
INAUGURAL-DISSERTATION
zur

Erlangung der Doktorwürde
der

Naturwissenschaftlich-Mathematischen Gesamtfakultät
der

Ruprecht-Karls-Universität
Heidelberg

vorgelegt von
Mag. Thomas Quirchmayr

Heidelberg

Tag der mündlichen Prüfung:

Retrospective Semi-automated Software
Feature Extraction from Natural

Language User Manuals

Gutachterin: Prof. Dr. Barbara Paech (Universität Heidelberg)
Betreuer: Prof. Dr. Kurt Schneider (Universität Hannover)

Abstract

Mature software systems comprise a vast number of heterogeneous system capabilities
which are usually requested by different groups of stakeholders and evolve over time.
Software features describe and logically bundle low level capabilities on an abstract level
and thus provide a structured and comprehensive overview of the entire capabilities of a
software system. Software features are often not explicitly managed. Quite the contrary,
software feature-relevant information is often spread across several software engineering
artifacts (e.g., user manual, issue tracking systems). It requires huge manual effort to (1)
identify and extract software feature-relevant information from these artifacts in order
to make software feature knowledge explicit and furthermore to (2) determine which
software features the disclosed software feature-relevant information belongs to. This
thesis presents a three-step-approach to semi-automatically enhance software features by
software feature-relevant information from a user manual: first, a domain terminology is
semi-automatically extracted from a natural language user manual based on linguistic
patterns. Second, the extracted domain terminology, structural sentence information
and natural language processing techniques are used to automatically identify and
extract atomic software feature-relevant information with an F1-score of at least 92.00%.
Finally, the determined atomic software feature-relevant information is semi-automatically
assigned to existing and logically related software features. The approach is empirically
evaluated by means of a user manual and corresponding gold standards of an industrial
partner. This thesis provides tool support to identify and extract atomic software feature-
relevant information from user manuals and furthermore recommend logically related
software features.

i

Zusammenfassung

Softwaresysteme umfassen häufig eine umfangreiche Sammlung an heterogenen Syste-
meigenschaften. Diese werden typischerweise von unterschiedlichen Anwendergruppen
gefordert und können sich im Laufe der Zeit ändern. Softwarefeatures beschreiben und
bündeln diese heterogenen Systemeigenschaften und bieten daher einen strukturierten,
detaillierten und umfassenden Überblick über die Eigenschaften eines Softwaresystems.
Jedoch werden Informationen über Softwarefeatures meist nicht explizit verwaltet und
beschrieben sondern sind oft über viele Software Engineering Artefakte verteilt (zB.
Nutzerhandbücher).

Zusätzlich wird of großer Aufwand benötigt, um Softwarefeature-relevante Informatio-
nen (1) in Software Engineering Artefakten zu identifizieren und aus diesen zu extrahieren
sowie (2) die den Informationen zugehörige Softwarefeatures zu bestimmen. In dieser Dok-
torarbeit wird ein dreistufiger Ansatz entwickelt, duch den Softwarefeatures semiautoma-
tisch mit aus Nutzerhandbüchern extrahierten Softwarefeature-relevanten Informationen
bereichert werden. Dafür wird zuerst aus dem Nuterzhandbuch eine Dömänentermi-
nologie mit Hilfe linuistischer Muster semiautomatisch extrahiert. Anschließend werden
die extrahierte Domänenterminologie, strukturelle Satzinformationen und Techniken
maschineller Sprachverarbeitung verwendet, um Softwarefeature-relevante Informatio-
nen automatisch in Nutzerhandbüchern zu identifizieren und daraus zu extrahieren.
Schlussendlich werden die extrahierten Informationen semiautomatisch den logisch zuge-
hörigen Softwarefeatures zugewiesen. Der gesamte in dieser Doktorarbeit vorgestellte
Ansatz wird mit Hilfe eines Nutzerhandbuches und entsprechenden Goldstandards em-
pirisch validiert und interpretiert. Im Zuge dieser Doktorarbeit wird ein Werkzeug en-
twickelt mit dessen Hilfe die Identifikation und Extraktion von Softwarefeature-relevanten
Information aus Nutzerhandbüchern semiautomatisch möglich ist. Darüber hinaus un-
terstützt das Werkzeug die Zuweisung dieser Informationen zu den logisch zugehörigen
Softwarefeatures.

ii

Acknowledgements

First and foremost, I would like to thank Prof. Dr. Barbara Paech for her supervision
over the last four years, her support, continuous feedback, and valuable discussions. I
am very grateful for the opportunity to work and research in her Software Engineering
Group at the Faculty of Mathematics and Computer Science of Heidelberg University.
Furthermore, I would like to thank my external supervisor Prof. Dr. Kurt Schneider for
his helpful suggestions and his time for evaluating my thesis.

Second, I want to thank Roche Diagnostics GmbH in Mannheim for the great opportu-
nity to work and research in their company. In specific, many thanks to Hannes Karey,
Roland Kohl, and Gunar Kasdepke for their ideas, support, and the many (not only
research-related) discussions.
I would also like to thank my colleagues at the Software Engineering Group for

discussions, feedback, and in specific for the many other activities not related to work
which helped to brighten up things a lot! Thanks to Anja Kleebaum for her amazing cake,
Christian Kücherer for his home-grown vegetables, Marcus Seiler for his “Sächsisch”,
Paul Hübner for his bike-related support, Thorsten Merten for his (far too rare) visits
and related night-life experiences in Heidelberg, and Tom-Michael Hesse for knowing
answers to literally everything! Additionally, many thanks to Doris Keidel-Müller and
Willi Springer for their administrative support and open ears all over the years!

Finally, I want to especially thank my parents Michaela and Ernst, my brother Andreas,
my sister in law, Christiane, and my half-year old niece, Livia: thanks for your love,
support, advice, and great times all over the years! Last and most of all: infinite thanks
to Birgit for your love, patience (yes, really!), support, advice, and the amazing four
years together in Heidelberg!

iii

Contents

I Preliminaries 1

1 Introduction 2
1.1 Motivation . 2
1.2 Problem Statement . 3
1.3 Contributions . 4
1.4 Structure of the Thesis . 5
1.5 Publications arising from this Thesis . 6

2 Foundations 7
2.1 Research Methodology . 7
2.2 User Manuals as Core Artifacts in Software Engineering 8
2.3 Software Feature and Feature-relevant Information 9
2.4 Domain-specific Terminology . 11
2.5 Natural Language Processing . 11

2.5.1 Morphological Analysis . 12
2.5.2 Lexical Analysis . 13
2.5.3 Syntactic Analysis . 14

2.6 Text Mining . 15
2.6.1 Text Preprocessing . 16
2.6.2 Text Representation . 17
2.6.3 Knowledge Discovery in Text . 17

2.6.3.1 Information Extraction 18
2.6.3.2 Text Classification . 19
2.6.3.3 Text Clustering . 19

2.7 Measurement Fundamentals . 20

II Problem Investigation 22

3 Software Feature Extraction from Natural Language Text: State of the Art 23
3.1 Research Questions . 23
3.2 Review Method . 25

v

Contents

3.3 Results . 28
3.3.1 Findings in Selected Publications 29

3.3.1.1 Which approaches exist to extract software feature-relevant
information from natural language software engineering
artifacts? . 30

3.3.1.2 Which software feature-relevant entities are extracted?
Which types of natural language software engineering
artifacts are mined? . 33

3.3.1.3 Which technologies are used? 34
3.3.1.4 Which degree of automation do the approaches provide? 35
3.3.1.5 Which supporting manual effort is needed to apply the

approaches? . 36
3.4 Summary and Conclusion . 36

III Treatment Design 37

4 Software Feature Extraction (SOFEX) 38
4.1 Requirements . 38
4.2 Overview . 39
4.3 Information Identification (semi-automated) 40

4.3.1 User Manual Revision (manual, optional) 41
4.3.2 Document Preparation (automated) 42
4.3.3 Terminology-related (TR) Preprocessing (automated) 44
4.3.4 Terminology Extraction (semi-automated) 44

4.3.4.1 Candidate Extraction (automated) 45
4.3.4.2 Term Validation (semi-automated) 46

4.3.5 Software Feature-relevant Sentence Identification (automated) . . . 47
4.4 Information Extraction (automated) . 49

4.4.1 Information-related (IR) Preprocessing (automated) 50
4.4.1.1 Terminology-based textual modifications (automated) . . 50
4.4.1.2 Pattern-based parse tree transformations (automated) . . 51

4.4.2 Software Feature-relevant Information Extraction (automated) . . 53
4.5 Information Assignment (semi-automated) 57

4.5.1 Assignment-related (AR) Preprocessing (automated) 57
4.5.2 Learning (automated) . 59
4.5.3 Software Feature Knowledge Enhancement (manual) 60

IV Treatment Validation 61

5 Evaluation 62
5.1 Introduction . 62
5.2 Evaluation I . 65

5.2.1 Information Identification (Id) . 66
5.2.2 IR Preprocessing (Pp) . 69
5.2.3 Information Extraction (Ix) . 70

vi

Contents

5.2.4 Information Assignment (As) . 71
5.2.5 Discussion . 74

5.3 Evaluation II . 76
5.3.1 Terminology Extraction (Tx) . 76
5.3.2 Information Identification (Id) . 80
5.3.3 IR Preprocessing (Pp) . 81
5.3.4 Information Extraction (Ix) . 82
5.3.5 Information Assignment (As) . 83
5.3.6 Discussion . 84

V Conclusion 86

6 Discussion 87
6.1 Application Effort & Adaption Need . 87

6.1.1 Manual Effort to Apply SOFEX 87
6.1.2 Manual Effort to Adapt SOFEX 89

6.2 Threats to Validity . 90
6.2.1 Threats to Conclusion Validity . 90
6.2.2 Threats to Internal Validity . 91
6.2.3 Threats to Construct Validity . 91
6.2.4 Threats to External Validity . 91

7 Summary 93

8 Future Work 95

VI Appendix 97

A Natural Language Processing 98
A.1 Penn Tag Set . 98
A.2 Stopwords . 98

B Parse Tree Modification patterns 101
B.1 Parse tree correction patterns . 101

B.1.1 JJ to NN . 101
B.1.2 ADVP to NP . 101
B.1.3 Cleanse PP . 102
B.1.4 VP to JJ . 102
B.1.5 ADJP to PP . 103
B.1.6 Complex NP#1 . 103
B.1.7 Complex NP#2 . 103
B.1.8 Complex NP#3 . 104
B.1.9 Complex NP#4 . 104
B.1.10 Complex NP#5 . 104
B.1.11 Cleanse PP . 105
B.1.12 Cleanse NP lists#1 . 105

vii

Contents

B.1.13 Cleanse NP lists#2 . 106
B.1.14 Cleanse S#1 . 106
B.1.15 Cleanse S#2 . 106
B.1.16 Cleanse "between" #1 . 107
B.1.17 Cleanse "between" #2 . 108

B.2 Parse tree adaption patterns . 110
B.2.1 Remove SINV . 110
B.2.2 Remove Brackets . 110
B.2.3 Cleanse FRAG . 110
B.2.4 Complex VP#1 . 111
B.2.5 Complex VP#2 . 111
B.2.6 Complex VP#3 . 111
B.2.7 Complex VP#4 . 112
B.2.8 ADVP in VP#1 . 112
B.2.9 ADVP in VP#2 . 112
B.2.10 ADJP in VP . 113
B.2.11 PRT in VP . 113
B.2.12 Complex PP . 113
B.2.13 Complex NP#6 . 114
B.2.14 Multiple PP#1 . 114
B.2.15 Multiple PP#2 . 115
B.2.16 Remove S#1 . 115
B.2.17 Remove S#2 . 116
B.2.18 SBAR to VPH . 116
B.2.19 SBAR to VPC#1 . 117
B.2.20 SBAR to VPC#2 . 117
B.2.21 SBAR to VPP . 118
B.2.22 VP to VPV . 118
B.2.23 PP to VPP#1 . 118
B.2.24 PP to VPP#2 . 119
B.2.25 VP to VPT#1 . 119
B.2.26 VP to VPT#2 . 119
B.2.27 VP to VPT#3 . 120
B.2.28 VP to VPW . 120
B.2.29 PP to NPP . 120
B.2.30 SBAR to NPW . 121
B.2.31 VP to NPV . 121
B.2.32 NP to PPN . 122
B.2.33 PP to PPV . 122
B.2.34 PP to PPW#1 . 122
B.2.35 PP to PPW#2 . 123
B.2.36 Surround NP . 124

viii

List of Figures

1.1 Problem Space . 4
1.2 Thesis Structure . 5

2.1 Engineering Cycle . 8
2.2 Linguistic Information Model (Lim) . 10
2.3 Lim Components based on 2 example sentences 10
2.4 Morphological Terminology and Example 12
2.5 Syntactic Analysis . 15
2.6 Text Mining Framework . 16

3.1 Software Feature-relevant Information Extraction Characteristics 25
3.2 Process of the Literature Review . 28
3.3 Publication Chronology . 29

4.1 SoFeX Process Steps . 40
4.2 Semi-automated Information Identification 41
4.3 Document Preparation (left: user manual excerpt, right: Dataset) 42
4.4 Sentence Type Examples . 43
4.5 Terminology Extraction Process . 45
4.6 Different Types of Terminology Candidate Validation 47
4.7 Information Filtering Example . 48
4.8 Information Extraction . 49
4.9 Parse tree accuracy increases with domain term (bold) bundling 50
4.10 Parse Tree Transformation Example in Java 51
4.11 Condense Complex Noun Phrases in Parse Trees 52
4.12 Condense Complex Verb Phrases in Parse Trees 52
4.13 Indicate Lim Complements and Modifiers in Parse Trees 53
4.14 Information Simplification Example . 55
4.15 Enumeration Resolution Example . 55
4.16 Information Assignment Process . 57
4.17 Feature Hierarchy and Feature Description Meta Model 58
4.18 Roche’s Gdc Feature Document Transformation 58
4.19 Exemplary Classification Model (Weka Arff File) 59
4.20 Feature Knowledge Enhancement Process 60

ix

List of Figures

5.1 SoFeX Evaluation Overview . 63
5.2 Evaluations Overview (Gold Standards) 66
5.3 Evaluation Overview (Domain Experts) 77

x

List of Tables

1.1 Scientific Publications in Context of the Thesis 6

2.1 Tokenizer Results . 14

3.1 Picoc criteria . 24
3.2 Research Questions for the Slr . 24
3.3 Definition of search terms . 26
3.4 Inclusion (I#) and Exclusion Criteria (E#) 27
3.5 Journals and Conferences for manual target search (alphabetically ordered) 28
3.6 Publication Venues of the selected Studies 30
3.7 Characteristics of the Slr Publications . 30
3.8 Types of Ext and Fri . 33
3.9 Nlp Characteristics of the Slr Publications 34

4.1 Syntactical Relevancy Patterns . 56

5.1 Different Evaluations of SoFeX . 64
5.2 Evaluation Results for Information Identification 67
5.3 Evaluation of Information Identification with Clustering and Classification 68
5.4 Parse Tree Accuracy for Ir Preprocessing 70
5.5 Evaluation Results for Information Extraction 71
5.6 Evaluation Results for Information Assignment 73
5.7 Evaluation Results for Domain Terminology Extraction 79
5.8 Evaluation Results for Information Identification 80
5.9 Parse Tree Accuracy for Ir Preprocessing 81
5.10 Evaluation Results for Information Extraction 82
5.11 Evaluation Results for Information Assignment 83

6.1 Manual Effort to Apply SoFeX (in hours) 88

A.1 Penn Tag Set . 99
A.2 Stopword List . 100

xi

List of Abbreviations

BoW Bag-of-Words
Crm Customer Relationship Management
Dm Data Mining
Em Expectation-Maximization
Fn False Negative
Fp False Positive
Gdc Global Deal Calculator
Ie Information Extraction
Km K-Means
Lim Linguistic Information Model
Ml Machine Learning
Nb Naive Bayes
Nl Natural Language
Nlp Natural Language Processing
PoS Part-of-Speech
Re Requirements Engineering
Rq Research Question
Sdlc Software Development Lifecycle
Se Software Engineering
Slr Systematic Literature Review
SoFeX Software Feature Extraction Approach
Svm Support Vector Machine
Tm Text Mining
Tn True Negative
Tp True Positive
Vsm Vector Space Model

Part I Preliminaries

1

Chapter 1
Introduction

1.1 Motivation

Mature software systems comprise a vast number of heterogeneous system capabilities
which evolve over time and are usually requested by different groups of stakeholders (e.g.,
Godfrey and German, 2008). This diversity of stakeholders together with requirements
for software systems, and primarily software system evolution, often result in several
unstructured, incomplete and inconsistent descriptions of the software system capabili-
ties (Forward and Lethbridge, 2002). Software system capabilities are initially described
in requirements engineering artifacts (e.g., use case diagram, activity diagram, process
models, requirement specification, etc.). Software systems evolve in order to adapt in a
timely manner to their changing environment and to meet stakeholder needs (Godfrey
and German, 2008). This evolution requires to revise corresponding software engineering
artifacts - code as well as documents - to provide up-to-date information about the
systems capabilities and, of course, a software system which fulfills all the stakeholder
needs in time.

A proper framework to describe system capabilities in a structured way are software
features and corresponding feature models. The necessity of feature-based software
system descriptions is manifold: release planning in software product management (see,
e.g., Zorn-Pauli et al., 2012), software product line engineering (see, e.g., Bakar
et al., 2015), requirements feature interaction detection (see, e.g., Shaker et al., 2012),
stakeholder communication (see, e.g., Pikkarainen et al., 2008), as well as software
product comparison (see, e.g., Earls et al., 2002).

However, software features are often not explicitly managed, at least not from scratch.
Rather, software feature-relevant information is spread across several software engineering
(Se) artifacts. Therefore, these artifacts need to be searched in order to uncover software

2

1.2. PROBLEM STATEMENT

feature-relevant information. Paech et al. (2014) pointed out that user manuals can
serve as an appropriate source to gather software feature-relevant information from a
user workflow-driven perspective. Depending on the size of the software system and thus
the size of the corresponding user manual, manual software feature-relevant information
extraction is cumbersome, error-prone, and costly (see, e.g., Weston et al. (2009)). As
a consequence, our overall research goal is to provide automated support to extract
software features and related atomic software feature-relevant information from natural
language user manuals.

This thesis was developed in cooperation with Roche Diagnostics GmbH (Roche in
the following). Recently, Roche uses software features to support the process of software
engineering for a bespoke in-house customer relationship management (Crm) software
called Global Deal Calculator (Gdc) which supports contract life cycle management. But,
there does not exist an explicit description of the entire software features of Gdc. Thus,
Roche seeks for an approach to gather software feature-relevant information from available
corresponding software engineering artifacts in a semi-automated way. Previously, Paech
et al. (2014) showed that user manuals are in general a valuable source for extracting
software feature information. Hence, this thesis proposes a new semi-automated approach
to gather software feature-relevant information from a user manual to generate an overall
software feature-based system description.

1.2 Problem Statement

Often, software features and software feature-relevant information is not explicitly man-
aged from the very beginning of a software development lifecycle (Sdlc). Thus, software
feature-relevant information needs to be uncovered and collected retrospectively.

The Sdlc comprises a number of different work phases which depend on the used Sdlc
model, like waterfall or agile (Bourque and Fairley, 2014). Typically and independent of
the used Sdlc model, each Sdlc must comprise some key phases which are necessary
to successfully build software systems (see Figure 1.1). In each phase several natural
language software engineering artifacts (NlSea) might be created, maintained and
revised. These NlSea, especially user manuals (Paech et al., 2014), contain software
feature-relevant information.

This thesis presents an approach, called SoFeX, to semi-automatically identify and
extract atomic software feature-relevant information from natural language user manuals
as well as the enhancement of existing software features with the corresponding software
feature-relevant information. Thus, this thesis targets three primary goals related to the
enhancement of software features:

3

CHAPTER 1. INTRODUCTION

G1 Design an approach to identify software feature-relevant sentences in unconstrained
and unstructured natural language user manuals.

G2 Design an approach to extract atomic software feature-relevant information from
software feature-relevant sentences.

G3 Design an approach to enrich existing software features with software feature-
relevant information.

Design

Construction

Test

Maintenance

Requirements
Engineering

Requ.
Spec.

System
Def.

Architect.
Descr.

Component

Descr.

CodeCode

Doc.

TestFPlan

Bug
Report

Test

Cases

Feature
Requ.

Release
Notes

User
Manual

Softw.FDev.
LifecycleFStep

NLFSE

Artifact

Legend

Figure 1.1: Problem Space

1.3 Contributions

This thesis provides three contributions our of knowledge on software feature extraction
from natural language software engineering artifacts. First, a systematic mapping study
(systematic literature review, Slr) is used to provide an overview of the state-of-the-art
and -practice for software feature-relevant information extraction from natural language
software engineering artifacts. Second, based on the findings of the Slr, SoFeX is
designed comprising three subsequent core steps:

• semi-automatic extraction of a domain-specific terminology from natural language
text

• automatic identification and extraction of atomic software feature-relevant informa-
tion based on a domain-specific terminology and linguistic patterns

• semi-automatic enhancement of existing software features with the extracted atomic
software feature-relevant information

4

1.4. STRUCTURE OF THE THESIS

Third, SoFeX is empirically evaluated based on a natural language user manual from
Roche which describes a mature Crm software system.

1.4 Structure of the Thesis

This thesis is structured in five parts and six chapters with parts II-IV structured along
the design science methodology approach (Wieringa and Morali, 2012, see Section 2.1).
Figure 1.2 shows an overview of the thesis structure and the corresponding research
questions and results.

Chapterx,x4xIntroduction

Chapterx'x4xFoundations

PARTxI
Preliminaries

ChapterxVx4xSoftwarexFeaturexExtractionxfromxNaturalxLanguagexTextQxStatexofxthexArt

RQ1QxWhichxapproachesxexistxtoxextractxsoftwarexfeaturesxfromxnaturalxlanguagexsoftwarex
xxxxxxxxxxengineeringxartifacts?
ResultsQxAnalysisxofxexistingxapproachesx(state4of4the4artxandx4practice)

PARTxII
Problem

Investigation

PARTxIII
Treatment

Design

Chapterx6x4xSoftwarexFeaturexExtractionx(SOFEX)

Chapterxkx4xEvaluationxofxSoFeX

RQ2QxToxwhichxdegreexcanxsoftwarexfeaturesxbexextractedxfromxnaturalxlanguagexsoftware
xxxxxxxxxxengineeringxartifactsxbyxSOFEX?x
ResultsQxRecallDxPrecisionDxandxF4scorexofxSOFEXxandxallxitysxcomponentsx(terminologyxextrac4
xxxxxxxxxxxxxxxxtionDxinformationxidentificationDxinformationxextractionDxfeaturexenhancement)

PARTxIV
Treatment
Validation

Chapterxqx4xConclusionxandxOutlook
PARTxV

Summary

ResultsQx(,)xRequirementsxforxSOFEX

D
es

ig
n

xC
yc

le

DesignxProblemQxUnsupervisedxSoftwarexFeaturexExtractionxfromxUserxManual

KnowledgexQuestionQxWhichxPrecisionDxRecallDxandxF4scoresxdoesxthexSOFEXxApproachxprovide?

(')xDesignxofxSOFEX
xxxxxx4xInformationxIdentification
xxxxxx4xInformationxExtraction
xxxxxx4xInformationxAssignmentx

Figure 1.2: Thesis Structure

Part I (Preliminaries) introduces the motivation for the thesis, describes related
problems, and contributions of the thesis (Chapter 1). Furthermore, the research
methodology and important foundations are included in Chapter 2.

Part II (Problem Investigation) investigates the problem and presents the results of
a systematic mapping study regarding state-of-the-art and -practice regarding software
feature extraction from natural language software engineering artifacts (Chapter 3).

5

CHAPTER 1. INTRODUCTION

Part III comprises a detailed overview of SoFeX’ requirements and a detailed descrip-
tion of SoFeX taking the goals and requirements into account (Chapter 4).

Part IV presents the evaluation of SoFeX which consists of several separate evaluations
according to the the components of SoFeX (preprocessing, terminology extraction,
information identification, information extraction, and information enhancement).

1.5 Publications arising from this Thesis

Parts of this thesis have already been published as scientific work. Table 1.1 provides an
overview of these publications in chronological order and the corresponding chapter.

Table 1.1: Scientific Publications in Context of the Thesis

No Publication Chapter

1 T. Quirchmayr, B. Paech, H. Karey, R. Kohl: Semi-automatic Software Feature-
Relevant Information Extraction from Natural Language User Manuals, In: Pro-
ceedings of the 23nd International Working Conference on Requirements Engineering: Foun-
dation for Software Quality (REFSQ’17), Essen, March 2017

4, 5

2 T. Quirchmayr, B. Paech, H. Karey, R. Kohl, G. Kasdepke: Semi-automatic Rule-based
Domain Terminology and Software Feature-relevant Information Extraction
from Natural Language User Manuals. Empirical Software Engineering X(Y), 2018

4, 5

6

Chapter 2
Foundations

This chapter provides definitions of the most important terms and concepts used in
this thesis. Sections 2.1 and Sections 2.2 briefly introduce the research methodology
and user manuals as a core artifact in software engineering, respectively. Section 2.3
describes software features, software feature-relevant information, as well as the linguistic
information model which is used to capture software feature-relevant information. Sec-
tion 2.4 shortly introduces the concepts of domain term and domain-specific terminology
while Section 2.5 describes natural language processing in detail. Section 2.6 explains
the process of text mining and applications. Finally, Section 2.7 gives insights into the
performance measures used for evaluation purpose.

2.1 Research Methodology

This thesis follows the Design Science methodology from Wieringa and Morali (2012).
Design science was first introduced by Fuller (1957) as a ”systematic form of designing“.
In detail, Wieringa and Morali (2012) extended the term design science in the context
of software engineering as ”design and investigation of artifacts [...] to interact with a
problem context in order to improve something in the context“ and empirical evaluation
of the artifact. An artifact is something that is created for a practical purpose, the
interaction between an artifact and its context is called treatment.

Design science distinguishes between the two problem-solving cycles design cycle and
empirical cycle. The design cycle is used to design and investigate artifacts to solve
stakeholder’s design problems (e.g., design a software feature extraction approach). The
empirical cycle aims to answer (empirical) knowledge questions about an artifact within
its context (e.g., which accuracy does the software feature extraction approach provide in
practice?). Both, the design cycle and the empirical cycle are part of the engineering

7

CHAPTER 2. FOUNDATIONS

cycle. Figure 2.1 shows the engineering cycle which consists of the following five tasks:

Treatment

DesignTreatment

Validation

Treatment

Implementation

Implementation

Evaluation

Problem

Investigation

empirical cycle

design cycle

Figure 2.1: Engineering Cycle

Within the first task, named Problem In-
vestigation, information is collected about the
relevant problem in order to prepare for the
subsequent task Treatment Design. The sec-
ond task, Treatment Design, is related to the
design of an artifact (decision about what to
do) and it’s documentation (e.g., specifica-
tion). The aim of the third task, Treatment
Validation, is to predicts how a treatment
performs in comparison to its intended use.
The application of a treatment to the original
problem is called Treatment Implementation

(fourth task). Finally, in contrast to treatment validation, the goal of the last task,
Implementation Evaluation, is to investigate how an artifact interacts in a real-world
context (e.g., case study). In context of the thesis, only the design cycle (and thus the
first three steps of the engineering cycle) is applied, because SoFeX is not implemented
and evaluated in a real-world context by domain experts.

2.2 User Manuals as Core Artifacts in Software Engineer-
ing

Paech et al. (2014) already showed, that user manuals serve as an appropriate source
to gather software feature-relevant information from a user workflow-driven perspective.
However, gathering and extracting information from natural language documents poses
the challenge, that they usually contain unstructured or semi-structured content which
is not machine-readable. More precisely, these documents lack semantic meta data
(Aggarwal and Zhai, 2012a). In context of the thesis, the Gdc user manual was chosen to
serve as primary source to extract software feature-relevant information for the following
reasons:

• The Gdc user manual is aligned with the business processes within contract life
cycle management from a business user perspective. Thus, the user manual contains
all the information necessary for a business user to use Gdc in its entire range.

• The Gdc user manual is maintained by a single person. Thus, the manual reuses
consistent domain-specific phrases, which indicate the location of software feature-
relevant information.

• The Gdc user manual is kept up-to-date, mature and comprehensive.

8

2.3. SOFTWARE FEATURE AND FEATURE-RELEVANT INFORMATION

2.3 Software Feature and Feature-relevant Information

The term feature is widely used in computing: from image processing (e.g., image
structure in Nixon (2008)), signal processing (e.g., aiming to capture specific aspects of
audio signals in a numeric way in Nixon (2008)) to computer linguistics (e.g., property of
a class of linguistic terms which describes individual members of this class in Corbett
(2006)), machine learning (e.g., specification of an attribute and its value in Bishop
(2006)), and software engineering (e.g., characteristic of a software item in IEEE (1990)).
Even within the domain of software engineering, there is neither a common understanding
nor a precise definition of a feature (see, e.g., Apel and Kästner, 2009; Classen et al.,
2008; Marciuska et al., 2014). Therefore, in context of this thesis, a feature is defined as
follows (inspired by Bosch (2000) and Eisenbarth et al. (2003)):

A software feature describes an abstract unit of behaviour of a software system at
a high level and bundles atomic information which describe the unit of behaviour
at a detailed level. The latter is called atomic unit of software feature-relevant
information.

As an example, “Quantificator calculates materials” is an atomic software feature-
relevant unit of information of the feature “Price Calculation”. An atomic unit of
information, in contrast to combined information, cannot be broken down into other
simpler units of information without losing information (see, e.g., Chandrasekar et al.,
1996; Jonnalagadda et al., 2009). In short, the aim is to extract smallest bits of information.
Based on the requirement of information atomicity, a linguistic information model
(Lim) is defined in order to capture atomic software feature-relevant information (see
Figure 2.2) on a syntactic level. The Lim simplifies (e.g., adjective phrases are not
explicitly considered but are part of the noun phrase) as well as extends (e.g, if clauses
are added) the English phrasal structure (see, e.g., Brinton and Brinton, 2010). The
Lim is customized in order to finally determine if a potentially atomic unit of software
feature-relevant information is truly software feature-relevant based on it’s syntax (see
Section 4.4).

An atomic unit of information is a clause. A clause is defined as grammatical structure
which contains a subject and a predicate. It is either an information, a to clause (e.g.,
start to run), a conditional clause (e.g., start if...), a that clause (e.g., show that...), or a
wh clause (e.g., the material which...). Additionally, clauses comprise a clause term and
an information. In contrast to other clauses, a conditional clause might contain more
than one atomic unit of information as combined conditions (e.g., If the quantificator
runs AND the error is shown) that cannot be separated without loosing information. A
predicate is a phrase that expresses the action performed by the subject. It requires a

9

CHAPTER 2. FOUNDATIONS

Predicate Property

Verb Verb
Phrase

Verb
Complement

Preposition Preposition
Complement

Preposition
Phrase

Phrase

Modifier

SubjectObject

Noun
Phrase

Noun

Clause

Information

Wh
Clause

Conditional
Clause

Clause
Term

To
Clause

That
Clause

* *

1 1

0..1

0..1

1
0..1

1

1

0..1

1

0..1

1

**

Figure 2.2: Linguistic Information Model (Lim)

verb phrase which comprises at least one verb and optional verb complements. A verb
complement is a phrase (preposition) or clause (to, conditional, that) that completes the
meaning of a verb phrase. Furthermore, a predicate might include an object. Both subject
and object are a property, which contains a noun phrase. A noun phrase consists of nouns
and modifiers. A noun phrase modifier is a phrase (preposition, verb) or a wh clause
that modifies or describes a noun phrase. For simplification, adverbs and adjectives are
included as part of verbs and nouns. Figure 2.3 depicts some components of the Lim
based on two example sentences.

1 2 3 3 2 34 1

A B C

1 3 12 3 1

D

A
B
C
D
)

1
2
3
4

Wh)Clause
Preposition)Phrase
To)Clause
Condition)Clause
)

Noun)Gwith)adjective.
Clause)Term
Verb)Gwith)adverb.
PrepositionSubject Predicate Predicateys)Object

The)materials)which)are)calculated)by)GDC)are)used)to)calculate)pricesg

If)the)quantificator)ran)erroneousq)GDC)displays)a)warningg

1

Figure 2.3: Lim Components based on 2 example sentences

10

2.4. DOMAIN-SPECIFIC TERMINOLOGY

2.4 Domain-specific Terminology

A domain-specific terminology (domain terminology) corresponds to a set of reusable
domain-specific terms (domain term). Each domain term has a significant meaning (Kim
and Cavedon, 2011) and represents a key concept which exists in and thus describes a
given domain of interest (Castañeda et al., 2010). A domain term can be interpreted
without any ambiguity (Hsieh et al., 2011). Additionally, domain terms are closed to
objects (physical, e.g., "material", or logical, e.g., "parameter"; Noy and McGuinness,
2001) or processes (e.g., "customization"), in contrast to non-domain terms (e.g., "step").

In context of SoFeX, the following definition for domain term and domain terminology
is used:

A domain term (Dt) is a lexical realization of something important or relevant to
a domain. A domain term can be simple (single word) or complex (multi word). It
comprises at least one noun and might contain adjectives, verbs, and/or adverbs. A
set of domain terms of a specific domain is called domain terminology.

A single word is also called unigram. Complex words which consist of two words are
called bigrams, trigrams are three-word terms.

