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Summary 

Bone marrow (BM) serves as a site for T cell priming against blood-derived antigens but also 

harbors a diverse repertoire of regulatory T (Treg) cells. BM Treg cells are essential in 

hematopoiesis as they provide immune-privileged niches for hematopoietic stem cells, and are 

required for peripheral tolerance towards self-antigens. Treg cell accumulation in the BM has 

been hitherto viewed as a consequence of preferential immigration of thymus-derived Treg 

(tTreg) cells. However, it remains unknown whether Treg cells are also induced in situ in the 

BM, and to which degree these peripherally induced Treg (pTreg) cells contribute to the 

diversity of Treg cells in this lymphoid organ.  

Previously in our lab, a novel cell subset which expresses autoimmune regulator (Aire) has 

been identified in both murine and human BM. The BM Aire-expressing cells (BMACs) are 

characterized by the expression of major histocompatibility complex class II (MHC-II) and 

epithelial cell adhesion molecule (EpCAM). Moreover, they ectopically express a highly 

diverse repertoire of peripheral tissue-restricted self-antigens. The aim of this study is to 

characterize the cellular origin of BMACs, and evaluate their immunological function to induce 

peripheral tolerance, especially their role in the conversion of naïve T cells into Treg cells. 

In this study, I demonstrate that BMACs show features of CD19lowCD138+B220-Blimp-1+IgM+ 

plasma cells. They reside in proximity to CD4+ T cell clusters, express CD80, CD86, and PD-

L1 and are able to present Aire-regulated antigens to CD4+ T cells. Furthermore, BMACs over-

express genes associated with Treg induction, such as genes for retinoic acid production, the 

TIGIT ligand CD155 and IL-10. After encountering BMACs, which express the cognate 

antigen in BM, naïve CD4+ T cells specific for Aire-regulated antigens are converted to 

CD25+Foxp3+ Treg cells in vitro and in vivo. Treg cells induced by BMACs express high levels 

of CTLA-4 and LAP, and can suppress cytotoxic T cell responses in vivo. In conclusion, we 
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have identified a plasma cell subset that expresses Aire and tissue-restricted self-antigens 

ectopically, and is capable to promote peripheral tolerance by inducing a repertoire of 

autoreactive Treg cells in the BM. 
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Zusammenfassung 

Das Knochenmark (KM) dient als Standort für das Priming von T-Zellen gegen Antigene, die 

über das Blut transportiert werden, beherbergt aber auch ein diverses Repertoire an 

regulatorischen T-Zellen (Treg). KM Treg Zellen sind essentiell für die Hämatopoese, da sie 

immunprivilegierte Nischen für hämatopoetische Stammzellen bieten, und daher für die 

periphere Toleranz gegenüber Selbst-Antigene notwendig sind. Die Anreicherung von Treg 

Zellen im KM wurde bisher als Konsequenz präferentieller Immigration von Thymus-

stämmigen Treg (tTreg) Zellen angesehen. Es ist jedoch ungewiss, ob Treg Zellen auch in situ 

im KM indusziert werden, und diese peripher induzierten Treg (pTreg) Zellen zur Diversität 

des Treg Zellen Repertoires in diesem lymphoiden Organ beitragen.  

In unserem Labor wurde eine  neuartige Zellpopulation, welche den Autoimmun- Regulator 

(Aire) exprimiert, sowohl in murinem, als auch humanem KM identifiziert. Die Aire-

exprimierenden Zellen im Knochenmark (BMACs) exprimieren den MHC-Klasse-II-Komplex 

(MHC-II) und das epitheliale Zelladhäsionsmolekül (EpCAM). Außerdem exprimieren sie 

ektopisch ein diverses Repertoire von peripheren, Gewebe-restringierten, Selbst-Antigenen. In 

der vorliegenden Arbeit habe ich BMACs phänotypisch, molekular und funktionell 

charakterisiert. Dies geschah insbesondere im Hinblick auf ihre Fähigkeit zur Induktion 

peripherer Immuntoleranz, vor allem durch eine Konvertierung naïver T Zellen in Treg Zellen. 

In dieser Studie zeige ich, dass BMACs Eigenschaften von CD19lowCD138+B220-Blimp-

1+IgM+ Plasmazellen aufzeigen. Sie sind in der Nähe des CD4+ T-Zell Clusters angesiedelt, 

exprimieren CD80, CD86, und PD-L1 und sind in der Lage, Aire-regulierte Antigene CD4+ T-

Zellen zu präsentieren. Desweiteren überexprimieren BMACs Gene, die mit Treg Induktion 

assoziiert sind, wie z.B. Gene für die Retinsäureproduktion, den TIGIT Liganden CD155 und 

IL-10. Nach der Interaktion mit BMACs, die das verwandte Antigen im KM exprimieren, 
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werden naïve CD4+ T Zellen, die spezifisch für Aire-regulierte Antigen sind, in vitro und in 

vivo, zu CD25+Foxp3+ Treg Zellen konvertiert. Treg Zellen, die durch BMACs induziert 

wurden, exprimieren hohe Level an CTLA-4 und LAP, und können zytotoxische T-Zell 

Antworten in vivo unterdrücken. Zusammenfassend demonstriert meine Arbeit somit, dass ein 

Plasmazell-Subset Aire und Gewebe-beschränkte Selbst-Antigene ektopisch exprimiert, und in 

der Lage ist, periphere Immuntoleranz, durch Induktion eines Repertoires autoreaktiver Treg 

Zellen, im KM, zu induzieren. 
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1. Introduction 

1.1 T cell central tolerance 

In healthy individuals, the immune system is exquisitely balanced between tolerance towards 

self-antigens and inflammatory responses against pathogens or neo-antigens. Tip of this balance 

either leads to immunopathology (such as autoimmune diseases) due to inadequate tolerance, 

or results in immunodeficiency due to insufficient immune responses. The maintenance of such 

balance largely depends on the fine regulation by CD4+ T cells. They express T-cell receptors 

(TCRs) with highly diverse specificities, which enable accurate activation upon engagement to 

specific antigens. Activated CD4+ T cells further promote the responses of effector cells such 

as cognate CD8+ T cells and B cells1, 2, and thus are pivotal to the control of adaptive immunity. 

The diversity of TCR specificity arises from stochastic V(D)J recombination of Tcra (TCR α 

chain) and Tcrb (β chain) genes3, and TCRs with specificities against self-antigens can also 

occur. It is therefore crucial to remove T cells with autoreactivity in order to avoid autoimmune 

diseases. In thymus, the specificities of TCRs on immature thymocytes are examined in order 

to generate a repertoire of T cells that can distinguish “self” and “non-self”. This process of 

self-testing is termed T cell central tolerance4.  

T cell progenitors enter the cortex of the thymus as CD4-CD8- (double negative, DN) cells and 

undergo TCR rearrangement (Figure I), and become double positive (DP) cells after successful 

production of functional TCR β-chain (β-selection)5. After generating a complete TCR, the DP 

cells then interact with cortical thymic epithelial cells (cTECs) to test if their TCRs have 

sufficient affinity to thymo-proteosome (β5t)-processed peptide presented on major 

histocompatibility complex (MHC) class I or class II of cTECs6. Those thymocytes with 
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insufficient affinity to MHC are subject to programmed cell death by neglect. After positive 

selection, the surviving thymocytes become single positive (SP) cells.  

 

 

Figure I. Thymocyte development in the thymus. Immature T cells migrate from the circulation into 

the cortex of thymus where they go through positive selection by cTECs and commit to CD4+ or CD8+ 

SP thymocytes. The SP cells then migrate to the medulla and undergo negative selection, in which their 

autoreactivity of TCRs is examined by mTECs and hematopoietic cells in the medulla. Figure credit: 

Klein et al. (2009) Nat. Rev. Immunol.5 
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These positive-selected CD4+ or CD8+ SP thymocytes then enter the medulla of thymus for 

negative selection, in which their TCR specificities are examined against self-antigens 

presented by the antigen presenting cells (APCs) in the thymic medulla, including medullary 

thymic epithelial cells (mTECs), thymic B cells (BCs) and dendritic cells (DCs)5. The mTECs 

are able to ectopically express tissue-restricted self-antigens (TRAs), which are normally 

expressed exclusively in peripheral tissues, such as insulin in pancreatic β cells7, 8. The ectopic 

expression of TRAs is essential for T cell central tolerance and thus the prevention of 

autoimmunity. The epitopes of TRAs are processed and presented by mTECs to SP thymocytes, 

and those SP cells with high affinity to self-antigens are subjected to apoptosis and thus 

eliminated (clonal deletion, Figure II)6. Thymic B cells are also able to express TRAs 

ectopically and promote clonal deletion of autoreactive thymocytes9, 10. Thymic DCs also 

contribute to the deletion of autoreactive thymocytes. However, they do not express TRAs 

themselves; instead they acquire TRAs transferred from mTECs and subsequently present the 

TRA epitopes to SP thymocytes to facilitate clonal deletion of autoreactive thymocytes5, 6, 11.  

 

  

Figure II.  The affinity model of thymocyte selection. Low to intermediate affinities of TCRs to self-

peptides allow thymocytes to pass the negative selection and become mature naïve T cells, whereas 

strong interaction between TCR and peptide:MHC complex often leads to clonal deletion. A broad range 

of affinities in between positive and negative selection is permissive for Treg differentiation. Figure 

credit: Klein et al. (2014) Nat. Rev. Immunol.6 
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In addition to negative selection through clonal deletion, an alternative fate of autoreactive 

CD4+ thymocytes after encountering self-antigens presented by APCs in the thymic medulla is 

their differentiation to regulatory T (Treg) cells (Figure II)12-14. No single APC subset is 

exclusively responsible for clonal deletion or Treg differentiation6. Both mTECs and 

hematopoietic cells (such as thymic DCs) can promote Treg induction in the thymus (Figure 

III)13-16, however, evidences suggest that different types of APCs, although playing redundant 

roles in clonal deletion and Treg differentiation, are responsible for the induction of distinct 

Treg cell repertoires11, 17.  

Clonal deletion and Treg differentiation are both critical features in T cell central tolerance: the 

former results in a passive tolerance towards self-antigens, whereas the latter creates a dominant 

tolerance through the establishment of a repertoire of thymus-derived Treg (tTreg) cells, which 

can actively suppress autoimmune responses.  
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Figure III. Clonal deletion and Treg differentiation cooperatively mediate T cell tolerance towards 

tissue specific self-antigens. Both mTECs and thymic DCs contribute to clonal deletion and Treg 

differentiation. While mTECs test the autoreactivity of thymocytes through autonomous TRA 

expression and direct presentation, thymic DCs mediate T cell tolerance via cross-presentation of TRAs 

derived from mTECs. Thymic DCs and mTECs are responsible for generating distinct repertoires of 

naïve T cells and tTreg cells in terms of TCR clones. Figure adapted from Kyewski et al. (2004) Nat. 

Rev. Immunol. and Kyewski et al. (2014) Immunity8, 18 
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1.2 Autoimmune regulator (Aire) mediates promiscuous gene expression  

The expression of TRAs ectopically in thymic medulla – referred to as promiscuous gene 

expression (pGE) – is the fundament of T cell central tolerance. The genetic regulation of pGE 

is predominantly controlled by the transcription factor, autoimmune regulator (Aire)19, 20. 

Mutations of Aire are associated with autoimmune diseases, such as autoimmune polyglandular 

syndrome type 1 (APS1)21, 22. Independent studies with animal models of Aire-deficiency have 

demonstrated that Aire is indispensable for both clonal deletion19 and Treg differentiation23, 24 

in T cell central tolerance. 

In mTECs, Aire controls the ectopic expression of TRAs with ordered stochasticity25. One 

particular TRA is expressed by only 1-3% of mTECs, and therefore whether a given individual 

mTEC expresses one particular TRA gene is stochastic26, 27. On the other hand, certain sets of 

TRAs are frequently found to be co-expressed in the same individual mTEC, suggesting that 

the expression of TRA genes is not completely random, but rather governed by a hitherto 

unknown mechanism25, 28, 29. This expression pattern assures that the whole spectrum of self-

antigens are expressed by mTECs and can be “seen” by thymocytes30. 

Aire does not promote gene expression by targeting specific DNA sequences, as no clear DNA 

binding motif has been identified within the protein. Instead, it targets transcriptional repressive 

complexes (where gene expression is silenced) of the genome, and subsequently activates the 

transcription of the downstream genes. Aire protein consists of four domains: CARD (caspase 

activation and recruitment domain), SAND domain (SP100, AIRE-1, NucP41/P75, DEAF1), 

PHD1 (plant homeodomain 1) and PHD220, 30. CARD is essential for the homologous 

multimerization of Aire31, and therefore genetic defects on other domains of Aire often lead to 

dominant mutations due to the formation of multimer protein containing malfunctioning 

monomers32, 33. The PHD1 and SAND domains are critical for “directing” the protein to 

transcriptional repressive loci of the genome: PHD1 directly recognizes unmethylated histone 
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H3 lysine 4 (H3K4)34, 35, which is a repressive epigenetic mark; SAND interacts with proteins 

that are associated with repressive chromatin states, such as the protein complex of activating 

transcription factor 7-interacting protein (ATF7IP), methyl-CpG-binding domain protein 1 

(MBD1), and methyltransferase ESET (Figure IV)36. Furthermore, DNA-dependent protein 

kinase (DNA-PK) recruits Aire via the PHD domains to double-strand breaks near transcription 

initiation sites37, where RNA polymerase II stalls after starting the transcription for 50-100 base 

pairs in the absence of Aire38. After Aire is recruited to the stalled RNA polymerase II, it 

promotes the RNA elongation by recruiting positive transcription elongation factor b (P-

TEFb)39, heterogeneous nuclear ribonucleoprotein L (hnRNPL)40 and bromodomain-containing 

4 (BRD4)41, which release the stalled RNA polymerase II and enable the transcription to 

proceed. 

