual operational
margins has an associated equilibrium state laying on a feasible region. Knowing that the
working fluid at the evaporator output is likely to be found in regions close to the saturated
vapor line if a nearly optimal control strategy is to be considered [131], we let the equilibrium
control vector ū to be a degree of freedom and solve

min
x ,z,u

hC ; s.t. b(x , z, u, p, w ) = 0; g (x , z, p) = 0; c(x , z, u, p)¾ 0. (3.74)

In the following, the symbols x̄ = x̄ (w̄ , p), z̄ = z̄(w̄ , p), ū = ū(w̄ , p) denote the equilibrium
states and control solving Eq. (3.74), depending on the given external disturbance w̄ and

51 [hK] = 100 [K].
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parameter vector p.

Linearization around equilibrium points. Consider function f (·) =
�

M(·)−1b(·); g (·)
�

.
At the equilibrium state [x̄ , z̄] and control ū and external disturbances w̄ it holds that
f (x̄ , z̄, ū, w̄ , p) = 0. If all functions are of class C1 in a neighborhood around the equilibrium
state and control, the remainder term of a first-order Taylor expansion around an equilibrium
state

ε= f (x̄+δx , z̄+δz, ū+δu, w̄ , p)−
�

Āxδx + Āzδz + B̄δu
�

= o (‖ [δx ; δz; δu]‖) , (3.75)

with

Āx =
∂ f
∂ x

�

�

�

�

(x̄ ,z̄,ū,w̄ ,p)
, Āz =

∂ f
∂ z

�

�

�

�

(x̄ ,z̄,ū,w̄ ,p)
, and B̄ =

∂ f
∂ u

�

�

�

�

(x̄ ,z̄,ū,w̄ ,p)
(3.76)

can be neglected. Defining additionally

Ā=
�

Āx Āz

�

, and C̄ =

�

∂ y
∂ x

�

�

�

�

(x̄ ,z̄,ū,w̄ ,p)

∂ y
∂ z

�

�

�

�

(x̄ ,z̄,ū,w̄ ,p)

�

(3.77)

the following new linear ODE system can be thus defined:

dx̃
dt
(t) = Āx̃ (t) + B̄ũ(t), (3.78a)

ỹ(t) = C̄ x̃ (t), ∀t ∈ [t0, tf] (3.78b)

x̃ (t0) = 0. (3.78c)

In which x̃ , ũ and ỹ represent the deviations from the equilibrium states and control, and the
deviation in the measurement function due to x̃ , respectively. In this formulation we consider
x̃ to contain both the deviations of x and z. Notice that the origin is an equilibrium state for
Eq. (3.78) when ũ = 0.

In digital control, a difference equation relating the states x̃k and x̃k+1 at the contiguous sample
times tk and tk+1 = tk+ Ts is preferable [101, 114]. Integrating Eq. (3.78) between both time
instants yields

x̃k+1 = eĀTs x̃k +

�

eĀtk+1

∫ tk+1

tk

e−ĀτB̄ dτ

�

ũk, (3.79)

where the control ũ(τ) = ũk has been taken out of the integral since in a digital controller, it
will be constant for τ ∈ [tk, tk+1]. Here the matrix exponential is

eĀt =
∞
∑

i=0

1
i!

Āi , Ā0 def
= I. (3.80)

The exact discretization of Eq. (3.78) corresponds therefore to

x̃k+1 = Ax̃k + Bũk, (3.81a)

ỹk = C x̃k, ∀k ∈ K (3.81b)

x̃0 = 0, (3.81c)
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with

A= eĀTs , B = Ā−1
�

eĀTs − I
�

B̄, and C = C̄ . (3.82)

In Eq. (3.81), K ⊂ N0 is the index set of all the samples k considered on a given time horizon.

3.5 Problem Statement

In this section we give a mathematical formulation to the optimization problems dealt with
in this thesis. First, based on model Eq. (3.53), we proceed to formulate a fixed time horizon
optimal control problem (OCP) for a given external input vector w (t) and initial state x0. This
problem is interesting because its solution would allow us to know best how to operate the
WHR in order to recover as much energy as possible from the exhaust gas. This approach would
be perfectly applicable if some sort of truck driving strategy programming was available, so that
both the exhaust gas inputs and the drive duration could be precisely predicted. The advent
of autonomous driving gives good reasons that this will be possible in the near future, and the
relations existing between mechanical and thermal variables (torque-speed and exhaust gas
massflow-temperature) is faily well understood. On the other hand, full knowledge of the state
vector could be obtained with appropriate estimation methods. As long as the aforementioned
techniques are not available, the solution of the optimal control problem can still be used to
bring insight and evaluate the performance of other control strategies under the same scenario,
at least in simulation environments.
Closely related to the optimal control problem recently discussed is the technique of nonlinear
model-predictive control (NMPC). Therein, a discrete sequence of optimal control subproblems
is considered, each with similar objective function and path constraints as in the previous case.
In each subproblem, a sorter time horizon, also called the prediction horizon is considered, and
the initial state is allowed to differ between subproblems. This formulation is established to
provide state feedback, which becomes necessary as disturbances, model-plant mismatches or
unpredicted changes in the exhaust gas conditions may cause the solution of the OCP, open-
loop in its nature, to become invalid. At the same time, this formulation enables the controller
to pursue the optimization of the objective function while satisfying the constraints.
In NMPC, for each optimal control subproblem, the knowledge of the initial state is required.
In our particular case, not all states in model Eq. (3.53) are directly measurable, so a state
observer is required. The technique of choice for this thesis corresponds to moving horizon
estimation (MHE). Similar to NMPC, in MHE a sequence of estimation subproblems, generally
in the form of a least-squares problem is considered. Each problem’s goal is the estimation of
the differential state vector x using the information contained in the last M measurements.

3.5.1 Optimal Control Problem (OCP)

As previously stated, we are interested in controlling the WHR in an optimal fashion with
respect to an objective function, satisfying the operational constraints, also known as path
constraints. For the formulation, we consider the WHR operation along the fixed time interval
[t0, tf]. The initial state vector x0 in Eq. (3.53) is considered given.

Objective Function. The goal is to maximize the net energy recovery for the WHR on a fixed
time interval. Using Eqs. (3.1d) and (3.2f), we define the net output power as

L(x , z, u, p) = Ẇout(x , z, p)− Ẇin(x , u, p), (3.83)
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so that the objective function to be maximized, the net output energy, is

Φ(tf)
def
=

∫ tf

t0

L(x (t), z(t), u(t), p) dt. (3.84)

Path Constraints. Path constraints must be satisfied along the whole operational times-
pan. They are summarized in a vector function c(t) : Rnx × Rnz × Rnu × Rnp −→ Rnc;
c(x (t), z(t), u(t), p) ¾ 0, ∀t ∈ [t0, tf], where nx, nz, nu and np are the differential state,
algebraic state and control dimensions, respectively. Its components are defined as follows:

• Limitation of pump capacity,

c1(u) = ṁin,max − ṁin; c2(u) = ṁin − ṁin,min. (3.85)

• Prevention of droplets entering the expander,

c3(x , z) = hC − h′′(pev). (3.86)

• Limitation of third zone length to lower bound L3,min ¾ 0 to prevent numerical difficul-
ties,

c4(x , p) = L − L1 − L2 − L3,min. (3.87)

• Prevention of working fluid thermal decomposition,

c4+ j(x , z) = θF,max−θF, j(p̄ j , h̄ j), ∀ j ∈ {1, 2,3} and c8(x , z) = θF,max−θC(pC , hC). (3.88)

• Box constraints for the rest of the state vector,

c7+2 j(x ) = Lmax − L j and c8+2 j(x ) = L j − Lmin, ∀ j ∈ {1, 2};
c13(x ) = pmax − pev; c14(x ) = pev − pmin;

c13+2 j(x ) = θW,max − θW, j and c14+2 j(x ) = θW, j − θW,min ∀ j ∈ {1, 2,3}
(3.89)

Remark 3.5.1 (Minimum third zone length) In our practical experience it has been observed
that, in accordance to the results of [168], on the optimum state trajectories the thermodynamic
state of the working fluid at the expander inlet approaches the saturated vapor curves. This implies
the vanishing of the third zone (i.e. L3 = 0) at the instants where this takes place, which in
turn can cause numerical difficulties in e.g. Eq. (3.14) (K3 = 0) and Eq. (4.39) (M7,7 = 0,
see Eq. (3.46)). To handle this, we have introduced Eq. (3.87) and the minimum length L3,min
to ensure a minimum robustness margin against this phenomenon. Our numerical experience
indicates that the energy recovery for a typical heavy duty truck drive is practically independent
of L3,min when this value is small.

Remark 3.5.2 (Convexity of the OCP Constraints) Most components of c(t) are linear and
thus convex. On the other hand, Equations (3.86) and (3.88) are not. Both depend highly on the
working fluids being used in the WHR. For dry working fluids, Eq. (3.86) will be convex if pressure
pev is not too close to the critical pressure. Otherwise it will be nonconvex. Equation (3.88) can be
convex depending on the working fluid. For the case of ethanol, both Eqs. (3.86) and (3.88) are
nonconvex.
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Optimal Control Problem. Putting the DAE model Eq. (3.53), the path constraints and the
objective function together, the optimal control problem

POCP : min
x (·),z(·),u(·)

−
∫ tf

t0

L(x (t), z(t), u(t), p) dt

s.t. M(x (t), z(t), p)
dx
dt
(t) = b(x (t), z(t), u(t), p, w (t)),

0= g (x (t), z(t), p) ∀t ∈ [t0, tf],

0¶ c(x (t), z(t), u(t), p) ∀t ∈ [t0, tf],

0= x (t0)− x0,

(OCP)

is posed.

3.5.2 Nonlinear Model-Predictive Control (NMPC)

In this case we consider the same objective function, path constraints and model as for
Eq. (OCP). In contrast to Eq. (OCP), in this formulation not a single optimal control prob-
lem, but a sequence of them, indexed with a superindex k ∈ K = {0,1, . . . , K} is considered.
In each member of the sequence, if the sampling time is Ts, a prediction horizon starting at
t(k)0 = t0 + kTs and ending at t(k)f = t(k)0 +∆tNMPC is introduced. ∆tNMPC is the prediction

horizon length. At t(k)0 , the initial differential state is x̂ (k). With these considerations we define
the k-th optimal control subproblem of NMPC as

P(k)NMPC : min
x (·),z(·),u(·)

−
∫ t(k)f

t(k)0

L(x (t), z(t), u(t), p) dt

s.t. M(x (t), z(t), p)
dx
dt
(t) = b(x (t), z(t), u(t), p, w (t)),

0= g (x (t), z(t), p) ∀t ∈ [t(k)0 , t(k)f ],

0¶ c(x (t), z(t), u(t), p) ∀t ∈ [t(k)0 , t(k)f ],

0= x (t(k)0 )− x̂ (k).

(NMPCk)

3.5.3 Moving Horizon Estimation (MHE)

Similar to Eq. (NMPCk), to estimate x̂ (k), a sequence of least-squares problems P(k)MHE, k ∈ K
on a moving estimation window starting at t(k)0,MHE = t(k)0 −∆tMHE and ending at t(k)f,MHE = t(k)0
is defined in which measurements

Ξk =
�

ξk−M ,ξk−M+1, . . . ,ξk

�

, (3.90)

are available at times t(k)k−M+ j = t(k)0 + ( j −M)Ts for j ∈ {0, . . . , M}. Notice that ∆tMHE = M Ts.

Each measurement ξ j consists of a vector
�

pB,θC ,θG,out

�T
with associated standard devia-

tions
�

σp,σθF
,σθG

�T
. The past controls u(·) and external inputs w (·) are also available along

[t(k)0,MHE, t(k)f,MHE].
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Objective Function. For the MHE we consider the objective function

k
∑

j=k−M

‖ξ j − y(x̂ ( j), ẑ( j), w (t j), p)‖2W + ‖L3(x̂
(k), p)− L3‖2σL

, (3.91)

where ‖e‖2W = eT W T W e and W = diag
��

σ−1
p ,σ−1

θF
,σ−1
θG

��

. The third-zone length at (x , p) is

L3(x , p) = L − x1 − x2. L3 and σL constitute a terminal cost term. Since the superheating at
a near-optimal operating point should be as low as possible [131], we choose L3 > 0 small.
This term is added in order to obtain a well-posed problem.

Path Constraints. A constraint function cMHE(t) : Rnx × Rnp −→ Rnc,MHE; cMHE(x (t), p) ¾
0, ∀t ∈ [t(k)0,MHE, t(k)f,MHE] is introduced whose first component is (3.87) and the rest come from
a wall temperature arrangement,

cMHE,2(x , p) = θW,2 − θW,1, cMHE,3(x , p) = θW,3 − θW,2. (3.92)

Equations (3.87) and (3.92) are introduced to avoid unphysical model behavior. Notice that,
other than in Eqs. (NMPCk) and (OCP), there is no initial value constraint in the MHE formu-
lation.

Remark 3.5.3 (Convexity of the MHE Constraints) All components of cMHE(t) are linear and
thus convex.

State Estimation Problem. With the previous considerations, the state estimation problem
is formulated as

P(k)MHE : min
x̂ ( j) ,ẑ( j)

j∈{k−M ,...,k}

k
∑

j=k−M

‖ξ j − y(x̂ ( j), ẑ( j), w (t j), p)‖2W + ‖L3(x̂
(k), p)− L3‖2σL

.

s.t. 0= x̂ ( j+1) − f (x̂ ( j), u(·), p, w (·)) ∀ j ∈ {k−M , . . . , k− 1}

0= g (x̂ ( j), ẑ( j), p) ∀ j ∈ {k−M , . . . , k},

0¶ cMHE(x̂
( j), p) ∀ j ∈ {k−M , . . . , k},

(MHEk)

where f (x̂ ( j), u(·), p, w (·))maps the differential state from x̂ ( j) at t j to the one at t j+1 resulting
from integrating Eqs. (3.53a) and (3.53b) using u(·), w (·) and p.

Overview

In Sections 3.5.1 to 3.5.3 several optimization problems have been defined. The use of the
first-principles nonlinear model Eq. (3.53) is common to each of them. Additionally, in the
case of Problems Eqs. (OCP) and (NMPCk), their formulations include the state and control
trajectories in function spaces as decision variables. This makes them optimization problems
on an infinite-dimensional space.
To treat Problems Eqs. (OCP) and (NMPCk) numerically, in Section 4.1 we will introduce the
Direct Multiple Shooting method (DMS), firstly proposed by Plitt [124]. As a result of applying
the method on each case, related, highly structured Nonlinear Programming Problems (NLP)
are obtained which can be solved with nonlinear programming techniques to obtain approx-
imate solutions. In this thesis, we use a newer version of the method, implemented in the
optimal control package MUSCOD [92].
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Notice, on the other hand, that the fact that the measurements in Eq. (MHEk) are sampled,
and the fixed amount of measurements entering the estimation window make the problem
have a natural formulation in discrete time. The DMS method can also be used to solve this
kind of problems.
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4 Numerical Methods

Having stated the problems we are dealing with throughout this thesis in Section 3.5,
we proceed to review the algorithmic blocks implementing the functionalities required for
their solution. We begin describing the direct multiple shooting for optimal control, which
reparametrizes Eq. (OCP) (or Eq. (NMPCk) accordingly) and gives rise to a finite-dimensional,
highly structured nonlinear programming problem (NLP). An algorithm for the solution of
such problems is reviewed next, which in turn requires means to solve systems of differential-
algebraic equations, which are reviewed lastly.

4.1 Direct Multiple Shooting for Optimal Control

The DMS method has been introduced for the numerical solution of optimal control problems
by [18, 124]. The idea is to first produce a discrete-time version of Eq. (OCP). Since this
corresponds to a finite dimensional NLP, the next step is to solve this problem using nonlinear
programming techniques on a digital computer. In this section, we proceed to briefly explain
particular variants of the method, but there are many more. For a detailed general overview,
see e.g. [92].
In general, the DMS method is adequate to solve optimization problems under ODE/DAE con-
straints on closed, bounded time intervals [t0, tf]. If the initial state is known, let it be x0.
The first algorithmic step of the direct multiple shooting method consists in dividing the time
horizon into N intervals, given by introducing N + 1 nodes with t0 < t1 < . . . < tN = tf.
In this thesis, we choose an equidistant node distribution, i.e. t i = t0 +

� i
N

�

(tf − t0), ∀i ∈
{0, . . . , N}, although other distributions are also possible. The next step is the approximation
of the control on each interval by a finite-dimensional representation with local support, i.e.
u(t) ≈ ũi(t;qi) ∈ nu ∀t ∈ [t i , t i+1],∀i ∈ {0, . . . , N − 1}. Typical choices for ũi(t;qi) are fami-
lies of piecewise polynomials. In particular, in this thesis we make use of a piecewise constant
representation on each interval, i.e. ũi(t;qi) = qi ∈ nu ∀t ∈ [t i , t i+1],∀i ∈ {0, . . . , N −1}. Fur-
ther, we introduce vectors s x

0 , s x
1 , . . . , s x

N and s z
0 , s z

1 , . . . , s z
N of dimensions nx and nz respectively,

called the node differential and algebraic state vectors, respectively. For each i ∈ {0, . . . , N − 1},
we denote by x (t; t i , s x

i , s z
i ,qi , p) the differential part of the solution, evaluated at time t, of

the relaxed initial value problem

M(x (t), z(t), p)
dx
dt
(t) = b(x (t), z(t), ũ(t;qi), p, w (t));

0= g (x (t), z(t), p)− g (s x
i , s z

i , p)ζi(t), t ∈ [t i , t i+1]

x (t i) = s x
i , z(t i) = s z

i .

(4.1)

The algebraic part of the DAE has been modified. In Eq. (4.1), any combination of initial
values s x

i , s z
i is consistent, even if they would be not consistent in Eq. (3.53b). This reduces

the computational load, since no consistency iterations have to be carried out to solve Eq. (4.1),
and gives additional flexibility to the NLP solver later on, allowing intermediate steps in which
consistency of the original DAE system is not exactly satisfied. A typical choice for functions ζi
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is

ζi(t) = exp(−β(t − t i)/(t i+1 − t i)), ∀t ∈ [t i , t i+1]. (4.2)

The factor β > 0 is suitably chosen so as to damp the initial inconsistency. On each interval
the contributions to the objective function,

Li(s
x
i , s z

i ,qi , p) =

∫ t i+1

t i

L(x i(t), zi(t), ũ(t;qi), p) dt, (4.3)

can be obtained simultaneously if the ODE satisfied by the additional fictitious scalar differen-
tial state xL ,

d
dt

xL(t) = L(x i(t), zi(t), ũ(t;qi), p), ∀t ∈ [t i , t i+1]

xL(t i) = 0 ∀i ∈ {0, . . . , N − 1},
(4.4)

is integrated together with Eq. (4.1) [91].

In spite of having relaxed the algebraic constraints in Eq. (4.1), it is indeed desired that the
node algebraic states corresponding to the solution of the NLP be consistent. Moreover, the
differential state trajectories should be continuous at the nodes. We introduce thus the alge-
braic and the continuity constraints both at the nodes. In addition, at the first node, the node
differential state vector s x

0 is chosen to correspond to the fixed initial state x0:

x (t i+1; t i , s x
i , s z

i ,qi , p)− s x
i+1 = 0, ∀i ∈ {0, . . . , N − 1} (4.5a)

g (s x
i , s z

i , p) = 0, ∀i ∈ {0, . . . , N} (4.5b)

s x
0 − x0 = 0. (4.5c)

Concerning the path constraints, one option (see e.g. [92, 126] for other possibilities) is to
evaluate them at the shooting nodes as

c(s x
i , s z

i , ũ(t i;qi), p)¾ 0 ∀i ∈ {0, . . . , N}. (4.6)

At this point, we have introduced an additional, auxiliary control vector qN , associated to the
last multiple shooting node. This variable is imposed to satisfy the constraint

qN − qN−1 = 0. (4.7)

The resulting nonlinear programming problem (NLP) is

min
{s x

i ,s z
i ,qi}N

i=0

−
N−1
∑

i=0

Li(s
x
i , s z

i ,qi , p) (4.8a)

s.t. x (t i+1; t i , s x
i , s z

i ,qi , p)− s x
i+1 = 0, i ∈ {0, . . . , N − 1}, (4.8b)

g (s x
i , s z

i , p) = 0, i ∈ {0, . . . , N}, (4.8c)

s x
0 − x0 = 0, (4.8d)

qN − qN−1 = 0 (4.8e)

c(s x
i , s z

i ,qi , p)¾ 0, i ∈ {0, . . . , N}, (4.8f)

Defining v =
�

s x
0 ; s z

0 ;q0; s x
1 ; s z

1 ;q1; . . . ;qN−1; s x
N ; s z

N ;qN

�

as the decision variable vector, Prob-
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lem (4.8) is

min
v

F(v) s.t. G(v) = 0, H(v)¾ 0. (4.9)

The dimension of v is nv = (N+1)(nx+nz+nu). Functions G and H have their images in spaces
of dimension nG = (N + 1)(nx + nz) + nu and nH = (N + 1)nc, respectively. Problem (4.9) is
solved by means of a tailored partially reduced SQP method.

