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ABSTRACT 

In recent years, the adeno-associated virus (AAV) gained considerable 

attention mainly due to the approval of the first AAV-based gene therapy 

treatment in the Western hemisphere in 2012, named Glybera®. It not only 

conveyed the feasibility of utilizing this parvovirus to introduce healthy gene 

copies but simultaneously reinforced further interest in developing more 

specific and efficient synthetic vectors by capsid engineering approaches such 

as DNA family shuffling or random peptide display. However, the 

characterization of lead candidates resulting from these directed evolution 

strategies is labor-intensive and therefore excludes the possibility to validate 

multiple promising variants. 

Therefore, a comprehensive high-throughput capsid validation pipeline 

was established in this work adapting a previously reported approach in 

which a DNA barcode-comprising AAV genome is assigned to a chosen capsid 

variant during virus production. Thus, the identification of the respective 

capsid in the complex physiological environment of living animals is enabled 

by solely detecting the barcode sequence via next generation sequencing. The 

principle was further improved by placing the barcode into the 3’UTR of a 

CMV promoter-driven eyfp transgene permitting tracking on the DNA and 

RNA level. Hence, next to information about transduction efficiency, the 

especially crucial transcriptional activity in a certain tissue was measured. 

Using this design, three barcoded AAV libraries were generated comprising up 

to 157 variants including 12 commonly used serotypes, >70 peptide-displaying 

mutants based on these naturally occurring wild types and several published 

benchmarks such as AAVDJ, AAV9_PHP.B and AAVAnc80L65. After 

intravenously injecting the library into C57BL/6J mice and analyzing the RNA 

and DNA data from >20 collected tissues, prior observations for the literature 

variants could be confirmed thus validating the workflow. Most impressively, 

a peptide display mutant previously created in our laboratory exhibited 

drastically improved efficiencies in the diaphragm, heart and skeletal muscles 

in comparison to AAV9wt on the cDNA and protein level while in addition 

demonstrating pronounced muscle specificity.  

In conclusion, in the course of this PhD thesis a highly robust barcode-based 

capsid screening pipeline was established that facilitates and accelerates the 

identification of promising candidates for gene therapies, best exemplified by 

the discovery of the muscle-tropism of our lead candidate. 
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ZUSAMMENFASSUNG 

In den letzten Jahren erfuhr das Adeno-assoziierte Virus (AAV) viel 

Aufmerksamkeit, insbesondere im Jahr 2012 durch die Zulassung von 

Glybera®, der ersten AAV-basierten Gentherapie in der westlichen 

Hämisphere. Dadurch wurde nicht nur die erfolgreiche Verwendung dieser 

Parvoviren zur Einführung gesunder Genkopien demonstriert, sondern auch 

das Interesse an der Entwicklung spezifischerer und effizienterer Vektoren 

durch Modifizierung des Kapsides verstärkt. Allerdings ist die 

Charakterisierung von einzelnen aussichtsreichen Kandidaten besonders 

arbeitsintensiv, was die Validierung mehrerer Viren erschwert. 

Demzufolge wurde in dieser Arbeit ein umfassendes Hochdurchsatz-

Kapsid-Validierungssystem etabliert, welches einen zuvor beschriebenen 

Ansatz adaptiert, bei dem ein DNA-barcodiertes AAV-Genom während der 

Virusproduktion einem ausgewählten Kapsid zugewiesen wird. Somit wird 

die Identifizierung des jeweiligen Kapsides in der komplexen physiologischen 

Umgebung lebender Tiere ermöglicht, indem lediglich die Barcode-Sequenz 

über Next-Generation Sequenzierung detektiert wird. Durch die Integrierung 

des Barcodes in die 3‘-UTR eines CMV-Promotor-gesteuerten eyfp -Transgens 

wurde der Ansatz weiter verbessert, was eine Detektion auf DNA- und RNA-

Ebene ermöglichte. Neben der Transduktionseffizienz wird dadurch zudem 

die äußerst wichtige Transkriptionsaktivität in einem bestimmten Gewebe 

gemessen. Unter Verwendung dieses Designs wurden drei barcodierte AAV-

Bibliotheken mit bis zu 157 Varianten generiert einschließlich 12 häufig 

verwendeter Serotypen, >70 Peptid-präsentierender Mutanten auf Basis dieser 

natürlich vorkommenden Wildtypen und mehrerer veröffentlichter Viren wie 

AAVDJ, AAV9_PHP.B und AAVAnc80L65. Nach intravenöser Injektion der 

Bibliothek in C57BL/6J-Mäuse und Analyse der RNA- und DNA-Daten von 

>20 isolierten Geweben konnten vorherige Beobachtungen für die 

Literaturvarianten bestätigt werden, wodurch das System validiert wurde. 

Eine Peptid-präsentierende Mutante unseres Labors zeigte eindrucksvoll eine 

drastisch verbesserte Effizienz im Vergleich zu AAV9wt in der Zwerchfell-, 

Herz- und Skelettmuskulatur auf cDNA- und Proteinebene und gleichzeitig 

eine ausgeprägte Muskelspezifität. 

Zusammenfassend wurde im Rahmen dieser Dissertation ein äußerst 

robustes Barcode-basierendes Kapsid-Validierungssystem etabliert, welches 

vielversprechende Kandidaten für Gentherapien identifizieren kann, am 

besten verdeutlicht durch die Entdeckung unseres Muskelkandidaten. 
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1 INTRODUCTION 

Genetic disorders such as hemophilia, cystic fibrosis and Parkinson’s 

disease pose a serious problem for the affected patients. Unlike other 

reversible, temporary diseases, e.g. many viral or bacterial infections, the 

malfunction manifests itself in the genome of our cells making the search for a 

permanent cure highly challenging. Nevertheless, researchers across the world 

tackled the issue and started to develop treatment strategies commonly 

referred to as gene therapy approaches. These methods aim to alter or 

circumvent the genetic mutation by introducing DNA sequences comprising a 

healthy gene copy or tools required for genome modifications. Various ways to 

penetrate the nonpolar cell membrane were tested for the delivery, and each of 

them showed advantages and disadvantages.  

One possibility is the use of cationic liposomes possessing a positively-

charged head for interaction with the negatively-charged DNA and a 

hydrophobic lipid tail inducing the formation of particles1,2. Liposomes are 

then capable of entering the cells by endocytosis3. The principle of condensing 

the DNA can also be applied when using cationic polymers such as poly-L-

lysine or polyethylenimine4,5. Next to chemical methods, successful DNA 

delivery to various cell types was shown for procedures relying on physical 

mechanisms, e.g. electroporation6,7, sonoporation8–10, gene guns11 and 

hydrodynamic gene transfer12–14. In general, all the aforementioned strategies 

lack efficiency, especially regarding in vivo delivery. This is due to the manifold 

challenges that are faced prior to nuclear transcription, for instance, passing 

the endothelium and cell membrane, escaping the endosome, trafficking 

through the cytoplasm and finally entering the nucleus15–17. The design of 

synthetic delivery tools has to be adapted to overcome these roadblocks that 

hamper overall efficiency.  

Next to nonviral approaches, viruses are nowadays the preferred delivery 

vector since they have already been optimized by nature for successful cell 

infection and processing of their cargo. Notable examples are altered 

retroviruses as they are capable of undergoing reverse transcription and DNA 

integration. Modifications to their genome and the producer cell line were 

made to generate replication-incompetent vectors that display an increased 

safety profile18,19. Gammaretrovirus is a genus in the Retroviridae family and 

was proved to transduce hematopoietic stem cells20,21 and primary T-

lymphocytes22,23. This has eventually led to the approval of an ex vivo stem cell 

gene therapy treatment called Strimvelis®24. The latter is aimed at curing the 
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very rare disease Severe Combined Immunodeficiency due to Adenosine 

Deaminase deficiency which is impairing the development of the immune 

system in children. Another member of the Retroviridae family, the lentivirus, is 

able to carry larger gene cassettes and integrates into coding regions of genes 

in contrast to the gammaretrovirus which is targeting the 5’-untranslated 

region25. The latter poses a greater risk of causing oncogenic mutagenesis in 

respective cells26,27. Hence, lentiviral vectors have increasingly attracted 

considerable attention best exemplified by the development of chimeric 

antigen receptor T-cell therapies (CAR-T). To this end, lentiviruses and, to a 

lesser extent, gammaretroviruses are used to stably express receptors on T cells 

directed against antigens on the surface of cancer cells28–31. One of the most 

studied viral vectors are adenoviruses (Ad) owing to their robust transduction 

profile, especially in the liver. However, gene correction with Ad led to the 

tragic death of an 18-year-old patient after systemic inflammatory response 

syndrome, triggered by the virus itself32. Although further modifications were 

performed helping to target other tissues next to the liver and evading host 

immune system responses33, arguably the most promising virus for gene 

therapy is the adeno-associated virus (AAV). Due to its dependence on a 

helper virus for replication, AAV's safety profile is already naturally 

advantageous and can be further enhanced by omitting the encapsidation of 

wild type AAV genes preventing genome integrations. On top, AAV possesses 

the ability to transduce multiple cell and tissue types, which makes it highly 

interesting for the therapy of many diseases. The first AAV-based treatment, 

Glybera®, developed by uniQure, was approved in 2012 for the European 

market and aimed to restore the rare genetic disease lipoprotein lipase 

deficiency34. Yet, in October 2017, after injecting only one patient, the license of 

Glybera® was not renewed since the treatment expenses per person amount to 

one million euros making the enterprise unprofitable. Nevertheless, uniQure 

has led the way by proving the feasibility of an AAV gene therapy. In 

December 2017, Spark Therapeutics released LUXTURNA™ to treat RPE65 

mutation-associated retinal dystrophy35 and despite the again striking price tag 

of ~$450,000 per eye, a steadily growing number of clinical trials involving 

AAV-based solutions have been registered increasing the chances for the 

approval of treatment options for genetic diseases in the future. 

1.1 ADENO-ASSOCIATED VIRUS (AAV) 

The discovery of the non-enveloped adeno-associated virus dates back over 

50 years to 1965 when it was first described as a contamination of adenovirus 

stocks. The publication of Atchison et al. moreover reported a replication 
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deficiency when adenovirus was absent36. Today the replication dependency of 

AAV on helper viruses such as the already mentioned adenovirus, herpes 

simplex virus37 or human papilloma virus38 is commonly known, justifying the 

assignment of AAV to the dependoparvovirus genus within the Parvoviridae 

family. AAV is one of the smallest known viruses with a capsid diameter of 

only ~22 nm, sterically limiting its genome size to ~4.7 kb. The genome itself 

was identified as single-stranded DNA back in 196939. Important for gene 

therapy applications, AAV is to date considered to be in principle non-

pathogenic, although debatable evidence has been found suggesting AAV 

integration to cause hepatocellular carcinoma40–42. Over the years, hundreds of 

isolates could be identified in various species, and some of them were 

classified as novel serotypes. AAV1 and the very extensively studied AAV2 

were the first to be discovered43 followed by AAV444, AAV545, AAV6 and 

AAV3b46, AAV7 and AAV847, AAV9 and AAVrh1048, AAV1249 and finally 

AAVpo150. Regarding the amino acid sequence of their respective capsid 

proteins, AAV serotypes are largely homologous to each other (Figure 1).  

 

Figure 1: Phylogenetic tree of popular AAV serotypes 

Phylogenetic tree of the respective VP1 amino acid sequences of the primarily used 

serotypes in our laboratory AAV1, AAV2, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV8, 

AAV9, AAVrh10, AAVpo1 and AAV12. Additional members of the respective groups with 

a common ancestor (clades) are not shown.  

The highest relatedness is observed for the non-human primate isolate 

AAV1 and the human variant AAV6 that vary in only six amino acids (99% 

homology). Two pairs in the phylogenetic tree, AAV4 and AAV12 as well as 

AAV5 and AAVpo1 are substantially more different compared to serotypes 
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from clade A, B, D, E and F (Table 1). The homology of the remaining AAV1, 

AAV2, AAV3b, AAV6, AAV7, AAV8, AAV9 and AAVrh10 is around ~85%. 

Table 1: Homologya of AAV serotypes 

AAV 1 2 3b 4 5 6 7 8 9 rh10 po1 12 

1 100            

2 83 100           

3b 87 88 100          

4 64 61 64 100         

5 59 58 59 53 100        

6 99 83 87 64 59 100       

7 85 82 85 64 59 85 100      

8 84 83 86 64 58 84 88 100     

9 83 82 84 63 57 82 81 85 100    

rh10 85 84 86 64 58 85 89 94 86 100   

po1 59 58 59 53 86 59 59 58 57 57 100  

12 61 60 62 79 53 61 62 62 60 61 52 100 

aDescribes the VP1 homology in %. 

1.1.1 GENOME ORGANIZATION AND TRANSCRIPTOME 

The 4.7 kb-long AAV genome harbors two genes, rep and cap, flanked by 

145 bp-long inverted terminal repeats (ITR) (Figure 2). A palindromic sequence 

within the ITR forms a T-shaped hairpin structure51. Furthermore, the ITR 

contains cis-elements required for replication and packaging of the genome 52. 

Between the 5’ and 3’ ITR, the internal promoters p5 and p19 govern the 

transcription of transcripts coding for Rep78 and Rep68 as well as Rep52 and 

Rep40, respectively53. The resulting proteins are involved in various steps of 

the AAV infection cycle (1.1.3). The third promoter, p40, is driving the 

transcription of mRNAs encoding the three capsid proteins, VP1, VP2, VP3 and 

the assembly-activating protein (AAP)54–56. All primary transcripts utilize the 

same polyadenylation signal downstream of cap and carry an intron positioned 

between rep and cap. The donor site D and the two acceptor sites A1 and A2 

surrounding the intron allow alternative splicing of the Rep and VP mRNAs 

(Figure 2). Unspliced transcripts of the p5 and p19 promoter lead to expression 

of Rep78 and Rep52, respectively. Splicing with either A1 or A2 as an acceptor 

site results in Rep68 for the p5 transcript or Rep40 for the p19 mRNA53. A1-

splicing for p40-driven transcripts enables VP1 expression by using a regular 

AUG start codon. VP2 and VP3 are both encoded on the same A2-spliced 

mRNA but differ in their start codon. VP2 translation starts with the unusual 
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and inefficient ACG codon whereas VP3 utilizes AUG55,57. The discrepancy of 

the start codons and the fact that A1-splicing occurs less frequently than A2-

splicing explains the VP1:VP2:VP3 ratio of 1:1:1058. AAP expression is enabled 

by exploiting an alternative open reading frame (ORF) of cap and the highly 

uncommon initiation codon CUG between VP2 and VP356. The resulting 

protein is required for the formation of the capsid and is currently studied 

extensively56,59–63. 

 

Figure 2: AAV genome organization and transcriptome 

Depicted is the AAV genome with rep and cap genes flanked by ITRs. Promoters (arrows) p5 

and p19 are driving the transcription of mRNAs encoding Rep78/Rep68 and Rep52/Rep40, 

respectively. The mRNA for the capsid proteins VP1, VP2 and VP3 as well as AAP is 

generated by p40 activity. All intron-containing transcripts can be unspliced or spliced 

either with the A1 or A2 acceptor site and the common splice donor (D). Translation of 

capsid proteins is controlled by splicing efficiencies and unconventional start codons in the 

case of VP2 and AAP. On top, AAP is using an alternative open reading frame in cap. 

1.1.2 CAPSID STRUCTURE AND RECEPTORS 

Over the years, the use of X-ray crystallography and cryo-reconstruction 

has led to the identification of the ~3900 kDa large capsid structures of AAV164, 

AAV265,66, AAV3b67, AAV468,69, AAV570, AAV671, AAV772, AAV873 and 

AAV974,75. Comparison of the individual structures revealed that the VP core 

contains an eight-stranded anti-parallel β-barrel motif, βB to βI, as well as an α-

helix, αA (Figure 3A). The loop structures connecting the β-strands, named 

after the flanking β-strands, appear on the surface of the assembled capsid and 

comprise the variable regions, VRI to VRIX69.  
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Figure 3: AAV VP3 and 

capsid structure 

(A) VP3 monomer of AAV1 

with the variable regions VRI 

to VRIX as well as the various 

symmetry axes. The β-barrels 

(βB to βI), the connecting 

loops (DE, HI) and the α-helix 

(αA) form the core of the 

protein. N, N-terminus; C, C-

terminus. (B) Depiction of an 

assembled icosahedral AAV2 

particle comprising 60 

monomeric VPs. Two-, three- 

and five-fold axes are 

indicated. The pore at the five-

fold axis is connecting the 

inside to the outside. The 

three-fold axis shows the 

crucial protrusions for 

receptor binding. Color code 

as in (A). Taken from Tseng 

and Mc-Kenna, 201476. 

Sixty copies of VP proteins finally assemble to form the T = 1 icosahedral 

capsid via two-, three-, and five-fold symmetry-related interactions (Figure 3B). 

These interactions form the typical surface area of the particle with cylindrical 

channels at the five-fold axis surrounded by a depression, protrusions 

enclosing a depression at the three-fold axis and depressions at the two-fold 

axis76. The DE loop, linking βD and βE, forms the cylindrical channel at the 

five-fold axis, which is a pore separating the inside from the outside of the 

capsid. AAV genome-bound Rep proteins can attach to the capsid leading to 

the encapsidation of the DNA strand77. Since VP proteins derive from the same 

ORF, they share a common 534 aa-long C-terminus. However, start codon 

usage and alternative splicing lead to shorter N-termini of VP2 and VP3 as 

compared to VP1, whose additional amino acids encoding a phospholipase A2 

(PLA2) domain required for virus infectivity78 (1.1.3). This unique N-terminus 

as well as the truncated N-terminus of VP2 are involved in forming globules 

inside the capsid79. Upon conformational change, the VP1 N-terminus is 

released through the five-fold axis-channels exposing the PLA2 domain79,80 and 

additional nuclear localization signals (NLS)81. Although VP1 carries important 

domains for infectivity and intra-cellular trafficking, particle formation is 

possible with solely VP182, VP282,83 or VP356,59. To make VP3-only particles, 
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AAP has to be complemented in trans since the VP3-encoding mRNA lacks the 

start codon and first amino acids of AAP56. 

The capsid surface-exposed variable regions differ predominantly between 

the serotypes due to the fact that these areas are not involved in the essential 

core structure of the particle, leaving room for evolutionary adaptation. They 

play a major role in receptor binding and antibody recognition. The former 

was first discovered for AAV2, which is naturally able to interact with heparan 

sulfate proteoglycan (HSPG)84. In general, most AAV serotypes interact with 

glycan structures on the cell surface for primary attachment. HSPG are utilized 

for AAV2, AAV3b and AAV6; N- or O-linked sialic acid (SA) for AAV1, AAV4, 

AAV5 and AAV6; and N-linked galactose for AAV9 (Table 2).  

Table 2: AAV receptors 

Serotype Glycan receptors Additional receptors 

AAV1 α2,3/ α2,6 N-linked SA85,86  AAVR87,  

AAV2 HSPG84 AAVR87, FGFR188, HGFR89, LamR90, 

CD991, integrin92,93 

AAV3b HSPG94 AAVR87, FGFR195, HGFR96, LamR90 

AAV4 α2,3 O-linked SA97 unknown 

AAV5 α2,3 N-linked SA97,98 AAVR87, PDGFR99 

AAV6 α2,3/ α2,6 N-linked SA85, 

HSPG86 

AAVR87, EGFR100 

AAV7 unknown unknown 

AAV8 unknown AAVR87, LamR90 

AAV9 N-linked galactose101,102 AAVR87, LamR90 

AAVrh10 unknown AAVR103 

AAVpo1 unknown unknown 

AAV12 unknown unknown 

Abbreviations: AAV = adeno-associated virus, AAVR = AAV receptor, CD9 = tetraspanin, 

EGFR = epidermal growth factor receptor, FGFR1 = fibroblast growth factor receptor 1, 

HGFR = hepatocyte growth factor receptor, HSPG = heparan sulfate proteoglycan, LamR = 

laminin receptor, PDGFR = platelet-derived growth factor receptor, SA = sialic acid. 

After attaching to the cell, internalization and trafficking are believed to be 

mediated by secondary proteinaceous receptors such as, in the case of AAV2, 

fibroblast growth factor receptor 1 (FGFR1), hepatocyte growth factor receptor 

(HGFR), laminin receptor (LamR), CD9 tetraspanin and αVβ5/α5β1 integrin. 

However, knockout studies for FGRF1 and HGFR demonstrated in several cell 

lines an unconvincing effect of those receptors87 questioning their crucial role 

in this multifactorial procedure. In 2016, one noteworthy publication of Pillay 

et al. caught the attention of the AAV field by reporting the discovery of an 
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essential AAV receptor, consequently called AAVR87. In this work, AAVR 

dependency was shown for AAV1, AAV2, AAV3b, AAV5, AAV6, AAV8 and 

AAV9. A follow-up study could prove AAVR-mediated internalization of even 

more AAVs, including AAVrh10, but revealed receptor independence in the 

case of AAV4 and a closely related AAVrh32.33103, suggesting an alternative 

entry route for these viruses. Interestingly, a viral overlay assay performed in 

another study demonstrated that AAVR and a 150 kDa large glycoprotein, 

originally discovered over 20 years ago104, are identical105. 

Especially relevant for gene therapy applications in humans is that the 

assembled viral AAV particle offers extensive contact areas for neutralizing 

antibody interactions. As mentioned above, the variable regions are crucial for 

receptor binding making an antibody-induced impairment at this position 

particularly disruptive. The antigen-binding fragment (Fab) of the antibodies 

were shown to cover the protrusions surrounding the three-fold axis in AAV1, 

AAV2 and AAV6106 and bind to specific surface epitopes on the capsid107. In 

general, the neutralization can occur prior to or post attachment to cellular 

receptors, in both cases preventing successful transduction. A major problem 

for the use of AAV in gene therapy is the high anti-AAV antibody prevalence 

in humans of 67%, 72%, 40%, 46%, 38% and 47% for AAV1, AAV2, AAV5, 

AAV6, AAV8 and AAV9, respectively108. Hence, the highest antibody 

abundance in our society is observed for AAV2, as further validated by 

analyzing 888 human serum samples from donors around the world109. 

Although the serotypes differ in their respective variable regions, cross-

reactivity has been documented e.g. between AAV2 and AAV3110, and even 

very weakly between AAV1 and AAV5111 that share a low sequence homology 

(59%). The complex antibody-capsid interplay is not only biologically 

interesting but has major implications in clinical trials where appropriate 

solutions, such as generation of immune-evasive capsids, have to be found and 

applied. 

1.1.3 INFECTION CYCLE 

The life cycle of AAV is a multi-step process including virus binding to its 

receptor, internalization, endosomal trafficking, import to the nucleus, genome 

replication and gene expression. The different serotypes possess variable 

interaction partners on the cell surface (Table 2) but the initial membrane 

attachment is typically facilitated by glycan receptor binding. Subsequent 

invagination of the cellular membrane forms a vesicle around the receptor-

bound AAV, a process whose mechanistic details remain elusive. Dependency 
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on dynamin- and clathrin-mediated endocytosis has been described for this 

process112,113. However, drug-induced inhibition of clathrin-coated vesicles 

showed an independency of AAV2 of this particular route, and alternative 

pathways such as the GPI-anchored-protein-enriched endosomal compartment 

as well as the clathrin-independent carriers were suggested instead114. After 

internalization, the AAV particle has to traffic to the nucleus, which was 

demonstrated to be a rate-limiting hurdle for the outcome of the infection115. 

The majority of internalized virions accumulate in the perinuclear region and 

only a fraction ends up in the nucleus after passing through early, late and 

recycling endosomes including the crossing of the Golgi complex and the 

endoplasmic reticulum113,116,117. The confinement in the endosomes is 

eventually circumvented by a pH-induced conformational change in the capsid 

structure of the AAV particle, leading to the translocation of the internal 

VP1/VP2 N-terminal region to the capsid surface79,80. This region comprises the 

PLA2 domain that plays a major role in endosome escape and therefore the 

release of the virus into the cytoplasm78,118. Next to the PLA2 domain, the 

externalized parts of VP1/VP2 additionally contain essential NLS mediating a 

translocation into the nucleus in a still poorly characterized process81,119,120. A 

recent study showed that AAV2 is transported through the nuclear pore 

complex (NPC) indicating yet another physiological barrier that the virus has 

to overcome121 but at the same time implying intact particle transport across 

the NPC. Thus, it is assumed that genome uncoating occurs in the nucleus, 

albeit details of this process remain to be elucidated.  

Once uncoated, the faith of the single-stranded AAV genome is dependent 

on the presence or absence of a helper virus. In the absence of a helper virus, 

the genome preferentially integrates into the AAVS1 locus on chromosome 19 

to establish latency122,123. The region in close proximity to the locus contains 

Rep binding sites (RBS) for the Rep78 and Rep68 proteins which can tether the 

AAV genome to the chromosome by simultaneously interacting with RBS 

motifs in the ITRs124–126. The mechanism of integration is proposed to be non-

homologous end joining (NHEJ) due to weak homology between the AAV 

genome and the AAVS1 locus127. This is further supported by the detection of 

several Rep-interacting DNA repair proteins by pull-down assays128. In the 

presence of a helper virus, the integrated AAV genome is activated to initiate 

replication and transcription. In a first step, the single-stranded AAV genome 

is converted to a double-stranded DNA by utilizing a strand displacement 

mechanism129. Therefore, the partially self-complementary ITR forms a 

secondary structure with an exposed 3’ hydroxyl group serving as a replication 

primer. Next, the host replication machinery is facilitating unidirectional 

synthesis of the complementary strand until reaching the 5’ end of the genome. 
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Subsequent binding of Rep78 and Rep68 to the Rep binding element (RBE) and 

RBS within the 3’ ITR leads to a conformational change and cleavage at the 

terminal resolution site (trs)130. This process is induced by the endonuclease, 

helicase and ATPase enzymatic activities of the Rep proteins and allows the 

replication of the 3’ ITR. Separation of the newly-generated double-stranded 

genome yields two DNA strands with a free 3’ hydroxyl group for further 

iteration. In parallel, the AAV promoters p5 and p19 are activated by the 

helper virus leading to the expression of the Rep proteins Rep78, Rep68, Rep52 

and Rep40 which are fostering replication, expression and, in absence of a 

helper virus, integration. Expression of the essential structural components 

VP1, VP2 and VP3 as well as the assembly-activating protein (AAP) is driven 

by the p40 promoter. With the exception of AAV4 and AAV5, capsid assembly 

of all studied AAV serotypes is dependent on AAP60,61. The detailed 

mechanism of AAP-assisted particle formation is still unclear; however, a role 

as a scaffold or chaperone has been suggested61–63 The encapsidation of one 

single-stranded genome through the five-fold symmetry pore is facilitated by 

the binding of the large Rep proteins to the ITRs and the VPs77,131. The 

translocation is assisted by the helicase domains of the smaller Rep proteins 

Rep52 and Rep40132. Infectious particles are then mostly released from the cell 

upon helper virus-induced cell lysis. 