 

 

Figure IV. Mechanisms of pGE by Aire and binding partners. Aire directly interacts with the 

repressed chromatin via recognizing unmethylated histone H3 lysine 4 (H3K4) of the silenced 

chromatin, or indirectly through the interaction with ATF7IP-MBD1-ESET complex and DNA-PK, 

which are associated with methylated DNA and double-strand breaks at transcription initiation sites, 

respectively. The recruitment of P-TEFb, hnRNPL and BRD4 by Aire facilitates the release of stalled 
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RNA polymerase II. SIRT1 and CBP control the acetylation of Aire, which regulates its transcriptional 

activity. Figure adapted from Anderson et al. (2016) Nat. Rev. Immunol.30 

 

The receptor activator of nuclear factor-κB (RANK) signaling induces the maturation of 

mTECs and concomitantly promotes Aire expression42. The expression of Aire is regulated 

transcriptionally, whereas the functional efficiency of Aire is regulated at both post-

transcriptional and post-translational levels. The enhancer elements upstream of Aire locus are 

essential for its transcription. These enhancer elements consist of conserved noncoding 

sequences which are responsive to nuclear factor-κB (NF-κB)43, 44. After Aire is transcribed, the 

splicing of the Aire transcript is regulated by lysyl-hydroxylase and arginine demethylase 

JMJD6. The deficiency of JMJD6 does not affect the expression of Aire, but significantly 

reduces the expression levels of Aire-regulated TRA genes45. At the protein level, deacetylation 

of lysine residues of Aire by deacetylase sirtulin 1 (SIRT1) increases Aire transcriptional 

activity46, while acetylation by CREB-binding protein (CBP) results in reduction of Aire-

mediated TRA expression47. In addition, phosphorylation of Aire by DNA-PK also promotes 

the transcriptional activity of Aire48, 49.  

Due to the essence of pGE for T cell central tolerance, the expression and functional regulation 

of Aire has been deeply investigated in mTECs. However, its impact on the peripheral tolerance 

of T cells still remains poorly understood.  

1.3 Ectopic expression of TRAs in periphery 

After maturation in the thymus, naïve T cells emigrate from the thymus and recirculate into 

blood and lymphatic vessels patroling the vascular system to identify their cognate antigens50. 

During pathogen infection, naïve T cells recognize antigens presented by APCs that are 

preconditioned by inflammatory signals such as pathogen-associated molecular patterns 

(PAMPs). Consequently, these T cells become activated and differentiate into conventional 
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effector and memory T cells51. In steady state, however, activation and differentiation of T cells 

are exquisitely regulated to avoid unnecessary immune responses52. Self-antigen specific T cells 

are detectable in healthy humans, despite successful negative selection in the thymus. Various 

mechanisms of peripheral tolerance are essential to keep these autoreactive T cells in check53.  

Importantly, ectopic TRA expression is not only a hallmark of mTECs for the initiation of T 

cell central tolerance in the thymus, but also plays an important role in maintaining peripheral 

tolerance for T cells. 

Lymph node stromal cells including fibroblastic reticular cells (FRCs, gp38+CD31-), lymphatic 

endothelial cells (LECs, gp38+CD31+) and blood endothelial cells (BECs, gp38-CD31+) 

ectopically express TRAs54-56. After encountering FRCs, naïve TRA-specific CD8+ T cells are 

activated and consequently deleted via direct presentation of TRA antigen by FRCs57, 58. 

Although Aire transcript is expressed in FRCs, Aire protein is undetectable. Moreover, after 

treated with polyinosinic:polycytidylic acid (poly I:C), a ligand of toll-like receptor 3 (TLR3), 

FRCs downregulate the expression of TRAs, and exhibit reduced ability to induce apoptosis of 

autoreactive CD8+ T cells58, showing that the tolerogenic characteristics of FRCs is present 

only in steady state, but not under inflammatory conditions. Of note, after poly I:C treatment, 

TRA genes and Aire are upregulated in gp38-CD31- cell subset in the lymph nodes, which 

includes hematopoietic-derived cells58, suggesting that hematopoietic cells respond to 

inflammation differently in terms of peripheral tolerance induction, compared to lymph node 

stroma cells. LECs also have the ability to directly present TRAs to autoreactive CD8+ T cells 

via MHC-I and induce their deletion59-61. The authors have shown that the ectopic expression 

of TRAs in LECs is Aire-independent, while in CD45+ hematopoietic cells it is Aire-

dependent59.  

In addition to regulating autoreactive CD8+ T cells, lymph node stromal cells are also involved 

in the maintenance of peripheral tolerance of CD4+ T cells. FRCs, LECs and BECs express 
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MHC-II in a class II transactivator (CIITA)-dependent manner61, 62. These lymph node stromal 

cells can induce anergy and apoptosis of autoreactive CD4+ T cells in cooperation with DCs. 

However, it is still controversial whether these stromal cells can directly present TRAs via 

MHC-II to CD4+ T cells, or their tolerogenic effect depends on the DCs in lymph nodes that 

can receive antigens from stromal cells and present them to CD4+ T cells56, 61, 62. Furthermore, 

Baptista et al. have demonstrated that the transplantation of MHC-II-deficient lymph nodes 

(and thus MHC-II-deficient lymph node stromal cells) to WT mice leads to reduction of Treg 

cell frequencies63, indicating that lymph node stromal cells are important for Treg homeostasis. 

However, it is not known if the stromal cells can induce the conversion of peripherally derived 

Treg (pTreg) cells, or only maintain the survival of tTreg cells. 

Intriguingly, Aire protein expression has also been found in peripheral lymphoid organs, such 

as spleen and lymph nodes. These extra-thymic Aire-expressing cells (eTACs) are able to 

express Aire-dependent TRAs and present the self-antigens to autoreactive CD8+ and CD4+ T 

cells. It has been shown that eTACs can prevent the onset of diabetes by inducing apoptosis of 

pancreatic β cell-specific CD8+ T cells64. Moreover, presentation of pancreatic antigens to 

cognate naïve CD4+ T cells induces their anergy/hyporesponsiveness, resulting from strong 

TCR signaling and lack of co-stimulatory signals from eTACs65. An additional study has 

revealed that eTACs are hematopoietic-derived cells, and show characteristics of DCs, such as 

expression of CD11c as well as Zbtb46, the master transcription factor of DCs65. Of note, after 

recognizing the self-antigens presented by eTACs, naïve autoreactive CD4+ T cells are partially 

converted to CD25+Foxp3+ Treg cells. However, these eTAC-induced Treg cells do not exert 

suppressive function to actively prevent diabetes65. Therefore the peripheral tolerance induced 

by eTACs is passive rather than active. 
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To date, there is no study showing a direct presentation of ectopically expressed TRAs which 

leads to the conversion of naïve autoreactive CD4+ T cells into Treg cells in the spleen, lymph 

nodes, or bone marrow (BM), which are the reservoirs of circulating Treg cells.  

1.4 T cell immunity in the bone marrow 

As an indispensable primary and secondary lymphoid organ for hematopoietic homeostasis, 

BM harbors various types of cellular compartments for the development of hematopoietic stem 

cells and progenitor cells, as well as for the modulation of adaptive immune responses under 

physiological and inflammatory circumstances66, 67. This lymphoid organ is vascularized by 

blood vessels, which span through the endosteum and central marrow in the form of sinusoids. 

All the immune cells migrate in and out of the BM through the sinusoids, as this organ is not 

connected to lymphatic system68. For T cell homeostasis, BM niches provide survival signals 

including cytokines and cell adhesion molecules to antigen-specific memory T cells for their 

self-renewal and maintenance69, 70. Memory T cells specific to tumor-associated antigens reside 

in the BM of cancer patients71, 72, and these tumor-specific memory T cells can be utilized for 

cancer immunotherapy such as adoptive T cell transfer therapy73-76.  

Apart from accommodating memory T cells, BM also serves as a T-cell priming site, as BM-

resident DCs can activate both CD4+ and CD8+ naïve T cells in the absence of other secondary 

lymphoid organs77-79. Moreover, Treg cells are also enriched in BM with a higher frequency 

than those in spleen and lymph nodes67, and their immigration into the BM depends on the 

balance between CXCL12 and G-CSF80, 81. As key regulators of both local and systemic 

immunity, Treg cells in BM play crucial roles in different types of diseases and manifest great 

value for clinical application. BM Treg cells are essential for immune hematopoiesis as they 

provide immune-privileged niches of hematopoietic stem cells82, control IL-7 expression of BM 

stromal cells83, regulate hematopoiesis84, and are required for maintaining tolerance after stem 

cell transplantation85. In addition to their local impact in the BM, Treg cells migrate from the 



Introduction 

 

12 

 

BM to the periphery and regulate immune responses under inflammatory conditions. In cancer 

patients, tumor-specific Treg cells reside in their BM and upon selective activation upregulate 

the expression of chemokine receptors S1P1, which leads to the emigration of tumor-specific 

Treg cells to peripheral tumor sites86, 87. The origin of the tumor-specific Treg cells, as well as 

the mechanisms underlying the activation of those Treg cells is hitherto unknown. 

 

1.5 Aims of this study 

BM Treg cells comprise diverse functional clones which cover a broad spectrum of self-

antigens. However, how the diverse repertoire of Treg cells is generated in the BM remains 

largely elusive. To date, BM has been viewed as a preferential site for the recirculation of 

tTreg cells81, while little is known about its role in the generation of pTreg cells. Here, I seek 

to investigate whether ectopic TRA expression takes place in the BM, and if the presentation 

of these self-antigens leads to generation of functional pTreg cells which help maintaining 

peripheral tolerance. 

 

1.6 Preliminary data 

1.6.1 Aire is expressed by BM-resident MHC-II+EpCAM+CD45+ cells  

The working hypothesis is that self-antigens are expressed locally in the BM and serve to 

generate or maintain peripherally-induced Treg cells. Since Aire is the key transcription factor 

that controls the ectopic expression of TRAs, Dr. Felix Klug in our group first assessed Aire 

expression in murine BM. He harnessed Adig transgenic mice, in which the GFP reporter 

protein is driven by a murine Aire locus64. Immunofluorescence demonstrated that Aire-GFP 

reporter protein was expressed in both the thymus and BM (Figure V-A). 
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Immunocytochemistry was performed on sorted Aire-GFP+ cells to assess Aire protein 

expression. The pattern of Aire expression exhibited puncta-like structure in the nuclei (Figure 

V-B), which was also observed in the BM tissue of WT Balb/c mice (Figure V-C), resembling 

the Aire expression pattern in mTECs32. BMACs and mTECs also shared other common 

features, such as the expression of MHC-II and epithelial cell adhesion molecule (EpCAM) 

(Figure V-C, D). However, hematopoietic marker CD45 was also expressed by BMACs, and 

hence the developmental origin of BMACs remains unclear. 
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Figure V. BM-resident Aire-expressing cells are MHC-II+EpCAM+CD45+. (A) 

Immunofluorescence of GFP on thymus and BM tissue of Adig mice. Arrows indicate Aire-GFP 

expressing cells. (B) Immunocytochemistry of Aire on Adig BM cells sorted by GFP expression. (C) 

Immunofluorescence of Aire and MHC-II on thymus and BM tissue of WT Balb/c mice. Arrows indicate 
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Aire-expressing cells. (D) Flow cytometric analysis of surface marker expression on total BM cells of 

Adig mice. 

 

1.6.2 AIRE is detected in human BM but not in blood 

To assess the presence of BMACs in human BM, Dr. Klug further isolated mononuclear cells 

from human blood and BM donors and conducted flow cytometric analysis after intracellular 

staining for AIRE protein. As depicted in Figure VI, AIRE protein was detected in human BM, 

and in agreement with the findings in murine models, human BM AIRE-expressing cells also 

expressed EpCAM and HLA-DR. Among EpCAM+HLA-DR+ cells, 5.5±4.7% (mean±SEM) 

expressed AIRE (Figure VI-B), and 0.13±0.05% of total BM mononuclear cells were 

AIRE+EpCAM+HLA-DR+ (Figure VI-C). In blood derived mononuclear cells, however, AIRE 

was undetectable, demonstrating that human AIRE-expressing cells are significantly enriched 

in BM compared to peripheral blood (Figure VI). Thus, AIRE is also expressed in human BM, 

and AIRE expression is restricted to MHC-II+EpCAM+ BM cells. 

 

Figure VI. AIRE is expressed in human BM. (A) Representative data of AIRE expressing cells in 

human BM. (B) Frequencies of AIRE-expressing cells in human BM cells and peripheral blood 
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mononuclear cells. Unshaded grey curve indicates isotype control. (C) Frequencies of 

AIRE+EpCAM+HLA-DR+
 cells in mononuclear cells (MNCs) in the BM and blood (mean ± SEM), 

evaluated according to the gating strategy shown in (A), upper panel. **, P < 0.01 (paired Student’s t-

test).  

 

1.6.3 Aire regulates the expression of TRA genes in BMACs 

Next, Dr. Klug examined the function of Aire as a transcription factor to promote ectopic TRAs 

expression in the BM. BMACs and mTECs of Adig mice were sorted according to Aire-GFP 

expression and subjected to gene expression array analysis. This revealed that BMACs 

expressed 721 genes which are classified as TRAs according to previously described criteria8, 

88, and 634 genes (88%) of these TRAs were commonly expressed by both mTECs and BMACs, 

whereas 87 of them were exclusively expressed in BMACs (Figure VII-A). Of note, among 

the TRAs expressed by BMACs, Dr. Klug found numerous self-antigens associated to various 

autoimmune diseases, such as CNP for multiple sclerosis and Col5a1 for rheumatoid arthritis, 

as well as tumor-associated testis antigens such as Mage-e1. The TRA genes expressed by 

BMACs represented highly diverse tissue types (Figure VII-B). To delineate which of these 

TRAs were controlled by Aire, we compared gene expression profiles in BMACs of Adig × 

Aire-/- to the ones of Adig × Aire+/+ mice. As shown in Figure VII-C, 268 genes showed 

significant differential expression in the presence of Aire. Among the Aire-regulated genes, 80 

genes were Aire-induced and 188 were repressed by Aire. Of note, the overlap between Aire-

regulated genes in BMACs and mTECs was limited to 4 genes28, and only one gene was shared 

between BMACs and previously reported Aire-regulated genes in eTACs64 (Figure VII-C). 

This demonstrates the presence of complementary sets of TRAs expressed by Aire-expressing 

cells in different organs. 
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Figure VII. Aire regulated the expression of TRA genes in BMACs. (A) Venn diagram of the 

numbers of TRA genes expressed exclusively in either mTECs or BMACs, or commonly expressed in 

both. (B) Distribution of the tissue types represented by the TRAs expressed by BMACs. Numbers in 

brackets indicate percentages of each tissue type. (C) Venn diagram of the numbers of Aire-regulated 

genes which were commonly or exclusively expressed in Aire-GFP+ BMACs, splenic eTACs and 

mTECs sorted from Adig × Aire+/- mice, compared to the Aire-GFP+ cells in Adig × Aire-/- mice.
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2. Materials and Methods 

2.1 Materials 

2.1.1 Mice 

Adig64, Aire-HCO9, 6.5 TCR-HA12 and Aire-/- mice89 have been described previously. Both 

Adig and Aire-/- mice were backcrossed onto Balb/c background for more than 10 generations, 

and all mice were maintained on Balb/c background under specific pathogen-free condition. 

