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Summary 

DLC1 is a tumor suppressor protein downregulated in gastric cancer. It is a negative 

regulator of RHOA, which is the major oncogenic driver mutation of human diffuse gastric 

cancer. Helicobacter infection leads to chronic gastric inflammation, which is a risk factor for 

the development of carcinoma. The Helicobacter toxin CagA activates numerous signaling 

pathways including RHOA. The role of DLC1 in Helicobacter-related gastric disease is 

unknown and was analyzed by this thesis. 

DLC1gt/+ mice showed increased gastric inflammatory infiltration. Involvement of DLC1 in the 

regulation of the immune response was confirmed by RT-qPCR analyses. Furthermore, DLC1 

was shown to be localized to enterochromaffin-like cells. Quantitative gene expression 

analyses verified a crucial role of the tumor suppressor in homeostasis of gastric acid in vivo, 

thereby preventing the development of gastric cancer. 

This study further demonstrates an interaction between DLC1 and CagA. DLC1 was 

transcriptionally downregulated by CagA and the two proteins fulfilled antagonizing 

functions by complex formation. DLC1 counters the oncogenic signaling of CagA in vitro by 

promoting adhesion, suppressing proliferation and antagonizing CagA concerning the 

hypoxic stress response. DLC1 furthermore inhibited CagA-mediated G-protein-coupled 

RHOA activation. 

In vivo therapy of a preclinical model for human gastric cancer with an inhibitor of the 

RHO/ROCK-pathway efficiently reduced tumor growth. These findings propose inhibition of 

this pathway as a novel treatment strategy for human gastric cancer.  

In summary, this thesis postulates a protective role of DLC1 in initial steps of gastric disease 

by antagonizing CagA-mediated oncogenic signaling. Transcriptional downregulation of DLC1 

by CagA promotes oncogenic effects and constitutes DLC1 as an early molecular marker for 

Helicobacter-related gastric disease. Due to the involvement of CagA and DLC1 in the 

regulation of RHOA, Helicobacter-related gastric disease can be assigned to diffuse 

genomically stable gastric cancer. This represents a new risk stratification for Helicobacter-

infected gastric cancer patients. Suppression of tumor growth using an inhibitor of the RHOA 

downstream effector ROCK proposes DLC1 as a future druggable target in human gastric 

cancer. 



VI 

 

Zusammenfassung 

Der Tumorsuppressor DLC1 zeigt eine verminderte Expression in Magenkrebs und ist ein 

negativer Regulator von RHOA, welches das bedeutendste Onkogen in diffusem Magenkrebs 

darstellt. Eine Helicobacter-Infektion resultiert in einer chronischen Entzündung des Magens 

und erhöht das Risiko für Magenkrebs. Das Helicobacter Toxin CagA aktiviert verschiedenste 

Signalwege einschließlich RHOA. Die Funktion von DLC1 bei der Helicobacter-assoziierten 

Erkrankung des Magens ist unbekannt und wurde in der vorliegenden Arbeit untersucht. 

DLC1gt/+ Mäuse zeigten eine verstärkte inflammatorische Infiltration des Magens. RT-qPCR 

Analysen bestätigten eine Regulierung der Immunantwort durch DLC1. Des Weiteren konnte 

eine Lokalisierung von DLC1 in enterochromaffin-ähnlichen Zellen festgestellt werden. 

Quantitative Genexpressionsanalysen verifizierten eine essentielle Rolle von DLC1 bei der 

Homöostase der Magensäure in vivo, wodurch DLC1 vor Magenkrebs schützt. 

Weiterhin demonstriert diese Arbeit eine Interaktion zwischen DLC1 und CagA. Es konnte 

eine transkriptionelle Hemmung von DLC1 durch CagA nachgewiesen werden. Die Proteine 

zeigten eine Interaktion und agierten gegensätzlich. DLC1 wirkte in vitro den onkogenen 

Effekten von CagA durch Unterstützung der Adhäsion, Inhibition der Proliferation und 

antagonistischer Wirkung bezüglich der hypoxischen Stressantwort entgegen. Zusätzlich 

konnte eine Hemmung der CagA-vermittelten RHOA Aktivierung durch DLC1 gezeigt werden.  

Ein Inhibitor des RHO/ROCK-Signalweges reduzierte effektiv das Tumorwachstum in einem 

präklinischen Modell für Magenkrebs. Somit stellt die Inhibition dieses Signalweges eine 

neue Strategie zur Behandlung von Magenkarzinomen dar. 

Zusammenfassend zeigt diese Arbeit eine Schutzfunktion von DLC1 in initialen Stadien vor 

der Entstehung von Magenkrebs durch Inhibition der onkogenen CagA-Signalwirkung. Die 

transkriptionelle Hemmung von DLC1 durch CagA identifiziert DLC1 als frühen molekularen 

Marker für die Helicobacter-vermittelte Erkrankung des Magens. Aufgrund der Beteiligung 

von CagA und DLC1 an der RHOA-Regulation kann Helicobacter-assoziierter Magenkrebs 

dem genetisch stabilen Subtypen zugeordnet werden. Hierdurch ergibt sich eine neue 

Risikostratifizierung Helicobacter-infizierter Magenkrebspatienten. Eine Hemmung des 

RHO/ROCK-Signalweges in vivo ergab ein reduziertes Tumorwachstum und legt DLC1 als 

einen zukünftigen therapeutischen Angriffspunkt bei der Behandlung von Magenkrebs dar. 
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1 Introduction 

1.1 Gastric cancer 

1.1.1 Epidemiology 

Gastric cancer (GC) is the fifth most frequent cancer entity and the third leading cause of 

cancer related deaths worldwide (Tan and Yeoh, 2015). Due to nonspecific symptoms such 

as abdominal fullness or heartburn in early stages, gastric malignancies are usually detected 

in advanced stages resulting in a very poor prognosis. Symptoms of advanced stages include 

anemia, weight loss, vomiting and a general impairment of health (Catalano et al., 2009; 

Nagini, 2012). This results in an increased case-fatality ratio compared with other 

malignancies (Jemal et al., 2011). In Europe, 159,900 new cases and 118,200 cases of death 

have been reported in 2006 for GC (Jackson et al., 2009). The 5-year survival rate of GC in US 

and European countries is only 10-20% (Catalano et al., 2009; Karimi et al., 2014; 

Strathmann and Simon, 1991). Nevertheless, a decline in both, incidence and mortality, has 

been observed (Bosetti et al., 2013; Fox and Wang, 2007; Nagini, 2012). 

Incidence of GC increases with age showing a peak at 60-80 years (Nagini, 2012). In almost 

all countries, there is a male predominance. In males, rates of stomach cancer are two to 

four times higher compared with females (Jemal et al., 2011; Karimi et al., 2014; Nagini, 

2012). GC shows highest incidence rates in Eastern Asia, Eastern Europe and South America. 

Lowest incidence rates have been recorded in North America and Africa (Howe et al., 2006; 

Karimi et al., 2014). Furthermore, the incidence of GC shows significant variations among 

different ethnic groups living in the same area (Parkin, 2004).  

Adenocarcinomas develop in proximal (cardia) and distal (non-cardia) stomach regions. 

Distal GC is most common in developing countries, among Afro-Americans and lower socio-

economic groups. Proximal tumors predominate in developed countries, among whites and 

higher socio-economic classes. While distal stomach cancer preponderates in Japan, 

proximal tumors show an increasing prevalence in the rest of the world and poorer 

prognosis compared with distal GC (Catalano et al., 2009; Crew and Neugut, 2006). 
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1.1.2 Pathogenesis 

GC shows a multifactorial disease pattern. Several risk factors for gastric carcinogenesis are 

known. Almost all cases of GC are associated with an infection with Helicobacter pylori (H. 

pylori). The bacterium was classified as a type I carcinogen in humans by the International 

Agency for Research on Cancer (IARC) in 1994. H. pylori infection results in a two-fold 

increased risk of GC. Nevertheless, H. pylori infection alone is not sufficient for the 

development of gastric malignancies (Catalano et al., 2009; Crew and Neugut, 2006; De Falco 

et al., 2015; Karimi et al., 2014; Nagini, 2012). 

Nutrition and food play a significant role in the progression of GC. High starch and low 

protein diet are suggested to cause nitrosation and thereby attack the gastric mucosa. 

Prolonged consumption of salt-preserved foods such as soy sauce, pickled vegetables, 

processed meat and salted fish is known to increase the risk for GC development. Salt is 

proposed to induce mutations, cause proliferation of epithelial cells and loss of parietal cells. 

Furthermore, intake of salt-preserved foods enforces H. pylori infection and directly 

damages the gastric mucosa. Dietary nitrates are also associated with an elevated risk of GC. 

Gastric acid converts dietary nitrates into carcinogenic N-nitroso compounds (NNC). Dietary 

nitrates can be found naturally in foods (e.g. carrots, radish, beets, spinach), synthesized by 

bacterial reactions or added artificially during preservation. Moreover, H. pylori-mediated 

gastritis facilitates colonization of the stomach with nitrosating bacteria. Furthermore, 

cooking practices such as smoking, roasting, grilling, sun drying, pickling, salting and curing 

of meat are known to increase the risk for GC (Catalano et al., 2009; Crew and Neugut, 2006; 

IARC Press, 2014; Karimi et al., 2014; Nagini, 2012). 

A significant dose-dependent relationship exists between tobacco consumption and the 

development of GC. Approximately 18% of all GCs are associated with smoking. A 

combination of excessive use of cigarettes (> 20/day) and alcohol (> 5 occasions/2 weeks) 

resulted in a five-fold increased risk of distal GC. Furthermore, smokers have an increased 

chance for H. pylori infection and gastroduodenal inflammation compared with non-smokers 

(Catalano et al., 2009; Crew and Neugut, 2006; Nagini, 2012). 
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Obesity is another risk factor, which promotes gastro-esophageal reflux disease and Barrett’s 

esophagus. It has been found that obesity is responsible for a 2.3-fold increased chance for 

proximal GC (Crew and Neugut, 2006; Karimi et al., 2014). 

Another risk factor for GC represents a positive family history. Approximately 10% of all GCs 

are hereditary. First degree relatives of patients have a two- to three-fold elevated risk of GC 

(Catalano et al., 2009; Crew and Neugut, 2006; Nagini, 2012). 

Minor risk factors for GC include radiation, blood type A, Epstein-Barr Virus infection or 

several occupations. An increased risk of GC has been recognized for occupations such as 

mining, refining, farming and fishing due to exposure to dust, rubber or asbestos (Crew and 

Neugut, 2006; Karimi et al., 2014; Nagini, 2012). 

1.1.3 Genetic background  

Gastric carcinogenesis is a result of multiple genetic and epigenetic changes, which are 

responsible for activation of oncogenic pathways and inactivation of tumor suppressors. The 

majority of GCs are adenocarcinomas. They are classified into two distinct histological types, 

also known as intestinal- and diffuse-type GC, according to the Laurén classification (Cancer 

Genome Atlas Research, 2014).  

Intestinal GC is characterized by a gastritis focused on the corpus. It is more frequent in men, 

Afro-Americans and older patients. Furthermore, intestinal-type tumors have a better 

prognosis compared to diffuse-type GC (Nagini, 2012). Intestinal-type GC develops through 

well-differentiated sequential stages from chronic gastritis, atrophy, intestinal metaplasia 

and dysplasia to carcinoma (Yuasa, 2003). Atrophic gastritis describes a histological step 

characterized by a complete loss of parietal (acid producing) and chief (pepsinogen 

producing) cells as well as a variable gland loss and infiltration of inflammatory cells into 

glandular zones (Fox and Wang, 2007; Polk and Peek, 2010). During intestinal metaplasia, 

gastric mucosa changes to an intestinal phenotype by columnar elongation and formation of 

goblet (mucin producing) cells. Abnormal activation of the intestine-specific transcription 

factor CDX2 leading to expression of intestine-specific genes including MUC2, 

sucrose/isomaltase or carbonic anhydrase I is believed to be responsible for this event 
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(Yuasa, 2003). Cell proliferation and cellular/nuclear atypia can be observed during dysplasia 

(Catalano et al., 2009; Fox and Wang, 2007).  

Diffuse-type GC is histologically undifferentiated and develops from single-cell changes 

localized at the mucous-neck region of gastric glands, which proliferate and invade into the 

lamina propria (Catalano et al., 2009; Yuasa, 2003). Diffuse-type GC is characterized by a 

pan-gastritis affecting the whole stomach without atrophy. It is more common in women 

and younger people living in endemic areas (Fox and Wang, 2007; Nagini, 2012). H. pylori 

infection is known to be a risk factor for both histological types of GC (Uemura et al., 2001). 

Besides the Laurén classification, the Cancer Genome Atlas Research Network has classified 

295 GC patient samples into four molecular subtypes (Fig. 1.1). First, the tumor samples 

were categorized by Epstein-Barr Virus (EBV) positivity (9%) and microsatellite instability 

(MSI)-high status (22%). The remaining tumors were classified by grade of aneuploidy 

(gain/loss of chromosome parts or whole chromosomes) into genomically stable (GS; 20%) 

and chromosomally instable (CIN; 50%) tumors (Cancer Genome Atlas Research, 2014). 

EBV-positive tumors are mainly present in the fundus or the body of the stomach. All EBV-

positive cases showed an extreme CpG island methylator phenotype (CIMP). 5‘-Cytosine-

phosphate-Guanine-3‘ (CpG) sites are promoter regions where cytosine is followed by a 

guanine nucleotide. CpG islands are accumulations of CpG sites and methylation results in 

epigenetic repression of specific genes. The Cancer Genome Atlas Research Network 

determined increased DNA hypermethylation for EBV-positive tumors compared with all 

other cancers including promoter hypermethylation of the tumor suppressor CDKN2A. 

Furthermore, EBV-positive GC showed activating mutations of the oncogenes PIK3CA and 

BCOR, but also inactivating mutations of the tumor suppressors ARID1A and TP53. 

Moreover, enriched amplification of 9p24.1 at the locus possessing JAK2, CD274 and 

PDCD1LG2 was observed. The JAK2 protein represents a receptor tyrosine kinase, which is a 

putative therapeutic target. CD274 and PDCD1LG2 encode the two immunosuppressant 

proteins PD-L1 and PD-L2. Strong IL-12 mediated signaling indicates a solid immune cell 

presence in EBV-positive tumors (Cancer Genome Atlas Research, 2014; Figueiredo et al., 

2013; Garattini et al., 2017; Wang et al., 2014). 
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MSI tumors are predominantly of the intestinal type and can be found in all stomach regions. 

MSI results from impaired DNA replication and is characterized by extension or reduction of 

microsatellite repeats (short repeated DNA sequences) as a result of insertion or deletion of 

repeats (Yuasa, 2003). MSI cases show increased hypermethylation of MLH1 promoter (DNA 

mismatch repair gene) in the context of CIMP. Furthermore, cytosine-adenine repeat 

instability and loss of heterozygosity (LOH, loss of a complete gene and its surrounding 

chromosomal region) of the tumor suppressor gene APC have been reported leading to 

activation of the WNT signaling pathway by stabilization of β-catenin and subsequent 

activation of oncogenes (Nagini, 2012; Yuasa, 2003). Just as EBV-positive GC, MSI tumors 

show silencing of ARID1A and lack of TP53. Further mutations of MSI tumors represent 

MUC6 and RNF43. MUC6 encodes gastric mucin and its inactivation is suggested to enhance 

chronic mucosal injury and carcinogenic progression. RNF43 encodes the E3 ubiquitin ligase 

and acts as a negative regulator of the WNT pathway (Cancer Genome Atlas Research, 2014; 

Figueiredo et al., 2013; Garattini et al., 2017; Nagini, 2012; Wang et al., 2014; Yuasa, 2003). 

CIN tumors are characterized by increased occurrence at the cardia and an intestinal 

histology. They show numerous DNA copy number variations resulting in gains of diverse 

chromosomal regions. This molecular subtype shows increased mutation of TP53 and 

cytosine-adenine repeat instability. Further hallmarks of CIN tumors represent genomic 

amplification of receptor tyrosine kinases (RTKs) and RAS signaling including HER-2, BRAF 

and EGFR. Moreover, CIN GC is associated with genome-wide demethylation and somatic 

mutations (Cancer Genome Atlas Research, 2014; Figueiredo et al., 2013; Garattini et al., 

2017; Wang et al., 2014). 

Tumors of the GS subtype are present throughout the stomach and show a diffuse histology. 

Increased CDH1 somatic mutations were observed in GS tumors. CDH1 encodes E-cadherin, 

a tumor suppressor protein. There are several studies, which identified mutations of the RAS 

homolog gene family A (RHOA) as oncogenic drivers in 14-25% of diffuse-type GC (Cancer 

Genome Atlas Research, 2014; Kakiuchi et al., 2014; Wang et al., 2014). RHO is a member of 

the rat sarcoma (RAS)-related family of small molecular weight GTP-binding proteins. It 

regulates cytoskeletal organization, apoptosis, cell adhesion, gene transcription and cell 

cycle progression. GTP-bound active RHOA is known to promote tumorigenesis through 

diverse effectors such as the RHO-associated coiled-coil containing kinase (ROCK), mDIA or 
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Protein Kinase N (Cancer Genome Atlas Research, 2014; Julian and Olson, 2014). Modulated 

RHOA is suggested to be responsible for characteristics of diffuse tumors such as a dissimilar 

growth pattern and defects in cellular coherence. Furthermore, RHOA mutations are 

proposed to play an essential role in initial stages of cancer progression. The Cancer Genome 

Atlas Research Network observed enriched interchromosomal translocation resulting in 

CLDN18-ARHGAP26/6 fusions in GS tumors. CLDN18 is part of the tight junction adhesion 

structures. ARHGAPs catalyze transformation from active GTP-bound to inactive GDP-bound 

RHOA. The CLDN18-ARHGAP26/6 fusion transcript can be affected in RHOA regulation and 

the function of CLDN18 concerning cellular adhesion (Cancer Genome Atlas Research, 2014; 

Garattini et al., 2017). Somatic mutations are distributed across the whole RHOA gene. 

Highly conserved mutational hotspots affecting the Tyr42, Arg5 and Gly17 residues in RHOA 

and, hence, its functional domains, were identified (Kakiuchi et al., 2014). RHOA mutations 

further promote resistance to anoikis, which is a hallmark of diffuse-type GC (Wang et al., 

2014). 

   
 

 

 

   
 Fig. 1.1: Main features of the four molecular GC subtypes. Inset charts represent the 

distribution of each molecular subtype in tumors obtained from the different regions of the 

human stomach (copied from Cancer Genome Atlas Research, 2014).  

 

  



Introduction  

 

7 

1.1.4 Treatment 

Gastric malignancies are usually detected in advanced stages due to mild and nonspecific 

symptoms in early stages. Primary prevention is very important to improve prognosis. 

Modifying risk factors for GC, such as high salt intake, low consumption of fresh fruits and 

vegetables, smoking and H. pylori eradication therapy may result in a decrease of GC 

incidence and mortality. Due to the high risk of GC in Japan, a national endoscopic 

surveillance program helped to detect about half of GCs at early stages (Catalano et al., 

2009; Crew and Neugut, 2006; Nagini, 2012). Endoscopy is the most effective, accurate and 

rapid diagnose method to detect GC. A major advantage of endoscopy is the ability to 

perform biopsy of gastric lesions or ulcers in one step (Catalano et al., 2009; Karimi et al., 

2014). 

The treatment of choice for GC is the surgical resection of primary tumors. Chemo- or 

radiotherapy can be applied as adjuvant therapy strategies. Neoadjuvant therapy is used to 

reduce the size of inoperable tumors enabling resection. In case of metastatic disease, the 

treatment of GC is symptomatic or palliative (Catalano et al., 2009). 

A widely used chemotherapeutic drug for treatment of advanced GC is 5-Fluorouracil (5-FU), 

which is an analogue of uracil. 5-FU is able to enter cells rapidly and is converted to active 

metabolites intracellularly. These disrupt RNA and DNA synthesis and impair the function of 

the nucleotide synthetic enzyme thymidylate synthase (Longley et al., 2003). A similar mode 

of action is known for platinum compounds, such as cisplatin (cis-Diamino-dichloro-

platinum). Cisplatin-induced DNA damage activates cell cycle checkpoints resulting in 

apoptosis (Siddik, 2003). 

The response rate of chemotherapy constitutes only 20-40% and serious side effects cannot 

be ignored. This is why attention has been focused on molecular targeted therapy. 

Molecular targeted inhibitors negatively regulate overexpressed molecules and pathways 

involved in tumor development. Big advantages of targeted therapy are improved specificity, 

decreased non-selective toxicity and reduced resistance. Molecular targeted therapy affects 

a number of mechanisms associated with GC, such as regulation of epidermal growth factor 

(EGF), angiogenesis or immune-checkpoint blockade. Monoclonal antibodies used for 

treatment of advanced GC targeting the EGF-receptor (EGFR)-family are cetuximab, 
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trastuzumab or pertuzumab. The EGFR family consists of four members: HER-1 (EGFR), HER-

2 (Neu), HER-3 and HER-4. In contrast to trastuzumab and pertuzumab targeting HER-2 

receptor, cetuximab avoids the binding of natural ligands to HER-1. This inhibits activation of 

EGFR and downstream RAS/MEK signaling pathway, leading to a reduced cell proliferation 

and increased apoptosis. Moreover, cancer progression, invasion and metastasis are 

vascular-dependent. Monoclonal antibodies, such as bevacizumab, targeting vascular EGF 

(VEGF) affecting tumor angiogenesis and downstream signaling are commonly used for the 

treatment of advanced GC. Furthermore, tyrosine kinase inhibitors (TKIs) are applied in GC 

treatment to inhibit key molecules, such as EGFR and VEGFR (The Angiogenesis Foundation, 

2015; Xu et al., 2016). There are also monoclonal antibodies targeting PD-1 or PD-L1. These 

antibodies are used to block multiple immune-checkpoints resulting in the avoidance of 

tumor escape from immunologic cytotoxicity (Xu et al., 2016). Moreover, epigenetic 

alterations contribute to gastric carcinogenesis. Modifications in DNA methylation and 

histone acetylation results in divergent gene expression and silencing of tumor suppressor 

genes. Increased expression levels of histone deacetylases (HDACS) have been observed in 

GC. Thus, HDAC inhibition represents an effective treatment strategy for GC (Regel et al., 

2012). Another attractive drug target for the treatment of GC represents ROCK1/2 

downstream the oncogenic driver RHO. In China and Japan, fasudil (1-[5-Isoquinoline 

sulfonyl]-homopiperazine), a potent ROCK1/2 inhibitor, is already permitted for the 

treatment of cerebral vasospasms. Anti-tumor efficacy of fasudil was confirmed in rodent 

xenograft studies investigating myeloma, melanoma, glioblastoma, breast, lung and head-

and-neck cancer (Deng et al., 2010; Miyamoto et al., 2012; Xia et al., 2015; Ying et al., 2006). 

A major obstacle in treatment of GC is the non-response due to resistance mechanisms. Due 

to this fact, there is a high medical need for novel drug targets and treatment strategies for 

GC (Siddik, 2003; The Angiogenesis Foundation, 2015; Xu et al., 2016). 

1.2 Helicobacter pylori 

An infection with H. pylori is known to be associated with the development of gastric 

diseases, such as chronic gastritis, peptic ulcer disease, Mucosa associated lymphoid tissue 

(MALT) lymphoma, mucosal atrophy and GC (Carbo et al., 2013). The discovery of H. pylori in 
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1982 by Robin Warren and Barry Marshall was a milestone for the treatment of these 

diseases. This is why they earned the Nobel Prize in 2005. In 1994, H. pylori has been 

classified as a class I human carcinogen by the International Association for Research on 

Cancer (IARC) (De Falco et al., 2015; Fox et al., 2000; Hatakeyama, 2004; Morales-Guerrero 

et al., 2013; Salama et al., 2013; Suerbaum and Josenhans, 2007; Yamaoka, 2010). 

The gram-negative, helical, rod-shaped, microaerophilic bacterium colonizes the human 

stomach as its ecological niche. This demonstrates that the stomach is not a sterile organ as 

supposed for a long time. The pathogen shows a remarkable genetic heterogeneity enabling 

the bacteria to adapt to the host and its microniches. Bacterial diversity is generated by 

significantly increased endogenous mutation rates compared with other bacteria, which is 

advantaged by a lack of mismatch-repair systems. Intra- and intergenomic recombination 

due to natural competence of H. pylori for uptake of DNA from other bacteria are further 

mechanisms to facilitate chronic persistence and adaption to the host (Blaser and Atherton, 

2004; Salama et al., 2013; Suerbaum and Josenhans, 2007). 

1.2.1 Epidemiology 

H. pylori colonizes the stomachs of at least half of the human population. It is suggested that 

the bacteria have co-evolved with humans since they migrated out of Africa 58,000 years 

ago (Blaser and Atherton, 2004; Salama et al., 2013; Suerbaum and Josenhans, 2007; 

Yamaoka, 2010). H. pylori infection shows a higher prevalence in developing countries 

compared with developed countries. There, approximately 80% of the middle-aged adults 

are estimated to be infected (De Falco et al., 2015). Prevalence not only varies with 

geographic regions, but also with age, educational level, socio-economic status, living 

environment and occupation. Infection mainly occurs during childhood and can persist for 

decades or even a whole lifetime. The pathogen is transmitted vertically via direct human-

to-human contact by fecal-oral or oral-oral routes of infection usually within families (De 

Falco et al., 2015; Hatakeyama, 2004; Morales-Guerrero et al., 2013; Suerbaum and 

Josenhans, 2007). 
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1.2.2 Colonization factors 

The first step for a successful infection is the colonization of the human stomach by H. pylori. 

The production of gastric acid results in a pH of 1-2, thus, limiting bacterial colonization of 

the human stomach. H. pylori can only survive for a short time in the gastric lumen and 

needs to migrate to the epithelial surface. This is enabled by flagellar-based chemotaxis, 

which further allows penetration of the mucus. Ammonium production by the bacterial 

enzyme urease (UreB) plays an essential role in acid resistance by locally increasing the pH. 

Moreover, urease-catalyzed ammonium production facilitates bacterial motility by 

solubilizing the mucus layer, which usually forms a viscous gel for protection against 

bacteria. The helical cell shape of H. pylori is supposed to function as a corkscrew and 

thereby alleviates motility through viscous media (De Falco et al., 2015; Morales-Guerrero et 

al., 2013; Salama et al., 2013). 

Once they have reached the gastric epithelium, the bacteria need to attach to the host cells 

to enforce infection and to be protected against clearance by liquid flow or peristaltic 

movement (De Falco et al., 2015). Attachment is mediated by outer membrane proteins 

(OMPs), named adhesins, which recognize glycan structures of gastric epithelial cells (Fig. 

1.3). The most popular adhesins are blood group antigen binding adhesion (BabA) and sialic 

acid-binding adhesion (SabA). BabA recognizes fucosylated blood group antigens, whereas 

SabA binds to silylated carbohydrate structures of neutrophils and induces oxidative burst in 

these cells (De Falco et al., 2015; Morales-Guerrero et al., 2013; Salama et al., 2013).  

1.2.3 Virulence factors  

There are two types of H. pylori strains: strains harboring a cag pathogenicity island (PAI) 

and cag PAI-negative strains. This PAI is a genomic region composed of 31 genes including 

the cytotoxin-associated gene A (cagA) and a type IV secretion system (T4SS). The T4SS 

injects CagA into the epithelial host cell by forming a needle-like structure. Subsequently 

after translocation into the host cell, CagA localizes to focal adhesions and can be subjected 

to tyrosine phosphorylation of its C-terminal glutamate-proline-isoleucine-tyrosine-alanine 

(EPIYA) motif by Src or AbI kinases (De Falco et al., 2015; Morales-Guerrero et al., 2013; 

Salama et al., 2013; Yamaoka, 2010). EPIYA motifs are repeat regions and are classified into 

EPIYA-A, -B, -C and -D. Western-type CagA features EPIYA-A, -B and -C segments, whereas 



Introduction  

 

11 

East Asian-type CagA possesses EPIYA-A, -B and -D segments (Fig. 1.2). The number of EPIYA-

C segments positively correlates to virulence of CagA due to multimerization sequences, 

which are known to be important for the interaction of CagA with diverse cellular targets. 

Compared with Western-type CagA, East Asian-type CagA is supposed to be more virulent. 

The polymorphism concerning the EPIYA motifs explains a variable size of the CagA protein 

of 120-145 kDa (Morales-Guerrero et al., 2013; Yamaoka, 2010). In the host cell cytoplasm, 

phosphorylated and unphosphorylated CagA interacts with diverse host proteins thereby 

activating downstream signaling pathways, such as RAS/mitogen-activated protein kinase 

(MEK)/extracellular signal-regulated kinase (ERK), nuclear factor κB (NFκB), β-catenin or 

RHOA. This causes deregulation of epithelial cell polarity (cell elongation, “hummingbird” 

phenotype), pro-inflammatory cytokine expression, disruption of tight junctions and cell 

apical junction complex (Blaser and Atherton, 2004; De Falco et al., 2015; Morales-Guerrero 

et al., 2013; Yamahashi and Hatakeyama, 2013; Yamaoka, 2010). Moreover, CagA interacts 

with the apoptosis-stimulating protein of p53 (ASPP2) thereby causing an anti-apoptotic 

response. These oncogenic processes enforce malignant transformation suggesting that 

CagA-positive H. pylori strains are more virulent than CagA-negative strains and significantly 

contribute to the development of gastric malignancies (De Falco et al., 2015). 

 

 
 

Fig. 1.2: Structure of Helicobacter pylori CagA protein. Western-type CagA contains EPIYA-A, -B and 

-C segments, whereas East Asian-type CagA contains EPIYA-A, -B, and -D segments. EPIYA motifs 

(green) in each segment represent the tyrosine phosphorylation sites of CagA (copied from 

Yamaoka, 2010) .  
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Another extensively studied H. pylori virulence factor is the vacuolating cytotoxin A (VacA), 

which is expressed by the majority of all H. pylori strains (Suerbaum and Josenhans, 2007). 

The vacA gene encodes a 140 kDa pro-toxin. After cleavage, the pore-forming virulent 88 

kDa toxin arises and inserts itself into the host cell membrane (De Falco et al., 2015; 

Morales-Guerrero et al., 2013; Palframan et al., 2012). VacA is a polymorphic gene 

possessing three variable regions: the signal sequence region (s-region), the mid-region (m-

region) and the intermediate-region (i-region). Besides induction of vacuolation, VacA has a 

series of further effects on the host cells, such as inhibition of mitochondrial functions, 

promotion of apoptosis, formation of membrane-channels, impeding T-cell proliferation and 

disruption of tight junctions (Morales-Guerrero et al., 2013; Palframan et al., 2012; Yamaoka, 

2010). Loss of epithelial junctions allows nutrients to enter the gastric lumen where the 

bacteria are living (Blaser and Atherton, 2004; De Falco et al., 2015). The physiological 

importance of vacuolation during H. pylori infection is not fully understood, but it is 

suggested to intermit protein trafficking pathways and, thus, affecting host cell functions 

(Palframan et al., 2012). 

