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Abstract 

The discovery of phosphatidylinositol-phosphates (PIPn) within cell membranes, in the 

early 1950’s, ignited the interest in their biological roles, and soon after scientific 

evidence proposed their tight association with processes involving cell signaling, cell 

adhesion, polarization and migration, as well as membrane trafficking and oncogenesis. 

PRL-3, an oncogenic phosphatase, has been recently shown to adopt 

phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) as a natural substrate, through 

which it orchestrates several hallmarks of cancer, culminating in metastasis. Therefore, 

the PIPn-metabolizing enzyme PRL-3 became of great interest in biomedical research. 

To understand the binding mechanisms of PI(4,5)P2 with PRL-3, the development of 

synthetic approaches to synthesize analogues of this natural product is paramount. 

 

The goal of this work was to develop an approach to synthesize PI(4,5)P2 mimetics with 

alkylation(s) on the inositol ring. The newly established synthetic route was first tested 

with the chiral 6-O-methoxy PI(4,5)P2, after many arising synthetic challenges were 

overcome. The chemical literature is abundant with PI(4,5)P2 analogues bearing 

thiophosphate groups, different lipid tail composition, and novel functional groups, but 

none with direct changes to the hydroxyl groups on the inositol ring have been reported 

so far. Within the resulting collection of novel, inositol-modified analogues, some 

showed significant biological activity with PRL-3, compared to the lipid tail-modified 

analogues and the one containing the natural PI(4,5)P2 head group, which were also 

synthesized as part of this work. These active analogues were specific to PRL-3 as they 

did not show major activity with other PI(4,5)P2 –metabolizing enzymes.  

 

In parallel, in silico shape similarity screening methods were applied using PI(4,5)P2 as a 

template, to look for specific PRL-3-active small molecule inhibitors. This led to an 

active compound, which stresses the potential of prediction tools in finding inhibitors 

for challenging targets. 

 

Future applications of the synthesized PI(4,5)P2 analogues can be numerous: 

investigating the binding requirements of specific PIPn- metabolizing phosphatases,  

understanding the biology of specific PIPn, designing ligands through in silico and 

synthetic methods to modulate their interaction, and probing their usefulness in the 

treatment of diseases.  
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Zusammenfassung 

Die Entdeckung der Phosphatidylinositol-Phosphate (PIPn) in Zellmembranen in den 

frühen 50er Jahren entfachte das Interesse an ihren biologischen Rollen. Kurz darauf 

wurden ihre engen Verbindungen mit Prozessen, wie beispielsweise Signaltransduktion, 

Zelladhäsion, Polarisation und Migration, sowie Membrantransport und Onkogenese, 

belegt. PRL-3, eine onkogene Phosphatase, dephosphoryliert Phosphatidylinositol 

(4,5)bisphosphat (PI(4,5)P2), wodurch es mehrere Prozesse von Krebs orchestriert, die 

in Metastasen münden. Daher ist das PIPn-metabolisierende Enzym PRL-3 von großem 

Interesse in der biomedizinischen Forschung. Um die Bindungsmechanismen von 

PI(4,5)P2 mit PRL-3 zu verstehen, ist die Entwicklung von synthetischen Ansätzen zur 

Synthese von Analoga dieses Naturstoffes von größter Bedeutung. 

Das Ziel dieser Arbeit war, einen Ansatz zur Synthese von PI(4,5)P2-Mimetika mit 

Alkylierung(en) am Inositolring zu entwickeln. Der neu etablierte Syntheseweg wurde 

zuerst mit dem chiralen 6-O-Methoxy-PI(4,5)P2 getestet, nachdem viele der 

auftretenden synthetischen Herausforderungen überwunden waren. Die chemische 

Literatur ist reich an PI(4,5)P2-Analoga, die Thiophosphatgruppen, verschiedene 

Lipidschwanzzusammensetzungen und neue funktionelle Gruppen tragen, aber bisher 

wurden keine mit direkten Änderungen der Hydroxylgruppen am Inositolring 

hergestellt. Innerhalb der resultierenden Sammlung von neuen, am Inositolring 

modifizierten Analoga zeigten einige signifikant erhöhte biologische Aktivität mit PRL-3 

verglichen mit den lipidschwanzmodifizierten Analoga und demjenigen, das die 

natürliche PI(4,5)P2-Kopfgruppe enthielt. Diese wurden auch als Teil dieser Arbeit 

synthetisiert. Diese aktiven Analoga waren spezifisch für PRL-3, da sie keine oder wenig 

Aktivität mit anderen PI(4,5)P2-metabolisierenden Enzymen zeigten. 

Parallel dazu wurden in-silico-Struktur-Ähnlichkeits-Screening-Verfahren angewendet, 

wobei die Kopfgruppe von PI(4,5)P2 als Templat verwendet wurde, um nach 

spezifischen PRL-3-aktiven kleinen Molekülen als Inhibitoren zu suchen. Dies führte zu 

einer aktiven Verbindung. Dies untermauert das Potenzial von Vorhersagewerkzeugen 

bei der Suche nach Inhibitoren für anspruchsvolle Zielproteine. 

Zukünftig mögliche Anwendungen der synthetisierten PI(4,5)P2-Analoga sind vielfältig, 

wie beispielsweise zur Untersuchung von Bindungsanforderungen spezifischer PIPn-

metabolisierender Phosphatasen, zum Verständnis der Biologie spezifischer PIPn, zum 

Design von Liganden durch in silico und synthetische Methoden zur Modulation ihrer 

Wechselwirkungen, und zur Untersuchung ihrer Nützlichkeit bei der Behandlung von 

Krankheiten. 
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Chapter 1. Introduction 

 

1.1. Phosphorylation and dephosphorylation 

 

In Eukaryotes, one of the most common mechanisms by which gene product formation is 

tightly regulated is reversible phosphorylation. In fact, the reversible phosphorylation of 

proteins and other cellular molecules, such as the phosphatidylinositol phosphates 

(PIPn)1 allows cells to adapt to environmental changes.  

The abovementioned process is carried out by the coordinated action of protein kinases 

and protein phosphatases: kinases catalyze phosphate transfer from ATP molecules to 

functional groups of proteins (serine, threonine and tyrosine side chains) and non-

protein substrates to be modified, thus leading to conformational changes eventually 

activating a cellular response; while phosphatases revert these covalent modifications by 

hydrolyzing the respective phosphate moieties on protein and non-protein substrates 2–

4. Constituting 2-4% of the genes in a typical eukaryotic genome5,6, kinases and 

phosphatases equally stand as the architects of universal and crucial processes which are 

tightly regulated in cells in order to guarantee physiological balance, but are also 

implicated in numerous disease mechanisms upon their deregulation 7.  

1.1.1. Phosphatase families 

 

While strong advancement has been achieved, our understanding of phosphatases still 

lags behind that of kinases for many reasons8, including their high evolutionary diversity 

and complexity based on different ancestors (i.e., evolutionary unrelated) compared to 

the evolution of kinases based on a common ancestor 5,9,10. In fact, protein phosphatases 

evolved into mechanistically and structurally distinct superfamilies. There exists an 

extensive detailed perspective on these proteins in the literature9,11,12. 

 

Traditionally, these proteins have been grouped according to their substrate specificity 

and distinct catalytic mechanisms into the protein serine/threonine phosphatases 

(PSTPs) and the protein tyrosine phosphatases (PTPs). These broad and common classes 

were further classified into “superfamilies”7,13. However, newer structure-sequenced 

based classification methods differ from the traditional view. Phosphatases are now 

grouped into their evolutionary related families, and while many of the old relationships 

still exist, new ones have been identified12,14. Phosphatases within these families largely 
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have similar substrate specificity, however, this is not true for all members of all 

families12,14.  

 

The CC114/Family 19,12 superfamily, traditionally called the class 1 protein tyrosine 

phosphatase (PTP) family, is of special interest to this work. This superfamily is defined 

by its catalytic signature Cx5R, and well known for its diversity in domain structure and 

substrate preference. This family consists of non-transmembrane PTPs and receptor-like 

PTPs, which are both largely pTyr-specific, as well as the dual-specificity phosphatases 

(DSPs or DUSPs), which show diverse substrate specificity dephosphorylating not only 

pTyr containing proteins but also pSer/Thr, carbohydrates, mRNA, and, most importantly 

for this work, PIPn. Newer classifications also added some other PIPn-phosphatases to 

this family1,15. 

 

Despite their low abundance, PIPn control a multitude of central cellular processes, like 

signal transduction, intracellular membrane trafficking, cytoskeleton remodeling, nuclear 

events, control of cell growth and survival, and others (see chapter 1.3)16. Among the PTP 

superfamily, the phosphatases which dephosphorylate PIPn fall into four primary 

families: the Sac1 domain containing phosphatase, PTENs, myotubularins, and 4-

phosphatase15. In addition, one receptor-type tyrosine-protein phosphatase (PTPRQ)17 

and phosphatase of regenerating liver-3 (PRL-3)18,19, which is the major subject of this 

work, were shown to dephosphorylate PIPn.  

 

1.1.2. The phosphatases of the regenerating liver (PRLs) 

 

The phosphatases of the regenerating liver (PRLs) belong to the DUSP family of 

phosphatases (described above), and comprise three members: PRL-1, -2 and -3. This 

family is unique in many ways: first, the members do not share much sequence similarity 

with other phosphatases, but they share 76-87% similarity amongst each other. In fact, 

the closest related PTPs to the PRLs are the DUSPs Cdc14 and PTEN20,21. Second, the PRLs 

contain unique structural characteristics: they are the only ones amongst the PTPs to 

possess a CAAX box (where C is cysteine, A an aliphatic amino acid, and X any amino acid) 

at the C-terminus, which presents a prenylation motif that serves for localization to 

cellular membranes22. In addition, the PRLs contain a C-terminal polybasic stretch, which 

aids in membrane attachment through ionic interaction with negatively charged lipids23. 

Also, the PRLs show unusually shallow and hydrophobic active site characteristics, which 

makes them stand out from other phosphatases20.  
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Nevertheless, the PRLs are known to follow the general PTP mechanism, taking into 

account that it is equipped with the conserved CX5R motif of the active site p-loop, with 

the catalytic cysteine and arginine residue, and the invariant aspartic acid of the WPD-

loop as general acid/base24. These structural elements, conserved around the active site, 

are common to PTPs: presented as a thiolate anion, the very acidic catalytic cysteine acts 

as a strong nucleophile, which attacks the phosphate moiety of a substrate25. This 

represents the first step of the dephosphorylation reaction, and is assisted by the 

conserved aspartic acid in the neighboring loop, which donates a proton to the 

dephosphorylated substrate. Then, and as the second step of the catalysis, the aspartate 

residue, now acting as a base, helps with the hydrolysis of the covalent intermediate by a 

water molecule, releasing inorganic phosphate and the original state enzyme (Figure 

1)7,24. The conserved arginine in the P-loop is important for the stabilization of the 

phosphoryl-cysteine transition state26. The conserved WPD-loop aspartate in the PRLs 

however, as opposed to other PTPs, is not important as the general acid/base (mentioned 

above) in the dephosphorylation of phosphoinositides, demonstrating an alternative 

reaction mechanism27. 

 

 

 

Figure 1 Common catalytic mechanism of the PTPs. The figure is adapted from Tautz et al28. 

 

1.1.3. PRL-3: a phosphatase critical for cell deregulation 

 

In addition to being involved in cell growth, proliferation, and invasion29,30, the functional 

role of PRL-3 in disease implications, and particularly in cancer metastasis is by now well 

established. For instance, PRL‑3 is consistently highly expressed in metastatic colorectal 

tumors compared with non-metastatic tumors and the normal colorectal epithelia31. In 
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addition, consolidated work has denoted that PRL-3 could actually operate as a biomarker 

for poor prognosis in gastric cancer, ovarian cancer, breast cancer, and colon cancer32–34. 

It is not surprising that the DUSP PRL-3 would pose as a promising therapeutic target. 

Throughout various cancer cell lines in culture and in mouse models, PRL-3 was 

functionally characterized, either by overexpression or knockdown approaches which 

indicated that it promotes cell migration in vitro, and metastatic invasion in vivo20,35. PRL-

3 has been further associated with even more hallmarks of cancer such as tumor 

angiogenesis36, epithelial-to-mesenchymal transition (EMT)37, and metastatic events in 

various tumor environments34–36.  

 

It is important to note the cellular localization of PRL-3 as a context for the 

abovementioned functions and disease implications: due to its C-terminal prenylation 

motif and the preceding polybasic stretch, PRL-3 localizes to the plasma membrane and 

early endosomes38. Because of its farnesylation potential, PRL-3 was shown to further 

shuttle between the nucleus and the cytosol, sometimes localizing in the endoplasmic 

reticulum35. Farnesylation was therefore suggested to conceal the nuclear localization 

signal (NLS) of the polybasic stretch, retaining the proteins bound to membranes39. These 

findings proposed that PRL-3 play a role in the plasma membrane, early endosomes and 

at the Golgi40. 

 

Such observations ignite the interest of what substrates PRL-3 binds to, and what kind of 

effectors it is linked with. Interestingly, potential, direct substrates/modulators of PRL-3 

remain elusive today, despite the slowly growing literature of target identification: in fact, 

some potential targets for membrane-bound (active) PRL-3 have been suggested, after 

high-throughput phospho-proteomic or proteomic analyses, revealing chiefly proteins 

which either shape or control the cytoskeleton, such as ezrin41, stathmin42, keratin 843, 

cadherin CDH22, NHERF144, and most recently, integrin β122. Intriguingly, most of these 

binding partners seem mainly of nuclear localization and nuclear-related functions, with 

so far unidentified connection to PRL-3 mechanisms of action20. In addition to the 

abovementioned strategies for identification or PRL-3 targets, if one regards its structural 

information as another platform for investigation, PRL-3 has been shown to have very 

dynamic protein rearrangement, highlighted by an open/free conformation with active 

site components pointing at different directions, according to NMR studies45,46. This is also 

one of the representative reasons for which structures of PRL-3 with physiological ligands 

do not exist to date: because of the highly flexible nature of the phosphatase, a 
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physiological state has not been apprehended just yet, which poses many obstacles for 

studying this enzyme’s structure-activity relationship.  

Nevertheless, PRL-3 was assigned one specific enzymatic substrate: phosphatidylinositol 

4,5 bisphosphate (PI(4,5)P2)18,19.  

 

1.1.4. PI(4,5)P2, a special substrate for PRL-3 

 

The identification of signaling pathways involving PRL-3 is key to uncovering its roles in 

cancer progression. PRL-3, as opposed to PRL-1 and -2, dephosphorylates PI(4,5)P2 in 

vitro, making this substrate an individual one for PRL-3 among the PRL phosphatase 

family18,19. Our group showed recently that PRL-3 dephosphorylates PI(4,5)P2 in cells 

(unpublished), which is also an unpublished observation by another group19.This 

substrate could relate to the many phenotypes known for PRL-3. For instance, certain 

PIPs such as PI(3,4,5)P3 and PI(3,4)P2, and especially the depletion of PI(4,5)P2 have been 

designated as being involved in promoting cell motility, such a role being important in 

cancer47. Since it is a small molecule substrate, PI(4,5)P2 can act as a rational starting point 

for structure-activity relationship studies and inhibitor design.  

 

1.2. Modulating PRL-3 activity: a challenging search  

 

Small molecule modulators (activators or inhibitors) offer a way to detect cellular 

processes in which phosphatases are involved. This is a powerful complementary method 

to the genetic methods, because the usage of tool compounds focuses on acutely 

modulating enzymatic activity, which offers advantages such as handling simplicity, 

speed, and tunability. Particularly, small molecule inhibitors can eventually be used as 

lead compounds for drug discovery and are required for target validation48–50. 

Unfortunately, the small molecule PRL-inhibitors reported so far are either unselective 

relative to other phosphatases or among the PRL family, or they simply have been tested 

for only one of the PRLs and mostly exclusively in vitro51,52. One analog has been recently 

developed using in silico and biochemical screening assays53, but is still not selective 

among the PRLs, in addition to its only moderate potency. There is, therefore, an unmet 

need for a specific inhibitor for PRL-3, and taking its natural substrate (PI(4,5)P2) as a 

starting point is the most promising approach to fill this need due to it being a selective 

substrate within the PRL family.  

 



 
18 

1.2.1. Computational aid in the search of an inhibitor 

 

To further build the search for an adequate small molecule, which could help study the 

mechanisms in which PRL-3 are involved, computational screening methods, which 

increase the chances of finding good tool compounds, were also examined.  This had 

inspired the work of Hoeger et. al53, who have relied on a novel computational method for 

molecular shape comparison, to screen for molecules which were similar in shape to a 

known, but unselective, PRL-3 inhibitor thienopyridone52. This technique, termed 

Ultrafast Shape Recognition (USR)54, consists of probing online molecular databases for 

compounds that most closely resemble the shape of a given query (template) molecule. 

In this respect, it is an elegant alternative to other computational methods like docking, 

whereby the screened molecule, aligned to a macromolecular biological target (e.g., a 

protein), is simulated to provide an estimate of binding energy, thus the likelihood of 

being bioactive55. Docking has worked with a series of proteins with known crystal 

structure, but this was not the case for PRL-3, which crystal structure still needs to be 

better understood, despite the recent work on crystallizing it with binding partners56. In 

the Hoeger et. al53 study, the query molecule was thienopyridone, the most potent cell-

active inhibitor identified to date, with a reported IC50 of 173 nM for PRL-1, 277nM for 

PRL-2 and 128 nM for PRL-3. Thus, biochemical screening of hits generated by the in silico 

screen afforded a micromolar inhibitor that could be further optimized by a basic SAR 

study53. 

 

1.2.2. Virtual screening tools using natural substrates 

 

In such computational methods, nevertheless, the abovementioned chemical 

template/query does not only have to be an inhibitor of a target protein, but could also be 

a known ligand, such as a natural substrate, or a patented compound57. This means that 

one could theoretically use the information provided by biochemical studies for the 

validation of a natural substrate in studying a target protein. Here, for instance, the 

valuable information of selective dephosphorylation of PI(4,5)P2 by PRL-3 (amongst the 

PRL family), sets this phosphoinositide as an interesting starting point for computational 

prediction means, in order to learn more on binding mechanisms.  
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1.3. PIPn: substantial molecules in cell signaling  

 

Phosphatidylinositol-phosphates (PIPn) belong to the large group of phosphorylated 

inositol compounds, amongst the two other members comprising the inositol 

polyphosphates (InsPs) and the diphosphoinositol polyphosphates (PP-InsPs). These 

compounds represent critical biomolecules, which order a hefty directory of important 

biological processes. Being an extremely diverse family of biosynthetically distinct 

signaling molecules, these compounds exist, at all times, with numerous combinations of 

phosphorylation patterns, resulting in an intricate network of correlative signaling blocks 

that regulate different cellular events58.  The inositol family comprises nine possible 

1,2,3,4,5,6-cyclohexanehexol isomers, these being the myo-, cis-, epi-, allo-, muco-, neo-, L-

chiro, D-chiro, and scyllo-inositols. While these regioisomers are proven to exist in some 

natural systems59, the most prominent family member is myo-inositol, as it represents the 

main unit for the abovementioned abundant biologically active molecules. myo-inositol is 

a meso-cylohexane hexol (achiral) with five hydroxyl groups in the equatorial position 

and one in the axial. The carbon with the lone axial hydroxyl group is labelled with C2 (all 

the other hydroxyl groups being in equatorial positions, Figure 2). The recognized 

convention is to label the anti-clockwise counting with the prefix “D”, which is currently 

being used for all biologically relevant compounds.  

 

The PIPn are molecules with a lipophilic tail and a polar head group in form of an inositol 

ring that can be phosphorylated in the 3, 4 or 5 position (Figure 2).  

The lipid tail consists of a glycerol backbone with two acyl carbon chains that are linked 

via a phosphodiester to C-1 of the inositol ring. Most common in animals is the 

arachidonic acid in sn-2- and stearic acid in sn-1-position on the glycerol backbone. The 

myo-inositol motif acts as the core scaffold for the head group of these 

glycerophospholipids. The PIPn family comprises seven isomers that are phosphorylated 

at different positions.  
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Figure 2 Phosphatidylinositol (PI) with 1-stearyl-2-arachidonoyl-glycerol-backbone. Example of a cellular-

membrane PIPn: the structure of the phosphatidylinositol composition contains a polar head group and a 

lipophilic tail. 

As can be seen in Figure 3, these family members contain every combination of  

phosphate groups at the 3-, 4- and 5- positions on the head group: therefore, each member 

can contain three (PI(3,4,5)P3), two (PI(4,5)P2, PI(3,4)P2 and PI(3,5)P2), or one (PI(3)P, 

PI(4)P, or PI(5)P) phosphate group(s) on the head group, in addition to the common 

phosphodiester.  

 

 

 

Figure 3 Structures of phosphatidylinositol (PI) and the seven phosphatidylinositol polyphosphates (PIPn) as 

found in nature. 



 
21 

What differentiates PIPn from the rest of the group of phosphorylated inositol molecules 

is that these phospholipids are anchored in cellular membranes, displaying the inositol 

head group on the (inner) membrane surface. This is key to understanding the 

localization requirements and implications of PIPn–proteins interactions, which convey 

various processes in cell signalling. In fact, specific PIPn, at specific locations, recruit 

different cytosolic proteins, which are, in turn, tangled in various structural functions 

and/or signal transduction.  

 

Moreover, in addition to the specific recognition of these lipids by various protein 

domains, the sophistication of their signalling system also relies on the well-established 

participation of approximately a hundred isoforms of kinases and phosphatases in their 

concerted production and inactivation. These protein-lipid binding events, which are 

often reversible associations, result in regulating crucial processes in cell signalling, by 

affecting both protein function and subcellular localization60. They can in fact control 

protein function either by promoting direct modification of the protein itself upon 

binding, or by ushering the interaction of this now membrane-bound protein with other 

binding partners, also localized at the cellular membrane surface60. Adding to that the 

abovementioned structure-function diversity of PIPn, these molecules can direct proteins 

to distinct locations within the cell, depending on where the target lipid is present61. A key 

example for this thesis is the localization of PRL-3 to the plasma membrane, where its 

target lipid/substrate is PI(4,5)P2 (see section 1.1.3.). 

 

1.3.1. Biological significance of PIPn  

 

It is not surprising, therefore, that PIPn would be involved in intracellular signalling 

mechanisms which are known to play a vital role in essential cellular functions such as 

vesicle trafficking, apoptosis, cell proliferation and metabolism62–64. Thus, defects in 

binding and lipid compositions result in onset of serious regulatory diseases like chronic 

inflammation, autoimmunity, allergy, cancer, atherosclerosis, hypertension, heart 

hypertrophy, metabolic and degenerative diseases, among others65–68. The amount of PI 

in membranes is 4 % and the other phosphorylated PIPn amount all together to 

approximately 1%69. 

To appreciate the crucial role of PIPn in cellular homeostasis, one needs to recognise that 

signalling activities often arise through the activation of protein function upon binding to 

the cellular membrane: once the attached effector protein is activated, it can then detach 

(reversible associations, see above) and transduce that harnessed material throughout 
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the entire cell by traversing to diverse sites in solubilized form. This underlines the 

serious nature of lipid conversion balance, which needs to be tightly regulated to avoid 

abnormal interactions, quantities of lipid substrates, and spatial-temporal availability. 

This equilibrium takes place via the rigorous actions of kinases and phosphatases, a 

considerable amount of which genes could be mutated in various cancers58. An abridged 

scheme is shown in Figure 4. These enzymes, by continuously producing a vast directory 

of soluble inositol polyphosphates and membrane polyphosphoinositide lipids, represent 

key players in signalling cascades. For example, phosphoinositide 3-kinase (PI3K), 

regulated by cell-surface receptors, leads to the formation of PI(3,4,5)P3, in turn a 

signalling lipid which modulates cell growth, proliferation and motility70. Most notably, 

PIPn are involved in inflammation, cancer and metabolic syndromes, as part of the lipid 

signalling dysregulation context71.  

 

The metabolism in which the PIPn are implicated is therefore quite complex and broad, 

whereby the continuous synthesis and interconversion of phosphorylated myo-inositol 

species takes place in the context of a myriad kinase and phosphatase enzyme linkage. 

The metabolic pathways in which the PIPn are associated have been the subject of 

extensive reviews, and the reader is referred to some of those for detailed mechanisms72–

75.  

 

The capacity of the PIPn-protein interactome can therefore unravel as very complex and 

broad, the molecular detail of which relies on binding modules with conserved sequences, 

which target specific PIPn isomers. This association network has been the focus of many 

reviews in the last two decades60,69,76–81. Many of these binding domains have been 

recognized, and examples include the pleckstrin homology (PH), phox homology (PX), 

Fab1, YOTB, Vac1 and EEA1 (FYVE), epsin N-terminal homology (ENTH), AP180 N-

terminal homology (ANTH), band 4.1 ezrin radixin moiesin homology (FERM), Tubby, and 

b-propellers that bind phosphoinositides (PROP- PIN) domains58.  
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Figure 4 Metabolism and biosynthesis of PIPn. Phosphatases are in blue, kinases in red. The question mark 

stands for unknown enzymes. DAG, diacylglycerin and Ins(1,4,5)P3, Inositol(1,4,5)-triphosphate are second 

messengers; INPP5E, inositol polyphosphate 5-phosphatase; MTM, myotubularin; OCRL, Inositol 

polyphosphate 5-phosphatase; PIKfyve, phosphoinositide kinase containing fyve Zn-finger motive; PTEN, 

phosphatase and tensin homolog deleted on chromosome 10; PIS, phosphatidylinositol synthase; PIC, 

phospholipase C; Sac ,suppressor of actin domain containing phosphatase, SYNJ, Synaptojanin; SHIP, SH2 

domain containing inositol phosphatase. 

Such domains could be present in several different proteins, and PH domains are a typical 

example for that: in fact, sequence homology searches have connected more than 250 PH 

domain-containing proteins in humans69. But not all PH domains interact productively 

with PIPn. This is one proof that binding modules actually vary amongst proteins, even 

those carrying the same module(s). These variations take ground in three important 

nuances: specificity, structural requirements, and binding localization60. This also 

explains why some proteins bind with high affinity towards a particular phospholipid 

(FYVE domains generally target PI(3)P for instance), while others appear to be more 

promiscuous (PH domains were shown to target different PIPn isomers69).  

 

In addition, binding modules amongst this network are not universal: binding can be 

principally driven by electrostatic attraction to the myo-inositol head group, with no 

requirement of the membrane milieu (such as PH domain of PLCδ to PI(4,5)P2
82), but for 

other domains/proteins (such as FYVE8583 and PX8684 domains), the membrane context 

is essential for binding to occur. This subtle difference is important, as it can be the 

consequence of a contact between the hydrophobic sequence of a certain protein and the 
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hydrophobic membrane core, thereby delivering a major input to the driving force for 

association. PRL-3 is a prominent and relevant example for this, as it requires the lipids 

to actually bind PI(4,5)P2 itself19 (which can bind PLCδ without the presence of a lipid 

bilayer), further illuminating the intricacy that should be interpreted to better apprehend 

binding at the molecular level.  

 

PI(4,5)P2 is actually a known substrate for the different phosphoinositide-specific 

phospholipase C (PLC) enzymes, thereby being the precursor of Ins(1,4,5)P3 and DAG 

(diacylglycerol)59. It is also the substrate of the type I PI 3-kinases which produces 

PI(3,4,5)P3. The significance of this lies in the fact that protein kinase C (PKC) docks, 

through its C1 PI effector proteins Ras-GRPs domain, onto DAG, while Ins(1,4,5)P3 

stimulates the release of Ca2+ ions from the endoplasmic reticulum (ER). The plasma-

membrane-localized PI(4,5)P2 represents a principal player in Ca2+ phosphoinositide-

dependent signalling, by serving as the substrate for two potent receptor-regulated 

signal-generating enzymes66. Although its overall level does not considerably rise in 

stimulated cells, confined increases in PI(4,5)P2 concentrations are likely to occur and 

recently, more and more supporting information suggests that this PIP even acts as a 

signaling molecule on its own: it can, for instance, influence actin cytoskeleton 

organization through interactions with actin-binding proteins85.  

 

The above-mentioned tightly controlled and dynamic network of phosphoinositide 

signalling is a reason for the metabolic instability and relatively low concentrations of 

PIPs, which pose as factors contributing to the incapacity to isolate useful amounts of 

these compounds in pure form for biological studies. For this reason, amongst many 

others, the chemical synthesis of PIPs and derivatives started as early as almost five 

decades ago, and remains, today, an attractive endeavour. 

 

1.3.2. Chemical approaches to synthesize PIPn and analogues  

 

After the continuous discovery of the essential biological roles of InsPs, PP-InsPs and PIPn 

in cell signaling, developing synthetic approaches to study them rose. In fact, the inability 

to isolate practically useful amounts of PIPn compounds from cells has led to a need of 

efficient syntheses, and the literature is wide-ranging and large since 197086. First 

syntheses of myo-inositol 1,4,5-trisphosphate were reported in 1986 by Ozaki et. al87 and 

these have been trailed by noteworthy synthetic progress to the extent that all of the 

problems inherent to inositol phosphate synthesis have now been principally overcome88.  
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These problems are preeminent for the area of phospholipid synthesis, and can be 

summarized in three main synthetic facets: first, the synthesis of a suitable selectively 

protected inositol derivative, which would expose free hydroxyl groups at desired 

positions; second, a phosphorylation in an proficient manner, with a reagent carrying a 

suitable phosphate-protecting groups (this has been, for instance a major challenge for 

compounds with vicinal diols, where cyclic phosphate formation was a chief undesired 

side reaction89); and third, deprotection while avoiding migration of phosphate 

substituents to adjacent free hydroxyl functions.  An additional necessity arose amongst 

this stage: the resolution of appropriate synthetic intermediates, allowing the preparation 

of optically pure inositol phosphates. This was unraveled by the use of chiral starting 

materials90. Consequently, establishing routes with selective protecting groups91, 

different phosphorylation strategies92–96 (Figure 5) and optical resolution of the 

enantiomers87,97,98 with reagents such as (S)-(+)-O-acetyl-mandelic acid, (R)-(+)-1-

phenyl-ethyl isocyanate, (R)-(+)-camphor dimethyl acetal, or L-menthyl chloroformate 

was completed.  

 

 

 

Figure 5 Phosphorylating and phosphitylating agents. A) Mono-functional PV and PIII reagents that were used 

for phosphorylation of vicinal diols. B) Bi-functional PIII reagents used for the phosphodiester link to attach 

the diacylglycerol backbones in PIPn. 

 

Nevertheless, the complex nature of inositol phosphate metabolism is providing ever-

growing new targets for synthesis: this interest further gave rise to the synthesis of 

modified inositol phosphates with novel biological properties. The synthesis of unnatural 

InsPs and PIPn analogues for structure-activity studies of proteins58,99,100 as affinity 

probes for pulldown of effectors and metabolic studies has then become a major 



 
26 

discipline: a prodigious amount of reviews up to 2010 have covered the preparation of 

biologically important myo-inositol derivatives58,101–109. These include myo-inositol 

1,4,5,6-tetrakisphosphate, myo-inositol pentakisphosphate and hexakisphosphate 

derivatives, diphosphoinositol phosphate derivatives, D-1,5- and D-3,5-

diphosphoinositol 1,2,4,6-tetrakisphosphate InsP8, diphosphoinositol analogues, 

replacement of the 5-Phosphate of Ins(1,4,5)P3 with bioisosteres, inositol phosphate 

ligands that uncovered the capture site of PPIP5K2, photoactivated myo-inositol lipid 

derivatives, solid phase synthesis of myo-inositol DiC8-phospholipids, 

plasmanylinositols, and biphenyl phosphate derivatives (examples of each mentioned 

derivative are shown in Figure 6).  

 

All of this demands the mastering of all three synthesis aspects mentioned above, 

particularly the synthesis of protected inositol derivatives, which require careful 

selection of a starting material (the inositol head group). The synthesis of PIPs starts by 

the synthesis of protected inositol derivatives. These can use the following as starting 

materials: myo-inositol, chiral starting materials such as naturally occurring inositol-like 

molecules (Galactinol, L-Quebrachitol, D-Pinitol or (-)-Quinninc acid), or other starting 

materials such as benzene-derivatives like meso-diol89. 

 

Due to the ready commercial availability of pure myo-inositol however, most syntheses 

have used the parent cyclitol as a starting material. In fact, the symmetry which comes 

with this material makes it easy to design numerous synthetic route from one starting 

material89. One of the most common and classic methods of manipulation of this starting 

material is shown in Scheme 1 (A): the reaction of this starting material with 

cyclohexanone or more efficiently with a cyclohexanone precursor such as l-

ethoxycyclohexene, in the presence of an acid catalyst gives a mixture of three bisacetals 

which may be separated by crystallization and chromatography. Each of these bisacetals 

gives the monoacetal on mild hydrolysis of the less stable transacetal. Due to the 

conformational constraints imposed on the inositol ring by the bisacetal groups, each of 

the free hydroxyl groups and may be selectively manipulated under suitable conditions, 

providing access to a series of inositol derivatives having five hydroxyl groups 

differentially protected. Another classic manipulation uses orthoformate as a strategy 

(Scheme 1, B). In this strategy, the orthoformate offers a derivative in which positions 1, 

3, and 5 can be simultaneously protected. The normal axial/equatorial relationship of the 

remaining free hydroxyl groups is reversed. The spatial juxtaposition of the axial hydroxyl 

groups allows highly selective alkylations to be performed at these positions110.  
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Figure 6 Examples of biologically important myo-inositol derivatives. Adapted from Potter et. al (2016)111. 