Animal experiments were approved and regularly controlled by the authorities of the local states 

(Regierungspräsidium Karlsruhe and Regierung von Unterfranken), in compliance with EU 

Directive 2010/63/EU.  

2.1.2 Human samples  

Collection of peripheral blood and BM samples from donors was performed in compliance 

with the ethics committee (approval reference number 70/99) of the University of Heidelberg 

upon signed consent. 

2.1.3 Reagents for cell preparation and in vitro culture 

Reagent Vendor Catalog number 

PBS Sigma-Aldrich D8537 

FBS Sigma-Aldrich F7524 

RPMI-1640 Sigma-Aldrich R8758 

DMEM Sigma-Aldrich D6429 

Biocoll Biochrom GmbH L6715 

Cell strainer Greiner 542000 
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2.1.4 Buffer 

 

ACK buffer, pH 7.2-7.4 Vendor Amount for 1 l 

NH4Cl  Sigma-Aldrich 8.29 g 

KHCO3 Sigma-Aldrich 1 g 

Na2EDTA  Sigma-Aldrich 37.2 mg 

ddH2O - up to 1 l 

 

MACS buffer Vendor Amount for 500 ml 

FBS Sigma-Aldrich 2.5 ml 

EDTA (1%) Biochrom GmbH 25 ml 

ddH2O - 472.5 ml 

 

2.1.5 Antibodies against mouse antigens used in flow cytometric analyses 

Antigen Clone Isotype Conjugated 

fluorochrome 

Vendor Dilution 

fold 

CD16/32 2.4G2 Rat IgG2b, κ None  

(Fc Block) 

BD Biosciences 100 

CD16/32 93 Rat IgG2a, λ None  

(Fc Block) 

BioLegend 100 

B220 RA3-6B2 Rat IgG2a, κ APC-Fire750 BioLegend 100 

Blimp-1 5E7 Rat IgG2b, κ PE BioLegend 100 

CD3 17A2 Rat IgG2b, κ AlexaFluor700 BD Biosciences 100 

CD4 RM4-5 Rat IgG2a, κ V500 BD Biosciences 100 

CD11b M1/70 Rat IgG2b, κ PerCP-Cy5.5 eBioscience 100 

CD11c N418 Hamster IgG PerCP BioLegend 100 

CD19 1D3 Rat IgG2a, κ PE-Cy7 BD Biosciences 100 

CD19 6D5 Rat IgG2a, κ AlexaFluor700 BioLegend 100 

FACS buffer Vendor Amount for 500 ml 

FBS Sigma-Aldrich 10 ml 

ddH2O - 490 ml 
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CD25 PC61 Rat IgG1, λ Brilliant 

Violet421 

BioLegend 200 

CD44 IM7 Rat IgG2b, κ FITC BD Biosciences 100 

CD45 30-F11 Rat IgG2b, κ APC-eFluor780 eBioscience 400 

CD45.1 A20 Mouse IgG2a, κ APC BD Biosciences 200 

CD45.1 A20 Mouse IgG2a, κ AlexaFluor700 BD Biosciences 100 

CD45.2 104 Mouse IgG2a, κ PE-CF594 BD Biosciences 200 

CD45.2 104 Mouse IgG2a, κ Brilliant 

Violet605 

BD Biosciences 100 

CD62L MEL-14 Rat IgG2a, κ PerCP-Cy5.5 BD Biosciences 100 

CD80 16-10A1 Hamster IgG Pacific Blue BioLegend 200 

CD86 GL1 Rat IgG2a, κ PE BioLegend 100 

CD138 281-2 Rat IgG2a, κ PE BioLegend 200 

CD138 281-2 Rat IgG2a, κ APC BioLegend 100 

CD200 OX110 Rat IgG2a, κ PerCP-

eFluor710 

eBioscience 200 

CTLA-4 UC10-4B9 Hamster IgG PE BioLegend 100 

EpCAM G8.8 Rat IgG2a, κ AlexaFluor647 BioLegend 100 

F4/80 BM8 Rat IgG2a, κ AlexaFluor700 BioLegend 100 

Foxp3 MF23 Rat IgG2b, κ AlexaFluor647 BD Biosciences 100 

IgD 11-26c.2a Rat IgG2a, κ PerCP-Cy5.5 BioLegend 100 

IgG1 A85-1 Rat IgG1, κ Brilliant 

Violet421 

BD Biosciences 100 

IgG2a/2b R2-40 Rat IgG1, κ Brilliant 

Violet605 

BD Biosciences 100 

IgM RMM-1 Rat IgG2a, κ AlexaFluor647  BioLegend 100 

IgM RMM-1 Rat IgG2a, κ Brilliant 

Violet605 

BioLegend 100 

I-A/I-E M5/11.15.2 Rat IgG2b, κ PE-Cy7 BioLegend 200 

I-A/I-E M5/11.15.2 Rat IgG2b, κ APC-eFluor780 eBioscience 100 

LAG-3 C9B7W Rat IgG1, κ PE-Cy7 eBioscience 100 

LAP TW7-16B4 Mouse IgG1, κ PerCP-Cy5.5 eBioscience 200 

Ly-51 BP-1 Mouse IgG2a, κ PE BD Biosciences 100 
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Ly-6D 49-H4 Rat IgG2c, κ eFluor450 eBioscience 200 

PD-L1 MIH5 Rat IgG2a, λ PE-Cy7 eBioscience 100 

PD-L2 TY25 Rat IgG2a, κ PE BD Biosciences 100 

TACI 8F10 Rat IgG2a, κ PE BioLegend 100 

 

2.1.6 Antibodies against human antigens used in flow cytometric analyses 

Antigen Clone Isotype Conjugated 

fluorochrome 

Vendor Dilution 

factor 

AIRE 6.1 Rabbit  AlexaFluor647 Kindly provided 

by P. Peterson48 

500 

CD2 RPA-2.10 Mouse IgG1, κ Brilliant 

Blue515 

BD Biosciences 200 

CD200 OX-104 Mouse IgG1, κ PE-Cy7 eBioscience 20 

EpCAM 9C4 Mouse IgG2b, κ AlexaFluor488 BioLegend 20 

HLA-DR L243 Mouse IgG2a, κ PerCP-

eFluor710 

eBioscience 20 

PD-L1 MIH1 Mouse IgG1, κ Brilliant 

Violet421 

BD Biosciences 20 

TACI 1A1-K21-

M22 

Rat IgG2a, κ PE BD Biosciences 100 

 

2.1.7 Viability dyes used in flow cytometric analyses 

Viability dye Vendor Dilution factor 

7-AAD BioLegend 50 

Yellow LIVE/DEAD Fixable Dead Cell Stain Kit Molecular Probes 1000 

Zombie Aqua Fixable Viability Kit BioLegend 1000 

Zombie NIR Fixable Viability Kit BioLegend 1000 
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2.1.8 Reagent used in flow cytometric analyses 

Reagent Vendor Working 

concentration 

CFSE Cell Division Tracker Kit BioLegend 5 μM or 0.5 μM 

Foxp3/Transcription Factor Fixation/Permeabilization 

Concentrate and Diluent 

eBioscience - 

 

2.1.9 Enzymes and reagents for thymus digestion 

Reagent Vendor Working 

concentration 

Collagenase IV Worthington 0.2 mg/ml 

Neutral Protease (Dispase) Worthington 0.2 mg/ml 

DNase I Sigma-Aldrich 25 μg/ml 

HEPES Sigma-Aldrich 20 mM 

 

2.1.10 Reagent for cell isolation 

Reagent Vendor 

CD45 magnetic microbeads Miltenyi Biotech 

MojoSort Mouse CD4 Naïve T Cell Isolation Kit BioLegend 

EasySep Mouse Memory CD4+ T Cell Isolation Kit STEMCELL Technologies 

 

2.1.11 Primary antibodies for immunofluorescence 

Antigen Clone Isotype Conjugated 

fluorochrome 

Vendor Dilution 

factor 

Aire 5H12 Rat IgG2c, κ AlexaFluor488 eBioscience 50 

Aire 5H12 Rat IgG2c, κ AlexaFluor660 eBioscience 20 

CD4 H129.19 Rat IgG2a, κ None BD Biosciences 50 

CD8 53-6.7 Rat IgG2a, κ None BD Biosciences 50 

CD19 1D3 Rat IgG2a, κ None BD Biosciences 25 
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2.1.12 Secondary antibodies for immunofluorescence 

Antigen Conjugated 

fluorochrome 

Vendor Dilution factor 

Goat-anti-rat IgG AlexaFluor488 Molecular Probes 200 

Goat-anti-rat IgG AlexaFluor647 Molecular Probes 200 

 

2.1.13 Reagents used in immunofluorescence 

Reagent Vendor 

Tissue-Tek Sakura 

DAPI-containing Fluoromount-G mounting medium eBioscience 

Acetone Sigma-Aldrich 

Tween-20 AppliChem 

 

2.1.14 Reagents for RNA isolation and Real-Time PCR 

Reagent Vendor 

RNeasy Mini Kit Qiagen 

QuantiTect Reverse Transcription Kit Qiagen 

QuantiFast SYBR Green PCR Kit Qiagen 

 

2.1.15 Primers used in Real-Time PCR 

Gene Position Sequence 

Aire forward 5’-TGCAGGAGATCCCCAGTG-3’ 

reverse 5’-TGGGACAGGTTCTGTTGGAC-3’ 

Actb forward 5’-ACGGCCAGGTCATCACTATTG-3’ 

reverse 5’-AGGATTCCATACCCAAGAAGGAA-3’ 
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2.1.16 Reagents for whole transcriptome amplification, single cell end-point PCR, and 

gene expression array 

Reagent Vendor 

mTRAP™ Lysis buffer Active Motif 

tRNA Sigma-Aldrich 

SuperAmp Kit Miltenyi Biotec 

Klenow Fragment Fermentas 

Random Octamer Enzo Life Sciences GmbH 

MouseRef-8 v2.0 Expression BeadChip Illumina 

MyTaq HS Red Mix Bioline 

Agarose Carl Roth 

GelRed Nucleic Acid Gel Stain Biotium 

 

2.1.17 Primers for quality control in single cell end-point PCR  

Gene Position Sequence 

Actb forward 5’-CAGCTTCTTTGCAGCTCCTT-3’ 

reverse 5’-CTCGTCACCCACATAGGAGTC-3’ 

B2m forward 5’-TGGTGCTTGTCTCACTGACC-3’ 

reverse 5’-CCGTTCTTCAGCATTTGGAT-3’ 

Gapdh forward 5’-GAAGGGCATCTTGGGCTAC-3’ 

reverse 5’- GCCTCTCTTGCTCAGTGTCC-3’ 

 

2.1.18 Primers for detecting gene expression in single cell end-point PCR 

Gene Position Sequence 

Aire forward 5’-TGCAGGAGATCCCCAGTG-3’ 

reverse 5’-TGGGACAGGTTCTGTTGGAC-3’ 

Csna forward 5’-CCTATGAGTGTAGTGGATCAGGCA-3’ 

reverse 5’-AGGCATCATACTGGAAGATTTGTG-3’ 

Csnb forward 5’-TGTGCTCCAGGCTAAAGTTCACT-3’ 

reverse 5’-GGTTTGAGCCTGAGCATATGG-3’ 
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Csng forward 5’-ATGTTGCACACCTCTTCACCAG-3’ 

reverse 5’-GGCGTGTTATGGATGGCATT-3’ 

Crp forward 5’-GGATTGTAGAGTTCTGGATTGATGG-3’ 

reverse 5’-TGCTCCTGCCCCAAGATG-3’ 

Expi forward 5’-AACCTGGCGCTTGTCCTAAG-3’ 

reverse 5’-GTTGCCAGAGCACGATCCAT-3’ 

Gad67 forward 5’-GGTTCGCACAGGTCACCC-3’ 

reverse 5’-GCCATTCACCAGCTAAACCAA-3’ 

Ins2 forward 5’-GAAGTGGAGGACCCACAAGT-3’ 

reverse 5’-AGTGCCAAGGTCTGAAGGTC-3’ 

Tlbp forward 5’-ACATCCAAGCAGGAAGTGCAT-3’ 

reverse 5’-TCTGCAGTGGTCTCTTCAAACTCT-3’ 

 

2.1.19 Reagents for in vitro BMAC stimulation 

Reagent Clone Isotype Vendor 

Polyinosinic-polycytidylic acid (poly I:C) - - Sigma-Aldrich 

Lipopolysaccharide (LPS) - - Sigma-Aldrich 

CpG oligodeoxynucleotide (ODN) 2395 - - Invivogen 

Anti-mouse CD40 antibody FGK45 Rat IgG2a, κ Biomol 

Anti-mouse RANK antibody  polyclonal Goat IgG R&D 

 

2.1.20 Immunogen and adjuvant for immunization 

Reagent Vendor 

HA peptide (SVSSFERFEIFPK) thinkpeptides 

Polyinosinic-polycytidylic acid (poly I:C) Sigma-Aldrich 

Lipopolysaccharide (LPS) Sigma-Aldrich 

 

2.1.21 Instruments and software 

Instrument Vendor 

FACSCanto II BD Biosciences 
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LSR II BD Biosciences 

FACSLyric BD Biosciences 

FACSAria II BD Biosciences 

LSM 710 confocal microscopy Carl Zeiss 

7300 Real-Time PCR System Applied Biosystems 

myECL Imager ThermoFisher 

Gammacell 40 Exactor Best Theratronics 

 

Software Developer 

FlowJo Tree Star 

ImageJ National Institutes of Health 

 

2.2 Methods 

2.2.1 Preparation of mouse BM cells and splenocytes 

After Adig or WT Balb/c mice were euthanized, femurs and tibias were dislocated and the 

attached muscle was removed. Bones were crushed with mortars and pestles in PBS. Cells in 

suspension were collected and filtered with 100-μm cell strainers. Spleens were mashed through 

a 100-μm cell strainer, and cells in suspension were collected. After centrifugation at 300×g for 

5 min at 4°C, cell pellets were resuspended in 1 ml ACK buffer for 1 min (BM cells) or 2 min 

(splenocytes) to remove the erythrocytes. After wash with 10 ml PBS and centrifugation, cells 

were counted and subjected for further analyses. 

