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Summary 

Glutathione (GSH) has been reported for its crucial roles in maintaining plant growth 

as well as responding to environmental stresses. The multiple functions of glutathione 

require a tight control of GSH levels. Glutamylcysteine ligase (GCL) catalyzes the first 

rate-limiting step of glutathione biosynthesis. However, the mechanism of 

redox-dependent regulation on GCL is still largely unknown in plants.  

Previous findings have demonstrated that formation of an intramolecular disulfide 

bond followed by homodimerization is unique to the redox-mediated activation of plant 

GCL. To address whether the disulfide bond formation is sufficient for GCL activation 

or the subsequent homodimerization is a necessary step, we generated recombinant 

mutated GCLs unable to form dimers. Enzyme activity assays showed that disrupting 

dimer formation did not prevent redox-activation of GCL. Substrate affinities were 

similar among recombinant GCL variants. The dissociation constant of GCL was 

estimated by FPLC analysis to be less than 10-6 M; additionally, the GCL 

concentration in plastids was estimated to be approximately 5 mM. Therefore, the 

GCL dimer is likely to occur in vivo. Taken together, this study reveals that GCL 

activation relies primarily on intramolecular disulfide bridge whereas dimerization has 

little contribution. Whether dimerization affects other enzyme properties, e.g. GCL 

stability in vivo, remains to be investigated.  

Mitogen-activated protein kinase (MAPK) cascades mediate signal transduction of 

diverse extracellular stimuli including pathogen attack and oxidative stress. 

Arabidopsis MAPK3 and MAPK6 can be deactivated by MAPK phosphatase2 (MKP2) 

which may be involved in oxidative stress-related responses. Therefore, the 

MKP2-inducible transgenic Arabidopsis lines were used to explore the redox 

dependency of MKP2 regulation. After induction, an attenuated MKP2 accumulation 

was observed under sustained oxidative stress conditions. MKP2 may act as a 

potential target for plants to perceive oxidative stress and enhance MAPK signaling. It 

is conceivable that the post-translational modification of MKP2 exerts such regulation. 
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Zusammenfassung 

Glutathion (GSH), ein Antioxidans, hat eine zentrale Rolle bei der 

Unterstützung des Pflanzenwachstums sowie der pflanzlichen Reaktion auf 

Umweltbelastungen. Die vielschichtigen Aufgaben von Glutathion erfordern 

eine strenge Regulierung des GSH-Spiegels. Das Enzym 

Glutamylcystein-Ligase (GCL) katalysiert den ersten, 

geschwindigkeitsbestimmenden Schritt der Glutathion-Biosynthese. Für die 

Redoxregulation von GCL in Pflanzen gibt es jedoch bisher nur wenige 

Erkenntnisse. 

Bisherige Ergebnisse zeigen, dass die Bildung einer intramolekularen 

Disulfidbindung gefolgt von einer Homodimerisierung einzigartig für eine 

Redox-vermittelte Aktivierung der pflanzlichen GCL ist. Um festzustellen, ob 

die Disulfidbrückenbildung für die GCL-Aktivierung ausreichend ist oder die 

nachfolgende Homodimerisierung erforderlich ist, wurden rekombinante 

mutierte Formen der GCL hergestellt, die keine Dimere bilden können. 

Enzymaktivitätsassays zeigen, dass die Störung der Dimerbildung die 

GCL-Aktivität nicht beeinflusst und die Substrataffinitäten unter den 

rekombinanten GCL-Varianten ähnlich sind. Die Dissoziationskonstante von 

GCL wurde durch FPLC-Analyse auf weniger als 10-6 M bestimmt. Zusätzlich 

wird die GCL-Konzentration in Plastiden auf etwa 5 mM geschätzt. Es ist 

deswegen davon auszugehen, dass das GCL-Dimere in vivo auftreten. Ein 

Hauptergebnis dieser Studie ist, dass die GCL-Aktivierung größtenteils auf 

intramolekularen Disulfidbrücken beruht, während die intermolekulare 

Dimerisierung wenig zur Aktivität beiträgt. Ob die Dimerisierung andere 

Enzymeigenschaften beeinflußt, z. B. die GCL-Stabilität in vivo, muss noch 

untersucht werden. 

Mitogen-aktivierte Proteinkinase (MAPK) - Kaskaden vermitteln die 

Signaltransduktion verschiedener extrazellulärer Stimuli, einschließlich 
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Pathogenbefall und oxidativem Stress.  Arabidopsis MAPK3 und MAPK6 

können durch MAPK-Phosphatase 2 (MKP2) deaktiviert werden. MKP2 

scheint an Reaktionen auf oxidativen Stress beteiligt zu sein. Auf Grund dieser 

Erkenntnisse wurden MKP2-induzierbaren transgenen Arabidopsis-Linien 

verwendet, um die Redoxabhängigkeit der MKP2-Regulation zu untersuchen. 

Wie in den Ergebnissen gezeigt wurde, wurde nach Induktion eine 

abgeschwächte Akkumulation von MKP2 unter anhaltenden oxidativen 

Stressbedingungen beobachtet. MKP2 könnte eine Option für Pflanzen sein, 

um oxidativen Stress wahrzunehmen und den MAPK-Signalweg zu verbessern. 

Es ist denkbar, dass die posttranslationale Modifikation von MKP2 eine solche 

Regulation ausübt. 
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1. Introduction 

The tripeptide glutathione, γ-glutamyl cysteinyl glycine, is one of the most ubiquitous 

thiols in eukaryotic cells. It functions in various metabolism and stress responses and 

acts as an antioxidant against reactive oxygen species and peroxidases via the 

ascorbate-glutathione cycle (Milla et al., 2003). Glutathione can also detoxify heavy 

metals and other stress factors (Foyer and Noctor, 2005). In addition, glutathione 

controls protein redox state by glutathionylation, it interacts with cysteine residues and 

disulfide bridges within protein spontaneously or via glutaredoxins. In plants, the 

reduced GSH is the major form of glutathione whereas the oxidized GSSG remains at 

relatively low level. Glutathione synthesis and/or degradation control(s) the balance 

between GSH and GSSG which is crucial for maintaining the cellular redox state 

(Meister, 1995). 

1.1. Glutathione biosynthesis  

Glutathione is synthesized in two ATP-dependent steps:  

1. L-glutamate + L-cysteine + ATP → γ-glutamyl-L-cysteine + ADP + Pi  

2. γ-glutamyl-L-cysteine + L-glycine + ATP → GSH + ADP + Pi 

Glutamylcysteine ligase (GCL) catalyzes the formation of gamma-glutamylcysteine 

(γ-EC) from glutamate and cysteine. This first reaction is considered as the 

rate-limiting step for glutathione biosynthesis. Then glutathione synthetase (GS) 

catalyzes the addition of a glycine residue to yield the tripeptide GSH. In Arabidopsis, 

transcript analysis suggests that GCL is only found in plastids while GS is located in 

both plastids and cytosol (Wachter et al., 2005). 
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1.1.1. Sulfate uptake, reduction and incorporation into 

cysteine 

Sulfur assimilation, as one of the fundamental processes in plants, produces a wide 

variety of metabolites such as cysteine, glutathione, methionine and vitamin cofactors 

(Leustek et al., 2000; Mendel and Hänsch, 2002; Saito, 2000). It has been extensively 

studied in recent years due to its functional significance for plant growth and response 

to environmental changes. Understanding biochemistry and physiology of sulfur 

assimilation is of great necessity for food and feed (Beinert, 2000; Giles et al., 2003; 

Hell et al., 2002; Nikiforova et al., 2006; Noctor et al., 2002; Schürmann and Jacquot, 

2000). 

Like its counterparts nitrogen (N) and phosphorus (P), sulfur (S) is an abundant 

macronutrient necessary for all organisms (Giovanelli, 1990; Nikiforova et al., 2004). 

In higher plants, sulfur is taken up by roots in the form of sulfate (SO4
2−) from soil 

(Leustek and Saito, 1999). The sulfate transporters (SULTRs) detect the sulfur status 

and mediate transport of the anion to the plastids of plant cell for subsequent 

assimilation of inorganic sulfate into a variety of organic S compounds (Davidian and 

Kopriva, 2010; Kankipati et al., 2015; Leustek et al., 2000; Rouached et al., 2009; 

Takahashi et al., 2011b). The import of available sulfate is considered to trigger sulfur 

cycle in the nature, which may suggest its central role in the regulation of the whole 

sulfur assimilation pathway. In the initial steps, ATP sulfurylase (ATPS) catalyze 

activation of sulfate by adenylation to adenosine-5′-phosphosulfate (APS) in the 

presence of ATP. APS is reduced to sulfite by APS reductase (APR) and then to 

sulfide by a ferredoxin dependent sulfite reductase (SIR) (Leustek et al., 2000). APS 

is also converted to adenosine 3′-phosphate-5′-phosphosulfate (PAPS) by an APS 

kinase in an additional reaction, the production of which provides a reservoir for APS 

(Lee and Leustek, 1998; Lillig et al., 2001). Therefore APS serves as the divergence 

point for the sulfation pathways and sulfur assimilation (Giordano and Raven, 2014).  

Cysteine (Cys) biosynthesis takes place after reduction of sulfate. It involves two 
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consecutive enzyme reactions catalyzed by serine acetyltransferase (SAT) and 

O-acetylserine (thiol) lyase (OAS-TL). SAT catalyze O-acetylserine (OAS) formation 

from acetyl-CoA and serine. In the second step, Cys is synthesized by OAS-TL from 

OAS and sulfide. SAT and OAS-TL are associated with each other as the cysteine 

synthase complex (CSC) (Droux et al., 1998; Feldman-Salit et al., 2009). SAT is a key 

rate-limiting enzyme in Cys biosynthesis and its full activity requires OAS-TL(Wirtz 

and Droux, 2005; Wirtz and Hell, 2006). Taken together, the assimilation of sulfate 

undergoes the following four steps: sulfate uptake, activation, reduction as well as 

synthesis of Cys. 

As the first organic reductant of sulfur,  Cys plays the central role in regulating 

different steps in plant metabolism (Takahashi et al., 2011b). It serves as amino-acid 

for building up proteins and it is the sulfur precursor of various sulfur-containing 

compounds for plant growth, development, and resistance to stress (Hawkesford, 

2012). Among its diverse functions, it is important for integration of Cys as substrate 

into glutathione. The formation of glutathione is crucial for controlling redox 

homeostasis for stress defense and enables sulfur circulating in the plant cell (see the 

following introduction) (Noctor et al., 2002). Cys is also the sulfur precursor for amino 

acid methionine which can be converted to many other important S-containing 

compounds, including S-methylmethionine (SMM) and S-Adenosyl methionine (SAM) 

(Amir et al., 2002). Furthermore, Cys donates sulfur to a range of vitamins (biotin and 

thiamin) as well as cofactors (Co-A and molybdenum cofactor) (Beinert, 2000; 

Marquet et al., 2001; Mazid et al., 2011; Mendel and Hänsch, 2002; Wittstock and 

Halkier, 2002). 

1.1.2. Glutamylcysteine ligase (GCL)  

The biosynthesis of GSH is controlled at multiple levels, where the GCL activity is a 

key determinant. Sequence alignment of the GCLs from different species suggests 

that plant GCLs share extensive sequence similarity with GCLs from α-proteobacteria, 



Introduction 

11 

 

but differ from sequences from the E. coli and sequences from non-plant eukaryotes 

(mammals / yeast / trypanosoma). They define the three families of GCLs (Galant et 

al., 2011) (Figure 1). Sequence comparisons between families do not show high 

similarities, e.g., Arabidopsis thaliana GCL shares less than 25% amino acid 

sequence identity with the mammalian, yeast, and bacterial versions of the enzyme 

(May and Leaver, 1994), even though comparisons within every group uncovered 

some similarities (Copley and Dhillon, 2002).  

 

Figure 1. Overview of glutamate–cysteine ligase (Galant et al., 2011)  

Oligomeric organization and redox regulation of the three types of GCL are shown. 

 

In addition to the sequence divergence, GCL enzymes from different origins also vary 

with regard to their structures (Figure 1). In humans and many other eukaryotes, GCL 

is a heterodimeric enzyme containing two subunits: the catalytic subunit, GCLc and 

the modulatory subunit, GCLm (Krzywanski et al., 2004). GCLm regulates GCLc 

activity by formation of holoenzyme complex (Chen et al., 2005; Fraser et al., 2003a). 

Intermolecular redox-sensitive disulfide bonds mediate reversible formation of GCL 

heterodimer from two subunits, with activation or inactivation of enzyme in response 

to redox changes (Fraser et al., 2003b; Tu and Anders, 1998). In contrast, plant GCLs 

act as homodimeric enzymes under oxidizing condition. The crystallization analysis of 

GCL from Brassica juncea reveals homodimer interface involving a number of amino 

acid residues (Gromes et al., 2008; Hothorn et al., 2006), as shown in Figure 2. Some 

salt bridges (E133/R395, E193/K471, E136/N176) and hydrophobic side chains (F135, 
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Y186, W394, F475) contribute to a zipper-like interface (Gromes et al., 2008; Hothorn 

et al., 2006). These amino acid residues in the dimer contact zone are highly 

conserved. There are two disulfide bonds (named CC1 and CC2) within the plant GCL 

structure. CC1 is located near the active site whereas CC2 is close to homodimer 

interface (Hothorn et al., 2006) (Figure 2). The sequence alignment revealed that, 

compared to CC1 which is confined to the rosids clade, CC2 is highly conserved 

among all the plant species (Gromes et al., 2008). It indicates that CC2 is more crucial 

for redox regulation than CC1. Formation of intramolecular disulfide bond followed by 

homodimerization is unique to redox-mediated activation of plant GCL (Gromes et al., 

2008). Reducing agents like DTT disconnect activated non-covalently linked GCL 

dimer interface, changing the conformation from dimer to monomer with reduced 

(-80%) enzyme activity in a process that can be reversed by re-oxidizing.  

 

Figure 2.  Ribbon model of the homodimer interface in Brassica juncea 

γ-glutamylcysteine ligase (BjGCL) highlighting the amino acids involved in the 

zipper-like contact zone (Gromes et al., 2008) 

The two monomers are depicted in blue and brown, respectively. Amino acid residues 

involved in the formation of the dimer interface and the core disulfide bridge are 

labelled with their position numbers. The site at which the second insertion is found in 

proteobacterial GCL proteins is marked with a red circle. 

 

Redox regulation of GCL is also observed in vivo. Treatment of Arabidopsis seedlings 
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with 5 mM H2O2 induces a GCL shift from the less active reduced form to the more 

active oxidized form which leads to a two-fold increase in GCL activity (Hicks et al., 

2007). In addition, other stress treatments with cadmium, buthionine sulfoximine 

(BSO), or menadione (inducing ROS) alter GCL redox state similarly (Hicks et al., 

2007).  However, oxidative stress induced by H2O2 does not increase transcription of 

the genes encoding GCL, although glutathione level are enhanced in these 

conditions (May and Leaver, 1993; Queval et al., 2009; Willekens et al., 1997; Xiang 

and Oliver, 1998). Thiol-based regulation of GCL offers a post-translational control 

mechanism for changing enzyme activity, thereby maintaining glutathione 

homeostasis in plants. Feedback inhibition of GCL by GSH is another regulatory 

mechanism (Hell and Bergmann, 1990; Jez et al., 2004; Noctor et al., 2002). To meet 

the demands for GSH consumption (e.g. detoxification of a range of xenobiotics) , this 

inhibitory effect on GCL is likely to be attenuated to facilitate the glutathione synthesis. 

Activity of enzymes can be influenced by the environment where they exist, especially 

in the case of redox-regulated GCL (Hicks et al., 2007; Hothorn et al., 2006; Jez et al., 

2004). GCL activity appears localized in the stroma of the chloroplast. Many metabolic 

enzymes in the stroma are active as reduced proteins and less active as oxidized, 

considering stroma as a reducing environment (Marty et al., 2009; Rouhier et al., 

2008); however, the opposite situation occurs with GCL, for which the oxidized form is 

more active. 