The categories of the derivatives are written in blue, the example molecule in black. 
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Scheme 1 A) Reaction of cyclohexanone precursors with myo-inositol to form three isomeric bisacetals, which 

can be selectively cleaved to yield a monoacetal. B) Orthoformate, on which the 1, 3, and 5 OH groups are 

protected simultaneously. 

 

More details on the general synthetic considerations and synthetic strategies for the 

design of such compounds can be found in the extensive literature compiled by both the 

Billington and Potter groups88,89,112. In general, reviews of the chemical synthesis of 

phosphoinositides emphasize methods to be able to control regioselectivity and to obtain 

chiral intermediates, predominantly by the separation of diastereoisomeric derivatives 

with chiral auxiliaries, or by starting from the chiral group.  

 

Of interest to this thesis work, the synthesis of PIPn analogues bears other challenging 

issues: not only the choice of selective protective groups, but also the corresponding 

conditions required for their global deprotection. In addition, final purification of such 

targets is achieved on the fully protected lipid precursor since it is very hard to fractionate 

the deprotected lipid from any related contaminants. Therefore, it is important that the 

global deprotection causes no degradation of the final lipid, and that protective group and 

reagent debris are easily separated from the product. These are the kind of challenges 

confronted and overcome when designing analogues of PI(4,5)P2. Moreover, and during 

successive hydroxyl groups deprotection and/or any additional purification, excesses of 

acidity/basicity which could initiate acid- or base-catalyzed migration and/or hydrolysis 

should also be circumvented, and some decompositions during such handlings were 

actually reported; for instance, the de-acylation of the glyceride moiety113. 
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Figure 7 IPn and PIPn analogues. A) Thiophosphonate analogues; B) Membrane permeable PIPn. C) and D) 

PIPn with phosphonate groups; E) Deoxygenated I(1,4,5)P3 in 3-position; F) PI(3,4,5)P3 functionalized onto 

an affinity matrix. 

Alterations of both the inositol-phosphate head group and the lipid tail were undertaken 

by groups like Potter et al.102 van Boom and coworkers96, Bruzik et al91,114 and Prestwich 

and his group115. Their work contributed to the successful design of metabolically stable 

thiophosphates, phosphonates, deoxygenated inositols116 and their PIPn with varied 

length of the individual acyl chains in the lipid tail (Figure 7). Such analogues find their 

use in many applications. For example, for intracellular applications, the need for 

membrane-permeable molecules arose. Due to the high polarity of the inositol head 

group, concealing agents like propionyloxymethyl and acetyloxymethyl were proposed 

with success by Schultz et al.117 and Tsien and coworkers118 to make the molecules 

membrane-permeable (Figure 7B). Another application example is affinity matrices, 
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whereby PIPn would be attached to a solid support in order to identify selective and 

competitive binding proteins.  

 

Though many diverse analogues were advanced so far, there is still a missing number of 

analogues in the rather modest existing phosphatidylinositol-phosphate library119. There 

are a number of PIPn, with some alterations to the composition and the length (and the 

nature/structure) of the lipid tails as well as to the phosphate groups, but none so far that 

have direct alterations at the inositol ring, at least not PI(4,5)P2. Evolving these tools for 

biological elucidation of protein structures and mechanisms is a constant effort in 

progress. In fact, and so far, only a few structure activity relationship (SAR) studies were 

done with PIPn analogues, to meet the needs for the development of PIPn analogue-based 

inhibitors. This is because chemical modifications of the inositol head group can be very 

challenging and arduous, due to multiple synthetic steps that often require tough 

purifications. Here, to conduct investigations if molecules based on by PI(4,5)P2 could be 

used for the development of a selective PRL-3-inhibitor, it was sought to devise a practical 

synthetic route to derivatives of this phosphoinositide.  

 

In the light of what has been said, it is evident that both current and future works of 

bioorganic, medicinal, and eventually computational chemists would support efforts 

directed towards the molecular understanding of, and the pharmacological intervention 

in, the phosphoinositide signalling system.  
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Chapter 2. Aim of this work 

 

The general aim of this thesis work was to conduct structure-activity relationship studies 

with PIP-metabolizing proteins, by synthesizing a PIPn analogues library. This would help 

to understand PIP-binding requirements for specific proteins. Specifically, this was 

completed by synthesizing a library of phosphatidylinositol-4, 5-bisphosphates PI(4,5)P2 

analogues (Figure 8), and characterizing their biological activity with PRL-3. Considering 

the structure of PI(4,5)P2, there are three possible areas of the molecule which could be 

modified for this purpose: I) the lipid tail, II) the inositol ring and III) the phosphates. In 

this thesis, the focus was put on the modification of the inositol ring by blocking the free 

hydroxyl-groups 2, 3 and 6 with alkyl groups, as this has not been done before, and on the 

modification of the lipid tails to understand the requirements regarding the nature of the 

alkyl chains for binding. Inventing and developing the synthetic route for one of the 

analogues, the 6-O-methoxy PI(4,5)P2, and then expanding that route toward synthesis of 

a whole library of molecules was envisioned as the synthetic strategy.  

 

After the successful synthesis of analogues their biological activity was aimed to be tested 

not only against PRL-3, but also against three other known PI(4,5)P2-metabolizing 

phosphatases, to answer if selectivity targeting these enzymes can be achieved using the 

common substrate as a basis for ligand development.  

 

 

 

Figure 8 PI(4,5)P2 from a medicinal chemistry viewpoint: the different sites of chemical modification are the 
lipid chains (red), the inositol ring (blue), and the phosphate groups (green). 
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Chapter 3. Results and Discussion 

 

3.1. Total Organic Synthesis of PI(4,5)P2 analogues 

3.1.1. First Considerations for the Synthetic Approach 

 

Considering the structure of the target molecule, a convergent synthetic strategy was 

deemed the most functional approach. In fact, it was first thought to follow the solid phase 

synthesis procedure of PIPn synthesis, established by the Koehn group in 2012120. In this 

strategy, PIPn analogues and derivatives would be synthesized in a combinatorial fashion, 

building on only four inositol building blocks to synthesize the seven phosphorylation 

patterns, which was made possible by a novel selective benzylidene acetal ring opening 

on a solid support120 (Figure 9).  

For that, a suggested solid phase synthesis for the preparation of methylated PI(4,5)P2 

molecules, shown in Figure 10, was considered. Although this strategy sets a basis for the 

modification of the inositol head group in a conjunctional mode, it was unsuccessful (not 

described here in detail), mainly for two reasons: 1) the lability of the compounds, which 

makes it hard to use stringent alkylating conditions on the ring after the 

phosphatidylinositol has been fully synthesized, and 2) the steric hindrance of the inositol 

ring in the fully synthesized PIP, making it even harder to alkylate effectively at desired 

positions. After unsuccessful previous trials (including different methylation strategies 

such as the usage of methyl iodide, dimethyl sulfate, sodium hydride, silver oxide, and 

trimethylsilyldiazomethane), it was deemed better to apply the modifications of the 

inositol ring on a precursor molecule before putting it up on solid phase and to then 

resume the phosphoinositide synthesis. This would be a better route, but only for one 

alkylated PIP, which is the one alkylated on the 6-OH group, as the remaining 2 OH groups 

(positions 2 and 3) would be sequestered by the benzylidene acetal protecting group and 

solid phase support linker, throughout the whole synthesis of the PIP (Figure 9). This 

would make alkylation at positions 2 and 3 of the inositol ring impossible until the end of 

the synthesis (i.e., cleavage of the benzylidene linker), which means it would have to be 

alkylated after the full labile and sterically hindered PIP had been synthesized. Therefore, 

it was thought that synthesizing the whole PI(4,5)P2 modified analogues in solution 

would be the most equitable approach for this work.  
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Figure 9 Outline of the solid phase strategy for soluble PIPn analogues and derivatives. NB: Adapted from 
Koehn et al. (2012)120. The encircled analogue is the analogue of interest for this work. 

 

 

Figure 10 Outline of the solid phase strategy for the preparation of PI(4,5)P2 analogues. Adapted from the 

Koehn research group [unpublished data]. 
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3.1.2. Solution synthesis of the alkylated inositol ring precursors  

Fortunately, the protective group strategy used the abovementioned solid phase 

synthesis strategy was a compatible and sound method to apply in solution phase 

synthesis of those PIPs. Nevertheless, each step in the total solution synthesis of these 

molecules required optimization and careful monitoring to aim for the best results and 

yields.  

Three synthetic routes were designed for the monoalkylated, dialkylated and trialkylated 

analogues, respectively, for each of the methylated and the ethylated PI(4,5)P2 (Schemes 

2-5). In total, 6 target molecules (as alkylated precursors) were originally planned to be 

synthesized. The overall schemes of the differently alkylated final PI(4,5)P2 analogues are 

shown below, followed by a comprehensive discussion on the total synthesis steps.    

a. Synthesis plan for monoalkylated inositol precursors 

Two monomethylated analogues, the 6-O-methylated and the 6-O-ethylated, were 

planned to be synthesized using the racemic starting material first, in order to establish a 

suitable synthetic route, and were tested for activity against PRL- 3. After successful 

establishment of this route with the racemic starting material, this synthetic route 

(Scheme 2) was then applied for the synthesis of the more expensive chiral analogues.  

 

Scheme 2 Monoalkylation reaction pathway of 6-O-methylated/ethylated PI(4,5)P2. Compounds 2 and 3 have 

been made according to prior synthesis establishment120. 
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b. Synthesis plan for trialkylated inositol precursors 

The 2,3,6-O-trimethylated PI(4,5)P2 (protected, compound 27) was also planned to be 

synthesized. Following deprotection of compound 27 it was planned to obtain the sodium 

salt form (28’) and free-acid form (28) of the final trialkylated compounds. The synthetic 

route is shown in Scheme 3.  

 

Scheme 3 Trialkylation reaction pathway of 2,3,6-O-methylated PI(4,5)P2 

. 

c. Synthesis plan for dialkylated inositol precursors 

Dialkylation of inositols can be used to generate several different combinations of 

regioisomers, each of which requires developing an additional protecting group strategy. 

For example, Scheme 4 shows a strategy for the synthesis of 3,6-O-methyl analogues 

utilizing the allyl protecting group, which can be removed in the final step. The dialkylated 

compounds 20 and 23 were thus planned to be synthesized.  
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Scheme 4 Dialkylation reaction pathway of 3,6-O-methylated PI(4,5)P2. 

 

Another dialkylated analogue was considered to be synthesized, this time dialkylated at 

the 2- and 3-O positions, instead of the 3- and 6-O positions. The synthetic route is shown 

in Scheme 5.  
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Scheme 5 Dialkylation reaction pathway of 2,3-O-methylated PI(4,5)P2. 

3.1.2.1. Synthesis of the starting material 

The solution synthesis of the analogues always started with the building block 1, available 

in the research group and purchased from Sichem®. A D-myo-inositol ring protected at 

positions 2 and 3 with a cyclohexylidene ketal group, this starting material allows 

reactions at the four remaining hydroxyl groups. The synthesis of the starting material 
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for mono-alkylation and trialkylation of the inositol ring was achieved in two or three 

steps, respectively.  The protective group strategy has been established by Bruzik and 

coworkers91,114, and used by the research group for the abovementioned solid phase 

strategy. First, 2,3-cyclohexyl ketal-protected inositol was selectively protected at the 1-

OH position by introduction of the TBDPS group. After several repeats of this reaction 

considering the amount of precursors and analogues which had to be produced, it was 

finally optimized to yield the highest yield so far (66%) within the research group. The 

reaction was achieved by dissolving 1 and imidazole (2.25 eq) in dry pyridine, cooling the 

reaction solution down to -10°C before adding TBDPSCl (1.5 eq), then letting the 

reaction warm up to rt, stirring overnight. The product 2 was purified by automated 

column chromatography (Biotage®, see chapter 5), which afforded better yields than 

those achieved using classical glass column chromatography. Automated flash 

chromatography was used for the rest of this thesis work, unless when dealing with labile 

compounds like P(III)-compounds (see further sections). Analysis of the compound was 

carried out by 1H- and 13C-NMR and MS. Compound 2 was then selectively protected by 

O-benzoylation of positions 4 and 5 (Scheme 2), by dissolving in chloroform and pyridine 

(1:1) and cooling down the reaction solution to -40°C. A solution of benzoyl chloride 

(BzCl) was added dropwise and after the reaction mixture was slowly warmed to rt, an 

aqueous work-up was conducted and the crude product was purified by column 

chromatography. After reaction optimization regarding equivalents, time and purification 

techniques, 3 was isolated with a slightly higher yield of 93 % compared to the data found 

in literature (90 %)91.The identity of this compound and confirmation of the correct 

regioisomer was confirmed by 2D-NMR studies (COSY, HSQC and HMBC, Figure 11). 

 

 

Figure 11 Constructed diagram of 3 after extensive structure elucidation using COSY, HSQC and HMBC. 
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Inositol 3 was the starting material for the monoalkylation reaction. For a possible 

dialkylation and trialkylation reaction, the cyclohexylidene protecting group had to be 

removed first. This was first attempted using the conditions used for the solid phase 

organic synthesis work, whereby the cyclohexylidene ketal would be cleaved to free the 

2,3-OH groups for further protection with the benzylidene linker120. The conditions 

entailed using 75% formic acid in MeOH, but this led to only 30 % yield, in addition to 

the formation of side products, which might be due to the long reaction time (48 

hours). Also, the solubility of the reactant in MeOH was unsatisfactory, and it would 

have been possible that the prolonged exposure to the basicity of this solvent has 

prompted the Benzoyl groups to react (fall off or migrate). Cleaving the 

cyclohexylidene group with TFA114 was a very quick reaction with a better yield. But 

it also had to be optimized. The fastest and most efficient reaction was achieved by 

dissolving compound 3 in DCM and 200-300 μL water, then adding the TFA-solution 

(final ratio of TFA to DCM 1:1), and stirring the reaction mixture at rt. The reaction 

progress was monitored with TLC and after completion (in less than 15 minutes), the 

reaction solution was diluted with Toluene (3 times the existing volume) before the 

evaporating under reduced pressure. After purification by column chromatography 

the product was isolated with a yield of 86%. The synthesized product was analyzed 

by 1H- and 13C-NMR and MS. An additional problem had to be overcome in this type of 

reaction: comparing the reaction control TLC which showed total conversion to 21 

with the TLC of the crude material shows a reformation of the product during the 

work up. This suggested a possible mechanism: the warm water bath in the rotary 

evaporator was facilitating a reattachment of the cyclohexylidene to the starting 

material. To overcome this, a 200 to 300 μL of ethylene glycol were added to the 

reaction mixture prior to evaporation, in order to scavenge the cleavage product 

cyclohexanone, thereby preventing it from interacting with the diol again (Scheme 6).  
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Scheme 6 Cyclohexylidene cleavage and scavenging with TFA and Ethylene Glycol, respectively. 

The ketone group of cyclohexanone is a good electrophile, and could be made it an even 

better electrophile if protonated. Ethylene glycol has 2 hydroxyl groups, which are both 

good nucleophiles. Since these two hydroxyl groups are in the same molecule, if they both 

react with 1 other molecule (an electrophile) this would form a 5-membered ring (cyclic 

molecule). This is a big driving force for cyclic acetalization reactions, and ethylene glycol 

is very often used to form stable cyclic acetals. In fact, the free diol in the deprotected 

inositol ring also has the capacity for acetalization, but in a less flexible manner. Taking 

that with the fact that it is less abundant in the reaction, ethylene glycol would react first, 

and faster. In the 1H- NMR, peaks corresponding to the protons of the free hydroxyl 

groups are clearly visible between 2.50 and 3.00 ppm (Figure 12) before the 

purification of 21. 
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Figure 12 1H NMR of compound 21. 

For synthesis of lipid tail modified analogues in solution, the same starting material and 

protective group strategy was used, in addition to a MEM protecting group at position 6 

of the ring, to ensure no OH-free group except the 1-OH, which would serve for 

attachment of the lipid tail phosphoramidite analogues (coupling reaction, see section 

3.1.4.). The reaction is shown in Scheme 7. To achieve this, compound 3 was dissolved in 

chloroform under Argon atmosphere, before DIPEA (14 eq) was added at rt, followed by 

MEM chloride (MEMCl, 9.8 eq). The reaction was heated under reflux to 58°C and left 

stirring overnight. Monitoring the reaction by UPLCMS showed the presence of the 

product, with full conversion, and with no signs of multiple regioisomers (only one peak, 

Figure 13). After working up the reaction with NaCO3 and EtOAc extraction, the product 

could be isolated with a 66% yield, which could be due to the steric hindrance around the 

6-OH by the benzoyl groups on one side and the TBDPS bulky group on the other side, 

thereby curtailing the reaction from going towards completion.   
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Scheme 7 MEM protection of the 6-OH on the protected inositol ring. 

 

 

 

Figure 13 UPLCMS of the reaction control of compound 29 (10 hours after reaction start).  

 

3.1.2.2. Alkylation of the inositol ring 

This procedure was at the heart of the challenges that were met during this work. It was 

initially thought that the alkylation step, which succeeds the two previous selective 

protection steps (previous section), would be simply and efficiently achieved, but it was 

not. 
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Scheme 8 Methylation of the 5-OH on the inositol ring upon usage of NaH and MeI. The cyclohexylidene ketal 

was cleaved for clearer structure elucidation upon 2D NMR. 

The alkylation of the hydroxyl group in the 6 O-position on the inositol ring was very 

difficult to achieve, due to the steric hindrance of a bulky TBDPS group and a benzoyl 

group on the neighboring ring positions. This necessitated the usage of rich 

methylation agents, and strong bases for activation. Therefore, a variety of alkylating 

reagents with different bases were tried under a myriad of conditions (Table 1). These 

preliminary experiments indicated that the benzoyl protecting groups on the inositol 

ring were prone to migration. Following optimization of the solvent (Table 1) and 

reaction duration, conditions were found which gave a reasonable yield of a mono-

methylated inositol. To confirm the identity of this fully-protected compound, 

thorough structure elucidation by NMR was carried out, after cleavage of the 

cyclohexylidene ketal PG to prevent noisy signals. Unfortunately, the compound was 

found to be the wrong regioisomer (compounds 4 and 5, Scheme 8). Migration of the 

5-O-benzoyl group to the 6-O position was found to have occurred, and methylation 

of the more stable 5-oxyanion had occurred. This is indicated in Figure 15, a 

reconstructed diagram based on the COSY spectrum in Figure 14.  
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Table 1 Bases and Solvents screened for methylation reaction, using MeI, in similar temperature conditions, 

equivalents of base, and time. MeI: Methyl Iodide; PG: Protective Group; DMF: Dimethyl Formamide, DME: 

Dimethoxyethane; ACN: Acetonitrile ; THF: Tetrahydrofuran ; DMSO: dimethyl sulfoxide. 

Base Solvent Reaction Status 

NaH DMF PG migration, low rate 

Dioxane PG migration, low rate 

DME High product rate, wrong 

regioisomer 

Ag2O ACN PG migration, very low rate 

Cs2CO3 DMF No reaction 

THF PG migration, no reaction 

DMSO PG migration, very low rate 

Li2CO3 DMF PG migration, no reaction 

Na2CO3 DMF PG migration, no reaction 

K2CO3 DMF PG migration, no reaction 

DIPEA DMF PG migration, very low rate 

DBU DMF PG migration, no reaction 
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Figure 14 1H, 1H COSY spectrum of compound 5. 

 

Figure 15 Constructed diagram of compound 5 after extensive structure elucidation using COSY, HSQC and 

HMBC. Protons are shown in red font, carbons in black. 

A new protecting group strategy was designed involving replacement of the labile 

benzoyl groups by more stable benzyl groups. For this, the Dudley benzylation 

reaction was carried out121. Unfortunately, it was found that the TBDPS group was 

also prone to migration upon exposure to the strong bases used in Williamson ether 

synthesis (Scheme8, Figure 16).  
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Scheme 8 Attempt to use benzyl groups as PG instead of benzoyl groups. a) conditions: 2-benzyloxy-1-

methylpyridinium triflate (4eq), MgO (4 eq), PhCF3, 83°C, 1day. 

 

Protection of compound 1 at the 1-OH position with monomethoxytrityl (MMT) instead 

of the bulky TBDPS group was also carried out, but the reaction was not selective (at least 

2 regioisomers and one di-substituted inositol ring were formed), and never went to 

completion, so this attempt was soon aborted.  

As a breakthrough in this synthesis, the methylation reaction on the 6-O position was 

finally achieved using a mild methylation reaction which employs a Meerwein’s salt 

derivative, called trimethyl oxonium tetrafluoroborate, and proton sponge, known to 

Figure 16 UPLCMS result of the benzylation reaction after one day: peak 6 depicted on the ELSD is actually a 

multitude of peaks at similar retention times, containing the same TBDPS-protected, dibenzylated 

compound mass, which indicates the presence of different regioisomers. 
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be a mild base but a strong nucleophile, which could overcome the hurdle of 

protecting group migration (Scheme 9). This procedure was inspired from the work 

of Paterson and Coster, who achieved the total synthesis of the potent cytotoxic 

macrolide, altohyrtin A (spongistatin 1)122. Since this reaction was successful, it was 

thought to make use of it further to protect the free hydroxyl groups of PI(4,5)P2 with 

a group other than methyl, hence expand the library: the most direct and available 

one was the ethyl (Meerwein’s salt as a reagent). This led to the design of a series of 

methylated and ethylated precursors were envisioned to be synthesized according to 

the planned synthetic routes shown in the previous section’s schemes (above).  

 

Scheme 9 Successful methylation of the 6-OH of compound 3. 

The reactant, dissolved in DCM, was cooled to 0°C before adding the proton sponge 

and the corresponding Meerwein salt derivative. The suspension was slowly warmed 

to room temperature and stirred for 48 hours. After filtration of the reaction mixture, 

the solvent of the supernatant was evaporated and the crude product was purified by 

column chromatography. 6 could be isolated in a yield of 99 % and 13 with 80 %. Both 

compounds were analyzed by 1H- NMR, 13C- NMR (Figures 18 and 19), COSY (Figure 

17), HMBC, HSQC and HR-MS. 
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Different discussion section: 

The reaction of the ethyl group seems to be more hindered than with the smaller 

methyl moiety. In the 1H - NMR of 6, the methyl group is clearly distinguishable with 

a singlet at ca. 3.5 ppm (Figure 18). Comparing the 1H - NMR of 6 and 13 (Figure 19) 

one can see that the proton in the 6-O position on the ring is shifted to the deep fields 

even further in the spectrum of 13 than in 6. 

Figure 17 COSY spectrum of compound 6. 
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Figure 18 1H- NMR of 6 measured in CDCl3. 

 

Figure 19 1H- NMR of 13 measured in CDCl3. 

* 
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For the di- and trialkylation of 21 the application of the Meerwein salts as reagent was 

successful as well. Both products were formed in a one-pot reaction (Scheme 10). 

However, there was a considerable difference between the di- and tri-alkylation 

yields, and also a difference between methylation and ethylation multi-alkylation 

yields. 

After solving 21 in DCM and cooling the solution to 0°C, the respective Meerwein salt 

was added together with the proton sponge, and the solution was slowly brought to 

room temperature. After the reaction was finished, which was determined by TLC 

monitoring, and which took up to 6 days depending on the reaction, the reaction 

mixture was filtered, and the crude product purified by column chromatography. The 

methylation yielded 44% of 20 and 19% of 19. The ethylating reaction produced 45% 

of 23 and only 15 % of 22.  

 

 

Scheme 10 Synthesis of di-and trialkylated myo-inositols. 

The structural elucidation of every compound was conducted with 1H- NMR, 13C-NMR and 

HR-MS and COSY analysis confirmed the unsubstituted hydroxyl group in position 2 in 

case of compounds 20 and 23. Both reactions were done using a very large excess of 

reagents (alkylating agent and base). These conditions were chosen because of the 

sterically hindered 6- position, but also because the hydroxyl group on the axial 2-

position is the least reactive in the ring.  

The ethylating reaction was probably slower than the methylation reaction due to the 

bigger bulk of the ethyl group, as was already observed in the mono-ethylation. The 

dialkylated compounds 20 and 23 were isolated in a much higher yield than the 

triakylated ones. This could be linked to the steric hindrance due to the neighboring 

TBDPS group for the axial hydroxyl group, as well as the relative inactivity of that group. 



 
51 

The respective yields were possible to increase by letting the reaction run as long as the 

monoalkylation. But the total yields of both reactions were significantly lower compared 

to the formation of 6 and 13.  

In other words, the major difficulty encountered in this synthesis was that trimethylation 

or triethylation using the oxonium salt never proceeded to completion, even when large 

excesses of alkylating reagent were used. There were always two products to separate 

(the dialkylated intermediate product and the trialkylated desired product). This 

separation was difficult due to the similarity in properties of the compounds.  In order to 

obtain sufficient amounts of the successfully synthesized trimethylated PI(4,5)P2, this 

was overcome by the multiple methylation reactions of both starting material and 

dimethylated minor product of previous trimethylation reactions. This was repeated 

many times, to try to utilize as much of the undesired dialkylated products as possible as 

starting materials for further methylation. The reactions took up to 7 days to achieve at 

least 50% conversion, and many solubility experiments were tried on the oxonium salts 

beforehand to achieve optimization. In the case of the triethylated derivative the 

alkylation reaction was so slow and with such poor conversion that it was decided to 

deprioritize this compound. For the total separation of the di- and trialkylated 

compounds, as well as from other impurities, two column chromatographic separations 

were sometimes necessary which naturally led to some loss of product. In the 2D-COSY 

NMR spectra of 19 and 20, the peaks for the respective methoxy groups (marked with *) 

are clearly visible (Figures 20 and 21). 
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Figure 20 Section of 2D-COSY spectrum of compound 19 measured in CDCl3 with annotated myo-inositol ring 

protons. 

There is also a clear shift to the higher field of the proton signal of the hydrogen at the 

2 position of the inositol ring discernable when comparing their respective spectra. 

This further supports the assumption that the hydroxyl group in the axial position is 

the last one to react in the multialkylation reactions. This can also be confirmed in the 

1H- NMR spectra from 22 and 23 (Figures 22 and 23). The methyl part of the ethoxy 

group can be seen in their distinctive triplet form while the methylene group signals 

are less distinguishable. The dialkylated compounds 20 and 23 were thus planned to be 

taken further down the PI(4,5)P2 analogue synthesis. However, the steric hindrance of the 

TBDPS protecting group made further alkylation at the 2-O position difficult under non-

forcing conditions. Unfortunately, attempts to introduce the allyl protecting group in the 

2-O position were not successful, presumably also due to steric reasons. This route was 

put on hold for future revisit, and the 3,6-O-dialkylated PI(4,5)P2 was not fully 

synthesized as part of this thesis work.  
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Figure 21 Section of 2D-COSY spectrum of compound 20 measured in CDCl3 with annotated myo-inositol ring 

protons. 

Yet another dialkylated analogue was considered to be synthesized, this time dialkylated 

at the 2- and 3-O positions, instead of the 3- and 6-O positions. The synthetic route is 

shown in Scheme 5. This was made possible with availability of the starting material (9), 

previously used for solid phase synthesis in the Köhn lab120 (Figure 9). This compound is 

protected at the 6-O position by a MEM group, allowing for alkylation at the 2- and 3- O 

positions selectively, after cleaving the benzylidene linker. Methylation was chosen over 

ethylation in this case, for obvious feasibility reasons (see above). The cleavage of the 

benzylidene linker was successfully achieved, after using ethylene glycol as a scavenger 

to prevent it from reforming upon removal of acid. The methylation at the 2- and 3-O 

positions of the ring was successful too, following an established procedure as part of this 

thesis. Unfortunately, the MEM group was lost (partially) during the methylation reaction 

(scheme 5, second step). This could be overcome by re-protecting with a MEM group and 

carrying on the synthetic route as in Scheme 5. The 2,3-O-dimethylated inositol should 

provide an additional building block for the PI(4,5)P2 analogues library. Due to time 

constraints, the 2,3-O-dimethylated PI(4,5)P2 analogue was, however, not synthesized as 

part of this work.  
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Figure 22 1H- NMR of compound 22 measured in CDCl3. 

 

 

Figure 23 1H- NMR of compound 23 measured in CDCl3. 

* 

* 
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3.1.2.3. Debenzoylation 

The deprotection of the hydroxyl groups of the 4 and 5 position of the inositol ring was 

carried out following the procedures of Bruzik et al.91 and Vanek and coworkers123 

(Scheme 11). 

 

Scheme 11 General debenzoylation reaction. 

The starting material was dissolved in the solvent and the solution cooled to 0°C before 

NaOMe dissolved in MeOH was added. The reaction was slowly warmed to room 

temperature and monitored by TLC. After complete conversion, the reaction solution was 

neutralized and worked up. The crude product was purified by column chromatography. 

Product 8 could be isolated in 74% yield and the conversion of 13 to 14 gave a yield of 

99%. The discrepancy in the yields might be due to two independent reasons: 1) the 

bulkiness of the ethyl group which might push the reaction to go faster, and hence, more 

efficiently, and 2) the extent of the dry conditions. The structural confirmation of 

compounds 8 and 14 were both conducted with 1H- NMR, 13C- NMR and HR- MS. Since the 

first debenzoylation reaction was performed on compound 6, it was used as a reference 

for optimization. Hence, the first time this reaction was conducted, NaOMe was used in 

a catalytic amount, and MeOH was used both as solvent and to regenerate the reactive 

species. But compared to the reaction by Bruzik and coworkers91,  which was also 

later applied for the formation of 8, and in which the reagent was used in an equimolar 

amount (instead of catalytic), the reaction time is considerably longer and the yield is 

slightly lower. This is why it was opted to use the latter technique for the 

debenzoylation of all the analogues precursors (both the inositol-ring modified and 

the lipid tail modified), since it seemed that the best and quickest route to 

debenzoylate these hydroxyl positions in solution is by using NaOMe as a reagent, not 

as a catalyst. 
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In the 1H- NMR, the shift of the proton signal assigned to the hydrogen on 4 and 5 position 

to the higher field has clearly shifted for both compounds compared to their respective 

starting materials (Figures 24 and 25). The peaks for the free hydroxyl groups were no 

longer visible in either spectrum in approximately the same area, after addition of D2O to 

the NMR samples. This was a method to prove that the Hydroxyl groups were now free. 

The 13C NMR spectra of the compounds also confirm the loss of the carbonyl compounds 

in the 170 ppm area (Appendix), in addition to less signal in the proton NMR at 7-8 ppm.   

 

Figure 24 1H- NMR of 8 measured in CDCl3. 

* 
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Figure 25 1H- NMR of 14 measured in CDCl3. 

 

3.1.2.4. Phosphorylation 

For the addition of the phosphate groups to the inositol ring, a procedure developed by 

Fraser- Reid et al.124 utilizing the monofunctional phosphine was used (Scheme 12).  

 

Scheme 12 General phosphorylation synthesis of alkylated myo-inositols. 

* 
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After dissolving the respective starting material in solvent, 1H-tetrazole, then the 

phosphoramidite were added dropwise and the solution stirred until no starting material 

remained. Then the reaction mixture was cooled to -40°C and the phosphite groups were 

oxidized with mCPBA to give the protected phosphate groups. After warming the solution 

to room temperature, the reaction mixture was quenched and subjected to an aqueous 

work up. After purification of the products with column chromatography, 9 was isolated 

in a yield of 99% and 15 with 67%. The apparent difference in yield is thought to be 

mostly due to the steric hindrance of the ethoxy group, which is bulkier than the methoxy 

group, and with which the reaction was never pushed to completion. Therefore, changes 

in reaction conditions (equivalents of reagents and time) had to be closely investigated 

before obtaining the documented yield. Below is an explanation of the reaction 

conditions, which were optimized prior to the best (abovementioned) conditions.   

 

The same phosphorylation method was applied for the trialkylated inositol ring after 

sufficient amount of the starting debenzoylated material was successfully obtained. The 

phosphorylation reactions were optimized according to three variables: the type of 

activator, the type of solvent, and the type of oxidation method. As can be seen in Table 2, 

the best activator was 1H-tetrazole, though extreme caution had to be considered as the 

use of an accidentally non-dry reagent solution had led to the total loss of product before 

oxidation. 2,5 Dicyanoimidazole, which has been used as an activator for phosphorylation 

in solid phase synthesis of PIPs120, was not as good as 1H-tetrazole, at least in solution 

synthesis. The best solvent was DCM, not acetonitrile, nor chloroform, nor a mixture of 

either, and the best and cleanest oxidation method was the one using mCPBA (meta-

Chloroperoxybenzoic  acid) instead of peracetic acid (used in the solid phase 

synthesis120). In fact, the little amount of product that was formed in the reaction was not 

possible to isolate because a lot of side products formed during this kind of oxidation. 

Oxidation with peracetic acid lead to the formation of many side products that hinder 

the isolation of the product and oxidation on air is a very slow and indefinite 

technique. 
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Table 2 Phosphorylation reaction optimization. 