2.2.2 Preparation of human BM and blood sample  

PBMCs and BM mononuclear cells were isolated from peripheral blood and bone marrow 

aspirates, respectively, using gradient centrifugation with Biocoll according to manufacturer’s 

protocol. Blood or bone marrow aspirate (40 to 45 ml) were suitably diluted and gently overlaid 

on top of 15 ml of Biocoll solution, and then centrifuged for 20 min at 2,000 rpm at room 
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temperature without forced deceleration. The interface containing mononuclear cells was 

carefully collected, washed with RPMI-1640 medium twice, and subjected to antibody staining 

for flow cytometric analysis. 

2.2.3 Flow cytometric analysis and fluorescence-activated cell sorting 

Single cell suspension (1-2×106 cells/100 µl) was incubated with anti-mouse CD16/32 antibody 

(Fc Block) for 15 min on ice, followed by incubation with the antibodies against surface 

markers for 30 min on ice. Anti-human AIRE antibody (clone 6.1)48 was kindly provided by 

Prof. Pärt Peterson. After subsequent wash, cells were stained with viability dye, and all cells 

analyzed were gated on viable cells (viability dye-negative). Viability dyes used for excluding 

dead cells were 7-AAD, Yellow LIVE/DEAD Fixable Dead Cell Stain Kit, Zombie Aqua 

Fixable Viability Kit, and Zombie NIR Fixable Viability Kit. For intracellular staining, after 

viability staining, cells were fixed and permeablized using Foxp3/Transcription Factor 

Fixation/Permeabilization Concentrate and Diluent according to manufacturer’s protocol, and 

then incubated with antibodies against intracellular antigens for 30 min on ice. FACSCanto II, 

LSR II or FACSLyric flow cytometry were used for fluorescence measurement, and FACSAria 

II was used for cell sorting. The analysis was performed using FlowJo software. 

2.2.4 Immunofluorescence 

After Adig or WT Balb/c mice were euthanized, thymi were dissected and embedded in Tissue-

Tek and frozen at -20°C. Femurs and tibias were dislocated and the attached muscle was 

removed. Epiphyses of the bones were gently removed, and marrow tissue was carefully pushed 

out from the bones with PBS by 27-gauge needle, without disrupting the marrow tissue. The 

intact marrow tissue was then embedded and frozen in the same way as the thymi tissue. Cryo-

sections (5 µm) of thymus and BM tissue were fixed with cold acetone for 10 min, and then 

blocked with 10% goat serum for 30 min at room temperature. Tissue was incubated with 

unconjugated primary antibodies for 1 h at room temperature. After washed with Tween-
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20/PBS and PBS, tissue was incubated with goat anti-rat or goat anti-rabbit secondary 

antibodies. After being washed with Tween-20/PBS and PBS, tissue was incubated with anti-

Aire antibody for 1 h at room temperature. Stained slides were mounted in DAPI-containing 

Fluoromount-G mounting medium after wash with Tween-20/PBS and PBS, and visualized by 

LSM 710 confocal microscopy. Merging and contrast-adjustment were applied equivalently to 

experimental and control groups using ImageJ software. 

2.2.5 Isolation of mTECs and thymic B cells 

The mTECs from WT, Adig or Aire-HCO mice were isolated as previously described29. In 

brief, thymi of Aire-HCO mice were digested by Collagenase IV and Dispase, and CD45+ cells 

were depleted using CD45 magnetic microbeads. CD45-EpCAM+Ly-51-MHC-II+ mTECs 

(from pre-enriched thymic stromal cell fraction) and CD19+ B cells (from CD45+ cell fraction) 

were stained and sorted using FACSAria II.  

2.2.6 Real-Time PCR 

Aire-GFP+ BM cells were isolated and sorted from Adig mice by FACS according to GFP 

expression, and Adig mTECs were isolated and sorted as described above. In addition, MHC-

II+EpCAM+TACI+CD200+Ly-6D+PD-L1+ BM cells were sorted from WT mice. RNA from the 

sorted cells was extracted using RNeasy Mini Kit. After quantification, RNA was reverse 

transcribed using QuantiTect Reverse Transcription Kit according to manufacturer’s protocol. 

Aire and Actb gene expression was detected by 7300 Real-Time PCR System using QuantiFast 

SYBR Green PCR Kit according to manufacturer’s protocol. ΔΔCt values was calculated for 

relative expression.  

2.2.7 Single cell end-point PCR 

WT mTECs and BM cells from femurs and tibias were isolated as described above. CD45-

EpCAM+Ly-51-MHC-II+ mTECs and MHC-II+EpCAM+TACI+CD200+Ly-6D+PD-L1+ BM 
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single cells were sorted by FACSAria II into arrays of 96 PCR tubes containing 6.4 µl of lysis 

buffer with 10 ng of tRNA. Whole transcriptome amplification was performed as previously 

described90. The quality of the amplified cDNA samples was evaluated by end-point PCR for 

expression of housekeeping genes (Actb, B2m and Gapdh). Amplified cDNA samples, which 

failed to show more than two of the housekeeping genes were discarded and not further 

analyzed. After quality control, cDNA samples from BM cells (110 single cell samples, 7 pools 

of 10 cells, and 8 pools of 100 cells) and mTECs (20 single cells, 4 pools of 10 cells, and 4 

pools of 100 cells) were subjected to end-point PCR using MyTaq HS Red Mix. The PCR 

program was set as follows: 95°C, 3 min; 35 (Aire) or 40 (TRA genes) cycles of repetitive 

denaturation (95°C, 15 s), anneal (60°C, 20 s), and elongation (72°C, 20 s); 72°C, 7 min. PCR 

products were subjected to 2% agarose gel electrophoresis with GelRed Nucleic Acid Gel Stain 

and visualized by myECL Imager. Color inversion was applied equivalently to all pictures using 

ImageJ for better visualization. 

2.2.8 In vitro TLR, CD40, and RANK stimulation  

For TLR stimulation, 4×106 BM cells from Adig or WT mice were cultured on 6-well plates in 

RPMI-1640 with poly I:C (2.5 μg/ml), LPS (2 μg/ml) or CpG ODN (2 μM) for 20 h. For 

agonistic CD40 and RANK stimulation, 4×106 BM cells from Adig or WT mice were cultured 

on 6-well plates with 10 μg/ml anti-CD40, anti-RANK or corresponding isotype antibody for 

72 h. Cells were washed and subjected to antibody staining for flow cytometric analysis.  

2.2.9 Antigen presentation assay 

Aire-expressing cells from BM (femurs and tibias) and spleens were sorted from Aire-HCO or 

Adig mice by FACS according to human CD2 or GFP expression, respectively, and mTECs 

form Aire-HCO mice were isolated and sorted according to the method described above. The 

sorted APC subsets were co-cultured in DMEM with 2×104 A5 T-hybridoma cells at designated 
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APC:TC ratio for 17 h, and CD4+ A5 cells were analyzed for GFP expression as previously 

described12. 

2.2.10 In vitro Treg induction 

CD25-depleted CD4+ T cells were isolated by negative selection using MojoSort Mouse CD4 

Naïve T Cell Isolation Kit from the spleens of CD45.2+ 6.5 TCR-HA or CD45.1+ WT Balb/c 

mice, pooled together at 1:1 ratio, and labeled with 5 µM CFSE for 5 min at room temperature91.  

Aire-GFP+ cells or Aire-human CD2+ cells from BM (femurs and tibias) were sorted from Adig 

or Aire-HCO mice, respectively. Sorted APCs (2×104) were co-cultured in RPMI-1640 with 

2×104 pooled naïve CD4+ T cells for 5 days, and CD45.2+ HA-specific CD4+ T cells and 

CD45.1+ polyclonal CD4+ T cells were analyzed by flow cytometry. 

2.2.11 Gene expression array 

To compare the function of BMACs and plasma cells, Aire-GFP+ cells and CD138+IgM+ 

plasma cells were isolated and sorted from femurs and tibias of Adig mice by FACS. RNA of 

sorted cells was isolated and amplified using µMACS SuperAmp Kit followed by Klenow 

labeling with random octamer according to manufacturer’s protocol, and subjected to 

MouseRef-8 v2.0 Expression BeadChip. The corresponding chip annotation file was obtained 

from Illumina website. Raw data were processed with R using limma package. First, 

normalization was performed locally and globally. Using normexp background correction 

method, spots within each sample were corrected by local background. A subsequent quantile 

normalization was performed for global normalization across all samples. Second, 

preprocessing was applied based on whether a gene is expressed in the cohort. Based on the 

spot detection p-value returned from detectionPValues function, genes not expressed in any 

sample (p-value < 0.05) were excluded from further analysis. Lastly, differential expression 

analysis was performed. Expression of each gene was fitted with a linear model using lmFit 

function, then eBayes function applied empirical Bayes method to stabilize standard deviations 
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between genes. Benjamini, Hochberg multiple correction method was used to correct 

differential expression p-values. The significantly differentially expressed genes were then 

subject to functional enrichment analysis with R package EGSEA. 

2.2.12 BM chimera 

For the generation of reciprocal BM chimeras, CD45.1+ WT congenic Balb/c or CD45.2+ Adig 

recipient mice were irradiated twice in Gammacell 40 Exactor at 450 rad with an interval of 3h, 

and i.v. injected with 1×107 BM mononuclear cells from CD45.2+ Adig or CD45.1+ WT 

congenic Balb/c mice, respectively. After at least 8 weeks of reconstitution of hematopoietic 

system, recipient mice were euthanized, and BM mononuclear cells from femurs and tibias were 

isolated. The chimerism was confirmed using CD45 congenic marker expression by flow 

cytometric analysis, showing that more than 98.9% of CD45+ cells had the congenic CD45 

phenotype of the donor mice. For the preparation of recipient mice with HA-expressing 

hematopoietic cells, CD45.1+CD45.2+ WT Balb/c mice were irradiated twice at 450 rad with 

an interval of 3h, and intravenously injected with 1×107 BM mononuclear cells from 

CD45.1+CD45.2+ Aire-HCO or CD45.1+CD45.2+ WT Balb/c mice. Further manipulations were 

performed at least 8 weeks after the BM transplantation. 

2.2.13 Adoptive T cell transfer 

CD25-depleted CD4+ T cells were isolated by negative selection using MojoSort Mouse CD4 

Naïve T Cell Isolation Kit from the spleens of CD45.2+ 6.5 TCR-HA or CD45.1+ WT Balb/c 

mice, pooled together at 1:1 ratio, and labeled with 5 µM CFSE for 5 min at room temperature91. 

The labeled cells (1×107 per recipient mouse) were i.v. injected into CD45.1+CD45.2+ host 

mice, which were reconstituted with Aire-HCO or WT BM cells at least 8 weeks before the 

transfer of naïve CD4+ T cells. On day 3 and day 14 post transfer, BM cells from femurs and 

tibias and splenocytes were isolated and analyzed by flow cytometry. 
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2.2.14 In vivo cytotoxicity 

CD45.1+CD45.2+ 6.5 TCR-HA mice were immunized twice (2-week interval) with 100 µg HA-

peptide (SVSSFERFEIFPK) with 10 µg LPS and 10 µg poly I:C via intraperitoneal (i.p.) 

injection. One week after the second immunization, effector T cells were isolated from the 

spleens, femurs and tibias of the immunized mice using EasySep Mouse Memory CD4+ T Cell 

Isolation Kit. Recipient mice (previously reconstituted with WT or Aire-HCO BM, and 

transferred with naïve HA-specific CD4+ T cells, as described above) received 3×106 effector 

T cells via i.v. injection at 14 days post naïve T cell transfer. One day later, BM cells and 

splenocytes isolated from CD45.1+ WT Balb/c mice were pooled together at 1:1 ratio and 

labeled with 5 or 0.5 µM of CFSE for 5 min at room temperature. The CFSEhigh cells were 

pulsed with 20 µM (31.5 µg) HA-peptide for 2 h at 37°C, and the CFSElow cells were incubated 

without peptide. After 2 washes with PBS, the peptide-loaded CFSEhigh and unloaded CFSElow 

target cells were mixed at 1:1 ratio and transferred into the recipient mice (5×105 cells/mouse). 

Eighteen hours later, recipient mice were sacrificed, and BM cells from femurs and tibias and 

splenocytes were isolated for flow cytometric analysis. CD45.1+CD45.2-B220+ cells were gated 

for analyzing the percentages of CFSEhigh and CFSElow target cells. Cytotoxicity was calculated 

as follows:  

% specific cytotoxicity = 100% × (1-(CFSElow / CFSEhigh)control / (CFSElow / CFSEhigh)experimental). 

2.2.15 Statistics 

Except for gene expression array analyses, statistical significance was assessed using two-tailed 

Student’s t test with unequal variance. Data were shown in mean ± SEM.
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3. Results 

3.1 Lineage mapping of bone marrow Aire-expressing cells (BMACs) 

3.1.1 Phenotypic analyses of BMACs reveal plasma cell characteristics 

As described in the preliminary data, our group identified a novel Aire-expressing cell subset 

in the bone marrow (BM) by harnessing Adig transgenic mice, in which the GFP reporter 

protein is driven by Aire promoter64. These BM Aire-expressing cells (henceforth termed 

BMACs) were MHC-II+, ectopically expressed a diverse repertoire of tissue-restricted antigens 

(TRAs), and showed a potential capacity to present these TRAs to CD4+ T cells. Surface marker 

screening of BMACs using BD Lyoplate Screening Panel in the preliminary data has revealed 

that they expressed epithelial cell adhesion molecule (EpCAM) and CD45, showing mixed 

features of both epithelial cells and hematopoietic cells, respectively. To validate these findings, 

I used individual antibodies to detect EpCAM, CD45, and MHC-II on BMACs from Adig mice 

by flow cytometric analysis. In addition, as BMACs are potential antigen presenting cells 

(APCs), surface markers for B cell lineage (CD19, B220 and CD138) and myeloid APCs 

(CD11b and CD11c) were also included to elucidate the cell type of BMACs. In agreement 

with the preliminary data, the EpCAM+CD45+MHC-II+ phenotype of BMACs was further 

validated (Figure 1A and 1B). The majority of Aire-GFP+ cells did not express CD11b and 

CD11c, suggesting the major population of BMACs is not derived from myeloid lineage. 