2.5 Natural Language Processing

Natural language processing (Nlp) is an area of research within computer linguistics. Its
purpose is to enable computers to understand and manipulate natural language text or
speech. Chowdhury (2003) and lidd98 define Nlp as follows:

Natural language processing is a range of computational techniques for
analysing and representing naturally occurring texts at one or more levels of
linguistic analysis for the purpose of achieving human-like language processing for
a range of particular tasks and applications.

Natural language processing follows the human process of natural language (Nl)
understanding. Humans usually follow several independent levels in order to understand
natural languages and thus decode meaning from text and speech. Following Feldman
(1999) and Liddy (1998), seven independent levels exist that humans follow in order
to extract meaning from text or spoken language. On the phonetical level, humans
analyse speech on its surface considering articulation, perception, as well as acoustic
features. Second, on the morphological level humans determine the internal structure
of words followed by a lexical analysis, which deals with lexical meaning of words and

11

CHAPTER 2. FOUNDATIONS

parts of the speech. Several authors (e.g, Jurafsky and Martin (2014)) consider lexical
analysis as part of the semantic analysis. Within the syntactic analysis the grammatical
structure of a sentence is uncovered. After discovering the grammatical structure, possible
meanings of sentences are determined (semantic level) followed by the interpretation
in a larger context (discourse level). Finally, the purposeful use of a language within
specific situations is applied in order to accomplish goals (pragmatic level).

Nlp systems might incorporate all different levels or only some. The focus of this
thesis is on morphological, lexical, syntactical, and semantic level which are explained in
detail in the following sections.

2.5.1 Morphological Analysis

Morphology is one of the key fields in linguistics. It investigates the uncovering of the
internal structure and formation of words which forms the basis for any Nlp-based
analysis. Based on the examples in Figure 2.4, the terminology which is necessary in
context of the thesis and related to morphology, is introduced.

morpheme

prefix

suffixaffix stem

un happy ness !

word or token

punctuation
mark

(a) Morphological Terminology

Morpheme+s
are
the
small+est
mean+ing+ful
unit+s
of
language
.
(b) Example

Figure 2.4: Morphological Terminology and Example

Figure 2.4(a) shows the morphological structure of an exemplary phrase ”unhappyness!“.
It consist of four morphemes: a stem (or base, ”happy“), two affixes (”un“ - prefix, ”ness“ -
suffix), and a punctuation mark (”!“). Thus, a morpheme is defined according to Bender
(2013) as follows:

A morpheme is the smallest meaningful unit of language, usually consisting of a
sequence of characters paired with concrete meaning. A morpheme may or may
not stand alone.

A morpheme is not equal with a word: a word might be decomposable and thus consist
of several morphemes, but an atomic word corresponds to a morpheme. In this thesis, a
word is defined according to Bender (2013) as follows:

12

2.5. NATURAL LANGUAGE PROCESSING

A word consists of one root (stem) morpheme and zero or more affixes. A word
can stand alone.

Figure 2.4(b) shows a sentence which is split into words and morphemes; each line
corresponds to a word, the morphemes are separated by ”+“ (e.g., the noun morpheme

and its plural suffix ”s“). The words ”are“, ”the“, ”of“, and ”language“ are atomic
words and are thus words and morphemes simultaneously. On the other hand, the word
”Morphemes“ consists of two morphemes.

Two complementary text segmentation (see, e.g., Manning et al., 2014) technologies are
used in the thesis (see Section 2.6.1) which are attributed to the morphological analysis:
stemming and lemmatization. Stemming is the process of stripping off affixes from a
word in order to determine its stem (e.g., ”happy“ from Figure 2.4(a)). Lemmatization
reduces inflected forms of canonical representations (infinitive for verbs, e.g., ”sang“,
”sung“, ”sings“) to it’s lemma or root (e.g., ”sing“).

2.5.2 Lexical Analysis

Lexical analysis aims to determine if a specific word or token belongs to or exists in
a specific language. Therefore, lexical analysis aims to break down a text document
into single sentences and words (Frakes and Baeza-Yates, 1992). In context of this
thesis, two text segmentation technologies are used which belong to the lexical analysis,
namely sentence boundary detection and tokenization. Sentence boundary detection
(sentence splitting, sentence boundary disambiguation) aims to determine sentences which
consist of one or more words in a text. Sentences end with punctuation (period, question
mark, exclamation mark, quotation mark) (see, e.g., Grefenstette and Tapanainen, 1994;
Hancke et al., 2012). Some punctuation marks can be almost unambiguous (e.g., ”!“,
”?“). Others (e.g., ”.“), are extremely ambiguous: it is, e.g., not trivial whether it is a
full-stop or part of an abbreviation.

On the other hand, the aim of tokenization is to locate the token boundaries (e.g.,
whitespace, punctuation) and determine (word and non-word) tokens in a sequence of
characters of a text. Tokenization in context of Nlp may seem simple in a language
that separates words or sentences by a special character (e.g., whitespace). However, not
every language uses a distinct separation character (e.g. Chinese, Japanese, Thai). Even
for languages (e.g., English) which use whitespace separation, a simple ”whitespace“-
tokenizer is not sufficient to tokenize words due to several obstacles: one of these obstacles
are hyphenated words (e.g., ”forty-one“), which can be interpreted as being either one
word or two separate words (see, e.g., Grefenstette and Tapanainen, 1994). Table 2.1
shows that each tokenizer delivers slightly different results. This thesis used Stanford

13

CHAPTER 2. FOUNDATIONS

Nlp for the implementation of SoFeX.

Table 2.1: Tokenizer Results

No
Naive

Whitespace
Apache

Open Nlp
Stanford

Nlp
Ideal

1 I I I I
2 said, said said said
3 , , ,
4 ’I ’I ’ ’
5 I I
6 can’t ca ca can
7 n’t n’t not
8 afford afford
9 to to to to
10 do do do do
11 that.’ that that that
12 . . .
13 ‘ ‘ ‘

Tokenized sentence: I said, ’I can’t afford to do that.‘

2.5.3 Syntactic Analysis

In context of syntactic analysis, syntactic categories are assigned to each token in a
sentence. Syntactic categories are known as Part-of-Speech Tags (PoS-tags, e.g.,
determiner, adjective, subject). In literature, there is no common agreement whether
part-of-speech (PoS) analysis is part of morphological analysis, syntactical analysis, or
forms an independent category of analysis ("Lexical Analysis"; see, e.g., Feldman (1999);
Liddy (1998)). In this thesis, PoS analysis is described in the context of the syntactic
analysis. Figure 2.5(a) shows an example sentence which is syntactically analysed by
means of the Stanford Nlp Api (see, e.g., Manning et al. (2014)). In that context, the
Stanford Nlp PoS-Tagger (Toutanova and Manning, 2000; Toutanova et al., 2003) assigns
corresponding PoS-tags to each word in the sentence (e.g., ”morphemes“ is assigned NN
which refers to a plural noun in Figure 2.5(b)). For a detailed list of PoS-tags relevant
for this thesis see Section A.1 in the Annex.

The key process of syntactic analysis is called PoS Parsing. PoS Parsing builds upon
the PoS-tagged tokens and aims to generate a structural description of a sentence. More
detailed, the linear and flat sequence of words is parsed and each word is converted into
a hierarchical structure (parse tree). The parse tree shows how the words relate to each
other (syntax). Basically, syntactic processing systems use a declarative representation
of syntactic facts about a language (grammar). The PoS parser then compares that
grammar with the sentence to be analysed to produce the sentence’s parse tree (see, e.g.,

14

2.6. TEXT MINING

Morphemes are smallest units of languagea
NN VBZ ADJ IN DT

NNP=PNoun,PsingularPorPmass
VBZP=PVerb,PthirdPpersonPsingularPpresent
ADJP=PAdjective
INP=PPrepositionPorPsubordinatingPconjunction
DTP=Pdeterminer

NN NN

(a) PoS Tag Example

(ROOT
(S

(NP (NNS Morphemes))
(VP (VBP are)

(NP
(NP (JJS smallest) (NNS units))
(PP (IN of) (DT a)

(NP (NN language)))))
(. .)))

(b) Structured Parse Tree

Morphemes are

the smallest meaningful units of

language

S

NP VP

VBP

JJ

NNS

IN

NP

NP

DT JJ NNS

PP

NP

NN

.

.

(c) Parse Tree

Figure 2.5: Syntactic Analysis

Dale et al., 2000; Jurafsky and Martin, 2014). Figures 2.5(b) and 2.5(c) show the parse
tree based on the PoS tags from the exemplary sentence in Figure 2.4(b) in different
representations. The upper part of the parse trees can be interpreted as ”a sentence S is
composed of a noun phrase NP followed by a verb phrase VP and a punctuation“.

In context of the thesis, sentence simplification (see, e.g., Jonnalagadda et al., 2009) is
used. Sentence simplification seeks to reduce the complexity of sentences. SoFeX
utilizes a rule-based approach based on syntactic patterns (see Section 4.4). As an
example, a sentence which contains a conjunction (e.g., and) is split into two atomic
sentences: ”The quantificator calculates materials and batch sizes.“ - (1) ”The quantificator
calculates materials.“ and (2) ”The quantificator calculates batch sizes“.

2.6 Text Mining

It is predicted that the data volume will grow to 40 billion terabytes by 2020, which
equals a 50-time growth compared to the beginning of 2010 (Gantz and Reinsel, 2012).
This tremendously increasing amount of data requires machine-aided technologies to
determine relevant domain-specific information - data mining (Dm) in general. Aggarwal
(2015) defined data mining as ”[...] the automatic collection, cleansing, processing, and

15

CHAPTER 2. FOUNDATIONS

analysis to get useful insights from data“. Text mining (Tm, text analytics) in specific,
aims to derive high-quality information from textual data (e.g., patient records, health
care insurance data, software engineering artifacts, etc.). Textual data can be structured
(e.g., relational database), semi-structured (e.g., Xml, Json), or unstructured (e.g., word
document, image). The term text mining was first introduced by Feldman and Dagan
(1995). Tm covers a broad set of related topics (e.g., Dm) and techniques (e.g., sentiment
analysis) to mine text (Aggarwal and Zhai, 2012a).

Text Repre-
sentation

Text
Corpus

Text
Prepro-
cessing

Knowledge
Discovery

Knowledge
Artifact

Figure 2.6: Text Mining Framework

Aggarwal and Zhai (2012a) identified three consecutive phases in a general framework
for text mining, namely text preprocessing, text representation, and knowledge discovery
in text (see Figure 2.6). Other authors (see, e.g., Hotho et al., 2005; Rajman and
Besançon, 1998; Vijayarani et al., 2015) subsume text preprocessing (e.g., tokenization)
and text representation (e.g., bag-of-words). The following sections introduce text mining
techniques along the three phases text preprocessing, text representation, and knowledge
discovery.

2.6.1 Text Preprocessing

Text preprocessing is one of the key components in many text mining algorithms. It
aims at eliminating everything from text other than (preferably normalized) information-
containing words (Aggarwal and Zhai, 2012a). At least in the context of text classification
it was empirically evaluated that text preprocessing may have noticable influence on the
success of a text classification process (Uysal and Gunal, 2014). Typical preprocessing
techniques comprise techniques from the morphological and syntactic analysis (see
Sections 2.5.1 and 2.5.3): sentence detection, tokenization, filtering (stopword removal),
lemmatization, and stemming (see, e.g., Aggarwal and Zhai, 2012a; Hotho et al., 2005)
as well as PoS Tagging and Parsing (Hotho et al., 2005). Filtering aims to reduce the
amount of text to be further processed. In context of text mining, stopword removal
is most often used. Stopwords are very frequent and common words which appear to
be of little contextual meaning and are thus not discriminative (see, e.g., Aggarwal and
Zhai, 2012a; Jurafsky and Martin, 2014). Additionally, lowercasing is used to equalize
different words by converting every character to lowercase. Finally, in order to increase
the precision of the PoS parser (see Sections 4.3.3 and 4.4.1), string encoding (Ghosh
et al., 2014) is used for domain terms and quoted phrases (phrases between quotation

16

2.6. TEXT MINING

marks). Therefore, the terms and phrases are bundled with delimiters and equipped with
a prefix.

2.6.2 Text Representation

Natural language text can be represented by means of sparse numeric vectors. These
vectors can be used to represent text as ”Vector Space Model“ or ”Bag of Words Model“.
A Bag-of-Words (BoW) describes a piece of text (PoT) ti by means of a disordered
list of the words Wti = (w1,ti , ..., wn,ti) contained in the PoT (see, e.g., Jurafsky and
Martin, 2014). A piece of text can be a document, paragraph, sentence, etc. For example,
ti = ”a man saw a man“ may result in a BoW bti = {’a’,’saw’,’man’,’a’,’man’}. A
Vector Space Model (Vsm) represents a collection of PoTs as numerical vectors in an
m-dimensional space (Hotho et al., 2005). Each PoT in the vector space is described by
a numerical feature vector ~v(ti) = (o(ti, w1), ..., o(tI , wm)) : wj ∈ bti . Each element of
the vector usually represents a distinct word (w1,...,wm) of the PoTs BoW bti . The size
(or weight) of the vector is usually a function of the word frequency along with other
factors (e.g., inverse document frequence) (see, e.g., Jurafsky and Martin, 2014). For
example, three distinct words (with their occurrence) can be determined in bti : a(2),
saw(1), man(2). Thus, the feature vector for (ti) would be ~v(ti) = (2, 1, 2). A Vsm
consists of one or more feature vectors that occur within a document collection (of e.g., a
domain). The aim of text represented in numeric vectors is to deal with them with linear
algebraic operations which perform significantly faster (Aggarwal and Zhai, 2012a) than
text operations (e.g., text similarity).

2.6.3 Knowledge Discovery in Text

Piateski and Frawley (1991) consider knowledge discovery as the ”[...] nontrivial extraction
of implicit, previously unknown, and potentially useful information from data“. Based
on the transformed text, existing machine learning and data mining techniques can be
applied in order to uncover desired knowledge.

Machine learning (Ml), in general, refers to processes of improving a machines’
performance on a specific task without being explicitly programmed. In detail, an
algorithm learns from existing data and is able to make predictions on (new) unknown
data (Bishop, 2006). Ml basically provides supervised and unsupervised learning methods.
Supervised learning methods rely on training data sets. Training data consists of
already labeled ”learning“ data. Each record in the training data set is a tupel which
consists of input and corresponding expected output (label). The main drawback of
supervised Ml algorithms is the availability of training data or the huge effort for its

17

CHAPTER 2. FOUNDATIONS

preparation, respectively. The construction of a training data set is time consuming
on the one hand and requires domain-specific knowledge on the other hand. Based
on the training data, a supervised learning algorithm ”learns“ to predict the output
of unseen new data (see, e.g., Aggarwal and Zhai, 2012a; Manning et al., 2008). For
example, many PoS parsers (see Section 2.5.3) are based on supervised learning algorithms
(Jurafsky and Martin, 2014). Most text classification algorithms make use of supervised
learning methods. Thus, the problem of supervised learning in context of text data is
often also referred to as classification (Aggarwal and Zhai, 2012a). On the other hand,
unsupervised learning methods do not require any training data. Thus, they can be
applied without any manual effort. The two main unsupervised learning methods which
are commonly used in the context of text mining are clustering and topic modeling (see,
e.g., Allahyari et al., 2017). This thesis also uses information extraction approaches
(which partly use Ml technologies) in order to discover specific knowledge from text.
The next sections introduce the approaches and technologies used in the thesis, namely
information extraction, text classification, and text clustering.

2.6.3.1 Information Extraction

Information Extraction (Ie) aims to automatically process unstructured data in order to
identify information (see, e.g., Bender, 2013; Boonthum-Denecke, 2011; Wimalasuriya
and Dou, 2010). Thus, Ie transforms unstructured data (embedded in text) into struc-
tured information (see, e.g., Aggarwal and Zhai, 2012a; Jurafsky and Martin, 2014).
Unstructured data does not imply structural incoherence, but rather encoded information
which makes it difficult for machines to interpret it (Boonthum-Denecke, 2011). Ie
relies on extracting entities and the relations between those entities, where both the
relations and the entities are expressed by words (Bender, 2013). In context of the thesis,
only entities (i.e. domain terms) but no relationships between them are extracted (see
Section 4.3.4). In general, four categories of domain term extraction methods can be
distinguished (Venu et al., 2016). Statistical methods compute the importance of a
term within a domain by means of statistical measures (e.g., term frequency, inverse
document frequency). These methods might fail to capture the importance of infrequent
domain terms. Linguistic methods identify domain terms based on syntactic patterns
(e.g., noun + noun, adjective + noun) or lexico-syntactic patterns (e.g., ”including“ +
noun). In general, the definition of these patterns is usually time consuming and tedious.
Term extraction approaches are usually supervised Ml-based approaches (Kim et al.,
2009). Some important and commonly used approaches make use of Naive Bayes and
Support Vector Machine classifiers (see Section 2.6.3.2). Graph-based methods in context
of information extraction aim to compute the importance of terms within a domain by

18

2.6. TEXT MINING

means of the quality and quantity of their relationships (e.g., co-occurence, semantic,
syntactic) to other terms. Important terms are considered to be domain-specific.

2.6.3.2 Text Classification

Given a set of classes, text classification aims to determine which class(es) a given piece
of text belongs to (Manning et al., 2008). Hard text classification assigns exactly one
class label to a given piece of text. On the other hand, soft text classification computes
a probability distribution for a given piece of text over all the classes. In the following,
the two supervised classification algorithms which are used in context of SoFeX, named
Naive Bayes and Support-vector machines, are described.

The Naive Bayes (Nb) classifier is a robust (Manning et al., 2008) supervised text
classifier which belongs to the group of probabilistic classifiers and is based on Bayes’
theorem (Langley et al., 1992). Probabilistic classifiers gained a lot of popularity recently
due to their remarkable performance (Allahyari et al., 2017). The Nb classifier models
the distribution of PoT in each class using a probabilistic model with independent
assumptions about the distribution of words (Aggarwal and Zhai, 2012a). In context of
the thesis, a multinomial model for Nb is used which captures the frequency of terms
in a PoT as BoW. In contrast, a Multivariate Bernoulli Model ignores the frequency of
words for classification (Allahyari et al., 2017).

Support-vector machines (Svm) belong to the group of supervised linear classifiers.
The aim of a Svm is to find an optimal decision boundary (i.e. hyperplane) between two
classes that is maximally far from any point in the training data (see, e.g., Manning et al.,
2008). Svm then classifies new data by deciding to which side of the defined hyperplane
the data belongs to.

2.6.3.3 Text Clustering

Text clustering aims at segmenting a set of documents into groups or cluster where
documents in the same cluster are similar to each other and dissimilar to documents
in other clusters (see, e.g., Hotho et al., 2005). The similarity between documents is
measured by means of similarity functions. Traditional methods for clustering originate
from the data mining field and are thus usually focused on quantitative data with numeric
attributes (see, e.g., Aggarwal and Zhai, 2012a; Allahyari et al., 2017). Thus, vector-based
document representations can be used to apply these methods. According to Allahyari
et al. (2017), text clustering algorithms can be divided into several different categories.
In the following, only the clustering algorithms which are used in context of this thesis
are described.

19

CHAPTER 2. FOUNDATIONS

k-means (Km) clustering is a widely used distance-based partitioning algorithm for
efficient clustering (Aggarwal and Zhai, 2012a). A previously known number of k groups
is formed from a set of similar objects. Initially, it uses k representatives (seeds) around
which the clusters are built. Iteratively, new objects are assigned to those clusters so that
the mean across clusters are as different from each other cluster as possible. Furthermore,
the seeds (i.e. centroids) are optimized. The ”distance“ from a centroid to other objects
is usually calculated by means of the euclidean distance (straight line between two points
in a n-dimensional space).

Expectation-Maximization (Em) clustering is similar to Km clustering and belongs
to the probabilistic clustering algorithms. In contrast to Km which aims to maximize
the differences of cluster means, the Em algorithm computes probabilities of cluster
memberships based on one or more probability distributions in the expectation step.
Given the clusters, the goal of the Em algorithms is to maximize the overall probability
(i.e. likelihood) of the data in the subsequent maximization step. The expectation and
maximization steps are performed iteratively (Celeux and Govaert, 1995). Both, Km as
well as Em assume that the number of clusters is previously known.

2.7 Measurement Fundamentals

In context of the thesis, five process steps of SoFeX are evaluated with respect to a
corresponding ground truth which is called gold standard. The gold standards were
manually created by domain experts based on the Gdc user manual. In each evaluation,
the outcome of a component is compared to its corresponding gold standard. In this
thesis two different types of measures which are used within evaluation are distinguished,
namely binary and relevance measures. In context of text classification, the aim of the
evaluation is to determine if the algorithm correctly identifies a piece of information
(e.g., sentence) to correspond to a class or not (e.g., if the sentence contains software
feature-relevant information or not). Such classification can either be correct or not.
Thus, classification results end up in four different relevance measures:

1. True Positives (TPi) are documents which are classified as and actually are of class
i.

2. False Positives (FPi) are documents which are classified as but actually are not of
class i.

3. False Negatives (FNi) are documents which are classified as type j 6= i but actually
are of class i.

4. True Negatives (TNi) are documents which are classified as and actually are of
class j 6= i.

20

2.7. MEASUREMENT FUNDAMENTALS

Based on these four relevance measures, the recall, precision, and the Fβ-score can be
calculated. Precision measures how many pieces of information are found correctly. In
contrast, recall measures how many relevant pieces of information are found. The Fβ-
score considers both the precision and the recall as their harmonic mean. Summarized,
the recall, precision, and the Fβ-score are calculated as follows:

Pi = TPi
TPi+ FPi

Ri = TPi
TPi+ FNi

Fβi
= (1 + β2

i) ∗ Pi × Ri
(β2
i × Pi)+ Ri

The subordinated i in precision, recall, and Fβ refers to the actual type to be investigated
in the corresponding evaluation context: in context of terminology extraction, information
identification, and information extraction, i refers to domain terms, software feature-
relevant sentences, and atomic software feature-relevant information respectively.

Besides the relevance measures for text classification tasks, evaluations based on binary
measures seek to determine if an outcome corresponds to the gold standards. Thus, the
result can either be true or false (e.g., a parse tree as the outcome of a PoS parser is
either correct or incorrect).

21

Part II Problem Investigation

22

Chapter 3
Software Feature Extraction from Natural
Language Text: State of the Art

This chapter provides a systematic literature review (Slr) on the extraction of feature-
relevant information from natural language software engineering artifacts. It contains an
overview of the the Slr process, describes the analytic dimensions to categorize relevant
literature, as well as a concluding evaluation of the selected publications. The primary
focus of the Slr is to overview published approaches in the context of feature-relevant
information extraction from different natural language software engineering artifacts and
thus to determine the current state of practice.

Section 3.1 describes the reasoning behind the Slr, the motivation for our research
questions, as well as their derivation and inter-dependencies. Then, Section 3.2 introduces
the research strategy and process, while Section 3.3 provides an analysis of the selected
publications based on characteristics of these approaches. Finally, 3.4 summarizes and
concludes the Slr.

3.1 Research Questions

Petticrew and Roberts (2006) and Kitchenham and Charters (2007) suggest to use the
five Picoc criteria to frame research questions, specify primary objectives and the general
scope. The Picoc criteria as well as their values in the context of this Slr are summarized
in Table 3.1. Picoc stands for Population, Intervention, Comparison, Outcome, and
Context. Population refers to the target group of the investigation. Intervention specifies
the investigation aspects or the issues of interest to the researcher. Comparison aims at
describing the aspect of the investigation the intervention is being compared to. Outcome
determines the effect of the intervention and thus the key investigation results of the

23

CHAPTER 3. SOFTWARE FEATURE EXTRACTION FROM NATURAL
LANGUAGE TEXT: STATE OF THE ART

Slr). Finally, Context refers to the setting or environment of the investigation.

Table 3.1: Picoc criteria

PICOC criteria Criteria values

Population software engineering

Intervention feature extraction from textual sources

Comparison none

Outcome extracted entities, mined source, manual effort, constraints, realizability and technologies

Context empirical papers in industry and academic environment

The research questions (see Table 3.2) are formulated based on the Picoc criteria. In
context of this Slr, Population and Intervention are used to frame the main research
question Rq#1 (see Table 3.2). The Outcome is used to investigate and formulate
detailed research questions (see Rq#1.1 to Rq#1.5 in Table 3.2) in order to gain specific
insights into the approaches found in the Slr. Finally, the Context is used to determine
the inclusion and exclusion criteria for this Slr(see Table 3.4 in Section 3.2).

Table 3.2: Research Questions for the Slr

Rq Rq Details

Rq#1 Which approaches exist to extract software feature-relevant information from natural language software
engineering artifacts?

Rq#1.1 Which feature-relevant entities are extracted?

Rq#1.2 Which types of natural-language software engineering artifacts are mined?

Rq#1.3 Which technologies are used?

Rq#1.4 Which degree of automation do the approaches provide?

Rq#1.5 Which supporting manual effort is needed to apply the approaches?

The main research question Rq#1 investigates different approaches to extract software
feature-relevant information from natural-language software engineering artifacts. In
detail, its purpose is to uncover and characterize feature-relevant information (Fri, see
Rq#1.1) being extracted (e.g., features, requirements), software engineering artifacts
(Sea, see Rq#1.2) which are minded (e.g., product description, user manual), technologies
(Tec, see Rq#1.3) used in the approaches (e.g., clustering, classification), the degree
of automation (Aut, see Rq#1.4) an approach provides (manual, semi-automated or
automated), as well as required manual effort (Man, see Rq#1.5) in order to apply
an approach (e.g., training set, domain ontology). The interdependencies between
the characteristics of feature-relevant information extraction approaches is depicted in
Figure 3.1.

An information extraction approach itself necessarily mines a textual software engineer-

24

3.2. REVIEW METHOD

uses
optional

mandatory

characteristic

TEC AUT

<<affects>>

requires

MAN

SF-relevant
IE ApproachSEA FRI

mines

provides

<<affects>>

generates

approach

Figure 3.1: Software Feature-relevant Information Extraction Characteristics

ing artifact (Sea) and generates software feature-relevant information (Fri). Furthermore,
the process provides a specific degree of automation (Aut). These characteristics are
common building blocks of each feature-relevant information extraction approach and are
thus mandatory (grey shade in Figure 3.1). The other characteristics (Tec, Man) are
optional because an approach neither necessarily requires a technology in case it is fully
manual or manual effort in case it is fully automated. In case the information extraction
process uses one or more Nlp-specific technologies (Tec), the approach’s degree of
automation is either semi- or fully automated. Otherwise, the the approach’s degree
of automation is manual per definition. Some information extraction processes require
additional manual effort (Man) to work properly (e.g., training set for text classification,
input restrictions). Therefore, both Tec and Man affect Aut.

3.2 Review Method

Kitchenham and Charters (2007) define a systematic literature review as the process
of identification, assessment, and interpretation of all relevant information aiming at
answering a specific research question. A SLR allows to synthesize information by
specifically using inclusion and exclusion criteria to limit and focus the scope of the
review in a systematic way. In the following, the overall literature search process is
explained.

Kitchenham and Charters (2007) propose using online databases (1) to initially identify
relevant literature. Several constraints (e.g., used terms, binary operators, meta data,
stop words, etc.) in the interfaces of the different online databases prevent using a
standardized, yet detailed search string. Hence, Kitchenham and Charters (2007) suggest
a complementary citation-based search (2). Additionally, Jorgensen and Shepperd (2007)

25

CHAPTER 3. SOFTWARE FEATURE EXTRACTION FROM NATURAL
LANGUAGE TEXT: STATE OF THE ART

recommend to incorporate a manual target search (3) on key journals and conferences in
order to double check and thus minimize the risk of missing relevant literature.

In order to search online databases, a representative search string is required. The
search string is determined based on the keywords derived from the values of Picoc’s
Population and Intervention. These terms are expanded by synonymous and alternative
terms (see Table 3.3(a)).

Table 3.3: Definition of search terms
(a) Key words from Picoc criteria with alternatives and synonyms

Term Alternatives/Synonyms Set Connection

feature capability, function, requirement = F
}

NEAR/5
AND

extract mine, identify, detect, discover = E

text natural language = L

software system = S

(b) Abstract Search String

((feature* OR function* OR capabilit* OR requirement*) NEAR/5 (extract* OR min* OR identif* OR
detect* OR discover*)) AND (text* OR "natural language") AND (software OR system*)

(c) Detailed Search String from function* NEAR/5 extract*

((function NEAR/5 extract) OR (functionality NEAR/5 extract) OR (functions NEAR/5 extract)
OR (function NEAR/5 extraction) OR (functionality NEAR/5 extraction) OR (functions NEAR/5
extraction) OR(function NEAR/5 extracting) OR (functionality NEAR/5 extracting) OR (functions
NEAR/5 extracting)) AND (text* OR "natural language") AND (software OR system*)

The alternative and synonymous terms are combined by the boolean Or (e.g., text OR

natural language) resulting in different sets (e.g., L in Table 3.3(a)). In order to limit
the number of retrieved literature, the sets F and E are combined via the NEAR operator (=
F#E) in order to ensure their narrow relationship in the SLR. The expression feature

NEAR/5 extract finds articles with “feature” within 5 words of “extract” ; “extract” can
appear before or after “feature”. The sets F#E, L, and S are finally connected via the
boolean AND leading to the search string depicted in Table 3.3(b). That search string
shows an abstract version containing wildcards (*) to find related terms (e.g., funcionalit*
matches functionality and functionalities). For the specific online databases, the abstract
search string is then partitioned into several specific search terms because of database-
related notation restrictions (e.g., no wildcard and other boolean operators with NEAR

operator). Thus, 20 separate detailed search strings are derived from the abstract search
string (see Table 3.3(c)).

26

3.2. REVIEW METHOD

In order to filter and determine relevant publications, several inclusion as well as
exclusion criteria are defined (see Table 3.4). A publication needs to fulfill the inclusion
criteria to be considered relevant. In contrast, a publication is excluded, when it fulfills an
exclusion criteria. The exclusion criteria E#1 aims to filter articles which extract classes,
relation between entities (e.g, relation between classes), variabilities and commonalities
in context of software product lines, aspects or use cases because these entities are not
considered to be software feature-relevant. Additionally, exclusion criteria E#2 aims to
filter articles which extract software feature-relevant information from structured natural
language requirements specifications (Rs) only. A structured requirements specification
in that context is defined to contain at least one sentence (see, e.g., Boutkova and
Houdek, 2011) where each sentence describes a single requirement. Hence, corresponding
approaches do not require to filter software feature-irrelevant sentences before extracting
software feature-relevant information from software feature-relevant sentences. Thus,
these approaches are out of scope of this Slr.

Table 3.4: Inclusion (I#) and Exclusion Criteria (E#)

Criteria # Description

I#1 Articles describing an approach to extract software feature-relevant information from unstructured
natural language software engineering artifacts

E#1 Articles related to class, relation, variability, commonality, aspect, use case extraction

E#2 Articles related to the extraction of feature-relevant information from structured natural language
requirements specification documents only

E#3 Proposals, not peer-reviewed, posters, lecture notes, summary of conference keynotes, work in
progress, doctoral symposium papers, short papers: concepts which are described in these pub-
lications are usually not empirically validated

E#4 Papers not written in English or German

E#5 Papers published before 2000

Finally, all remaining publications are screened based on title and abstract. In the case
neither title nor abstract are sufficient to determine the relevancy of a specific publication,
the full text is considered. If a publication fulfills I#1 and is not filtered due to fulfilling
an exclusion criteria, it is considered for the Slr.

Based on the findings of the online database search, a citation-based search is conducted
by means of Google Scholar. The backward search takes all publications which are referred
by the Slr publications into account, while the forward search considers the publications
which reference the Slr publications. As a third part of the literature search, a manual
target search was performed, as it might yield high-quality search results (Jorgensen and
Shepperd, 2007) and helps to prevent overlooking relevant literature (in the sense of a
verification). Therefore, the most relevant journals and conferences in requirements and

27

CHAPTER 3. SOFTWARE FEATURE EXTRACTION FROM NATURAL
LANGUAGE TEXT: STATE OF THE ART

Table 3.5: Journals and Conferences for manual target search (alphabetically ordered)

Journals Acm Computing Surveys, Acm Transactions on Software Engineering and Methodology, Auto-
mated Software Engineering Journal, Ieee Software, Empirical Software Engineering Journal,
Ieee System Journal, Ieee Transactions on Software Engineering, Information and Software Tech-
nology, Journal of Systems and Software, Requirements Engineering Journal

Conferences International Conference on Software Engineering (Icse), International Symposium on Founda-
tions of Software Engineering (Fse), International Working conference on Requirements Engi-
neering for Software Quality (Refsq), Requirements Engineering Conference (Re), International
Conference on Mining Software Repositories (Msr), International Conference on Software Anal-
ysis, Evolution, and Reengineering (Saner)

software engineering are investigated. In total, 11 journals as well as 6 conferences are
manually explored (see Table 3.5). All papers published between 2000 until November
2017 in the selected venues were considered.

3.3 Results

This section presents the results of the Slr: first, the application of the search strategy is
described, followed by a categorization of the selected publications to answer the research
question Rq#1 from Table 3.2.