1.1.4 RECOMBINANT AAVS 

Arguably one of the biggest advantages of AAV is the easy manipulation of 

its genome by replacing rep and cap with foreign DNA, such as a promoter and 

transgene of choice. Despite the size restrictions of ~4.7 kb, AAV leaves 

sufficient room for delivering intact gene copies, transcriptional regulators or 

gene editing tools. The only requirement for the production of such a 

recombinant AAV (rAAV) are cis-acting ITRs flanking the synthetic cargo as 

well as the supply of rep and cap in trans133. This offers the possibility to freely 

select a genome-capsid combination that is best suited for the individual task. 

To mimic an adenovirus infection needed for rAAV particle generation, a 

plasmid containing important adenoviral genes, namely E2A, E4 and VA RNA 

genes, is mandatory134. The fact that viral genes are solely present during virus 

production dramatically enhances the safety profile of rAAV. In contrast to the 

integration capability of rep/cap-bearing AAVs, recombinant vector sequences 

could not be detected in the AAVS1 locus due to the missing Rep proteins135. 

Instead it was demonstrated that the genome persists preferentially 

episomally136, guaranteeing a stable expression over years in mice137, rats138, 

monkeys138,139 and humans140. Although random integration is not fully 
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abolished141, no oncogenic effects could be detected in mice for a recombinant 

AAV2 in an extensive study by Li et al.142. 

Genome engineering led to the development of self-complementary AAV 

vectors (scAAV) with the aim to circumvent the rate-limiting step of the second 

strand generation143,144. A mutation in the trs within the ITR prevents Rep-

induced nicking of the DNA, leading to a double-stranded genome that can 

directly serve as a template for transcription145,146. Initial tests in vitro revealed 

dramatic effects of up to 140-fold increased transduction efficiency147. 

Additionally, superior transduction of muscle and liver tissue was shown in 

vivo145. The downside of these scAAVs is that the already limited packaging 

capacity is cut in half to ~2.2 kb, restricting the design of expression cassettes. 

Solutions to enhance the extent of available genetic information include 

splitting the cis-acting sequence elements in half, to later reunite the two 

fragments by either homologous recombination or RNA splicing148–151. In 

conclusion, the favorable characteristics of single-stranded and self-

complementary rAAV led to the initiation of dozens of clinical trials for 

recessive monogenic disorders over the past decades, further illustrating the 

potential impact of basic AAV biology research for future applications152. 

1.2 CAPSID ENGINEERING 

Although AAV exhibits many advantageous characteristics for successful 

use in gene therapy, concerns persist about insufficient tissue specificity and 

clearance by the host immune system. Due to the simple nature of this virus, 

the exposed capsid epitopes are directly interacting with cellular receptors and 

antibodies, promoting the search for beneficial variations in these regions. To 

address these needs, several approaches exist. For instance, the Wilson group 

is mining for natural AAV isolates in different species and thus assembling a 

comprehenisve collection of novel capsids. However, it has been shown that 

most AAV serotypes preferentially transduce the liver153, leaving room for 

improvement by utilizing technologies for the design of synthetic capsids, 

commonly referred to as capsid engineering.  

One possibility is the introduction of mutations into the cap gene in a 

random fashion by error-prone PCR. It has previously been demonstrated that 

already a single amino acid change can restore defective AAV isolates154, 

providing the rationale to screen libraries consisting of AAV mutants. Perabo et 

al. and, in the following year, Maheshri et al. made use of an AAV2-based 

mutant collection and reported evidence for an improved immune 
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evasion155,156. Since crystal structures exist for most of the commonly used AAV 

serotypes, the approach can be fine-tuned by limiting the random mutagenesis 

to regions which are important for receptor or antibody binding157,158. 

Furthermore, detailed knowledge about particle structures allows rational 

mutagenesis to, for instance, mediate immune evasion or improve capsid 

stability by masking of proteasome-associated tyrosine residues159–164. As an 

example of how beneficial a single point mutation can be, the change of 

phenylalanine to leucine in AAV6 resulted in a capsid termed AAV6.2 that 

showed enhanced transduction of murine lung tissue and human airway 

epithelium165. 

Two studies published in 2015 by the groups of Vandenberghe and Schaffer 

took a highly innovative approach to capsid engineering by aiming to discover 

ancestral AAVs through computational analysis. Both groups phylogenetically 

compared naturally occurring AAV isolates to predict common amino acids of 

putative ancestors. For positions where no clear prediction could be made, a 

library comprising the potential residues was generated and subsequently 

screened in cell lines. The most promising candidates demonstrated increased 

expression in muscle tissue for AAVC7166 and enhanced transduction of liver, 

muscle and retina for AAVAnc80L65167. The latter was studied more 

extensively in follow-up publications illustrating its great potency in the inner 

ear. AAVAnc80L65 was able to transduce all inner hair cells and the majority 

of outer hair cells in an adult murine cochlea168. Additionally, the ancestral 

vector showed a superior GFP expression in comparison to AAV1, AAV2, 

AAV6, AAV8 and AAV9 in organotypic cochlea explants169 and could rescue 

mice with Usher syndrome type 1c170. 

1.2.1 DNA FAMILY SHUFFLING 

In 1994, DNA family shuffling was introduced for the first time171 and 

eventually adapted for the AAV field by Grimm et al. in 2008172 as well as later 

in the same year by the groups of Samulski173 and Schaffer174. The technique 

facilitates the directed evolution of novel synthetic AAV capsids in a high-

throughput manner by exploiting the high homology of over 50% between the 

naturally occurring AAV serotypes (Table 1). In a first step, parental capsid 

genes undergo DNase-mediated fragmentation and subsequent primer-free 

PCR amplification. The ~300 bp-large pieces of the cap genes are capable of 

priming themselves in the elongation reaction, ultimately leading to the 

restoration of a chimeric full-length capsid sequence. Due to the shuffling of 

several parental sequences, the recombination possibilities are virtually 
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unlimited and and vastly exceed the typical library diversities of up to 107 

variants172. Cloning of the chimeric sequences into an ITR- and rep-bearing 

plasmid allows production of the viral library that can then be utilized to 

screen for chimeras with enhanced efficiency or specificity in vivo or in vitro. By 

systematically rescuing AAV genomes by PCR from the cells or organs of 

interest, chimeras with increased capability to selectively transduce these 

targets are favored. Iterative rounds further boost chances to enrich promising 

variants.  

The enormous potential of this approach was demonstrated by the isolation 

of AAVDJ in 2008, a chimera based on AAV2, AAV8 and AAV9, and by its 

high efficiency in the liver and additional cell types172. Subsequent to this work, 

several laboratories expanded the knowledge about the variant by testing its 

application in various tissues as well as by eventually solving its crystal 

structure175–178. Sparked by the success of AAVDJ, numerous groups adopted 

the technique to select novel variants in various tissues179–188. A noteworthy 

example is AAVM41, a chimera isolated after only two selection rounds from 

murine skeletal muscle that exhibits pronounced liver-detargeting as well as 

superior muscle efficiency compared to AAV6189. In 2016, Choudhury et al. 

identified a new capsid that efficiently transduces the central nervous system, 

AAVB1, and that is also more efficient than AAV9 in muscle, pancreas and 

lung190. The Kay group recently published two studies using a xenograft mouse 

model with implanted human hepatocytes for selection of clinically more 

relevant AAV chimeras. The rationale for this approach is the poor 

transduction of human hepatocytes by AAV8, despite its high potency in the 

murine liver. AAVLK03 was presented in the first publication as a promising 

variant for selective targeting of human cells and concurrent detargeting from 

murine hepatocytes191. The same vector was then outperformed in the more 

recent study by their lead candidate AAVNP59, which was 3-fold more 

efficient in human hepatocytes as compared to AAVLK03192. 

1.2.2 PEPTIDE DISPLAY 

Another approach to engineer novel AAV capsids is peptide display, 

whereby small, mostly 7-9 amino acid-long peptides are integrated into 

exposed regions of the VP proteins by modification of the cap gene. Unlike 

DNA family shuffling, this technology is not restricted to the domains 

provided by the naturally occurring serotypes but allows introducing motifs 

that are entirely new in the context of AAV. This was demonstrated for the first 

time in 1999 by inserting an integrin-targeting peptide into different putative 
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loop structures of the AAV2 capsid proteins. One mutant managed to 

successfully infect AAV2-resistant cell lines, proving the feasibility to retarget 

the vector193. Many follow-up studies were carried out afterwards that 

similarly attempted to use peptides previously isolated by phage display to 

increase AAV transduction efficiency in various cell types or tissues (Table 3).  

Table 3: AAV variants generated by rational peptide display 

Target  Serotype Insertiona  Peptide Source 

integrin AAV2 587 AGTFALRGDNPQG 193 

CD13 AAV2 588 NGRAHA 194 

HUVEC AAV2 587 SIGYPLP 195 

integrin AAV2 588 TGCDCRGDCFC 196 

SMC AAV2 587 EYHHYNK 197 

HUVEC AAV2 587 SMTPFPTSNEANLGGGS 198 

Brain AAV2 587 QPEHSST 199 

Lung AAV2 587 VNTANST 199 

MT1-MMP AAV2 587 CNHRYMQMC 200 

Muscle AAV2 587 TGASSLNIAGLS 201 

Astrocytes AAV9 588 GRGDLGLSA 202 

aInsertion describes the amino acid position after which the peptide was inserted. 

Abbreviations: AAV = adeno-associated virus, CD13 = alanyl aminopeptidase, HUVEC = 

human umbilical vein endothelial cell, MT1-MMP = membrane type 1 metalloprotease, SMC 

= vascular smooth muscle cell. 

The altered behavior of these viruses is thought to be explained by the 

disruption of the HSPG motif203,204. A peptide insertion into position 587 or 588 

of the AAV2 capsid protein is separating the essential arginines 585 and 588, 

which typically results in HSPG binding-deficient variants. Hence, detargeted 

vectors are subsequently able to utilize alternative pathways for cellular entry. 

In most cases, rationally designed variants possess limited chances to excel in 

specificity or efficiency, since the pre-selected peptides face different steric 

constraints when incorporated, for the first time, into AAV particles. Similarly, 

this was even shown for peptides selected in the context of AAV2 when 

displayed on AAV8 and AAV9205. To allow a peptide selection directly in the 

context of AAV, Perabo et al. and Müller et al. constructed random peptide 

display libraries to screen for promising peptide motifs by directed 

evolution206,207. Following the same principle as for DNA family shuffling 

(1.2.1), iterative selection rounds in the tissue or cells of interest favor 

candidates with peptide-induced transduction benefits. To monitor the 

enrichment of certain amino acid configurations, next-generation sequencing 

of the unselected and final library can nowadays be performed208. Since 2003, 
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numerous groups have adopted this technique and isolated novel, mainly 

AAV2-based vectors (Table 4). 

Table 4: AAV variants generated by random peptide display 

Target  Serotype Insertiona  Peptide Source 

Mec1 AAV2 587 AAAGENQARSAA 206 

M-07e AAV2 587 AAARGDAVGVAA 206 

HCAEC AAV2 588 GNDVRAVSA 207 

HCAEC AAV2 588 GNSSRDLGA 207 

Calu6 AAV2 588 GVTAGRAPA 209 

PC3 AAV2 588 GDLSNLTRA 209 

HSaVEC AAV2 588 GNDVRSANA 209 

HSaVEC AAV2 588 GNDVRAVSA 209 

Kasumi-1 AAV2 588 GNQVGSWSA 210 

K562 AAV2 588 GEARVRPPA 211 

CD34+ PBPC AAV2 588 GNRTWEQQA 212 

Lung AAVDJ 588 GMVNNFEWA 172 

Lung AAVDJ 588 GNSSRDLGA 172 

PymT AAV2 588 GESGLSQSA 213 

PymT AAV2 588 GDLGSARAA 213 

Lung AAV2 588 GPRSTSDPA 213 

PymT AAV2 588 GRGDLGLSA 213 

Heart AAV2 588 GVNSTRLPA 214 

HCAEC AAV9 589 GSLRSPPSA 215 

HCAEC AAV9 589 GRGDLRVSA 215 

Retina AAV2 587 LALGETTRPA 186 

Keratinocytes AAV2 587 AAAPRGDLAPAA 216 

Retina AAV8 586 unknown 217 

Lung AAV2 588 GESGHGYFA 208 

Brain AAV2 588 GNRGTEWDA 218 

Brain AAV9 588 TLAVPFK 219 

Brain AAV9 588 YTLSQGW 219 

Brain AAV9 588 QAVRTSL 220 

aInsertion describes the amino acid position after which the peptide was inserted. 

Abbreviations: AAV = adeno-associated virus, Calu6 = mouse lung carcinoma cell line, 

CD34+ PBPC = primary human CD34-positive peripheral blood progenitor cells, HCAEC = 

human coronary artery endothelial cells, K562 = human myelogenous leukemia cell line, 

Kasumi-1 = human acute myeloid leukemia cell line, M-07e = human acute 

megakaryoblastic leukemia cell line, Mec1 = human B-cell chronic lymphocytic leukemia cell 

line, PC3 = human prostate carcinoma cell line, PymT = polyoma middle T antigen-induced 

breast cancer cells. 
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Of note, Grimm et al. made use of their newly-discovered AAVDJ as 

backbone for peptide insertions instead of the less efficient (in vivo) AAV2 in 

order to target the lung172. Varadi and colleagues likewise replaced AAV2 by 

the highly potent AAV9 and succeeded at improving its efficiency in 

endothelial cells by 40-fold when using a GSLRSPPSA or GRGDLRVSA 

peptide215. In 2016, two publications proved that AAV2 still remains a vital 

serotype for directed capsid evolution by random peptide display. The most 

promising peptide in the respective screenings, that has been isolated after five 

selection rounds, dramatically changed the tropism of the parental virus to the 

lung208 and the brain218, indicating a bigger influence of the peptide itself 

compared to the serotype. The findings reported in another 2016 study caught 

particular attention of many in the AAV field. Deverman et al. established a 

novel random peptide screening pipeline by using a Cre recombinase-

transgenic mice strain specifically driving transgene expression of loxP site-

comprising AAV genomes in astrocytes. The isolated lead candidate was able 

to robustly transduce the brain of C57BL/6J mice with superior efficiency as 

compared to the benchmark AAV9219. One year later, a slightly modified 

version of the peptide proved to further enhance the efficiency in the brain220. 

In conclusion, in peptide display, only little changes are made to the cap 

gene in contrast to the broader alterions caused by DNA family shuffling. 

Nevertheless, the observation that even these subtle modifications can result in 

significant retargeting also make this technology highly interesting for the 

development of tailored AAV vectors. 

1.3 BARCODED AAVS 

Synthetic AAV vectors isolated from capsid selection strategies such as 

mutagenesis, DNA family shuffling or peptide display exemplify the 

enormous potency of these techniques to enhance efficiency and specificity. 

However, even after several selection rounds in the target tissue or cell, 

hundreds or thousands of interesting candidates often remain and, complicate 

the final decision for a single variant. Illumina or PacBio221 next generation 

sequencing nowadays facilitate this choice by offering the possibility to 

monitor the enrichment of certain favorable patterns. Based on this 

information, few lead candidates are usually selected and validated by 

individually testing them in the target of interest. Ideally, such validation 

experiments include essential benchmarks from the literature as controls 

concurrently increasing the required time, costs and amounts of animals.  
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A solution for these issues was presented by Adachi et al. in 2014 who 

introduced a barcode-based parallel screening system for novel AAV 

variants222. To this end, DNA barcodes were integrated into the AAV genome 

after the rep and cap genes enabling a tracking of the cognate capsids in vivo by 

detecting the capsid-assigned barcodes in the tissues. A screening of such 

barcoded AAV libraries dramatically cuts down animal numbers and 

downstream processing of massive sample amounts, while permitting a 

concurrent head-to-head comparison of all candidates in the same organism. 

By utilizing this approach, the group could identify amino acids in the AAV 

capsid that are important for receptor binding, tropism and neutralization. 

Later that year, Marsic and colleagues published a highly similar strategy that 

deviated in the construct design. Rather than incorporating the barcode into a 

wild type genome, it was placed into a recombinant AAV comprising a 

ubiquitously-expressing CBA promoter driving a luciferase and mApple 

reporter gene223. Next to the sequencing-based tracking of the barcode and thus 

capsid, this allows a simultaneous detection of the bioluminescence and 

fluorescence as functional readouts. The power of this adapted technique was 

exemplified in a separate paper in 2015 by the same group224. Moreover, the 

Björklund group presented a high-throughput approach where a collection of 

random barcode sequences can be linked to a plasmid library consisting of cis-

regulatory elements (CRE). Ultimately, this generates libraries with several 

million unique barcodes placed in the 3’UTR of the gene cassette, therefore also 

permitting tracking of the viral transcripts. By sequencing the initial library, a 

link between the barcode sequence (unknown until this point) and the CRE can 

be established, facilitating subsequent identification in the tissues225. 

1.4 AIM OF THE THESIS 

The aim of this work was to establish a pipeline for the parallel in vivo 

screening of novel pre-selected capsid variants in a high-throughput manner, 

by exploiting barcode-based tracking of the individual candidates in mice. 

Based on the knowledge provided by the literature (chapter 1.3) the barcode 

was placed into the 3’UTR of a reporter cassette enabling concomitant 

detection of the capsid on the cDNA and DNA level. Furthermore, the goal 

was to set up a comprehensive normalization strategy for the next generation 

sequencing data, to quantitatively and simultaneously characterize capsid 

behavior in terms of specificity and efficiency. The collection of variants to be 

screened comprised over 70 novel peptide-modified derivatives of natural 

AAV isolates that had already been studied extensively in our group in vitro. 

Exposing these capsids to the complex physiological environment of living 
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animals would ideally identify tissue-tropic or highly active vectors for 

potential use in clinical applications. Importantly, to improve the stringency of 

this screening and the results, the most popular benchmarks from the literature 

were included, such as AAVDJ, AAVLK03, AAVAnc80L65 and many others. 

This promised the possibilities to not only validate the pipeline by reproducing 

published results, but to potentially also identify and characterize superior 

candidates from our own pool. 

 



 

2 MATERIALS 

2.1 LABORATORY EQUIPMENT 

Table 5: Laboratory equipment 

Name Vendor 

4K15C Merck KGaA 

Accu-jet® pro BRAND GmbH & Co. KG 

Allegra X-12 Beckman Coulter 

Aqualine AL 12 LAUDA 

Aqualine AL 5 LAUDA 

Avanti J-26 XP Beckman Coulter 

Axio Imager.A2 Carl Zeiss AG 

Axio Scan.Z1 Carl Zeiss AG 

Axiocam 503 color Carl Zeiss AG 

Basic Meter PB-11 Sartorius AG 

CanoScan LiDE 70 Canon Inc. 

Captair bio erlab 

CE Module Bio-Rad Laboratories, Inc. 

Centrifuge 5415R Eppendorf AG 

Centrifuge 5417R Eppendorf AG 

Centrifuge 5424R Eppendorf AG 

Centrifuge 5430R Eppendorf AG 

Centrifuge 5810R Eppendorf AG 

CKX41SF Olympus Corporation 

Countess Invitrogen AG 

Cryostar™ NX70 Thermo Fisher Scientific 

Cytation 5 imaging reader BioTek Instruments, Inc. 

Cytomics FC 500 MPL Beckman Coulter 

E1-ClipTip 12.5, 200, 300, 1250 Thermo Fisher Scientific 

E835 Consort 

E-H2 Febikon Labortechnik GmbH 

epMotion® 96 Eppendorf AG 

FlexCycler Analytik Jena AG 

Forma -86 °C ULT Freezer Thermo Fisher Scientific 

Fragment Analyzer™ Advanced Analytical Technologies, Inc. 

Function Line Thermo Fisher Scientific 

Galaxy MiniStar VWR International 
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Gel Doc XR Bio-Rad Laboratories, Inc 

GenePulser Xcell™ Bio-Rad Laboratories, Inc. 

HB-202 Biozym Scientific GmbH 

HERAcell 150 Thermo Fisher Scientific 

HERAsafe KS12 Thermo Fisher Scientific 

HXP 120V Carl Zeiss AG 

KB 650-2NM KERN & SOHN GmbH 

MagMAX™ Express 96 Thermo Fisher Scientific 

Mastercycler Eppendorf AG 

Mastercycler gradient Eppendorf AG 

Mastercycler pro S Eppendorf AG 

MF 22 Scotsman 

Microlab STAR Hamilton Robotics GmbH 

Microwave oven Sharp Electronics 

Mixing Block MB-102 BIOER Technology 

MPS C1000 Labnet International, Inc. 

MSH basic yellow line IKA-WERKE GmbH &Co. KG 

Multitron INFORS-HT 

NANODROP 2000 Thermo Fisher Scientific 

NextSeq™ 500 Illumina, Inc. 

Optima L-90K Ultracentrifuge Beckman Coulter 

Owl EasyCast B1 Thermo Fisher Scientific 

P2, P10, P20, P200, P1000 Gilson, Inc. 

P93D Mitsubishi Electric Corporation 

PC Module Bio-Rad Laboratories, Inc. 

PCR Plate Spinner VWR International 

peqSTAR 96 Universal VWR International 

Precellys 24-Dual Bertin Instruments 

Premium Freezer -20 °C Liebherr-International AG 

Premium Fridge 4 °C Liebherr-International AG 

QuantStudio™ 6 Flex Real-Time 

PCR System 

Thermo Fisher Scientific 

Refractometer Model RMI Exacta + Optech 

RG-6000 Corbett Research 

Rotor 70.1TI Beckman Coulter 

Rotor 70TI Beckman Coulter 

Shaker DOS-10L neoLab Migge GmbH 

Sonorex Super RK31 BANDELIN electronic GmbH & Co. KG 

Sprout Mini Centrifuge Heathrow Scientific 

StepOnePlus Applied Biosystems 

Synergy™ HT BioTek Instruments, Inc. 
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Tube Sealer 342428 Beckman Coulter 

TW12 water bath Julabo GmbH 

Ultraviolet Sterilizing PCR 

Workstation 

VWR International 

U-RFL-T Olympus Corporation 

UST-30M-8E Biostep GmbH 

UVT-S-AR Grant Instruments 

Vac-Man® Promega GmbH 

Veriti 96 Well Thermal Cycler Thermo Fisher Scientific 

Vortex-Genie 2 Scientific Industries, Inc. 

2.2 LABORATORY MATERIAL 

Table 6: Laboratory material 

Name Vendor Catalog# 

0.2ml 8-Strip PCR Tube STARLAB International 

GmbH 

I1402-2900 

0.2ml 8-Strip PCR Tube STARLAB International 

GmbH 

A1402-3700 

1.5 ml tube STARLAB International 

GmbH 

E1415-2230 

500ml Centrifuge Tube Corning, Inc. 431123 

5PRIME Phase Lock Gel Quantabio 2302830 

96 Well Cell Culture Plate Greiner Bio One 655180 

Amicon Ultra-15 Merck KGaA UFC910008 

Biosphere® Fil. Tip 10 µl Sarstedt AG & Co. KG 70.1130.210 

Biosphere® Fil. Tip 100 µl Sarstedt AG & Co. KG 70.760.212 

Biosphere® Fil. Tip 1000 µl Sarstedt AG & Co. KG 70.762.211 

Biosphere® Fil. Tip 20 µl Sarstedt AG & Co. KG 70.760.213 

Biosphere® Fil. Tip 200 µl Sarstedt AG & Co. KG 70.760.211 

Cell Culture Flask 550 ml Greiner Bio One 660175 

Cell lifter Corning, Inc. CLS3008 

CELLSTAR® 15 ml Greiner Bio One 188271 

Centricon Plus-70 Merck KGaA UFC710008 

CK28 2 ml Bertin Instruments P000911-LYSK0-A 

CK28 7 ml Bertin Instruments P000935-LYSK0-A 

Combitips advanced® 0.5 ml Eppendorf AG 0030089421 

Combitips advanced® 1.0 ml Eppendorf AG 0030089430 

Combitips advanced® 10 ml Eppendorf AG 00300089464 
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Combitips advanced® 2.5 ml Eppendorf AG 0030089448 

Combitips advanced® 5.0 ml Eppendorf AG 0030089456 

Costar Stripette 25 ml Corning, Inc. CLS4489 

Costar Stripette 50 ml Corning, Inc. CLS4490 

Countess™ cell counting 

chamber slides 

Thermo Fisher Scientific C10283 

Disposable Scalpel FEATHER Safety Razor 

Co., Ltd. 

02.001.30.010 

Easystrainer 70 µm Greiner Bio One 

International GmbH 

542070 

Electroporation cuvettes Biozym Biotech Trading 

GmbH 

748050 

Falcon™ 50 ml Corning, Inc. 352070 

Inoculation Loop Greiner Bio One 731170 

Luer-Lok™ 3ml Syringe BD Biosciences 309658 

Luer-Lok™ 5ml Syringe BD Biosciences 309649 

Micro tube 0.5ml Sarstedt AG & Co. KG 72.699 

Micro tube 1.5ml Sarstedt AG & Co. KG 72.690.001 

Micro-Fine™ + Demi BD Biosciences 324826 

Microlance 3™ BD Biosciences 301500 

Nunclon™ Delta Surface Thermo Fisher Scientific 168381 

Optiseal Polypropylene 

Centrifuge Tubes 

Beckman Coulter 361625 

Pasteur pipette BRAND GmbH & Co. 