Further H. pylori virulence factors include the heat shock protein B (HspB) and the duodenal 

ulcer promoting protein A (DupA). HspB inhibits the antioxidant response of infected cells 

and influences cellular proliferation and apoptosis (De Falco et al., 2015). DupA is associated 

with stimulation of mononuclear inflammatory cells and IL-8 production (Yamaoka, 2010). 

The bacterial cell wall components lipopolysaccharide (LPS) and peptidoglycan (PGN) 

represent further H. pylori virulence factors. H. pylori LPS is less bioactive than LPS of other 

gram-negative bacteria. It is not recognized by toll-like receptor 4 (TLR4) and, thus, prevents 

a pro-inflammatory immune response (Salama et al., 2013). PGN leads to Nod1-mediated 

activation of NFκB signaling resulting in expression of pro-inflammatory genes. PGN 

furthermore enhances PI3K-AKT signaling causing carcinogenesis related phenotypes, such 

as protection from apoptosis and cell migration (Morales-Guerrero et al., 2013). 

The activities of the most important colonization and virulence factors of H. pylori are 

illustrated in figure 1.3. 
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Fig. 1.3: Helicobacter pylori virulence and colonization factors. Besides the most popular H. pylori 

virulence factors CagA and VacA, further proteins cause damage to the host cells (copied from 

Morales-Guerrero et al., 2013). 
 

1.2.4 Pathogenesis of H. pylori-related diseases 

H. pylori infection first induces an inflammation (gastritis) of the gastric mucosa, which is 

often asymptomatic but can develop into different disease patterns (Portal-Celhay and 

Perez-Perez, 2006). About 10% of all infected persons show severe gastric lesions, such as 

peptic ulcer disease, 1-3% develop GC and 0.1% progress to MALT (De Falco et al., 2015). The 

disease outcome depends on the interplay between the gastritis phenotype and acid 

secretion by parietal cells. H. pylori-induced gastritis is classified into antrum-predominant or 

corpus-predominant gastritis, which is host-specific. Antrum-predominant gastritis shows an 

increased acid secretion, whereas acid secretion of a corpus-predominant inflammation is 

impaired (hypochlorhydria) or even lost (achlorhydria) (Blaser and Atherton, 2004; 

Malfertheiner, 2011).  

An antrum-predominant gastritis increases the risk for duodenal ulcer (DU). Hormonal as 

well as neural mechanisms can contribute to an increased acid production. Increased gastrin 

levels (hypergastrinemia) result from alkalization surrounding the G cells, which is caused by 
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H. pylori urease activity. The G cells then constitutively release gastrin (Calam, 1999). 

Hypergastrinemia can also be the result of decreased somatostatin levels caused by H. pylori 

(Moss et al., 1992). Furthermore, H. pylori infection disrupts the antral-fundic connections 

thereby impairing the neural axis, which controls acid secretion. All these events lead to an 

increased acid-secretion, which spreads out to the duodenum. The intestinal epithelium 

begins to transform into gastric metaplasia, which shows an increased resistance against the 

harmful acid and enables H. pylori to colonize the duodenal bulb (Blaser and Atherton, 2004; 

Malfertheiner, 2011)  

Several bacterial and host-derived molecules are involved in the control of acid production. 

The pro-inflammatory cytokines interleukin (IL)-1β and TNFα show an inhibitory effect on 

gastric acid secretion. This occurs indirectly by inhibiting enterochromaffin-like (ECL) cell 

histamine production or directly by suppressing parietal cell function (Blaser and Atherton, 

2004). Inhibition of acid secretion over a long time period facilitates H. pylori colonization, 

which further suppresses acid production in a positive feedback loop and results in a corpus-

predominant gastritis. This is associated with the development of GC. Atrophy of the corpus 

mucosa with loss of parietal cells leads to an irreversible hypo- or achlorhydria. Furthermore, 

the H. pylori cag PAI gene products are known to downregulate H+K+-ATPase expression by 

parietal cells also resulting in an inhibition of acid secretion (Calam, 1999; Malfertheiner, 

2011). 

1.2.5 Effects of H. pylori on hormones involved in appetite and 
satiety 

H. pylori infection leads to changes in the levels of gastric hormones. The bacteria mainly 

affect the expression of leptin and ghrelin, which are both hormones regulating appetite and 

satiety. Leptin is secreted from adipose tissue and the gastric mucosa, where it is produced 

by chief and parietal cells to signal satiety. Leptin is an antagonist of ghrelin, which is 

produced in oxyntic glands stimulating gastric acid production and release of gastrin. 

Infection with H. pylori results in decreased gastrin as well as circulating ghrelin levels and 

increased somatostatin-mediated gastric leptin levels. Circulating leptin amounts are not 

affected by an infection. Decreased ghrelin levels in H. pylori-infected patients are associated 

with low serum levels of pepsinogen. These hormonal changes can be reversed by H. pylori 
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eradication therapy resulting in an increased body weight (Blaser and Atherton, 2004; Weigt 

and Malfertheiner, 2009). Moreover, an animal study in mice showed that immunity to H. 

pylori positively correlates with an upregulation of adipocytic genes, such as adiponectin 

(Mueller et al., 2003). 

1.2.6 Effects of H. pylori infection on the host immune response  

1.2.6.1 General overview of the immune system 

An infection with pathogens usually evokes an innate and adaptive host immune response. 

Innate immunity is characterized by a rapid response but a lack of specificity and the risk to 

affect normal tissue. Adaptive immunity is more precise and features memory capacity, but 

it is a process that develops more slowly. Borders between innate and adaptive immunity 

are blurry, since their components are interacting (Parkin and Cohen, 2001).  

Besides physical, chemical and microbiological barriers, innate immunity also involves 

elements of the immune system (neutrophils, macrophages, complement, cytokines). Highly 

conserved pathogen-associated molecular patterns (PAMPs) are recognized by pattern 

recognition receptors (PRRs) at the surface of epithelial and immune cells resulting in the 

activation of the immune response. This mode of pathogen recognition only works for 

extracellular organisms, such as bacteria, and not for intracellular organisms (e.g. viruses, 

mycobacteria, protozoa) (Parkin and Cohen, 2001). There are four classes of PRRs - RIG-like 

helicase receptors (RLRs), C-type lectin receptors (CLRs) and Nod-like receptors (NLRs), but 

the most popular ones are the toll-like receptors (TLRs) initiating NFκB signaling and cell 

activation. TLR4 is known to recognize LPS in contrast to TLR2, which binds lipoteichoic acid 

and lipoproteins. TLR3 is involved in recognition of dsDNA, TLR5 detects flagellin and TLR9 

identifies unmethylated CpG (Blaser and Atherton, 2004; Parkin and Cohen, 2001; Salama et 

al., 2013; Wilson and Crabtree, 2007). The pro-inflammatory stimulation of host cells by 

bacterial products leads to the release of chemoattractants, such as cytokines, to recruit 

immune cells to the site of inflammation. Thus, cellular communication is indispensable. 

Recruited neutrophil granulocytes finally kill pathogens by phagocytosis. Further 

components of the innate immune system are eosinophile and basophile granulocytes. 

Eosinophile granulocytes are involved in the immune response to parasites, whereas 
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basophile granulocytes play a key role in anaphylaxis. The complement represents also a 

part of the innate immunity. It is composed of about 20 glycoproteins and is known to be 

activated for lysis of gram-negative bacteria, opsonization and recruitment of other immune 

cells. Natural killer cells are able to recognize abnormal cells due to modified major 

histocompatibility complex I (MHC I) levels compared with normal host cells or bind 

antibody-coated targets, both leading to cell lysis (Parkin and Cohen, 2001). 

Adaptive immunity is activated if a pathogen is able to evade the innate immune system. 

The adaptive immune response is based on antigen-specific reactions mediated by T and B 

lymphocytes. Activated T cells are subsequently migrating to the inflammation site (cellular 

response), whereas activated B cells secrete antibodies to neutralize antigens (humoral 

response). Antigens can be presented MHC-dependent by macrophages, dendritic cells or B 

cells. If the antigen is processed endogenously, it is complexed with MHC I. Exogenous 

antigen can be incorporated by specialized antigen-presenting cells and re-expressed with 

MHC II for recognition by T cells. Naïve T cells develop in the thymus and possess a series of 

diverse T cell receptors. The co-receptors CD4 and CD8 are important for T cell activation. 

Naïve T cells are negative for both co-receptors before they become double positive due to 

self-peptide-MHC signaling. CD4+ T helper cells (Th cells) are only able to bind antigens in 

complex with MHC II, whereas CD8+ cytotoxic T cells (Tc cells) can only recognize antigens 

presented with MHC I. Activated Tc cells directly cause apoptosis of virus-infected cells via 

perforin and granzymes. Th cells function as activators of immune cells, in particular B 

lymphocytes. Precursor Th cells can differentiate into Th1, Th2, Th17 and regulatory T (Treg) 

cells due to their specific cytokine production, cell surface marker expression and expression 

of transcription factors. Th1 cells produce IL-2 leading to T cell proliferation and cytotoxicity 

as well as interferon gamma (IFNγ), which stimulates macrophages and natural killer cells to 

eliminate pathogens. IFNγ furthermore causes enhanced Th1 and inhibited Th2 

differentiation. Th2 cells secrete IL-4, IL-5, IL-6, IL-10 and IL-13 resulting in antibody 

production. In addition, IL-4 enforces Th2 response and suppresses Th1 differentiation. 

Expression of the transcription factors STAT3 and RORγt lead to Th17 differentiation, 

whereas expression of the transcription factor FOXP3 is responsible for the development of 

Tregs, which is a crucial factor for immunological balance. At the end of a successful immune 
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response, some activated T cells stay in the lymph nodes to act as memory cells (Buchholz et 

al., 2016; Carbo et al., 2013; Parkin and Cohen, 2001; Wilson and Crabtree, 2007).  

1.2.6.2 Modulation of the host immune response by H. pylori  

To ensure persistence and avoid clearance, H. pylori has evolved diverse mechanisms to 

evade the host immune system. To this end, H. pylori is enabled to survive without tissue 

invasion in the gastric lumen where the bacteria cannot be recognized by the immune 

system. Innate and acquired immunity are only activated when bacterial proteins are 

entering the epithelial barrier, but H. pylori is able to minimize TLR stimulation by diverse 

mechanisms. In this context, TLR5 is not able to recognize H. pylori flagella and TLR9 is not 

stimulated by the hypermethylated DNA of H. pylori. Unusual for enteric bacteria, H. pylori 

LPS is almost anergic due to lipid A modifications. Due to this fact, H. pylori LPS is not 

recognized by gastric epithelial TLR4 (Blaser and Atherton, 2004; Salama et al., 2013). H. 

pylori rather triggers TLR2 and TLR9 thereby evoking an anti-inflammatory response 

dominant over pro-inflammatory signals activated by other TLRs (Salama et al., 2013). Thus, 

H. pylori evades innate immunity but causes a strong anti-microbial response leading to 

inflammation and tissue damage by the release of reactive oxygen species (ROS) and 

cytokines (Wilson and Crabtree, 2007). H. pylori also modulates the adaptive immune system 

by suppression of proliferation/activation of T cells and induction of T cell apoptosis. In 

addition, asymptomatic H. pylori carriers show increased levels of FOXP3, suggesting an 

enhanced Treg response to ensure survival of the bacterium paralleled by the prevention of a 

destructive inflammation. H. pylori further provokes a predominant Th1 response, which is a 

crucial factor in pathogenesis of the bacteria. Mice showing a Th1 predominance develop 

increased gastric inflammation compared to mice with a predominant Th2 response. 

Inhibition of GATA3 in T cells is an indicator of the Th1 phenotype. In addition, H. pylori 

arginase ensures the survival of the bacteria by competing with the host macrophage 

concerning the inducible nitric oxide synthase (iNOS) substrate L-arginine. The macrophage 

response to H. pylori is further affected by the ability of H. pylori to process cholesterol of 

the host’s cell membrane, which efficiently inhibits phagocytosis of the bacteria. In addition, 

H. pylori causes apoptosis of macrophages further inhibiting phagocytosis (Blaser and 

Atherton, 2004; Carbo et al., 2013; Salama et al., 2013; Wilson and Crabtree, 2007).  
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1.3 Deleted in liver cancer 1 

The RHO family of small GTPases is part of the RAS superfamily (Durkin et al., 2007; Popescu 

and Goodison, 2014). In total, 23 RHO proteins have been identified in humans. The best 

characterized RHO proteins are RHOA, RAC1 and CDC42 (Braun and Olayioye, 2015; Lukasik 

et al., 2011). These small GTPases are involved in the regulation of diverse cellular processes, 

such as cell cycle progression, cytoskeleton formation, apoptosis, migration, adhesion, 

polarity and transcriptional regulation. Hence, deregulation of small GTPases is supposed to 

contribute to tumorigenesis and metastasis (Braun and Olayioye, 2015; Du et al., 2012; 

Durkin et al., 2007; Ko and Ping Yam, 2014; Lukasik et al., 2011; Sabbir et al., 2010). The 

mode of action of small GTPases is based on a cycling between an inactive GDP-bound state 

and an active GTP-bound conformation (Durkin et al., 2007; Lukasik et al., 2011; Sabbir et al., 

2010). The switch between these two states is mediated by three classes of regulatory 

proteins. Guanine nucleotide dissociation inhibitors (GDI) prevent a nucleotide exchange by 

binding to the GDP-conformation of small GTPases. Guanine nucleotide exchange factors 

(GEF) catalyze the exchange of GDP for GTP. GTPase-activating proteins (GAP) stimulate the 

hydrolysis of GTP to GDP (Braun and Olayioye, 2015; Du et al., 2012; Durkin et al., 2007; Ko 

and Ping Yam, 2014; Lukasik et al., 2011; Popescu and Goodison, 2014). The inactivation of 

RHOGAPs represents the most common modification for RHO regulators in cancer 

development (Lukasik et al., 2011).  

The human genome encodes about 70 RHOGAPs under which the Deleted in liver cancer 

(DLC) protein family, if inactivated, plays a crucial role in cancer progression (Braun and 

Olayioye, 2015; Lukasik et al., 2011). The human genome encodes three members of the DLC 

protein family: DLC1, DLC2 and DLC3. They are all characterized by a multidomain 

organization but differ in their subcellular localization and functions. DLC1 is the best 

characterized member of the DLC protein family. It was first identified in 1998 as a tumor 

suppressor candidate from hepatocellular carcinoma (HCC) and is mapped to chromosome 

8p21.3-22 (Braun and Olayioye, 2015; Du et al., 2012; Durkin et al., 2007; Ko and Ping Yam, 

2014; Low et al., 2011; Lukasik et al., 2011; Popescu and Goodison, 2014). DLC1 is 

ubiquitously expressed in normal tissues but is frequently silenced or lost in tumor tissues. 

Besides liver, these include breast, lung, ovarian, kidney, colon, prostate and gastric 
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carcinoma. Deletion or silencing of DLC1 may refer to genomic deletion, somatic mutations 

or epigenetic inactivation, such as promoter hypermethylation (Durkin et al., 2007; Ko and 

Ping Yam, 2014; Low et al., 2011; Lukasik et al., 2011; Popescu and Goodison, 2014; Sabbir et 

al., 2016; Sabbir et al., 2010). DLC1 fulfills a number of tumor suppressor functions including 

inhibition of cell proliferation, migration, invasion and induction of apoptosis. It can act as 

cytoplasmatic and nuclear tumor suppressor. Translocation of DLC1 into the nucleus is 

mediated by a nuclear localization signal (NLS) and can be a spatial regulatory mechanism 

(Braun and Olayioye, 2015; Ko and Ping Yam, 2014; Low et al., 2011; Popescu and Goodison, 

2014). 

There have been four isoforms of DLC1 identified in humans (Fig. 1.4). They show the same 

protein domain structure and mainly differ in their N-terminal sequences. DLC1.1 is the 

longest of all isoforms (1528 aa) showing a molecular size of 170 kDa. DLC1.2 has a size of 

1091 aa and a predicted molecular weight of 120 kDa. DLC1.3 is the shortest isoform 

showing only 498 aa and is therefore predicted to be non-functional. DLC1.4 consists of 1125 

aa with a molecular size of 123 kDa and is characterized by a putative mitochondrial 

targeting sequence. DLC1.1 and DLC1.3 share a promoter and are silenced in almost all 

cancer cell lines, whereas DLC1.2 and DLC1.4 use different promoters and are frequently 

downregulated (Durkin et al., 2007; Hitkova et al., 2013; Low et al., 2011; Lukasik et al., 

2011; Popescu and Goodison, 2014). In mice, also four transcripts are known for DLC1. 

Isoform 1 of mouse DLC1 encodes a 127 kDa protein, which is equivalent to human DLC1.2. 

Mouse isoform 2 shows a size of 123 kDa and structurally resembles isoform 1, whereas 

isoform 3 is the largest one and is equivalent to human DLC1.1. The shortest DLC1 isoform in 

mice represents transcript 4 encoding a very small protein equivalent to human isoform 3 

(Sabbir et al., 2010). 

The DLC1 protein consists of mainly three functional domains (Fig. 1.4). A sterile α motif 

(SAM) is localized at the N-terminus and mediates protein-protein interactions. It is also 

suggested to act as an autoinhibitory domain for the RHOGAP activity. The highly conserved 

RHOGAP domain is located to the middle of the protein and promotes hydrolysis of GTP to 

GDP to inactivate RHO GTPases via an arginine finger. The GAP domain of DLC1 inactivates 

RHOA, -B and -C, but it shows no activity on RAC1 and only low activity on CDC42 in vitro. 

Studies in HCC cells showed that an inactivation of RHO by DLC1’s GAP activity negatively 



Introduction  

 

20 

regulates ROCK/myosin light chain (MLC) pathway, hence, regulating the vascular tone and 

endothelial permeability. In addition, DLC1 overexpressing cells showed a rounded 

morphology and RHOGAP defective mutants were not able to inhibit stress fiber formation 

in vitro. The C-terminal steroidogenic acute regulatory protein (StAR) related lipid-transfer 

(START) domain functions as a lipid-binding domain. Since RHO signaling occurs at 

membranes, it is not surprising that lipid interaction is crucial for DLC1 activity. The long 

unstructured serine-rich linker region between the SAM and RHOGAP domain is also known 

as the focal adhesion targeting (FAT) domain and contains a phosphorylation-independent 

binding site (Braun and Olayioye, 2015; Du et al., 2012; Durkin et al., 2007; Ko and Ping Yam, 

2014; Low et al., 2011; Lukasik et al., 2011; Popescu and Goodison, 2014; Sabbir et al., 2016; 

Sabbir et al., 2010).  

 

 
 

Fig. 1.4: Structure of human DLC1 isoforms. Isoforms 1, 2 and 4 share the same multi domain 

organization including a SAM, Serine-rich (S-Rich) region, NLS, RHOGAP and START domain. Isoform 3 

is suggested to be non-functional and isoform 4 is the only one possessing a mitochondrial targeting 

sequence. Schemes are not drawn to scale (adapted from Low et al., 2011). 
 

DLC1 has a wide range of interaction partners, which regulate DLC1 at a cellular level (Ko and 

Ping Yam, 2014; Lukasik et al., 2011; Popescu and Goodison, 2014). Tensins are members of 

the family of focal adhesion proteins and include four members: tensin 1, 2, 3 and 4. They 

function as scaffold proteins of the cytoskeleton and are involved in signal transduction and 

cellular transformation. Tensin 2 was the first identified DLC1 interacting partner giving first 

evidence for localization of DLC1 to focal adhesions. Perturbation of the binding of DLC1 to 

tensin 2, 3 and 4 resulted in reduced RHOGAP activity. Increased GAP activity of DLC1 in case 

of tensin 3 binding is due to the disruption of the intramolecular autoinhibitory interaction 

between the SAM and the GAP domain (Braun and Olayioye, 2015; Durkin et al., 2007; Ko 
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and Ping Yam, 2014; Popescu and Goodison, 2014; Sabbir et al., 2016). Thus, interaction with 

tensins and localization to focal adhesions are suggested to play a crucial role for tumor 

suppressor functions of DLC1 (Durkin et al., 2007; Ko and Ping Yam, 2014; Lukasik et al., 

2011). Furthermore, DLC1 is known to bind eukaryotic elongation factor 1A1 (EF1A1) and the 

phosphatase and tensin homologue (PTEN) via its SAM domain to regulate cell migration. 

The FAT domain of DLC1 was shown to interact with talin and focal adhesion kinase (FAK) 

supporting localization of DLC1 to focal adhesions. The formation of a complex between 

DLC1 and α-catenin resulted in a stabilization of adherens junctions and a reduction of active 

RHO. The interaction between the DLC1 linker region and the pro-inflammatory and tumor 

cell invasion promoting protein S100A10 (S100 calcium-binding protein) is known to inhibit 

cell migration, invasion and colony formation (Braun and Olayioye, 2015; Du et al., 2012; Ko 

and Ping Yam, 2014; Popescu and Goodison, 2014; Sabbir et al., 2016; Tripathi et al., 2012). 

Furthermore, DLC1 forms a complex with the tumor suppressor caveolin-1 (CAV1) in the 

caveolae mediated by a CAV1-binding motif of the START domain (Braun and Olayioye, 2015; 

Durkin et al., 2007; Ko and Ping Yam, 2014; Lukasik et al., 2011; Popescu and Goodison, 

2014). Hitkova et al. showed that CagA-proficient H. pylori strains promote the recruitment 

of a DLC1.4 mutant to CAV1 in human gastric epithelial cells. CAV1 thereby enforces the 

tumor suppressor activity of DLC1 (Hitkova et al., 2013). A deletion of the CAV1-binding site 

resulted in decreased inhibition of cell migration and clonogenic growth, despite RHOA 

activity was suppressed. This gives evidence for RHOGAP-independent modes of action of 

DLC1. DLC1 activity can further be regulated by phosphorylation, but the physiological 

stimuli of the phosphorylators are still unclear. For example, S549 phosphorylation of DLC1 

by protein kinase A results in a dimerization of DLC1 and, consequently, an increased 

RHOGAP activity (Ko and Ping Yam, 2014; Popescu and Goodison, 2014).  

Mice with a heterozygous gene trap of Dlc1 showed no physical abnormalities, whereas 

homozygous mice were not viable and died at about day 10 post coitus due to severe 

defects in a series of organs. This demonstrates that the other two DLC members are 

insufficient to compensate for the functions of DLC1, probably due to different temporal or 

tissue specific expression during embryonic development. Hence, DLC1 needs to be in 

balance to interact with other signaling proteins in a complex (Braun and Olayioye, 2015; 

Durkin et al., 2007; Ko and Ping Yam, 2014; Lukasik et al., 2011; Sabbir et al., 2010). 
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Due to its tumor suppressive functions and downregulation in tumor tissue, DLC1 became a 

putative drug for targeted therapy. Hypermethylation of the DLC1 promoter may be a useful 

future biomarker for diagnosis, staging and prediction of malignancies. Reactivation of DLC1 

expression could be of therapeutic utility. Epigenetic approaches manipulating DNA 

methyltransferases and histone deacetylases aiming for restoration of DLC1 expression in 

cancer cells represent promising therapeutic strategies in cancer treatment (Popescu and 

Goodison, 2014). Preliminary studies in human GC cells showed an increased DLC1 

expression by treatment with the histone deacetylase inhibitor trichostatin A or the 

methyltransferase inhibitor 5-aza-2’-deoxycytidine (Durkin et al., 2007). Inhibition of the 

RHO/ROCK pathway represents a further auspicious alternative for therapeutic intervention 

in the DLC1-regulated pathway (Popescu and Goodison, 2014). 

  



Introduction  

 

23 

1.4 Objective 

GC is often diagnosed in advanced stages where survival prognosis is poor. Thus, it is the 

third most common cause of cancer-related death worldwide (Tan and Yeoh, 2015). Due to 

non-response caused by resistance mechanisms, there is a high medical need for new 

therapeutic approaches. Helicobacter-infection significantly increases the risk for GC by 

activating pro-tumor pathways including RHO, which has been corroborated as a major 

oncogenic driver in diffuse human GC. The RHO-inhibitor DLC1 is frequently silenced or even 

lost in GC. The role of DLC1 in Helicobacter-related gastric disease is unknown and was 

investigated by this thesis. 

This thesis aimed to characterize in depth the function of DLC1 in gastric disease. For this 

purpose, DLC1gt/+ mice with reduced expression of DLC1 isoform 2 were used to determine 

the causative role of DLC1 deficiency in gastric carcinogenesis. Furthermore, interaction 

between DLC1 and the Helicobacter toxin CagA was clarified on the protein and DNA level. In 

vitro assays were performed to investigate the functional antagonism of the two proteins. In 

vivo therapy with an inhibitor of the RHO downstream effector ROCK was applied to reduce 

GC tumor growth. 

The summarized major goals of this thesis were: 

1) Detailed characterization of DLC1 and analysis of its role in Helicobacter-related 

gastric disease 
2) Elaboration of DLC1 as an early diagnostic marker in Helicobacter-associated gastric 

malignancies 
3) Identification of novel targets such as RHO/ROCK-inhibitors in human GC and 
4) Classification of Helicobacter-related carcinogenesis into one of the four molecular 

subtypes of human GC. 
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2 Materials & Methods 

2.1 Materials 

  
 Table 2.1: General chemicals, reagents and solutions. 

  

 Chemical/reagent/solution Company Catalog 
number 

 Acetic acid Sigma Aldrich Chemie GmbH, Steinheim, 

Germany 

45740 

 Acrylamide solution Rotiphorese 
Gel 30 

Roth GmbH, Karlsruhe, Germany 3029.2 

 Agarose Biozym Scientific GmbH Hess. 
Oldendorf, Germany 

840004 

 Albumin Fraktion V (BSA) Merck KGaA, Darmstadt, Germany 12659 

 Alexa Fluor® 488 Phalloidin Thermo Fisher Scientific, Inc., Surrey, UK A12379 

 Alexa Fluor® 594 Phalloidin Thermo Fisher Scientific, Inc., Surrey, UK A12381 

 Ammoniumperoxodisulfat (APS) Roth GmbH, Karlsruhe, Germany 9592.3 

 Antigen unmasking solution Vector Laboratories, Inc., Burlingame, 
USA 

H-3300 

 Aqua (dH2O) B. Braun Melsungen AG, Melsungen, 

Germany 

750082479E 

 Bacto™ Tryptone BD Biosciences, Heidelberg, Germany 211705 

 β-Glycerophosphate (disodium 
salt hydrate) 

Sigma Aldrich Chemie GmbH, Steinheim, 
Germany 

010M45131 

 Boric acid Sigma Aldrich Chemie GmbH, Steinheim, 
Germany 

B7901 

 Brain Heart Infusion Broth Sigma Aldrich Chemie GmbH, Steinheim, 
Germany 

53286 

 Bromophenol Blue Sigma Aldrich Chemie GmbH, Steinheim, 
Germany 

B5525 

 Brucella broth base Sigma Aldrich Chemie GmbH, Steinheim, 

Germany 

B3051 

 Chloroform Merck KGaA, Darmstadt, Germany 1.02445.100
0 

 Cobalt chloride Sigma Aldrich Chemie GmbH, Steinheim, 
Germany 

60818 

 Columbia Blood Agar Base Thermo Fisher Scientific, Inc., Surrey, UK CM0331 

 Complete Mini Protease Inhibitor 
Cocktail Tablets 

Roche Diagnostics GmbH, Mannheim, 
Germany 

04 693 124 
062 
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 Chemical/reagent/solution Company Catalog 
number 

 4’,6-Diamidino-2-phenylindole 
(DAPI) 

Roth GmbH, Karlsruhe, Germany 6335.1 

 Deoxycholic acid Sigma Aldrich Chemie GmbH, Steinheim, 
Germany 

D2510 

 1,4-Dithiothreitol (DTT) Merck KGaA, Darmstadt, Germany 1.114.740.00
4 

 DNA loading dye 6x  Thermo Fisher Scientific, Inc., Surrey, UK R0611 

 Ethanol absolute for analysis 
(EtOH) 

Merck KGaA, Darmstadt, Germany 1.00983.250
0 

 Ethanol 96% (v/v) technical (EtOH) Roth GmbH, Karlsruhe, Germany T171.4 

 Ethidium bromide (10 mg/ml) Thermo Fisher Scientific, Inc., Surrey, UK 15585-011 

 Ethylendiaminetetraacetic acid 
(EDTA) 

Sigma Aldrich Chemie GmbH, Steinheim, 
Germany 

E 5134 

 Eukitt Sigma Aldrich Chemie GmbH, Steinheim, 
Germany 

03989 

 [18F]-FDG Zyklotron AG, Karlsruhe, Germany  

 Fasudil  Selleck Chemicals LLC, Houston, USA HA-1077 

 Fluorescence mounting medium Dako North America, Inc., Carpinteria, 
USA 

S302380-2 

 Gene Ruler™ 50bp DNA ladder Thermo Fisher Scientific, Inc., Surrey, UK SM1133 

 Gene Ruler™ 100bp DNA ladder Thermo Fisher Scientific, Inc., Surrey, UK SM1143 

 Gene Ruler™ 1kb DNA ladder Thermo Fisher Scientific, Inc., Surrey, UK SM1163 

 Glutathione Sepharose 4 Fast Flow GE Healthcare GmbH, Solingen, 
Germany 

17513201 

 Glycerol Sigma Aldrich Chemie GmbH, Steinheim, 
Germany 

200-289-5 

 Glycine Roth GmbH, Karlsruhe, Germany 3908.3 

 Goat serum Sigma Aldrich Chemie GmbH, Steinheim, 
Germany 

G9023 

 Hematoxylin Sigma Aldrich Chemie GmbH, Steinheim, 
Germany 

H9627 

 Horse Blood Thermo Fisher Scientific, Inc., Surrey, UK SR0048 

 Hydrochloric acid (HCl) Merck KGaA, Darmstadt, Germany 1.090.571.00

0 

 Hydrogen peroxide (H2O2) 30% Merck KGaA, Darmstadt, Germany 1.085.971.00
0 

 IGEPAL® CA-630 Sigma Aldrich Chemie GmbH, Steinheim, 
Germany 

I3021 

 Isofluorane Abbvie Deutschland GmbH & Co. KG, 
Ludwigshafen, Germany 

4831850 

 Isopropyl-β-D-1-
thiogalactopyranoside (IPTG) 

Sigma Aldrich Chemie GmbH, Steinheim, 
Germany 

I5502 
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 Chemical/reagent/solution Company Catalog 
number 

 LB-Agar (Lennox) Roth GmbH, Karlsruhe, Germany X965.1 

 LB-Medium (Lennox) Roth GmbH, Karlsruhe, Germany X964.1 

 Luminol Sigma Aldrich Chemie GmbH, 
Steinheim, Germany 

A8511 

 Lipopolysaccharide (LPS) from E. 
coli O111:B4 

Merck KGaA, Darmstadt, Germany LPS25 

 Magnesium chloride (MgCl2) Merck KGaA, Darmstadt, Germany 5833 1000 

 2-Mercaptoethanol Sigma Aldrich Chemie GmbH, 
Steinheim, Germany 

M7522 

 2-(N-Morpholino)ethanesulfonic 
acid (MES) 

Roth GmbH, Karlsruhe, Germany 4256.3 

 Methanol ≥ 99,8% Sigma Aldrich Chemie GmbH, 
Steinheim, Germany 

32213 

 Milk powder blotting grade Roth GmbH, Karlsruhe, Germany T145.2 

 Nuclease-free water Promega Corporation, Madison, USA P1193 

 Paraformaldehyde Roth GmbH, Karlsruhe, Germany 4979.2 

 PBS Dulbecco Merck KGaA, Darmstadt, Germany L 182-50 

 p-Coumaric acid Sigma Aldrich Chemie GmbH, 
Steinheim, Germany 

C9008 

 Pefablock Roche Diagnostics GmbH, Mannheim 11585916001 

 Phosphatase Inhibitor Cocktail II Sigma Aldrich Chemie GmbH, 

Steinheim, Germany 

P5726 

 Potassium chloride (KCl) Merck KGaA, Darmstadt, Germany 1.04936.1000 

 2-Propanol Merck KGaA, Darmstadt, Germany 1.096.341.000 

 Protein A/G PLUS-Agarose Merck KGaA, Darmstadt, Germany IP05 

 Ponceau S solution Sigma Aldrich Chemie GmbH, 
Steinheim, Germany 

P7170 

 Rabbit serum Sigma Aldrich Chemie GmbH, 
Steinheim, Germany 

R9133 

 Rotiphorese® Gel 30 Roth GmbH, Karlsruhe, Germany 3029.2 

 Roti®-Mark Tricolor, protein 
marker prestained 

Roth GmbH, Karlsruhe, Germany 8271.1 

 Sodium dodecyl sulfate (SDS) Roth GmbH, Karlsruhe, Germany 2326.2 

 Sodium chloride (NaCl) Sigma Aldrich Chemie GmbH, 
Steinheim, Germany 

31434 

 Sodium orthovanadate (Na3VO4) Sigma Aldrich Chemie GmbH, 
Steinheim, Germany 

S6508 

 Sodium hydroxid (NaOH) Merck KGaA, Darmstadt, Germany 1.09137.1000 

 TEMED Roth GmbH, Karlsruhe, Germany 2367.3 

 TRIS PUFFERAN ≥ 99,9% Ultra Roth GmbH, Karlsruhe, Germany 5429.3 
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Table 2.2: Consumables. 