ScienceDirect
kn4s=sBO,w

Springer
knOs=s688w

IEEExplore
knBs=s978w

ACM
kn,s=s4,4w

Scopus
kn5s=sBTT4w

h5s=s,B

hBs=s69

h,s=sO,

hOs=sOT

h4s=s6

d5s=sO

dBs=sO

d,s=sT

dOs=sT

d4s=s,

is=s,

is<s6

di d = 7

backwardskCw
kc,s=sBw

forwardskDw
kcBs=sTw

SE:REsflagship
conferences

kn,s=s5O74w

SE:REsJournals
knBs=s55B,w

mBs=s,

m,s=sT

E
xc

lu
si

o
n

sC
ri

te
ri

a
sk

A
w

In
cl

u
si

o
n

sC
ri

te
ri

a
:s

T
it

le
Rs

A
b

st
ra

ct
sa

n
d

sT
e

xt
sk

B
w

In
cl

u
si

o
n

sC
ri

te
ri

a
:s

T
it

le
Rs

A
b

st
ra

ct
sa

n
d

sT
e

xt

is=s,

is<s6

mi m = 1

is=s,

is<sO

ci c = 2

d + c + m = 10

O
n

lin
e

sd
a

ta
b

a
se

ss
e

a
rc

h
sb

a
se

d
s

o
n

ss
e

a
rc

h
ss

tr
in

g

(1) Online

database search

(2) Citation-based

search

(3) Manual

target search

Figure 3.2: Process of the Literature Review

Initially, using the detailed search strings, five different online databases which are
relevant for software engineering were queried: Ieee Explore, Acm Digital Library,

28

3.3. RESULTS

Springer, ScienceDirect and Scopus. The visualization of the application of this search
strategy with the results of the search is presented in Figure 3.2.

The online database search (1) returned 4315 hits in total (including duplicates).
In a first step, the exclusion criteria (see Table 3.4) were applied (A) which resulted
in 148 remaining publications. After verifying the inclusion criteria by screening the
titles, abstract, and text (B), 7 publications were considered relevant. Based on the
publications from the online database search, a citation-based search was conducted (2)
on 217 unique references. Backward (C) and forward snowballing (D) yielded 2 additional
publications in total. In course of the manual target search (3) more than 5500 titles were
screened in journals and about 5400 articles in the selected conferences and corresponding
workshops. However, after removing duplicates there was only one additional study
found. This indicates that our search string for the online database search is reliable and
the citation-based search was sufficient.

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

0

1

2

3

2

0 0

3

2

1 1 1

Year

#
P
ub

lic
at
io
ns

Figure 3.3: Publication Chronology

The selected publications originate from 9
different publication venues with the Require-
ments Engineering Conference (Re) as the most
popular venue (2 publications). Duplicates
were found for Hariri et al. (2013), an an older
publication at Icse in 2011 (Dumitru et al.,
2011) and a publication from 2013 in Ieee
Transactions on Software Engineering. In order
to avoid duplicates, the more comprehensive
version from 2013 was considered. Finally, a
total of 10 publications were selected to be con-

sidered in the Slr (see Rq#1 in Table 3.2). Figure 3.3 illustrates the distribution of the
selected publications from 2010 to 2017 with 2013 as the main contributor.

3.3.1 Findings in Selected Publications

This section describes the examination of the selected publications for this Slr and answers
the research question along the key characteristics of the corresponding approaches.
Table 3.6 shows an overview as well as a unique Id for the publications which were selected
in course of the systematic literature review. The Ids are used to help distinguishing
between the publications selected for the Slr and the references in this thesis, and to
increase the readability of the tables.

In general, the relevant publications are investigated regarding the characteristics
of the presented approaches to extract software feature-relevant information. These
characteristics as well as their possible values (value set) are listed in Table 3.7. The

29

CHAPTER 3. SOFTWARE FEATURE EXTRACTION FROM NATURAL
LANGUAGE TEXT: STATE OF THE ART

Table 3.6: Publication Venues of the selected Studies
Id Reference

P1 Bakar et al. (2016)
P2 Guzman and Maalej (2014)
P3 Hariri et al. (2013)
P4 Johann et al. (2017)
P5 John (2010)

ID Reference

P6 Khan et al. (2014)
P7 Li et al. (2015)
P8 Slankas and Williams (2013)
P9 Yu et al. (2013)
P10 Zhan and Li (2010)

characteristics in the table correspond to the characteristics depicted in Figure 3.1. The
value sets of the corresponding characteristic are derived from the articles of the Slr.

Table 3.7: Characteristics of the Slr Publications

Charact. Description Section

Ext
(Rq#1)

Extracted software feature-relevant entities
Value set = {Functional Requirement (Fr), Non Functional Requirement (Nfr), Fea-
ture (F)}

3.3.1.2

Sea
(Rq#1)

Type of software engineering artifact, which is used as source for information extraction
Value set = {Requirement Specification (Rs), Manual/Product Description (Md), Re-
view (R), Other Text Document (D)}

3.3.1.2

Tec
(Rq#1.1)

Nlp characteristics
Value set = {Preprocessing (Pp), Information Identification + Extraction (Ix), Text Clus-
tering (Cg), Text Classification (Cl), Nlp Tool (To)}

3.3.1.3

Aut
(Rq#1.2)

Automation of the approach
Value set = {manual (M), semi-automated (S), automated (A)}

3.3.1.4

Man
(Rq#1.3)

Manual preparation required to enable the realization of the approach
Value set = {Domain Analysis (Da), Domain Ontology (Do), Human Partizipation (Pa),
Text Correction (Tc), Training Set (Tr), Input Restriction (Ir}

3.3.1.5

3.3.1.1 Which approaches exist to extract software feature-relevant infor-
mation from natural language software engineering artifacts?

This section investigates existing approaches to extract software feature-relevant informa-
tion from natural language software engineering artifacts and aims to answer Rq#1. In
the following, this section describes each approach, found in the Slr in detail.

P1 (Bakar et al., 2016) describes an approach to extract features from online software
reviews. In a first step, they identify similar documents by means of the Fuzzy C-Means
(Fcm) clustering algorithm where each data point has a probability of belonging to each
cluster. A data point which is located closer to a clusters’ centeroid has a stronger
membership to the cluster (Bezdek et al., 1984). In a second step, they extract bigrams

30

3.3. RESULTS

and trigrams (which represent features) based on PoS patterns from each cluster. Finally,
the approach clusters the extracted features into similar feature clusters by means of a
modified Word Overlap Metric.

P2 (Guzman and Maalej, 2014) provides an approach that allows to automatically
identify application features mentioned in user reviews. They assume that nouns, verbs,
and adjectives are most likely used to describe features (in contrast to e.g., adverbs,
numbers, or quantifiers). From the words which are tagged as noun, verb, or adjective,
the approach extracts features by means of a collocation algorithms. A collocation
algorithm in context of text mining identifies words which unusually often co-occur
(see, e.g., Aggarwal and Zhai, 2012a). The approach finally considers only collocated
words with less than three words and appear in at least three reviews. The authors
use Latent Dirichlet Allocation (Lda) to finally group extracted features that tend to
co-occur in the same reviews and furthermore assign topics to each review. Lda is a
probabilistic distribution topic modeling algorithm which automatically discovers topics
a corresponding document contains (Blei et al., 2003).

P3 (Hariri et al., 2013) provides an approach to extract common software features
across products from online product listings. Therefore, they use an incremental diffusive
clustering (Idc) algorithm that incrementally identifies features based on a voting schema
using distance metrics.

The approach from P4 (Johann et al., 2017) allows to extract high-level features
(describing essential functional capabilities) from app descriptions and app reviews. They
use predefined PoS patterns (e.g., Vb Nn Nn) to extract feature candidates. Furthermore,
they simplify sentences which include enumerations and conjunctions in order to provide
atomic sentences to be used for feature extraction. The feature candidates which are
extracted from an app description and the feature candidates which are extracted from the
related user review are used to match these features by means of a binary text similarity
function on different levels of granularity. First, the similarity function determines the
similarity between the feature candidates based on single word matching. Second, the
approach uses WordNet to consider synonym sets of captured words (e.g., photo and
image). Finally, to compensate a possible difference in the number of words, the approach
utilizes cosine similarity.

P5 (John, 2010) proposes Cave, a fully manual approach to identify software feature-
relevant information in Nl user documentation. Therefore, they determine a set of
patterns (e.g., section headings typically contain features, repeated words or phrases can
be domains or subdomains), which allows to locate software feature-relevant information.

The approach from P6 (Khan et al., 2014) allows to identify product features in
customer reviews by means of syntactic patterns. They extract ”base noun phrases“,

31

CHAPTER 3. SOFTWARE FEATURE EXTRACTION FROM NATURAL
LANGUAGE TEXT: STATE OF THE ART

linking ”verb based noun phrases“, and ”preposition based noun phrases“ that represent
product features by means of different syntactic patterns.

P7 (Li et al., 2015) provides an approach to automatically extract requirements for
scientific software from available Nl knowledge sources like user manuals and project
reports. They use a combination of syntactic (PoS) and lexical patterns (e.g., method of
{Nn | Np} as well as a gazetteer1) in order to identify and extract requirement candidates
of different Drums (Domain specific Requirements Modeling for Scientists) types. The
Drums types define core requirement types (e.g.,data definition, interface, process) in
the Drums model. Similar to P2, the authors utilize the Lda topic modeling algorithm
to group the extracted Drums requirement candidates. The Lda algorithm performs the
clustering task based on bi- and trigrams which are determined from the requirement
candidates by means of a collocation algorithm a priori. Finally, the Lda algorithm
computes topics (features) for each requirements cluster.

P8 (Slankas and Williams, 2013) describes an approach to automatically extract non-
functional requirements (Nfr) from unconstrained Nl documentation. The approach
utilizes a k-nearest neighbor (k-NN) classifier. The k-NN classifier is a supervised
algorithm which classifies a new object based on which objects previously classified (i.e.
training objects) are closest to the new object. The majority class from these k-nearest
neighbors is defined as class label for the new object (Aggarwal and Zhai, 2012b). The
closeness between objects is determined by means of a distance metric (e.g., Euclidean
for numerical attributes). The authors use a modified version of the Levensthein distance
(see Levenshtein, 1966). They evaluated the classifier against others (e.g., Smo, Nb) and
report that Smo performed better than k-NN.

P9 (Yu et al., 2013) proposes an approach to mine and recommend software features
across multiple software web repositories like sourceforge.net. In that context, they
created a hierarchical repository of software features (Hesa). Hesa contains features on
high-level which are described by feature elements. A feature element is defined as a “[...]
raw description of a feature which can indicate a functional characteristic or concept of
the software product” (Yu et al., 2013). A feature element corresponds to a sentence of an
online software profile. The feature elements are clustered by an extended Lda algorithm
into flat clusters. Finally, an improved Agglomerative Hierarchical Clustering algorithm
(iAHC) transforms the features (and corresponding feature elements) into a hierarchical
(semantic-based) feature structure. An Agglomerative Hierarchical Clustering algorithm
is a bottom-up clustering method which determines hierarchical clusters (e.g., clusters
have sub-clusters) based on distance metrics in an iterative process.

1A gazetteer in context of text mining is a domain-specific dictionary used to mine identify domain-specific
terms

32

3.3. RESULTS

P10 (Zhan and Li, 2010) provides an approach which mines product features in product
reviews by means of their nominal semantic structure. Initially, PoS tags are used in
syntactic patterns to determine noun fragments in the product reviews. Starting from the
noun fragments and their semantic dependencies, the approach determines potentially
relevant non-nominal semantic neighbors that can be either adjectives or verb predicates.
The combination of a nominal noun fragment and a non-nominal semantic neighbor
represents a product feature. As a last step, the authors apply co-clustering in their
approach on product features in order to determine fine-grained product feature cluster.

3.3.1.2 Which software feature-relevant entities are extracted? Which types
of natural language software engineering artifacts are mined?

This section investigates the different types of software feature-relevant information which
are extracted (see Rq#1.1) as well as the different types of natural language software
engineering artifacts mined (see Rq#1.2) with the corresponding results summarized in
Table 3.8.

Table 3.8: Types of Ext and Fri

P#
Ext Sea

F Fr Nr Rs Md R D

P1 3 3 3 3

P2 3 3

P3 3 3

P4 3 3 3

P5 3 3

P6 3 3

P7 3 3 3 3

P8 3 3 3 3 3

P9 3 3

P10 3 3

The publications of the Slr present ap-
proaches which extract three different types
of software feature-relevant entities (see Ext
in Table 3.8): 8 of the considerd approaches
extract features, feature models or feature
trees (P1-P6,P9, and P10), 1 approach ex-
tracts functional requirements (P7), and 2 ap-
proaches extract non-functional requirements
(P7 and P8). P7 is the only approach which
allows the extraction of more than one type
of software feature-relevant information (Fr
and Nfr).

On the other hand, the natural-language
software engineering artifacts which are used

as sources to extract software feature-relevant information are grouped into four dif-
ferent categories (see Sea in Table 3.8) Most approaches (7) mine manuals or prod-
uct descriptions (P1,P3-P5, and P7-P9), 6 approaches mine (online) software reviews
(P1,P2,P4,P6,P8, and P10), and 2 approaches mine requirement specification (P1 and P8)
and other documents (e.g., project reports; P7 and P8) respectively. P8 presents the only
approach which is not restricted to a specific software engineering artifact to be mined.
It allows to mine any natural language document in order to extract non-functional
requirements.

33

CHAPTER 3. SOFTWARE FEATURE EXTRACTION FROM NATURAL
LANGUAGE TEXT: STATE OF THE ART

3.3.1.3 Which technologies are used?

The approaches considered in the Slr use different technologies which are listed in
Table 3.9. These technologies are grouped along the characteristics of the approaches:
each at least semi-automated approach identifies or extracts software-feature relevant
information to some degree with different techniques and uses text clustering and/or text
classification by means of one or more Nlp tools. Furthermore, each (semi-)automated
approach uses at least one text preprocessing technique.

Table 3.9: Nlp Characteristics of the Slr Publications

Nlp
Classification

Characteristic P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Te
xt

P
re
pr
oc
es
si
ng

Tokenization 3 3 3 3 3 3 3 3 3

Stopwords 3 3 3 3 3 3 3

PoS Tagging/Parsing 3 3 3 3 3 3 3

Stemming 3 3

Lemmatization 3 3 3 3

Dependency Parsing/Role Labeling 3 3

Tf-Idf 3 3

In
fo
rm

at
io
n

Id
en
ti
fic
at
io
n

&
E
xt
ra
ct
io
n Classification 3

Clustering 3 3 3 3 3 3 3

Syntactic Patterns 3 3 3 3 3 3

Lexical Patterns 3

Semantic Patterns 3

Te
xt

C
lu
st
er
in
g Agglomerative/Hierarchical 3

Distance-based Partitioning 3 3 3

Co-Clustering 3 3

Probabilistic 3 3 3

Network-based 3

Text Class. Proximity-based 3 3

N
lp

To
ol
s

Weka2 3

Nltk3 3 3 3

Stanford Nlp4 3

WordNet5 3 3 3

Gate6 3

OpenNlp7 3

Mallet8 3

Unknown 3 3

2https://www.cs.waikato.ac.nz/ml/weka/
3http://www.nltk.org/
4https://stanfordnlp.github.io/CoreNLP/
5https://wordnet.princeton.edu/
6https://gate.ac.uk/
7https://opennlp.apache.org/
8http://mallet.cs.umass.edu/

34

3.3. RESULTS

As P5 describes a fully manual approach, there is obviously no computer-aided technique
involved and will thus not be considered in this section. All the other approaches which
are identified in the Slr are machine-aided to a certain degree.

Text Preprocessing. Most approaches use tokenization (9), stopword removal (7),
and PoS tagging or parsing (7). Furthermore, 6 approaches use some kind of ”word
normalization“ (stemming and lemmatization) in order to increase the text mining per-
formance. Last, two approaches use Tf-Idf text representation and two other approaches
use semantic parsing (dependency parsing or role labeling).

Information Identification & Extraction. In order to identify and extract
software feature-relevant information, only two approaches use supervised classification
(P3 and P8). Unsupervised text mining mechanisms are used in 8 approaches: 7
approaches use text clustering and 6 approaches use syntactic patterns. In general, all 6
approaches that use syntactic patterns (P1,P2, P4,P6,P7, and P10), identify and extract
features and feature-relevant information (e.g., requirements, product features) based on
syntactic patterns that typically include nouns combinations. There is only one approach
which uses lexical patterns (P7). Another approach uses semantic patterns (P10).

Text Clustering. Several approaches (7) use some kind of clustering technique.
Clustering is used to group similar features or feature-relevant information. Furthermore,
three approaches (P2,P7, and P9) use the Lda topic modeling algorithm in order to
“describe” the corresponding clusters.

Text Classification. There is only one approach which uses text classification (P8).
The main reason may be that the effort to apply classification appropriately is extremely
high compared to other techniques (e.g., clustering, syntactic patterns) due to the usually
manual preparation of training data.

Nlp Tools. The range of Nlp tools that are used in the approaches vary widely:
Nltk (P1,P2, and P4), Weka and Stanford Nlp (P8), WordNet (P7 and P8), Gate (P7),
OpenNlp (P10), and Mallet (P9). P3 and P6 make no statements about the tools which
are used in their approaches. The approach in that thesis uses Stanford Nlp for text
preprocessing and information extraction as well as Weka for Ml-based tasks.

3.3.1.4 Which degree of automation do the approaches provide?

P5 present the only approach which is applied manually. P1, P7, and P8 provide semi-
automated approaches while P2, P3, P4, P6, P9, and P10 provide fully automated
approaches.

35

CHAPTER 3. SOFTWARE FEATURE EXTRACTION FROM NATURAL
LANGUAGE TEXT: STATE OF THE ART

3.3.1.5 Which supporting manual effort is needed to apply the approaches?

The classifier used in the approach from P8 in order to automatically extract relevant non-
functional requirements from unconstrained Nl documentation requires manually created
training data. The approach from P7 in order to automatically extract requirements
for scientific software requires to manually define a list of keywords for the gazetteer.
Additionally, the approach considers a data input preparation which requires to manually
remove textual noise such as table of contents or references.

3.4 Summary and Conclusion

The Slr provides detailed insights into existing approaches which aim to identify and
extract software features or software feature-relevant information from Nl software
engineering artifacts. Based on the insights gained, it is now possible to design an
approach which allows to meet the goals defined in Section 1.3 as well as the requirements
which are to be described in Section 4.1.

In general, each (semi-)automated approach uses some kind of preprocessing in order to
provide a normalized text data basis for further analysis: tokenization, stopword removal,
PoS tagging and parsing, as well as stemming or lemmatization are superficially used.

In contrast to SoFeX, most approaches from the Slr do not require the separation of
relevant from irrelevant text before starting the analysis because they either consider the
entire text to be relevant (P2, P3, P4, P9) or the approach is independent of relevant
sentences (P1,P6, and P10) at all. There are only two approaches which provide support
for the identification of relevant text data (P7 and P8).

In order to determine relevant information, most approaches use text clustering
algorithms and syntactic patterns. Basically, these approaches do not require high
manual effort in contrast to approaches which use classification and thus require manually
created training data set. Lexical patterns are very specific in contrast to syntactic
patterns and may tend to overfit an approach (e.g., P7) if specific words (e.g., “method
of”) do not appear in a text to be analysed (e.g., different domain, no template used).

36

Part III Treatment Design

37

Chapter 4
Software Feature Extraction (SOFEX)

The aim of this thesis is to develop an approach to identify and extract software feature-
relevant information from unconstrained Nl user manuals to enrich existing software
features knowledge. This chapter details the design of SoFeX which is based on the goals
outlined in Section 1.2 and additional requirements expressed by Roche (see Section 4.1).
Section 4.2 provides an overview and describes the overall design of SoFeX in accordance
to the named requirements. Sections 4.3 to 4.5 describe the different steps of SoFeX
and the technologies used in detail. Furthermore, rationales for the usage of specific
technologies in relation to the findings of the articles from the Slr are provided.

4.1 Requirements

This thesis is based on a cooperation with Roche Diagnostics GmbH. In general, Roche
provides a comprehensive and mature, unstructured and unconstrained Nl user manual of
Gdc which is used as an information (and mining) source. Furthermore, Roche provides
a hierarchical list of software features with a short Nl description of the corresponding
software features. Based on these prerequisites, Roche named several requirements that
need to be addressed by SoFeX to extract software feature-relevant information from
the user manual and enrich existing software feature knowledge with that information.
In detail, Roche named the following requirements which refine and extend the goals of
SoFeX (see Section 1.2):

R.1 comprehensive software feature description: provide a holistic and detailed descrip-
tion of existing Gdc software features and corresponding software feature-relevant
information in order to get detailed and structured insights in the capabilities of
Gdc.

R.2 hierarchical software features: provide different granularity levels of the Gdc

38

4.2. OVERVIEW

software feature description in order to get insights in more abstract as well as
detailed Gdc capabilities. Depending on the role, stakeholders are interested in
software feature descriptions on different abstraction levels (e.g., a member of the
top management might be interested in a more rough grained overview of the
system capabilities than a developer).

R.3 atomic software feature-relevant information: the software feature-relevant infor-
mation should be as simple and short as possible (= atomic) in order to provide
simple and unambiguous information at a first glance.

R.4 low manual effort: the approach should be applicable with lowest manual effort in
order to apply the approach properly.

R.5 high performance: the approach should provide high recall as well as high precision
in order to gather a detailed and as truthful as possible representation of the Gdc
capabilities.

4.2 Overview

In general, gathering and extracting software feature-relevant information from Nl user
manuals as well as the assignment of that software feature-relevant information to existing
software features poses two main challenges: (1) not each sentence of a manual contains
software feature-relevant information and (2) the manual’s textual content is usually
not structured along software features. More precisely, these documents lack relevant
domain-specific meta data (Aggarwal and Zhai 2012a). Thus, SoFeX needs to identify
sentences which contain software feature-relevant information and extract atomic software
feature-relevant information before determining the logically related software feature.
SoFeX consists of the three subsequent steps information identification, information
extraction, and information assignment (see Figure 4.1). To support and ease these three
steps, text preprocessing techniques are applied. As mentioned in Section 2.6.1, text
preprocessing aims to remove noise (irrelevant text data) and thus reduce the amount of
data to be further processed and is therefore applied in the context of each of the three
steps of SoFeX. In general, the user manual is used to identify potentially software
feature-relevant sentences (FrS) in a first step. Afterwards, the potentially software
feature-relevant sentences are used to extract atomic software feature-relevant information
(FrI, see requirement R.3). In a last step, the atomic software feature-relevant information
is assigned to corresponding and existing software features (Feature Hierarchy) in order
to provide a holistic Hierarchical Feature Description (see requirements R.1 and R.2).

39

CHAPTER 4. SOFTWARE FEATURE EXTRACTION (SOFEX)

Information
Identification

Information
Assignment

Information
Extraction

User
Manual

FRS

FRI

Hierarchical
Feature

Description

Feature
Hierarchy

Legend

process/step

artifact

artifact/in-/output

preprocessing

Figure 4.1: SoFeX Process Steps

4.3 Information Identification (semi-automated)

In a first step, SoFeX requires to identify pieces of data on sentence-level that convey
software feature-relevant information in a Nl user manual. In other words, SoFeX
needs to separate sentences that potentially contain software feature-relevant information
(i.e. potentially software feature-relevant sentences) from sentences which do not contain
software feature-relevant information and are thus considered as software feature-irrelevant
sentences.

Most articles from the Slr do not provide an approach to determine relevant sentences
in text documents because they either only extract phrases which are independent of
relevant sentences (P1, P6, and P10) or the entire Nl text used for mining is considered
to contain only relevant sentences (P2, P3, P4, and P9). Furthermore, P5 is a manual
approach and thus does not apply any Nlp technology. There are only two approaches
which provide support for the identification of software feature-relevant sentences: P7
uses a gazetteer with domain terms which initially allows to indicate sentences which
may contain software feature-relevant information. On the other hand, P8 uses a
trained classifier to identify sentences which represent non-functional requirements from
unconstrained Nl documents.

In context of SoFeX, the application of a classification algorithm in order to differen-
tiate software feature-relevant from software feature-irrelevant sentences requires training
data. The provision of such training data requires domain experts to label a set of
exemplary sentences to be either software feature-relevant or software feature-irrelevant.
In order to take requirement R.4 into account, the application of a classification algorithm
and thus the provision of training data cannot be considered anymore. Additionally, an
analysis of the Gdc user manual shows that the identification of software feature-relevant
sentences in context of Gdc by means of domain-specific terms (gazetteer, see P7) works

40

4.3. INFORMATION IDENTIFICATION (SEMI-AUTOMATED)

with a higher precision and recall (according to R.5) compared to using a classification
algorithms in order to determine software feature-relevant sentences; (see Sections 5.2.1
and 5.3.2). Furthermore, SoFeX provides an approach to semi-automatically extract
domain-specific terms from Nl text documents in order to reduce the amount of manual
effort (see Section 4.3.4).

User/Manual
Revision

TR/Pre-
processing

Dataset

Document
Preparation

Revised
User

Manual

User
Manual

Domain
Termi-
nology

Terminology
Extraction

FRS
Identifica-

tion FRSs

automated
process/step

manual
process/step

semi-automated
process/step

artifact

artifact/in-/output

Legend

Figure 4.2: Semi-automated Information Identification

The input of information identification is the Gdc user manual and the output for
further processing is a set of software feature-relevant sentences. Before software feature-
relevant sentences can be identified in the user manual by means of Nlp, the text needs
to be prepared. Similar to all approaches from the Slr which aim to gain knowledge from
Nl artifacts by means of Nlp and Ml technologies (see P1-P4 and P6-P10), SoFeX
must provide a syntactical correct and cleansed textual basis first to ensure high quality
results. Thus, the preparation of the user manual consists of the three main steps user
manual revision, document preparation, and terminology-related (Tr) preprocessing,
which are explained in detail in the upcoming sections.

4.3.1 User Manual Revision (manual, optional)

Nlp techniques, especially PoS-related techniques, require a syntactically correct textual
basis in order to deliver correct and expected results. Therefore, before applying the
Nlp-related tasks of SoFeX, an initial user manual revision may be necessary in order to
ensure syntactical correctness. This process step is optional as it depends on the provided
user manual syntax: in case the user manual is already syntactically correct, it is not
necessary to revise it. The effort for the revision obviously depends on the quality of the
user manual and furthermore the linguistic abilities of the individual to perform that
task. Besides information assignment (see Section 4.5.2), this process step is the only
fully manual task to to be carried out in context of SoFeX. Nevertheless, the revision
can be performed by a non domain expert: a student from Translation Studies revised
the second section of the Gdc user manual.

41

CHAPTER 4. SOFTWARE FEATURE EXTRACTION (SOFEX)

4.3.2 Document Preparation (automated)

The preparation of the document aims to extract the Nl test and corresponding structural
(meta) information from a user manual written in Microsoft Word (*.docx).

Figure 4.3: Document Preparation (left: user manual excerpt, right: Dataset)

The extraction of Nl text data and structural information (e.g., bullet point, heading,
etc.) from *.docx files is - in comparison to other document formats (e.g., *.pdf) - of
low complexity by means of open source Apis (e.g., Apache POI1). SoFeX extracts and
furthermore transforms the Nl text into an internal data model (Dataset) which eases
further SoFeX tasks (see right-hand side of Figure 4.3).

A user manual can contain both Nl text and associated images (see left-hand side of
Figure 4.3). SoFeX processes Nl text only. Basically, Nl text is organized in paragraphs
which contain at least one sentence (see, e.g., red, green, and yellow rim). A sentence
can be either complete (red rim) or incomplete (yellow rim). In contrast to a complete
sentence, an incomplete sentence does not necessarily contain a subject or a predicate.
Furthermore, a complete sentence conveys a complete thought and thus, does not lack
grammatical components (Ward and Woods, 2013).

The content of a user manual is usually structured (e.g., (sub-)sections, bullets, listings)
which conveys additional implicit semantic information to the reader. As an example, a

1https://poi.apache.org/

42

4.3. INFORMATION IDENTIFICATION (SEMI-AUTOMATED)

listing may indicate a conjunction of the listed sentences. A structural information of a
sentence corresponds to the style sheet of the sentence in the Microsoft Word document.
In context of SoFeX the structural information is called sentence type. Investigations
of the Gdc user manual showed that sentence types are not sufficient on their own to
identify software feature-relevant sentences like suggested in P5. Nevertheless, SoFeX
uses sentence types to identify software feature-irrelevant sentences (see Section 4.3). In
context of SoFeX and the Gdc user manual, 8 different sentence types were identified
(see blue square brackets on the left-hand side of Figure 4.3):

• text refers to normal text which is part of a section which does not semantically
belong to another sentence type (e.g., bullet, sub-bullet, step, result).

• bullet refers to the text after a bullet (bullet heading)

• bullet text refers to text below a bullet which semantically belongs to the bullet

• sub-bullet refers to the text after a sub-bullet (sub-bullet heading)

• sub-bullet text refers to text below a sub-bullet which semantically belongs to
the sub-bullet

• step refers to the text which belongs to the “step” area in the Gdc user manual
(indicated by the “step” icon)

• section refers to the text which names a corresponding section

• result refers to the text which belongs to the “result” area in the Gdc user manual
(indicated by the “result” icon).

Figure 4.4 shows two examples of style sheets which are used in the Gdc user manual:
“1Section_1” refers to the sentence type section whereas “GDC Text normal bulletpoint”
refers to the sentence type bullet point. As mentioned, the sentence types are used in the
subsequent process steps (see Section 4.3) in order to reduce the amount of data to be
further analyzed (software feature-irrelevant sentences).

Figure 4.4: Sentence Type Examples

SoFeX extracts the Nl text as well as the corresponding sentence types from the

43

CHAPTER 4. SOFTWARE FEATURE EXTRACTION (SOFEX)

user manual by means of the Apache Poi Api (indicated by Parser in Figure 4.3).
Furthermore, SoFeX applies some minor automated adjustments to correct wrong
sentence types which are wrongly defined by the author of the user manual. The patterns
of the wrong sentence types were uncovered while analysing the Gdc user manual:

• a sentence of type “text” cannot directly be followed by a sentence of type “sub-
bullet” and is therefore changed to type “bullet”

• a sentence of type “bullet” cannot directly be followed by a sentence of type
“sub-bullet text” and is therefore changed to type “bullet text”

• a sentence of type “section ” cannot directly be followed by a sentence of type
“bullet text” and is therefore changed to type “text”

4.3.3 Terminology-related (TR) Preprocessing (automated)

Based on the extracted Nl text (sentences) and sentence types in the Dataset, Tr
preprocessing aims to generate a parse tree for each sentence. But, in order to ensure
parse trees of high quality, the Nl text needs to be cleansed in order to remove possible
textual noise. Thus, SoFeX applies some lexical text modifications:

1. lowercasing (e.g., GDC → gdc)

2. removing line breaks in sentences

3. indication of quoted phrases.

Lowercasing and removing line breaks are typical preprocessing tasks (see, e.g., Aggarwal
and Zhai, 2012a). On the other hand, the indication of complex phrases as a single word
(string encoding, see, e.g., Ghosh et al., 2014) is not frequently used in preprocessing tasks.
Nevertheless, it allows to increase the accuracy of parse trees generated by means of a
PoS parser. Quoted phrases are indicated by bundling the words in between the quotes
with delimiters and through adding a prefix. Both delimiter and prefix are defined to be
“Qd”. As an example, the sentence press the button “test the efficiency” becomes press
the button QdtestQdtheQdefficiency. After these textual modifications, the sentences
are tokenized and parsed by means of the toolkit Stanford CoreNlp2. The Stanford PoS
parser generates a parse tree for each sentence. The parse trees are then added to the
sentence in the Dataset.

4.3.4 Terminology Extraction (semi-automated)

Terminology Extraction deals with the extraction of a domain-specific terminology
(domain terminology in short) from the user manual. A domain terminology consists

2http://nlp.stanford.edu/software/lex-parser.shtml

44

4.3. INFORMATION IDENTIFICATION (SEMI-AUTOMATED)

of a set of domain-specific terms (domain terms, see Section 2.4). The domain terms
are required to further identify potentially software feature-relevant sentences (see,
e.g.,Wimalasuriya and Dou 2010) in the Gdc user manual similar to P7. Investigations
of the Gdc user manual showed that the identification of potentially software feature-
relevant sentences by means of a domain terms performs with high precision and recall
and outperforms other automated approaches (see Sections 5.2.1 and 5.3.2).

Most articles from the Slr provide approaches to extract domain-specific information in
general (P1,P2,P4,P6,P9, and P10). All these approaches can be applied fully automated.
P1 extracts terms (feature candidates) by means of statistical computation based on
Tf-Idf. P2 use graph-based methods to extract terms that correspond to features. The
approach identifies important terms by means of a collocation algorithm. P4, P6, and P10
use syntactic and linguistic patterns to identify domain-specific terms that correspond to
features. The main problem is that they lack precision, recall or both (see Section 5.3.1).
Therefore, SoFeX provides a semi-automatic syntactic pattern-based (see P4, P6, and
P10) approach to extract domain terms with high precision and recall (see requirement
R.5). Indeed, the effort to extract domain terms increases in comparison to a fully
automated approach (see requirement R.4) but the quality of the extracted domain terms
significantly outperforms automated approaches which is considered more important.

In a nutshell, Terminology Extraction of SoFeX automatically extracts and presents
a list with candidate domain terms to a domain expert who then semi-automatically
validates the list meaning who the chooses the true domain terms. An overview of this
process is depicted in Figure 4.5. The two process steps within Terminology Extraction,
namely Candidate Extraction and Term Validation are described in detail in the following
sections.