Arabidopsis GCL is encoded by a single gene. Knockout lines for AtGCL have a lethal 

phenotype at the embryo stage (Cairns et al., 2006), Several GCL mutants have been 

previously identified by genetic approaches. The rml1 mutant has about 3% of the 

wild-type amounts of GSH and it shows strong meristem defects (Vernoux et al., 

2000). In other GCL mutants with reduced glutathione contents, environment 

sensitivity is changed in spite of their weak growth phenotypes. The cad2 mutant is 

susceptible to cadmium, and the rax1 mutant constitutively expresses ascorbate 

peroxidase, whereas pad2 has been identified by increased vulnerability to pathogen 

attack (Ball et al., 2004; Cobbett et al., 1998; Howden et al., 1995; Parisy et al., 2007).     
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1.1.3.  Glutathione synthetase (GS) 

In the second step of glutathione synthesis, Glutathione synthetase catalyzes the 

ATP-dependent formation of a peptide bond between the α-carboxyl group of cysteine 

in γ-glutamylcysteine and the α-amino group of glycine to form GSH. Structural 

characterization indicates that bacterial GS functions as a tetramer with four identical 

subunits of 35.6 kDa molecular weight each (Gushima et al., 1984), whereas some 

mammalian, yeast, and plant GS are active as dimers  (Gogos and Shapiro, 2002; 

Jez et al., 2004; Polekhina et al., 1999). 

Several plant species produce analogs of glutathione such as homoglutathione and 

hydroxymethyl-glutathione (Klapheck et al., 1994). The substrate glycine is replaced 

by β-alanine, serine, or glutamate in the glutathione variants. Homoglutathione is 

found in multiple legumes, using β-alanine instead of glycine (Moran et al., 2000). 

Biosynthesis of glutathione and homoglutathione shares the synthesis of 

γ-glutamylcysteine, but the chemical variation depends on the specificity of the 

synthetases involved in the second reaction. It is reported that separate genes 

encode glutathione synthetase (GS) and homoglutathione synthetase (hGS) 

in Medicago truncatula , and hGS likely arose from GS by divergent evolution after the 

first duplication event (Frendo et al., 2001). 

GS transcripts prevalently encode a cytosolic protein and only a small fraction of GS 

protein is found in the plastids. It indicates γ-glutamylcysteine transport from plastids 

to the cytosol as location of GCL is exclusively confined to the plastids. In addition, 

proteome studies of A. thaliana suggest that neither GCL nor GS localized in 

mitochondria and peroxisomes, revealing the possibility of importing cytosolic GSH 

into the other GSH-containing compartments (Jimenez et al., 1997; Jiménez et al., 

1998). 

Knockouts of GS in Arabidopsis show a seedling-lethal phenotype during 

post-germination stage (Pasternak et al., 2008). In Arabidopsis, hyperaccumulation of 

γ-EC cannot compensate the lack of GSH and prevent the lethal phenotype. However, 
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in bacteria and yeast accumulation of γ-EC can partially compensate the lack of GSH 

(Grant et al., 1997). As γ-EC accumulation is not uncontrolled in GS mutants, a 

regulatory inhibition on GCL by γ-EC other than GSH is also likely. More investigation 

is needed for understanding detailed signaling mechanisms.  

1.2. Glutathione degradation 

The γ-glutamyl cycle, a pathway for the synthesis and degradation of glutathione, is of 

great importance for maintaining glutathione homoeostasis in plant. In this cycle, 

glutathione degradation is controlled by several enzymatic activities. Firstly, 

γ-glutamyl transpeptidase (GGT) cleaves the γ-glutamyl bond with broad substrate 

specificity, resulting in hydrolysis of GSH or its conjugated forms (Keillor et al., 2005; 

Zhang et al., 2005). The initial reaction yields the products γ-glutamyl amino acid and 

the Cys-Gly dipeptide. Dipeptidase hydrolyzes the Cys-Gly into the amino acid Cys 

and Gly which can be taken as substrates for GSH biosynthesis and used for 

extrusion (Ferretti et al., 2009). The γ-glutamyl amino acid is converted to 

5-oxoproline (5-OP) by γ-glutamyl cyclotransferase (GGCT) and then the 5-OP is 

cleaved into Glu by oxoprolinase (Ohkama-Ohtsu et al., 2008). Another possible 

pathway for the initiation of GSH degradation involves carboxypeptidase or 

phytochelatin synthase (Beck et al., 2003). In this pathway, the glycine moiety is 

cleaved off by breaking the C-terminus of glutathione, and the other moiety (γ-EC), 

may be then degraded to Cys and Glu. It is still very little known about this alternative 

metabolic route, although there is evidence showing GS-conjugates could be 

degraded by carboxypeptidase activity (Steinkamp and Rennenberg, 1985), which 

has been detected in barley vacuoles (Wolf et al., 1996). 

In plants, GGTs are located in extracytosolic (apoplastic and vacuolar) compartments. 

GGT isoforms have been purified from plant species including tomato, onion, and 

radish (Martin and Slovin, 2000; Shaw et al., 2005). Functional analysis identified 

several GGT proteins in Arabidopsis, GGT1, GGT2, and GGT4 (Grzam et al., 2007; 



Introduction 

16 

 

Ohkama-Ohtsu et al., 2008; Ott et al., 2007). GGT1, a cell-wall bounded protein, 

degrades oxidized GSH in the apoplast (Ferretti et al., 2009) and GGT2 (also found in 

the apoplast) mediates GSH transport into siliques (Ohkama-Ohtsu et al., 2007). 

GGT4 is located in the vacuole, where it is responsible for the degradation of GSH 

conjugates of toxic compounds and xenobiotics (Grzam et al., 2007; Ohkama-Ohtsu 

et al., 2008). Subcellular localization of GGCT and 5OPase seem to be in the soluble 

cytosolic fraction. The existing knowledge on GSH degradation in plants is still 

inadequate compared with that on GSH biosynthesis. 

1.3. Glutathione compartmentalization and transport 

Regulation of glutathione homeostasis by transport processes is crucial for 

maintenance of its biological function. As a long distance transport metabolite, 

glutathione provides reduced sulfur for shoot and root growth, as well as seeds 

development (Cairns et al., 2006; Herschbach and Rennenberg, 2001). For example, 

mature Ricinus leaves synthesize and export GSH via the phloem. In addition, studies 

in spruce show GSH is exchanged between phloem and xylem (Schneider et al., 

1994). Independent evidence for inter-organ GSH transport also came from Adams 

and Liyanage (1993) who have shown that in grape, large amounts of GSH are 

imported from leaves to the fruits. Such extraction and uptake of GSH is mainly the 

result of extracellular conversion to other products. Recent studies have also 

demonstrated that several oligopeptide transporters (OPTs) in Arabidopsis encode 

components of the long-sought plasma membrane GSH transport machinery 

(Mendoza-Cózatl et al., 2014; Zhang et al., 2016). 

In plant cells, GSH is mainly synthesized in chloroplasts and the cytosol, whereas the 

degradation of GSH and GS conjugates occurs in the vacuoles and perhaps in the 

apoplast. Such spatial separation of pathways may produce large GSH redox 

gradients between the various subcellular compartments. Therefore, glutathione 

transporters must be present in membranes such as vacuole and chloroplast for 
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maintaining the specific GSH-GSSG redox couples in each compartment (Foyer et al., 

2001; Jamai et al., 1996; Noctor et al., 2002; Pasternak et al., 2008). However, the 

identity and the exact role of plasma membrane GSH-specific transporters still 

remains unclear, especially in plants (Bachhawat et al., 2013).  

Several different types of transporter may be crucial for glutathione exchange 

between subcellular compartments. Previous studies identified chloroplast envelope 

transporters that likely act to transport glutamylcysteine from plastids to cytosol 

(Maughan et al., 2010). These transporters are decribed as CLT1, CLT2 and CLT3 in 

Arabidopsis. In addition, GSH can be imported from the cytosol into the chloroplast, 

as is shown by radio labelling studies in wheat (Noctor et al., 2002). The transport of 

glutathione conjugates (GS-X) formed in the cytoplasm into the vacuoles in plants is 

facilitated by transporters of the ATP-binding cassette (ABC) family (Lu et al., 1998). 

Investigation on the vacuolar transporters AtABCC1, AtABCC2, and SpAbc2 revealed 

that these transporters might play essential roles in vacuolar sequestration of 

phytochelatin/toxic heavy metals (Park et al., 2012; Song et al., 2010). Glutathione 

transport from the cytosol to the vacuole was also observed for oxidized glutathione 

(GSSG) under oxidative stress conditions (Queval et al., 2011). A putative GSH 

transporter in rice may play a physiological role in retrieval of GSSG from the apoplast 

into the cytosol under stress conditions (Zhang et al., 2004). ATP hydrolysis or 

co-transport mechanisms may drive glutathione transport through the membrane 

where energy input is required. Translocation of GSH into the nucleus could be 

facilitated by the incorporation or activation of GSH transport proteins such as Bcl-2 

(Vivancos et al., 2010b).  

1.4. Function of glutathione 

Multi-layer regulation on glutathione reveals its functional significance in plants 

(Noctor et al., 2002). Exposing to environmental stresses triggers glutathione 

production, which acts as an anti-oxidant by quenching reactive oxygen species and 
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enters in the ascorbate-glutathione cycle that eliminates peroxides (Noctor and Foyer, 

1998; Rouhier et al., 2008). Glutathione is largely responsible for catalyzing 

conjugation reactions to detoxify xenobiotics (Labrou et al., 2015) and protects 

against heavy metals by forming the metal-binding phytochelatins (PCs) (Yadav, 

2010). It is also important for plant development and growth, cell proliferation and 

acclimation to various biotic and abiotic stresses (Mittova et al., 2003; Parisy et al., 

2007; Vernoux et al., 2000; Vivancos et al., 2010a; Vivancos et al., 2010b). The 

following chapter highlights some of these critical functions of glutathione. 

1.4.1. Glutathione functions as an antioxidant and redox 

modulator 

Reactive oxygen species (ROS) are natural by-products of the normal metabolism, 

e.g. photosynthesis and respiration (Sies et al., 2017). Conversion of molecular 

oxygen (O2) to water produces different types of ROS intermediates including 

hydroxyl radical (OH·), superoxide anion radical (O2·
−), singlet oxygen (1O2) and 

hydrogen peroxide (H2O2). ROS are known to function in the control of 

redox homeostasis and cell signaling in which they act as signal mediators and 

second messengers under normal physiological conditions. However, unbalanced 

generation of these species leads to increased cell damage (eventually even cell 

death) by oxidation of macromolecules such as proteins and lipids (Møller, 2001). A 

tight control of the ROS network is critical for plants to cope with environmental 

fluctuations. 

Glutathione is a major reservoir of non-protein reduced sulfur. Cellular glutathione 

remains in the millimolar range and this high amount is consistent with low glutathione 

redox potential values of plant cells (Meyer et al., 2007). Therefore glutathione acts as 

a thiol buffer. Excess ROS can cause oxidation of the thiol group in GSH, resulting in 

accumulation of glutathione disulfide (GSSG) (Queval et al., 2011). Perturbing the 

redox state of glutathione with stress has impact on different aspects of cell 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/reactive-oxygen-species
http://www.plantphysiol.org/content/171/3/1560.full#def-4
http://www.plantphysiol.org/content/171/3/1541.full#def-3
http://www.plantphysiol.org/content/171/3/1541.full#def-2
http://www.plantphysiol.org/content/171/3/1541.full#def-4
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/homeostasis
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/macromolecules
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/lipid
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metabolism.  

GSH/GSSG, together with ascorbate/dehydroascorbate and NADPH/NADP, 

comprise three redox couples in the ascorbate-GSH cycle (Foyer and Noctor, 2011; 

Noctor and Foyer, 1998). This cycle reduces reactive oxygen species (ROS) in stress 

physiology, as it detoxifies hydrogen peroxide (H2O2) in plant cells (Asada, 1992; 

Noctor and Foyer, 1998; Shigeoka et al., 2002). The primary peroxidation of 

ascorbate yields the monodehydroascorbate radical (MDHA) by ascorbate peroxidase 

(APX) which reduces H2O2 to water. MDHA is reduced back to ascorbate by 

monodehydroascorbate reductase (MDAR) or it is indirectly reduced through an 

intermediate dehydroascorbate (DHA) which is then converted to ascorbate by 

dehydroascorbate reductase (DHAR). Concomitantly, reduced glutathione (GSH) is 

oxidized to glutathione (GSSG). The oxidized glutathione dimers are recycled by a 

reaction catalyzed by GSH reductase (GR) using NAD(P)H as a reducing agent 

(Foyer and Halliwell, 1976; Noctor et al., 2002; Noctor et al., 2012).  

Glutathione reductase (GR) is the key enzyme in GSH regeneration from GSSG. 

Although the GSSG can also be reduced by NADPH-thioredoxin reductase (NTR) 

(Marty et al., 2009), however, GR is important for maintaining reduced glutathione in 

all subcellular compartments with exception of the organelles of the secretory 

pathway (Asada, 2006; Mullineaux and Rausch, 2005; Palma et al., 2006; Reumann 

and Corpas, 2010; Wu et al., 2013). A number of previous studies has also shown 

that overexpression of GR lead to an increase in cellular GSH levels in response to 

biotic and abiotic stresses (Foyer et al., 1995; Kouřil et al., 2003; Pilon-Smits et al., 

2000). Thus, a high activity of GR is necessary for plants to maintain high levels of 

GSH which is considered to be the most abundant soluble antioxidant (Signorelli et al., 

2013). 

Although the ascorbate-glutathione cycle plays a major role in glutathione oxidation 

when H2O2 metabolism is increased, it is also noteworthy that specific enzyme 

systems (peroxidases) react rapidly with H2O2. Thiol peroxidases, including the 

glutathione peroxidases (GPXs) and the peroxiredoxins (PRXs), act as H2O2 and 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/peroxiredoxin


Introduction 

20 

 

organic peroxide scavengers. The reduction of the peroxide substrate occurs through 

thiol peroxidase cycle in which peroxiredoxins are subjected to post-translational 

modifications (PTMs). The regeneration of the thiol is facilitated by electron 

transmitters (e.g. TRX, NTRC, GRX) which receive electrons from redox input 

elements such as NADPH, ferredoxin (Fd), along with glutathione and ascorbate. 

Glutaredoxins (GRX) act as redox enzymes to catalyze the reduction of substrates by 

oxidation. Glutathione is a reducer of GRX. The oxidized glutathione is then renewed 

by GR. Taken together, these processes define glutathione system (Fernandes and 

Holmgren, 2004). The glutathione/glutaredoxin system is of great significance for 

maintaining cellular redox homeostasis (Grant, 2001). 

1.4.2. Glutathione conjugates xenobiotics through 

glutathione S-transferases (GSTs) 

Plants are continually exposed to toxic chemicals from environment. Such xenobiotics, 

including herbicides and chemicals used in industry, are nevertheless taken up and 

accumulate within the plant. Glutathione (GSH) plays an important role in the cellular 

detoxification machinery, preventing plant from hazardous xenobiotics. The 

well-characterized group of plant enzymes participating in xenobiotics detoxification 

are glutathione S-transferases (GSTs) (Riechers et al., 2010). They catalyze a wide 

range of reactions involving the conjugation of glutathione to electrophilic substrates 

to form more soluble, less- or nontoxic peptide derivatives (Cummins et al., 2013; 

Edwards and Dixon, 2005; Frova, 2003).  

Over last decades, extensive studies have identified many glutathione transferases in 

various eukaryotes. Except for the Lambda and DHAR classes, which function as 

monomeric proteins (Lallement et al., 2014), the soluble plant GST super-family form 

homo- and hetero-dimers. Each subunit of the dimer has a GSH binding site (G-site), 

mainly in the N-terminal domain, and a electrophilic substrate binding site (H-site) in 

the C-terminal domain (Marrs, 1996). Most classes of glutathione transferases have a 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/glutathione
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/peptide
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serine residue in their active site, yielding and stabilizing the reactive thiolate anion of 

GSH, whereas some other glutathione transferases possess a catalytic cysteine in 

their active sites which changes the enzyme catalytic properties.  However, the 

catalytic Cys may act as nucleophilic agent on GSH-conjugates, which results in 

deglutathionylation and producing protein-glutathione adducts (Lallement et al., 2014). 