 

Consumable Company Catalog 
number 

1.5ml safe lock tubes Eppendorf AG, Hamburg, Germany 0030 
120.086 

2.0ml safe lock tubes Eppendorf AG, Hamburg, Germany 0030 
123.344 

200µl PCR Tubes “Multiply®-µStrip 
Pro 8-strip” 

Sarstedt AG & Co. KG, Nümbrecht, 
Germany 

72.991.002 

10µl Pipette Tips TipOne® STARLAB GmbH, Hamburg, Germany S1111-3000 

200µl Pipette Tips TipOne® STARLAB GmbH, Hamburg, Germany S1111-0006 

1000µl Pipette Tips TipOne® STARLAB GmbH, Hamburg, Germany S1111-6001 

5ml serological pipette Greiner Bio-One GmbH, Frickenhausen, 
Germany 

606 160 

10ml serological pipette Greiner Bio-One GmbH, Frickenhausen, 

Germany 

607 180 

25ml serological pipette Greiner Bio-One GmbH, Frickenhausen, 
Germany 

760 160 

50ml serological pipette Greiner Bio-One GmbH, Frickenhausen, 
Germany 

768 160 

13ml Falcon for bacterial culture Sarstedt AG & Co. KG, Nümbecht, 
Germany 

62.515.006 

15ml Falcon tubes Greiner Bio-One GmbH, Frickenhausen, 
Germany 

188 271 

50ml Falcon tubes Greiner Bio-One GmbH, Frickenhausen, 
Germany 

227 261 

25 cm² Cellstar Cell Culture Flask Greiner Bio-One GmbH, Frickenhausen, 
Germany 

690 175 

75 cm² Cellstar Cell Culture Flask Greiner Bio-One GmbH, Frickenhausen, 
Germany 

658 175 

 

 Chemical/reagent/solution Company Catalog 
number 

 Triton® X-100 Merck KGaA, Darmstadt, Germany 1.122.980.101 

 Trizma base ≥ 99,9% Sigma Aldrich Chemie GmbH, 
Steinheim, Germany 

T1503 

 Tween® 20 Roth GmbH, Karlsruhe, Germany 9127.1 

 5-Bromo-4-chloro-indolyl-β-D-
galactopyranoside (X-Gal) 

Sigma Aldrich Chemie GmbH, 
Steinheim, Germany 

B4252 

 Xylol (Isomere) ≥ 98,5% Roth GmbH, Karlsruhe, Germany CN80.1 

 Yeast Extract Roth GmbH, Karlsruhe, Germany 2363.3 
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Consumable Company Catalog 
number 

6-well Cellstar Cell Culture Plate Greiner Bio-One GmbH, Frickenhausen, 
Germany 

657 160 

6-well Cellstar Suspension Culture 
Plate 

Greiner Bio-One GmbH, Frickenhausen, 
Germany 

657 185 

96-well Cellstar Cell Culture Plate Greiner Bio-One GmbH, Frickenhausen, 
Germany 

655 180 

96-well Cellstar Cell Culture Plate, 
white  

Greiner Bio-One GmbH, Frickenhausen, 
Germany 

655 073 

Amersham Protran 0.2µm NC 
Nitrocellulose Blotting Membrane 

GE Healthcare GmbH, Solingen, 
Germany 

10600001 

Coverslips 24x60mm Roth GmbH, Karlsruhe, Germany H878 

Counting chamber neoLab Migge GmbH, Heidelberg, 
Germany 

C-1003 

Cryotubes CRYO.S™  Greiner Bio-One GmbH, Frickenhausen, 

Germany 

122 280 

GasPak™ EZ Anaerobe Container 
System 

BD Biosciences, Heidelberg, Germany 260678 

LightCycler® 480 Multiwell Plate 
96, white 

Roche Diagnostics GmbH, Mannheim 04729692001 

Petri Dish Falcon® Corning Laser Technologies GmbH, 
Krailling, Germany 

351029 

Pipettes Eppendorf AG, Hamburg, Germany  

SuperFrost® Plus microscope 
slides 

VWR International GmbH, Darmstadt, 
Germany 

631-0108 

TC-Dish 60, Cell+ Sarstedt AG & Co. KG, Nümbrecht, 
Germany 

83.3901.300 

Whatman 3mm CHR GE Healthcare GmbH, Solingen, 
Germany 

3030-917 

 

Table 2.3: Cell culture reagents and solutions. 

 

Reagent/Solution Company Catalog 

number 

0.25% Trypsin-EDTA Thermo Fisher Scientific, Inc., Surrey, 
UK 

25200056 

3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) 

Sigma Aldrich Chemie GmbH, 
Steinheim, Germany 

M5655 

Dimethyl sulfoxide (DMSO) Sigma Aldrich Chemie GmbH, 
Steinheim, Germany 

D8418 

DMEM Medium  Thermo Fisher Scientific, Inc., Surrey, 
UK 

41966-029 
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Reagent/Solution Company Catalog 
number 

DMEM/F-12 Medium  Thermo Fisher Scientific, Inc., Surrey, 
UK 

11320033 

Fasudil Y-27632  Merck KGaA, Darmstadt, Germany 688000 

Fetal Calf Serum (FCS) Thermo Fisher Scientific, Inc., Surrey, 
UK 

SV30 160.03 

Fetal Calf Serum (FCS) PAN-Biotech GmbH, Aidenbach, 
Germany 

P40-37100M 

L-Glutamin Thermo Fisher Scientific, Inc., Surrey, 
UK 

25030024 

PBS pH 7.4 1x Thermo Fisher Scientific, Inc., Surrey, 

UK 

10010056 

RPMI 1640 Medium Thermo Fisher Scientific, Inc., Surrey, 
UK 

21875091 

Trypanblue 0,4% Thermo Fisher Scientific, Inc., Surrey, 

UK 

15250-061 

TurboFect™ Transfection Reagent Thermo Fisher Scientific, Inc., Surrey, 
UK 

R0531 

 

 Table 2.4: Cell lines.   
    

 Cell line Description Company Catalog 
number 

 

 AGS Human gastric adenocarcinoma, primary 
tumor, epithelial 

ATCC, Manassas, USA CRL-1739  

 HCT116 Human colorectal carcinoma ATCC, Manassas, USA CCL-247  

 HEK293T Human embryonic kidney, SV40 
transformed, mesenchymal 

ATCC, Manassas, USA CRL-3216  

 HepG2 Human hepatocellular carcinoma ATCC, Manassas, USA HB-8065  

 Jurkat Human T cell leukemia, suspension DSMZ, Braunschweig, 
Germany 

ACC 282  

 MKN45 Human gastric adenocarcinoma, derived 
from metastatic site: liver 

DSMZ, Braunschweig, 
Germany 

ACC 409  

 NCI-N87 Human gastric carcinoma, derived from 
metastatic site: liver, epithelial 

ATCC, Manassas, USA CRL-5822  

 SW480 Human colorectal adenocarcinoma ATCC, Manassas, USA CCL-228  

 tsA201 Human embryonic kidney, SV40 transformed ECACC, Salisbury, 
United Kingdom 

96121229  
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 Table 2.5: Bacteria.   
    

 Strain Genotype Company/Origin Catalog 
number 

 

 E. coli DH5α 
competent cells 

F- ø80lacZ∆M15 ∆(lacZYA-argF)U169 
recA1 endA1 hsdR17(rκ-, mκ+) phoA 
supE44 thi-1 gyrA96 relA1 λ- 

Thermo Fisher 
Scientific, Inc., 
Surrey, UK 

18265017  

 E. coli Top10 
One Shot 
competent cells 

F- mcrA Δ( mrr-hsdRMS-mcrBC) 
Φ80lacZΔM15 Δ lacX74 recA1 araD139 
Δ( araleu)7697 galU galK rpsL (StrR) 
endA1 nupG 

Thermo Fisher 
Scientific, Inc., 
Surrey, UK 

C404003  

 E. coli Rosetta™ 

(DE3) 
competent cells 

F- ompT hsdSB(rB- mB-) gal dcm (DE3) 

pRARE (CamR) 

Merck KGaA, 

Darmstadt, 
Germany 

70954  

 H. pylori G27 Clinical isolate, cagA+, vacA+ (Covacci et al., 
1993; Xiang et 
al., 1995) 

  

 H. pylori SS1 Clinical isolate, cagA+, vacA (s2-m2), 
mouse adapted 

(Lee et al., 1997; 
Van Doorn et al., 
1999) 

  

 H. felis Cat isolate, cagA- ATCC, Manassas, 
USA 

51211  

 
 

Table 2.6: Animals. 

 

Mouse Genotype Origin 

DLC1gt/+ Hypomorphic knock-down (KD) of the 
DLC1 protein via gene trap (gt). 
Heterozygous state of mutation (gt/+), 
because homozygous (gt/gt) would be 
embryonic lethal. 

(Sabbir et 
al., 2010) 

CEA424-SV40 TAg (TCEA) Overexpression of the viral “large T-
antigen” (T-Ag) oncogene under 
control of the human 

“carcinoembryonic antigen” (CEA) 
promoter in gastric epithelial cells 
induces tumor formation in the lower 
part of the stomach (pylorus). 

(Thompson 
et al., 2000) 

Wildtype (WT) B6129SF2/J Jackson 
Laboratory, 
Bar Harbor, 
USA 
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 Table 2.7: Enzymes.  
   

 Enzyme Company Catalog 
number 

 

 GoTaq® Green Master Mix Promega Corporation, Madison, USA M7121  

 HindIII restriction enzyme 20U/µl New England Biolabs GmbH, Frankfurt, 
Germany 

R0104  

 JumpStart™ REDTaq® ReadyMix™ Sigma Aldrich Chemie GmbH, 
Steinheim, Germany 

P0982  

 KpnI restriction enzyme 10U/µl New England Biolabs GmbH, Frankfurt, 
Germany 

R0142  

 KpnI restriction enzyme 10U/µl Thermo Fisher Scientific, Inc., Surrey, 

UK 

ER0521  

 Power SYBR® Green Master Mix Thermo Fisher Scientific, Inc., Surrey, 
UK 

4368577  

 Proteinase K Roche Diagnostics GmbH, Mannheim 03 115 887 
001 

 

 RNase-free DNase Set QIAGEN GmbH, Hilden, Germany 79254  

 SacI restriction enzyme 10U/µl Thermo Fisher Scientific, Inc., Surrey, 
UK 

ER1132  

 T4 Ligase 5U/µl Thermo Fisher Scientific, Inc., Surrey, 
UK 

EL0014  

     
 

Table 2.8: Antibiotics. 
 

Antibiotics Company Catalog 
number 

Ampicillin Roth GmbH, Karlsruhe, Germany K029.1 

Amphotericin B Sigma Aldrich Chemie GmbH, 
Steinheim, Germany 

A4888 

β-Cyclodextrin Sigma Aldrich Chemie GmbH, 
Steinheim, Germany 

C4805 

Cefsulodin sodium salt hydrate Sigma Aldrich Chemie GmbH, 
Steinheim, Germany 

C8145 

Cycloheximide Sigma Aldrich Chemie GmbH, 
Steinheim, Germany 

C7698 

Kanamycin Sigma Aldrich Chemie GmbH, 
Steinheim, Germany 

60615 

Penicillin/Streptomycin (Pen/Strep) Thermo Fisher Scientific, Inc., Surrey, 
UK 

15140122 
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Antibiotics Company Catalog 
number 

Polymyxin B sulfate salt Sigma Aldrich Chemie GmbH, 
Steinheim, Germany 

P1004 

Trimethoprim Sigma Aldrich Chemie GmbH, 
Steinheim, Germany 

T7883 

Vancomycin hydrochloride Sigma Aldrich Chemie GmbH, 
Steinheim, Germany 

V2002 

 

Table 2.9: Kits. 

 

Kit Company Catalog 
number 

Avidin/Biotin Blocking Kit Vector Laboratories, Inc., Burlingame, 
USA 

SP-2001 

Cellular Reactive Oxygen Species 
Detection Assay Kit (Deep Red 
Fluorescence) 

Abcam plc, Cambridge, UK ab186029 

DAB Peroxidase Substrate Kit Vector Laboratories, Inc., Burlingame, 
USA 

SK-4100 

DNeasy@ Blood & Tissue Kit QIAGEN GmbH, Hilden, Germany 69504 

Dual-Luciferase® Reporter Assay 
System 

Promega Corporation, Madison, USA E1960 

Duolink® In Situ Red Starter Kit Sigma Aldrich Chemie GmbH, 
Steinheim, Germany 

DUO92101-
1KT 

HiSpeed® Plasmid Midi Kit QIAGEN GmbH, Hilden, Germany 12643 

peqGold Total RNA Kit VWR International GmbH, Darmstadt, 
Germany 

12-6834-02 

Pierce BCA™ Protein Assay Kit Thermo Fisher Scientific, Inc., Surrey, 
UK 

23225 

Pure Yield™ Plasmid Miniprep 
System 

Promega Corporation, Madison, USA A1222 

QIAquick Gel Extraction Kit QIAGEN GmbH, Hilden, Germany 28704 

RhoA/Rac1/Cdc42 Activation Assay 

Combo Kit 

Cell Biolabs, Inc., San Diego, USA STA-405 

TOPO TA Cloning Kit Thermo Fisher Scientific, Inc., Surrey, 
UK 

45-0641 

Vectastain® ABC Kit Vector Laboratories, Inc., Burlingame, 
USA 

PK-4001 
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Table 2.10: Antibodies. 

 

Antibody Company Catalog 
number 

Alexa Fluor® 594 donkey anti-
mouse IgG 

Thermo Fisher Scientific, Inc., Surrey, UK A-21203 

Alexa Fluor® 594 donkey anti-
rabbit IgG 

Thermo Fisher Scientific, Inc., Surrey, UK A-21207 

Alexa Fluor® 594 donkey anti-
goat IgG 

Thermo Fisher Scientific, Inc., Surrey, UK A-11058 

Alexa Fluor® 488 donkey anti-
goat IgG 

Thermo Fisher Scientific, Inc., Surrey, UK A-11055 

Alexa Fluor® 488 donkey anti-
rabbit IgG 

Thermo Fisher Scientific, Inc., Surrey, UK A-21206 

Alexa Fluor® 488 goat anti-
chicken  

Thermo Fisher Scientific, Inc., Surrey, UK A-11039 

Anti-rabbit IgG, HRP-linked 
antibody 

Cell Signaling Technology, Inc., Danvers, 
USA 

7074 

β-Actin Clone AC-15 Sigma Aldrich Chemie GmbH, Steinheim, 
Germany 

A1978 

Biotinylated anti-rat IgG Vector Laboratories, Inc., Burlingame, USA BA-9401 

H. pylori PD Dr. Roger Vogelmann, Mannheim  

ChrA (H-300) Santa Cruz Biotechnology, Inc., 
Heidelberg, Germany 

sc-13090 

DLC1 C-terminal Abcam plc, Cambridge, UK ab180697 

DLC1  Thermo Fisher Scientific, Inc., Surrey, UK PA5-18290 

Donkey anti-goat IgG, HRP-
linked Antibody 

Santa Cruz Biotechnology, Inc., 
Heidelberg, Germany 

Sc-2020 

ECL™ Anti-mouse IgG, HRP-
linked Antibody 

GE Healthcare UK NA931V 

F4/80 clone BM8 Thermo Fisher Scientific, Inc., Surrey, UK MF 48000 

FLAG  Abcam plc, Cambridge, UK ab8112 

FLAG Sigma Aldrich Chemie GmbH, Steinheim, 
Germany 

F1804 

GFP Roche Diagnostics GmbH, Mannheim, 

Germany 

11 814 460 

001 

HIF1α Cell Signaling Technology, Inc., Danvers, 
USA 

3716 

HSP 90α/β (H-114) Santa Cruz Biotechnology, Inc., 
Heidelberg, Germany 

sc-7947 

Ki67 BD Biosciences, Heidelberg, Germany 550609 

Ki67 Novus Biologicals Europe, Abingdon, UK NB600-1252 
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Table 2.11: Oligonucleotides; hu = human, m = mouse. 

 

Oligonucleotide Sequence (5‘ -> 3‘) Product size 
(bp) 

RT-qPCR hormones 

5-mSomatostatin GAGCCCAACCAGACAGAGAA 
150 

3-mSomatostatin GAAGTTCTTGCAGCCAGCTT 

5-mChromograninA CCAATACCCAATCACCAACC 
148 

3-mChromograninA ACAGCCTCCTCTTCCTCCTC 

5-mHisdecarboxylase CTCATCCCGGCTACTATCCA 
118 

3-mHisdecarboxylase CAAGGTTAGCAGCCTCTTGG 

5-mTryptophanhydroxylase CATCAGCCGAGAACAGTTGA 
184 

3-mTryptophanhydroxylase TTCGGATCCATACAACAGCA 

5-mAdiponectin GTTGCAAGCTCTCCTGTTCC 
120 

3-mAdiponectin ATCCAACCTGCACAAGTTCC 

5-mGhrelin CCATCTGCAGTTTGCTGCTA 
178 

3-mGhrelin GCTTGTCCTCTGTCCTCTGG 

5-mIntrinsic factor CTTGGCCCTGACCTGTATGT 
191 

3-mIntrinsic factor TAGGTTGCTCAGGTGTCACG 

 

Antibody Company Catalog 
number 

MYL2 (C-17) (MLC2) Santa Cruz Biotechnology, Inc., 
Heidelberg, Germany 

sc-34490 

NFκB Cell Signaling Technology, Inc., Danvers, 
USA 

3033 

Phospho-NFκB Cell Signaling Technology, Inc., Danvers, 
USA 

8242 

p38 Cell Signaling Technology, Inc., Danvers, 
USA 

9212 

Phospho-p38 Cell Signaling Technology, Inc., Danvers, 
USA 

4511 

p44/42 MAPK (ERK1/2) Cell Signaling Technology, Inc., Danvers, 
USA 

4695 

Phospho-p44/42 MAPK 
(Phospho- ERK1/2) 

Cell Signaling Technology, Inc., Danvers, 
USA 

9101 

Phospho-Myosin Light Chain 2 
(Ser19) (Phospho-MLC2) 

Cell Signaling Technology, Inc., Danvers, 
USA 

3671 

RhoA (26C4) Santa Cruz Biotechnology, Inc., 
Heidelberg, Germany 

sc-418 

ROCKII BD Biosciences, Heidelberg, Germany 610624 

ROCK2 (phospho T249) Abcam plc, Cambridge, UK ab83514 
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Oligonucleotide Sequence (5‘ -> 3‘) Product size 
(bp) 

5-mPepsinogenC CCAACCTGTGGGTGTCTTCT 
187 

3-mPepsinogenC TTAGGGACCTGGATGCTTTG 

5-mH+K+-ATPase GTTCCTGATGCTGTGCTCAA 
118 

3-mH+K+-ATPase TGCCCTCTGAGATGATACCC 

RT-qPCR immunotyping 

5-mFoxp3 TTCATGCATCAGCTCTCCAC   
185 

3-mFoxp3 CTGGACACCCATTCCAGACT 

5-mCd4 AGGAAGTGAACCTGGTGGTG   
107 

3-mCd4 CTCCTGCTTCAGGGTCAGTC 

5-mCd8 TATGGCTTCATCCCACAACA 
190 

3-mCd8 GACTGGCACGACAGAACTGA 

5-miNOS CACCTTGGAGTTCACCCAGT   
170 

3-miNOS ACCACTCGTACTTGGGATGC   

5-mArg1 AAAGCTGGTCTGCTGGAAAA   
122 

3-mArg1 ACAGACCGTGGGTTCTTCAC   

5-mIfnγ GCGTCATTGAATCACACCTG 
129 

3-mIfnγ TGAGCTCATTGAATGCTTGG 

5-mGata3 CCGAAACCGGAAGATGTCTA 
131 

3-mGata3 AGATGTGGCTCAGGGATGAC   

5-mRorc TGCAAGACTCATCGACAAGG 
177 

3-mRorc AGGGGATTCAACATCAGTGC 

RT-qPCR RHO-pathway components 

5-mRhoA CGCTTTTGGGTACATGGAGT 
125 

3-mRhoA ACAAGATGAGGCACCCAGAC 

5-mRock2 CCTGTCAAGCGTGGTAGTGA 
191 

3-mRock2 TCCAGGGTCATCTGGAGTTC 

5-mRock1 CAAAGCACGCCTAACTGACA 
111 

3-mRock1 TCTGCCTTCTCTCGAGCTTC 

General PCR Helicobacter genotyping 

5-vacA AGCCAGCTCTACGGTTTTGA 
164 

3-vacA AATACGCTCCCACGTATTGC 

5-cagA AGCAAAAAGCGACCTTGAAA 
257 

3-cagA GGGTTCCATTCACACCATTC 

5-ureB CATAAGCCGCTTGAGACACA 
144 

3-ureB GCGGGTTCATTGCATTAAGT 

H276F CTATGACGGGTATCCGGC 
382 

H676R ATTCCACCTACCTCTCCCA 

P25F ATGGGTAAGAAAATAGCAAAAAGATTGCAA  
705 

P25R CTATTTCATATCCATAAGCTCTTGAGAATC 

P17F ATGGAACAGATAAAGATTTTAAAGCAACTT 
435 

P17R CTATGCAAGTTGTGCGTTAAGCAT 
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Oligonucleotide Sequence (5‘ -> 3‘) Product size 
(bp) 

5-HP-Cluster2 GGCGTTATCAACAGAATGGC 
992-1548 

3-HP-B1J99 CTCAGTTCGGATTGTAGGCTGC 

5-H. felis GTGAAGCGACTAAAGATAAACAAT 
241 

3-H. felis GCACCAAATCTAATTCATAAGAGC 

General PCR 

5-NhuDLC1 CTTTCTCTGGAAGCCAGCAC 
213 

3-NhuDLC1 ACCAGCTATTCCCCAGGAGT 

5-ChuDLC1 CCCTCACTCTGGAAGCACTC 
268 

3-ChuDLC1 TCCCAGAGGTGCTGTTCTTT 

5-NmDLC1 GGGGAAGAGCGGTTTCTATC 
188 

3-NmDLC1 TGCATGGTGGACAGTGTCTT 

5-CmDLC1 CGTATTGAGGACCTGGAGGA 
293 

3-CmDLC1 TCGTGTCCTTGCTTTCAGTG 

5-huRHOA TATCGAGGTGGATGGAAAGC 
172 

3-huRHOA TTCTGGGGTCCACTTTTCTG 

5-huROCK2 TGAAGCCTGACAACATGCTC 
178 

3-huROCK2 TCTCGCCCATAGAAACCATC 

5-huROCK1 AGGAAAATCGAAAGCTGCAA 
186 

3-huROCK1 GTTTAGCACGCAATTGCTCA 

Cloning 

5-Kpnpv1hDLC1 ATGGTACCCCATATTCTAACAGAAATATGCAAAC 
1148 

3-Sacpv1hDLC1 ATGAGCTCGTCATCATAGTTTAACAACAGACAGA 

5-Kpnpv4hDLC1 ATGGTACCAAGTGCTCCTTCCAGCCATATCTT 
658 

3-Hindpv4hDLC1 ATAAGCTTCCGCTCGCAGACGCCTTCAGC 

Sequencing 

T7 TAATACGACTCACTATAGGG  

M13 FP TGTAAAACGACGGCCAGT  

M13 RP CAGGAAACAGCTATGACC  

5Fseq-pGL3luc CTAGCAAAATAGGCTGTCCC  

5Rev-EGFPC15seq CATTTTATGTTTCAGGTTCAGGG  

 

Table 2.12: Plasmids. 
 

Plasmid Characteristics Origin 

pCR2.1 TOPO Cloning vector, AmpR, KanR Thermo Fisher 
Scientific, Inc., 
Surrey, UK 

pEGFP Cloning vector, KanR, NeoR BD Biosciences, 
Heidelberg, 
Germany 
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Plasmid Characteristics Origin 

pEGFP_CagA  Contains full length cagA of H. pylori G27, 
KanR, NeoR 

PD Dr. Roger 
Vogelmann, 
Mannheim 

pEGFP_CagA _838-1216 Contains bp 838-1216 of H. pylori G27 
cagA, KanR, NeoR 

PD Dr. Roger 
Vogelmann, 
Mannheim 

pEGFP_CagA A_1-877 Contains bp 1-877 of H. pylori G27 cagA, 
KanR, NeoR 

PD Dr. Roger 
Vogelmann, 
Mannheim 

pTRE-Tight Cloning vector, AmpR BD Biosciences, 
Heidelberg, 

Germany 

pTRE_CagA _1029-1216 Contains bp 1029-1216 of H. pylori G27 
cagA, AmpR, GFP fused 

PD Dr. Roger 
Vogelmann 

pGL3 Reporter plasmid, luc+, AmpR Promega 
Corporation, 
Madison, USA 

pGL3_SRE luc+, AmpR, contains five serum responsive 
elements (SRE) 

Stratagene Inc., La 
Jolla, USA 

pGL3_HRE luc+, AmpR, contains HMGB2 promoter and 
hypoxia responsive element (HRE) 

Promega 
Corporation, 
Madison, USA 

pGL3_DLC1.1p Contains promoter of DLC1.1, luc+, AmpR this study 

pGL3_DLC1.4p Contains promoter of DLC1.4, luc+, AmpR this study 

pTarget Expression vector, CMV 
Enhancer/Promoter, AmpR, NeoR 

Promega 
Corporation, 
Madison, USA 

pT_DLC1.1 Contains DLC1.1, CMV Enhancer/Promoter, 
AmpR, NeoR, FLAG tagged 

Jan Philipp Köhler 

pT_DLC1.4 Contains DLC1.4 ΔSAM, CMV 
Enhancer/Promoter, AmpR, NeoR, FLAG 
tagged 

Dr. Ivana Hitkova 

pUC19 Cloning vector, AmpR Thermo Fisher 
Scientific, Inc., 

Surrey, UK 

pGEX-2T-TRBD Contains GST fusion proteins with a 
thrombin site and rhotekin RHO-binding 
domain (amino acids 7-89), AmpR 

Ren and Schwartz 
(2000) 

pRL.TK Luciferase control reporter vector; the 
HSV-thymidine kinase promoter is located 
upstream of renilla luciferase 

Promega 
Corporation, 
Madison, USA 
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Plasmid Characteristics Origin 

 pSRE.L Contains a mutated serum response element (SRE), 
which is deficient for the c-Fos ternary complex-
binding site resulting in a more specifically respond to 
active RHOA than wild type SRE promoter. 

Dianqing 
Wu, 
University of 
Rochester, 
USA 

 

 pcDNA_C3T CMV Enhancer/Promoter, AmpR, NeoR, contains C3 
toxin of Clostridium botulinum 

Prof. Dr. Dr. 
Klaus 
Aktories, 
Freiburg 

 

 pcDNA_G13qL CMV Enhancer/Promoter, AmpR, NeoR, contains G-
protein α subunit Gα13 

(Strathmann 
and Simon, 

1991) 

 

 

Table 2.13: Equipment and devices.  
  