Term
Validation

Candidate
Extraction

Candidate
List

Domain
Termi-
nology

Dataset

Figure 4.5: Terminology Extraction Process

4.3.4.1 Candidate Extraction (automated)

Candidate Extraction aims to extract domain term candidates (candidates in the following)
from the user manual. Therefore, the parse trees of the sentences in the Dataset serve as
data source. First, by means of PoS patterns, all noun phrases (Np, see Table A.1 in

45

CHAPTER 4. SOFTWARE FEATURE EXTRACTION (SOFEX)

Section A.1 of the Appendix) which contain at least one noun (Nn, Nns, Nnp, or Nnps)
are extracted (Tregex pattern Np < /Nn.?/) and uniquely stored in a candidate list. In
a second step, the list is automatically revised:

1. all words and phrases from the noun phrases whose PoS tag is not equal to either a
noun (Nn.?), a verb (Vb.?), an adjective (Jj), or an adverbial phrase (Advp) are
removed

2. all quoted phrases which are indicated by the prefix Qd are remove (see 4.3.3)

3. each single word of each n-gram is added to the candidate list, e.g., based on the
word material list which is contained in the candidate list, the words material and
list are added to the candidate list (called candidate split)

4. sort the candidate list along two dimensions: first, ascending along the candidates’
number of words; second, alphabetically ascending (e.g., material is sequenced
before batch size in the candidate list).

Finally, a comprehensive list of unique terms is provided for the term validation. The
terms can be validated in two different ways, full and minimal (see Section 4.3.4.2).

4.3.4.2 Term Validation (semi-automated)

In a next step, a domain expert validates the candidate list in order to explicitly
determine true domain terms. The domain terms are particularly used by SoFeX
to identify potentially software feature-relevant sentences. Evaluations show that the
identification does not necessarily require a complete domain terminology (see Sections
5.3.2). Thus, in context of SoFeX, two different domain term validation strategies are
provided, namely a minimal and a full candidate validation (see Figure 4.6). Following the
full candidate validation, a domain expert requires to validate each single candidate
of the candidate list. In order to “ease” the validation, the candidates are provided to
the domain expert in a context-sensitive order: after validating a specific termi (e.g.,
“material”), the domain expert next needs to validates all terms which contain termi

(e.g., “batch material”, “material list”). As an example, in Figure 4.6(a), the domain
expert defines “batch” to be a domain term (see 1). The subsequent candidate in the
candidate list is “box”. But, in order to remain in the context of the validated term
“batch”, the domain expert is now provided all candidates which contain “batch” (“batch
size” and “material batch”, see 2 and 3). After the domain expert validates each of
the context-sensitive candidates, the domain expert proceeds in validating the initially
subsequent candidates (e.g., “box”, see 3). The output of a full candidate validation is
called a full domain terminology (Ft) and represents a complete domain terminology.

On the other hand, a minimal candidate validation automatically “skips” context-

46

4.3. INFORMATION IDENTIFICATION (SEMI-AUTOMATED)

sensitive candidates and thus decreases the number of domain terms to be validated
by the domain expert. Thus, if, e.g., material is already considered to be a domain
term, all other terms to be validated which contain the word material (e.g., material list)
are considered to be irrelevant and thus non-domain terms in the course of a minimal
candidate validation. The idea is that if, e.g., a sentence which contains the term material
list will anyway be identified to potentially contain software feature-relevant information
because it contains the word material. The advantage of a minimal candidate validation
in contrast to a full candidate validation is that the validation effort decreases by about
20% (see Section 5.3.4). As an example, in Figure 4.6(b), the domain expert defines
“batch” to be a domain term (see 1). In contrast to a full candidate validation, the
context-sensitive candidates (“batch size” and “material batch”) are automatically filtered
(considered to be not domain specific) from the candidate list (see 2) and the domain
expert is provided the subsequent candidates in the list (“box”, see 3). In general, it is
important to consider that a candidate which contains a domain term is not necessarily
considered to be a domain term too (e.g., material is a domain term, material view is
not a domain term, according to the domain terminology gold standard). The output of
a minimal candidate validation is called a minimal domain terminology (Mt) and does
typically not represent a complete domain terminology.

batch
box
...
batch size
...
material batch
...

1

2

3

?

?

?4

2

3
Validator

(a) Full Candidate Validation

batch

box

...

batch size

...

material batch

...

?

x
x

1

3

2

2
Validator

(b) Minimal Candidate Validation

Figure 4.6: Different Types of Terminology Candidate Validation

On the one hand, creating a full domain terminology is more time consuming compared
to creating a minimal domain terminology, but a full domain terminology provides
detailed domain insights in a specific domain as it usually captures more domain terms
than a minimal domain terminology. On the other hand, creating a minimal domain
terminology requires less manual effort. For a detailed evaluation see Section 5.3.2.

4.3.5 Software Feature-relevant Sentence Identification (automated)

Software Feature-relevant Sentence Identification aims to identify sentences which poten-
tially contain software feature-relevant information by means of a domain terminology.

47

CHAPTER 4. SOFTWARE FEATURE EXTRACTION (SOFEX)

Similar to P7, SoFeX determines all sentences which contain at least one domain term.
These sentences are then considered to potentially contain software feature-relevant
information. Vice versa, all the other sentences which do not contain a domain term are
considered software feature-irrelevant and are not used for further analysis and processing
(see A in Figure 4.7)

5

5

1

3

4

2

1

5

A

[Section]

[Section]

[Bullet]

[Text]

[Step]

[Result]

[Text]

[Text]

[Text]

[Bullet Text]

[Bullet]

Figure 4.7: Information Filtering Example

Figur 4.7 shows an excerpt of the Gdc user manual and filtered sentences and phrases.
The grey shaded rectangles indicate the sentence type of a corresponding sentence. In that
context, the following five exclusion patterns which allow to automatically determine
software feature-irrelevant sentences or phrases in sentences were uncovered in the course
of Gdc user manual investigations:

1. phrases in brackets (see 1 in Figure 4.7)

2. phrases or sentences starting with “e.g.” (see 2 in Figure 4.7)

3. phrases or sentences including at least one of the domain specific stop words

48

4.4. INFORMATION EXTRACTION (AUTOMATED)

“section”, “figure”, “example”, “table”, “chapter”, or “picture” (see 3 in Figure
4.7)

4. phrases or sentences which represent formulas (see 4 in Figure 4.7)

5. sentences of the types section, result, and step (see 5 in Figure 4.7).

The output of the Software Feature-relevant Sentence Identification is a set of potentially
software feature-relevant sentences which serves as the basis to extract atomic software
feature-relevant information in the next step.

4.4 Information Extraction (automated)

SoFeX uses information extraction in two different contexts, namely (a) the extraction
of domain terms from the user manual (see Section 4.3.4) in order to identify potentially
software feature-relevant sentences and (b) the extraction of atomic software feature-
relevant information from the software feature-relevant sentences. According to R.3,
atomic software feature-relevant information has to be as simple as possible. “Simple”
in context of sentences refers to the complexity of transmitted thoughts with a single
sentence: an atomic (simple) sentence conveys a single thought or information whereas
a complex sentence conveys more than one thought (e.g., combined by a conjunction
”and“). Similar to P4, SoFeX applies a rule-based information simplification (see Section
4.4) which is used to reduce the complexity of sentences and furthermore separate the
information included in sentences.

FRSs
IR Prepro-

cessing
FRI

Extraction

Parse
Trees

atomic
FRI

Figure 4.8: Information Extraction

Figure 4.8 shows an overview of the information extraction of SoFeX. It consists of
the two steps information-related preprocessing and software feature-relevant information
extraction which are explained in detail in the following two sections. Information-related
preprocessing aims to provide parse trees of the potentially software feature-relevant
sentences with a high accuracy to extract atomic software feature-relevant information in
a next step by means of syntactic patterns.

49

CHAPTER 4. SOFTWARE FEATURE EXTRACTION (SOFEX)

4.4.1 Information-related (IR) Preprocessing (automated)

Similar to P4, SoFeX extracts atomic software feature-relevant information based on
syntactic patterns in parse trees. Thus, SoFeX highly depends on correct parse trees.
Similar to Tr preprocessing (see Section 4.3.3), the Stanford PoS parser generates a
parse tree for each sentence. SoFeX does not reuse the parse trees generated during Tr
preprocessing (see Section 4.3.3) because their accuracy is not sufficient enough. Thus,
SoFeX applies textual modifications (see Section 4.4.1.1) on the potentially software
feature-relevant sentences first. These sentences are then used by the Stanford PoS
parser to create parse trees. Finally, parse tree transformations (see Section 4.4.1.2) are
applied on the parse trees. These measurements allow to significantly increase the parse
tree accuracy (see Section 5.2.2).

4.4.1.1 Terminology-based textual modifications (automated)

From a syntactical point of view, each domain term represents a (complex) noun. Thus,
the domain terms in the potentially software feature-relevant sentences are indicated
(e.g., “material list” → “DTmaterialDTlist”), similar to the quoted phrases in course of
the lexical-based textual modifications during Tr preprocessing (see Section 4.3.4). The
consequence is that the PoS parser treats the indicated terms as single nouns instead
of trying to parse the terms separately (see, e.g., Ghosh et al., 2014). As an example,
Figure 4.9 shows the difference of the parse trees: Figure 4.9(a) treats the domain term
“gdc” as verb (blue rim) which is actually incorrect and furthermore distorts the entire
parse tree structure. Figure 4.9(b) shows the same sentence with the lexical modifications
applied. Here, “DTgdc” is correctly treated as a noun (blue rim) and thus the entire
parse tree becomes correct.

 the user tries to open the material list,
 but gdc detects invalid test data
l
(S
l(NPl(DTlthe)l(NNluser))
l(VP
ll(VPl(VBZltries)
lll(S
llll(VPl(TOlto)
lllll(VPl(VBlopen)
llllll(NPl(DTlthel(NNlmaterial)l(NNllist))))))
ll(,l,)
ll(CClbut)
ll(VPl(VBPlgdc)
lll(NP
llll(ADJPl(JJldetects)l(JJlinvalid))
llll(NNltest)l(NNSldata))))))

(a) Without textual modifications

 the user tries to open the DTmaterialDTlist,
 but DTgdc detects invalid DTtest data

(S
 (NP (DT the) (NN user))
 (VP (VBZ tries)
 (S
 (VP (TO to)
 (VP (VB open)
 (NP (DT the (NN DTmaterialDTlist)))))))
(, ,)
(CC but)
(S
 (NP (NNP DTgdc)
 (VP (VBZ detects)
 (NP (JJ invalid) (NN DTtest) (NNS data))))))

(b) With textual modifications

Figure 4.9: Parse tree accuracy increases with domain term (bold) bundling

50

4.4. INFORMATION EXTRACTION (AUTOMATED)

4.4.1.2 Pattern-based parse tree transformations (automated)

Parse tree transformations comprise corrections as well as adaptions to ease the extraction
of atomic information afterwards. Both tasks are applied fully automated. A detailed
overview of the patterns as well as corresponding transformations which are described in
the following is provided in the Annex.

1. Pattern-based parse tree corrections (automated). In total, 17 recurring
patterns (see Section B.1 in the Appendix) in parse trees are identified which indicate
incorrect parts of a parse tree in context of SoFeX. By means of Tregex (Levy
and Andrew 2006), which is a utility for matching patterns in parse trees, the
incorrect parts of a parse tree can be identified. Tsurgeon (Levy and Andrew
2006), which is a tree-transformation utility built on top of Tregex, allows to
manipulate the identified parse trees as desired. Figure 4.10 shows an example of an
incorrect parse tree (left-hand side), which is corrected (right-hand side) by means
of a Tregex pattern (tregexPattern compiled with the patternString) and a
Tsurgeon operation (surgery compiled with the surgeryString, see upper part).
The statement Tsurgeon.processPattern transforms each part of the parse tree
tree which equals the pattern tregexPattern according to the defined operation
surgery.

xROOT
$xNP
$$xNPxDTthe.xJJoptimal.xNNpack..
$$xNP
$$$xNP$xNNS$sizes..
$$$xPPxINof.
$$$$xNPxDTeach.$xNNP$material......

xROOT
$xNP
$$xNPxDTthe.xJJoptimal.xNNpack.$xNNS$sizes..
$$xPPxINof.
$$$xNPxDTeach.$xNNP$material.....

String$patternString$=$dNP=par$_y$xNP=del$<yxNP.xNP<$__=mov$_y$__=mov2..d;
TregexPattern$tregexPattern$=$TregexPattern-compilexpatternString.;
String$surgeryString$=$d[move$mov$>>,$par][move$mov2$_>$par][delete$del]d;
TsurgeonPattern$surgery$=$Tsurgeon-parseOperationxsurgeryString.;
Tree$tree$=$Tsurgeon-processPatternxtregexPattern[$surgery[$tree.;

Figure 4.10: Parse Tree Transformation Example in Java

2. Pattern-based parse tree adaptions (automated) Furthermore, 36 patterns
(see Section B.2 in the Annex) and corresponding Tsurgon operations were identified.
These patterns do not indicate wrong parts of a parse tree. They rather modify
the parse trees allowing to identify Lim elements at first glance and thus ease their
extraction. The applied transformations can be summarized in the following three
categories:

• Condense Complex Noun Phrases. Complex noun phrases are sometimes
hierarchically structured (see red rim on the left-hand side of Figure 4.11).
Thus, the structured noun phrase s are identified by Tregex patterns and are
furthermore condensed by corresponding Tsurgeon operations (see red rim on

51

CHAPTER 4. SOFTWARE FEATURE EXTRACTION (SOFEX)

the left-hand side of Figure 4.11).

(ROOT
 (S
 (NP (NN DSTpackaging)
 (NP (NN information)))))

(ROOT
 (S
 (NP (NN DSTpackaging) (NN information))))

Figure 4.11: Condense Complex Noun Phrases in Parse Trees

• Condense Complex Verb Phrases. Similar to complex noun phrases, complex
verb phrases exist. In parse trees, they are in general hierarchically structured
(see red rim on the left-hand side of Figure 4.12). Therefore, the structured
phrases are condensed into a single verb phrase (see red see red rim on the
right-hand side of Figure 4.12).

(ROOT
 (S
 (NP (DT the) (NN quantity))
 (VP (MD can) (RB not)
 (VP (VB be)
 (VP (VBN changed))))))

(ROOT
 (S
 (NP (DT the) (NN quantity))
 (VP (MD can) (RB not) (VB be) (VBN changed))))

Figure 4.12: Condense Complex Verb Phrases in Parse Trees

• Indicate Lim Entities. Finally, parse tree transformations are applied which
allow to indicate complements (e.g., preposition complement), modifiers, and
clauses (e.g., To Clause) according to the Lim model (see Figure 2.2 in Section
2.3), in order to ease their extraction. Therefore, several individual PoS tags
are defined:

– Npp preposition phrase as a noun phrase modifier (e.g., material of . . .),

– Npv verb phrase as a noun phrase modifier (e.g., amount entered. . .),

– Npw wh clause as a noun phrase modifier (e.g., materials which. . .),

– Npt to clause as a noun phrase modifier (e.g., alternative way to create. . .),

– Ppn noun phrase as a preposition complement (e.g., of the material. . .),

– Ppv verb phrase as a preposition complement (e.g., by using. . .),

– Ppw wh clause as a preposition phrase complement (e.g., for which. . .),

– Vpv verb phrase as a verb phrase complement (e.g., objects based on. . .),

– Vpp preposition phrase as a verb phrase complement (e.g., add material
by. . .),

– Vph that clause as a verb phrase complement (e.g., configure that. . .),

– Vpt to clause as verb complement (e.g., start to extract. . .),

– Vpc condition phrase as a verb phrase complement (e.g., ends when. . .),

– Vpw wh clause as a verb phrase complement (e.g., changes which allows

52

4.4. INFORMATION EXTRACTION (AUTOMATED)

to. . .),

(ROOT
 (S
 (NP (DT the) (NNPS DSTmaterials))
 (VP (VBP are)
 (VP (VBN consolidated)
 (PP (VBG according)
 (PP (TO to)
 (NP
 (NP (DT the) (NN DSTconsolidationDSTlevel))
 (VP (VBN selected)
 (PP (IN in)
 (NP (DT the) (NNP DSTconsolidationDSTgrid)))))))))

(ROOT
 (S
 (NP (DT the) (NNS DSTmaterials))
 (VP (VBP are) (VBN consolidated)
 (VPV (VBG according)
 (VPP (TO to)
 (PPN
 (NP (DT the) (NNP DSTconsolidationDSTlevel))
 (NPV (VBN selected)
 (VPP (IN in)
 (PPN (DT the) (NNP DSTconsolidationDSTgrid))))))))

Figure 4.13: Indicate Lim Complements and Modifiers in Parse Trees

The example in Figure 4.13 depicts some of the aforementioned parse tree
transformations related to the indication of Lim entities. The upper parse
tree depicts the result of the Stanford PoS parser. In contrast, the lower
parse tree results from the application of the parse tree transformations. The
different colors indicate the separate transformations applied (e.g., green: Np
is transformed to Ppn).

4.4.2 Software Feature-relevant Information Extraction (automated)

After successfully identifying potentially software feature-relevant sentences and adapting
their parse trees, atomic software feature-relevant information is extracted in four iterative
steps by means of syntactic PoS patterns.

1. Syntactic Information Extraction (automated). In a first step, potentially
software feature-relevant information is extracted from each sentence by traversing
the parse tree and determining relevant Lim elements iteratively by means of PoS
patterns (e.g., a preposition following a noun phrase like “number of reportables”
indicates a modifier of the type preposition phrase). On top-level, the following
Lim elements are extracted:

a) Subject (noun phrases + modifiers): a subject is defined to be represented by
a noun phrase (NP) in a sentence which is dominated by Root via an unbroken
chain (>+) of simple declarative clauses (S). (NP >+(S) ROOT). In Figure 4.13,
the subject is the first noun phrase (NP (DT the) (NNPS DSTmaterials)).
Similarly, after the extraction of the noun phrase, possible noun phrase

53

CHAPTER 4. SOFTWARE FEATURE EXTRACTION (SOFEX)

modifiers are identified and extracted by means of Tregex patterns.

b) Predicate (verb phrases + complements): a predicate is defined to be repre-
sented by a verb phrase in a sentence which is dominated by the Root via an
unbroken chain of S nodes (VP >+(S) ROOT). In Figure 4.13, the predicate
is the first verb phrase (VP (VBP are) (VBN consolidated). Similarly, af-
ter the extraction of the verb phrase, possible verb phrase complements are
identified and extracted by means of Tregex patterns.

c) Objects of predicates (noun phrases + modifiers): an object is defined to be
represented by a noun phrase in a sentence which is immediately dominated
by the predicate (NP > /%s/, where %s represents the predicate).

d) Conditional clauses: they may occur on top-level of a sentence (e.g., “If the
quantificator runs,...”) and are identified with the pattern SBAR|VPC [< IN |
< WHADVP] >+(S|VPC|SBAR) ROOT. It defines a conditional clause (SBAR|VPC)
to be immediately followed by a preposition (IN) or a Wh-adverb phrase
(WHADVP) and is dominated via an unbroken chain (>+) of simple declarative
clauses (S), conditional phrases as verb phrase complements (VPC), or clauses
introduced by a subordinating conjunction (SBAR).

e) Preposition phrase: similar to conditional clauses, preposition phrases may
occur on top-level of a sentence (e.g., “In the ’dates’ window,...”) and can be
identified with the pattern PP >+(S) ROOT. It defines a preposition phrase
(PP) on top-level to be dominated by ROOT via an unbroken chain (>+) of
simple declarative clauses (S).

Each potential software feature-relevant sentence results in exactly one unit of
potential software feature-relevant information which might not be atomic yet.

2. Information simplification (automated). In order to retrieve atomic units
of information, all conjunctions in phrases, clauses (except conditional clauses),
complements, and modifiers are resolved (see P4); each conjunction element becomes
part of a new atomic unit of information (see Figure 4.14). Conjunctions are
determined by means of the PoS tag CC.

3. Enumeration Resolution (automated). The user manual excerpt on the left-
hand side of Figure 4.15 shows a paragraph with a bullet list. Paragraphs which
contain bullet lists need to be resolved in order to retrieve atomic information (see
P4). Resolving a bullet list means to combine the potential software feature-relevant
information from the introducing sentence (e.g., The quantificator calculates) with
each potential software feature-relevant information of the related bulleted sentence
(e.g., the optimal pack size of each material), depending on the corresponding
syntax of the information (see Figure 4.15).

54

4.4. INFORMATION EXTRACTION (AUTOMATED)

The quantification runs automatically before
or is displayed or

.

The quantification process is based
and .

The quantification process is based
.

The quantification process is based
.

The quantification runs automatically before
is displayed.

The quantification runs automatically before
 is displayed.

The quantification runs automatically before
.

1

2

1.2

1.3

1.1

2.2

2.1

Figure 4.14: Information Simplification Example

The Quantificator calculates
 ...
 2.

The following materials are available:
 ..
 -

The Quantificator calculates

The material is available.

Figure 4.15: Enumeration Resolution Example

In total, 8 different syntactical patterns based on Lim elements are identified which
entail the combination of an initiating sentence (black sentences in Figure 4.15) and
a contextually related bulleted sentences (red and blue sentences in Figure 4.15).
If one of the following patterns is found in an initial sentence (Is), the bulleted
sentences (Bs) are appended to the initial sentences’ subject or predicate:

a) append Bs as object of Is.predicate (e.g., Is: “the quantificator calculates”,
Bs: “boxes for pricing” → “the quantificator calculates boxes for pricing”)

b) append Bs as (additional) complement of Is.predicate where no object of
Is.predicate exists (e.g., textscIs: “the quantity cannot be set to 0”, Bs:
“for mandatory associated items” → “the quantity cannot be set to 0 for
mandatory associated items”)

c) append Bs as (additional) complement of Is.predicate where an object of
Is.predicate exists (e.g., Is: “exclude optional ccc materials”, Bs: “on deal
level” → “exclude optional ccc materials on deal level”)

d) integrate Bs into Is.subject (e.g., Is: “the following values are available as
calculation base”, Bs: “batch size” → “the value batch size is available as
calculation base”)

e) integrate Bs in Is.predicate.object (e.g., Is: “the column XY accepts the
following values”, Bs: “partly edited” → “the column XY accepts the value
partly edited”)

f) append Bs as (additional) modifier of Is.predicate.object (e.g., Is: “the

55

CHAPTER 4. SOFTWARE FEATURE EXTRACTION (SOFEX)

customer role defines the credentials ”, Bs: “of a primary pricing customer”
→ “the customer role defines the credentials of a primary pricing customer”)

g) integrate Bs in Is.predicate.object.complement (e.g., Is: “the user can
collapse the environment list along the following levels”, Bs: “test ” → “the
user can collapse the environment list along the level test”)

h) integrate Bs in Is.predicate.object (e.g., Is: “the context menu offers
additional functionality as follows”, Bs: “’open log file’ ” → “the context
menu offers additional functionality ’open log file’ ”)

4. Syntactic Relevance Determination (automated). Finally, software feature-
relevant and software feature-irrelevant information is distinguished based on the
Lim syntax. A unit of information is syntactically relevant (and thus software
feature-relevant) if its syntax (based on the Lim elements) equals one out of 11
predefined patterns; else it is considered syntactically irrelevant and thus software
feature-irrelevant. A pattern defines the Lim-elements (e.g., subject + predicate
+ object) which need to be present in an atomic software feature-relevant unit of
information to be considered truly software feature-relevant (e.g., the quantificator
calculates materials.) On the other hand, each potentially software feature-relevant
information which does not match a predefined pattern (e.g., “The quantificator
runs.” contains only subject + predicate) is considered software feature-irrelevant.
Table 4.1 provides an overview of the different patterns which are considered
syntactical relevant.

Table 4.1: Syntactical Relevancy Patterns
Pattern Example

S - [(P - O) | P - CC] “quantificator starts quantification”, “quantificator starts if...”

S - (P - TH) “quantification indicates that...”

S - (P - TO - O) “quantificator starts to run quantification”

S - (P - TO - CC) “quantificator starts to run if...”

S - (P - PP - NP) “quantification can be started by user”

S - (P - (PP - VP - O)) “level is selectable by using views"

S - (P - (PP - NP)) “materials are used according to quantification”

S - (P - ADJ) “levels are available”

S - (P - CC) “levels indicate whether...”

S - P - PP “changes are reset by ...”

P - O - TO “start quantificator to ...” (any predicate complement)

S. . . subject, P. . . predicate, O. . . object, CC. . . condition clause, TH. . . that clause,

TO. . . to clause, PP. . . preposition phrase, VP. . . verb phrase, NP. . . noun phrase,

ADJ. . . adjective

56

4.5. INFORMATION ASSIGNMENT (SEMI-AUTOMATED)

4.5 Information Assignment (semi-automated)

In a last step, SoFeX aims to use the extracted atomic software feature-relevant infor-
mation in order to describe software features in detail. The initial idea was to cluster
the extracted atomic software feature-relevant information to software features in a fully
automated and unsupervised manner. Evaluations showed that it is not possible to
automatically uncover software features from scratch by means of clustering or topic
modeling algorithms with high precision and recall (see Section 5.2.4). Thus, SoFeX uses
a classification algorithm to recommend those software features to domain experts which
most likely appear to serve as the appropriate and therefore logically related software
feature to assign the extracted atomic FrI (see Figure 4.16). Information assignment in
SoFeX consists of the three steps assignment-related (Ar) preprocessing, learning, and
software feature knowledge enhancement which are described in the following sections.

AR.Prepro-
cessing Learning

Feature
Knowledge

Enhancement

Classification
Model

Feature
Document

atomic
FRI

Feature
Descript.

Feature
Hierarchy

Figure 4.16: Information Assignment Process

4.5.1 Assignment-related (AR) Preprocessing (automated)

Text classification applications typically use preprocessing in order to normalize text data.
In that context, normalization aims to remove noise and standardize words to it’s base
forms. Thus, SoFeX applies several subsequential steps to preprocess the textual entities
which are used for classification. The textual entities used in Information Assignment is
a set of atomic software feature-relevant information which needs to be assigned to the
corresponding software features derived from the Feature Document (provided by Roche).
The Feature Document contains a structured overview of all the software features from
Gdc with a short descriptions (see Figure 4.18).

The feature hierarchy represents the skeleton of the feature description. Figure 4.17
depcits the meta model of the Feature Hierarchy and Feature Description, respectively.
The meta model is based on the composite design pattern (see, e.g., Gamma, 1995)

57

CHAPTER 4. SOFTWARE FEATURE EXTRACTION (SOFEX)

Feature
Artifact

0..*

Software
Feature

FRI

Figure 4.17: Feature Hierarchy and Feature Description Meta Model

and defines a software feature to consist of another (sub-)software feature or an atomic
software feature-relevant information (FrI). Both, software feature and atomic software
feature-relevant information are subtypes of the abstract type feature artifact.

Similar to document preparation (see Section 4.3.2), the Apache Poi Api is used to
extract the Nl text from the Feature Document in the form of a *.doc and transform
it into an internal Feature Hierarchy which is similar to the Dataset (see Section 4.3.2).
Each heading in the Feature Document is transformed to a software feature and each
sentence is transformed to an atomic software feature-relevant information in the Feature
Hierarchy and assigned to its corresponding software feature (see Figure 4.18).

Feature 1: "general features"

Feature 1.1: "worklist overview"
 FRI 1.1.a: "view of the current..."
 FRI 1.1.b: "this includes..."

Feature 1.1.1: "handling of favorites"
 FRI 1.1.1.a: "give possibility..."

FEATURE DOCUMENT FEATURE HIERARCHY

Figure 4.18: Roche’s Gdc Feature Document Transformation

While transforming the Nl text of the Feature Document into the Feature Hierarchy,
several preprocessing tasks are applied. First, lowercasing transforms all text data to
lowercase characters. Second, regular expressions are used to remove non-letters (e.g.,
punctuation, numbers, arithmetic signs). Furthermore, by means of a generic stoplist
(see Section A.2 in the Annex), stop words are removed. Finally, the remaining words
are stemmed and lemmatized. As an example, the original text in the Feature Document
from Figure 4.18 ”View of the current work set of deals with a rich list of configurable

58

4.5. INFORMATION ASSIGNMENT (SEMI-AUTOMATED)

details“ is transformed to ”view cur work se deal rich list configur detail“ in the Feature
Hierarchy.

4.5.2 Learning (automated)

Basically, most classification algorithms cannot handle text data. If they can do it,
their running time is usually much longer compared to classification algorithms which
use numeric data (see, e.g., Hassan et al., 2011). Thus, SoFeX transforms the textual
representation of the text data into a Vsm representation (see Section 2.6.2) before
training the classifier. The classifier initially uses the atomic software feature-relevant
information from the feature hierarchy for learning purpose: each feature in the feature
hierarchy represents a ”class“ in the classifier and the related atomic software feature-
relevant information is used as training data for that specific class. The output of the
learning step is a trained classification model which serves as the basis for classification.
SoFeX uses Weka for classification tasks.

@attribute class5{1,1.1,1.1.1,1.1.2,...}

@attribute5view5numeric
@attribute5cur5numeric
@attribute5work5numeric
@attribute5se5numeric
@attribute5deal5numeric
@attribute5rich5numeric
@attribute5list5numeric
@attribute5configur5numeric
@attribute5detail5numeric

@data
{051.1,151,251,351,451,551,651,751}

Figure 4.19: Exemplary Classification Model (Weka Arff File)

Weka uses so called Arff files to persist a classification model. An example of an
Arff file is given in Figure 4.19. attribute declarations are represented as an ordered
sequence of @attribute statements. Each attribute statement uniquely defines the
name of that attribute (e.g., ”configur“) and its data type, in that case ”numeric“. Each
distinct and lemmatized word from each atomic software feature-relevant information
which was used for training purpose is captured in an attribute statement. The order
of the attributes defines the attribute index which is used in the data section (@data).
Class is a predefined attribute and represents a set of all possible classes (in case of
SoFeX the index of the features, see right hand side of Figure 4.18) a record can be
classified as. Each record in the data section corresponds to a single atomic software
feature-relevant information which was used for training purpose. The first data pair in
the record’s set (”0 1.1“) specifies the value of the attribute with the index 0 (class). Thus,
the record defines a training record for the feature ”worklist overview“ (see right hand

59

CHAPTER 4. SOFTWARE FEATURE EXTRACTION (SOFEX)

side of Figure 4.18). The subsequent data pairs (e.g., ”1 1“) indicate which attributes
are contained in the corresponding record. Related to the exemplary atomic software
feature-relevant information from Section 4.5.1 (”view cur work se deal rich list configur
detail“), the record ”1 1“ defines that attribute 1 (”view“) occurs once in the record; the
record ”2 1“ defines that attribute 2 (”view“) occurs once in the record, and so on.

4.5.3 Software Feature Knowledge Enhancement (manual)

In the last phase, the set of atomic software feature-relevant information is assigned to
the corresponding software feature in a semi-automated way. Basically, a domain expert
has to assign each atomic atomic software feature-relevant information to the desired
software feature in a manual way. Figure 4.20 shows the process of software feature
knowledge enhancement.

frij

Classification
Model

Classification
Recommended

Features
(Top-N)

Domain Expert

12

Assignment
frij to

featurek

3 4

uses

uses

calculates

updatesassigns

Figure 4.20: Feature Knowledge Enhancement Process

In context of Gdc, the feature hierarchy contains 373 features. Thus, a manual
assignment of a specific atomic software feature-relevant information without automated
support is very cumbersome and time consuming (which was observed by domain experts
during the creation of the feature-information assignment gold standard, see Section 5.2).
Therefore, SoFeX uses a classification algorithm which determines the likelihoods of a
logical relationship of an atomic software feature-relevant information frij ∈ FrI to each
software feature (see 1 in Figure 4.20). The likelihoods are then sorted in descending
order, and the top-N features are provided to the domain expert (see 2 in Figure 4.20).
Nevertheless, the domain expert needs to manually choose a featurek to assign frij (see
3 in Figure 4.20). After assigning frij to featurek, that assignment is used to update the
classification model (see 4 in Figure 4.20). The evaluation of Information Assignment
(see Section 5.2.4) compares an updateable version of the Naive Bayes classifier and the
Svm classifier which requires the entire classification model to be trained from scratch
every time new training data needs to update the classifier.

60

Part IV Treatment Validation

61

Chapter 5
Evaluation

This chapter contains the evaluations of SoFeX. Section 5.1 introduces the evaluation
environment as well as the research questions to be answered in context of the evaluations.
Basically, there are two different evaluations: the first (Section 5.2) uses the domain
terminology gold standards for the application of SoFeX, the second (Section 5.3) uses
the semi-automatically extracted domain terminologies from domain experts for the
application of SoFeX.

5.1 Introduction

The Gdc user manual contains more than 700 pages in its current version. The two
example sections chosen for evaluation comprise in total 50 pages. The sections contain
1161 complete as well as incomplete sentences. The sentences are distributed over
the different sentence types (see Section 4.3.2) as follows: 46.7% text (543 sentences),
29.6% bullet text (343 sentences), 7.9% bullet (92 sentences), 5.2% step (60 sentences),
3.9% section (45 sentences), 3.5% result (41 sentences), 2.3% sub-bullet text (27 sentences),
and 0.9% sub-bullet (10 sentences).

Generally, in order to evaluate the process steps of SoFeX, the following five gold
standards are used:

• minimal domain terminology (MtG) and full domain terminology (FtG)

• software feature-relevant sentences (FsG)

• parse trees (PtG)

• software feature-relevant information (FiG)

• software feature-information assignment (AsG).

The gold standards FtG, FsG, and FiG were created by collaborating Gdc experts with

62

5.1. INTRODUCTION

long-standing expertise in the field of Gdc. Each sentence of the user manual excerpt
was investigated and determined whether or not it contains software feature-relevant
information and domain terms: FsG contains 639 software feature-relevant and 521
software feature-irrelevant sentences, FtG contains 119 domain terms, and MtG contains
80 domain terms. MtG was automatically created as a subset of FtG (MtG ⊂ FtG): each
domain term (n-gram: n ≥ 2) in FtG which contains another domain term (m-gram:
m < n) is not considered in MtG. As an example, if material and material list are
domain terms in FtG, material is considered and material list is not considered as a
domain term in MtG). Nevertheless, a domain term in FtG which is not included in
MtG contains at least one word which is already a domain term in MtG. Furthermore,
the Gdc experts extracted the atomic software feature-relevant information from the
631 software feature-relevant sentences. In total, they determined 849 atomic software
feature-relevant units of information which are contained in FiG which resembles 1.36
software feature-relevant units of information per software feature-relevant sentence.
Each atomic software feature-relevant unit of information was then assigned by the Gdc
experts to its corresponding software feature which resulted in the AsG: the 849 atomic
software feature-relevant units of information were assigned to 73 out of 373 software
features, resembling 11.63 software feature-relevant units of information per software
feature. PtG was provided by a non-domain expert as there is no Gdc-specific knowledge
required.