Reaction Activator Solvent (dry) Time stirred 

before 

oxidation (h) 

Oxidation 

method 

Yield 

1 2,5 

Dicyanoimidazole 

DCM:AcCN 2 Peracetic acid 50% 

2 1H-tetrazole DCM:AcCN 2.5 mcpba 74% 

3 1H-tetrazole CHCl3 2 mcpba 82% 

4 1H-tetrazole DCM 2 mcpba 99% 

 

For TLC monitoring of products and impurities during these first part of these reactions 

(i.e., before oxidation), a solution was devised to be able to run the P(III) compounds on 

silica without possible hydrolysis or oxidation, as these compounds are highly labile. For 

that, the TLC plate was treated with trimethylamine (TEA) fumes in a small TLC chamber 

prior to its use. The base TEA helped neutralize the acidic environment on the TLC plate, 

which contributed to the migration of the reaction components on the plate without 

decomposition. With that, one could tell if the presence of any additional spot(s) other 

than the desired product on the TLC were actual impurities. Overall, impurities in the 

optimized phosphorylating reactions were increasingly insignificant after final 

purification on silica columns, as can be seen in the 31P NMR of products 9 and 15 in 

Figures 26 and 27, respectively. The structural elucidation of all the phosphorylated 

compounds was done by 1H- NMR, 13C- NMR, 31P- NMR and HR- MS. 
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Figure 26 31P- NMR of 9 measured in CDCl3 with only a minor impurity (*). 

 

Figure 27 31P- NMR of 15 measured in CDCl3 with only a minor impurity (*). 

* 

* 
* 
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3.1.2.5. TBDPS deprotection  

For the deprotection of the 1-hydroxyl group on the inositol ring by cleaving the TBDPS 

group, an adapted method by Bruzik et al91,  developed for the synthesis of PIPn, was 

applied (Scheme 13). 

 

Scheme 13 General TBDPS deprotection reaction. 

The respective starting materials were dissolved in THF and the solutions cooled to 0°C 

before TBAF was added. After warming the solution to room temperature and monitoring 

the reaction by TLC, the reaction was quenched, aqueously worked up and purified with 

column chromatography (see Chapter 5 for more details).  
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Table 3 TBDPS deprotection optimization. *As part of the same solution synthesis outline, the native PI(4,5)P2 

substrate was also synthesized, but that included protecting at the 6-OH with a MEM group.  

R-group Reagent Amount 

(eq) 

Time (hr) Temperature Solvent Yield (%) 

Me TASF 2.5  2.5 rt DMF 34 

Me TBAF (solid) 2.5 2 rt THF 47 

Me TBAF (1M in 

THF) 

2.5 2.5 rt THF 57 

Me TBAF (1M in 

THF) 

2 3 0°C  rt THF 80 

Me TBAF (1M in 

THF) 

1.9 2.5 0°C  rt THF 69 

Et TBAF (1M in 

THF) 

1.9 2 0°C  rt THF 73 

Et TBAF (1M in 

THF) 

1.8 2.5 0°C  rt THF 47 

MEM* TBAF (1M in 

THF) 

1.8 2.5 0°C  rt THF 82 

 

In the optimized reaction, the amount of 10 yielded to 80% and of 16, a yield of 73% could 

be isolated. Analyzed were both compounds by 1H- NMR, 13C- NMR, 31P- NMR and HR- MS.  

After testing different solvents, it was determined that THF is the best solvent for the 

reaction and for monitoring thereof. The first two trials were directed with solid TASF 

and solid TBAF as reagents. Using TASF as reagent and DMF as solvent was inspired by 

the solid phase synthesis of such phosphoinositides120, but it was soon shown to work 

much less efficiently in solution synthesis. Due to the hygroscopic nature of such reagents, 

the weighing and transport between scale and flask lends itself for the reagent to draw 

water from air which decreases the reactivity of the compound and leads to the necessity 

of using a higher amount. To avoid this problem a change to 1M-TBAF solution in THF 

was made. A variety of equivalents were tested from 1.7 to 2. The main results can be 

found in Table 3.  

During the monitoring of the reaction with TLC it was apparent that more side product 



 
63 

was formed while increasing the amount of the reagent gradually. Using less reactant to 

avoid side product formation and letting the reaction run longer while monitoring the 

reaction with TLC led also to a decrease in yield. Reasons for this observation could be 

linked to the increase of side product, the longer the reaction mixture was stirred, as well 

as the lack of total conversion of the reaction. To avoid the increase of side product while 

using a higher amount of TBAF-solution, the reaction mixture was cooled to 0°C before 

the reagent was added. Surprisingly, the bigger the R group, the better the yield. This 

could be due to the bulkiness of the group, which pushes the leaving group to leave faster, 

but it is just an assumption. In the 31P- NMR, it is apparent that the synthesized products 

can be isolated in 100% purity (Figures 28 and 29).  

 

Figure 28 31P- NMR of compound 10 measured in CDCl3. 
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Figure 29 31P- NMR of compound 16 measured in CDCl3. 

 

3.1.3. Solution synthesis of the diverse lipid tails 

Part of the overall total organic synthesis of PI(4,5)P2 analogues involved synthesizing the 

lipid tail phosphoramidite prior to its attachment to the 1-O position of all the analogues.  

The DiC8 lipid tail was successfully synthesized according to the synthetic route shown 

in Scheme 14. This is a previously established synthesis, used as part of the PIP solid 

phase synthesis120.  

The diisopropyl-O-benzyl phosphoramidite (51) was also synthesized using a different 

technique, involving bulb-to-bulb distillation. This afforded a large amount of reagent, 

which was used for further lipid tail synthesis, as well as three other lipid tail analogues: 

the di-carbamate, the di-adamantane, and the phenylpropanol chains (Schemes 15 and 

16). These phosphoramidites were again synthesized and optimized following the 

technique used in Scheme 14 (see chapter 5 for more details about the procedures). 
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Scheme 14 Synthesis of phosphine 51 and the phosphoramidite 47. 

 

 

Scheme 15 Synthesis of phosphoramidite 38. 

 

The di-carbamate lipid chains were chosen to study the difference in analogue activity 

when the ester bonds of the lipid chains are replaced by the more stable carbamate bonds. 

The di-adamantane lipid chains were chosen based on a study by Gregory and coworkers 

125, who synthesized phosphatidylinositol phosphate analogues containing adamantyl 

carboxylic ester groups, in place of the natural lipid side chains. These were shown to be 

significantly more soluble in water than other lipid chain analogues, and to not form large 

aggregates such as liposomes or micelles. These adamantyl analogues were also shown 

to bind to known phosphoinositide-binding proteins with similar affinities to native 

ligands125, such as FYVE domains and others. The phenylpropanol lipid tail was selected 
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to be a simplified version of the hydrophobic lipid tail, to check for how significant large 

lipid tails are for binding. This reasoning was from a medicinal chemistry point of view 

aiming to design a potential inhibitor. The pathways of the lipid tails synthesis are shown 

in Schemes 14-16. 

 

Scheme 16 Reaction pathways of the synthesis of the Di-adamantane and Di-carbamate glycerol lipid chains 

phosphoramidites 44 and 41, respectively. 
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3.1.4. Synthesis of PI(4,5)P2 analogues  

The final steps in the solution phase synthesis of the analogues were: a) coupling of the 

separately synthesized phosphoramidite(s) with the free hydroxyl group on position 1 of 

the inositol precursors (in this case, compounds 10, 16, 26 and 32), b) deprotection the 

full molecule to yield the free acid and c) salt formation using a salt exchange resin.  

The DiC8 chains (compound 47) were coupled to compounds 10, 16 and 26 to strictly 

account for inositol modifications in the SAR studies. For the lipid tail attachment, the 

phosphorylation reaction method by Fraser-Reid and coworkers124 was adapted for 

this purpose (Scheme 17), and applied for all the coupling reactions.  

3.1.4.1. Lipid tail attachment  

In DCM dissolved, the respective starting material was cooled to 0°C before the diC8 lipid 

tail phosphoramidite 47 and 1H-Tetrazole were added. After warming to rt and stirring 

until full conversion is achieved the reaction mixture was cooled to -40°C and oxidation 

with mCPBA was carried out. After the work up, the crude product was purified using 

column chromatography. 11 was isolated with a yield of 70%, the conversion of 16 to 17 

led to a yield of 54%, and the conversion of 26 to 27 led to a yield of 76%. Structural 

elucidation was carried out by 1H- NMR, 13C- NMR, 31P-NMR and HR -MS. Using the same 

reaction method for the attachment of the diC8 phosphoramidite that was used for the 

phosphorylation led to the formation of the desired products.  

Comparing the synthesis of the three products, it was obvious that the reaction is a lot 

slower for the ethylated precursor as seen before in the bisphosphorylation and TBDPS 

cleaving reactions. The ethoxy group seems to hinder the reaction sterically through its 

size. Furthermore, it was not possible to achieve full conversion of the starting material 

by stirring longer and increasing the amount of the reagents. A solution to this might be 

to increase the amount of 1H-Tetrazole to ensure the full activation of the 

phosphoramidite. Coupling with the trimethylated inositol precursor achieved the best 

yields, since both the cyclohexylidene ketal and the ethoxy groups around the 1-OH were 

substituted by smaller, methoxy groups.   
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Scheme 17 Lipid tail attachment reaction to the three inositol precursors 10, 16 and 26. 

 

In the 1H-NMR of 11 the signal for the methoxyl group is split into a doublet for which 

both peaks integrate to 1.5 protons (Figure 30, marked with a “*”), which could be 

explained by the nuclear overhauser effect (NOE). In this case, the spin-spin coupling does 

not ensue through bonds, but through space. The protons of the methoxy group could 

hence be interacting with the protons of the benzyl protecting group in the 

phosphodiester, and the benzyl groups on the 5-phosphate, generating this effect. It might 

also be possible that through the bulky protecting groups the rotation around the single 

bond is inhibited and the environments on both sides of the methoxy group are dissimilar, 

thereby generating two separate signals. 
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Figure 30 1H NMR of compound 11 measured in CDCl3. 

The other lipid tail analogues phosphoramidites (Section 3.1.3, compounds 38, 41 and 

44) were coupled to the unmodified inositol ring precursor (protected with a MEM group 

at the 6-OH), to strictly account for lipid tail variances during SAR studies. Since no 

changes to the inositol ring had to be made for these steps, it was envisaged to synthesize 

the lipid tail modified PI(4,5)P2 analogues using the solid phase strategy developed by the 

lab126, provided that the total synthesis would be similar, except for the use of different 

lipid tails in the second last step of the synthesis.  

With the help of Dr. Sven Stadlbauer, a former postdoctoral fellow in the Köhn group, the 

solid-phase synthesis of the phenylpropanol lipid tail PI(4,5)P2 analogue was achieved, 

albeit with very low yields and amounts. The synthesis of the di-carbamate and di-

adamantane lipid tail PI(4,5)P2 analogues was, however, not successful using the solid-

phase methodology, especially for the latter. Re-synthesis of the di-carbamate PI(4,5)P2 

analogue was repeated at larger scales using solid phase synthesis, which required the 

need of excess valuable reagents. It is believed that the di-adamantane PI(4,5)P2 analogue 

was not successful because of the bulkiness of the adamantane molecules, which could 

hinder its passage through the resin mesh for coupling. It was therefore decided to 

* 



 
70 

synthesize it using solution phase synthesis. Thus the di-adamantane glycerol 

phosphoramidite was resynthesized and purified as described already. The reaction steps 

are shown in Scheme 18, and show the selective MEM protection at the 6-O position after 

TBDPS and Benzoyl protection. Cleaving the TBDPS protecting group would leave the 

most reactive 1-OH free (32) for coupling to the phosphoramidite containing the lipid 

tails, a very fast organic reaction in solution. 

 

Scheme 18 Solution synthesis of the lipid modified PI(4,5)P2 analogues. The last reaction step, which involves 

the overall deprotection of 33 and 35, is described in section 3.1.4.2. 

 

Using this solution-phase route, three lipid tail modified analogues would be synthesized 

and the route compared to the reported solid phase syntheses, according to practicality. 
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This shows the importance of versatility in methods for achieving the most desired 

results.  

 

3.1.4.2. Global deprotection 

The deprotection of all attached protecting groups with TMSBr was conducted after the 

method of Köhn et al126 (Scheme 19). The starting material dissolved in THF was cooled 

to 0°C, before TMSBr was added. After stirring for 1h, the solvent and the unreacted 

TMSBr were evaporated under reduced pressure and the precipitate dissolved in MeOH. 

This had first been attempted by evaporating on the rotary evaporator under inert 

conditions, but that resulted in total loss of the product. After evaporating under reduced 

pressure, the reaction mixture was stirred for another hour in MeOH and then evaporated 

(again, under reduced pressure), to yield the final product. The reactions with all 

compounds gave a quantitative yield. The compounds were analyzed by 1H- NMR, 13C- 

NMR, 31P- NMR and HR- MS. After optimization of the deprotection strategy, in the 1H-

NMR spectra of the final compounds, it was obvious that the reaction was clean and 

proceeded without formation of side products, which makes a purification 

unnecessary. Usually, salt-exchange reactions would add a purification step to the 

final compounds, but salt exchange reactions were avoided for the analogues 

synthesized as part of this work (see section 3.1.4.3.) An example of a free-acid final 

product is shown in Figure 31, for the analysis of compound 12. 

 

Scheme 19 Global deprotection reaction for compounds 12, 18 and 52. 
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Figure 31 1H NMR of compound 12 measured in MeOH 

 

For the deprotection of the trimethylated analogue, TMSBr was avoided, not only to avoid 

possible degradation of the very valuable compound 27 during the synthesis with a harsh 

reagent, but also because the only PGs to deprotect were benzyl groups, and for this, a lot 

of other cleaner methods were possible. The chosen method for deprotection of 27 was 

hydrogenation in glacial acetic acid, as this method would afford the clean product after 

freeze drying the solvent once the reaction is done (Scheme 20). The compounds were 

analyzed by 1H- NMR, 13C- NMR, 31P- NMR and HR- MS.  
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Scheme 20 Deprotection of compound 27, yielding the final compound 28 as a free acid. 

For the deprotection of the other lipid tail modified compounds (33 and 35), TMSBr was 

not sufficient for full deprotection, and an additional step involving the use of TFA had to 

be done to get rid of the cyclohexylidene ketal (See Chapter 5, Section 5.2.3). 

3.1.4.3. Salt exchange of the final compounds 

The conversion of the final compounds (free acids) to the sodium salts by ion exchange 

(Na form) was planned as the final step of the synthetic strategy, as was done in other 

works, including that of Koehn et. al99,100,120. This step, which would be considered as a 

purification step, counters every lost proton during deprotection steps: purification by 

ion exchange is used to remove contaminating acids, alkali metals, salts or mixtures from 

non-ionized or slightly ionized organic or in-organic substances. Salt exchange using the 

Dowex® cation-exchange media resin had already been used for such compounds126. The 

ion exchange technology is a good means to remove or exchange contaminants present in 

low concentrations.  

In the case of the synthesized free acid final compounds however, this step was not 

proven proficient, for a couple of reasons, the first being the running time until the resin 

is exhausted, which can be long (up to 48 hours). This could subsequently create a basic 

environment, which could lead to loss of esters or migration.  Another reason is that any 

contaminant that is not ionised cannot be removed by ion exchange, which could explain 

the amount of remaining impurities after salt exchange. Figures 32 and 33 show the 

proton and phosphorus NMR spectra of compound 12 before and after salt exchange, 

respectively.  
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Figure 32 31P (below) and 1H (above) NMR spectra of compound 12 before ion exchange. 
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Figure 33 31P (below) and 1H (above) NMR spectra of compound 12 after ion exchange. The impurities are 
marked with a “*”. 

The salt exchange step was thus an aborted step for the analogues. To make sure that this 

would not pose a problem for biochemical assays, as the non-ion exchanged analogues 

are more acidic, optimization of the assays using free acids instead of salts was done (see 

Section 3.2.). 
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3.2. Biochemical evaluation of the PI(4,5)P2 analogues 

In order to assess if the modified PI(4,5)P2-based compounds would be substrates of PRL-

3, they were tested in a biochemical phosphatase assay. To investigate the hypothesis that 

introducing modifications could lead to selective recognition of the compounds, other 

PI(4,5)P2-phosphatases were included in this study. 

3.2.1. Activity assays with PRL-3 against PI(4,5)P2 analogues 

The six successfully synthesized and characterized PI(4,5)P2 analogues (Figure 34) were 

available for testing, and were assayed for biological activity with PRL-3 using the 

commercially available Enzcheck assay19, in addition to the original chiral PI(4,5)P2-diC8 

substrate as control (compound 52, also synthesized in solution as part of this thesis 

work, see section 5.2.). The phosphatase activity of WT PRL-3 PI(4,5)P2-based substrates 

was then analyzed. The phosphatase concentration was chosen to be in the low micro 

molar range, and thus quite high, because of the reported low activity of PRL-3 in vitro25, 

and for the same reason, a high substrate concentration range was selected (25-250 μM). 

These conditions match previously reported ones18,19,120. 

 

 

Figure 34 Structures of the PI(4,5)P2 original substrate (52) and its 6 analogues (12, 18, 28, 34, 36 and 50). 
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The release of phosphate was monitored continuously over time. Each analogue was 

assayed at 5 different concentrations, twice in triplicates. The enzyme concentration was 

constant in all experiments, and so was the assay protocol (see Chapter 5). To account for 

possible changes in acidity of the well contents upon addition of the free-acid analogues, 

two control experiments were conducted prior to the assays to make sure that the free 

acid analogue (or substrate), would not perturb the pH of the reaction. First, a direct 

comparison between the salt form and the free acid form of the synthesized substrate was 

conducted using the assay, which showed similar results in phosphate release. Second, 

pH measurements before and after adding the free acid in the reaction wells showed that 

the acidity of the analogues did not change the pH; thus they were deemed compatible for 

the consequent experiments. 

The release of phosphate from soluble PIP substrates carrying modifications either on the 

inositol ring (compounds 12, 18 and 28) or on the lipid chains (compounds 34, 36 and 

50) by WT PRL-3 was continuously measured over 2 hours using the EnzChek assay. The 

dephosphorylation signal intensity was used to compare the substrate preferences of 

PRL-3 against the whole range of PI(4,5)P2 analogues. The resulting substrate preference 

profiles are shown in Figures 35 and 36. The respective absorbance curve of each 

analogue, at different concentrations, is shown in Figure 35 (A-F). The initial velocities 

were then calculated from the slope of the linear part of the ensuing reaction, to generate 

the bar diagrams in Figure 36. These bar graphs allow quantitative analysis on the activity 

of the active analogues, and their significance with reference to the control (in % values). 

For compounds 36 and 50, it was not possible to calculate the respective velocities as 

there was no slope that allowed this: the compounds were simply not active, and are not 

part of Figure 36.  
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Figure 35 The dephosphorylation activity of PRL-3 toward the PI(4,5)P2 analogues, at 5 different 

concentrations (25, 50, 100, 200 and 250 μM). The slopes are shown until 1500-3000 seconds of 

measurements because of the signal variation observed after that time point in all assays, which could either 

be due to the precipitation of the protein or the interaction of the analogues with the photoactive component 

in the assay. A) Absorbance measurements of compound 28: the signal intensity at 100, 200, and 250 μM of 

this compound is higher than that of the natural substrate at 250 μM. B) Absorbance measurements of 

compound 18: the signal intensity at 200 and 250 μM of this compound is higher than that of the natural 

substrate at 250 μM. C) Absorbance measurements of compound 34: the signal intensity at 200 μM is 

comparable to that of the control, and that of 250 μM is higher than that of the control (at 250 μM). D) 

Absorbance measurements of compound 12: although somewhat active, the signal intensity at 100 and 250 

μM of this compound, is lower than that of the natural substrate. E) and F), Absorbance measurements of 

compounds 36 and 50, respectively: those compounds were not active against PRL-3. Graphs are shown 

without error bars for clarity: the lower the signal intensity, the higher the relative error in the assay18,19,120, 

leading to error bars that would mask other curves. An error was accounted for in Figure 36, where the slopes 

were quantified.  

Before ongoing with the discussion on the analogues’ biological activity, it is imperative 

to note that the assay appeared to give a strong variability with PRL-3 as a phosphatase. 

This is because PRL-3 does not follow a Michaelis-Menten trend, and because it shows 

only low enzymatic activity18. This is why PI(4,5)P2 and its analogues’ titration profiles 

reveal non-Michaelis−Menten kinetics, with sigmoidal curve shapes (Figure 35 - curves). 

Otherwise, such kinetics are not a general feature of the assay format, and the same kind 

of assay was actually used for the assessment of three other phosphatases which follow 

classical Michaelis−Menten profiles (see section 3.2.2.). Other studies have also used this 

assay for classical Michaelis-Menten protein profiles127. A plausible reason for this could 

be the fact that PRL-3 is prone to oligomerize128, and non-Michaelis−Menten behavior is 
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characteristic for oligomerizing enzymes129, not to mention that phosphoinositides also 

have a propensity to oligomerize, making the issue less simple to tackle. Particularly with 

the analogues, the readout was noisy and poor, and the figure (curve) got unstable after 

a certain time point of measurement (1500 to 3000 seconds).  

From what can be appreciated in Figures 35 and 36, the trialkylated analogue (28) shows 

the highest activity, which leads to reason that the more hydrophobic the inositol ring, 

the better the interaction, taking into consideration that the active site of PRL-3 is 

unusually shallow and hydrophobic, as opposed to other PTPs20. In fact, the 6-O-ethylated 

analogue (18) follows as second best, rather than the 6-O-methylated analogue (12) 

which suggests that the bulkier the group blocking the inositol’s 6-OH, the better the 

interaction. However, more data should be generated on this, as the assay did not perform 

consistently with this analogue (18). In fact, two concentrations (25 and 50 μM) had to be 

excluded from the bar graphs for that compound, because the generated values were 

neither reproducible nor analyzable in the context of the rest of the data. Compound 12, 

which has the least structural changes compared to the parent compound, showed the 

fewest changes compared to the control.  

 

These results can be taken as a first stage towards understanding the specificity of PRL-3 

in terms of catalytic reaction with its substrates. This can be supported by the fact that 

the three other analogues, which are only modified at the lipid tail part of the molecule 

(34, 36 and 50) did not show significant activity compared with the inositol-modified 

ones (12, 18 and 28) (Figure 35). Actually, only compound 34 was active amongst the 

three lipid tail modified analogues. This analogue, bearing a double chain of adamantanes 

instead of the unsaturated diC8 chains, appears to be slightly more active than the control. 

The analogues bearing carbamate and phenylpropanol chains were not active at all. This 

shows, first of all, that the diC8 chains are important for binding to PRL-3, as reported 

previously120, and, second, that complete aberration of a double chain (as in 50) or 

replacement of the esters (as in 36) by a different atom did not show any improvement 

for interaction. However, it is not entirely clear why PRL-3 lacks phosphatase activity 

against compound 36 in this assay, given the similarity to the control compound. This 

might reflect that the nature of the lipid connection to the glycerol is of importance 

regarding the binding affinity of the compounds toward PRL-3. 
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Thus, the inositol modified analogues show increased activity compared to both the 

control substrate and the lipid-modified substrates with PRL-3. Therefore, these 

compounds can be the basis for prolific structure activity relationship studies with PRL-

3. 

 

3.2.2. Activity assays with other phosphatases against PI(4,5)P2 analogues 

 

As stated earlier, phosphoinositide metabolism is tightly regulated by a set of specific 

kinases responsible for synthesis of phosphoinositides, and phosphatases that temporally 

and spatially catalyze phosphoinositide dephosphorylation16. Of these phosphatases, 

those, apart from PRL-3, that are known to dephosphorylate PI(4,5)P2 were of specific 

interest for this study, as they would potentially hold an activity against the synthesized 

PI(4,5)P2 analogues.  

Figure 36 Results of the compounds activity towards PRL-3. PRL-3 (6 µM) was incubated with analogues at 
different concentrations and the assay conducted at 25 °C. Data are shown as mean ± SD. Statistics: *** p<0.0002; 
**** p<0.0001; ns – not significant. A) Compound 28 results. Tukey’s multiple comparison test: ns: Control 250 
μM vs 250 μM. B) compound 18 results: Tukey’s multiple comparison test: ns: 100uM vs 250uM; 200uM vs 
250uM; 250uM vs Control 250uM. Concentrations of 25 and 50μM were omitted because the data was not 
analyzable because it was too noisy. C) Compound 34 results: Tukey’s multiple comparison test: ns: 25uM vs 
50uM; 25uM vs 100uM; 25uM vs 200uM; 25uM vs Control 250uM; 50uM vs 100uM; 50uM vs 200uM; 50uM vs 
Control 250uM; 100uM vs 200uM; 100uM vs Control 250uM; 200uM vs 250uM; 200uM vs Control 250uM. D) 
Compound 12 results: Tukey’s multiple comparison test: only the displayed relationship is significant, all others 
are not. 
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Using the DEPOD database12, a literature review on PI(4,5)P2 dephosphorylating 

phosphatases was conducted, with careful consideration of the type of activity assays 

used in the studies, and the availability of a recombinant protein to test in in vitro activity 

assays. Three phosphatases, that represent different families and are commercially 

available as recombinant proteins, were chosen and purchased for assaying the analogues 

in activity assays. These phosphatases are INPP5E, which belongs to the large family of 

the 5-phosphatases that cleave the 5 position phosphate of several inositol phosphates 

and lipids including PI(4,5)P2130; OCRL, another inositol 5-phosphatase whose preferred 

substrate is PI(4,5)P2, and that has been shown to promote biogenesis of membrane-

trafficking intermediates through binding to this substrate131; and lastly, the SYNJ1 

(Synaptojanin 1) phosphatase, which has recently been shown to modulate membrane 

curvature through degradation of its substrate PI(4,5)P2132. The phosphatases were 

assayed like PRL-3 with the Enzchek assay19, against the control phosphoinositide 

PI(4,5)P2 and the synthesized analogues of it. An optimization of the activity assay was to 

be executed beforehand, as these proteins’ activities had not been measured with this 

specific assay type to our knowledge.  

The results of these assays, shown in Figure 37, provided substantial information on the 

specificity of the four phosphatases not only against PI(4,5)P2 itself, but also against the 

different PI(4,5)P2 analogues.  As can be seen from Figure 37, the compounds that show 

significant activity towards the three PI(4,5)P2–metabolizing phosphatases are the lipid-

modified PI(4,5)P2 analogues 34 and 36. Compound 50 did not show significant activity 

with any of the phosphatases, further corroborating that the double lipid chain is 

important for binding of the substrate. Similar to PRL-3, OCRL is also weakly active in 

vitro. Interestingly, the inositol ring-modified analogues did not show any activity with 

SYNJ1 and INPP5E.  This underlines the specificity of the inositol ring alkylated PI(4,5)P2 

analogues towards PRL-3, based on the hydrophobicity of its active site.  

SYNJ1 and INPP5E are known to possess a basic region near their active site. Besides the 

5-phosphatase domain, SYNJ1 bears an N-terminal Sac1 domain, which was later found 

to be a member of a new family of PI phosphatases133. The large C-terminal portion in 

SYNJ1 is a divergent proline-rich region (PRD), which contains a string of peptide motifs 

that mediate binding with a variety of endocytic proteins such as amphiphysin134. 

Furthermore, biochemical characterization showed that the 5 phosphatase domain 

dephosphorylates PI(4,5)P2 at the 5-position of the inositol ring15. INPP5E was also 

shown to have a PRD region preceding the inositol polyphosphate phosphatase catalytic 

domain, making the catalytic active site’s milieu largely basic135, which could explain why 
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it could not accommodate the hydrophobic analogues in its catalytic pocket.  On the other 

hand, OCRL does present a hydrophobic patch and a sequence motif defining the binding 

of the aliphatic moiety of the substrates to it. 

 

 

Figure 37 Activity of the 6 analogues with three different PI(4,5)P2-metabolizing phosphatases, with respect 
to the parent substrate (control) PI(4,5)P2. 

 

The PH domain of OCRL actually lacks the basic PI(4,5)P2 binding pocket present in the 

PH domain of PLCδ for instance136. One could then argue that this is why it might 

accommodate a hydrophobic analog like the inositol-modified PIP analogues. Still, these 

analogues show no significant activity with OCRL as opposed to the activity they show 

with PRL-3, and can thus still pose as specific substrates to the latter.  

In addition, the analogues which actually show activity with SYNJ1, INPP5E and OCRL 

show no significant activity with PRL-3, further underlining that the main element of 

specificity would be the alkylated, increasingly hydrophobic inositol ring. Thus, these 

analogues could act as interesting tool compounds which could be further modified, 

leading to further understanding of the specific mechanisms for substrate recognition of 

PRL-3 to eventually create a selective inhibitor from the gained knowledge.  
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3.3. Virtual screening tools to aid inhibitor search using PI(4,5)P2 

 

During this thesis work, an alternative approach for designing PRL-3 probes and 

eventually inhibitors was explored, using the PI(4,5)P2 molecule as a starting point for 

virtual screening of similar molecules. The Ultrafast Shape Recognition (USR) method54, 

which can identify similarly shaped compounds within the largest molecular databases 

was applied to the PI(4,5)P2 head-group in collaboration with Pedro Ballester, a former 

colleague from the EBI (Hinxton, UK), and the Chemical Biology Core Facility (EMBL, 

Heidelberg). Only the head-group of the template molecule was chosen and used because, 

firstly, the full molecule was too big for the computational system, and secondly, the 

phosphoinositide head is the part involved in enzymatic activity with the phosphatase 

(contains the cleavable phosphate group). 

 

3.3.1. USR screening based on PI(4,5)P2, data filtering, clustering and drug 

design 

 

A set of screened compounds whose USR score30 was high (>0.8), was obtained. A second 

screen was made, and further filtering, clustering and analysis were done to make a 

rational choice on which molecules can be sourced or synthesized for testing PRL- 3’s 

activity by biochemical screening. After obtaining a list of hits from a USR run, and with 

the help of Dr. Ulrike Uhrig from the Chemical Biology Core facility (EMBL, Heidelberg), 

483 compounds were exported as structures from the ZINC database, and duplicates 

(same compound, different vendor) were removed, which left us with 216 compounds. 

The assignment into families based on 2D similarities resulted in 42 clusters and 35 

singletons. Using computational chemistry methods (see chapter 5.1) to make a selection 

of the “best” representative of a cluster, a series of compounds were selected for synthesis 

and biochemical activity screening.  
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Figure 38 Overlay Sstructure of one of the identified hits from the USR run (compound in blue) with the 

original PI(4,5)P2 head group (compound in yellow). 

 

Figure 38 shows an example of a hit, which closely resembles the given lead molecule 

(PI(4,5)P2 head-group in this case). In addition, since it is known that the lipid tails are 

crucial for binding to PRL-3 in the original molecule120 (see chapter 3.2), the synthesis of 

these hits was planned to include attachment of the diC8 lipid chains before testing them 

on PRL-3. This necessitated devising a synthetic route for each of the finally selected 

target molecules. The potential target molecules are depicted in Figure 39. 

Although the screening was carried out using a database of commercially available 

compounds, it turned out that all the potent compounds found were only theoretically 

commercially available and thus required custom synthesis from the vendor. This was 

found to be prohibitively expensive. Unfortunately, many of the compounds imposed a 

tough or impossible synthetic challenge. Nevertheless, two target molecules were 

identified (Figure 39) to be synthesized. 
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Figure 39 Target compounds from the results of the PI(4,5)P2 similarity screening study. The areas shown in 

blue depict the location of the lipid tail attachment based on structural overlay. The crossed out molecules 

correspond to ruled out targets due to the synthetic challenges.  

 

3.3.2. Synthesis of a potential target molecule from the similarity screen 

 

With the collaboration of the Chemical Biology Core Facility at EMBL, Heidelberg, two 

target molecules were planned to be synthesized (Chapter 5.2.5). These were deemed to 

be the best hits according to computational overlay experiments done by Dr. Ulrike Uhrig 

(Figure 39, compound 61 and 62). Dr. Mascha Jaekel successfully synthesized and 

characterized the molecules in Figure 40. Compound 61 was synthetically more difficult, 

and gave the hydantoin (70, Figure 40-C, Chapter 5.2.5) as major side product. The 

successfully synthesized molecule 62 (Figure 40-A), in addition to its protected precursor 

molecule 69 and the major side product 70 of the other target (Figure 40-C) were tested 

in inhibition assays (DiFMUP)137 against PRL-3.  
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Figure 40 Synthesized molecules based on the USR screen, which were tested using inhibition assays against 

PRL-3 (chapter 3.3.3). A) Successfully synthesized target molecule. B) Precursor of A; with the carboxylic acid 

protected with a Bn group marked in red. C) Side product of the second target molecule (Chapter 5.2.5).  

 

3.3.3. Inhibition assays with the synthesized targets 

The abovementioned molecules were investigated for inhibition using 6,8-difluoro-4-

methylumbelliferyl phosphate (DiFMUP) as a PRL-3 substrate53 Judith Weyershaeuser, a 

PhD student in the Koehn group, performed the inhibition assays. The results of the 

inhibition assays are shown in Figure 41.  

Excitingly, the first compound, 62, which was the one successfully synthesized as an 

analogue of the hit in cluster 4 (Figures 39 and 40) showed inhibitory activity of PRL-3,  

 

albeit with high concentrations (compound concentrations of 600 µM and 300 µM 

showed full inhibition of PRL-3), with an IC50 of 185 uM. The two other compounds 69 

and 70 were not biologically active, and did not show any inhibition of PRL-3. The 

interesting observation here was the activity difference between compound 62 and its 

benzyl ester 69, showing that the negative charges of the carboxylic acid are required for 

activity. As an outlook, it would be interesting to conduct structural overlay studies, to 
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account whether this carboxylic acid overlaps with the 5-or 4-phosphate group, helping 

to understand if this entity binds similarly to PRL-3 as the phosphate in the PI(4,5)P2 

substrate.  