Equipment/device Company 

ABI PRISM Real Time 7900HT 
Sequence Detection System 

Thermo Fisher Scientific, Inc., Surrey, UK 

Agarose electrophoresis chamber neoLab Migge GmbH, Heidelberg, Germany 

Autoclave Systec V-150 Systec GmbH, Linden, Germany 

Cabinet dryer FunctionLine Heraeus Holding GmbH, Hanau, Germany 

Centrifuge 5424R Eppendorf AG, Hamburg, Germany 

Centrifuge 5415C Eppendorf AG, Hamburg, Germany 

Centrifuge 5804R Eppendorf AG, Hamburg, Germany 

Centrifuge 3K12 Sigma Laborzentrifugen GmbH, Osterode am Harz, 
Germany 

Centrifuge ROTANTA/RP Andreas Hettich GmbH & Co. KG, Tuttlingen, 
Germany 

FACSCanto™ BD Biosciences, Heidelberg, Germany 

Fusion Solo PEQLAB Biotechnologie GmbH, Erlangen, Germany 

Homogenisator IKA® T10 basic ULTRA-
TURRAX®  

IKA-Werke GmbH & Co. KG, Munich, Germany 

Incubator HERAcell® 240  Heraeus Holding GmbH, Hanau, Germany 

Microscope AxioVert 25 Carl Zeiss MicroImaging GmbH, Göttingen, 
Germany 

Microscope Axio Imager Carl Zeiss MicroImaging GmbH, Göttingen, 
Germany 

Microscope DM IRB Leica Microsysteme Vertrieb GmbH, Wetzlar, 
Germany 

Microtome RM 2145 Leica Microsysteme Vertrieb GmbH, Wetzlar, 
Germany 
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Equipment/device Company 

Microplate reader Tecan Infinite 
M200  

Tecan Group AG, Männedorf, Switzerland 

Microwave Siemens AG, Munich, Germany 

Multi-animal transport system Bruker Biospin GmbH, Karlsruhe, Germany 

Mini Trans-Blot® Electrophoretic 
Transfer Cell 

Bio-Rad Laboratories GmbH, Munich, Germany 

Mini-PROTEAN® Tetra Cell Bio-Rad Laboratories GmbH, Munich, Germany 

Overhead shaker REAX 2 Heidolph Instruments GmbH & Co. KG, Schwabach, 
Germany 

pH-Meter 766 Knick Elektronische Messgeräte GmbH & Co. KG, 
Berlin, Germany 

Power supply PowerPac Basic Bio-Rad Laboratories GmbH, Munich, Germany 

Power supply Consort Ev 245 Biophoretics, Sparks, USA 

Safety cabinet for cell culture 
HERAsafe® KS 

Heraeus Holding GmbH, Hanau, Germany 

Shaker ROCKY®  Labortechnik Fröbel GmbH, Lindau, Germany 

Shaker IKA®-VIBRAX-VXR  IKA-Werke GmbH & Co. KG, Munich, Germany 

Sonifier®Cell Disrupter 250, Branson 
Ultrasonics 

Emerson Electronic Co., St. Louis, USA 

Spectrophotometer NanoDrop® ND-
1000 

PEQLAB Biotechnologie GmbH, Erlangen, Germany 

Thermomixer compact Eppendorf AG, Hamburg, Germany 

Thermocycler GeneAmp® 9700 Thermo Fisher Scientific, Inc., Surrey, UK 

Tri-modal Bruker Albira II small-
animal PET/SPECT/CT 

Bruker Biospin GmbH, Karlsruhe, Germany 

Thermocycler PEQSTAR PEQLAB GmbH, Erlangen, Germany 

UV Transilluminator  Biometra GmbH, Göttingen, Germany 

Vortexer REAX 2000  Heidolph Instruments GmbH & Co. KG, Schwabach, 
Germany 

Water bath Certomat® WR  B. Braun Melsungen AG, Melsungen, Germany 

Weighing machine Sartorius 
research R180D  

Sartorius AG, Göttingen, Germany 

  

 Table 2.14: Software.  
   

 Software Company   

 AxioVision Rel. 4.4 Carl Zeiss MicroImaging GmbH, Halbergmoss, 
Germany 

  

 AxioVision Rel. 4.7.2 Carl Zeiss MicroImaging GmbH, Halbergmoss, 
Germany 

  

 FACSDIVA™ BD Biosciences, Heidelberg, Germany   

 FusionCapt Advance Solo 4 VILBER LOURMAT GmbH, Eberhardzell, Germany   
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 Software Company   

 ImageJ 1.45s Wayne Rasband NIH, MD, USA   

 PRISM GraphPad 7 GraphPad Software, Inc., La Jolla, USA   

2.2 Methods 

2.2.1 Cell culture 

2.2.1.1 Cell growth conditions 

HEK293T, AGS, SW480 and tsA201 cells were grown in DMEM medium, whereas MKN45, 

NCI-N87 and Jurkat cells were cultivated in RPMI 1640 medium at 37°C under 5% CO2 in a 

humidified incubator. All media were supplemented with 1% Pen/Strep, 1% L-glutamine and 

10% FCS (Thermo Fisher Scientific).  

2.2.1.2 Splitting of cells 

Cells were split at 80-90% confluency. For this purpose, cells were washed with PBS to 

remove all FCS (2ml in 25cm² cell culture flask and 5ml in 75cm² cell culture flask). The cells 

were coated with 0.25% Trypsin EDTA (1ml in 25cm² cell culture flask and 2ml in 75cm² cell 

culture flask) and incubated at 37°C until they were detached. To neutralize the trypsin, 

growth medium was added and the cells were resuspended and split appropriately (1:30 for 

HEK293T and tsA201, 1:10 for AGS and SW480, 1:3-1:5 for MKN45 and NCI-N87). 

2.2.1.3 Preparing cell stocks 

For preparation of cell stocks, cells were trypsinized at a confluency of 90% in a 75 cm² cell 

culture flask and centrifuged (5min, 1000g, RT). The pellet was resuspended in 3ml freezing 

medium (10% (v/v) DMSO and 90% (v/v) FCS) and split into three cryotubes. Cell stocks were 

incubated at -80°C for at least 24h and finally frozen in liquid nitrogen.  
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2.2.1.4 Counting cells 

For determination of the cell number, cells were trypsinized and stained with trypan blue. To 

this end, 10µl cell suspension was added to 10µl trypan blue. Trypan blue accumulates in 

perforated dead cells and allows a differentiation between vital and dead cells. The stained 

cell suspension served for determination of the cell number via light microscopy using a 

counting chamber. 

2.2.1.5 Transient transfection of cells 

To insert plasmid DNA into eukaryotic cells, cells were seeded in 6-well plates overnight (500 

000 cells per well for HEK293T and tsA201, 750 000 cells per well for AGS, SW480, NCI-N87 

and MKN45). Then, cells were transiently transfected in growth medium without FCS, L-

glutamine and Pen/Strep using TurboFect™ according to the manufacturer’s instructions. 

After 6h incubation time at 37°C, the medium was changed (supplemented with 10% FCS, 

1% L-glutamine and 1% Pen/Strep).  

2.2.1.6 Stimulation of cells 

Cells were seeded in 6-well plates, transiently transfected as described in 2.2.1.5 and 

stimulated with 1µg/ml LPS for up to 60 min (0, 15, 30, 60 min) 48h after transfection to 

analyze NFκB expression. For analysis of HIF1α expression, cells were treated with 0.1mM 

CoCl2 for 4h one day after transfection. 

2.2.1.7 MTT Assay 

This method is based on the metabolization of thiazolyl blue tetrazolium bromide by living 

cells, resulting in the formation of a blue dye called formazan, which indicates cell viability. 

Cells were seeded in 100µl growth medium and treated with increasing concentrations of 

fasudil or PBS as vehicle control in 96-well plates when cells were attached. After two days 

of incubation, MTT reagent (5 mg/ml in 1x PBS, 10µl per well) was added and the plate was 

incubated at 37°C for 4h. Afterwards, the reaction was stopped using 100µl MTT lysis buffer 

(10% (w/v) SDS and 0.01N HCl) per well. An overnight incubation at 37°C ensured complete 
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lysis of the cells and solubilization of the formed formazan. Released blue dye was then 

measured at 570-650nm by a plate reader. 

2.2.2 Microbiological methods 

2.2.2.1 Cultivation of H. pylori 

Frozen Stocks of H. pylori were thawed on ice. About 100µl of bacterial suspension were 

plated on freshly prepared and pre-warmed horse blood agar plates.  

For preparing horse agar plates, 44g Columbia Agar Base was dissolved in 950ml dH2O and 

autoclaved for 15min. Afterwards, the solution was incubated at 50°C for 1h. Horse blood 

was pre-warmed at RT and 25ml were added to the agar solution. Antibiotics were prepared 

as follows and 2.5ml 200x antibiotics, 0.5ml 1000x antibiotics and 5ml β-cyclodextrin (1g in 

5ml DMSO) were added to the agar solution. 

   
 200x antibiotics  

   
 component amount  

 Vancomycin hydrochloride 100mg  
 Cefsulodin sodium salt hydrate 50mg  
 Polymyxin B sulfate salt 3.3mg  
 Cycloheximide 500mg  

 dH2O Add 50ml, filter sterilize  
 

 1000x antibiotics  

    
 component amount  
 Trimethoprim 100mg  
 Amphotericin B 160mg  

 DMSO Add 20ml, filter sterilize  
 

The inoculated plates were incubated in an airtight closed box together with GasPak™ at 

37°C for 48-72h to remove elemental oxygen gas and thus produce an anaerobic 

environment.  
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For preparing stocks, bacteria were taken off the agar plate with a sterile cotton bud and 

resuspended in 0.5-1ml freezing medium (10% FCS, 20% glycerol, 70% BHI medium). BHI 

medium was prepared by dissolving and autoclaving 3.7g Brain Heart Infusion Broth in 

100ml dH2O. 

2.2.2.2 Genotyping of Helicobacter 

For isolation of bacterial DNA of frozen bacterial stocks, the DNeasy@ Blood & Tissue Kit was 

used according to the manufacturer’s instructions. Genotyping of the bacterial strains was 

done by performing general PCR as described in 2.2.4.6. 

2.2.2.3 Infection of eukaryotic cells with H. pylori for immuno-
fluorescence staining 

For infection of eukaryotic cells with H. pylori, AGS cells were grown to 80% confluency in a 

75cm2 cell culture flask and washed 3x with warm PBS before 8ml H. pylori cultivation 

medium (DMEM/F12, 10% FCS (PAN-Biotech), 10% Brucella Broth medium (14.05g Brucella 

Broth Base in 500ml dH2O), 1µg/ml vancomycin) were added to the cells. Bacteria were 

taken off the agar plate using a sterile cotton bud and resuspended in 2ml H. pylori 

cultivation medium. Vitality of the bacteria was validated by light microscopy and the 

bacterial suspension was added to the cells. The cells were incubated at 37°C under 5% CO2 

in a humidified incubator. After 24h of incubation, the cell culture supernatant was collected 

in a tube and centrifuged for 5min at 4000rpm. The pellet was resuspended in 2ml H. pylori 

cultivation medium and used for infection of overnight grown AGS cells on glass slides in a 6-

well plate. The next day, immunofluorescence staining was performed as described in 

2.2.5.1.  

2.2.3 Protein preparation and analysis 

2.2.3.1 Preparation of total cell lysate 

Cells were washed with PBS before adding SDS lysis buffer (50mM Tris-HCl, pH 7.4, 1% SDS, 

1mM sodium orthovanadate, 1mM dithiothreitol, Protease Inhibitor Complete®). The cells 
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were scraped and transferred into 1.5ml tubes. For purification, the lysate was sonicated for 

20sec and centrifuged at maximum speed for 10min at 4°C. The supernatant was collected 

and stored at -80°C until determination of protein concentration. 

2.2.3.2 Preparation of total tissue lysate 

For protein extraction of tissue, either normal tissue lysis buffer or RIPA buffer was used. 

   
 normal tissue lysis buffer  

   
 component concentration  
 HEPES 20mM, pH 7.4  
 EDTA 1mM  

 β-Glycerophosphate 50mM  
 Glycerol 10% (v/v)  
 Triton X-100 1% (v/v)  
 Sodium orthovanadate 1mM  
 Dithiothreitol 1mM  
 Protease Inhibitor Complete® 1 Tablet per 50ml  

 

 RIPA buffer  

   
 component concentration  
 Tris-HCl 50mM, pH 7.2  
 NaCl 250mM  
 Nonidet P40 2% (v/v)  
 EDTA 2.5mM  
 SDS 0.1% (w/v)  
 Deoxycholic acid (DOC) 0.5% (w/v)  
 Phosphatase inhibitor cocktail II 1:100  
 Protease Inhibitor Complete® 1 Tablet per 50ml  
    

Frozen tissue (2-3mm³) was added to 400µl of ice-cold lysis buffer. Afterwards, the tissue 

was homogenized using the Homogenisator IKA® T10 basic ULTRA-TURRAX® and incubated 

on ice for 40min (RIPA) or 60min (normal buffer), respectively. Samples lyzed with RIPA 

buffer were additionally incubated for 10min at RT. After centrifugation at maximum speed 

for 10min at 4°C, the supernatant was collected and stored at -80°C until determination of 

protein concentration. 
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2.2.3.3 Western Blot 

Preparation of samples 

The BCA™ Protein Assay Kit was used to measure protein concentration according to the 

manufacturer’s protocol. The protein samples were diluted in dH2O to reach the same 

concentration for each sample and boiled in 5x SDS loading buffer (62.5mM Tris-base pH 10, 

10% (w/v) SDS, 5% (v/v) β-mercaptoethanol, 50% (v/v) glycerol, bromphenol blue) for 10min 

at 99°C. After a short centrifugation, the samples were used for Western Blot analysis or 

stored at -20°C. 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE was performed to separate the proteins according to their molecular weight. 

Acrylamide gels (12.5%, 10% or 7.5%) were prepared as follows: 

 

Component Separating gel Stacking gel  

 12.5% 10% 7.5% 4% 

H2O 2.59ml 3.29ml 3.99ml 1.53ml 

Acrylamide (30%) 3.5ml 2.8ml 2.1ml 333µl 

1.5M Tris-HCl, pH 8.8 2.1ml 2.1ml 2.1ml - 

0.5M Tris-HCl, pH 6.8 - - - 625µl 

SDS (10%) 83µl 83µl 83µl 25µl 

APS (10%) 42µl 42µl 42µl 12.5µl 

TEMED 2.8µl 2.8µl 2.8µl 2.5µl 

 

The protein samples were loaded in equal amounts and the gel was run at constant 15mA in 

running buffer (192mM glycine, 25mM Tris-base, 0.1% (w/v) SDS) using the Mini-PROTEAN® 

Tetra Cell system. 
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Protein transfer and detection 

Transfer of the separated proteins to a nitrocellulose membrane was achieved by the Mini 

trans-Blot® Electrophoretic Transfer Cell for 1h at 100V in transfer buffer (192mM glycine, 

25mM Tris-base, 20% (v/v) methanol). The membrane was then blocked for 1h in 5% (w/v) 

BSA or milk in T-PBS (0.1% (v/v) Tween 20 in PBS) on a shaker at RT and incubated overnight 

in primary antibody solution at 4°C while gentle shaking. The next day, the membrane was 

washed in T-PBS 3x 10min before adding peroxidase-labelled secondary antibody solution 

(1:5000). After 1h incubation time, the membrane was washed again 3x 10min and 

immunodetection was performed using Enhanced Chemiluminescence Detection Reagent A 

and B 1:1 (A: 3µl H2O2 in 5ml 0.1M Tris-HCl, pH 8.5; B: 50µl luminol and 22µl p-coumaric acid 

in 5ml 0.1M Tris-HCl, pH 8.5) using the Fusion Solo device. 

    
 Table 2.15: Antibody dilutions used for Western Blot analysis.   
    

 Antibody Company blocking  dilution  

 Primary antibody  

 β-Actin Clone AC-15, A1978 Sigma Aldrich Chemie GmbH, 
Steinheim, Germany 

5% milk/ 
5% BSA 

1:1000 in T-PBS  

 DLC1, PA5-18290  Thermo Fisher Scientific, Inc., 
Surrey, UK 

5% milk 1:1000 in 2.5% milk  

 DLC1 C-terminal, ab180697 Abcam plc, Cambridge, UK 5% milk 1:500 in 2.5% milk  

 p44/42 MAPK (ERK1/2), 
#4695 

Cell Signaling Technology, Inc., 
Danvers, USA 

5% milk 1:1000 in 2.5% milk  

 FLAG, ab8112 Abcam plc, Cambridge, UK 5% milk 1:1000 in 2.5% milk  

 FLAG, F1804 Sigma Aldrich Chemie GmbH, 
Steinheim, Germany 

5% milk 1:1000 in 2.5% milk  

 GFP, #11 814 460 001 Roche Diagnostics GmbH, 
Mannheim, Germany 

5% milk 1:1000 in 2.5% milk  

 HIF1α, #3716 Cell Signaling Technology, Inc., 

Danvers, USA 

5% milk 1:1000 in 2.5% milk  

 HSP 90α/β (H-114), sc-7947 Santa Cruz Biotechnology, 
Inc., Heidelberg, Germany 

5% milk/ 
5% BSA 

1:1000 in T-PBS  

 MYL2 (C-17), sc-34490 Santa Cruz Biotechnology, 
Inc., Heidelberg, Germany 

5% milk 1:1000 in 2.5% milk  

 NFκB, #3033 Cell Signaling Technology, Inc., 
Danvers, USA 

5% milk 1:1000 in 5% BSA  

 Phospho-NFκB, #8242 Cell Signaling Technology, Inc., 
Danvers, USA 

5% BSA 1:1000 in 5% BSA  
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 Antibody Company blocking  dilution  

 Primary antibody  

 Phospho-Myosin Light 
Chain 2 (Ser19), #3671 

Cell Signaling Technology, Inc., 
Danvers, USA 

5% milk 1:1000 in 5% BSA  

 RhoA (26C4), sc-418 Santa Cruz Biotechnology, 
Inc., Heidelberg, Germany 

5% milk 1:1000 in 2.5% milk  

 ROCKII, #610624 BD Biosciences, Heidelberg, 
Germany 

5% milk 1:1000 in 2.5% milk  

 ROCK2 (phospho T249), 
ab83514 

Abcam plc, Cambridge, UK 5% BSA 1:500 in 1% BSA  

 Secondary antibody  

 Anti-rabbit IgG, HRP-linked 

antibody, #7074 

Cell Signaling Technology, Inc., 

Danvers, USA 

5% milk/ 

5% BSA 

1:5000 in BSA/ milk  

 Donkey anti-goat IgG, HRP-
linked Antibody, sc-2020 

Santa Cruz Biotechnology, 
Inc., Heidelberg, Germany 

5% milk/ 
5% BSA 

1:5000 in BSA/ milk  

 ECL™ Anti-mouse IgG, HRP-
linked Antibody, NA931V 

GE Healthcare UK 5% milk/ 
5% BSA 

1:5000 in BSA/ milk  

2.2.3.4 (Co)-Immunoprecipitation  

Immunoprecipitation (IP) was done to enrich a specific protein out of solution using an 

antibody that specifically binds to that antigen. The antibody needs to be coupled to a solid 

substrate. Co-immunoprecipitation (CoIP) was performed to analyze protein-protein 

interactions. This method is based on the interaction of an antibody with a known protein, 

which is suggested to be part of a protein complex. Co-IP aims to precipitate the entire 

protein complex out of solution and later to identify unknown components of the complex 

by immunoblot (IB).  

To perform CoIP, cells were grown to 90% confluency on a TC-dish 60 and transiently 

transfected as described in 2.2.1.5. For hypotonic lysis, 1ml lysis buffer (10mM Tris-HCl, pH 

7.4, 2mM EDTA, 2mM MgCl2, 1mM sodium orthovanadate, 1mM DTT, Protease Inhibitor 

Complete®) was added. The cells were scraped and transferred to a 2.0ml tube. For 

complete lysis, the cells were incubated on ice for 20min, homogenized by pipetting up and 

down 20 times until foaming and centrifuged for 10min at 13200rpm at 4°C. All following 

steps were performed on ice. The supernatant was mixed with 10µl Protein A/G PLUS-

Agarose and incubated for 1h at 4°C under rotation. After centrifugation for 10min at 

13200rpm and 4°C, 80µl of the supernatant were separated as input controls and stored at -
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20°C, whereas 400µl of the supernatant were mixed with 4µg primary antibody (GFP #11 

814 460 001 for CagA constructs, DLC1 PA5-18290 for DLC1.1 and FLAG, ab8112 for DLC1.4). 

Furthermore, 400µl of each sample were left without antibody as negative controls. The 

samples were incubated overnight at 4°C under rotation. The next day, 60µl Protein A/G 

PLUS-Agarose were added and incubated for 2h at 4°C under rotation. Beads were pelleted 

by centrifugation for 1min, 13200rpm at 4°C followed by three washing steps with 1ml wash 

buffer (lysis-buffer supplemented with 150mM NaCl) and subsequent centrifugation for 

2min and 13200rpm at 4°C. For elution, the supernatant was mixed with 50µl of 100mM 

glycine (pH 2.2) and incubated on ice for 2min. The reaction was stopped by adding 10µl of 

1.5mM Tris-HCl (pH 8.8). The eluate was collected after further centrifugation for 1min, 

13200rpm at 4°C and supplemented with 10µl 5x SDS-loading buffer. The input controls 

were supplemented with 20µl 5x SDS-loading buffer and all samples were boiled for 10min 

at 99°C for Western Blot analysis. 

To perform IP, frozen mouse liver tissue (2-3mm³) was added to 1ml hypotonic lysis buffer 

for tissue (1M Tris pH7.4, 0.5M EDTA, 1M MgCl2, 1mM sodium orthovanadate, 1mM DTT, 

Protease Inhibitor Complete®). The tissue was homogenized using the Homogenisator IKA® 

T10 basic ULTRA-TURRAX® and incubated on ice for 1h. After resuspension and 

centrifugation for 10min at 4°C and 13200rpm, the supernatant was transferred into a new 

tube. All following steps were performed on ice according to the protocol for CoIP. 

2.2.3.5 RHO Pulldown Assay 

Analysis of RHOA activity was done using the RhoA/Rac1/Cdc42 Activation Assay Combo Kit. 

This method uses agarose beads linked to the RHO-binding domain (RBD) of rhotekin. Only 

active RHOA (RHOA-GTP) binds to rhotekin-RBD and can be precipitated and used for 

Western Blot analysis. Cells were grown to 90% confluency on a TC-dish 60 and transiently 

transfected as described in 2.2.1.5. After 72h of incubation, cells were starved in DMEM 

medium without supplements for 16h. Cells were incubated for 5min in DMEM medium 

supplemented with 20% FCS. The medium was aspirated and the cells were washed with ice-

cold PBS twice before addition of 1ml 1x Assay/Lysis Buffer (supplemented with 1mM 

sodium orthovanadate, 1mM DTT, Protease Inhibitor Complete®). The cells were scraped 



Materials & Methods  

 

49 

with a cell scraper and collected in 2.0ml tubes for incubation on ice for 15min to ensure 

complete cell lysis. All following steps were performed on ice. Centrifugation for 10min, 

13200rpm at 4°C separated the cell debris from the protein containing supernatant. For 

input controls, 80µl supernatant were separated. Remaining samples were supplemented 

with 40µl RBD-agarose beads and incubated at 4°C under rotation. After 1h of incubation, 

samples were centrifuged for 1min at 13200rpm at 4°C and the supernatant was discarded. 

The pellet was washed three times using 0.5ml 1x Assay/Lysis Buffer followed by 

centrifugation for 2min, 13200rpm at 4°C. The supernatant was completely removed and 

30µl of 1M Tris-buffer (pH 7.4) were added. The samples were supplemented with 10µl 5x 

SDS-loading buffer, whereas the input controls were supplemented with 20µl 5x SDS-loading 

buffer. All samples were boiled for 5min at 99°C and subjected to Western Blot analysis. 

For analysis of RHOA activity in mouse tissue, 1ml 1x Assay/Lysis Buffer (supplemented with 

1mM sodium orthovanadate, 1mM DTT, Protease Inhibitor Complete®) was added to a piece 

of frozen tissue (2-3mm²). The tissue was homogenized and incubated on ice for 1h. After 

centrifugation at maximum speed for 10min at 4°C, supernatant was collected and all steps 

were performed as previously described for cells. 

In cooperation with Prof. Wieland (Experimental Pharmacology, Medical Faculty Mannheim 

of University Heidelberg, Mannheim, Germany), RHOA pulldown assay was performed in 

tsA201 cells to assess the interplay between CagA and DLC1 concerning RHOA activation. 

The principle of this assay is similar to that of the RhoA/Rac1/Cdc42 Activation Assay Combo 

Kit and is based on the binding of active RHOA to the RHOA-GTP-interacting protein domain 

of rhotekin, which is linked to glutathione sepharose by GST-tag. The glutathione sepharose 

beads were kindly provided by the group of Prof. Wieland. 

GST-Rhotekin-RBD was expressed in competent E. coli Rosetta™ cells and linked to 

glutathione sepharose. To this end, RBD was cloned in pGEX2T vector encoding the protein 

in combination with GST. An overnight culture of bacteria was added to 800ml 2x YT 

medium supplemented with 100µg/ml ampicillin.  
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 2x YT medium  

   
 component concentration  
 Bacto™ Tryptone 16g  
 Yeast extract 10g  
 NaCl 5g  
 dH2O ad 1l  
   
    

Bacteria were grown until OD600 of 0.6 at 37°C under rotation. Protein synthesis was induced 

via addition of 1mM IPTG at 25°C for 1h under rotation. Centrifugation for 10min at 3000g 

and 4°C was followed by resuspension of the pellet using 10ml ice cold PBS and lysis by 

sonification (5x30sec). After centrifugation for 10min at 20000g and 4°C, the supernatant 

was added to 800µl equilibrated glutathione sepharose and incubated on ice for 45min 

under rotation. Samples were centrifuged for 2min at 1000g and 4°C and washed twice with 

50ml ice cold PBS. Protein concentration was determined and 50µg glutathione sepharose 

were supplemented with 100µl freezing buffer and stored at -80°C. 

 Freezing Buffer  

   
 component concentration  

 Tris-HCl 50mM, pH 7.5  
 NaCl 150mM  
 MgCl2 5mM  
 DTT 1mM  
 Triton X-100 0.5% (v/v)  
 Glycerol 10% (v/v)  
 Pefablock 1:1000  
   
    

For pulldown assay, cells were grown to 90% confluency in a 6-well plate, transiently 

transfected as described in 2.2.1.5 and incubated in DMEM medium supplemented with 

0.5% FCS overnight. All steps of the RHOA pulldown assay were performed in a cooling 

room. All substances, solutions and materials were pre-chilled. The cell medium was 

completely aspirated and 500µl GST-Fish buffer was added per well for cell lysis. 
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 GST-Fish buffer  

   
 component concentration  
 Tris-HCl 50mM, pH 7.4  
 NaCl 150mM  
 MgCl2 4mM  
 Glycerol 10% (v/v)  
 Igepal® CA-630 1% (v/v)  
   
    

Cells were detached using a cell scraper and transferred into an Eppendorf tube for 

centrifugation at maximum speed for 2min. For determination of general RHOA level, 60µl of 

the supernatant were transferred into a second tube. The remaining lysate was added to 

90µl glutathione sepharose and incubated in a tube on ice for 1h under rotation using an 

overhead shaker. The samples were centrifuged at maximum speed for 2min and the 

supernatant was aspirated until about 50µl were left. Sepharose was washed by adding 1ml 

GST-Fish buffer and samples were vortexed. Centrifugation and the washing step were 

repeated and the supernatant was aspirated until 15-20µl were left. Samples were 

centrifuged finally and prepared for Western Blot analysis by adding 5x SDS loading buffer 

without glycerol and boiling for 5min at 95°C under rotation. Samples were vortexed 

carefully and centrifuged briefly. The complete supernatant of the pulldown samples and 

20µl of the input controls were subjected to Western Blot analysis. 

2.2.3.6 Luciferase Activity Assay 

For determination of DLC1 promoter activity, the promoters of human isoforms 1 and 4 

were linked to the luciferase gene. The expression of luciferase was now under control of 

the corresponding DLC1 promoter. To analyze the functional antagonism between CagA and 

DLC1, luciferase reporter plasmids containing SRE (serum response element, pGL3_SRE) and 

HRE (hypoxia response element under control of the promoter of HMGB2, high mobility 

group protein B2, pGL3_HRE) were co-transfected with pEGFP_CagA, pT_DLC1.1 or a 

combination of both. For analysis of RHOA activity, pSRE.L luciferase reporter plasmid was 

co-transfected with pEGFP_CagA, pT_DLC1.1, pT_DLC1.4 or a combination of pEGFP_CagA 

and the respective DLC1 plasmid. Luciferase catalyzes the oxidation of luciferin resulting in 
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the generation of chemiluminescence, which can be measured by a plate reader using a 

white 96-well Cellstar Cell Culture Plate. 

Cells were transiently transfected as described in 2.2.1.5. After 48h (HEK293T) or 24h (AGS, 

NCI-N87) of incubation, the medium was aspirated and 150µl 1x passive lysis buffer were 

added. The 6-well plate was incubated for 10min at RT on a shaker and cells were 

transferred into tubes for centrifugation at maximum speed for 10min at 4°C to remove cell 

debris. For determination of firefly luciferase activity, 10µl lysate was mixed with 35µl 

luciferin and the measured values were normalized to the according protein concentration. 

Specificity of pSRE.L for active RHOA was verified by control plasmids in cooperation with the 

group of Prof. Wieland (Dept. of Experimental Pharmacology, Medical Faculty Mannheim of 

University Heidelberg, Mannheim, Germany). For this purpose, RHOA activators 

(pcDNA_G13qL) or RHOA inhibitors (pcDNA_C3T) were co-transfected with DLC1 or CagA, 

respectively, in addition to the luciferase reporter plasmids pSRE.L and pRL.TK. The reporter 

plasmid pRL.TK encodes a luciferase under control of the constitutively active Herpes 

Simplex thymidine kinase (HSV-TK) promoter and served for determination of renilla 

luciferase. TsA201 cells were transiently transfected in duplicates with a total of 125ng 

plasmid DNA in a 96-well plate. The quantity of reporter plasmids amounted to 25ng and 

was made of six parts of pSRE.L and one part of pRL.TK. After an incubation time of 24h, 

luciferase activity was measured using the Dual Luciferase Reporter Assay System. Cells were 

lyzed by shaking for 10min using 25µl buffer per well and 25µl substrate buffer was added to 

10µl lysate for measurement. Firefly luciferase (pSRE.L) was normalized to renilla luciferase 

activity (pRL.TK).  

2.2.4 Nucleic acid preparation and analysis 

2.2.4.1 Transformation of plasmid DNA 

For amplification of plasmid DNA, the E. coli strains DH5α and Top10 were used. For 

transformation, a 50µl aliquot of chemically competent cells was thawed on ice and 1µl 

(approx. 200ng) plasmid was added and incubated for 30min on ice. After heat shock at 42°C 

for 90sec, the cells were cooled down on ice for 2min, mixed with 500µl LB-medium and 
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incubated for 1h at 37°C, 370rpm. Selective LB-agar plates were used for cultivation of 50µl 

bacteria suspension in an incubator at 37°C overnight. 

2.2.4.2 Isolation of plasmid DNA 

A single colony of transformed bacteria was picked from a selective LB-agar plate using a 

sterile pipette tip and transferred into 3ml LB-medium containing the corresponding 

selective antibiotic (100µg/ml). The bacterial culture was incubated overnight at 37°C, 

370rpm. Suspension was centrifuged for 30sec at 13200rpm and the pellet was resuspended 

in 600µl nuclease-free water. Afterwards, plasmid DNA was isolated using the Pure Yield™ 

Plasmid Miniprep System kit according to the manufacturer’s protocol. 

To obtain higher amounts of plasmid DNA, a single colony was picked from a selective LB-

agar plate using a sterile pipette tip and transferred into 5ml LB-medium containing the 

corresponding antibiotic (100µg/ml) for selection. The bacterial culture was incubated for 6h 

at 37°C, 370rpm. Afterwards, the suspension was added to 100ml LB-medium containing 

100µg/ml of the corresponding selective antibiotic and incubated overnight at 37°C, 370rpm. 

Bacteria were centrifuged for 15min at 4000rpm and plasmid DNA was isolated according to 

the instructions of the HiSpeed® Plasmid Midi Kit. 

2.2.4.3 RNA extraction of cells 

Cells were seeded in 6-well plates and transiently transfected as described in 2.2.1.5. 

Medium was aspirated and 400µl of RNA Lyse buffer T were added. The cell lysates were 

mixed with an equal volume of 70% ethanol and transferred to a silica membrane of the 

RNeasy™ Mini Kit. RNA extraction was performed according to the manufacturer’s 

instructions. DNA was digested by adding DNase I for 15min, pure RNA was eluted in 

nuclease-free water. 