Information
Identification

Information
Assignment

Information
Extraction

FS

AS

UserpManual
Revision ...

FRS
Identifica-

tion

Terminology
Extraction

DT

FI
IRpPrepro-

cessing
FRI

Extraction

PT

automated
processpstep

manual
processpstep

semi-automated
processpstep

artifactpin-/output

Legend

evaluatedpartifact

Figure 5.1: SoFeX Evaluation Overview

Figure 5.1 shows an excerpt of the process steps and corresponding created artifacts of

63

CHAPTER 5. EVALUATION

SoFeX which are evaluated:

• in context of Terminology Extraction, the extracted domain terminologies (Dt)
are evaluated in relation to FtG and MtG (see Section 5.3.1).

• in context of Information Identification the identified software feature-relevant
sentences (Fs) are evaluated in relation to FsG (see Sections 5.2.1 and 5.3.2).

• in context of Ir Preprocessing, the created parse trees (Pt) are evaluated in relation
to PtG (see Sections 5.2.2 and 5.3.3).

• in context of Information Extraction, the extracted set of software feature-relevant
information (Fi) is evaluated in relation to FiG (see Sections 5.2.3 and 5.3.4).

• in context of Information Assignment, the recommended assignment of software
feature-relevant information to corresponding software features (As) is evaluated
in relation to AsG (see Sections 5.2.4 and 5.3.5).

Table 5.1: Different Evaluations of SoFeX
(a) Evaluation 1 (Section 5.2)

Process Step Output Gold Standard Section

Information Identification software feature-relevant sentences (Fs) FsG 5.2.1

Ir Preprocessing parse trees of Fs (Pt) PtG 5.2.2

Information Extraction atomic software feature-relevant information (Fi) FiG 5.2.3

Information Assignment Feature Description (As) AsG 5.2.4

(b) Evaluation 2 (Section 5.3)

Process Step Output Gold Standard Section

Terminology Extraction domain terminologies (Ftn, Mtn) MtG, FtG 5.3.1

Information Identification software feature-relevant sentences (Fs) FsG 5.3.2

Ir Preprocessing parse trees of Fs (Pt) PtG 5.3.3

Information Extraction atomic software feature-relevant information (Fi) FiG 5.3.4

Information Assignment Feature Description AsG 5.3.5

Overall, the evaluations investigate two main aspects. The first evaluation (see Section
5.2) aims to determine to which degree SoFeX is able to extract software feature-relevant
information under ideal conditions (by using FtG and MtG). Table 5.1(a) provides an
overview of the different process steps of SoFeX which are evaluated in context of the
first aspect, their produced output, the gold standard the output is compared to, and the
corresponding section of the evaluation. Besides the three main building blocks of SoFeX
(Information Identification, Information Extraction, and Information Assignment; see
Figure 4.1 in Section 4.2), Ir Preprocessing is evaluated. Information Identification and

64

5.2. EVALUATION I

Ir Preprocessing use the domain terminology gold standards as input (FtG and FtG).

Based on the first evaluation, the second evaluation (see Section 5.3) aims to determine
if the usage of domain terminologies which are semi-automatically extracted by the domain
experts (Ftn and Mtn, where n equals to the corresponding domain expert) impact the
results of the software feature-relevant information extraction of SoFeX. Similar to Table
5.1(a), Table 5.1(b) provides an overview of the second evaluation. In contrast to the first
evaluation, the second evaluation is based on Ftn and Mtn: Information Identification
and Ir Preprocessing use Ftn and Mtn. Additionally to the first evaluation, the second
evaluation aims to evaluate Terminology Extraction and thus Ftn and Mtn in relation to
FtG and MtG. Both the first and the second evaluation provide results for the application
of SoFeX with minimal as well as full terminologies in order to investigate the impact
of different domain terminologies on the extraction results. Thus, the evaluations aim to
answer the following two primary research questions in the subsequent sections:

Q.1 To which degree, namely precision, recall, F1-score does SoFeX allow to semi-
automatically extract atomic software feature-relevant information from natural
language user manuals?

Q.2 To which degree do semi-automatically extracted domain terminologies impact
the quality of atomic software feature-relevant information extraction?

All the evaluations were performed on a computer with an Intel Core i5-4300U Cpu,
12 Gb of Ram and a x64 Windows 8.1.

5.2 Evaluation I

The first evaluation aims to answer Q.1 and therefore uses the domain terminology
gold standards. Figure 5.2 shows a detailed overview of the different evaluations in
context of SoFeX based on the full and a minimal domain terminology gold standards
MtG and FtG. The column Process Step depicts the selected key steps of SoFeX
which are evaluated: Information Identification (see Section 4.3), Ir Preprocessing (see
Section 4.4.1), Information Extraction (see Section 4.4.2), and Information Assignment
(see Section 4.5). The column Evaluation Setup shows the setups (input/output) for
the different process steps. With the given input (e.g., PtTP+Mt), the process steps (e.g.,
IxR+S+) generate output in the form of result sets (e.g., FiRE+Mt) which are then used
for evaluation. The column Gold Standards on the right-hand side of the figure lists the
different gold standards used for the evaluation per process step. Parse tree accuracy
is used to evaluate Ir Preprocessing, the standard metrics precision (P), recall (R) and
Fβ-score (Fβ) are used to evaluate Information Identification and Information Extraction.
In that context, F1-score is used rather than, e.g., F10, because precision is explicitly

65

CHAPTER 5. EVALUATION

Information
Identification

Information
Extraction

Exclusion.Patterns Exclusion.Patterns- +
IdE- IdE+

Syntactical.Relevancy Syntactical.Relevancy-
IxRE- IxR-E+

Syntactical.Relevancy

IxRE+

- +

Gold
Standard

Process

Step
Evaluation Setup

Id

Ix

FSG

FIG

IR.Pre-
processing

Textual.Modifications
Parse.Tree.Transformations

Pp
PTG

-
-

Textual.Modifications
Parse.Tree.Transformations

PpTP+PpTP-

+
+

PTTP-E+ PTTPE+MTG PTTPE+FTG

FSE+FTGFSE-FTG

FIRE-MTG FIRE+MTG FIRE+FTGFIR-E+MTG FIR-E+FTG

Legend:......MT.....minimal.domain.terminology.....................FT.....full.domain.terminology

...................FS.....feature-relevant.sentences........................FI.....feature-relevant.information

...................E+/-.....with/without.Exclusion.Patterns...............T+/-.....with/without.textual.modifications

...................R+/-.....with/without.syntactical.relevancy............P+/-.....with/without.parse.tree.transformations

...................FH.....feature.hierarchy..Pp+/-.....with/without.preprocessing

...................PT.....parse.tree...S/N.....SVM/Naive.Bayes.classification

input output-.without.........+.with

FTG MTG

FIRE-FTG

PTTP+E-MTG PTTP+E-FTG

FTG

MTG

Information
Assignment

As

ASGAsCl

FH

ASPp+N ASPp-NASPp+N ASPp-N

FTG

Dataset

Figure 5.2: Evaluations Overview (Gold Standards)

considered as important as recall (see R.5 and R.4) in order to avoid further manual
filtering. Therefore, the aim is to maximize the F1-scores. The results of this evaluation
are discussed in Section 5.2.5.

5.2.1 Information Identification (Id)

Information Identification uses the sentences of the Dataset (i.e. internal data model,
see Section 4.3.2) and a domain terminology as input and determines which sentences

66

5.2. EVALUATION I

are potentially software feature-relevant (e.g., FsE+FtG) and which are not. As outlined
in Section 4.3.4, each domain term in FtG which is not included in MtG (e.g., material
list) contains at least one word which is already a domain term in MtG (e.g., material).
As an example, the sentence “The material list shows annual materials” is considered
potentially software feature-relevant with both FtG and MtG: FtG contains the domain
terms material list and annual material which are found in the sentence, MtG contains
the domain term material which is found twice. Thus, MtG as well as FtG identify the
exact same sentences to be software feature-relevant. Therefore, only FtG is used to
evaluate Information Identification. Information Identification is performed with and
without considering exclusion patterns, namely IdE+ and IdE-: the comparison of the
results allows to determine the impact of exclusion patterns on Information Identification.
As a consequence, the following questions in relation to the evaluation of Information
Identification need to be answered:

Q1.1 To which degree (precision, recall, F1-score) does SoFeX allow to semi-automatically
identify software feature-relevant sentences in natural language user manuals?

Q1.2 Does the consideration of the exclusion patterns positively impact the identification
of software feature-relevant sentences?

Q1.1 can be answered by interpreting the values shown in Table 5.2: it depicts that
SoFeX identifies potentially software feature-relevant sentences without considering ex-
clusion patterns (FsE-FtG) with a precision and recall of 72.89% and 98.57%, respectively.
This results in an F1-score of 83.81%. Considering the exclusion patterns additionally to
domain terms (FsE+FtG, see Section 4.3.5), precision improves to 80.69% with unchanged
recall of 98.57%. Accordingly, the F1-score increases to 88.81%. Thus, the answer
to Q1.2 is that the consideration of exclusion patterns positively impacts Information
Identification.

Table 5.2: Evaluation Results for Information Identification

FsE-FtG FsE+FtG

Tp 625 625

Tn 294 370

Fp 227 151

Fn 6 6

R 98.57% 98.57%

P 72.89% 80.69%

F1 83.81% 88.81%

FSE[+|-]FTG = set of software Feature-relevant
Sentences (Fs) which was determined by us-
ing a Full domain Terminology Gold stan-
dard (FtG) with (E+)/without (E-) considering
Exclusion patterns

Additionally, clustering and classification algorithms are used to identify software
feature-relevant sentences in order to compare the results with the results from SoFeX’s

67

CHAPTER 5. EVALUATION

Information Identification. For (unsupervised) clustering, the two popular clustering
algorithms k-means (Km) and Expectation-Maximization (Em) are chosen because they
allow to predetermine the number of clusters before their application (see Section 2.6.3.3):
in context of Information Identification, a sentence can either be software feature-relevant
or software feature-irrelevant which corresponds to exactly two clusters. Furthermore,
Km and Em are widely used and well proven in the field of text clustering (see, e.g.,
Ghosh and Strehl, 2006). Classifying software feature-relevant sentences is performed
with the two classification algorithms Nb and Svm (see Section 2.6.3.2). Both Nb and
Svm are widely used in the field of text classification, outperform other classification
algorithms (see, e.g., Colas and Brazdil, 2006), and allow an easy application. In general,
classification algorithms require training data which is used to train a classification model
(see Section 2.6.3). In order to evaluate the classification of software feature-relevant
sentences, a standard 10-fold cross validation (see, e.g., Aggarwal and Zhai, 2012a) is
performed. In a 10-fold cross validation, the text data to be classified (e.g., feature-
relevant or feature-irrelevant sentences) is randomly partitioned into 10 groups of equal
size. A single group is used as test data and the remaining 9 groups are used as training
data which corresponds to a ratio of 9:1 for training to test data. The classification is
then repeated 10 times with each of the 10 groups used exactly once as test data. Each
repetition is referred to as fold. Finally, the precision, recall, and the F1-score of the 10
folds are averaged.

Km Em Nb Svm

Tp 533 381 598 514

Tn 59 158 313 396

Fp 432 332 177 94

Fn 128 281 64 148

R 55.23% 53.44% 77.16% 84.54%

P 80.64% 57.55% 90.33% 77.64%

F1 65.56% 55.42% 80.94% 83.23%

Table 5.3: Evaluation of Information Identification with Clustering and Classification

Table 5.3 shows the results of clustering in grey shaded, and classifying software feature-
relevant and software feature-irrelevant sentences. In general, classification outperforms
clustering as shown by the higher scores for recall, precision, and F1-score. Classification
is even able to perform similar to Information Identification by using domain terms
without considering exclusion patterns (FsE-FtG in Figure 5.2). Compared to Information
Identification considering exclusion patterns (see FsE+FtG in Figure 5.2), however, Svm
classification performs worse. Furthermore, classification is supervised and requires

68

5.2. EVALUATION I

training data in order to perform that well. As an example, if only the sentences from
the first section of the Gdc user manual (514 sentences) are used for classifier training
in order to classify the sentences from the second section of the Gdc user manual (638
sentences), the F1 score decreases from 83.23% to 45.03% for Svm. Here, the ratio for
training and test data is about 4.5:5.5. Thus, Information Identification by means of
domain terms and exclusion patterns can be considered appropriate regarding effort and
performance.

5.2.2 IR Preprocessing (Pp)

Ir Preprocessing uses domain terminologies and a set of potentially software feature-
relevant sentences as input. In context of this evaluation, it is investigated to which
degree the textual modifications and parse tree transformations of SoFeX impact Ir
Preprocessing and thus the parse tree accuracy of the generated parse trees. Therefore, Ir
Preprocessing was performed without textual modifications and parse tree transformations
(PpTp-) and with textual modifications and parse tree transformations (PpTp+) in order to
determine the impact of textual modifications and parse tree transformations on the parse
tree accuracy. Without textual modifications, Ir Preprocessing does not need a domain
terminology as input. Additionally, this evaluation investigates to which degree the parse
tree accuracy is impacted by using different domain terminologies. Thus, both MtG and
FtG are used as input for Ir Preprocessing. The evaluation is different compared to
Information Identification and Information Extraction: it solely evaluates the parse tree
accuracy of the generated parse trees from FsG. In the context of Ir Preprocessing, the
following research question need to be answered:

Q1.3 Is it possible to increase parse tree accuracy through automated textual modifica-
tions and parse tree transformations?

Q1.4 Is there a difference in the parse tree accuracy if minimal or full domain termi-
nologies are used as input for Ir Preprocessing?

The results for the evaluation of Ir preprocessing are depicted in Table 5.4. Without
considering textual modifications and parse tree transformations, the parse tree accuracy
of the generated parse trees from the 631 potentially software feature-relevant sentences
(FsE+FtG) is 82.17% using MtG (PtTP-E+MtG) and 83.54% using FtG (PtTP-E+FtG). By
applying the textual modifications and parse tree transformations based on MtG, the
corresponding parse tree accuracy PtTP+Mt increased to 94.81%; by using FtG, the
corresponding parse tree accuracy PtTP+Ft increased to even 98.43%. Thus, the answer
to Q1.3 is that the textual modifications and parse tree transformations allow to increase

69

CHAPTER 5. EVALUATION

the parse tree accuracy; in context of Q1.4, the usage of a full domain terminology for
Ir Preprocessing results in a higher parse tree accuracy compared to using a minimal
domain terminology.

Table 5.4: Parse Tree Accuracy for Ir Preprocessing

PtTP-E+MtG PtTP-E+FtG PtTPE+MtG PtTPE+FtG

82.17% 83.54% 94.81% 98.43%

PtTP[+|-]E+[MT|FT]G = set of Parse Trees (Pt) generated from
software feature-relevant sentences (identified by considering
Exclusion patterns - E+) with (TP+)/without (TP-) Textual
modification and Parse tree transformations by using a Full
(FtG) or a Minimum Terminology Gold standard (MtG)

5.2.3 Information Extraction (Ix)

Information Extraction requires the identified software feature-relevant sentences’ parse
trees as input to determine the set of atomic software feature-relevant units of in-
formation. This evaluation aims to investigate the impact of exclusion patterns and
syntactical relevancy on the recall, precision, and the F1 score of extracted atomic software
feature-relevant information as output of Information Extraction. Therefore, Informa-
tion Extraction is applied with and without considering exclusion patterns (E+|E-) and
syntactical relevancy (R+|R-). Furthermore, it is evaluated if there is a difference in
the recall, precision, and F1-score of the atomic software feature-relevant information
extracted from PtTPE+MtG and PtTPE+FtG. In that context, the following questions need
to be answered:

Q1.5 Does the consideration of exclusion patterns in Information Identification positively
impact the recall, precision, and F1-score of Information Extraction?

Q1.6 Does the consideration of syntactical relevancy positively impact the recall, preci-
sion, and the F1-score of Information Extraction?

Q1.7 Is there a difference in the recall, precision, and F1-score of Information Extraction
by using a minimal or a full domain terminology for the identification of potentially
software feature-relevant sentences?

Table 5.5 shows an overview of the different evaluations related to Information Ex-
traction. FiRE-Mt and FiRE-Ft represent the sets of atomic software feature-relevant
information extracted from the parse trees PtTP+E-Mt and PtTP+E-Ft, respectively. The
results are very similar: the recall is 98.82% and 99.06%, the precision is 76.75% and
77.23%, and the F1-score is 86.39% and 86.79% for FiRE-Mt and FiRE-Ft. In contrast,
using PtTPE+Mt and PtTPE+Ft which were identified by considering exclusion patterns
increases the precision with consistent recall for the extracted atomic software feature-
relevant information: the precision of FiR-E+Mt increased to 82.51% and the precision for

70

5.2. EVALUATION I

Table 5.5: Evaluation Results for Information Extraction

FiRE-MtG FiRE-FtG FiR-E+MtG FiR-E+FtG FiRE+MtG FiRE+FtG

Tp 839 841 839 841 821 823

Tn 300 301 375 378 494 495

Fp 251 250 176 173 57 56

Fn 10 8 10 8 28 27

R 98.82% 99.06% 98.82% 99.06% 96.69% 96.94%

P 76.75% 77.23% 82.51% 83.02% 93.37% 94.06%

F1 86.39% 86.79% 89.93% 90.33% 95.00% 95.48%

FiR[+|-]E[+|-][Mt|Ft]G = set of Feature-relevant Information (Fi) extracted from software feature-relevant sentences
(identified with (E+)/without (E-) Exclusion patterns) with (R+)/without (R-) considering syntactical Relevancy
by using a Full (FtG) or a Minimum Terminology Gold standard (FiG)

FiR-E+Ft increased to 83.02%. Thus, the answer to Q1.5 is that precision and F1 score
can be increased by considering exclusion patterns during Information Identification.
When considering syntactical relevancy during Information Extraction, the precision of
the extracted atomic software feature-relevant information can be increased to 93.37% for
FiRE+Mt and to 94.06% for FiR-E+Ft. The recall decreases slightly, because some units of
information which are actually software feature-relevant are syntactically irrelevant and
therefore are considered software feature-irrelevant. Thus, the answer to Q1.6 is that the
consideration of syntactic relevancy in Information Extraction increases the precision
with higher degree as it decreases recall. As a consequence, the F1-score can be increased.
According to Q1.7, the evaluations show that SoFeX works slightly better when using
a full domain terminology instead of using a minimal domain terminology with regard
to precision, recall, and F1-score. Overall, SoFeX allows to extract atomic software
feature-relevant information with an F1-score of 95.00% (FiRE+Mt) by means of MtG and
95.48% (FiRE+Ft) by means of FtG which answers Q.1.

5.2.4 Information Assignment (As)

Initially, Information Assignment was considered to cluster the atomic software feature-
relevant units of information into software feature clusters in an unsupervised way.
Therefore, the unsupervised clustering algorithm Hierarchical Agglomerative Clustering
(Hac) was applied. Hac works bottom-up and initially treats each data instance as
a single cluster. Iteratively, the clusters are merged based on some distance metrics
(here Euclidean distance) until all clusters have been merged into a single cluster which
contains all data instances (see, e.g., Aggarwal and Zhai, 2012a). In contrast to e.g.,

71

CHAPTER 5. EVALUATION

Km and Em, Hac does not require to know the number of clusters. The results show,
that only 17% of the atomic software feature-relevant units of information are correctly
clustered. Additionally, this approach would require to label the created clusters manually
by domain experts. Thus, (1) the performance regarding classification quality is too low
(see R.5 in Section 4.1) and would require additional manual correction effort and (2)
the effort to label the clusters is too high (see R.4 in Section 4.1) in order to consider
unsupervised clustering in SoFeX. Therefore, SoFeX uses classification algorithms in
order to recommend software features for a corresponding atomic software feature-relevant
information.

Information Assignment requires an extracted set of atomic software feature-relevant
information (FiRE+Mt and FiRE+Ft) as well as an existing feature hierarchy (Fh) as input
to assign each atomic software feature-relevant unit of information to its corresponding
software feature. Evaluations showed that there is only a minor impact in using FiRE+Mt
or (FiRE+Ft) on the results of Information Assignment because the sets are very similar
related to the atomic software feature-relevant information that is to be assigned to
software features. This occurs because the number of Tp which are to be assigned to
software features differs only slightly between the two sets: 821 in FiRE+Mt and 823 in
FiRE+Ft (see Table 5.5). Therefore, the following evaluation is based on FiRE+Ft and
aims to determine the best classification algorithm in order to recommend software
features for a corresponding atomic software feature-relevant information. Furthermore,
it is investigated to which degree preprocessing of the atomic software feature-relevant
information impacts the results of Information Assignment. Similar to the evaluation of
Information Identification (see Section 5.2.1), the two classification algorithms Nb and
Svm are chosen for consideration.

In context of Information Assignment, the following questions need to be answered:

Q1.8 Which classification algorithm provides best recommendation results?

Q1.9 To which degree does preprocessing affect recommendation results?

Table 5.6 shows an overview of the evaluation results related to Information Assignment.
The header of the table refers to the different sets of atomic software feature-relevant
information to software feature assignment as the result of Information Identification.
The lines Px list the precision for the different classification options: Paut (i.e. P1) refers
to a fully automated classification and PtN refers to the precision of the recommended
software feature within the top-N classified software features. Thus, e.g., Pt5 indicates
the precision that the correct software feature for a given atomic software feature-relevant
unit of information is listed in the top-5 recommended software features based on the
classification distribution. The lines tx refer to time values in relation to the classification:

72

5.2. EVALUATION I

Table 5.6: Evaluation Results for Information Assignment

!AsPp+S AsPp+S AsPp-S !AsPp+N AsPp+N AsPp-N

Paut 8.41% 8.77% 6.16% 13.86% 13.87% 7.07%

Pt3 8,41% 25.12% 18.13% 10.66% 19.79% 6.99%

Pt5 12.91% 47.16% 43.48% 21.68% 38.86% 19.79%

Pt10 28.20% 86.97% 77.01% 45.97% 69.08% 42.89%

tc 15ms 15ms 15ms 1.5ms

tu 0ms 8200ms 8200ms 0ms <1ms <1ms

ti 6100ms 28ms

AsCl[+|-][S|N] = set of software feature-relevant information Assigned to software features with (Pp+)/without (Pp-)
text preprocessing by using updated/not updated (!) Naive Bayes (N)/Svm (S) classification algorithm

1. tc: time (in ms) required to classify a single atomic software feature-relevant unit
of information

2. tu: time (in ms) required to update a classifier with a new assignment of a single
atomic software feature-relevant unit of information to its corresponding software
feature

3. ti: time (in ms) required to initially build the classifier with the 953 training
instances extracted form the Feature Document

(AsPp+S, AsPp-S, AsPp+N and AsPp-N) (!AsPp+S and !AsPp+N).
The first observation is that updated classifiers, in general, perform better compared

to classifiers which are not updated and only initially trained (indicated by the leading
callsign “!” in Table 5.6). The second observation is that an updated Svm, in general,
outperforms an updated Nb in relation to software feature recommendations: Svm
recommends software features with a precision of 25.12% for t3, 47.16% for t5, and
86.97% for t10 based on preprocessed text data (AsPp+S). In comparison, Nb recommends
software features with a precision of 19.79% for t3, 38.86% for t5, and 69.08% for t10
(AsPp+N). The tendency of the results is similar for a not-updated Svm (!AsPp+S) in
comparison to a not-updated Nb (!AsPp+N) classifier. In contrast, the performance of Nb
for a fully automated assignment (Paut) is higher compared to Svm, independent of the
used setting: Nb allows to automatically assign atomic software feature-relevant units of
information to software features with precisions of 13.86% (!AsPp+N), 13.87% (AsPp+N),
and 7.07% (AsPp-N). In contrast, the precisions of Svm are only between 6.16% (AsPp-S)
and 8.77%(AsPp+S). Overall, the answer to Q1.8 is that Svm performs better for software
feature recommendations while Nb outperforms Svm if atomic software feature-relevant

73

CHAPTER 5. EVALUATION

units of information are fully automated assigning to software features.
The main drawback of Svm is depicted in the lower part of Table 5.6: if a Svm

classifier needs to be updated, the time tu required for updating is in average 8200ms
per update and thus higher compared an average tu of 28ms to update an updateable
Nb classifier. The values provided for tu are average values: updating the Svm classifier
with the first assignment between an atomic software feature-relevant unit of information
and its corresponding software feature took about 4100ms. In contrast, the update of
the Svm classifier with the last assignment of the 849 atomic software feature-relevant
unit of information and its corresponding software feature took about 12300ms. This
occurs because each update of the Svm classifier rebuilds the entire classification model
with the training data. While the training data initially counts 952 records of assigned
software feature-relevant units of information extracted from the Feature Document,
the training data for the last update additionally contains the 849 records which were
manually assigned by the domain expert. In contrast, the updateable Nb classifier can
be updated with a new training record in <1ms. Furthermore, the recommendation of a
software feature for a single atomic software feature-relevant information lasts 15ms for
Svm compared to only 1.5ms for the Nb classifier. Summarized, the answer for Q1.9 is
that a Nb classifier performs faster compared to a Svm classifier related to classifying a
single instance, updating the classifier, and initially training the classifier.

5.2.5 Discussion

The evaluation of Information Identification (see Section 5.2.1) shows that the exclusion
patterns defined in context of SoFeX contribute to increase the recall of Information
Identification. They allow to identify sentences which are software feature-irrelevant in
context of the Gdc user manual. Nevertheless, in other domains some pattern might not
indicate software feature-irrelevant sentences: another domain expert might consider e.g.,
formulas, software feature-relevant. Thus, SoFeX allows to easily add or remove exclusion
patterns to/from a configuration file. The domain terminology-based identification of
software feature-relevant sentences outperforms approaches which use clustering and
classification algorithms. The major problem of these approaches is the sparsity of the
textual data (see, e.g., Phan et al., 2008; Rangrej et al., 2011): due to its shortness,
the text does not provide enough co-occurrence, common context or a meaningful term
frequency (mostly 1 per term in a sentence) in order to calculate appropriate similarity
measures. Thus, it is very difficult to determine the degree of similarity between short
texts.

The evaluation of Ir Preprocessing (see Section 5.2.2) shows that the applied textual
modifications and parse tree transformations allow to significantly increase the parse

74

5.2. EVALUATION I

tree accuracy. On the one hand, terminology-based textual modifications (see Section
4.4.1.1) can be used in other domains too without any customization: they indicate
complex nouns for a PoS parser and prevent incorrect PoS tagging (see, e.g., Figure
4.9). On the other hand, pattern-based parse tree transformations (see Section 4.4.1.2)
which are defined in context of the Gdc user manual, might lead to undesired results in
other domains: parse trees which are considered incorrect in the Gdc context might be
considered correct in another domain. Nevertheless, SoFeX allows to add, modify, and
delete patterns and corresponding operations in/from a configuration file.

Information Extraction allows to extract atomic software feature-relevant information
with an F1-score of up to 95.48% (see Section 5.2.3) based on domain terminology
gold standards. The evaluation shows that considering syntactical relevancy patterns
significantly increases the precision of the extracted atomic software feature-relevant units
of information (∼ +10%). But, syntactical relevancy also indicated true software feature-
relevant information to be software feature-irrelevant information (Fn, see Figure 5.2.3).
Thus, the precision decreases slightly (∼ -2%). As an example, the atomic information
“The correction factor can be switched off” consists of a subject (“The correction factor”)
and a predicate (“can be switched off”) in context of the Lim model (see Section 2.3).
Investigations showed that most units of information which correspond to the syntactic
Lim-based pattern “subject + predicate”, are considered software feature-irrelevant.
The reason is that a (at least the Gdc) user manual contains a lot of system status
notifications which follow that pattern (e.g., “The quantificator runs”) and are considered
software feature-irrelevant. Nevertheless, the positive impact of the syntactical relevancy
(∼ +10% precision compared with ∼ -2% recall) predominates.

Information Assignment aims to recommend logically related software features for
atomic software feature-relevant units of information. Evaluation show that updated
classifiers outperform not updated classifiers (see Section 5.2.4) with an updated Svm
classifier outperforming an updated Nb classifier. The reason is that updated classifiers
are provided a larger set of training data in form of continuously provided new data. Svm
usually tends to perform better compared to Nb because it considers the relations between
the “textual features” which correspond to terms whereas Nb treats them independently
(see, e.g., Dong and Han, 2004; Hassan et al., 2011). Although an updateable Svm
classifier performs better than an updateable Nb classifier in context of Information
Assignment, it is questionable if an average time to update the classification model
(and thus the time to wait for a domain expert to classify another atomic software
feature-relevant unit of information) of more than 8 seconds is acceptable in practice.

75

CHAPTER 5. EVALUATION

5.3 Evaluation II

The second evaluation aims to answer research question Q.2. Different to the the first
evaluation (see Section 5.2), this evaluation reports the evaluation results using domain
terminologies which are semi-automatically extracted by two domain experts from Roche:
Domain Expert 1 (Mt1 and Ft1) and Domain Expert 2 (Mt2, Ft2, and participant of the
FtG creation). The reason to use domain terminologies extracted by two different domain
experts is to (1) investigate the objectivity of domain terms (e.g., can the same domain
terms objectively be identified from different domain experts?) and (2) to determine the
impact of different domain terminologies on the results of the application of SoFeX.

Figure 5.3 shows a detailed overview of the different evaluations of SoFeX based on
semi-automatically extracted full and minimal domain terminologies. The evaluations
of Information Identification (see Section 5.3.2), Ir Preprocessing (see Section 5.3.3),
Information Extraction (see Section 5.3.4), and Information Assignment (see Section 5.3.5)
use metrics similar to the corresponding evaluations of the first evaluation (see Section
5.2). Additionally, Terminology Extraction (see Section 4.3.4) is evaluated by means of
precision, recall, and Fβ (see Section 5.3.1). In contrast to all the other evaluations, a
considerably higher value for β is used in order to determine the F-score because recall
is considered more important than precision in context of Terminology Extraction: it
is necessary to extract as many domain terms as possible to avoid overlooking software
feature-relevant sentences during Information Identification (see, e.g., Berry et al. 2012).
Finally, Section 5.3.6 discusses the results of the evaluation and primarily the impact of
different domain terminologies on the results of the application of SoFeX.

5.3.1 Terminology Extraction (Tx)

Several fully automated approaches to extract domain terminologies exist in literature
(see, e.g., Balachandran and Ranathunga, 2016; Kim et al., 2009; Venu et al., 2016),
most of them originating from the area of Ontology Learning and aiming at extracting
ontology concepts. Initially, the two approaches from Balachandran and Ranathunga
(2016) and Venu et al. (2016) were considered for SoFeX because of their promising
results, different strategies, and considerable effort to be implemented. But the evaluation
showed that neither approach was sufficient enough to be applied within SoFeX and
supported the decision to provide a semi-automated approach within SoFeX to extract
domain terminologies:

• The approach of Balachandran and Ranathunga (2016) considers multiple domain
corpora to extract domain terms from a specific domain. The idea is to weight
each term regarding it’s relation to the given domain. This approach extracted

76

5.3. EVALUATION II

Exclusion&PatternsN
IdE+

Syntactical&Relevancy

IxR+E+
N

Evaluation Setup

Textual&Modifications
Parse&Tree&Transformations

PpTP+

N
N

FT1

PTTPE+MT1 PTTPE+FT1

FSE+MT1 FSE+MT2

FIRE+MT1 FIRE+FT1

FT2

PTTPE+MT2 PTTPE+FT2

Term
Extraction

Information
Identification

Information
Extraction

Gold
Standard

Process

Step

Tx

Id

Ix

FSG

FIG

IR&PreB
processing

Pp

PTG

FSE+MT1FSE+MT2

TxF
Domain&Experts&1&F&2

<<perform>>

MT2MT1

TxM

<<perform>>

MTG

FTG

FIRE+MT2 FIRE+FT2

MT2MT1 FT1 FT2

Information
Assignment

As
ASG

AsCl

ASPp+SFT1 ASPp+NFT2

FH

Legend:&&&&&&MT&...&minimal&domain&terminology&&&&&&&&&&&&&&&&&&&&&FT&...&full&domain&terminology

&&&&&&&&&&&&&&&&&&&FS&...&featureBrelevant&sentences&&&&&&&&&&&&&&&&&&&&&&&&FI&...&featureBrelevant&information

&&&&&&&&&&&&&&&&&&&EN/B&...&with/without&Exclusion&Patterns&&&&&&&&&&&&&&&TN/B&...&with/without&textual&modifications

&&&&&&&&&&&&&&&&&&&RN/B&...&with/without&syntactical&relevancy&&&&&&&&&&&&PN/B&...&with/without&parse&tree&transformations

&&&&&&&&&&&&&&&&&&&FH&...&feature&hierarchy&&PpN/B&...&with/without&preprocessing

&&&&&&&&&&&&&&&&&&&PT&...&parse&tree&&&S/N&...&SVM/Naive&Bayes&classification

input output &&&&&&B&without&&&&&&&&&N&with

ASPp+SMT1 ASPp+NMT2

Dataset

Figure 5.3: Evaluation Overview (Domain Experts)

542 domain terms in total with the highest precision in the top-40 terms of 19.3%
(recall of 4.7%), and the highest recall of 34.1% (precision of 10.1%) in all 542
terms.