KG 

747720 

Petri Dish Greiner Bio One 633180 

Pierce Protein Concentrator Thermo Fisher Scientific 88537 

Pipette 10 ml Greiner Bio One 607180 

Pipette 5 ml Sarstedt AG & Co. KG 86.1253.001 

Pipette Tips 10-200 µl Greiner Bio One 739290 

Pipette Tips 200-1000 µl Greiner Bio One 740290 

QiaShredder Qiagen N.V. 79654 

Quali-Pipette tips 10 µl Kisker Biotech GmbH & 

Co. KG 

GC.TIPS.B 

Quick-Seal Centrifuge Tubes Beckman Coulter Z51218SCA 

Re-Seal™ Polyallomer 

Centrifuge Tubes 

Seton Scientific Corp. 9041 

SafeSeal micro tube 2ml Sarstedt AG & Co. KG 72.695.500 

SafeSeal tube 1.5ml Sarstedt AG & Co. KG 72.706 

Slyde-A-Lyzer™ G2 Dialyse 

Cassettes 

Thermo Fisher Scientific 87736 



CHEMICALS 23 

 

Strip Tubes and Caps, 0.1 ml Qiagen N.V. 981103 

Superfrost Ultra Plus® Thermo Fisher Scientific J4800AMNZ 

TissueTek® Cryomold® Sakura Finetek Europe 

B.V. KvK 

4557 

VacConnectors Qiagen N.V. 19407 

2.3 CHEMICALS 

Table 7: Chemicals 

Name Vendor Catalog# 

Acetic acid Merck KGaA 33209 

Adenosine triphosphate (ATP) Merck KGaA A2383 

Agarose Biozym Biotech Trading GmbH 840004 

Ampicillin Carl Roth GmbH + Co. KG K029.2 

Aqua ad injectabilia B. Braun Melsungen AG - 

Bacto™ agar BD Biosciences 214010 

Bacto™ tryptone BD Biosciences 211705 

Bacto™ yeast extract BD Biosciences 212750 

Bovine serum albumin (BSA) Carl Roth GmbH + Co. KG 8076 

Calcium chloride (CaCl2) Carl Roth GmbH + Co. KG HN04.3 

Cesium chloride (CsCl2) Carl Roth GmbH + Co. KG 8627.2 

DEPC-Treated Water Thermo Fisher Scientific AM9916 

Dimethyl sulfoxide (DMSO) Thermo Fisher Scientific F515 

Disodium phosphate 

(Na2HPO4) 

AppliChem GmbH A3567 

Dithiothreitol (DTT) Thermo Fisher Scientific 15508013 

Ethanol (EtOH) VWR International 20821-330 

Ethidium bromide Merck KGaA E1510 

Ethylenediaminetetraacetic 

acid 0.1 M (EDTA) 

Honeywell International Inc. 34550 

Glucose Merck KGaA 1.08342 

Glycerol VWR International 24388.260 

HEPES AppliChem GmbH A3268 

Hydrochloric acid (HCl) Merck KGaA 35328 

Isopropanol Different manufacturer - 

Magnesium chloride (MgCl2) AppliChem GmbH A3618 

Magnesium sulfate (MgSO4) Merck KGaA 1.05886 

Monopotassium phosphate 

(KH2PO4) 

AppliChem GmbH A3620 
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Nuclease-Free Water Qiagen N.V. 1039498 

OptiPrep™ PROGEN Biotechnik GmbH 1114542 

Phenol red Merck KGaA 1.07241 

Polyethylene glycol (PEG) Merck KGaA 81260 

Polyethylenimine (PEI) Polysciences, Inc. 23966-2 

Potassium chloride (KCl) AppliChem GmbH A3582 

Sodium chloride (NaCl) Merck KGaA 31434 

Sodium hydroxide (NaOH) Merck KGaA 35256 

Sucrose Carl Roth GmbH + Co. KG 4661 

TRIS Carl Roth GmbH + Co. KG 4855.2 

TWEEN®20 Merck KGaA P9416 

β-Mercaptoethanol (β-ME) Merck KGaA M3148 

2.4 BUFFERS AND SOLUTIONS 

Table 8: Commercial buffers and solutions 

Name Vendor Catalog# 

1 Kb Plus DNA Ladder Thermo Fisher Scientific 10787018 

Agencourt AMPure XP Beckman Coulter A63882 

Agencourt RNAClean XP Beckman Coulter A63987 

Buffer RLT Qiagen N.V 79216 

CD11b MicroBeads Miltenyi Biotec 130-049-601 

CD11c MicroBeads 

UltraPure 

Miltenyi Biotec 130-108-338 

CD19 MicroBeads Miltenyi Biotec 130-052-201 

CD3ε MicroBead Kit Miltenyi Biotec 130-094-973 

Chloroform:Isoamyl alcohol Merck KGaA 25666 

CutSmart® Buffer New England Biolabs B7204S 

DPBS Thermo Fisher Scientific 14190 

DMEM Thermo Fisher Scientific 61965 

dNTP Mix Thermo Fisher Scientific R0193 

Fetal bovine serum Merck KGaA F7524 

GAPDH Primer/Probe Mix 

(60X) 

Thermo Fisher Scientific Mm00186825_cn 

Gel loading dye Purple (6X) New England Biolabs B7024S 

Illumina Resuspension 

Buffer 

Illumina, Inc. 15026770 

NEBuffer 2 New England Biolabs B7002S 

Penicillin-Streptomycin Thermo Fisher Scientific 15140-122 
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Phenol-chloroform-isoamyl 

alcohol mixture 

Merck KGaA 77617 

Phusion HF buffer (5X) Thermo Fisher Scientific F518L 

POLR2A Primer/Probe Mix 

(20X) 

Thermo Fisher Scientific Mm00839502_m1 

ProLong™ Gold antifade 

reagent with DAPI 

Thermo Fisher Scientific P36935 

Red Blood Cell Lysis 

Solution 

Miltenyi Biotec 130-094-183 

RNAlater Qiagen N.V 76106 

RPMI Thermo Fisher Scientific 61870 

T4 DNA Ligase Reaction 

buffer 

New England Biolabs B0202S 

Tango Buffer (10X) Thermo Fisher Scientific BY5 

TE Buffer Thermo Fisher Scientific 12090015 

TissueTek® O.C.T 

Compound 

Sakura Finetek Europe 

B.V. KvK 

4583 

Trypan Blue stain 0.4% Thermo Fisher Scientific T10282 

Trypsin-EDTA (0.25%) Thermo Fisher Scientific 25200-056 

4% PFA Solution in PBS Booster Biological 

Technology 

AR1068 

 

Table 9: Self-made buffers and solutions 

Name Composition  

15% Iodixanol 25% (v/v) OptiPrep™ 

 75% (v/v) PBS-MK-NaCl 

25% Iodixanol 41.56% (v/v) OptiPrep™ 

 58.19% (v/v) PBS-MK 

 0.25% (v/v) Phenol red stock solution 

40% Iodixanol 66.67% (v/v) OptiPrep™ 

 33.33% (v/v) PBS-MK 

60% Iodixanol 99.75% (v/v) OptiPrep™ 

 0.25% (v/v) Phenol red stock solution 

Benzonase Buffer 150 mM NaCl 

 50 mM TRIS-HCl (pH 8.5) 

 2 mM MgCl2 

Lysogeny broth (LB) agar 1.5% (w/v) Bacto™ agar 

 1% (w/v) NaCl 

 1% (w/v) Bacto™ tryptone 
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 0.5% (w/v) Bacto™ yeast extract 

Lysogeny broth (LB) media 1% (w/v) NaCl 

 1% (w/v) Bacto™ tryptone 

 0.5% (w/v) Bacto™ yeast extract 

MACS buffer (pH 7.2) solvent PBS (1X) 

 0.5% (w/v) BSA 

 2 mM EDTA 

Na-HEPES resuspension buffer 150 mM NaCl 

 50 mM HEPES 

 25 mM EDTA 

PBS (1X) 137 mM NaCl 

 10 mM Na2HPO4 

 3 mM KCl 

 2 mM KH2PO4 

PBS-MK solvent PBS (1X) 

 2.5 mM KCl 

 1 mM MgCl2 

PBS-MK-NaCl solvent PBS-MK 

 1 M NaCl 

PEG-NaCl solution 40% (w/v) PEG 

 1.915 M NaCl 

Phenol red stock solution 0.5% Phenol red 

SOB media 2% (w/v) Bacto™ tryptone 

 0.5% (w/v) Bacto™ yeast extract 

 0.05% (w/v) NaCl 

 10 mM MgSO4 

 10 mM MgCl2 

 2.5 mM KCl 

SOC media solvent SOB media 

 20 mM Glucose 

Sucrose solution (30%) solvent DPBS 

 30% (w/v) Sucrose 

TAE Buffer 5.71% (v/v) Acetic acid 

 2 M TRIS 

 50 mM EDTA 

Topping solution solvent Na-HEPES resuspension 

buffer 

 3.27 M CsCl (0.55 g/ml) 
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2.5 ENZYMES 

Table 10: Enzymes 

Name Vendor Catalog# 

Antarctic Phosphatase New England Biolabs M0289S 

Benzonase Merck KGaA 1.01695.0001 

BsaI-HF New England Biolabs R3535S 

ClaI New England Biolabs R0197S 

Esp3I Thermo Fisher Scientific ER0451 

HindIII-HF New England Biolabs R3104S 

NotI-HF New England Biolabs R3189S 

NsiI New England Biolabs R0127S 

OneTaq® Quick-Load MM New England Biolabs M0486S 

Phusion Polymerase HF Thermo Fisher Scientific F530L 

Phusion Polymerase HS Thermo Fisher Scientific F549L 

PstI-HF New England Biolabs R3140S 

QuantiFast PCR Master Mix Qiagen N.V. 1044234 

SfiI New England Biolabs R0123S 

SpeI New England Biolabs R0133S 

T4 DNA Ligase New England Biolabs M202L 

XmaI New England Biolabs R0180S 

XmnI New England Biolabs R0194S 

2.6 KITS 

Table 11: Kits 

Name Vendor Catalog# 

Allprep DNA/RNA 96 Kit Qiagen N.V 80311 

DNA Clean & Concentrator™ Zymo Research D4013 

High-Capacity cDNA Reverse 

Transcription Kit 

Thermo Fisher Scientific 4368813 

MinElute PCR Purification Kit Qiagen N.V. 28006 

NextSeq 500/550 High Output 

Kit v2 (75 cycles) 

Illumina, Inc. FC-404-2005 

NucleoBond® Xtra Maxi Macherey-Nagel GmbH & 

Co. KG 

740414.100 

NucleoSpin Plasmid Miniprep 

Kit 

Macherey-Nagel GmbH & 

Co. KG 

740588.250 
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Ovation Low Complexity 

Sequencing System 

NuGEN Technologies, Inc. 9092-256 

Pure Yield Plasmid Midiprep 

System 

Promega GmbH A2495 

PureLink HiPure Plasmid 

Gigaprep Kit 

Thermo Fisher Scientific K210009 

Qiaprep Spin Miniprep Kit Qiagen N.V. 27106 

QIAquick Gel Extraction Kit Qiagen N.V 28706 

QIAquick PCR Purification Kit Qiagen N.V 28104 

Quant-iT™ PicoGreen™ 

dsDNA Assay Kit 

Thermo Fisher Scientific P7589 

RNase-free DNase Set Qiagen N.V 79254 

SensiMix™ II Probe Kit Bioline Bio-83020 

Standard Sensitivity NGS 

Fragment Analysis Kit 

Advanced Analytical 

Technologies, Inc. 

DNF-473 

TOPO™ TA Cloning™ Kit Thermo Fisher Scientific 450641 

2.7 LABORATORY ANIMALS 

The inbred strain C57BL/6J (Janvier Labs) was used for in vivo experiments. 

Mice were kept and handled in accordance with the animal proposal G-126/14 

and G-89/16. 

2.8 BACTERIAL STRAINS 

Table 12: Bacterial strains 

Name Vendor Catalog# 

5-alpha Competent E.coli New England Biolabs C2987H 

MAX Efficiency™ DH5α™ 

Competent Cells 

Thermo Fisher Scientific 18258012 

MegaX DH10B™ T1R 

Electrocomp™ Cells 

Thermo Fisher Scientific C640003 

One Shot® ccdB Survival™ 2 T1R 

Competent Cells 

Thermo Fisher Scientific A10460 
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2.9 DNA  

2.9.1 PEPTIDE OLIGONUCLEOTIDES 

Oligonucleotides listed in Table 13 were used for oligonucleotide annealing 

and subsequent peptide insertion cloning (3.2.2). Lowercase letters indicate 

overhangs. 

Table 13: Peptide oligonucleotides 

Name Sequence (5’ to 3’) 

A1_fw AGGCATGCCATTAGGAGCGGCAGGCGCCCagg 

A1_rev GGGCGCCTGCCGCTCCTAATGGCATGCCTctc 

A2_fw AGGCAACTACTCCAGAGGAGTGGACGCCCagg 

A2_rev GGGCGTCCACTCCTCTGGAGTAGTTGCCTctc 

A6_fw AGGCAACGAGGCGCGGGTCCGGGAGGCCCagg 

A6_rev GGGCCTCCCGGACCCGCGCCTCGTTGCCTctc 

BR1_fw AGGCAATAGGGGGACGGAGTGGGACGCCCagg 

BR1_rev GGGCGTCCCACTCCGTCCCCCTATTGCCTctc 

L1_fw AGGCGAGTCAGGACATGGATATTTTGCCCagg 

L1_rev GGGCAAAATATCCATGTCCTGACTCGCCTctc 

P2_fw TGGCTGCGATTGCCGCGGCGATTGCTTTTGCGCCCagg 

P2_rev GGGCGCAAAAGCAATCGCCGCGGCAATCGCAGCCActc 

P4_fw TGGCAACGATGTGCGCAGCGCGAACGCCCagg 

P4_rev GGGCGTTCGCGCTGCGCACATCGTTGCCActc 

P5_fw TGGCAACGATGTGCGCGCGGTGAGCGCCCagg 

P5_rev GGGCGCTCACCGCGCGCACATCGTTGCCActc 

2.9.2 OLIGONUCLEOTIDES 

Table 14 shows the oligonucleotides which were used for overlap extension 

PCR, sequencing, golden gate cloning and regular PCR. Uppercase letters 

indicate binding regions, lowercase letters visualize overhangs. Restriction 

digest sites are marked by an underscore. 
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Table 14: Oligonucleotides 

Name Sequence (5’ to 3’) 

#1310_AAV cap 4 

correct pos.1630 fw 

CTTTGCGGGGCCTAAACAGAACGGCAAC 

#1311_AAV cap 4 

correct pos.1630 rev 

GTTGCCGTTCTGTTTAGGCCCCGCAAAG 

#1318_Rep2 rev 

primer pos. 1827 

TCATCCAAATCCACATTGAC 

#1319_Rep2 rev 

primer pos. 944 

CGTGGCCCATCCCAGAAAG 

#1424_M13 Rev CAGGAAACAGCTATGAC 

#178_DJrev (real) GTCGCAAAACACTCACGTGACCTC 

#36_Pos680For13689 GAAATTGGCATTGCGATTCC 

#37_Pos682For45 GATTGGCATTGCGATTCCAC 

#412_CMV rv ccgttaattaaGGCTGGATCGGTCCCGGTGTCTTC 

#651_13_eGFPrev TCCTCCTTGAAGTCGATGC 

#652_14_eGFPfw ATCTTCTTCAAGGACGACG 

#653_15-

CMVrevCTR 

TTGATGTACTGCCAAGTGG 

#678_pos. 1990 Amp 

Rev 

GCCTCACTGATTAAGCATTGG 

#679_pos. 1205 rep 

Rev 

GCCTATGGAAAAACGCCAGCAAC 

#680_E4 Rev pos. 

35156 Ad 2 

CCTGTTGTAAGACAGGCTTC 

#682_E2A-1 Rev pos. 

22320 

GGCTGCGGAAGTAGGGCGAG 

#683_E2A-2 pos. 

26966 

CAAAGCAGGGGCCAAGAAC 

#684_E2A-3 For CCAACTCCATGCTTAACAGTC 

#685_E2A-end For GAAGATTTGAGGAAGTTGTGG 

#686_Rep upstr. GAGTTTGATTAAGGTACGGTG 

#688_E4-3 Rev CAGTTTGCCTTTTGGAAGCC 

#703_E2A-4 For CACTTAAGCTCGCCTTCGATCTCAG 

#704_E2A-5 For GACAGCCTAACCGCCCCCTTTG 

#705_E2A-6 For CAGTTGGCGATGAGCAGCTG 

#706_E2A-7 For GTGGACGTCGGCTTACCTTC 

#707_E4-4 For GATGATCCATGGTTACGAGTCC 

#708_bla For GGTCTGACGCTCAGTGGAACG 

#792_pEGFP_C2_FP GATCACATGGTCCTGCTG 
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#822_LSeqFor GATCTGGTCAATGTGGATTTG 

#828_M13Rev GGAAACAGCTATGACCATG 

#833_Rep2for AGACGCGGAAGCTTCGATCAA 

#835_CMV-F CGCAAATGGGCGGTAGGCGTG 

AAV2-MTP_fw acaggagcttcctccctcaacatcgccggattaagtAGACAAGCAG

CTACCGCAGATG 

AAV2-MTP_rev acttaatccggcgatgttgagggaggaagctcctgtGTTGCCTCTCT

GGAGGTTGG 

AAV9_K1_fw gccaagcaggcagtttgcgatccccgccatccgcccaggcggccACCG

GCTGGGTTCAAAACC 

AAV9_K1_rev ggccgcctgggcggatggcggggatcgcaaactgcctgcttggcCACT

CTGGTGGTTTGTGGCC 

AAV9_K3_fw gccaagcaggccgaggtgacctcagggtatccgcccaggcggccACCG

GCTGGGTTCAAAACC 

AAV9_K3_rev ggccgcctgggcggataccctgaggtcacctcggcctgcttggcCACTC

TGGTGGTTTGTGGCC 

AAV9_LD_fw GAATTTGCTTGGGCTGCAGCTTCTTCTTGG 

AAV9_LD_rev CCAAGAAGAAGCTGCAGCCCAAGCAAATTC 

AAV9_PHP. eB _rev cttaaaaggcaccgccaaagtcccatcACTCTGGTGGTTTGTGG

CCAC 

AAV9_PHP. S _rev caaagacgtcctaaccgcctgTTGGGCACTCTGGTGGTTTGT

G 

AAV9_PHP.A_fw tatactttgtcgcagggttggGCACAGGCGCAGACCGG 

AAV9_PHP.A_rev ccaaccctgcgacaaagtataTTGGGCACTCTGGTGGTTTGT

G 

AAV9_PHP.eB_fw gatgggactttggcggtgccttttaagGCACAGGCGCAGACCG

G 

AAV9_PHP.S_fw caggcggttaggacgtctttgGCACAGGCGCAGACCGG 

Barcode #2 TGACGTCTCTGCTCNNNNNNNNNNNNNNNCAG

GCGAGACGTGACACTGC 

Barcode #2_rv GCAGTGTCACGTCTCGCCTG 

EGFP_fw cgtatgcggccgcACCGGTCGCCACCATGG 

EGFP_rev agctgcatcgatTTACTTGTACAGCTCGTCCATGCCG 

NGS_Fw4 ATCACTCTCGGCATGGACGAGC 

NGS_Rev3 GGCTGGCAACTAGAAGGCACA 

qPCR_EGFP_fw GAGCGCACCATCTTCTTCAAG 

qPCR_EGFP_rev TGTCGCCCTCGAACTTCAC 

qPCR_EYFP_fw GAGCGCACCATCTTCTTCAAG 

qPCR_EYFP_rev TGTCGCCCTCGAACTTCAC 

Rep2_front_rev GGGAGCAAGTAATTGGGGATG 

WHc1_NISrepair_fw GGGACCGTGGCAGTCAATTTCCAGGGC 
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WHc1_NISrepair_rev GCCCTGGAAATTGACTGCCACGGTCCC 

WHc12_repair_fw CAAGTACAACCACGCCGACGCCGAGTTCC 

WHc12_repair_rev GGAACTCGGCGTCGGCGTGGTTGTACTTG 

2.9.3 PROBES 

Table 15: Probes 

Name Sequence (5’ to 3’) 

EYFP_Probe FAM-ACGACGGCAACTACA-NFQ 

EGFP_Probe FAM-ACGACGGCAACTACA-BHQ1 

2.9.4 CAPSID HELPER 

Table 16: Capsid helper 

Plasmid# Name Source 

#0193 WH-Rep2-CapDJ Eike Kienle 

#0827 WH-Rep2-Cap9_P1 Eike Kienle 

#0829 WH-Rep2-Cap9_P3 Eike Kienle 

#1539 WH-Rep2-CapLK03 Marc Kay 

#1610 WH-Rep2-Cap2NIS Eike Kienle 

#1611 WH-Rep2-Cap3NIS Eike Kienle 

#1612 WH-Rep2-Cap4mutNIS Eike Kienle 

#1613 WH-Rep2-Cap5NIS Eike Kienle 

#1614 WH-Rep2-Cap6NIS Eike Kienle 

#1615 WH-Rep2-Cappo1NIS Eike Kienle 

#1729 WH-Rep2-Cap1wt Eike Kienle 

#1730 WH-Rep2-Cap1_P2 This thesis 

#1731 WH-Rep2-Cap1_P4 This thesis 

#1732 WH-Rep2-Cap1_P5 This thesis 

#1733 WH-Rep2-Cap1_A1 This thesis 

#1734 WH-Rep2-Cap1_A2 This thesis 

#1735 WH-Rep2-Cap1_A6 This thesis 

#1736 WH-Rep2-Cap2wt Eike Kienle 

#1737 WH-Rep2-Cap2_P2 Eike Kienle 

#1738 WH-Rep2-Cap2_P4 Eike Kienle 

#1739 WH-Rep2-Cap2_P5 This thesis 

#1740 WH-Rep2-Cap2_A1 This thesis 

#1741 WH-Rep2-Cap2_A2 This thesis 
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#1742 WH-Rep2-Cap2_A6 This thesis 

#1743 WH-Rep2-Cap3bwt Eike Kienle 

#1744 WH-Rep2-Cap3b_P2 Eike Kienle 

#1745 WH-Rep2-Cap3b_P4 Eike Kienle 

#1746 WH-Rep2-Cap3b_P5 This thesis 

#1747 WH-Rep2-Cap3b_A1 This thesis 

#1748 WH-Rep2-Cap3b_A2 This thesis 

#1749 WH-Rep2-Cap3b_A6 This thesis 

#1750 WH-Rep2-Cap4wt Stefanie Große 

#1751 WH-Rep2-Cap4_P2 This thesis 

#1752 WH-Rep2-Cap4_P4 This thesis 

#1753 WH-Rep2-Cap4_P5 This thesis 

#1754 WH-Rep2-Cap4_A1 This thesis 

#1755 WH-Rep2-Cap4_A2 This thesis 

#1756 WH-Rep2-Cap4_A6 This thesis 

#1757 WH-Rep2-Cap5wt Eike Kienle 

#1758 WH-Rep2-Cap5_P2 Eike Kienle 

#1759 WH-Rep2-Cap5_P4 Eike Kienle 

#1760 WH-Rep2-Cap5_P5 This thesis 

#1761 WH-Rep2-Cap5_A1 This thesis 

#1762 WH-Rep2-Cap5_A2 This thesis 

#1763 WH-Rep2-Cap5_A6 This thesis 

#1764 WH-Rep2-Cap6wt Eike Kienle 

#1765 WH-Rep2-Cap6_P2 Eike Kienle 

#1766 WH-Rep2-Cap6_P4 Eike Kienle 

#1767 WH-Rep2-Cap6_P5 This thesis 

#1768 WH-Rep2-Cap6_A1 This thesis 

#1769 WH-Rep2-Cap6_A2 This thesis 

#1770 WH-Rep2-Cap6_A6 This thesis 

#1771 WH-Rep2-Cap7wt Eike Kienle 

#1772 WH-Rep2-Cap7_P2 Eike Kienle 

#1773 WH-Rep2-Cap7_P4 Eike Kienle 

#1774 WH-Rep2-Cap7_P5 Eike Kienle 

#1775 WH-Rep2-Cap7_A1 Eike Kienle 

#1776 WH-Rep2-Cap7_A2 Eike Kienle 

#1777 WH-Rep2-Cap7_A6 Eike Kienle 

#1778 WH-Rep2-Cap8wt Eike Kienle 

#1779 WH-Rep2-Cap8_P2 Eike Kienle 

#1780 WH-Rep2-Cap8_P4 Eike Kienle 

#1781 WH-Rep2-Cap8_P5 Eike Kienle 

#1782 WH-Rep2-Cap8_A1 Eike Kienle 
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#1783 WH-Rep2-Cap8_A2 Eike Kienle 

#1784 WH-Rep2-Cap8_A6 Eike Kienle 

#1785 WH-Rep2-Cap9wt Eike Kienle 

#1786 WH-Rep2-Cap9_P2 Eike Kienle 

#1787 WH-Rep2-Cap9_P4 Eike Kienle 

#1788 WH-Rep2-Cap9_P5 Eike Kienle 

#1789 WH-Rep2-Cap9_A1 Eike Kienle 

#1790 WH-Rep2-Cap9_A2 Eike Kienle 

#1791 WH-Rep2-Cap9_A6 Eike Kienle 

#1792 WH-Rep2-Caprh10wt Eike Kienle 

#1793 WH-Rep2-Caprh10_P2 Eike Kienle 

#1794 WH-Rep2-Caprh10_P4 Eike Kienle 

#1795 WH-Rep2-Caprh10_P5 Eike Kienle 

#1796 WH-Rep2-Caprh10_A1 Eike Kienle 

#1797 WH-Rep2-Caprh10_A2 Eike Kienle 

#1798 WH-Rep2-Caprh10_A6 Eike Kienle 

#1799 WH-Rep2-Cappo1wt Eike Kienle 

#1800 WH-Rep2-Cappo1_P2 Eike Kienle 

#1801 WH-Rep2-Cappo1_P4 Eike Kienle 

#1802 WH-Rep2-Cappo1_P5 This thesis 

#1803 WH-Rep2-Cappo1_A1 This thesis 

#1804 WH-Rep2-Cappo1_A2 This thesis 

#1805 WH-Rep2-Cappo1_A6 This thesis 

#1806 WH-Rep2-Cap12wt Stefanie Große 

#1807 WH-Rep2-Cap12_P2 This thesis 

#1808 WH-Rep2-Cap12_P4 This thesis 

#1809 WH-Rep2-Cap12_P5 This thesis 

#1810 WH-Rep2-Cap12_A1 This thesis 

#1811 WH-Rep2-Cap12_A2 This thesis 

#1812 WH-Rep2-Cap12_A6 This thesis 

#1813 WH-Rep2-Cap4mutwt Eike Kienle 

#1814 WH-Rep2-Cap4mut_P2 Eike Kienle 

#1815 WH-Rep2-Cap4mut_P4 Eike Kienle 

#1816 WH-Rep2-Cap4mut_P5 This thesis 

#1817 WH-Rep2-Cap4mut_A1 This thesis 

#1818 WH-Rep2-Cap4mut_A2 This thesis 

#1819 WH-Rep2-Cap4mut_A6 This thesis 

#1820 WH-Rep2-Cap1NIS This thesis 

#1821 WH-Rep2-Cap4NIS This thesis 

#1822 WH-Rep2-Cap12NIS This thesis 

#1925 WH-Rep2-Cap9LD This thesis 
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#1926 WH-Rep2-Cap9K449R_PHP.eB This thesis 

#1927 WH-Rep2-Cap9K449R_PHP.S This thesis 

#1928 WH-Rep2-Cap2_MTP This thesis 

#1929 pGG-Rep2-B1 Addgene 

#1930 pAnc80L65 Addgene 

#1933 pAAV-Rep2-cap2_7m8 Boehringer Ingelheim 

#1934 pAAV-Rep2-cap2_BR1 Boehringer Ingelheim 

#1935 pAAV-Rep2-cap2_L1 Boehringer Ingelheim 

#1936 pAAV-Rep2-Cap6ShH10 Boehringer Ingelheim 

#1937 pAAV_AAV6.2 Boehringer Ingelheim 

#1938 pAAV-Rep2-Cap9BI Boehringer Ingelheim 

#1939 pAAV-Rep2-cap2HBKO Boehringer Ingelheim 

#1940 pAAV-Rep2-Cap9K449R_PHP.B Boehringer Ingelheim 

#2004 WH-Rep2-CapAH3-5 Anne-Kathrin Herrmann 

#2047 WH-Rep2-Cap9_K1 This thesis 

#2048 WH-Rep2-Cap9_K3 This thesis 

#2049 WH-Rep2-Cap9K449R_PHP.A This thesis 

#2050 WH-Rep2-Cap9LD_P1 This thesis 

#2051 WH-Rep2-CapM41 This thesis 

#2052 WH-Rep2-Cap9_BR1 This thesis 

#2053 WH-Rep2-Cap4_L1 This thesis 

2.9.5 BARCODED REPORTER PLASMIDS 

All plasmids listed in Table 17 are based on Plasmid#552 and were cloned 

during this thesis as described in 3.2.3. 