2.2.4.4 RNA extraction of tissue 

Frozen tissue (2-3mm³) was added to 600µl of RNA Lyse buffer T and homogenized using the 

Homogenisator IKA® T10 basic ULTRA-TURRAX®. The samples were centrifuged for 10min at 
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4°C, 10000rpm and the supernatant was transferred to a silica membrane of the RNeasy™ 

Mini Kit. RNA was extracted as described in 2.2.4.3.  

2.2.4.5 cDNA synthesis 

Purified RNA (1µg) was used for reverse transcription into cDNA via the Verso™ cDNA Kit 

according to the manufacturer’s instructions. Synthesized cDNA was filled up with nuclease-

free water to a final volume of 50µl. 

2.2.4.6 General polymerase chain reaction (PCR) 

For amplification of DNA fragments, PCR was performed. The reaction setup was as follows: 

  

Component Volume 

GoTaq® Green Master Mix/ JumpStart™ REDTaq® ReadyMix™ 10µl 

Forward primer (10µM) 2µl 

Reverse primer (10µM) 2µl 

DNA 2µl 

Nuclease-free H2O 4µl 

 

An example for an amplification program is shown below. 

    

Step Temperature Holds Number of cycles 

Initial denaturation  95°C 5min 1 

Denaturation 95°C 2min  

Primer annealing 55°C 1min 40 

Elongation 72°C 2min  

Final elongation 72°C 5min 1 

Cooling 4°C ∞  
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By increasing the number of cycles, the amount of PCR product can be increased, but this 

can also result in unspecific product. Optimal annealing temperature is important for specific 

primer annealing and elongation time depends on the size of the PCR product. 

2.2.4.7 Quantitative real-time PCR (RT-qPCR) 

RT-qPCR was performed for quantitative analysis of gene expression. The composition of the 

reaction mix is shown below. 

Component Volume 

Power SYBR® Green Master Mix 10µl 

Forward primer (10µM) 1µl 

Reverse primer (10µM) 1µl 

Nuclease-free H2O 6µl 

 

The reaction mix was completed by addition of 2µl cDNA. Each reaction was performed in 

duplicates in a LightCycler® 480 Multiwell Plate 96. The housekeeping gene ß2-microtubulin 

(ß2M) was used as reference. The plate was centrifuged for 1min at 1000rpm and 

amplification was done using the following program: 

Step Temperature Holds Number of cycles 

Initial denaturation  95°C 5min 1 

Cycling Stage 
95°C 15sec 

40 
60°C 1min 

Melting Curve Stage 

95°C 15sec  

60°C 1min 1 

95°C 15sec  

 

This method is based on the binding of SYBR® Green to double stranded DNA during 

amplification resulting in a fluorescence signal, which can be directly measured. 

Fluorescence intensity of SYBR® Green increases with the amount of the PCR product. For 

quantification, the CT-value (cycle threshold) was used. This value correlates to the number 
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of PCR cycles where fluorescence of amplified DNA can be distinguished from background 

fluorescence. There is an inverse correlation between the CT-value and the expression of a 

certain gene. The mean value of the duplicates of one gene and condition (individual, tumor, 

normal tissue, etc.) was calculated and the CT of the housekeeping gene was subtracted 

resulting in ∆CT. The mean of all ∆CTs for one gene and condition is also known as 

“calibrator”. Subtraction of the “calibrator” from each ∆CT-value leads to ∆∆CT. Fold 

induction was calculated based on the formula 2-∆∆CT (Tellmann and Geulen, 2006). 

2.2.4.8 Agarose gel electrophoresis 

PCR products were analyzed on 1-2% (w/v) agarose gels dependent on the size of the 

amplified PCR product. Agarose was added to 1x TAE buffer (40mM Tris-base, 1mM EDTA pH 

8.0, 20mM acetic acid) and boiled in the microwave until all agarose was dissolved. 

Afterwards, 0.25 µg/ml ethidium bromide were added, and polymerized gels were run for at 

least 30min at 100V. DNA was detected using a UV transilluminator. 

2.2.4.9 Molecular cloning 

To investigate a putative transcriptional regulation of the human DLC1 promoter, the 

promoter of human DLC1.1 and DLC1.4 were cloned into a luciferase reporter plasmid 

(pGL3) for luciferase activity assays. Human DLC1 promoter from isoform 1 and 4 were 

amplified from 2µl HEK293T DNA by PCR as follows: 

JumpStart™ REDTaq® ReadyMix™ 10µl 

Forward Primer 2µl 

Reverse Primer 2µl 

H2O 4µl 

  

Amplification of the product was performed using following program: 
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Step Temperature Holds Number of cycles 

Initial denaturation  95°C 5min 1 

Denaturation 95°C 2min  

Primer annealing 55°C 2min 40 

Elongation 72°C 2min  

Final elongation 72°C 5min 1 

Cooling 4°C ∞  

 

The PCR products were analyzed on a 1% agarose gel. Bands showing the correct size were 

excised with a clean scalpel and DNA was extracted using the QIAquick Gel Extraction Kit 

according to the manufacturer’s instructions. The purified PCR products were used for TOPO 

TA Cloning® according to the manufacturer’s protocol. The reaction was composed as 

follows: 

  

PCR product 4µl 

Salt solution 1µl 

TOPO® vector 1µl 

 

The mixture was incubated for 15min at RT or 37°C, respectively, and 1µl of the TOPO TA 

Cloning® reaction was transformed into competent DH5α cells as described in 2.2.4.1. 

Colonies were grown overnight on selective agar plates supplemented with 0.5 mg/ml X-Gal 

for blue-white-selection. Single white colonies containing the TOPO® vector with inserted 

PCR product were used for colony PCR. To this end, colonies were picked with a yellow 

pipette tip, transferred to a selective LB agar plate and grown overnight as a backup at 37°C. 

Furthermore, the contaminated pipette tip was incubated in 50µl LB medium for 1h at 37°C 

under rotation. Colony PCR reaction was done as described above using 5µl bacteria culture 

as template. PCR reactions were loaded on a 1% agarose gel and plasmid preparation was 

done of colonies showing a band of the correct size. To this end, bacteria suspensions of 

positive clones were incubated in 3ml LB medium supplemented with 100µg/ml ampicillin 

overnight at 37°C, 300rpm. Plasmids were prepared using the Pure Yield™ Plasmid Miniprep 
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System according to the manufacturer’s protocol. Afterwards, pGL3 and the TOPO® vector 

containing the PCR product were digested using the same restriction enzymes (KpnI and SacI 

from Thermo Fisher Scientific for cloning of the DLC1.1 promoter; KpnI and HindIII from New 

England Biolabs for cloning of the DLC1.4 promoter). The reaction setup was as follows: 

      

TOPO_DLC1.1p 8µl TOPO_DLC1.4p 8µl pGL3 1µl 

KpnI 0.5µl HindIII 0.5µl Enzyme 1 1µl 

SacI 0.5µl KpnI 0.5µl Enzyme 2 1µl 

10x BamHI buffer 1µl 10x NEBuffer 2.1buffer 1µl 10x buffer 1µl 

H2O - H2O - H2O 6µl 

 

The reaction mix was incubated for 1h at 37°C before heat inactivation for 20min at 65°C. 

The digestion was loaded on a 1% agarose gel. Inserts and linearized pGL3 were excised and 

purified using the QIAquick Gel Extraction Kit according to the manufacturer’s instructions. 

Insert and pGL3 were subjected to ligation as follows: 

T4 ligase 1µl 

T4 buffer 1µl 

insert 20ng 

pGL3 20ng 

H2O ad 10µl 

 

The reaction mix was incubated overnight at 11°C and 5µl were used for transformation into 

competent DH5α bacteria as described in 2.2.4.1. Single colonies were picked using a yellow 

pipette tip, transferred to a selective LB agar plate and grown as a backup at 37°C overnight. 

Furthermore, the pipette tip was incubated in 50µl LB medium and incubated for 1h at 37°C 

under rotation. Colony PCR reaction was performed as previously described. Positive clones 

were sequenced by GATC service (GATC Biotech AG, Cologne). 
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2.2.5 Immunochemical methods 

2.2.5.1 Immunofluorescence staining of cells 

Immunofluorescence staining was performed to determine protein localization. To this end, 

cells were grown in 6-well plates overnight. The next day, cells were transiently transfected 

as described in 2.2.1.5 and seeded on sterile glass slides in a new 6-well plate. After 

overnight incubation, the medium was aspirated and the cells were washed with PBS before 

fixation with 4% paraformaldehyde (v/v) in PBS for 20min at RT. Cells were washed with PBS 

for 3x5min followed by blocking with 100% FCS for 30min at RT. Cell permeabilization was 

performed by adding permeabilization buffer (0.1% Triton® X-100 (v/v) in PBS) for 10min. 

The cells were washed again with PBS and incubated with primary antibody diluted in 

antibody dilution buffer (1% FCS (v/v) in PBS) overnight at 4°C in a humidified chamber. All 

following steps were carried out in the dark. The cells were washed again three times with 

PBS (HEK293T only once) and fluorescently labeled secondary antibody (1:250) or phalloidin 

(1:1000) was added in antibody dilution buffer for 1h at RT in a humid chamber. After 

washing with PBS, DAPI (1:5000 in PBS) was added for 10min to stain the nuclei. Cells were 

washed again and cover slips were placed upside-down on microscope slides with one drop 

of fluorescence mounting medium. The samples were stored at 4°C in the dark until 

fluorescence microscopy analysis. Primary antibody dilutions are listed in the table below. 

   
 Table 2.16: Primary antibody dilutions used for immunofluorescence staining of cells.  
   

 Antibody Company dilution  

 H. pylori  PD Dr. Roger Vogelmann, Mannheim 1:1000  

 DLC1 PA5-18290 Thermo Fisher Scientific, Inc., Surrey, 
UK 

1:100  

    

2.2.5.2 Proximity ligation assay (PLA) 

PLA was performed for analysis of protein interactions. For this purpose, the Duolink® In Situ 

Red Starter Kit was used. This method is based on the specific binding of primary antibodies 

to the proteins of interest and the binding of oligonucleotide-labeled secondary antibodies 

to the corresponding primary antibody. If the secondary antibodies are in close proximity, 
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they generate a fluorescent signal by ligation of the oligonucleotides and rolling circle 

amplification using fluorescently labeled oligonucleotides. Protein interaction is then 

visualized as single red fluorescent spots. 

HEK293T cells were transfected (as described in 2.2.1.5) with deletion series of defined 

sections of the cagA gene in combination with pT_DLC1.1 or pT_DLC1.4 and seeded on cover 

slips placed in a new 6-well plate after 6h of incubation. The next day, cells were washed 

once with PBS and fixed for 20min in 4% paraformaldehyde (v/v) in PBS at RT. After washing 

the cells with PBS for 5min, unspecific antibody binding was blocked by adding blocking 

solution for 30min at 37°C in a humidified chamber. Permeabilization took place using 0.1% 

Triton® X-100 in PBS for 10min at RT. Cells were washed once with PBS and incubated with 

primary antibodies 1:250 in antibody diluent overnight at 4°C in a humidified chamber. 

Slides were washed twice using 1x Wash Buffer A for 5min and incubated with the secondary 

oligonucleotide-labeled antibodies in antibody diluent for 1h at 37°C in a humidified 

chamber. Slides were washed twice with 1x Wash Buffer A for 5min and incubated with 

ligase solution for 30min at 37°C in a humid chamber. Washing the slides with 1x Wash 

Buffer A for 2x2min was followed by incubation with amplification polymerase solution for 

100min at 37°C in a humid chamber. All following steps were performed in the dark. The 

slides were washed with 1x Wash Buffer B for 10min and incubated with DAPI (1:5000) or 

phalloidin (1:500) diluted in 1x Wash Buffer B. Slides were first washed with 1x Wash Buffer 

B for 10min and then with 0.01x Wash Buffer B for 2min before covering the dried slides 

with fluorescence mounting medium. Samples were stored at 4°C until fluorescence 

microscopy. The table below shows the antibodies used. 

    
 Table 2.17: Antibodies used for PLA.   
    

 construct Primary antibody Secondary antibody company  

 All CagA constructs GFP,  
11 814 460 001 

Mouse MINUS Roche Diagnostics GmbH, 
Mannheim, Germany 

 

 pT_DLC1.1 DLC1 C-terminal, 
ab180697 

Rabbit PLUS Abcam plc, Cambridge, UK  

 pT_DLC1.4 FLAG, ab8112 Rabbit PLUS Abcam plc, Cambridge, UK  
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2.2.5.3 Preparation of tissue 

Mouse or human tissue samples were fixed in 4% (v/v) paraformaldehyde in PBS at 4°C for 

24-48h. The tissue was dehydrated in an autotechnicon, embedded in paraffin and the 

blocks were stored at room temperature. Before cutting 2-5µm slices using a microtome, the 

blocks were transferred to -20°C for 1h. 

2.2.5.4 Immunofluorescence staining of tissue 

Paraffin sections were deparaffinized in Xylol and rehydrated in 96% EtOH, 80% EtOH, 70% 

EtOH (2x3min each) and dH2O for 2min. Antigen retrieval was performed using Vectastain 

antigen unmasking solution (pH 6.0) 1:100 in dH2O and heating the slides for 10min in the 

microwave without boiling. After cooling to RT, the slides were washed in dH2O, PBS and 

dH2O (2min each). Unspecific antibody binding was blocked by 100% FCS for 1h at RT and 

primary antibody or phalloidin (1:1000) was added in antibody diluent (10% FCS, 0.3% 

Triton® X-100 in PBS). After overnight incubation at 4°C in a humidified chamber, slides were 

washed in PBS for 3x5min. All following steps were carried out in the dark. Fluorescently 

labeled secondary antibody was added (1:350 in PBS supplemented with 10% FCS) for 1h at 

RT in a humidified chamber before washing the samples in PBS for 3x5min. Slides were 

incubated with DAPI (1:5000 in PBS) for 10min at RT to achieve nucleic staining. After a last 

washing step in PBS for 3x5min, the tissue sections were covered with one drop of Eukitt 

medium and a cover slip. Samples were stored at 4°C until fluorescence microscopy. Primary 

antibody dilutions are listed in the table below. 
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 Table 2.18: Primary antibody dilutions used for immunofluorescence staining of tissue.  
   

 Antibody Company dilution  

 ChrA (H-300), sc-13090 Santa Cruz Biotechnology, Inc., 
Heidelberg, Germany 

1:100  

 DLC1 PA5-18290 Thermo Fisher Scientific, Inc., Surrey, 
UK 

1:150  

 DLC1 ab180697 Abcam plc, Cambridge, UK 1:100  

 p38, #9212 Cell Signaling Technology, Inc., 
Danvers, USA 

1:50  

 Phospho-p38, #4511 Cell Signaling Technology, Inc., 

Danvers, USA 

1:800  

 p44/42 MAPK, #4695 Cell Signaling Technology, Inc., 
Danvers, USA 

1:100  

 Phospho-p44/42 MAPK, #9101 Cell Signaling Technology, Inc., 
Danvers, USA 

1:200  

 RhoA (26C4), sc-418 Santa Cruz Biotechnology, Inc., 
Heidelberg, Germany 

1:150  

 

2.2.5.5 Immunohistochemistry 

For immunohistochemical staining with Ki67 (Novus) and C-terminal DLC1 antibody paraffin 

sections were deparaffinized and antigen retrieval was performed as described in 2.2.5.4. 

After cooling to RT, the slides were washed in PBS for 3x2min. Afterwards, endogenous 

peroxidase activity was quenched using 3% (v/v) H2O2 in PBS for 20min. Washing the 

sections 3x2min in PBS was followed by blocking with 5% (v/v) normal goat serum in 1% 

(w/v) BSA-PBS for 1h in a humidified chamber at RT. Primary antibody was diluted 1:100 in 

1% (w/v) BSA in PBS supplemented with 5% (v/v) normal serum and added to the slides for 

overnight incubation at 4°C in a humidified chamber. Slides were washed 3x2min with PBS, 

biotinylated secondary antibody was added 1:500 diluted in 1% (w/v) BSA-PBS and 

incubated for 1h at RT in a humidified chamber. Sections were washed again and ABC-

mixture (freshly prepared 30min before use!) was added for incubation for 30min at RT in a 

humidified chamber. Washing 3x2min in PBS was followed by DAB-staining. Slides were 

incubated with freshly prepared DAB-solution for 1-7min until the tissue turned brown. 

Washing with dH2O for 3x1min stopped the reaction and counterstaining with hematoxylin 
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for 3sec was performed. The color was washed out under tap water and sections were 

dehydrated in 70% EtOH, 80% EtOH, 96% EtOH and Xylol (2x3min each) and mounted using 

Eukitt.  

For Ki67 staining using the antibody from BD Biosciences, the Vector® M.O.M.™ 

Immunodetection Kit was used according to the manufacturer’s instructions. 

For F4/80 staining, the paraffin sections were deparaffinized as described in 2.2.5.4. Antigen 

retrieval was performed using 20 µg/ml proteinase K in 10mM Tris/HCl pH8.0 for 15min at 

RT. After washing 2x2min in dH2O, endogenous peroxidase activity was blocked using 3% 

(v/v) H2O2 in 1xPBS for 15min at RT. The slides were washed again 2min in 1xPBS, 2min in 

dH2O, 2min in 1xPBS and unspecific antigen binding was blocked for 1h at RT in a humidified 

chamber using blocking solution (1ml 1xPBS, 4 drops of avidin, 50µl normal rabbit serum). 

Washing the tissue section 3x in 1xPBS was followed by overnight incubation at 4°C with 

primary antibody solution (1ml 1xPBS, 4 drops of biotin, 50µl normal rabbit serum, 10µl 

antibody) in a humidified chamber. The next day, the slides were washed 3x in 1xPBS and 

incubated for 1h at RT with secondary antibody solution (948µl 1xPBS, 50ml normal rabbit 

serum, 2µl biotinylated secondary antibody) in a humidified chamber. Sections were washed 

again 3x2min in 1xPBS and ABC-mixture (freshly prepared 30min before use!) was added for 

incubation for 30min at RT in a humid chamber. Washing 3x2min in dH2O was followed by 

DAB-staining. Slides were incubated with freshly prepared DAB-solution for 1-7min until the 

tissue turned brown. Washing with dH2O for 3x1min stopped the reaction and 

counterstaining with hematoxylin for 3sec was performed. The color was washed out under 

tap water and sections were dehydrated in 70% EtOH, 80% EtOH, 96% EtOH and Xylol 

(2x3min each) and mounted using Eukitt. 

2.2.6 Fluorescence activated cell sorting (FACS) 

FACS analysis was performed to determine the ROS status of CagA or DLC1 transfected cells. 

To this end, the Cellular Reactive Oxygen Species Detection Assay Kit (Deep Red 

Fluorescence) was used according to the manufacturer’s protocol. HEK293T cells were 

seeded and transfected as described in 2.2.1.5. One day after transfection, the cells were 

trypsinized and the cell number was adjusted to 500 000 cells/ml. Treatment with tert-butyl 

hydrogen peroxide (TBHP) served as positive control and occurred at 37°C for 3h while 
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gentle shaking. The ROS Deep Red fluorescence dye was added 30-60min before 

measurement and samples were kept in the dark. The dye is cell permeable thereby 

ensuring analysis of viable cells and reacts with ROS in the cell generating a red fluorescent 

signal (Ex/Em=650/675nm). FACS analysis occurred by the FACSCanto™ device using the 

FACSDIVA™ software. The FACS device works via a laser and is able to sort a heterogeneous 

mixture of fluorescently labeled cells based upon their size, granularity and fluorescent 

characteristics as a single cell suspension. Dependent on the light scatter, cells can be 

subdivided into different populations. Forward scatter (FSC) and sideward scatter (SSC) 

determine size and granularity of the cells. Cell debris and dead cells are usually forward 

scatter (FSC)-low compared to live cells. This enables a differentiation between dead cells, 

cell clumps or doublets and viable, single cell events. 

2.2.7 Therapy of CEA424-SV40 TAg mice with fasudil 

Female CEA424-SV40 TAg mice (two months of age, average body weight 20 g) were used 

for treatment with fasudil. Fasudil was dissolved in sterile PBS and injected i.p. as a single 

dose of 10 mg/kg per day. Mice received repetitive injections four times a week over a total 

time period of four weeks. 

2.2.8 PET/CT-imaging 

In cooperation with Prof. Wängler (Dept. of Clinical Radiology and Nuclear Medicine 

(Molecular Imaging and Radiochemistry), Medical Faculty Mannheim of University 

Heidelberg, Mannheim, Germany), PET/CT-imaging was performed as published 

(Hinsenkamp et al., 2016). 

2.2.9 Statistics 

For statistics, the software PRISM GraphPad (version 7.0) was used. Results are means ± 

standard errors (S.E.) from at least three independent experiments. P-values of 0.05 or less 

were defined as significant. All tests used were two-tailed. 
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3 Results 

3.1 Characterization of Deleted in liver cancer 1 (DLC1) 

3.1.1 Expression analysis of DLC1 

For analysis of endogenous DLC1 expression in human cell lines PCR was performed using 

specific primers for the N- or C-terminus of DLC1. The amplified products were loaded on an 

agarose gel (Fig. 3.1).  

 
 

Fig. 3.1: Expression of DLC1 mRNA variants in human cell lines. Total RNA of all cell lines indicated 

was isolated, transcribed into cDNA and subjected to PCR for amplification of endogenous N- or C-

terminal DLC1 mRNA. The housekeeper β2-microglobulin (B2M) served as control. Amplified 

products were loaded on an agarose gel (n=1). 

 

The DLC1 C-terminus was present in all analyzed cell lines showing the lowest expression in 

HCT116 cells, whereas the DLC1 N-terminus was only expressed in non-cancer HEK293T cells 

and HCT116 cells to lesser extent. 

To determine endogenous expression of Dlc1 in WT mouse organs PCR was carried out using 

mouse specific primers for amplification of N- or C-terminal Dlc1 mRNA. The amplified 

products were loaded on an agarose gel (Fig. 3.2). 
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Fig. 3.2: Expression of Dlc1 mRNA variants in WT mouse organs. Total RNA was isolated of all 

organs indicated, transcribed into cDNA and subjected to PCR for amplification of endogenous N- 

or C-terminal Dlc1 mRNA. The housekeeper β2-microglobulin (B2m) served as control. Amplified 

products were loaded on an agarose gel (n=1). 

 

N-terminal Dlc1 was expressed ubiquitously in all analyzed organs showing the weakest 

expression in spleen tissue. Similar results revealed expression analysis of C-terminal Dlc1, 

which was expressed in almost all organs tested, but not in the spleen and duodenum. 

Furthermore, N- and C-terminal DLC1 expression was determined in tumor tissue (TU) and 

matched normal tissue (NT) of GC patients by PCR. Figure 3.3 shows the amplified products 

loaded on an agarose gel and quantification of the bands in gel. 
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Fig. 3.3: Expression of DLC1 mRNA variants in tumor tissue (TU) and matched normal tissue (NT) 

of GC patients. Total RNA of GC patient tissues was isolated, transcribed into cDNA and subjected 

to PCR for amplification of endogenous N- or C-terminal DLC1 mRNA. The housekeeper β2-

microglobulin (B2M) served as control. Agarose gel (lower panel) and quantification of bands in gel 

(upper panel) is shown; O.D. values were normalized to B2M and calculated as -fold ± S.E. (n=5; 

p=0.063: Wilcoxon matched-pairs signed rank test TU vs. NT). 

 

DLC1 expression was decreased in TU compared with NT. N-terminal DLC1 expression was 

reduced by 40% and C-terminal DLC1 level by 23% in TU compared to NT. 

3.1.2 Localization of DLC1 

It is known that DLC1 fulfills tumor suppressor functions in epithelial cells (Braun and 

Olayioye, 2015; Low et al., 2011; Tripathi et al., 2012). To investigate, if DLC1 is also present 

in other cell types, immunofluorescence co-stainings of formalin-fixed and paraffin 

embedded mouse and human stomach tissues were performed using antibodies specific for 

DLC1 and Chromogranin A (Fig. 3.4). 
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Fig. 3.4: DLC1 is present in mouse and human enterochromaffin-like (ECL) cells. Formalin-fixed 

and paraffin embedded WT mouse and human stomach tissues were subjected to 

immunofluorescence co-staining using DLC1 (Thermo Fisher Scientific) and Chromogranin A 

specific antibodies. Representative pictures of the corpus region are shown. Blue: DAPI/nuclei; for 

mouse tissue DLC1 was stained in red and Chromogranin A in green; for human tissue DLC1 was 

stained in green and Chromogranin A in red; n=6 for mouse and n=3 for human tissue; 

magnification 400x. 

 

Both, mouse and human tissue sections, showed a co-localization of Chromogranin A and 

DLC1 positive cells visualized by a yellow color in the overlay. Chromogranin A is a marker for 

enterochromaffin-like (ECL) cells, which are the predominant enteroendocrine cell subtype 

in the corpus and secrete histamine (Hakanson et al., 1998; Hakanson et al., 1995; Li et al., 

2014). These findings indicate that DLC1 is present in human and mouse ECL cells. 

3.1.3 The DLC1gt/+ mouse model 

For further characterization of DLC1 and elucidation of its biological functions, DLC1gt/+ mice 

were kindly provided by Prof. Mowat (Dept. of Biochemistry & Medical Genetics, University 

of Manitoba, Winnipeg, Canada). A gene trapped embryonic cell line containing an insertion 

between exon 1 and 2 of isoform 2 transcript was used for generation of a transgenic mouse 

resulting in a reduced expression of DLC1 isoform 2. Other Dlc1 transcripts were not 

affected. Mice were heterozygously gene trapped, because homozygous gene trap leads to 

embryonic lethality. Heterozygous gene trapped adult mice do not show any physical or 

behavioral defects and they do not develop any spontaneous tumors. Embryonic cells show 

an increased RHOA activity, cytoskeletal changes and increased cell migration (Sabbir et al., 

2012; Sabbir et al., 2010). Hence, these mice represent an appropriate model for the 

investigation of the role of DLC1 as a tumor suppressor and inhibitor of RHOA in 

Helicobacter-related gastric disease. 

3.1.3.1 Confirmation of DLC1 gene trap  

For confirmation of a successful gene trap of DLC1gt/+ mice, Western Blot analysis was 

performed. For this purpose, total protein was isolated from liver tissue of WT and DLC1gt/+ 

mice. DLC1 was detected using a C-terminal specific antibody (Fig. 3.5). 
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Fig. 3.5: Expression of DLC1 protein is reduced in liver tissue of DLC1gt/+ mice compared to WT 

mice. Total protein was isolated from liver tissue of WT and DLC1gt/+ mice using RIPA buffer and 

subjected to Western Blot analysis. DLC1 was detected by a C-terminal specific antibody. HSP90 

served as control. O.D. values of bands in gels were normalized to HSP90 and calculated as -fold ± 

S.E. (n=5 mice per group; *p<0.05: unpaired t-test WT vs. DLC1gt/+). Quantitative analysis (left 

panel) and gels (right panel) are shown. 
 

The Western Blot analysis revealed a significantly reduced DLC1 level in liver tissue of 

DLC1gt/+ mice compared to WT mice. 

For further confirmation of the gene trap, immunofluorescence staining of WT and DLC1gt/+ 

mouse stomach tissue was performed using the identical C-terminal DLC1 specific antibody 

as for Western Blot analysis (Fig. 3.6). 

 
 

Fig. 3.6: DLC1gt/+ mice show less positive gastric immunofluorescent staining of DLC1 compared 

to WT mice. Paraffin embedded WT and DLC1gt/+ mouse stomach tissues were subjected to 

immunofluorescence staining. Representative pictures of the corpus region are shown. Blue: 

DAPI/nuclei; green: actin; red: DLC1; n=6; magnification 400x. 

 

The immunofluorescence staining demonstrated a reduced gastric DLC1 expression in 

DLC1gt/+ mice compared to WT mice. 
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In addition, WT and DLC1gt/+ mouse stomach tissues were subjected to 

immunohistochemical staining using the C-terminal DLC1 specific antibody. The results are 

shown in Figure 3.7. 

 

 
 

Fig. 3.7: DLC1gt/+ mice show less positive gastric immunohistochemical staining of DLC1 compared 

with WT mice. Paraffin embedded WT and DLC1gt/+ mouse stomach tissues were subjected to 

immunohistochemical staining using a C-terminal DLC1 specific antibody. Representative pictures 

of the corpus and antrum region are shown. Three pictures per individual were analyzed and 

positive cells of five anatomical structures per picture were quantified as means ± S.E. (n=3 mice 

per group; p=0.1: Mann Whitney U test WT vs. DLC1gt/+; magnification 200x). 

 
Figure 3.7 illustrates a reduction of the amount of DLC1 positive cells in the corpus and 

antrum by 60% in DLC1gt/+ mice compared to WT mice. Parietal cells of the corpus showed 

unspecific staining. 

In summary, section 3.1.3.1 verifies a successful heterozygous gene trap. The C-terminal 

DLC1 specific antibody still detects the remaining DLC1 transcripts resulting in a reduced 

DLC1 detection in DLC1gt/+ mice compared with WT mice. 
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3.1.3.2 Microscopic analysis  

The DLC1 mutant mice were bred for up to one year. After this time, the stomach was 

removed, fixed in formalin, embedded in paraffin and subjected to Hematoxylin/Eosin (H&E) 

staining for microscopic analysis. Representative pictures are shown in Figure 3.8. 

 
 

Fig. 3.8: DLC1gt/+ mice show an increased infiltration of inflammatory cells in the stomach. 

Paraffin embedded WT and DLC1gt/+ mouse stomach tissues were subjected to H&E staining. The 

white arrow indicates increased inflammatory cell infiltration. Representative pictures of the 

corpus region are shown; magnification 400x. 

 

The microscopic analysis revealed an increased infiltration of inflammatory cells in the 

corpus region of DLC1gt/+ stomachs compared to WT mice. Statistical analysis will be subject 

of an upcoming project in the author’s group. 

3.1.3.3 Immunohistochemical analysis  

Since DLC1gt/+ mice showed an increased inflammatory infiltration, the inflammatory cells 

were characterized in more detail by immunohistochemical staining using the F4/80 

antibody, which is a characteristic surface marker for macrophages. Macrophages play a key 

role during immune response by eliminating pathogens via phagocytosis and regulating 

adaptive immunity (Wilson and Crabtree, 2007). In addition, differences in cell proliferation 

between DLC1gt/+ and WT mice were analyzed by Ki67 staining (Fig. 3.9). 
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Fig. 3.9: DLC1gt/+ mice show increased cell proliferation and infiltration of macrophages in gastric 

tissue compared with WT mice. Paraffin embedded WT and DLC1gt/+ mouse stomach tissues were 

subjected to F4/80 and Ki67 immunohistochemical staining. Representative pictures of the corpus 

and antrum region are shown. Three to five pictures per individual were analyzed and positive cells 

of five anatomical structures per picture were quantified as means ± S.E. (n=3 mice per group; 

*p<0.05: unpaired t-test WT vs. DLC1gt/+; magnification 200x). 
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There was nearly no macrophage staining of the corpus, but F4/80 staining of the antrum 

revealed a significantly increased infiltration in DLC1gt/+ mice compared to WT mice. The Ki67 

staining was three times stronger in the corpus of DLC1gt/+ mice in comparison to WT mice. 