• The approach of Venu et al. (2016) aims to extract domain terms by means of the
Hits algorithm (Kleinberg, 1999). The algorithm recursively calculates scores for

77

CHAPTER 5. EVALUATION

hubs expressed by semantic relations and authorities expressed as nouns. Finally,
authorities that correspond to multi-grams and hubs that correspond to unigrams
with the highest scores constitute the domain terms. The approach extracted 973
domain terms in total with the highest precision in the top-10 terms of 27.3% (recall
of 1.8%), and the highest recall of 51.7% (precision of 3.2%) in all 973 terms.

As a first step, each domain expert performs Terminology Extraction twice to create a
minimal and a full domain terminology: Mt1 and Ft1 are created by Domain Expert 1
whereas Mt2 and Ft2 are created by Domain Expert 2. In general, the objectives of
the Terminology Extraction evaluation is to determine the objective identifiability of
domain terms, to investigate commonalities and variabilities in comparison to the domain
terminology gold standards, and to establish the effort for domain experts to extract
domain terminologies by means of SoFeX. Thus, the following questions need to be
answered:

Q2.1 Are there differences in the number of terms between the different domain termi-
nologies extracted by a specific domain expert (e.g., Mtn vs. Ftn)?

Q2.2 Are there differences in the number of terms between specific domain terminologies
extracted by different domain experts (e.g., Mtn vs. Mtm)?

Q2.3 To which extent do the domain terminologies extracted by domain experts cover
the domain terminology gold standards (e.g., MtG vs. Mtn)?

Q2.4 Is the manual effort to create a minimal domain terminology much lower compared
to the creation of a full domain terminology?

In total, the example sections of the user manual contain 1549 unique noun phrases.
After step 1 and 2 of the candidate revision (see Section 4.3.4.1), the candidate list is
reduced to 913 valid noun phrases (-41%). Afterwards, the candidate split is applied,
resulting in a candidate list of 1059 noun phrases. Finally, the candidate list is sorted
and then used as the basis for the semi-automatic term validation (see Section 4.3.4.2).

Table 5.7 shows an overview of the characteristics and metrics of the different domain
terminologies used. The two gold standards MtG and FtG contain 80 and 119 terms,
respectively. The table depicts that the minimal domain terminologies contain a much
lower number of domain terms compared to the corresponding full domain terminologies
which allows to answer Q2.1: Mt1 comprises 56.78% fewer terms than Ft1, Mt2 comprises
27.54% fewer terms than Ft2, and MtG comprises 37.77% fewer terms than FtG. Further-
more, the answer to Q2.2 is that the domain terminologies differ strongly with regard to
the number of domain terms among the different domain experts: while Domain Expert
1 determined 118 an 271 domain terms for Mt1 and Ft1, Domain Expert 2 determined

78

5.3. EVALUATION II

273 and 374 domain terms for Mt2 and Ft2, respectively. Thus, there exist differences
in the number of terms between domain terminologies extracted by different domain
terminologies. In order to answer Q2.3, the Jaccard coefficient (see, e.g., Chen et al.
2004) is used to compare the similarity of sets. It is defined as the size of the intersection
(e.g., #termsMtG

∩ #termsMt1
) divided by the size of the union (e.g., #termsMtG

∩
#termsMt1

) of the sets (e.g., Mt1 = (80-26)/(118+26) = 0.375) Overall, the similarity
between the domain terminologies created by the domain experts and the gold standards
is very low, between 18% and 38%.

The lower part of Table 5.7 shows the standard metrics. The number of true positives
Tp corresponds to the number of terms in the semi-automatically extracted domain
terminologies Mt1, Mt2, Ft1, and Ft2 which are contained in the corresponding domain
terminology gold standards MtG and FtG. The number true negatives Tn corresponds
to the number of term candidates which were truly determined to be not specific for the
Gdc domain by the domain experts. The precision for the semi-automatically extracted
domain terminologies ranges from 18.11% for Mt2 up to 45.76% for Mt1. In contrast,
the recall ranges from 60.00% for Mt2 and 80.67% for Ft2. Last, the table depicts three
F-scores with different β values in order to be able to draw conclusions regarding the
importance of precision and recall of domain terminologies in the subsequent process
steps. In general, the F-score increases with increased β because recall is throughout
higher than precision.

Table 5.7: Evaluation Results for Domain Terminology Extraction

MTG MT1 MT2 FTG FT1 FT2

terms 80 118 271 119 273 374

missing (Fn) 26 32 31 23

additional (Fp) 64 217 185 278

size diff. [%] +47.50 +238.75 +129.41 +214.29

similarity [%] 37.50 18.18 28.95 24.18

Tp* 54 48 88 96

Tn** 915 762 755 662

Precision [%] 45.76 18.11 32.23 25.67

Recall [%] 67.50 60.00 73.95 80.67

F0.5 [%] 48.91 21.05 36.33 29.72

F1 [%] 54.54 27.82 44.89 38.95

F10 [%] 67.18 58.66 73.01 78.99

* TP = #terms [M|F]TG - FN
** TN = 1059 - TP - FN - FP
[Mt|Ft][G|1|2] = Full (Ft) or a
Minimum (Mt) Terminology
produced by domain expert 1
or domain expert 2 in com-
parison to the Gold stan-
dards (grey shade).

In order to extract a full domain terminology, a domain expert has to validate each of
the 1059 single candidate term. In contrast, when creating a minimal domain terminology,
Domain Expert 1 validated only 822 candidate terms (-22%) . Thus, the answer to Q2.4

79

CHAPTER 5. EVALUATION

is that the effort to semi-automatically extract a minimal domain terminology is less
compared to extracting a full domain terminology. This occurs, because several candidate
terms which contain a validated domain term are not considered for further validation (see
Section 4.3.4.2). Nevertheless, each domain terminology is further used for Information
Identification in order to determine the impact of different domain terminologies on the
ability of SoFeX to identify software feature-relevant sentences.

5.3.2 Information Identification (Id)

Information Identification uses the sentences of the Dataset and a domain terminology
as input to determine which sentences are potentially software feature-relevant (e.g.,
FsE+Mt1) or which are not. In contrast to Information Identification with MtG and FtG

(see Section 5.2), Information Identification is only applied considering exclusion patterns
(IdE+). This is done as it was already shown that the application of exclusion patterns
increases the ability to identify potential software feature-relevant sentences correctly.
Furthermore, the results of Information Identification with semi-automatically extracted
domain terminologies are compared to the results of Information Identification using FtG

because it provided the best results (see Section 5.2.1). In that context, the focus of
our research questions moves to the usage of the domain terminologies extracted by the
domain experts:

Q2.5 Do semi-automatically extracted domain terminologies impact the recall, precision,
and F1-score of Information Identification?

Table 5.8 depicts the results of Information Identification with semi-automatically ex-
tracted domain terminologies (FsE+[Ft|Mt][1|2]) compared to Information Identification
with FtG (FSE+FtG, see Section 5.2). By means of semi-automatically extracted domain
terminologies, Information Identification achieves a recall of at least 91.79% for FSE+Ft2

up to 97.47% for FsE+Mt1 compared to a recall of 98.57% for FsE+FtG. The precision for
Information Identification with semi-automatically extracted domain terminologies is
between 78.54% for FsE+Ft1 and 80.16% for FsE+Mt2 compared to 80.69% for FsE+FtG.
Similarly, the F1-score for Information Identification with semi-automatically extracted
domain terminologies is between 85.44% for FsE+Ft2 and 87.52% for FsE+Mt1 compared
to 88.81% for FsE+FtG. Thus, the evaluation results allow to answer Q2.5: there is indeed
a dependency between the set of identified potentially software feature-relevant sentences
and the used domain terminology. Nevertheless, the results differ only slightly. Compared
to the metrics of the different domain terminology, Information Identification tends to
perform better the higher the precision of the domain terminology.

Table 5.8: Evaluation Results for Information Identification

80

5.3. EVALUATION II

FsE+FtG FsE+Mt1 FsE+Mt2 FsE+Ft1 FsE+Ft2

TP 625 616 597 613 579

TN 371 361 374 353 375

FP 150 160 147 168 146

FN 6 15 34 18 52

R 98.57% 97.47% 94.62% 97.16% 91.79%

P 80.69% 79.41% 80.16% 78.54% 79.92%

F1 88.81% 87.52% 86.79% 86.86% 85.44%

FsE+[Mt|Ft][G|1|2] = set of Feature-
relevant Sentences (Fs) which
was determined by considering
Exclusion patterns (E+) and using
a Full (Ft) or a Minimum (Mt)
Terminology produced by domain
expert 1 or domain expert 2 in
comparison to the Gold standard
(grey shade).

5.3.3 IR Preprocessing (Pp)

The domain terminologies from Domain Expert 1 ([Mt|Ft]1) and Domain Expert 2
([Mt|Ft]2) as well as the sets of identified potentially software feature-relevant sentences
(FsE+[Ft|Mt][1|2]) are used as input for Ir Preprocessing. In contrast to Ir Preprocessing
with domain terminology gold standards (see Section 5.2.2), Ir Preprocessing is applied
considering textual modifications and parse tree transformations as it was already
shown that their application increases the parse tree accuracy. In that context, the
research question aims to determine the impact of semi-automatically extracted domain
terminologies on Ir Preprocessing:

Q2.6 Do semi-automatically extracted domain terminologies impact Ir preprocessing?

Table 5.9: Parse Tree Accuracy for Ir Preprocessing

PtTPE+MtG PtTPE+Mt1 PtTPE+Mt2 PtTPE+FtG PtTPE+Ft1 PtTPE+Ft2

94.81% 94.12% 93.73% 98.43% 97.91% 96.32%

PtTPE+[Mt|Ft][G|1|2] = set of Parse Trees (PT) generated from software feature-relevant sentences (identified by
considering Exclusion patterns - E+) with Textual modification and Parse tree transformations (Tp+) by using a
Full (Ft) or a Minimum Terminology (Mt) produced by domain expert 1 or domain expert 2 in comparison to
the Gold standard (grey shade).

In context of minimal domain terminologies, Table 5.9 depicts that the parse tree
accuracy is at least 93.73% for PtTPE+Mt2 compared to 94.81% for PtTPE+MtG. By using full
domain terminologies, the parse tree accuracy is at least 96.32% for PtTPE+Ft2 compared
to 98.43% for PtTPE+FtG. Thus, the answer to Q2.6 is that semi-automatically extracted
domain terminologies affect the parse tree accuracy as a result of Ir Preprocessing to
only a minor degree. In contrast to Information Identification, Ir Preprocessing tends to
deliver more accurate results the higher the recall of the used domain terminology.

81

CHAPTER 5. EVALUATION

5.3.4 Information Extraction (Ix)

Information extraction requires the identified potential software feature-relevant sentences
as input to determine the set of atomic software feature-relevant units of information (e.g.,
FiRE+Mt1). Similar to information identification and Ir preprocessing, the evaluation of
information extraction is only performed with the optimal setting (IxR+E+, see Section 5.2).

In that context, the research question aims to determine the impact of semi-
automatically extracted domain terminologies on information extraction:

Q2.7 Do semi-automatically extracted domain terminologies impact Ir preprocessing?

Table 5.10: Evaluation Results for Information Extraction

FiRE+MtG FiRE+Mt1 FiRE+Mt2 FiRE+FtG FiRE+Ft1 FiRE+Ft2

TP 821 805 792 823 808 771

TN 494 494 488 495 493 495

FP 57 57 63 56 58 56

FN 28 44 57 26 41 78

R 96.69% 94.71% 93.15% 96.94% 95.05% 90.80%

P 93.37% 93.28% 92.61% 94.06% 93.19% 93.22%

F1 95.00% 93.99% 92.88% 95.48% 94.11% 92.00%

FiRE+[Mt|Ft][G|1|2] = set of Feature-relevant Information (Fi) extracted from software feature-relevant sentences
(identified with Exclusion patterns - E+) considering syntactical Relevancy (R+) by using a Full (Ft) or a Minimum
Terminology (Mt) produced by domain expert 1 or domain expert 2 in comparison to the Gold standard (grey
shade).

Table 5.10 presents the evaluation results for Information Extraction using sets of
potentially software feature-relevant sentences identified by using minimal domain ter-
minologies (FiRE+Mt[1|2]) and full domain terminologies (FiRE+Ft[1|2]). Using minimal
domain terminologies, the extracted sets of atomic software feature-relevant information
have a recall, precision, and a F1-score at least 93.15%, 92.61%, and 92.88% for FiRE+Mt2

compared to 96.69%, 93.37%, and 95.00% for FiRE+MtG. The metrics for Information
Extraction using full domain terminologies are similar: recall is at least 90.80% for
FiRE+Ft2 compared to 96.94% for FiRE+FtG; precision is at least 93.19% for FiRE+Ft1

compared to 94.06% for FiRE+FtG; F1-score is at least 92.00% for FiRE+Ft2 compared to
95.48% for FiRE+FtG. To answer Q2.7, the usage of semi-automatically extracted domain
terminologies impacts Information Extraction compared to using domain terminology gold
standards. Overall and similar to Information Identification, the results for Information
Extraction in relation to F1-score tend to be slightly better the higher the precision of
the extracted domain terminology.

82

5.3. EVALUATION II

5.3.5 Information Assignment (As)

Information Assignment requires an extracted set of atomic software feature-relevant
information (FiRE+Mt and FiRE+Ft) as well as an existing Feature Hierarchy (Fh) as input
to assign each atomic software feature-relevant unit of information to its corresponding
software feature. The results of the evaluation in Section 5.2.4 showed that the best
results for Information Assignment are achieved with (1) updated classifiers and (2)
text preprocessing before classification. Thus, similar to the evaluation of Information
Identification, Ir Preprocessing, and Information Extraction, the evaluation of Infor-
mation Assignment is only performed with the optimal setting (AsCl+S and AsCl+N, see
Section 5.2). In context of this evaluation, the research question aims to determine the
impact of semi-automatically extracted domain terminologies on Information Assignment:

Q2.8 Do semi-automatically extracted domain terminologies indirectly impact Informa-
tion Assignment?

Table 5.11: Evaluation Results for Information Assignment
(a) Information Assignment with Naive Bayes

AsPp+N AsPp+NMt1 AsPp+NMt2 AsPp+NFt1 AsPp+NFt2

Paut 13.87% 12.95% 12.85% 12.94% 12.93%

Pt3 19.79% 18.48% 18.33% 18.46% 18.45%

Pt5 38.86% 36.29% 36.00% 36.26% 36.23%

Pt10 69.08% 64.51% 63.99% 64.45% 64.40%

(b) Information Assignment with Svm

AsPp+S AsPp+SMt1 AsPp+SMt2 AsPp+SFt1 AsPp+SFt2

Paut 8.77% 8.19% 8.12% 8.18% 8.18%

Pt3 25.12% 23.46% 23.27% 23.44% 22.42%

Pt5 47.16% 44.04% 43.69% 44.00% 43.97%

Pt10 86.97% 81.22% 80.56% 81.15% 81.08%

Table 5.11 shows an overview of the different evaluation results related to Information
Assignment with Nb and Svm classifiers. The grey shaded columns refers to average
values of Information Assignment of based on minimal and full domain terminologies
with the optimal setting, taken from Section 5.2.4 for comparison purpose. Similar to
the evaluation of Information Assignment using the atomic software feature-relevant
gold standards (see Section 5.2.4), the evaluation provides the precision metrics for fully
automated classification (Paut) as well as software feature recommendation (top-N, PtN).

83

CHAPTER 5. EVALUATION

Basically, the results for Information Assignment using atomic software feature-relevant
information extracted by means of the domain terminologies from Domain Expert 1 and
Domain Expert 2 are consistently worse using Nb (see Table 5.11(a)) as well as Svm
(see Table 5.11(b)) compared to atomic software feature-relevant information extracted
by means of the domain terminology gold standards (AsCl+S and AsCl+S, grey shaded).
The main reason behind this finding is that each of the false positive atomic feature-
relevant information (see Section 5.3.4) is wrongly classified or recommended. Answering
Q2.8, using semi-automatically extracted domain terminologies does (indirectly) impact
Information Assignment.

5.3.6 Discussion

The evaluation of the domain terminologies (see Section 5.3.1) shows that the semi-
automatically extracted domain terminologies differ substantially regarding the number
of domain terms, missing and additional domain terms, and furthermore the domain term
coverage in comparison to the domain terminology gold standards. In particular, the
domain terminologies extracted by Domain Expert 2 differ strongly regarding the number
of captured domain terms in comparison to the corresponding domain terminology gold
standards: Mt2 and Ft2 contain by 238.75% and 214.29% more domain terms with a
coverage of 18.18% and 24.18%, respectively. In contrast, the domain terminologies from
Domain Expert 1, namely Mt1 and Ft1, contain “only” 47.50% and 129.41% more domain
terms than the corresponding domain terminology gold standards. This indicates that an
objective determination of domain terms is difficult in general: even domain experts from
the same domain might interpret the concept of a domain term differently. Furthermore,
it is actually difficult to reproduce an extracted domain terminology several times (e.g.,
by performing Terminology Extraction): Domain Expert 1 already participated in the
creation of the domain terminology gold standard FtG about two years before applying
the Terminology Extraction from SoFeX. Still, his extracted domain terminologies (Mt1

and Ft1 differ from the domain terminology gold standards.
Table 5.8 in Section 5.3.2 shows, that domain terminologies impact the identification

of potentially software feature-relevant sentences: depending on the terms captured in a
domain terminology, in particular the recall is affected (e.g., FsE+FtE+). This is because
the number of additional domain terms in the corresponding domain terminology lead
to an incorrect identification of potentially software feature-relevant sentences. As an
example, Ft2 contains 374 terms in total and 278 additional terms in comparison to the
gold standard (see FtG in Table 5.7 of Section 5.3.1). This leads to 52 sentences which were
wrongly identified to be potentially software feature-relevant compared to only 6 by using
FtG (see Fn in Figure5.8). This conclusion is additionally supported when considering that

84

5.3. EVALUATION II

Information Identification performs slightly better by using minimal domain terminologies
than using full domain terminologies with average F1-scores of 87.16% and 86.15%,
respectively. Nevertheless, Information Identification is not analogously impacted in
relation to the strongly differing domain terminologies. The reason behind is that the
domain experts were able to determine the domain terms which frequently occur in
software feature-relevant sentences.

Similarly, the usage of different domain terminologies also impacts Ir Preprocessing.
Table 5.9 in Section 5.3.3 shows that Ir Preprocessing using full domain terminologies
outperforms Ir Preprocessing using minimal domain terminologies based on the average
F1-scores: using full domain terminologies yield a parse tree accuracy of 97.12% compared
to 93.93% by means of minimal domain terminologies. This occurs because of the
interpretation of domain terms by the PoS parser: each n-gram domain term is treated
as a single word instead of n separate words which may result in different parse trees
as output of Ir Preprocessing. As an example, the PoS parser treats the phrase
“material list” differently depending on the domain terminology. On the one hand, a
full domain terminology Ftx contains the domain term material list. By applying the
textual modifications (see Section 4.4.1) the phrase is modified to “DTmaterialDTlist”
and furthermore correctly tagged as single noun by the Pos parser. On the other hand, a
minimal domain terminology (Mtx) does not contain material list but material. Thus, the
the phrase “material list” is modified to “DTmaterial list”. The Pos parser then identifies
“DTmaterial” as single noun and “list” wrongly as a verb which distorts the entire parse
tree. Thus, the more n-gram domain terms are captured in a corresponding domain
terminology, the more parse trees of potentially software feature-relevant sentences are
created correctly by the Pos parser.

Finally, using a minimal or a full domain terminology impacts the extraction of atomic
software feature-relevant information only slightly. Table 5.10 in Section 5.3.4 shows that
both, using a minimal as well as a full domain terminology, leads to similar results. The
average F1-scores are 93.44% using Mt and 93.06% using Ft. To answer the question,
which domain terminology needs to be created, therefore depends on two considerations.
First, the intended use of the domain terminology needs to be considered: a full domain
terminology contains a complete overview of domain terms and can thus be used for e.g.,
stakeholder communication. In comparison, a minimal domain terminology is usually not
complete (see Section 4.3.4). Second, the effort to extract a domain terminology needs to
be considered: the extraction of a minimal domain terminology is considerably faster
compared to the extraction of a full domain terminology (see Section 4.3.4). In order to
only extract atomic software feature-relevant information, a minimal domain terminology
is sufficient.

85

Part V Conclusion

86

Chapter 6
Discussion

This chapter discusses the effort needed to apply SoFeX per se as well as the effort needed
to adapt SoFeX for possible other contexts and domains (see Section 6.1). Section 6.2
discusses the threats to validity.

6.1 Application Effort & Adaption Need

Basically, SoFeX was designed with a focus on minimal manual effort (see requirement
R.4). Nevertheless, some process steps require human intervention to apply SoFeX
appropriately. Furthermore, SoFeX was designed in context of Roche’s Gdc user
manual. However, the design of SoFeX allows to customize several process steps and
characteristics in order to apply it in other contexts and domains. Thus, the following
two sections discuss the manual effort needed (1) to apply SoFeX on the Gdc user
manual and (2) to customize SoFeX in order to apply it to other domains and contexts.
The discussions provide an overview and estimation of the manual effort required to
apply SoFeX.

6.1.1 Manual Effort to Apply SOFEX

Based on experiences, the amount of manual work for the process steps User Manual
Revision (see Section 4.3.1), Terminology Extraction (see Section 4.3.4), and Information
Assignment (see Section 4.5) can be estimated. In total, the revision of the user manual
excerpts took approximately one hour (6 minutes per page in average). Nevertheless, the
time required strongly depends on the quality of the corresponding user manual to be
revised, the reviewer’s abilities, as well as the number of figures contained. Validating the
domain terminology took between 30 minutes for 822 domain term candidates (Mt1) and
60 minutes for 1059 domain term candidates (Ft2). Last, Information Assignment is the

87

CHAPTER 6. DISCUSSION

most costly task regarding manual effort. The creation of the software feature-information
gold standard which is the assignment of atomic software feature-relevant information
to the corresponding software features took approximately 5 hours (20 seconds per
atomic software feature-relevant unit of information in average) for 849 atomic software
feature-relevant units of information. In comparison, using the recommendations from
SoFeX, the effort decreased by approximately 70%, down to 1.5 hours which corresponds
to 6.5 seconds per atomic software feature-relevant unit of information using top-10
software feature suggestions. This is, because for more than 80% of the atomic software
feature-relevant units of information, the correct logically related software feature is listed
in the top-10 suggested software features.

Table 6.1: Manual Effort to Apply SoFeX (in hours)

Pages User Manual Revision Terminology Extraction Information Assignment Total

50 ∼0.5 ∼0.5 (∼850 candidates) ∼1.5 (∼850 units of inf.) ∼2.5 hours

500 ∼5 ∼1.5 (∼2.750 candidates) ∼15 (∼8.500 units of inf.) ∼21.5 hours

Table 6.1 depicts an overview of the effort required to apply SoFeX: for 50 pages,
the effort is 2.5 hours in order to enhance existing software features with corresponding
atomic software feature-relevant information. In order to extract atomic software feature-
relevant information from a user manual with 500 pages and enhance existing software
features with that information, the effort would increase to approximately 21.5 hours:
the effort for User Manual Revision and Information Assignment is increased tenfold.
However, the larger the training data (e.g., assigned atomic software feature-relevant
information) for the classification model of Information Assignment is, the more accurate
the recommended software features become. Hence, the average time to decide on a
software feature to assign the information might decrease. As already mentioned, in case
the user manual is syntactically correct, the entire effort for it’s revision is eliminated (see
Section 4.3.1). Investigations showed that there will not be a linear increasing amount
of new domain term candidates in new user manual sections. In context of the Gdc
user manual, 10% of the domain term candidates which were extracted from the second
exemplary section were already extracted from the first exemplary section and are thus
duplicates. Originating from approximately 20 domain term candidates per user manual
page 1 and a decrease of 10% of new domain term candidates (no duplicates) per 25 pages
(e.g., for the pages 26-50 -10% of new domain term candidates based on 500 domain
terms from the first section = 450 new domain terms) 2, the estimated number of domain

1 each of the two analysed user manual sections comprises about 25 pages and contained approximately
500 domain term candidates resulting in 20 domain term candidates per page

2 for the pages 51-75 -20% = 400 new domain terms, for the pages 76-100 -30% = 350 new domain

88

6.1. APPLICATION EFFORT & ADAPTION NEED

term candidates is about 2750 for a 500 pages user manual.

6.1.2 Manual Effort to Adapt SOFEX

Document Preparation (see Section 4.3.2) aims to extract Nl text and sentence types
from a user manual and provide an internal data representation. The sentence types
might differ from user manual to user manual, but can easily be adapted in a configuration
file of SoFeX. The sentence types represent the style sheets used in a corresponding
Word document(see Figure 4.4 in Section 4.3.2). Thus, they can be easily determined
resulting in low effort in exchanging them.

SoFeX identifies potentially software feature-relevant sentences by means of domain
terms, their sentence types, and exclusion patterns (see Section 4.3). The sentence types
are used to determine software feature-irrelevant sentences (see 5. in Section 4.3.5) and
correspond to style sheets within a Word document. The time required to identify the
relevant sentence types can only be estimated. Usually, there are only some style sheets
used in a document (e.g., headings, bullets, standard). Additionally, there exist a few
style sheets from the used style sheets (e.g., heading) which will most likely not contain
any software feature-relevant information (3 out of 8 in case of the Gdc user manual, see
5. in Section 4.3.5) and thus refer to software feature-irrelevant sentences. These style
sheets may be verified at first glance (e.g., by investigating the table of contents). Other
style sheets which do not indicate software feature-irrelevant sentences at first glance
must be investigated in detail. Nevertheless, based on experiences, the uncovering of
style sheets which indicate software feature-irrelevant sentences can be made with little
effort.

Similarly, the effort required to determine phrases and sentences which can be consid-
ered software feature-irrelevant (e.g., within brackets, containing the word “section”, 1.-4.
in Section 4.3.5) can be estimated. These lexical-based exclusion patterns are defined via
regular expressions in the configuration file of SoFeX. Basically, the exclusion patterns
are obvious because they usually appear frequently (e.g., references to sections and
figures, phrases enclosed in parentheses) and are thus easily determined. Nevertheless,
adding exclusion patterns is only worth as long as it significantly reduces the amount of
sentences to be further analyzed. The effort to determine and add exclusion patterns
can be considered low: in context of the Gdc user manual, all exclusion patterns were
identified after reading the first three pages of the first exemplary section.

Ir Preprocessing (see Section 4.4.1) aims to provide parse trees for each potentially
software feature-relevant sentence by means of a Pos parser. Furthermore, automated
textual and parse tree modifications are applied to increase the accuracy of the parse

terms, ...

89

CHAPTER 6. DISCUSSION

trees. Textual-based parse tree modifications (see Section 4.4.1.1) is a fully automated
task and only based on the domain terms which are semi-automatically extracted. Thus,
there is no additional effort which needs to be considered. Similarly, the application of
pattern-based parse tree transformations (see Section 4.4.1.2) is fully automated. But,
in contrast, the definitions of patterns to identify incorrect (parts of) parse trees and
corresponding modifications (see the Appendices B.1 and B.2 for details and examples)
require a significantly higher effort:

1. a user needs to identify incorrect parse trees in the set of all parse trees from the
potentially software feature-relevant sentences

2. a user needs to define the pattern (Tregex pattern) which matches the incorrect
(part of) a parse tree

3. a user needs to define corresponding manipulation operations (Tsurgeon operations)
in order to correct an incorrect parse tree or only parts of it.

Syntactical relevancy patterns (see 4. in Section 4.4.2) finally determine if a potentially
software feature-relevant atomic unit of information is truly software feature-relevant. The
user has to identify these syntactical patterns and add them to the SoFeX configuration
file. Similarly to parse tree transformations, the user needs to investigate all parse trees.
Nevertheless, the identification of the patterns can be considered less expensive because

• there are fewer patterns to be defined

• there is no need to define transformation operations

• the patterns are based on the Lim-syntax and are thus not as complex as Tregex
patterns which are defined on PoS-tag-level.

6.2 Threats to Validity

This section discusses the four main threats to validity according to Wohlin et al. (2012)
of the evaluation results of SoFeX and the measures taken to minimize these threats.
Validity in context of research investigates if the conclusions drawn from an observation
might be wrong (e.g., relationship between reality and conclusion Feldt and Magazinius,
2010).

6.2.1 Threats to Conclusion Validity

Conclusion validity refers to the possibility to draw correct conclusions regarding the
relationship between the treatments and the outcome of an experiment. In context of

90

6.2. THREATS TO VALIDITY

this thesis, the statistical measures used (precision, recall, and Fβ-score) are mature and
proven. Thus, they provide reliable results.

6.2.2 Threats to Internal Validity

Internal validity refers to the extent to which a procedure influenced the result. User
Manual Revision was applied to two different sections of the user manual by two different
people. The sections were revised by two different non domain experts who got instructed
a priori. For evaluation purpose, several different gold standards were used (MtG, FtG,
FsG, FiG, AsG, see Section 5.2) which were created by domain experts. Those domain
experts were not involved in the development and implementation of SoFeX. Thus,
the gold standards are not influenced by any development tasks. One domain expert
(Domain Expert 2, see Section 5.3) participated in the creation of the full terminology gold
standard FtG two years before applying Terminology Extraction. Nevertheless, the results
in Table 5.7 (see Section 5.3.1) show that FtG strongly differs from the semi-automatically
extracted domain terminology Ft2. Thus, Domain Expert 2 is considered being unbiased
by participating in the creation of FtG.

6.2.3 Threats to Construct Validity

Construct validity refers to the degree to which a treatment does what it claims to
do. I have not been involved in the development of the source (Gdc user manual) or
the gold standards. Thus, the view of what constitutes a software feature, software
feature-relevant sentence or information is a clearly external one. In contrast, the gold
standards have been created by domain experts. It is assumed that the domain experts
do clearly know which sentence or information is considered software feature-relevant
and which not. As there does not exist a clear objective definition of a software feature
or software feature-relevant information in theory and practice (see Section 2.3), even the
domain experts often did not agree on the software feature-relevancy of specific artifacts
(sentence, information). Thus, the results with other domain experts might differ.

6.2.4 Threats to External Validity

External validity refers to the extent to which an approach can be applied in other
contexts. In the following, the generalizability of SoFeX and furthermore its applicability
in another domain is discussed. Basically, the quality of the extracted atomic software
feature-relevant units of information and furthermore the software feature description
relies on the following five key aspects:

1. the quality of the user manual to be analysed

91

CHAPTER 6. DISCUSSION

2. the quality of the extracted domain terminology

3. the accuracy of the parse trees of the corresponding software feature-relevant
sentences from the user manual

4. the syntactical relevancy patterns

5. the proper assignment of the atomic software feature-relevant units of information
to the corresponding software features.

The first and second aspects cannot be influenced by SoFeX. They rather rely on the
abilities of the responsible editors and are thus the same for each domain. The accuracy
of the parse trees (3rd aspect) relies on the terminology-based textual modifications and
the pattern-based parse tree transformations (besides the used PoS parser Api). The
quality of the terminology-based textual modifications depend on the extracted domain
terminology. Thus, they are domain independent and rather depend on the individual
extracting the domain terminology and his/her ability to “correctly” determine domain
terms. Pattern-based parse tree transformations, on the other hand, modify parse trees
which are considered “incorrect”. These parse trees are at least considered “incorrect” in
the Gdc domain. But, in order to determine the “correctness” of parse trees in other
domains, SoFeX needs to be applied in that domains. Apart from the identification and
definition of the patterns and corresponding transformation operations, the patterns and
operations can easily be maintained in the configuration file of SoFeX. The syntactical
relevancy patterns (fourth aspect) are used by SoFeX in order to finally determine true
atomic software feature-relevant units of information based on their Lim syntax. Similar
to the accuracy of parse trees, the relevancy patterns which are defined in context of
Gdc may not be sufficient to determine all atomic software feature-relevant units of
information in other domains.

SoFeX has not been applied in other domains or a different context due to time
restrictions from available domain experts. Hence, SoFeX can be overfitted to the
Gdc context as the application of parse tree modifications and syntactical relevancy
patterns will not deliver similar results in other domains. Nevertheless, while designing
and implementing SoFeX, attention was payed to preferably use general patterns to be
reusable in other contexts.

92

Chapter 7
Summary

This thesis contributes to the body of knowledge in Se and Re with respect to the
analysis of and methods for the extraction of software feature-relevant information from
Nl user manuals. Chapter 3 investigates state of the art approaches which allow to
extract software feature-relevant information from Nl software engineering artifacts. The
Slr focuses on the Nl software engineering artifacts mined, the extracted information,
and the extracted type of software feature-relevant information. Based on these findings
and the requirements expressed by Roche, SoFeX is designed in Chapter 4. Each
component of SoFeX is finally evaluated in Chapter 5. In total, SoFeX provides four
main contributions:

1. Semi-automated Domain Terminology Extraction: SoFeX allows to automatically
extract domain term candidates from a Nl user manual. Furthermore, it provides
automated support for domain experts in order to validate true domain terms from
the candidates (see Section 4.3.4) which is evaluated in an empirical study (see
Section 5.3.1) and compared to fully automated approaches.

2. Automated Software Feature-relevant Information Identification: SoFeX allows to
automatically identify sentences in a Nl user manual which potentially contains
software feature-relevant information by means of a domain terminology and
structural information (see Section 4.3) with high precision and recall (see Sections
5.2.1 and 5.3.2).