Although GSTs are mostly cytosolic proteins, they have been found in the plastids, 

mitochondria, vacuole, nucleus and peroxisome (Dixon et al., 2009a; Zybailov et al., 

2008). Conjugation of substrate to glutathione takes place in the cytosol and 

GSH-xenobiotic complexes are then sequestrated from cytosol into vacuoles by 

specific transporter. Once imported into vacuoles, GSH conjugates undergo further 

degradation processes (Grzam et al., 2007). 

GST-catalyzed glutathione conjugation detoxifies xenobiotics. Studies from different 

plant species have indicated the crucial role of this chemical modification scavenging 

toxic electrophiles. Overexpressing lines of the tau class GST isoenzyme GmGSTU4 

from soybean exhibited significantly increased tolerance towards 

chloroacetanilide herbicide alachlor and showed reduced relative electrolyte 

leakage when treated with the diphenyl ether herbicides fluorodifen (Benekos et al., 

2010).  Arabidopsis plants overexpressing two glutathione transferases (GSTs), 

GST-U24 and GST-U25 revealed strongly increased ability to withstand and detoxify 

the explosive 2,4,6-trinitrotoluene (TNT) (Gunning and Baron, 2014). In addition to 

catalyzing conjugation reactions, some glutathione transferases may have other 

functions, for instance, as peroxidase in antioxidative pathway (Dixon et al., 2009b) or 

participating in biosynthetic pathways including the production of glucosinolates and 

camalexin (Dixon et al., 2010). 

1.4.3. Glutathione detoxifies heavy metals by phytochelatins 

(PCs) 

Heavy metals are among most important factors that can cause damage to plants by 
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altering major plant physiological and metabolic activities (Rascio and Navari-Izzo, 

2011; Villiers et al., 2011). Common toxic metals are copper (Cu), iron (Fe), 

manganese (Mn) and zinc (Zn) (Duruibe et al., 2007). Besides, some metalloids 

including antimony (Sb) and arsenic (As) are also toxic. Therefore a defense system 

in the plant is required for detoxification of these hazardous compounds. 

Phytochelatins (PCs) are metal binding cysteine-rich peptides, enzymatically 

synthesized in some fungi and plants from glutathione in response to heavy metal 

stress (Gadd, 2010). 

Responses of plant cells towards heavy metals rely highly on glutathione (GSH) 

metabolism. On one hand, glutathione can detoxify heavy metals through control of 

ROS (as described above), as heavy metal poisoning induces ROS accumulation. On 

the other hand, glutathione governs the mobility of metals and metalloids through 

chelating peptides phytochelatins (PCs). PCs are rapidly generated after metal 

exposure and act as the main metal(loid) ligands which consist of repetitive 

γ-glutamylcysteine units within the (γ-Glu-Cys)n-Gly (n=2-11) structure, and are 

synthesized from GSH by phytochelatin synthase (PCS) (Cobbett and Goldsbrough, 

2002).  

A large number of studies have revealed the contribution of GSH and PCs in heavy 

metal detoxification (Hirata et al., 2005). PCs complex Cd and sequester it in vacuoles 

efficiently through the activity of ABC transporters. GCL mutants in Arabidopsis 

unable to synthesize PCs (cad1-3) were more sensitive to Cd and Hg than Col-0 

(Sobrino-Plata et al., 2014). N. tabaccum overexpressing glyoxalase pathway genes 

are tolerant to heavy metal stress by enhanced GSH and PCs levels (Singla-Pareek 

et al., 2006). Other compartmentalization and translocalization can serve as additional 

strategies for heavy metal sequestration.  
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1.4.4.  Glutathione in plant development and environmental 

responses 

As the key regulatory component, Glutathione has gained increasing attention for its 

profound contribution to plant growth, development and defense against stressful 

environmental conditions, including pathogen attack (De Pinto et al., 2012; Gadjev et 

al., 2008). The importance of GSH in plant development has been revealed through 

the characterization of GSH-deficient Arabidopsis mutants. The GCL mutant 

cad2-1, which has a decreased capacity for GSH synthesis, produces fewer lateral 

roots and less root densities than the wild type (Schnaubelt et al., 2015). Evidence 

from Arabidopsis triple mutant cad2-1 ntra ntrb indicated abnormal floral meristem 

development and decreased auxin transport (Bashandy et al., 2010). Other 

implication comes from observation of a lethal phenotype in glutathione 

reductase knockout mutants which show impaired embryo development (Marty et al., 

2009). 

Glutathione also appears to be involved in the cell cycle by providing an appropriate 

redox environment. GSH is localized in the nucleus during the cell cycle 

(Díaz-Vivancos et al., 2010). Low GSH level is associated with decreased expression 

of genes that are necessary for cell cycle progression such as the G2 to M transition 

(Schnaubelt et al., 2015). 

The involvement of glutathione in plant response to biotic stress has been reported. 

Arabidopsis phytoalexin deficient 2-1 (pad2-1) mutant contains low level of GCL 

protein and exhibits glutathione deficiency. It shows high susceptibility to a wide range 

of pathogens (Parisy et al., 2007; Schlaeppi et al., 2008). Application of   exogenous 

GSH can activate the expression of defense-related genes (Dron et al., 1990; 

Wingate et al., 1988). Regulation of the SA-dependent NPR1 (transcriptional 

co-activator) pathway is also associated with glutathione status (Després et al., 2003; 

Mou et al., 2003). All these findings reveal the important role the glutathione in 
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regulating plant defense. 

1.5. Impact of redox homeostasis on proteins 

Maintenance of cellular redox homeostasis is crucial for plants to adapt metabolic 

processes in changing environment. This redox homeostasis requires a well- 

balanced system in which ROS and antioxidant interaction is employed in a controlled 

manner. However, it is not yet fully understood how ROS is involved in regulation of 

signaling pathways. One mechanism to sense ROS is by modifying redox-reactive 

cysteine residues on proteins (Roos and Messens, 2011). This is well illustrated in 

activation of γ--glutamylcysteine ligase (GCL) through intramolecular disulfide bond 

formation (see previous chapter).  

ROS-induced oxidation of redox-reactive cysteine residues include sulfenylation, 

sulfinylation, sulfonylation, and S-glutathionylation (Yu et al., 2014). These oxidative 

modifications alter protein functions and redox signaling is thereby regulated for 

keeping redox homeostasis. 

1.5.1. Oxidative modifications of proteins on cysteine residues 

Post-translational modifications (e.g., phosphorylation, glutathionylation and 

ubiquitination) enable proteins having diversified functions by changing their 

properties such as conformation, catalytic capacity or stabilities. Cysteine (Cys) 

residues in proteins are major targets for post-translational modifications in ROS 

signaling. The thiol (-SH) group in Cys residues is subject to various redox-dependent 

modifications. Depending on logarithmic constant (pKa) of a specific Cys, it reacts with 

ROS at different rates (Marinho et al., 2014). Relative low pKa renders the thiols act as 

a more reactive thiolate (RS-) and Cys is thereby prone to oxidation. Such oxidation 

can be reversible or irreversible. If oxidation by H2O2 is reversible, the protein thiol 

is defined as a “redox switch” (e.g., GCL) (Mailloux et al., 2014). 



Introduction 

25 

 

Sulfenic acid (-SOH) is the initial oxidation state induced by minor ROS. As it is highly 

reactive and unstable, sulfenic acid may quickly react with neighboring thiol to form 

disulfide bonds or undergo further oxidation. The oxidation of sulfenic acid and 

disulfide are reversible and can be reduced by the thioredoxin (Trx) and the 

glutathione/glutaredoxin (GSH/Grx) systems with help of reducing equivalents 

(Bedhomme et al., 2012; Schürmann and Buchanan, 2008). 

Excessive ROS can further oxidize sulfenic acid to sulfinic (-SO2H) or sulfonic (-SO3H) 

acid. Sulfinylation and sulfonylation had long been considered as irreversible, 

however, the enzyme sulfiredoxin (Srx) was shown to reduce sulfinylated Prx (Biteau 

et al., 2003). The highly oxidized sulfur species result in altered protein functions 

including enzyme inactivation and degradation. 

Protein S-glutathionylation is an alternative modification forming a mix disulfide bond 

between a cysteine residue and gluthathione. It plays important role in redox 

signalling as well as protecting proteins from irreversible oxidation of protein thiols 

(Adachi et al., 2004). S-glutathionylation is usually considered a modification 

occurring in response to enhanced production of ROS or oxidation of GSH to 

GSSG , although it also occurs under normal physiological conditions (Chen et al., 

2007). The modification can be reversible when the environment becomes more 

reducing. Glutaredoxin have been demonstrated to catalyze both glutathionylation 

and deglutathionylation on specific proteins (Dalle-Donne et al., 2007). Proteomic 

approaches have identified many targets of glutathionylation associated with various 

processes such as protein folding and stability, signal transduction, intracellular 

trafficking, and apoptosis (Rouhier et al., 2008). The specific functions of 

glutathionylation remain to be elucidated. 

1.5.2. Redox regulation of MAPK-cascade 

Mitogen-activated protein kinase (MAPK) cascades mediate signal transduction of 

diverse extracellular stimuli including pathogen attack, wounding, and abiotic stresses 

https://www.sciencedirect.com/science/article/pii/S1360138502023026#GLOSS9
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as well as different physiological activities such as differentiation, proliferation and cell 

death (Romeis et al., 2001). 

MAPK cascades are a three-kinase module consisting of MAPK, MAPK kinases 

(MAPKK or MEK), and MAPKK kinase (MAPKKK or MEKK). MAPK is activated 

through dual phosphorylation of tyrosine and threonine residues in the TXY motif by 

MAPKK, which, in turn, is activated through phosphorylation of serine or threonine 

residues (Ser-X-X-X-Ser/Thr) within the catalytic center by a MAPKKK (Mizoguchi et 

al., 1997; Zhang et al., 1994). Many components of MAPK cascades were found in 

higher plants. However, the number of MEKs is far less than MAPKs, indicating 

protein cross-talk and redundancy in MAPK cascades. 

Recent studies have revealed the correlation of MAPK cascades with ROS 

signaling.  MKK3 can be activated by H2O2, and in addition, it mediates ROS 

production in response to wounding (Colcombet et al., 2016; Takahashi et al., 2011a). 

H2O2 activates a specific Arabidopsis MAPKKK (ANP1) and initiates the MAPK 

cascade, causing the phosphorylation of AtMAPK3 and AtMAPK6 (Lumbreras et al., 

2010). The over-expression of ANP1 orthologue NPK1 in tobacco plants, alleviates 

the effect of biotic or abiotic stresses (Kovtun et al., 2000). Cadmium treated plant 

showed enhanced ROS level produced by oxidative stress as well as activated 

MAPK3 and MAPK6, which are regarded as positive regulators of defense responses 

(Liu et al., 2010; Pitzschke et al., 2009). Two tobacco orthologues of AtMAPK6 and 

AtMAPK3, salicylic acid induced protein kinase (SIPK) and wound-induced protein 

kinase (WIPK), respectively, seem to play an important role in environmental 

responses (Jonak et al., 2002). SIPK was shown to be activated by ozone and H2O2 

(Samuel et al., 2000). Interestingly, transient activation of MAPKs in tobacco (WIPK 

and SIPK) and Arabidopsis (AtMAPK3, AtMAPK4 and AtMAPK6) is also related to 

increased glutathione biosynthesis, indicating possible impact of glutathione on 

MAPK signaling (Matern et al., 2015).  

In addition to MAPK activation by upstream kinase as mentioned above, MAPK can 

be deactivated by negative regulator phosphatases, including tyrosine-specific 
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phosphatases (PTPs), serine/threonine-specific phosphatases (PP2C) and also the 

dual-specificity phosphatases (DSPs) (Camps et al., 2000; Keyse, 2000, 2008). 

The dual-specificity MAPK phosphatases (MKPs) form a subgroup of DSPs and were 

shown to fully inactivate MAPKs by dephosphorylation of both, tyrosine and 

serine/threonine residues (Keyse, 2000). Five putative MKPs have been identified in 

A. thaliana (Bartels et al., 2010; Kerk et al., 2002). These MKPs vary in size and 

domain structure, but the active site is conserved. The critical cysteine residue (e.g., 

Cys109 in MKP2) in the consensus catalytic domain is necessary for phosphatase 

activity (Farooq and Zhou, 2004; Vilela et al., 2010). Kamata et al. (2005) have 

reported ROS inactivation on mammalian MPK phosphatases via thiol oxidation of the 

cysteine residue in the active site. 

Genetic and biochemical analyses have shown that AtMKP2 seems to be crucial in 

regulating oxidative stress-related responses. MKP2 can be induced by oxidative 

stress and its activation leads to dephosphorylation of AtMAPK3 and AtMAPK6 (Lee 

and Ellis, 2007; Lumbreras et al., 2010). A hypersensitive ozone phenotype of 

MPK2-knockout line in Arabidopsis is related to ozone-triggered activation of 

AtMAPK3 and AtMAPK6 (Lee and Ellis, 2007). The subcellular co-localization into 

nucleus also indicates that MKP2 interacts with AtMAPK3 and AtMAPK6 in response 

to ROS (Lee and Ellis, 2007). In vitro evidence demonstrated that MAPK 

phosphatase 2 (MKP2) can be gluthathionylated (personal communication with 

Tatjana Peskan-Berghöfer and Sanja Matern). Under oxidative stress conditions, 

glutathionylation would inactivate the enzyme, but may prevent the MKP2 protein 

from degradation. On the other side, glutathionylation may also target the protein for 

degradation, as has been shown for human MPK1 (Kim et al., 2012). However, there 

is still very little knowledge on MKPs post-translational regulation in plants, which 

remains to be clarified for better understanding of stress responses, whereby the thiol 

oxidation might be a possible way to control MKP2 function in plants. 

https://www.sciencedirect.com/science/article/pii/S0734975013001237#bb0305
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2. Aims 

Plants are facing various biotic or abiotic stresses. How plants cope with these 

external perturbations has been a critical issue, as unfavorable conditions could result 

in detrimental effects on plant growth and development, even leading to plant death. 

Understanding cellular regulatory mechanisms, especially regarding the stress 

responses needs close attention.  

Recent studies have focused on glutathione modulation because of its multiple 

functions, not only related to stress responses, but also for maintenance of cellular 

redox homeostasis during plant development. Therefore, controlling glutathione level 

by its biosynthesis is of great importance. Given that glutamate cysteine ligase (GCL) 

catalyzes the rate-limiting step of GSH synthesis, this enzyme seems to play a pivotal 

role in this control. However, the existing knowledge is still not sufficient to elucidate 

the molecular mechanism of GCL regulation. This work aims at characterizing GCL 

activation at the mechanistic side, in particular, exploring the possible link between 

the formation of the regulatory intramolecular disulfide bridge in plant GCL (Hicks et 

al., 2007; Hothorn et al., 2006) and the simultaneous formation of homodimers 

(Gromes et al., 2008). We mainly focus on evaluating the contribution of dimer 

formation to GCL activity using biochemical approaches.  

It has been indicated that the MAPK cascade is involved in oxidative stress signaling. 