Table 17: Barcoded reporter plasmids 

Plasmid# Name Barcode sequence 

#2056 pJW1-CMV-EYFP-BC#A2 AGACTCGTTGTATAT 

#2057 pJW2-CMV-EYFP-BC#A3 TAGAGATTTAAACCG 

#2058 pJW3-CMV-EYFP-BC#A4 CGTGACAGCGGATGG 

#2059 pJW4-CMV-EYFP-BC#A5 TGGGCGGTCAGGGTC 

#2060 pJW5-CMV-EYFP-BC#A6 TTGCCGTCCTTCGAG 

#2061 pJW6-CMV-EYFP-BC#A8 TTCAGCGGACGGGCC 

#2062 pJW7-CMV-EYFP-BC#A9 GTCAGTCCGCTCTTT 

#2063 pJW8-CMV-EYFP-BC#A11 TTAAGATCCTGGTCG 

#2064 pJW9-CMV-EYFP-BC#A13 TCAACATGGGCAACG 

#2065 pJW10-CMV-EYFP-BC#A14 CTTGATCGACGCCCA 
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#2066 pJW11-CMV-EYFP-BC#A15 TACGCTATTCAATCT 

#2067 pJW12-CMV-EYFP-BC#A18 GTGCTTCTGGCGGAT 

#2068 pJW13-CMV-EYFP-BC#A21 CGGCTGTCGGTCGCC 

#2069 pJW14-CMV-EYFP-BC#A22 ATCGTACGTTACTGA 

#2070 pJW15-CMV-EYFP-BC#A23 GATTCGAAAGCATAG 

#2071 pJW16-CMV-EYFP-BC#A24 CGTATCGGGTCCGGA 

#2072 pJW17-CMV-EYFP-BC#A25 TGGTTGGGTTTGTGG 

#2073 pJW18-CMV-EYFP-BC#A26 TCGTTGTAACGGTAC 

#2074 pJW19-CMV-EYFP-BC#A29 TAACGTTGGGTTGCC 

#2075 pJW20-CMV-EYFP-BC#A30 GACCACTAGAAGGGC 

#2076 pJW21-CMV-EYFP-BC#A32 CTGCATGGCGGAGTT 

#2077 pJW22-CMV-EYFP-BC#A33 TCAACGATTGTCTGG 

#2078 pJW23-CMV-EYFP-BC#A34 TGGTAGGTTCGAAAT 

#2079 pJW24-CMV-EYFP-BC#A35 ACGTCGCACCGTTTG 

#2080 pJW25-CMV-EYFP-BC#A37 CAGGCTTAACGCGGG 

#2081 pJW26-CMV-EYFP-BC#A38 ACCATAGCGCCACGA 

#2082 pJW27-CMV-EYFP-BC#A39 GTCCCGACTAGGACT 

#2083 pJW28-CMV-EYFP-BC#A40 GTCTTGATTGCTTCG 

#2084 pJW29-CMV-EYFP-BC#A41 ATTTGGCACAGGATG 

#2085 pJW30-CMV-EYFP-BC#A42 GGCCACCGTGTGTGA 

#2086 pJW31-CMV-EYFP-BC#A43 ATGAGCAGCGAATGA 

#2087 pJW32-CMV-EYFP-BC#A44 ATGTTTAACGGCATA 

#2088 pJW33-CMV-EYFP-BC#A45 TTGGACTCACAGATG 

#2089 pJW34-CMV-EYFP-BC#A47 AAGGTGACCTAGTGT 

#2090 pJW35-CMV-EYFP-BC#A48 CCCTCATGAGGTCCG 

#2091 pJW36-CMV-EYFP-BC#A49 ATGACAATGTGCAGG 

#2092 pJW37-CMV-EYFP-BC#A50 GCGAGGTCGTTAGTT 

#2093 pJW38-CMV-EYFP-BC#A51 TAAGACTGTTCCGGG 

#2094 pJW39-CMV-EYFP-BC#A52 GTTTGTAATCTCTAC 

#2095 pJW40-CMV-EYFP-BC#A53 GTTAACGCGGCCATT 

#2096 pJW41-CMV-EYFP-BC#A55 AGCGGCGTTTATCGT 

#2097 pJW42-CMV-EYFP-BC#A56 TTGGTATGTGTCAAT 

#2098 pJW43-CMV-EYFP-BC#A58 GTCGACTTCATGGCA 

#2099 pJW44-CMV-EYFP-BC#A61 GAGCGTAATTGTGAG 

#2100 pJW45-CMV-EYFP-BC#A62 CGTTAACCCGAAAGC 

#2101 pJW46-CMV-EYFP-BC#A63 GTGACATGCAGGTAG 

#2102 pJW47-CMV-EYFP-BC#A65 ACGATCGTACGTCTT 

#2103 pJW48-CMV-EYFP-BC#A67 GTTCAGGTCAGGTCT 

#2104 pJW49-CMV-EYFP-BC#A68 TAAGGAGGGCTGTAG 

#2105 pJW50-CMV-EYFP-BC#A69 TATCAAGCTAACGTT 

#2106 pJW51-CMV-EYFP-BC#A70 GCTCTGGATGTAGTA 
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#2107 pJW52-CMV-EYFP-BC#A71 TAGATGTGGCGGACA 

#2108 pJW53-CMV-EYFP-BC#A74 GTCAACATCGTTACA 

#2109 pJW54-CMV-EYFP-BC#A75 GGGCCCTAGCGCGTG 

#2110 pJW55-CMV-EYFP-BC#A76 GATAGGCTGGTCCAA 

#2111 pJW56-CMV-EYFP-BC#A77 TATTTGTGTCGTTCC 

#2112 pJW57-CMV-EYFP-BC#A79 AGTTAGGGCGCTGCG 

#2113 pJW58-CMV-EYFP-BC#A80 GCGGAACATAGGCGG 

#2114 pJW59-CMV-EYFP-BC#A81 GCCCTTCAGTCAGCT 

#2115 pJW60-CMV-EYFP-BC#A82 CGGTCGCGTGACGTG 

#2116 pJW61-CMV-EYFP-BC#A83 GCCGGAGTCCCGGTA 

#2117 pJW62-CMV-EYFP-BC#A84 CGAGTCGTATGTGGC 

#2118 pJW63-CMV-EYFP-BC#A85 AGTAATTGGTCTTGG 

#2119 pJW64-CMV-EYFP-BC#A86 GGTCTTTGCTCGGTG 

#2120 pJW65-CMV-EYFP-BC#A87 GACTTGGTTGTGACG 

#2121 pJW66-CMV-EYFP-BC#A90 TTGTTGTATGAGCAG 

#2122 pJW67-CMV-EYFP-BC#A91 TCCACGGAGGCTGCG 

#2123 pJW68-CMV-EYFP-BC#A94 CTACCTATTTACTCT 

#2124 pJW69-CMV-EYFP-BC#A97 ACCGGGCGTTGAGGC 

#2125 pJW70-CMV-EYFP-BC#A99 ACTGTGATGGGTTAG 

#2126 pJW71-CMV-EYFP-BC#A100 TGGTTTACAAATTAT 

#2127 pJW72-CMV-EYFP-BC#A101 TGTCCGGAAAGGACA 

#2128 pJW73-CMV-EYFP-BC#A102 GTTGTGCCCTGAGTG 

#2129 pJW74-CMV-EYFP-BC#A104 ACCGTATCTCTCCGG 

#2130 pJW75-CMV-EYFP-BC#A107 TTGGAACGTGGGCTT 

#2131 pJW76-CMV-EYFP-BC#A109 AGATTCAAAGCTGCG 

#2132 pJW77-CMV-EYFP-BC#A110 TGTTGGAAGGTATCA 

#2133 pJW78-CMV-EYFP-BC#A111 GTAGCTGAGGTTGGT 

#2134 pJW79-CMV-EYFP-BC#A114 AGCCTAATCTTTGAC 

#2135 pJW80-CMV-EYFP-BC#A115 AAGCACTAAAGAACA 

#2136 pJW81-CMV-EYFP-BC#A116 GGTATGGCCTGCCGC 

#2137 pJW82-CMV-EYFP-BC#A117 TGTTTAGGTGAGCCT 

#2138 pJW83-CMV-EYFP-BC#A118 TGTGGTGTGACTCAG 

#2139 pJW84-CMV-EYFP-BC#A119 TCGGGTTGGTCTTTG 

#2140 pJW85-CMV-EYFP-BC#A120 ACATTGTGGTCATAG 

#2141 pJW86-CMV-EYFP-BC#A121 AGACTTGGCGTTATG 

#2142 pJW87-CMV-EYFP-BC#A122 ACGTGTCGTAGTAAG 

#2143 pJW88-CMV-EYFP-BC#A124 TATATTGAGGCGTGT 

#2144 pJW89-CMV-EYFP-BC#A126 TGAGAGTCATCCAAG 

#2145 pJW90-CMV-EYFP-BC#A127 CCTAATCTCAGGCGG 

#2146 pJW91-CMV-EYFP-BC#A129 CGTGACCCAGGAAGT 

#2147 pJW92-CMV-EYFP-BC#A132 TCGTTAGTAGCGATC 
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#2148 pJW93-CMV-EYFP-BC#A135 GAGGTCCAGAGGAAG 

#2149 pJW94-CMV-EYFP-BC#A138 ATGATCAGCGATATC 

#2150 pJW95-CMV-EYFP-BC#A139 GGTGCCGGACAGCTC 

#2151 pJW96-CMV-EYFP-BC#A141 TATAACTTAGCTGAT 

#2152 pJW97-CMV-EYFP-BC#A142 CTTCTTCAGGCAACC 

#2153 pJW98-CMV-EYFP-BC#A144 CCACTAGGATCCGGA 

#2154 pJW99-CMV-EYFP-BC#A145 CAAGGCTTTCTGATC 

#2155 pJW100-CMV-EYFP-BC#A146 ATCTCGAAGCGCGTA 

#2156 pJW101-CMV-EYFP-BC#A147 GCAATTATCATAGTC 

#2157 pJW102-CMV-EYFP-BC#A149 GACCTGCGCCTTACA 

#2158 pJW103-CMV-EYFP-BC#A150 CGTCCGTCTAATGAA 

#2159 pJW104-CMV-EYFP-BC#A151 GGTTGACAGTGGGCT 

#2160 pJW105-CMV-EYFP-BC#A152 AGTTTAGGACAGGCA 

#2161 pJW106-CMV-EYFP-BC#A155 TTCATCGGCCGCTAA 

#2162 pJW107-CMV-EYFP-BC#A157 TACGTATCGCGTGAT 

#2163 pJW108-CMV-EYFP-BC#A158 CTAGGCAGGACACCG 

#2164 pJW109-CMV-EYFP-BC#A160 TTGGCAGAGGATCAC 

#2165 pJW110-CMV-EYFP-BC#A161 TCGGCTCTGTTCTAG 

#2166 pJW111-CMV-EYFP-BC#A162 TTTAGGCGCGGCTTG 

#2167 pJW112-CMV-EYFP-BC#A163 CGTCCTGTAAGGAGT 

#2168 pJW113-CMV-EYFP-BC#A164 TAGAGTATGAGTGGT 

#2169 pJW114-CMV-EYFP-BC#A166 GAGCGGGCAGACGAT 

#2170 pJW115-CMV-EYFP-BC#A169 GTGCGCAGGTTAGTG 

#2171 pJW116-CMV-EYFP-BC#A171 CTCGCGGCCTGAGGG 

#2172 pJW117-CMV-EYFP-BC#A172 CTAGATAAATGCGGT 

#2173 pJW118-CMV-EYFP-BC#A173 ACCTGAGTTTGGTGG 

#2174 pJW119-CMV-EYFP-BC#A175 CCGTCGAAGAAGGGA 

#2175 pJW120-CMV-EYFP-BC#A179 GGCAGCGGACACGTG 

#2176 pJW121-CMV-EYFP-BC#A180 ATCCTCTCCGCTACC 

#2177 pJW122-CMV-EYFP-BC#A181 TAGCACCATTTACGG 

#2178 pJW123-CMV-EYFP-BC#A184 CATGCCATGTGTATC 

#2179 pJW124-CMV-EYFP-BC#A187 ACCAACCGGTGTGGG 

#2180 pJW125-CMV-EYFP-BC#A189 GGTACAGGACGCAGG 

#2181 pJW126-CMV-EYFP-BC#A190 GACCACTTATCGCCA 

#2182 pJW127-CMV-EYFP-BC#A195 TCGGCGTGGCGGTCG 

#2183 pJW128-CMV-EYFP-BC#A197 GACTTTGACATGTCA 

#2184 pJW129-CMV-EYFP-BC#A198 TACATTTAACTGAAG 

#2185 pJW130-CMV-EYFP-BC#A199 GGTCAGGACCATTGG 

#2186 pJW131-CMV-EYFP-BC#A201 TGGGTTTCGGCATCA 

#2187 pJW132-CMV-EYFP-BC#A202 TTACCTTCTAAGGGC 

#2188 pJW133-CMV-EYFP-BC#A203 TGGTCGGCGAGTTTG 
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#2189 pJW134-CMV-EYFP-BC#A205 GGTTGGTTAGGCTGT 

#2190 pJW135-CMV-EYFP-BC#A207 ACCGGCAATCCTAGC 

#2191 pJW136-CMV-EYFP-BC#A208 GTGTGTTACCTAACA 

#2192 pJW137-CMV-EYFP-BC#A209 TCATCTAGCATCGGG 

#2193 pJW138-CMV-EYFP-BC#A210 GCCACAGGCATCGTG 

#2194 pJW139-CMV-EYFP-BC#A211 CTTATGTGAAGAGAT 

#2195 pJW140-CMV-EYFP-BC#A212 TAGTTTATCGCAGGG 

#2196 pJW141-CMV-EYFP-BC#A213 GTACCTATCCGTTGT 

#2197 pJW142-CMV-EYFP-BC#A214 TTCCGTGTGTTGTCT 

#2198 pJW143-CMV-EYFP-BC#A215 CCCGTATGTCGGGTA 

#2199 pJW144-CMV-EYFP-BC#A216 GAATCCATGACTTTG 

#2200 pJW145-CMV-EYFP-BC#A217 GTTCGTTGCGGGATC 

#2201 pJW146-CMV-EYFP-BC#A220 GTGCTTGTCATGCCG 

#2202 pJW147-CMV-EYFP-BC#A221 AGTTCACGACTGCGA 

#2203 pJW148-CMV-EYFP-BC#A222 GGACTCAGGCCTGGT 

#2204 pJW149-CMV-EYFP-BC#A223 TTTGGTTGGAGTCTT 

#2205 pJW150-CMV-EYFP-BC#A225 TTACGATTTATGCGC 

#2206 pJW151-CMV-EYFP-BC#A226 CAATCCGGCGCGGGT 

#2207 pJW152-CMV-EYFP-BC#A228 GTGTAGGTTATCATC 

#2208 pJW153-CMV-EYFP-BC#A229 TCGCACGCTGATGTG 

#2209 pJW154-CMV-EYFP-BC#A230 AGTTTCACATGACGG 

#2210 pJW155-CMV-EYFP-BC#A232 GTTTACGGATCTCGG 

#2211 pJW156-CMV-EYFP-BC#A233 TATATAGTCGGTTTG 

#2212 pJW157-CMV-EYFP-BC#A236 ATGTCGAACCCAATC 

#2213 pJW158-CMV-EYFP-BC#A237 TCTGTATGGGCCAGC 

#2214 pJW159-CMV-EYFP-BC#A240 TGATCTGACCGTGTG 

2.9.6 REPORTER PLASMIDS 

Table 18: Reporter plasmids 

Plasmid# Name Source 

#552 pscAAV-CMV-EYFP-BGHpolyA Eike Kienle 

#2054 pscAAV-CMV-EGFP-BGHpolyA This thesis 

#2055 pscAAV-CMV-EYFP-ccdB-

BGHpolyA 

Florian Schmidt 
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2.10 SOFTWARE 

Table 19: Software 

Name Vendor 

ApE (A Plasmid Editor) http://biologylabs.utah.edu/jorgensen/wayned/ape/ 

Gen5 2.09 BioTek Instruments, Inc. 

GraphPad Prism 7 GraphPad Software 

MendeleyDesktop Mendeley Ltd. 

NanoDrop 2000 v1.5 Thermo Fisher Scientific 

NextSeq Control 

Software  

Illumina, Inc. 

Office 2007 Microsoft Corporation 

PROSize Data Analysis 

Software 

Advanced Analytical Technologies, Inc. 

Python 2.7 Python Software Foundation 

Quantity One 4.6.9 Bio-Rad Laboratories, Inc. 

QuantStudio™ Software 

V1.3 

Thermo Fisher Scientific 

Rotor-Gene Q Series 

Software 

Qiagen N.V 



 

3 METHODS 

3.1 GENERAL CLONING TECHNIQUES 

3.1.1 POLYMERASE CHAIN REACTION (PCR) 

In order to amplify DNA fragments for subsequent cloning steps, a PCR 

was performed with 10-100 ng template, 10 µl Phusion HF buffer, 1 µl dNTPs 

(10 mM), 1.5 µl forward primer (10 µM), 1.5 µl reverse primer (10 µM), 1.5 µl 

DMSO, 0.5 µl Phusion Polymerase HS and filled up to 50 µl with nuclease-free 

H2O. After mixing, PCR was run under cycling conditions listed in Table 20. 

Annealing temperature (step 3) and extension time (step 4) varied depending 

on the utilized primer combination and amplicon length respectively. 

Table 20: PCR cycling conditions 

Step Temperature [°C] Time Repetitions 

1 98 30 sec  

2 98 10 sec 

35 cycles 3 56-70 20 sec 

4 72 15 sec/kb 

5 72 5 min  

6 4 hold  

3.1.2 GEL ELECTROPHORESIS 

For a size-depended separation of a DNA sample, a 1% agarose gel 

electrophoresis was carried out by mixing a solution of 1% agarose (w/v) in 

TAE Buffer with 0.5 µg/ml of ethidium bromide. After solidification of the gel, 

Gel loading dye Purple (6X) was added to the DNA sample and mixture was 

loaded into gel pockets. Electrophoresis was performed at 120 V for ~20-

30 min. DNA bands were visualized with UV light and optionally excised for 

DNA purification. 
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3.1.3 RESTRICTION DIGEST 

To enzymatically cleave DNA fragments, restriction endonucleases were 

used (Table 10) by incubating 3 µg of plasmid DNA or 50 µl of purified PCR 

product with 1 µl of the respective restriction enzyme in its corresponding 

buffer for 3-4 h at 37 °C. Outcome was checked by gel electrophoresis as 

described in 3.1.2. 

3.1.4 DNA PURIFICATION 

Excised DNA bands from 3.1.2 were purified with QIAquick Gel Extraction 

Kit according to manufacturer’s instructions and eluted in 50 µl of nuclease-

free H2O. 

PCR amplicon purifications without gel separation were performed with 

MinElute PCR Purification Kit, DNA Clean & Concentrator™ or QIAquick 

PCR Purification Kit following manufacturer’s instructions. 

3.1.5 LIGATION 

For the ligation of a PCR-amplified insert into a restriction enzyme-digested 

plasmid backbone, 5 molar parts of the insert were combined with 1 molar part 

of the backbone (60 ng), 1 µl T4 DNA Ligase Reaction buffer, 0.5 µl T4 DNA 

Ligase and filled up to 10 µl with nuclease-free H2O. The mix was incubated 

for 30 min at RT and afterwards directly used for bacteria transformation. 

3.1.6 TRANSFORMATION 

3 µl of the ligation from 3.1.5 was mixed with 50 µl of MAX Efficiency™ 

DH5α™ Competent Cells, One Shot® ccdB Survival™ 2 T1R Competent Cells 

or 5-alpha Competent E.coli and incubated for 30 min on ice. Subsequent heat-

shock for 45 sec at 42 °C allowed plasmid uptake. Bacterial cells were placed on 

ice for 2 min before plating on LB agar dishes and incubating overnight at 

37 °C. 
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3.1.7 ELECTROPORATION 

30 µl of MegaX DH10B™ T1R Electrocomp™ Cells were mixed with 1.5 µl of 

ligation mixture from 3.2.3 or 3.1.5 and transferred to pre-cooled cuvettes. 

Electroporation was performed with GenePulser Xcell™ with the settings 

1800 V, 25 µF and 200 Ω. Immediately after completion, 1 ml of pre-warmed 

SOC medium was added to the cuvette for recovery. The solution was 

transferred to a tube and incubated at 700 rpm for 1 h at 37 °C. 100 µl of 

undiluted, 1:10 and 1:100 dilution was streaked on LB agar dishes with 

appropriate antibiotic resistance and plates were incubated overnight at 37 °C. 

3.1.8 PLASMID DNA PREPARATION 

For the preparation of plasmid DNA, 3-2000 ml of LB media, depending on 

the respective kit, with the adequate antibiotic resistance (50 µg/ml) was 

inoculated with a single colony or glycerol stock and incubated at 180 rpm 

overnight at 37 °C. Extraction of the plasmid was performed with commercial 

kits Qiaprep Spin Miniprep Kit, NucleoSpin Plasmid Miniprep Kit, Pure Yield 

Plasmid Midiprep, NucleoBond® Xtra Maxi or PureLink HiPure Plasmid 

Gigaprep Kit according to manufacturer’s instructions. 

3.2 SPECIFIC CLONING PROCEDURES 

This chapter describes the cloning of the capsid helper plasmids (Table 16) 

and the barcoded reporter constructs (Table 17). 

3.2.1 OVERLAP EXTENSION PCR 

Overlap extension PCR was used to create capsid helper plasmids for the 

published AAV variants AAV2_MTP, AAV9_K1, AAV9_K3, AAV9LD, 

AAV9K449R_PHP.eB, AAV9K449R_PHP.S and AAV9K449R_PHP.A. 

Additionally, mutations in the WH-Rep2-CapNIS plasmids of AAV1, AAV4 

and AAV12 were corrected with the same technique. The PCR reaction was set 

up as shown in 3.1.1 using the corresponding forward primer in combination 

with primer #178 and the reverse primer with #833. Upon completion of the 

cycler program (Table 20), two capsid fragments were generated for each AAV 

variant as seen by gel electrophoresis (3.1.2). Both bands were extracted and 
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purified for the following second PCR which uses the self-priming fragments 

to restore the full-length capsid gene. For that 0.5 µl 5’ fragment, 0.5 µl 3’ 

fragment, 10 µl Phusion HF buffer, 1 µl dNTPs (10 mM), 1.5 µl DMSO, 0.5 µl 

Phusion Polymerase HS and 31.2 µl nuclease-free H2O were mixed and run 

according to the cycling conditions listed in Table 21. 

Table 21: Overlap extension part 1 cycling conditions 

Step Temperature [°C] Time Repetitions 

1 98 30 sec  

2 98 10 sec 
12 cycles 

3 72 90 sec 

4 4 hold  

Afterwards 2.5 µl #178 primer as well as 2.5 µl #833 primer was added to 

the reaction and the capsid amplification was completed by starting the 

following cycler program: 

Table 22: Overlap extension part 2 cycling conditions 

Step Temperature [°C] Time Repetitions 

1 98 30 sec  

2 98 10 sec 

25 cycles 3 60 15 sec 

4 72 90 sec 

5 72 10 min  

6 4 hold  

PCR product was separated on an agarose gel (3.1.2) and appropriate band 

was purified (3.1.4) before digesting the fragment and a WH-rep2 helper 

plasmid with HindIII-HF and SpeI (3.1.3). Full-length capsid gene was 

subsequently ligated into the gel-purified plasmid backbone (3.1.5) and 

transformed (3.1.6). Outcome of the DNA preparation (3.1.8) was used for 

either virus production or peptide insertion cloning. 

3.2.2 PEPTIDE INSERTION 

To clone the missing AAV peptide insertion variants where the new 

insertion site (NIS) is utilized, the AAV serotype 1, 2, 3, 4, 4mut, 5, 6, po1 and 

12 capsid gene, in the corresponding WH-Rep2-CapNIS plasmids (Table 16), 

was digested with SfiI to enable oligonucleotide integration. Restriction digest 

and subsequent DNA purification was performed as described in chapter 3.1.3 
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and 3.1.4 respectively. DNA sequences of the peptides P2, P4, P5, A1, A2, A6 

were ordered (Merck KGaA) and double-stranded fragments with sticky 

overhangs for the SfiI-digested capsid helper plasmids were produced. For 

that, 5 µl forward and reverse peptide oligonucleotide (Table 13) as well as 5 µl 

NEBuffer 2 and 35 µl nuclease-free H2O were mixed. Cycler program listed in 

Table 23 was executed. 

Table 23: Oligonucleotide annealing cycling conditions 

Step Temperature [°C] Temperature 

decrease [°C/sec] 

Time [min] 

1 95  5 

2 75  3 

3 65 0.1 2 

4 55 0.1 2 

5 45 0.1 2 

6 4  hold 

The newly generated plasmids harboring the capsid genes with the inserted 

peptide-encoding DNA stretches are shown in Table 16. 

3.2.3 BARCODED REPORTER PLASMIDS 

For the generation of barcoded AAV reporter plasmids, an oligonucleotide 

bearing a 15 nt-long stretch of randomized nucleotides flanked by two Esp3I 

sites was ordered (Table 14, Barcode #2). A special request for a guaranteed 

1:1:1:1 ratio of the N-wobble was sent to the manufacturer (Merck KGaA). The 

synthesis of the second strand was performed by mixing 0.5 µl Barcode #2 

(100 µM), 0.5 µl Barcode #2_rv (100 µl), 10 µl Phusion HF buffer, 1 µl dNTPs 

(10 mM), 1.5 µl DMSO, 0.5 µl Phusion Polymerase HS and filled up to 50 µl 

with nuclease-free H2O. Cycler program depicted in Table 20 was used with an 

extension time of 5 sec. 

After a subsequent PCR clean-up 5 molar parts of double-stranded barcode 

oligonucleotide were mixed with 1 molar part of pscAAV-CMV-EYFP-ccdB-

BGHpolyA, 1 µl ATP (10 mM), 1 µl DTT (10 mM), 1 µl Tango Buffer (10X), 1 µl 

T4 DNA Ligase, 0.75 µl Esp3I and 1.3 µl nuclease-free H2O. Golden gate 

reaction was carried out with cycling conditions listed in Table 24. 
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Table 24: Golden gate cycling conditions 

Step Temperature [°C] Time Repetitions 

1 37 5 min 
20 cycles 

2 16 5 min 

3 65 20 min  

Golden gate reaction mix was then directly used for electroporation (3.1.7). 