Antral staining of Ki67 was increased 2-fold in DLC1gt/+ compared with WT mice. Parietal cells 

of the corpus showed unspecific staining.  

3.1.3.4 Analysis of the immune cell profile 

For further analysis and characterization of the inflammatory infiltration and, thus, the 

immune response in DLC1gt/+ mice, RT-qPCR was performed using primers for different 

markers of immune cells and cytokines. Table 3.1 specifies the chosen markers and figure 

3.10 shows the results of RT-qPCR. Corresponding melting curves are presented by figure 7.1 

(appendices). 

   
 Table 3.1: Overview of the genes encoding markers for immune cells and cytokines analyzed by 

RT-qPCR in WT and DLC1gt/+ mice. 

 

   

 Immune cell 

marker/cytokine 

Gene Producing cell type/function reference 

 CD4 Cd4 Surface marker of Th cells. (Buchholz et al., 2016; 
Famili et al., 2017) 

 CD8 Cd8 Surface marker of Tc cells. (Famili et al., 2017) 

 FOXP3 Foxp3 Specific transcription factor for Treg 

cells. FOXP3 binds RORγt to inhibit 
Th17 and enforce Treg development. 

(Fasching et al., 2017; 
Li et al., 2015) 

 GATA3 Gata3 T cell specific transcription factor. (Famili et al., 2017) 

 RORγt Rorc Specific transcription factor for Th17 
cells. 

(Fasching et al., 2017) 

 iNOS iNOS Specific marker of M1 macrophages. 
M1 macrophages act cytotoxic and 

pro-inflammatory and secrete IFNγ. 

(Eapen et al., 2017) 

 ARG1 Arg1 Specific marker of M2 macrophages. 
M2 macrophages act anti-
inflammatory, and secrete IL-4, -10 
and -13. 

(Aras and Zaidi, 2017; 
Caux et al., 2016; 
Eapen et al., 2017) 

 IFNγ Ifng Cytokine produced by Th1 cells; 
recruits macrophages and natural killer 
cells. 

(Parkin and Cohen, 
2001; Wilson and 
Crabtree, 2007) 
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Fig. 3.10: Expression of surface markers of immune cells and cytokines in DLC1gt/+ mice compared 

with WT mice. Total RNA was extracted from the mainstomach and ileum of WT and DLC1gt/+ mice 

and subjected to RT-qPCR analysis after reverse transcription. CT-values were normalized to β2-

microglobulin (β2m) and calculated as -fold ± S.E. (n=3 mice per group; *p<0.05: unpaired t-test 

WT vs. DLC1gt/+). 

 

DLC1gt/+ mice showed a 2-fold increased gastric and ileal Cd4 expression compared to WT 

mice. Cd8 expression was elevated 3-fold in mainstomachs of DLC1gt/+ mice but showed no 

ileal difference. There was a decrease of gastric Foxp3 expression by 17% in DLC1gt/+, 

whereas ileal Foxp3 level was increased 3-fold in DLC1gt/+ mice in comparison to WT mice. 

Expression of Gata3 was reduced to 70% in DLC1gt/+ mainstomachs, but elevated 1.6-fold in 

DLC1gt/+ ileum compared with WT mice. Rorc showed no difference between DLC1gt/+ and 

WT mice, but gastric iNOS was increased 3-fold and ileal iNOS level was 100-times elevated 

in DLC1gt/+ mice in comparison to WT mice. Expression of Arg1 was increased 1.6-fold in the 

mainstomach of DLC1gt/+ mice compared with WT mice but showed no ileal difference. 

Furthermore, there was 1.6-fold elevated gastric Ifnγ expression and significantly increased 
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expression of Ifnγ in the ileum of DLC1gt/+ mice compared with ileal Ifnγ level of WT mice (9-

fold). 

3.1.3.5 Analysis of the hormone profile 

Since DLC1 was present in neuroendocrine ECL cells (see 3.1.2), the hormone profile of 

DLC1gt/+ mice was analyzed in detail by performing expression analysis of diverse gastric 

hormones and proteins involved in hormone balance and gastric acid secretion via RT-qPCR. 

Table 3.2 specifies the analyzed proteins, figure 3.11 shows the results of the RT-qPCR. 

Corresponding melting curves are presented by figure 7.2 (appendices). 

   
 Table 3.2: Overview of proteins involved in hormone balance and gastric acid secretion analyzed 

by RT-qPCR in WT and DLC1gt/+ mice. 

 

   

 Protein/hormone Gene Producing cell type/function reference 

 Adiponectin Adipoq Produced by adipocytes. (Mueller et al., 
2003) 

 Chromogranin A Chga Produced by histamine-secreting 
enterochromaffin-like (ECL) cells; 

precursor to a series of peptides. 

(Al-Risi et al., 
2017; Hakanson 

et al., 1998; Li 
et al., 2014) 

 Ghrelin Ghrl Produced by oxyntic glands; increases 
acid secretion. 

(Blaser and 
Atherton, 2004) 

 Histidine decarboxylase Hdc Produced by ECL cells; key enzyme in 

histamine synthesis; histamine 
modulates gastric acid secretion. 

(Mueller et al., 

2003) 

 H+K+-ATPase Atp4 Expressed by acid secreting parietal 
cells. 

(Malfertheiner, 
2011) 

 Intrinsic factor Gif Produced by parietal cells; important 
for vitamin B12 absorption. 

(Shum et al., 
1971) 

 Pepsinogen C Pgc Produced by chief cells; proenzyme of 

pepsin; marker for atrophic changes. 

(Cho et al., 

2017) 

 Somatostatin Sst Produced by D cells; suppresses gastrin 
secretion. 

(Blaser and 
Atherton, 2004; 
Malfertheiner, 
2011) 

 Tryptophan hydroxylase Tph1 Localized in ECL cells; involved in 
serotonin synthesis. 

(Gershon, 2013) 
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Fig. 3.11: Expression of proteins involved in hormone balance and gastric acid secretion in 

DLC1gt/+ mice compared with WT mice. Total RNA was extracted from the mainstomach and ileum 

of WT and DLC1gt/+ mice and subjected to RT-qPCR analysis after reverse transcription. CT-values 

were normalized to β2-microglobulin (β2m) and calculated as -fold ± S.E. (n=3 mice per group; 

*p<0.05: unpaired t-test WT vs. DLC1gt/+). 

 

The gastric adiponectin level was decreased to 13% in DLC1gt/+ mice, whereas it showed a 5-

fold increased expression level in the ileum of DLC1gt/+ mice compared to WT mice. 

Chromogranin A expression was reduced by 40% in the mainstomach of DLC1gt/+ mice. 

Gastric ghrelin and somatostatin level was significantly decreased by 60% in DLC1gt/+ mice 

compared with WT mice. Expression of histidine decarboxylase and intrinsic factor was 

reduced by 30% in the mainstomach of DLC1gt/+ mice, whereas the gastric level of H+K+-

ATPase and pepsinogen C was elevated by 25%. Gastric tryptophan hydroxylase level showed 

no difference, but ileal expression was reduced by 40% in DLC1gt/+ mice. 
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The findings from characterization of DLC1 suggest a ubiquitous expression of the tumor 

suppressor in all organs and a downregulation in tumors. Besides its localization in epithelial 

cells, DLC1 is additionally expressed by neuroendocrine cells thereby showing an 

involvement in hormonal balance and gastric acid secretion. Furthermore, microscopic 

analysis of H&E stained DLC1gt/+ mice stomachs and RT-qPCR data suggest a role of DLC1 in 

the regulation of the immune response. 

3.2 Antagonism between DLC1 and CagA 

3.2.1 Interaction analysis of DLC1 and CagA 

Hitkova et al. showed that CAV1 recruits DLC1 in case of H. pylori-infection to potentiate the 

tumor suppressor functions (Hitkova et al., 2013). Different DLC1 and CagA constructs were 

used for investigation of a direct interaction between DLC1 and the Helicobacter toxin CagA 

as well as the identification of interaction domains. The DLC1 constructs include the human 

full length DLC1.1 and truncated DLC1.4 without SAM domain. For CagA, deletion series of 

defined sections of the cagA gene were used including the full length wild type CagA, two C-

terminal constructs (CagA_838-1216 and CagA_1029-1216) and one N-terminal mutant 

(CagA_1-877). The constructs CagA_1029-1216 and CagA_1-877 did not contain any EPIYA 

motifs and multimerization domains. DLC1 constructs contain a FLAG tag and CagA mutants 

were GFP-fused. All constructs used were verified by Western Blot analysis and 

immunofluorescence microscopy and are represented by figure 3.12. 
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Fig. 3.12: DLC1 and CagA constructs used for interaction analyses of the two proteins. A: DLC1 

constructs used in this study. SAM: sterile α motif; RHOGAP: catalytic domain for inhibition of 

RHO; START: StAR-related lipid-transfer domain; Cav1bm: CAV1 binding motif. B: CagA constructs 

used in this study. Red: EPIYA motif; grey: multimerization domain. All schemes drawn to scale. 

3.2.1.1 Co-immunoprecipitation 

For analysis of an interaction between DLC1 and CagA, Co-immunoprecipitations (CoIPs) 

were performed. To this end, HEK293T cells were transiently transfected with CagA_WT, 

CagA_838-1216 (CT) or CagA_1-877 (NT) in combination with the DLC1 constructs. 

Immunoprecipitation was performed via DLC1 and CagA specific antibodies and precipitates 

were subjected to Western Blot analysis by use of the same antibodies in a reciprocal 

manner. Total cell lysates of transfected cells served as controls for successful transfection 

(Input). Figure 3.13 shows the CoIP experiment for the investigation of a complex formation 

between CagA_WT and DLC1. 
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Fig. 3.13: CagA_WT interacts with both DLC1 isoforms. HEK293T cells were transiently transfected 

with CagA_WT in combination with DLC1.1 or DLC1.4, respectively. Cytosolic lysates were 

prepared by hypotonic lysis (Input). For immunoprecipitation (IP) CagA- and DLC1-specific 

antibodies were used, for immunoblot the same antibodies were used in a reciprocal manner. 

 

The CoIP for CagA_WT and DLC1 suggests an interaction between CagA_WT and both DLC1 

isoforms, represented by CagA protein in the DLC1.1 and DLC1.4 immunoprecipitates. 

Interaction between CagA_WT and DLC1.4 seems stronger compared with DLC1.1. Only low 

amounts of DLC1.4 were co-immunoprecipitated. The bands of the DLC1.1 immunoblot may 

be unspecific products, although transfection was successful as represented by the input 

control. This can be explained by conformational changes of DLC1.1 due to complex 

formation.  

Figure 3.14 shows the CoIP experiment for investigation of a complex formation between 

CagA_1-877 (NT) and DLC1. 

 

 
 

Fig. 3.14: CagA_1-877 interacts with both DLC1 isoforms. HEK293T cells were transiently 

transfected with CagA_1-877 (NT) in combination with DLC1.1 or DLC1.4, respectively. Cytosolic 

lysates were prepared by hypotonic lysis (Input). For immunoprecipitation (IP) CagA- and DLC1-

specific antibodies were used, for immunoblot the same antibodies were used in a reciprocal 

manner. 

 

The CoIP for analysis of a complex formation between CagA_1-877 and DLC1 suggests an 

interaction between CagA_1-877 and both DLC1 isoforms, represented by CagA_1-877 

protein in DLC1.1 and DLC1.4 immunoprecipitates. Interaction between the N-terminal CagA 

construct and DLC1.4 seems stronger compared to the interaction with DLC1.1. Co-

immunoprecipitated DLC1.4 confirmed an interaction between CagA_1-877 and DLC1.4. 
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There was also a band for the DLC1.1 immunoprecipitate in case of DLC1.4 detection, which 

can be explained by a putative proteolysis of the DLC1.1 protein. The DLC1.1 immunoblot 

shows successful transfection by the input controls, but bands suggesting a complex 

formation with CagA_1-877 were unspecific possibly due to conformational changes. There 

was a general problem of unspecific precipitates. 

Furthermore, CoIP experiments were performed for the analysis of an interaction between 

CagA_838-1216 (CT) and DLC1 (Fig. 3.15).  

 

 
 

Fig. 3.15: CagA_838-1216 interacts mainly with DLC1.4. HEK293T cells were transiently 

transfected with CagA_838-1216 (CT) in combination with DLC1.1 or DLC1.4, respectively. 

Cytosolic lysates were prepared by hypotonic lysis (Input). For immunoprecipitation (IP) CagA- and 

DLC1-specific antibodies were used, for immunoblot (IB) the same antibodies were used in a 

reciprocal manner. 

 

Figure 3.15 shows an interaction between CagA_838-1216 and DLC1.4 represented by co-

immunoprecipitated DLC1.4 using CagA-specific antibody for CagA_838-1216 and co-

immunoprecipitated CagA_838-1216 using the DLC1.4-specific antibody. Once more, a band 

for the DLC1.1 immunoprecipitate was observed in case of DLC1.4 detection, which can be 

explained by a proteolysis of DLC1.1. The DLC1.1 immunoblot revealed unspecific bands.  
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3.2.1.2 Proximity ligation assay 

Due to poor reproducibility of the CoIP experiments, proximity ligation assay (PLA) was 

performed for each CagA/DLC1 construct combination shown by figure 3.16. To this end, 

HEK293T cells were transiently transfected with one of the CagA constructs in combination 

with DLC1.1 or DLC1.4, respectively. Overexpressed DLC1 was detected by DLC1 specific 

antibodies and CagA was detected by GFP fusion. Oligonucleotide-labeled secondary 

antibodies generated a red fluorescent signal only if CagA and DLC1 were in close proximity, 

indicating a complex formation. 
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Fig. 3.16: All tested CagA constructs interact with both DLC1 isoforms. HEK293T cells were 

transiently transfected with CagA_WT, CagA_1-877, CagA_838-1216 or CagA_1029-1216 in 

combination with DLC1.1 or DLC1.4, respectively. Proximity ligation assay (PLA) was performed. 

Representative pictures are shown. Blue: DAPI/nuclei; green: CagA (GFP); red dots: interaction; 

n=3; scale bar=10 µm. 

 

PLA results revealed an interaction between all CagA constructs tested and both DLC1 

isoforms visualized by red fluorescent spots exclusively in the area of CagA positive cells. 

Summarized, the interaction studies suggest a complex formation between CagA and DLC1. 

Both, the N-terminus and C-terminus of CagA seem to be important for this interaction. CoIP 

experiments indicate a stronger interaction between CagA and DLC1.4 compared with 

DLC1.1. 

3.2.1.3 Transcriptional regulation of DLC1 by CagA 

DLC1 is a tumor suppressor frequently downregulated or even lost in many human cancer 

entities. This can be due to genetic or epigenetic mechanisms (Durkin et al., 2007; Ko and 

Ping Yam, 2014). Hitkova et al. showed that the tumor suppressor CAV1 was transcriptionally 

downregulated by H. pylori (Hitkova et al., 2013). The promoter of both DLC1 isoforms were 

cloned into the luciferase reporter plasmid pGL3 (pGL3_DLC1.1p and pGL3_DLC1.4p) to 

investigate if this holds true for DLC1. Thus, luciferase activity was under control of the DLC1 

promoter (DLC1p). DLC1 promoter activity was analyzed by luciferase activity assay. For this 

purpose, cells were transiently transfected with or without CagA in combination with one of 

the DLC1p reporter plasmids. Figure 3.17 shows the results of the luciferase activity assays in 

HEK293T, AGS and NCI-N87 cells. 
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Fig. 3.17: CagA inhibits promoter activity of both DLC1 isoforms. HEK293T, AGS and NCI-N87 cells 

were transiently transfected with or without CagA in addition to the DLC1p reporter plasmids 

(pGL3_DLC1.1p or pGL3_DLC1.4p). Luciferase activity was measured by luciferase assay, 

normalized to protein concentration and calculated as -fold ± S.E. (n=3 per cell line; *p<0.05: one 

sample t-test -CagA vs. +CagA). 

 

The luciferase activity assays revealed a significant inhibition of DLC1 promoter activity by 

CagA. For HEK293T cells, there was a decrease in the activity of both DLC1 promoters by up 

to 97% in case of CagA transfection. For AGS cells, both DLC1 promoters were inhibited by 

CagA up to 1% of activity. NCI-N87 cells showed still 62% of DLC1.1 promoter activity for 

CagA transfection, but DLC1.4 promoter activity was significantly inhibited to 12% by CagA.  

These results demonstrate an efficient inhibition of DLC1 by H. pylori CagA on a 

transcriptional level. 

3.2.2 Influence of DLC1 and CagA on cell morphology 

Since DLC1 interacts with components of the focal adhesions (Blaser and Atherton, 2004), 

and CagA is responsible for the formation of actin stress fibers (“hummingbird phenotype”) 

(Braun and Olayioye, 2015), the cell morphologies of DLC1 and CagA transfected cells were 

analyzed in detail. For this purpose, AGS and HEK293T cells were transiently transfected with 

CagA or a combination of CagA and DLC1.1 and subjected to immunofluorescence staining 

(Fig. 3.18). 
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Fig. 3.18: DLC1.1 is responsible for cell spreading and is localized to focal adhesions, whereas 

CagA promotes cell elongation. A: AGS and HEK293T cells were transiently transfected with CagA 

or a combination of CagA with DLC1.1 and subjected to immunofluorescence staining. The number 

of spread cells was counted, normalized to the number of total cells and calculated as means ± S.E. 

(n=3 per cell line, p=0.094: unpaired t-test CagA vs. CagA+DLC1.1). B: Representative pictures of 

immunofluorescence staining of DLC1.1 and CagA transfected AGS cells. Blue: DAPI/nuclei; red: 

DLC1; green: CagA (GFP); white arrow indicates focal adhesions; scale bar=10 µm. 

 

Figure 3.18 A indicates increased cell spreading of AGS and HEK293T cells in the presence of 

DLC1. The spread cell morphology of DLC1 overexpressing AGS cells is illustrated by figure 

3.18 B. In the presence of CagA, the cells showed an elongated morphology. These findings 

have already been shown during another project within the authors group (Hitkova, 2013). 

The cytoplasm was CagA positive and DLC1 was additionally accumulated at the focal 

adhesions. 
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These findings suggest that CagA and DLC1 are responsible for antagonizing cell 

morphologies. CagA evokes a needle-like cell shape and DLC1 promotes cell spreading by 

focal adhesion localization. 

3.2.3 Functional antagonism between DLC1 and CagA 

Section 3.2.1 showed that DLC1 and CagA interact by complex formation. Luciferase activity 

assays were performed for a detailed assessment of the functions both proteins fulfill by this 

interaction. 

3.2.3.1 Effect of DLC1 and CagA on cell proliferation 

For investigation of the effect of DLC1 and CagA on the cell proliferation, cells were 

transiently transfected with an empty vector (EV), CagA, DLC1.1 or a combination of CagA 

and DLC1.1 in addition to pGL3_SRE. The pGL3_SRE plasmid is a luciferase reporter plasmid 

containing serum response elements (SRE). The c-Fos promoter element SRE is known to be 

stimulated by growth factors and subsequent mitogen-activated protein kinase (MAPK) 

signaling to regulate cell proliferation (Vickers et al., 2004). Furthermore, SRE has been 

identified as a target of H. pylori CagA (Hirata et al., 2002). Hence, this luciferase activity 

assay was used to elucidate the role of DLC1 and CagA concerning cell proliferation. Results 

are shown by figure 3.19. 



Results  

 

86 

 

 
 

Fig. 3.19: Impact of CagA and DLC1 on the activation of the c-Fos promoter as a surrogate read-

out for cell proliferation. HEK293T, AGS and NCI-N87 cells were transiently transfected with empty 

vector (EV), CagA, DLC1.1 or a combination of CagA and DLC1.1 in addition to the SRE luciferase 

reporter plasmid (pGL3_SRE). Luciferase activity was measured by luciferase assay, normalized to 

protein concentration and calculated as -fold ± S.E. (n=3 per cell line; HEK293T: p=0.1, Mann-

Whitney U test CagA vs. DLC1.1; AGS: *p<0.05, unpaired t-test CagA vs. DLC1.1/CagA+DLC1.1; NCI-

N87: n.s.). 

 

This luciferase activity assay revealed an increased SRE activity upon CagA transfection in 

comparison to DLC1.1, which inhibited SRE activity. SRE activity was reduced by DLC1.1 

compared with CagA transfection for HEK293T (to 6%) and AGS (to 10%) cells. In AGS cells, 

DLC1.1 efficiently inhibited CagA-mediated SRE activation. For NCI-N87 cells, SRE activity was 

marginally reduced by DLC1.1 compared with CagA. In general, CagA-mediated SRE activity 

in AGS and NCI-N87 cells was lower in contrast to HEK293T cells. 

3.2.3.2 Effect of DLC1 and CagA on the cellular stress response and 
hypoxia 

H. pylori-infection is known to evoke oxidative stress by the synthesis of reactive oxygen 

species (ROS) (Wilson and Crabtree, 2007). For this reason, the effect of DLC1 and CagA on 

the cellular stress response and hypoxia was investigated. To this end, cells were transiently 

transfected with an empty vector (EV), CagA, DLC1.1 or a combination of CagA and DLC1.1 in 

addition to pGL3_HRE. The pGL3_HRE plasmid is a stress sensitive luciferase reporter 

plasmid containing the promoter of the high-mobility group box (HMGB) protein 2 and a 

hypoxia responsive element (HRE). The results are shown by figure 3.20. 
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Fig. 3.20: Impact of CagA and DLC1 on the activation of the stress-responsive HMGB2 promoter 

as a surrogate read-out for hypoxia. HEK293T, AGS and NCI-N87 cells were transiently transfected 

with empty vector (EV), CagA, DLC1.1 or a combination of CagA and DLC1.1 in addition to the HRE 

luciferase reporter plasmid (pGL3_HRE). Luciferase activity was measured by luciferase assay, 

normalized to protein concentration and calculated as -fold ± S.E. (n=3 per cell line; *p<0.05: 

unpaired t-test; #p<0.05: one sample t-test EV vs. CagA). 

 

HRE activity was reduced to 24% by CagA compared with EV and increased 7-fold by DLC1.1 

in comparison to CagA in HEK293T cells, whereas the effect was reciprocal in AGS and NCI-

N87 cells. AGS and NCI-N87 cells showed a significant downregulation of HRE activity in 

DLC1.1 transfected cells compared with CagA transfection. Despite the fact that CagA was no 

strong activator of HRE in NCI-N87 cells, there was a significant restoration of DLC1-

mediated HRE inhibition by CagA in NCI-N87 cells. 

FACS analysis was performed to further investigate the role of DLC1 and CagA in the 

production of ROS. To this end, HEK293T cells were transiently transfected with an empty 

vector (EV), CagA, DLC1.1 or DLC1.4 and stained using the Cellular Reactive Oxygen Species 

Detection Assay Kit according to the manufacturer’s instructions. Figure 3.21 shows the 

results of the FACS analysis. 
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Fig. 3.21: Impact of CagA and DLC1 on reactive oxygen species (ROS) generation. HEK293T cells 

were transiently transfected with empty vector (EV), CagA, DLC1.1 or DLC1.4 and stained for FACS 

analysis using the Cellular Reactive Oxygen Species Detection Assay Kit (Deep Red Fluorescence). 

TBHP: tert-Butyl hydrogen peroxide (positive control); n=1. 

 

The FACS analysis revealed positivity for ROS independent of transfection. Thus, all 

transfected cells were positive for ROS production. 

In addition, Western Blot analysis of total cell lysates of CagA and/or DLC1.1 transfected and 

CoCl2 treated AGS cells was performed to investigate the expression of the hypoxia-inducible 

factor 1α (HIF1α) (Fig. 3.22). 
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Fig. 3.22: Both, CagA and DLC1 have no effect on HIF1α signaling. AGS cells were transiently 

transfected with empty vector (EV), CagA, DLC1.1 or DLC1.4 and treated with 0.1mM CoCl2 for 4h. 

Total cell lysates were subjected to Western Blot analysis for detection of HIF1α. Untransfected 

but CoCl2 treated Jurkat cells served as positive control (n=1).   

 

The Western Blot analysis revealed a stabilization of HIF1α by CoCl2 treatment, but no 

difference in HIF1α expression upon CagA and DLC1 transfection. 

Further Western Blot analysis was performed to show the impact of DLC1 and CagA on NFκB 

signaling. For this purpose, AGS cells were transiently transfected with CagA or DLC1, 

stimulated with LPS (derived from E. coli) for different time periods (0 min, 15 min, 30 min, 

60 min). Total protein lysates were subjected to Western Blot analysis for (P)-NFκB detection 

(Fig. 3.23). 
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Fig. 3.23: Both, CagA and DLC1 have no effect on NFκB signaling. AGS cells were transiently 

transfected with empty vector (EV), CagA, DLC1.1 or DLC1.4 and treated with 1µg/ml LPS for 0min, 

15min, 30min and 60min. Total cell lysates were subjected to Western Blot analysis. 

Representative gels are shown (lower panel). NFκB and P- NFκB bands in gels were quantified and 

O.D. values were normalized to β-actin and calculated as -fold ± S.E. (upper panel) (n=3, ordinary 

one-way ANOVA n.s.). 

 

Figure 3.23 shows no effect of CagA or DLC1 on NFκB signaling, although successful 

transfection was verified. 

3.2.3.3 Impact of DLC1 and CagA on RHOA activity 

It is reported in the literature that CagA activates and DLC1 inhibits RHOA (Braun and 

Olayioye, 2015; De Falco et al., 2015; Yamahashi and Hatakeyama, 2013). Luciferase activity 

and pulldown assays were performed to investigate the interdependency between the two 

proteins concerning RHOA activity and to verify, if DLC1 inhibits CagA-mediated G-protein-

coupled RHOA activation. For luciferase activity assay, cells were transfected with an empty 

vector (EV), CagA, DLC1.1, DLC1.4 or a combination of CagA and both DLC1 isoforms in 

addition to the RHOA specific pSRE.L luciferase reporter plasmid. This reporter plasmid 

contains mutated SRE, which is deficient for the c-Fos ternary complex-binding site. This 

leads to a specific response to active RHOA compared with wild type SRE (Wells et al., 2001). 
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Due to this fact, pSRE.L was used as an appropriate system to detect RHOA activity. 

Specificity for active RHOA was furthermore verified by control plasmids. To this end, a 

RHOA activating and a RHOA inhibiting plasmid co-transfected with DLC1 or CagA, 

respectively, in addition to pSRE.L was used. The RHOA activating plasmid contained the 

constitutively active form of the α subunit of the heterotrimeric G-protein α13 (G13qL). The 

plasmid showing RHO inhibiting effects contained the Clostridium botulinum C3 toxin (C3T), 

which is specific for RHO, but not for RAC1 and CDC42 GTPases (Saito et al., 2010; Williams, 

2011). CagA-mediated activation of mutated SRE was abolished by C3T and DLC1-mediated 

inhibition of mutated SRE was repealed by co-transfection with G13qL confirming specificity 

of pSRE.L for active RHOA (Fig. 7.3 appendices). Figure 3.24 shows the results of the pSRE.L 

luciferase activity assay.  

 

 
 

Fig. 3.24: DLC1 inhibits RHO-driven SRE, which is deficient for c-Fos ternary complex-binding site. 

HEK293T and AGS cells were transiently transfected with empty vector (EV), CagA, DLC1.1, DLC1.4 

or a combination of CagA and DLC1.1/DLC1.4 in addition to pSRE.L luciferase reporter plasmid. 

Luciferase activity was measured by luciferase assay, normalized to protein concentration and 

calculated as -fold ± S.E. (n=3 for HEK293T; n=4 for AGS; #p<0.05: one sample t-test; p=0.065: 

unpaired t-test CagA vs. DLC1.1; p=0.069: unpaired t-test CagA vs. DLC1.4). 

 

The luciferase activity assay revealed a weak activation of mutated SRE by CagA for HEK293T 

cells and a significant inhibition of mutated SRE by both DLC1 isoforms compared with EV. 

There was no inhibition of CagA-mediated activation of mutated SRE by DLC1 monitored. 

CagA was no strong activator of mutated SRE in AGS cells, but mutated SRE was efficiently 

inhibited by DLC1 in contrast to EV and CagA transfection.  
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RHOA pulldown assay was performed to further investigate the effect of CagA and DLC1 on 

RHOA activity. RHOA specificity was successfully verified by C3T and G13qL controls also for 

RHOA pulldown. C3T efficiently inhibited CagA- and G13qL-mediated RHOA activation (Fig. 

7.4 appendices). To assess inhibition of CagA-mediated RHOA activity by DLC1, tsA201 cells 

were transiently transfected with an empty vector (EV), CagA, DLC1 and a combination of 

CagA with DLC1. Active RHOA was precipitated by GST-pulldown. Total cell lysates served as 

input controls of transfection efficiency and detection of total RHOA level (Fig. 3.25). 

 
 

Fig. 3.25: DLC1 inhibits CagA-mediated G-protein coupled RHOA activation. TsA201 cells were 

transiently transfected with empty vector (EV), CagA, DLC1.1, DLC1.4 or a combination of CagA and 

DLC1.1/DLC1.4. GST-pulldown assay was performed for the analysis of RHOA activity. Total cell 

lysates (Input) were subjected to Western Blot for verification of transfection efficiency and 

detection of total RHOA amount (n=1). Data jointly produced with the group of Prof. Wieland 

(Dept. of Experimental Pharmacology, Medical Faculty Mannheim of University Heidelberg). 

 

Figure 3.25 shows a strong G-protein coupled activation of RHOA for CagA transfection, 

which was efficiently inhibited by both DLC1 isoforms. Input controls revealed a successful 

transfection and a consistent level of total RHOA. 
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In summary, the experiments to assess a functional antagonism between DLC1 and CagA 

revealed antagonizing functions of the two proteins concerning cell proliferation, hypoxic 

stress response and RHOA activity. 

3.3 Verification of Helicobacter spec. 

Different Helicobacter strains are available for an infection of DLC1gt/+ mice to study the role 

of DLC1 in H. pylori-related gastric disease in vivo and to perform in vitro assays thereby 

replacing CagA by live bacteria. The bacteria strains were verified by genotyping and 

immunofluorescence staining (Fig. 3.26) before performing infection studies. The G27 strain 

is a cell-adapted wild type H. pylori strain, which expresses functional VacA and CagA and is 

able to inject CagA successfully into the host cell (Covacci et al., 1993; Xiang et al., 1995). 