As MKP2 modulates the activities of MAPKs, it is predicted that MKP2 may be 

regulated by oxidative stress. The active site cysteine (Cys109 in MPK2) is necessary 

for phosphatase activity and conserved among all MKPs from the plant and animal 

origin. In mammals, this conserved Cys residue is redox-sensitive, and responsible 

for protein degradation upon oxidation. Up to date, the post-translational modulation 

of MKP2 remains largely unknown in plants. Thus another focus of this work is to 

explore redox-dependent control of MKP2.
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3. Results 

3.1.  Generation of recombinant AtGCL proteins 

mutagenized at the dimer interface 

3.1.1.  Mutagenesis of recombinant AtGCL variants 

According to the knowledge on GCL regulation, it is still unclear whether formation of 

an intramolecular disulfide bond is sufficient for GCL enzyme activation, or if the 

subsequent homodimerization is also a necessary step for activation. To answer this 

question, amino acid residues forming the dimer interface were mutated in order to 

disrupt the dimerization state and biochemically characterize the recombinant GCL 

activities. Previous study has shown that amino acid residues contributing to the 

zipper-like dimer interface are conserved among all higher plant GCL sequences, 

highlighting several salt bridges as well as hydrophobic side chains (Gromes et al., 

2008). Therefore, after comparing protein sequences between AtGCL and BjGCL 

(Figure S 1), we decided to mutagenize AtGCL at the following mutation sites shown 

in Table 1. Either one or two amino acid residue(s) within GCL sequence were 

changed for each GCL variant. Site-directed mutagenesis was used to clone the 

ORFs coding for GCL. The corresponding wild-type and mutated proteins were 

overexpressed in E. coli .  
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Table 1. Overview on GCL mutations in Arabidopsis thaliana 

The mutated amino acid residues are highlighted in red. The asterisk (*) indicates 

soluble mutant proteins. 

 

AtGCL amino acid pairs Mutated AtGCL amino acid pairs 

Redox Cys186/Cys406 

Ser186/Cys406 * 

Cys186/Ser406 * 

Ser186/Ser406 

Salt bridges 

Glu141/Arg403 

Lys141/Arg403  

Glu141/Glu403 * 

Gln141/Met403 * 

Glu201/Lys479 

Lys201/Lys479 * 

Glu201/Glu479 * 

Gln201/Met479 

  Lys141/Arg403 and Glu201/Glu479 * 

Hydrophobic 

interactions 

Phe143/Trp402 Leu143/Trp402 

Tyr194/Phe483 Leu194/Phe483 * 

  Leu143/Trp402 and Leu194/Phe483 

 

3.1.2.  Expression of recombinant AtGCL variants in E.coli 

As shown in Figure 3, wild-type Arabidopsis GCL was purified by nickel affinity 

chromatography. The protein was induced by IPTG and unspecific proteins were 

washed off by standard washing buffer containing 200mM imidazole (Figure 3A). 

Because the GCL protein was partially washed off the column due to a high 

concentration of imidazole, a series of washing buffers containing imidazole in 

different concentrations were tested for optimizing the washing condition (Figure 3B). 

The result showed that 45mM imidazole was suitable for washing off unspecific 
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proteins and keeping GCL attached to the column. After purification for two times 

(before and after TEV cleavage), the wild-type GCL was collected and detected as a 

protein band having a size of about 51kD by western blot analysis (Figure 3D). 

 

Figure 3. Purification of wild-type GCL shown by SDS-PAGE. 

A. 1st affinity chromatography. Protein (fused with His tag and thioredoxin) was 

bound to a Ni
2+

-NTA column and eluted (about 64kD) after the washing step with 

200mM imidazole. 

B. Optimization of imidazole concentrations during 1st affinity chromatography. A 

series of imidazole concentrations ranging from 30mM to 80mM were tested for 

washing off unspecific proteins.  

C. Comparison of un-cleaved and cleaved wild-type GCL. The first lane shows the 
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Similar to the wild-type GCL, other mutated GCL variants listed in Table 1 were 

purified by nickel affinity chromatography as well. Figure 4 demonstrates three 

examples of purified GCL mutants. In the mutant protein Ser186/Cys406, one 

disulfide bond was abolished because of the replacement of Cys186 with Ser186. As 

shown in Western blot result (Figure 4A), this mutant was soluble after purification. 

Similar results were observed when we purified the mutant Cys186/Ser406, whereas 

the mutant Ser186/Ser406 could not be purified. Figure 4B illustrates another mutant, 

Lys141/Arg403 and Glu201/Glu479, in which Glu141 is replaced by Lys141, and 

Lys479 is replaced by Glu479 respectively. Indeed, we could still purify the mutant 

protein even though two salt bridges involving zipper-like contact zone were disrupted 

in this case. Regarding the mutant Leu143/Trp402 and Leu194/Phe483, although the 

protein induction by IPTG in E. coli was successful, the protein was missing in the 

elution fraction after first purification step (Figure 4C). In this mutant, hydrophobic side 

chains were disrupted due to the replacement of Phe143 to Leu143 and Tyr194 to 

Leu194 respectively. In addition to these three mutants, other protein variants listed in 

the table 1 were subjected to purification as well. Some mutants were soluble 

whereas some were not after purification. The reason may be the misfolding or 

unfolding of the mutants which results in protein aggregation. 

purified fusion protein after 1st affinity chromatography. The second lane shows the 

result of dialysis of the protein with TEV protease. The mixture contained cleaved 

wild-type GCL together with TEV (about 25kD), His and thioredoxin (below 15kD).  

D. Finally purified wild-type GCL (about 51kD) After separation of cleaved GCL from 

TEV, His and thioredoxin by binding to a second Ni
2+

-NTA column. The GCL was 

eluted as a protein of about 51kD and concentrated by centrifugal filtration. Protein 

samples were run under denatured conditions. 
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Figure 4. Purification of recombinant GCL variants. 

1st affinity chromatography results for recombinant GCL mutants were shown by 

SDS-PAGE. Proteins (fused with His tag and thioredoxin) were induced by IPTG in E. 

coli. Proteins were bound to a Ni
2+

-NTA column and eluted (about 64kD) after 

washing steps with imidazole. Protein samples were run under denatured conditions. 

Purification of recombinant GCL variant Cys186/Ser406, Lys141/Arg403 and 

Glu201/Glu479, Leu143/Trp402 and Leu194/Phe483 was shown in A, B and C, 

respectively. 

3.2.  Dimer formation is disrupted in GCL mutants  

The results described in this section are adapted from the submitted manuscript Yang 

et al., 2018.  
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3.2.1. Redox-state profiles of mutated GCL proteins 

To examine the mobility profiles of recombinant AtGCL WT and mutated variants, only 

four representative mutants were shown in the following studies (Figure 5). Upon 

analysis under reduced conditions, it has been observed that all the recombinant 

proteins, including WT and mutants, behaved similarly. Each of them ran as one 

reduced band with molecular mass of approximately 50 kDa, as we expected. 

However, under non-reducing conditions, the profiles of recombinant protein were 

varying. The mutants Glu141/Glu403 and Lys201/Lys479 showed similar patterns, 

comparable to that of WT GCL. They were present predominantly as oxidized forms, 

while a small portion appeared as a reduced form. For mutants Gln141/Met403 and 

Leu194/Phe483, the relative ratio of oxidized to reduced form was not as high as that 

for WT GCL. Noteworthy, we could only observe the oxidation states of the GCLs 

other than oligomeric forms due to 0.1% w/v SDS in the running buffer in 

non-reducing SDS-PAGE. 

 

 

Figure 5. Analysis of WT and mutant AtGCL proteins via reducing and 

non-reducing SDS-PAGE 
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After recombinant expression in E. coli (see Materials and Methods), proteins were 

separated by SDS-PAGE. Under reducing conditions (+ β-mercaptoethanol), all GCL 

proteins were detected via Coomassie blue staining as single bands of the predicted 

size (~ 50 kDa), whereas under non-reducing conditions (- β-mercaptoethanol) all 

GCL proteins displayed oxidized (upper band) and reduced (lower band) form.  

Proteins were stained with Coomassie blue. Arrowheads correspond to Mr markers. 

3.2.2.  Size-exclusion chromatography confirms that dimer 

formation was disrupted in mutated GCL proteins 

Size-exclusion chromatography (SEC) was performed to investigate oligomeric states 

of GCL variants. As shown by the previous data (Gromes et al., 2008). WT AtGCL 

behaved predominantly as a dimer at a volume corresponding to 106 kDa under 

non-reducing conditions (Figure 6). Under reducing conditions (DTT treatment), the 

protein eluted as the 50 kDa species, where the monomer should be eluted. When the 

mutants were applied, we only observed elution peak at a volume corresponding to 

the monomer size, irrespective of pre-treatment with reducing agent. It indicated that 

the mutant proteins could not form dimer and that mutation in only one of the contact 

sites, previously determined by protein structure analysis (Hothorn et al., 2006), was 

sufficient to disrupt dimer formation.  
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Figure 6. Size-exclusion chromatography of WT and mutant AtGCL proteins in 

the absence or presence of DTT 

After dialysis overnight at 4 °C in buffer (25 mM HEPES (pH 7.5), 150 mM NaCl, and 

5 mM MgCl2), purified proteins were loaded onto a Superdex-200 FPLC column. WT 

AtGCL protein eluted predominantly as dimer under non-reducing conditions (black) 

and as monomer under reducing conditions (orange) (in the presence of 120 mM 

DTT). According to the retention volume, the estimated Mr values of AtGCL dimer and 

monomer corresponded to 106 kDa and 50 kDa, respectively, the predicted Mr for 

AtGCL monomer being 50.9 kDa. All mutant GCL proteins eluted predominantly as 

monomer under reducing and oxidizing conditions. 

3.2.3.  Ionic strength affects dimer-monomer transition of WT 

GCL  

There is some evidence showing that the ionic strength in the protein buffer could  

impact protein-protein interactions (Aymard et al., 1996). This influence was also 

evaluated in GCL proteins by SEC. Different NaCl concentrations were used in the 

elution buffer. Under low ionic strength (10 mM NaCl) (Figure 7A) without DTT 



Results 

37 

 

treatment, the active and dimerized (i.e. oxidized) WT AtGCL protein eluted similarly 

as in the presence of 150 mM NaCl (shown in Figure 6). Nevertheless, after DTT 

treatment the elution profile of WT GCL differed between 10 mM and 150 mM NaCl. 

Both dimer and monomer were observed at low ionic strength, whereas at high ionic 

strength only monomer form was observed. Furthermore, we examined the elution 

profile for one of mutant proteins, Gln141/Met403, in which a salt bridge in the 

dimerization interface was disrupted (Figure 7B). The result showed that there was no 

difference between the elution patterns if either 150 mM or 10 mM NaCl was applied 

in the buffer. By disrupting the dimer interface in this mutant, the protein eluted as 

monomer with or without DTT treatment in the presence of 10 mM NaCl. It behaved in 

the same manner when using 150 mM NaCl in the elution buffer (Figure 4). 

 

Figure 7. Size exclusion chromatography (SEC) of AtGCL proteins at low ionic 

strength 

A. SEC analysis of WT AtGCL protein in the presence of 10 mM NaCl (instead of 150 

mM NaCl; see Figure 6). While without DTT pre-treatment the oxidized protein eluted 

as a dimer (black), the pre-treatment with DTT did not induce complete conversion to 

monomeric state (green), indicative of ionic interactions at the dimer interface that 

were not completely disrupted by 10 mM NaCl.  

B. SEC analysis of mutated protein Gln141/Met403 in the presence of 10 mM NaCl 

(instead of 150 mM NaCl; see Figure 6). 
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3.2.4.  Certain range of pH variation does not affect 

dimer-monomer transition of recombinant GCL 

pH is another decisive factor which may have an influence on dimer-to-monomer 

transition (Mohan et al., 2006). Considering the GCL protein localization in the stroma 

of chloroplast, the physiological variation of pH value is between pH 7 (dark phase) 

and pH 8 (light phase). Based on that, pH 7 and pH 8 was used for comparing the 

effect. The results demonstrated that the elution behavior of WT AtGCL protein did 

not reveal a significant change in elution profile (Figure 8A), indicating that the GCL 

dimer is stable within this pH range.  

 

Figure 8. Size exclusion chromatography (SEC) of AtGCL proteins under 

different pH conditions 

SEC analysis of WT AtGCL protein at pH 7 and pH 8 (instead of pH 7.5 used in Figure 

6). WT AtGCL protein eluted similarly as dimer under both conditions.  

 

3.3. GCL dimer formation does not contribute to 

redox-mediated enzyme activation 

The results described in this section are adapted from the submitted manuscript Yang 

et al., 2018.  
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3.3.1.  Disruption of dimer formation in mutated GCL proteins 

does not render significant reduction of WT enzyme activities 

After we confirmed that the mutated GCL proteins did not form dimer anymore, the 

enzyme activity assay was carried out for evaluating the contribution of dimerization to 

GCL activation. A standard assay coupling two additional enzymatic reactions was 

performed and the results are shown below (Figure 9). In accordance with previous 

reported data, the specific activity of oxidized WT GCL was 112.3 nmol min-1 mg-1 

whereas after DTT treatment, its specific activity decreased to less than 50 nmol min-1 

mg-1.The mutants Glu141/Glu403 and Lys201/Lys479, which remained as the 

predominantly oxidized monomers, showed 86 % and 77 %, respectively, of WT 

AtGCL activity. In contrast, the less-oxidized mutants Glu141/Met403 and 

Leu194/Phe483 had specific activities significantly different from that of WT GCL 

without DTT treatment. The strongest reduction of specific activity was displayed in 

the mutant Ser186/Cys406 disrupting the regulatory disulfide bond. The DTT effects 

in Glu141/Glu403 and Lys201/Lys479 were similar to that in WT GCL while in the 

mutants Glu141/Met403, Leu194/Phe483 as well as Ser186/Cys406, reduction by 

DTT did not impact on specific activities so much as that in WT GCL. Taken together, 

it implied that disruption of dimerization had little influence on enzyme activity and the 

oxidation played the major role for GCL activation. 
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Figure 9. Specific enzyme activities (Vmax) of WT and mutant AtGCL proteins 

in the absence or presence of DTT 

 

3.3.2.  Disruption of the dimer formation does not affect the 

affinity of GCLs for their substrates 

To examine the impact of dimerization of GCL on substrate affinity, Km values of GCL 

variants including WT and mutants were determined for three substrates: glutamate, 

ATP and cysteine (Table 2). The results showed that Km values for the substrates 

were in the same range for the WT GCL and the mutants. It indicated that the 

introduced mutations disrupting dimerization did not significantly interfere with the 

active site. 

Table 2. Km values of WT and mutant AtGCL enzymes for cysteine, ATP and 

glutamate 

Enzyme assays were performed as described under Materials and Methods. Values 

for specific activities (nmol min
-1 

mg
-1

) are expressed as a mean ± S.E. (n=3). 

 

 Km Values 

 Cysteine Glutamate ATP 

AtGCL WT 0.35 + 0.06 6.64 + 0.5 1.25 + 0.08 

Glu141/Glu403 0.33 + 0.12 7.56 + 0.26 1.16 + 0.02 

Lys201/Lys479 0.12 + 0.02 8.42 + 0.44 1.45 + 0.14 

Gln141/Met403 0.44 + 0.14 6.99 + 0.41 1.43 + 0.10 

Leu194/Phe483 0.08 + 0.02 9.25 + 0.50 1.50 + 0.06 
 

Values for specific activities (nmol min
-1

 mg
-1

) are expressed as means ± S.E; (n>3). 

Significant differences of GCL mutants (without DTT) as compared to the WT (without 

DTT) are indicated by asterisk (*) (Student’s T-test, *P ≤ 0.05, **P ≤ 0.01). 
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3.4. Probing the dimerization state of AtGCL protein 

extracted from plant leaf discs  

The results described in this section are adapted from the submitted manuscript Yang 

et al., 2018.  