Individual colonies, each of them theoretically containing a unique barcode 

sequence, were picked and grown in 3 ml of LB media before extracting the 

plasmid DNA (3.1.8). All barcoded constructs were double-digested with PstI-

HF and XmaI as described in 3.1.3 to check the ITR integrity. Positive clones 

were sent for sequencing with the primer #652 (Table 14). Barcodes with a 

length of more or less than 15 and with homopolymers >3 were excluded. 

Remaining barcodes were tested for their Hamming distance to each other 

utilizing a tailored Excel sheet. To guarantee a distinct identification during 

next generation sequencing, the cutoff for the Hamming distance was set to >4. 

159 barcodes were generated matching all criteria and are depicted in Table 17. 

3.3 VIRUS PRODUCTION 

Subchapters of 3.3 comprise all necessary steps for the production of AAV 

vectors from cell seeding to determination of viral titers. 

3.3.1 HEK293T SEEDING 

Four days before transfection, 7.5x106 HEK293T cells per 175 cm2 flask were 

seeded and grown in DMEM with 10% FBS, 1% P/S. After two days, cells of 

one flask were washed with 8 ml DPBS and subsequently harvested with 2 ml 

Trypsin-EDTA (0.25%). 8 ml of DMEM with 10% FBS, 1% P/S was used to stop 

the trypsinization. Cell count was determined and 4x106 cells per 15 cm dish 

were seeded resulting in 80% confluency after two days which provided 

optimal conditions for the transfection. 

3.3.2 POLYETHYLENIMINE (PEI) TRANSFECTION 

For the triple transfection a barcoded reporter (Table 17), capsid helper 

(Table 16) and adeno helper plasmid were combined in equimolar ratios 
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adding up to 25 µg total DNA. The final concentration of NaCl in the 

transfection mix was set to 300 mM and the N/P ratio to 30. PEI was added last 

to initiate the complex formation. After vigorous vortexing, the mix was 

incubated for 10 min at RT. 2 ml were evenly distributed on a 15 cm dish and 

the plates were kept at 37 °C, 5% CO2 for three days before harvesting. 

3.3.3 HEK293T HARVEST, LYSIS AND BENZONASE 

TREATMENT 

Cells were detached with a cell scraper and the suspension was collected in 

a 500 ml conical tube. HEK293T cells were pelleted at 1000 rcf for 15 min and 

supernatant was discarded. 5 ml of Benzonase Buffer (15 ml for a large 

iodixanol gradient) were used to resuspend the pellet. Afterwards, the cells 

were lyzed by four freeze-thaw cycles to release viral particles. 75 U of 

Benzonase were added per 15 cm dish and the suspension was incubated for 

1 h at 37 °C with occasional inverting in order to break down residual plasmid 

DNA, genomic DNA and RNA. Two subsequent centrifugation steps at 

4000 rcf for 15 min at 4 °C were carried out to remove cellular debris from the 

virus-containing supernatant. 

3.3.4 AAV PURIFICATION BY IODIXANOL GRADIENT 

Iodixanol gradient was prepared by inserting a Pasteur pipette into an 

ultracentrifuge tube. Supernatant from 3.3.3 was transferred to the tube 

followed by 1.5 ml of 15%, 25%, 40% and 60% iodixanol solution in succession 

to build the gradient. For the large iodixanol gradient 7 ml, 5 ml, 4 ml and 4 ml 

were used for the phases, respectively. Afterwards, the Pasteur pipette was 

carefully removed and a 5 ml syringe with Benzonase Buffer was used to fill 

the tube to the top. Tubes were sealed with the Tube Sealer and balanced to 

each other (allowed deviation +/- 0.01 g). Ultracentrifugation was carried out in 

Rotor 70.1TI at 50000 rpm for 2 h at 4 °C (70TI at 63000 rpm for 2 h at 4 °C for 

large gradient). Upon completion, ultracentrifuge tube was punctured at the 

top with a 19 G needle to release vacuum and 3 mm below the 40%/60% barrier 

to extract ~1.2 ml of virus-containing fraction with a syringe (~2.5 ml for large 

gradients). 12 ml of DPBS was added to the purified virus solution and loaded 

on an Amicon Ultra-15 for dialyzing and concentrating by centrifuging at 

3000 rcf for 1-5 min. Centrifugation steps were carried out multiple times and 

the solution was mixed in between until ~1.5 ml residual volume. Process was 
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repeated twice by filling the Amicon tube again with DPBS to further eliminate 

the iodixanol content. Final concentrate was aimed to have 0.5-0.8 ml and 

stored at -80 °C. 

3.3.5 AAV PURIFICATION BY CESIUM CHLORIDE GRADIENT 

The supernatant from 3.3.3 was combined with 1 M CaCl2 to reach a final 

concentration of 25 mM CaCl2 and incubated for 1 h on ice to precipitate the 

proteins. Subsequent centrifugation at 10000 rcf for 15 min at 4 °C was 

performed to pellet the proteins. Supernatant was taken, mixed with ¼ 

volumes of PEG-NaCl solution and incubated overnight on ice. Solution was 

centrifuged at 2500 rcf for 30 min at 4 °C and resulting supernatant was 

discarded. Pellet was resuspended with 10 ml Na-HEPES resuspension buffer, 

followed by centrifuging at 2500 rcf for 30 min at 4 °C. Supernatant was filled 

up to 24 ml with Na-HEPES resuspension buffer and 13.2 g of CsCl was added. 

Refractive index (RI) of virus solution was determined with refractometer and 

adjusted to 1.3710 by adding CsCl or Na-HEPES resuspension buffer. After 

transferring the solution to an OptiSeal ultracentrifuge tube and filling the tube 

with Topping solution, tubes were balanced to each other (allowed deviation 

+/- 0.01 g) and centrifuged at 45000 rpm for 21-23 h at 21 °C in a 70TI rotor. To 

harvest the virus, fractions were taken by puncturing the tube at the bottom 

with a 19 G needle. 3, 3, 0.5, 0.5, 0.5, 5, 0.5, 0.5, 0.5 and 3 ml fractions are 

collected dropwise and RI-values were measured. Fractions in the range of 

1.3711-1.3766 were pooled, filled up to 9 ml with DPBS and transferred to a 

Slyde-A-Lyzer™ G2 Dialyse Cassette for dialysis against 700 ml cold DPBS. 

DPBS was replaced after 30 min without stirring. The next buffer exchanges 

were performed after 1 h, 2 h, overnight, 2 h and 2 h. Concentration of the 9 ml 

to ~1 ml was achieved by Amicon Ultra-15 centrifugation as described in 3.3.4. 

Purified virus was stored at -80 °C. 

3.3.6 AAV TITRATION BY QPCR 

For the quantification of viral titers, 10 µl of a purified virus sample from 3.3.4 

or 3.3.5 was combined with 10 µl TE Buffer and 20 µl of 2 M NaOH. Solution 

was vortexed and incubated for 30 min at 56 °C to break up the viral capsids. 

Neutralization was performed by adding 38 µl of 1 M HCl before vortexing 

again and adding 922 µl of nuclease-free H2O. The highest standard for the 

qPCR was set to 5x108 copies of double-stranded DNA and serially diluted to 

5x103 copies. 5 µl of all 6 standards and 5 µl of the alkaline lysis were combined 
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with 17.5 µl SensiMix™ II Probe No-ROX (2x), 1.4 µl qPCR_EGFP_fw (10 µM), 

1.4 µl qPCR_EGFP_rev (10 µM), 0.35 µl EGFP_Probe (10 µM) and 9.35 µl 

nuclease-free H2O, respectively. Mix was vortexed and 10 µl were pipetted in 

triplicates into Strip Tubes and run with the cycler program listed in Table 25. 

Table 25: AAV titration cycling conditions 

Step Temperature [°C] Time Repetitions 

1 95 10 min  

2 95 10 sec 
40 cycles 

3 60 20 sec 

Output values of the cycler, x, were corrected for the two dilution steps and the 

10 µl input volume to get to viral genomes per ml. 

vg/ml = x × 7 × 100 × 100 

3.4 WORKFLOW FOR VARIANT VALIDATION 

The following subchapters of 3.4 describe the full workflow for the in vivo 

validation of a barcoded AAV-library from the injection into mice to the 

analysis by next generation sequencing. 

3.4.1 IN VIVO PROCEDURES 

Seven-week-old mice ordered from Janvier Labs were i.v. injected with 

~1x1012 vg/mouse of the barcoded AAV library via the tail vein. After 1-

2 weeks abdominal aorta, thoracic aorta, brain, biceps, blood cells, colon, 

diaphragm, duodenum, eye, brown fat, white fat, heart, inner ear, kidney, 

liver, lung, ovaries, pancreas, quadriceps femoris, spleen and stomach were 

harvested and tissue pieces were submerged in RNAlater solution before 

storing at -20 °C. 

3.4.2 MACS FOR IMMUNE CELLS 

Isolation of CD3ε-, CD11b-, CD11c-, CD19-positive cells was performed by 

harvesting the mandibular, accessory mandibular, subiliac, proper axillary, 

accessory axillary and medial iliac lymph nodes as well as the spleen. Tissues 

were transferred to a 70 µm strainer and homogenized with a plunger. After 



50 METHODS 

 

washing the strainer with MACS buffer, resulting cell suspension was 

centrifuged at 1000 rcf for 5 min. Supernatant was aspirated and pellet was 

resuspended in 10 ml RBC lysis solution before incubating 5 min at RT. Cells 

were centrifuged again at 1000 rcf for 5 min and resuspended in 1 ml MACS 

buffer yielding approximately 1x108 cells/ml. Cell suspension was split into 

two 500 µl fractions. 100 µl CD11c and CD11b MicroBeads were added 

respectively and following steps were carried out according to manufacturer’s 

instructions. Flow-through of both purifications was kept and used to isolate 

CD19- and CD3-positive cells respectively by following manufacturer’s 

instructions. Purified cells were counted and subsequently pelleted before 

freezing in liquid nitrogen for storage at -80 °C. 

3.4.3 TISSUE HOMOGENIZATION 

Isolated tissues were removed from RNAlater solution and weighed at RT. 

After transferring the tissue to a respective Precellys® tube, 350 µl of RLT, 1% 

β-ME was added for every 10 mg of tissue. Tubes were placed into Precellys® 

24-Dual homogenizer and homogenized by using program 1 with 5500 rpm for 

20 sec. Procedure was repeated for samples with insufficient homogenization. 

Lysates were stored at -80 °C (or at 4 °C for 1-2 h). 

Pellets of the purified cells from 3.4.2 were resuspended with 300 µl RLT, 

1% β-ME for every 1x106 cells and incubated for 5 min at RT. Lysates were 

transferred to a QiaShredder tube and centrifuged at 13000 rcf for 2 min. 

3.4.4 PHENOL-CHLOROFORM EXTRACTION 

PLG-tubes were centrifuged at 16000 rcf for 30 sec to collect the gel at the 

bottom of the tube. Afterwards 400 µl Phenol:Chloroform:Isoamylalcohol was 

added. Tissue lysates were thawed and subsequently centrifuged at 4000 rpm 

for 4 min to pellet potential debris. 400 µl of tissue lysate was transferred to a 

prepared PLG-tube and shaken vigorously for 15 sec. After centrifugation at 

16000 rcf for 5 min, 400 µl Chloroform:Isoamylalcohol was added and PLG-

tubes were again shaken vigorously for 15 sec. Tubes were incubated for 3 min 

at RT before centrifuging at 16000 rcf for 5 min. 350 µl of the aqueous phase 

was transferred to a 96-deepwell plate and stored at -80 °C (or 4 °C for 1-2 h). 
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3.4.5 DNA/RNA EXTRACTION 

For the isolation of DNA and RNA from the 350 µl aqueous phase from 

3.4.4 and the 300 µl RLT-lysate of the immune cells from 3.4.3 the Allprep 

DNA/RNA 96 Kit was used. Steps 3-10 of the manufacturer’s instructions were 

followed. Step 11 was performed with only 400 µl of RW1 and followed by a 

DNase on-column digest. DNase stock solution was prepared by adding 550 µl 

RNase-free H2O to one vial of lyophilized DNase I. DNase I incubation mix 

was prepared by adding 70 µl RDD buffer to 10 µl DNase stock solution and 

gently mixing. 80 µl of DNase I incubation mix was directly added to the 

RNeasy column in each well. Plate was sealed with a new sheet of AirPore 

Tape and incubated for 15 min at RT. Step 11 was repeated with only 400 µl 

RW1. Steps 12/16, 13/17, 14/18 and 15/19 were performed in parallel. RNA was 

eluted twice with 50 µl RNase-free H2O, DNA twice with 75 µl EB buffer. 

3.4.6 DNASE TREATMENT 

To guarantee a complete removal of remaining gDNA in RNA samples, 

212 ng of the RNA isolated in 3.4.5 was digested with DNase I. DNase I stock 

solution was prepared as described in 3.4.5. DNase I incubation mix was 

prepared by adding 1 µl DNase I stock solution and 4 µl RDD buffer to the 

212 ng RNA. Final volume was filled up to 40 µl with nuclease-free H2O. RNA 

was incubated for 15-30 min at RT and DNase I was subsequently heat-

inactivated for 10 min at 75 °C. DNase I-treated RNA was stored at -80 °C. 

3.4.7 CDNA SYNTHESIS 

DNase I-treated RNA from 3.4.6 was directly used for the High-Capacity 

cDNA Reverse Transcription Kit. Kit components were thawed on ice and 

incubation mix was prepared by adding 4 µl 10X RT buffer, 1.6 µl 25X dNTP 

Mix, 4 µl 10X RT Random Primers and 2 µl MultiScribe Reverse Transcriptase 

to 28.4 µl DNase I incubation mix from 3.4.6 containing 150 ng of RNA. PCR 

cycler was used to incubate the mix for 10 min at 25 °C, 120 min at 37 °C and 

5 min at 85 °C. Synthesized cDNA was stored at -20 °C. 
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3.4.8 AMPLIFICATION OF BARCODE REGION 

To amplify the barcode region of the viral transcripts (from 3.4.7) or 

genomes (from 3.4.5) a PCR was performed resulting in a 112 bp amplicon. For 

the reaction 10 µl 5X Phusion HF buffer, 1 µl dNTPs, 0.25 µl Fwd4 (100 µM), 

0.25 µl Rev3 (100 µM), 0.5 µl Phusion Hot Start II Polymerase and 25 ng of 

cDNA or gDNA template were mixed and filled to 50 µl with DEPC-treated 

H2O. The PCR cycler program shown in Table 26 was used. 

Table 26: Barcode region PCR cycling conditions 

Step Temperature [°C] Time Repetitions 

1 98 30 sec  

2 98 10 sec 
40 cycles 

3 72 20 sec 

4 72 5 min  

5 4 hold  

PCR reaction was subsequently cleaned up with the MagMAX Express-96 

Magnetic Particle Processor by adding 100 µl of Agencourt AMPure XP beads 

to the 50 µl of PCR reaction. Sample was mixed thoroughly by pipetting up 

and down 10 times and incubated for 10 min at RT. Two MagMAX wash plates 

were prepared with 150 µl 80% EtOH and one MagMAX plate with 25 µl 

Illumina Resuspension Buffer. MaxMAX program “AMPure_Trueseq96stan” 

was started and instructions of the machine were followed. After completion of 

the run 25 µl eluate was transferred to a 96-well plate and stored at -20 °C.  

PCR outcome and DNA concentration was analyzed by using a Fragment 

Analyzer with the Standard Sensitivity NGS Fragment Analysis Kit according 

to manufacturer’s instructions. 

3.4.9 LIBRARY PREPARATION 

In order to allow sequencing on the NextSeq500 platform a library 

preparation was performed where the PCR amplicons from 3.4.8 are ligated to 

sequencing adaptors. The Ovation Library System for Low Complexity 

Samples Kit was followed according to manufacturer’s instructions to process 

20-30 ng of amplicon DNA per sample. Result was monitored by running the 

processed samples on a Fragment Analyzer with the Standard Sensitivity NGS 

Fragment Analysis Kit according to manufacturer’s instructions. 
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3.4.10 DNA QUANTIFICATION WITH PICOGREEN 

To determine the DNA concentration of the sequencing library samples 

from 3.4.9, the Quant-iT PicoGreen dsDNA Assay Kit was used. PicoGreen was 

thawed and 1X TE buffer was prepared with the 20X TE stock solution. 1 µl of 

PicoGreen was added to 200 µl 1X TE buffer for each sample/standard to be 

analyzed. 200 µl of the mixture was transferred to a black 96-well plate for each 

sample. Eight DNA standards were prepared with a serial dilution ranging 

from 100 ng/µl to 1.56 ng/µl. 2 µl of standard or sample were added to the 

200 µl PicoGreen/TE buffer solution, mixed by vortexing and measured with a 

Cytation 5 imaging reader by using the “QuantiT_PicoGreen_dsDNA” 

program (filter settings 485/20,530/25). 

3.4.11 PREPARATION OF LIBRARY POOLS AND STARTING 

NEXTSEQ 

Based on the DNA concentrations obtained in 3.4.10, a 2 nM dilution was 

prepared for each sample with Illumina Resuspension Buffer, 0.1% Tween20. 

10 µl of every 2 nM dilution with a unique reverse adaptor which is supposed 

to be multiplexed on the flow cell were mixed and stored at -20 °C until library 

denaturation. 

For the denaturation of the library fragments 5.3-6.0 µl of the library pool 

were used and filled up to 10 µl with Illumina Resuspension Buffer, 0.1% 

Tween20. 10 µl of 0.2 M NaOH were added, vortexed and incubated for 5 min 

at RT to denature the DNA strands. For the neutralization 10 µl of 200 mM 

Tris-HCl, pH 7.0 were added and sample was vortexed. Denatured library pool 

dilution was filled to 1 ml with 970 µl of pre-chilled HT1 buffer, mixed and 

117 µl was combined with 1183 µl of pre-chilled HT1 buffer. 2 µl of 20 pM 

PhiX control was spiked in. Finished library pool dilution was vortexed 

thoroughly, spun down and loaded into a NextSeq500 cartridge. 

For starting the NextSeq500 machine, instructions on the screen were 

followed. Read 1 was set to 84 and Index 1 to 8. SampleSheet.csv which is 

needed for subsequent demultiplexing was placed in the automatically created 

run folder. 
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3.4.12 DETECTION OF VIRAL GENOMES BY QPCR 

To determine the EYFP and GAPDH copy number in the extracted DNA 

from 3.4.5, a TaqMan qPCR was performed by using 15 µl QuantiFast PCR 

Master Mix, 0.5 µl 60X Primer-Probe Mix (EYFP or GAPDH) and 14.5 µl 

sample (75 ng) or standard. Mix was vortexed and 10 µl of each sample or 

standard mix were transferred to a 384-well plate in duplicates. Plate was 

sealed and centrifuged at 800 rcf for 5 min. qPCR was started with following 

cycler program: 

Table 27: qPCR cycling conditions 

Step Temperature [°C] Time Repetitions 

1 50 2 min  

2 95 10 min  

3 95 15 sec 
40 cycles 

4 60 1 min 

Determined copy number of GAPDH was divided by two to obtain the 

number of cells. EYFP copy number was divided by the amount of cells 

resulting in viral genomes per diploid genomes (cells). Those values were used 

for data normalization. 

3.4.13 NGS DATA NORMALIZATION 

The NGS data obtained from 3.4.11 were processed by using a modified 

Python 2.7 script224 (modified by Josefine Sippel and Jonas Weinmann) which 

uses the demultiplexed reads from the sequencer and searches for the known 

15 nt-long barcode sequences. The output file lists the unknown sequences as 

well as the variant-assigned barcodes with their corresponding read counts. 

A second Python 2.7-based script (written by Sabrina Weis) utilizes the 

output files from the first script and performs a multi-step normalization 

procedure which corrects for the variations in the total read counts of each 

flow cell, unbalanced composition of the initial viral injection mixture and 

different efficiencies of the AAV library in the analyzed tissues. In the first step 

the script is normalizing the read counts R of all variants α in tissue β to the 

sum of all variants α in β to obtain the proportion Pαβ. 

Pαβ=

Rαβ

∑ Rαβα
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The second step normalizes Pαβ to the proportion of each variant α in the 

initial library Lα which corrects for the uneven composition in library. 

P*αβ=

Pαβ

Lα
 

In the third step P*αβ is normalized to the qPCR-determined vg/dg (see 

3.4.12), termed Gβ, to allow a comparison of one variant α over all analyzed 

tissues β. 

Bαβ=

Pαβ

Lα
×Gβ 

At this point Bαβ values were used and depicted directly to generate heat 

maps visualizing the differences of all variants α in all tissues β. Bαβ values can 

also be shown as proportion of the sum over α or β of Bαβ. 

Vαβ=

Bαβ

∑ Bαβα
 

Tαβ=

Bαβ

∑ Bαββ
 

Vαβ values were taken to create bar plots which demonstrate the proportion 

of all variants α in one tissue β and therefore exemplify the efficiency of the 

individual vectors. Bar plots using Tαβ values show the proportion of one 

variant α in all tissues β allowing an analysis of the tissue specificity. 

3.5 HISTOLOGY 

In order to validate promising candidates from the barcode-based in vivo 

screening, C57BL/6J mice were i.v. injected with 5x1011 vg/mouse and kept for 

2 weeks before harvesting the biceps, diaphragm, heart, liver and quadriceps 

femoris. Injected viruses carried a CMV promoter -driven egfp with a BGH 

poly-A (Table 18). Tissues were fixed in 4% PFA for 15-22 h and subsequently 

transferred to 30% sucrose solution until the tissue sinks to the bottom of the 

tube (~6 h). Afterwards, organs were embedded in TissueTek® O.C.T 

Compound, frozen on dry ice and stored at -80 °C. 12 µm sections were cut 

and embedded in ProLong™ Gold antifade reagent containing DAPI. Sections 

were scanned with Axio Scan.Z1 detecting the DAPI and GFP signal. 





 

4 RESULTS 

4.1 ESTABLISHMENT OF BARCODE-BASED AAV 

CAPSID SCREENING 

The following chapter encompasses an overview of the barcode-based 

capsid screening pipeline to describe the fundamental principle of this 

workflow. Data generated by using the pipeline and more detailed information 

about the individual experimental outlines are shown in the chapters 4.3, 4.4 

and 4.5. 

In order to enable a barcode-based capsid screening in vivo, randomized 15 

nucleotide-long DNA sequences were cloned into the 3’UTR of a CMV 

promoter-driven eyfp gene by Golden Gate cloning (3.2.3). Resulting clones 

were tested for the presence of the essential ITRs by restriction digest (3.1.3) 

and the barcode region was subsequently sequenced. Barcodes with a length 

differing from 15 nucleotides or comprising homopolymers longer than 3 

nucleotides were excluded. The Hamming distance of the remaining pool was 

assessed and sequences with variations to every other barcode in at least five 

positions were kept.  

A total of 159 barcodes could be generated matching all criteria (Table 17) 

and were used for vector production. During the latter, one barcoded construct 

was transfected into HEK293T cells together with a plasmid bearing the rep 

gene of AAV2 and a cap gene of choice. Hence, a tight linkage of a barcode to 

its respective capsid was established (Figure 4A). Each variant was produced 

separately and eventually pooled to create a barcoded library. Afterwards, the 

viral library was dialyzed as well as concentrated (Figure 4B).  

For parallel validation in mice, 1x1012 vector genomes (vg) per mouse were 

injected into six C57BL/6J mice via the tail vein. Mice were kept for 1-2 weeks 

before tissues and cells of interest were harvested (Figure 4C). Steps for the 

extraction of DNA and RNA, the subsequent PCR amplification of the barcode 

region and the mandatory clean-up of the PCR product were optimized (data 

not shown). After completing the library preparation (3.4.9), the samples were 

multiplexed and processed by next generation sequencing (NGS) to identify 

the proportion of every barcode in the analyzed tissues (Figure 4D). To this 

end, a multi-layer normalization strategy was applied that corrects for the total 

read count differences of each flow cell, the variations in particle abundance in 
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the initial viral injection mixture and unequal transduction efficiencies of the 

AAV library in the tissues (3.4.13). 

 

Figure 4: Workflow for a barcode-based AAV capsid validation 

(A) Self-complementary AAV genome comprising a CMV promoter-driven eyfp transgene 

flanked by ITRs. The 3'UTR contains a 15 nucleotide-long barcode (BC) allowing capsid 

tracking on the DNA and cDNA level. During AAV production, barcoded genomes were 

paired with a cap gene of choice. (B) Each barcoded variant was produced separately and 

eventually pooled to generate a barcoded library. (C) C57BL/6J mice were i.v. injected with 

1x1012 vg/mouse and kept for 1-2 weeks before harvesting tissues and cells. (D) DNA and 

RNA were extracted from all samples and the barcode region was amplified by PCR. NGS 

was performed to determine barcode read counts of all variants in the tissues. 

To test the pipeline, 12 barcoded reporter constructs were transfected into 

HEK293T cells and barcode sequences were amplified from the cell lysate. All 

12 DNA patterns could be detected by sequencing (data not shown). To further 

evaluate if the NGS sensitivity was high enough for a barcode identification 

from in vivo samples, two barcoded vectors, AAV2wt (wild type) and AAV8wt, 

were produced and mixed, and 7.22x1011 vg/mouse were injected into two 

female C57BL/6J mice. After two weeks, liver, heart and kidney were harvested 

and barcode abundance was measured in samples from DNA (data not shown) 

and cDNA (Figure 5). 

Both barcodes could be found in the three tissues on the DNA and cDNA 

level. On the cDNA level, AAV8wt demonstrated superior efficiency in the 

liver, heart and, to a lesser extent, in the kidney compared to AAV2wt. 

Evidence is that in all cases but one, over 95% of the detected barcode 

sequences belonged to AAV8wt which is in line with expectations from the 

literature153. 
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Figure 5: Barcode abundance in a pilot run with AAV2wt and AAV8wt 

Two C57BL/6J mice were i.v. injected with 7.22x1011 vg/mouse of a mixture of AAV2wt and 

AAV8wt. Depicted is the proportion of the corresponding barcodes of the serotypes in the 

liver, heart and kidney cDNA samples. Dots represent individual mice. 

4.2 AAV VARIANTS USED IN THE SCREENINGS 

In this work, three independent library screenings were performed with 

varying vector compositions. To point out the differences between the 

individual screening rounds, this chapter provides an overview of all analyzed 

capsid variants in the three screenings and the respective library compositions 

(Table 28) as well as information about the origin of the capsids. Results 

obtained by applying these libraries in vivo are described in the chapters 4.3, 

4.4 and 4.5. 

The 1st generation library contained 91 capsids, among them 13 parental 

serotypes and 78 peptide-modified variants based on these natural AAVs. A 

highly similar panel was previously tested extensively in vitro in our laboratory 

by primarily Kathleen Börner and Eike Kienle (more information is found in 

the doctoral thesis of Eike Kienle). During this doctoral work, variants 

displaying the peptides P2, P4, P5, A1, A2 and A6 were cloned utilizing an 

alternative insertion site for the AAV serotypes 1, 2, 3, 4, 5, 6, po1 and 12 after 

amino acid position 588, 587, 588, 586, 577, 588, 569, 594, respectively. 