Approximately half of BMACs showed low level of CD19 expression, which is reminiscent of 

the phenotype of plasma cells. In line with this plasma cell feature, BMACs express CD138, 

while no expression of B220 was detected (Figure 1B), resembling the CD138+B220- plasma 

cell phenotype. Importantly, as shown in Figure 1C, BMACs also expressed B lymphocyte-

induced maturation protein (Blimp-1), the master transcription factor of plasma cells that 

controls their differentiation and suppress transcriptional activities of mature B cells92, 93. These 
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data demonstrated that BMACs displayed characteristics of plasma cells (CD19lowB220-

CD138+Blimp-1+), albeit expressing EpCAM.  

 

Figure 1. Phenotypical analysis of BMACs revealed plasma cell features. (A) EpCAM surface 

expression on total BM cells of WT and Adig mice. Representative data are shown (n = 6). (%TB) 

Lineage surface marker expression on total BM cell of Adig mice. Representative data are shown (n = 

4). (C) Intracellular Blimp-1 staining on Aire-GFP+ BM cells. Unshaded grey curve indicates isotype 

control. Representative data are shown (n = 3). (D) Surface immunoglobulin (Ig) isotype expression on 

total BM cells of Adig mice. Representative data are shown (n = 3).  
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In the classical B cell terminal differentiation, most of activated follicular B cells undergo 

immunoglobulin (Ig) class-switch recombination, rearranging the loci of constant region of Ig 

from IgM/IgD to other isotypes, before they further differentiate into plasma cells92. 

Interestingly, BMACs expressed surface IgM (sIgM), but not sIgD, sIgG1, sIgG2a and sIgG2b 

(Figure 1D), reminiscent of recently identified cytokine-secreting regulatory plasma cells that 

express membrane-bound IgM and MHC-II94, 95. These findings showed that BMACs 

manifested features of a subset of plasma cells which do not undergo class-switch and express 

IgM on cellular membrane. 

 

3.1.2 Reciprocal BM chimera show that BMACs are transferable and irradiation-

resistant  

In order to further confirm the hematopoietic origin of BMACs, I performed reciprocal BM 

chimeras, in which the BM cells from Adig mice were transplanted via intravenous injection 

into lethally irradiated recipient WT mice (Adig →WT), and WT BM cells into lethally 

irradiated Adig mice (WT → Adig), as depicted in Figure 2. BM chimera is a well-established 

method to confirm if a cell population of interest is derived from hematopoietic system. The 

hematopoietic stem cells of the recipient mice are abolished by lethal irradiation, and 

reconstituted by the donor BM cells, thus creating a new hematopoietic system with the genetic 

and phenotypic features of the BM donor mice. The Adig and WT mice had different congenic 

CD45 markers (CD45.2 for Adig mice and CD45.1 for WT mice), and in this way, the 

efficiency of chimerism could be assessed.  
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Figure 2. BM chimera experimental scheme. WT or Adig recipient mice were irradiated (4.5 Gy) 

twice with a 3-hour interval, and transplanted intravenously (i.v.) with BM cells from Adig or WT donor 

mice, respectively. BM cells were analyzed 8 weeks after transplantation. 

 

After 8 weeks of reconstitution, the remaining hematopoietic cells from the recipient mice 

constituted less than 1% of total BM cells in both groups (Figure 3A), showing a successful 

replacement of the hematopoietic system. In WT recipient mice receiving Adig BM cells (Adig 

→ WT), Aire-GFP+ cells were detected, indicating that BMACs are derived from hematopoietic 

stem cells, instead of stromal cells which cannot migrate from the circulation to the BM (Figure 

3B and 3C). Intriguingly, Aire-GFP+ cells were also observed in Adig recipient mice receiving 

WT BM cells (WT → Adig), suggesting that BMACs are resistant to irradiation, which falls in 

line with the terminal differentiation characteristics of plasma cells96. Of note, although the 

frequencies of MHC-II+ BMACs in these two groups were comparable, the expression levels 
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of MHC-II were different (Figure 3D and 3E). The frequency of MHC-IIhi Aire-GFP+ cells in 

Adig → WT group was significantly higher than in WT → Adig group, while BMACs in WT 

→ Adig group expressed intermediate levels of MHC-II.  

 

 

Figure 3. Reciprocal BM chimera demonstrated that BMACs are transferable and irradiation-

resistant. (A) Analysis of CD45 congenic marker on total BM cells of reciprocal BM chimera mice. 

Representative data are shown. (B and C) Frequencies of Aire-GFP+ cells among total BM mononuclear 

cells of reciprocal BM chimera mice (Adig→WT, n = 6, and WT→Adig, n = 4). Representative data 

are shown in B. (D and E) Frequencies of Aire-GFP+MHC-IIhi or Aire-GFP+MHC-IIint cells among total 

BM mononuclear cells of reciprocal BM chimera mice. MNCs, mononuclear cells. ***, P < 0.001; ns, 

P > 0.05 (Student’s t-test). Error bars indicate SEM. 
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It merits further investigation to determine whether irradiation induces downregulation of 

MHC-II expression, or BMACs comprise (at least) two cell subsets, which express different 

levels of MHC-II and have different sensitivities to irradiation. In conclusion, these data 

demonstrated that BMACs are transferrable hematopoietic cells and irradiation-resistant, which 

is consistent with the features of plasma cells. 

 

3.1.3 BMACs substantially diminish in the absence of B cells  

In order to confirm that BMACs are plasma cells that derived from B cell lineage, I crossed 

Adig mice with RAG2-deficient mice, in which T-cell and B-cell development is blocked and 

no mature T cells and B cells are present97. As shown in Figure 4A and 4B, BMACs diminished 

significantly in the BM of RAG2-deficient Adig mice compared to RAG2-proficient ones, 

supporting the notion of BMACs’ plasma cell identity. It is noteworthy that a residual 

population of Aire-GFP+ cells was still detectable in a fraction of the RAG2-deficient Adig 

mice. Interestingly, these residual Aire-GFP+ cells expressed high level of MHC-II (Figure 

4A), and only the frequencies of MHC-IIint Aire-GFP+ cells were significantly lower in RAG2-

deficient Adig mice, while no significant difference of MHC-IIhi Aire-GFP+ cells frequencies 

was observed between these two groups (Figure 4C and 4D).  

Further investigation on the surface markers expressed by MHC-IIhi and MHC-IIint Aire-GFP+ 

cells in RAG2-deficient and RAG2-proficient Adig mice revealed that, MHC-IIint Aire-GFP+ 

cells were EpCAMhiCD11b-CD11c-CD19lowCD138+IgM+. They were the major population of 

BMACs, and were absent in RAG2-deficient Adig mice (Figure 5), showing the characteristics 

of plasma cells. In contrast, MHC-IIhi Aire-GFP+ cells were still detectable in RAG2-deficient 

Adig mice, and showed EpCAMintCD19-CD138-IgM- phenotype, with negative to low 

expression levels of CD11b and CD11c. MHC-IIhi Aire-GFP+ cells are a relatively minor 
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fraction, which composes less than one third of total BMACs. These data fall in line with the 

BM chimera results, and demonstrate that the major population of BMACs show plasma cell 

markers and is RAG2-dependent, while a minor fraction of BMACs is RAG2-independent. In 

this study, we further focused on the major population of BMACs. 

 

 

Figure 4. BMACs substantially diminished in RAG2-deficient mice. (A and B) Frequencies of Aire-

GFP+ cells among total BM mononuclear cells of RAG2+/- (n = 13) and RAG2-/- (n = 14) Adig mice. 

Representative data are shown in A. (C and D) Frequencies of Aire-GFP+MHC-IIhi or Aire-GFP+MHC-

IIint cells among total BM mononuclear cells of RAG2+/- and RAG2-/- Adig mice. MNCs, mononuclear 

cells. ***, P < 0.001; ns, P > 0.05 (Student’s t-test). Error bars indicate SEM. 
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Figure 5. The majority of BMACs expressed plasma cell markers and diminished in RAG2-

deficient mice. Surface marker expression of Aire-GFP+MHC-IIhi (orange) or Aire-GFP+MHC-IIint 

(purple) cells among total BM mononuclear cells of RAG2+/- and RAG2-/- Adig mice. Representative 

data are shown. 
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meaning the reduction of BMACs in RAG2-deficient mice is an indirect effect of the absence 

of T cells or B cells. To unravel if the impact of RAG2-deficiency on the frequency of BMACs 

is direct or indirect, I replenished the hematopoietic system of Adig+×RAG2-/- mice with BM 

cells from Adig-×RAG2+/- mice by performing BM chimera in which donor BM cells from 

Adig+×RAG2-/- mice were mixed 1:1 with Adig-×RAG2+/- BM cells (Figure 6), so that WT T 

cells and B cells were present in Adig+×RAG2-/- mice after the reconstitution.  

 

 

Figure 6. Experimental scheme of replenishment of RAG2-proficient cells. Adig+ × RAG2-/- 

recipient mice were irradiated (4.5 Gy) twice with a 3-hour interval, and transplanted i.v. with Adig+ × 

RAG2-/- donor BM cells mixed with Adig- × RAG2+/- or Adig- × RAG2-/- donor BM cells. After 

reconstitution for 8 weeks, mice were sacrificed for analysis of BM cells. 

 

As shown in Figure 7A and 7B, the replenishment of T cells and B cells did not rescue the 

reduction of Aire-GFP+ cells in Adig+×RAG2-/- mice, as the percentages of Aire-GFP+ cells in 
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the mice which received Adig-×RAG2+/- donor BM cells (Figure 7A, where T cells and B cells 

were present) were comparable to those in the mice receiving Adig-×RAG2-/- BM cells (Figure 

7B, where T cells and B cells were absent). In mice receiving Adig+×RAG2+/- BM cells (Figure 

7C), the frequency of Aire-GFP+ cells was substantially higher than in mice receiving 

Adig+×RAG2-/- BM cells (Figure 7A and 7B), regardless of whether T cells and B cells were 

present (from Adig-×RAG2+/- BM cells, Figure 7A) or not (Figure 7B). These data 

demonstrated that the impact of RAG2-deficiency on the reduction of BMACs is cell intrinsic 

(that is, BMACs themselves require RAG2), and thus indicated that BMACs are derived from 

T cells or B cells. Neither T cell receptor nor CD3 was detectable on BMACs (preliminary 

data), suggesting that BMACs are not derived from T cell lineage. Taken together, these data 

indicate that BMACs largely consist of CD19lowB220-CD138+Blimp-1+MHC-II+IgM+ plasma 

cells, which are irradiation-resistant and RAG2-dependent.  
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Figure 7. BMACs were derived from B cell lineage. Frequencies of Aire-GFP+ cells among 

total BM cells in BM chimera mice with or without replenishment of RAG2-proficient BM cells. 

Representative data are shown (n = 3). 

 

3.2 Cell-extrinsic signals induce Aire expression in BMACs  

3.2.1 Toll-like receptor (TLR) agonists induce Aire expression in BMACs  

Promiscuous gene expression (pGE) in the periphery contributes to the maintenance of local T 

cell tolerance. However, the mechanisms underlying the induction of TRAs and Aire in 

peripheral APCs remain unknown. In mTECs, Aire expression is activated by Nuclear Factor-

κB (NF-κB)30, 43, 44. TLR stimulation is one of the potential factors which activate NF-κB and 

M
H

C
-I

I

Aire-GFP

Aire-GFP

Adig-  RAG2+/-

Adig+  RAG2-/-

Adig-  RAG2-/-

Adig+  RAG2-/-

→  Adig+  RAG2-/-

→  Adig+  RAG2-/-

M
H

C
-I

I

Aire-GFP

M
H

C
-I

I

Adig+  RAG2+/- → Adig+  RAG2-/-

A

B C



Results 

 

44 

 

regulate the ectopic expression of TRAs and Aire. Fletcher and colleagues demonstrated that 

stimulation with polyinosinic-polycytidylic acid (polyI:C), a TLR3 agonist, increases Aire and 

TRA expression in CD31-gp38- stromal cells, albeit the capacity of fibroblastic reticulum cells 

(FRCs) to express TRAs reduces. This finding indicates that different subsets of ectopic TRA-

expressing cells respond differently to inflammatory signaling such as TLR stimulation in terms 

of Aire and TRA expression. In order to evaluate whether BMACs upregulate Aire expression 

upon TLR stimulation, total BM cells from Adig mice were isolated and incubated in vitro with 

polyI:C, lipopolysaccharide (LPS) and CpG oligodeoxynucleotide (CpG ODN), which are the 

agonists of TLR3, TLR4 and TLR9, respectively. Signal transduction of TLR is MyD88-

dependent, while TLR3 signaling is governed by TRIF98. Both MyD88 and TRIF are involved 

in TLR4 signaling98. The pathways downstream both MyD88 and TRIF leads to NF-κB 

signaling. As shown in Figure 8, frequencies of Aire-GFP+ cells substantially increased after 

polyI:C and LPS treatment, compared to untreated (4.9-fold and 8.6-fold, respectively), 

whereas stimulation with CpG ODN resulted in a modest increase of Aire-GFP+ cells (1.7-fold). 

Interestingly, the expression levels of MHC-II and EpCAM varied in between the groups treated 

with different TLR agonists. While the majority of polyI:C-induced Aire-GFP+ cells express 

both MHC-II and EpCAM, only 50% of LPS-induced Aire-GFP+ cells showed MHC-II 

expression, and none of LPS-induced Aire-GFP+ cells expressed EpCAM. The expression level 

of MHC-II was higher in polyI:C-induced Aire-GFP+ cells compared to LPS-induced ones. 

These data indicate that stimulation of TLR3 and TLR4 signaling pathways can lead to strong 

upregulation of Aire expression. The different phenotypes of the newly induced Aire-

expressing cells suggest that distinct mechanisms may govern Aire expression in response to 

different extrinsic signals.  
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Figure 8. Toll-like receptor (TLR) agonists induced Aire expression in BMACs. Flow cytometric 

analysis of MHC-II and EpCAM expression on Aire-GFP+ cells in BM of Adig mice after in vitro 

stimulation with poly I:C (2.5 μg/ml), LPS (2 μg/ml) or CpG ODN (2 μM) for 20 h. Representative data 

are shown (n = 3). 