 

Obviously, more SAR studies should be undertaken on such a compound, if it is even 

reasonable to consider it as an “optimizable” lead given the high IC50. Nevertheless, in 

spite of the challenges regarding the synthesis of the compounds, the synthesis of only 

one hit molecule gave a molecule that inhibits PRL-3, which is a remarkable result and 

demonstrates the feasibility of this approach. The inhibitor has no structural similarity 

with any previously published inhibitors27. In addition, this inhibitor can pose as 

interesting analog for more lead design ideas for generating further PI(4,5)P2 

analogues/inhibitors; and it can potentially offer new valuable information for new 

templates in shape similarity in silico assays. Additionally, 62 could be overlayed, in future 

experiments, with the natural substrate to draw information on binding, by, for instance, 

identify which phosphate is implicated in the enzymatic reaction.  

Figure 41 Results of the DiFMUP assay with the three synthesized compounds. The compound is A), B) and 
C) belong to compounds 62, 69 and 70, respectively. A) compound 62, depicted in Figure 40-A, shows 
inhibition of PRL-3 activity with a mean IC50 value of 185 µM ± 22. B) and C) each show the inhibition 
measurement for compounds 69 (Figure 40-B) and compound 70 (Figure 40-C), with no inhibition of PRL-
3. 
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Chapter 4. Conclusion and Outlook 

 

4.1. Total synthesis of novel PI(4,5)P2 analogues 

 

In this work, I have successfully established the synthetic route for the analogues 12, 18, 

28, 34, 36 and 50, which are modified PI(4,5)P2 analogues, bearing chemical 

modifications either on the inositol ring or on the lipid tail moiety. Inferring the reasons 

for issues and solving the bottlenecks in the solution synthesis, particularly the selective 

alkylations on the free, less reactive OH groups of the inositol ring, was resolved 

satisfactorily. Furthermore, the route which was tested with the synthesis of 12 validated 

the synthetic approach that was established with the rest of the compounds.  

 

The overall consideration of the established synthetic routes shows that the developed 

approach for the different reaction steps can be used to synthesize more and varied 

modified compounds in the pursuit of enlarging the existing library of PI(4,5)P2 

analogues. Moreover, these synthetic pathways can set the basis for differently modified 

analogues, such as analogues bearing modifications at the phosphate group moiety. Such 

modifications can be sulfurization instead of oxidation of the phosphate groups, inserting 

methylene phosphonates as phosphate analogues, or replacing the phosphate groups by 

cyclic compounds which could mimic the electronegative environment (examples include 

tetronic acids and carboxylic acids). The larger the library of such analogues, the easier it 

would be to combine various modifications in order to design the best potent probe 

(inhibitor/modulator).  

 

Furthermore, I applied the solid phase strategy developed by my group in order to 

synthesize analogues bearing lipid tail modifications, which illuminates the possibility of 

using different synthetic strategies depending on the alteration nature of the compound. 

This offers back-up solutions to synthetic challenges whenever a compound proves to be 

challenging to synthesize.  

 

As an outlook, these compounds could be employed to broaden the understanding of 

conditions for binding behavior of PI(4,5)P2-binding and metabolizing proteins in the cell, 

thereby providing information about their efficacy in the treatment of diseases. 
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4.2. Biochemical application of unnatural PIP analogues as phosphatase 

substrates 

 

Effectively, the six analogues synthesized as part of this work were used for SAR studies 

with PRL-3, helping to understand the structure activity relationships between PRL-3, a 

metastasis promoting phosphatase, and its recently discovered natural substrate 

PI(4,5)P2. The inositol-modified analogues have shown significant biological activity with 

PRL-3, compared to the lipid tail-modified analogues and the control PI(4,5)P2-diC8 

compound. The most active compound was the trialkylated PI(4,5)P2 28, where all the 

free hydroxyl groups were blocked, underlying the importance of the hydrophobicity 

required for better binding at PRL-3’s remarkably hydrophobic active site. The 

phosphatase activity assays would still need to be optimized with such analogues 

nevertheless, as the combination of low-activity phosphatase, labile compounds and 

kinetics other than Michaelis-Menten makes it hard to extract very clear results.  

 

In addition, the same analogues were used for SAR studies with three other PI(4,5)P2–

metabolizing phosphatases: SYNJ1, OCRL and INPP5E, aiming at deciphering the 

differences in activity of the analogues towards different phosphatases, which share the 

same natural substrate. Interestingly, the analogues that showed increased activity with 

PRL-3 did not show any significant activity with the other phosphatases, and those that 

proved to be poor substrates for PRL-3 turned out to have more significant activity with 

the other phosphatases. This sets the grounds for specificity of the inositol-ring modified 

PI(4,5)P2 analogues toward PRL-3, as the other phosphatases can accommodate more 

hydrophilic substrates due to their generally basic catalytic active site (particularly SYNJ1 

and INPP5E). The results show that these analogues, beyond being valuable tools for 

studying the activity of a specific target, can also act as specific modulators to clarify 

activity variance amongst diverse targets.  

 

4.3. Computational power: a potential for inhibitor quest 

 

The interest in developing inhibitors for oncogenic phosphatases such as PRL-3 was a 

stimulating complement in the context of this project’s chemistry, and since 

computational methods were already accessible for screening small molecules which 

could mimic a known substrate or inhibitor, I thought of using the natural substrate as a 

template to search for similar small molecules which could help add more information to 

PRL-3’s SAR studies. Using PI(4,5)P2 as a query molecule in such computational software 
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was not an easy task though because of its relatively big structure. Still, the method was 

used on the head group by our collaborators (Pedro Ballester and the CBCF), which was 

known to be the direct interactor with PRL-3’s active site, and generated a list of hits, from 

which a target molecule was successfully synthesized, bearing the diC8 lipid chains as a 

required moiety for binding. This final molecule was shown to inhibit PRL-3, albeit with 

high concentrations. This was surprisingly positive, as it could support the scientific 

reasoning behind employing a computational-experimental system as such.  

 

In summary, this sets the ground for imminent exciting approaches that can combine 

predictive computational tools, total organic synthesis of natural products analogues, and 

medicinal chemistry-oriented SAR techniques to decipher, in the most effective way, the 

intricate mechanisms of oncogenic phosphatases, potentially making them “druggable” 

despite the challenges.  
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Chapter 5. Experimental  

5.1. General: chemicals and methods 

 

All the chemicals and anhydrous solvents used were obtained from commercial suppliers 

(Sigma-Aldrich, VWR, Acros Organics). The chiral starting material D-2,3-cyclohexylidene 

myo-inositol was purchased from SiChem GmbH, Bremen, Germany. The Wang resin 

(200-400 mesh, 0.88 mmol/g) was obtained from Bachem. The resin intermediates were 

dried properly on high vaccum before subjecting to the subsequent reactions.  

 

1H, 13C and 31P nuclear magnetic Resonance (NMR) spectra were recorded on a 400 MHz 

Bruker Avance DPX. Chemical shifts (δ) are measured in ppm and coupling constants (J) 

are given in Hz. (1H and 13C chemical shifts were referenced to the solvent peaks (7.26 and 

77.0 ppm for CDCl3, 4.84 and 49.05 for CD3OD). Splitting patterns are designated as 

follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, brs = broad singlet, 

dd = doublet of doublet and dt = doublet of triplet. 13C and 31P spectra were broadband 

hydrogen decoupled. For 1H-assignment COSY and HMQC spectra were recorded. 

Assignment abbreviations for chemical groups: Ph = phenyl, cy = cyclohexylidene, myo = 

myo-inositol, MEM = methoxyethoxymethyl. 

 

HPLC analysis and purifications were carried out on a Shimadzu High Performance Liquid 

Chromatograph/Mass Spectrometer LCMS-2010EV with a UV/Vis Photodiode array 

detector SPD-M20A Prominence. For the analytical and semipreparative injections the 

solvent delivery module LC-20AD was used. And for the preparative injections the LC 

pump unit LC-8A was used. The analytical column was a Macherey Nagel C18 EC 250/4.0 

NUCLEODUR 100-5 C18 ec. For semipreparative separations the column was a Macherey 

Nagel C18 VP 250/10 NUCLEODUR 110-5 C18 ec and for preparative separations a 

Macherey Nagel C18 VP 250/21 NUCLEODUR 100-5 C18 ec column was used. Mass 

spectra (ESI) were recorded using a Waters Micromass ZQ mass spectrometer.  

 

High resolution mass spectra were recorded using a MaXis II Q-Tof mass spectrometer 

(Bruker Daltonics) and at the University of Heidelberg with a Bruker ApexQe hybrid 9.4 

T FT-ICR. Masses are given as m/z (% intensity).  
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ESI+-MS spectra were measured with an Agilent Infinity 1290 UPLC-MS System. An 

Acquity UPLC BEH C18 column (1.7μm; 2.1x50mm) was used at 40°C with an injected 

volume of 3 μL, a flow rate of 1mL/min and a runtime of 3 min. The solvents used were 

A.) water plus 0.1% TFA and B.) MeCN with 0.1% TFA. 

 

The MS method used was single quadrupole electrospray ionization. 

HR-MS spectra were measured on a Bruker ICR Apex-Qe with the following method: ESI 

pos HPmix 200-1800. 

 

Optical rotations values were measured at the sodium D-line in a 10 cm cell with a 

Schmidt + Haensch Polartronic H532 polarimeter at room temperature.  

 

TLC analyses were conducted on Merck precoated silica gel (Merck, 60 F254) using UV 

light (254 nm) and the following staining solutions: 

a) p-Anisaldehyde (prepared by addition of 15 mL AcOH and 3.5 mL of p-

Anisaldehyde to a 350 mL ice cold EtOH, then cautiously adding 50 mL of conc. 

H2SO4 dropwise over 60 minutes. The unused portion was stored at 0°C). 

b) Phosphomolybdic acid (prepared by dissolving 10 g of phosphomolybdic acid or 

PMA in 100 mL of absolute EtOH).  

c) Potassium permanganate (prepared by dissolving 1.5 g of KMnO4, 10 g of K2CO3, 

and 1.25 mL of a 10% NaOH solution in 200 mL of water).  

 

Preparative column chromatography was performed using silica gel from Merck, (silica 

60, grain size 0.063-0.200 mm, 70-230 mesh ASTM) or silica gel from Sigma-Aldrich 

(silica 60, 230-400 mesh). Phosphoramidites were purified on deactivated silica. Prior to 

use the silica was treated with the eluent containing 10% of dimethylethylamine. For the 
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purification 1% of dimethylethylamine was added to the eluent. Melting points were 

determined on a Büchi B-540 and are uncorrected.  

 

Automated column chromatography was performed using an Isolera™ Prime, an 

advanced automated flash purification system by Biotage. Silica cartridges (Biotage® 

SNAP KP-Sil 10 g, 25 g, 50 g and 100 g), and silica samplets (Biotage® SNAP Samplet KP-

SIL 1 g, 3 g, and 10 g) were appropriately used depending on the amount of compound to 

purify.  

Expression and purification of recombinant proteins: Wild type PRL-3 was prepared 

as previously described19 yielding pure protein in all cases. BL21 DE3 cells expressing the 

recombinant WT PRL-3 were lysed by sonication in buffer A [50 mM Tris-HCl (pH 7.4) 

containing 500 mM NaCl, 20 mM imidazole, 1 mM dithiothreitol (DTT), and 0.5 mM 

protease inhibitor cocktail]. The protein was purified using a FPLC Histrap HP 1 mL 

column using an elution gradient from 20 to 500 mM imidazole in buffer A. The purified 

PRL-3 was dialyzed against 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 5 mM DTT, and 10% 

glycerol. The integrity of all proteins was confirmed by molecular weight determination 

by electrospray ionization mass spectroscopy (ESI-MS)19. The other 3 proteins (SYNJ1, 

OCRL and INPP5E) were all purchased as purified, recombinant proteins from Origene®. 

The over-expressed recombinant proteins were purified using OriGene’s 4C5-AntiDDK 

antibody (TA50011) affinity column. The proteins were shipped on dry ice, stored at - 80° 

C and divided in several aliquots to avoid repeated freeze/thaw cycles. The purity of each 

protein was examined by SDS-PAGE electrophoresis and coomassie staining. The proteins 

were received each in a vial (20 μg in a buffer solution containing 10% Glycerol, 100 mM 

Glycine, and 25 mM Tris-HCl, pH 7.3), at concentrations of 0.319; 0.174; and 0.409 μg/μL 

for SYNJ1, OCRL and INPP5E, respectively. The material safety data sheet (MSDS) of the 

purchased products is available online: 

http://www.origene.com/support/product/msds.mspx  

 

EnzChek assay: The release of phosphate from lipid substrates was monitored using a 

commercially available phosphatase assay kit, EnzChek, according to the manufacturer's 

instructions. The EnzChek phosphatase assay kit was purchased from Molecular Probes. 

The assay was conducted in 96-well plate format and phosphate release was monitored 

by absorbance at 360 nm over time. PRL-3 (6 μM) in buffer (50 mM Tris-HCl (pH 7.5), 150 

mM NaCl, 1 mM MgCl2, and 4 mM DTT) was incubated with 250 or 500 μM of 

http://www.origene.com/support/product/msds.mspx


 
94 

phosphoinositide substrates in 96-well plates. The assay was conducted at 37 °C with 

shaking in a Tecan Safire TM plate reader. Assays in the absence of enzyme were included 

in the 96-well plate setup in triplicate for all the substrates analyzed. The measurements 

in the absence of enzyme were averaged and subtracted from the data to account for 

nonspecific hydrolysis of the substrates and for background absorption. In all assays, 

measurements were in triplicate and the standard deviation of the measurements is 

represented as error bars. Data were plotted using GraphPad Prism (GraphPad Software, 

Version 5). The protein was expressed and purified as described before19. 

 

Ligand-based virtual screening and computational analysis: To use 3D similarity, a 

reasonable 3D conformer of the template molecule (PI(4,5)P2) is necessary. Here, the 

conformation of the headgroup of a PIP structure was selected from a co-crystallised 

protein-ligand complex which is deposited in the Protein database 

[www.ebi.ac.uk/pdbe/]: Crystal structure of PI3Kalpha in complex with PIP2-pdbcode 

4ovv. This headgroup shows a chair conformation. In order to mimic the attached 

lipophilic tail, an ethyl moeity was added on the 1-O-Phosphorus group (instead of the 

DiC8 glycerol-based lipid chains). The structures to be screened  were downloaded from 

the ZINC database (http://zinc.docking.org/substance/). USRCAT, a pharmacophoric 

extension of USR, was used to screen a single-conformer database with over 23 million 

purchasable molecules. 

 

UFSRAT is available as a web-server (http://opus.bch.ed.ac.uk/ufsrat/)and thus it 

screened a different multi-conformer database of commercially available molecules. 

UFSRAT returns the top 200 molecules in a couple of seconds. The similarity threshold 

(USR score) which was used was 0.7. in the end. 388 compounds were exported as 

structures from the ZINC database, and duplicates (same compound, different vendor) 

were removed, which left 129 compounds. The assignment into families based on 2D 

similarities resulted in 14 clusters and 4 singletons. In order to prioritize the most 

interesting hit compounds they were aligned with another 3D-similarity program which 

is called Surflex-Sim138. In this method, the compounds are aligned on the template and a 

visual analysis is possible. Based on such a visual analysis of the alignments and taking 

into consideration that the final compounds to be synthesized must also contain a big 

lipophilic group, a series of hit structures were selected. 

 

http://zinc.docking.org/substance/
http://opus.bch.ed.ac.uk/ufsrat/
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Using a manual chemical synthesis-driven method, a selection of the “best” representative 

of a cluster was made, and a series of compounds were selected for synthesis and 

biochemical activity screening. 

 

DiFMUP assay: Phosphatase inhibition was generally carried out using DiFMUP (6,8-

difluoro-4-methylumbelliferyl phosphate) as substrate. PRL -3 enzyme was used at 50 nM 

concentration in assay buffer (20 mM Tris-HCl 7.5; 150 mM NaCl; 10 mM DTT; 0,01% 

Triton-X) and incubated for at least 10 minutes prior to addition of substrate in order to 

ensure full activity due to the presence of high amounts of DTT in the buffer. Reactions 

were performed in 96-well plates from Perkin Elmer (OptiPlate, black). Inhibition kinetics 

were obtained with substrate concentrations at the respective Km value of the respective 

enzyme (for PRL-3 21 μM). For Km determination of phosphatases, reaction kinetics were 

monitored at 358/452 nm for 20 minutes on a multiwell plate reader after addition of 

substrate concentration series. Initial velocities of the obtained data curves were plotted 

against substrate concentration and data were fit for Michaelis-Menten parameters using 

GraphPad Prism software. The kinetics of inhibitor concentration series from 600 µM 

down to 1.17 µM were measured at 358/452 nm for 20 minutes on a multiwell plate 

reader after addition of substrate and corrected for the respective inhibitor baseline. IC50 

data were obtained by plotting initial velocities versus inhibitor concentration 

(logarithmic scale) using GraphPad Prism software. The positive control for this assay 

was the purchased Analog 3 with an IC50 of 31uM53. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
96 

5.2. Synthetic procedures and analytical data 

5.2.1. Solution synthesis of the lipid tail phosphoramidites 

 

Benzyl (3-phenylpropyl) diisopropylphosphoramidite (38) 

 

 

To a mixture of bis(diisopropylamino)chlorophosphine (1 g, 3.75 mmol) in 25 ml of 

diethyl ether was added diisopropylethylamine (1.96 ml, 11.2 mmol) at 0 °C, followed by 

dropwise addition of benzyl alcohol (311 µl, 3.00 mmol). After stirring for 30 min the 

solvent was evaporated and the residue treated with cyclohexane. The cyclohexane 

fraction was filtered through a filter canula into another schlenk flask and then 

evaporated. The residue was dried overnight in high vacuum. Then DIPA*DCI (411 mg, 

1.88 mmol) in 8 mL of dichloromethane was added and the resulting solution cooled to 0 

°C. Then, a solution of 3-phenyl-propanol (408 µl, 3.00 mmol) in 2 ml dichloromethane 

was added and the reaction mixture stirred for 40 min at 0 °C. After 31P NMR shows full 

conversion, the solvent was evaporated, the residue suspended in cyclohexane/NEtMe2 

(99:1) and subjected to inert column chromatography (cyclohexane/NEtMe2 (99:1)). 

Product fractions were combined and dried in high vacuum to yield the product as a pale 

yellow oil (145 mg, 33%).  

 

 

 

1H NMR (400 MHz, CDCl3) δ (ppm) = 7.30 – 7.09 (m, 10 H), 4.74 – 4.57 (m, 2 H), 3.68 – 

3.53 (m, 4H), 2.64 (pseudo t, 2H), 1.86 (m, 2 H), 1.49 (d, 1H), 1.35 (s, 1H), 1.13 (m, 12 H).   
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13C NMR (400 MHz, CDCl3) δ (ppm) = 142.1, 139.6 (d, J = 7 Hz), 128.5, 128.3, 128.2, 127.2, 

127.0, 125.7, 66.2 (d, J = 18 Hz), 62.9 (d, J = 18 Hz), 43.0 (d, J = 12 Hz), 33.0 (d, J = 8 Hz), 

32.3, 24.7 (d, J = 7 Hz). 

  

31P NMR (162 MHz, CDCl3): δ (ppm) = 146.6 (1P) 

 

1,2-di-O-heptylcarbamoyl-sn-3-benzyloxyglycerol (39) 

 

To (+)-benzyloxyglycerol (1.43 g, 4.42 mmol) in a round bottom flask was added 

heptylisocyanate (5.7 ml, 35.4 mmol) and trimethylamine (800 µL, 4.59 mmol) the 

reaction was stirred for 5 days at room temperature. The reaction was then concentrated 

and subjected to a column chromatography (n-heptane/ethylacetate = 68/32) to afford 

the product as a white solid (1.45 g, 71%). 

 

1H NMR (400 MHz, CDCl3) δ (ppm) = 7.34 – 7.14 (m, 5H, Ar-H), 5.14 – 4.91 (bs, 1H, NH), 

4.61 (s, 1H, H-2’), 4.47 (q, J = 12.1 Hz, 2H, H-1’), 4.25 – 4.11 (m, 2H, H-3’), 3.53 (d, J = 4.9 

Hz, 2H, H-1), 3.18 – 2.99 (m, 4H, H-2), 1.41 (q, J = 5.4 Hz, 2H, H-3), 1.21 (q, J = 4.3 Hz, 14H, 

H-3, H-4, H-5, H-6), 0.81 (t, J = 6.7 Hz, 6H, H-7). 

13C NMR (400 MHz, CDCl3) δ (ppm) = 156.1, 155.7, 137.9, 138.4, 127.7, 127.7, 77.2, 73.3, 

71.1, 68.7, 63.6, 41.1, 31.8, 29.9, 29.9, 29.0, 26.7, 22.6, 14.1  

HRMS (MALDI+): m/z neg.: [M+Na]+  calculated 487.3147, found 487.3142–0.9 ppm 

[α]D 20 = +6.42 (c 1 mg/mL, MeOH) 
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1,2-di-O-heptylcarbamoyl-sn-glycerol (40)  

 

A mixture of 39 (1.45 g, 3.12 mmol) and 20 wt% Pd(OH)2/C (66 mg, 0.09 mmol) in 40 ml 

methanol was stirred under H2 atmosphere for 12 h at room temperature. The reaction 

was filtered through a Celite pad and the filtrate was concentrated in vacuum to obtain 

40 as a white foam (1.12 g, 96%). 

 

1H NMR (400 MHz, CDCl3) δ (ppm) = 4.82 (p, J = 5.3 Hz, 3H, H-1’, H-2’), 4.21 (dt, J = 5.2 Hz, 

2H, H-3’), 3.62 (d, J = 5.0 Hz, 2H, NH), 3.10 (q, J = 6.7 Hz, 4H, H-1), 1.42 (p, J = 7.0 Hz, 4H, 

H-2), 1.31 – 1.07 (m, 16H, H-3,4,5,6), 0.93 – 0.73 (m, 6H, H-7). 

13C NMR (400 MHz, CDCl3) δ (ppm) = 156.6, 156.0, 77.2, 73.2, 62.6, 61.5, 41.2, 31.7, 29.9, 

28.9, 28.9, 26.7, 26.7, 22.6, 14.1 

HRMS(ESI+): m/z neg.: [M+Na]+  calculated 397.2676, found 397.2673 – 0.9 ppm 

[α]D 20 = (+) 4.55 (c = 1 mg/mL, MeOH)  
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(2R)-3-(((benzyloxy)(diisopropylamino)phosphanyl)oxy)propane-1,2-diyl 

bis(heptylcarbamate) (41) 

 

 

To a mixture of bis(diisopropylamino)chlorophosphine (1 g, 3.75 mmol) in 25 ml of 

diethyl ether was added diisopropylethylamine (1.96 ml, 11.2 mmol) at 0 °C, followed by 

dropwise addition of benzyl alcohol (311 µl, 3.00 mmol). After stirring for 30 min the 

solvent was evaporated and the residue treated with cyclohexane. The cyclohexane 

fraction was filtered through a filter canula into another schlenk flask and then 

evaporated. The residue was dried overnight in high vacuum. Then DIPA*DCI (411 mg, 

1.88 mmol) in 8 mL of dichloromethane was added and the resulting solution cooled to 0 

°C. Then, a solution of 1,2-di-O-heptylcarbamoyl-sn-glycerol (1.12 g, 3.0 mmol) in 2 ml 

dichloromethane was added and the reaction mixture stirred for 40 min at 0 °C. After 31P 

NMR shows full conversion, the solvent was evaporated, the residue suspended in 

cyclohexane/NEtMe2 (99:1) and subjected to inert column chromatography 

(cyclohexane/NEtMe2 (99:1)). Product fractions were combined and dried in high 

vacuum to yield the product as pale yellow oil (462 mg, 20%).   

 

1H NMR (400 MHz, CDCl3) δ (ppm) = 0.81 (t, 3H), 1.11 (t, 3H), 1.20 (br s, 8H), 1.35 (t, 6H), 

3.08 (m, 8H), 3.57 (m, 4H), 3.71 (m, 4H), 4.15 (m, 4H), 4.59 (m, 7 H), 4.98 (s, 2H), 7.17 – 

7.29 (m, 5H) 
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13C NMR (400 MHz, CDCl3) δ (ppm) = 156.1, 155.6, 139.5 (d, J = 8 Hz), 139.4 (d, J = 7 Hz), 

128.2, 127.3, 127.0, 71.8, 66.5, 66.3, 63.5, 62.1, 62.0, 43.1, 41.1, 31.8, 30.0, 29.0, 26.9, 26.7, 

24.6, 22.6, 14.1  

31P NMR (400 MHz, CDCl3) δ (ppm) = 148.42 and 148.48 (1P, diastereomers) 

(S)-3-(benzyloxy)propane-1,2-diyl(3S,3'S,5S,5'S,7S,7'S)-bis(adamantane-1-

carboxylate) (42) 

 

 

To a stirred solution of diol 1 (500 mg, 2.13mmol, 1 equiv.) in dry dichloromethane 

(10mL) under nitrogen was added 4-dimethylaminopyridine (33 mg, 0.27 mmol, 

catalytic). The resulting solution was cooled to 08C and dry pyridine (508 mg, 0.524mL, 

6.40 mmol, 3 equiv.) was added dropwise. After stirring for 30 min, adamantancarbonyl 

chloride (1.12 g, 5.88 mmol, 3 equiv.) was added dropwise. The reaction mixture was then 

warmed up to room temperature and heated at 658C overnight. The reaction was 

quenched, once no starting material remained by TLC, by addition of water (30mL) and 

the aqueous phase was extracted with dichloromethane (4 x 30 mL). The combined 

organic layers were washed with 2M aqueous hydrochloric acid (30mL) and the acid 

phase was back-extracted with dichloromethane (30mL). The combined organic layers 

werewashed with brine (35mL), dried overMgSO4, filtered, and the solvent was removed 

under vacuum. Flash chromatography (10–20%ethyl acetate/petroleum spirit v/v) 

afforded the diester 3 (983mg, 1.83mmol, 86%) as a colourless solid. 

 



 
101 

 

1H NMR (400 MHz, CDCl3) δ (ppm) = 7.42 – 7.16 (m, 5H, Ar-H), 5.24 – 5.19 (m, 1H, H-2’), 

4.54 (s, 2H, H-1’), 4.34 (dd, J = 3.8 Hz, 1H, H-3’), 4.15 (dd, J = 6.3 Hz, 1H, H-3’), 3.58 (dd, J = 

1.3 Hz, 2H, Ad-H), 2.02 (ddq, J = 3.2 Hz, 7H), 1.87 (dd, J = 2.9 Hz, 12H), 1.76 – 1.64 (m, 8H), 

1.31 – 1.21 (m, 4H), 0.95 – 0.84 (m, 2H). 

13C NMR (400 MHz, CDCl3) δ (ppm) = 177.3, 176.9, 159.5, 130.1, 129.5, 114.0, 73.1, 70.0, 

68.1, 62.7, 55.4, 40.9, 39.0, 39.0, 36.7, 36.7, 28.1, 28.1.  

[α]D 20 = (+) 7.38 (c = 0.5, CHCl3) 

HRMS (ESI+) m/z meas. 559.3030; calc. for C33H44O6 [M+Na]+ 559.3030. 

Characterization data of the compound was consistent with previously published work125 

 

(S)-3-hydroxypropane-1,2-diyl(3S,3'S,5S,5'S,7S,7'S)-bis(adamantane-1-

carboxylate) (43) 

 

 

A mixture of 42 (1265 mg, 2.498 mmol) and 20 wt% Pd(OH)2/C (87.7 mg, 0.124 mmol, 

0.05 eq) in 38 ml glacial acetic acid was stirred under H2 atmosphere for 12 h at room 

temperature. The reaction was filtered through a Celite pad and the filtrate was 

concentrated in vacuum to obtain 43 as a white foam (1000 mg, 96%). 
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Rf 0.26 (20% EtOAc:heptane). 

1H NMR (400 MHz, CDCl3) δ (ppm) = 5.07–5.03 (m, 5H, Ar-H), 4.30 (dd, J = 12 Hz, 5, 1H), 

4.20 (dd, J = 6 Hz, 2H, H-3’), 3.71 (d, J = 5 Hz, 2H, H-1’), 2.04–1.98 (m, 6H), 1.89 (dd, J = 3 

Hz, 12H), 1.76– 1.66 (m, 12H).  

13C NMR (400 MHz, CDCl3) δ (ppm) = 71.9, 61.8, 61.7, 40.8, 40.8, 38.8, 38.8, 36.4, 27.8. 

[α]D 20 = (-)1.82 (c 2.0, CHCl3) 

HRMS (ESI+) m/z meas. 439.2455; calc. for C25H36O5 [M+Na]+ 439.2455. 

Characterization data of the compound was consistent with previously published work125 

 

(2R)-3-(((benzyloxy)(diisopropylamino)phosphanyl)oxy)propane-1,2-diyl 

(3R,3'R,5R,5'R,7R,7'R)-bis(adamantane-1-carboxylate) (44) 

 

To a mixture of bis(diisopropylamino)chlorophosphine (800 mg, 3 mmol, 1 eq) in 25 ml 

of diethyl ether was added diisopropylethylamine (1.5 ml, 9 mmol, 3 eq) at 0 °C, followed 

by dropwise addition of benzyl alcohol (249.55 µl, 2.4 mmol, 0.8 eq). After stirring for 30 

min the solvent was evaporated and the residue treated with cyclohexane. The 

cyclohexane fraction was filtered through a filter canula into another schlenk flask and 

then evaporated. The residue was dried overnight in high vacuum. Then DIPA*DCI (328.5 
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mg, 1.5 mmol, 0.5 eq) in 8 mL of dichloromethane was added and the resulting solution 

cooled to 0 °C. Then, a solution of 43 (1000 mg, 2.4 mmol, 0.8 eq) in 2 ml dichloromethane 

was added and the reaction mixture stirred for 40 min at 0 °C. After 31P NMR shows full 

conversion, the solvent was evaporated, the residue suspended in cyclohexane/NEtMe2 

(99:1) and subjected to inert column chromatography (cyclohexane/NEtMe2 (99:1)). 

Product fractions were combined and dried in high vacuum to yield the product as pale 

yellow oil (20%). 

 

Rf 0.9 (30% EtOAc:heptane) 

1H NMR (400 MHz, CDCl3) δ (ppm) = 7.42–7.30 (m, 5H), 5.18–5.12 (m, 1H), 4.76–4.59 (m, 

2H), 4.35–4.30 (m, 1H), 4.16–4.10 (m, 1H), 3.82–3.60 (m, 4H), 2.00 (s, 6H), 1.88–1.86 (m, 

12H), 1.73–1.66 (m, 12H), 1.22–1.15 (m, 12H).  

13C NMR (400 MHz, CDCl3) δ (ppm) = 177.3, 176.9, 128.4, 127.4, 127.1, 70.8, 70.7, 65.6, 

65.5, 65.4, 62.6, 62.5, 62.1, 61.9, 46.4, 43.3, 43.2, 40.9, 39.0, 36.7, 28.1, 24.9, 24.8, 24.7, 

11.8.  

31P NMR (400 MHz, CDCl3) δ (ppm) = 149.6, 149.5.  

HRMS (ESI+) meas. m/z 676.3736; calc. for C38H56N1O6P [M+Na]+ 676.3738. 

Characterization data of the compound was consistent with previously published work125 
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(S)-3-(benzyloxy)propane-1,2-diyl dioctanoate (45) 

 

 To a stirred solution of diol (1000 mg, 5.48 mmol, 1 eq) in dry pyridine (50 mL) under 

nitrogen was added 4-dimethylaminopyridine (33 mg, 0.27 mmol, catalytic). After 

stirring for 30 min, di-octanoyl chloride (1800 mg g, 11.5 mmol, 2.1 equiv.) was added 

dropwise. The reaction mixture was left stirring overnight. The reaction was stopped, 

once no starting material remained by TLC, by removal of pyridine under reduced 

pressure, dissolving in EtOAc and citric acid, and extracting EtOAc (4 x 30 mL). The 

combined organic layers were washed with water, then brine, dried overMgSO4, filtered, 

and the solvent was removed under vacuum. Flash chromatography (10–20% 

EtOAc/heptane) afforded the diester 45 (74%) as a colourless solid. 

 

 

 

Characterization data of the compound was consistent with previously published work120 
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(S)-3-hydroxypropane-1,2-diyl dioctanoate (46) 

 

In a flask under Ar atmosphere 45 (1.278 g, 2.99 mmol, 1 eq) was dissolved in 35 mL 

of dry MeOH and the Pd(OH)2/C catalyst (100 mg, 0.147 mmol, 0.05 mol%) was 

added. Under stirring, the flask was flooded with H2- Gas (1 atm) and left to stir for 20 

h. After the reaction was finished, the reaction mixture was filtered through Celite and 

was washed three times with DCM. The solvent of the filtrate was evaporated under 

reduced pressure, which gave a crude with a quantitative yield of 1.022 g (2.96 mmol, 

99 %). The crude product was used without further purification. 