Remark 4.1.1 (Direct Multiple Shooting for NMPC) In the NMPC case, for each k ∈ K, con-
sider x̂ (k)0 instead of x0 in Eq. (4.5c). For all i ∈ {0, . . . , N}, the nodes are placed at t(k)i =
t(k)0 + (i/N)∆tNMPC. The time limits in Eqs. (4.1) to (4.3) and (4.5) are thus [t(k)i , t(k)i+1] ∀i ∈
{0, . . . , N−1}. Proceeding as before, from each subproblem (NMPCk) an NLP with the same struc-
ture as Eq. (4.8) is obtained, and thus the constraint vectors and decision variable components
and dimensions remain the same. It is still possible to emphasize the dependency of each subprob-
lem on the initial state x̂ (k)0 and the current time t(k)0 , and denote that the decision variable vector
belongs to subproblem (NMPCk) by writing the NLP

min
vk

F(vk) s.t. G(vk; x̂ (k)0 , t(k)0 ) = 0, H(vk)¾ 0, (4.10)

with

vk =
�

s x
0,k; s z

0,k;q0,k; s x
1,k; s z

1,k;q1,k; . . . ;qN−1,k; s x
N ,k; s z

N ,k;qN ,k

�

. (4.11)

Remark 4.1.2 (Direct Multiple Shooting for MHE) In the MHE case, for each k ∈ K, the k-th
MHE subproblem (MHEk) of Section 3.5.3 can be treated by means of the direct multiple shooting
method by placing the nodes at times t(k)k−M+ j for j ∈ {k − M , . . . , k}. In this case, we denote the

node differential and algebraic states as x̂ ( j) and ẑ( j). This way, the node states can directly be in-
terpreted as the state estimate iterates of subproblem (MHEk). If we replace the function mapping
f (·) of subproblem (MHEk) by the continuity constraints Eq. (4.5a), we obtain an NLP with the
same structure as subproblem (MHEk). To this end, we consider a zero-order hold sampling of the
control, i.e. u(t) = u(t j) ∀t ∈ [t j , t j+1] and denote as x (t j+1; t j , x̂ ( j), ẑ( j), u(t j), p) the result of
integrating Eq. (4.1) along [t j , t j+1] starting from x̂ ( j) and ẑ( j) in place of s x

i and s z
i and using

the control u(t) and the external inputs w (t). Therewith, the resulting k-th NLP subproblem is

min
x̂ ( j) ,ẑ( j)

j∈{k−M ,...,k}

k
∑

j=k−M

‖ξ j − y(x̂ ( j), ẑ( j), w (t j), p)‖2W + ‖L3(x̂
(k), p)− L3‖2σL

. (4.12a)

s.t. 0= x (t j+1; t j , x̂ ( j), ẑ( j), u(t j), p)− x̂ ( j+1) ∀ j ∈ {k−M , . . . , k− 1}, (4.12b)

0= g (x̂ ( j), ẑ( j), p) ∀ j ∈ {k−M , . . . , k}, (4.12c)

0¶ cMHE(x̂
( j), ẑ( j), u(t j), p) ∀ j ∈ {k−M , . . . , k}, (4.12d)

which can be summarized as

min
vk
‖FMHE(vk,Ξk)‖22 s.t. GMHE(vk,Ξk) = 0, HMHE(vk)¾ 0. (4.13)

Therein, the decision variable vector vk corresponds to

vk =
�

x̂ (k−M); ẑ(k−M); x̂ (k−M+1); ẑ(k−M+1); . . . ; x̂ (k); ẑ(k)
�

. (4.14)

Therewith, the dimension of vk is nv,MHE = (M + 1)(nx + nz). Functions GMHE and HMHE have
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their images in spaces of dimension nG,MHE = (M + 1)(nx + nz) and nH,MHE = (M + 1)nc,MHE,
respectively.

4.1.1 A Tailored Sequential Quadratic Programming Method

Without loss of generality, in this section we focus on Eq. (4.9). In principle, its solution could
be performed by means of any NLP software. However, great gains in computational efficiency
can be obtained if the problem’s special structure is leveraged. Introducing the Lagrangian
multiplier vectors λ ∈ RnG and µ ∈ RnH and the Lagrangian function

L : Rnv ×RnG ×RnH −→ R
L(v ,λ,µ) = F(v)−λT G(v)−µT H(v);

(4.15)

if we consider the k-th iteration of a general QP subproblem arising in a standard full-Hessian
SQP implementation, where the current solution iterate is vk, and the current Lagrange mul-
tiplier estimates are λk and µk,

min
∆v
∇vF(vk)

T∆v +
1
2
∆v T∇2

vL(vk,λk,µk)∆v

s.t. G(vk) +∇vG(vk)
T∆v = 0

H(vk) +∇vH(vk)
T∆v ¾ 0

, (4.16)

an efficient tailored SQP method can be devised by observing the structure of the involved
matrices.
Since in the next paragraphs we will be discussed the properties of Eq. (4.16) and algorithmic
steps taking all place within a single iteration k, we will temporarily drop this index in order
to keep notation simple.

Structure of the QP. The first property of Eq. (4.16) that becomes evident is that the con-
straint Jacobian and the Lagrangian Hessian possess a sparse structure. This is due to the
partial separability property of each function, which is a direct consequence of having intro-
duced independent node variables, and having parametrized the control trajectories in a space
of piecewise functions whose support is exactly each multiple shooting interval: we have that
the corresponding functions F, G and H can be written as a sum of functions depending on
disjoint sets of variables. Defining the Jacobian matrices

X x
i

def
=
∂ x
∂ s x

�

�

�

�

(t i+1;t i ,s
x
i ,s z

i ,qi ,p)

, X z
i

def
=
∂ x
∂ s z

�

�

�

�

(t i+1;t i ,s
x
i ,s z

i ,qi ,p)

, and Xq
i

def
=
∂ x
∂ q

�

�

�

�

(t i+1;t i ,s
x
i ,s z

i ,qi ,p)
; (4.17a)

Gx
i

def
=
∂ g
∂ x
(s x

i , s z
i ,qi , p), Gz

i
def
=
∂ g
∂ z
(s x

i , s z
i ,qi , p), and Gq

i
def
=
∂ g
∂ u
(s x

i , s z
i ,qi , p); (4.17b)

C x
i

def
=
∂ c
∂ x
(s x

i , s z
i ,qi , p), C z

i
def
=
∂ c
∂ z
(s x

i , s z
i ,qi , p), and Cq

i
def
=
∂ c
∂ u
(s x

i , s z
i ,qi , p), (4.17c)

and the subvectors∆vi
def
= [∆s x

i ;∆s z
i ;∆qi], we realize that the Lagrangian function (4.15) has

a partially separable structure,

L(v ,λ,µ) =
N−1
∑

i=0

�

Li(s
x
i , s z

i ,qi , p)−λx
i

T �x (t i+1; t i , s x
i , s z

i ,qi , p)− s x
i+1

�

−λz
i

T g (s x
i , s z

i , p)−µi
T c(s x

i , s z
i ,qi , p)

	

−λ0
0

T �
s x

0 − x (k)
�

−λz
N

T g (s x
N , s z

N , p)−µN
T c(s x

N , s z
N ,qN , p),

(4.18)
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so we can write Eq. (4.16) as

min
∆v0,...,∆vN

N
∑

i=0

§

1
2
∆v T

i ∇
2
vi
Li(vk,λk,µk)∆vi +∇vi

Li(s
x
i , s z

i ,qi , p)T∆vi

ª

(4.19a)

s.t. X x
i ∆s x

i + X z
i ∆s z

i + Xq
i ∆qi −∆s x

i+1 = s x
i+1 − x i+1 ∀i ∈ {0, . . . , N − 1}, (4.19b)

Gx
i ∆s x

i +Gz
i ∆s z

i +Gq
i ∆qi = −gi ∀i ∈ {0, . . . , N}, (4.19c)

∆s x
0 = x (k) − s x

0 , (4.19d)

∆qN −∆qN−1 = 0, (4.19e)

C x
i ∆s x

i +C z
i ∆s z

i +Cq
i ∆qi ¾ −ci ∀i ∈ {0, . . . , N}, (4.19f)

where we have simplified the notation by introducing gi = g (s x
i , s z

i , p), ci = c(s x
i , s z

i ,qi , p)
and x i+1 = x (t i+1; t i , s x

i , s z
i ,qi , p). Further,

Li =











Li(s x
i , s z

i ,qi , p)−λ0
0

T �s x
0 − x (k)

�

−λx
i

T
�

x i+1 − s x
i+1

�

−λz
i

T gi −µi
T ci if i = 0

Li(s x
i , s z

i ,qi , p)−λx
i

T
�

x i+1 − s x
i+1

�

−λz
i

T gi −µi
T ci if 1¶ i ¶ N − 1

−λz
i

T gi −µi
T ci if i = N

∀i ∈ {0, . . . , N}. (4.20)

Partial Reduction. Since the DAE Eq. (3.53) is of index 1, Gz
i is invertible for all i ∈

{0, . . . , N}. Thus, for given steps ∆s x
i and ∆qi , a value of ∆s z

i can be found that satisfies
Eq. (4.19c), i.e. so that ∆vi lies in the null space of the linearized consistency constraints
(4.19c). The step can be obtained as

∆s z
i = −

�

Gz
i

�−1
(Gx

i ∆s x
i +Gq

i ∆qi + gi)

= Dx
i ∆s x

i + Dq
i ∆qi + dg

i ∀i ∈ {0, . . . , N},
(4.21)

where matrices Dx
i and Dq

i , and vector dg
i are obtained by solving the linear system of equa-

tions

Gz
i

�

Dx
i | D

q
i | d

g
i

�

= −
�

Gx
i | G

q
i | gi

�

, (4.22)

which is usually sparse. In our implementation we use the Harwell subroutine MA48 [44, 137]
to solve Eq. (4.22). This way, the steps corresponding to the algebraic node states ∆s z

i , and
the linearized consistency constraints can be completely eliminated from the QP subprob-
lem (4.19). The expression for ∆vi is

∆vi =





Inx
0

Dx
i Dq

i
0 Inu





︸ ︷︷ ︸

Di

�

∆s x
i

∆qi

�

︸ ︷︷ ︸

∆vN
i

+





0
dg

i
0





︸ ︷︷ ︸

di

= Di∆vN
i + di . (4.23)

The remaining constraints take the form

(X x
i + X z

i Dx
i )∆s x

i + (X
q
i + X z

i Dq
i )∆qi −∆s x

i+1 = s x
i+1 − x i+1 − X z

i dg
i ∀i ∈ {0, . . . , N − 1}, (4.24a)

∆s x
0 = x (k) − s x

0 (4.24b)

(C x
i +C z

i Dx
i )∆s x

i + (C
q
i +C z

i Dq
i )∆qi ¾ −

�

ci +C z
i dg

i

�

∀i ∈ {0, . . . , N}, (4.24c)
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and, dropping arguments, the objective function takes the form (see Eq. (4.23))

N
∑

i=0

¨

1
2

�

∆s x
i

∆qi

�T

DT
i ∇

2
vi
LiDi

�

∆s x
i

∆qi

�

+ (DT
i ∇

2
vi
Lidi + DT

i ∇vi
Li)

T

�

∆s x
i

∆qi

�

+
1
2

dT
i ∇

2
vi
Lidi +∇vi

LT
i di

ª

.

(4.25)

Hessian approximation. In most partially reduced SQP implementations, the gradient cross
term DT

i ∇
2
vi
Lidi is neglected, and we proceed the same way. This is justified close to the

solution, where di approaches zero, since gi also does. Additionally, the terms 1
2dT

i ∇
2
vi
Lidi

and ∇vi
LT

i di are constant, so they can be taken out of the objective function. The remaining
partially reduced Hessian matrix block DT

i ∇
2
vi
LiDi can be approximated by a symmetric and

positive definite matrix

B(i)k =

�

B(i)ss B(i)sq

B(i)sq
T

B(i)qq

�

, (4.26)

so that the partially reduced QP with approximated Hessian can be written as

min
∆s x

0 ,...,∆s x
N

∆q0,...,∆qN

N
∑

i=0

§

1
2
∆s x

i
T B(i)ss ∆s x

i +∆s x
i

T B(i)sq∆qi +
1
2
∆qi

T B(i)qq∆qi +U x
i ∆s x

i +Uq
i ∆qi

ª

(4.27a)

s.t. V x
i ∆s x

i + Vq
i ∆qi −∆s x

i+1 = s x
i+1 − x i+1 − Vg

i ∀i ∈ {0, . . . , N − 1}, (4.27b)

∆s x
0 = x (k) − s x

0 , (4.27c)

∆qN −∆qN−1 = 0, (4.27d)

W x
i ∆s x

i +Wq
i ∆qi ¾ −ci −W g

i ∀i ∈ {0, . . . , N}, (4.27e)

where we have introduced the matrices

U x
i

def
= (∇s x

i
Li)

T + (∇s z
i
Li)

T Dx
i Uq

i
def
= (∇qi

Li)
T + (∇s z

i
Li)

T Dq
i Ug

i
def
=∇s z

i
LT

i dg
i (4.28a)

V x
i

def
= X x

i + X z
i Dx

i Vq
i

def
= Xq

i + X z
i Dq

i Vg
i

def
= X z

i dg
i (4.28b)

W x
i

def
= C x

i +C z
i Dx

i Wq
i

def
= Cq

i +C z
i Dq

i W g
i

def
= C z

i dg
i , (4.28c)

which can be efficiently generated as will be discussed in Section 4.1.2.

Condensing. At this point the condensing technique [124] can be applied: we leverage the
fact that the partially reduced continuity constraints (4.27b) are equivalent to a forward recur-
sion

∆s x
i+1 = V x

i ∆s x
i + Vq

i ∆qi − s x
i+1 + x i+1 + Vg

i ∀i ∈ {0, . . . , N − 1} (4.29)

to obtain an affine linear relationship between two sets of variables∆v c
1 and∆v c

2. To this end,
we reorder the variables by means of a permutation matrix P such that

∆vN = P

�

∆v c
1

∆v c
2

�

, with

∆v c
1 =

�

∆s x
1 ;∆s x

2 ; . . . ;∆s x
N ;∆qN

�

, and ∆v c
2 =

�

∆s x
0 ;∆q0; . . . ;∆qN−1

�

.

(4.30)
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If we define the matrices

Vc
x =















Inx
0 0 0 0

−V x
1 Inx

0 0 0

0
... . . . 0 0

0 0 −V x
N−1 Inx

0
0 0 0 0 Inq















and Vc
q =















V x
0 Vq

0 0 0 0
0 0 Vq

1 0 0

0 0 0
... 0

0 0 0 0 Vq
N−1

0 0 0 0 Inq















, (4.31)

and the vector Vc
g = [V

c
g 0

; . . . ; Vc
g N
] component-wise as

�

Vc
g

�

i
=

¨

Vg
i + x i+1 − s x

i+1 if 0¶ i ¶ N − 1

0 otherwise
for i ∈ {0, . . . , N}, (4.32)

we can write the partially reduced continuity constraints (4.27b) and the control equality
(4.19e) in matrix form as

Vc
x∆v c

1 = Vc
q∆v c

2 + Vc
g . (4.33)

This way, matrix Vc
x is invertible, and it holds that

∆v c
1 = T∆v c

2 + t (4.34)

for the matrix T
def
= (Vc

x )
−1Vc

q and vector t
def
= (Vc

x )
−1Vc

g , which possess the structures

T =



















X1|0 Q1|0 0 0 0 0
X2|0 Q2|0 Q2|1 0 0 0
X3|0 Q3|0 Q3|1 Q3|2 0 0

...
...

...
...

. . . 0
XN |0 QN |0 QN |1 QN |2 . . . QN |N−1

0 0 0 0 0 Inq



















and t =



















t1

t2

t3
...

tN

0



















. (4.35)

In (4.35), matrices Xi|0 can be interpreted as propagation matrices of the effect of a step ∆s x
0

in the rest of the steps∆s x
i . Likewise, matrices Q j|i give an account for the effect of a step∆qi

in the future steps ∆s x
j . This explains the structure of matrix T , and the recursive formulae

Xi+1|0 = V x
i Xi|0, ∀i ∈ {0, . . . , N − 1}, X0|0 = Inx

(4.36a)

Q j+1| j = Vq
j , Qi+1| j = Vq

i Qi| j , ∀ j ∈ {0, . . . , N − 1}, i ∈ { j + 1, . . . , N − 1} (4.36b)

ti+1 = V x
i ti + x i+1 − s x

i+1 + Vg
i ∀i ∈ {0, . . . , N − 1}, t0 = 0, (4.36c)

with which

∆s x
i = Xi|0∆s x

0 +
i−1
∑

j=0

Qi| j∆q j + ti , ∀i ∈ {1, . . . , N}. (4.37)
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The introduction of the permutation matrix P of (4.30), allows to write the QP subprob-
lem (4.27) as

min
∆vc

1,∆vc
2

1
2
∆v c

1
T B(1,1)

k ∆v c
1 +∆v c

1
T B(1,2)

k ∆v c
2 +

1
2
∆v c

2
T B(2,2)

k ∆v c
2 + g c

1
T∆v c

1 + g c
2

T∆v c
2 (4.38a)

s.t. Ac
11∆v c

1 + Ac
12∆v c

2 = bc
1 (4.38b)

Ac
21∆v c

1 + Ac
22∆v c

2 = bc
2 (4.38c)

C c
1∆v c

1 +C c
2∆v c

2 ¾ cc, (4.38d)

where matrices B(m,n)
k , Ac

mn and C c
m and vectors g c

m, bc
m and cc, with the appropriate indices

m and n, result from permuting the columns and/or rows of the matrices in Eq. (4.27) in
accordance to Eq. (4.30). The rows of (4.38b) correspond to the continuity constraints (4.27b)
and the constraint on the last control (4.19e). The rows of (4.38c) correspond to the initial
state constraint Eq. (4.27c). Finally, the block matrices of Eq. (4.38a) are defined as

B(1,1)
k =















B(1)ss 0 0 0 0
0 B(2)ss 0 0 0

0 0
... 0 0

0 0 0 B(N)ss B(N)sq

0 0 0 B(N)sq
T

B(N)qq















, B(1,2)
k =















0 0 B(1)sq 0 0

0 0 0
... 0

0 0 0 0 B(N−1)
sq

0 0 0 0 0
0 0 0 0 0















(4.39a)

and B(2,2)
k =

















B(0)ss B(0)sq 0 0 0

B(0)sq
T

B(0)qq 0 0 0

0 0 B(1)qq 0 0

0 0 0
... 0

0 0 0 0 B(N−1)
qq

















. (4.39b)

After applying Eq. (4.34), the condensed QP subproblem is obtained. It takes the form

min
∆vc

2=[∆s x
0 ;∆q0;... ;∆qN−1]

1
2
∆v c

2
T Bc

k∆v c
2 + g cT

∆v c
2 (4.40a)

s.t. ∆s x
0 = x (k) − s x

0 , (4.40b)

C̄ c∆v c
2 ¾ c̄c, (4.40c)

where the matrices

Bc
k = T T B(1,1)

k T + T T B(1,2)
k + B(1,2)

k

T
T + B(2,2)

k

=











B̄s,s B̄s,0 · · · B̄s,N−1

B̄T
s,0 B̄0,0 · · · B̄0,N−1
...

...
. . .

...
B̄T

s,N−1 B̄T
0,N−1 · · · B̄N−1,N−1











, (4.41a)

C̄ c = C c
2 +C c

1 T =











C̄0,s C̄0,0 0 0
...

...
. . . 0

C̄N−1,s C̄N−1,0 · · · C̄N−1,N−1

C̄N ,s C̄N ,0 · · · C̄N ,N−1











, (4.41b)
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and the vectors

ḡ c = T T B(1,1)
k t + B(1,2)

k t + T T g c
1 + g c

2 = [ḡs | ḡ0 | · · · | ḡN−1]
T , (4.41c)

c̄c = cc −C c
1 t = [c̄0; · · · ; c̄N ] , (4.41d)

can be calculated by means of the formulas

B̄s,s = B(0)ss +
N
∑

i=1

X T
i|0B(i)ss Xi|0 (4.42a)

B̄s,i = X T
i|0B(i)sq +

N
∑

j=i+1

X T
j|0B( j)ss Q j|i ∀i ∈ {0, . . . , N − 1} (4.42b)

B̄i, j = QT
j|iB

(i)
sq +

N
∑

k=i+1

QT
k|iB

(k)
ss Qk| j ∀ j ∈ {0, . . . , N − 1}, i ∈ { j + 1, . . . , N − 1} (4.42c)

B̄i,i = B(i)qq +
N
∑

k=i+1

QT
k|iB

(k)
ss Qk|i ∀i ∈ {0, . . . , N − 1} (4.42d)

C̄i,s = W x
i Xi|0 ∀i ∈ {0, . . . , N} (4.42e)

C̄i,i = Wq
i ∀i ∈ {0, . . . , N − 1}, (4.42f)

C̄i, j = W x
i Qi| j ∀i ∈ {1, . . . , N}, j ∈ {0, . . . , i − 1},

(i, j) 6= (N , N − 1)

C̄N ,N−1 = W x
N QN |N−1 +Wq

N (4.42g)

ḡs = U x
0 +

N
∑

i=1

(U x
i + t T

i B(i)ss )Xi|0 (4.42h)

ḡ j = Uq
0 +

N
∑

i=1

(U x
i + t T

i B(i)ss )Qi| j ∀ j ∈ {0, . . . , N − 1} (4.42i)

c̄0 = −(c0 +W g
0 ) (4.42j)

c̄i = −(ci +W g
i −W x

i ti) ∀i ∈ {1, . . . , N}. (4.42k)

For further details on the condensing step, see [18, 36, 91, 92, 124].