 

3.2.2 Aire expression in BMACs is substantially induced by CD40, but not RANK 

signaling 

In the thymus, the extrinsic signals that induce Aire expression in mTECs and thymic B cells 

are well-studied. RANK signaling provided by CD4+CD3- thymic inducer cells promotes the 

maturation of mTECs from CD80-MHCIIloAire- progenitors to a CD80+MHCIIhi mature state99, 

leading to Aire expression. On the contrary, RANK signaling does not induce Aire expression 

of thymic B cells. Instead, they require CD40 signals from the thymocytes that express CD40L 

and subsequently upregulate expression of Aire, MHC-II, and TRAs9, 10. In order to examine 

whether these signals can induce Aire expression in BMACs, agonistic anti-RANK and anti-

CD40 antibodies were used to stimulate Adig BM cells in vitro. As depicted in Figure 9, RANK 
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antibody control). Strikingly, CD40 signal robustly induced Aire-GFP expression (179.5-fold 

compared to isotype antibody control), leading to a substantial Aire-GFP+ fraction (more than 

34%) of stimulated BM cells. These data indicate that the mechanism underlying Aire 

expression in BMACs is similar to thymic B cells, not to mTECs, reflecting the findings that 

BMACs are derived from B cell lineage. Of note, the Aire-GFP+ cells induced by CD40 signal 

were CD19+CD138-, and showed high level of MHC-II expression, suggesting the newly 

induced Aire-expressing cells are at earlier stage of B cell development than that of BMACs 

(CD19lowCD138+) under physiological condition. It merits further investigation to determine 

the role of CD40 in Aire induction in BM in vivo. 
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Figure 9. Aire expression in BMACs was substantially induced by CD40. Flow cytometric analysis 

of surface marker expression on Aire-GFP+ cells in BM of Adig mice after in vitro stimulation with 

agonistic 10 μg/ml anti-RANK or anti-CD40 antibodies for 72 h. Representative data are shown (n = 3). 
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3.3 Identifying surrogate BMAC surface markers for precise isolation from 

WT mouse and human 

3.3.1 Validation of surrogate BMAC markers by Adig reporter system 

In the preliminary data, gene expression microarray analyses revealed that BMACs in Adig 

mice express a highly diverse repertoire of TRAs that comprise 721 genes representing more 

than 25 types of peripheral tissue. It is unknown if TRAs are also expressed by BMACs of WT 

mice. In addition, the AIRE-expressing cells were also identified in human BM through 

intracellular AIRE staining and flow cytometric analysis. It is still unclear whether human 

BMACs are also able to express TRAs ectopically, and if yes, whether the diversity of the TRAs 

expressed by human BMACs covers the same scope of tissue types as their murine counterparts. 

In order to address these questions, human BMACs have to be sorted and subjected to 

transcriptome analysis without fixation and permeabilization for intracellular AIRE staining, as 

this experimental procedure damages RNA quality. To identify BMACs without intracellular 

Aire staining, I first exploited Adig mice for surface markers that are expressed on BMACs and 

can best distinguish them from other BM cell subsets. The following surface markers were 

identified on BMACs, but largely not expressed by non-Aire-expressing BM cells: EpCAM, 

MHC-II, Ly-6D, CD200, TACI and PD-L1 (Figure 1A, 1B and 10A). Gating on BM cells of 

Adig mice using these surface markers (henceforth termed BMAC surrogate markers) revealed 

a large overlap (higher than 96%) with Aire-GFP+ cells (Figure 10B), thus allowing sorting 

BMACs with high purity for gene expression analysis without abrogating RNA quality. Of note, 

in terms of absolute cell numbers, the gating strategy using BMAC surrogate markers covered 

35% of Aire-GFP+ cells (149 out of 420 cells). Although this gating strategy did not cover the 

majority of BMACs, since the aim is to sort BMACs with high purity, these identified surrogate 

markers were used to isolate BMACs from WT mice, and further on to identify BMACs in 

human BM aspirate.  
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Figure 10. Identifying BMACs using surface marker expression in the absence of Aire-GFP 

reporter. (A) Surface markers expressed by BMACs of Adig mice. Frequencies of each quadrant among 

total BM cells are depicted in percentage. Representative data are shown (n= 4). (B) Gating strategy 

using the surrogate BMAC markers (Ly-6D, CD200, PD-L1, TACI, MHC-II and EpCAM) and 

percentages of Aire-GFP+ cells. Numbers indicate percentages of gated populations. Representative data 

are shown (n = 3).  

 

3.3.2 Aire and TRA expression in WT BMACs gated by surrogate BMAC markers 

To confirm the validity of representation of BMACs by surrogate surface markers in WT mice, 

I sorted WT BM cells according to the expression of BMAC surrogate markers (gated as shown 

in the upper panels of Figure 10B), and isolated RNA from sorted cells for Aire transcript 

detection. Real-Time PCR confirmed Aire expression in the sorted WT BMACs (Figure 11A). 
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Next, I conducted single cell sorting of WT BMACs and assessed the expression of Aire and 

TRA genes by single cell end-point PCR. Aire transcript was detected in single BMACs, 

whereas no samples of single or bulk-sorted total BM cells showed detectable Aire expression 

(Figure 11B). Both Aire-dependent (Ins2, Csna and Csng) and Aire-independent TRAs (Csnb, 

Gad67, Tlbp, Expi and Crp)88 were detected in single or pooled BMACs, but not in bulk-sorted 

total BM cells (Figure 11C), although largely at lower expression levels than in mTECs. These 

data demonstrate that BMACs ectopically express a repertoire of TRAs in WT mice, which 

include both Aire-dependent and Aire-independent genes. 

 

 

Figure 11. Aire and TRA genes were expressed in BMACs of WT mice. (A) Real-Time PCR analysis 

of Aire transcript expression (normalized to β-actin) in sorted Aire-GFP+ BMACs and Aire-GFP- BM 

cells from Adig mice, as well as BMACs from WT mice sorted according to the gating strategy shown 

in Figure 9. *, P < 0.05 (Student’s t-test). Error bars indicate SEM. (B and C) Representative data of 

end-point PCR analysis of Aire and selected Aire-dependent (Ins2, Csna and Csng) or Aire-independent 

(Csnb, Expi, Crp, Tlbp and Gad67) TRA genes in sorted single or pooled BMACs, total BM cells or 

mTECs from WT mice. 
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3.3.3 Gating human BMACs using surrogate BMAC markers 

In order to confirm whether the gating strategy using surrogate BMAC markers can be applied 

to human, single cell suspension of BM aspirate from patients with colorectal cancer was 

prepared and subjected to flow cytometric analysis for AIRE detection. As shown in Figure 

12A and 12B, gating on human BM cells revealed 59.0±11.9% overlap with AIRE+ cells, 

substantially higher than gating with EpCAM and MHC-II only (5.5±4.7%, preliminary data). 

BM cells gated with surrogate BMAC markers also showed significantly higher mean 

fluorescence intensity (MFI) of AIRE than bulk BM cells (Figure 12C). These data 

demonstrated that the gating strategy using surrogate BMAC surface markers allows sorting 

BMACs with high purity from both WT murine and human BM cells, without fixation which 

disrupts RNA quality. It merits further study to delineate the scope of diversity of the TRA 

genes expressed by BMACs in human. 
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Figure 12. Gating human BMACs using surrogate BMAC markers. (A) Gating strategy of human 

BMACs using the surrogate BMAC markers. Cells gated with surrogate BMAC markers are shown in 

red (anti-AIRE) or blue (isotype control). Total bulk BM cells stained with anti-AIRE antibody are 

shown in black. (B) Percentage of AIRE+ cells in bulk BM cells or cells gated with surrogate markers. 

*, P < 0.05.  (C) Mean fluorescent intensity (MFI) of AIRE in bulk BM cells or cells gated with surrogate 

markers. ****, P < 0.0001 (Student’s t-test). Error bars indicate SEM. 
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indicating an in situ interaction between BMACs and CD4+ T cells. Close contact between 

BMACs and clusters of CD8+ T cells or CD19+ B cells was not observed (Figure 13). 

 

 

Figure 13. Co-localization of BMACs and CD4+ T cells in BM. Immunofluorescence of Aire with 

CD4 (A), CD8 (B) or CD19 (C) on BM tissue of WT mice. Arrows indicate BMACs. Scale bar indicates 

15 μm. 

 

3.4.2 BMACs present Aire-dependent antigens to CD4+ T cells 

In order to validate the function of BMACs in terms of antigen presentation, I next employed 

the Aire-HCO transgenic mouse system, in which a model antigen (hemagglutinin, HA) and a 

reporter protein surface marker (human CD2, hCD2) are expressed under the control of the Aire 

promoter9, 12. After sorting according to hCD2 expression (Figure 14A), BMACs from Aire-

HCO mice were co-cultured with A5 T-hybridoma cells. A5 T-hybridoma cells express a TCR 

specific for HA peptide:I-Ed complex, and carry a GFP expression cassette driven by the IL-2 

promoter and NF-AT binding sites100 reporting stimulation of the TCR. As shown in Figure 

14B and 14C, BMACs presented the Aire-regulated HA antigen and induced GFP expression 

in A5 hybridoma cells in a dose-dependent manner. Although mTECs and thymic B cells were 

equipped with higher capacities of antigen presentation, potentially due to their abundant 

expression of MHC-II9, BMACs presented antigens more efficiently compared to splenic 
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eTACs. These results indicate that BMACs are competent APCs, and can present Aire-

regulated antigens to CD4+ T cells. 

 

 

Figure 14. BMACs present Aire-dependent antigens to CD4+ T cells. (A) Sorting strategy of Aire-

HCO BMACs according to hCD2 expression. Number indicates percentage of gated cells among total 

BM cells. (B) Representative data of activation-dependent GFP expression in A5 T-hybridoma cells 

after co-culture with BMACs at indicated APC:TC ratios. Numbers indicate percentages of gated IL-2-

GFP+ cells among CD4+ T-hybridoma cells. (C) Presentation of HA antigen to A5 T-hybridoma cells 

by various subsets of APCs from Aire-HCO or Adig mice at different APC:TC ratios. Percentages of 

NFAT-induced GFP+ cells are shown. Results were pooled from two independent experiments (n ≥ 3). 

Numbers indicate percentages of gated cells among CD4+ T-hybridoma cells. **, P < 0.01; ***, P < 

0.001 (Student’s t-test). Error bars indicate SEM. 
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3.4.3 BMACs selectively express genes associated with Treg induction 

To further evaluate the impact of BMACs on CD4+ T cells through cognate interaction, we 

examined the expression of receptors on BMACs that provide essential signals for T cell 

activation or differentiation. As depicted in Figure 15, BMACs strongly expressed the 

inhibitory checkpoint molecule PD-L1 compared to other APC subsets in the BM, while only 

a small fraction of BMACs express low level of PD-L2. In addition, BMACs showed 

intermediate levels of CD80 and CD86 expression, suggesting a mixed potential of promoting 

T cell tolerance and activation.  

 

 

Figure 15. BMACs express inhibitory receptor PD-L1 and co-stimulatory molecules CD80 and 

CD86. Flow cytometric analysis of CD80, CD86, PD-L1 and PD-L2 expression on Aire-GFP+ BMACs 

and various APC subsets (B220-CD138+ plasma cells, B220+CD138- B cells, CD11c+ DCs, F4/80+ 

macrophages) from the BM of Adig mice. Representative data are shown (n = 3). 

 

To gain further insight into the role of BMACs as APCs in directing the activation and/or 

differentiation CD4+ T cells, I compared the gene expression profile of Aire-GFP+MHC-

II+EpCAM+ BMACs to BM IgM+CD138+ plasma cells of Adig mice. Gene expression array 

analysis revealed that, in addition to significantly higher Aire expression, BMACs displayed a 

distinct gene expression profile compared to IgM+ plasma cells (Figure 16A and 16B). Notably, 

BMACs expressed substantially lower levels of CD22 (Figure 16B), suggesting that BMACs 
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are at the terminally differentiated stage of plasma cell development, which resembles IL-10- 

and IL-35-producing regulatory plasma cells reported in a previous study94.  

 

Figure 16. Distinct gene expression profiles of BMACs and IgM+CD138+ plasma cells. (A) Heat 

map of differentially expressed genes (adjusted p-value < 0.05) in BMACs compared to IgM+CD138+ 

plasma cells (PC). (B) Volcano plot of genes analyzed (BMAC vs PC), with labels of the genes which 

had a significant fold change > 30 (red) or < -30 (blue). 

 

As depicted in Figure 17A, BMACs selectively expressed genes, which are known to induce 

Treg generation or conversion, or to induce suppressive functions of Treg cells. For example, 

BMACs differentially expressed genes for retinoic acid synthesis (Aldh2 and Rbp7)101, as well 

as CD155 (also known as Pvr), which stimulates Treg upon ligation with TIGIT and 

subsequently enhances Treg-mediated suppression of cytotoxic T cell responses102. BMACs 
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also showed a modest increase of Semaphorin-4a (Sema4a) expression, suggesting that they 

can promote the stability of Treg cells103. Expression of Tgfb1 in BMACs was significantly 

lower than that in IgM+ plasma cells, which implies that other sources of TGFβ in BM might 

be involved in the BMAC-dependent Treg induction, if at all104. Interestingly, BMACs showed 

substantial expression of IL-10 and Ebi3, however, p35 (also known as IL-12a) was not 

detectable, indicating that (at least) under non-inflammatory conditions, BMACs employ 

distinct tolerogenic machineries than a recently described subset of regulatory plasma cells 

which mediate immune tolerance via IL-35 production94. Of note, BMACs expressed p19 (also 

known as IL-23a), which forms IL-39 together with Ebi3, albeit the function of IL-39 on Treg 

cells is yet unclear. Tim-1 (also known as Havcr1) is essential for IL-10-producing regulatory 

B cells105-107, and its transcript was expressed in BMACs, though not significantly higher than 

that in IgM+ plasma cells. Importantly, among the genes that were associated with tolerance 

induction, we observed an enrichment of genes associated with Treg induction, instead of genes 

related to general T-cell tolerance through ligating inhibitory receptors, as most of the ligands 

known for inhibitory receptors were downregulated (Figure 17A). Similarly, BMACs 

themselves did not exploit the tolerogenic mechanisms mediated by Treg cells. Notably, 

BMACs showed high LAG-3 expression, which has been reported on B cells after their 

activation by T cells108, suggesting a feedback activation from T cells upon cognate interaction.  
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Figure 17. BMACs selectively express genes associated with Treg induction. Relative mRNA 

expression of genes associated with immune tolerance or with MHC-II antigen presentation in Aire-

GFP+ BMACs compared to IgM+CD138+ plasma cells of Adig mice by gene expression array analysis 

(mean ± SEM). n.d., not detected. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 

 

In line with the capacity of antigen presentation, BMACs expressed higher amounts of MHC-

II and lysosomal proteases such as asparaginyl endopeptidase (Lgmn) and cathepsins that are 

essential for peptide processing and loading to MHC-II109 (Figure 17B). We did not detect 

Cathepsin L, the critical endopeptidase for CD4+ T cell positive selection by cortical thymic 

epithelial cells. This finding reflects the ability of BMACs to present antigens to CD4+ T cells, 
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despite their plasma cell feature and Blimp-1 expression110. This is consistent with a previous 

study showing that plasma cells are able to regulate CD4+ T cell function by antigen 

presentation via MHC-II111. Together, our results demonstrated that BMACs are equipped with 

multiple tolerance-associated machineries that are selective for inducing Treg cells.  