In order to clarify the dimerization state of endogenous AtGCL protein, we firstly 

conducted the oxidative stress treatment by using leaf discs from Arabidopsis 

seedlings (Hicks et al., 2007) (Figure 10B). The treatment with H2O2 caused GCL to 

appear as a more oxidized form. A total plant extract from the leaf discs was applied 

onto FPLC column for protein separation. Eight consecutive fractions collected after 

elution were subjected to SDS-PAGE and immunoblot to detect the GCL protein. As 

shown in Figure 10A and B, GCL was eluted in the fraction 5 where it corresponded to 

the GCL monomer, despite being predominantly in the oxidized state. To assess 

whether the predominantly monomeric state of oxidized endogenous AtGCL was the 

result of its low concentration in the plant extract, the effects of different 

concentrations of recombinant WT AtGCL protein was examined by FPLC analysis 

(Figure 10C-E). It revealed that by decreasing the protein amount loaded to FPLC 

column, the profile shifting from dimer to monomer occurred. In addition to that, the 

different fractions collected were also subjected to immunoblot analysis by using GCL 

specific antibody to further determine the oxidation state of the GCL protein (Figure 

10F-H). When the amount of oxidized recombinant AtGCL in the loaded sample was 

reduced from 50 µg to 7.8 or 2.2 µg, respectively (corresponding to a concentration of 

10-6 M, 1.5 x 10-7 M and 4.4 x 10-8 M, respectively) the elution profile changed from a 

predominantly dimeric state (Figure 10F) to the monomeric state (Figure 10H). The 

proteins under three different concentrations all behaved as the oxidized forms. The 

signal intensities of fraction 3, 4 in Figure 10F and of fraction 4, 5 in Figure 10G 

seemed to be very similar, this may result from the over-exposure time during the 

detection in Western blot analysis.  
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Figure 10. FPLC elution profile of endogenous AtGCL in total protein extract 

from H2O2-treated leaf discs as compared with elution profiles for different 

amounts of recombinant WT AtGCL protein 

A. protein elution profile (280 nm) of Arabidopsis total protein extract from leaf discs 

pre-treated with 5 mM H2O2 for one hour; total protein was extracted from rosette 

leaves of 4-week-old WT Arabidopsis plants.  

B. comparison of ratio oxidized/reduced AtGCL in extracts of control versus 

H2O2-treated leaf discs (left panel) and immunoblot analysis of eluted fractions after 

FPLC of extract from H2O2-treated leaf discs after SDS-PAGE under non-reducing 

conditions (right panel, for fraction number see A); the predominantly oxidized 

endogenous AtGCL protein elutes as monomer (fraction 5).  

C-E. FPLC elution profiles for different amounts of recombinant WT AtGCL protein (1 
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nmol [C], 0.15 nmol [D], 0.044 nmol [E]; corresponding to concentrations of 10
-6

 M, 

1.5 x 10
-7

 M and 4.4 x 10
-8

 M, respectively).  

F-H. Immunoblot analysis of elution fractions from different amounts of recombinant 

WT AtGCL protein (F: 50 µg; G: 7.8 µg; H: 2.2 µg) after SDS-PAGE under 

non-reducing conditions. Molecular weight markers are indicated by arrows. 

3.5. Quantification of endogenous GCL protein in 

Arabidopsis thaliana  

The results described in this section are adapted from the submitted manuscript Yang 

et al., 2018.  

In order to determine the AtGCL concentration in vivo, we did the dot blot analysis, 

comparing the proteins from leaf extraction with recombinant AtGCL. The result is 

shown in the following figure (Figure 11). From a dilution series of both plant extract 

and recombinant protein, we could find comparable protein amounts and deduced the 

endogenous AtGCL concentration in the chloroplast would be in the millimolar range. 
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Figure 11. Quantification of AtGCL protein in Arabidopsis leaf extract by 

comparative dot blot analysis of leaf protein extract with dilution series of 

recombinant AtGCL protein 

Dot blot analysis of recombinant AtGCL protein (0.2, 0.05 and 0.013 nmol) compared 

with different leaf protein extract dilutions. Undiluted extract (1) corresponded to 2.2 

μg protein (equivalent to 0.4 mg fresh weight). The comparison indicates that the 

amount of endogenous AtGCL protein in 0.4 mg of leaf tissue approximately equals 

0.013 nmol of recombinant AtGCL protein, corresponding to 32 nmol endogenous 

AtGCL protein per kg fresh weight.  

 

Besides using leaf extracts as material to estimate endogenous GCL protein 

concentration in plastids, a dilution series of Arabidopsis root extracts and 

recombinant AtGCL proteins were compared to each other to analyze GCL amount 

(Figure 12); total proteins were extracted from the root part of Arabidopsis instead of 

leaves to minimize distortion of GCL immune signals. The specific GCL protein bands 

detected by western blot (other than dot blot) were compared with each other to make 

a more direct result. The endogenous AtGCL concentration was approximately 

estimated to be 0.5 x 10-3 M. Considering a total plastidial volume in roots 

corresponding to less than 10% of total tissue volume, as an conservative estimation, 

the AtGCL concentration in plastids is proposed to be at least 5 x 10-3 M. This value is 

in the concentration range where oxidized GCL protein is expected to form dimers. 
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Figure 12. Quantification of AtGCL protein in Arabidopsis root extract by 

immunoblot analysis of root protein extract with a dilution series of 

recombinant AtGCL protein 

Recombinant AtGCL protein (0.011, 0.042, 0.168 and 0.67 nmol) as compared with 

different root protein dilutions. Diluted extract (0.063) corresponded to 0.3 μg protein 

(equivalent to 0.078 mg fresh weight). The comparison indicates that the amount of 

endogenous AtGCL protein in 0.078 mg of root tissue approximately equals 0.042 

nmol of recombinant AtGCL protein, corresponding to 538 μmol endogenous AtGCL 

protein per kilogram fresh weight. 

 

In addition, we tried to examine the equilibrium of GCL dimer and monomer using the 

approach of Isothermal titration calorimetry (ITC). The result was shown in Figure 13. 

The binding affinity of protein was analyzed by ITC at pH 7.5 and it turned out that 

when the applied protein concentration is very low, the signal can not be detected 

(data not shown). However, by titrating higher concentration of GCL (450 µM), we 

could obtain an equilibrium dissociation constant of 90 μΜ (Figure 13). This Kd is 

likely to represent the equilibrium between dimer and oligomer since under 

concentration of 450 µM, GCL is presumably in the state of dimer. Change in enthalpy 

(ΔH) and change in entropy (ΔS) were calculated in the assay as -1.86 and -0.16, 

respectively.  
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Figure 13. Isothermal titration calorimetry analysis of recombinant AtGCL 

dissociation 

Protein samples were dialyzed overnight in ITC buffer. For determination of the 

dissociation constant (Kd) of A. thaliana GCL the syringe was loaded with GCL (450 

µM) and titrated into the sample cell filled with ITC buffer. ITC data were processed 

using the MicroCal PEAQ-ITC Analysis Software and thermodynamic parameters 

were obtained by fitting the data to a dissociation model (for further details see 

Materials and Methods). The experiments were performed in triplicate. Kd, 

dissociation constant; ΔH, change in enthalpy; ΔS, change in entropy. 

3.6.  Redox-dependent control of GCL during the 

stress treatment 

3.6.1.  Redox sensitivity of GCL upon H2O2 treatment 

It has been reported that plant GCLs respond to oxidative stress both in vivo and in 

vitro (Hicks et al., 2007; Hothorn et al., 2006; Jez et al., 2004). To further understand 

how the redox state of GCLs is altered for perceiving the changes in the redox 
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enviroment, Arabidopsis seedlings were grown on MS medium and then subjected to 

water or hydrogen peroxide treatment. Only the root tissue of Arabidopsis was used 

for protein extraction in order to reduce the interference of Rubisco which has similar 

mobility in the gel as GCL. As shown in Figure 14A, a similar pattern was observed for 

both, 5 mM or 10 mM hydrogen peroxide treatment. By increasing the treatment time 

of H2O2 up to 5 hours, a redox state shift (more oxidized and less reduced GCL) was 

observed, whereas after 24 hours of incubation with H2O2, the ratio of oxidized to 

reduced form has decreased again. This may result from the long-time treatment 

disturbing cellular homoestasis. Remarkably, the signals of oxidized form were 

stronger, especially in samples treated with 2 h or 5 h H2O2 than those of controls 

treated with water, suggesting that GCL does respond to oxidative stress (hydrogen 

peroxide). This is in accordence with previously reported data. We always observed 

multiple bands of reduced GCL from Arabidopsis root extract, the reason may 

attribute to the disulfate bonds or modification on protein itself which remains to be 

further explained by biochemistry approaches. 

 

 

Figure 14. Redox sensitivity of GCL by hydrogen peroxide treatment 

Arabidopsis seedlings were grown on ½ MS medium for two weeks and treated with 

H2O2 (5mM, 10mM) or H2O for 0-24 hour. Protein extracts from root tissue of 

seedlings were subjected to SDS-PAGE under non-reducing conditions followed by 

immunoblot analysis using antisera against AtGCL. The oxidized and reduced GCL 

were labelled with ox and re, respectively. The reduced GCL was always detected as 

multiple bands.  
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3.6.2. Redox sensitivity of GCL upon cycloheximide (CHX) 

treatment 

Cycloheximide (CHX)  is a cell-permeable molecule that specifically inhibits protein 

synthesis in eukaryotic organisms (Chakrabarti et al., 1972). It can interact with the 

translocase enzyme which blocks mRNA translocation on cytosolic (but not organellar) 

level (Obrig et al., 1971; Setkov et al., 1992; Suzuki et al., 1992). Cycloheximide is 

also broadly used for the degradation kinetics of a given protein. It is also reported that 

cycloheximide can sometimes disrupt cellular metabolism other than by inhibiting 

protein synthesis (Ellis and Macdonald, 1970). We speculated that GCL protein may 

respond to cycloheximide perturbance, therefore CHX effect was investigated in 

Arabidopsis seedlings grown in liquid culture. Interestingly, as is shown in Figure 15 

(under non-reducing conditions), a shifting from oxidized GCL to reduced GCL was 

observed by increasing the incubation time with cycloheximide, especially at the time 

point of 48h treatment, protein largely appeared in the reduced form. Moreover, 

CHX-treated GCL proteins always behaved in a more reduced manner compared with 

those of H2O-treated control. However, we also noticed some additional bands shown 

near reduced bands. What are these bands and how cycloheximide may play a role 

remain to be further explored.  
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Figure 15. Redox sensitivity of GCL by cycloheximide (CHX) treatment 

Arabidopsis seedlings were grown in liquid culture in the shaker under continuous 

light conditions for 10 days. Then 100μM cycloheximide or H2O were added to the 

media for 0h, 6h, 24h or 48h. Seedlings were harvested at each time point. After 

protein extraction, samples were separated by polyacrylamide gel electrophoresis for 

western blot analysis. The oxidized and reduced GCL were labelled with ox and re, 

respectively. GCL redox profiles were determined under non-reducing conditions. The 

lower panel shows the loading control (the large subunit of Rubisco (RBCL)) of 

protein amount by amido black staining. 

3.7. Redox-dependent control of MAPK phosphatase 2 

(MKP2)  

The studies on tobacco MAPKs (namely WIPK and SIPK) have found that high 

glutathione levels can cause the sustained activation of WIPK and SIPK (Matern et al., 

2015). Similarly, the increased MAPK activities were also shown in the Arabidopsis 

cat2-1, the mutant which is deficient in catalase but contains the enhanced 

gluthathione levels. In addition, the Arabidopsis MPK2 can be glutathionylated in vitro 

at the Cys109 in the active site (personal communication with Tatjana 

Peskan-Berghöfer and Sanja Matern). Based on these findings, it might be assumed 

that MKP2 undergoes modification or degradation under oxidative stress or high-level 

GSH conditions. 

To investigate the regulation of MPK2 in response to oxidative stress, the Arabidopsis 

myc:MKP2-inducible lines were generated. As shown in Figure 16, the expression 

profiles in these different lines were examined by Western blot analysis with anti-myc 

antibodies. The expression of myc:MKP2 protein in seedlings was induced by 

dexamethasone treatment. Some lines had low level of myc:MKP2 expression even 

without dexamethasone treatment, however, some lines exerted strong induction 

without background (e.g. 12-3-3 and 16-7-5) and were used for the later studies. 
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Figure 16. Expression profiles of dex-inducible myc:MKP2 constructs in 

transgenic Arabidopsis lines  

 

To gain a further knowledge on redox regulation on MKP2 protein, we treated 

Arabidopsis seedlings expressing myc:MKP2 with 20mM H2O2. Figure 17 shows that 

within one hour, MKP2 accumulation is similar in treated and non-treated samples; 

however, MKP2 amount in the samples treated with H2O2 for 18h is abviously lower 

than in those without treatment. MPK3, the target of MKP2 dephosphorylation, is 

rather stable during the whole time period no matter the tissue has been treated with 

H2O2 or not. It reveals that the MKP2 protein accumulation is affected under 

conditions of sustained oxidative stress.  

 

Numbers above represent different lines examined. The symbols minus (-) and plus 

(+) stand for without and with dexamethasone treatment, respectively. The large 

subunit of Rubisco (RBCL) indicates the loading control. 
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Figure 17. myc:MKP2 protein accumulation upon H2O2 treatment 

14 days old seedlings of A. thaliana inducible line 12-3-3 were grown under standard 

conditions. Whole seedlings were used for H2O2 treatment in 24-well plates. Protein 

expression has been induced by dexamethasone. 6 h later, 20mM H2O2 has been 

added to monitor protein turn-over. The samples have been collected 1h and 18 h 

after H2O2 treatment. Proteins were extracted with 1 x SDS-loading buffer (5 µl/mg 

fresh weight) and same volumes were loaded. Samples were separated on 

SDS-PAGE and subjected to immunoblot analysis. The large subunit of Rubisco 

(RBCL) indicates the loading control. 
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4. Discussion 

4.1.  Mutant GCL proteins reveal several amino acid 

residues responsible for dimerization 

Crystal structure has been resolved for GCL in Brassica juncea which is arranged as 

dimer (Hothorn et al., 2006). The dimer interface is shown to contain 11 amino acid 

residues, among which several salt bridges and aromatic amino acid side chains are 

highlighted for their contribution of the zipper-like contact zone (Hothorn et al., 2006). 

It is noteworthy that amino acid residues in the region of the dimer interface are highly 

conserved for all GCL sequences in higher plant species and only little changes were 

observed (Gromes et al., 2008). In addition, previous catalytic studies demonstrated 

that the plant GCL activation depends on formation of the regulatory intramolecular 

disulfide bridge and the subsequent formation of homodimers (Gromes et al., 2008; 

Hicks et al., 2007; Hothorn et al., 2006). Based on this knowledge, we thereby 

evaluated the contribution of dimerization of GCL in Arabidopsis through mutagenesis.  

Substitution of amino acid residues was designed to maintain their similarity in size 

and structure in order to minimize the protein conformation perturbation, but electric 

charges have been abolished since they define the interaction between amino acid 

residues. The use of size exclusion chromatography confirmed that, unlike wild-type 

GCL, the generated mutants were unable to dimerize, as a shift of elution profiles was 

observed (Figure 6). In the mutant protein Glu141/Arg403, an arginine residue 

replaced with a glutamate residue abolished the formation of the salt bridge. In 

addition, substitution of tyrosine for leucine in the mutant Tyr194/Phe483 disrupted 

hydrophobic interactions in the dimer interface. These findings suggested that two 

types of interactions, salt bridges and hydrophobic interactions, are important for 

dimerization. Single amino acid replacement was sufficient to disrupt dimer formation, 
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highlighting the importance of conserved amino acid residues, including Glu141, 

Arg403, Glu201 and Tyr194, for the dimerization of the GCL protein. We fail to purify 

the mutants replacing Phe143 and Lys479, indicating that mutation at these positions 

might have changed the overall structure and resulted in protein aggregation. 

4.2. Influencing factors for dimer-monomer transition 

4.2.1. Influence of ionic strength 

The fact that WT AtGCL acts as a dimer, which can be disrupted by reducing agents, 

whereas mutants form a monomer, has prompt us to investigate the possible 

influence of different factors on dimer-monomer transition. The effect of ionic strength 

on protein dimerization have been reported for proteins such as β-lactoglobulin 

(Aymard et al., 1996). Aran et al. (2008) showed that increasing amounts of 

Mg2+ enhance peroxidase oligomerization. In our study, the characterization of the 

influence of the ionic strength was carried out by gel filtration. Only partial oxidized 

WT AtGCL proteins dissociated into monomers at low ionic strength (Figure 7). This 

shift may be explained by ionic strength impacting on geometry of the dimer. Possibly, 

decreasing ionic strength destabilize the interface by repulsive interactions. Based on 

our observation, we suggest that under physiological conditions, in particular, at the 

high ionic strength of chloroplast stroma (~100-200 mM), GCL can be in the dimer 

form and will dissociate into monomer quickly only after reduction of its regulatory 

disulfide bridge (CC2).  