Efficient condensing strategies. A direct implementation of Eqs. (4.36) to (4.42) leads to
an algorithm with a complexity which is cubic on the number of multiple shooting intervals N .
The most expensive steps, which correspond to Eq. (4.42c), are associated with the formation
of the lower-right part of the partially reduced Hessian Bc

k, see Eq. (4.41a). Fortunately, it is
also possible to implement a condensing algorithm with a complexity of O(N2), as suggested
in [5], cf. [53]. To that end, the special structure of matrix Bc

k is exploited together with the

fact that, for each i in {0, . . . , N}, the matrix B(i)k is symmetric and positive definite. Observing
that

Bc
k = Vc

q
T (Vc

x )
−T B(1,1)

k T + T T B(1,2)
k + B(1,2)

k

T
T + B(2,2)

k , (4.43)

the auxiliary matrix Zc def
= (Vc

x )
−T B(1,1)

k T can be defined. The matrix T can be formed in O(N2)
steps according to Eq. (4.36) and then be used to build Zc with the help of the following
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identities:

Zc
N+1,1 = B(N)sq

T
XN ,0, Zc

N+1,i = B(N)sq
T
QN ,i−2, ∀i ∈ {2, . . . , N + 1} (4.44a)

Zc
N ,1 = B(N)ss XN ,0, Zc

N ,i = B(N)ss QN ,i−2, ∀i ∈ {2, . . . , N + 1} (4.44b)

Zc
i,1 = B(i)ss Xi,0 + V x

i
T Zc

i+1,1 ∀i ∈ {N − 1, . . . , 1} (4.44c)

Zc
i, j = B(i)ss Qi, j−2 + V x

i
T Zc

i+1, j ∀i ∈ {N − 1, . . . , 1}, j ∈ {1, . . . , N + 1} (4.44d)

Using Zc, the block matrices constituting Bc
k can be obtained. Starting with the blocks corre-

sponding to the diagonal, the following identities can be used:

B̄s,s = B(0)ss + (V
x
0 )

T Zc
1,1 (4.45a)

B̄i,i = B(i)qq + (V
q
i )

T Zc
i+1,i+2 ∀i ∈ {0, . . . , N − 2} (4.45b)

B̄N−1,N−1 = B(N−1)
qq + (Vq

N−1)
T Zc

N ,N+1 + Zc
N+1,N+1, (4.45c)

whereas the blocks located below the diagonal can be computed by means of

B̄T
s,i = B(i)sq

T
Xi,0 + (V

q
i )

T Zc
i+1,1 ∀i ∈ {0, . . . , N − 2} (4.45d)

B̄T
s,N−1 = B(N−1)

sq
T
XN−1,0 + (V

q
N−1)

T Zc
N ,1 + Zc

N+1,1 (4.45e)

B̄T
i, j = B(i)sq

T
Qi, j + (V

q
i )

T Zc
i+1, j+2 ∀i ∈ {1, . . . , N − 2}, j ∈ {0, . . . , i − 1} (4.45f)

B̄T
N−1, j = B(N−1)

sq
T
QN−1, j + (V

q
N−1)

T Zc
N , j+2 + Zc

N+1, j+2 ∀ j ∈ {0, . . . , N − 2} (4.45g)

Notice that due to symmetry, only the computation of the lower triangular portion of Bc
k is

needed to obtain the whole matrix.

Solution of the condensed QP. The condensed QP subproblem (4.40) can be solved by
means of a standard QP solver. In this work we have resorted to a C-converted version of
QPOPT 1.0-10 [56]. As a result, a solution vector∆v c

2
� and the respective Lagrange multiplier

vectors λ�2 corresponding to (4.40b) and µ� corresponding to (4.40c) are obtained. Afterwards,
Eq. (4.34) can be used to obtain the remaining part of the solution vector for Eq. (4.38),∆v c

1
�.

The Lagrange multiplier vector corresponding to the consistency constraints (4.38b) can be
reconstructed by means of the identity1

λ�1 = Ac
11
−T (B(1,1)

k ∆v c
1
� + B(1,2)

k ∆v c
2
� + g c

1 −C c
1

Tµ�). (4.46)

Termination criterion and step length selection. With the solution vectors ∆v c
1
�, ∆v c

2
�,

Eq. (4.30) can be applied to obtain ∆vN �. Then, Eq. (4.23) can be applied blockwise to ob-
tain the full step ∆vi . Afterwards, with the multipliers λ�k = (λ

�
1,λ�2) and µ�k (here we have

reintroduced the index k corresponding to each SQP iteration), the termination criterion can

1Cf. [36]. In our formulation, no constraints other than the continuity and the initial state are included in
(4.38). Therefore Ac

21 = 0, and λ�1 is independent of λ�2.
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be checked. For those means we define the quantity

K(vk,∆v c�,λ�,µ�)
def
= max

i∈{0,...,N}
‖g (s x

i , s z
i , p)‖∞ +

N
∑

i=0

�

�U x
i ∆s x

i
� +Uq

i ∆qi
� +Ug

i

�

�

+
N−1
∑

i=0

nx
∑

j=1

�

�

�λx�
i, j

�

s x
i+1, j − x i+1, j − Vg

i, j

�

�

�

�+
N
∑

i=0

nc
∑

j=1

�

�

�µ�i, j

�

−ci, j −W g
i, j

�

�

�

� (4.47)

and check whether K(vk,∆v c�,λ�,µ�) is less or equal than a predefined NLP accuracy ACC.
If this is the case the routine is stopped, and [v?;λ?;µ?] := [vk;λk;µk] is returned as the
solution. Otherwise, a line search strategy like the partially multiplier-free strategy of [92] can
be used in order to obtain a step length αk with which the current iterate vk and Lagrange
multiplier estimates λk and µk can be updated:

�

λk+1

µk+1

�

=

�

λk

µk

�

+αk

�

λ�k −λk

µ�k −µk

�

, and vk+1 = vk +αk∆vk. (4.48)

Partially reduced approximated Hessian update. Before updating ∆vk, the "old" partially
reduced Lagrangian gradient is computed blockwise using the new multiplier estimates λk+1
and µk+1, and the current iterate’s solution estimate vk, as

DT
i,k∇vi,k

Li(vi,k,λk+1,µk+1) =

�

U x
i,k Uq

i,k

�T
−

�

V x
i,k Vq

i,k

W x
i,k Wq

i,k

�T �
λx

i,k+1

µi,k+1

�

−
�

(λ0
0,k+1 −λ

x
i−1,k+1)δi,0 +λx

i−1,k+1

0

�

,

∀i ∈ {0, . . . , N}, (4.49)

where δi,0 = 1 if i = 0, and zero otherwise. After updating vk, the new matrices of Eq. (4.23)
can be computed, and both the right-hand sides of Eqs. (4.19b) to (4.19f) and the new direc-
tional derivatives of Eq. (4.28) can be computed. With the latter, the "new" partially reduced
Lagrangian gradient is computed blockwise as in Eq. (4.49), with vk+1, λk+1 and µk+1 as argu-
ments. These partially reduced Lagrangian gradients are used for implementing a high-rank
updating scheme for the partially reduced Hessian approximation Bk+1 [18, 92, 124]. Con-
cretely, the well-known modified BFGS scheme by Powell [127] is applied to each block B(i)k+1
of Eq. (4.26): for i ∈ {0, . . . , N},

δi,k = αk

�

∆s x
i ; ∆qi

�

(4.50a)

γi,k = DT
i,k+1∇vi,k+1

Li(vi,k+1,λk+1,µk+1)− DT
i,k∇vi,k

Li(vi,k,λk,µk), (4.50b)

Θi,k =

(

1 if δi,k ¾ εΘδT
i,kB(i)k δi,k

�

(1− εΘ)δT
i,kB(i)k δi,k

�

/
�

δT
i,kB(i)k δi,k −δT

i,kγi,k

�

otherwise,
(4.50c)

ηi,k = Θi,k(γi,k − B(i)k δi,k) + B(i)k δi,k, and (4.50d)

B(i)k+1 = B(i)k +
ηi,kη

T
i,k

ηT
i,kδi,k

−
B(i)k δi,kδ

T
i,kB(i)k

δT
i,kB(i)k δi,k

. (4.50e)

The initial block matrices B(i)0 are all calculated using a procedure described in [92, 124], in

which a scalar κR is chosen so that B(i)0 = (1/κR)Inx+nu
.

77



CHAPTER 4

�

� N U M E R I C A L M E T H O D S

Limited memory updates. In our computations we have also used a limited memory version
of this implementation: storing the last 2` vectors δi,k−`+1 . . .δi,k, and γi,k−`+1, . . . ,γi,k, the
vectors ζi,l , ηi,l and the scalars ϑi,l , and $i,l can be generated using the formulas

ζi,l =
1
κR
δi,l +

l−1
∑

j=k−`+1

ηT
i, jδi, j

ϑi, j
ηi, j −

ζT
i, jδi, j

$i, j
ζi, j , (4.51a)

ηi,l = Θi,l(γi,l − ζi,l) + ζi,l , (4.51b)

ϑi,l = η
T
i,lδi,l , and (4.51c)

$i,l = δ
T
i,lζi,l , (4.51d)

for l ∈ {k − `+ 1, . . . , k}. Using these vectors and scalars the blocks for the next iteration can
be obtained as

B(i)k+1 =
1
κR
Inx+nu

+
k
∑

j=k−`+1

�

ηi, jη
T
i, j

ϑi, j
−
ζi, jζ

T
i, j

$i, j

�

. (4.52)

During the first ` iterations, we consider initial Hessian approximation B(i)0 described above,
and apply Eqs. (4.51) and (4.52) starting the corresponding sums from j = 0 instead of j =
k− `+ 1.
Once vk+1, λk+1, µk+1 and Bk+1 are known, we are ready to lay out the next QP subproblem,
and the previously described steps can be repeated from Eq. (4.30) on. In the following, we
sketch with some more precision the way, the evaluation of the right-hand sides of Eqs. (4.19b)
to (4.19f) and of the directional derivatives of Eq. (4.23) takes place. The following section is
based on [8, 9, 15, 17].

4.1.2 Integration and Differentiation

As explained in the previous section, on each SQP iteration the determination of the range
and the null spaces of the linearized consistency constraints (4.19c) must take place. For these
means, function g (s x

i , s z
i ,qi , p) can be directly evaluated, and its Jacobian matrices Gx

i , Gz
i

and Gq
i can be approximated via finite differences. In particular, the sparsity pattern of g (·)

can be exploited so as to save computational effort. The same strategy can also be applied to
evaluate function c(s x

i , s z
i ,qi , p) and obtain its Jacobian matrices C x

i , C z
i and Cq

i . Resorting to
Dx

i , Dq
i and dg

i from Eq. (4.22), we can obtain matrices W x
i , Wq

i and vector W g
i by means

of matrix and vector multiplications. The partial separability of the NLP problem (4.9) results
very advantageous at this point, since a small number of perturbations are required for the
approximation of each Jacobian matrix.
A much more computationally expensive task is that of evaluating the partially reduced lin-
earized continuity constraints (4.27b) and the partially reduced objective function gradients
of Eq. (4.27a). In order to compute x i+1, Eq. (4.1) needs to be solved on each interval. The
Jacobian matrices V x

i , V z
i and Vq

i correspond thus to directional derivatives of this solution
in the directions given by the columns of matrix Di of Eq. (4.23). The same applies for the
partially reduced objective function gradients U x

i , Uq
i and Ug

i . Similar to what is done for ci
or gi as explained the previous paragraph, these directional derivatives could be computed by
means of finite differences, an approach that we call external numerical differentiation (END):
integrate Eq. (4.1) with perturbed initial states and controls as adequate, say (s x

i , s z
i ,qi)+εDi, j

for Di, j the j-th column of matrix Di , obtaining the perturbed differential state at the end of
the interval x εi+1, and then approximate the corresponding derivative by means of the finite
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difference (x εi+1 − x i+1)/ε.

For all our future arguments, let us assume that the DAE integrations take place with some
predefined relative integration tolerance TOL. A well-known fact is that, due to the discrete
nature of the stepsize and order selection mechanisms of modern DAE integrators, their output
is in general a discontinuous function of the initial values and parameters (recall that qi is
seen by the integrator as a DAE parameter): if they are changed, jumps in the order of TOL
are to be expected in the output (see e.g. [55]). This makes it necessary to have a very small
integration tolerance TOL for END to produce derivative approximations that are accurate
enough to work with the NLP accuracy ACC: both x εi+1 and x i+1 are at a distance of o(TOL)
from their real values, and the difference x εi+1 − x i+1, assuming the Hessian matrices of the
components of x i+1 are bounded in the region of interest, is at a distance of o(ε2) from the
εDi, j-directed derivative. The result is that END can approximate the derivative with a precision
of o(

p
TOL) at best, which occurs at ε2 = o(TOL) (cf. [17]). Another disadvantage of END is

that the similarity between the nominal and the perturbed trajectories is not exploited, leading
to inefficiencies for the case when the underlying DAE system is stiff, which is our case. For
example, the integrator may have to repeat the same adaption steps on the same integration
instants many times.

An alternative introduced in [15], called internal numerical differentiation (IND), consists on
differentiating the trajectory generated by the adaptive stepsize and order scheme itself. There
exist many variants of the method, that has been as well adapted to deal with a variety of
integration routines for both ODEs and DAEs, see e.g. [15, 124, 16, 45, 158, 8, 1, 2]. In [16],
the analytical limit of IND has been introduced: for linear multistep integration methods, the
numerical integration of the directional variational DAE,

M |(·)
d

dt

�

V x Vq Vg
�

= ∆x |(·)
�

V x Vq Vg
�

+ ∆z|(·)
�

Z x Zq Zg
�

+
�

0 ∂ b
∂ q 0

�

(4.53a)

d
dt

�

U x Uq Ug
�

=
∂ L
∂ x

�

�

�

�

T

(·)

�

V x Vq Vg
�

+
∂ L
∂ z

�

�

�

�

T

(·)

�

Z x Zq Zg
�

(4.53b)

0=
∂ g
∂ x

�

�

�

�

(·)

�

V x Vq Vg
�

+
∂ g
∂ z

�

�

�

�

(·)

�

Z x Zq Zg
�

+
�

0 0 ζi|(·) gi

�

(4.53c)

�

V x Vq Vg
�

(t i) =
�

Inx
0nx×nu

0nx×1

�

,
�

Z x Zq Zg
�

(t i) =
�

Dx
i Dq

i dg
i

�

, (4.53d)
�

U x Uq Ug
�

(t i) =
�

01×nx
01×nu

0
�

, (4.53e)

in which (·) is expanded to the arguments of each function as defined in Eq. (4.1); and ∆x ,
∆z and

�

Z x Zq Zg
�

are given briefly; converges towards the actual directional derivative
matrices U x

i = U x (t i+1), Uq
i = Uq (t i+1), Ug

i = Ug (t i+1), V x
i = V x (t i+1), Vq

i = Vq (t i+1) and
Vg

i = Vg (t i+1) as the integration step and the approximation error of the corresponding partial
derivatives converge to zero [17]. The expressions for ∆x and ∆z are

∆x =
∂ b
∂ x
(x (t), z(t), ũ(t;qi), p, w (t))−

nx
∑

j=1

dx j

dt
(t)
∂M·, j
∂ x

(x (t), z(t), p) and (4.54a)

∆z =
∂ b
∂ z
(x (t), z(t), ũ(t;qi), p, w (t))−

nx
∑

j=1

dx j

dt
(t)
∂M·, j
∂ z

(x (t), z(t), p), (4.54b)

where M·, j represents the j-th column of matrix M . In Eq. (4.53a), we have also introduced
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the directional derivatives

Z x
i

def
=
∂ z
∂ s x

i

�

�

�

�

(t i+1;t i ,s
x
i ,s z

i ,qi ,p)

+
∂ z
∂ s z

i

�

�

�

�

(t i+1;t i ,s
x
i ,s z

i ,qi ,p)

Dx
i , (4.55a)

Zq
i

def
=
∂ z
∂ s x

i

�

�

�

�

(t i+1;t i ,s
x
i ,s z

i ,qi ,p)

+
∂ z
∂ s z

i

�

�

�

�

(t i+1;t i ,s
x
i ,s z

i ,qi ,p)

Dq
i , and (4.55b)

Zg
i

def
=
∂ z
∂ s x

i

�

�

�

�

(t i+1;t i ,s
x
i ,s z

i ,qi ,p)

+
∂ z
∂ s z

i

�

�

�

�

(t i+1;t i ,s
x
i ,s z

i ,qi ,p)

dg
i , (4.55c)

which have to be computed to solve Eq. (4.53a), even if they are not used by the optimization
level.
In this thesis, we approximate the partial derivatives by means of finite differences, with which
our approximation error for the partial derivatives is of o(pεmach), where εmach is the machine
precision. Numerical experience shows that this approach performs satisfactorily. Other pos-
sibilities, e.g. symbolic or automatic differentiation, have been considered as possible future
extensions.
In summary, for each interval we integrate simultaneously Eqs. (4.1), (4.4) and (4.53a) and
the results are used for building Eqs. (4.27b) to (4.27e) and Eq. (4.26) through Eq. (4.50) or
Eq. (4.51). These integrations are performed in this thesis by means of the software package
DAESOL [8] (cf. [9, 45]), which implements backward difference formulae (BDF) method. BDF
methods have been introduced in [32] for the DAE case and extended to the DAE case in [54].
For an introduction to BDF methods for the solution of ODEs, see e.g. [66]. For the numerical
solution of stiff ODEs and DAEs, see e.g. [65]. BDF methods belong to the family of linear
multistep methods, so the aforementioned convergence result holds. They have also proved ef-
fective for stiff ODEs and DAEs, which corresponds to our case. The efficient implementation
of [8] features a step and order selection method based on a local error estimate specially tai-
lored for the variable-step case, and a monitoring strategy that reduces the number of times the
BDF Jacobian matrices are computed and factorized. Additionally, the starting values required
for a BDF method of order k are provided by starte phase based on an adequate Runge-Kutta
method. For our purposes, DAESOL’s feature of automatically delivering the desired directional
derivatives in an IND context (that is, applying the step and order selection methods only to
the nominal trajectories, which correspond to Eqs. (4.1) and (4.4)) is of critical importance.

4.1.3 Summary

In order to solve Problem (4.9) we proceed as follows: first, define the relative integration
tolerance TOL and the NLP accuracy ACC, a maximum number of iterations ITMAX, and a
maximum number of QP iterations QPMAX.

Initialization Phase

I.1 Set k = 0, define an initial guess v0.

I.2 Evaluate functions F(v0), H(v0) and G(v0), and specific directional derivatives of
these functions, proceeding as described in Section 4.1.2.

I.3 Choose a suitable, positive definite matrix B0 as initial estimate for the partially
reduced Hessian. We proceed as in [92, 124]. Go to step O.1.

Optimization Phase for k = 0, 1, . . . , ITMAX do:

O.1 Form the partially reduced quadratic optimization subproblem (4.27).
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O.2 Condense subproblem (4.27) using Eqs. (4.30) to (4.42), obtaining subprob-
lem (4.40).

O.3 Within a maximum number of iterations QPMAX, solve (4.40) using a standard QP
solver, obtaining the KKT point

�

∆v c
2
�;λ�2;µ�

�

.

O.4 Use Eqs. (4.34) and (4.46) to reconstruct∆v c
1
� and λ�1. Use Eqs. (4.23) and (4.30)

to reconstruct ∆vN and then ∆vi .

O.5 Check the termination criterion: compute K(vk,∆v c�,λ�,µ�) from Eq. (4.47), and
if K(vk,∆v c�,λ�,µ�) ¶ ACC, finish returning [v?;λ?;µ?] := [vk;λk;µk] as the
solution. Otherwise proceed.

O.6 Use a line search strategy to obtain a steplength αk (see e.g. [92]).

O.7 Apply Eq. (4.48) for the Lagrange multipliers first. Obtain the old Lagrangian gra-
dient using Eq. (4.49). To this end, obtain the directional derviatives as described
in Section 4.1.2.

O.8 Then, apply Eq. (4.48) for the solution estimate and obtain the new Lagrangian
gradient by means of Eq. (4.49), also using the techniques of Section 4.1.2.

O.9 Update the Hessian approximation, obtaining Bk+1. Proceed using the high-rank
updates of Eq. (4.50) or the limited-memory updates of Eqs. (4.51) and (4.52).

O.10 Set k→ k+ 1 and return to step O.1.