This strain is suitable to analyze CagA-specific effects in cell culture due to the efficient 

translocation of CagA into cultivated cells (El-Etr et al., 2004; Segal et al., 1999). The SS1 

strain is a mouse-adapted H. pylori strain, which expresses functionally active CagA, but is 

not able to bring the toxin into the host cell (Lee et al., 1997; Van Doorn et al., 1999). Due to 

its genetic predisposition, the SS1 strain is suitable for long term infection of mice. H. pylori 

SS1 has been shown to induce an active chronic gastritis paralleled by atrophic changes in 

C57BL/6 and BALB/c wild type mice after eight months of infection (Krueger et al., 2011; Lee 

et al., 1997). H. felis is isolated from cat and does not express CagA or VacA (Mohammadi et 

al., 1996). Nevertheless, H. felis is able to evoke gastric disease patterns such as MALT 

lymphoma (Gossmann et al., 2016). 
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Fig. 3.26: Verification of Helicobacter spec. A: Genotyping of Helicobacter spec. Genomic DNA 

isolated from H. pylori G27, H. pylori SS1 and H. felis was subjected to PCR analysis. Amplified 

products were loaded on agarose gels. VacA: 164bp; CagA: 257bp; UreB: 144bp; H. genus: 382bp; 

H. hepaticus: 705bp; H. bilis: 435bp; H. pylori: 992-1548bp; H. felis: 241bp. B: AGS cells were 

infected with H. pylori G27 or SS1, respectively, and subjected to immunofluorescence staining 

using a H. pylori specific antibody. Blue: DAPI/nuclei; red: actin; green: H. pylori; scale bar: 10µm. 

 

Figure 3.26 shows the successful verification of all tested Helicobacter strains. Figure 3.26 A 

demonstrates that G27 and SS1 express all toxins (CagA, VacA and UreB) in contrast to H. 

felis. There is a band for H. genus for each bacterial strain. A primer pair specific for H. felis 

verifies it as the cat-derived strain. Immunofluorescence staining of infected gastric cancer 

cells revealed a successful infection with H. pylori G27 and SS1 when compared with 

uninfected AGS cells (Fig. 3.26 B). Since it was not possible to generate appropriate amounts 

of bacteria, no in vivo infection or further in vitro studies to replace CagA by living bacteria 

were performed. 

3.4 Therapy of a preclinical model for GC with an inhibitor 
of the RHO/ROCK-pathway 

DLC1 is supposed to be a novel drug target and biomarker for treatment and diagnosis of GC 

due to its tumor suppressive functions and its downregulation in tumor tissue. There are 
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different potential therapeutic strategies including restoration of DLC1 expression by 

epigenetic approaches or inhibition of the oncogenic RHO/ROCK-pathway, which represents 

a therapeutic intervention in the DLC1-mediated pathway (Popescu and Goodison, 2014). In 

this study, in vivo inhibition of ROCK was performed using the small molecule inhibitor 

fasudil, which has not been shown so far for GC (Liao et al., 2007; Miyamoto et al., 2014; 

Zhang et al., 2009). 

As a preclinical model for human GC, CEA424-SV40 TAg mice were used for in vivo therapy 

with fasudil. These transgenic mice express the oncogene large T-antigen (TAg) from the 

Simian Virus 40 (SV40) under control of the promoter of the human carcinoembryonic 

antigen (CEA). The animals develop highly proliferative gastric tumors specifically in the 

lower part of the stomach (pylorus) within 4 weeks of age (Thompson et al., 2000). 

3.4.1 Expression of RHOA and ROCK1/2 in vitro 

Expression and activity of the RHO-pathway components were analyzed in vitro first. For this 

purpose, endogenous levels of RHOA, ROCK1 and ROCK2 were determined by PCR in AGS, 

MKN45 and HEK293T cells (Fig. 3.27). 

 

 
 

Fig. 3.27: Expression of RHOA and ROCK1/2 in human transformed and GC cell lines. Total RNA of 

AGS, MKN45 and HEK293T cells was isolated, transcribed into cDNA and subjected to PCR for 

amplification of endogenous RHOA, ROCK1 and ROCK2 mRNA. The housekeeper β2-microglobulin 

(B2M) served as control. Amplified products were loaded on an agarose gel (n=3 per cell line). 

 

The PCR results revealed a steady-state expression of RHOA, ROCK1 and ROCK2 on the RNA 

level in all cell lines tested. 
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Pulldown assays were performed to determine RHOA activity by use of recombinant GST-

rhotekin for binding of active GTP-bound RHOA in AGS, MKN45 and HEK293T cells (Fig. 3.28). 

 

 
 

Fig. 3.28: Content of active RHOA in human transformed and GC cell lines. Total cell lysates of 

AGS, MKN45 and HEK293T cells were subjected to GST-pulldown. Recombinant rhotekin-GDS 

protein was used as a bait to precipitate active GTP-bound RHOA. Active (Pulldown) and total 

(Input) RHOA levels were analyzed by performing Western Blot using a RHOA specific antibody. 

O.D. values from bands in gels were normalized to HSP90 and calculated as -fold ± S.E. (n=3 per 

cell line, input: *p<0.05: ordinary one-way ANOVA AGS vs. MKN45/HEK293T; pulldown: p=0.14, 

unpaired t-test AGS vs. MKN45; p=0.092 unpaired t-test HEK293T vs. MKN45). Quantitative 

analysis (left panel) and representative gels (right panel) are shown. 

 

AGS cells showed the lowest amount of total RHOA protein compared with MKN45 and 

HEK293T cells (Input). There was low RHOA activity detectable only in MKN45 cells 

compared with AGS and HEK293T (pulldown). 

For the analysis of the in vitro efficacy of fasudil, AGS, MKN45 and HEK293T cells were 

treated with 50µM fasudil or PBS for 30h before subjecting total cell lysates to Western Blot 

analysis (Fig. 3.29).  
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Fig. 3.29: Fasudil decreases P-ROCK2 level in human GC cells. Human transformed and GC cells 

were treated with vehicle (PBS, no fasudil) or 50µM fasudil for 30 hours. Total cell lysates of 

treated cells were subjected to Western Blot analysis using specific antibodies for RHOA, (P)-

ROCK2 and P-MLC2. O.D. values from P-ROCK2 bands in gels were normalized to HSP90 and 

calculated as -fold ± S.E. (n=3 per cell line, p=0.01: Mann Whitney U test no fasudil vs. fasudil). 

Quantitative analysis (left panel) and representative gels (right panel) are shown. 

 

The Western Blot analysis confirmed the steady-state expression of RHOA and ROCK2 on a 

protein level in all cell lines tested. AGS showed the lowest level of total RHOA protein. 

Fasudil treatment of AGS cells resulted in a reduced level of phosphorylated ROCK2 by 30% 

compared with vehicle control. Also phosphorylated MLC2 protein tends to be decreased in 

AGS and HEK293T cells. 

3.4.2 Effect of fasudil on cell viability 

To elucidate the effect of fasudil on cancer cell viability in vitro, SW480, AGS and MKN45 

cells were grown to confluency and treated with PBS or increasing concentrations of fasudil 

for 48h followed by MTT assay (Fig. 3.30). 
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Fig. 3.30: Fasudil promotes cell death of human CRC and GC cell lines. Cells were treated with 

vehicle (PBS, no fasudil) or increasing fasudil concentrations for 48 hours. Cell viability was 

measured by colorimetric MTT assay. O.D. values were calculated as % ± S.E. (n=3 per cell line, 

*p<0.05: unpaired t-test no fasudil vs. fasudil; p=0.1: Mann Whitney U test no fasudil vs. fasudil).  

 

Fasudil reduced cell viability to 54% at 200µM in SW480 cells, to 36% at 200µM in AGS cells 

and to 51% at 0.5mM in MKN45 cells. 

3.4.3 Expression of RHOA and ROCK1/2 in vivo 

In order to determine the expression of RhoA and Rock1/2 in mouse tissue, total RNA was 

isolated from normal gastric tissue (NT) and gastric tumor tissue (TU) of CEA424-SV40 TAg 

mice and subjected to RT-qPCR analysis (Fig. 3.31). 

 

 
Fig. 3.31: Expression analysis of RhoA and Rock1/2 in vivo. Total RNA was extracted from normal 

WT gastric tissue (NT) and gastric tumor tissue of CEA424-SV40 TAg mice (TU) and subjected to RT-

qPCR analysis after reverse transcription. CT-values were normalized to β2-microglobulin (β2m) 

and calculated as -fold ± S.E. (n=5 mice per group, unpaired t-test NT vs. TU n.s.). 

 

RhoA and Rock1/2 mRNA was present in normal gastric tissue (NT) and gastric tumor tissue 

(TU) of CEA424-SV40 TAg mice. 
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Total tissue lysates of normal gastric tissue (NT) and gastric tumor tissue (TU) of CEA424-

SV40 TAg mice were isolated and subjected to Western Blot analysis to verify RHOA and (P)-

ROCK2 expression in vivo on the protein level. RHOA- and (P)-ROCK2 specific antibodies were 

used for detection (Fig. 3.32). 

 

 
 

Fig. 3.32: Total RHOA and P-ROCK2 protein level is elevated in GC tissue. Total tissue lysates from 

normal WT (NT) and gastric tumor tissue of CEA424-SV40 TAg mice (TU) were subjected to 

Western Blot using RHOA and (P)-ROCK2 specific antibodies. O.D. values of bands in gels were 

normalized to HSP90 and calculated as -fold ± S.E. (n=5 mice per group, *p<0.05: unpaired t-test 

NT vs. TU). Quantitative analysis (upper panel) and representative gels (lower panel) are shown. 

 

The Western Blot analysis confirmed expression of total RHOA and ROCK2 protein in 

stomach tissues of CEA424-SV40 TAg mice. RHOA expression was increased 2-fold in tumor 

tissue, phosphorylated ROCK2 protein content was elevated 11-fold in gastric tumor tissue 

compared with normal gastric tissue. 

Total tissue lysates from normal gastric tissue (NT) and gastric tumor tissue (TU) of CEA424-

SV40 TAg mice were subjected to pulldown assay using recombinant GST-rhotekin for the 

binding of active GTP-bound RHOA to determine RHOA activity in vivo (Fig. 3.33). 
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Fig. 3.33: Total but not active RHOA is highly expressed in GC tissue. Total tissue lysates from 

normal WT (NT) and gastric tumor tissue of CEA424-SV40 TAg mice (TU) were subjected to GST-

pulldown. Recombinant rhotekin-GDS protein was used as a bait to precipitate active GTP-bound 

RHOA. Active (Pulldown) and total (Input) RHOA levels were analyzed by performing Western Blot 

using a RHOA specific antibody. O.D. values from input bands in gels were normalized to HSP90 

and calculated as -fold ± S.E. (n=3 mice per group, p=0.088: unpaired t-test NT vs. TU). Quantitative 

analysis of inputs (left panel) and representative gels (right panel) are shown. 

 

RHOA pulldown detected no active GTP-bound RHOA in gastric tissue of CEA424-SV40 TAg 

mice. The input controls revealed a 4-fold increase of total RHOA expression in gastric tumor 

tissue compared with normal gastric tissue. 

The findings indicate an increased level of total RHOA and phosphorylated ROCK2 in gastric 

tumors of transgenic CEA424-SV40 TAg mice suggesting this pathway as a potential target 

for ROCK-inhibition. Fasudil furthermore promotes cell death of cancer cells and shows in 

vitro efficacy.  

3.4.4 Preclinical efficacy of fasudil in GC of CEA424-SV40 TAg mice 

To analyze if fasudil decreases tumor growth in vivo, PET/CT imaging was performed in 

cooperation with the group of Prof. Wängler (Dept. of Clinical Radiology and Nuclear 

Medicine, Medical Faculty Mannheim of University Heidelberg). To this end, transgenic 

CEA424-SV40 TAg mice received i.p. injections of fasudil (10 mg/kg) or PBS four times a week 

over a total time period of four weeks. Mice were deprived of food three hours before they 

were anesthetized and i.v. injected with [18F]-FDG followed by PET/CT imaging, which is 

based on the elevated glucose metabolism and proliferation index of the gastric tumor 

(Almuhaideb et al., 2011; Ihler et al., 2012; Thompson et al., 2000; Vetter et al., 2016). Figure 
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3.34 shows the overlay images of PET/CT of treated and control mice as well as a 

quantification of the 3D tumor volume.  

 

 
 

Fig. 3.34: Fasudil treatment decreases tumor volume in vivo. CEA424-SV40 TAg mice were 

injected with fasudil (i.p., 10 mg/kg per day, four times per week) (Therapy) or PBS (Control) for 

four weeks. The mice were analyzed by 3D PET/CT in situ imaging. Signal intensity due to [18F]-FDG 

uptake is represented by a graded color code with a SUV range of 0.5-10. The tumor volumes 

detected by PET/CT were quantified. Signals from [18F]-FDG uptake values were calculated as 

means ± S.E. (n=12 mice per group, p=0.089: Mann-Whitney U test Control vs. Therapy). 

Representative pictures of PET/CT imaging (left panel) and quantification of the tumor volume 

(right panel) are shown. Data jointly produced with the group of Prof. Wängler (Dept. of Clinical 

Radiology and Nuclear Medicine, Medical Faculty Mannheim of University Heidelberg). 

 

PET/CT imaging revealed a signal below the heart and between the kidneys for vehicle 

treated mice, but not for fasudil treated mice, demonstrating the tumor localization. The 

heart and bladder showed strong signals, which can be explained by the high glucose 

metabolism of the heart and the clearance of fasudil by the urinary tract system. A 

quantitative analysis of the 3D tumor volume revealed a decreased tumor volume of treated 

mice compared with PBS controls by 60%. 

After PET/CT imaging, the mice were sacrificed, liver tissues were snap-frozen for protein 

isolation and stomach tissues were embedded in paraffin for H&E staining as well as 
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immunohistochemical analysis. Tumor areas were measured on H&E stained stomach 

sections (Fig. 3.35 A) and immunohistochemical Ki67 staining on paraffin embedded 

stomach tissue was performed to analyze the effect of fasudil on cell proliferation (Fig. 3.35 

B). 

 

 
 

 
 

Fig. 3.35: Fasudil treatment decreases the tumor area and proliferation in vivo. A: Paraffin 

embedded stomach tissues of PBS (Control) and fasudil (Therapy) treated CEA424-SV40 TAg mice 

were subjected to H&E staining. Tumor areas (indicated by dotted lines) were calculated as means 

± S.E. (n=23 mice per group, *p<0.05: Mann-Whitney U test Control vs. Therapy). Representative 

pictures (left panel) and quantification (right panel) are shown. B: Paraffin embedded stomach 

tissues of fasudil (Therapy) and PBS (Control) treated CEA424-SV40 TAg mice were subjected to 

immunohistochemical Ki67 staining. The amount of Ki67 positive cells was calculated as means ± 

S.E. (n=4 mice per group, *p<0.05: unpaired t-test Control vs. Therapy). Representative pictures 

(left panel) and quantification (right panel) are shown. 

 

Figure 3.35 A shows a significantly decreased 2D tumor area by 26% of fasudil treated mice 

compared with PBS controls. Staining of the nuclear proliferation marker Ki67 revealed 

significantly decreased amounts of Ki67-positive cells to 45% by fasudil treatment in 

comparison to vehicle controls. 
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This data demonstrated for the first time that fasudil treatment lowers growth of GC in vivo. 

3.4.5 Effect of fasudil on RHO-pathway signaling in GC 

Immunofluorescence staining was performed on paraffin embedded stomach sections of 

fasudil treated mice and PBS controls to assess the effect of fasudil on RHOA in situ (Fig. 

3.36). 

 

 
 

Fig. 3.36: Fasudil does not affect total RHOA expression in situ. A: Paraffin embedded stomach 

tissues of fasudil (Therapy) and PBS (Control) treated CEA424-SV40 TAg mice were subjected to 

RHOA immunofluorescence staining. Gastric tumor tissue (pylorus) was compared with normal 

gastric tissue (corpus) of PBS treated mice. Blue: DAPI/nuclei; green: actin; red: RHOA; 

magnification 400x. n=3 mice per group, representative pictures are shown. 

 

RHOA was present in fasudil treated mice and in PBS controls, but not in normal gastric 

tissue of the same transgenic mice, which received PBS injection. Immunofluorescence 

staining of the downstream targets of the RHOA-pathway p38 and ERK 1/2 using 

phosphorylation-specific antibodies revealed a decreased staining in tumor regions by 

fasudil treatment (Fig. 7.6 and 7.7 appendices). 
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Snap-frozen liver tissues of treated and control mice were subjected to immunoprecipitation 

(IP) of phosphorylated ROCK2 protein to analyze the effect of fasudil treatment on the 

RHOA-pathway in vivo (Fig. 3.37). 

 

 
 

Fig. 3.37: Fasudil lowers RHOA-pathway activity in vivo. Total liver tissue lysates of fasudil 

(Therapy) and PBS (Control) treated CEA424-SV40 TAg mice were subjected to 

immunoprecipitation (IP) using a P-ROCK2 specific antibody followed by Western Blot analysis 

using the same antibody. O.D. values from bands in gels were normalized to HSP90 and calculated 

as -fold ± S.E. (n=8 mice per group, *p<0.05: Mann-Whitney U test Control vs. Therapy). 

Quantitative analysis of the immunoprecipitates (left panel) and representative gels (right panel) 

are shown. 

 

Immunoprecipitation revealed a significantly decreased level by 97% of phosphorylated 

ROCK2 protein in fasudil treated transgenic mice compared with control mice.  

In summary, these results show an efficient inhibition of RHOA downstream target proteins 

by fasudil treatment in vivo. 
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4 Discussion 

Recruitment of DLC1 to the tumor suppressor CAV1 in case of H. pylori infection was first 

identified during another project within the author’s group (Hitkova et al., 2013). These 

findings necessitated a detailed analysis of the role of DLC1 in Helicobacter-related gastric 

disease, as done by this thesis.  

4.1 Characterization of DLC1 

Characterization of DLC1 was enabled by use of the DLC1gt/+ mouse model. The effects of 

DLC1 on the immune response was examined after successful verification of the gene trap 

by Western Blot (Fig. 3.5), immunofluorescence (Fig. 3.6) and immunohistochemical staining 

(Fig. 3.7).  

DLC1gt/+ mice showed increased gastric infiltration of immune cells (Fig. 3.8). 

Immunohistochemical F4/80 staining (Fig. 3.9) identified the infiltrate as macrophages, 

which were further analyzed by RT-qPCR (Fig. 3.10). According to the binary polarization 

model, macrophages differentiate into two subsets, namely M1 and M2 macrophages. Th1 

cells activate M1 polarization via IFNγ secretion. M2 polarization is initiated by Th2 cells via 

IL-4, IL-5 and IL-13 secretion (Gordon, 2003). M1 macrophages eliminate microorganisms 

and tumor cells by secretion of pro-inflammatory cytokines and ROS through iNOS, whereas 

M2 macrophages produce anti-inflammatory cytokines and promote angiogenesis, tumor 

progression and metastasis. This suggests a categorization of M1 as “good” and M2 as “bad” 

macrophages, but evidence raises that this classical M1/M2 polarization concept is 

insufficient and fails to explain the complexity of macrophage activation (Aras and Zaidi, 

2017; Caux et al., 2016; Quiding-Jarbrink et al., 2010). DLC1gt/+ mice showed elevated gastric 

(3-fold) and ileal (100-fold) iNOS levels compared to WT mice. According to the classical 

M1/M2 polarization model, this implicates that DLC1 is dispensable to eliminate pathogens 

and tumor cells. But M1 polarization also indicates increased inflammation, which can 

initiate pre-neoplastic changes. In addition, Quiding-Jarbrink et al. showed that iNOS 

promotes the development of GC through production of reactive nitrogen species, thereby 

inducing DNA damage, impairing DNA repair and evoking p53 mutations (Quiding-Jarbrink et 
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al., 2010). Transferring these findings to the DLC1gt/+ mouse model, this is in line with the 

tumor suppressive role of DLC1. Markedly increased ileal iNOS levels compared to gastric 

iNOS expression is consistent with the findings of Hamano et al., who was able to detect ileal 

iNOS on a protein level, but no expression in the stomachs of BALB/c mice (Hamano et al., 

2007). It is not surprising that Ifng levels are conform to iNOS expression patterns in DLC1gt/+ 

mice, because IFNγ activates M1 macrophages. A genetic profile of M2 macrophages 

revealed an upregulation of the Arg1 gene, suggesting Arg1 as a hallmark of the M2 

population (Aras and Zaidi, 2017; Caux et al., 2016). DLC1gt/+ mice exhibited elevated gastric 

Arg1 levels, which indicate a protective role of DLC1 in tumor progression and metastasis 

and suggest an enhanced risk for GC due to DLC1 deficiency for these mice. Furthermore, it 

has been shown that infiltration of tumor-associated macrophages positively correlates with 

Ki67 levels indicating increased cell proliferation (Caux et al., 2016). This was confirmed for 

DLC1gt/+ mice, which showed elevated gastric F4/80 staining and M1/M2 polarization 

paralleled by an increased number of Ki67 positive gastric cells (Fig. 3.9). An increased cell 

proliferation is positively correlated to the incidence of DNA mutations thereby contributing 

to the development of pre-neoplastic changes (Preston-Martin et al., 1990).  

Besides macrophages, T cells are further putative candidates for the inflammatory gastric 

infiltrate of DLC1gt/+ mice. Quantitative gene expression analysis of DLC1gt/+ mice revealed 

increased levels of the T cell co-receptors cd4 and cd8 (Fig. 3.10). There are different 

sublineages of CD4+ Th cells, namely Th1, Th2, Th17 and Treg (Buchholz et al., 2016). The 

characteristic upregulation of Ifng expression in DLC1gt/+ mice argues for a predominant Th1 

phenotype of the gene trap mice, because Th1 cells are known to secrete IFNγ for activation 

of macrophages, thereby inhibiting Th2 differentiation (Parkin and Cohen, 2001). 

Additionally, suppressed Gata3 levels argue for a Th1 phenotype, which is true for the 

mainstomach tissue of the DLC1gt/+ mice (Wilson and Crabtree, 2007). It is further known, 

that GATA3 positively correlates with DLC1 expression, explaining low gastric Gata3 levels in 

DLC1 deficient mice (Dydensborg et al., 2009). Th17 differentiation and, thus, protection 

against microbial invaders, seems to be independent of DLC1, because there were no 

changes in Rorc levels for DLC1gt/+ mice compared with WT mice. Expression of the 

transcription factor FOXP3 is known to be responsible for Treg differentiation, which plays an 

important role in the maintenance of immunologic balance. In DLC1gt/+ mice, there was a 
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marginally decreased gastric Foxp3 level, whereas expression was increased 3-fold in ileal 

tissues. A high Treg level in tumor infiltrates positively correlates with a poor prognosis (Kim 

and Cantor, 2014). This suggests that DLC1 is crucial for the survival of the transgenic mice 

concerning the lower GI tract but not the stomach. Elevated cd8 levels in transgenic mice 

represent increased Tc cell expression (Famili et al., 2017). Tc cells cause apoptosis of tumor 

cells (Kim and Cantor, 2014). Thus, enhanced cd8 levels in DLC1gt/+ mice are contradictory to 

the function of DLC1 as tumor suppressor. Nonetheless, a loss or mutation of p53 results in 

an impaired Tc response and, consequently, in uncontrolled tumor growth (Braun and 

Iwakuma, 2016). With respect to the elevated iNOS levels of DLC1gt/+ mice, which can cause 

p53 mutations, this leads to an increased risk for cancer development for these mice. 

Nevertheless, this hypothesis needs to be validated by p53 expression analyses. A 

statistically significant number of cases is furthermore necessary to intensify the hypotheses. 

Summarized, DLC1gt/+ mice showed increased gastric inflammatory infiltration and 

alterations in the immune response compared to WT mice. These findings suggest a 

protective role of DLC1 in inflammation and cancer progression of the GI tract. 

It was not possible to generate appropriate amounts of Helicobacter bacteria for infection 

studies of DLC1gt/+ mice. The mouse-adapted H. pylori strain SS1 is suitable for examination 

of the role of DLC1 in Helicobacter-related gastric disease in vivo. Macrophage polarization 

has been attributed a crucial role to the development of H. pylori-associated GC. 

Helicobacter-related atrophic gastritis is associated with an increased iNOS expression and, 

thus, enhanced M1 polarization in patients and SS1-infected mice. (Quiding-Jarbrink et al., 

2010). Quiding-Jarbrink et al. furthermore postulated a rather important role of iNOS for the 

development of gastric disease than for protection during H. pylori infection. Concerning T 

cells, H. pylori has been shown to provoke a predominant Th1 response thereby enforcing 

gastric inflammation (Blaser and Atherton, 2004; Carbo et al., 2013). Enhanced FOXP3 

expression and, consequently, induction of Tregs ensures persistent survival of the bacteria 

and prevents a damaging inflammation (Wilson and Crabtree, 2007). Infection with 

Helicobacter furthermore enforces DNA damage and inhibits DNA repair (Obst et al., 2000; 

Yao et al., 2006). Hence, infection of DLC1gt/+ mice with Helicobacter could result in 

cumulative effects of the molecular events suggesting the DLC1 gene trap mice as an 
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appropriate model for investigation of the role of DLC1 as a tumor suppressor in 

Helicobacter-related gastric disease. 

The gastric co-localization of DLC1 and Chromogranin A (Fig. 3.4) gave first evidence for a 

localization of DLC1 to ECL cells. ECL cells represent one of the main endocrine cell 

populations of the acid-producing part of the stomach. Due to this fact, the role of DLC1 in 

homeostasis of gastric hormones and acid secretion was analyzed in detail by RT-qPCR (Fig. 

3.11). DLC1gt/+ mice showed a decreased gastric expression level of chromogranin A 

compared with WT mice. Chromogranin A is produced by ECL cells. The secretory activity of 

ECL cells is triggered by gastrin followed by the activation of the histamine-producing 

enzyme histidine decarboxylase, which in turn stimulates acid-producing parietal cells. 

Activation of these molecular events stimulates gastric acid secretion and is supposed to 

result in a multistep process including hypertrophy, diffuse hyperplasia and dysplasia 

towards neoplasia, if triggered over a long time period (Hakanson et al., 1998; Hakanson et 

al., 1995; Li et al., 2014; Mueller et al., 2003). A reduced chromogranin A level consequently 

argues for a decrease in gastric acid production. This leads to the conclusion that deficiency 

of DLC1 protects against cancer progression by inhibiting gastric acid secretion, which is 

inconsistent with the known tumor-suppressive functions of DLC1. It is known from the 

literature that the correlation between gastric acid secretion and disease outcome is even 

more complicated. Both, reduced and increased gastric acid secretion, results in different 

disease patterns dependent on the distribution of the gastritis. Whereas a corpus-

predominant gastritis is characterized by a reduced gastric acid secretion and causes GC, an 

antrum-predominant gastritis shows increased gastric acid production and results in the 

development of DU (Malfertheiner, 2011). Transferring this hypothesis to the findings above, 

this suggests an increased risk for GC by DLC1 deficiency through inhibition of gastric acid 

production. This is supported by decreased gastric levels of histidine decarboxylase, intrinsic 

factor, ghrelin and increased gastric pepsinogen C in DLC1gt/+ mice. Decreased histidine 

decarboxylase levels imply reduced histamine levels and, consequently, a low gastric acid 

secretion (Calam, 1999; Hakanson et al., 1998). The intrinsic factor is produced by acid-

secreting parietal cells and plays a crucial role in the binding of vitamin B12 (Shum et al., 

1971). Low vitamin B12 levels are proposed to increase the risk for GC and decreased 

expression of intrinsic factor indicates a reduced activity of acid-secreting parietal cells 
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(Miranti et al., 2017). Low ghrelin levels imply a reduced acid secretion thereby also 

enhancing the risk for GC (Blaser and Atherton, 2004). Elevated pepsinogen C expression is 

related to atrophic changes leading to the development of GC (Cho et al., 2017). These 

findings are contradictory to increased gastric H+K+-ATPase and decreased somatostatin 

expression in DLC1gt/+ mice. H+K+-ATPase is expressed by acid-secreting parietal cells and 

somatostatin suppresses gastrin, which indicates elevated acid production in case of low 

somatostatin levels and, hence, rather the development of DU than GC (Malfertheiner, 

2011). Nevertheless, the molecular events evoking decreased gastric acid secretion thereby 

provoking GC in DLC1gt/+ mice are predominant over the events suggesting DU development 

for the gene trap mice. Furthermore, the mice showed a corpus-predominant inflammation 

(Fig. 3.8), which also gives evidence for an increased risk for GC. However, a statistical 

significance is not accomplished since the number of cases is insufficient. In addition, 

tryptophan hydroxylase is localized to ECL cells and involved in serotonin production 

(Gershon, 2013). The role of serotonin concerning cancer development is concentration-

dependent. On the one hand, serotonin acts growth stimulating in cancers but on the other 

hand it can also inhibit tumor growth if present at low doses (Sarrouilhe et al., 2015). Due to 

this fact, it is difficult to discuss the serotonin level in DLC1gt/+ mice. However, there was no 

difference between WT and gene trap mice in gastric expression of tryptophan hydroxylase 

suggesting a dispensable role for DLC1. Adiponectin is a product of adipocytes, which are 

one of the largest endocrine cell subtypes. The functions of adiponectin are not well 

understood, but adipocytes also secrete the adipokine leptin. Leptin plays a crucial role in 

the regulation of immunity and inflammation. Increased leptin levels are associated with 

elevated inflammation (Mueller et al., 2003). Adiponectin expression was downregulated in 

the mainstomach but upregulated in the ileum of DLC1gt/+ mice, suggesting a tissue-

dependent role of this hormone. As adiponectin is a marker for adipocytes, this implies an 

increased ileal leptin level and elevated inflammation of the lower GI tract caused by DLC1 

gene trap. 

These results demonstrate a crucial role of DLC1 in the homeostasis of gastric acid in vivo, 

thereby giving evidence that DLC1 fulfills a protective role in the development of GC. 

H. pylori is suggested to inhibit ghrelin secretion (Blaser and Atherton, 2004; Weigt and 

Malfertheiner, 2009) and histidine decarboxylase expression (Calam, 1999) leading to a 
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decreased gastric acid secretion, which facilitates bacterial colonization of the stomach. 

Furthermore, the bacteria suppress somatostatin production resulting in hypergastrinemia. 

Since gastrin is a growth factor for H. pylori, suppressed somatostatin levels enforce the 

bacterial growth (Blaser and Atherton, 2004; Calam, 1999; Malfertheiner, 2011; Weigt and 

Malfertheiner, 2009). These findings are in line with the expression patterns in DLC1gt/+ mice, 

suggesting a potential cumulative effect by performing infection studies with Helicobacter. 

Cag PAI gene products are further known to downregulate H+K+-ATPase expression 

(Malfertheiner, 2011), which could probably not be reached by an infection of the mice with 

the SS1 strain, because these bacteria are not able to bring functionally active CagA into the 

host cell  (Lee et al., 1997; Van Doorn et al., 1999). Furthermore, H. pylori causes increased 

gastric leptin levels (Blaser and Atherton, 2004), which was not observed for DLC1gt/+ mice. 

However, an upregulation of adiponectin is associated with immunity to Helicobacter in an 

animal model (Blaser and Atherton, 2004), suggesting increased gastric susceptibility of 

DLC1gt/+ mice to the bacteria. 