4.2.2. Influence of pH 

Arndt et al. (1998) revealed the variation of pH had a dramatic influence on the 

conversion rate of dimer to monomer in antibody single-chain Fv fragments. Dynein 
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light chain protein behaves as a homodimer at physiological pH, but dissociation 

occurs when pH value is less than 4.5 which can be explained by electric charge 

repulsion leading to dimer dissociation (Barbar and Hare, 2004; Barbar et al., 2001; 

Mohan et al., 2009). Diakonova et al. (2016) demonstrated the rate of ferredoxin-FNR 

complex formation is constant in a wide range of physiologically significant pH values, 

whereas ferredoxin–hydrogenase complex formation is greatly influenced by pH. 

However, our results presented here show that there is pH variation did not change 

the dimer state for WT AtGCL (Figure 8). It suggests the GCL is presumably stable 

within small pH variation, although we cannot yet rule out the possibilities that GCL 

profiles change when applying broader pH variation, as titratable groups might exist in 

the interface. Indeed, the impact of pH on dimer/monomer state is not easy to 

rationalize and may differ among proteins. So there is no surprise to find some different 

reports (Mohan et al., 2009). 

4.2.3. Dimer formation is dependent on protein concentration 

Besides external factors such as ionic strength and pH mentioned above, the 

conversion between dimer and monomer is also sensitive to the absolute 

concentration of GCL. This is supported by the evidence that decreasing the 

concentration of recombinant GCL results in dimer transition into monomer (Figure 

10C-E). This is consistent with followed result of immunoblotting after SDS-PAGE 

under non-reducing conditions (Figure 10F-H). Furthermore, native PAGE analysis of 

GCL dilution series showed band changes (Figure S 3), presumably representing 

dimer-monomer transition irrespective of additional bands detected nearby.  

Moreover, FPLC experiments presented in Figure 10C-E displayed dissociation into 

monomers at concentrations below 10-6 M. We also tried to verify this estimation and 

measure the specific dissociation constant by isothermal titration calorimetry (ITC), 

unfortunately, it was not successful due to lack of sensitivity at very low concentration 

range. However, ITC measurements at higher GCL concentration indicated that 
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dimers may associate to form tetramers, albeit with much lower affinity (Kd: 9 x 10-5 M; 

Figure 13). Besides ITC method, there are also several approaches which can be 

used to determine the dissociation constant, including optical ratiometric based 

system as well as measuring fluorescence intensity or ratio by FRET (Lichten and 

Swain, 2011; Pomorski et al., 2013). These analytical methods are currently the focus 

of interest in biochemical studies. 

As GCL is exclusively localized in plastids (Wachter et al., 2005), a reliable 

assessment of its concentration in this compartment is favorable to answer the 

question whether oxidized GCL protein dimerizes in vivo, since dimerization depends 

on protein concentration. Based on the theory derived from previous studies that 

plastid volume represents not more than 10 % of total tissue volume, and on our 

observations from the immunological quantification of GCL protein (Figure 12), it is  

predicted that a plastidial concentration of GCL in Arabidopsis is about 5 x 10-3 M. 

Considering the estimated dissociation concentration below 10-6 M, oxidized GCL 

protein is expected to be entirely dimerized at this concentration (Figure 10C-E). 

Whether these results from in vitro experiments bear any relationship to the situation 

under physiological conditions is an open question.  

4.2.4. Reversibility of the dimerization correlates with redox 

state 

Association equilibrium is also very much dependent on the intramolecular disulfide 

bond. This is supported by the observation that reduction of the conserved 

intramolecular disulfide bridge by reducing agent is coupled to disruption the GCL 

dimer, resulting in reduced enzyme activity (Gromes et al., 2008; Hicks et al., 2007; 

Hothorn et al., 2006). It is also verified in the present study (Figure 6), that the FPLC 

elution profile of WT GCL shifts upon the addition of the reducing agent DTT, and no 

effect of reduction was observed on GCL mutants since their dimer formations were 

disrupted. The redox regulation of plant GCL involves two intramolecular disulfide 
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bonds (Hothorn et al., 2006). Reduction of CC1 induces structural changes and block 

substrates accessibility, however, the second disulfide bridge CC2 maintains a 

dimeric state of oxidized GCL. Characterization of  2-CysPrx demonstrates that its 

reduced form exists as decamer, while the oxidized form tends to form a dimer 

(Barranco-Medina et al., 2009). This redox dependence of oligomerization associates 

with 2-CysPrx compartmentation and function in response to cellular changes. In 

addition, Chauhan and Mande (2001) reported that in the alkyl hydroperoxidase AhpC, 

dimerization of individual subunits occurs through an intersubunit disulfide bond 

formation. These studies all point to the importance of redox control in the oligomeric 

state of proteins. However, there is still very little knowledge of the nature of protein 

transition. To this end, further biochemical investigations are needed to advance our 

understanding. 

4.3. Multilayer regulation on GCL activity  

4.3.1. GCL activity results from the formation of disulfide bond 

rather than from dimerization 

Previous studies reveal the GCL activation is triggered by intramolecular disulfide 

bond formation followed by homodimerization (Gromes et al., 2008). Based on this 

knowledge, in this study, the contribution of dimer formation to GCL activation was 

evaluated in enzyme activity assay (Figure 9). GCL activities were measured when 

WT GCL was in the oxidized dimeric state and mutant GCL proteins in the monomeric 

state. The redox states of WT GCL and mutants were demonstrated in Figure 5, the 

ratio of oxidized/reduced form among protein variants behaved differently under 

non-reducing conditions. By comparing enzyme activities of different recombinant 

GCL variants, we came to the conclusion that disruption of dimerization does not have 

the significant impact on specific activity, indicating the activation of GCL enzyme is 
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predominantly attributed to the formation of the regulatory intramolecular disulfide 

bridge (Cys186/Cys406). It is in accordance with the reduced activities observed in 

GCL WT and mutants upon DTT treatment (Figure 9). If a more reduced potential is 

favored in the subcellular context, then GCL activation is attenuated. The estimation 

of redox midpoint potential also indicates that AtGCL behaves as a redox-active 

protein (Hicks et al., 2007).  

4.3.2. Substrates and GSH regulation on GCL  

Substrate availability plays a critical role in GCL activation. In comparison with 

substrate glutamate and ATP, cysteine controls the GCL protein in a more decisive 

way. The Km values measured in this study are consistent with previously reported 

data which are close to the cellular concentrations (Hell and Bergmann, 1990; 

Hothorn et al., 2006) (Table 2). It is noteworthy that Km values in mutants are in the 

similar range compared with those in wild type GCL, indicating the dimer formation 

has little impact of substrate affinity on GCL enzyme. As supply with S was 

demonstrated in relation to their ability for GSH accumulation (Noctor et al., 2002; 

Srivastava and D’souza, 2009), together with the evidence that cysteine concentration 

is elevated in Arabidopsis plants which display altered GCL activity (Vernoux et al., 

2000), it is conceivable that the limitation of GCL activity by cysteine availability is of 

particular significance in controlling GSH biosynthesis. 

4.3.3. Other possibilities for GCL regulation 

Up to date, the post-translational regulation of plant GCL remains largely unexamined. 

However, studies from mammalian cells have shown that protein phosphorylation can 

serve as one regulatory way for GCL activation (Wei-Min et al., 1996). In animals, 

GCL was shown to be deactivated by phosphorylation via protein kinases, as applying 

of phosphatase inhibitors in vitro blocked the activation of GCL probably through 
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dephosphorylation (Toroser and Sohal, 2005). Phosphorylation-dephosphorylation 

may play a role in modulation of GCL protein. Nevertheless, this has not been 

reported in plants. It will be of interest to investigate whether phosphorylation 

mechanisms also fit into plant GCL. In addition, signal transduction related 

compounds may also exert regulatory influence on GCL activation. Kinetic analysis of 

GCL in Drosophila extracts demonstrates that the activity of GCL is greatly enhanced 

by NADPH, which is linked to GSH recycling (Toroser et al., 2006). It is postulated 

that specific binding of ligands, such as NADPH, may exemplify another potential 

mechanism for eukaryotic GCL regulation (Toroser and Sohal, 2005). 

4.4. Oxidative stress and redox state of GCL 

Recent studies have found oxidative stress causes shifting of redox state in GCL 

protein both in vivo and in vitro (Hicks et al., 2007; Hothorn et al., 2006; Jez et al., 

2004). A more oxidized form was observed in Arabidopsis seedlings in response to 

hydrogen peroxide treatment (Hicks et al., 2007). Similar experiments have been 

performed in this study (Figure 14), and we extended the treatment time to up to 24 

hours to evaluate the long-time effect of H2O2. The GCL oxidation induced within the 

short time (5h) seems to be attenuated after long-time (24h) exposure. It might be 

assumed that the cellular perturbation triggered by moderate H2O2 is diminishing 

through the timeline, and after a while the redox-active GCL is recovered back to the 

physiological state. The results presented here show that H2O2 induce GCL oxidation 

within the short time range. It is suggested that the plant GCL is sensitive to redox 

changes induced by H2O2, although no effect is shown at the transcriptional level 

(Meyer and Fricker, 2002; Xiang and Oliver, 1998).  

Other oxidative stresses were also reported to impact on the redox state of GCL. 

Exposing Arabidopsis to heavy metal cadmium induces GCL oxidation (Hicks et al., 

2007). Buthionine sulfoximine (BSO) specifically inhibits GCL activity and causes 

oxidative stress through the decreased capacity to synthesize GSH (Griffith and 
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Meister, 1979; Jez et al., 2004; Maughan et al., 2010).  In addition, GCL seems to be 

responsive to proteasome inhibitor cycloheximide (CHX). CHX-treated GCL behaves 

as more reduced form as compared to the control (Figure 15). This result was not 

expected since stressful conditions were thought to induce the protein oxidation. 

However, it is conceivable that CHX might inhibit the cellular metabolism in a way that 

switch off oxidative stress related signaling pathways. 

Our results indicate that, like other redox-responsive proteins such as glutathione 

reductase and superoxide dismutase (Herouart et al., 1993), GCL protein senses 

cellular redox changes and reacts to oxidative signals by adjusting redox state. 

However, there is very little knowledge of the molecular mechanism controlling the 

distribution of GCL between oxidized and reduced forms. It has been predicted that 

thioredoxin or glutaredoxin may play a crucial role since the thioredoxin and 

glutaredoxin systems are found in the chloroplast stroma where GCL resides (Rouhier 

et al., 2008). 

4.5. What is the function of dimerization? 

Considering the evidence that following redox activation, the dimerization occurs in 

plastids due to high GCL concentration, as well as the observation that the dimer 

formation has little contribution to enzyme activity, it is an open question what is the 

physiological role of GCL dimerization.  

It is assumed that the dimer formation is confined to the plant GCLs, whereas 

proteobacteria GCLs behave only as monomers, although they share extensive 

sequence similarity with plant GCLs. In addition, plant GCLs differ from those from 

mammalian cells with regard to structural properties. It is likely that dimer-monomer 

transition upon redox activation is a unique feature of plants related to adapting 

plastidial environment (Gromes et al., 2008). 

Previous studies have suggested that the homodimer formation is related to protein 

stabilities (Messaritou et al., 2009). As GCL activation is triggered by oxidative stress 
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which also induces the enhanced proteolytic activity in plastids, it is conceivable that 

GCL dimerization might play a role in controlling protein stabilization. Additionally, 

several other reports imply that dimerization mediates signal transduction, 

transcriptional regulation, ER export and ligand binding (Angers et al., 2002). 

However, these speculations need to be further verified by in vivo studies. GCL 

transgenic and knock-out lines will facilitate the functional analysis of GCL 

dimerization. Our first attempt was made to generate redox-insensitive CC2 mutant in 

Arabidopsis. Taken together, examining the molecular basis of GCL regulation is just 

at an early stage. 

4.6. Redox regulation on Arabidopsis MAPK 

phosphatase 2 (MKP2) 

MAPK pathways contain a set of molecular control networks that modulate multiple 

physiological processes. In recent years, it has been found that MAKPs are involved 

in stress responses. As MKP2 dephosphorylates AtMAPK3 and AtMAPK6, it indicates 

a MKP2 is a part of the mechanism involved in MAPK signaling pathways in the 

regulation of stress responses. The MKPs act as a switch that determines the MAPK 

activation. 

The results from the present study demonstrate that sustained oxidative stress affects 

MKP2 protein accumulation, suggesting MKP2 is a potential target for H2O2-induced 

oxidation. It is possible that MKP2 degrades upon oxidative stress. This could be 

further investigated by blocking the protein translation (CHX treament) and monitor 

MKP2 stability in response to oxidative stress. The Cys residues in proteins are 

subject to various redox-dependent modifications in ROS signaling. The Cys109 of 

MKP2 is necessary for phosphatase activity and it is conserved among all MKPs from 

the plant and animal origin. It is assumed that oxidation stress affects MKP2 by 

modifying the Cys109. 
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Evidence has emerged that MAPKs can be activated in a glutathione-dependent 

manner. Transient activation of MAPKs in tobacco and Arabidopsis is related to 

increased glutathione biosynthesis (Matern et al., 2015). It might be proposed that this 

regulation occurs at the level of MKP2, since it plays a pivotal role in MAPK signaling. 

In addition, MKP2 can be glutathionylated in vitro, therefore it may be speculated that 

endogenous MKP2 undergoes protein modifications under stress conditions. This 

assumption could be verified by mass spectrometry.  

Following this study, on one hand, the redox-dependent activity of MKP2 could be 

examined using immunoprecipitated myc:MKP2 from inducible Arabidopsis lines. On 

the other hand, it would be interesting to examine the MPK2 stability in cat2-1 mutant, 

as elevated glutathione content in cat2-1 mutant may play a role in the regulation of 

MKP2. 
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5. Materials and methods 

5.1. Plant materials and cultures 

5.1.1. Plant cultivation 

Arabidopsis thaliana (ecotype Columbia (Col-0) and transgenic lines) and Nicotiana 

tabacum were cultivated on ½ MS agar medium and MS agar medium (Serva), 

respectively. The plants were grown in a climate chamber at 25°C under 16 hours 

(long-day) light period (100-200 μmol m-2 s-1) for two weeks. If needed, the seedlings 

were further transferred to the soil and grown in the greenhouse under long-day (16 h) 

conditions at 22°C. 

For Arabidopsis liquid culture, the seeds of Col-0 were grown in 250 ml flasks 

containing the liquid medium. The plants were grown in liquid culture in the shaker 

under continuous light conditions for 10 days. 

The seeds of Zea mays were put on a wet filter paper geminated for three days in the 

dark at room temperature. Afterwards they were grown in a climate chamber at 25°C 

under 16 hours light period for 5 days. 

Murashige & Skoog (MS) agar medium: Murashige & Skoog with vitamins (Duchefa, 

Haarlem, Netherlands)) (2.2 g/l for ½ MS, 4.4 g/l for MS), 2 % (w/v) Sucrose (Roth), 

0.8 % (w/v) Agar (Duchefa), pH5.7 

Liquid medium: 4.3 g/l MS basal salt mixture (Duchefa, Haarlem, Netherlands), 0.5 g/l 

MES, 2 % sucrose, distilled water, pH 5.7 

5.1.2. Seeds sterilization 

The plant seeds were sterilized in the solution of 1.3% sodium hypochloride (v/v) and 
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0.01% Tween (v/v) for 3 minutes and washed thoroughly with absolute ethanol three 

times. Afterwards, seeds were left to dry in the laminar flow cabinet. 

5.1.3. Stress treatments 

H2O2 treatment  

For monitoring GCL upon H2O2 treatment, Arabidopsis seedlings were grown on ½ 

MS medium for two weeks and treated with H2O2 (5mM, 10mM) or H2O for 0-24 hour. 