 

3.4.4 BMACs induce the conversion of naïve CD4+ T cells into Treg cells in vitro  

We next exploited naïve CD4+ T cells from HA-TCR transgenic mice12 to assess the outcome 

of the engagement of cognate CD4+ T cells to BMACs expressing Aire-regulated antigens. The 

HA-TCR mice were crossed with RAG2-/- mice to ensure that all T cells were HA-specific. 

Naïve CD4+ T cells were isolated from spleen of HA-TCR (CD45.2+) or WT Balb/c (CD45.1+) 

mice, followed by CD25-depletion (Figure 18A). The isolated naïve CD4+ T cells were then 

co-cultured with BMACs sorted from Aire-HCO and Adig mice. CD45 congenic markers were 

used to distinguish the T cells from different sources (Figure 18B). After co-culture for 5 days, 

67% of HA-specific CD4+ T cells proliferated after co-culture with HA-expressing BMACs, 

while no proliferation was observed for HA-specific CD4+ T cells co-cultured with Adig 

BMACs, nor for polyclonal CD4+ T cells with both HA-expressing and WT BMACs (Figure 

18C). Most importantly, the majority of HA-specific CD4+ T cells expressed CD25, and more 

than one third of the T cells upregulated Foxp3 expression after encountering HA-expressing 

BMACs, indicating that BMACs induced a conversion of naïve CD4+ T cells to Treg cells 

(Figure 18D). In contrast, only less than 10% of their polyclonal counterpart showed CD25 

upregulation. This induction was antigen-dependent, as BMACs from Adig mice did not induce 

the expression of CD25 and Foxp3 on HA-specific CD4+ T cells.  
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Figure 18. BMACs induce the conversion of naïve CD4+ T cells into Treg cells in vitro. (A) Purity 

of naïve CD4+ T cells before and after CD4+ T cell isolation and CD25-depletion. (B) Gating strategy 

to distinguish HA-specific and polyclonal WT CD4+ T cells. (C) Percentages of CFSElow proliferated 

cells among HA-specific and polyclonal WT CD4+ T cells after 5-day co-culture at 1:1 ratio with 

BMACs from Aire-HCO or WT mice. (D) Frequencies of CD25+Foxp3+ cells among CD4+ cells after 

co-culture of naïve HA-specific (red) or polyclonal (blue) CD4+ T cells with BMACs from Aire-HCO 

or Adig mice. Representative data are shown (n = 3). 
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3.4.5 Naïve CD4+ T cells are converted to Treg cells by BMACs in vivo 

To further assess the impact of BMACs on naïve CD4+ T cells in vivo, we transferred CD25-

depleted naïve HA-specific CD4+ T cells along with polyclonal naïve CD4+ T cells into WT 

BM chimera mice, which were reconstituted with BM cells from Aire-HCO or WT mice 8 

weeks prior to naïve T cell transfer (Figure 19). In the BM chimera mice, Aire-HA was 

expressed only in hematopoietic cells, thus avoiding the influence of HA expression by non-

hematopoietic stromal cells.  

 

 

Figure 19. Experimental scheme of in vivo Treg induction. WT BM recipient mice were irradiated 

(4.5 Gy) twice with a 3-hour interval, and transplanted i.v. with donor BM cells from Aire-HCO or WT 

mice. After 8 weeks of reconstitution, naïve HA-specific CD4+ T cells from 6.5 HA-TCR-transgenic 

(tg) mice or polyconal CD4+ T cells from WT mice were transferred intravenously into the recipient 

mice. Donor cells were analyzed 3 days and 14 days post T cell transfer. 

 

On day 3 post-transfer, HA-specific donor T cells showed robust proliferation in both the BM 

and spleen of Aire-HCO hosts. A comparable degree of proliferation of donor HA-specific T 

cells was neither observed in WT hosts, nor in both Aire-HCO and WT hosts for polyclonal T 
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cells, indicating that the expansion of the donor T cells was antigen-dependent (Figure 20A). 

Of note, a substantial proportion of non-divided donor T cells was also found in BM, 

demonstrating the migration of naïve T cells into the BM, as previously reported78. Two weeks 

after T cell transfer, the frequencies of HA-specific T cells remained more than two-fold of the 

polyclonal T cells in the BM, whereas in the spleen, less HA-specific T cells were detected than 

polyclonal ones (Figure 20B and 20C). These results indicate that, while the autoreactive T 

cells are prone to diminishing upon encountering their cognate antigens presented by splenic 

eTACs64, they acquire a survival advantage in the BM when engaging BMACs that present the 

same cognate antigens.  

In accordance, a much higher proportion of HA-specific T cells were converted into 

CD25+Foxp3+ Treg cells in the BM (34.0±6.5%) than in the spleen (10.9±5.7%), as depicted in 

Figure 21. The same effect was not observed in polyclonal T cells in Aire-HCO hosts, nor in 

HA-specific T cells in WT hosts, indicating that the conversion of Treg cells depends on the 

cognate antigens presented by BMACs. These data demonstrate that BMACs can induce the 

conversion of naïve T cells that recognize Aire-regulated antigens into Treg cells in vivo. 

 



Results 

 

63 

 

 

Figure 20. Autoreactive T cells acquired survival advantage in the BM after encountering 

BMACs. (A) Proliferation of CD45.2+ HA-specific CD4+ T cells (red) and CD45.1+ polyclonal CD4+ 

T cells (blue) in the CD45.1+CD45.2+ hosts on day 3 post-transfer. Representative data are shown (n = 

4). Numbers indicate percentages of gated cells among HA-specific donor CD4+ T cells. (B) Percentages 

of CD45.2+ HA-specific CD4+ T cells (red) and CD45.1+ polyclonal CD4+ T cells (blue) in the BM of 

CD45.1+CD45.2+ hosts on day 14 post-transfer. Representative data are shown (n = 4). Numbers indicate 

percentages of gated cells among CD4+ T cells. (C) Ratio of HA-specific/polyclonal CD4+ T cells in 

the BM or spleen of Aire-HCO or WT hosts on day 14 post-transfer (n = 4). *, P < 0.05; ***, P < 0.001 

(Student’s t-test). Error bars indicate SEM. 
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Figure 21. Naïve CD4+ T cells are converted to Treg cells by BMACs in vivo. (A) Frequencies of 

CD25+Foxp3+ Treg cells of CD45.2+ HA-specific CD4+ T cells (red) and CD45.1+ polyclonal CD4+ T 

cells (blue) in the BM of CD45.1+CD45.2+ host on day 14 post-transfer. Representative data are shown 

(n = 4). (B) Percentages of CD25+Foxp3+ Treg cells of CD45.2+ HA-specific CD4+ T cells and CD45.1+ 

polyclonal CD4+ T cells in the BM or spleen of CD45.1+CD45.2+ hosts on day 14 post-transfer (n = 4). 

Numbers indicate percentages of gated cells among CD45.2+ HA-specific CD4+ T cells or CD45.1+ 

polyclonal CD4+ T cells. *, P < 0.05; **, P < 0.01; (Student’s t-test). Error bars indicate SEM. 
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significantly upregulated the expression of CTLA-4 and LAP, but not of LAG-3, compared to 

the ones in WT hosts (Figure 22), indicating an activated and functional status of these Treg 

cells after recognizing the cognate antigens presented by BMACs112-114. Such activation status 

was found only for minor fractions of eTAC-induced Treg cells in the spleen (Figure 22).  

 

Figure 22. BMAC-induced Treg showed activated phenotype. (A) Frequencies of CTLA-4+, LAP+ 

and LAG-3+ cells among HA-specific CD25+Foxp3+ Treg cells in the BM of Aire-HCO or WT hosts on 
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day 14 post-transfer (n = 4). (B) Percentages of cells expressing CTLA-4, LAP, or LAG-3 among HA-

specific CD4+ T cells in BM or spleen on day 14 post-transfer (n = 4). **, P < 0.01; (Student’s t-test). 

Error bars indicate SEM. 

 

We next assessed, whether BMAC-induced Treg cells are capable to regulate cytotoxic T cell 

responses in vivo.  After naïve HA-specific CD4+ T cells were converted into Treg cells in Aire-

HCO hosts, we injected HA peptide-pulsed CFSEhigh and non-pulsed CFSElow target cells, 

together with or without cytotoxic HA-specific effector T cells isolated from the BM and spleen 

of WT mice immunized with HA peptide (Figure 23). One day after the transfer of target cells 

and cytotoxic effector T cells, we analyzed the frequencies of remaining B220+ CFSE-labeled 

cells in the BM or spleen of Aire-HCO and WT hosts. As depicted in Figure 24, compared to 

WT hosts, HA-specific cytotoxicity in the BM was reduced in the Aire-HCO hosts, in which 

HA-specific CD4+ T cells were converted into Treg cells. No significant suppressive effect was 

observed in the spleen, reflecting the activation status of the induced Treg cells (Figure 22). 

Taken together, these data indicate that BMAC-induced Treg cells are activated and 

functionally competent. 
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Figure 23. Experimental scheme of in vivo cytotoxicity suppression. WT BM recipient mice were 

irradiated (4.5 Gy) twice with a 3-hour interval, and transplanted i.v. with donor BM cells from Aire-

HCO or WT mice. After 8 weeks of reconstitution, naïve HA-specific CD4+ T cells from 6.5TCR-

transgenic (tg) mice or polyconal CD4+ T cells from WT mice were transferred intravenously into the 

recipient mice. Two weeks after naïve T cell transfer, HA peptide-pulsed CFSEhigh and non-pulsed 

CFSElow target cells were injected i.v., together with or without cytotoxic HA-specific effector T cells 

isolated from the BM and spleen of WT mice immunized with HA peptide. Percentages of target cells 

were analyzed 1 day after target cell transfer. 
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Figure 24. T cell cytotoxicity was suppressed in the presence of cognate BMAC-induced Treg 

cells. (A) Frequencies of B220+CFSEhigh and B220+CFSElow target cells (18 h post transfer) in the 

BM or spleen of Aire-HCO or WT hosts with or without co-transfer of effector T cells. The Numbers 

indicate percentages of gated B220+ cells. Representative data are shown (n = 3). (B) Percentages of 

specific cytotoxicity in the BM or spleen of Aire-HCO or WT hosts (n=3). *, P < 0.05 (Student’s t-

test). Error bars indicate SEM.
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4. Discussion 

The BM is a known major reservoir of Treg cells80 and as such a major site for the regulation 

and maintenance of local and systemic tolerance. While extensive recirculation of Treg from 

and to the BM has been described, a potential contribution of BM intrinsic mechanisms to 

generate a repertoire of self-reactive Treg has not been addressed so far. Our study revealed a 

novel subset of BM cells which expressed Aire and TRAs ectopically, and was able to present 

Aire-regulated antigens to naïve CD4+ T cells via MHC-II, leading to the conversion into 

CD25+Foxp3+ Treg cells. This finding provides insight into the regulation of active T cell 

tolerance: under physiological conditions, both immigrant and in situ-generated autoreactive 

Treg cells may contribute to the diverse Treg repertoire in the BM. These regulator cells assist 

the homeostasis of hematopoiesis by modulating the differentiation of hematopoietic stem cells 

and providing immune-privileged niches82, 84. At the onset of inflammation in the periphery, 

these autoreactive Treg cells, upon activation, migrate from the BM to inflammatory sites and 

regulate local inflammation67, 80, 87. The TRAs expressed by BMACs included self-antigens 

associated to autoimmune diseases and cancers, indicating that BMACs can induce Treg cells 

that are specific to these self-antigens and important for controlling autoimmune diseases and 

for promoting tumor growth. 

4.1 Distinct phenotypic features and tolerogenic immunological functions of 

BMACs compared to other hematopoietic Aire-expressing cells 

Recent evidence showed that self-representation in the peripheral lymphoid tissues contributes 

to the maintenance of T cells tolerance54-56. Lymph node stromal cells such as fibroblastic 

reticular cells and lymphatic endothelial cells express TRAs. They are able to shape the 

clonality of autoreactive CD8+ T cells via direct presentation57-60 and induce anergy of 

autoreactive CD4+ T cells in cooperation with DCs which acquire the antigens from lymph node 
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stromal cells61, 62. While Lymph node stromal cells support Treg cells homeostasis, a role in 

Treg induction has not been described for these subsets63.  

eTACs were the first hematopoietic cell-derived APCs  reported to express TRAs and Aire in 

the peripheral lymphoid organs64, 65. They share some phenotypic markers with BMACs such 

as CD45, EpCAM and MHC-II expression, but display a conventional DC-like morphology 

and express CD11c and Zbtb4665, which according to our flow cytometric and microarray 

analyses are both not expressed by BMACs. Self-antigens expressed by eTACs induce deletion 

of diabetes-inducing autoreactive CD8+ T cells and prevent disease onset in Adig mice bred on 

a non-obese diabetic (NOD) background64. Importantly, eTACs also induce anergy of 

autoreactive CD4+ T cells65. Of note, a fraction of naïve autoreactive CD4+ T cells upregulated 

Foxp3 in spleen and lymph nodes after encountering eTACs, however, these peripherally 

induced Treg cells do not account for the prevention of diabetes in the NOD SCID hosts, as the 

depletion of eTAC-induced Treg cells do not affect the eTAC-mediated protection from 

diabetes onset, and these cells fail to actively suppress naïve autoreactive CD4+ T cells after co-

transfer into the hosts65. The tolerogenic capacity of eTACs lies in inactivating CD4+ T cells 

through the absence of costimulatory molecules. In keeping with this finding, we observed that 

the Treg cells induced by splenic eTACs in our model showed a lowly activated state and 

modest suppression capacity. In contrast, BMACs express CD80 and CD86, and the majority 

of the CD25+Foxp3+ Treg cells induced by BMACs upregulated CTLA-4 and LAP, and 

cytotoxic T cell responses in BM were significantly reduced in the presence of BMAC-induced 

Treg cells. It is noteworthy that HA-specific donor CD4+ T cells in the spleen diminished 

compared to their polyclonal counterparts 2 weeks after transfer, even though they initially 

proliferated (our data not shown). This is similar to the deletional effect of eTACs on cognate 

CD8+ T cells. In contrast, BMAC-induced Treg cells maintained high frequencies for at least 2 

weeks. These findings suggest that BMACs and splenic eTACs exploit different tolerogenic 
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mechanisms to control autoreactive CD4+ T cells. Thus, we conclude that BMACs are a 

phenotypically and functionally distinct subset of Aire-expressing antigen presenting cells.  