4.2 Real-Time Iteration Schemes

After having introduced the procedure with which the optimal control problem solution can
be approximated, we carry forward by briefly describing the Real-Time Iteration Schemes
for NMPC and MHE in Sections 4.2.1 and 4.2.2, respectively. These schemes can perform
much faster than conventional schemes in which the Nonlinear Programming Problems (NLPs)
solvers iterate until the termination criterion is satisfied and thus are more adequate for ap-
plications such as ours, in which fast feedback is desired.

4.2.1 Real-Time Iteration Scheme for NMPC

In Section 4.1, the course of action with which we solve Eq. (OCP) has been described. Clearly,
it may take several iterations before a KKT point for Problem (4.9) is achieved when the pro-
cedure is initialized with a remote initial guess v0. In a real-time context, where state feedback
controls u(t(k)) = u(x̂ (k)(t(k))) are desired to ensure a quick reaction to arising disturbances,
a sequence of optimization problems of the same kind of Problem (4.8) is posed, which should
be solved as quickly as possible in order to minimize the delays between the state measure-
ment and the control updates, and thus keep producing near-optimal trajectories. Moreover,
if these delays are too large, the scheme’s stability and the feasiblity of the trajectories are at
risk. In principle, we could make use of the same strategies of Section 4.1 to solve each mem-
ber of the optimization problem sequence until the satisfaction of the termination criterion
described there, which we will refer to as conventional NMPC approach. In [19, 36, 37], how-
ever, some key observations are done about the sequence of optimization problems: Firstly, the
whole family of optimization problems is continuously parametrized by the initial state x̂ (k)

of (NMPCk). As a consequence, the solution to each problem can be related to that of the con-
secutive ones through of this parameter. In particular, if x̂ (k) suffers only small perturbations,
which is most likely to happen if the computational times are kept short for each problem, the
corresponding solutions of consecutive problems will lay close to each other, and the active
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sets will be almost the same. In this context, it has been shown that, starting from a solution
v?(x̂ (k)) of the k-th problem, the solution v?(x̂ (k+1)) of the k+ 1-th problem is approximated
to first order by v?(x̂ (k))+∆vL, where ∆vL is a step computed by solving Eq. (4.40) using an
exact Hessian matrix instead of Bk. Mathematically,



v?(x̂ (k+1))−
�

v?(x̂ (k)) +∆vL
�

= o
�


x̂ (k+1) − x̂ (k)




2�
, (4.56)

which holds even if both problems have different active sets.

Secondly, within each problem, the most computationally demanding steps in each SQP itera-
tion correspond to the computation of the DAE system solution and its associated directional
derivatives (see steps O.7 and O.8 of Section 4.1.3), together with the manipulation of the re-
quired block matrices in the condensing context (steps O.2 and O.9 of Section 4.1.3). None of
these steps, except the initial state constraints require knowledge on x̂ (k), so they can be per-
formed anticipatively, based on the knowledge provided by the last iteration. Then, once x̂ (k)

has been determined (directly measured, or estimated from measurements), the step compu-
tation (namely, step O.3 of Section 4.1.3) requires a computational time several orders of mag-
nitude smaller than the others. Proceeding this way can drastically reduce the delay between
the state measurement and the control updates, achieving values of only a few milliseconds.

Finally, close to the a KKT point of a given NLP, line-search strategies usually accept step
lengths of unity length, i.e. αk = 1, so this choice can be assumed close to the optimum and
thus step O.6 of Section 4.1.3 can be skipped.

With the previous observations in mind, in [36, 37] the Real-Time Iteration scheme (RTI)
has been proposed: the idea is to treat the whole family of optimization problems with one
algorithm, which iterates in an endless loop and assigns only one SQP iteration to each problem.
The solution estimates vk, the Lagrange multipliers λk and µk, and the plant (or process) state
x̂ (k) evolve thus simultaneously. Convergence of each optimization subproblem is not pursued,
but a quick adaption to the new plant conditions instead.

Starting from [vk;λk;µk], associated to the step performed right after knowing x̂ (k), the algo-
rithm can be summarized in the following steps:

Preparation Phase

R.1 Initialize Problem k+ 1 with [vk;λk;µk] as initial guess for solution estimate and
Lagrange multipliers, and the same working set (i.e. active set guess) as in Prob-
lem k.

R.2 From vk, perform steps O.1, O.2, O.8 and O.9 of Section 4.1.3, without forming
Eq. (4.27c) yet.

Feedback Phase

(In the meantime, the plant has evolved under the influence of the previous control to
a new state whose estimation x̂ (k+1) has become available)

R.3 Once x̂ (k+1) is known, consider Eq. (4.40) and remove Eq. (4.40b), as well as
all those components from Bc

k and g c that are related with x̂ (k+1), from it. Set
∆s x

0,k+1 := x̂ (k+1) − s x
0,k and solve the QP with the remaining blocks only.

R.4 Once the solution ∆q0,k+1, . . .∆qN ,k+1 is known, pass the control value q0,k +
∆q0,k+1 immediately to the plant.
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Transition Phase

R.5 Reverse the condensing and reduction steps as in step O.4. Update the Lagrange
multipliers with αk+1 = 1 and compute the old Lagrangian gradient as in step O.7.

R.6 Set vk+1 = vk +∆vk.

To these steps, which are essentially a rearrangement of what is done in the offline context
of Section 4.1.3, we can add the following optional step which can improve the algorithm’s
performance in some cases:

Shift Phase

R.7 Discard subvector
�

s x
0,k+1; s z

0,k+1;q0,k+1

�

from vk+1, and the Lagrange multipliers
associated to constraints on the first node.

R.8 Copy the rest of the subvectors and their associated directional derivatives, Hes-
sian blocks and Lagrange multipliers towards the left, e.g.

�

s x
j,k+1; s z

j,k+1;q j,k+1

�

:=
�

s x
j+1,k+1; s z

j+1,k+1;q j+1,k+1

�

, for all j ∈ {0, . . . , N − 1}.

(As a remark, at the end of step R.8, all subvectors and matrices corresponding to the
last and the next-to-last nodes coincide)

After this, set k := k+ 1, wait for x̂ (k+2) and return to step R.1.
It is important to notice that, due to the close dovetailing of system and optimizer dynam-
ics, stability of the closed-loop system is not implied by standard nonlinear model predictive
control results [40]. In [36, 37], an NMPC implementation using the real-time iterations for
a tracking problem (that is, one in which the objective function is the squared norm of the
deviation of a system output vector with respect to an output reference trajectory) is discussed
and implemented for the case in which the prediction horizon shrinks. For that case, contrac-
tivity and loss of optimality results are given in [38]. In [39], contractivity, loss of optimality
and nominal stability for the case in which the prediction horizon keeps constant and the shift
phase is applied, are shown under certain assumptions. For the nominal stability, a terminal
constraint is used which forces the state to arrive at the origin, assumed to be an equilibrium
state, at the end of each prediction horizon. For the case when no shift phase is used and there
are no terminal constraints, but a terminal cost function, the nominal stability is proved in
[41].

In [61] it is stressed out that nominal stability (in that reference also known as attractivity) is
a weaker property than the property known as asymptotic stability in nonlinear system theory:
the former guarantees the state to converge to an equilibrium state as time tends to infinity,
without giving any description of the behavior in the meantime, whereas the latter states the
existence of a bound on the error that decreases strictly with time. It is also argued that in case of
applying non-optimal NMPC strategies, as it is our case, the control should be particularly close
to optimal in order to both assure attractivity and the existance of a (time-independent) bound
on the error. Under certain regularity assumptions, these conditions may imply asymptotic
stability (see e.g. [81]). The conditions under which RTI can yield asymptotic stability have
still not been investigated rigorously.

Regarding the computational time, on top of the algorithmic improvements presented above,
the number of multiple shooting intervals N also plays an important role, since the linear al-
gebra required for the preparation phase has a total computational cost of O(N3). It is thus
recommended to keep this number low. This might also imply an adjustment to the predic-
tion horizon length ∆tNMPC so as to improve optimality, feasiblity and model evaluability. See
e.g. [17] for mesh selection criteria for multiple-shooting.
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4.2.2 Real-Time Iteration Scheme for MHE

In [41, 85, 86] the RTI scheme has been also extended to MHE. Therein, the sequence of
optimization problemes are continuously parametrized by the data vectors ξ j in the estimation
window, and the initial state constraint is not present. For the specific least-squares objective
function of Problem (MHEk) it is adequate to use a Generalized Gauss-Newton Method (see
e.g. [15, 17]) for solving Eq. (4.13): an initial solution estimate vk, is updated as vk +∆vk,
where ∆vk is the result of solving the quadratic subproblem

min
∆v

(∇vFMHE(vk,Ξk)
T FMHE(vk,Ξk))

T∆v +
1
2
∆v T∇vFMHE(vk,Ξk)

T∇vFMHE(vk,Ξk)∆v

s.t. GMHE(vk,Ξk) +∇vGMHE(vk,Ξk)
T∆v = 0

HMHE(vk) +∇vHMHE(vk)
T∆v ¾ 0.

(4.57)

Therein, the Lagrangian Hessian approximation ∇vFMHE(vk,Ξk)T∇vFMHE(vk,Ξk) requires
only first derivatives, is independent on the Lagrange multipliers, and has a sparse block struc-
ture. The partial reduction and the condensing steps can be performed as in Section 4.1.1, so
that the partially reduced Lagrangian Hessian approximation blocks

DT
i ∇vFMHE(vk,Ξk)

T
i ∇vFMHE(vk,Ξk)iDi

can be readily computed from the directional derivatives∇vFMHE(vk,Ξk)iDi . The same applies
to the partially reduced objective function gradient blocks

(∇vFMHE(vk,Ξk)iDi)
T (FMHE(vk,Ξk)i +∇vFMHE(vk,Ξk)idi),

and the partially reduced constraint residuals and Jacobians. (cf. Eqs. (4.23), (4.27b)
and (4.27e)).
Similar to NMPC, a larger number of intervals M increases the computational complexity of
the linear algebra steps at this point as O(M3). On the other hand, a larger M can improve
the estimation quality, since more past information is entering the optimization problem in an
explicit way. Thus, the choice of M needs to be performed carefully for each application.
Starting from [vk;λk;µk], associated to the step performed right after having computed
�

x̂ (k); ẑ(k)
�

, the algorithm can be summarized in the following steps:

Preparation Phase

M.1 From the right-most subvector
�

x̂ (k); ẑ(k)
�

, predict the values of
�

x̂ (k+1); ẑ(k+1)
�

using the difference equation, the control u(tk) for the whole interval [tk, tk+1],
and no state noise. Obtain as well the corresponding directional derivatives.

M.2 Discard subvector
�

x̂ (k−M); ẑ(k−M)
�

from vk+1, and the Lagrange multipliers asso-
ciated to constraints on the first node.

M.3 Copy the rest of the subvectors and their associated directional derivatives, Hessian
blocks and Lagrange multipliers towards the left, e.g.

�

x̂ ( j); ẑ( j)
�

:=
�

x̂ ( j+1); ẑ( j+1)
�

,
for all j ∈ {0, . . . , N − 1}. Replace the last node’s subvectors, directional deriva-
tives and Hessian blocks with the ones obtained in step M.1, e.g.

�

x̂ (k); ẑ(k)
�

:=
�

x̂ (k+1); ẑ(k+1)
�

.

M.4 With the directional derivatives, perform the necessary linear algebra to condense
the system and build the partially reduced Hessian blocks as in Section 4.1.1.
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Estimation Phase

(In the meantime, the plant has evolved, and a new measurement vector ξk+1, with
associated covariance matrix W is now available.)

M.5 Once ξk+1 is known, solve the condensed QP of step M.4, obtaining ∆vk+1.

M.6 Pass the state estimates x̂ (k+1) +∆x̂ (k+1) and ẑ(k+1) +∆ẑ(k+1) immediately to the
controller.

Transition Phase

M.7 Reverse the condensing and reduction steps as in step R.5.

M.8 Set vk+1 = vk +∆vk, k = k+ 1 and return to step M.1.

4.2.3 Initialization

As previously mentioned, the RTI scheme has very good convergence properties for both NMPC
and MHE if the solution estimates keep close to the optima for each problem. For this reason,
in this thesis we perform an initialization phase that makes use of the offline optimization of
Section 4.1.3. Our computations are based on the availability of recorded controls, measure-
ments and external inputs (exhaust gas conditions) of an operational scenario at least for an
interval [t0, t0+∆tMHE+∆tNMPC]. Concretely, in this thesis the NMPC and MHE are initialized
as follows:

Initialize the MHE

I.1 Using an initial differential state estimate x̂ (0), and the controls and external inputs
corresponding to the scenario under consideration on the interval [t(M)0,MHE, t(M)f,MHE]

(recall that t(M)f,MHE = t(M)0 ), initialize the node state vectors by integrating Eq. (4.1)

along [t(M)0,MHE, t(M)f,MHE]. The initial algebraic state estimate ẑ(0) can be chosen to be

consistent with x̂ (0), but that need not be the case.

I.2 Considering the measurements Ξ(M) that correspond to the current scenario, and
using the initial node state vectors and controls of the previous step as initial
guesses of the solution, solve Problem (4.13) until the satisfaction of the termi-
nation criterion of Eq. (4.47) as described in Chapter 4. Denote the primal solution
as v?MHE,0.

I.3 From v?MHE,0, obtain the estimate x̂ (M) and send it to the NMPC. Initialize the RTI
scheme for MHE described in Section 4.2.2 using the Jacobians and Hessian ap-
proximations of the last SQP iteration of step I.2.

I.4 Wait for the new measurements ξM+1 from the WHR. Once available, continue by
performing the steps described in Section 4.2.2.

Initialize the NMPC

I.5 Receive the estimate x̂ (M) from the MHE. Using it as initial differential state and the
controls and the exhaust gas conditions of the current scenario, integrate Eq. (4.1)
between t(M)0 and t(M)f = t(M)0 +∆tNMPC to generate the initial guesses of the node
state vectors and their associated Jacobians and Hessian approximations. To this
end, an initial algebraic state that is consistent with x̂ (M) can be used, but that need
not be the case .
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I.6 Solve the M -th optimal control subproblem (4.10) until the satisfaction of the ter-
mination criterion of Eq. (4.47) as described in Chapter 4. Denote the primal solu-
tion as v?NMPC,M .

I.7 Use v?NMPC,M and its corresponding Jacobians and Hessian approximations to ini-
tialize the RTI scheme for NMPC described in Section 4.2.1. Additionally, obtain
the control q0,M from vNMPC,M

? and apply it to the WHR during [t(M)f , t(M)f + Ts].

I.8 Wait for the new estimate x̂ (M+1) from the MHE. Once available, continue by per-
forming the steps described in Section 4.2.1.

Whenever the MHE scheme is absent, the NMPC scheme can be directly initialized by following
steps I.5 to I.8; considering a given initial differential state x̂ (0), an initial algebraic state ẑ(0)

that need not be consistent, recorded controls and exhaust gas inputs on the interval [t(0)0 , t(0)f ],
and M = 0.

4.2.4 NMPC-MHE Closed Loop

Having already introduced the algorithms behind our online control and estimation imple-
mentations, we sketch a block diagram describing the information processing paths, given in
Fig. 4.1(a). Since the NMPC and the MHE modules perform their computation in parallel, and
the plant evolves at the same time, a time diagram describing the step sequences is given in
Fig. 4.1(b).
In this thesis we make the assumption that both the NMPC and the MHE modules have been
properly initialized at the moment the plant begins to operate, i.e. the WHR is operational.
This way, the very first control applied q0,0, is feasible and close to optimal. The sampling
time Ts is assumed constant, and each measurement ξk is made available with this period. In
Fig. 4.1(a), the delays between the sampling and estimation δ(k)MHE, and between the estimation

and the control updates δ(k)NMPC have been explicitly depicted. In our implementation, however,
these delays are orders of magnitude smaller than the sampling time, approaching the ideal
case where δ(k)MHE = δ

(k)
NMPC = 0. Notice that these times can be actually considered as random

variables, since the QPs to be solved during the corresponding estimation and feedback phases
depend on the external inputs w (t), which cannot be known a priori. In spite of the fact
that the complexity of active-set QP solution stategies grows exponentially in the number of
variables (see e.g. [84]), the computational times remain bounded in practice if the state
perturbations are small. As previously stated, the most expensive algorithmic steps are the
respective preparation phases, where DAEs must be solved. Again, these times correspond
in a strict sense to random variables, since different exhaust gas predictions (NMPC) and/or
histories (MHE) will require different choices for the orders and step sizes in the DAE solvers.
For this case, keeping prediction horizons (NMPC) and estimation windows (MHE) short will
reduce the computational costs in this phase, as a general rule. On the other hand, the linear
algebra costs are reduced by choosing a lesser number of nodes. In this thesis, the choice of
the aformentioned parameters is performed empirically, considering typical, real operational
scenarios2.

4.3 Linear Control Strategies

After having introduced the proposed control and estimation schemes, in this section we briefly
review formulate instances of the PI and LQGI control strategies, which are undoubtedly the

2This choice can, in some sense, be interpreted as an application-dependent design task for this kind of con-
trollers.
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WHRNMPC

MHE

(a) Block diagram.

Plant

NMPC module

MHE module
Init. EP T

F

Time

Init. P T S

P T

P T S

E P T

F P T S

Legend:
P: Preparation phase F: Feedback phase Control applied to plant
T: Transition phase S: Shift phase (optional) Signal path
E: Estimation phase  Idle process

(b) Time diagram.

Figure 4.1: Block and time diagrams for the NMPC-MHE closed loop
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most used in real-world industrial applications. These strategies will be considered in Chap-
ter 5 as benchmarks for the schemes proposed in Section 3.5. With digital applications in
mind, we devote ourselves to the discrete-time cases only. Additionally, due to our system’s
characteristics, we restric ourselves to single-input, single-output (SISO) instances.
We begin by defining the superheating (see Section 3.2.6) as the controlled variable. Let ySH

k
def
=

ySH(x (k), z(k)). For a given target superheating ySH∗, the superheating error at time tk is defined
as ek = ySH∗ − ySH

k .

4.3.1 The Proportional-Integral (PI) Controller

On each time instant tk, the discrete-time PI controller uses the current superheating error ek
and its accumulation over time to obtain the current control ũPI

k,pre as follows

ũPI
k,pre = Kpek + Ki Ik−1, (4.58)

where the error integral Ik satisfies the following difference equation

Ik = Ik−1 + Tsξkek, ∀k ∈ K; I−1 = 0. (4.59)

In Eq. (4.58), ξk forms the anti-windup mechanism: if ũPI
k,pre causes the control to fall outside

its bounds, the current error ek is not incorporated in the sum for the next time step, i.e.

ξk =

(

0 if ũPI
k,pre /∈ [ṁin,min − ū, ṁin,max − ū],

1 otherwise
, ∀k ∈ K. (4.60)

The upper and lower bounds on the control are defined as in Eq. (3.85). The control is trun-
cated before it is applied to the system.

uPI
k =max(ṁin,min, min(ṁin,max, ũPI

k,pre + ū)). (4.61)

There are several ways to obtain the values for constants Kp and Ki . In this thesis we apply
frequency-domain techniques to the small-signal system Eq. (3.81). Design parameters are the
minimum phase margin PM and the open-loop gain crossover frequency ωc (see e.g. [6, 115]
for an introduction to several PID controller tuning techniques).
The PI controller can be represented by means of the block diagram shown in Fig. 4.2. Therein
we have considered the noise terms Ψ y

k and Ψ x
k to affect the superheating measurements and

the state of the plant on each instant k.

4.3.2 Linear-Quadratic-Gaussian Controller with Integral Action (LQGI)

The LQGI controller results from a tandem conection between a classical Kalman filter [79]
(the observer) and a linear-quadratic regulator (LQR, the controller) featuring an integral
action explained briefly. In this thesis we make use of the discrete-time version of both.
We begin considering system Eq. (3.81), where the output is ySH as defined in Eq. (3.55). The
state and the output are perturbed by Gaussian white noise terms3Ψk =

�

Ψ x
k ; Ψ

y
k

�

for all
k ∈ K, with symmetric, each associated to a positive definite covariance matrix

QΨ = E
�

ΨkΨ
T
k

	

. (4.62)

3A sequence of independent, identically normally distributed random variables with zero mean
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Saturator
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: Comparison : Addition : Product: Gain : Delay

Legend:

Figure 4.2: PI controller block diagram

The system’s dynamics can be therewith written as

x̃k+1 = Ax̃k + Bũk +Ψ
x
k , ỹk = C x̃k +Ψ

y
k , ∀k ∈ K x̃0 = 0. (4.63)

In our implementation of the LQGI controller, following the separation principle, an estimate
x̆ of state x̃ is firstly obtained by means of a delayed Kalman filter. The estimate is later on
used on an linear-quadratic regulator instance as if it was the true state. The delayed Kalman
filter’s state difference equation corresponds to

x̆k+1|k = Ax̆k|k−1 + Bũk + L(−ek −C x̆k|k−1), (4.64)

In Eq. (4.64), x̆k|k−1 denotes a one-step prediction of x̃k, i.e. one obtained using information
up to instant tk−1. Notice that in instant k, the filter’s state is x̆k|k−1. This state is augmented
with the accumulated superheating error Ik satisfying the difference equation

Ik+1 = Ik + Tsek, I0 = 0. (4.65)

The linear-quadratic regulator is found for the augmented state vector by solving

min
ũ0,ũ1,...