Structural modeling of the integration site, the variable region VIII, hinted 

towards a potential transduction improvement (unpublished data) by slightly 

shifting the peptide insertion site, aiming to better match the insertion position 

in the VRVIII loop of AAV7, AAV8, AAV9 and AAVrh10 (position 589, 590, 

588 and 590, respectively). The amino acid after which the peptide is displayed 

varies marginally due to differences in the total VP protein size of the naturally 

occurring AAV isolates.  

The first screening revealed dramatic variations in production efficiency of 

the analyzed variants (4.3). Therefore, poor producers were excluded for the 

production of the 2nd generation library but replaced with published 

benchmarks from the literature, namely, AAV2_7m8186, AAV2_BR1218, 
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AAV2_L1208, AAV2HBKO203, AAV6.2165, AAV9_PHP.B219, AAVDJ172, 

AAVLK03191 and AAVshH10179. 

Remains of the 2nd generation library were used to create the 3rd generation 

library by spiking in the benchmarks AAV2_L1mut1208, AAV2_L1mut2208, 

AAV2YF161, AAV9_K1215, AAV9_K3215, AAV9_PHP.A219, AAV9_PHP.eB220, 

AAV9_PHP.S220, AAV9LD222, AAVAnc80L65167, AAVB1190 and AAVM41189. 

Additionally, the library was enriched with 30 chimeric variants selected in 

stellate cells (work of Anne-Kathrin Herrmann) and 34 chimeras isolated from 

muscle tissue selections (work of Jihad El Andari).  

Table 28: Variants in the screenings 

Variant Source 1st library 2nd library 3rd library 

AAV1wt 43 x x x 

AAV1_A1 Our lab x x x 

AAV1_A2 Our lab x x x 

AAV1_A6 Our lab x x x 

AAV1_P2 Our lab x   

AAV1_P4 Our lab x x x 

AAV1_P5 Our lab x x x 

AAV2wt 43 x x x 

AAV2_7m8 186  x x 

AAV2_A1 Our lab x x x 

AAV2_A2 Our lab x x x 

AAV2_A6 Our lab x x x 

AAV2_BR1 218  x x 

AAV2_L1 208  x x 

AAV2_L1mut1 208   x 

AAV2_L1mut2 208   x 

AAV2_MTP 201   x 

AAV2_P2 Our lab x x x 

AAV2_P4 Our lab x x x 

AAV2_P5 Our lab x x x 

AAV2HBKO 203  x x 

AAV2YF 161   x 

AAV3bwt 46 x x x 

AAV3b_A1 Our lab x x x 

AAV3b_A2 Our lab x x x 

AAV3b_A6 Our lab x x x 

AAV3b_P2 Our lab x   

AAV3b_P4 Our lab x x x 
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AAV3b_P5 Our lab x x x 

AAV4wt 44 x x x 

AAV4_A1 Our lab x x x 

AAV4_A2 Our lab x x x 

AAV4_A6 Our lab x x x 

AAV4_L1 Our lab  x x 

AAV4_P2 Our lab x x x 

AAV4_P4 Our lab x x x 

AAV4_P5 Our lab x x x 

AAV4mutwt Our lab x   

AAV4mut_A1 Our lab x   

AAV4mut_A2 Our lab x   

AAV4mut_A6 Our lab x   

AAV4mut_P2 Our lab x   

AAV4mut_P4 Our lab x   

AAV4mut_P5 Our lab x   

AAV5wt 45 x x x 

AAV5_A1 Our lab x x x 

AAV5_A2 Our lab x x x 

AAV5_A6 Our lab x x x 

AAV5_P2 Our lab x   

AAV5_P4 Our lab x x x 

AAV5_P5 Our lab x x x 

AAV6wt 46 x x x 

AAV6_A1 Our lab x   

AAV6_A2 Our lab x   

AAV6_A6 Our lab x   

AAV6_P2 Our lab x   

AAV6_P4 Our lab x x x 

AAV6_P5 Our lab x   

AAV6.2 165  x x 

AAV7wt 47 x x x 

AAV7_A1 Our lab x x x 

AAV7_A2 Our lab x x x 

AAV7_A6 Our lab x x x 

AAV7_P2 Our lab x x x 

AAV7_P4 Our lab x x x 

AAV7_P5 Our lab x x x 

AAV8wt 47 x x x 

AAV8_A1 Our lab x x x 

AAV8_A2 Our lab x x x 
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AAV8_A6 Our lab x x x 

AAV8_P2 Our lab x x x 

AAV8_P4 Our lab x x x 

AAV8_P5 Our lab x x x 

AAV9wt 48 x x x 

AAV9_A1 Our lab x x x 

AAV9_A2 Our lab x x x 

AAV9_A6 Our lab x x x 

AAV9_BR1 Our lab  x x 

AAV9_K1 215   x 

AAV9_K3 215   x 

AAV9_P1 Our lab202  x x 

AAV9_P2 Our lab x   

AAV9_P3 Our lab   x 

AAV9_P4 Our lab x x x 

AAV9_P5 Our lab x x x 

AAV9K449R_PHP.A 219   x 

AAV9K449R_PHP.B 219  x x 

AAV9K449R_PHP.eB 220   x 

AAV9K449R_PHP.S 220   x 

AAV9BI Boehringer 

Ingelheim 

 x x 

AAV9LD 222   x 

AAVrh10wt 48 x x x 

AAVrh10_A1 Our lab x x x 

AAVrh10_A2 Our lab x x x 

AAVrh10_A6 Our lab x x x 

AAVrh10_P2 Our lab x x x 

AAVrh10_P4 Our lab x x x 

AAVrh10_P5 Our lab x x x 

AAVpo1wt 50 x x x 

AAVpo1_A1 Our lab x x x 

AAVpo1_A2 Our lab x x x 

AAVpo1_A6 Our lab x x x 

AAVpo1_P2 Our lab x   

AAVpo1_P4 Our lab x x x 

AAVpo1_P5 Our lab x x x 

AAV12wt 49 x x x 

AAV12_A1 Our lab x   

AAV12_A2 Our lab x   

AAV12_A6 Our lab x   
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AAV12_P2 Our lab x   

AAV12_P4 Our lab x   

AAV12_P5 Our lab x   

AAVAnc80L65 167   x 

AAVB1 190   x 

AAVDJ 172  x x 

AAVDJYF Our lab   x 

AAVLK03 191  x x 

AAVM41 189   x 

AAVshH10 179  x x 

AAVAH chimeras Our lab   x 

AAVJEA chimeras Our lab   x 

4.3 1ST GENERATION LIBRARY SCREENING 

The first generation library comprised a total of 91 different AAV variants 

(Table 28), each of them containing a barcode that served as unique identifier. 

To save time, two 15 cm dishes of HEK293T cells were used for the production 

of each vector. Afterwards, the cell lysates of the individual productions were 

pooled and subsequently purified by one cesium chloride gradient. The library 

was then processed on a NextSeq500 sequencer to determine the proportion of 

the variant-encoding barcodes in this mixture. This step is essential to verify 

the presence of each barcode and therefore the cognate capsid. Additionally, 

the respective proportion was used to normalize for potential variations in 

production efficiencies. Therefore, the theoretical mean proportion in case of 

an equimolar library was calculated and fold changes compared to this value 

are depicted in Figure 6. Values close to 1 or -1 reflect a production behavior 

according to the expectations. 

However, drastic differences in barcode abundance could be observed for 

the variants in the library. Peptide insertion mutants frequently demonstrated 

a proportional decrease whereas vectors from the AAV5 or AAV9 family were 

generally over-represented. The most pronounced reduction in barcode 

abundance could be detected for peptide insertion variants of AAV6 and 

AAV12, with up to 978-fold deviation from the theoretical mean proportion 

(Figure 6). Also worth noting is that P2-modified capsids typically gave the 

lowest yields within the respective family. The overall lowest amount of read 

counts was found for AAV4mut_A2 whose titer was 3600-fold decreased 

versus the mean. 
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Figure 6: Composition of 1st generation library 

Shown are fold changes to the theoretical mean proportion of each barcoded variant. A 

value close to 1 or -1 reflects the expected production behavior. Negative fold changes imply 

under-representation of the respective variant, positive values illustrate over-representation.  
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To study the library in vivo, 1x1012 vg/mouse were injected i.v. into three 

female and three male C57BL/6J mice. Mice were kept for two weeks before 

harvesting abdominal aorta, thoracic aorta, brain, colon, diaphragm, 

duodenum, eye, brown fat, white fat, heart, inner ear, kidney, liver, lung, 

pancreas, quadriceps femoris and spleen. DNA and RNA were extracted and 

the workflow described in 4.1 was followed. Sequencing data was normalized 

to the bias of the viral injection mixture (see above and Figure 6) and the 

resulting normalized proportions of each variant on the cDNA level in the 

analyzed tissues are shown as a bar plot (Figure 7). 

   

 

 

 

Figure 7: Transcriptional efficiency in various tissues 

The depicted bar plots show the transcriptional efficiency as normalized proportion of the 

top 10 AAV variants from the 1st generation library in the liver, lung, eye, diaphragm, 

quadriceps femoris and heart. The cDNA values are the average from six C57BL/6J mice 

with SD. 

In most of the studied organs, the wild type versions of AAV9, AAVrh10, 

AAV8 and AAV7 exhibited the highest efficiencies in this order, followed by 

peptide insertion variants based on these serotypes (Supplementary 

information, Figure 30). Different effects could be observed in the liver, lung, 

eye, diaphragm, quadriceps femoris and heart (Figure 7). 

In the liver, AAVrh10wt displayed the highest efficiency even displacing 

the potent AAV8wt226,227. Peptide integrations into either AAVrh10wt or 

AAV8wt could not boost their effect. A strong enrichment of AAV4 and its 

related variants was detected in the lung, with AAV4wt being the top hit. 

AAV4mutwt that differs in only one amino acid (K544E) showed a 3-fold 

reduction as compared to its unmodified counterpart.  
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In the eye and the three muscle tissues diaphragm, quadriceps femoris and 

heart, a previously barely characterized AAV isolate, AAVpo1wt50,228, appeared 

in the top 10 list of the most abundant barcodes. Furthermore, the porcine 

variant and its A1-modified version were found in the inner ear 

(Supplementary information, Figure 30). The two capsids demonstrated only 

weak efficiencies in other organs, indicating a preferential targeting of muscle. 

AAV9wt exhibits the highest normalized proportion in muscle tissues in line 

with its reputation as a gold standard for muscle transduction229. Of note, 

AAV9wt was not among the top 10 hits in the liver, potentially explaining the 

pronounced effects in several other tissues. 

4.4 2ND GENERATION LIBRARY SCREENING 

Because of the up to 3600-fold deviation from the theoretical mean 

proportion of the 1st generation library (Figure 6) and the resulting major 

implications for the normalization of the results, the production procedure was 

altered for the second library. For the first screening, two 15 cm dishes had 

been used to produce each variant, and the resulting particles had been pooled 

and concurrently purified without prior titration (4.3). However, as shown, this 

led to a heterogeneous vector abundance. Based on these findings and on 

experiences made by individually testing the production efficiencies of several 

wild type capsids (collected in a newly created internal AAV production 

database), the number of dishes required to achieve comparable yields was 

calculated for every variant and found to range from only one plate for highly 

potent producers, such as AAV5wt, to 120 plates for very poor candidates, 

such as AAV2_L1. Variants that would have required unfeasible amounts of 

plates, e.g. many P2-modified mutants or AAV6 and AAV12 with peptide 

insertions, were excluded. For each of the selected 82 vectors (Table 28), the 

aim was to reach 1.2x1011 vg after individual purification over an iodixanol 

gradient. Viral titers were determined by qPCR, and equimolar amounts were 

pooled and subsequently concentrated as well as dialyzed using Amicon Ultra-

15 tubes. This 2nd generation library was sequenced to monitor the composition 

of the mixture and to generate seminal basal values for the normalization 

strategy (Figure 8). 
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Figure 8: Composition of 2nd generation library 

Shown are the fold changes to the theoretical mean proportion of each barcoded variant. A 

value close to 1 or -1 reflects the expected production behavior. Negative fold changes imply 

under-representation of the respective variant, positive values illustrate over-representation. 

Unlike in the first library, substantial improvements could be observed for 

the second AAV pool, which showed only up to 6.4-fold under-representation 

of individual capsids (AAV3b_A6) or 5.1-fold over-representation (AAV4_P2). 
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Most others oscillated around the expected values of 1 or -1, illustrating a very 

homogenous capsid distribution and lowering the risk of normalization 

artefacts.  

After completing the quality control step, 1x1012 vg/mouse were injected i.v. 

into six female C57BL/6J mice. After one week, mice were sacrificed and 

abdominal aorta, thoracic aorta, blood cells, brain, colon, diaphragm, 

duodenum, eye, brown fat tissue, white fat tissue, heart, inner ear, kidney, 

liver, lung, ovaries, pancreas, quadriceps femoris, spleen and stomach were 

extracted. DNA and RNA were isolated for subsequent deep sequencing. 

Furthermore, a qPCR was performed to determine the viral genomes per 

diploid genome (vg/dg) in each tissue. These values are depicted in Figure 9 

and were additionally used to normalize the sequencing data. By 

implementing this step, for the first time, a comparison of one variant across all 

analyzed tissues was enabled (3.4.13), providing the opportunity to 

concurrently gather data on capsid efficiency and specificity. 

 

Figure 9: Viral DNA distribution of the 2nd generation library 

The depicted bar plot shows the viral DNA distribution from the 2nd generation library after 

systemic injection into C57BL/6J mice across abdominal aorta (Aa), thoracic aorta (At), blood 

cells (BlC), brain (B), colon (C), diaphragm (Di), duodenum (Du), eye, brown fat (FatB), 

white fat (FatW), heart (H), inner ear (I), kidney (K), liver (Li), lung (Lu), ovaries (O), 

pancreas (P), quadriceps femoris (QF), spleen (S) and stomach (St). Detected viral genomes 

(EYFP probe) were normalized to GAPDH as a housekeeper. Depicted values represent the 

average of six mice with SD. 

By determining the vg/dg values, the distribution of the 2nd generation 

library could be tracked across different tissues. As expected, the liver harbors 

the largest proportion of the viral particles with 59 vg/dg, followed by the lung 

(5.6 vg/dg) and the blood cells (4.6 vg/dg). In abdominal aorta, thoracic aorta, 

brain, diaphragm, brown fat tissue, white fat tissue, heart, inner ear, kidney, 

quadriceps femoris and spleen, roughly one viral genome was found in every 

cell (assuming a diploid genome per cell). Tissue types from the digestive tract, 

namely colon, duodenum and stomach, demonstrated very low values. In 

detail, only one viral genome could be detected in every fifth cell. The lowest 

transduction of only 0.1 vg/dg was found in the eye. 
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During processing of the NGS data, Bαβ values were calculated by a custom-

made Python script (3.4.13). These values allow the generation of a heat map 

displaying the full biodistribution of each variant in the library on the cDNA 

level (Figure 10). Thus, the transcript abundance of vectors can be compared 

either within the same organ or across all tissues. The color scheme was set to 

the highest value in the screening and a logarithmic scale was chosen to adjust 

for the over-representation in the liver. 

As already indicated above, most of the screened AAV variants showed a 

pronounced liver tropism. Nevertheless, highly interesting differences between 

the serotypes could be observed. Derivatives of AAV7, AAV8, AAV9 and 

AAVrh10 generally demonstrated a broad transcriptional activity whereas 

members of the AAV2 and AAV3b family largely remained inactive in all 

tissues. AAV4wt and related peptide insertions predominantly showed up in 

the blood cells and the lung, but avoided the liver almost entirely. An as-of-yet 

unknown tropism could be found for AAVpo1wt and AAVpo1_A1. Both 

capsids were detargeted from the liver but were transcriptionally active in 

muscle, especially in the diaphragm and the quadriceps femoris. 

Aside from the naturally occurring serotypes and their peptide-modified 

derivatives, some of the published benchmarks gave remarkable results. For 

instance, the peptide insertion variant AAV2_L1208 displayed a significantly 

higher efficiency than its parental virus AAV2wt (Figure 10). Moreover, its 

activity was limited mainly to the lung and, to a lesser extent, to the brain and 

blood cells. Another AAV2 peptide-displaying mutant, AAV2_BR1218, showed 

strong specificity for the lung and the brain. The latter was even more 

specifically targeted by the AAV9-based peptide insertion variant 

AAV9_PHP.B219, which was restricted to the brain. Of note, the well-known 

chimeric capsid AAVDJ172 was confirmed as a highly specific liver-targeting 

vector, as it barely showed any activity in off-targets. Surprisingly, the P1 

peptide-presenting variant AAV9_P1 - previously identified as lead candidate 

in cultured human astrocytes202 - could be detected mainly in the screened 

muscle tissues, namely, the diaphragm, quadriceps femoris and heart (Figure 

10). Next to this noticeable improvement in muscle specificity as compared to 

AAV9wt, an increase in efficiency was observable. 
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Figure 10: Biodistribution of all variants of the 2nd generation library 

Calculated Bαβ values are depicted as a heat map simultaneously illustrating the 

transcriptional efficiency and specificity of all variants in the 2nd generation library in the 

abdominal aorta (Aa), thoracic aorta (At), blood cells (BlC), brain (B), colon (C), diaphragm 

(Di), duodenum (Du), eye, brown fat (FatB), white fat (FatW), heart (H), inner ear (I), kidney 

(K), liver (Li), lung (Lu), ovaries (O), pancreas (P), quadriceps femoris (QF), spleen (S) and 

stomach (St). A logarithmic scale is used with blue representing the value 0, white 0.47 and 

red 4.74.  
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Although the heat map provides a comprehensive overview of the full 

dataset, subtle differences are difficult to spot. Therefore, to better illustrate 

such details, a bar plot depiction of important highlights was chosen. This 

either illustrates the efficiency of all variants within one organ, referred to as 

Vαβ values (Figure 11 and Figure 12), or the specificity of one variant across all 

tissues, termed Tαβ values (Figure 13, Figure 14 and Figure 15). A detailed 

description of how these values were generated is found in 3.4.13. 

   

   

   

Figure 11: Transcriptional efficiency in various tissues 

The depicted bar plots show the transcriptional efficiency as normalized proportion of the 

top 10 AAV variants from the 2nd generation library in the brain, liver, lung, eye, inner ear, 

blood cells, brown fat tissue and white fat tissue. The cDNA values are the average from six 

C57BL/6J mice with SD. 

In Figure 11, Vαβ values of various organs are shown to illustrate the efficiency 

of single AAV variants within the same tissue. As already visible in the heat 

map, AAV9_PHP.B showed evidence for robust brain activity as over 60% of 

all barcodes detected in this tissue belong to this capsid variant. Two AAV2wt-

based variants, AAV2_L1 and AAV2_BR1, ranked second and third, 

respectively; however, the former was 3.2-fold and the latter 12.8-fold less 

efficient than AAV9_PHP.B. Strikingly, all three variants outperformed 

AAV9wt, which is widely used for passing the blood brain barrier and 
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robustly transducing the brain. The peptide insertion mutants AAV9_P5 and 

AAV9_P4 once more demonstrated to be the most efficient in the brain of all 

vectors in the 1st generation library, replicating the result of the first screening 

(Supplementary information, Figure 30).  

Furthermore, AAVrh10wt and AAV8wt gave the highest normalized values in 

the liver (Figure 11), mirroring the effects observed for the 1st generation 

library in this tissue (Figure 7). Interestingly, AAVDJ, the chimera previously 

selected in hepatocytes, was 1.8-fold less abundant than the top hit 

AAVrh10wt.  

The collection of AAV4 capsids again exhibited a strong lung affinity, as 

evidenced by the fact that they occupied 7 out of the top 10 spots. 

Nevertheless, AAV2_L1 clearly outcompeted the AAV4 variants by at least 

34.3-fold, representing 82% of all capsids in the lung tissue. Worth noting is 

that capsids that appeared in the lung were also mostly present in blood cells.  

A new addition in the second screening, AAV9_P1, was the most efficient 

capsid in the eye and in the inner ear with 31% and 38% of all hits, 

respectively, after systemic injection (Figure 11). This particular virus could 

also be found in the brown and white fat tissue, albeit it did not reach the top 3. 

Most impressively, AAV9_P1 was the lead candidate in the diaphragm, 

quadriceps femoris and the heart, overtaking the gold standard for muscle 

transduction, AAV9wt, by 10.6-fold, 7.2-fold and 1.5-fold, respectively (Figure 

12). The promising vectors from the first screening, AAVpo1wt and 

AAVpo1_A1 further proved their muscle efficiency in diaphragm and 

quadriceps femoris but were clearly inferior to AAV9_P1. 

 

 

 

Figure 12: Transcriptional efficiency in muscle tissues 

The depicted bar plots show the transcriptional efficiency as normalized proportion of the 

top 10 AAV variants from the 2nd generation library in the diaphragm, quadriceps femoris 

and heart. The cDNA values are the average from six C57BL/6J mice with SD. 

Another possibility to interpret the screening data is to use the Bαβ values in 

order to calculate the proportion of one variant in each tissue, termed Tαβ 

value. Selected highlights of this analysis are shown in Figure 13, Figure 14 and 
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Figure 15. Importantly, these specificity values (Tαβ values) cannot be directly 

compared to the efficiency values (Vαβ values) shown above and are therefore 

herein described separately. 

   

   

   

   

Figure 13: Transcriptional specificity of common AAV serotypes 

The depicted bar plots show the transcriptional specificity as normalized proportion per cell 

of common serotypes from the 2nd generation library in abdominal aorta (Aa), thoracic aorta 

(At), brain (B), blood cells (BlC), colon (C), diaphragm (Di), eye, brown fat (FatB), white fat 

(FatW), heart (H), inner ear (I), kidney (K), liver (Li), lung (Lu), ovaries (O), pancreas (P), 

spleen (S), quadriceps femoris (QF) and stomach (St). Depicted is the average of cDNA 

values from six C57BL/6J mice with SD. 

Analysis of the specificity of wild type AAVs revealed a pronounced bias 

towards the liver, which typically harbored over 80% of the respective virus. 

Exceptions were AAV4wt, AAV9wt and AAVpo1wt. Instead of targeting the 

liver, AAV4wt ended up predominantly in the lung (51%) and to a lesser 

extent in blood cells (24%). The first barcode screening had already implied a 

muscle-tropic behavior of AAVpo1wt (Figure 7). The improved normalization 

strategy could now verify these data by revealing a 52% proportion of 
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AAVpo1wt in the three muscle tissues diaphragm, quadriceps femoris and 

heart, with off-targeting mainly to the brown and white fat tissue, inner ear 

and kidney (Figure 13). Of note, AAV9wt exhibited the broadest activity of all 

82 candidates in this screening and, based on the Vαβ values, also the highest 

efficiency in the majority of the organs (Figure 11 and Figure 33). However, 

most of the capsid still ended up in the liver (50%) after tail vein injection 

(Figure 13). 

Published synthetic AAV capsids included in this screening round offered 

the possibility to validate the robustness of the pipeline by attempting to 

reproduce data from the literature. For instance, in Figure 14, AAVDJ172 

showed a high specificity for the liver (97%) with negligible off-targeting to the 

diaphragm (1%) and spleen (0.7%), further improving on the already liver-

tropic competitor AAV8wt (Figure 13). A more recently published chimera that 

was selected for human hepatocyte transduction, AAVLK03191, demonstrated a 

92% proportion in the murine liver (Figure 14) but was 200-fold less efficient 

than AAV8wt (data not shown). AAV6.2165, deviating in only one amino acid 

from AAV6wt, behaved identical to its unmodified wild type parent 

concerning specificity.  

   

   

Figure 14: Transcriptional specificity of published AAV variants 

The depicted bar plots show the transcriptional specificity as normalized proportion per cell 

of published AAV variants from the 2nd generation library in abdominal aorta (Aa), thoracic 

aorta (At), brain (B), blood cells (BlC), colon (C), diaphragm (Di), eye, brown fat (FatB), 

white fat (FatW), heart (H), inner ear (I), kidney (K), liver (Li), lung (Lu), ovaries (O), 

pancreas (P), spleen (S), quadriceps femoris (QF) and stomach (St). Depicted is the average 

of cDNA values from six C57BL/6J mice with SD. 

Remarkably, AAV9_PHP.B219 not only proved to be a highly efficient capsid 

but furthermore excels in targeting the brain tissue (87%), with minor 

transcriptional activity in the liver (6.7%). AAV2_BR1, a peptide-displaying 
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variant selected for the brain218, could not match AAV9_PHP.B since 51% of the 

AAV2_BR1 transcripts were detected in the brain and 40% in the lung (Figure 

14). 

The highest specificity for the lung was observed for the selected 

AAV2_L1208 capsid, where it made up 71% of all hits. Of the remaining 29%, 

23% were found in blood cells as the major off-target and 4% of the capsid 

ended up in the brain. When comparing this synthetic capsid to the lung-tropic 

AAV4wt (Figure 13), superior efficiency (Figure 11) and specificity (Figure 14) 

were observed for the peptide insertion variant, exemplifying the power of 

directed evolution approaches. It was thus tempting to test whether additional 

improvements could be achieved with an AAV4-based capsid displaying the 

lung-tropic L1 peptide. The resulting rationally designed variant was called 

AAV4_L1, and the corresponding results on specificity can be seen in Figure 

15. 

   

Figure 15: Transcriptional specificity of novel AAV variants 

The depicted bar plots show the transcriptional specificity as normalized proportion per cell 

of novel AAV variants from the 2nd generation library in abdominal aorta (Aa), thoracic 

aorta (At), brain (B), blood cells (BlC), colon (C), diaphragm (Di), eye, brown fat (FatB), 

white fat (FatW), heart (H), inner ear (I), kidney (K), liver (Li), lung (Lu), ovaries (O), 

pancreas (P), spleen (S), quadriceps femoris (QF) and stomach (St). Depicted is the average 

of cDNA values from six C57BL/6J mice with SD. 

Curiously, AAV4_L1 showed no improvement in vector specificity; on the 

contrary, lung-targeting even decreased compared to AAV4wt. Additionally, 

the efficiency was similar to that observed for the other AAV4 peptide 

insertion variants (Figure 11).  

This rational approach was further applied by integrating the BR1 peptide into 

the most efficient wild type capsid for brain transduction, AAV9wt. However, 

the newly generated variant AAV9_BR1 was unable to selectively target the 

brain; instead, it was mainly active in the liver (Figure 15).  

Most notably, AAV9_P1 showed a marked increase in muscle specificity with a 

cumulated proportion of 75% in the three muscle tissues diaphragm, 

quadriceps femoris and heart. Identified off-targets were brown and white fat 

tissue, inner ear and the liver (Figure 15). 