Nevertheless, the molecular changes of DLC1gt/+ mice discussed so far are not sufficient for 

evoking spontaneous development of GC in vivo. Infection of these mice with Helicobacter 

can end up in the progression of gastric malignancies, but for establishment of a reliable 

mouse model for genetically driven GC, additional accelerating molecular events are needed. 

To this end, further knock-out (KO) or transgene (tg) mouse strains showing a loss or 

overexpression of certain host genes are available. Homozygous CAV1-KO mice are deficient 

for the tumor suppressor CAV1, which plays a central role in cell transport processes and 

represents a control platform for signal transduction thereby inhibiting small GTPases 

(Cohen et al., 2004; Zaas et al., 2005). The loss of CAV1 results in hyperproliferation and 

hyperplasia of the GI tract (Burgermeister et al., 2011; Cohen et al., 2004). Infection of these 

mice with H. pylori evokes active chronic gastritis (Hitkova et al., 2013). Transgene HK-IL1β 

mice overexpress human Il1β under control of the murine H+K+-ATPase promoter and 

develop a spontaneous gastritis within 18 months, which progresses to carcinoma by H. felis-

infection (Tu et al., 2008). Cross breeding of the two mouse lines (HK-IL1β x CAV1-KO) also 

with DLC1gt/+ mice (HK-IL1β x CAV1-KO x DLC1gt/+) has been already conducted, expecting an 

acceleration of the molecular events. Histopathological analysis of these mice will be subject 

of an upcoming project. If spontaneous progression of GC fails, Helicobacter-infection is 
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proposed to promote tumorigenesis and to enable the analysis of Helicobacter-driven GC 

progression in more detail. 

4.2 Interaction between DLC1 and CagA 

It is known from the literature that host cell responses are modified by both, the C- and the 

N-terminus of the CagA protein. Besides signaling motifs of the C-terminus, the N-terminus 

contains an inhibitory domain to reduce host cell responses thereby promoting cancer 

formation (Pelz et al., 2011). CoIP experiments gave first evidence for an interaction 

between DLC1 and CagA on a protein level (Fig. 3.13, Fig. 3.14, Fig. 3.15), which was 

confirmed by PLA (Fig. 3.16). An interaction was manifested for all DLC1 (DLC1.1 and DLC1.4) 

and CagA (CagA_WT, CagA_838-1216, CagA_1029-1216 and CagA_1-877) constructs used. 

Thus, the N- and the C-terminus of CagA are essential for an interaction with DLC1. To 

identify specific interaction domains, further DLC1 and CagA plasmids containing defined 

sections of the corresponding genes are necessary to clarify involved protein-protein 

interaction domains. Nevertheless, CoIP experiments suggest a stronger interaction between 

CagA and DLC1.4 rather than DLC1.1. This is in agreement with previously published data, 

which showed that CagA-proficient H. pylori bacteria promote the recruitment of DLC1.4 to 

CAV1 in human gastric epithelial cells suggesting DLC1.4 as the Helicobacter-interacting 

isoform (Hitkova et al., 2013).  

As described in 3.2.1.3, DLC1 and CagA interactions are not limited to the protein level and 

were also observed on the DNA level. CagA efficiently inhibited promoter activities of both 

DLC1 isoforms in human transformed and GC cell lines (Fig. 3.17). Only CagA-mediated 

DLC1.1p repression in NCI-N87 cells was not significant. In contrast to transformed HEK293T 

cells and primary tumor cells (AGS), NCI-N87 cells are derived from a metastatic site. Hence, 

the findings in NCI-N87 cells indicate a stronger interaction for CagA and DLC1.4 than for 

DLC1.1 during metastasis, suggesting once more DLC1.4 as the oncogenic Helicobacter-

interacting DLC1 isoform.  Nonetheless, the transcriptional repression mechanism of DLC1 by 

CagA needs to be clarified. In silico screens can help to identify putative binding elements of 

the DLC1 promoter. Previous data demonstrated an activation of SREBP1 by Helicobacter-

infection resulting in inhibition of the CAV1 promoter (Hitkova, 2013). To validate if this 
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holds true for DLC1, performing chromatin-immunoprecipitation (ChIP) of transiently 

transfected ± CagA cells is proposed to elucidate a putative CagA-dependent binding 

between active SREBP1 and the DLC1 promoter. Furthermore, Hitkova et al. showed DLC1.1 

expression in non-cancer cell lines in contrast to DLC1.4, which was only expressed in cancer 

cells (Hitkova et al., 2013). These findings were confirmed by DLC1 expression analyses using 

N-terminal specific primers representing human DLC1.1 and DLC1.3 expression and C-

terminal specific primers demonstrating human DLC1.1, DLC1.2 and DLC1.4 expression (Fig. 

3.1). Furthermore, it is known that DLC1 is ubiquitously expressed in normal tissue and 

frequently downregulated or even lost in many human cancer entities including GC. This was 

confirmed by method as illustrated in figures 3.2 and 3.3. Silencing of DLC1 is caused by 

mutations or epigenetic inactivation (Durkin et al., 2007; Ko and Ping Yam, 2014; Popescu 

and Goodison, 2014; Sabbir et al., 2016; Sabbir et al., 2010). This study suggests that 

transcriptional DLC1 downregulation by CagA could also contribute to DLC1 silencing. 

For the first time, these findings demonstrate a complex formation of the CagA and DLC1 

proteins. Transcriptional downregulation of DLC1 by CagA constitutes DLC1 as an early 

molecular marker before the transition of inflammation to cancer in Helicobacter-infected 

patients. 

4.3 Antagonism between DLC1 and CagA 

CagA is known to promote the formation of needle-like cell elongations (“hummingbird 

phenotype”) by activation of the RHO/ROCK/MLC-pathway (Barras and Widmann, 2014; 

Moese et al., 2004; Segal et al., 1999; Wessler et al., 2011). The characteristic “hummingbird 

phenotype” was also observed in CagA-transfected GC cells in this study confirming the 

findings from the literature (Fig. 3.18 B). The CagA-mediated morphological changes and, 

hence, disruption of the intercellular barriers (Amieva et al., 2003) cause damage to the 

gastric mucosa, which allows H. pylori access to nutrients and facilitates persistence of the 

bacteria (Blaser and Atherton, 2004; De Falco et al., 2015). By inducing a spindle-like cell 

shape, CagA further enforces cell migration and invasive growth similar to Epithelial-

Mesenchymal-Transition (EMT) (Jie et al., 2017; Wessler et al., 2011). In contrast to the 

oncogenic CagA-mediated cell morphologies, DLC1 is known to be localized to focal 
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adhesions thereby promoting cell spreading (Barras and Widmann, 2014; Ravi et al., 2015). 

This was confirmed by Figure 3.18 and indicates an increased adhesion of DLC1-positive 

cells. Although the molecular mechanism of the observed phenotype was not analyzed by 

this investigation, cell spreading might be explained by interaction of DLC1 with components 

of the focal adhesions such as FAK, talins and tensins thereby regulating assembly and 

disassembly of the focal adhesions (Cao et al., 2012; Li et al., 2011; Yam et al., 2006). DLC1 

can further be sequestered in the cytoplasm, which was also observed in this study. 

However, localization to focal adhesions is suggested to be essential for the full tumor 

suppressive function of DLC1 (Barras and Widmann, 2014). In contrast to RAC and CDC42, 

which are essential for membrane ruffling and formation of filopodia, RHOA is involved in 

the actin rearrangement and assembly of focal adhesions (Wessler et al., 2011). With 

respect to the RHOA-inhibiting function of DLC1 it is not surprising that DLC1 accumulates at 

the focal adhesions.  

In summary, this data demonstrates antagonizing cell morphologies evoked by CagA and 

DLC1, respectively. CagA promotes a spindle-like cell shape thereby enforcing oncogenic 

processes. In contrast, DLC1 is localized to focal adhesions, which enables full tumor 

suppressive RHOA-inhibiting function and promotes cell adhesion. 

Besides the analysis of the antagonizing cell morphologies mediated by DLC1 and CagA, 

studies on a putative functional antagonism of the two proteins were performed. 

Immunohistochemical analysis of DLC1gt/+ mice already revealed an anti-proliferative effect 

of DLC1 (Fig. 3.9) attributing a protective role against pre-neoplastic changes to DLC1. In 

contrast, H. pylori CagA is known to fulfill oncogenic functions and to promote 

tumorigenesis. To obtain detailed data of the effect of the two proteins on cell proliferation, 

luciferase reporter assays were performed using a reporter plasmid containing the 

proliferation-regulating SREs (Vickers et al., 2004) (Fig. 3.19). The analyses revealed that 

CagA is a strong activator of SRE only in human transformed non-cancer cells (HEK293T), 

suggesting that the pro-proliferative effect of CagA is an initial process in cancer 

development and plays a minor role in primary tumors (AGS) or metastasis (NCI-N87), 

respectively. This is in line with findings of Wang et al., which also demonstrate that CagA 

promotes proliferation of human transformed cells (Wang et al., 2017). Nevertheless, SRE 

activity was significantly elevated by CagA transfection compared with DLC1.1, also in human 



Discussion  

 

114 

GC cells (AGS). Merely in AGS cells DLC1.1 markedly inhibited the CagA-mediated cell 

proliferation, suggesting an antagonism of the two proteins concerning cell proliferation in 

GC. The strong inhibition of SRE activity by DLC1.1 in HEK293T and AGS cells, but not in NCI-

N87 cells, indicates that the anti-proliferative function of DLC1 has been overcome in 

metastasis. 

Summarized, the pro-proliferative effect of CagA is suggested to be an initial process in the 

development of GC, whereas DLC1 fulfills an anti-proliferative function also in initial stages 

of gastric disease. 

The functional antagonism was further studied regarding the functions of DLC1 and CagA in 

the stress response of the host cell during Helicobacter-infection. An infection with 

pathogens, including gram-negative bacteria such as H. pylori, evokes oxidative stress by the 

production of reactive oxygen species (ROS). H. pylori-related oxidative burst potentiates 

tumorigenesis, increases apoptosis and causes DNA damage. There are different sources of 

ROS during an infection. Pro-inflammatory cytokines are induced by infection and recruit 

host phagocytes to the site of inflammation, which release ROS actively, whereas H. pylori 

itself also produces ROS (Ding et al., 2007; Fang, 2011; Spooner and Yilmaz, 2011). Thus, it is 

not clear, whether ROS act to eliminate pathogens, host cells or even both. In infected cells, 

ROS regulate the active secretion of high-mobility group box (HMGB) proteins, which act as 

damage-associated molecular patterns (DAMPs) extracellularly (Kang et al., 2013; Tang et al., 

2011). HMGB proteins are known to bind to cell surface receptors such as TLR4. This triggers 

downstream signaling pathways including NFκB, which results in the induction of early 

response genes modulating the immune response and carcinogenic processes (Bekhbat et 

al., 2017; Sokolova and Naumann, 2017). HMGB proteins further function as DNA 

chaperones in a redox-sensitive manner repairing oxidative DNA damage in the nucleus 

(Kang et al., 2013; Tang et al., 2011; Yanai et al., 2012). Furthermore, Küchler et al. showed 

anti-microbial activity of HMGB2 against commensal and pathogenic bacteria in the human 

intestinal tract (Küchler et al., 2013). ROS have further been postulated to act as hypoxia 

signaling molecules. These cause the stabilization and translocation of the transcription 

factor hypoxia-inducible factor 1α (HIF1α) into the nucleus, where it binds to hypoxia 

responsive elements (HREs) to activate a wide range of target genes. This results in the 

modulation of diverse cellular processes including cell proliferation, apoptosis, 
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differentiation, angiogenesis and inflammation. HREs are enhancers, which are located to 

the coding regions of oxygen-responsive genes (Biddlestone et al., 2015; Hamanaka and 

Chandel, 2009; Javan and Shahbazi, 2017).   

For investigation of the involvement of DLC1 and CagA in the signaling pathways mentioned 

above, luciferase reporter activity assays were performed using the pGL3_HRE reporter 

plasmid (Fig. 3.20). This stress responsive plasmid contains the HMGB2 promoter and the 

enhancer HRE. In non-cancer HEK293T cells, CagA efficiently inhibited HRE activity compared 

to EV transfection. This suggests, with regard to the anti-microbial activity of HMGB2, that 

CagA inhibits the host’s anti-microbial defense against H. pylori to ensure colonization and 

persistence of the bacteria. In contrast, DLC1.1 significantly increased HRE activity compared 

with CagA. This leads to the conclusion that DLC1.1 promotes the anti-microbial defense to 

eliminate the bacteria and to minimize the oncogenic effects of CagA. This further 

demonstrates antagonizing functions of the two proteins in initial steps of infection. 

Nevertheless, abolishment of CagA-mediated inhibition of the anti-microbial response by 

DLC1.1 was not observed. The effect of CagA and DLC1.1 on HRE activity was reversed in GC 

AGS cells and metastasis-derived NCI-N87 cells compared to non-cancer HEK293T cells. In 

AGS but not NCI-N87 cells, CagA was a strong activator of HRE. However, in both cancer cell 

lines, CagA transfection resulted in significantly increased HRE activity over DLC1.1 

transfection. Inflammation and cancer are metabolically costly processes characterized by an 

increased use of oxygen. Hence, hypoxia is a hallmark of solid tumors and cancer is 

characterized by an imbalance in the production of ROS and antioxidants (Acharya et al., 

2010; Javan and Shahbazi, 2017; Sokolova and Naumann, 2017). Transferring this to the 

findings from the luciferase activity assays, CagA seems to promote the imbalance in ROS 

production during carcinogenesis to cause damage to the host cell, whereas DLC1.1 

counteracts. Merely in NCI-N87 cells, CagA was able to abolish DLC1.1-mediated HRE-

inhibition, verifying a powerful oncogenic role of CagA in metastasis. Thus, the effect of CagA 

and DLC1 on HRE activity was strongly dependent on the cell line used, suggesting stage-

dependent, but always antagonizing functions of the two proteins during tumorigenesis. This 

data further demonstrates a stage-dependent role of ROS in gastric disease. Due to the fact 

that ROS derive from different sources and it still needs to be elucidated if ROS act to 

eliminate pathogens or the host cells, the luciferase activity assays leave room for various 
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interpretation possibilities. Thus, further analyses concerning CagA/DLC1-mediated ROS 

generation and stress induction were conducted to support and strengthen the findings 

from luciferase activity assays. FACS analyses showed per se ROS induction by transfection 

(Fig. 3.21). Hence, it was not possible to make a clear statement on the effect of CagA or 

DLC1 on the ROS production. To further investigate the role of CagA and DLC1 in the hypoxic 

response, the effect of the two proteins on the mediator of the hypoxic response HIF1α was 

analyzed in AGS cells by Western Blot (Fig. 3.22). To induce ROS and to stabilize HIF1α, which 

is unstable and proteasomally degraded under normoxia, cells were additionally treated 

with CoCl2 (Javan and Shahbazi, 2017; Kotake-Nara and Saida, 2007). This experiment was 

not able to shed light on the role of DLC1 and CagA in hypoxic response as well, because 

HIF1α level did not change by DLC1 or CagA transfection. Nonetheless, a crosstalk between 

HIFs and NFκB attracts increasing attention in these days (Bonello et al., 2007; Sokolova and 

Naumann, 2017). Thus, the effect of CagA and DLC1 on NFκB signaling was examined by 

Western Blot analyses (Fig. 3.23). To enhance this effect, TLR4-positive AGS cells were 

additionally treated with E. coli-derived LPS, because LPS of H. pylori is not recognized by 

TLR4 (Salama et al., 2013; Su et al., 2003). Furthermore, E. coli-derived LPS has been shown 

to form a heterocomplex with HMGB proteins, which binds to TLR4 and thereby triggers the 

synthesis of mitochondrial ROS and NFκB signaling (Kang et al., 2013; Sokolova and 

Naumann, 2017). Tripathi et al. showed that DLC1 suppresses the activity of NFκB in prostate 

cells in a GAP and α-catenin dependent manner. They demonstrated an inhibition of NFκB 

signaling by suppression of the RHO-pathway and an accumulation and nuclear translocation 

of HIF1α when DLC1 is silenced (Tripathi et al., 2012). DLC1-mediated inhibition of active 

NFκB was not confirmed by this study. CagA transfection did not change the level of 

phosphorylated NFκB as well. This is not in line with findings from the literature, which 

showed that CagA is required for the activation of NFκB (Lamb et al., 2009). In contrast, 

other studies demonstrated that CagA is dispensable for a direct NFκB activation (Sokolova 

and Naumann, 2017). 

Summarized, these findings suggest an antagonizing mode of action of DLC1 and CagA 

concerning cellular hypoxic stress response. The functions of the two proteins change from 

initial to advanced steps in carcinogenesis. Whereas CagA seems to inhibit the host’s anti-

microbial defense, DLC1 intends to eliminate the pathogens in the initial phase. During 
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carcinogenesis, CagA enforces ROS production and benefits from ROS imbalance in GC to 

damage the host cells. This is in contrast to DLC1, which inhibits ROS generation to minimize 

the oncogenic effects of CagA. Nevertheless, these findings require confirmation and the 

specific function of DLC1 and CagA in stress response and hypoxia needs to be clarified. To 

this end, multiplex analyses (e.g. protein microarrays) are suggested to elucidate the 

involved pathways. In this context, Tripathi et al. gave first evidence for a crucial role of the 

cytoskeleton and DLC1’s interaction with components of the focal adhesions (Tripathi et al., 

2012). 

Although CagA-mediated RHOA activation and DLC1-mediated inhibition of RHOA are well 

established, inhibition of CagA-mediated G-protein coupled RHOA activation by DLC1 still 

needs to be verified (Braun and Olayioye, 2015; De Falco et al., 2015; Yamahashi and 

Hatakeyama, 2013). To this end, luciferase activity assays were performed using the pSRE.L 

plasmid, which contains mutant SRE and is therefore suitable to monitor RHOA activity 

(Wells et al., 2001) (Fig. 3.24). DLC1-mediated RHOA inhibition was confirmed for HEK293T 

and AGS cells. CagA was no strong activator of mutated SRE and inhibition of CagA-mediated 

RHOA activation by DLC1 was not clearly verified, neither for HEK293T, nor for AGS cells. In 

contrast, GST-pulldown assay revealed a strong activation of RHOA by CagA, suppression of 

RHOA activity by DLC1 and inhibition of CagA-mediated G-protein-coupled RHOA activation 

by both DLC1 isoforms (Fig. 3.25). Inhibition of the CagA-mediated RHOA activation was 

stronger by DLC1.4 compared to DLC1.1. This is in agreement with the interaction studies 

(see 3.2.1), which suggest a stronger interaction between CagA and DLC1.4 compared with 

DLC1.1, confirming DLC1.4 as the Helicobacter-interacting isoform as already mentioned 

(Hitkova et al., 2013).  

In summary, DLC1 and CagA act antagonizing concerning RHOA activation. Inhibition of 

CagA-mediated G-protein-coupled RHOA activation by DLC1 has been shown for the first 

time by this thesis. This suggests a new risk stratification of Helicobacter-infected GC 

patients according their RHOA mutations into the genomically stable subtype of GC and 

establishes new options for cancer treatment and response prediction. 
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4.4 Therapy of a preclinical model for GC with an inhibitor 
of the RHO/ROCK-pathway  

Besides restoration of DLC1 expression by epigenetic approaches, inhibition of the 

RHO/ROCK-pathway represents a potential therapeutic strategy for treatment of GC, since 

RHOA was identified as the major oncogenic driver mutation of diffuse GC (Cancer Genome 

Atlas Research, 2014; Kakiuchi et al., 2014; Popescu and Goodison, 2014; Wang et al., 2014). 

RHOA activates several downstream effectors such as the RHO-associated protein kinases 

ROCK1/2. ROCK 1 and 2 share highly related functional domains and distribution patterns 

are similar throughout adult tissues. ROCK1/2 phosphorylates a series of downstream 

proteins including MLC2, which regulates cell processes such as contractility, migration and 

growth thereby attributing the ROCK-pathway a key role in cancer (Julian and Olson, 2014). 

For this study, the ROCK inhibitor fasudil [1-(5-isoquinoline sulfonyl)-homopiperazine) was 

used for in vivo therapy of a preclinical model for GC. Fasudil is already in use for treatment 

of hypertension, cerebral vasospasm or atherosclerosis. Furthermore, anti-tumor efficacy of 

fasudil has been shown in rodent xenograft studies for breast, myeloma, lung, melanoma, 

glioblastoma and head-and-neck cancer (Deng et al., 2010; Julian and Olson, 2014; 

Miyamoto et al., 2012; Xia et al., 2015; Ying et al., 2006).  

The transgenic CEA424-SV40 TAg mouse model of GC was used for therapy. These mice 

express the oncogene SV40 large T-antigen of the Simian Virus as a transgene under control 

of the human CEA promoter, which is particularly active in the pylorus of the stomach 

(Thompson et al., 2000). Transgenic mice develop highly proliferative tumors within 4 weeks 

of age, which are characterized by upregulated stem cell and neuroendocrine gene 

signatures (Ihler et al., 2012; Vetter et al., 2016). Due to the anatomical localization of the 

tumor, its diffuse histomorphology, the high proliferation index and its genetic 

characteristics, these transgenic mice were suggested to be an appropriate preclinical model 

for human diffuse GC.  

Presence of the drug target proteins RHOA and ROCK1/2 was validated on mRNA and 

protein levels in vitro (Fig. 3.27 and 3.29) and in vivo (Fig. 3.31, Fig. 3.32, Fig. 3.36). For in 

vitro experiments human GC cell lines (AGS and MKN45) and HEK293T cells were used. The 

HEK293T cells had been transformed by the same viral oncogene SV40 large T-antigen that 
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was overexpressed by the transgenic mice used for fasudil therapy and, thus, were defined 

as an appropriate in vitro model for ROCK1/2 inhibition (Thakur et al., 2012). It is suggested 

that there is a gain of function (GOF) of RHO-signaling in human GC cell lines (Lin et al., 2007; 

Pan et al., 2004), which means that RHO is bound to GTP and, thus, constitutively active 

resulting in malignant cell phenotypes. In vitro studies demonstrated that this GOF can be 

abolished by inhibition of ROCK1/2 (Liu et al., 2004; Sun et al., 2007; Xu et al., 2012). Figure 

3.28 showed only weak RHOA activity for MKN45 cells. However, there is no evidence in the 

literature concerning RHOA function in vivo. The results of this thesis suggest a GOF of RHOA 

for the preclinical model of human GC used for therapy. Although it was not possible to 

detect active RHOA, total protein levels of RHOA and its phosphorylated downstream 

effector ROCK1/2 were increased in gastric tumor tissue compared to normal tissue. 

Significantly elevated levels of active phosphorylated ROCK1/2 protein in tumor tissue (Fig. 

3.32, Fig. 3.33) as a surrogate marker argue for a GOF of RHOA similar to oncogenic KRAS 

mutations, which are responsible for the development of CRC (Lemieux et al., 2015). 

Problems in detecting active RHOA may be of experimental nature, because RHOA is known 

to have more than one substrate such as rhotekin (Heasman and Ridley, 2008). 

Nevertheless, further studies on other mouse models and human samples are needed to 

elucidate whether increased GTPase activity or the increase in total RHOA protein amounts 

are responsible for activation of the downstream ROCK1/2 signaling pathway.  

Decreased levels of phosphorylated ROCK2 and MLC2 protein in fasudil treated GC cells and 

reduced cell viability by fasudil treatment of CRC and GC cells demonstrated in vitro efficacy 

of the ROCK1/2 inhibitor (Fig. 3.29, Fig. 3.30). MALDI-MS imaging was performed in 

cooperation with Prof. Hopf (Center for Applied Research in Biomedical Mass Spectrometry 

and Institute of Medical Technology of Heidelberg University and Mannheim University of 

Applied Sciences, Mannheim, Germany) and verified the presence of the drug in the gastric 

tumor of transgenic mice (data not shown, Hinsenkamp et al., 2016). Preclinical efficacy of 

fasudil was assessed by PET/CT imaging in cooperation with Prof. Wängler (Dept. of Clinical 

Radiology and Nuclear Medicine, Medical Faculty Mannheim of University Heidelberg) in 

living transgenic mice. Uptake of [18F]-FDG due to high metabolic activity of the tumor was 

determined in the anatomical area corresponding to the pylorus of the stomach. Tumor 

volume, tumor area and staining of the proliferation marker Ki67 were significantly reduced 
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in treated mice compared with control animals (Fig. 3.34, Fig. 3.35). Furthermore, 

phosphorylation of ROCK2 was decreased in treated mice compared with vehicle controls 

(Fig. 3.37). Since fasudil acts downstream of RHOA, total protein amounts of the small 

GTPase, but not of its downstream targets P-p38 and P-ERK1/2 were unaffected by fasudil 

treatment (Fig. 3.36, Fig. 7.6, Fig. 7.7). These findings demonstrate inhibited GC growth in 

vivo by inhibition of the RHO/ROCK-pathway.  

Summarized, this data proposes inhibition of the RHO/ROCK-pathway as a potential therapy 

strategy for human GC. 

 

5  Conclusion 

This thesis demonstrates a protective role of DLC1 in inflammation and cancer progression 

of the GI tract by regulating the immune response and gastric acid homeostasis. 

Helicobacter-infection is known to potentiate the risk for GC and represents an initial event 

in tumorigenesis before the onset of neoplastic changes. Transcriptional downregulation of 

DLC1 by the Helicobacter toxin CagA proposes DLC1 as an early diagnostic marker for human 

Helicobacter-related gastric disease. DLC1 showed antagonizing functions compared to CagA 

by complex formation in vitro. DLC1 herewith neutralized the oncogenic effects of CagA and 

acted anti-proliferative, promoted cell adhesion and antagonized CagA’s hypoxic stress 

modulation (Fig. 5.1). Due to the oppositional effects of the two proteins on the regulation 

of the major oncogenic driver of human GC RHOA, Helicobacter-associated GC may be 

assigned to the genomically stable subtype. This represents a novel risk stratification for 

Helicobacter-infected GC patients according their RHOA mutation characteristics. Efficient 

tumor growth reduction by inhibition of the RHO/ROCK-pathway furthermore represents a 

potential therapy strategy of GC and constitutes DLC1 as a future druggable target in human 

GC. 
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Fig. 5.1: Simplified signaling model of the antagonizing pro- and anti-tumor components CagA 

and DLC1. After translocation of the Helicobacter toxin CagA via a Type IV Secretion System (T4SS) 

into the host gastric epithelial cell, a pro-tumor pathway is triggered. CagA activates the 

RHO/ROCK-pathway leading to a deregulation of epithelial polarity (“hummingbird” phenotype). 

CagA increases cell proliferation, inflammation and modulates cellular hypoxic stress response 

towards tumorigenesis. In contrast, DLC1 negatively regulates RHOA and directly interacts with 

CagA thereby antagonizing the pro-oncogenic effects of CagA. DLC1 interacts with components of 

the focal adhesions, which are responsible for the maintenance of cell adhesion. Fasudil reduced 

tumor growth by inhibiting ROCK downstream of DLC1. Green: anti-tumor; red: pro-tumor. 
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7 Appendices 

 
 

Fig. 7.1: Melting curves corresponding to the expression analysis of surface markers of immune 

cells and cytokines in DLC1gt/+ mice compared to WT mice.  

 

 
 

Fig. 7.2: Melting curves corresponding to the expression analysis of proteins involved in 

hormone balance and gastric acid secretion in DLC1gt/+ mice compared to WT mice.  
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Fig. 7.3: CagA-mediated activation of mutated SRE is inhibited by C3T and DLC1-mediated 

inhibition of mutated SRE is abolished by constitutively activated Gα protein. A: TsA201 cells 

were transiently transfected with empty vector (EV), CagA, a plasmid containing C3T (C3 toxin of 

Clostridium botulinum) or a combination of CagA and C3T in addition to pSRE.L and pRL.TK. 

Luciferase activity was measured by dual luciferase assay. Firefly luciferase was normalized to 

renilla luciferase and calculated as -fold ± S.E. (n=6; *p<0.05: unpaired t-test; #p<0.05: one sample 

t-test). B: TsA201 cells were transiently transfected with empty vector (EV), DLC1.1, DLC1.4, a 

plasmid containing G13qL (constitutively active G-protein α subunit Gα13) or a combination of 

G13qL with DLC1.1/DLC1.4 in addition to pSRE.L and pRL.TK. Luciferase activity was measured by 

dual luciferase assay. Firefly luciferase was normalized to renilla luciferase and calculated as -fold ± 

S.E. (n=2; *p<0.05: 2way ANOVA G13qL vs. EV/DLC1.1/DLC1.4; p=0.078: unpaired t-test DLC1.1 vs. 

DLC1.1+G13qL; p=0.081: unpaired t-test DLC1.4 vs. DLC1.4+G13qL). Data jointly produced with the 

group of Prof. Wieland (Dept. of Experimental Pharmacology, Medical Faculty Mannheim of 

University Heidelberg). 
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Fig. 7.4: C3T inhibits CagA- and G13qL-mediated G-protein coupled RHOA activation. A: TsA201 

cells were transiently transfected with empty vector (EV) and increasing concentrations of CagA 

with or without co-transfection of C3T (C3 toxin of Clostridium botulinum) (n=1). B: TsA201 cells 

were transiently transfected with empty vector (EV), G13qL (constitutively active G-protein α 

subunit Gα13) or a combination of G13qL with C3T (n=1). RHOA pulldown assay was performed for 

analysis of RHOA activity. Total cell lysates (Input) were subjected to Western Blot for verification 

of transfection efficiency and detection of total RHOA amount. Data jointly produced with the 

group of Prof. Wieland (Dept. of Experimental Pharmacology, Medical Faculty Mannheim of 

University Heidelberg). 

 

 

 
 

Fig. 7.5: Melting curves corresponding to the expression analysis of RhoA and Rock1/2 in gastric 

tissue of CEA424-SV40 TAg mice. 

 



Appendices  

 

137 

  

 
 

Fig. 7.6: Fasudil lowers P-p38 levels in situ. Paraffin embedded stomach tissues of fasudil (four 

weeks, Therapy) and PBS (Control) treated CEA424-SV40 TAg mice were subjected to (P)-p38 

immunofluorescence staining. Gastric tumor tissue (pylorus) was compared with normal gastric 

tissue (corpus) of PBS treated mice. Blue: DAPI/nuclei; green: actin; red: (P)-p38; magnification 

400x. n=1 mouse per group for p38, n=2 mice per group for P-p38, representative pictures are 

shown. 
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Fig. 7.7: Fasudil lowers P-ERK 1/2 levels in situ. Paraffin embedded stomach tissues of fasudil (four 

weeks, Therapy) and PBS (Control) treated CEA424-SV40 TAg mice were subjected to (P)-ERK 

immunofluorescence staining. Gastric tumor tissue (pylorus) was compared with normal gastric 

tissue (corpus) of PBS treated mice. Blue: DAPI/nuclei; green: actin; red: (P)-ERK; magnification 

400x. n=1 mouse per group for ERK1/2, n=2 mice per group for P-ERK1/2, representative pictures 

are shown. 
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