JLQGI = E

¨∞
∑

k=0

�

x̆k|k−1

ũk

�T

Λxu

�

x̆k|k−1

ũk

�

+ΛI I
2
k

«

(4.66a)

s.t x̆k+1|k = (A− LC)x̆k|k−1 + Bũk − Lek (4.66b)

Ik+1 = Ik + Tsek, (4.66c)

y̆k|k−1 = C x̆k|k−1, (4.66d)

x̆0|−1 = x̆−1, I0 = 0 (4.66e)

As a result, the LQR feedback gain
�

K x K I

�

is obtained, with which the control takes the
form

ũk = ũLQGI
k,pre = −(K x x̆k|k−1 + K I Ik). (4.67)

Defining x̃ LQGI
k

def
=
�

x̆k|k−1; Ik

�

, the LQGI is a dynamic system with the form

x̃ LQGI
k+1|k = ALQGI x̃

LQGI
k|k−1 + BLQGIek, ũLQGI

k,pre = CLQGI x̃
LQGI
k|k−1, x̃ LQGI

0|−1 =
�

x̆0|−1; I0

�

, (4.68)
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Where matrices ALQGI, BLQGI and CLQGI are obtained by means of the formulas

ALQGI =

�

A− LC − BK x −BK I

0 1

�

, BLQGI =

�

−L
Ts

�

, CLQGI =
�

−K x −K I

�

. (4.69)

The LQGI controller can be represented by the block diagram in Fig. 4.3.

Saturator

WHRDelayed
Kalman Filter

Error Integrator

: Addition: Gain : Delay

Legend:

Figure 4.3: LQGI controller block diagram

To keep the controller within its bounds, the LQGI controller output ũLQGI
k,pre is truncated as

uLQGI
k =max(ṁin,min,min(ṁin,max, ũLQGI

k,pre + ū)). (4.70)

Overview

In this chapter we have given brief descriptions of the main control and estimation methods
considered in this thesis. In particular, we have proposed the use of the direct multiple shoot-
ing method to tackle the infinite-dimensional optimization problems stated in Chapter 3. The
method originates related finite-dimensional optimization problems whose solutions can be
obtained efficiently with the help of the numerical techniques described in this chapter. These
methods stand out for their ability to handle the full nonlinear dynamics and the operational
constraints formulated in Chapter 3 while pursuing the minimization of the considered ob-
jective functions. In this chapter we have also given an overview on the real-time iteration
scheme for NMPC and MHE.
In Chapter 5 we consider numerical instances of the formulated models and control strategies
and proceed to compare the performance the WHR is able to achieve under each of them.
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5 Numerical Results

In this chapter, the results obtained from several numerical tests on the proposed method-
ologies for a scenario proposed by our industry cooperation partner are shown and analyzed.
We first proceed in Section 5.1 by assigning numerical values to a series of magnitudes, de-
fined in previous chapters, that are needed for evaluating the model and solving the DAEs
corresponding to the model. Next, our scenario, consisting of real-world measurements car-
ried out by our industry cooperation partner Daimler AG during a heavy duty truck trip in
Baden-Württemberg, Germany, in 2015, is introduced and, based on it, the results of the model
linearizations and the tunings required for the PI and LQGI controllers introduced in Chapter 4
are shown. Finally, we show and analyze the numerical results obtained for several experiments
that have been performed in order to assess our solution scheme for the OCP and the schemes
for NMPC and MHE. In Section 5.2, several numerical instances of the DMS method for the
solution of the OCP are tested. Next, in Section 5.3, the performance of the NMPC scheme is
analyzed for different prediction horizons and numbers of nodes. The effect of counting on
accurate predictions of the exhaust gas conditions along the prediction horizon is also studied.
Further, the NMPC scheme is compared with the LQGI and PI strategies defined in Chapter 4.
Finally, in Section 5.4, the MHE scheme performance is tested, and the results emanating from
the simultaneous operation of both the MHE and the NMPC schemes are compared with those
of Section 5.3.
All tests have been performed using a single core of a desktop computer with an Intel(R)
Core(TM) i7-6700 CPU @ 3.40GHz with 16GB RAM running Ubuntu Linux 14.04.

5.1 Preliminaries

In this subsection we proceed to assign numerical values to quantities that are not considered
as decision variables in our optimization problems, but are required to evaluate the model.
Namely, we specify the meshes for the evaluation of the thermophysical properties and the
constraint bounds.

5.1.1 Thermophysical Properties

For the evaluation of the thermophysical properties and the external inputs, the values of the
parameters defined in Section 3.3 are listed in Table 5.1. These values are used for defining
the meshes and regions for the set of cubic and bicubic splines described in the same Section.

Validation: In order to assess the quality of these interpolations, REFPROP is used to gen-
erate validation data sets for each curve and surface. The data sets are generated over do-
mains that correspond to the interval [pmin, pmax] for the the saturated and two-phase prop-
erties; the regions SL and SV for the single-phase properties depending on pressure-enthalpy
pairs; the PS square for the single-phase properties depending on pressure-entropy pairs; and
the [pG,min, pG,max]× [θG,min,θG,max] square for the exhaust gas properties; see Sections 3.3.2
and 3.3.4. On each domain, an equally distributed point mesh is defined that is much more
dense than those used for obtaining the splines (i.e. those defined by Table 5.1). The mean
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Table 5.1: Values of parameters used for the evaluation of thermophysical properties and external in-
puts. The data corresponding to the external inputs span a time horizon of 2600[s]. The
number of intervals used for their spline approximation corresponds to Nt = 390.

Parameter Value Units Parameter Value Units Parameter Value

pmin 100 [kPa] pmax 6.15 [MPa] Np 95
hmin 0.22 [MJ/kg] hmax 2.5 [MJ/kg] Nh 18
smin 0.82 [kJ/kgK] smax 4.527 [kJ/kgK] Ns 20
pG,min 100 [kPa] pG,max 200 [kPa] NpG 2
θG,min 350 [K] θG,max 1700 [K] NθG 46

and standard deviations of the relative errors resulting of estimating the data obtained through
REFPROP by means of the corresponding splines are summarized in Table 5.2, where it can
be seen that the deviations are in all cases tightly concentrated around very small values.

Table 5.2: Mean and standard deviation of the percentage relative error of the spline interpolation

Saturated and two-phase state properties Single-phase state properties

Variable Mean Std.Dev. Variable Mean Std.Dev.
[%] [%] [%] [%] [%] [%]

h′ 2.1480 · 10−2 8.1939 · 10−2 Depending on p− h pairs, on domain SL

h′′ 5.4653 · 10−3 1.6990 · 10−2 θF 5.9852 · 10−3 1.8654 · 10−2

%′ 1.4935 · 10−2 5.4249 · 10−2 % 5.1352 · 10−3 1.4971 · 10−2

%′′ 1.6358 · 10−2 4.1670 · 10−2 s 1.1453 · 10−2 3.5532 · 10−2

θF,2 1.2092 · 10−3 1.0384 · 10−2 Depending on p− h pairs, on domain SV

Exhaust gas properties θF 3.0096 · 10−3 1.0487 · 10−2

cG 4.0780 · 10−6 1.9796 · 10−5 % 2.1365 · 10−2 4.1902 · 10−2

s 1.9796 · 10−3 8.2992 · 10−3

Depending on p− s pairs

h 1.5072 · 10−2 3.6038 · 10−2

5.1.2 Constraints

For the constraints (3.85) to (3.89), the following values are chosen,

• Pump massflows: ṁin,min = 1.8 [kg/h] and ṁin,max = 386.8 [kg/h]

• Tube lengths: Lmin = 0.1 [m], L3,min = 0.033 [m] and Lmax = 140.69 [m]

• Pressures: pmin = 100 [kPa] and pmax = 6.0 [MPa]

• Wall temperatures: θW,min = 200 [K] and θW,max = 1000 [K]

• Ethanol decomposition temperature: θF,max = 523.15 [K]

The pump minimum and maximum massflows have been decided jointly with our industry
cooperation partner. On the other hand, L3,min is obtained from numerical tests as a magnitude
small enough for its influence in the energy recovery to be negligible but big enough to provide
robustness to our computations (see Remark 3.5.1). The ethanol decomposition temperature
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is chosen based on known facts about ethanol (see e.g. [95]), which is assumed as our working
fluid. The rest of the upper and lower bounds are chosen so that they do not play a major role
in the final results but help in the convergence towards the solution. The pressure upper and
lower bounds are selected taking Table 5.1 into account as well.

5.1.3 Model Parameters and Initial State

In all our experiments, the WHR dynamics are assumed to be perfectly represented by the DAE
system (3.53). The values of its parameters used throughout this thesis are listed in Table 5.3.
Further, the WHR model is started at t = t0 with the initial state x (t0)

def
= x0 of Table 5.4.

Table 5.3: WHR model parameter values

Param. Value Units Param. Value Units Param. Value Units

L 2.00 · 10+1 [m] di 1.19 · 10−2 [m] do 9.00 · 10−2 [m]
%W 8.92 · 10+3 [kg/m3] cW 3.85 · 10+2 [J/kgK] αF,1 9.06 · 10+3 [W/m2K]
αF,2 1.89 · 10+4 [W/m2K] αF,3 8.00 · 10+2 [W/m2K] αG,1 1.82 · 10+3 [W/m2K]
αG,2 5.00 · 10+3 [W/m2K] αG,3 8.00 · 10+2 [W/m2K] pG 1.02 · 10+2 [kPa]
ηex,is 9.00 · 10−1 [-] pD 2.26 · 10+2 [kPa] nex 1.08 · 10+2 [Hz]
ηex,V 5.30 · 10−2 [-] Vex 1.53 · 10−3 [m3] ηex,el 8.20 · 10−1 [-]
pA 1.61 · 10+2 [kPa] hA 3.49 · 10−1 [MJ/kg] ηp,is 3.34 · 10−1 [-]
ηp,el 9.20 · 10−1 [-]

Table 5.4: Initial differential state x0 for the WHR

L1,0 [m] L2,0 [m] pev0 [MPa] θW,1,0 [K] θW,2,0 [K] θW,3,0 [K]

16.11 2.51 0.56 371.60 429.39 591.92

A consistent initial algebraic state corresponds to hC ,0 = 1.44 [MJ/kg].
With regard to the model parameters, the evaporator dimensions L, di and do are obtained from
manual tuning. Further, the tube’s density %W and specific heat capacity cW come from assum-
ing it as made of copper and evaluating the corresponding properties using REFPROP. Also,
the heat transfer coefficients have been obtained from manual tuning, starting from guesses
provided by the model of [23]. On the other hand, the exhaust gas pressure pG corresponds
to the atmospheric pressure at sea level, and the working fluid pressure and enthalpy at the
pump inlet pA and hA, and the working fluid pressure at the expander outlet pD have been
handed over by our cooperation partner. They correspond to least-squares estimates of those
quantities obtained using data corresponding to the scenario specified in Section 5.1.4. The
expander and pump efficiencies ηex,is, ηex,V, ηex,el, ηp,is and ηp,el have been obtained from
manual tuning, starting from typical values. Finally, the expander volume Vex is typical for
devices of its kind.

5.1.4 Scenario

In this section, we introduce the scenario used to test the proposed control and estimation
strategies. It consists of exhaust gas temperature measurements and exhaust gas massflow
estimations recorded during a real heavy duty truck drive performed by Daimler AG. The data
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are approximated by splines as explained in Section 3.3.3. The resulting curves constitute
function w (t) of Eq. (3.53) and are plotted in Fig. 5.1.
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(a) Exhaust gas inlet massflow.
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(b) Exhaust gas inlet temperature.

Figure 5.1: Scenario considered for all tests in this thesis

In addition to the exhaust gas conditions plotted in Fig. 5.1, our industry cooperation partner
had also handed over data corresponding to further important quantities recorded during the
same drive the curves in Fig. 5.1 were. These data include the working fluid massflow and
the measurements ξ of Section 3.5.3, and have been used to determine adequate values for
some of the model’s parameters and for initializing the controls and/or differential states in
implementations using the DMS method. For the sake of brevity, those data are not plotted.

5.1.5 Model Linearization and Linear Controllers

Given the parameter set from Section 5.1.3, we obtain the values w̄ =
(822.81 [kg/h] , 628.37 [K]), which correspond to w (t0). The solution of Eq. (3.74) yields the
equilibrium state and control in Table 5.5.

Table 5.5: Equilibrium state and control for w̄ = (822.81 [kg/h] , 628.37 [K]).

L̄1 [m] L̄2 [m] p̄ev [MPa] θ̄W,1 [K] θ̄W,2 [K] θ̄W,3 [K] ¯̇min [kg/h]

17.12 2.38 0.55 371.06 432.02 598.21 247.11

From this operating point we obtain the discrete-time linearized model Eq. (3.81) using a
sampling time of Ts = 100 [ms].

Remark 5.1.1 (Linear Model Properties) It can be verified that the discrete-time linearized
model is stable, observable and controllable by analyzing its poles and the associated Gram ma-
trices, see e.g. [101, 112]. The discrete-time linearized model exhibits a zero at the origin, i.e. a
time-delay and is thus of nonminimum phase.
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Tuning of alternative controllers

PI Controller. For the PI controller defined in Section 4.3.1, a phase margin PM of at least
90 [◦] and an open-loop gain crossover frequency of ωc = 0.1 [rad/s]. This in accordance to
the nonminimum-phase nature of the discrete-time linearized model and the sampling time
Ts. The results are the constants Kp = −3.9336·100 [kg/Kh] and Ki = −5.3213·10−1 [kg/Khs].

LQGI Controller. For the LQGI controller defined in Section 4.3.2, the noise covariance ma-
trix is chosen as QΨ = 10−3Inx+nz+1. Additionally, the cost function of Eq. (4.66a) is defined
using matrices Λxu = Inx+nz+nu

, and ΛI = 1. The gains constituting the Kalman filter gain and
the LQR are given by

K x =
�

2.55 · 10+2, 2.14 · 10+2, −3.21 · 10+1, −4.41 · 10+1, . . .
5.69 · 10+2, −2.95 · 10+2, −6.78 · 10+1, −1.45 · 10−3

�

(5.1a)

K I =
�

9.90 · 10−1
�

(5.1b)

L=
�

−6.75 · 10−2, 5.70 · 10−2, 1.54 · 10−4, 7.26 · 10−4, . . .
−4.78 · 10−4, −7.74 · 10−3, −5.24 · 10−3, 4.73 · 10−1

�

(5.1c)

Remark 5.1.2 (Stability of the PI and LQGI controllers) With the aforementioned settings,
the frequency responses of each closed-loop system incorporating respectively the PI and the LQGI
controllers can be analyzed to conclude that both controllers are stable.

5.1.6 Moving Horizon Estimation

For those experiments considering the MHE scheme of Section 3.5.3, we consider the measure-
ments’ standard deviations to be The measurements’ standard deviations are σp = 10 [kPa],
σθF
= 1 [K] and σθG

= 1 [K]. These are based on the error bands of typical industrial pres-
sure and temperature sensors, see e.g. [72, 73]. For the terminal cost we use the values,
σL = 1.0 [m] and L3 = 0.5 [m]. These values have been chosen from numerical experience.
Additionally, unless other specified the number of shooting intervals is chosen as M = 10. The
estimation window is defined as ∆tMHE = 1 [s].
Whenever the NMPC and the MHE are used together, the MHE keeps the aforementioned val-
ues and, for the NMPC, the number of shooting intervals is chosen as N = 3 and the prediction
horizon corresponds to∆tNMPC = 5 [s]. Both the NMPC and the MHE assume the exhaust gas
conditions are known.

5.1.7 Time, Tolerances and Constraint Violations

Sampling time: In this thesis, unless otherwise indicated we consider a time interval
T = [t0, tf] with t0 = 0, tf = 1200 [s]. In real-time implementations (i.e. NMPC, MHE,
PI, LQGI), the sampling time is Ts = 100 [ms], and we divide the time interval in thus
K = b(tf−t0)/Tsc= 12000 subintervals. The sample times tk = t0+kTs, ∀k ∈ K = {0, 1, . . . , K}
constitute the sampling mesh. We remark that t(k)0 = tk, i.e. the current time in NMPC and MHE
implementations coincides with the sample times.

Computational time vectors: For NMPC, we introduce the real computational time vector tc
of dimension K + 1. We define its k-th component as the sum of the computational times of
both the preparation and feedback phases associated to the k-th NMPC subproblem P(k)NMPC. We
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denote as max(tc) the maximum computational time achieved. In this thesis we are interested
in instances of our NMPC scheme in which max(tc)< Ts.

Tolerances: In the schemes that make use of the DMS method, i.e. the optimal control so-
lution scheme, the NMPC and the MHE, the NLP accuracy is chosen as ACC = 1 · 10−3 (see
Section 4.1.1), whereas integration tolerance corresponds to TOL= 1·10−5 (see Section 4.1.2).

Constraint Violation: To assess the constraint violation in each experiment along [t0, tf],
the constraint violation vector Γ ∈ R20 is defined using the components of c(t) from (3.85) -
(3.89) as

Γ i = −
1

tf − t0

∫ tf

t0

min(0, ci(x (t), z(t), u(t), p))dt, i ∈ {1, . . . , 20}, (5.2)

The integrals are approximated by a trapezoidal sum over the sampling mesh. These compu-
tations are done a posteriori using the actual state and control trajectories generated by the
application of each control strategy.

5.2 Optimal Control

In this section we proceed to analyze the numerical solutions of the optimal control problem
as stated in Section 3.5.1, considering the full nonlinear dynamics of Eq. (3.53). In all our tests
we use the initial state in Table 5.4, the parameter values of Table 5.3, and assume the exhaust
gas conditions (i.e. the external inputs), given in Section 5.1.4, as perfectly known.
In Section 5.2.1, the results of considering different numbers of multiple shooting intervals
N to solve the associated OCP are summarized. In Section 5.2.2 the transient behavior of a
selected obtained solution is analyzed.
In all experiments in this section, the iterations of the tailored SQP algorithm of Section 4.1.1
are performed until the convergence criterion is satisfied, i.e. the quantity K(vk,∆v c�,λ�,µ�)
defined in Eq. (4.47) is less than ACC.

5.2.1 Optimal Control for Different Numbers of Intervals

In this section we consider the numerical solution of the OCP of Section 3.5 by means of the
DMS and the tailored SQP methods of Section 4.1. We analyze the effect of choosing different
different numbers of multiple shooting intervals N .
In each experiment, the finite-dimensional control vectors q0,q1, . . . ,qN are initialized by in-
terpolating working fluid massflow measurement data corresponding to the scenario defined
in Section 5.1.4. Further, the node differential and algebraic state vectors are initialized by
integrating Eq. (3.53); using the initial finite-dimensional control vectors, the external inputs
of Section 5.1.4 and the initial differential states in Table 5.4. The algebraic state for the first
multiple shooting node is chosen to be consistent with the corresponding differential state
through the consistency conditions Eq. (3.53b).
The solutions are summarized in Table 5.6, where the net generated energy Φ(tf) of Eq. (3.84),
the computation time until the satisfaction of the termination criterion and the constraint
violation vector Γ are given1. In order to evaluate Γ , for each value of N , the state vectors at
the sampling mesh are obtained by integration of the DAE system (3.53) using the obtained
controls.

1In all tables, components of Γ that were null for all experiments are omitted
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In Table 5.6, a clear convergent behavior can be seen. The objective function value changes
only in the second decimal between the solutions for N = 150 and N = 1000, only in the
third decimal between the solutions for N = 600 and N = 1000. These changes in the number
of intervals correspond to factors of 6.67 and 1.67, respectively. Additionally, the constraint
satisfaction improves in general as the number of nodes is incremented.
The entries where Γ 3 > 0 or Γ 8 > 0 are associated to small violations in the prevention of
droplets entering the expander and in the prevention of working fluid thermal decomposi-
tion at expander inlet, respectively. They represent very small magnitude oscillations around
c3(x , z) = 0 and c8(x , z) = 0 that can be tolerated, and are a consequence of the use of time
meshes that are relatively coarse in comparison to the fast WHR dynamics. In any case, tiny
security margins can be added in the constraint formulation as done for c4(x ) (limitation of
the evaporator’s third zone to a lower bound). In this case column Γ 4 in Table 5.6 shows that
the violations are much smaller than the value chosen for L3,min,
The table also evinces the high computational times that are reached as the time mesh is
refined. This gives a solid motivation for our NMPC scheme, which is tested on the following
section, for applications where a quick response is needed. Notwithstanding, the values and
trajectories obtained for N = 1000 can be considered as a tight upper bound of the actual
optimal controls and trajectories.