76 RESULTS 

 

4.5 3RD GENERATION LIBRARY SCREENING 

For the third barcode-based variant screening, remains of the 2nd generation 

library were enriched with 64 chimeric capsids that had been independently 

generated, in vivo selected and pre-validated by two other members of the 

Grimm laboratory. Thirty of them were selected in stellate cells by Anne-

Kathrin Herrmann and the other 34 in different muscle tissues by Jihad El 

Andari. The latter were especially important for this work since the newly 

discovered benefits of AAV9_P1 in muscles should be validated against 

variants isolated from state-of-the-art selection strategies, such as DNA family 

shuffling that was used by the other two group members. Furthermore, next to 

a variety of additional published benchmarks, the most promising muscle-

tropic capsids from the literature were added, namely AAVM41189, AAVB1190 

and AAV2_MTP201. Thus, opportunities for a fair comparison to well-

established capsids were provided. On top, two more peptide insertion 

variants were added, AAV9_P3 and AAV9_K3215, comprising a peptide motif 

that is highly similar to P1 and thereby potentially helping to elucidate the role 

of the peptide itself in determining capsid tropism. Finally, to study brain 

transduction, the successors of AAV9_PHP.B219 were spiked in, referred to as 

AAV9_PHP.A219, AAV9_PHP.eB220 and AAV9_PHP.S220 (Table 28). 

All 75 additional variants were individually produced and purified, 

including the 64 extra capsids that were selected by the two colleagues (see 

above) and produced by them. After virus titration, equimolar amounts were 

pooled to create a preliminary library. This library was subsequently titrated 

together with the 2nd generation library. Based on the number of AAV variants 

in the respective libraries, molar shares for the final pooling were calculated.to 

end up with equimolar shares for each vector in the resulting 3rd generation 

library. Afterwards, the mixture was concentrated and dialyzed using an 

Amicon Ultra-15 tube.  

As before, the library composition was assessed by NGS (Supplementary 

information, Figure 36). As compared to the 2nd generation library, the 

imbalance only marginally increased, as evidenced by a 7.4-fold deviation to 

the theoretical mean proportion for one of the newly introduced chimeras, 

AAVJEA3-H4. Importantly, small composition imbalances in this range can 

readily be corrected for during the multi-step normalization procedure. 

For the in vivo screening, 1.57x1012 vg/mouse were injected i.v. into six 

female C57BL/6J mice. After one week, aorta, biceps, colon, diaphragm, 

duodenum, eye, brown fat tissue, white fat tissue, heart, inner ear, kidney, 
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liver, lung, ovaries, pancreas, quadriceps femoris and stomach were harvested. 

Additionally, lymph nodes and the spleen were extracted for subsequent 

isolation of CD3-, CD19-, CD11b- and CD11c-positive cells by MACS (in 

collaboration with Martin Busch). The brain was further dissected into the 

subventricular zone (SVZ) and the cortex (in collaboration with Sascha Dehler). 

From the SVZ, neural stem cells (NSC), neuroblasts, astrocytes and 

oligodendrocytes were extracted via FACS. Astrocytes and oligodendrocytes 

were collected from the cortex. 

In parallel, four BALB/c mice were injected via the tail vein with 

1.57x1012 vg/mouse of the same 3rd generation library. From these mice, 

hepatocytes, stellate cells, Kupffer cells and liver sinusoidal endothelial cells 

(LSECs) were isolated by MACS after perfusing the liver (in collaboration with 

the Dooley laboratory and Anne-Kathrin Herrmann). DNA and RNA were 

extracted, and qPCR-based determination of the viral genomes per diploid cell 

was performed for all samples except for the brain cells where only RNA could 

be collected. The distribution of the 3rd generation library in the comprehensive 

tissue collection from the C57BL/6J mice and the liver cells of the second mouse 

experiment can be seen in Figure 16. 

A

 

B

 

Figure 16: Viral DNA distribution of the 3rd generation library 

(A) The depicted bar plot shows the viral DNA distribution from the 3rd generation library 

after systemic injection into six C57BL/6J mice across aorta (A), biceps (Bi), colon (C), 

diaphragm (Di), duodenum (Du), eye, brown fat (FatB), white fat (FatW), heart (H), inner 

ear (I), kidney (K), liver (Li), lung (Lu), ovaries (O), pancreas (P), quadriceps femoris (QF), 

stomach (St) and CD3-, CD19-, CD11b- as well as CD11c-positive cells. (B) Shows the 

distribution in the liver of four BALB/c mice across hepatocytes (Hep), stellate cells (HSC), 

Kupffer cells (KC) and liver sinusoidal endothelial cells (LSEC). Detected viral genomes 

(EYFP probe) were normalized to GAPDH as a housekeeper. Depicted values represent the 

average of the mice with SD. 

As previously observed for the second variant screening (Figure 9), the 

majority of AAV particles ended up in the liver (42 vg/dg) followed by CD11c 

cells (14 vg/dg), CD11b cells (3.3 vg/dg), brown fat tissue (3 vg/dg) and white 

fat tissue (2.2 vg/dg). Aorta, biceps, diaphragm, heart, kidney, lung, ovaries, 

quadriceps femoris, CD3 and CD19 cells ranged between 0.35 and 1.6 vg/dg. 



78 RESULTS 

 

The digestive tract including colon, duodenum and stomach as well as the eye, 

inner ear and pancreas could only be weakly transduced (0.05-0.16 vg/dg). 

Concerning the transduction of liver cell types in the separate mouse study 

(Figure 16B), hepatocytes, stellate cells and Kupffer cells demonstrated similar 

levels, while LSECs were slightly lacking behind. 

After processing the NGS data and analyzing the output files, C57BL/6J 

mouse numbers 3 and 4 were declared to be outliers due to unusually low 

AAV9_P1 abundance and therefore excluded from the analysis. The Vαβ and 

Tαβ values that are shown below hence depict the averages of mouse 1, 2, 5 and 

6 with the corresponding SD. Figure 17 shows the efficiency of the top 10 AAV 

variants in the liver, lung, eye, inner ear, brown and white fat tissue. 

   

   

Figure 17: Transcriptional efficiency in various tissues 

The depicted bar plots show the transcriptional efficiency as normalized proportion of the 

top 10 AAV variants from the 3rd generation library in the liver, lung, eye, inner ear, brown 

fat tissue and white fat tissue. The cDNA values are the average from four C57BL/6J mice 

with SD. 

A first notable result was that AAVrh10wt outcompeted the other capsids in 

the library in the liver, reproducing the results from the first (Figure 7) and 

second (Figure 11) screening. AAV8wt was found in position 7, mostly 

separated from AAVrh10wt by capsids that were newly added in the third 

screening round (Table 28). One of those, AAVB1, was originally reported to 

excel in brain, muscle and pancreas190 but turned out to be highly 

transcriptionally active in the liver. In the lung, the highly promising capsid 

AAV2_L1208 was confirmed as lead candidate displacing the rationally 

designed peptide insertion variants.  
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From the 2nd generation library, AAV9_P1 has emerged as an efficient 

vector in the muscle tissues (Figure 12) and the off-targets eye, inner ear and 

fat tissue (Figure 11). Figure 17 partially exemplifies this phenomenon again by 

verifying AAV9_P1 as the most efficient vector in the eye and inner ear. Unlike 

what was observed in the second screen, the P1-displaying variant even 

marginally overtook AAV9wt in the white fat tissue.  

More importantly, AAV9_P1 once more showed a superior efficiency 

compared to AAV9wt in the diaphragm, biceps, quadriceps femoris and heart 

where it outperformed its parent by 10.1-fold, 7.2-fold, 5.6-fold and 1.6-fold, 

respectively (Figure 18). Surprisingly, none of the published muscle 

benchmarks was able to reach the top 10 in any of the muscle tissues. 

Moreover, several of the newly generated, shuffled chimeras selected in these 

tissues were found in the top 10 albeit they remained below AAV9wt. Finally, 

an additional peptide insertion mutant from our laboratory, AAV9_P3, scored 

second to AAV9_P1 in the diaphragm, biceps and quadriceps femoris where it 

was 3- to 6-fold less efficient depending on the organ.  

  

 

   

Figure 18: Transcriptional efficiency in muscle tissues 

The depicted bar plots show the transcriptional efficiency as normalized proportion of the 

top 10 AAV variants from the 3rd generation library in the diaphragm, biceps, quadriceps 

femoris and heart. The cDNA values are the average from four C57BL/6J mice with SD. 

Another promising feature of the 3rd generation library was the presence of 

three additional brain-targeting variants next to AAV2_BR1 and AAV9_PHP.B, 

offering the opportunity for a head-to-head comparison in the clinically highly 

relevant brain tissue. However, it has to be noted that the flow cytometry 

sorting of cells from this tissue was difficult, ultimately resulting in an 
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incomplete recovery of the samples and low cellular yields ranging from 330 to 

941 cells depending on the fraction. Thus, the data must be interpreted with 

caution. Nonetheless, a trend towards AAV9_A2 could be observed 

(Supplementary information, Figure 39). Intriguingly, none of the capsids 

suggested by the literature appeared in the top 10. 

In the second mouse experiment utilizing the third barcoded library, the 

liver of four BALB/c mice was dissected into hepatocytes, Kupffer cells, stellate 

cells and LSECs in collaboration with the Dooley laboratory in Mannheim and 

Anne-Kathrin Herrmann. Samples of extracted DNA and RNA were run 

through the established pipeline and normalized as previously described 

(3.4.13). As before, Vαβ values were averaged across the mice and are depicted 

with the corresponding SD in Figure 19. 

   

   

Figure 19: Transcriptional efficiency in liver cell types 

The depicted bar plots show the transcriptional efficiency as normalized proportion of the 

top 10 AAV variants from the 3rd generation library in hepatocytes, Kupffer cells, liver 

sinusoidal endothelial cells (LSECs) and stellate cells. The cDNA values are the average 

from four BALB/c mice with SD.  

The data from the whole liver (Figure 17) had already indicated a 

pronounced liver activity of AAVB1190. Analysis of the sub-cell types revealed 

the highest AAVB1 efficiency in hepatocytes where it outperformed all other 

variants. In addition, the capsid was detected in the top 10 of the remaining 

three cell types. In Kupffer cells, an interesting effect was noted, namely the 

appearance of variants that were generally less efficient, such as AAV1_P5 and 

AAV6.2. Curiously, none of the chimeras pre-selected for stellate cells was 

preferentially detected in these cells in this screen. More information on these 
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capsids and a more detailed description and discussion of these data is found 

in the doctoral thesis of Anne-Kathrin Herrmann. 

The possibility to analyze the liver as a whole organ or divided into cell 

types massively enhances the understanding of the function of particular 

capsid variants. Accordingly, for capsids that were less frequently found in 

hepatocytes, their specificity was assessed by studying the corresponding Tαβ 

values in all 21 tissues (Figure 20). 

   

  

 

Figure 20: Transcriptional specificity of hepatocyte-detargeted variants 

The depicted bar plots show the transcriptional specificity as normalized proportion per cell 

of hepatocyte-detargeted AAV variants from the 3rd generation library in aorta (A), biceps 

(Bi), colon (C), CD11b-, CD11c-, CD19-, CD3-positive cells, diaphragm (Di), duodenum (Du), 

eye, brown fat tissue (FatB), white fat tissue (FatW), heart (H), inner ear (I), kidney (K), liver 

(Li), lung (Lu), ovaries (O), pancreas (P), quadriceps femoris (QF) and stomach (St). 

Depicted is the average of cDNA values from four C57BL/6J mice with SD. 

The selected candidates AAV1wt, AAV6wt, AAV6.2, AAV1_P5 and 

AAVAH3-5 demonstrated a highly similar tropism, by almost exclusively 

targeting the liver and CD11b- as well as CD11c-positive cells. Strikingly, three 

different capsid engineering approaches achieved the same result, namely 

DNA family shuffling with AAVAH3-5, peptide insertion with AAV1_P5 and 

introduction of single point mutations with AAV6.2. Even the very 

homologous, naturally occurring isolates AAV1wt and AAV6wt exhibited 

identical specificity patterns. Still, out of the five capsids, AAV1_P5 showed 

the most pronounced immune cell-targeting while its activity in the liver was 

limited to fewer than 20%. 

Concerning the specificity within the liver tissue, i.e., information provided 

by the second study in BALB/c mice, a marked hepatocyte-detargeting could 

be observed for all five variants (Figure 21). 
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Figure 21: Transcriptional specificity of hepatocyte-detargeted variants 

The depicted bar plots show the transcriptional specificity as normalized proportion per cell 

of hepatocyte-detargeted AAV variants from the 3rd generation library in hepatocytes (Hep), 

hepatic stellate cells (HSC), Kupffer cells (KC) and LSECs. Depicted is the average of cDNA 

values from four BALB/c mice with SD. 

In more detail, the chimera AAVAH3-5 detargeted hepatocytes almost 

entirely (0.8%), followed by the other four variants with normalized 

proportions of roughly 3%. None of the selected vectors could discriminate 

between stellate cells, Kupffer cells or LSECs, including the shuffled chimera 

selected in stellate cells, AAVAH3-5. From the three mentioned cell types, the 

mentioned vectors could be predominately found in Kupffer cells with over 

40% followed by stellate cells (~30%) and LSECs (~15%). Solely based on the 

specificity, no clear lead candidate emerged. However, AAV1_P5 was the most 

efficient in stellate cells where it marginally surpassed AAV6.2, AAV6wt, 

AAVAH3-5 and AAV1wt by 1.05-fold, 1.27-fold, 2.18-fold and 2.38-fold, 

respectively (corresponding Vαβ values are not shown). 

In the full organ biodistribution, a remarkable observation had been that 

AAV2_L1 demonstrated the highest specificity observed in all three screenings 

(Figure 22). 99% of the vector activity was measured in the lung, which is even 

higher than the 71% proportion found in the second screening round (Figure 

14). This enhancement can most likely be explained by the fact that for the 3rd 

generation library, the two major off-targets, blood cells and brain, were not 

included in the analysis. This clearly exemplifies that determination of capsid 

specificity strongly depends on the investigated organs.  
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Vice versa, an example that implementing certain tissues can also decrease 

the tropism is shown for AAVDJ (Figure 22). The dataset of the 2nd generation 

library had revealed a very pronounced 97% specificity of this capsid for the 

liver (Figure 14). However, the most recent screening showed additional 

AAVDJ activity in CD11b- and CD11c-positive cells, lowering its value in the 

liver to 58%. Anne-Kathrin Herrmann made further modifications to the 

AAVDJ capsid by mutating three tyrosine residues to phenylalanines 

(AAVDJYF), hoping to evade proteasomal degradation of the particles. 

Nevertheless, this did not result in improved efficiency in the whole liver or 

enhanced specificity. 

   

Figure 22: Transcriptional specificity of AAVDJ and AAV2_L1 

The depicted bar plots show the transcriptional specificity as normalized proportion per cell 

of AAVDJ, AAVDJYF and AAV2_L1 from the 3rd generation library in aorta (A), biceps (Bi), 

colon (C), CD11b-, CD11c-, CD19-, CD3-positive cells, diaphragm (Di), duodenum (Du), eye, 

brown fat tissue (FatB), white fat tissue (FatW), heart (H), inner ear (I), kidney (K), liver (Li), 

lung (Lu), ovaries (O), pancreas (P), quadriceps femoris (QF) and stomach (St). Depicted is 

the average of cDNA values from four C57BL/6J mice with SD. 

Within the liver, the chimera selected in hepatocytes, AAVDJ, was indeed 

found predominantly in hepatocytes (87%) followed by stellate cells (6.9%), 

Kupffer cells (4.3%) and LSECs (1.3%) (Figure 23). Also here, the mutations 

introduced in AAVDJYF did not alter capsid selectivity for the on-target. 

Worth noting are two peptide-modified variants, AAV5_P5 and AAV8_P5, 

that exhibited similar or even enhanced hepatocyte activity with 95% and 85%, 

respectively. Still, these vectors are slightly inferior to AAVDJ since their 

efficiency is 14-fold and 2.2-fold lower in whole liver, based on the data from 

the second screening. Finally, AAV8wt and AAVrh10wt, that were the most 

effective capsids in the liver on the cDNA level (Figure 11), showed a broad 

distribution in the four sub-cell types with minor preference to hepatocytes 

(Figure 23). 
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Figure 23: Transcriptional specificity for hepatocytes 

The depicted bar plots show the transcriptional specificity as normalized proportion per cell 

of hepatocyte-targeting AAV variants from the 3rd generation library in hepatocytes (Hep), 

hepatic stellate cells (HSC), Kupffer cells (KC) and LSECs. Depicted is the average of cDNA 

values from four BALB/c mice with SD. 

Next to liver, muscle is one of the preferred organs for gene therapy 

applications. The results from the 2nd generation library had already showed a 

massively improved targeting of muscle for AAV9_P1 (Figure 15). The 3rd 

generation library comprised important benchmarks from the literature, 

allowing for an extensive comparison with this lead candidate. The specificity 

values (Tαβ values) of the mentioned benchmarks are depicted in Figure 24. 

   

   

Figure 24: Transcriptional specificity of published benchmarks in muscles 

The depicted bar plots show the transcriptional specificity as normalized proportion per cell 

of published muscle-tropic benchmarks from the 3rd generation library in aorta (A), biceps 

(Bi), colon (C), CD11b-, CD11c-, CD19-, CD3-positive cells, diaphragm (Di), duodenum (Du), 

eye, brown fat tissue (FatB), white fat tissue (FatW), heart (H), inner ear (I), kidney (K), liver 

(Li), lung (Lu), ovaries (O), pancreas (P), quadriceps femoris (QF) and stomach (St). 

Depicted is the average of cDNA values from four C57BL/6J mice with SD. 
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The widely used and broadly transducing AAV9wt once more particularly 

targeted the liver (52%), an effect already observed in the second screening 

(Figure 13). Previously observed, AAVpo1wt exhibited a tendency for 

transduction of diaphragm and quadriceps femoris (Figure 13). In this third 

screen, this tropism could be confirmed, with brown and white fat tissue 

appearing as major off-targets (Figure 24).  

AAVB1, a chimera originally selected for the brain190, was reported to 

transduce muscle tissues more robustly than AAV9wt, a notion that could not 

be reproduced here. In fact, AAVB1 was 3-, 3.5-, 7.6- and 9.2-fold less efficient 

in the heart, diaphragm, quadriceps femoris and biceps, respectively 

(corresponding Vαβ values are not shown). Regarding specificity, the chimeric 

AAVB1 capsid was preferentially detected in the liver with 86% (Figure 24). 

Another chimera from Yang and colleagues, AAVM41, was isolated after 

two selection rounds in muscle tissue and showed a trend towards a muscle 

tropism189. Here, 16.5% of the transcriptional activity could be found in the 

diaphragm, 8.3% in the heart, 3% in the biceps and 4% in the quadriceps 

femoris. However, the capsid was roughly 10-fold less efficient than AAV9wt. 

The peptide-inserted mutant AAV9_K3 was selected in endothelial cells215 

but used in the third screening due to its peptide sequence that deviated from 

P1 in only two of the nine amino acids. Surprisingly, the variant could not 

target the muscles. Instead, 77% of the viral activity was measured in the liver. 

Two point mutations, P504A and G505A, were introduced to the AAV9wt 

capsid proteins by Adachi et al., yielding variant AAV9LD222 that was reported 

to be liver-detargeted. Indeed, the strong exclusion of the liver could be 

reproduced in this study by detecting 140-fold less viral transcripts as 

compared to AAV9wt. Interestingly, this effect resulted in a preferred targeting 

of muscle and fat tissues as depicted in Figure 24. However, the mutations 

mildly decreased the efficiency by roughly 1.5-fold in diaphragm, biceps and 

quadriceps femoris as well as, more prominently, in the heart by 3-fold 

compared to the parental virus, AAV9wt. 

So far, none of the benchmarks could reach similar levels of specificity or 

efficiency in comparison to AAV9_P1 in the second screening. New in the 

successive round were chimeric synthetic capsids selected and pre-validated in 

muscle tissues by Jihad El Andari, including an independent NGS screen. 

Thirty-four of these shuffled variants were included in the library and assessed 

for specificity, and the most promising are depicted in Figure 25. All of them 

showed a convincing detargeting from the liver while increasing the 
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proportion in muscle tissues, as hoped for. As previously observed for 

AAVM41, AAV9LD and AAV9_P1 (Figure 24 and Figure 15), off-targeting to 

the brown and white fat tissue was measured.  

   

   

Figure 25: Transcriptional specificity of novel variants in muscle tissues 

The depicted bar plots show the transcriptional specificity as normalized proportion per cell 

of novel muscle-tropic AAV variants from the 3rd generation library in aorta (A), biceps (Bi), 

colon (C), CD11b-, CD11c-, CD19-, CD3-positive cells, diaphragm (Di), duodenum (Du), eye, 

brown fat tissue (FatB), white fat tissue (FatW), heart (H), inner ear (I), kidney (K), liver (Li), 

lung (Lu), ovaries (O), pancreas (P), quadriceps femoris (QF) and stomach (St). Depicted is 

the average of cDNA values from four C57BL/6J mice with SD. 

The lead candidate of the second screening, AAV9_P1, once more exhibited 

a strong muscle tropism (66%) outcompeting all other variants in the 3rd 

generation library (Figure 25). In addition, AAV9_P1 was roughly 10-fold more 

efficient in the on-targets than the best chimeric AAVJEA vectors. Of note, 

AAV9_P3 also behaved similar to AAV9_P1 in terms of specificity, but the 

cumulative value for all muscles was lower (30%). 

4.6 VALIDATION OF AAV9_P1 

As shown above, AAV9_P1 demonstrated compelling evidence for a high 

efficiency (Figure 12 and Figure 18) and specificity (Figure 15 and Figure 25) in 

murine muscle tissues. To independently verify this novel and exciting finding, 

further validation experiments had to be performed. One particularly 

important consideration was the potential occurrence of capsid interference in 

a library context, resulting from e.g. receptor competition or particle cross-

interactions. Therefore, AAV9_P1 and the previous lead candidates from the 

first screening, AAVpo1wt and AAVpo1_A1, as well as AAV9wt as a control 
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were injected individually into three C57BL/6J mice at a dose of 

1x1011 vg/mouse. The other supposedly muscle-tropic vectors from the 

literature, AAVB1190, AAVM41189, AAV9_K3215, AAV9LD222 and AAV2_MTP201, 

were excluded from this study since none of them matched AAV9_P1 

regarding efficiency (Figure 18) and muscle-targeting (Figure 24 and Figure 

25). The two AAVpo1-based variants were included due to their roughly 50% 

proportion in the three muscle tissues (Figure 24). Intravenously injected mice 

were kept for one week before diaphragm, quadriceps femoris, heart and liver 

were harvested and analyzed by qPCR to detect the viral transcripts. The eyfp 

transgene signal was subsequently normalized to a POLR2A housekeeper. The 

values depicted in Figure 26 are eyfp relative quantities (2-ΔCt) for the mentioned 

AAVs in the respective organs. 

   

 

  

Figure 26: EYFP relative quantities of AAV9_P1 

The depicted bar plots show EYFP relative quantities of AAV9_P1, AAVpo1_A1, 

AAVpo1wt, AAV9wt and an uninjected control mouse in the diaphragm, quadriceps 

femoris, heart and liver. Relative quantities (2-ΔCt) were measured by detecting viral EYFP 

transcripts via qPCR as well as a POLR2A housekeeper. Depicted values are the average of 

three C57BL/6J mice with SD. 

AAV9_P1 exhibited a dramatically improved transcriptional activity in the 

diaphragm, quadriceps femoris and heart, exceeding its parental capsid 

AAV9wt by 55-, 17- and 11-fold, respectively. Importantly, the P1-displaying 

variant was 9-fold less abundant in the major AAV off-target, the liver. Both 

AAVpo1-based variants showed less activity than AAV9wt, which is in line 

with the barcode screening data (Figure 12). Notably, AAVpo1wt and 

AAVpo1_A1 were especially detargeted from the liver, i.e., 126-fold and 63-

fold, further improving on the already pronounced effect of AAV9_P1. 
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To study whether AAV9_P1 would exhibit additional beneficial effects on 

the protein level, the used AAV genome cassette was slightly modified by 

replacing the CMV promoter-driven eyfp gene with egfp. This guaranteed an 

optimal excitation at 488 nm for a fluorescence-based readout via histology. 

C57BL/6J mice were i.v. injected with 5x1011 vg/mouse and kept for two weeks 

before submerging organ pieces of the diaphragm, quadriceps femoris, biceps, 

heart and liver into a 4% paraformaldehyde solution for fixation. After an 

intermediate incubation in 30% sucrose, the samples were embedded and 

cryosections were generated. Both AAVpo1 variants were excluded from this 

experiment since their strong liver-detargeting did not outweigh the lower 

efficiency in the muscle tissues as compared to AAV9_P1. Next to AAV9_P1, 

AAV9wt and a PBS control, also a newly-cloned variant, AAV9LD_P1, was 

included in which the two mutations of AAV9LD222 were introduced into the 

AAV9_P1 capsid. The expectation was that this rationally designed capsid may 

display enhanced liver-detargeting while maintaining the prominent activity in 

the muscle tissues. 

During the dissection of the mice, a surprising effect observed for the 

AAV9_P1 group was that EGFP expression was visible to the naked eye. 

Images of a representative mouse in dorsal and ventral position are shown in 

Figure 27. 

 

Figure 27: Dissection of an AAV9_P1-injected mouse 

Dissection images show a representative C57BL/6J mouse in ventral and dorsal position 

from the PBS and AAV9_P1 group. Mice were injected i.v. with 5x1011 vg/mouse and kept 

for two weeks. 

Although the pictures were taken under normal light conditions, a 

pronounced EGFP signal could be detected in the skeletal muscles of the 

AAV9_P1-injected mouse. Thus far, the superior activity of AAV9_P1 in the 

muscles was determined based on cDNA data of the quadriceps femoris and 

the biceps (Figure 26). However, these images led to the assumption that the 

capsid behaved equally efficient in the other skeletal muscles. 
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From the obtained cryosections, representative images were chosen for the 

liver diaphragm, heart, biceps and quadriceps femoris and assessed directly for 

EGFP-induced fluorescence signal (Figure 28 and Figure 29). The exposure was 

normalized to the highest signal in this experiment, i.e., the diaphragm of the 

AAV9_P1-injected mouse. The dataset for the PBS and AAV9wt group can be 

seen in Figure 28. 

 

Figure 28: EGFP fluorescence of PBS and AAV9wt group 

Images show 10 µm cryosections of the liver, diaphragm, heart, biceps and quadriceps 

femoris. Representative sections were chosen from C57BL/6J mice injected with 

5x1011 vg/mouse of AAV9wt or PBS as a control. Direct EGFP fluorescence was detected 

(green) together with the DAPI signal (blue). Scale bar in the full section is 1 mm and 

100 µm for the 10x magnification. Exposure was normalized to the diaphragm of the 

AAV9_P1 group (Figure 29). 
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Figure 29: EGFP fluorescence of AAV9_P1 and AAV9LD_P1 group 

Images show 10 µm cryosections of the liver, diaphragm, heart, biceps and quadriceps 

femoris. Representative sections were chosen from C57BL/6J mice injected with 

5x1011 vg/mouse of AAV9_P1 or AAV9LD_P1. Direct EGFP fluorescence was detected 

(green) together with the DAPI signal (blue). Scale bar in the full section is 1 mm and 

100 µm for the 10x magnification. Exposure was normalized to the diaphragm of the 

AAV9_P1 group. 