Maize seedlings were also treated with H2O2 (5mM, 10mM) or H2O for 0-24 hour. Root 

tissue of seedlings was used for analysis. For investigating MKP2 accumulation upon 

H2O2 treatment, 14 days old seedlings of Col-0myc-MKP2 inducible lines were used. For 

treatment, seedling were transferred into 24-well plates, each well contained 3 

seedlings in 1 ml liquid ½ MS. Whole seedlings were used for treatment in 24-well 

plates. Protein expression was induced by dexamethasone. 6 h later, dexamethasone 

was removed and 20mM H2O2 was added to monitor protein turn-over. The samples 

have been collected 1h and 18 h after H2O2 treatment under long day conditions. 

Cycloheximide (CHX) treatment 

For analyzing GCL, Arabidopsis seedlings grown in liquid culture were treated 100μM 

cycloheximide or H2O for 0h, 6h, 24h or 48h in the shaker (120 rpm) under continuous 

light conditions. Seedlings were harvested at each time point. For analyzing MAPK 

and MKP2, seedlings of Col-0myc-MKP2 lines, including wild type and mutant version of 

MKP2 (Cys109 is replaced with Ser), were first induced by dexamethasone for 6 

hours, and then either treated with 100 µM CHX alone or 100 µM CHX and 20 mM 

H2O2 were applied together for 19 hours under long day conditions. 
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5.2. Bacterial stains and cultures 

5.2.1. Bacterial strains 

For cloning purposes 

Escherichia coli DH5α (Invitrogen): F-, φ80lacZΔM15, Δ(lacZYA-argF)U169, recA1, 

endA1, hsdR17(rk-, mk+), phoA, supE44, thi1, gyrA96, relA1, λ- 

Escherichia coli XL1-Blue (Stratagene): recA1, endA1, gyrA96, thi-1, hsdR17, 

supE44, relA1, lac- (F’, proAB+, lacIq, lacZ_M15::Tn10(tetr) 

For protein overexpression 

Rosetta gami [DE3] (Novagen, Madison, USA): Δ(ara-leu)7697, ΔlacX74, ΔphoA, Pvu 

II, phoR, araD139, ahpC, galE, galK, rpsLF'[lac+(lacIq)pro], gor522 ::Tn10, trxB ::kan, 

pRARE 

5.2.2. Bacterial media and culture conditions 

Antibiotics used for plasmids selection 

Ampicillin: 100μg/ml dissolved in H2O, stock: 100mg/ml  

Chloramphenicol: 34μg/ml dissolved in EtOH, stock: 34mg/ml  

Bacterial media  

Low Salt Luria Bertani (LS-LB)-medium:  

10 g/l tryptone, 5 g/l yeast extract, 5 g/l NaCl, pH 7.0; for plate cultures 2 % (w/v) agar 

was added to the medium. After autoclaving at 120 °C for 20 min, the media were 

cooled down to around 50°C and appropriate antibiotics were added.  

E. coli was grown at 37 °C in liquid LB medium and shaked at the speed of 200 rpm. 

SOC-medium: 
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20 g/l tryptone, 5 g/l yeast extract, 10 mM NaCl, 2,5 mM KCl, 10 mM MgCl2 , 10 mM 

MgSO4, 10 mM glucose, pH 7.0 

Terrific Broth (TB)-medium:  

For 1 liter TB-medium, the following chemicals were used.  

100 ml TB1:1.7 mM KH2PO4, 7.2 mM K2HPO4 

900 ml TB2: 2.4% yeast extract, 1.2% tryptone, 4% glycerol 

TB1 and TB2 were mixed together after being autoclaved separately. 

E. coli was grown at 37 °C in liquid LB medium and shaked at the speed of 200 rpm. 

After inducing overexpression of recombinant proteins, the temperature was set to 

30°C for incubation. 

5.2.3. Preparation of glycerol stocks  

Glycerol stocks were prepared for long-term storage of bacterial strains. 150 μl 100 % 

glycerol was added to 600 μl liquid culture, the mixture was then frozen in liquid 

nitrogen and stored at -80 °C.   

5.2.4. Production of bacterial competent cells  

The chosen E.coli strain was grown in 1 liter LB medium to an OD600 0.7. The culture 

was cooled down on ice, and then centrifuged at the speed of 1,500 g and 4°C for 5 

minutes to harvest the cells. The collected cells were washed two times with 250 ml 

ice-cold sterile water followed by 20 ml ice-cold sterile 10% glycerol. E.coli cells were 

finally resuspended in 4 ml of 10 % glycerol. Every 50 μl-aliquot was added in 0.5 ml 

tube, frozen in liquid nitrogen, and stored at -80 °C for later usage. 

Transformation efficiency (Et) was estimated by transforming 10 pg of pUC19 plasmid 

into the competent cells. The colonies grown on LB selective media were counted to 

fit into the equation: Et = colonies/μg/dilution. The minimum efficiency required was 2 

x 108 cfu/μg DNA. 
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5.2.5. Transformation of bacterial competent cells 

For transformation by electroporation, 50 μl of E.coli competent cells (see 5.2.4) were 

thawed on ice and 0.5 to 2 μl of plasmid or ligation product was added. The 

transformation was conducted by electroporation in the BioRad GenePulser II system 

(BioRad) at 200 W, 1.8 kV and 25 μF. 1 ml SOC medium (see 5.2.2) was quickly 

added to the E.coli cells after electroporation. The cells were then incubated for 1 hour 

at 37°C and subsequently spread over the LB agar plates. 

5.3.  Nucleic acid techniques 

5.3.1. Isolation of genomic DNA from plants 

Isolation of genomic DNA (gDNA) from plant tissue was performed with Edwards’ 

buffer (400 mM LiCl, 200 mM Tris, 25 mM EDTA and 1% (w/v) SDS, pH 9.0). 50 mg 

leaves from Arabidopsis were homogenized in a 1.5 ml eppendorf tube and 500 μl of 

extraction buffer were added. After mixing the sample by vortexing, it was centrifuged 

at 11,000 g at 4°C for 5 min. 300 μl of supernatant was transferred into a new tube 

and 300 μl of 100% isopropanol was added and mixed gently. The sample was 

centrifuged at 11,000 g for 10 min. The pellet was washed once with 70 % (v/v) 

ethanol. After the ethanol dried out, DNA was eluted in 25 μl sterile water. The 

isolated gDNA was used for selecting Arabidopsis GCL knock-out lines in which CC2 

is mutated. 

5.3.2.  Isolation of plasmid DNA from bacterial culture 

2-4 ml of bacterial overnight cultures were centrifuged at the speed of 15,000 g for 1 

min. The collected pellet was used for plasmid DNA extraction with the GeneJET 

Plasmid Miniprep Kit (Thermo Scientific) according to the manufacturer’s instructions. 
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JETSTAR2.0 Midi Kit (Genomed) was chosen for production of plasmid DNA if 

higher-yields were necessary. 

5.3.3. Determination of nucleic acid concentration 

Determination of nucleic acid concentration was conducted spectrophotometrically 

with the Nanodrop ND-2000 (Peqlab). The absorbance was measured at 260 and 280 

nm by application of Lambert-Beer’s law. The ratio of OD260/OD280 was used as 

indication of purity. 

5.3.4. Oligonucleotides 

All oligonucleotides were synthesized by Eurofins (Munich, Germany). and dissolved 

in double distilled sterile water or TE buffer (10 mM Tris-base, 1 mM EDTA, pH 8.0) to 

a final concentration of 100 μM and stored at -20°C. The primers used in this study 

(Table S 1) were designed by Primer Premier 

(http://www.premierbiosoft.com/primerdesign/). 

5.3.5.  Agarose gel electrophoresis 

DNA samples were mixed with 5x DNA loading buffer (50% glycerol, 5x TAE buffer, 1% 

Orange-G). They were loaded on 0.8 or 1% agarose gels in 1x TAE buffer (40 mM 

tris-base, 20 mM sodium acetate, 1 mM EDTA, pH 7.2). The voltage for gel running 

was set at 70 to 90 V. GeneRuler DNA ladder was purchased from Thermo Scientific. 

DNA fragments were stained in 1 mg/l ethidiumbromide and visualized under UV-light 

using INTAS science imaging instruments (Göttingen, Germany). 

5.3.6. Polymerase chain reaction (PCR) 

Polymerase chain reaction (PCR) was performed to amplify DNA fragments. The non 
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proof-reading Taq polymerase (Sigma-Aldrich) and the proof-reading Phusion 

polymerase (Finnzymes) were used in this study. The standard PCR reaction mixture 

and the corresponding PCR program (run by Mastercycler from Eppendorf) are listed 

in Table 3 and Table 4. 

Table 3. Standard PCR reaction mixture 

5 x Phusion / 10 xTaq buffer  10 / 5 

10 mM dNTPs 1 

10 μM Primer (forward) 2.5 

10 μM Primer (reverse) 2.5 

Phusion / Taq polymerase 0.5 /1 

Template  Varying 

Distilled water Add up to 50 (μl) 

 

Table 4. Standard PCR program 

 

Initial denaturation 98 °C 30s 

Denaturation 98 °C 10s 

Annealing  varying 30s 

Elongation  72°C 1 min/ 1kb 

Final elongation 72 °C 7min 

End 4 °C  

5.3.7. Purification of DNA fragments 

DNA fragments were purified using the GeneJET PCR Purification kit (Thermo 

Scientific) according to the provider’s instructions. 

30x 

cycles cycles 
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5.3.8. Restriction digestion 

All restriction digestions were carried out with enzymes from New England Biolabs 

(NEB) in the recommended buffers and under optimum conditions according to 

manufacturer’s instruction. 

5.3.9. Ligation of DNA fragments 

For ligation of DNA fragments into plasmids, 1 μl T4-Ligase (NEB) 1 μl plasmid (100 

ng), a 3 to10 fold molar excess of insert, 5 μl 2x buffer and water were added to make 

up to 10 μl reaction mixture. It was then incubated overnight at 4 °C or 1 h at room 

temperature. 

5.3.10. DNA Sequencing 

Sequencing of DNA was conducted by Eurofins GmbH and the following results were 

analyzed by the software Serial Cloner. 

5.3.11. Cloning and mutagenesis of GCL from A. thaliana 

AtGCL (GenBank: CAA71075.1) was amplified by PCR from an Arabidopsis cDNA 

library using primer pairs 5’-CATGCCATGGCGGCAAGTCCTCCAACG-3’ and 

5’-CCGCTCGAGTTAGTACAGCAGCTCTTCGAACACGG-3’ (with restriction sites 

and protective bases underlined). The predicted plastid transit peptide (Table S 2) 

was excluded in the GCLs of both, WT and mutants. Mutants were generated by 

using the QuickChange Mutagenesis kit (Stratagene) according to the manufacturers’ 

instructions. The primers are listed in Table S 1. PCR products were verified by DNA 

sequencing. All sequences were digested with NcoI and XhoI and cloned into the 

pETM-20 vector (Hothorn et al., 2003) to produce His-tagged proteins fused with 

thioredoxin to increase solubility. 
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5.4. Protein techniques 

5.4.1. Expression of recombinant protein in E.coli 

The overnight culture of E. coli Rosetta gami DE3 (Novagen) containing the target 

vector was transferred to 2 liter LB medium (TB was used for producing more proteins) 

and cultured at 37°C and 180 rpm until the OD600 reached 0.6-0.8. Then the cells were 

induced with 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG). Bacteria cultures 

were harvested by centrifugation after 4 hours and the cell pellet was stored at -20°C 

for one day. 

5.4.2.  Purification of recombinant protein by affinity 

chromatography 

Recombinant protein were purified by affinity chromatography (Qiagen, Valencia, CA). 

Pelleted cells were resuspended in lysis buffer (50 mM Tris pH 8.0, 250 mM NaCl, 20 

mM imidazol). The suspension was centrifuged at 22,000 g for 10 min. The 

supernatant containing protein crude extract was applied to the HiTrapTM chelating 

column. After 2-hour circulation, the column was washed with washing buffer (50 mM 

Tris pH 8.0, 250 mM NaCl, 45 mM Imidazol) and the washing fractions were collected 

as 1 ml per tube. His-tagged proteins were eluted with elution buffer (50 mM Tris pH 

8.0, 250 mM NaCl, 400 mM Imidazol) and the eluted fractions were collected as 1 ml 

per tube. The eluted proteins were dialyzed against buffer (25 mM HEPES pH 7.5, 5 

mM MgCl2, 150 mM NaCl) and cleaved overnight with recombinant tobacco etch virus 

(TEV) protease at 4 °C. A second Ni2+ affinity step was performed after dialysis to 

separate GCL protein from 6x His tagged protease and thioredoxin. The final protein 

was concentrated by centrifugal filtration (Amicon Ultra-filter Millipore, 30 kDa 

MWCO). 
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5.4.3. Protein extraction from plant tissue 

For detecting GCL, 50 to100 mg of tissue were ground and mixed on ice with 

extraction buffer (50 mM HEPES pH 7.5, 1mM EDTA, 2 mM MgCl2, 10 mM KCl, 10 

mM ascobate, 10 mM NEM, 1mM PMSF). After vortexing, the homogenate was 

centrifuged at 15,000 g for 30 min under 4 °C. The supernatant was taken for gel 

electrophoresis. 2x reducing or non-reducing loading buffer (Roti-Load, Roth) was 

added to the sample and denatured by heating to 90 °C for 5 min if needed. 

For monitoring MAPK activities, 50 to100 mg of tissue were ground and mixed on ice 

with extraction buffer (50 mm Tris-HCl, pH 7.5, 10 mm MgCl2, 15 mm EGTA, 100 mm 

NaCl, 2 mm dithiothreitol, 1 mm NaF, 1 mm NaMo, 0.5 mm NaVO3, 30 mm 

β-glycerophosphate, and 0.1% Nonidet P-40, 1% anti-protease cocktail (P9599; 

Sigma). and the homogenate was centrifuged twice at 15,000 g for 10 min under 4 °C 

and supernatant was taken for gel electrophoresis. For this, 3 volumes of supernatant 

were mixed with 1 volume of 4x reducing loading buffer (Roti-Load, Roth) and 

denatured by heating at 85 °C for 5 min. For detecting MAPKs and MKP2 stabilities, 

50 to100 mg of tissue was grounded and mixed on ice with 1x reducing loading buffer 

(5 μl buffer/mg FW) and denatured by heating at 85 °C for 5 min. 

5.4.4. Determination of protein concentration 

Protein concentration was determined by Bradford assay. 250 μl of 1x Bradford 

solution (Roth) was added to 10 μl sample in a 96-well plate and the absorbance was 

measured at 595 nm with the BMG Fluostar plate reader. 0.1, 0.2 and 0.4 μg/μl BSA 

were used to generate the standard calibration curve for calculating the concentration 

of protein samples. 
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5.4.5. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE was performed to separate proteins. Stacking gels were prepared with 

3.0 ml water, 1.25 ml stacking gel buffer (0.5 M tris-base pH 6.9, 0.4% SDS), 0.75 ml 

acrylamide-mix (30% acrylamide/ bisacrylamide mix, 37.5:1, SERVA), 60 μl 10% APS 

and 6 μl TEMED. 12% resolving gels were prepared with 3.5 ml water, 2.5 ml 

resolving gel buffer (1.5 M Tris-base pH 8.8, 0.4% SDS), 4.4 ml acrylamide-mix (30% 

acrylamide/ bisacrylamide mix, 37.5:1, SERVA), 45 μl 10% ammonium persulfate  

(APS) and 10 μl TEMED. The running buffer has the following compositions: 25 mM 

tris-base, 200 mM glycine, and 0.1% SDS, pH 8.6. The samples were separated at 

the voltage of 120 V in stacking gels followed by 200 V in resolving gels. 