3. Automated Extraction of Atomic Software Feature-relevant Information: SoFeX
allows to automatically extract atomic software feature-relevant units of information
from potentially software feature-relevant sentences by means of syntactic patterns
(see Section 4.4) with high precision and recall (see Sections 5.2.3 and 5.3.4).

4. Recommendation-based Software Feature Knowledge Enhancement: Finally,

93

CHAPTER 7. SUMMARY

SoFeX supports the assignment of atomic software feature-relevant information
to corresponding, logically related, software features by means of a text classifica-
tion approach. It recommends the top-N software features for an atomic software
feature-relevant information based on the likelihood of their logical relationship
(see Section 4.5). This approach is evaluated in the Sections 5.2.4 and 5.3.5.

Overall, the evaluations show that SoFeX allows to identify and extract software
feature-relevant information with high precision and recall in a more or semi-automatic
manner. However, unifying, compressing, classifying, and clustering of short Nl text
data will likely be hard to process fully automated with promising results in a near future.
Basically, the results of SoFeX highly depend on the parse tree accuracy and thus the
syntax of the Nl text provided in the corresponding user manual. SoFeX was developed
in cooperation with Roche and is based on the Gdc user manual. The development is
based on investigations of two user manual sections. In order to validate SoFeX, several
gold standards were used. The observations and experiences gained from the evaluation
based on the two user manual sections show that SoFeX can work well for an entire
user manual. However, the effort for the domain experts to create gold standards to
apply SoFeX to the entire Gdc user manual and evaluate the results was too high. The
effort to apply SoFeX with similar results to other user manuals is difficult to judge
without knowing the specifics. Nevertheless, this thesis presents an approach for software
feature-relevant information identification and extraction and elaborates several empirical
insights on software feature-relevant information for future research.

94

Chapter 8
Future Work

In general, SoFeX aims to support the retrospective extraction of software-feature
relevant information and the enhancement of software feature knowledge. It was evaluated
based on two exemplary sections of Roche’s Gdc user manual by means of gold standards
that were manually crafted. In order to prove the generalizability and applicability
of SoFeX, it has to be adapted and applied to the entire Gdc user manual, in other
domains, and other contexts besides Gdc.

The extracted software feature-relevant units of information are atomic. Therefore,
their semantic context should be more clear in comparison to non-atomic information:
each unit of information is as simple as possible and should therefore be clearly related to
a single software feature only. As an example, the non-atomic software feature-relevant
information “the material can be added to the material list and it can be deleted from the
material list” might be related to two different software features (e.g., “extend material
list” and “reduce material list”). SoFeX extracts the two atomic units of information
(1) “the material can be added to the material list” and (2) “it can be deleted from
the material list” from the exemplary sentence. The two units of information are then
distinctively assigned to a single software feature (e.g., (1) is related to “extend material
list” and (2) is related to “reduce material list”). Nevertheless, pronouns (personal,
possessive, relative, reflexive) are still an issue within SoFeX. The second information
(2) obviously shows that the pronoun fades the actual information (because the domain
term “material” is represented by the personal pronoun “it”) which may complicate the
assignment of that information to the logically related software feature (without knowing
the first (1) information). Thus, considering anaphora resolution approaches which aim
to resolve pronouns (see, e.g., Mitkov, 2014) in context of SoFeX may increase its ability
to recommend correct software features for a corresponding software feature-relevant
information to the domain expert.

95

CHAPTER 8. FUTURE WORK

Overall, the results of this thesis are promising and support the area of domain-
specific information extraction (especially software feature-related information extraction).
SoFeX shows that it is possible to identify domain-relevant information by means of a
domain terminology and structural information with high precision and recall.

96

Part VI Appendix

97

Appendix A
Natural Language Processing

This chapter provides insights into Nlp-related specifics which are used in context of
SoFeX.

A.1 Penn Tag Set

Table A.1 shows the PoS-Tags of the Penn Tag Set which were used in the context of
SoFeX.

A.2 Stopwords

Table A.2 depicts the stopwords which are used in context of SoFeX.

98

A.2. STOPWORDS

Table A.1: Penn Tag Set
Abb. Description

Adjp Adjective phrase
Advp Adverb phrase
Frag Fragment
Np Noun phrase
Pp Prepositional phrase
Qp Quantifier phrase
Vp Verb phrase
Whadjp Wh-adjective phrase
Whadvp Wh-adverb phrase
Whnp Wh-noun phrase
Whpp Wh-prepositional phrase

Abb. Description

Cc Coordinating conjunction
Cd Cardinal number
Dt Determineer
In Preposition or subordinating conjunction
Jj Adjective
Md Modal
Nn Noun, singular or mass
Nns Noun, plural
Nnp Proper noun, singular
Nnps Proper noun, plural
Pos Possessive ending
Prp Personal pronoun
Prp$ Possessive pronoun
Rb Adverb
Sym Symbol
To to
Vb Verb, base form
Vbd Verb, past tense
Vbg Verb, gerund or present participle
Vbn Verb, past participle
Vbp Verb, non-3rd person singular present
Vbz Verb, 3rd person singular present
Wdt Wh-determiner
Wp Wh-pronoun

99

APPENDIX A. NATURAL LANGUAGE PROCESSING

Table A.2: Stopword List
a
able
about
above
across
after
afterwards
again
against
all
almost
alone
along
already
also
although
always
am
among
amongst
amoungst
amount
an
and
another
any
anyhow
anyone
anything
anyway
anywhere
are
around
as
at
back
basically
be
became
because
become
becomes
becoming
been
before
beforehand
behind

being
below
beside
besides
between
beyond
bill
both
bottom
but
by
call
can
cannot
cant
can’t
co
computer
con
could
couldnt
couldn’t
cry
de
describe
detail
do
done
down
due
during
each
eg
eight
either
eleven
else
elsewhere
empty
enough
etc
even
ever
every
everyone
everything
everywhere

except
few
fifteen
fify
fill
find
fire
first
five
following
for
former
formerly
forty
found
four
from
front
full
further
general
generally
get
give
go
had
has
hasnt
hasn’t
have
he
hence
her
here
hereafter
hereby
herein
hereupon
hers
herself
him
himself
his
how
however
hundred
i

ie
if
in
inc
indeed
interest
into
is
it
its
keep
last
latter
latterly
least
less
ltd
made
main
many
may
me
meanwhile
might
mill
mine
more
moreover
most
mostly
move
much
must
my
name
namely
neither
never
nevertheless
next
nine
no
nobody
none
noone
nor
not

nothing
now
nowhere
of
off
often
on
once
one
only
onto
or
other
others
otherwise
our
ours
ourselves
out
over
own
part
per
perhaps
please
put
rather
re
same
see
seem
seemed
seeming
seems
serious
several
she
should
show
side
since
sincere
six
sixty
so
some
somehow

someone
something
sometime
sometimes
somewhere
step
still
such
take
ten
than
that
the
their
them
themselves
then
thence
there
thereafter
thereby
therefore
therein
thereupon
these
they
thick
thin
third
this
those
though
three
through
throughout
thru
thus
to
together
too
top
toward
towards
twelve
twenty
two
un

under
until
up
upon
us
use
usually
very
via
want
was
we
well
were
what
whatever
when
whence
whenever
where
whereafter
whereas
whereby
wherein
whereupon
wherever
whether
which
while
whither
who
whoever
whole
whom
whose
why
will
with
within
without
would
yet
you
your
yours
yourself
yourselves

100

Appendix B
Parse Tree Modification patterns

This chapter presents the patterns used in SoFeX which are required to (1) correct
parse trees as well as (2) adapt parse trees in order to extract potentially feature-relevant
information in a smooth way. The patterns are defined by means of Tregex (Levy and
Andrew 2006) which indicate parts of a parse tree to be modified. Tsurgeon (Levy and
Andrew 2006), which is a tree-transformation utility built on top of Tregex, allows to
manipulate the identified parse trees as desired. In the following sections, we provide
Tregex patterns with corresponding Tsurgeon operations and examples. An example
shows a parse tree before modification on the left hand side, indicating the part of the
parse tree which matches the pattern defined and are colored red. The right hand side
shows the parse tree after modification(s) which are colored green.

B.1 Parse tree correction patterns

B.1.1 JJ to NN

Pattern: < (!/NN.?/=rel < /ˆQD.*|ˆDST.*/)

Operation: [relabel rel NN]

Example:
(ROOT
(ADVP (JJ DSTmanualDSTentry)))

(ROOT
(ADVP (NN DSTmanualDSTentry)))

B.1.2 ADVP to NP

Pattern: =rel < (< /DST|QD/ !> NP)

Operation: [relabel rel NP]

101

APPENDIX B. PARSE TREE MODIFICATION PATTERNS

Example:
(ROOT
(ADVP (NNS DSTmanualDSTentry)))

(ROOT
(NP (NNS DSTmanualDSTentry)))

B.1.3 Cleanse PP

Pattern: VP=par <+(NP) (NP $+ (/,/ <1 /,/ $+ (« (/,/ <1 /,/ $+ PP=mov))))

Operation: [move mov >-1 par]

Example:
(ROOT
(S

(NP (JJ other) (NNS options))
(VP (VBP exclude)
(NP
(NP (NNP DSTreagents))
(, ,)
(SBAR
(WHNP (WDT which))
(S
(VP (VBP are)
(VP (VBN used)
(PP (IN for)
(NP
(NP (NNP DSTcontrols))
(CC and)
(NP (NNP DSTcalibs))))

(, ,)
(PP (IN from)
(NP (NN invoicing)))))))))

(. .)))

(ROOT
(S
(NP (JJ other) (NNS options))
(VP (VBP exclude)
(NP
(NP (NNP DSTreagents))
(, ,)
(SBAR
(WHNP (WDT which))
(S
(VP (VBP are)
(VP (VBN used)
(PP (IN for)
(NP
(NP (NNP DSTcontrols))
(CC and)
(NP (NNP DSTcalibs)))

(, ,))))))
(PP (IN from)
(NP (NN invoicing))))

(. .)))

B.1.4 VP to JJ

Pattern: ROOT|SINV < (/ADVP|VP/=exc < =mov !< VBP)
<-1 (NP <+(NP) (/NN.?/ > =par))

Operation: [relabel mov JJ][move mov >1 par][excise exc exc]

Example:
(ROOT
(SINV
(VP (VBD entered))
(NP
(NP (NNP DSTdealDSTdata))
(VP (VBG regarding)))))

(ROOT
(SINV
(NP
(NP (JJ entered) (NNP DSTdealDSTdata))
(VP (VBG regarding)))))

102

B.1. PARSE TREE CORRECTION PATTERNS

B.1.5 ADJP to PP

Pattern: VP=par <+(NP|S) (NP $+ (ADJP=rel < (VBN $+ PP)))

Operation: [move rel >-1 par][relabel rel PP]

Example:
(ROOT
(S

(NP (DT the) (NNP DSTcustomer))
(VP (VBZ handles)
(S
(NP (DT the) (NNPS DSTmaterials))
(ADJP (VBN related)
(PP (TO to)
(NP (DT the) (NN offer))))))))

(ROOT
(S
(NP (DT the) (NNP DSTcustomer))
(VP (VBZ handles)
(S
(NP (DT the) (NNPS DSTmaterials))

(PP (VBN related)
(PP (TO to)
(NP (DT the) (NN offer))))))))

B.1.6 Complex NP#1

Pattern: PP < NP=bro $+ (NP=exc <1 NP)

Operation: [move exc $- bro][excise exc exc]

Example:
(ROOT
(PP (IN on)
(NP (NNP DSTtest)))

(NP
(NP (NN level))
(PP (IN for)
(NP (NNP DSTreagents))))))

(ROOT
(PP (IN on)
(NP (NNP DSTtest))
(NP (NN level))
(PP (IN for)
(NP (NNP DSTreagents)))))

B.1.7 Complex NP#2

Pattern: < (NP=par < /NN.?|CD/ $+ (NP=exc < /NN.?|CD/ < =mov !< CC))

Operation: [move exc $- bro][excise exc exc]

Example:
(ROOT
(PP (IN on)
(NP (NNP DSTtest))
(NP (NN level))
(PP (IN for)
(NP (NNP DSTreagents)))))

(ROOT
(PP (IN on)
(NP (NNP DSTtest) (NN level))
(PP (IN for)
(NP (NNP DSTreagents))))))

103

APPENDIX B. PARSE TREE MODIFICATION PATTERNS

B.1.8 Complex NP#3

Pattern: NP <: NP=exc

Operation: [excise exc exc]

Example (cont.):
(ROOT
(S
(NP (NN DSTpack)

(NP (NN optimization) (NNS data))
(PP (IN for)

(NP
(NP (NNP DSTreagents))
(VP (VBG regarding)))))))

(ROOT
(S
(NP (NN DSTpack) (NN optimization) (NNS data))
(PP (IN for)
(NP
(NP (NNP DSTreagents))
(VP (VBG regarding)))))))

B.1.9 Complex NP#4

Pattern: NP=par $+ (NP=del <+(NP) (NP < =mov $+ =mov2))

Operation: [move mov >-1 par][move mov2 $- par][delete del]

Example:
(ROOT
(NP

(NP (DT the) (NN DSTpack))
(NP
(NP (NNS sizes))
(PP (IN of)
(NP (DT each) (NNP DSTmaterial))))))

(ROOT
(NP
(NP (DT the) (NN DSTpack) (NNS sizes))
(PP (IN of)
(NP (DT each) (NNP DSTmaterial))))))

B.1.10 Complex NP#5

Pattern: /NP$/=mov !< /NN.?|NP$|PRP|EX/ $+ NP=par

Operation: [move mov >1 par][excise mov mov]

Example:
(ROOT

(NP
(NP (JJ annual))
(NP (NNP DSTinstrument))))

(ROOT
(NP
(NP (JJ annual) (NNP DSTinstrument))))

104

B.1. PARSE TREE CORRECTION PATTERNS

B.1.11 Cleanse PP

Pattern: /ˆNP$|ˆPPN$/=sis < (PP=mov !$– /ˆNP$|ˆPPN$/)

Operation: [move mov $- sis]

Example: (NP (NNP DSTrounding) was already modified from (VP (VBG DSTrounding) by
applying Cleanse NN#1, Cleanse NN#2, and Complex NP#2

(ROOT
(S
(NP (NNP DSTrounding) (NNS effects)
(PP (IN of)
(NP (NNP DSTbatch))))))

(ROOT
(S
(NP (NNP DSTrounding) (NNS effects))
(PP (IN of)
(NP (NNP DSTbatch))))))

B.1.12 Cleanse NP lists#1

Pattern: (NP <-1 /NN.?/ >+(NP) (PP $- NP=par))

Operation: if count(par) > 1 and pari = parj , then move parj $+ pari

Example: Cleanse NN#1, Cleanse NN#2, and Complex VP#1 are already ap-
plied

(ROOT
(S
(NP (DT the) (NN DSTannualDSTquantity))
(VP (VBZ is) (VBN calculated)
(PP (VBN based) (IN on)

(NP
(NP (DT the) (NN quantity))
(PP (IN of)
(NP
(NP
(NP (NNP DDSTevents))
(PP (IN per)
(NP (NN year))))

(, ,)
(NP
(NP (DT the) (NN quantity))
(PP (IN of)
(NP (NNP DSTsteps))))

(, ,)
(CC and)
(NP
(NP (DT the) (NN quantity))
(PP (IN of)
(NP (NNP DSTtests))))))))))))

(. .)))

(ROOT
(S
(NP (DT the) (NN DSTannualDSTquantity))
(VP (VBZ is) (VBN calculated)
(PP (VBN based) (IN on)
(NP
(NP (DT the) (NN quantity))
(PP (IN of)
(NP
(NP (NNP DDSTevents))
(PP (IN per)
(NP (NN year))))

(, ,)
(NP
(NP (DT the) (NN quantity))
(PP (IN of)
(NP (NNP DSTsteps))))

(, ,)
(CC and)
(NP
(NP (DT the) (NN quantity))
(PP (IN of)
(NP (NNP DSTtests))))))))))))

(. .)))

105

APPENDIX B. PARSE TREE MODIFICATION PATTERNS

B.1.13 Cleanse NP lists#2

Pattern: NP $+ PP $– =sis > (!/NP|VP/=nam > =par)

Operation: cover the NP and it’s corresponding PP node with a NP node

Example: Complex VP#1 and Complex VP#1 are already applied
(ROOT
(PP (IN on)
(NP (NNP DSTtest) (NN level))
(PP (IN for)
(NP (NNP DSTreagents))))))

(ROOT
(PP (IN on)
(NP
(NP (NNP DSTtest) (NN level))
(PP (IN for)
(NP (NNP DSTreagents))))))

B.1.14 Cleanse S#1

Pattern: < (NP=son1 $+ (VP=son2 $+ /CC|,/))

Operation: [insert S=par $+ son1][move son1 >-1 par][move son2 >-1 par]

Example: continuation from Cleanse S#2
(ROOT

(S
(SBAR (IN once)
(S
(NP (DT the) (NNPS QDstatus))
(VP (VBZ is) (VBN selected))))

(, ,)
(NP (DT the) (NNP DSTscenario))
(VP (VBZ is) (VBN locked))
(CC and)
(S
(NP (NNS changes))
(VP (VBP are) (RB not) (JJ possible)))

(. .)))

(ROOT
(S
(SBAR (IN once)
(S
(NP (DT this) (NNPS QDstatus))
(VP (VBZ is) (VBN selected))))

(, ,)
(S
(NP (DT the) (NNP DSTscenario))
(VP (VBZ is) (VBN locked)))

(CC and)
(S
(NP (NNS changes))
(VP (VBP are) (RB not) (JJ possible)))

(. .)))

B.1.15 Cleanse S#2

Pattern: NP=mov1 [$+ VP=mov2 | $- VP=mov2] [$++ S | $– S] > (S >+(S) ROOT)

Operation: [insert S=par $+ mov1][move mov1 >-1 par][move mov2 >-1 par]

Example: Complex VP#1 is already applied

106

B.1. PARSE TREE CORRECTION PATTERNS

(ROOT
(S
(S
(NP (DT each) (NNP DSTscenario))
(VP (MD can) (VB be) (VBN assigned)
(PP (TO to)
(NP (DT a) (NNP DSTcustomer)))))))

(, ,)
(NP (DT each) (NNP DSTcustomer))
(VP (MD can) (VB be) (VBN assigned)
(PP (TO to)
(NP (NNS DSTgroups))))))

(. .)))

(ROOT
(S
(S
(NP (DT each) (NNP DSTscenario))
(VP (MD can) (VB be) (VBN assigned)
(PP (TO to)
(NP (DT a) (NNP DSTcustomer)))))))

(, ,)
(S
(NP (DT each) (NNP DSTcustomer))
(VP (MD can) (VB be) (VBN assigned)
(PP (TO to)
(NP (NNS DSTgroups)))))))

(. .)))

B.1.16 Cleanse "between" #1

Pattern: PP=par < (IN < between) < (<1 /.P/ !< /CC|,/ « (/CC|,/=mov1 $+ =mov2))

Operation: [move mov1 >-1 par][move mov2 >-1 par]

Example:

107

APPENDIX B. PARSE TREE MODIFICATION PATTERNS

(ROOT
(S
(NP (EX there))
(VP (VBZ exists)
(NP
(NP (DT a) (NN difference))
(PP (IN between)
(NP
(NP (DT a) (NN DSTtest))
(VP (VBN displayed)
(PP (IN in)
(NP
(NP (DT the) (NN DSTlist))
(CC and)
(NP
(NP (DT a) (NN DSTtest))
(VP (VBN used)
(PP (IN in)
(NP (DT the) (NN DSTarea)))))

(. .)))

(ROOT
(S
(NP (EX there))
(VP (VBZ exists)
(NP
(NP (DT a) (NN difference))
(PP (IN between)
(NP
(NP (DT a) (NN DSTtest))
(VP (VBN displayed)
(PP (IN in)
(NP
(NP (DT the) (NN DSTlist))))))

(CC and)
(NP
(NP (DT a) (NN DSTtest))
(VP (VBN used)
(PP (IN in)
(NP (DT the) (NN DSTarea)))))))

(. .)))

B.1.17 Cleanse "between" #2

Pattern: PP=par < (IN < between) !< CC !< (NP < CC) >+(NP) (NP $+ (CC=mov1 $+ NP=mov2))

Operation: [move mov1 >-1 par][move mov2 >-1 par]

Example:

108

B.1. PARSE TREE CORRECTION PATTERNS

(ROOT
(S
(NP (DT the) (NN status) (NN QDadd))
(VP (VBZ indicates)
(SBAR (IN that)
(S
(NP
(NP
(NP (DT the) (NN assignment))
(PP (IN between)
(NP (NNP DSTproductDSTfamily))))

(CC and)
(NP
(NP (VBG DSTrounding) (NN mode))
(PP (IN in)
(NP (DT the) (NN database))))))))

(. .)))

(ROOT
(S
(NP (DT the) (NN status) (NN QDadd))
(VP (VBZ indicates)
(SBAR (IN that)
(S
(NP
(NP
(NP (DT the) (NN assignment))
(PP (IN between)
(NP (NNP DSTproductDSTfamily))
(CC and)
(NP
(NP (VBG DSTrounding) (NN mode))
(PP (IN in)
(NP (DT the) (NN database))))))))))

(. .)))

109

APPENDIX B. PARSE TREE MODIFICATION PATTERNS

B.2 Parse tree adaption patterns

B.2.1 Remove SINV

Pattern: SINV=exc

Operation: [excise exc exc]

Example:
(ROOT
(SINV
(NP
(NP (JJ used) (NNP DSTmaterial)))))

(ROOT
(NP
(NP (JJ used) (NNP DSTmterial)))))

B.2.2 Remove Brackets

Pattern: PRN=del <1 -LRB-

Operation: [delete del]

Example:
(ROOT
(NP
(NP (DT the) (NNP DSTmaterial))
(PRN (-LRB- -LRB-)
(NP (NNP e.g.))
(, ,)
(NP (NNP DSTreagent))
(-RRB- -RRB-))))

(ROOT
(NP
(NP (DT the) (NN DSTmaterial))))

B.2.3 Cleanse FRAG

Pattern: =nam > FRAG=rel

Operation: replace each FRAG with nam

Example:
(ROOT
(FRAG
(NP (NN calculation))
(PP (IN without)
(NP (NNP DSTcooledDSTstability)))))

(ROOT
(NP
(NP (NN calculation))
(PP (IN without)
(NP (NNP DSTcooledDSTstability)))))

110

B.2. PARSE TREE ADAPTION PATTERNS

B.2.4 Complex VP#1

Pattern: VP <- (VP=exc !$ VP)

Operation: [excise exc exc]

Example:
(ROOT

(S
(NP (DT the) (NNP DSTquantificator))
(VP (VBZ starts)
(S
(VP (TO to)
(VP (VB run)))))

(. .)))

(ROOT
(S
(NP (DT the) (NNP DSTquantificator))
(VP (VBZ starts)
(S
(VP (TO to) (VB run)))))

(. .)))

B.2.5 Complex VP#2

Pattern: VP=par < /MD|VB.?|JJ/=sis > (VP < /MD|VB.?|JJ/=del)

Operation: add sis to each corresponding VB (in a loop) and delete del afterwards

Example:
(ROOT

(S
(NP (DT the) (NN user))
(VP (MD can)
(VP
(VP (VB remove)
(NP (NNS materials))
(PP (IN from)
(NP (DT the) (NNP DSTscenario))))

(, ,)
(CC or)
(VP (VB modify)
(NP (PRP$ their) (NN quantity)))))

(. .)))

(ROOT
(S
(NP (DT the) (NN user))
(VP
(VP (MD can) (VB remove)
(NP (NNS materials))
(PP (IN from)
(NP (DT the) (NNP DSTscenario))))

(, ,)
(CC or)
(VP (MD can) (VB modify)
(NP (PRP$ their) (NN quantity)))))

(. .)))

B.2.6 Complex VP#3

Pattern: VP < (/VB.?/ $. ADJP|ADVP=exc)

Operation: [excise exc exc]

111

APPENDIX B. PARSE TREE MODIFICATION PATTERNS

Example:
(ROOT

(S
(NP
(NP (DT the) (NN default) (NN name))
(PP (IN of)
(NP (DT a) (NNP DSTsystemDSTgroup))))

(VP (VBZ is)
(ADJP (JJ configurable)
(PP (IN in)
(NP (DT the) (NNP DSTadminDSTtool)))

(. .)))

(ROOT
(S
(NP
(NP (DT the) (NN default) (NN name))
(PP (IN of)
(NP (DT a) (NNP DSTsystemDSTgroup))))

(VP (VBZ is) (JJ configurable)
(PP (IN in)
(NP (DT the) (NNP DSTadminDSTtool))))

(. .)))

B.2.7 Complex VP#4

Pattern: VP < (/VB.?/ $. ADJP|ADVP=exc)

Operation: [excise exc exc]

Example:
(ROOT
(S
(NP (NNP DSTgdc))
(VP (VBZ creates)
(NP (DT a) (NNP DSTsystemDSTgroup))
(ADVP (RB automatically)))

(. .)))

(ROOT
(S
(NP (NNP DSTgdc))
(VP (RB automatically) (VBZ creates)
(NP (DT a) (NNP DSTsystemDSTgroup))

(. .)))

B.2.8 ADVP in VP#1

Pattern: ADVP=exc $+ /VB.?/

Operation: [excise exc exc]

Example:
(ROOT
(S
(NP (DT the) (NN user))
(VP (MD can)
(ADVP (RB manually))
(VP (VB adapt)
(NP (DT the) (NNS DSTsettings))))

(. .)))

(ROOT
(S
(NP (DT the) (NN user))
(VP (MD can) (RB manually))
(VP (VB adapt)
(NP (DT the) (NNS DSTsettings))))

(. .)))

B.2.9 ADVP in VP#2

112

B.2. PARSE TREE ADAPTION PATTERNS

Pattern: ADVP=exc < =mov $+ VP=par

Operation: [move mov >1 par][excise exc exc]

Example:
(ROOT
(S
(NP (DT the) (NN user))
(ADVP (RB manually))
(VP (VBZ adapts)
(NP (DT the) (NN DSTfrequency)))

(. .)))

(ROOT
(S
(NP (DT the) (NN user))
(VP (RB manually) (VBZ adapts)
(NP (DT the) (NN DSTfrequency)))

(. .)))

B.2.10 ADJP in VP

Pattern: NP|VP <+(S) ADJP=exc

Operation: [excise exc exc]

Example:
(ROOT
(S
(NP (DT the) (NNS reagents))
(VP (VBP are)
(ADJP (JJ available)))

(. .)))

(ROOT
(S
(NP (DT the) (NNS reagents))
(VP (VBP are) (JJ available)))
(. .)))

B.2.11 PRT in VP

Pattern: VP < PRT=exc

Operation: [excise exc exc]

Example:
(ROOT
(S
(NP (DT the) (NN sum))
(VP (VBZ is)
(VP (VBN rounded)
(PRT (RP up))))

(. .)))

(ROOT
(S
(NP (DT the) (NN sum))
(VP (VBZ is)
(VP (VBN rounded) (RP up))

(. .)))

B.2.12 Complex PP

Pattern: NP=bro < (IN=mov $.. =mov2)

113

APPENDIX B. PARSE TREE MODIFICATION PATTERNS

Operation: [insert (PP=par) $- bro][move mov >-1 par]

[insert (NP=par2) >-1 par][move mov2 >-1 par2]

Example: considering the application of Cleanse ADJP beforehand (striked through)
(ROOT
(S
(VP (VB change)
(NP
(NP (NNP DSTenvironmentDSTdata))
(ADJP (IN if) (JJ necessary))))

(. .)))

(ROOT
(S
(VP (VB change)
(NP
(NP (NNP DSTenvironmentDSTdata))
(PP (IN if)
(NP (JJ necessary))))

(. .)))

B.2.13 Complex NP#6

Pattern: < (NP=par $+ /NN.?/=mov)

Operation: [move mov >-1 par]

Example:

(ROOT
(NP
(NP (DT the) (NNP DSTmaterial) (POS ’s))
(NN quantity)))

(ROOT
(NP
(NP (DT the) (NNP DSTmaterial) (POS ’s) (NN quantity))))

B.2.14 Multiple PP#1

Pattern: =sis < (< (PP <: IN=bro) $+ (CC $+ (< (PP <-1 =ins $+ =mov))))

Operation: [move mov >-1 par]

Example:

114

B.2. PARSE TREE ADAPTION PATTERNS

(ROOT
(S
(VP

(VP (VB remove)
(NP (NNS DSTmaterials))
(PP (IN from)))

(CC or)
(VP (VB change)
(NP (JJ DSTmaterial) (NNS quantities))
(PP (IN in)
(NP (DT a) (NNP DSTdeal)))))))

(ROOT
(S
(VP
(VP (VB remove)
(NP (NNS DSTmaterials))
(PP (IN from)
(NP (DT a) (NNP DSTdeal))))

(CC or)
(VP (VB change)
(NP (JJ DSTmaterial) (NNS quantities))
(PP (IN in)
(NP (DT a) (NNP DSTdeal)))))))

B.2.15 Multiple PP#2

Pattern: VP < (VP=par !« NP $+ /,|CC/) <-1 (VP « (PP=ins1 $- (NP=ins2 !>+(NP) PP !$- PP)))

Operation: [insert ins1 >-1 par][insert ins2 >-2 par]

Example:

(ROOT
(S
(NP (NNP DSTgdc))
(VP (VBZ provides)

(S
(NP (NNS possibilities))
(VP
(VP (TO to) (VB subsitute))
(CC or)
(VP (TO to) (VB modify)
(NP (NNS materials))
(PP (IN in)
(NP (DT the) (NNP DSTdeal))))))))

(. .)))

(ROOT
(S
(NP (NNP DSTgdc))
(VP (VBZ provides)
(S
(NP (NNS possibilities))
(VP
(VP (TO to) (VB subsitute)
(NP (NNS materials))
(PP (IN in)
(NP (DT the) (NNP DSTdeal))))))

(CC or)
(VP (TO to) (VB modify)))
(NP (NNS materials))
(PP (IN in)
(NP (DT the) (NNP DSTdeal))))))

(. .)))

B.2.16 Remove S#1

Pattern: !ROOT < (S=exc <1 VP !$– /CC|,/)

Operation: [excise exc exc]

Example: Complex VP#1 is already applied

115

APPENDIX B. PARSE TREE MODIFICATION PATTERNS

(ROOT
(S
(NP (NNP DSTGDC))
(VP (VBZ allows)
(S
(VP (TO to) (VB clone)
(NP (NNP DSTsystems)))))

(. .)))

(ROOT
(S
(NP (NNP DSTGDC))
(VP (VBZ allows)
(VP (TO to) (VB clone)
(NP (NNP DSTsystems)))))

(. .)))

B.2.17 Remove S#2

Pattern: ROOT < (S < (S=exc <+(S) (SBAR <1 IN)))

Operation: [excise exc exc]

Example: Complex VP#1 and Cleanse ADJP are already applied
(ROOT
(S
(S
(SBAR (IN once)
(S
(NP (DT the) (NNPS QDstatus))
(VP (VBZ is) (VBN selected))))

(, ,)
(NP (DT the) (NNP DSTscenario))
(VP (VBZ is) (VBN locked)))

(CC and)
(S

(NP (NNS changes))
(VP (VBP are) (RB not) (JJ possible)))

(. .)))

(ROOT
(S
(SBAR (IN once)
(S
(NP (DT the) (NNPS QDstatus))
(VP (VBZ is) (VBN selected))))

(, ,)
(NP (DT the) (NNP DSTscenario))
(VP (VBZ is) (VBN locked))
(CC and)
(S
(NP (NNS changes))
(VP (VBP are) (RB not) (JJ possible)))

(. .)))

B.2.18 SBAR to VPH

Pattern: VP < (SBAR=rel < (IN < that))

Operation: [relabel rel VPH]

Example:

116

B.2. PARSE TREE ADAPTION PATTERNS

(ROOT
(S
(NP (NNP DSTGDC))
(VP (VBZ assumes)

(SBAR (IN that)
(S
(NP (DT a) (NNP DSTcustomer))
(VP (VBZ is) (VBN assigned)
(PP (TO to)
(NP (DT an) (NNP opportunity))))

(. .)))

(ROOT
(S
(NP (NNP DSTGDC))
(VP (VBZ assumes)
(VPH (IN that)
(S
(NP (DT a) (NNP DSTcustomer))
(VP (VBZ is) (VBN assigned)
(PP (TO to)
(NP (DT an) (NNP opportunity))))

(. .)))

B.2.19 SBAR to VPC#1

Pattern: VP <+(SBAR) (SBAR=rel < (IN < /if|whether|after|before/))

Operation: [relabel rel VPC]

Example: Complex VP#1 is already applied
(ROOT
(S
(NP (DT the) (NNP DSTadminDSTtool))
(VP (VBZ allows)
(S
(VP (TO to) (VB configure)
(SBAR (IN whether)
(S
(NP (NNP DSTcustomers))
(VP (VBP are) (VBN created)
(PP (IN by)
(NP (NNP DSTgdc)))))))))))

(. .)))

(ROOT
(S
(NP (DT the) (NNP DSTadminDSTtool))
(VP (VBZ allows)
(S
(VP (TO to) (VB configure)
(VPC (IN whether)
(S
(NP (NNP DSTcustomers))
(VP (VBP are) (VBN created)
(PP (IN by)
(NP (NNP DSTgdc)))))))))))

(. .)))