 

1H-NMR (400.13 MHz, CDCl3) δ (ppm) = 5.12 - 5.05 (m, 1H, H-2), 4.36 - 4.20 (m, 2H, H-1), 

3.77 - 3.67 (m, 2H, H-3), 2.48 - 2.28 (m, 4H, H-4), 1.95 (s, 1H, OH), 1.61 (dt, J = 17.5 Hz, 7.2 

Hz, 4H, H-5), 1.37 - 1.21 (m, 16H, H-6, H-7, H-8, H-9), 0.88 (t, J = 6.9 Hz, 6H, H-10).  

13C-NMR (100.92 MHz, CDCl3) δ (ppm) = 174.1, 173.8 (C=0, 2C), 72.5 (CH, 1C, C-2), 62.4 

(CH2, 1C, C-3), 61.9 (CH2, 1C, C-1), 34.6, 34.5 (CH2. 2C, C-4), 32.0, 29.4, 29.3 (CH2. 4C, C-

6, C-7), 25.3, 25.2 (CH2.2C, C- 5), 23.0, 22.9, 21.4 (CH2, 4C, C-8, C-9), 14.4 (CH3, 2C, C-10). 

HRMS (ESI+) m/z Meas. 345.3; Calc. for C19H37O5 [M+H]+ 345.3. 

Characterization data of the compound was consistent with previously published work120 
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(2R)-3-(((benzyloxy)(diisopropylamino)phosphanyl)oxy)propane-1,2-diyl 

dioctanoate (47) 

 

After suspending the starting material (528 mg, 1.97 mmol, 1 eq) in 15 mL of Et2O in 

a flask under Ar atmosphere and cooling the solution to 0°C, a mixture of BnOH (192 

mg, 1.77 mmol, 0.9 eq) and DIPEA (509 g, 3.94 mmol, 2.0 eq) in 10 mL Et2O was added 

dropwise. The reaction was finished after 30 min stirring as determined by 31P NMR. 

The solvent was evaporated and the precipitate dissolved in 8 mL cyclohexane. The 

solution was filtered under Ar and the solvent of the supernatant was evaporated 

before the product was dried under high vacuum. The yield of the crude product was 

85% (593 mg, 1.75 mmol) with an 85% purity according to 31P NMR. The crude 

product was used without further purification. In a flask under Ar atmosphere, the 

product (1.700 g, 5.027 mmol, 1.8 eq) was dissolved in 20 mL DCM and under stirring 

DCI*DIPA was added. The reaction solution was cooled to 0°C and 46, dissolved in 10 

mL DCM, was added dropwise. The reaction mixture was monitored by 31P NMR. After 

30 min the reaction was complete and the solvent was evaporated under reduced 

pressure. Purification of the crude was achieved with column chromatography (50 g 

SiO2, cyclohexane/Me2Net 95: 5). The product is a colorless liquid and could be 

isolated in a yield of 65%. 

 

31P-NMR (400.13 MHz, DCM locked on deuterated DMSO) δ (ppm) = 148.2 (s, 0.5P), 148.0 

(s, 0.5P). 
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Characterization data of the compound was consistent with previously published work120 

 

5.2.2. Solution synthesis of the alkylated inositol ring 

1-O-t-Butyldiphenylsilyl-2,3-O-cyclohexylidene-myo-inositol (2) 

 

To the solution of tetrol 1 (1 g, 3.84 mmol, 1 eq) and imidazole (587.5 mg, 8.64 mmol, 2.25 

equiv.) in pyridine (25 mL) at -10°C was added TBDPS-Cl (1.58g, 5.77mmol, 1.5 equiv.). 

The reaction mixture was stirred at RT for 24 hrs. After completion the reaction was 

subjected to aqueous work-up. Extraction with ethyl acetate gave the crude product, 

which was purified with column chromatography (4% MeOH in DCM) giving pure product 

(1.27g, 2.5 mmol, 66%) as white foam.  

 

 

1H-NMR (400 MHz, CDCl3) δ 7.79-7.76 (m, 2H), 7.73-7.71 (m, 2H), 7.45-7.26 (m, 6H), 3.91-

3.87 (m, 2H), 3.74-3.64 (m, 2H), 3.64-3.59 (m, 1H), 3.12 (t, J = 9.69 Hz, 1H), 3.03 (brs, 1H), 

2.88 (brs, 1H), 2.57 (brs, 1H), 1.75-1.66 (m, 5H), 1.52-1.40 (m, 5H), 1.32 (m, 1H), 1.10 (s, 

9H, 3xCH3-TBDPS) 

 

13C-NMR (100 MHz, CDCl3) δ 135.94, 133.7, 133.1, 130.11, 130.00, 127.66, 127.5, 78.28, 

77.33, 77.01, 76.70, 75.70, 72.82, 38.2, 34.93, 26.97, 25.00, 24.01, 23.75, 19.5 

 

[α]D 20 = -19.4° (c = 1.0 mg/mL in CH3Cl) 
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Characterization data of the compound was consistent with previously published work120 

 

1-O-t-Butyldiphenylsilyl-2,3-O-cyclohexylidene- 4,5-O-dibenzoyl-myo-inositol (3) 

 

The solution of triol 2 (2.6 g, 5.22 mmol, 1 equiv.) in pyridine (27 mL) was cooled down 

to -40ºC. A solution of BzCl (605 μL, 5.22 mmol, 1 equiv.) in CH3Cl (27 mL) was added 

dropwise to the mixture. The system was stirred at this temperature for 1h. The reaction 

was then quenched with citric acid and extracted with ethyl acetate. The product was 

purified on a Biotage column at a constant concentration of EtOAc (25%) in heptane.  

 

1H-NMR (400 MHz, CDCl3) δ 7.95-7.91 (d, 2H, Ar-H), 7.88-7.86 (d, 2H, Ar-H), 7.84- 7.82 (d, 

2H, Ar-H), 7.73-7.71 (d, 2H, Ar-H), 7.48-7.28 (m, 12H, Ar-H), 5.83 (t, 1H, CH-4-myo), 5.1-

5.05 (t, 1H, CH-5- myo), 4.24-4.20 (t, 1H, CH-6-myo), 4.15-4.10 (m, 2H, CH-2-myo, CH-3-

myo), 4.06-4.00 (dd, J = 8.7 Hz, 1H, CH-1-myo), 2.5 (bs, 1H, 6-OH), 2.03-1.25 (m, 10H, cy), 

1.15 (s, 9H, CH3-TBDPS). 

13C NMR (101 MHz, CDCl3) δ 166.42, 165.56, 136.06, 135.91, 134.81, 133.29, 133.15, 

133.03, 132.94, 130.11, 129.84, 129.62, 129.34, 128.28, 128.20, 127.94, 111.23, 77.35, 
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77.04, 76.72, 75.75, 75.35, 74.43, 73.79, 72.18, 37.46, 34.63, 31.89, 29.03, 27.01, 25.07, 

23.79, 19.46, 14.12. 

Characterization data of the compound was consistent with previously published work120 

1-O-t-Butyldiphenylsilyl-2,3-O-cyclohexylidene- 4,6-O-dibenzoyl-5-O-methyl-myo-

inositol (4) 

 

 

 

To a solution of compound 3 (300 mg, 0.424 mmol) in anhydrous DME (12 ml), NaH (10 

eq, 4.24 mmol, 169.8 mg) was carefully added, then the reaction was treated with methyl 

iodide (131.97 µl, 5 eq, 2.12 mmol). The reaction was allowed to stir at room temperature 

for 2.5 hours, during which monitoring for the product using UPLCMS was undergone. 

The product was purified by flash chromatography in a 10 to 90% EtOAc gradient in 

Heptane.   

To allow better and more simplified structure elucidation NMR studies of the 

abovementioned compound, a cleavage of the cyclohexylidene ketal was undergone first. 

2D NMR studies were attempted on compound 4, but the cyclohexylidene ketal protons 

have crowded the spectra in a way that it was very difficult to analyze the other protons 

(data not shown). The product was purified by flash chromatography in a 23% to 32% 

EtOAc gradient in Heptane (gradient optimized according to Rfs). 
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Compound 4 (74 mg) was dissolved in a solution of 65% formic acid in methanol, and the 

reaction was allowed to stir for 72 hours. It was quenched with NaHCO3 and extracted 

with EtOAc. The product was purified by flash column chromatography using an EtOAc 

gradient of 23% to 32% in heptane. The product was monitored on UPLCMS with the 

corrected mass.  

 

1H-NMR (400 MHz, CDCl3) δ 8.03-8.01(m, 2H, Ar-H), 7.94-7.93 (m, 2H, Ar-H), 7.66-7.64 

(m, 2H, Ar-H), 7.55-7.53 (m, 4H, Ar-H), 7.43-7.31 (m, 8H, Ar-H), 7.25-7.19 (m, 2H, Ar-H), 

5.84 (t, J = 9.52 Hz, 1H, CH-4-myo), 5.61 (t, J = 9.68 Hz, 1H, CH-6-myo), 3.94-3.89 (m, 2H, 

CH-2-myo, CH-3-myo), 3.53-3.43 (m, 2H, CH-1-myo, CH-5-myo), 3.31 (s, 3H, methyl), 2.78 

(m, 1H, OH),2.75 (m, 1H, OH), 0.96 (s, 9H, CH3-TBDPS). 

13C-NMR (100 MHz, CDCl3) δ 166.9, 165.9, 135.8, 135.6, 133.4, 133.1, 133.0, 132.13, 130.3, 

130.1, 129.83, 129.7, 129.2, 128.37, 128.25, 128.18, 127.9, 97.8, 78.2, 74.5, 74.1, 72.3, 

71.8, 71.0, 70.6, 67.6, 58.7, 27.0, 26.9, 19.11 

HRMS (ESI+): m/z meas. 663.2400; calc. for C39H39O8Si [M+Na]+ = 663.2409; 1.3 ppm 

[α]D 20 = only racemate is available 
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1-O-t-Butyldiphenylsilyl-2,3-O-cyclohexylidene- 4,5-O-dibenzoyl-6-O-methyl-myo-

inositol (6) 

 

A solution of compound 3 (750 mg, 1.06 mmol) in anhydrous DCM (20 ml) was cooled 

down to 0° C. Proton Sponge (1249.4 mg, 5.83 mmol, 5.5 eq) was added, followed by 

trimethyl oxonium tetrafluoroborate (827.6 mg, 5.6 mmol). The reaction was left stirring 

at RT overnight. Monitoring for the product was done using TLC (3:7 EtOAc: Heptane) and 

UPLCMS. The product was purified by flash chromatography in an isocratic solvent 

system (54% EtOAc in Heptane).  

 

1H-NMR (400 MHz, CDCl3) δ 7.98-7.93 (m, 6H, Ar-H), 7.88-7.77 (m, 2H, Ar-H), 7.54- 7.28 

(m, 12H, Ar-H), 5.98 (t, 1H, CH-4-myo), 5.22-5.18 (dd, J = 9.7 Hz, 1H, CH- 5- myo), 4.35-

4.32 (dd, J = 7.8 Hz, 1H, CH-1-myo), 4.15-4.12 (m, 2H, CH-6-myo, CH-3- myo), 4.01 (brs, 

1H, CH-2-myo), 3.27 (s, 3H, H-CH3), 1.99 (m, 1H, cy), 1.84 (m, 1H, cy), 1.74 (m, 2H, cy), 

1.52-1.31 (m, 6H, cy), 1.20 (s, 9H, CH3-TBDPS) 
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13C-NMR (100 MHz, CDCl3) δ 165.8, 165.5, 136.1, 135.8, 133.5, 133.3, 133.0, 132.8, 129.9, 

129.8, 129.7, 129.6, 128.2, 128.1, 127.8, 127.5, 96.7, 75.1, 74.8, 74.2, 71.2, 67.4, 58.8, 37.2, 

34.3, 27.0, 26.9, 25.0, 23.9, 23.8, 19.3 

Rf: 0.63 (in 1:1 heptane:EtOAc) 

[α]D 20 = (-) 7.25 (c = 5mg/mL in CHCl3) 

HRMS (ESI)+ m/z meas. 743.3013; calc. for C43H48O8Si [M+Na]+ 743.3011 -0.4 ppm. 

 (1R,2R,3R,4R,5R,6S)-4-((tert-butyldiphenylsilyl)oxy)-5,6-dihydroxy-3-

methoxycyclohexane-1,2-diyl dibenzoate (7) - Cleavage of the cyclohexylidene 

acetal in compound 6 

 

638 mg of crude compound (6) were dissolved in 10 ml of a TFA solution in water (98:2 

TFA:H2O) and the reaction was stirred (swirled) for 10 minutes. Minute amounts of 

ethylene glycol were added as a scavenger to prevent the starting material from 

reforming upon evaporation of TFA. The reaction was monitored using TLC (1:1 

Heptane:EtOAc) and UPLCMS. When the reaction was deemed finished, TFA was then 

evaporated, then co-evaporated with ethanol (4 times) to get rid of the acid as much as 

possible. The crude was dissolved in NaCO3 to quench any residual acid, and extracted 

with DCM (4 times). The organic layers, after being inspected for the presence of the 

product as opposed to the aqueous layers, were combined, washed with water then brine, 

then dried over sodium sulfate and filtered. The product was purified through flash 

chromatography in a 1:1 EtOAc/heptane solvent system.  
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1H-NMR (400 MHz, CDCl3) δ 7.90- 7.79 (dd, 4H, Ar-H), 7.69- 7.62 (dd, 4H, Ar-H), 7.44-7.22 

(m, 12H, Ar-H), 5.58-5.53 (t, J = 9.9 Hz, 1H, myo-H), 5.32- 5.27 (t, J= 9.7 Hz, 1H, myo-H), 

4.41- 4.39 (m, 1H, myo-H), 3.89-3.83 (m, 1H, myo-H), 3.65 (t, J = 2.8 Hz, 1H, myo-H), 3.44 

(dd, J = 9.9 Hz, 2.9 Hz, 1H, myo-H), 3.35 (s, 3H, methoxy), 1.05 (s, 9H, (CH3)3). 

13C-NMR (100 MHz, CDCl3) δ 167.08, 165.72, 135.98, 135.69, 133.47, 133.18, 133.15, 

132.51, 130.22, 130.03, 129.83, 129.80, 129.69, 129.50, 129.24, 128.39, 128.27, 128.12, 

128.01, 127.78, 81.37, 77.36, 77.24, 77.04, 76.72, 73.87, 73.61, 72.99, 72.45, 70.75, 69.12, 

64.14, 61.28, 60.16, 27.02, 19.41. 

[α]D 20 = - 8.7745455 

HRMS (ESI)+ m/z meas. 663.2391; calc. for C37H40O8Si [M+Na]+ 663.2385 -0.9 ppm. 

1-O-t-Butyldiphenylsilyl-2, 3-O-cyclohexylidene-6-O-methyl-myo-inositol (8) 

 

Compound 7 (156.5 mg, 0.217 mmol) was dissolved in anhydrous THF (10 mL), and the 

reaction mixture was allowed to stir at 0°C. NaOMe (2.5 eq) was added dropwise, and the 

reaction was taken up to room temperature 5 minutes later. 30 minutes later, the reaction 

was stopped, quenched with citric acid, and extracted with EtOAc 4 times. The aqueous 

layers were washed with water, brine, dried over sodium sulfate and filtered. The crude 
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was purified on flash chromatography in a 36% to 99% EtOAc gradient in DCM, with a 

yield of 75%.  

 

 

 

1H-NMR (400 MHz, CDCl3) δ (ppm) 7.78 (t, J = 7.6 Hz, 4H, Ar-H), 7.47 - 7.32 (m, 6H, Ar-H), 

3.94 (md, J = 8.7 Hz, 1H, myo-H-1), 3.72 (t, J = 7.9 Hz, 2H, myo-H-2, myo-H-4), 3.65 (d, J = 

6.3 Hz, 1H, myo-H-3), 3.62 (s, 3H, H-13), 3.44 (t, J = 8.7 Hz, 1H, myo-H-6), 3.17 (t, J = 9.4 

Hz, 1H, myo-H-5), 2.36 (br.s, 2H, OH), 1.80 - 1.63 (m, 4H, H-8, H-12), 1.56 - 1.43 (m, 3H, H-

9, H-11), 1.36 - 1.26 (m, 3H, H-10, H-11), 1.12 (s, 9H, C(CH3)3). 

13C-NMR (100 MHz, CDCl3) δ (ppm) 136.4, 136.3 (CH, 4C, Ar-C), 134.5, 133.7 (Cq, 2C, Ar-

C), 130.2, 128.1, 127.9 (CH, 6C, Ar-C), 111.3 (Cq, 1C, C-7), 83.3 (CH, 1C, myo-C-6), 78.3 (CH, 

1C, myo-C-3), 76.0 (CH, 1C, myo-C-2), 75.8 (CH, 1C, myo-C-4), 73.8 (CH, 1C, myo-C-5), 72.5 

(CH, 1C, myo-C-1), 61.6 (CH3, 1C, C-13), 38. 5 (CH2, 1C, C-12), 35.0 (CH2, 1C, C-8), 27.4 (CH3, 

3C, C(CH3)3), 25.4 (CH2, 1C, C-10), 24.4 (CH2, 1C, C-11), 24.1 (CH2, 1C, C-9), 19.7 (Cq, 1C, 

C(CH3)3). 

[α]D 20 = - 11.7892 

HRMS (ESI)+ m/z meas. 535.2489; calc. for C29H40O6Si [M+Na]+ 535.2486 -0.5 ppm 
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1-O-t-Butyldiphenylsilyl-2,3-O-cycloxexylidene-4,5-di-O-dibenzylphosphoryl-6-O-

methyl-myo-inositol 

 

Compound 8 (230mg, 0.45 mmol) was dissolved in anhydrous DCM (20 ml and allowed 

to stir for a few minutes before adding 1H-tetrazole (0.45 M in ACN, 6mL, 2.7 mmol, 6 eq). 

The phosphoramidite (464.8 mg, 1.34 mmol, 3 eq) was immediately added in anhydrous 

acetonitrile (2.2 ml). The reaction was allowed to stir for 2 hours. The reaction was cooled 

down to -40 ° C, followed by the addition of mcpba (77% w/w, 7.6 mmol, 1255µL) and 

was allowed to stir for one more hour.  

The reaction was quenched with NaCO3- and extracted with DCM (200 ml). The organic 

layer was washed three more times with NaCO3- , then with water and brine, and 

condensed to give oil (pale color). The crude was purified using a 100 g silica biotage 

column, in a gradient from 56% to 60% EtOAc in heptane. Sample loading on the column 

was done twice, as the total mass of the crude (1267 mg) had to be divided in two for 

column loading limit (with respect to the Rfs differences on TLC). 
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1H-NMR (400 MHz, CDCl3) δ 7.81 (d, J = 8.0 Hz, 2H, Ar-H), 7.75 (d, J = 8.0 Hz, 2H, Ar-H), 

7.39 - 7.18 (m, 26H, Ar-H), 5.10 - 4.95 (m, 9H, CH2-Ar, myo-H-4), 4.32 (td, J = 9.2 Hz, 1H, 

myo-H-5), 4.12 - 4.05 (m, 1H, myo-H-1), 4.02 - 3.93 (m, 2H, myo-H-2, myo-H-3), 3.56 - 3.49 

(m, 1H, myo-H-6), 3.20 (s, 3H, H-13), 1.88 - 1.59 (m, 7H, H-8, H-9, H-11, H-12), 1.52 - 1.40 

(m, 3H, H-9, H-10), 1.11 (s, 9H, C(CH3)3). 

13C-NMR (100 MHz, CDCl3) δ 136.5 (CH, 4C, Ar-C) 133.6, 133.6 (Cq, 4C, Ar-C), 130.3, 130.1, 

128.8, 128.8, 128.7, 128.7, 128.7, 128.6, 128.4, 128.4, 128.3, 128.2, 128.2, 128.1, 128.1, 

127.9, 127.8 (CH, 26C, Ar-C), 111.4 (Cq, 1 C, C-7), 82.4 (CH, 1C, myo-C-6), 80.6 (CH, 1C, 

myo-C-4), 79.6 (CH, 1C, myo-C-5), 76.1 (CH, 1C, myo-C-3), 74.8 (CH, 1C, myo-C-2), 69.8 (CH, 

1C, myo-C-1), 69.6, 69.51 (CH2, 4C, CH2-Ar), 60.2 (CH3, 1C, C-13) 37.2, 34.5, 28.0 (CH2, 3C, 

C-12, C-8, C-10) 27.4 (CH3, 3C, C(CH3)3), 25.4, 24.1 (CH2, 2C, C-9, C-11), 19.7 (Cq, 1C, 

C(CH3)3). 

31P-NMR (400.13 MHz, CDCl3) δ (ppm) = - 1.6 (s, 1P), -2.04 (s, 1P). 

[α]D 20 = (-) 2.54 (c = 7 mg/mL in CHCl3) 

HRMS (ESI)+ m/z meas. 1055.3694; calc. for C57H66O12P2Si [M+Na]+ 1055.3691 -0.3 

ppm 

 

2,3-O-cycloxexylidene-4,5-di-O-dibenzylphosphoryl-6-O-methyl-myo-inositol (10) 

 

To a solution of 9 (421 mg, 0.4 mmol) in THF (anhydrous, 15 ml) was added a solution of 

TBAF (707uL, 1.9 eq) in 0.8 ml THF (anhydrous) at 0°C. The reaction was left stirring at 

room temperature. The reaction mixture turned slightly yellow upon addition of the TBAF 

reagent. The reaction was stopped after 2 hours, worked up with NaCO3
- and extracted 
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with Ethyl Acetate. The crude was purified using flash column chromatography at 

gradient of 80% to 100% EtOAc in Heptane.  

 

1H NMR (400 MHz, CDCl3) δ 7.33 - 7.29 (m, 8H, Ar-H), 7.27 - 7.22 (m, 12H, Ar-H), 5.13 - 

4.99 (m, 8H, CH2-Ar), 4.94 (dd, J = 8.5 Hz, 1H, myo-H-4), 4.50 - 4.44 (m, 1H, myo-H-5), 4.42 

(dd, J = 6.5 Hz, 1H, myo-H-2), 4.26 (t, J = 7.0 Hz, 1H, myo-H-3), 3.98 (dd, J = 6.9 Hz, 1H, myo-

H-1), 3.75 - 3.70 (m, 1H, myo-H-6), 3.44 (s, 3H, H-7), 2.54 (br. s, 1H, OH), 1.77 - 1.71 (m, 

2H, H-12), 1.66 - 1.53 (m, 6H, H-11, H-9, H-8), 1.37 - 1.31 (m, 2H, H-10). 

13C NMR (101 MHz, CDCl3) δ (ppm) = 136.3, 136.2 (Cq, 4C, Ar-C), 128.8, 128.8, 128.7, 

128.6, 128.6, 128.6, 128.3, 128.3, 128.2, 128.1 (CH, 20C, Ar-C), 111.7 (Cq, 1C, C-7), 82.0 

(CH, 1C, myo-C-6), 80.1 (CH, 1C, myo-C-4), 79.3 (CH, 1C, myo-C-5), 76.2 (CH, 1C, myo-C-3), 

74.4 (CH, 1C, myo-C-2), 69.9, 69.7, 69.7, 69.7, 69.6, 69.6 (CH2, 4C, CH2-Ar), 68.5 (CH, 1C, 

myo-C-1), 59.9 (CH3, 1C, C-13), 37.0 (CH2, 1C, C-12), 34.7, 25.3, 24.2 (CH2, 3C, C-11, C-9, 

C-8), 23.9 (CH2, 1C, C-10). 

31P-NMR (400.13 MHz, CDCl3): δ - 1.84 (s, 1P), - 2.08 (s, 1P). 

[α]D 20 = (-) 3.2 (c = 8 mg/mL in CHCl3) 

HRMS (ESI)+ m/z meas. 817.2512; calc. for C41H48O12P2 [M+Na]+ 817.2513. 
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(3aR,4S,5R,6R,7R,7aS)-4-((tert-butyldiphenylsilyl)oxy)-5-

ethoxyhexahydrospiro[benzo[d][1,3]dioxole-2,1'-cyclohexane]-6,7-diyl 

dibenzoate (13) 

 

A solution of compound 3 (325 mg, 0.46 mmol) in anhydrous DCM (15 ml) was cooled 

down to 0° C. Proton Sponge (985.826 mg, 4.6 mmol, 10 eq) was added, followed by 

triethyl oxonium tetrafluoroborate (873.9 mg, 4.6 mmol, 10 eq). The reaction was left 

stirring at RT overnight. Monitoring for the product was done using TLC (3:7 EtOAc: 

Heptane) and UPLCMS. The product was purified by flash chromatography in an isocratic 

solvent system (54% EtOAc in Heptane). 

 

1H-NMR (400.13 MHz, CDCl3) δ (ppm) = 7.92 (t, J = 6.7 Hz, 4H, Ar-H), 7.85 (d, J = 6.7 Hz, 

2H, Ar-H), 7.75 (d, J = 6.8 Hz, 2H, Ar-H), 7.54 - 7.27 (m, 12H, Ar-H), 5.95 (t, J = 9.1 Hz, 1H, 

myo-H-4), 5.15 (md, J = 10.1 Hz, 1H, myo-H-5), 4.24 (md, J = 7.3 Hz, 1H, myo-H-1), 4.18 - 

4.13 (m, 1H, myo-H-3), 4.07 (t, J = 4.2 Hz, 1H, myo-H-2), 3.64 (t, J = 5.9 Hz, 1H, myo-H-6), 

3.56 (q, J = 6.9 Hz, 2H, H-13), 2.04 - 1.96 (m, 1H, H-12), 1.88 - 1.78 (m, 1H, H-12), 1.72 (t, J 
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= 8.1 Hz, 2H, H-8), 1.51 (m, 4H, H-9/11), 1.43 - 1.30 (m, 2H, H-10), 1.16 (s, 9H, C(CH3)3), 

0.97 (t, J = 7.0 Hz, 3H, H-14). 

13C-NMR (100.92 MHz, CDCl3) δ (ppm) = 166.1, 166.0 (C=O, 2C), 136.6, 136.4 (CH, 4C, Ar-

C), 134.0, 133.9 (Cq, 2C, Ar-C), 133.3, 133.2, 130.2, 130.1 (CH, 4C, Ar-C), 130.1, 130.1 (CH, 

4C, Ar-C), 128.6, 128.5, 128.04, 127.9 (CH, 8C, Ar-C), 111.3 (Cq, 1C, C-7), 80.1 (CH, 1C, myo-

C-6), 75.5 (CH, 1C, myo-C-3), 75.2 (CH, 1C, myo-C-2), 74.6 (CH, 2C, myo-C-5, myo-C-4), 71.2 

(CH, 1C, myo-C-1), 68.2 (CH2, 1C, C-13), 37.6 (CH2, 1C, C-12), 34.8 (CH2, 1C, C-8), 27.4 (CH3, 

3C, C(CH3)3)), 25.5 (CH2, 1C, C-10), 24.4 (CH2, 1C, C-11), 24.2 (CH2, 1C, C-9), 19.7 (Cq, 1C, 

C(CH3)3), 15.7 (CH3, 1C, C-14). 

[α]D 20 = (-) 7.36 (c= 3 mg/mL in CHCl3) 

HRMS (ESI)+ m/z meas. 757.3171; calc. for C44H50O8Si [M+Na]+ 757.3167 -0.5 ppm. 

 

(3aR,4S,5R,6S,7S,7aR)-4-((tert-butyldiphenylsilyl)oxy)-5-

ethoxyhexahydrospiro[benzo[d][1,3]dioxole-2,1'-cyclohexane]-6,7-diol (14) 

 

The solution of compound 13 (225 mg, 0.306 mmol, 1 eq) in dry THF (10 mL) was cooled 

down to 0°C and under stirring was treated, dropwise, with a 30% solution of NaOMe in 

MeOH (175 μL, 0.766 mmol, 2.5 eq). The reaction mixture was slowly warmed to RT while 

stirring for 1 h. The reaction solution was quenched with 5 mL of a conc. solution of citric 

acid in MeOH and 3 mL water. The aqueous phase was washed three times with EtOAc 

and the combined organic phases first dried with NaSO4, before the solvent was 

evaporated. The product was purified Biotage column in a gradient of 25% to 100% 

EtOAc in heptane. The product is a white solid and was isolated in 99% yield. 
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Rf (1:1 DCM:EtOAc) = 0.43 

1H-NMR (400.13 MHz, CDCl3) δ (ppm) = 7.81 - 7.75 (m, 4H, Ar-H), 7.45 - 7.32 (m, 6H, Ar-

H), 4.01 - 3.93 (m, 2H, myo-H-1, H-13), 3.76 - 3.67 (m, 3H, myo-H-2, myo-H-4, H-13), 3.64 

(dd, J = 5.2 Hz, 1H, myo-H-3), 3.53 (t, J = 8.8 Hz, 1H, myo-H-6), 3.17 (dd, J = 9.0 Hz, 1H, myo-

H-5), 1.79 - 1.63 (m, 4H, H-8, H-12), 1.55 - 1.40 (m, 3H, H-9, H-11), 1.34 - 1.26 (m, 3H, H-

10, H-11), 1.21 (t, J = 7.0 Hz, 3H, H-14), 1.10 (s, 9H, C(CH3)3). 

13C-NMR (100.92 MHz, CDCl3) δ (ppm) = 136.4, 136.3 (CH, 4C, Ar-C), 134.5, 133.7 (Cq, 2C, 

Ar-C), 130.2, 130.2, 128.0, 127.9 (CH, 6C, Ar-C), 110.7 (Cq, 1C, C-7), 81.4 (CH, 1C, myo-C-

6), 78.3 (CH, 1C, myo-C-3), 75.9 (CH, 1C, myo-C-2), 75.8 (CH, 1C, myo-C-4), 73.6 (CH, 1C, 

myo-C-5), 72.7 (CH, 1C, myo-C-1), 69.2 (CH3, 1C, C-13), 38.4 (CH2, 1C, C-12), 34.9 (CH2, 1C, 

C-8), 27.4 (CH3, 3C, C(CH3)3), 25.4 (CH2, 1C, C-10), 24.4 (CH2, 1C, C-11), 24.1 (CH2, 1C, C-

9), 19.7 (Cq, 1C, C(CH3)3), 15.9 (CH3, 1C, C-14). 

[α]D 20 = (-) -5.1133333 (c = 3 mg/mL in CHCl3) 

HRMS (ESI)+ m/z meas. 549.2645; calc. for C30H42O6Si [M+Na]+ 549.2643 -0.4 ppm 
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Tetrabenzyl((3aR,4S,5S,6R,7R,7aS)-4-((tert-butyldiphenylsilyl)oxy)-5-

ethoxyhexahydrospiro[benzo[d][1,3]dioxole-2,1'-cyclohexane]-6,7-diyl) 

bis(phosphate) (15) 

 

 

Compound 14 (150 mg, 0.285 mmol) was dissolved in anhydrous DCM (6 mL) and 

allowed to stir for a few minutes before adding 1H-tetrazole (0.45 M in ACN, 3.8 mL, 1.71 

mmol, 6 eq). The reaction was brought down to 0 °C before the phosphoramidite (265.82 

mg, 0.769 mmol, 2.7 eq) was immediately added in anhydrous DCM (2 ml). The reaction 

was allowed to stir for 3 hours at RT. After product formation, monitored by TLC 

measurements, the reaction was cooled down to -40 ° C, followed by the addition of 

mcpba (77% w/w, 1.14 mmol, 255.4µL, 4eq) and was allowed to stir for one more hour. 

After being deemed finished, the reaction was quenched with NaCO3- and extracted with 

DCM (200 ml). The organic layer was washed three more times with NaCO3- , then with 

water and brine, and condensed to give oil (pale color). The crude was purified using a 50 

g silica Biotage column, in an isocratic gradient of 23% EtOAc in heptane. The product 

was obtained as a colorless oil with a yield of 67%. 
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1H-NMR (400.13 MHz, CDCl3) δ (ppm) = 7.82 (d, J = 7.3 Hz, 2H, Ar-H), 7.76 (d, J = 7.3 Hz, 

2H, Ar-H), 7.37 - 7.21 (m, 26H, Ar-H), 5.10 - 4.95 (m, 9H, CH2-Ar, myo-H-4), 4.35 (td, J = 

9.1, Hz, 1H, myo-H-5), 4.13 (s, 1H, myo-H-1), 4.07 (s, 2H, myo-H-2, myo-H-3), 3.58 (t, J = 

4.7 Hz, 1H, myo-H-6), 3.35 (s, 1H, H-13), 3.26 (s, 1H, H-13), 1.90 - 1.79 (m, 2H, H-12), 1.75 

- 1.57 (m, 3H, H-8, H-10), 1.53 - 1.35 (m, 5H, H-9, H-10, H-11), 1.11 (s, 9H, C(CH3)3), 0.90 

(t, J = 6.8 Hz, 3H, H-14). 

13C-NMR (100.92 MHz, CDCl3) δ (ppm) = 136.6, 136.6 (CH, 4C, Ar-C), 133.8, 133.8 (Cq, 4C, 

Ar-C), 130.2, 130.1, 128.9, 128.8, 128.7, 128.7, 128.7, 128.6, 128.4, 128.4, 128.3, 128.2, 

128.1, 128.0, 127.8, 127.8 (CH, 26C, Ar-C), 111.2 (Cq, 1C, C-7), 80.8 (CH, 1C, myo-C-6), 

80.7(CH, 1C, myo-C-4), 80.1 (CH, 1C, myo-C-5), 75.9 (CH, 1C, myo-C-3), 74.5 (CH, 1C, myo-

C-2), 69.8 (CH, 1C, myo-C-1), 69.5, 69.4 (CH2, 4C, CH2-Ar), 67.3 (CH2, 1C, C-13) 36.9, 34.4 

(CH2, 2C, C-12, C-8) 27.3 (CH3, 3C, C(CH3)3), 25.5, 24.3, 24.1 (CH2, 3C, C-9, C-10, C-11), 19.6 

(Cq, 1C, C(CH3)3), 15.4 (CH3, 1C, C-14). 