For native gel electrophoresis, the following solutions were used: acrylamide solution 

(30 g acrylamide and 0.8 g bis-acrylamide, fill up to 100 ml in distilled water), 

separating gel buffer (1.5 M Tris HCl, pH 8.8), stacking gel buffer (0.5 M Tris HCl, pH 

6.8), polymerizing solution (10 % APS in water and TEMED), electrophoresis buffer (3 

g Tris base, 14.4 g glycine, fill up to 100 ml in distilled water, pH8.3). The separating 

gel was prepared by mixing 5.37 ml acrylamide solution, 3.3 ml separating gel buffer, 

4.73 ml water, 90 μl 10% APS and 16 μl TEMED. The stacking gel was prepared by 

mixing 1.13 ml acrylamide solution, 0.72 ml stacking gel buffer, 2.61ml water, 45 μl 10% 

APS and 9 μl TEMED. The gel was run at 80 V on ice for 2.5 hours. 

5.4.6. Coomassie staining 

Coomassie staining was performed after SDS-PAGE to visualize proteins on the gel. 

The gel was incubated in the staining buffer (0.2% Coomassie Blue G250, 45% 

methanol, 10% glacial acetic acid) for 30 min and washed with distilled water 

overnight for destaining. 
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5.4.7. Immunoblotting 

Proteins were transferred to a PVDF membrane (Immobilon P, Millipore) after 

SDS-PAGE,according to manufacturers’ instructions for the membrane. Prior to 

transfer, the membrane was pretreated with 100% methanol for 20 s, washed with 

water for 2 min and incubated with blotting buffer (48 mM Tris-base, 39 mM glycine, 

20% methanol, 0.0375% SDS) for 5 min. The transfer was performed by a 

PerfectBlue Semi-Dry Electroblotter (Peqlab) at 25 V and 400 mA for 45 min. 

Afterwards, the membrane was incubated with 1x TBST buffer (20 mM Tris-base, 150 

mM NaCl, 0.05% Tween20) containing 5 % milk powder for 1 hour with shaking. The 

membrane was washed with 1x TBST buffer five times and incubated with specific 

primary antibody (diluted according to the Table 5) overnight at 4°C, followed by the 

same washing step with 1x TBST buffer. The incubation with the secondary antibody 

was carried out in 1x TBST containing 1 % milk powder at dilution of 1:20000 for 1 h 

and the membrane was washed with 1x TBST buffer five times. For chemiluminescent 

detection, Super Signal West Dura Extended Duration Substrate (Thermo Scientific) 

was used and the protein signals were detected by ImageQuant LAS 4000. Amido 

black staining solution (0.1% amido black, 45% methanol, 10% glacial acetic acid) 

was used for membrane staining to visualize the proteins as a loading control. 

Table 5. List of primary antibodies 

primary antibodies dilution solution sourse 

anti-pTEpY (for MAPKp) 1:20000 5 % (w/v) BSA, 0.1 % Tween 20 

 in 1x TBS 

rabbit 

anti-MAPK3 1:5000 1 % BSA in TBST rabbit 

anti-myc (for MKP2) 1:10000 2 % BSA in TBST mouse 

anti-GCL 1:5000 1 % milk powder in TBST rabbit 
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5.4.8. Enzymatic Characterization of GCL Protein 

Specific activities of recombinant AtGCL (WT and mutants) were analyzed in a 

coupled enzymatic assay as described previously (Abbott et al., 2001). A reaction 

mixture (0.5 ml) contained reaction buffer (100 mM MOPSO pH 7.0, 150 mM NaCl, 20 

mM MgCl2), 10 mM L-cysteine, 20 mM sodium glutamate, 5 mM ATP, 2 mM 

phosphoenolpyruvate, 0.27 mM NADH, 5 units of type II rabbit muscle pyruvate 

kinase, and 10 units of type II rabbit muscle lactic dehydrogenase. Reactions were 

started by adding WT or mutant GCL protein (50 µg). OD340 values were measured for 

calculating the enzyme activites.  

For determination of Km values, different substrate concentrations were applied. Km 

for cysteine were determined at 20 mM ATP and 80 mM glutamate, respectively, for 

ATP at 20 mM cysteine and 80 mM glutamate, respectively, and for glutamate at 20 

mM cysteine and 20 mM ATP, respectively. Kinetic parameters were calculated 

according to v =[S]/(Km +[S]) in GraphPad Prism.  

Student’s T-test was performed for significance. Results were obtained from three 

independent experiments and are expressed as means ± standard error (S.E.). 

5.4.9. Size-exclusion chromatography (SEC) 

Oligmerization state of GCL (WT and mutants) was determined by size-exclusion 

chromatography (SEC) using a HiLoad 16/600 Superdex 200 pg column (GE 

Healthcare). The buffer containing 25 mM HEPES (pH 7.5), 5 mM MgCl2 and 150 mM 

NaCl was used as running buffer and was pre-loaded onto the column. For low-ionic 

strength solution, 10 mM NaCl was used. The protein was dialyzed with the running 

buffer overnight and 1 ml sample (50 μg) was loaded onto the column. The elution 

was conducted at 1 ml/min. 120 mM dithiothreitol was added to the protein if needed. 

The Superdex 200 column was calibrated with the high and low molecular weight gel 

filtration calibration kits (GE Healthcare). The calibration curve (Figure S 2) was 
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generated by the gel phase distribution coefficient (Kav) versus logarithm of the 

molecular weight (Log Mr). Kav = (Ve - Vo) / (Vc - Vo) where Ve = elution volume, Vo 

= column void volume (45.39 mL), Vc = geometric column volume (120 mL). 

5.4.10. Isothermal titration calorimetry (ITC) 

Isothermal titration calorimetry (ITC) was performed to determine the dissociation 

constant (Kd) of GCL. The protein was dialyzed in the ITC buffer containing 25 mM 

Hepes (pH 7.5), 150 mM NaCl, and 5 mM MgCl2. The experiment was carried out by a 

MicroCal PEAQ-ITC machine (Malvern Instruments) at 20 °C according to the 

manufacturer's instructions. WT AtGCL (450 µM) in the syringe was titrated into the 

sample cell containing ITC buffer. The MicroCal PEAQ-ITC Analysis Software 

(Malvern Instruments) was used for data analysis. 

5.5. Bioinformatic analysis 

The sequence information (DNA and proteins) used in this study was obtained from 

the NCBI database (http://www.ncbi.nlm.nih.gov/). Protein sequences of GCL from 

Nicotiana tabacum, Brassica juncea and Arabidopsis thaliana were aligned using 

Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) (Figure S 1). ChloroP 1.1 

Server was used for prediction of GCL transit peptide 

(http://www.cbs.dtu.dk/services/ChloroP/) (Table S 2). 
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6. Supplements 

Table S 1. Primers used for cloning 

Original amino 

acid residues 

Mutated amino acid 

residues 

Sequences (5’-3’) 

E141/R403 

 

K141/R403-5PCR CATGCCATGGCGGCAAGTCCTCCAACG   

TCCCATTCAAATCTCTTAGCGATACC  

 K141/R403-3PCR CTTCTTAATGGTATCGCTAAGAGATTTG 

CCGCTCGAGTTAGTACAGCAGCTCTTCGAACACGG  

 E141/E403-5PCR CATGCCATGGCGGCAAGTCCTCCAACG   

CACACAGCCTTTCCCAGGGACCTC 

 E141/E403-3PCR GAGGTCCCTGGGAAAGGCTGTGTG 

CCGCTCGAGTTAGTACAGCAGCTCTTCGAACACGG 

  

Q141/M403 Q141/M403-5PCR.1 CATGCCATGGCGGCAAGTCCTCCAACG   

TCCCATTCAAATCTCTGAGCGATACC 

 Q141/M403-3PCR.1 TCTTAATGGTATCGCTCAGAGATTTGAATG 

CCGCTCGAGTTAGTACAGCAGCTCTTCGAACACGG  

 Q141/M403-5PCR.2 CATGCCATGGCGGCAAGTCCTCCAACG   

ACACAGCCTCATCCAGGGACCTC 

 Q141/M403-3PCR.2 AGGTCCCTGGATGAGGCTGTGTGC 

CCGCTCGAGTTAGTACAGCAGCTCTTCGAACACGG  

 

E201/K479 

 

K201/K479-5PCR CATGCCATGGCGGCAAGTCCTCCAACG   

CCAATTCCCATTTCCTTAGCAACTGCTTTTAC 

 K201/K479-3PCR TCAGGTAAAAGCAGTTGCTAAGGAAATGG 

CCGCTCGAGTTAGTACAGCAGCTCTTCGAACACGG  
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 E201/E479-5PCR CATGCCATGGCGGCAAGTCCTCCAACG   

AACCGGCTTCTTCGTAGCCTCTGCG    

 E201/E479-3PCR 

 

CAGAGGCTACGAAGAAGCCGGTTTC 

CCGCTCGAGTTAGTACAGCAGCTCTTCGAACACGG 

Q201/M479 

 

Q201/M479-5PCR.1 CATGCCATGGCGGCAAGTCCTCCAACG  

CAATTCCCATTTCCTGAGCAACTGCTTTTAC 

 Q201/M479-3PCR.1 AGGTAAAAGCAGTTGCTCAGGAAATG 

CCGCTCGAGTTAGTACAGCAGCTCTTCGAACACGG  

 Q201/M479-5PCR.2 CATGCCATGGCGGCAAGTCCTCCAACG   

CGGCTTCCATGTAGCCTCTGCG 

 Q201/M479-3PCR.2 

 

TAGAGCGCAGAGGCTACATGGAAGC 

CCGCTCGAGTTAGTACAGCAGCTCTTCGAACACGG  

F143/W402 L143/W402-5PCR CATGCCATGGCGGCAAGTCCTCCAACG   

ACTTTTTCCCATTCCAATCTTTCAGC  

 L143/W402-3PCR 

 

GGTATCGCTGAAAGATTGGAATGG 

CCGCTCGAGTTAGTACAGCAGCTCTTCGAACACGG  

Y194/F483 

 

L194/F483-5PCR CATGCCATGGCGGCAAGTCCTCCAACG   

GCTTTTACCTGCAAAAGATGTGAATTGACT 

 L194/F483-3PCR 

 

GAAGTCAATTCACATCTTTTGCAGGT 

CCGCTCGAGTTAGTACAGCAGCTCTTCGAACACGG 
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Figure S 1. Sequence alignment of GCLs 

Protein sequences of GCL from Nicotiana tabacum, Brassica juncea and Arabidopsis 

thaliana were aligned using Clustal Omega. 
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Table S 2. Transit peptide prediction for AtGCL 

Name is the name of the submitted sequence. Length is the length of the submitted 

sequence. Score is the output score from the second step network. The prediction 

cTP/no cTP is based solely on this score. cTP tells whether or not this is predicted as 

a cTP-containing sequence; "Y" means that the sequence is predicted to contain a 

cTP; "-" means that is predicted not to contain a cTP. CS-score is the MEME scoring 

matrix score for the suggested cleavage site. cTP-length is the predicted length of the 

presequence. The transit peptide is highlighted in blue in the following AtGCL 

sequence. 

 

Name       Length      Score    cTP     CS- Score   cTP- length 

AtGCL         522    0.558     Y        4.289         73 

 

MALLSQAGGSYTVVPSGVCSKAGTKAVVSGGVRNLDVLRMKEAFGSSYSRSLSTKSMLL

HSVKRSKRGHQLIVAASPPTEEAVVATEPLTREDLIAYLASGCKTKDKYRIGTEHEKFGFE

VNTLRPMKYDQIAELLNGIAERFEWEKVMEGDKIIGLKQGKQSISLEPGGQFELSGAPLET

LHQTCAEVNSHLYQVKAVAEEMGIGFLGIGFQPKWRREDIPIMPKGRYDIMRNYMPKVGT

LGLDMMLRTCTVQVNLDFSSEADMIRKFRAGLALQPIATALFANSPFTEGKPNGFLSMRS

HIWTDTDKDRTGMLPFVFDDSFGFEQYVDYALDVPMYFAYRKNKYIDCTGMTFRQFLAGK

LPCLPGELPSYNDWENHLTTIFPEVRLKRYLEMRGADGGPWRRLCALPAFWVGLLYDDD

SLQAILDLTADWTPAEREMLRNKVPVTGLKTPFRDGLLKHVAEDVLKLAKDGLERRGYKE

AGFLNAVDEVVRTGVTPAEKLLEMYNGEWGQSVDPVFEELLY 
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Figure S 2. Calibration curve used to estimate molecular weights for GCLs 

Size exclusion chromatography column HiLoad 16/600 Superdex 200 pg was 

calibrated using Ribonuclease A (13700 Da), Carbonic Anhydrase (29000 Da), 

Conalbumin (75000 Da), Aldolase (158000 Da), Ferritin (440000 Da). The calibration 

curve was carried out by the gel phase distribution coefficient (Kav) versus logarithm 

of the molecular weight (Log Mr). Kav = (Ve - Vo) / (Vc - Vo) where Ve = elution 

volume, Vo = column void volume (45.39 mL), Vc = geometric column volume (120 

mL). The equation, Y = - 0.352 * X + 2.1518 (R2 = 0.9984) was calculated from the 

calibration curve (straight line) to determine the molecular weight of protein. Blue 

diamonds on the curve indicate the known calibration standards, black circles 

correspond to the positions of Kav values for GCL dimer and monomer, the molecular 

weights of which were estimated to be around 106000 Da and 51000 Da, 

respectively. 
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Figure S 3. Immunoblot analysis of recombinant AtGCL WT separated by native 

PAGE 

Different concentrations of recombinant proteins (6.5, 1.3, 0.26 and 0.05 μM) were 

loaded with same volume in native PAGE for AtGCL WT. The proteins were then 

subjected to immunoblot analysis using antisera against AtGCL. The proteins behave 

as dimer and/or monomer indicated by arrow, the additional unspecific bands are 

observed as well. 
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7. List of abbreviations 

At Arabidopsis thaliana 

ADP adenosine-5’-diphosphate 

ATP adenosine-5’-triphosphate 

APS adenosine-5′-phosphosulfate 

APR APS reductase 

Arg arginine 

BSA    bovine serum albumin 

Cys cysteine 

CSC cysteine synthase complex 

CC1/CC2 disulfide bridge 1 / disulfide bridge 2 

CHX cycloheximide 

DHAR dehydroascorbic acid reductase 

DEX dexamethasone 

DNA desoxyribonucleic acid 

dNTP desoxyribonucleotide 

DTT dithiothreitol 

EDTA ethylenediamine tetraacetic acid 

e.g. for example 

FPLC fast protein liquid chromatography 

FW fresh weight 

g multiple of standard terrestrial gravity  

GSH glutathione (reduced) 

GSSH glutathione disulfide (oxidized) 

GCL γ-glutamylcysteine ligase 

GR glutathione reductase 

GST glutathione S-transferase 

https://en.wikipedia.org/wiki/Fast_protein_liquid_chromatography
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GS glutathione Synthetase 

Gly glycine 

Glu glutamate 

Gln glutamine 

h hour 

HEPES N-(2-Hydroxyethyl) piperazine-2-ethanesulfonic acid 

ITC isothermal titration calorimetry 

IPTG isopropylthiogalactoside 

Km Michaelis Menten constant 

Kd dissociation constant 

kDa kilo daltons 

Lys lysine 

min minute 

MES 2-(N-morpholino) ethanesulfonic acid 

NCBI national center for biotechnology information 

NAD(P)+ nicotine adenine dinucleotide (phosphate), oxidized 

NAD(P)H nicotine adenine dinucleotide (phosphate), reduced 

NEM N-ethylmaleimide 

ODx nm opticaldensity at x nm wavelength 

ORF open reading frame 

Phe phenylalanine 

pH negative decadic logarithm of hydronium ions 

PMSF phenylmethanesulfonylfluoride 

RBCL rubisco large subunit 

rpm revolutions per minute 

ROS reactive oxygen species 

s second 

Ser serine 

SDS sodium dodecyl sulfate 
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S.E. standard error 

SEC size-exclusion chromatography 

TEV tobacco etch virus 

TEMED N,N,N’,N’Tetramethylediamine 

Tris 2-amino-2-hydroxymethyl-1,3-propanediol 

(trishydroxymethylaminomethane) 

Trp tryptophan 

Tyr tyrosine 

v/v volume per volume 

w/v weight per volume 

WT wild type 

°C degree celsius 
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