B.2.20 SBAR to VPC#2

Pattern: VP < (SBAR=rel <+(SBAR) (WHADVP < WRB))

Operation: [relabel rel VPC]

Example: Complex VP#1 is already applied
(ROOT
(S

(NP (NNS DSTenvironmentDSTsettings))
(VP (VBP describe)
(SBAR
(WHADVP (WRB how))
(S
(NP (DT the) (NNP DSTcustomer))
(VP (VBZ handles)
(NP (DT the) (NN DSTanalyzer))))))

(. .)))

(ROOT
(S
(NP (NNS DSTenvironmentDSTsettings))
(VP (VBP describe)
(VPC
(WHADVP (WRB how))
(S
(NP (DT the) (NNP DSTcustomer))
(VP (VBZ handles)
(NP (DT the) (NN DSTanalyzer))))))

(. .)))

117

APPENDIX B. PARSE TREE MODIFICATION PATTERNS

B.2.21 SBAR to VPP

Pattern: VP < (SBAR=rel < (IN !< /if|whether|after|before/))

Operation: [relabel rel VPC]

Example:
(ROOT
(S
(NP (DT the) (NNP DSTmaterialDSTgrid))
(VP (VBZ offers)
(NP (JJ additional) (NN functionality))
(SBAR (IN as)
(S
(VP (VBD described)))))

(. .)))

(ROOT
(S
(NP (DT the) (NNP DSTmaterialDSTgrid))
(VP (VBZ offers)
(NP (JJ additional) (NN functionality))
(VPP (IN as)
(S
(VP (VBD described)))))

(. .)))

B.2.22 VP to VPV

Pattern: P !<1 /VP.?|VP/ < (VP=rel !< TO !< VP)

Operation: [relabel rel VPV]

Example: Complex VP#1 is already applied
(ROOT
(S
(VP (VB click)

(S
(NP (DT the) (NN button))
(VP (TO to)
(VP (VB open)
(NP (DT the) (NNP QDcustQDsearch))

(CC and)
(VP (VB select)
(NP (DT a) ((NN DSTcustomer)))))))

(ROOT
(S
(VP (VB click)
(S
(NP (DT the) (NN button))
(VP (TO to)
(VPV (VB open)
(NP (DT the) (NNP QDcustQDsearch))

(CC and)
(VPV (VB select)
(NP (DT a) ((NN DSTcustomer)))))))

B.2.23 PP to VPP#1

Pattern: /ˆVP$|VPV|NPV/ <+(PP) (PP=rel !< /VB.?/ !< PP)

Operation: [relabel rel VPP]

Example: Complex VP#1 is already applied

118

B.2. PARSE TREE ADAPTION PATTERNS

(ROOT
(S
(NP
(NP (DT the) (NN number))
(PP (IN of)
(NP (NNP DSTtestDSTreruns))))

(VP (VBZ is) (VBN considered)
(PP (IN during)
(NP (NNP DSTquantification)))))

(. .)))

(ROOT
(S
(NP
(NP (DT the) (NN number))
(PP (IN of)
(NP (NNP DSTtestDSTreruns))))

(VP (VBZ is) (VBN considered)
(VPP (IN during)
(NP (NNP DSTquantification)))))

(. .)))

B.2.24 PP to VPP#2

Pattern: PP=rel $– /VB.?|MD/

Operation: [relabel rel VPP]

Example: Complex VP#1 and Complex VP#3 are already applied
(ROOT
(S
(NP (DT an) (NNP DSToptimizationDSTmode))
(VP (MD might) (VB be) (JJ available)
(PP (IN for)
(NP (JJ low) (NNP DSTworkload))))

(. .)))

(ROOT
(S
(NP (DT an) (NNP DSToptimizationDSTmode))
(VP (MD might) (VB be) (JJ available)
(VPP (IN for)
(NP (JJ low) (NNP DSTworkload))))

(. .)))

B.2.25 VP to VPT#1

Pattern: VP < (VP=rel <+(S) TO)

Operation: [relabel rel VPT]

Example: Complex VP#1 and Cleanse S#3 are already applied
(ROOT
(S
(NP (NNP DSTgdc))
(VP (VBZ allows)

(VP (TO to) (VB configure)
(NP (NNS DSTenvironmentDSTsettings))

(. .)))

(ROOT
(S
(NP (NNP DSTgdc))
(VP (VBZ allows)
(VPT (TO to) (VB configure)
(NP (NNS DSTenvironmentDSTsettings))))

(. .)))

B.2.26 VP to VPT#2

Pattern: /VP$/=par <+(S) (VP=rel < TO)

Operation: [relabel rel VPT][move rel >1 par]

119

APPENDIX B. PARSE TREE MODIFICATION PATTERNS

Example: Complex VP#1 and Cleanse S#3 are already applied
(ROOT

(S
(NP (NNP DSTgdc))
(VP (VBZ allows)
(NP (DT the) (NN user)
(VP (TO to) (VB run)
(NP (DT the) (NN DSTquantificator))))

(. .)))

(ROOT
(S
(NP (NNP DSTgdc))
(VP (VBZ allows)
(NP (DT the) (NN user))
(VPT (TO to) (VB run)
(NP (DT the) (NN DSTquantificator)))

(. .)))

B.2.27 VP to VPT#3

Pattern: SBAR <-1 (VP=rel <1 TO)

Operation: [relabel rel VPT]

Example: Complex VP#1 and Cleanse S#3 are already applied
(ROOT
(SBAR (IN in) (NN order)
(VP (TO to) (VB change)
(NP (DT the) (NN DSTprofile))))

(, ,)
(VP (VB select)
(NP (DT an) (NN option)))

(. .))

(ROOT
(SBAR (IN in) (NN order)
(VPT (TO to) (VB change)
(NP (DT the) (NN DSTprofile))))

(, ,)
(VP (VB select)
(NP (DT an) (NN option)))

(. .))

B.2.28 VP to VPW

Pattern: /VP$|VPT|NPV|NPT|PPV|VPV/ < (SBAR=rel < WHNP)

Operation: [relabel rel VPW]

Example: Complex VP#1 and Cleanse S#3 are already applied
(ROOT
(S
(NP (DT the) (NNP DSTmaterialDSTlist))
(VP (VBZ shows)

(SBAR
(WHNP (WDT which))
(NP (NNP DSTmaterials))
(VP (VBP are) (VBN used)
(PP (IN for)
(NP (NNP DSTquantification)))))

(. .))

(ROOT
(S
(NP (DT the) (NNP DSTmaterialDSTlist))
(VP (VBZ shows)
(VPW
(WHNP (WDT which))
(NP (NNP DSTmaterials))
(VP (VBP are) (VBN used)
(PP (IN for)
(NP (NNP DSTquantification)))))

(. .))

B.2.29 PP to NPP

Pattern: /NP$|PPN|NPP|NPV/ $+ (PP=rel !< /VB.?/) > /ˆS$|ˆNP$|PPN/

120

B.2. PARSE TREE ADAPTION PATTERNS

Operation: [relabel rel NPP]

Example: Complex VP#1 and Cleanse S#3 are already applied
(ROOT
(S
(NP (NNP DSTgdc))
(VP (VBZ performs)
(NP
(NP (CD 3) (NNS steps))
(PP (IN in)
(NP (NNPS DSTquantification)))))

(. .)))

(ROOT
(S
(NP (NNP DSTgdc))
(VP (VBZ performs)
(NP
(NP (CD 3) (NNS steps))
(NPP (IN in)
(NP (NNPS DSTquantification)))))

(. .)))

B.2.30 SBAR to NPW

Pattern: NP $++ (SBAR=rel < WHNP)

Operation: [relabel rel NPW]

Example: Complex VP#1 is already applied
(ROOT
(S
(NP (DT the) (NNP DSTmaterialDSTlist))
(VP (VBZ contains)

(NP
(NP (DT the) (NNPS DSTmaterials))
(SBAR
(WHNP (WDT which))
(S
(VP (VBP are) (VBN used)
(PP (IN for)
(NP (NNP DSTquantification))))

(. .)))

(ROOT
(S
(NP (DT the) (NNP DSTmaterialDSTlist))
(VP (VBZ contains)
(NP
(NP (DT the) (NNPS DSTmaterials))
(NPW
(WHNP (WDT which))
(S
(VP (VBP are) (VBN used)
(PP (IN for)
(NP (NNP DSTquantification))))

(. .)))

B.2.31 VP to NPV

Pattern: (VP=rel [<1 /VB.?/ | <1 (ADVP $+ /VB.?/) | <1 (RB $+ /VBN|VBD/)] $- /NP.?/) > NP

Operation: [relabel rel NPV]

Example:

121

APPENDIX B. PARSE TREE MODIFICATION PATTERNS

(ROOT
(S
(NP (DT the) (NNP DSTquantificator))
(VP (VBZ considers)
(NP
(NP (DT the) (NNS settings))
(VP (VBN made)
(PP (IN on)
(NP (NNP DSTenvt) (NN level)))

(. .)))

(ROOT
(S
(NP (DT the) (NNP DSTquantificator))
(VP (VBZ considers)
(NP
(NP (DT the) (NNS settings))
(NPV (VBN made)
(PP (IN on)
(NP (NNP DSTenv) (NN level)))

(. .)))

B.2.32 NP to PPN

Pattern: /ˆPP$|VPP|NPP|PPP/ < NP=rel

Operation: [relabel rel PPN]

Example:
(ROOT

(S
(NP
(NP (DT the) (NN result))
(PP (IN of)
(NP (DT the) (NNP DSTquantificator)))

(VP (VBZ is)
(NP (DT a) (NN DSTmaterialDSTlist)))

(. .)))

(ROOT
(S
(NP
(NP (DT the) (NN result))
(PP (IN of)
(PPN (DT the) (NNP DSTquantificator)))

(VP (VBZ is)
(NP (DT a) (NN DSTmaterialDSTlist)))

(. .)))

B.2.33 PP to PPV

Pattern: /ˆPP$|VPP|NPP|PPP/ < VP=rel

Operation: [relabel rel PPV]

Example: Cleanse S#3 is already applied
(ROOT
(S

(VP (VB exclude)
(NP (NNS materials))
(PP (IN before)
(VP (VBG running)
(NP (DT the) (NN DSTquantificator)))

(ROOT
(S
(VP (VB exclude)
(NP (NNS materials))
(PP (IN before)
(PPV (VBG running)
(NP (DT the) (NN DSTquantificator)))

B.2.34 PP to PPW#1

Pattern: /ˆPP$|VPP|NPP|PPP/ < (IN $+ (SBAR=rel < (WHNP < WDT)))

Operation: [relabel rel PPW]

122

B.2. PARSE TREE ADAPTION PATTERNS

Example: Cleanse S#3 is already applied

(ROOT
(S
(NP (DT the) (NNP QDorigin) (NN column))
(VP (VBZ shows)
(NP (DT the) (NN source))
(PP (IN from)
(SBAR
(WHNP (WDT which))
(NP (DT the) (NN material))
(VP (VBD was) (VBN added)

(PP (TO to)
(NP (DT the) (NNP DSTscenario)))

(. .)))

(ROOT
(S
(NP (DT the) (NNP QDorigin) (NN column))
(VP (VBZ shows)
(NP (DT the) (NN source))
(PP (IN from)
(PPW
(WHNP (WDT which))
(NP (DT the) (NN material))
(VP (VBD was) (VBN added)

(PP (TO to)
(NP (DT the) (NNP DSTscenario)))

(. .)))

B.2.35 PP to PPW#2

Pattern: SBAR=rel1 < (WHPP=rel2 < IN=mov1 < WHNP=par $+ S=mov2)

Operation: [move mov1 >1 rel1][move mov2 par][relabel rel1 NPP][relabel rel2 PPW]

Example: Complex VP#1 is already applied
(ROOT
(S

(NP
(NP (DT the) (NNPS DSTsources))
(SBAR
(WHPP (IN from)
(WHNP (WDT which)))

(S
(NP (DT the) (NNPS DSTsettings))
(VP (VBD were) (VBN loaded)))))

(VP (VBP are) (VBN displayed))
(. .)))

(ROOT
(S
(NP
(NP (DT the) (NNPS DSTsources))
(NPP
(PPW (IN from)
(WHNP (WDT which)))
(S
(NP (DT the) (NNPS DSTsettings))
(VP (VBD were) (VBN loaded)))))

(VP (VBP are) (VBN displayed))
(. .)))

123

APPENDIX B. PARSE TREE MODIFICATION PATTERNS

B.2.36 Surround NP

Pattern: /ˆNP$|PPN$/=sis $+ /ˆPP$|NPP$/ $++ =bro !> /ˆNP$|PPN$/ > =par

Operation: [move mov1 >1 rel1][move mov2 par][relabel rel1 NPP][relabel rel2 PPW]

Example: Complex VP#1 is already applied
(ROOT
(S
(NP

(NP (DT the) (NN DSTlog))
(PP (IN for)
(NP (NNP DSTtest))))

(VP (VBZ comprises)
(NP (JJ detailed) (NN information))
(PP (IN about)))))

(ROOT
(S
(NP
(NP (DT the) (NN DSTlog))
(PP (IN for)
(NP (NNP DSTtest))))

(VP (VBZ comprises)
(NP
(NP (JJ detailed) (NN information))
(PP (IN about))))))

124

Publications

Parts of the literature review, formal concepts and evaluation results of this thesis are
already published as scientific publications. In the following, an overview of the relevant
publications in chronological order is provided:

1. T. Quirchmayr, B. Paech, H. Karey, R. Kohl: Semi-automatic Rule-based Do-
main Terminology and Software Feature-relevant Information Extrac-
tion from Natural Language User Manuals. Empirical Software Engineering
x(y), 2018.

2. T. Quirchmayr, B. Paech, H. Karey, R. Kohl: Semi-automatic Software
Feature-Relevant Information Extraction from Natural Language User
Manuals In: Proceedings of the 23nd International Working Conference on Re-
quirements Engineering: Foundation for Software Quality (REFSQ’17), Essen,
March 2017.

125

Bibliography

Aggarwal, C. C. (2015). Data Mining: The Textbook. Springer Publishing Company.

Aggarwal, C. C., and Zhai, C. (2012a). Mining Text Data. Springer-Verlag New York.

Aggarwal, C. C., and Zhai, C. (2012b). A survey of text classification algorithms. In
Mining text data, (pp. 163–222). Springer.

Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B., and
Kochut, K. (2017). A brief survey of text mining: Classification, clustering and
extraction techniques. arXiv preprint arXiv:1707.02919 .

Apel, S., and Kästner, C. (2009). An overview of feature-oriented software development.
The Journal of Object Technology, 8 (5), 49–84.

Bakar, N. H., Kasirun, Z. M., and Salleh, N. (2015). Terms extractions: An approach
for requirements reuse. In 2nd International Conference on Information Science and
Security (ICISS ’15), (pp. 1–4).

Bakar, N. H., Kasirun, Z. M., Salleh, N., and Jalab, H. A. (2016). Extracting features
from online software reviews to aid requirements reuse. Applied Software Computing,
49 , 1297–1315.

Balachandran, K., and Ranathunga, S. (2016). Domain-specific term extraction for
concept identification in ontology construction. In 2016 IEEE/WIC/ACM International
Conference on Web Intelligence (WI), (pp. 34–41).

Bender, E. M. (2013). Linguistic Fundamentals for Natural Language Processing: 100
Essentials from Morphology and Syntax. Synthesis Lectures on Human Language
Technologies. Morgan & Claypool Publishers.

Berry, D., Gacitua, R., Sawyer, P., and Tjong, S. F. (2012). The Case for Dumb
Requirements Engineering Tools, (pp. 211–217). Springer.

126

Bibliography

Bezdek, J. C., Ehrlich, R., and Full, W. (1984). FCM: The fuzzy c-means clustering
algorithm. Computers & Geosciences, 10 (2-3), 191–203.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal of
machine Learning research, 3 (1), 993–1022.

Boonthum-Denecke, C. (2011). Cross-Disciplinary Advances in Applied Natural Language
Processing: Issues and Approaches. IGI Global.

Bosch, J. (2000). Design and Use of Software Architectures: Adopting and Evolving a
Product-line Approach. ACM Press/Addison-Wesley Publishing Co.

Bourque, P., and Fairley, R. E. (2014). Guide to the software engineering body of
knowledge (SWEBOK (R)): Version 3.0 . IEEE Computer Society Press.

Boutkova, E., and Houdek, F. (2011). Semi-automatic identification of features in
requirement specifications. In 19th IEEE International Requirements Engineering
Conference (RE ’11), (pp. 313–318).

Brinton, L. J., and Brinton, D. (2010). The linguistic structure of modern English. John
Benjamins Publishing.

Castañeda, V., Ballejos, L., Caliusco, M. L., and Galli, M. R. (2010). The use of ontologies
in requirements engineering. Global Journal of Research In Engineering, 10 (6).

Celeux, G., and Govaert, G. (1995). Gaussian parsimonious clustering models. Pattern
recognition, 28 (5), 781–793.

Chandrasekar, R., Doran, C., and Srinivas, B. (1996). Motivations and methods for text
simplification. In Proceedings of the 16th conference on Computational linguistics, (pp.
1041–1044).

Chen, J., Chau, R., and Yeh, C.-H. (2004). Discovering parallel text from the world wide
web. In Proceedings of the Second Workshop on Australasian Information Security,
Data Mining and Web Intelligence, and Software Internationalisation (ACSW Frontiers
’04), (pp. 157–161).

Chowdhury, G. G. (2003). Natural language processing. Annual review of information
science and technology, 37 (1), 51–89.

Classen, A., Heymans, P., and Schobbens, P.-Y. (2008). What’s in a feature: A require-
ments engineering perspective. In Proceedings of the 11th International Conference on

127

Bibliography

Fundamental Approaches to Software Engineering, Theory and Practice of Software,
(pp. 16–30).

Colas, F., and Brazdil, P. (2006). Comparison of SVM and some older classification
algorithms in text classification tasks. In Proceedings of the International Conference
on Artificial Intelligence in Theory and Practice (IFIP’06), (pp. 169–178).

Corbett, G. (2006). Linguistic features. African Affairs, 87 , 25–54.

Dale, R., Moisl, H., and Somers, H. (2000). Handbook of natural language processing.
CRC Press.

Dong, Y.-S., and Han, K.-S. (2004). A comparison of several ensemble methods for
text categorization. In Proceedings of the IEEE International Conference on Services
Computing (SCC’04), (pp. 419–422).

Dumitru, H., Gibiec, M., Hariri, N., Cleland-Huang, J., Mobasher, B., Castro-Herrera,
C., and Mirakhorli, M. (2011). On-demand feature recommendations derived from
mining public product descriptions. In 33rd International Conference on Software
Engineering (ICSE’11), (pp. 181–190).

Earls, A., Embury, S., and Turner, N. (2002). A method for the manual extraction of
business rules from legacy source code. BT Technology, 20 (4), 127–145.

Eisenbarth, T., Koschke, R., and Simon, D. (2003). Locating features in source code.
IEEE Transactions on Software Engineering, 29 (3), 210–224.

Feldman, R., and Dagan, I. (1995). Knowledge discovery in textual databases (KDT). In
KDD, vol. 95, (pp. 112–117).

Feldman, S. (1999). NLP meets the jabberwocky: Natural language processing in
information retrieval. Online-Weston, 23 , 62–73.

Feldt, R., and Magazinius, A. (2010). Validity threats in empirical software engineering
research-an initial survey. In Proceedings of the Software Engineering and Knowledge
Engineering Conference (SEKE’10), (pp. 374–379).

Forward, A., and Lethbridge, T. C. (2002). The relevance of software documentation,
tools and technologies: a survey. Proceedings of the ACM symposium on Document
engineering, (pp. 26–33).

Frakes, W. B., and Baeza-Yates, R. (1992). Information retrieval: Data structures &
algorithms. Prentice Hall Englewood Cliffs.

128

Bibliography

Fuller, R. B. (1957). A comprehensive anticipatory design science. Journal of Royal
Architectural Institute of Canada, (pp. 84–117).

Gamma, E. (1995). Design patterns: elements of reusable object-oriented software.
Pearson Education India.

Gantz, J., and Reinsel, D. (2012). The digital universe in 2020: Big data, bigger digital
shadows, and biggest growth in the far east. IDC iView: IDC Analyze the future,
2007 (2012), 1–16.

Ghosh, J., and Strehl, A. (2006). Similarity-based text clustering: A comparative study.
In J. Kogan, C. Nicholas, and M. Teboulle (Eds.) Grouping Multidimensional Data:
Recent Advances in Clustering, (pp. 73–97). Springer Berlin Heidelberg.

Ghosh, S., Elenius, D., Li, W., Lincoln, P., Shankar, N., and Steiner, W. (2014).
ARSENAL: Automatic requirements specification extraction from natural language.
arXiv preprint arXiv:1403.3142 .

Godfrey, M. W., and German, D. M. (2008). The past, present, and future of software
evolution. In Frontiers of Software Maintenance (FoSM’08), (pp. 129–138).

Grefenstette, G., and Tapanainen, P. (1994). What is a word, what is a sentence?:
problems of tokenisation.

Guzman, E., and Maalej, W. (2014). How do users like this feature? a fine grained
sentiment analysis of app reviews. In Proceedings of the 22nd International Requirements
Engineering Conference (RE’14), (pp. 153–162).

Hancke, J., Vajjala, S., and Meurers, D. (2012). Readability classification for german
using lexical, syntactic, and morphological features. Proceedings of COLING 2012 ,
(pp. 1063–1080).

Hariri, N., Castro-Herrera, C., Mirakhorli, M., Cleland-Huang, J., and Mobasher, B.
(2013). Supporting domain analysis through mining and recommending features
from online product listings. IEEE Transactions on Software Engineering, 39 (12),
1736–1752.

Hassan, S., Rafi, M., and Shaikh, M. S. (2011). Comparing svm and naive bayes
classifiers for text categorization with wikitology as knowledge enrichment. In IEEE
14th International Multitopic Conference (INMIC), (pp. 31–34).

Hotho, A., a. Nürnberger, and Paaß, G. (2005). A brief survey of text mining. LDV
Forum - GLDV Journal for Computational Linguistics and Language Technology, 20 (1),
19–62.

129

Bibliography

Hsieh, S.-H., Lin, H.-T., Chi, N.-W., Chou, K.-W., and Lin, K.-Y. (2011). Enabling the
development of base domain ontology through extraction of knowledge from engineering
domain handbooks. Advanced Engineering Informatics, 25 (2), 288–296.

IEEE (1990). IEEE standard glossary of software engineering terminology. Office,
121990 (1), 1.

Johann, T., Stanik, C., Alizadeh, A. M., and Maalej, W. (2017). SAFE: A simple
approach for feature extraction from app descriptions and app reviews. In IEEE 25th
International Requirements Engineering Conference (RE’17), (pp. 21–30).

John, I. (2010). Using documentation for product line scoping. IEEE Software, 27 (3),
42–47.

Jonnalagadda, S., Tari, L., Hakenberg, J., Baral, C., and Gonzalez, G. (2009). To-
wards effective sentence simplification for automatic processing of biomedical text. In
Proceedings of Human Language Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Computational Linguistics, Companion
Volume: Short Papers, (pp. 177–180). Association for Computational Linguistics.

Jorgensen, M., and Shepperd, M. (2007). A systematic review of software development
cost estimation studies. IEEE Transactions of Software Engineering, 33 (1), 33–53.

Jurafsky, D., and Martin, J. H. (2014). Speech and language processing. Pearson.

Khan, K., Baharudin, B., and Khan, A. (2014). Identifying product features from
customer reviews using hybrid patterns. International Arab Journal of Information
Technology, 11 (3), 281–286.

Kim, S. N., Baldwin, T., and Kan, M.-Y. (2009). An unsupervised approach to domain-
specific term extraction. In Australasian Language Technology Association Workshop
2009 , (pp. 94–98).

Kim, S. N., and Cavedon, L. (2011). Classifying domain-specific terms using a dictionary.
In Australasian Language Technology Association Workshop 2011 , (pp. 57–65).

Kitchenham, B., and Charters, S. (2007). Guidelines for performing Systematic Literature
Reviews in Software Engineering. Technical report, Keele University and Durham
University Joint Report.

Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of
the ACM (JACM), 46 (5), 604–632.

130

Bibliography

Langley, P., Iba, W., and Thompson, K. (1992). An analysis of Bayesian classifiers.
Artificial Intelligence, (pp. 223–228).

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, vol. 10, (pp. 707–710).

Levy, R., and Andrew, G. (2006). Tregex and tsurgeon: tools for querying and manipulat-
ing tree data structures. In Proceedings of 5th International Conference on Language
Resources and Evaluation (LREC’06), (pp. 2231–2234).

Li, Y., Guzman, E., Tsiamoura, K., Schneider, F., and Bruegge, B. (2015). Automated
requirements extraction for scientific software. Procedia Computer Science, 51 , 582–591.

Liddy, E. D. (1998). Enhanced text retrieval using natural language processing. Bulletin
of the American Society for Information Science and Technology, 24 (4), 14–16.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to information
retrieval. Cambridge university press.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., and McClosky,
D. (2014). The stanford corenlp natural language processing toolkit. In Proceedings
of 52nd Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, (pp. 55–60).

Marciuska, S., Gencel, C., and Abrahamsson, P. (2014). Automated feature identification
in web applications. In Software Quality. Model-Based Approaches for Advanced
Software and Systems Engineering, (pp. 100–114). Springer.

Mitkov, R. (2014). Anaphora resolution. Routledge.

Nixon, M. (2008). Feature extraction & image processing. Academic Press.

Noy, N. F., and McGuinness, D. L. (2001). Ontology development 101: A guide to
creating your first ontology.

Paech, B., Hübner, P., and Merten, T. (2014). What Are the Features of This Software ?
An Exploratory Study. In Proceedings of the 9th International Conference on Software
Engineering Advances.

Petticrew, M., and Roberts, H. (2006). Systematic Reviews in the Social Sciences: A
Practical Guide. Blackwell Pub.

Phan, X.-H., Nguyen, L.-M., and Horiguchi, S. (2008). Learning to classify short and
sparse text & web with hidden topics from large-scale data collections. In Proceedings
of the 17th international conference on World Wide Web, (pp. 91–100).

131

Bibliography

Piateski, G., and Frawley, W. (1991). Knowledge discovery in databases. MIT press.

Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., and Still, J. (2008). The impact
of agile practices on communication in software development. Empirical Software
Engineering Journal, 13 (3), 303–337.

Rajman, M., and Besançon, R. (1998). Text mining: natural language techniques and
text mining applications. In Data mining and reverse engineering, (pp. 50–64).

Rangrej, A., Kulkarni, S., and Tendulkar, A. V. (2011). Comparative study of clustering
techniques for short text documents. In Proceedings of the 20th international conference
companion on World wide web, (pp. 111–112).

Shaker, P., Atlee, J. M., and Wang, S. (2012). A feature-oriented requirements modelling
language. In Proceedings of 20th International Requirements Engineering Conference
(RE’12), (pp. 151–160).

Slankas, J., and Williams, L. (2013). Automated extraction of non-functional requirements
in available documentation. In 1st International Workshop on Natural Language
Analysis in Software Engineering (NaturaLiSE’13), (pp. 9–16).

Toutanova, K., Klein, D., Manning, C. D., and Singer, Y. (2003). Feature-rich part-of-
speech tagging with a cyclic dependency network. In Proceedings of the 2003 Conference
of the North American Chapter of the Association for Computational Linguistics on
Human Language Technology-Volume 1 , (pp. 173–180). Association for Computational
Linguistics.

Toutanova, K., and Manning, C. D. (2000). Enriching the knowledge sources used in a
maximum entropy part-of-speech tagger. In Proceedings of the 2000 Joint SIGDAT
conference on Empirical methods in natural language processing and very large corpora:
held in conjunction with the 38th Annual Meeting of the Association for Computational
Linguistics-Volume 13 , (pp. 63–70). Association for Computational Linguistics.

Uysal, A. K., and Gunal, S. (2014). The impact of preprocessing on text classification.
Information Processing & Management, 50 (1), 104–112.

Venu, S. H., Mohan, V., Urkalan, K., and Geetha, T. V. (2016). Unsupervised domain
ontology learning from text. In Proceedings of the International Conference on Mining
Intelligence and Knowledge Exploration, (pp. 132–143).

Vijayarani, S., Ilamathi, J., and Nithya, M. (2015). Preprocessing techniques for text
mining-an overview. International Journal of Computer Science & Communication
Networks, 5 (1), 7–16.

132

Bibliography

Ward, L. J., and Woods, G. (2013). English grammar for dummies. John Wiley & Sons.

Weston, N., Chitchyan, R., and Rashid, A. (2009). A framework for constructing
semantically composable feature models from natural language requirements. In
Proceedings of the 13th International Software Product Line Conference (SPLC’09),
(pp. 211–220).

Wieringa, R., and Morali, A. (2012). Technical action research as a validation method in
information systems design science. In Proceedings of the 7th International Conference
on Design Science Research in Information Systems: Advances in Theory and Practice
(DESRIST’12).

Wimalasuriya, D. C., and Dou, D. (2010). Ontology-based information extraction: An
introduction and a survey of current approaches. Journal of Information Science, (pp.
306–323).

Wohlin, C., M., P. R., Höst, Ohlsson, M. C., Regnell, B., and Wesslén, A. (2012).
Experimentation in software engineering. Springer Science & Business Media.

Yu, Y., Wang, H., Yin, G., and Liu, B. (2013). Mining and recommending software
features across multiple web repositories. In Proceedings of the 5th Asia-Pacific
Symposium on Internetware, (pp. 9–15).

Zhan, T.-J., and Li, C.-H. (2010). Product feature mining with nominal semantic
structure. In IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT’10), (pp. 464–467).

Zorn-Pauli, G., Paech, B., and Wittkopf, J. (2012). Strategic release planning challenges
for global information systems - a position paper. In Proceedings of the 6th International
Workshop on Software Product Management (IWSPM’12), (pp. 186–191).

133

	I Preliminaries
	Introduction
	Motivation
	Problem Statement
	Contributions
	Structure of the Thesis
	Publications arising from this Thesis

	Foundations
	Research Methodology
	User Manuals as Core Artifacts in Software Engineering
	Software Feature and Feature-relevant Information
	Domain-specific Terminology
	Natural Language Processing
	Morphological Analysis
	Lexical Analysis
	Syntactic Analysis

	Text Mining
	Text Preprocessing
	Text Representation
	Knowledge Discovery in Text
	Information Extraction
	Text Classification
	Text Clustering

	Measurement Fundamentals

	II Problem Investigation
	Software Feature Extraction from Natural Language Text: State of the Art
	Research Questions
	Review Method
	Results
	Findings in Selected Publications
	Which approaches exist to extract software feature-relevant information from natural language software engineering artifacts?
	Which software feature-relevant entities are extracted? Which types of natural language software engineering artifacts are mined?
	Which technologies are used?
	Which degree of automation do the approaches provide?
	Which supporting manual effort is needed to apply the approaches?

	Summary and Conclusion

	III Treatment Design
	Software Feature Extraction (SOFEX)
	Requirements
	Overview
	Information Identification (semi-automated)
	User Manual Revision (manual, optional)
	Document Preparation (automated)
	Terminology-related (TR) Preprocessing (automated)
	Terminology Extraction (semi-automated)
	Candidate Extraction (automated)
	Term Validation (semi-automated)

	Software Feature-relevant Sentence Identification (automated)

	Information Extraction (automated)
	Information-related (IR) Preprocessing (automated)
	Terminology-based textual modifications (automated)
	Pattern-based parse tree transformations (automated)

	Software Feature-relevant Information Extraction (automated)

	Information Assignment (semi-automated)
	Assignment-related (AR) Preprocessing (automated)
	Learning (automated)
	Software Feature Knowledge Enhancement (manual)

	IV Treatment Validation
	Evaluation
	Introduction
	Evaluation I
	Information Identification (Id)
	IR Preprocessing (Pp)
	Information Extraction (Ix)
	Information Assignment (As)
	Discussion

	Evaluation II
	Terminology Extraction (Tx)
	Information Identification (Id)
	IR Preprocessing (Pp)
	Information Extraction (Ix)
	Information Assignment (As)
	Discussion

	V Conclusion
	Discussion
	Application Effort & Adaption Need
	Manual Effort to Apply SOFEX
	Manual Effort to Adapt SOFEX

	Threats to Validity
	Threats to Conclusion Validity
	Threats to Internal Validity
	Threats to Construct Validity
	Threats to External Validity

	Summary
	Future Work

	VI Appendix
	Natural Language Processing
	Penn Tag Set
	Stopwords

	Parse Tree Modification patterns
	Parse tree correction patterns
	JJ to NN
	ADVP to NP
	Cleanse PP
	VP to JJ
	ADJP to PP
	Complex NP#1
	Complex NP#2
	Complex NP#3
	Complex NP#4
	Complex NP#5
	Cleanse PP
	Cleanse NP lists#1
	Cleanse NP lists#2
	Cleanse S#1
	Cleanse S#2
	Cleanse "between" #1
	Cleanse "between" #2

	Parse tree adaption patterns
	Remove SINV
	Remove Brackets
	Cleanse FRAG
	Complex VP#1
	Complex VP#2
	Complex VP#3
	Complex VP#4
	ADVP in VP#1
	ADVP in VP#2
	ADJP in VP
	PRT in VP
	Complex PP
	Complex NP#6
	Multiple PP#1
	Multiple PP#2
	Remove S#1
	Remove S#2
	SBAR to VPH
	SBAR to VPC#1
	SBAR to VPC#2
	SBAR to VPP
	VP to VPV
	PP to VPP#1
	PP to VPP#2
	VP to VPT#1
	VP to VPT#2
	VP to VPT#3
	VP to VPW
	PP to NPP
	SBAR to NPW
	VP to NPV
	NP to PPN
	PP to PPV
	PP to PPW#1
	PP to PPW#2
	Surround NP