31P-NMR (400.13 MHz, CDCl3) δ (ppm) = - 1.68 (s, 1P), -2.04 (s, 1P). 

[α]D 20 = (-) 15.584444 (c = 9 mg/mL in CHCl3) 

HRMS (ESI)+ m/z meas. 1069.3856; calc. for C58H68O12P2Si [M+Na]+ 1069.3847 -0.8 

ppm. 
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Tetrabenzyl((3aS,4S,5S,6R,7R,7aS)-5-ethoxy-4-hydroxyhexahydrospiro 

[benzo[d][1,3]dioxole-2,1'-cyclohexane]-6,7-diyl)bis (phosphate) (16) 

 

 

To a solution of 15 (170 mg, 0.162 mmol) in THF (anhydrous, 8.5 ml) was added a solution 

of TBAF (308uL, 1.9 eq) in 0.8 ml THF (anhydrous) at 0°C. The reaction was left stirring 

at room temperature. The reaction mixture turned slightly yellow upon addition of the 

TBAF reagent. The reaction was stopped after 2 hours, worked up with NaCO3- and 

extracted with Ethyl Acetate. The crude was purified using flash column chromatography 

at gradient of 30% to 100% EtOAc in Heptane. The product was purified as a colorless oil 

and was isolated in a yield of 73%.  

 

1H-NMR (400.13 MHz, CDCl3) δ (ppm) = 7.30 (d, J = 6.0 Hz, 9H, Ar-H), 7.25 (d, J = 4.3 Hz, 

11H, Ar-H), 5.17 - 5.00 (m, 8H, CH2-Ar), 4.98 (dd, J = 14.3 Hz, 1H, myo-H-4), 4.51 - 4.41 (m, 

2H, myo-H-5, myo-H-2), 4.28 (t, J = 7.2 Hz, 1H, myo-H-3), 4.02 - 3.96 (m, 1H, myo-H-1), 3.89 

- 3.82 (m, 1H, myo-H6), 3.79 - 3.69 (m, 1H, H-13), 3.59 - 3.50 (m, 1H, H-13), 2.12 (s, 1H, 
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OH), 1.80 - 1.69 (m, 2H, H-12), 1.67 - 1.45 (m, 6H, H-11, H-9, H-8), 1.40 - 1.30 (m, 2H, H-

10), 1.08 (t, J = 6.9 Hz, 3H, H-14). 

13C-NMR (100.92 MHz, CDCl3) δ (ppm) = 136.6, 136.5, 136.2, 136.3 (Cq, 4C, Ar-C), 128.8, 

128.8, 128.7, 128.6, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1 (CH, 20C, Ar-C), 111.6 (Cq, 1C, 

C-7), 80.3 (CH, 1C, myo-C-6), 80.2 (CH, 1C, myo-C-4), 79.8 (CH, 1C, myo-C-5), 76.0 (CH, 1C, 

myo-C-3), 74.3 (CH, 1C, myo-C-2), 69.9, 69.7, 69.7, 69.6, 69.6 (CH2, 4C, CH2-Ar), 68.3 (CH, 

1C, myo-C-1), 67.5 (CH2, 1C, C-13), 36.9 (CH2, 1C, C-12), 34.7, 25.3, 24.2 (CH2, 3C, C-11, C-

9, C-8), 23.9 (CH2, 1C, C-10), 15.7 (CH3, 1C, C-14). 

31P-NMR (400.13 MHz, CDCl3) δ (ppm) = - 1.9 (s, 1P), -2.1 (s, 1P). 

[α]D 20 = (-) 3.1086667 (c = 30 mg/mL in CH3Cl) 

HRMS (ESI)+ m/z meas. 831.2673; calc. for C42H50O12P2 [M+Na]+ 831.2670 -0.4 ppm. 

 

(1R,2R,3R,4R,5R,6S)-4-((tert-butyldiphenylsilyl)oxy)-3,5,6-

trimethoxycyclohexane-1,2-diyldibenzoate(19),  

and  

(1R,2R,3R,4R,5R,6S)-4-((tert-butyldiphenylsilyl)oxy)-5-hydroxy-3,6-

dimethoxycyclohexane-1,2-diyl dibenzoate (20) 

 

 

A solution of compound 7 (216.4 mg, 0.35 mmol) in anhydrous DCM (15 ml) was cooled 

down to 0° C. Proton Sponge (757.43 mg, 3.53 mmol, 10 eq) was added, followed by 

trimethyl oxonium tetrafluoroborate (522.12 mg, 3.53 mmol, 10 eq). The reaction was 

left stirring at RT for 3 days. Monitoring for the product was done using TLC (3:7 EtOAc: 

Heptane) and UPLCMS. The reaction mixture was filtered and the solvent of the 

supernatant removed under reduced pressure. Products 19 and 20 were purified by 
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flash chromatography in an isocratic solvent system (25% EtOAc in Heptane), in a 19% 

and 44% yield, respectively.  

 

 

1H-NMR (400.13 MHz, CD3OD) δ (ppm) = 7.99 - 7.94 (m, 2H, Ar-H), 7.89 - 7.85 (m, 2H, Ar-

H), 7.80 (td, J = 8.0 Hz, 4H, Ar-H), 7.50 - 7.28 (m, 12H, Ar-H), 5.72 (t, J = 10.0 Hz, 1H, myo-

H-4), 5.36 - 5.30 (m, 1H, myo-H-5), 3.92 (t, J = 9.5 Hz, 1H, myo-H-6), 3.81 (dd, J = 9.6 Hz, 

1H, myo-H-1), 3.51 (s, 3H, H-7), 3.44 (s, 3H, H-9), 3.15 (s, 1H, myo-H-2), 2.97 (s, 3H, H-8), 

2.94 (d, J = 1.9 Hz, 1H, myo-H-3), 1.15 (s, 9H, C(CH3)3). 

13C-NMR (100.92 MHz, CDCl3) δ (ppm) = 165.3, 165.1 (C=O, 2C), 136.5, 136.3, 133.3, 

133.1 (CH, 6C, Ar-C), 132.0, 131.9 (Cq, 2C, Ar-C), 130.4, 130.2, 130.1, 130.0 (CH, 6C, Ar-

C), 129.9 (Cq, 2C, Ar-C), 128.6, 128.5, 128.4, 128.2, 128.1 (CH, 8C, Ar-C), 82.0 (CH, 1C, 

myo-C-6), 81.0 (CH, 1C, myo-C-3), 77.6 (CH, 1C, myo-C-2), 74.4 (CH, 1C, myo-C-1), 74.3 

(CH, 1C, myo-C-5), 72.5 (CH, 1C, myo-C-4), 61.9 (CH3, 1C, C-7), 61.4 (CH3, 1C, C-9), 58.2 

(CH3, 1C, C-8), 27.4 (CH3, 3C, C(CH3)3), 19.7 (Cq, 1C, C(CH3)3). 

[α]D 20 = (-) 24.191111 (c = 17 mg/mL in CH3Cl) 

HRMS (ESI)+ m/z meas. 691.2699; calc. for C39H44O8Si [M+Na]+ 691.2698. 
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1H-NMR (400.13 MHz, CD3OD) δ (ppm) = 7.97 - 7.93 (m, 2H, Ar-H), 7.88 - 7.84 (m, 2H, Ar-

H), 7.83 - 7.76 (m, 4H, Ar-H), 7.49 - 7.39 (m, 8H, Ar-H), 7.38 - 7.29 (m, 4H, Ar-H), 5.77 (t, J 

= 10.0 Hz, 1H, myo-H-4), 5.32 (t, J = 9.9 Hz, 1H, myo-H-5), 3.97 (t, J = 9.5 Hz, 1H, myo-H-6), 

3.81 (d, J = 9.4 Hz, 1H, myo- H-1), 3.68 (s, J = 2.52 Hz, 1H, myo-H-2), 3.48 (s, 3H, H-7), 3.06 

(s, 3H, H-8), 3.03 (d, J = 2.6 z, 1H, myo-H-3), 2.34 (s, 1H, OH), 1.13 (s, 9H, C(CH3)3). 

13C-NMR (100.92 MHz, CDCl3) δ (ppm) = 166.2, 166.1 (C=O, 2C), 136.4, 136.2, 133.4, 

133.2, (CH, 6C, Ar-C), 132.6, 130.6 (Cq, 2C, Ar-C), 130.4, 130.3, 130.1, 130.1, 130.0 (CH, 6C, 

Ar-C), 129.9 (Cq, 2C, Ar-C), 128.7, 128.6, 128.2, 128.1 (CH, 8C, Ar-C), 81.7 (CH, 1C, myo-C-

6), 79.5 (CH, 1C, myo-C-3), 74.1 (CH, 1C, myo-C-1), 73.9 (CH, 1C, myo-C-5), 72.1 (CH, 1C, 

myo-C-4), 68.9 (CH, 1C, myo- C-2), 61.8 (CH3, 1C, C-7), 58.3 (CH3, 1C, C-8), 27.3 (CH3, 3C, 

C(CH3)3), 19.8 (Cq, 1C, C(CH3)3). 

[α]D 20 = (-) 21.92514 (c = 17 mg/mL in CH3Cl) 

HRMS (ESI)+ m/z meas. 677.2548; calc. for C38H42O8Si [M+Na]+ 677.2541. 

 

Figure 2 Constructed diagram of 19 after structure elucidation using COSY, HSQC and HMBC. Protons 

are marked in red, carbons in black 



 
127 

(1R,2R,3R,4R,5R,6S)-4-((tert-butyldiphenylsilyl)oxy)-3,5,6-

trihydroxycyclohexane-1,2-diyl dibenzoate (21) 

 

3 (358.80 mg, 0.51 mmol, 1 eq) was dissolved in 10 mL DCM and 1 mL water and 

stirred while adding 15 mL of TFA dropwise. 1 mL of ethylene glycol was added at the 

reaction start. The reaction mixture was stirred for 30 min before diluting it with 10 

mL cyclohexane, then removing the solvent mixture and TFA in vacuo. Purification of 

the compound was reached through column chromatography (cyclohexane/EtOAc 

4:1). The product is a white solid and could be obtained in 85% yield. 

 

Rf (Cyclohexane/EtOAc 2:1) = 0.44. 

1H-NMR (400.13 MHz, CDCl3) δ (ppm) = 7.96 - 7.86 (m, 4H, Ar-H), 7.78 - 7.69 (m, 4H, Ar-

H), 7.50 - 7.37 (m, 8H, Ar-H), 7.37 - 7.28 (m, 4H, Ar-H), 5.70 (t, J = 9.9 Hz, 1H, myo-H-4), 

5.28 (t, J = 9.9 Hz, 1H, myo-H-5), 4.31 (t, J = 9.5 Hz, 1H, myo-H-6), 3.97 (s, 1H, myo-H-2), 

3.73 (dd, J = 9.3 Hz, 1H, myo-H-1), 3.61 (dd, J = 9.9 Hz, 1H, myo-H-3), 2.96 (s, 1H, OH), 2.89 

(s, 1H, OH), 2.71 (br.s, 1H, OH), 1.12 (s, 9H, C(CH3)3).  

13C-NMR (100.92 MHz, CDCl3) δ (ppm) = 167.4, 166.6 (C=O, 2C), 136.2, 136.0, 133.5, 

133.5, 133.2 (CH, 6C, Ar-C), 132.9, 130.7 (Cq, 2C, Ar-C), 130.6, 130.5, 130.2, 130.1 (CH, 6C, 
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Ar-C), 129.7, 129.6 (Cq, 2C, Ar-C), 128.6, 128.6, 128.4, 128.4 (CH, 8C, Ar-C), 75.0 (CH, 1C, 

myo-C-1), 74.0 (CH, 1C, myo-C-4), 73.2 (CH, 1C, myo-C-5), 72.9 (CH, 1C, myo-C-2), 72.4 (CH, 

1C, myo-C-6), 71.3 (CH, 1C, myo- C-3), 27.4 (CH3, 3C, C(CH3)3), 19.7 (Cq, 1C, C(CH3)3).  

[α]D 20 = (-) 3.74 (c = 4 mg/ml in CHCl3) 

HRMS (ESI+) m/z meas. 649.2231; calc. for C36H38O8Si [M+Na]+ 649.2228 -0.4 ppm 

 

(1R,2R,3R,4R,5R,6S)-4-((tert-butyldiphenylsilyl)oxy)-3,5,6-triethoxycyclohexane-

1,2-diyl dibenzoate (22) and (1R,2R,3R,4R,5R,6S)-4-((tert-butyldiphenylsilyl)oxy)-

3,6-diethoxy-5-hydroxycyclohexane-1,2-diyl dibenzoate (23) 

 

22 and 23 were obtained from 21 (116 mg, 0.185 mmol, 1 eq) analogously as the 

procedure described for 19 and 20 with proton sponge (792.9 g, 3.7 mmol, 20 eq), 

Et3OBF4 (626.96 g, 3.3 mmol, 18 eq) and stirring for 48 h. The products were colorless 

solids. 22 was isolated with 15% yield and 23 in a yield of 45%. 

 

1H-NMR (400.13 MHz, CD3OD) δ (ppm) = 8.01 - 7.96 (m, 2H, Ar-H), 7.89 - 7.76 (m, 6H, 

Ar-H), 7.49 - 7.29 (m, 12H, Ar-H), 5.70 (t, J = 10.0 Hz, 1H, myo-H-4), 5.33 (t, J = 9.7 Hz, 

1H, myo-H-5), 4.02 (t, J = 9.5 Hz, 1H, myo-H-6), 3.93 - 3.86 (m, 1H, H-7), 3.83 (dd, J = 

9.6 Hz, myo-H-1) 3.72 - 3.60 (m, 2H, H-7, H-9), 3.32 (dq, J = 14.1 Hz, 1H, H-9), 3.16 - 
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3.06 (m, 2H, myo-H-2, H-9), 3.04 - 2.93 (m, 2H, myo-H-3, H-9), 1.20 (t, J = 7.0 Hz, 3H, 

H-9‘), 1.14 (s, 9H, C(CH3)3), 1.01 (t, J = 7.0 Hz, 3H, H-7‘), 0.80 (t, J = 7.0 Hz, 3H, H-8‘). 

13C-NMR (100.92 MHz, CDCl3) δ (ppm) = 166.2, 166.1 (C=O, 2C), 136.5, 136.3 (CH, 4C, 

Ar-C), 135.1, 133.6 (Cq, 2C, Ar-C), 133.2, 133.0 (CH, 2C, Ar-C), 130.5, 130.3 (Cq, 2C, Ar-

C), 130.3, 130.1, 130.0, 129.9, 128.6, 128.5, 128.1, 128.0 (CH, 14C, Ar-C), 79.9 (CH, 1C, 

myo-C-6), 79.0 (CH, 1C, myo-C-3), 77.3 (CH, 1C, myo-C-2), 74.3 (CH, 1C, myo-C-1), 74.3 

(CH, 1C, myo-C-5), 72.6 (CH, 1C, myo-C-4), 69.5 (CH2, 1C, C-7), 68.7 (CH2, 1C, C-9), 65.9 

(CH2, 1C, C-8), 27.4 (CH3, 3C, C(CH3)3), 19.6 (Cq, 1C, C(CH3)3), 16.2 (CH3, 1C, C-9’), 16.0 

(CH3, 1C, C-7’), 15.4 (CH3, 1C, C-8’). 

[α]D 20 = (-) 3.204 (c = 5 mg/ml in CHCl3) 

HRMS (ESI)+ m/z meas. 733.3176; calc. for C42H50O8Si [M+Na]+ 733.3167 -1.2 ppm 

 

1H-NMR (400.13 MHz, CD3OD) δ (ppm) = 7.97 - 7.92 (m, 2H, Ar-H), 7.88 - 7.78 (m, 6H, 

Ar-H), 7.50 - 7.28 (m, 12H, Ar-H), 5.74 (t, J = 10.0 Hz, 1H, myo-H-4), 5.32 (t, J = 9.9 Hz, 

1H, myo-H-5), 4.06 (t, J = 9.5 Hz, 1H, myo-H-6), 3.89 - 3.82 (m, 2H, myo-H-1, H-7), 3.69 

- 3.61 (m, 1H, H-7), 3.53 (t, J = 2.5 Hz, 1H, myo-H-2), 3.27 - 3.20 (m, 1H, H-8), 3.11 (qd, 

J = 7.0 Hz, 2H, myo-H-4), 1.13 (s, 9H, C(CH3)3), 0.98 (t, J = 7.0 Hz, 3H, H-7‘), 0.86 (t, J = 

7.0 Hz, 3H, H-8‘). 

13C-NMR (100.92 MHz, CDCl3) δ (ppm) =  166.2, 166.0 (C=O, 2C), 136.4, 136.2 (CH, 4C, 

Ar-C), 134.6 (Cq, 1C, Ar-C), 133.3, 133.2 (CH, 2C, Ar-C), 133.1 (Cq, 1C, Ar-C), 130.4, 

130.2 (CH, 2C, Ar-C), 130.1 (Cq, 2C, Ar-C), 130.0, 129.9, 128.7, 128.6, 128.2, 128.1 (CH, 

12C, Ar-C), 79.6 (CH, 1C, myo-C-6), 77.9 (CH, 1C, myo-C-3), 74.3 (CH, 1C, myo-C-1), 73.8 

(CH, 1C, myo-C-5), 72.1 (CH, 1C, myo-C- 4), 70.0 (CH, 1C, myo-C-2), 69.5 (CH2, 1C, C-7), 

66.3 (CH2, 1C, C-8), 27.3 (CH3, 3C, C(CH3)3), 19.7 (Cq, 1C, C(CH3)3), 15.9 (CH3, 1C, C-7’), 

15.5 (CH3, 1C, C-8’). 
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[α]D 20 = (-)13.906 (c = 10 mg/mL in CHCl3) 

HRMS (ESI)+ m/z meas. 705.2858; calc. for C40H46O8Si [M+Na]+ 705.2854 -0.6 ppm 

 

(1S,2S,3R,4S,5R,6R)-4-((tert-butyldiphenylsilyl)oxy)-3,5,6-

trimethoxycyclohexane-1,2-diol (24) 

 

Compound 24 was obtained by dissolving 19 (253 mg, 0.378 mmol, 1 eq) in anhydrous 

THF (8mL), and adding NaOMe (216 uL, 0.946 mmol, 2.5 eq) dropwise at 0°C. The reaction 

solution turned turbid and pale yellow upon addition of the NaOMe solution. The reaction 

solution was left stirring at rtf o 1.5 hours. Monitoring for the product was done using TLC 

(3:7 EtOAc: Heptane) and UPLCMS. The reaction mixture was quenched with citric acid, 

extracted 4 times with EtOAc, washed with water, then with brine, dried over NaSO4 and 

condensed, yielding a crude weighing 260 mg. The product was purified over flash column 

chromatography at a gradient of 40% to 100% EtOAc in Heptane, yielding a colorless solid 

with a yield of 78%. 

 

1H-NMR (400.13 MHz, CD3OD) δ (ppm) = 7.69-7.71 (m, 3H, Ar-H), 7.39-7.32 (m, 6H, Ar-

H), 7.19-7.18 (m, 1H, Ar-H), 3.65 (s, 3H, H-7), 3.57 (t, J = 10.0 Hz, 1H, myo-H-4), 3.46 (m, 
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1H, myo-H-5), 3.28 (s, 3H, H-9), 3.19-3.17 (t, J = 9.5 Hz, 1H, myo-H-6), 2.94 (s, 3H, H-8), 

2.49-2.45 (m, 3H, myo-H-1,2,3), 1.07 (s, 9H, C(CH3)3). 

13C-NMR (100.92 MHz, CDCl3) δ (ppm) = 136.13, 136.00, 134.70, 133.10 (CH, 4C, Ar-C), 

130.14, 130.03 (Cq, 2C, Ar-C), 129.82, 128.46, 127.88, 127.70 (CH, 4C, Ar-C), 82.87 (CH, 

1C, myo-C-6), 81.88 (CH, 1C, myo-C-3), 77.36 (CH, 1C, myo-C-2), 77.04 (CH, 1C, myo-C-

5), 74.53 (CH, 1C, myo-C-1), 71.87 (CH, 1C, myo-C-4), 61.82 (CH3, 1C, C-7), 60.82 (CH3, 

1C, C-8), 57.06 (CH3, 1C, C-9), 27.11 (CH3, 3C, C(CH3)3), 19.21 (Cq, 1C, C(CH3)3). 

[α]D 20 = (-) 2.0621359 (c = 10.3 mg/mL in CH3Cl) 

HRMS (ESI)+ m/z meas. 483.2179; calc. for C25H36O6Si [M+Na]+ 483.2173 -1.1 ppm. 

Tetrabenzyl((1R,2R,3S,4R,5R,6S)-4-((tert-butyldiphenylsilyl)oxy)-3,5,6-

trimethoxycyclohexane-1,2-diyl) bis(phosphate) (25) 

 

 

Compound 24 (126 mg, 0.273 mmol) was dissolved in anhydrous DCM (7 mL) and 

allowed to stir for a few minutes before adding 1H-tetrazole (0.45 M in ACN, 3.6 mL, 1.642 

mmol, 6 eq). The reaction was brought down to 0 °C before the phosphoramidite (275.86 

mg, 0.821 mmol, 3 eq) was immediately added in anhydrous DCM (2 ml). The reaction 

was allowed to stir for 3 hours at RT. After product formation, monitored by TLC 

measurements, the reaction was cooled down to -40 ° C, followed by the addition of 

mcpba (77% w/w, 1.642 mmol, 367.99mg, 6eq) and was allowed to stir for one more 

hour. After being deemed finished, the reaction was quenched with NaCO3- and extracted 

with DCM (200 ml). The organic layer was washed three more times with NaCO3- , then 

with water and brine, and condensed to give oil (pale color). The crude (605 mg) was 
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purified using a 10 g silica Biotage column, in a gradient of 23% to 33% EtOAc in heptane. 

The product was obtained as a colorless oil with a yield of 99%. 

 

1H-NMR (400.13 MHz, CD3OD) δ (ppm) = 7.69 (d, J = 7.1 Hz, 2H, Ar-H), 7.41 – 7.30 (m, 4H, 

Ar-H), 7.30 – 7.21 (m, 6H, Ar-H), 7.18 – 7.12 (m, 16H, Ar-H), 4.99 (ddd, J = 9.7 Hz, 2H, CH2-

Ar), 4.94 (d, J = 5.9 Hz, 3H, CH2-Ar, myo-H-6), 4.90 (d, J = 7.1 Hz, 4H, CH2-Ar), 4.63 (d, J = 

9.2 Hz, 1H, myo-H-5), 4.27 (m, 1H, myo-H-4), 3.66-3.56 (m, 2H, myo-H-6, myo-H-3), 3.52 

(s, 3H, H-9), 3.24 (s, 3H, H-8), 2.74 (s, 3H, H-7), 1.16 (m, 2H, myo-H-1, myo-H-2), 1.06 (s, 

9H, C(CH3)3). 

13C-NMR (100.92 MHz, CDCl3) δ (ppm) = 136.22 (CH, 4C, Ar-C), 136.06, 135.91, 134.56, 

132.86 (Cq, 4C, Ar-C), 130.07, 129.95, 129.08, 128.75, 128.60, 128.57, 128.52, 128.42, 

128.33, 128.27, 128.19, 128.08, 128.02, 128.00, 127.96, 127.93, 127.83, 127.80, 127.60, 

127.45 (CH, 22C, Ar-C), 81.36 (CH, 1C, myo-C-6), 77.35 (CH, 1C, myo-C-5), 77.24 (CH, 1C, 

myo-C-3), 77.03 (CH, 1C, myo-C-4), 76.72 (CH, 1C, myo-C-2), 76.11 (CH, 1C, myo-C-1), 

74.01, 73.55, 71.03, 70.96, 69.33l, 69.20, 61.80, 60.86 (CH2, 8C, CH2-Ar), 57.00 (CH3, 3C, 

C(CH3)3), 27.08 (CH3, 3C, C(CH3)3), 22.57 (CH3, 3C, C(CH3)3), 19.25 (Cq, 1C, C(CH3)3). 

31P-NMR (400.13 MHz, CDCl3) δ (ppm) = - 1.69 (s, 1P), -2.54 (s, 1P). 

[α]D20= (-) 6.5072727 (c = 11 mg/mL in CH3Cl) 

 

HRMS (ESI)+ m/z meas. 1003.3381; calc. for C53H62O12P2Si [M+Na]+ 1003.3378 -0.3 

ppm. 
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Tetrabenzyl((1R,2R,3S,4R,5S,6S)-4-hydroxy-3,5,6-trimethoxycyclohexane-1,2-

diyl) bis(phosphate) (26) 

 

 

To a solution of 25 (275 mg, 0.28 mmol) in THF (anhydrous, 15 ml) was added a solution 

of TBAF (500uL, 1.8 eq) in 0.8 ml THF (anhydrous) at 0°C. The reaction was left stirring 

at room temperature. The reaction mixture turned slightly yellow upon addition of the 

TBAF reagent. The reaction was stopped after 2 hours, worked up with NaCO3- and 

extracted with Ethyl Acetate. The crude (298mg) was purified using flash column 

chromatography at gradient of 80% to 100% EtOAc in Heptane, and was obtained as a 

pale yellow oil (solid) with a 69% yield. 

 

1H NMR (400 MHz, CDCl3) δ = 7.21 (s, 10H, Ar-H), 7.17 (t, J = 3.5 Hz, 10H, Ar-H), 4.97 (m, 

8H, CH2-Ar), 4.75 (d, J = 9.1 Hz, 1H, myo-H-4), 4.33 (d, J = 8.9 Hz, 1H, myo-H-5), 3.77 (m, 

1H, myo-H-6), 3.56 (s, 3H, H-7), 3.49 – 3.44 (m, 1H, myo-H-3), 3.42 (s, 3H, H-8), 3.40 (d, J 

= 9.2 Hz, 1H, myo-H-2), 3.27 (s, 1H, H-9), 3.15 (dd, J = 9.5, 1.8 Hz, 1H, myo-H-1).  
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13C NMR (101 MHz, CDCl3) δ (ppm) = 136.20, 136.12, 136.04 (Cq, 8C, Ar-C), 128.45, 

128.41, 128.36, 128.34, 128.27, 128.18, 128.15, 128.12, 127.92, 127.87, 127.83, 127.69 

(Cq, 12C, Ar-C), 81.76 (Cq, 1C, C-7), 81.12 (Cq, 1C, C-8), 78.80 (Cq, 1C, C-9), 77.96 (CH, 1C, 

myo-C-6), 77.35 (CH, 1C, myo-C-4), 77.24 (CH, 1C, myo-C-5), 77.04 (CH, 1C, myo-C-3), 

76.72 (CH, 1C, myo-C-2), 71.86 (CH, 1C, myo-C-1), 69.43, 69.37, 69.29, 69.21 (CH2, 4C, 

CH2-Ar). 

31P-NMR (400.13 MHz, CDCl3): δ - 1.6 (s, 1P), - 2.05 (s, 1P). 

[α]D 20 = (-) 14.218462 (c = 13 mg/mL in CH3Cl) 

HRMS (ESI)+ m/z meas. 765.2202; calc. for C37H44O12P2 [M+Na]+ 765.2200 -0.2 ppm. 

 

(3aR,4S,5R,6R,7R,7aS)-4-((tert-butyldiphenylsilyl)oxy)-5-((2-

methoxyethoxy)methoxy)hexahydrospiro[benzo[d][1,3]dioxole-2,1'-

cyclohexane]-6,7-diyl dibenzoate (29) 

 

 

Compound 3 (2501 mg, 3.56mmol, 1 eq) was dissolved in anhydrous CHCl3 (35 mL) under 

Argon atmosphere. DIPEA (dry, 8.7 mL, 49.9 mmol, 14 eq) was then added at room 

temperature, followed by MEMCl (3.98 mL, 34.93 mmol, 9.8 eq). The reaction was heated 

to 60°C under reflux, and was left stirring overnight. When deemed finished, the reaction 

was quenched with NaCO3-, extracted three times with EtOAc, washed with water, then 

brine, dried over NaSO4 and condensed to yield a crude weighing 3001 mg. Purification 

of the product was achieved by column chromatography (isocratic gradient 18% EtOAc 

in heptane). The product is a colourless oil and was isolated with a 60% yield. 
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Rf: 0.34 (in 7:3 heptane:EtOAc) 

1H NMR (400 MHz, CDCl3) δ (ppm) = 7.87 – 7.82 (m, 2H, Ar-H), 7.77 (ddd, J = 18.5 Hz, 4H, 

Ar-H), 7.68 – 7.61 (m, 2H, Ar-H), 7.44 – 7.18 (m, 12H, Ar-H), 5.13 (dd, J = 9.8 Hz, 1H, CH-

4-myo), 4.91 (d, J = 6.5 Hz, 1H, CH- 5- myo), 4.65 (d, J = 6.9 Hz, 1H, CH-1-myo), 4.24 (dd, J 

= 7.9 Hz, 1H, CH-3- myo), 4.03 (d, J = 9.1 Hz, 1H, CH-6-myo), 3.90 (s, 1H, CH-2-myo), 3.52 – 

3.23 (m, 2H, H-14), 3.11 (s, 1H, H-16), 3.07 – 2.86 (m, 2H, H-15), 1.92 (d, J = 14.2 Hz, 1H, 

cy), 1.72 (dd, J = 12.8 Hz, 2H, cy), 1.39 (d, J = 24.4 Hz, 4H, cy), 1.20 (d, J = 12.0 Hz, 3H, cy), 

1.06 (s, 9H, CH3-TBDPS). 

13C-NMR (100.92 MHz, CDCl3) δ (ppm) = 165.87, 165.53 (C=O, 2C), 136.16, 135.86, 133.57, 

133.27 (CH, 4C,Ar-C), 133.07, 132.88 (Cq, 2C, Ar-C), 129.97, 129.87, 129.81, 129.70 (CH, 

4C, Ar-C), 129.65, 129.57, 128.27, 128.16 (CH, 4C, Ar-C), 127.85, 127.59 (CH, 2C, Ar-C), 

111.11 (Cq, 1C, C-7), 96.79 (CH, C-13), 77.35 (CH, 1C, myo-C-6), 77.23 (CH, 1C, myo-C-3), 

77.03 (CH, 1C, myo-C-2), 76.72 (CH, 2C, myo-C-5, myo-C-4), 75.11 (CH, C-14), 74.81 (CH, 

C-15), 71.75 (CH, 1C, myo-C-1), 67.44 (CH, C-16), 58.83, 37.31 (CH2, 1C, C-12), 34.34 (CH2, 

1C, C-8), 27.08 (CH3, 3C, C(CH3)3), 25.08 (CH2, 1C, C-10), 23.99 (CH2, 1C, C-11), 23.82 (CH2, 

1C, C-9), 19.35 (Cq, 1C, C(CH3)3). 

[α]D 20 = (-)7.3428571 (c = 7 mg/ml in CHCl3) 

HRMS (ESI)+ m/z meas. 817.3387; calc. for C46H54O10Si [M+Na]+ 817.3378 -1.1 ppm. 
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(3aR,4S,5R,6S,7S,7aR)-1-((tert-butyldiphenylsilyl)oxy)-6-((2-

methoxyethoxy)methoxy)hexahydrospiro[benzo[d][2,3]dioxole-2,1'-

cyclohexane]-4,5-diol (30) 

 

Compound 29 (1700 mg, 2.14 mmol, 1 eq) was dissolved in THF (dry, 40 mL) and the 

reaction mixture was cooled down to 0°C. NaOMe solution was added dropwise, and the 

reaction was brought up to RT by removing the ice bath 10 minutes after the reaction 

start. The reaction mixture turned yellow upon addition of NaOMe. 1 hour later, the 

reaction was deemed finished, stopped and worked up by quenching with citric acid, 

extracting 4 times with EtOAc. The organic layers were then combined, washed with 

water, brine, then dried over NaSO4-, filtered and condensed, yielding a yellow crude with 

a sharp aromatic smell, weighing 1880 mg. Purification of the product was achieved by 

column chromatography (gradient of 20%-100% EtOAc in heptane). The product was 

isolated with >99% quantitative yield. 

 

 

1H NMR (400 MHz, CDCl3) δ (ppm) = 7.68 (ddd, J = 17.5 Hz, 4H, Ar-H), 7.44 – 7.17 (m, 6H, 

Ar-H), 4.69 (q, J = 7.3 Hz, 2H, C-13), 3.81 (ddd, J = 27.0 Hz, 3H, CH-4-myo, CH-5-myo, CH-

6-myo), 3.63 (ddd, J = 12.7 Hz, 4H, H-14, H-15), 3.48 (p, J = 2.3 Hz, 2H, CH-3-myo, CH-1-
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myo), 3.31 (s, 3H, H-16), 3.04 (t, J = 9.0 Hz, 1H, CH-2-myo), 1.63 (d, J = 10.5 Hz, 4H, H-12, 

H-8), 1.31 (d, J = 4.9 Hz, 6H, H-9, H-10, H-11), 1.02 (s, 9H, CH3 -TBDPS). 