4.2 Subsets in B cell lineage for T cell central and peripheral tolerance 

BMACs displayed a CD19lowCD138+B220-Blimp-1+ plasma cell phenotype, which indicates 

that B cells are not only involved in promoting negative selection of T cells in thymus9, 10, but 

also in the maintenance of peripheral T cell tolerance in the BM. In Adig mice, approximately 

half of thymic B cells are Aire-GFP+ (that is about 0.05% of total thymic cells). In hind bones 

of 6-12 weeks old mice, BMACs take up comparable proportion (0.01%-0.04%) of total BM 

cells. Despite the scarceness of these cell subsets, they contribute to central and peripheral T 

cell tolerance, respectively. In thymus, licensing of B cells by CD4 single-positive thymocytes 

via CD40 signaling initiates the complex program including proliferation, upregulation of Aire, 

MHC-II, and CD80 expression, and pGE. In contrast, BMACs had lower levels of CD80 and 

MHC-II expression, which reflects the lower antigen presentation capacity. Moreover, isotype 

analyses have revealed that Aire-expressing thymic B cells contain IgM+IgD+ and IgM+IgD- 

cells, as well as IgM-IgD- cells which undergo class switch after CD40-licensing9. Unlike in 

thymic B cells, no expression of isotype IgD, IgG1, IgG2a and IgG2b was detected in BMACs, 

while the majority of BMACs were surface IgM+, indicating that class switch is not coupled 

with Aire expression in BMACs.  

The licensing of thymic B cells requires the cognate interaction via peptide:MHC-II and TCR 

between B cells and cognate CD4+ T cells, which provide CD40 signal to initiate the program 

of Aire, MHC-II and ectopic TRA expression. BMACs express MHC-II and the machinery for 

antigen presentation despite showing characteristics of plasma cells and Blimp-1 expression, 

and they are able to present Aire-regulated antigens to CD4+ T cells. However, whether the 

interaction with CD4+ T cells is essential for BMACs to express Aire should be further assessed. 

In addition, the effect of CD40 signaling on Aire expression in BMACs merits further study. 
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The fact that BM memory T cells interact with B cells through the CD40L/CD40 axis115 renders 

this signaling pathway a potential driving force of Aire expression in BMACs. 

4.3 Common features of BMACs and regulatory B cells (Breg cells) 

Apart from being the potential prerequisite of Aire expression, cognate interaction between 

BMACs and T cells might also be the key to initiate the molecular program of Treg induction, 

as having been reported for regulator B (Breg) cells116, 117. Indeed, BMACs substantially 

expressed LAG-3, which has been shown as a marker for B cell activation induced by T cells108. 

It merits further investigation to determine whether the Treg cell-inducing mechanisms (IL-10, 

CD155, and retinoic acid) are all necessary or redundant for BMACs to convert naïve T cells 

to Treg cells. IL-10 produced by Breg cells is important for the induction of Treg cells as the 

frequency of the latter decreases in mice with B cell-restricted IL-10 deficiency118, 119. Breg-

mediated induction of Treg cells depends on cognate interaction between the two parts, since 

CD80, CD86120 and MHC-II121 are indispensable for this induction. The phenotype of BMACs 

(CD138+Blimp-1+IgM+MHC-II+) resembles the phenotype of regulatory plasma cells which 

can suppress experimental autoimmune encephalitis and inhibit anti-bacterial immunity 

through IL-1094, 122, 123 and IL-3594. It is noteworthy that BMACs downregulated CD22 

expression, indicating a more terminally differentiated status, similar to the fact that IL-10 and 

IL-35-producing regulatory plasma cells are more enriched in CD138hiCD22- subset than in 

CD138+CD22+ population94. However, BMAC-mediated Treg induction under physiological 

condition is independent on IL-35, as BMACs did not express p35 (IL-12a, a subunit of IL-35), 

and the frequency of Treg cells is not affected in naïve mice lacking B cell-produced IL-3594. 

Nevertheless, we do not eliminate the notion that BMACs can upregulate p35 and utilize IL-35 

as an auxiliary tolerogenic mediator under inflammatory condition, such as infection or onset 

of autoimmune diseases. 
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4.4 Peripherally derived Treg cells (pTreg) induced by BMACs maintain 

self-tolerance 

Peripherally derived Treg (pTreg) cells are originally identified in the mucosa, such as gut and 

lung124, 125. These mucosal sites are in constant exposure to commensal bacteria and harmless 

foreign antigens, and the pTreg cells are indispensable to maintain the immune tolerance 

towards harmless foreign antigens, and thus avoiding the unnecessary inflammation. In 

mesenteric lymph nodes, CD103+ DCs present the antigens acquired from the gut to cognate 

CD4+ T cells and induce the development of pTreg cells126. The induction of pTreg cells by 

CD103+ DCs in mesenteric lymph nodes is dependent on TGF-β and retinoic acid. Like tTreg 

cells, pTreg cells also manifest epigenetic marks of “natural” Treg cells, including 

demethylation of the Foxp3 conserved non-coding sequence 2 (CNS2, also called Treg-specific 

demethylated region, TSDR)127-132, Ctla4, Tnfrsf18 and Il2ra133, 134. In contrast, in vitro-induced 

Treg (iTreg) cells have methylated TSDR, and thus the expression of Foxp3 in iTreg cells is 

rather unstable128, 131. However, pTreg cells can be distinguished from tTreg cells by the lack 

of Helios135, 136 and Nrp1137, 138 expression. The BMAC-induced Treg cells are generated in the 

BM (and thus by definition belong to pTreg cells), and further examination of their DNA 

methylation status and expression of Helios and Nrp1 is required to confirm their identity. 

Apart from playing crucial roles in immune tolerance towards microbiota and harmless mucosal 

antigens, pTreg cells are also important in controlling autoimmune diseases such as multiple 

sclerosis139-141 and type I diabetes142. In experimental autoimmune encephalomyelitis (EAE, a 

mouse model of multiple sclerosis), CD8+CD11c+DEC205+BTLAhi DCs can induce pTreg cells 

through engaging HVEM on T cells143. Upon engagement of BLTA on DCs, HVEM signaling 

promotes Foxp3 expression and induces the conversion of pTreg cells. As BMACs express 

CNP and Col5a1 that are associated with multiple sclerosis and rheumatoid arthritis, 
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respectively, it is plausible that BMAC-induced Treg cells are able to prevent the onset of these 

autoimmune diseases, which should be confirmed with further studies.  

It is noteworthy that BMACs over-express genes necessary for retinoic acid production 

compared to IgM+ plasma cells. However, expression of Tgfb and BTLA in BMACs is lower 

than that in plasma cells, suggesting the induction of Treg cells by BMACs is governed by 

mechanisms distinct from mesenteric CD103+ or CD205+BTLAhi DCs. 

4.5 Potential tumor-supporting role of BMAC-induced Treg cells  

Under physiological condition, Treg cells are enriched in the bone marrow, while in cancer 

patients the tumor-reactive Treg cells in the bone marrow are selectively activated, and then 

emigrate to the peripheral tumor tissue86, 87. It is currently unclear how the activation of these 

tumor-reactive Treg cells is induced. Since the tumor cells do not express MHC-II and are 

therefore incapable of presenting antigens to Treg cells, the source of TAAs and the identity of 

APCs, which can present the tumor-associated antigens (TAAs) to Treg cells via MHC-II, 

remain elusive.  

We have now identified BMACs as one subset of the APCs (if more than one) capable to 

ectopically express TRAs and induce the conversion of naïve CD4+ T cells to Treg cells through 

direct presentation of the self-antigens. The TRAs expressed by BMACs cover a broad 

spectrum of self-antigens, including several TAAs such as Mage-d1 and Mage-e1. It is 

foreseeable that naïve CD4+ T cells specific to TAAs that escape central tolerance in the thymus 

can be converted to Treg cells in the BM by BMACs. These newly generated Treg cells can 

potentially migrate to the periphery and suppress anti-tumor immunity and facilitate tumor-

growth. It remains to be determined whether BMACs are able to induce endogenous TAA-

specific Treg cells. And whether BMACs promote tumor growth through the induction of those 

TAA-specific Treg cells also needs further investigation. 

Moreover, BM is a preferential site of metastasis in several different solid tumors, such as breast 
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and prostate cancer144-146. After epithelial-mesenchymal transition and extravasation, 

disseminated cancer cells travel through circulation and intravasate into BM. They interact with 

stromal cells and immune cells in BM and subsequently colonize within the organ. The niche 

of colonization for disseminated cancer cells is tolerogenic147, 148. It is critical to evaluate 

whether the tolerogenic niches consist of BMACs and induced Treg cells. As BM Treg cells 

have been reported to provide immune privileged niches for hematopoietic stem cells, TAA-

specific Treg cells induced by BMACs might also create a tolerogenic microenvironment, 

which favors the colonization of disseminated cancer cells.  

Furthermore, transient abrogation of central tolerance towards tumor has been shown to 

enhance anti-tumor immunity149. By blocking RANK signaling and thus mTEC maturation, 

Khan and colleagues are able to create a transient window where they can induce anti-tumor 

immune responses against tumor via immunization with tumor antigens. Given the potential of 

BMACs in promoting tolerance towards tumor growth and metastasis, the depletion of BMACs 

might benefit the immune responses against tumor and thus could provide new insight into 

cancer immunotherapy.
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5. Conclusion 

Immune tolerance towards self-antigens is essential to avoid the onset of autoimmune diseases. 

BM Treg cells are key players in self-tolerance that actively suppress immune responses and 

create a tolerogenic microenvironment for the fine regulation of hematopoiesis. Although BM 

has hitherto been viewed as a preferential site for the recirculation of tTreg cells, little is known 

about its role in the generation of pTreg cells. Here, our results unravel a direct conversion of 

naïve CD4+ T cells into functional, self-antigen reactive Treg cells in the periphery by a BM-

resident population of Aire+ cells capable of ectopic TRA expression and presentation. This 

mechanism contributes to the formation of the repertoire of Treg cells in the BM that mediates 

local and systemic peripheral tolerance towards Aire-dependent self-antigens. As the self-

antigens expressed by BMACs include antigens involved in autoimmune diseases, the Treg 

cells induced by BMACs might play a crucial role in the prevention of autoimmunity. On the 

other hand, BMACs also express tumor-associated self-antigens, which can lead to the 

induction of tumor-specific Treg cells that suppress anti-tumor immune responses. Therefore, 

promoting or repressing the activity of BMACs could be a potential therapeutic approach for 

the treatment of autoimmune diseases or cancer, respectively. In summary, these findings 

provide further insight into the induction and maintenance of peripheral immune tolerance in 

the BM.
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7. Abbreviations 

 

7-AAD 7-Amino-actinomycin D 

ACK 
ammonium-chloride-

potassium 

Adig Aire-driven IGRP-GFP 

Aire autoimmune regulator 

Aldh2 
aldehyde dehydrogenase 2 

family (mitochondrial) 

APC allophycocyanin 

APC antigen presenting cell 

BC B cell 

BM bone marrow 

BMAC 
bone marrow Aire-expressing 

cell 

CD cluster of differentiation 

cDNA complementary DNA 

CFSE 
carboxyfluorescein diacetate 

succinimidyl ester  

CpG 

ODN 
CpG oligodeoxynucleotide  

Crp C-reactive protein 

Csna casein alpha 

Csnb casein beta 

Csng casein gamma 

cTEC cortical thymic epithelial cell 

CTLA-4 
cytotoxic T-lymphocyte 

associated protein 4 

Cy cyanin 

DC dendritic cell 

ddH2O double-distilled water 

DMEM 
Dulbecco's Modified Eagle 

Media 

DNA deoxyribonucleic acid 

DNase deoxyribonuclease 

dNTP deoxynucleotide triphosphate 

Ebi3 Epstein-Barr virus induced 3 

EDTA 
ethylenediaminetetraacetic 

acid 

EpCAM 
epithelial cell adhesion 

molecule 

eTAC 
extra-thymic Aire-expressing 

cell 

Expi 
extracellular proteinase 

inhibitor  

FACS 
fluorescence-activated cell 

sorting 

FBS fetal bovine serum 

FC fold change  

Foxp3 forkhead box P3 

g gram(s) 

g standard gravity 

Gad67 glutamate decarboxylase 67 

GFP green fluorescence protein  

h hour(s) 

HA hemagglutinin 
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HEPES 
4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid 

Ig immunoglobulin 

IGRP 
islet-specific glucose-6-

phosphatase–related protein 

IL interleukin 

Ins2 insulin II 

KO knock out 

l liter 

LAG-3 lymphocyte-activation gene 3 

LAP latency associated peptide 

LPS lipopolysaccharide 

M molar 

MACS magnetic-activated cell sorting 

MFI mean fluorescence intensity 

MHC 
major histocompatibility 

complex 

min minute(s) 

MNC mononuclear cell 

mRNA messenger RNA 

mTEC 
medullary thymic epithelial 

cells 

NF-κB 

nuclear factor kappa-light-

chain-enhancer of activated B 

cells 

OVA ovalbumin 

PBMC 
peripheral blood mononuclear 

cell 

PBS phosphate-buffered saline 

PCR polymerase chain reaction 

PD-L1 programmed death ligand 1 

PD-L2 programmed death ligand 2 

PE phycoerythrin 

PerCP peridinin-Chlorophyll-protein 

pGE promiscuous gene expression 

pH potentia hydrogenii 

polyI:C 
polyinosinic-polycytidylic 

acid  

RAG2 
recombination activating gene 

2 

RANK receptor activator of NF-κB 

Rbp7 retinol binding protein 7 

RNA ribonucleic acid 

rpm revolutions per minute 

RPMI 
Roswell Park Memorial 

Institute medium 

SD standard deviation 

SEM standard error of the mean 

TAA tumor-associated antigen 

TC T cell 

TCR T cell receptor 

TGFβ1 
transforming growth factor 

beta 1 

Tim-1 
T-cell immunoglobulin mucin 

receptor 1 

Tlbp testis lipid-binding protein 

TRA tissue-restricted antigen 

Treg 

cells 
regulatory T cells 

tRNA transfer RNA 

WT wild type 
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