Table 5.6: Results for the optimal control with different number of intervals

N Φ(tf) Comp. Constraint Violation
[MJ] Time [s] Γ 1 [kg/h] Γ 2 [kg/h] Γ 3 [MJ/kg] Γ 4 [m] Γ 8 [K]

5 4.6557 11.65 0.00·100 0.00·100 0.00·100 5.24·10−4 4.03·10−4

10 4.7120 7.93 0.00·100 0.00·100 2.83·10−6 1.27·10−3 8.22·10−4

20 4.7351 17.39 1.53·10−6 0.00·100 0.00·100 9.25·10−4 1.87·10−3

40 4.7346 49.95 0.00·100 0.00·100 0.00·100 4.29·10−4 1.49·10−2

75 4.7595 149.95 0.00·100 0.00·100 0.00·100 1.28·10−4 6.80·10−2

150 4.8234 215.61 0.00·100 0.00·100 0.00·100 8.40·10−6 4.88·10−2

300 4.8452 1225.34 0.00·100 3.99·10−5 0.00·100 3.70·10−5 5.00·10−2

600 4.8843 10750.99 0.00·100 0.00·100 5.23·10−7 1.56·10−4 1.15·10−1

1000 4.8764 40309.74 0.00·100 0.00·100 4.06·10−8 7.81·10−5 2.00·10−2

5.2.2 Transient Analysis

For the reader’s convenience, in this section we include an analysis concerning the transient
evolution of selected magnitudes as the approximated optimal control is applied to the WHR.
In Figs. 5.2 to 5.6 the results for N = 5, N = 20, N = 75, N = 300 and N = 1000 are included
in that order. It can be seen how the increment in the degrees of freedom of the control allows it
to leverage the dynamics of the WHR to reach higher net generated powers as some constraints
become active as explained below. The following analyses are done on the curves of Fig. 5.6.
In this case, the solution is characterized by the application of the minimum massflow during
the first instants. When the maximum working fluid temperature is achieved shortly after-
wards, the control adapts, so that the constraint keeps active at the multiple shooting nodes as
the state evolves. During this process, the pressure increases and so do the power generation
and the third zone length. As this takes place, the control exhibits oscillations which are briefly
explained.
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(c) Working fluid enthalpy at the evaporator outlet. Dashed: saturated vapor enthalpy.
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(f) Working fluid temperature at the evaporator outlet. Dashed: maximum allowable temperature.

Figure 5.2: Transient behavior of selected quantities obtained with the DMS method for tf = 1200 [s]
and N = 5.
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(c) Working fluid enthalpy at the evaporator outlet. Dashed: saturated vapor enthalpy.
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(d) Evaporator vapor zone length. Dashed: minimum zone length.
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(f) Working fluid temperature at the evaporator outlet. Dashed: maximum allowable temperature.

Figure 5.3: Transient behavior of selected quantities obtained with the DMS method for tf = 1200 [s]
and N = 20.
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(c) Working fluid enthalpy at the evaporator outlet. Dashed: saturated vapor enthalpy.

0 200 400 600 800 1000 1200
0

2

4

L
3

[m
]

(d) Evaporator vapor zone length. Dashed: minimum zone length.
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(f) Working fluid temperature at the evaporator outlet. Dashed: maximum allowable temperature.

Figure 5.4: Transient behavior of selected quantities obtained with the DMS method for tf = 1200 [s]
and N = 75.
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(c) Working fluid enthalpy at the evaporator outlet. Dashed: saturated vapor enthalpy.
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(d) Evaporator vapor zone length. Dashed: minimum zone length.
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(f) Working fluid temperature at the evaporator outlet. Dashed: maximum allowable temperature.

Figure 5.5: Transient behavior of selected quantities obtained with the DMS method for tf = 1200 [s]
and N = 300.
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(a) Working fluid massflow (control). Dashed: upper and lower bounds.
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(c) Working fluid enthalpy at the evaporator outlet. Dashed: saturated vapor enthalpy.
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(d) Evaporator vapor zone length. Dashed: minimum zone length.
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(f) Working fluid temperature at the evaporator outlet. Dashed: maximum allowable temperature.

Figure 5.6: Transient behavior of selected quantities obtained with the DMS method for tf = 1200 [s]
and N = 1000.
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Figure 5.7: Zoom for the quantities shown in Fig. 5.6 on selected time intervals where noticeable oscil-
lations are present.
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At a certain instant near t = 600 [s], the operating mode is changed: The pump starts deliver-
ing maximum massflow, with which the evaporating pressure reaches high levels as the evap-
orator outlet enthalpy approaches the corresponding saturated vapor enthalpy. These changes
importantly increase the power generation. By contrast, the enthalpy (and thus the temper-
ature) at the evaporator outlet, and the vapor zone length decrease. As time evolves, almost
all plotted variables exhibit a tendency to decrease, with the exception of the control, which
stays at its maximum except for very short time instants in which it reduces its value, often
to its minimum. These oscillations reduce the power generation, but increase the vapor re-
serves inside the evaporator (which are directly proportional to L3). At around t = 1050 [s],
a new operating mode begins. This mode is characterized by the vapor zone length becoming
minimum i.e. the entrance of constraint (3.87) into the active set. This coincides with the out-
let enthalpy being extremely close to the saturated vapor enthalpy. Thus, the control reduces
its value from its maximum in a gradual manner so as to keep the vapor zone length at its
minimum. Several oscillations appear as before.

Comment on the optimal trajectories’ transient behavior: It is remarkable that the opti-
mal strategy does not aim to recover the maximum net power possible at the first instants of
the time interval under consideration, cf. Section 5.3.2, but performs a drastic increment of
its power generation only after a considerable amount of time. It can be seen that the strat-
egy first aims at the accumulation of an important amount of vapor inside the evaporator and
then increments the massflow in order to increase the power generation (see Eq. (3.2f)). This
incremented massflow must in turn be warmed up through longer distances within the evap-
orator before it reaches the saturated liquid and vapor states, so that the lengths of both the
subcooled and two-phase regions increase. As a consequence, the third zone length decreases.
Further, since this implies a decrease in the heat transfer area between the wall and the work-
ing fluid in that zone, the working fluid temperature at the evaporator outlet also does. A
similar argument can be used to explain the system’s dynamics when the control decreases.
Keeping these arguments in mind, we proceed to comment on the oscillations experienced
by the control and the plotted quantities as the system evolves. At this point we remark that
these oscillations depend on the control representation and on the path constraints’ discretiza-
tion, see Eq. (4.6). In the following analyses we will focus on Figs. 5.6 and 5.7. In Fig. 5.7,
the results corresponding to N = 1000 are zoomed at the time intervals [200, 260] [s] and
[1090, 1160] [s]. These intervals are associated to strong control oscillations at instants where
(3.88) and (3.87) belong to the active set, respectively.
At each multiple shooting node located between shortly after t = 0 [s] and shortly before t =
600 [s], the working fluid temperature at the evaporator output equals its maximum allowed
value. Nevertheless, since between consecutive multiple shooting nodes no path constraint
is imposed, the control leverages the fast dynamic modes of the WHR in order to produce
short-duration peaks on the net generated power and return the temperature to its maximum
allowed value. We notice that this is possible due to the fact that the evaporator dynamics
delay the effect of the control, which is applied at the evaporator inlet, on the working fluid
temperature at the evaporator outlet, as explained before.
The oscillations exhibited by the control between shortly before t = 600 [s] and shortly after
t = 1000 [s] improve the objective function value by reducing the mean rate at which the third
zone length shrinks. This allows to extend the time the power generation is kept high, compare
the peaks in Figs. 5.6(d) and 5.6(e). After the third zone length reaches its minimum, shortly
after t = 1000 [s], the strategy aims to keep it on that value. As a result, it can be observed
that the power generation decreases much faster.
Between shortly after t = 1000 [s] and t = 1200 [s], the third zone length is reaches its
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minimum value, which means the minimum admisible vapor amount is contained inside the
evaporator. If in this conditions the control is reduced, this length increases, which makes it
possible to continue by increasing the control to its maximum until the third zone length is
minimum again. Such an oscillation in the control causes that, when the third zone length is
minimum again, the pressure reaches a higher value than the one it would have reached had
the oscillation not taken place. Therefore, the pressure decreases at a slower mean rate, which
in turn keeps the net generated power high. This is how the observed oscillations contribute
to optimality.
In summary, along the trajectories, the active set on each instant always included one of these
main constraints: the limitation of pump capacity (3.85) (both upper and lower bounds), the
limitation of the third zone length (3.87) and the prevention of the working fluid thermal
decomposition at the evaporator outlet (3.88). The optimal strategy clearly leverages the fact
that we have specified a fixed time horizon for the WHR operation. Further, the third zone
length plays a major role in the determination of the optimal control. The thermal and me-
chanical dynamics of the system are leveraged by the control so as to maximize the objective
function and satisfy the constraints.

5.3 Nonlinear Model-Predictive Control

In this section we present the results corresponding to different numerical instances of the
NMPC scheme presented in Chapter 4. In each experiment, the controller model is Eq. (3.53),
its parameter set is the one in Table 5.3 and its initial state x̂ (0)0 is equal to Table 5.4, i.e. the
controller model and its initial state are assumed to coincide with the dynamics and the initial
state of the real WHR.
With regard to the exhaust gas conditions, i.e. the external inputs w (t), we perform two kinds
of experiments with the goal to assess the potential benefit of counting on accurate predictions
of their values: in the experiments of the first kind, we consider the external inputs as fully
known for the prediction horizon [t(k)0 , t(k)f ]; in the experiments of the second kind, in each

subproblem only the external inputs’ values at t = t(k)0 are assumed to be known, and their
prediction is assumed to correspond to a constant extrapolation of those values along the
prediction horizon.
In Section 5.3.1, we proceed to summarize and analize the results obtained with our NMPC
scheme by using different values of the prediction horizon∆tNMPC and the number of intervals
N . In our analyses we take computational times, objective function values and feasibility into
account. Finally, on Section 5.3.2 the NMPC strategy is compared with the optimal trajectories
of Section 5.2, and the PI and LQGI control strategies of Section 4.3.

5.3.1 NMPC for Different Numbers of Intervals and Prediction Horizon Lengths

As stated in Section 4.2, the choice of the number of multiple shooting nodes N and the pre-
diction horizon ∆tNMPC can impact the algorithm’s performance with respect to optimality,
feasibility, computational time and even model evaluability. In order to evaluate the concrete
impact of these configuration parameters, a set of 84 experiments has been performed to test
the practical performance of the NMPC scheme. The independent variables of our experiment
set correspond to the knowledge level of the future exhaust gas conditions (fully known or
not, as previously explained), and the number of intervals and the prediction horizon chosen
as a pair (N ,∆tNMPC [s]) ∈ {1, 3,7, 15,30, 60}× {2,10, 25,50, 200,350, 500}. The dependent
variables of the experiment set correspond to the net generated energy Φ(tf), the maximum
computation time max(tc) and the constraint violation vector Γ . The goals of this study are
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the determination of the best (N ,∆tNMPC [s]) pair for the NMPC scheme in this concrete ap-
plication; the acquisition of knowledge regarding the influence of these choices in the NMPC
scheme’s performance in this application; and the assessment of the potential benefit of count-
ing on accurate exhaust gas predictions on the NMPC scheme’s performance.
From the whole set of results, those experiments in which the NMPC routine successfully swept
the whole horizon [t(k)0 , t(k)f ] and max(tc) is not greater than Ts are called real-time feasible
results.
Among those, the ones for which the prevention of droplets entering the expander (3.86) and
the prevention of the working fluid thermal decomposition (3.88) were never violated (i.e.
Γ i = 0, i ∈ {3,5, 6,7, 8}) are called acceptable results. Notice that not all real-time feasible
results are acceptable.
The upper part of Table 5.7 lists the acceptable results. These results are summarized by the
ranges for Φ(tf), max(tc) and Γ in the lower part of the same table. Additionally, column ’FK’
indicates if the experiments considered w (t) as fully known along each prediction horizon.

Table 5.7: Acceptable results for the NMPC with different number of intervals and prediction horizon

FK N ∆tNMPC Φ(tf) max(tc) Constraint Violation
[s] [MJ] [s] Γ 1 [kg/h] Γ 2 [kg/h] Γ 3 [MJ/kg] Γ 4 [m] Γ 8 [K]

No 1 10 4.2659 0.029 0.00 · 100 0.00 · 100 0.00 · 100 5.34 · 10−4 0.00 · 100

No 1 25 4.2686 0.033 0.00 · 100 0.00 · 100 0.00 · 100 1.59 · 10−3 0.00 · 100

No 3 2 4.2651 0.061 0.00 · 100 0.00 · 100 0.00 · 100 1.71 · 10−6 0.00 · 100

No 3 25 4.2656 0.058 0.00 · 100 0.00 · 100 0.00 · 100 4.08 · 10−4 0.00 · 100

No 3 50 4.2671 0.073 0.00 · 100 0.00 · 100 0.00 · 100 1.04 · 10−3 0.00 · 100

No 7 25 4.2651 0.076 0.00 · 100 0.00 · 100 0.00 · 100 1.23 · 10−4 0.00 · 100

No 7 50 4.2655 0.084 0.00 · 100 0.00 · 100 0.00 · 100 3.20 · 10−4 0.00 · 100

Yes 1 10 4.2662 0.043 0.00 · 100 0.00 · 100 0.00 · 100 6.95 · 10−4 0.00 · 100

Yes 3 2 4.2651 0.060 0.00 · 100 0.00 · 100 0.00 · 100 1.11 · 10−6 0.00 · 100

Yes 3 10 4.2653 0.078 0.00 · 100 0.00 · 100 0.00 · 100 1.38 · 10−4 0.00 · 100

Yes 3 25 4.2658 0.042 0.00 · 100 0.00 · 100 0.00 · 100 5.26 · 10−4 0.00 · 100

Yes 3 50 4.2677 0.065 0.00 · 100 0.00 · 100 0.00 · 100 1.41 · 10−3 0.00 · 100

Yes 7 50 4.2656 0.085 0.00 · 100 0.00 · 100 0.00 · 100 4.10 · 10−4 0.00 · 100

For all acceptable results:
(w (t) constant)

Φ(tf) ∈ [4.2651, 4.2686] [MJ]
max(tc) ∈ [0.0288, 0.0843] [s]
Γ 4 ∈

�

1.7090 · 10−6, 1.5854 · 10−3
�

[m], Γ i ∈ {0}∀i 6= 4

For all acceptable results:
(w (t) fully known)

Φ(tf) ∈ [4.2651, 4.2677] [MJ]
max(tc) ∈ [0.0420, 0.0849] [s]
Γ 4 ∈

�

1.1129 · 10−6, 1.4114 · 10−3
�

[m], Γ i ∈ {0}∀i 6= 4

It can be seen in Table 5.7 that, as in Section 5.2.1, the violations on c4, are much smaller
than the security margin L3,min and thus acceptable. These violations are due to the external
inputs’ influence on the state trajectory. Our NMPC scheme succeeds in keeping the evapora-
tor’s superheated vapor zone volume close to its minimum allowed value (i.e. c4(x , p) = 0)
in spite of the disturbances leading the state into regions where it becomes slightly lesser (i.e.
c4(x , p)< 0).
Additionally, from the realization of the whole set of experiments, the following observations
can be made:

1. Only values of N ∈ {1, 3,7} and ∆tNMPC ∈ {2,10, 25,50} [s] yielded real-time feasible
results, independent of the knowledge of the external inputs.
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2. For a fixed ∆tNMPC, increasing N leads, independent on the knowledge of the external
inputs, to lesser constraint violations, a lesser Φ(tf), and a greater max(tc).

3. In general, the consideration of full external input knowledge allows the WHR to reach
a greater value of Φ(tf). The increment is more substantial for greater values of∆tNMPC.
However, for those experiments that yielded acceptable results with and without full ex-
ternal input knowledge, energy recovery gains are only between 0.00% and 0.02%. This
indicates that the extrapolation of w (t) as constant for prediction purposes is an approx-
imation that is accurate enough for the considered value of Ts and the corresponding
prediction horizons.

For the sake of completeness, a subset of results that could not be classified as acceptable is
included in Table 5.8.

Table 5.8: Selection of results that are not acceptable for the NMPC with different number of intervals
and prediction horizon

FK N ∆tNMPC Φ(tf) max(tc) Constraint Violation
[s] [MJ] [s] Γ 1 [kg/h] Γ 2 [kg/h] Γ 3 [MJ/kg] Γ 4 [m] Γ 8 [K]

No 1 50 4.2745 0.048 0.00 · 100 0.00 · 100 9.75 · 10−5 2.97 · 10−3 0.00 · 100

No 7 200 4.2695 0.153 0.00 · 100 0.00 · 100 3.77 · 10−6 1.79 · 10−3 0.00 · 100

No 15 25 4.2649 0.131 0.00 · 100 0.00 · 100 0.00 · 100 1.92 · 10−5 0.00 · 100

No 15 200 4.2665 0.244 0.00 · 100 0.00 · 100 0.00 · 100 7.82 · 10−4 0.00 · 100

No 30 25 4.2649 0.223 0.00 · 100 0.00 · 100 0.00 · 100 3.49 · 10−6 0.00 · 100

No 30 50 4.2649 0.279 0.00 · 100 0.00 · 100 0.00 · 100 3.18 · 10−5 0.00 · 100

No 60 25 4.2649 0.395 0.00 · 100 0.00 · 100 0.00 · 100 1.80 · 10−6 0.00 · 100

No 60 50 4.2649 0.443 0.00 · 100 0.00 · 100 0.00 · 100 3.51 · 10−6 0.00 · 100

No 60 200 4.2010 0.727 0.00 · 100 0.00 · 100 0.00 · 100 0.00 · 100 0.00 · 100

Yes 1 50 4.2816 0.046 0.00 · 100 0.00 · 100 2.59 · 10−4 6.12 · 10−3 0.00 · 100

Yes 7 200 4.2718 0.127 0.00 · 100 0.00 · 100 3.90 · 10−5 3.00 · 10−3 0.00 · 100

Yes 15 25 4.2649 0.132 0.00 · 100 0.00 · 100 0.00 · 100 3.13 · 10−5 0.00 · 100

Yes 15 200 4.2669 0.233 0.00 · 100 0.00 · 100 0.00 · 100 1.05 · 10−3 0.00 · 100

Yes 30 25 4.2649 0.223 0.00 · 100 0.00 · 100 0.00 · 100 2.35 · 10−6 0.00 · 100

Yes 30 50 2.5436 1.851 0.00 · 100 0.00 · 100 0.00 · 100 8.08 · 10−6 0.00 · 100

Yes 60 25 4.2649 0.395 0.00 · 100 0.00 · 100 0.00 · 100 1.37 · 10−6 0.00 · 100

Yes 60 50 4.2649 0.476 0.00 · 100 0.00 · 100 0.00 · 100 2.47 · 10−6 0.00 · 100

Yes 60 200 4.2011 0.670 0.00 · 100 0.00 · 100 0.00 · 100 0.00 · 100 0.00 · 100

5.3.2 Comparison Between the NMPC, the LQGI and the PI Strategies

To test the proposed NMPC strategy against standard methods, the LQGI and PI controllers
of Section 4.3 with the tuned parameters of Section 5.1.5 are considered. We proceed firstly
by performing tests using a target superheating of ySH∗ = 10 [K]. Since it turns out that the
NMPC strategy makes the system operate around a superheating of 1.2 [K], an additional set
of tests was considered, this time using a reference of ySH∗ = 1.2 [K]. Table 5.9 summarizes
the results.
In Table 5.9 it is possible to see that the results produced by both the LQGI and PI strategies are
acceptable, except for the case in which the LQGI controller is given a reference ySH∗ = 1.2 [K].
In that case the prevention of droplets entering the expander Eq. (3.86) and the minimum third
zone length Eq. (3.87) are being importantly violated. This is due to the discrepance between
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Table 5.9: Results for different control strategies

Control ySH∗ Φ(tf) max(tc) Constraint Violation
strategy [K] [MJ] [s] Γ 1 [kg/h] Γ 2 [kg/h] Γ 3 [MJ/kg] Γ 4 [m] Γ 8 [K]

LQGI
10.0 4.1306 0.011 0.00 · 100 0.00 · 100 0.00 · 100 0.00 · 100 0.00 · 100

1.2 4.1444 0.007 0.00 · 100 0.00 · 100 1.27 · 10−3 2.16 · 10−2 0.00 · 100

PI
10.0 4.1413 0.003 0.00 · 100 0.00 · 100 0.00 · 100 0.00 · 100 0.00 · 100

1.2 4.1403 <0.001 0.00 · 100 0.00 · 100 0.00 · 100 1.49 · 10−3 0.00 · 100

the nonlinear nature of the WHR and the linear model assumed by the LQGI controller. The
PI controller satisfied all constraints, except the minimum third-zone length Eq. (3.87). This
violation can be tolerated, since its magnitude is much smaller than the security margin L3,min,
and a small volume of vapor is still contained within the evaporator. This is supported by the
fact that it satisfies the prevention of droplets entering the expander.
By comparing Tables 5.6, 5.7 and 5.9, it is possible to see that

1. The net energy generation can be sorted according to the type of control used2 i.e,
Φ(tf)Optimal Control > Φ(tf)NMPC+FK > Φ(tf)NMPC > Φ(tf)LQGI > Φ(tf)PI. We stress in partic-
ular that the proposed NMPC scheme is able to generate around 2.9 [%] more energy
than the LQGI and PI controllers.

2. The proposed NMPC scheme has a bigger computational time than the LQGI and PI
controllers. Nevertheless, we stress that it achieves computational times that are suitable
for real-time environments.

3. The proposed NMPC scheme is able to yield constraint violations that are several orders
of magnitude smaller the LQGI and PI controllers.