13C-NMR (100.92 MHz, CDCl3) δ (ppm) = 136.01, 135.95, 135.80, 135.78 (CH, 4C,Ar-C), 

133.91, 133.45 (Cq, 2C, Ar-C), 133.28, 133.20, 130.11, 129.83 (CH, 4C, Ar-C), 127.84, 

127.64 (CH, 2C, Ar-C), 110.47 (Cq, 1C, C-7), 97.76 (CH, C-13), 97.68 (CH, C-14), 85.45 (CH, 

C-15), 83.83 (CH, C-16), 77.57 (CH, 1C, myo-C-6), 77.36 (CH, 1C, myo-C-3), 77.04 (CH, 1C, 

myo-C-2), 76.72 (CH, 1C, myo-C-5), 75.60 (CH, 1C, myo-C-4), 75.56 (CH, 1C, myo-C-1), 

38.18 (CH2, 1C, C-12), 34.78 (CH2, 1C, C-8), 27.00 (CH3, 3C, C(CH3)3), 25.02 (CH2, 1C, C-

10), 24.01 (CH2, 1C, C-11), 23.79 (CH2, 1C, C-9), 19.35 (Cq, 1C, C(CH3)3). 

[α]D 20 = (+) 30.28875 (c = 16 mg/mL in CH3Cl) 

HRMS (ESI)+ m/z meas. 609.2877; calc. for C32H46O8Si [M+Na]+ 609.2854 -3.8 ppm  

 

Tetrabenzyl((3aR,4S,5S,6R,7R,7aS)-1-((tert-butyldiphenylsilyl)oxy)-6-((2-

methoxyethoxy)methoxy)hexahydrospiro[benzo[d][2,3]dioxole-2,1'-

cyclohexane]-4,5-diyl) bis(phosphate) (31) 

 

 

Compound 30 (1100 mg, 1.8 mmol) was dissolved in anhydrous DCM (20 ml and allowed 

to stir for a few minutes before adding 1H-tetrazole (0.45 M in ACN, 24 mL, 11 mmol, 6 

eq). The phosphoramidite (1.8 mL, 5.6 mmol, 3 eq) was immediately added in anhydrous 

acetonitrile (2.2 ml). The reaction was allowed to stir for 3 hours. The reaction was cooled 

down to -40 ° C, followed by the addition of mcpba (77% w/w, 11 mmol, 2465.28 mg, 6 

eq) and was allowed to stir for one more hour.  
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The reaction was quenched with NaCO3- and extracted with DCM (200 ml). The organic 

layer was washed three more times with NaCO3
- , then with water and brine, and 

condensed to give oil (pale color). The crude (2 g) was purified using a 100 g silica biotage 

column, in a gradient from 15% to 100% EtOAc in heptane. Sample loading on the column 

was done twice, as the total mass of the crude had to be divided in two for column loading 

limit (with respect to the Rfs differences on TLC). The product could be isolated with a 

yiled of 99%.  

 

Rf: 0.39 (in 3:2 EtOAc:Heptane) 

1H NMR (400 MHz, CDCl3) δ (ppm) = 7.77 – 7.61 (m, 4H, Ar-H), 7.41 – 7.06 (m, 26H, Ar-

H), 5.26 – 5.08 (m, 2H, H-13), 5.07 – 4.80 (m, 8H, CH2-Ar), 4.47 – 4.27 (m, 2H, myo-H-4, 

myo-H-5), 4.16 – 3.96 (m, 3H, myo-H-1, H-14), 3.48 (s, 1H, myo-H-2), 3.39 – 3.22 (m, 4H, 

myo-H-3, myo-H-6, H-15), 3.22 – 3.14 (s, 3H, H-16), 1.38 (d, J = 21.9 Hz, 10H, H8-9-10-11-

12), 1.03 (s, 9H, C(CH3)3).  

13C-NMR (100.92 MHz, CDCl3) δ (ppm) = 136.29, 136.14, 136.01 (CH, 4C, Ar-C), 133.33 

(Cq, 4C, Ar-C), 129.93, 129.71, 129.08, 128.75, 128.65, 128.59, 128.56, 128.45, 128.40, 

128.36, 128.33, 128.26, 128.09, 128.04, 128.01, 127.81, 127.70, 127.46 (CH, 26C, Ar-C), 

110.98 (Cq, 1 C, C-7), 99.99 (CH, 1C, myo-C-6), 77.36 (CH, 1C, myo-C-4), 77.24 (CH, 1C, 

myo-C-5), 77.04 (CH, 1C, myo-C-3), 76.72 (CH, 1C, myo-C-2), 73.92 (CH, 1C, myo-C-1), 

71.56 (CH2, 4C, CH2-Ar), 71.03 (CH3, 1C, C-13), 70.96 (CH3, 1C, C-14), 69.48 (CH3, 1C, C-

15), 69.16 (CH3, 1C, C-16), 67.58, 58.90, 33.86 (CH2, 3C, C-12, C-8, C-10), 27.08, 25.18 (CH3, 

3C, C(CH3)3), 23.98, 23.73 (CH2, 2C, C-9, C-11), 19.24 (Cq, 1C, C(CH3)3). 

31P-NMR (400.13 MHz, CDCl3) δ (ppm) = - 1.51 (s, 1P), -2.01 (s, 1P). 
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[α]D 20 = (+)6.252546 (c = 20 mg/mL in CH3Cl) 

HRMS (ESI+) m/z meas. 1129.4065; Calc. for C60H72O14P2Si [M+Na]+ 1129.4059 -

0.6ppm 

Tetrabenzyl((3aS,4S,5S,6R,7R,7aS)-4-hydroxy-5-((2-methoxyethoxy)methoxy) 

hexahydrospiro[benzo[d][1,3]dioxole-2,1'-cyclohexane]-6,7-diyl)bis(phosphate) 

(32) 

 

 

To a solution of 31 (1981 mg, 1.79 mmol) in THF (anhydrous, 35 ml) was added a solution 

of TBAF (3.2 mL, 1.8 eq) in 0.8 ml THF (anhydrous) at 0°C. The reaction was left stirring 

at room temperature. The reaction mixture turned slightly yellow upon addition of the 

TBAF reagent. The reaction was stopped after 2 hours, worked up with NaCO3- and 

extracted with Ethyl Acetate. The product was purified using flash column 

chromatography at gradient of 20% to 100% EtOAc in Heptane. The product was purified 

as a colorless oil and was isolated in a yield of 85%.  
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Rf: 0.28 (in 4:1 EtOAc:Hep) 

1H NMR (400 MHz, CDCl3) δ (ppm) = 7.31 – 7.03 (m, 20H, Ar-H), 5.29 – 4.78 (m, 6H, CH2-

Ar), 4.65 (dd, J = 15.0, 7.1 Hz, 2H, CH2-Ar), 4.45 – 4.27 (m, 2H, H-13), 4.13 (dd, J = 7.0, 5.3 

Hz, 1H, myo-H-4), 4.05 (q, J = 7.1 Hz, 1H, myo-H-5), 3.87 (t, J = 8.7 Hz, 1H, myo-H-2), 3.79 

– 3.64 (m, 2H, H-14), 3.52 – 3.45 (m, 1H, myo-H-3), 3.42 (dd, J = 5.2, 3.6 Hz, 2H, H-15), 3.29 

(s, 3H, H-16), 1.96 (d, J = 15.8 Hz, 2H, myo-H-1, myo-H-6), 1.75 – 1.15 (m, 10H, H-8-9-10-

11-12). 

13C NMR (101 MHz, CDCl3) δ (ppm) = 136.13, 135.92, 135.85 (Cq, 4C, Ar-C), 128.54, 

128.51, 128.47, 128.44, 128.43, 128.37, 128.34, 128.29, 128.22, 128.10, 128.02, 127.98, 

127.93, 127.89, 127.81 (CH, 20C, Ar-C), 111.42 (Cq, 1C, C-7), 97.20 (CH, 1C, C-13), 80.63 

(CH, 1C, myo-C-6), 80.13 (CH, 1C, myo-C-4), 77.35 (CH, 1C, myo-C-5), 77.24 (CH, 1C, myo-

C-3), 77.04 (CH, 1C, myo-C-2), 76.72 (CH, 1C, C-14), 76.37 (CH, 1C, C-15), 71.53 (CH, 1C, C-

16), 69.56, 69.50, 69.32, 68.53 (CH2, 4C, CH2-Ar), 67.79 (CH, 1C, myo-C-1), 37.27 (CH2, 1C, 

C-12), 35.01, 24.90, 23.82 (CH2, 3C, C-11, C-9, C-8), 23.54 (CH2, 1C, C-10). 

31P-NMR (400.13 MHz, CDCl3) δ (ppm) = - 1.5 (s, 1P), -2.05 (s, 1P). 

[α]D 20 = (-)21.628571 (c = 14 mg/mL in CH3Cl) 

HRMS (ESI)+ m/z meas. 891.2881; calc. for C76H95O21P3 [M+Na]+ 891.2881 -1.1 ppm 
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5.2.3. Solution synthesis of PI(4,5)P2 analogues 

 

(2R)-3-(((benzyloxy)(((3aS,4R,5R,6S,7S,7aR)-4,5-bis((bis(benzyloxy)phosphoryl) 

oxy)-6-methoxyhexahydrospiro[benzo[d][1,3]dioxole-2,1'-cyclohexan]-7-yl)oxy) 

phosphoryl)oxy)propane-1,2-diyldioctanoate (11) 

 

 

                                                                      

Compound 10 (100 mg, 0.12 mmol, 1 eq) and 0.45 M 1H-Tetrazole in ACN (0.8 mL, 0.375 

mmol, 3 eq) were dissolved in 8 mL DCM in a flask under Ar atmosphere. The solution 

was cooled to 0°C before the DiC8-phosphoramidite 47 (109.8 mg, 0.18 mmol, 1.5 eq) 

dissolved in DCM (1mL) was added dropwise. After removing the ice bath and stirring for 

1 h, the reaction mixture was cooled to -40°C and mCPBA (56 mg, 0.25 mmol, 2 eq) 

dissolved in 1.5 mL DCM was added. After warming the solution slowly to RT, the reaction 

mixture was quenched with 2 mL of a 10%- solution of KHSO4 in water. The organic phase 

was washed with sat. NaHCO3- solution, water and brine, before it was dried with NaSO4 

and the solvent evaporated under reduced pressure. Purification of the product was 

achieved by column chromatography (heptane/ EtOAc linear gradient 12% to 86%). The 

product is a colourless oil and was isolated with a 70% yield. 
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1H NMR (400 MHz, CDCl3) δ 7.41 - 7.27 (m, 14H, Ar-H), 7.26 - 7.19 (m, 11H, Ar-H), 5.26 - 

5.17 (m, 1H, H-2‘), 5.16 - 4.96 (m, 10H, CH2-Ar), 4.78 (td, J = 14.9 Hz, 1H, myo-H-4), 4.62 

(ddt, J = 14.0 Hz, 1H, myo-H-1), 4.58 - 4.51 (m, 1H, myo-H-2), 4.51 - 4.42 (m, 1H, myo-H-

5), 4.37 - 4.25 (m, 1H, H-1‘), 4.25 - 4.16 (m, 3H, myo-H-3, H-3‘), 4.16 - 4.06 (m, 1H, H-1‘), 

3.84 - 3.74 (m, 1H, myo-H-6), 3.44, 3.40 (s, 3H, H-13), 2.27 (dt, J = 14.5 Hz, 4H, H-4‘), 1.79 

- 1.72 (m, 2H, H-12), 1.66 - 1.41 (m, 10H, H-5‘, H-8, H-9, H-11), 1.33 (s, 2H, H-10), 1.26 (s, 

16H, H-6‘, H-7‘, H-8‘, H-9‘), 0.87 (t, J = 5.7 Hz, 6H, H-10‘). 

13C-NMR (100.92 MHz, CDCl3): δ (ppm) = 173.5, 173.1 (C=O, 2C), 136.2, 136.2, 136.1, 

136.1, 136.0 (Cq, 5C, Ar-C), 129.0, 129.0, 128.9, 128.8, 128.8, 128.7, 128.7, 128.6, 128.6, 

128.3, 128.3, 128.3, 128.2, 128.2, 128.14 (CH, 20C, Ar-C), 112.1 (Cq, 1C, C-7), 80.2 (CH, 1C, 

myo-C-6), 79.4 (CH, 1C, myo-C-4), 78.5 (CH, 1C, myo-C-5), 76.3 (CH, 1C, myo-C-3), 75.5 (CH, 

1C, myo-C-1), 73.8 (CH, 1C, myo-C-2), 70.0, 69.9, 69.8, 69.8, 69.7 (CH2, 5C, CH2-Ar), 69.6 

(CH, 1C, C-2’), 66.0 (CH2, 1C, C-3’), 62.0 (CH2, 1C, C-1’), 60.7 (CH3, 1C, C-13), 37.1, 37.0 (CH2, 

2C, C-12), 34.8 (CH2, 1C, C-8), 34.5, 34.3 (CH2, 2C, C-4’), 32.0, 29.4, 29.3 (CH2, 6C, C-6’, C-7’, 

C-8’), 25.2, 25.2 (CH2, 3C, C-5’, C-10), 24.2, 23.9 (CH2, 1C, C-9, C-11), 22.9 (CH2, 2C, C-9’), 

14.4 (CH3, 2C, C-10’). 

31P-NMR (400.13 MHz, CDCl3): δ (ppm) = -1.68 (d, 1P), -1.79 (s, 0.5P), -1.92 (s, 0.5P), -2.09 

(d, 1P). 

[α]D 20 = (-)6.6171429 (c = 7 mg/ml in CHCl3) 

 

HRMS (ESI)+ m/z meas. 1313.5125; calc. for C67H89O19P3 [M+Na]+ 1313.5103 -1.6ppm. 
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(2R)-3-(((((1R,2R,3S,4R,5R,6S)-2,3-dihydroxy-6-methoxy-4,5-

bis(phosphonooxy)cyclohexyl) oxy)(hydroxy)phosphoryl) oxy)propane-1,2-diyl 

dioctanoate (12) 

 

Compound 11 (100 mg, 0.077 mmol, 1 eq) was dissolved in 2 mL THF in a flask under Ar 

atmosphere and cooled to 0°C. TMSBr (2 mL, excess) was diluted in 1 mL THF, added and 

stirred for 5 min before ice bath was removed and the reaction warmed to RT. After 

stirring for 1 h, TMSBr and THF were evaporated and the precipitate dissolved in 5.6 mL 

dry MeOH. The reaction solution was stirred for 1 h before the solvent was removed 

under reduced pressure. The product could be isolated as a white solid in a quantitative 

yield. (70 mg, 0.092 mmol). 

 

1H-NMR (400.13 MHz, CD3OD) δ (ppm) = 5.33 - 5.22 (m, 1H, H-2’), 4.50 (q, J = 9.2 Hz, 1H, 

myo-H-4), 4.45 - 4.37 (m, 1H, H-1’), 4.28 - 4.06 (m, 6H, myo-H-1, myo-H-2, myo-H-5, H-1’, 

H-3’), 3.69 - 3.61 (m, 2H, myo-H-3, myo-H-6), 3.59 (s, 3H, H-7), 2.41 - 2.29 (m, 4H, H-4’), 
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1.67 - 1.55 (m, 4H, H-5’), 1.38 - 1.25 (m, 16H, H-6’, H-7’, H-8’, H-9’), 0.91 (t, J = 6.8 Hz, 6H, 

H-10’).  

13C-NMR (100.92 MHz, CDCl3) δ (ppm) = 174.9, 174.5 (C=O, 2C), 81.6 (CH, 1C, myo-C-6), 

80.5 (CH, 1C, myo-C-5), 80.0 (CH, 1C, myo-C-4), 78.7 (CH, 1C, myo-C-1), 72.3 (CH, 1C, myo-

C-2), 71.3 (CH, 1C, myo-C-3), 71.3 (CH2, 1C, C-2’), 66.2 (CH2, 1C, C-3’), 63.2 (CH, 1C, C-1’), 

61.8 (CH3, 1C, C-7), 35.1, 34.9 (CH2, 2C, C-4’) 33.7, 32.9, 30.2, 30.1, 30.1 (CH2, 6C, C-6’, C-

7’, C-8’), 26.0 (CH2, 2C, C-5’), 23.9, 23.7 (CH2, 2C, C-9’), 14.4 (CH2, 2C, C-10’).  

31P-NMR (400.13 MHz, CDCl3) δ (ppm) = 0.68 (s, 1P), -0.8 (s, 1P), -2.75 (s, 1P) 

[α]D 20 = (-) 0.9547826 

HRMS (ESI)+ m/z meas. 759.2168; calc. for C26H50O19P3 [M+H]+ 759.2165 -0.4 ppm. 

 (2R)-3-(((benzyloxy)(((3aS,4R,5R,6S,7S,7aR)-4,5-bis((bis(benzyloxy) 

phosphoryl)oxy)-6-ethoxyhexahydrospiro[benzo[d][1,3]dioxole-2,1'-cyclohexan]-

7-yl)oxy)phosphoryl)oxy)propane-1,2-diyl dioctanoate (17) 

 

Compound 16 (63 mg, 0.078 mmol, 1 eq) and 0.45 M 1H-Tetrazole in ACN (0.52 mL, 

0.234 mmol, 3 eq) were dissolved in 5 mL DCM in a flask under Ar atmosphere. The 

solution was cooled to 0°C before the DiC8-phosphoramidite 47 (67.9 mg, 0.11 mmol, 1.5 

eq) dissolved in DCM (1.5 mL) was added dropwise. After removing the ice bath and 

stirring for 2 h, the reaction mixture was cooled to -40°C and mCPBA (26.92 mg, 0.156 

mmol, 2 eq) dissolved in 0.8 mL DCM was added dropwise. After warming the solution 

slowly to RT, the reaction mixture was quenched with 2 mL of a 10%- solution of KHSO4 

in water. The organic phase was washed with sat. NaHCO3
- solution, water and brine, 

before it was dried with NaSO4 and the solvent evaporated under reduced pressure. 

Purification of the product was achieved by biotage column chromatography (25g Silica 
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cartridge; linear gradient of 12% to 100% EtOAc in Heptane). The product is a colourless 

oil and was isolated with a 54% yield. 

 

 

1H-NMR (400.13 MHz, CDCl3) δ (ppm) = 7.41 - 7.17 (m, 25H, Ar-H), 5.26 - 5.13 (m, 1H, H-

2‘), 5.15 - 4.93 (m, 10H, CH2-Ar), 4.88 - 4.74 (m, 1H, myo-H-4), 4.69 - 4.52 (m, 2H, myo-H-

1, myo-H-2), 4.48 (dt, J = 15.9 Hz, 1H, myo-H-5), 4.35 - 4.04 (m, 5H, myo-H-3, H-1‘, H-3‘), 

3.92 (dt, J = 14.3, 6.8 Hz, 1H, myo-H-6), 3.68 (dt, J = 20.3 Hz, 1H, H-13), 3.62 - 3.51 (m, 1H, 

H-13), 2.32 - 2.16 (m, 4H, H-4‘), 1.74 (s, 4H, H-12, H-8), 1.64 - 1.34 (m, 10H, H-10, H-9, H-

8, H-5‘), 1.26 (s, 16H, H-6‘, H-7‘, H-8‘,H-9‘), 1.04 (dt, J = 14.2 Hz, 3H, H-14), 0.87 (t, J = 6.0 

Hz, 6H, H-10‘).  

13C-NMR (100.92 MHz, CDCl3) δ (ppm) = 173.5, 173.3 (C=O, 2C),136.3, 136.2, 136.1, (Cq, 

5C, Ar-C), 129.0, 128.9, 128.8, 128.8, 128.8, 128.7, 128.7, 128.6, 128.6, 128.4, 128.3, 128.3, 

128.2, 128.1 (CH, 25C, Ar-C), 112.0 (Cq, 1C, C-7), 79.2 (CH, 1C, myo-C-4), 79.0 (CH, 1C, 

myo-C-5), 78.4 (CH, 1C, myo-C-6), 76.1 (CH, 1C, myo-C-3), 74.9 (CH, 1C, myo-C-1), 73.5 (CH, 

1C, myo-C-2), 70.0, 69.9, 69.8, 69.7 (CH2, 5C, CH2-Ar), 69.6 (CH, 1C, C-2’), 68.0 (CH2, 1C, C-

13), 66.0 (CH2, 1C, C-3’), 62.0 (CH2, 1C, C-1’), 36.9, 36.8 (CH2, 2C, C-12), 34.7 (CH2, 1C, C-

8), 34.5, 34.3 (CH2, 2C, C-4’), 32.0, 29.4, 29.4, 29.3 (CH2, 6C, C-6’, C-7’, C-8’), 25.3, 25.2, 25.1 

(CH2, 3C, C-5’, C-10), 24.2, 23.9 (CH2, 1C, C-9, C-11), 22.9 (CH2, 2C, C-9’), 15.5 (CH3, 1C, C-

14), 14.4 (CH3, 2C, C-10’).  

31P-NMR (400.13 MHz, CDCl3) δ (ppm) = -1.77 (dd, J= 4.43 Hz, 1P), -1.93 (s, 0.5P), -2.06 (s, 

0.5P), 2.11 (dd, J = 4.84 Hz, 1P). 
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[α]D 20 = (-) 1.3037 (c = 9 mg/mL in CH3Cl) 

HRMS (ESI)+ m/z meas. 1327.5310; calc. for C68H91O19P3 [M+Na]+ 1327.5260 -3.8 ppm. 

 

(2R)-3-(((((1R,2S,3R,4R,5S,6R)-2-ethoxy-5,6-dihydroxy-3,4-

bis(phosphonooxy)cyclohexyl)oxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl 

dioctanoate (18) 

 

Compound 17 (55 mg, 0.04 mmol, 1 eq) was dissolved in 1.3 mL THF in a flask under Ar 

atmosphere and cooled to 0°C. TMSBr (0.9 mL, excess) was diluted in 0.5 mL THF, added 

and stirred for 5 min before ice bath was removed and the reaction warmed to RT. After 

stirring for 1 h, TMSBr and THF were evaporated and the precipitate dissolved in 3 mL 

dry MeOH. The reaction solution was stirred for 1 h before the solvent was removed 

under reduced pressure. The product could be isolated as a white solid in a quantitative 

yield. (20 mg, 0.023 mmol). 
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1H-NMR (400.13 MHz, CD3OD) δ (ppm) = 5.27 (d, J = 4.3 Hz, 1H, H-2‘), 4.49 (d, J = 8.1 Hz, 

1H, myo-H-4), 4.41 (dd, J = 12.0, 2.8 Hz, 1H, H-1‘), 4.29 - 4.07 (m, 6H, myo-H-2, myo-H-5, 

H-1’, H-3’), 3.88 - 3.68 (m, 3H, H-6, H-7), 3.60 (d, J = 8.9 Hz, 1H, myo-H-3), 2.42 - 2.27 (m, 

4H, H-4’), 1.61 (d, J = 6.6 Hz, 4H, H-5‘), 1.32 (s, 16H, H-6‘, H-7‘, H-8‘, H-9‘), 1.21 (t, J = 6.8 

Hz, 3H, H-8), 0.90 (t, J = 6.3 Hz, 6H, H-10‘).  

13C-NMR (100.92 MHz, CDCl3) δ (ppm) = 174.9, 174.5 (C=O, 2C), 80.6 (CH, 1C, myo-C-5), 

80.0 (CH, 1C, myo-C-4), 79.5 (CH, 1C, myo-C-6), 78.8 (CH, 1C, myo-H-1), 72.3 (CH, 1C, myo-

C-2), 71.4 (CH, 1C, myo-C-3), 71.3, 71.2 (CH2, 1C, C-2’), 70.1 (CH2, 1C, C-7), 66.2, 66.2 (CH2, 

1C, C-3’), 63.1, 63.1 (CH, 1C, C-1’), 35.0, 34.9 (CH2, 2C, C-4’), 32.9, 30.2, 30.1, 30.1 (CH2, 6C, 

C-6’, C-7’, C-8’), 26.0 (CH2, 2C, C-5’),23.7 (CH2, 2C, C-9’), 15.8 (CH3, 1C, C-8), 14.4 (CH2, 2C, 

C-10’).  

31P-NMR (400.13 MHz, CDCl3) δ (ppm) = -0.79 (br. S, 2P), -2.77 (br. s, 1P). 

[α]D 20 = (-) 1.464 (c = 9 mg/mL in CH3Cl) 

HRMS (ESI)+ m/z meas. 775.4163; calc. for C27H53O9P3 [M+H]+ 775.4156 -1.0 ppm. 
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(2R)-3-(((benzyloxy)(((1R,2S,3R,4R,5S,6R)-4,5-bis((bis(benzyloxy)phosphoryl) 

oxy)-2,3,6-trimethoxycyclohexyl)oxy)phosphoryl)oxy)propane-1,2-diyl 

dioctanoate (27) 

 

Compound 26 (150 mg, 0.2 mmol, 1 eq) and 0.45 M 1H-Tetrazole in ACN (1.3 mL, 0.6 

mmol, 3 eq) were dissolved in 10 mL DCM in a flask under Ar atmosphere. The solution 

was cooled to 0°C before the DiC8-phosphoramidite 47 (174.53 mg, 0.3 mmol, 1.5 eq) 

dissolved in DCM (1.5 mL) was added dropwise. After removing the ice bath and stirring 

for 1 h, the reaction mixture was cooled to -40°C and mCPBA (89.64 mg, 0.4 mmol, 2 eq) 

dissolved in 1 mL DCM was added. After warming the solution slowly to RT, the reaction 

mixture was quenched with 2 mL of a 10%- solution of KHSO4 in water. The organic phase 

was washed with sat. NaHCO3- solution, water and brine, before it was dried with NaSO4 

and the solvent evaporated under reduced pressure. Purification of the product was 

achieved by column chromatography (heptane/ EtOAc linear gradient 20% - 100%). The 

product is a colourless oil and was isolated with a 76% yield. 
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Rf = 0.4 m (4:1 EtOAC:Heptane) 

1H NMR (400 MHz, CDCl3) δ (ppm) = 7.30 (qd, J = 7.5 Hz, 5H, Ar-H), 7.26 – 7.09 (m, 20H, 

Ar-H), 5.14 (d, J = 5.1 Hz, 1H, H-2’) 5.10 – 4.86 (m, 10H, CH2-Ar), 4.74 (d, J = 9.1 Hz, 1H, 

myo-H-4), 4.33 (m, 1H, myo-H-1), 4.26 – 4.18 (m, 1H, myo-H-2), 4.14 – 4.00 (m, 4H, H-1’ 

H-3‘), 3.96 (d, J = 8.2 Hz, 1H, myo-H-3), 3.63 (t, J = 8.4 Hz, 1H, myo-H-5), 3.52 (s, 3H, H-7), 

3.33 (s, 3H, H-9), 3.24 (s, 3H, H-8), 3.10 (t, J = 10.8 Hz, 1H, myo-H-6), 2.26 – 2.14 (m, 4H, 

H-4’), 1.51 (q, J = 9.5 Hz, 4H, H-5’), 1.20 (dd, J = 9.5 Hz, 16H, H-6’, H-7’, H-8’, H-9’), 0.85 – 

0.72 (m, 6H, H-10’).  

13C-NMR (100.92 MHz, CDCl3) δ (ppm) = 173.21, 172.82 (C=O, 2C), 136.29, 136.16, 136.04, 

135.97, 135.42 (Cq, 5C, Ar-C), 130.09, 129.71, 128.87, 128.79, 128.74, 128.72, 128.44, 

128.41, 128.36, 128.33, 128.30, 128.18, 128.11, 128.06, 127.94, 127.88, 127.68 (CH, 20C, 

Ar-C), 80.08 (CH, 1C, myo-C-6), 79.71 (CH, 1C, myo-C-4), 78.78 (CH, 1C, myo-C-5), 78.16 

(CH, 1C, myo-C-3), 77.83 (CH, 1C, myo-C-1), 77.35 (CH, 1C, myo-C-2), 77.24, 77.04, 76.72, 

76.07, 69.83 (CH2, 5C, CH2-Ar), 69.78 (CH, 1C, C-2’), 69.53 (CH2, 1C, C-3’), 69.47 (CH2, 1C, 

C-1’), 69.39 (CH3, 1C, C-7), 69.13 (CH3, 1C, C-9), 69.07 (CH3, 1C, C-8), 58.12, 34.12 (CH2, 

2C, C-4’), 34.00, 33.98, 31.66, 29.72, 29.07, 29.03 (CH2, 6C, C-6’, C-7’, C-8’), 28.94, 24.83 

(CH2, 2C, C-5’), 22.61 (CH2, 2C, C-9’), 14.09 (CH3, 2C, C-10’). 

31P-NMR (400.13 MHz, CDCl3): δ (ppm) = -1.66 (d, 1P), -1.76 (s, 0.5P), -1.86 (s, 0.5P), -2.11 

(d, 1P). 

[α]D 20 = (-) 10.596667 (c = 12 mg/mL in CH3Cl). 

HRMS (ESI)+ m/z meas. 1261.4813; calc. for C63H85O19P3 [M+Na]+ 1261.4790 ppm 
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(2R)-3-((hydroxy(((1R,2R,3S,4R,5R,6S)-2,3,6-trimethoxy-4,5-

bis(phosphonooxy)cyclohexyl)oxy) phosphoryl)oxy)propane-1,2-diyl dioctanoate 

(28) 

 

Palladium catalyst (10 wt. %,  35.8 mg, 0.028 mmol, 0.36 eq) was dissolved in glacial acetic 

acid (4 mL) containing the starting material 27 (118 mg, 0.095 mmol, 1 eq) at room 

temperature. The air in reaction flask was removed under reduced pressure, and filled 

with H2 three times, before the double H2 balloon was kept while the reaction stirred. 

When deemed finished, the reaction was stopped, filtered over celite, frozen in liquid N2, 

then freeze dried using a cooled-down condenser trap. The product was obtained as a 

white powder, with a yield of 84%.  

 

1H NMR (400 MHz, CDCl3) δ (ppm) = 5.18 (d, J = 5.7 Hz, 1H, H-2’), 4.44 – 4.34 (m, 1H, myo-

H-4), 4.34 – 4.30 (m, 1H, H-1’), 4.09 (t, J = 6.4 Hz, 3H, myo-H-2, myo-H-5, H-3’), 3.97 (s, 1H, 

myo-H-3), 3.50 (d, J = 15.3 Hz, 6H, H-7, H-8), 3.40 (s, 3H, H-9), 2.25 (dt, J = 11.7 Hz, 4H, 



 
151 

myo-H-1, myo-H-6, H-1’, H-3’), 1.52 (q, J = 7.1 Hz, 4H, H-4’), 1.21 (dt, J = 8.1 Hz, 20H, H-5’, 

H-6‘, H-7‘, H-8‘, H-9‘), 0.81 (t, J = 6.5 Hz, 6H, H-10’). 

13C-NMR (100.92 MHz, CDCl3) δ (ppm) = 175.27, 174.91 (C=O, 2C), 82.33 (CH, 1C, myo-C-

6), 81.63 (CH, 1C, myo-C-5), 79.12 (CH, 1C, myo-C-4), 78.75 (CH, 1C, myo-C-1), 71.82 (CH, 

1C, myo-C-2), 71.74 (CH, 1C, myo-C-3), 66.42 (CH2, 1C, C-2’), 63.64 (CH2, 1C, C-3’), 59.54 

(CH, 1C, C-1’), 49.92 (CH3, 1C, C-7), 49.85 (CH3, 1C, C-8), 49.71 (CH3, 1C, C-9), 49.00, 48.79 

(CH2, 2C, C-4’), 35.47, 35.28, 33.31, 31.19, 30.59 (CH2, 6C, C-6’, C-7’, C-8’), 30.57, 30.55 

(CH2, 2C, C-5’), 26.43, 24.13 (CH2, 2C, C-9’), 14.87 (CH2, 2C, C-10’). 

31P-NMR (400.13 MHz, CDCl3) δ (ppm) = -0.32 (d, J = 25.6 Hz, 2P), -1.71 (s, 1P). 

[α]D 20 = (-) 1.3266055 (c = 10.9 mg/mL in CH3Cl). 

HRMS (ESI)+ m/z meas. 789.2635; calc. for C76H95O21P3 [M+H]+ 789.2623 -1.5 ppm 

 

 (2R)-3-(((benzyloxy)(((3aS,4R,5R,6S,7S,7aR)-4,5-bis((bis(benzyloxy) 

phosphoryl)oxy)-6-((2-methoxyethoxy)methoxy)hexahydrospiro[benzo[d] 

[1,3]dioxole-2,1'-cyclohexan]-7-yl)oxy)phosphoryl)oxy)propane-1,2-

diyl(3R,3'R,5R,5'R,7R,7'R)-bis(adamantane-1-carboxylate) (33) 

 

 

Compound 32 (90.36 mg, 0.104 mmol, 1 eq) and 0.45 M 1H-Tetrazole in ACN (1.04 mL, 

0.468 mmol, 3 eq) were dissolved in 8 mL DCM in a flask under Ar atmosphere. The 

solution was cooled to 0°C before compound 44 (102 mg, 0.156 mmol, 1.5 eq) dissolved 

in DCM (1 mL) was added dropwise. After removing the ice bath and stirring for 2 h, the 

reaction mixture was cooled to -40°C and mCPBA (104.88 mg, 0.468 mmol, 3 eq) 
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dissolved in 1 mL DCM was added dropwise. After warming the solution slowly to RT, the 

reaction mixture was quenched with 2 mL of a 10%- solution of KHSO4 in water. The 

organic phase was washed with sat. NaHCO3- solution, water and brine, before it was 

dried with NaSO4 and the solvent evaporated under reduced pressure. Purification of the 

product was achieved by biotage column chromatography (50g Silica cartridge; linear 

gradient of 50% to 90% EtOAc in Heptane). The product is a colourless oil and was 

isolated with a 50% yield. 