Transient Analysis

In this section we compare the transient behavior of the WHR under the NMPC, PI and LQGI
strategies discussed above. For the NMPC we have considered a configuration consistent on
setting the number of multiple shooting intervals as N = 3 and the prediction horizon length
as ∆tNMPC = 50 [s]. This configuration is an acceptable NMPC instance that reaches a very
good compromise between constraint violations and objective function value. It is associated
with a value of Γ 4 = 1.0393 · 10−3 [m] and Γ i = 0 for all i 6= 4. It does not consider the
external inputs as fully known. Additionally, for the LQGI and PI strategies we have taken
those trajectories corresponding to setting the reference superheating to ySH∗ = 1.2 [K] into
account. The corresponding results are shown in Fig. 5.8. Therein the dashed line is used for
indicating limits to the trajectories plotted, such as the control upper and lower bounds, the
saturated vapor enthalpy and the minimum third zone length.
A first observation that can be made is the undeniable influence of the external inputs on the
controllers’ dynamic behavior. In particular, the transients of the exhaust gas inlet massflow of
Fig. 5.1 are clearly reflected on all curves in Fig. 5.8.
In contrast to the results obtained with the optimal control strategy (see Fig. 5.6(a)), all three
controllers start with the maximum massflow. After a transient between around t = 25 [s] and
around t = 300 [s], all three controllers reach similar operating conditions, which are charac-
terized by a very small value of the third zone length and very slow changes. In particular, for

2Where the subscript ’NMPC+FK’ refers to the NMPC scheme under the assumption of full external input
knowledge

108



N U M E R I C A L R E S U LT S

�

� CHAPTER 5

0 200 400 600 800 1000 1200
100

200

300

400
_m

in
[k

g
/
h
]

(a) Working fluid massflow (control). Dashed: upper bound.

0 200 400 600 800 1000 1200
0.4

0.6

0.8

p
ev

[M
P
a
]

(b) Evaporator pressure.

0 200 400 600 800 1000 1200
1.3

1.35

1.4

1.45

h
C

[M
J
/
k
g
]

(c) Working fluid enthalpy at the evaporator outlet. Dashed: saturated vapor enthalpy.

0 200 400 600 800 1000 1200
-0.5

0

0.5

1

1.5

L
3

[m
]

(d) Evaporator vapor zone length. Dashed: minimum zone length.

0 200 400 600 800 1000 1200
0

2

4

6

_ W
n
et

[k
W

]

(e) Net generated power.

0 200 400 600 800 1000 1200
T ime [s]

400

450

3
C

[K
]

(f) Working fluid temperature at the evaporator outlet.

Legend:

0 200 400 600 800 1000 1200
100
200
300
400

_m
in

[k
g
/
h
]

NMPC PI LQG

Figure 5.8: Comparison of the transient behavior of selected quantities obtained by using NMPC, LQGI
and PI controllers.
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the NMPC the minimum third zone length becomes active. During this stage the minor vari-
ations of the exhaust gas massflow do not importantly affect the plotted magnitudes. Shortly
before t = 800 [s] the exhaust gas massflow shows once again an important change, and a
new transient is started during which both the PI and the LQGI react almost identically and
the NMPC produces clearly different trajectories. At approximately t = 1150 [s] the exhaust
gas massflow changes once again, and the last transient of our analysis begins.
After approximately t = 25 [s] the third zone length remains having a small value for the rest
of the operation for all controllers. Furthermore, during the whole operation the evaporator
outlet temperature remains in safe values.

Comment on the trajectories’ transient behavior: At the beginning of the interval, the
control corresponding to the LQGI controller remains at its maximum value during an amount
of time that is considerably longer than their counterparts. During this time the LQGI con-
troller clearly suffers from an integral windup phenomenon: since the superheating error (i.e.
the difference between the current superheating and the target superheating, see Section 4.3)
remains big for a long period of time, the integral term of Eq. (4.65) becomes big until the ef-
fect is countered by adding negative superheating errors during a sufficiently long time lapse.
For this reason, the evaporator outlet temperature for the LQGI reaches the smallest value
in comparison to the other strategies at around t = 120 [s] and exhibits an oscillatory be-
havior afterwards. The integral windup causes the LQGI controller to importantly violate the
constraints on the third zone length and the output enthalpy (constraints (3.87) and (3.86),
respectively), which invalidates its higher power production during this transient. It is pre-
cisely the LQGI controller’s poor dynamic behavior the responsible for a low power generation
between the moment the control leaves its maximum and t = 200 [s].
In contrast to the PI controller, the anti-windup mechanism of the PI controller deactivates
its integral part when the pump delivers a maximum massflow, and the proportional part
can readily start decreasing the control value in a gradual manner as the superheating error
approaches zero. It better dynamic behavior gives it clear advantages over the LQGI controller
with respect to contraint satisfaction and power generation until t = 200 [s], instant after
which both controllers have already reached similar operating conditions that will remain so
until the end of the interval.
The predictive characteristics of the NMPC are reflected on the fact that its control always
shows changes several seconds before its counterparts. This allows the controller’s make a
better use of the transients to maximize the power generation. In fact, the power generation
of the WHR under the NMPC is higher than those under the PI and LQGI controllers for most
of the time interval, in particular between approximately t = 75 [s] and near t = 1150 [s].
Moreover, from Tables 5.7 and 5.9 it becomes clear that for the whole interval the energy
recovered by the NMPC is greater than that recovered by the two other controllers.
In summary, the analysis above highlights that due to the fact that the NMPC considers the
nonlinear WHR dynamics using them to predict the WHR’s future behavior and takes the op-
erational constraints into account, it is able to profit from the transients to achieve a higher
energy recovery while exhibiting an increased robustness in the sense of feasibility in compar-
ison to its counterparts.

5.4 Moving Horizon Estimation

In this section, we continue our study by relaxing the exact knowledge of the differential state
vector that was assumed until now. In this context we employ the MHE scheme introduced
in Section 3.5.3 to estimate the state from practical sensor measurements and the use of the
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Table 5.10: MHE Estimation Error

Statistic Estimated State
L1 [%] L2 [%] pev [%] θW,1 [%] θW,2 [%] θW,3 [%] hC [%]

mei
0.01 0.01 <0.01 <0.01 0.01 0.17 <0.01

ēi 0.37 1.67 0.03 <0.01 0.19 29.92 <0.01
σei

0.18 2.71 0.05 0.01 0.63 3.55 <0.01
Mei

11.82 89.88 2.51 0.46 6.69 40.41 0.47

nonlinear WHR model of Chapter 3. In Section 5.4.1, the MHE scheme’s accuracy is evaluated.
Next, in Section 5.4.2, the performance of the NMPC scheme in which the state is estimated
by the MHE scheme is compared to that of the NMPC scheme in which the state is perfectly
known. Finally, in Section 5.4.3, the scheme in which the NMPC and MHE work together is
compared to the PI and LQGI controllers of Section 4.3.
In all our experiments we consider the schematic of Fig. 4.1, in which the proposed NMPC-MHE
scheme interacts with a real WHR, which we simulate by means of the DAE model Eq. (3.53).
For this simulated WHR, the parameters and initial state of Section 5.1.3 are considered, and
its differential and algebraic state vectors at the instant k ∈ K are denoted as x (k) and z(k).
The DAE system is integrated between adjacent sample times using the controls obtained by
the NMPC block as they become available and the curves of Section 5.1.4. The estimates of the
differential and algebraic state produced by the MHE are denoted as x̂ (k) and ẑ(k), respectively.
Additionally, the NMPC and MHE are initialized as described in Section 4.2.3. For the initial-
ization of the MHE, the initial differential and algebraic states are the ones of Section 5.1.3.
For both the NMPC and the MHE, the controls and external inputs correspond to those of
Section 5.1.4. The initial algebraic state for the NMPC is chosen as that of Section 5.1.3.

5.4.1 MHE Performance

Under the aforementioned conditions the MHE and the NMPC control the WHR so that real
plant trajectories are generated. For each state x (k)i , i ∈ {1, . . . , nx}, k ∈ K; we make the

component-wise definition of the percentage estimate relative error e(k)i , and its time statistics:
minimum mei

, maximum Mei
, mean ēi and standard deviation σei

as

e(k)i = 100 [%] · |x̂ (k)i − x (k)i |/|x
(k)
i |, (5.3a)

mei
=min

k∈K
e(k)i , ēi =

1
K

∑

k∈K
e(k)i , (5.3b)

Mei
=max

k∈K
e(k)i , σei

=

√

√

√

1
K − 1

∑

k∈K
(e(k)i − ēi)2. (5.3c)

The definition is analogous for z(k). These time statistics for the performed experiments are
shown in Table 5.10.
The most accurate estimations are obtained for pev, which is measured, and hC . The latter can
be directly translated from the measurements of pev and θC in accordance with Gibbs’ phase
rule (see Section 2.5.1). Additionally, from Eq. (3.14), when L1 is big enough, θG,out ≈ θW,1,
which explains the good accuracy on θW,1. For all of these variables, the mean relative error is
less than 2 [%].
The estimates of θW,3 are more sensitive to estimation errors. This is due to the fact that,
when L3 is small, Q̇W F ,3 is almost zero (cf. Eq. (3.6)), causing the conditioning of Eq. (3.52)
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to become poorer. As analyzed in Section 5.3.2, the WHR operates most of the time precisely
in these conditions when the numerical realization of the NMPC strategy considered in this
section is used.

5.4.2 Comparison with the Omniscient NMPC

In order to quantify the effect that the loss of certainty has in the controller’s performance,
the results obtained with the proposed NMPC-MHE scheme are compared with those obtained
with an NMPC instance where the state is perfectly known. We call such instance the omniscient
NMPC instance and denote it as O-NMPC. For the control trajectories the relative deviation
sequence is defined as

e(k)u = 100 [%] · |u(k)NMPC-MHE − u(k)O-NMPC|/|u
(k)
O-NMPC|, k ∈ K, (5.4)

and the corresponding statistics are analogous to those of Eq. (5.3). The trajectory of e(k)u is
shown in Fig. 5.9. It can be seen that the control trajectories of both the NMPC-MHE and the O-
NMPC are very similar. The peak deviation is at around t = 48 [s], where an active set change
takes place (the minimum third zone length constraint becomes active, i.e. L3 = L3,min). The
NMPC-MHE is able to detect it and react accordingly shortly after.
The energy recovery from the exhaust gas is almost the same in both cases: at tf, the WHR with
the O-NMPC recovered 4.2648 [MJ] while with the NMPC-MHE it recovered 4.2232 [MJ],
which makes up only a 0.97 [%] difference.

5.4.3 Comparison of the NMPC-MHE Scheme with the LQGI and PI controllers

We can compare the proposed NMPC-MHE Scheme to the LQGI and PI controllers of Sec-
tion 4.3. Revisiting the results of Table 5.9 and those of Section 5.4.2, we can observe that, if
we consider the energy harvested by the energy harvested by the LQGI with target superheating
ySH∗ = 10 [K] as a reference, the proposed scheme recovers 1.90 [%]more energy. Otherwise,
if we consider the energy harvested by the LQGI with target superheating ySH∗ = 1.2 [K] as a
reference, our scheme recovers 2.25 [%] more energy.

5.4.4 Influence of Measurement Noise

In order to evaluate the influence that measurement noise has on the proposed NMPC-MHE
scheme’s performance, in this subsection we consider the measurements

�

pev, θC , θG,out

�T

to be distorted by means of the addition of a Gaussian white noise vector whose components

112



N U M E R I C A L R E S U LT S

�

� CHAPTER 5

0 200 400 600 800 1000 1200
100

200

300

400

_m
in

[k
g
/
h
]

Figure 5.10: Control applied by the NMPC-MHE scheme in the presence of noise.

have standard deviations of 1.0 [kPa], 0.33 [K] and 0.1 [K], respectively. These standard
deviations are chosen so that Ψk yields measurement errors with amplitudes less or equal than
0.5 [kPa], 1.0 [K] and 0.3 [K]with a probability of 99.73 [%], respectively, which corresponds
to a realistic setting.
The obtained results are plotted in Figs. 5.10 to 5.12. Therein we have used the blue line
for the real states and the measurements (i.e. those magnitudes associated with the WHR),
and the red line for the estimated states and the filtered measurements3(i.e. those magnitudes
associated with the MHE). Notice that the noise for the measured state pev is included in
Fig. 5.11.
The statistics corresponding to the state estimation error are summarized in Table 5.11. The
symbols used therein are defined as in Eq. (5.3). Analogous definitions can be used for the
measurement estimation error, i.e. the difference between the noisy and the filtered measure-
ments4, with the results included in Table 5.12.
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Figure 5.11: Comparison between the actual and filtered measurements.

The results confirm that, in spite the noise’s influence, the proposed scheme is able to effectively
perform its estimation and control tasks. The results of Tables 5.11 and 5.12 resemble those of

3With filtered measurements we refer to those obtained by evaluating the measurement function y(·) at the
differential and algebraic states predicted by the MHE, the measured external inputs and the model parameters.
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Table 5.11: State estimation error for the NMPC-MHE scheme in the presence of noise

Statistic Estimated State
L1 [%] L2 [%] pev [%] θW,1 [%] θW,2 [%] θW,3 [%] hC [%]

mei
0.00 0.00 0.00 0.00 0.00 0.00 0.00

ēi 1.11 9.23 0.07 0.01 0.92 25.23 0.03
σei

0.91 8.89 0.06 0.01 1.54 6.09 0.11
Mei

12.51 92.71 1.75 0.15 26.69 46.96 4.13

Table 5.12: Measurement estimation error for the NMPC-MHE scheme in the presence of noise

Statistic Measurement
pev [%] θC [%] θG,out [%]

mei
0.00 0.00 0.00

ēi 0.15 0.09 0.02
σei

0.12 0.17 0.02
Mei

2.38 6.05 0.16

Table 5.10 and thus the same analysis of Section 5.4.1 can be done, taking into account that
the presence of noise increases the mean estimation errors by a small amount.
The influence of the noise can be seen on the estimates of θW,3, whose higher sensitivity to
estimation errors has been previously discussed. A consequence of this higher sensitivity is
that the associated estimates tend to be located close to the border of Eq. (3.92), i.e. such
that θW,3 ≈ θW,2 and θW,3 ¾ θW,2. Additionally, it is observable that the estimation errors of
both states and measurements tend to be greater during approximately the first 200 [s] and
considerably decrease afterwards. Consistently, during that time interval the control and thus
the evaporator pressure do not reach values as high as those obtained in the noise-free, which
is though compensated between close to t = 200 [s] and around t = 760 [s]. After these tran-
sients, the values both magnitudes reach resemble those of the noise-free case. With respect to
the constraint satisfaction, the only component of the vector Γ different than zero corresponds
to Γ 4 = 2.83 · 10−3 [m], which is associated to the limitation of the evaporator’s third zone
to a lower bound. As before, the violations are much smaller than the value chosen for L3,min.
Further, in the presence of noise, the WHR is able to make a net recovery of 4.2241 [MJ]when
equipped with the proposed scheme.
In summary, the previous analyses underline the proposed scheme’s ability to yield good results
also in noisy enviroments.
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(d) Working fluid enthalpy at the evaporator outlet.
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Figure 5.12: Comparison between the actual states and the states estimated by the NMPC-MHE scheme.
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6 Conclusions and Future Research Directions

This thesis’ main conclusions are summarized in this chapter. Additionally, an overview of
appealing research directions for future research is included.

6.1 Conclusions

In this thesis, different ways of controlling a heavy-duty truck’s waste heat recovery system
(WHR) have been implemented and compared. Tests have been performed on a scenario cor-
responding to real exhaust gas temperature and massflow data measured at the evaporator
inlet on a given time horizon. These data have been recorded and kindly handed over by our
industry cooperation partner Daimler AG.
The first important step in our thesis has been the formulation of an optimal control prob-
lem (OCP) for the given scenario. To this end, a first-principles model of the WHR has been
proposed. This is a challenging task as the involved physical processes (namely, phase change
inside the evaporator) are best modelled through the use of curves and surfaces that may not
be continuous at all in their whole evaluation domain, and our methods of choice, which are
derivative-based, work best with highly differentiable models. To handle this, a tailored parti-
tion of the evaluation domain and an adequate extrapolation technique have been introduced
in order to yield a model that is continuously differentiable in the whole evaluation domain.
According to our numerical experience, the fulfillment of this condition brings satisfactory
results. The resulting model consists of a DAE that, under realistic assumptions, is of index 1.
Based on the direct multiple shooting method for optimal control and efficient numerical tech-
niques, approximations to the OCP solution for the considered scenario were calculated offline
using different numbers of intervals. We have observed the influence of this choice in the com-
putational times, objective function values and constraint satisfaction. As expected, we observe
that the higher the number of intervals is, the better the results are with respect to objective
function values and constraint satisfaction. On the other hand, the computational costs in-
crease very fast. Nevertheless, very good approximations to the optimum can be obtained in
moderate computational times for an offline analysis.
The experience with the numerical solution of the OCP has paved the way for the formulation
of a Nonlinear Model-Predictive Control (NMPC) strategy that is grounded in the same efficient
numerical techniques and the Real-time iteration (RTI) scheme. Numerical results have been
obtained using different numbers of intervals, prediction horizons and knowledge level of the
exhaust gas conditions. With regard to the influence of the number of multiple shooting inter-
vals and the prediction horizon length on the NMPC strategy’s performance, and in the light of
our application’s practical requirements, the best results in the sense of a compromise between
computational speed, constraint satisfaction and objective function value were obtained using
a low number of multiple shooting intervals and relatively short prediction horizons. With re-
spect to the knowledge of future exhaust gas conditions, gains due to accurate prediction of
those quantities are only relevant when the prediction horizon is long enough.
In comparison to the energy recovered through the use of Proportional-Integral (PI) and
Linear-Quadratic-Gaussian controllers with integral action (LQGI) controllers, the energy re-
covery obained with the proposed NMPC strategy was about 2.9 [%] higher. With respect to
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the computation time, the proposed NMPC strategy exhibits an appealing speed for this ap-
plication’s considered real-time contexts, specially after showing good performance under the
considered sample time of 100 [ms]. This outperforms the results reported by other NMPC
schemes found in the literature. With respect to the operational constraints, the proposed
NMPC strategy yielded successful results for the considered scenario, in the sense that only su-
perheated vapor enters the expander and the working fluid temperatures are kept under their
thermal decomposition limit. This good behavior is shared by the PI controller, but the LQGI
controller could not fulfill these constraints for a particular target superheating. In summary,
we conclude that the proposed NMPC strategy is to be preferred over the rest if it is properly
set up.
The aforementioned results motivate the implementation of the proposed scheme on a real
testbench. For these means a necessary first step consist on the implementation of a suitable
nonlinear state estimator. For these means we have chosen an MHE formulation. In our for-
mulation, realistic WHR measurements are considered to perform the state estimation. The
resulting scheme is tested in a simulated noisy environment. Therein, almost all states were
accurately estimated, with average relative errors lesser than 2 [%]. Afterwards, the MHE esti-
mator is coupled to our NMPC scheme in order to produce a closed control loop. The proposed
scheme’s generated control trajectories and recovered energy closely resemble those of an
NMPC strategy with full state knowledge. The proposed NMPC-MHE scheme allows the WHR
to recover roughly 2 [%] more energy than the tested PI and LQGI alternatives. We conclude
that the implemented control loop appears as an appealing alternative for actual implementa-
tion on a heavy duty truck.

6.2 Future Research Directions

The success obtained in the experiments performed in the course of this thesis inspire new
directions in the optimization-based control of the WHR. These opportunities and challenges
are briefly described in this section.

Implementation on an experimental testbench:

The promising results achieved in this thesis make it appealing to test an implementation of the
NMPC-MHE scheme on a real testbench, and comparisons to other control strategies similar to
those presented in this thesis could be performed in that environment. Since real-time feasible
results have been obtained even with moderate computational capabilities, the possibility of
executing first tests on a real heavy duty truck seems to be realistic.

Uncertain parameters and/or predictions:

As we have seen in Chapter 5, our NMPC-MHE scheme takes full advantage of the exhaust
gas predictions and the knowledge of the model parameters in order to control the system.
The scheme can be further extended in order to take into account the uncertainty associated
to these quantities and thus produce more robust results. In our concrete case, the results
indicate that certain constraints are expected to become active or close to active during the
WHR operation, such as the prevention of droplets entering the expander and the prevention
of the working fluid’s thermal decomposition Eqs. (3.86) and (3.88). At the expander inlet, the
working fluid state depends strongly on the values of the convection heat transfer coefficients
(see Chapter 2) and the exhaust gas conditions. A good estimation of these coefficients is
thus of critical importance, since the working fluid or the expander may suffer damage or
accelerated wear if the aforementioned constraints become violated.
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Dual control methods: In order to achieve the robustification explained above, we can make
use of a dual control approach as described in e.g. [87]. The central idea behind it is that the
choice of the control not only influences the objective function, but also the measurements’
statistical significance for the purpose of the state estimation. The control can thus be chosen
in a way that reaches an adequate compromise between a high-quality state estimation (which
implies a higher robustness of the solution) and an optimum objective function value.

Inclusion of further operational modes:

The results obtained in this thesis support the explicit consideration of transients in the control
of the WHR. It is thus expected that further gains in efficiency can be obtained if a detailed con-
sideration of operational modes other than the one treated in this thesis is included. Examples
of this are start-up and shut-down processes, or transient modes in which the warm exhaust
gas production is low, such as when the truck is driven by the electrical powertrain, if it is hy-
brid, or the motor is idle. In this case, the expander is bypassed since the heat recovered from
the exhaust gas is not enough to evaporate the working fluid, but nevertheless the question
that arises is how to operate the WHR in order to take maximum advantage of the available
heat and keep the working fluid as warm as possible in order to allow a fast reconnection of
the expander in case the heat is suddenly enough to do so. In order to expand our NMPC-MHE
scheme to cover the aforementioned operational modes, new mathematical challenges are to
be faced.
Modelling: Bypass valves for the expander and eventually other components should be incor-
porated into the model. This can be done by introducing controls taking binary values.
In addition, the evaporator model should be expanded in order to represent situations in which
the working fluid is not in a thermodynamic state corresponding to saturated vapor at the
evaporator outlet. The resulting model is likely to be associated to a switching function relating
the state and the operating mode.
Methods for mixed-integer, switched systems: In summary, the addition of the aforemen-
tioned features results in a model with mixed-integer controls and state-dependent switches. The
associated OCP, NMPC and MHE formulations represent challenges for the current state of the
art. For their solution, approaches based on the techniques described in [82] can be developed.

Multi-level iterations:

In this thesis we have made use of the RTI scheme for both NMPC and MHE, and therewith
we have achieved computational times shorter than the sampling time. This scheme has been
extended in the recent years by the Multi-level iterations scheme (MLI), which exploits the
fact that the different components of the QP (4.27) are usually valid for different periods
of time and thus can be updated with different frequencies. Different levels are thus intro-
duced according to which components of the QP are updated. For a detailed description, see
e.g. [83, 165]. This approach can further reduce our already very good computational times,
enabling us to consider longer prediction horizons, a bigger number of shooting nodes and
additional data in the numerical instances of our MHE and NMPC schemes. Further, MLI can
as well be applied to the extensions mentioned in the paragraphs above, which entail higher
computational burdens.

Numerical evaluation of WHR performance and the design problem:

If the data for several exhaust gas scenarios are available, the optimal control can be calculated
for each one of them by means of the tools described in this thesis. This can be used to perform
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a numerical evaluation of the highest practical energy recovery potential for a given WHR
topology. The advantage of this kind of procedure over a classical thermodynamic analysis
of the kind of the Carnot cycle (see Chapter 2) is that a tighter upper bound for the system’s
performance can be obtained if the WHR dynamics are taken into account. Moreover, different
WHR topologies (i.e. the choice of the component classes that are to be included in the cycle
and of the connections between them, see e.g. [155] for a brief overview), components (i.e. the
concrete members of the chosen components classes with which the cycle is to be built) and
working fluids can be tested in order to evaluate the best combination for a given truck type
according to specific criteria, which can be economic. The approaches found in the literature do
not include dynamics and pick up a very limited number of possible combinations of topologies
and working fluid into account each time.
Formulation of a two-layer optimization problem and a structure-exploiting algorithm: A
novel approach would be to formulate this as a two-layer optimization problem. In the upper
layer, a combinatorial optimization problem can be posed in which the decision variables are the
presence or absence of certain components or cycle branches, or the use of a specific working
fluid; and the objective function can be e.g. the aggregate component costs. In the lower layer,
an optimal control problem can be posed in which the WHR’s energy recovery is maximized for
the aforementioned exhaust gas scenarios under consideration of the topology, components
and working fluid from the upper level. The development of an efficient, structure-exploiting
algorithm to solve this two-layer optimization problem constitutes a challenging task.

Comprehensive truck dynamic optimization:

The success of our NMPC-MHE scheme in the control of the WHR suggests the inclusion of
additional truck subsystems in a comprehensive optimization-based control strategy. These
subsystems can be e.g. the engine, further energy recovery subsystems and the truck’s electrical
powertrain. At this point we stress that the solution of this problem results challenging due
to the fact that the use of energy recovery systems and the electrical powertrain reduce the
internal combustion engine’s heat production, which is in turn the energy source of at least
some of the recovery systems present on the vehicle. A consequence of that is that it might be
desirable to switch on or off some of the subsystems and/or the internal combustion engine
during the truck’s drive.
In order to implement a comprehensive optimization control strategy for the truck, the follow-
ing developments are to be done.
Modelling: The accurate modelling of the engine, the electrical powertrain and each additional
energy recovery subsystem needs to be addressed with particular emphasis on the energy flows
between these systems, which is not a trivial task. The model can be also expanded with the
inclusion of the vehicle’s dynamics to allow for predicting its whole energy usage if a route
with known slopes is provided. As before, the resulting model is likely to be associated to
state-dependent switching functions and mixed-integer controls.
Mixed-integer, distributed NMPC: due to the presence of an interconnected network of sub-
systems to be controlled, an appealing approach consists on implementing individual con-
trollers for each subsystem and an adequate coordination strategy between them, with the
aim to take the maximum advantage of the interactions existing between each subsystem to
guarantee a stable operation of the truck’s energy system as a whole while pursuing the max-
imization of a collective objective function under consideration of the corresponding opera-
tional constraints. In addition, the activation and deactivation of some subsystems requires an
adequate incorporation of mixed-integer optimal control techniques capable of handling van-
ishing constraints.
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Nomenclature

Throughout this thesis, lowercase roman and greek letter in boldface (x , y , λ, µ) are used
for vectors. Matrices use uppercase roman letters in boldface (A, B, C). Scalars are denoted
by lowercase roman and greek letters ( f , g, λ, µ). In this thesis concepts and ideas belonging
to thermodynamics, chemistry, heat transfer, optimization, differential equations and control
systems coexist, and thus the choice of a set of symbols that respects existing conventions,
results intuitive to understand and remains consisten throughout the text has been a task far
from trivial. In cases where a symbol unavoidably has been assigned more than a meaning, we
are confident that the reader will be able to distinguish the adequate meaning from the con-
text. In the list of symbols included below the character "/" is used to separate the alternative
meanings some symbols have.

In this thesis, vector values are printed in lowercase boldface and are assumed to be column
vectors. A vector v can be defined by extensions by means of the notation [v1, . . . , vn]T , which
is equivalent to the notation [v1; . . . ; vn]. This is expanded to the vertical concatenation of
vectors, we v1, . . . , vn, as in [v1; . . . ; vn]. Notice that the notation [v1, . . . , vn] denotes a matrix
of n columns and [v1, . . . , vn] explicitly denotes a row vector, i.e. both notations are intended
for horizontal concatenations.

Matrices are denoted by uppercase boldface symbols. We also make use of brackets to define
matrices by extension. If A, B, C and D have appropriate dimensions, we resort to the notation

�

A B
C D

�

to describe the block matrix constituted by matrices A, B, C and D in the usual convention. In
such context, a 0 denotes a block of consistent dimensions whose elements are all zero. The
same holds for vectors. In order to emphasize the structure, we proceed to add vertical and/or
horizontal lines such as in

�

A B
C D

�

.

Another use for brackets is to designate units of measure, such as "[kg]". Transposition of a
vector v or a matrix a is indicated by v T .

The gradient of a scalar valued function f : Rn→ R with respect to a vector valued unknown
x is denoted both by

∇x f (x ) and
∂ f
∂ x

and is understood as a column vector,

∇x f (x ) and
∂ f
∂ x

�

�

�

�

(x )

def
=
�

∂ f (x )
∂ x1

; · · · ; ∂ f (x )
∂ xn

�

.

The notation is extended to the Jacobian of a vector valued function f : Rn→ Rm as follows:
the n×m matrix made up of the horizontal concatenation of the m gradients of the component
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NOMENCLATURE

functions fi : Rn→ R is denoted as

∇x f (x ) =
∂ f
∂ x

�

�

�

�

(x )

def
= [∇x f1 | · · · | ∇x fm]

List of Symbols

:= Assigned as
def
= Defined to be equal
·© Thermodynamic state
(·) Wildcard notation for the omitted list of function arguments
b·c Component-wise mapping of a real number to the next smallest integer

value
|·| Mapping of a real number to its absolute value / Maximum distance be-

tween meshpoints
{ } Set delimiters / Sequence
∪ Set–theoretic union (“unified with”)
∩ Set–theoretic intersection (“intersected with”)
⊆,⊂ Subset of a set (“is a (proper) subset of”)
⊇,⊃ Superset of a set (“is a (proper) superset of”)
∈, 6∈ Set membership (“is (not) an element of”)
× Cartesian product of sets, multiplication in literal numbers
⊗ Tensor product of sets
; The empty set
∀ Universal quantifier (“for all”)
∃ Existential quantifier(“there exists”)
[ ] Units of measurement delimiters
[a, b] Closed interval between quantities a and b
[a1, . . . , an]T A column vector whose components are a1, . . . , an in that order
[x1, . . . , xn] A matrix in Rnx×n whose columns are the column vectors x1, . . . , xn in

that order
[x1; . . . ; xn] If column vectors x i have ni components each, this represents a column

vector of
∑n

i=1 ni components obtained by vertically concatenating vec-
tors x1, . . . , xn in that order

[X1 | . . . | Xm] If matrices Xi belong each toRnx×ni , this represents a matrix inRnx×
∑m

i=1 ni

obtained by horizontally concatenating X1, . . . , Xm in that order
0n1×n2

Matrix in Rn1×n2 whose elements are all zero
(a, b) Open interval between a and b, function arguments, ordered pair
Ai, j Element (i, j) of matrix A, a scalar value
ai The i–th element of vector a, a scalar value
A·, j j–th column of matrix A, a column vector
AI Submatrix of rows of A whose indices are contained in I ⊂ N
A?J Submatrix of columns of A whose indices are contained in J ⊂ N
AIJ Submatrix of rows of A in I and columns of A in J
AT , x T Transpose of matrix or vector
A−1 Inverse of regular matrix A
A−T Inverse of transposed regular matrix A
f |(·) Function f evaluated at the arguments indicated by (·)
d f /dt Function f ’s total time derivative
diag(x ) If vector x ’s dimension is nx, a diagonal matrix in Rnx×nx whose diagonal
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NOMENCLATURE

correpsonds to the elements of x
(∂ f /∂ x)y Function f ’s partial derivative with respect to variable x while keeping

variable y constant
d(r) f /dt(r) Function f ’s r–th–order total derivative
∇v f , ∂ f /∂ v Gradient or Jacobian of the scalar or vector function f w.r.t. variable v
∇2

v f Hessian of the scalar function f w.r.t. variable v
∫ t2

t1
f (t)dt Integral of the function f w.r.t. its argument between t1 and t2.

∫ 2©

1©
d f Integral of the function f along a given trajectory between thermody-

namic states 1© and 2©
∮

d f Integral of the function f along a given thermodynamic cycle
limx→y Limit of the expression when variable x approaches the value y
∑

j fi, j Sum along all quantities f coming into a system
∑

j fo, j Sum along all quantities f going out of a system
ũ(t;q) Value of the representation of control function u by means of the finite-

dimensional parameter q at time t
x (t; t i , s x

i , s z
i ,qi , p) Value of the differential state vector at time t that results from solving

the relaxed initial value problem on multiple shooting interval i

Latin Symbols

A Cross section area
ACC NLP solver accuracy
B Approximation of the partially reduced Hessian of the Lagrangian func-

tion
C Number of components of a simple compressible system
Cq

i , C x
i , C z

i Jacobians of the constraint function at node i w.r.t. control, differential
state and algebraic state at node i

Dq
i , Dx

i Null-space basis of the linearized consistency constraints on the z–
subspace

Di Basis for the null-space of the linearized consistency constraints of node
i

F Force, degrees of freedom of a simple compressible system
F Objective function of the NLP resulting from the DMS method
G Equality constraint function of the NLP resulting from the DMS method
Gq

i , Gx
i , Gz

i Jacobians of the consistency conditions at node i w.r.t. control, differen-
tial state and algebraic state at node i

H Enthalpy
H Inequality constraint function of the NLP resulting from the DMS method
ITMAX Maximum number of iterations of the SQP solver
I Error integral
K Index of the last considered sample / PI controller constant
L Evaporator length / Zone length / OCP objective function Lagrange term

integrand
L−j Longitudinal coordinate of the upstream end of zone j (w.r.t. the working

fluid)
L+j Longitudinal coordinate of the downstream end of zone j (w.r.t. the work-

ing fluid)
L3 Terminal cost third-zone length
Li(s x

i , s z
i ,qi , p) Multiple shooting objective function contribution on interval i

M DAE or ODE left-hand side matrix
M Number of past measurements considered for the MHE
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N Dimension of the data mesh used for the spline interpolation, number of
multiple shooting intervals

P Number of phases in thermal equilibrium within a simple compressible
system / Generic ordered pair / Infinite-dimensional optimization prob-
lem

P Condensing permutation matrix
PM Phase margin
Q̇ Heat transfer rate
Q Covariance matrix
Q Heat transfered during a process
QPMAX Maximum number of iterations allowed by the QP solver
R Universal gas constant, tube radius
S Entropy
S(τ;π) Set of functions f ∈ C[τ0,τn] that are equal to cubic polinomials on the

subintervals of mesn π
T Temperature
Ts Sampling time (sampling period)
TOL DAE solver tolerance
T Condensing matrix
U Internal energy
Uq

i , U x
i , Ug

i Directional derivatives of the objective function contribution at node i
V Volume
V Fluid velocity
Vq

i , V x
i , Vg

i Directional derivatives of the relaxed IVP solution at node i + 1
Ẇ Mechanical power
W Work exerted during a process
Wq

i , W x
i , W g

i Directional derivatives of the inequality constraints at node i
X Generic property
Xq

i , X x
i , X z

i Jacobians of the relaxed IVP solution at node i + 1 w.r.t. control, differ-
ential state and algebraic state at node i

a HELMHOLTZ’s free energy
ai j Bicubic spline coefficient corresponding to quadrant i j
ai Cubic spline coefficient corresponding to interval i
b DAE or ODE differential right-hand side
c Specific heat capacity
c OCP Path constraint function
d Diameter
d Exact differential
d̄ Inexact differential
dg

i Range-space step component on the range-space of the linearized consis-
tency constraints on the z–subspace

di Range-space step component on the range-space of the linearized consis-
tency constraints of node i

e Superheating error
f Frequency
f Mapping of a differential state vector at a sample time to its value at the

next one
g DAE or ODE algebraic right-hand side
h Specific enthalpy
` Number of steps considered for the limited-memory implementation
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NOMENCLATURE

m Mass contained on a volume
ṁ Massflow
n Angular speed
nx Dimension of the vector space of x
o BACHMANN–LANDAU’s small-o notation
p Pressure
p Parameter vector
q̇ Heat flux (heat transfer rate per unit area per unit time)
q Control vector (finite-dimensional)
r Radial cylindrical coordinate
s Specific entropy
s x Node differential state vector
s(τ;π, f ) Spline representation of function f using the data of mesh π
s z Node algebraic state vector
t Time
tk k–th sample time
tc computation time vector
t condensing transformation vector
u Specific internal energy
u Control vector function (infinite-dimensional)
v Specific volume
v Decision variable vector of the NLP generated from the DMS method
w External input vector
x Quality of a two-phase liquid-vapor mixture
x Differential state vector
y Model measurement vector
ySH Superheating
z Longitudinal cylindrical coordinate
z Algebraic state vector

Greek Symbols

Γ Constraint violation vector
∆π Difference between consecutive meshpoints
∆t Prediction horizon or estimation window length
∆x In an iterative method, step vector associated to x
Θi,k POWELL’s damping factor corresponding to block i of iterate k of the high

rank updating scheme for the partially reduced Hessian
Λ LQGI objective function weights
Ξk Vector of all measurements considered on the k–th MHE problem
Φ OCP Objective function Net generated energy
Ψ Noise term
α HELMHOLTZ’s free energy, dimensionless / NEWTON’s convection coeffi-

cient / Step length
γ Void fraction
γi,k Lagrangian gradient difference vector corresponding to block i of iterate

k of the high rank updating scheme for the partially reduced Hessian
δ Reduced density
δb Hydrodynamic boundary layer region radial width
δx Small perturbation in variable x
δ(k) Estimation and control time delays at sample k
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NOMENCLATURE

δi,k Displacement vector corresponding to block i of iterate k of the high rank
updating scheme for the partially reduced Hessian

ε Small reminder / Small perturbation
εmach Machine precision
ζi Relaxed initial value problem factor function on multiple shooting inter-

val i
η Efficiency
ηi,k POWELL’s damped Lagrangian gradient difference corresponding to block

i of iterate k of the high rank updating scheme for the partially reduced
Hessian

θ Temperature (numerical value in the KELVIN scale)
κR PLITT’s reciprocal initial Hessian factor
λ Lagrange multiplier associated to an NLP’s equality constraints
µ Density ratio
µ Lagrange multiplier associated to an NLP’s inequality constraints
ξ j Measurement vector at the j–th sample
ξ PI controller’s anti-windup indicator
π Ratio of a circumference’s perimeter to its diameter / Mesh
% Density
σ Entropy production due to irreversibilities within the system
σ̇ Rate of entropy production due to irreversibilities within the system per

unit time
σp, σθF

, σθG
Standard deviations associated to pB, θC and θG,out, respectively

σL Terminal cost standard deviation
τ Reciprocal reduced temperature / Interpolation meshpoint
ϕ Angular cylindrical coordinate
ω Acentric factor
ωc Crossover frequency

Subscripts, Superscripts and Accents

(̇·) Transfer or change rate per unit time
(̄·) Zone mean value / Correction term for real gases / Relative to an equi-

librium state
(̃·) At the spline data mesh’s nearest border, deviation from the equilibrium
(̆·) Estimated value
(̂·) Estimated value
(·)′ At the sat. liquid curve
(·)′′ At the sat. vapor curve
(·)−j At the upstream end of zone j (w.r.t. the working fluid)
(·)+j At the downstream end of zone j (w.r.t. the working fluid)

(·)0 Ideal gas / Part associated with the initial state constraint
(·)0 Initial / Arbitrary reference
(·)∞ Far away from the surface
(·)� QP solution
(·)? Approximated OCP solution
(·)i Multiple shooting node i
(·) j Inside the evaporator, zone j ( j ∈ {1,2, 3})
(·)A→B Between states A© and B©
(·)A Working fluid at condenser outlet
(·)B Working fluid at pump outlet
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(·)C Cold thermal reservoir
(·)C Working fluid at evaporator outlet
(·)D Working fluid at expander outlet
(·)F Working fluid (inside evaporator)
(·)G Exhaust gas
(·)GW From exhaust gas to wall
(·)H Hot thermal reservoir
(·)L Coordinate associated with the subcooled liquid region
(·)MHE Moving Horizon Estimation
(·)N Null-space of the linearized consistency constraints
(·)NMPC Nonlinear Model-Predictive Control
(·)OCP Moving Horizon Estimation
(·)PI Proportional–integral controller
(·)PR PENG-ROBINSON equation of state
(·)Rankine RANKINE cycle
(·)TH Thermal
(·)V Volumetric
(·)V Coordinate associated with the superheated vapor region
(·)W Wall
(·)W F From wall to working fluid
(·)boundary Transfered across the system’s boundary
(·)b Hydrodynamic boundary layer
(·)b,T Thermal boundary layer
(·)c At the critical point
(·)c Associated to the condensing step
(·)conv. Due to convection
(·)cv Control volume
(·)cycle Transfered during a whole cycle
(·)e Hydrodynamic entrance
(·)e,T Thermal entrance
(·)ε Perturbed quantity
(·)el Electric
(·)ev Evaporator
(·)ex Expander
(·)f Final
(·)i Incoming / PI integral term
(·)i Inner
(·)(i) i–th block matrix of the partially reduced Hessian approximation
(·)(i, j) Block matrix of the partially reduced Hessian approximation correspond-

ing to vectors ∆v c
i and ∆v c

j
(·)in Input
(·)int. rev. Internally reversible process
(·)is Isentropic
(·)(k) Value associated with the k–th NMPC subproblem
(·)k Value at the k–th sample or iteration
(·)liquid Corresponding to the liquid phase in a two-phase liquid-vapor mixture
(·)m Mapped point mesh
(·)max Upper bound / Maximum mesh value
(·)min Lower bound / Minimum mesh value
(·)o Outgoing
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(·)o Outer
(·)out Output
(·)p Pump
(·)p At constant pressure,PI proportional term
(·)pre Before truncation and offset
(·)qq Partially reduced Hessian block corresponding to the second derivatives

w.r.t. q
(·)rev. cycle Reversible power cycle
(·)sat Evaluated at the two-phase liquid-vapor mixture states
(·)sq Partially reduced Hessian block corresponding to the crossed derivatives

w.r.t. s and q
(·)ss Partially reduced Hessian block corresponding to the second derivatives

w.r.t. s
(·)subc.liq. Subcooled liquid state
(·)suph.vap. Superheated vapor state
(·)surf. At the surface
(·)vapor Corresponding to the vapor phase in a two-phase liquid-vapor mixture
(·)x Part associated to the differential state vector or the continuity constraints
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