 

1H NMR (400 MHz, CDCl3) δ (ppm) = 7.44 – 7.30 (m, 8H, Ar-H), 7.30 – 7.19 (m, 17H, Ar-

H), 5.30 (s, 2H, H-13), 5.14 – 4.94 (m, 10H, CH2-Ar), 4.87 – 4.78 (m, 2H, myo-H-4, myo-H-

1), 4.75 (dd, J = 9.8 Hz, 1H, H-2’), 4.67 – 4.59 (m, 2H, H-1’, H-3’), 4.33 – 4.22 (m, 3H, myo-

H-5, H-1’, H-3’), 4.21 – 4.10 (m, 2H, myo-H-6, H-14), 4.05 (d, J = 5.9 Hz, 2H, H-15), 3.73 – 

3.57 (m, 2H, myo-H-2, myo-H-3), 3.27 (s, 3H, H-16), 2.07 – 1.90 (m, 8H, H-9’, H-4’), 1.84 (q, 

J = 3.2 Hz, 12H, H-10’, H-5’, H-7’, H-6’, H-11’, H-8’), 1.69 (q, J = 12.0 Hz, 8H-cy), 1.47 (d, J = 

14.5 Hz, 2H).  

13C NMR (101 MHz, CDCl3) δ (ppm) = 174.2, 173.8, 135.8, 135.5, 133.1, 126.0, 125.9, 125.8, 

125.7, 125.3, 125.25, 125.2, 125.1, 124.9, 124.7, 124.6, 77.3, 75.3, 74.6, 74.3, 74.0, 73.5, 

73.1, 72.8, 66.9, 58.9, 38.1, 36.2, 36.1, 33.9, 25.3, 25.2, 20.4 

31P-NMR (400.13 MHz, CDCl3) δ (ppm) = -1.64 (d, J = 2.4 Hz, 1P), -1.92 (d, J = 45.6 Hz, 1P), 

-2.18 (d, J = 3.0 Hz, 1P) 

[α]D 20 = (-)5.8571429 (c = 7.7 mg/mL in CH3Cl) 
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HRMS (ESI)+ m/z meas. 1459.5492; calc. for C76H95O21P3 [M+Na]+ 1459.5471 -1.5 ppm 

 

(2R)-3-((hydroxy(((1R,2R,3S,4R,5R,6S)-2,3,6-trihydroxy-4,5-bis(phosphonooxy) 

cyclohexyl)oxy)phosphoryl)oxy)propane-1,2-diyl(3R,3'R,5R,5'R,7R,7'R)-

bis(adamantane-1-carboxylate) (34) 

 

Compound 33 (70 mg, 0.0487 mmol, 1 eq) was thoroughly dried before dissolving it in 

anhydrous THF (3 mL) at rt, under argon atmosphere. The solvents used for this reaction 

was dried over molecular sieves. The reaction mixture was allowed to stir at 0°C. TMSBr 

(0.9 mL, excess), was added dropwise to the stirring reaction, and the reaction was slowly 

brought up to rt and stirred for an hour. TMSBr and THF were evaporated and the 

precipitate dissolved in 3 mL dry MeOH. The reaction solution was stirred for 1 h before 

the solvent was removed under reduced pressure. The crude was then dissolved in a 2 

mL solution of TFA:DCM:H2O mixture (8:1:1) and allowed to stir for 6 minutes before 

diluting with cyclohexane and co-evaporating under reduced pressure.  Upon 

condensation, the product was formed as a white solid and could be isolated with a 50% 

yield.  
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1H NMR (400 MHz, CDCl3) δ (ppm) = 5.35–5.27 (m, 1H, CH2CHCH2), 4.49 (dd, J = 12 Hz, 3, 

1H), 4.30–4.22 (m, 3H), 4.15– 3.90 (m, 5H), 3.71 (dd, J = 10 Hz, 3, 1H), 2.05–2.00 (m, 6H), 

1.93– 1.86 (m, 12H), 1.89–1.68 (m, 12H). 

13C NMR (101 MHz, CDCl3) δ (ppm) = 180.2, 179.9, 77.8, 77.7, 75.9, 75.8, 71.3, 71.2, 70.9, 

70.7, 70.6, 63.7, 62.6, 40.9, 40.8, 38.3, 35.8, 35.7, 27.5, 27.4. 

31P-NMR (400.13 MHz, CDCl3) δ (ppm) = 0.49 (d, J = 67.1 Hz, 2P), -1.50 (s, 1P) 

Characterization data of the compound was consistent with previously published work125 
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(2R)-3-(((benzyloxy)(((3aS,4R,5R,6S,7S,7aR)-4,5-bis((bis(benzyloxy) 

phosphoryl)oxy)-6-((2-methoxyethoxy)methoxy)hexahydrospiro[benzo[d] 

[1,3]dioxole-2,1'-cyclohexan]-7-yl)oxy)phosphoryl)oxy)propane-1,2-diyl 

bis(heptylcarbamate) (35) 

 

Compound 32 (207.3 mg, 0.238 mmol, 1 eq) and 0.45 M 1H-Tetrazole in ACN (1.58 mL, 

0.714 mmol, 3 eq) were dissolved in 15 mL DCM in a flask under Ar atmosphere. The 

solution was cooled to 0°C before compound 41 (219 mg, 0.358 mmol, 1.5 eq) dissolved 

in DCM (2 mL) was added dropwise. After removing the ice bath and stirring for 2 h, the 

reaction mixture was cooled to -40°C and mCPBA (160 mg, 0.714 mmol, 3 eq) dissolved 

in 2 mL DCM was added dropwise. After warming the solution slowly to RT, the reaction 

mixture was quenched with 2 mL of a 10% solution of KHSO4- in water. The organic phase 

was washed with sat. NaHCO3- solution, water and brine, before it was dried with NaSO4 

and the solvent evaporated under reduced pressure. Purification of the product was 

achieved by biotage column chromatography (25g Silica cartridge; linear gradient of 30% 

to 100% EtOAc in Heptane). The product is a colourless oil and was isolated with a 38% 

yield. 
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1H NMR (400 MHz, CDCl3) δ (ppm) = 7.32 (dd, J = 6.0 Hz, 2H, NH), 7.29 – 7.11 (m, 25H, Ar-

H), 5.03 (ddd, J = 9.6 Hz, 5H, CH2-Ar, H-13, H-2’), 4.99 – 4.88 (m, 8H, CH2-Ar), 4.76 (dd, J = 

6.9 Hz, 2H, H-1’), 4.67 (dd, J = 6.9 Hz, 2H, H-3’), 4.58 – 4.42 (m, 2H, myo-H-4, myo-H-1), 

4.29 – 4.17 (m, 2H, H-14), 4.14 (dq, J = 9.9 Hz, 2H, H-15), 4.04 (t, J = 7.2 Hz, 1H, myo-H-5), 

3.65 – 3.52 (m, 1H, myo-H-3), 3.34 (dt, J = 4.5 Hz, 2H, myo-H-2, myo-H-6), 3.21 (s, 3H, H-

16), 3.09 – 2.92 (m, 4H, H-4’), 1.73 – 1.59 (m, 2H, H-5’), 1.27 – 1.04 (m, 28H, H-

8,9,10,11,12, H-6’,7’,8’,9’), 0.81 – 0.75 (m, 6H, H-10’).  

13C NMR (101 MHz, CDCl3) δ (ppm) = 155.83, 155.36, 136.00, 135.92, 135.74, 135.67, 

135.63, 129.15, 128.76, 128.66, 128.61, 128.56, 128.53, 128.48, 128.45, 128.42, 128.39, 

128.35, 128.30, 128.28, 128.04, 128.01, 127.99, 127.96, 127.91, 127.87, 127.79, 127.73, 

111.72, 111.66, 96.24, 79.11, 77.36, 77.25, 77.05, 76.73, 75.51, 74.14, 72.94, 71.66, 71.62, 

70.12, 69.67, 69.61, 69.54, 69.49, 69.42, 67.82, 67.77, 66.47, 62.47, 60.41, 58.89, 58.87, 

41.16, 36.35, 34.25, 31.76, 29.91, 29.88, 29.82, 28.97, 28.93, 26.75, 26.69, 24.94, 23.88, 

23.58, 22.61, 21.08, 14.22, 14.08, 1.04. 

31P-NMR (400.13 MHz, CDCl3) δ (ppm) = -1.69 (d, J = 11.8 Hz, 1P), -1.99 – -2.63 (m, 2P).  

[α]D 20 = (-)8.1460123 (c = 16.3 mg/mL in CH3Cl) 

HRMS (ESI)+ m/z meas. 1417.5715; calc. for C70H97N2O21P3 [M+Na]+ 1417.5689 -1.9 

ppm 
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(2R)-3-((hydroxy(((1R,2R,3S,4R,5R,6S)-2,3,6-trihydroxy-4,5-

bis(phosphonooxy)cyclohexyl)oxy)phosphoryl)oxy)propane-1,2-diyl 

bis(heptylcarbamate) (36) 

Compound 35 (120 mg, 0.086 mmol, 1 eq) was thoroughly dried before dissolving it in 

anhydrous DCM (2.5 mL) at rt, under argon atmosphere. The solvents used for this 

reaction was dried over molecular sieves. The reaction mixture was allowed to stir at 0°C. 

TMSBr (1 mL, excess), was added dropwise to the stirring reaction, and the reaction was 

slowly brought up to rt and stirred for an hour. TMSBr and DCM were evaporated and the 

precipitate dissolved in 2.5 mL dry MeOH. The reaction solution was stirred for 1 h before 

the solvent was removed under reduced pressure. The crude was then dissolved in a 2 

mL solution of TFA:DCM:H2O mixture (8:1:1) and allowed to stir for 6 minutes before 

diluting with cyclohexane and co-evaporating under reduced pressure.  Upon 

condensation, the product was formed as a white solid and could be isolated with a 50% 

yield. 
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1H NMR (400 MHz, DMSO) δ (ppm) = 7.19 (dt, J = 39.7 Hz, 2H, NH), 4.85 (t, J = 5.1 Hz, 1H, 

H-2’), 4.06 – 3.83 (m, 4H, H-1’,3’), 3.64 – 3.40 (m, 2H, myo-H-1, myo-H-4), 2.87 (dq, J = 12.8 

Hz, 4H, H-4’), 2.42 (p, J = 1.8 Hz, 4H, myo-H-5, myo-H-2, myo-H-3, myo-H-6), 1.41 – 0.97 

(m, 24H, H-5’-9’), 0.77 (t, J = 6.8 Hz, 6H, H-10’). 

13C NMR (101 MHz, DMSO) δ (ppm) = 155.63, 155.05, 70.72, 69.68, 68.41, 63.69, 60.21, 

53.94, 53.87, 53.67, 53.60, 53.40, 53.33, 53.13, 52.86, 41.70, 41.10, 41.10, 40.44, 31.74, 

31.14, 28.92, 26.65, 22.58, 13.80. 

31P-NMR (400.13 MHz, DMSO) δ (ppm) = 0.56 (s, 1 P), -0.14 (d, J = 40.2 Hz, 1P), -0.73 (s, 

0.5P), -1.91 (s, 0.5P) 

[α]D 20 = 6.5133333 (c = 3 mg/ml in CHCl3) 

HRMS (ESI)+ m/z meas. 835.4610; calc. for C37H75N4O9P3 [M+Na]+ 835.4639, 3.5 ppm  
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(2R)-3-(((benzyloxy)(((3aS,4R,5R,6S,7S,7aR)-4,5-bis((bis(benzyloxy) 

phosphoryl)oxy)-6-((2-methoxyethoxy)methoxy)hexahydrospiro[benzo[d] 

[1,3]dioxole-2,1'-cyclohexan]-7-yl)oxy)phosphoryl)oxy)propane-1,2-diyl 

dioctanoate (51) 

 

Compound 32 (97 mg, 0.11 mmol, 1 eq) and 0.45 M 1H-Tetrazole in ACN (1.46 mL, 0.66 

mmol, 6 eq) were dissolved in 15 mL DCM in a flask under Ar atmosphere. The solution 

was cooled to 0°C before compound 47 (129.98 mg, 0.22 mmol, 2 eq) dissolved in DCM 

(2 mL) was added dropwise. After removing the ice bath and stirring for 2 h, the reaction 

mixture was cooled to -40°C and mCPBA (147.9 mg, 0.66 mmol, 6 eq) dissolved in 2 mL 

DCM was added dropwise. After warming the solution slowly to RT, the reaction mixture 

was quenched with 2 mL of a 10% solution of KHSO4- in water. The organic phase was 

washed with sat. NaHCO3- solution, water and brine, before it was dried with NaSO4 and 

the solvent evaporated under reduced pressure. Purification of the product was achieved 

by biotage column chromatography (10g Silica cartridge; linear gradient of 25% to 100% 

EtOAc in Heptane). The product is a colorless oil and was isolated with an 85% yield. 
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1H NMR (400 MHz, CDCl3) δ (ppm) = 7.32 – 7.25 (m, 4H, Ar-H), 7.25 – 7.20 (m, 8H, Ar-H), 

7.19 – 7.14 (m, 13H, Ar-H), 5.06 – 4.98 (m, 5H, CH2-Ar), 4.98 – 4.88 (m, 5H, CH2-Ar), 4.76 

(dd, J = 16.3 Hz, 2H, H-13, H-2’), 4.68 (dd, J = 9.1 Hz, 1H, H-13), 4.57 (ddt, J = 10.1 Hz, 2H, 

H1’), 4.26 – 4.16 (m, 3H, myo-H-4, H-14), 4.15 – 4.10 (m, 1H, myo-H-1), 4.09 – 3.97 (m, 2H, 

H-3’), 3.59 (ddd, J = 11.9 Hz, 2H, H-14), 3.35 – 3.26 (m, 2H, myo-H-5, myo-H-3), 3.20 (d, J = 

2.0 Hz, 3H, myo-H-2, H-15), 2.19 (dtd, J = 12.9, 7.1, 6.7, 4.5 Hz, 4H, H-4’), 1.66 (d, J = 6.2 Hz, 

7H, H-16, H-5’), 1.27 – 1.11 (m, 22H, H-8,9,10,11,12, H-6’,7’,8’,9’), 0.80 (dq, J = 6.7 Hz, 6H, 

H-10’). 

13C NMR (101 MHz, CDCl3) δ (ppm) = 173.18, 173.17, 172.80, 172.76, 136.00, 135.88, 

135.80, 135.44, 128.64, 128.63, 128.52, 128.50, 128.48, 128.46, 128.44, 128.42, 128.37, 

128.34, 128.28, 128.03, 128.01, 127.97, 127.94, 127.93, 127.86, 127.83, 111.62, 111.60, 

96.28, 96.20, 78.66, 77.35, 77.23, 77.03, 76.71, 75.69, 73.18, 71.64, 69.65, 69.55, 69.49, 

67.76, 61.64, 58.88, 36.48, 34.24, 34.08, 33.97, 31.67, 29.73, 29.08, 29.04, 28.95, 24.83, 

24.82, 24.80, 23.88, 23.59, 22.62, 14.09. 

31P-NMR (400.13 MHz, CDCl3) δ (ppm) = -1.62 (d, J = 4.4 Hz, 1P), -1.86 (d, J = 22.6 Hz, 1P), 

-2.14 (d, J = 4.5 Hz, 1P) 

[α]D 20 = (-)5.9584615  

HRMS (ESI+) m/z meas. 1387.5483; calc. for C70H95O21P3 [M+Na]+ 1387.5471 -0.9 ppm 
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(2R)-3-((hydroxy(((1R,2R,3S,4R,5R,6S)-2,3,6-trihydroxy-4,5-

bis(phosphonooxy)cyclohexyl)oxy)phosphoryl)oxy)propane-1,2-diyl dioctanoate 

(52) 

Compound 51 (120 mg, 0.0879 mmol, 1 eq) was thoroughly dried before dissolving it in 

anhydrous DCM (0.5 mL) at rt, under argon atmosphere. The solvents used for this 

reaction was dried over molecular sieves. The reaction mixture was allowed to stir at 0°C. 

TMSBr (1 mL, excess), was added dropwise to the stirring reaction, and the reaction was 

slowly brought up to rt and stirred for an hour. TMSBr and DCM were evaporated and the 

precipitate dissolved in 2.5 mL dry MeOH. The reaction solution was stirred for 1 h before 

the solvent was removed under reduced pressure. The crude was then dissolved in a 2 

mL solution of TFA:DCM:H2O mixture (8:1:1) and allowed to stir for 10 minutes before 

diluting with cyclohexane and co-evaporating under reduced pressure. Resuspension in 

water and freeze drying yielded a white solid as the product (85%). 
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Characterization data of the compound was consistent with previously published work120 

 

5.2.4. Solid phase synthesis of lipid tail-modified PI(4,5)P2 analogues 

 

1-O-[(3-phenylpropanoyl)benzyl]phosphoryl-2,3-O-(p-Wang-resin-oxy) 

benzylidene-4,5-di-O-(di-O-benzyl-phosphate)-6-O-methoxyethoxymethyl-myo-

inositol (48) 

 

 

To the preswelled resin prepared according to previously established and published 

procedures120 (148 mg, 0.077 mmol, loading 0.522 mmol/g) in anhydrous CH2Cl2 (2 mL) 

was added dicyanoimidazole (91 mg, 0.772 mmol) in acetonitrile (1 mL), followed by 

immediate addition of phosphoramidite 38 (284 mg, 0.772 mmol) in acetonitrile (1 mL). 

The resin was then allowed to shake for 40 h at room temperature, which was then cooled 

to –30°C, followed by addition of peracetic acid (167 µL, 0.92 mmol, 40% in acetic acid). 

After careful stirring of the resin for 1 h at the same temperature, it was filtered and 
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washed with DCM (3 X), DMF (3x), MeOH (3x), and finally DCM (3x). The resin was dried 

overnight in vacuo. The formation of the product was confirmed by test cleavage using 

10% TFA in DCM.  

MS (ESI): m/z (%): 1071.3 (100) [M+H]+ (TFA test cleavage) 

1-O-[(3-phenylpropanoyl)benzyl]phosphoryl-4,5-di-O-(di-O-benzyl-phosphate)-6-

O-methoxyethoxymethyl-myo-inositol (49) 

 

 

 

To the pre-swelled resin 48 (168 mg, 0.068 mmol, loading 0.469 mmol/g) in CH2Cl2 was 

added a mixture of 10% TFA in CH2Cl2 containing 1% methanol. The resin was shaken for 

1 h, filtered and washed with CH2Cl2 for several times. All the washings were combined 

and evaporated to give the crude product, which was purified by HPLC yielding a mixture 

of free hydroxyl and MEM protected hydroxyl group at the 6-position. This mixture was 

used directly for the next step. 

HPLC conditions: 

tR = 18.4 min; m/z (%): 989 [M-MEM+H]+. The area under the peak represents 1. 

tR = 18.9 min; m/z (%): 1100 [M+Na]+. The area under the peak represents 1. 
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1H NMR (400 MHz, CDCl3) δ (ppm) = 7.66-7.88 (m, 25 H, Ar-H), 4.56–4.48 (q, J = 9.7 Hz, 

1H, CH-4-myo), 4.22 (m, 1H, CH2), 4.19–4.05 (m, 5H, CH-2-myo, CH-5-myo, CH2), 4.01–

3.96 (m, 1H, CH-1-myo), 3.64 (m, 1H, CH-6 myo), 3.62 (m, 1H, CH-3-myo), 2. 

31P-NMR (400.13 MHz, CDCl3) δ (ppm) = 0.61 (d, 1P), –0.16 (d, 1P), –1.26 (d, 2P) 

M-MEM: [α]D 20 = (–)3.122 (c = 0.9 mg/mL, CHCl3)  

HRMS (ESI+): m/z pos.: [M-MEM+H]+ calculated, 989.2827 found 989.2836 –0.9 ppm 

[M-MEM+Na]+ calculated, 1011.2646, found 1011.2653–0.7 ppm 

[M-MEM+K]+ calculated, 1027.2385, found 1027.2396–1.0 ppm 

 

1-O-[(3-phenylpropanoyl)]phosphoryl-4,5-di-O-(phosphate)-myo-inositol (50): 

 

 

To compound 49 (19.6 mg, 0.019 mmol) in 0.5 mL of THF in a Schlenk flask was added 

bromotrimethylsilane (1.0 mL, excess) and the reaction was stirred for 2 h at room 

temperature. The reaction was then concentrated under vacuum to remove excess TMSBr 

and other byproducts. The residue was then stirred with methanol (2.5 mL) for 1 h 

followed by removal of the solvent under vacuum to give the product as white solid, which 

was dissolved in a methanol/ water mixture (1:1) and stirred with 20 mg of prewashed 

Chelex Na+ ion exchanger resin for 24 h. The resin was filtered off and washed three times 

with water. The combined filtrates were concentrated in vacuo and then lyophilized to 

obtain 50 as an off-white solid (8.6 mg, 84%). 

1H NMR (400 MHz, CDCl3) δ (ppm) = 7.66-7.88 (m, 25 H, Ar-H), 4.56–4.48 (q, J = 9.7 Hz, 

1H, CH-4-myo), 4.22 (m, 1H, CH2), 4.19–4.05 (m, 5H, CH-2-myo, CH-5-myo, CH2, H-CH2), 

4.01–3.96 (m, 1H, CH-1-myo), 3.64 (m, 1H, CH-6 myo), 3.62 (m, 1H, CH-3-myo), 2. 

31P-NMR (400.13 MHz, CDCl3) δ (ppm) = 0.61 (d, 1P), –0.16 (d, 1P), –1.26 (d, 2P) 
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M–MEM: [α]D 20 = –2.90 (c = 0.004, CHCl3)  

HRMS (ESI+): m/z pos.: [M-MEM+H]+ calculated, 989.2827 found 989.2836 –0.9 ppm 

[M-H]- calculated, 537.0334, found 537.0342–1.6 ppm 

 

5.2.5. Synthesis of the PI(4,5)P2 computational screen hit analogues (by the 

CBCF) 

 

The synthesis of the final molecule which showed inhibition of PRL-3 is depicted in the 

scheme below: 

 

The designed final compound is termed 62 and its negative control benzyl ester 69. The 

synthesis of product 61, which was not completed and only yielded compound 70, is 

depicted in the scheme below:  
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The analytics of the abovementioned three compounds (62, 69 and 70) are shown below.  

 

 

1H NMR (400 MHz, CDCl3) δ (ppm) = 7.70 (s, 1H, NH), 7.35 (s, 5H, Ar-H), 5.27 (s, 1H, H-2), 

5.19 (s, 1H, H-13), 5.16 (s, 1H, H-13), 4.37 (s, 1H, H-1), 4.23 (d, J = 25.4 Hz, 4H, H-11, H-3), 

4.14 (dd, J = 5.8 Hz, 2H, H-7), 4.08 (s, 1H, H-9), 3.95 (m, 1H, H-9), 3.37 (d, J = 3.0 Hz, 2H, H-

5), 2.30 (m, 4H, CH2), 1.60 (m, 2H, CH2), 1.27 (s, 16H, CH-lipid chain), 0.87 (s, 6H, CH3 x2). 
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13C NMR (101 MHz, CDCl3) δ (ppm) = 173.38 (C-14), 173.07 (C-15), 169.53, 169.33 (C-6), 

168.33, 168.22 (C-8), 168.10, 167.91 (C8), 164.91 (C-4), 135.03, 134.54 (C-7), 129.03 C-

Ph), 128.91, 128.79, 128.76, 128.73, 128.49, 128.38, 128.04 (C-10), 122.80, 122.46, 

120.02, 119.67, 68.61, 68.22 (C-13), 67.56, 63.53 (C-13), 61.94 (C-13), 49.60, 49.26, 49.20, 

48.92, 48.64, 47.92 (C-9), 47.58, 47.24 (C-11), 46.90, 41.47 (C-11), 41.24, 41.04 (C-9), 

40.96 (C-5), 34.23, 34.12, 31.75, 29.15, 29.10, 29.00, 24.94, 22.70 (C-CH2), 14.16 (C-CH3). 

19F NMR (CDCl3) δ (ppm) = -70.11, -70.47 

HRMS (ESI+): m/z = [M+H]+ 713.3 (UPLCM/MS data) 

 

 

 

1H NMR (400 MHz, MeOD) δ (ppm) = 5.35 – 5.21 (m, 1H, H-2), 4.37 (dd, J = 4.0 Hz, 2H, H-

3), 4.30 – 4.09 (m, 8H, H-1, H-5, H-9, H-7), 3.42 (d, J = 6.3 Hz, 1H), 2.33 (td, J = 2.5 Hz, 4H, 

H-CH2), 1.67 – 1.54 (m, 4H, H-CH2), 1.39 – 1.22 (m, 16H, CH2), 0.91 (t, J = 6.7 Hz, 6H, CH3). 

13C NMR (101 MHz, CDCl3) δ (ppm) = 173.63, 173.60, 173.31, 173.27, 171.07, 170.75, 

170.04, 169.74, 168.53, 168.23, 166.10, 166.06, 125.75, 125.46, 122.97, 122.68, 120.18, 

77.48, 77.16, 76.84, 65.16, 63.59, 62.12, 62.08, 49.36, 49.07, 47.66, 47.31, 41.89, 41.23, 

41.05, 40.91, 34.28, 34.15, 31.78, 29.19, 29.13, 29.04, 24.96, 22.73. 

19F NMR (CDCl3) δ (ppm) = -70.20, -70.65 

HRMS (ESI+): m/z = [M+H]+ 627.2 (UPLCM/MS data) 
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1H NMR (400 MHz, CDCl3) δ (ppm) = 5.63 (d, J = 7.8 Hz, 1H, NH), 5.28 (td, J = 5.1Hz, 

1H, H-2), 4.39 (dd, J = 11.9 Hz, 4H, H-1, H-3), 4.29 (d, J = 4.5 Hz, 2H, H-4), 4.24 – 

4.10 (m, 6H, H-5, H-6), 4.10 – 3.99 (m, 3H, H-7), 2.32 (td, J = 7.6 Hz, 4H, 2xH-9), 

1.61 (dt, J = 7.6 Hz, 4H, 2xH-10), 1.33 – 1.22 (m, 16H, 2xH11-14), 1.15 (d, J = 6.6 

Hz, 6H, 2xH-15). 

13C NMR (101 MHz, CDCl3) δ (ppm) = 173.38, 173.11, 169.42, 168.23, 164.69, 156.90, 

77.48, 77.16, 76.84, 63.80, 61.84, 50.55, 44.04, 41.94, 34.27, 34.14, 31.78, 29.83, 29.18, 

29.14, 29.03, 24.98, 24.97. 

HRMS (ESI+): m/z = [M+H]+ 585.3 (UPLCM/MS data). 
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Chapter 6. Summary  

 

In this doctoral work, the objective was to develop and establish a strategy for the total 

organic synthesis of PI(4, 5)P2 analogues, alkylated on the inositol ring, in order to study 

the mechanisms of interaction between PI(4, 5)P2 and the metastasis-promoting 

phosphatase PRL-3.  

 

After the development of the synthetic route, the effort for the synthesis of 6-O-

methylated PI(4,5)P2 was made. To establish the route, each reaction step was 

optimized by testing different reaction conditions. After developing the needed 

protecting group strategy for selective inositol ring alkylation, the reaction with the 

alkylating Meerwein salt as reagent was carried out, gave good yields, and was further 

used for different alkylated analogues.  

 

Moreover, and using both solid phase and solution phase organic synthesis strategies, 

lipid chain-modified PI(4,5)P2 analogues were also synthesized to gain more insight on 

the importance of the functional groups in the natural substrate binding to PRL-3. By 

using the established synthetic route, a bigger and more versatile library of differently 

substituted alkylated PI(4,5)P2 and other PIPn analogues could be synthesized in the 

future. These analogues synthesized here were utilized for SAR studies to gain 

information for binding requirements of the following PI(4,5)P2-metabolizing proteins: 

PRL-3, SYNJ1, OCRL and INPP5E. Curiously, the inositol-alkylated analogues were 

specific to PRL-3 with respect to the other phosphatases, and the lipid tail-modified 

analogues showed more significant activity with the other phosphatases than with PRL-

3. This sets the initial basis for specificity of these analogues with a phosphatase that 

bears an unusually shallow and hydrophobic active site (PRL-3).  

 

Complementary to the main work of this project, in silico shape similarity screening 

methods were used with PI(4,5)P2 as a template, to search for specific PRL-3-active lead 

compound which could support designing an optimal inhibitor. This computational 

experiment led to an active compound (further optimized through synthesis before 

testing), underlying the potential of prediction tools in finding inhibitors for challenging 

targets.  

 

The synthesized PI(4,5)P2 analogues will be valuable in many applications, ranging from 

investigating the binding requirements of specific PIPn- metabolizing phosphatases, to 
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designing ligands through in silico and synthetic methods to modulate their interaction 

with interesting targets like phosphatases. Generally, such adaptable analogues could 

forge novel agents in chemical biology, both in probing biological activity and in the 

treatment of diseases.  

 
 

 

 

Figure 42 Overview of the structures of the PI(4,5)P2 original substrate (52) and its six analogues (12, 18, 
28, 34, 36 and 50), all of which were synthesized as part of this work.  
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Chapter 7. Appendices 

7.1. Structural Directory 
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7.2. Abbreviation directory 

 
PIPn  

 
 
phosphatidylinositol-phosphates  

AcCN/ACN  acetonitrile  
AM  acetyloxymethyl  
Ar  Argon  
BnOH  benzylalcohol  
BzCl  benzoylchloride  
CHD22 Cadherin 22 
COSY homonuclear correlation 

spectroscopy 
DAG  diacylglycerol  
DCM  dichloromethane  
DIC  N,N'-diisopropylcarbodiimide  
DIPA*DCI  diisopropylcarbodiimide  
DIPEA  (N,N'-di-iso-propyl)-ethylamine  
DMAP  4-Dimethylaminopyridine  
DMF dimethylformamide 
DMSO  dimethylsufoxide  
DUSPs/DSPs Dual specificity phosphatases 
EMT Epithelial-mesenchymal transition 
ESI  electrospray ionization  
Et  ethyl  
Et2O  diethylether  
EtOAc  ethylacetate  
HMBC Heteronuclear Multiple Bond 

Correlation. 
HR-MS  high resolution mass spectrometry  
HSQC Heteronuclear Multiple Quantum 

Correlation 
InsP  inositol-phosphates  
mCPBA  meta-chloroperoxybenzoic acid  
Me  methyl  
MEM 2-Methoxyethoxymethyl ether  
MEMCl 2-Methoxyethoxymethyl chloride 
MeOH  methanol  
MHz  megaherz  
MMT Monomethoxy trityl 
MTM  myotubularin  
NaOMe  sodium methoxide  
NHERF1 Na+/H+ Exchanger Regulatory 

Factor 
NMR  nuclear magnetic resonance  
NOE  nuclear overhauser effect  
PIC  phospholipase C  
PIKfyve  phosphoinositide kinase with fyve 

Znn-motive  
PIS  phosphatidylinositol synthase  
PM  propionyloxymethyl  

https://www.synarchive.com/protecting-group/Alcohol_2-Methoxyethoxymethyl_ether
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PRD Proline-rich domain 
PSTPs 
 

Protein serine/threonine 
phosphatases 

PTPs Protein Tyrosine phosphatases 
PTEN  Phosphatase and tensin homolog 

deleted on chromosome 10  
RT  room temperature  
SAR Structure-activity relationships 
TBAF Tetra-n-butylammonium fluoride 
TBDPS Tert-butyl diphenylsilane 
TBDPSCl Tert-butyl diphenylsilylchloride 
THF tetrahydrofuran 
TMSBr bromotrimethylsilane 
TLC Thin layer chromatography 
TFA Trifluoroacetic acid 
USR Ultrafast shape recognition 
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7.3. NMR Spectra 
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7.4. Supplementary Figures  

 
 
 

 
 
Figure S1 The dephosphorylation activity of PRL-3 toward the PI(4,5)P2 analogues, at 5 different 

concentrations (25, 50, 100, 200 and 250 μM). The slopes are shown until 1500-3000 seconds of 

measurements because of the signal variation observed after that time point in all assays, which could either 

be due to the precipitation of the protein or the interaction of the analogues with the photoactive component 

in the assay. A) Absorbance measurements of compound 28. B) Absorbance measurements of compound 18. 

C) Absorbance measurements of compound 34. D) Absorbance measurements of compound 12. E) and F), 

Absorbance measurements of compounds 36 and 50, respectively: those compounds were not active against 

PRL-3. Graphs are shown with error bars, depicted as dotted lines above and below each respective curve. 

The lower the signal intensity, the higher the relative error in the assay18,19,120, leading to error bars that 

would mask other curves.   
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Figure S2 Activity of the six synthesized analogues with three different PI(4,5)P2-metabolizing 
phosphatases, with respect to the parent substrate (control) PI(4,5)P2. The results shown in the graphs take 
into consideration the error margins (dotted lines above and below each curve) of each experiment 
replicates.   
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