As expected, no fluorescence was detected in organs of the PBS group. The 

sections of the AAV9wt-injected mice showed a faint signal in the heart and 

the liver. Strikingly, AAV9_P1 completely transduced the diaphragm and 

slightly less efficiently the biceps and quadriceps femoris (Figure 29). In the 

heart, an EGFP signal could be predominantly observed in the tissue layers 

surrounding the heart cavity, indicating that transduction in this organ is more 

heterogeneous than in the other muscles. Importantly, barely any fluorescence 
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was detected in the liver, further supporting the biodistribution illustrated in 

Figure 15 and Figure 25.  

Concurrent with the results obtained for AAV9LD (Figure 24), the modified 

P1-displaying capsid, AAV9LD_P1, showed enhanced detargeting from the 

liver albeit this is difficult to spot with the used exposure settings (Figure 29). 

Unexpectedly, the rationally designed variant mediated lower EGFP 

expression in the four muscle tissues compared to AAV9_P1, especially in the 

heart. Importantly, AAV9LD_P1 still exceeded the benchmark AAV9wt.  

Also surprising was that barely any fluorescence could be detected for 

AAV9wt in this work, at least with the exposure settings used in Figure 28 and 

Figure 29. To prove that AAV9wt was indeed above background level, the 

exposure was normalized to the EGFP signal in the liver of AAV9wt 

(Supplementary information, Figure 43). In the liver, AAV9wt demonstrated 

EGFP signals in the entire organ but preferentially surrounding the blood 

vessels. In the heart, a partial transduction was observed for AAV9wt 

supporting literature data that AAV9wt is highly efficient in this tissue230–234. It 

was already observed in Figure 13 and Figure 24 that most of the capsid ended 

up in the liver, which may contribute to the relatively weak fluorescence 

signals in the diaphragm, biceps and quadriceps femoris.  

Not surprisingly, the images for AAV9_P1 with the modified settings 

(Supplementary information, Figure 44) were massively overexposed due to 

the high activity of the mutant in these tissues. Regardless, these alternative 

settings strongly supported the conclusion that AAV9_P1 was transducing 

every cell in the muscle tissues, except for the heart where the signal was 

weaker in the outer layers. In the liver, individual cells were hit, which is in 

contrast to AAV9LD_P1 where EGFP fluorescence was almost completely 

abolished. 

 





 

5 DISCUSSION 

5.1 BARCODE-BASED CAPSID SCREENING 

High-throughput capsid engineering strategies such as DNA family 

shuffling, peptide display and random mutagenesis yield thousands of 

potentially promising variants with higher efficiency and specificity. However, 

selecting the best candidate from this pool remains challenging, raising the 

demand for strategies that facilitate and accelerate the process. 

The aim of this work was to establish and apply a barcode-based AAV 

capsid screening pipeline enabling a simultaneous validation of multiple 

capsid variants in vivo. 

5.1.1 ESTABLISHMENT, LIMITATIONS AND FURTHER 

OPTIMIZATION 

Utilizing and building on the information provided in the literature222,224,225, 

the barcode was integrated into the 3’UTR of a CMV promoter-driven eyfp 

(Figure 4). Thus, barcode abundance could be monitored on the DNA and 

RNA level. However, the latter poses further challenges for the normalization 

strategy. 

First of all, a comparison of barcode-comprising viral transcripts across 

multiple organs or cells assumes equal promoter activity in all analyzed 

tissues. The CMV promoter is known for its ubiquitous expression, making it a 

suitable candidate for this screening235. Secondly, values for the activity of each 

virus in every tissue have to be determined which then allow calculating 

proportions for the individual organs, referred to as specificity. Next 

generation sequencing of the cDNA samples of each tissue reveals how much 

of all the detected barcode sequences belong to one capsid variant. However, 

this proportion alone cannot be used to predict the specificity of a given capsid 

across all tissues. For instance, a capsid could have a 20% share in the liver and 

a 20% share in the eye, but these numbers solely describe the efficiency within 

each organ compared to all other variants in the screening, while they do not 

allow a statement about the overall distribution of this variant in the body. 

This fundamental difference - efficiency within a single tissue versus specificity 
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across all studied tissues - is perhaps best illustrated by the bulk results 

depicted in Figure 9, which show that most of the library ends up in the liver. 

This implies that even if a capsid has a high efficiency in a non-liver tissue as 

compared to all other capsids in the same tissue, its actual main target in the 

whole body may still be the liver itself, which was indeed frequently in line 

with our observations. Hence, ideally the relative quantities of all viral 

transcripts have to be determined in every organ and then multiplied with the 

barcode proportion obtained from the deep sequencing, resulting in the 

relative quantities of one variant in the corresponding organ.  

Unfortunately, this strategy would introduce a bias since the RNA 

expression levels of the commonly used housekeeping genes vary across the 

tissues236,237. Due to this reason, the proportional values were normalized to the 

total viral genomes per cell in the respective organs, by making the assumption 

that the genome delivered by a particular variant always produces the same 

amount of transcripts in all analyzed tissues. As previously mentioned, this 

only applies if the promoter activity is identical in all tissues, which, however, 

cannot be guaranteed even for a ubiquitous promoter. Thus, determining the 

specificity inevitably introduces a bias either because of the heterogeneous 

housekeeper expression or tissue-specific promoter activity. However, 

assessing the relative quantities of the viral transcripts would require an 

additional qPCR step for every analyzed tissue, and the resulting values would 

moreover have to be divided by the total viral genomes (Gβ) of the same organ. 

This calculation normalizes for the potentially unequal promoter activity but 

cannot correct for the variable housekeeper expression. In conclusion, both 

approaches are appropriate, yet the strategy that multiplies the NGS 

proportions with solely the Gβ-values was chosen for this work as it saves one 

extra qPCR step. 

Importantly, the applied normalization strategy also corrects for the 

unbalanced composition of the initial library and for total read count 

differences between flow cells, ultimately leading to so-called Bαβ values 

(3.4.13) that describe the overall biodistribution of every vector in the 

screening. These values can be depicted as proportion of one variant across all 

tissues (Tαβ values) or as proportion of all variants within one tissue (Vαβ 

values). The same formulas were used to process the DNA dataset but, unlike 

the transcripts, the viral genomes are independent of the CMV promoter 

activity thus omitting this particular bias in the analysis. In summary, the 

novel normalization procedure enables, for the first time, to simultaneously 

monitor specificity and efficiency thereby yielding essential information for the 

characterization of gene therapy vectors.  
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Most crucial is the design of the barcode itself. In the first attempt to 

produce barcoded AAV genomes, an oligonucleotide with 10 random bases 

was ordered and integrated into the 3’UTR via Golden Gate cloning. After 

bacteria transformation, theoretically every individual colony should comprise 

a distinct, 10 nucleotides-long barcode. Yet, after confirming that the clones 

possessed intact ITRs, Sanger sequencing revealed truncated barcodes, 

homopolymers or even identical DNA sequences. Due to those reasons, the 

approach had to be canceled and optimized. Consequently, the barcode was 

extended to 15 bases to increase the mathematically possible unique 

combinations from 410 to 415. These second-generation barcodes exhibited a 

drastic improvement as evidenced by a reduced appearance of homopolymers 

or identical sequences. From the pool of extracted barcodes, sequences 

comprising homopolymers with more than 3 identical consecutive nucleotides 

were excluded since the NGS experiences difficulties when predicting the 

bases for such stretches. To prevent false assignment of barcodes due to 

sequencing errors, differences in at least five positions compared to all other 

barcodes in the library were required. Therefore, the Hamming distance was 

calculated, and sequences that failed to fulfill these criteria were excluded. In 

summary, 240 clones were picked, of which 11 lost their ITRs, 64 comprised 

homopolymers or truncated sequences and another six showed a Hamming 

distance below 5. Eventually, only 66% of the screened barcodes could be used 

illustrating how labor-intensive this process is.  

An alternative but inevitably more expensive approach could be to order 

pre-defined barcodes as oligonucleotides. After self-annealing, the barcodes 

can be pooled and cloned into a backbone with complementary overhangs. To 

generate a library comprising 100 unique sequences, roughly 165 colonies have 

to be analyzed and only checked for ITR integrity as determined by probability 

theory. Pre-defined barcodes could be designed without any homopolymers 

and a sufficient Hamming distance. Most importantly, the length of the 

sequences could be cut down to eight nucleotides or even lower while still 

fulfilling the mentioned prerequisites, in turn providing more freedom when 

placing the primers for amplicon generation. In the current approach the 

amplicon is slightly too long, therefore only the reverse sequencing index can 

be read with a 75 cycle Illumina kit since the required amount of nucleotides to 

cover the capsid barcode had to be 84. Consequently, this prevents sequencing 

the forward index and ultimately limits the multiplexing to 32, due to 32 

available reverse indexes in the Ovation Low Complexity kit that was used in 

this work. An optimized and therefore shorter barcode-comprising amplicon 

would offer the possibility to utilize the forward index, thus allowing to 

process substantially more samples on one flow cell. 
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Another crucial parameter during barcode-based capsid screening is the 

virus production and the resulting composition of the library. Variants for the 

1st generation library were each produced using two HEK293T plates and 

eventually purified over one cesium chloride gradient, in order to save costs 

and time. Surprisingly, pronounced discrepancies could be detected regarding 

the production efficiency of the individual variants, creating a largely 

imbalanced library composition (Figure 6). Nevertheless, the normalization 

strategy corrects for such effects by using the variant proportions in the initial 

input library (Lα) and by normalizing the NGS-determined Pαβ values to these 

ratios. Still, normalization artefacts were observed especially for capsids that 

were particularly under-represented, such as the peptide insertion mutants of 

AAV serotypes 1, 6 and 12. For instance, AAV12_P2 and AAV1_P2 were the 

fourth and ninth most efficient vector in the eye (Figure 7), but analysis of the 

raw data revealed that AAV12_P2 was only detected in four out of six mice, 

and AAV1_P2 in one out of six. Despite the minute amounts, the 77-fold and 

132-fold under-representation triggered a high multiplication of the respective 

Pαβ values during the data normalization, in turn leading to the observed 

artefacts. In fact, this phenomenon was also found in abdominal aorta, brain, 

brown and white fat tissue as well as kidney in the first screening for the 

cDNA data (Figure 30), and in abdominal aorta, thoracic aorta, brain colon, eye 

and white fat tissue for the gDNA data (Figure 31).  

In an attempt to create a more homogenous library composition, virus 

production for the variants of the 2nd generation library was performed 

individually. To this end, the amount of needed plates was adapted and the 

respective lysates were run separately over iodixanol gradients. Pooling of 

equimolar amounts as determined by qPCR led to a balanced library (Figure 8) 

unlikely to produce normalization artefacts. However, significantly more time 

and consumables, i.e., 1148 plates and 114 individual iodixanol gradients, had 

to be invested to produce the 82 variant-comprising 2nd generation AAV 

library. Still, this is worth the effort as it substantially improves library quality 

and overall robustness of the pipeline, and as it is probably the only option for 

screenings of highly diverse capsids including different serotypes, peptide 

insertions and other mutants. Of note, the production scheme of the 1st 

generation library likely remains suitable for barcode screenings of lead 

candidates from directed evolution strategies, such as DNA family shuffling or 

peptide display, since these variants have inevitably also been selected for high 

production efficiency. Therefore, the viral particle yield per plate should be 

similar among these vectors, arguably favoring the less labor-intensive process. 
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Furthermore, the detection limit of the barcode-based variant screening 

should be considered. In fact, this limit is difficult to define due to the 

multifactorial dependency on the dose per variant, homogenous intravenous 

injections, incubation time before the harvest, transducability of the analyzed 

tissues, self-complementary or single-stranded AAV genome, sequencing 

depth, cDNA or DNA detection, the variant itself and the number of potential 

competitors in the library.  

Regarding the dose, the aim was to inject 1x1010 vg per variant per mouse. 

However, the library imbalance of the first round resulted in a broad range of 

abundance between the individual variants. A good example for the detection 

limit was provided by AAV4mut_A2 which was the least abundant capsid in 

the library with 3x106 vg/mouse, with a 3600-fold deviation from the mean. 

Serotype AAV4 and its peptide-modified variants as well as AAV4mut 

exhibited a strong lung tropism, taking eight spots in the top 10 list (Figure 7). 

The remaining peptide insertion mutants of AAV4mut could all be found in 

the top 25 except for AAV4mut_A2, for which no read counts were measured 

in the six mice. Most likely, this particular capsid would have demonstrated 

the same preferred lung-targeting if equimolar titers would have been used. 

The dose of 1x1010 vg per variant in the second screening was enough to detect 

read counts in all six mice for at least two thirds of the variants, even in poorly 

transduced tissues. This is sufficient to analyze the efficiency and specificity of 

promising candidates.  

The incubation time before harvesting the organs was two weeks for the 

first screening and one week for the second and third. No noticeable difference 

could be detected when reducing the time. Further decreasing the incubation 

will eventually diminish the chance of the vectors to transduce the target 

tissues. Prolonging the time by several weeks probably enhances silencing of 

the CMV promoter238.  

Arguably the highest influence on the detection limit is exerted by the 

screened organs and variants themselves. As depicted in Figure 9, the vast 

majority of the library ended up in the liver. Organs such as the eye and the 

digestive tract were difficult to transduce and therefore required a more 

sensitive detection. Among the variants, dramatic variations in terms of 

efficiency were observed (Figure 10). For instance, vectors belonging to the 

AAV2, AAV3 and AAV5 family demonstrated a very weak in vivo activity, 

resulting in only a few barcode reads.  

Equally important is the size of the library and the associated variant 

competition. These resulting interfering effects were illustrated in the third 
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screening, where the settings were kept identical to the second round while the 

library was enriched with further 75 capsids. For each of them, 

1x1010 vg/mouse were injected intravenously. Although many results could be 

reproduced, the majority of weakly active AAVs hit the detection limit. For 

example, in the context of the 2nd generation library, AAV2wt exhibited a 

minor 0.14% share in the liver with a marginal standard deviation across the 

six mice. However, in the third screening, one out of four mice had no read 

counts even though AAV2wt preferentially targets the liver. As expected, the 

detection was even more challenging on the DNA level since only the barcodes 

on the viral genomes are measured, whereas promoter-amplified barcode-

comprising transcripts are counted on the cDNA level. In general, a deeper 

sequencing of the samples could potentially rescue some inefficient variants 

but comes with increased costs.  

In conclusion, the chosen experimental settings in this work were 

appropriate to identify highly efficient and specific AAV capsids in the mouse. 

For upcoming screenings, the parameters from the second in vivo 

characterization study should be copied and library diversities should be 

restricted to a maximum of 100 variants. 

5.1.2 COMPARISON TO PUBLISHED DATA 

After establishing the barcode-based capsid screening pipeline, the output 

values of important benchmarks can be compared to the literature to prove the 

robustness of the system. In this work, the DNA family shuffled variant 

AAVDJ demonstrated superior specificity for the liver (Figure 14) and 

efficiency scores slightly worse than AAV8wt (Figure 11). The efficiency was 

already studied in the original 2008 publication of Grimm et al. by showing 

hFIX expression levels similar to AAV8wt and AAV9wt in vivo up to a certain 

dose172. The specificity on the protein level was shown twice in 2016 by reports 

documenting highly liver-tropic detection of luciferase signals164,178. Of note, in 

all three publications and in this work, C57BL/6 mice were used supposedly 

explaining the comparable outcome. In the third barcode screening, AAVDJ 

had seemingly lost part of its liver specificity and in exchange exhibited 

activity in CD11b- and CD11c-positive cells (Figure 22). However, the applied 

normalization strategy calculates the proportion per cell, thus favoring minor 

cell populations like the mentioned immune cells. Since the liver is one of the 

largest organs, the AAVDJ proportion in this tissue greatly outweighs the off-

targets when calculating the proportion per organ. So far unpublished is the 

selective hepatocyte-targeting of the chimera in an in vivo context (Figure 23), 
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which is congruent with the fact that AAVDJ was selected in human 

hepatocytes. Next to the shuffled vector, such a specific liver sub-cell type 

tropism could only be observed for AAV5_P5 and AAV8_P5.  

Also very impressive are the results obtained for AAV2_L1. This peptide 

displaying variant showed a pronounced specificity for the lung and some off-

targeting to blood cells and the brain (Figure 14). In the original work of 

Körbelin et al.208, the blood cells were not analyzed as an off-target but several 

other tissues were assessed for luciferase expression. Strikingly, the lung/brain 

ratio of AAV2_L1 in the second barcode screening is identical to the one seen 

in Figure 4 of the original publication208. This comparison is especially 

important since both results were obtained with completely different 

techniques, further illustrating the robustness of the barcode-based system.  

Another important benchmark that has recently attracted substantial 

attention in the AAV field is AAV9_PHP.B. This variant that has been selected 

for astrocyte-targeting demonstrated superior efficiency (Figure 11) and 

specificity (Figure 14) in the whole brain where it outcompeted the commonly 

used AAV9wt. This result is consistent with published histology data 219,239–241. 

Of note, Hordeaux and colleagues showed that AAV9_PHP.B activity is 

limited to C57BL/6J mice241 that were, by coincidence, also the mouse strain of 

choice for this work, therefore delivering evidence for the comparable 

outcome. The exceptional case of AAV9_PHP.B is discussed in more detail in 

chapter 5.5. 

Next to the compelling confirmation of the benchmark results, the 

screenings additionally excelled in reproducibility between the screening 

rounds. For instance, AAVrh10wt proved to be the most efficient capsid in the 

liver in all three screens and even outperformed AAV8wt, albeit only 

marginally. In the third screening, AAV8wt was slightly separated from 

AAVrh10wt, mostly by capsids that were newly added in this round. 

Interestingly, the comparable efficiency of AAVrh10wt and AAV8wt has also 

been documented in the literature242. Nathwani et al. also showed highly 

similar vector genomes per cell for both wild types, which could be confirmed 

here in all three capsid screening rounds. Among the top 10 variants in the 

pancreas of the first and second screen, the first eight vectors were in identical 

positions when excluding the newcomers of the second round. In the same 

round, AAV9_P1 was 1.6-fold more effective than AAV9wt in the heart (Figure 

12). The successive screening once more exhibited a 1.6-fold difference between 

the two vectors (Figure 18). These findings and several further, similarly 

consistent results observed in other tissues or for other variants convincingly 

prove the robustness and reproducibility of the barcode-based variant 



100 DISCUSSION 

 

screening pipeline that was established here. This conclusion is of high 

importance since only a stable system can be used to reliably identify the most 

potent variant from a pool of potential lead candidates. 

5.2 CHALLENGES IN RATIONAL CAPSID DESIGN 

The analyzed AAV variants in this work were generated with different 

capsid engineering techniques. Next to the directed evolution approaches like 

DNA family shuffling, peptide display and error-prone PCR that were used to 

create the benchmarks in our screens, over 70 mutants based on the naturally 

occurring serotypes were used that display elsewhere-selected peptides. A 

highly similar panel of viruses was previously tested in our laboratory (work 

of primarily Kathleen Börner and Eike Kienle) and proved to be vastly effective 

in cultured cells in vitro (manuscript in preparation). Interestingly, in this work, 

the peptide-modified vectors behaved very differently as compared to the 

respective wild type versions in mice, clearly exemplifying the very restricted 

transferability between in vitro and in vivo systems. The same effect was also 

observed for commonly used AAV serotypes by exhibiting diverging 

transduction profiles in cell lines243 as compared to the in vivo situation in 

mice153. Plausible explanations are the additional barriers in a living organism 

including the more challenging accessibility of the target tissue and potential 

interactions with the host immune system. Moreover, it has to be noted that a 

direct comparison is difficult since the in vitro screenings were performed in 

one particular cell line whereas mostly whole organs were analyzed in the 

barcode-based screenings.  

Further interesting and useful observations were made when attempting to 

rationally improve capsids by transferring peptides isolated through directed 

AAV evolution between two different capsids. In detail, the natural isolate 

AAV4wt and the previously selected peptide display mutant AAV2_L1208 were 

detected preferentially in the lungs. The fact that AAV2wt itself predominantly 

targets the liver suggested that it is the L1 peptide that mediates the lung 

tropism and thus pointed towards the possibility to further improve AAV4's 

activity in the lung by integrating the L1 peptide into AAV4wt. Curiously, 

though, the resulting AAV4_L1 variant exhibited equal efficiencies as the other 

AAV4-based peptide insertion mutants but remained below that of the 

parental AAV2_L1. This is a very important result as it highlights the 

synergism between capsid backbone and inserted peptide that ultimately 

governs the properties of the resulting synthetic viral particle.  
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A second example supporting this seminal conclusion is AAV9_BR1 that 

was designed here to combine the most potent serotype for brain-targeting, 

AAV9wt, with the brain-homing peptide BR1 from the directed evolution 

variant AAV2_BR1218. Also here, it was observed that the identical peptide led 

to strikingly different particle phenotypes depending on the capsid backbone it 

was presented in, again illustrating the complexity of AAV biology and the 

challenges in rational AAV capsid design.  

A third consistent example from the literature is AAV2_MTP, a variant 

displaying a putative muscle-targeting peptide MTP that was isolated by 

phage display in muscle tissue. The paper reported an enhancement in the 

diaphragm, heart and gastrocnemius after systemic delivery in mice over 

AAV2wt, which is very inefficient in these tissues in vivo 201. While these effects 

could be confirmed for all the muscle tissues in this doctoral work, 90% of 

vector activity was actually measured in the liver. This highlights the 

importance of performing comprehensive screens in a wide variety of tissues, 

as a prerequisite for drawing fair and unbiased conclusions about in vivo 

capsid efficiency and/or specificity.  

Strikingly, we found that even single point mutations can significantly 

change the behavior of AAVs in the complex setting of a mouse. The first 

barcoded variant screening comprised capsids based on AAV4 with a K544E 

mutation, herein referred to as AAV4mut. All members of this family were less 

active in the lung in direct comparison to their wild type parent, AAV4wt. An 

example that the influence of a few mutations can also be negligible was 

AAVDJYF that was introduced to the 3rd generation library and bears three 

tyrosine-to-phenylalanine exchanges that could potentially improve particle 

stability by preventing proteasomal degradation. The beneficial effects of such 

tyrosine mutants was demonstrated previously159,161–163,244 and now applied 

here by mimicking the respective residue alterations of an AAV2 triple 

mutant161 in AAVDJ. Interestingly, the resulting mutant showed the same 

specificity (Figure 22 and Figure 23) and efficiency as AAVDJ, once more 

illustrating the complex interplay of capsid backbone and ectopic 

modifications, such as point mutations here or peptide insertions above. Last 

but not least, AAV9LD_P1 was generated to further enhance the effects of 

AAV9_P1, by including two point mutations P504A and G505A that led to a 

massive detargeting of the liver when integrated into AAV9wt222. This 

published mutant, AAV9LD, was already more specific for the muscle in 

comparison to its parental virus, implying that transfer of these two point 

mutations may improve our own variant. Remarkably, even though only 

minimal changes were made to AAV9_P1, its high efficiency in muscle was 
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actually decreased in exchange for a better liver-detargeting, as seen in the 

histology sections of the analyzed tissues (Figure 29). 

In summary, rationally designing AAV capsids by transferring peptides or 

mutations between two capsids is challenging since the assembled AAV 

particle can be highly sensitive to even minimal variations, ultimately resulting 

in unpredictable phenotypes. This is perhaps best exemplified by our capsids 

resulting from the transfer of peptides that were pre-selected via random 

peptide display in AAV2, such as the P2, P4, P5, A1, A2 and A6, into another 

AAV serotype. In most cases, this integration into a slightly different AAV 

context largely changed particle behavior, most likely due to different steric 

requirements in the exposed capsid regions of closely-related serotypes. Even 

when in vivo selected peptides such as L1 and BR1 were transferred to the same 

integration site of another isolate, this typically yielded a phenotype that 

differed from the parental peptide-modified capsid. Still, two notable 

exceptions were observed in this work, namely AAV9_P1 and AAV9_P3, that 

both use peptides isolated through AAV2 peptide display. Both mutants 

exhibit a remarkable muscle-targeting that most likely results from the 

synergistic action of the capsid backbone and the peptide. Hence, they serve as 

very encouraging examples for how transfer of a given peptide between two 

serotypes can in fact create entirely novel and beneficial capsid features. 

Taken together, the data presented here and literature findings show that 

AAV is a tremendously versatile and promising scaffold for the design of 

synthetic capsids and vectors with original features in vitro and in vivo. 

Concurrently, the presented results also support the notion that additional 

work and knowledge on AAV capsid biology are urgently needed in order to 

realize the potential of rational design, whereby the outcome of a capsid 

modulation including particle stability or receptor interaction can be fully 

predicted in advance. 

5.3 DIRECTED EVOLUTION – THE HOLY GRAIL IN 

CAPSID ENGINEERING? 

Until the field possesses sufficient knowledge to realize rational design of 

AAV capsids, two major capsid engineering techniques, DNA family shuffling 

and random peptide display, showed great promise for the identification of 

more efficient or specific vectors. Both strategies rely on the generation of AAV 

libraries with diversities of around 1x107 novel synthetic variants that are 

subsequently used for transducing cells or animals. Viral genomes are then in 
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most cases PCR-rescued from successfully penetrated cells or organs of 

interest, therefore excluding variants incapable of reaching the target tissue. By 

repeating this procedure for several rounds, candidates are enriched that 

outperform their competitors in terms of e.g. efficiency. In this work, several 

capsids resulting from such a directed evolution scheme were included, either 

from the literature and then serving as benchmarks, or novel variants 

independently isolated by the group members Anne-Kathrin Herrmann and 

Jihad El Andari, which allowed us to assess the potency of these techniques.  

The DNA family shuffled chimera AAVDJ is a very good example for a 

successful selection. The vector reported in 2008 by Grimm and colleagues was 

isolated from human hepatocytes after five consecutive rounds of screening of 

a shuffled capsid library in the presence of intravenous immunoglobulin and 

found to restrict the biodistribution to the liver172. Indeed, these data could be 

verified in the second and third barcode screening where AAVDJ 

demonstrated strong liver-targeting (Figure 14 and Figure 22). Concurrent with 

the original publication, AAVDJ was less efficient than AAV8wt in this organ 

(Figure 11) which is worth noting since directed evolution in theory mainly 

selects for a higher efficiency or in the case of AAVDJ in addition for antibody-

evading features. Most impressively, within the liver the chimera was found 

almost exclusively in hepatocytes, reflecting the selection strategy used for its 

isolation (Figure 23). AAVLK03191, AAVM41189 and the lead candidates of the 

muscle selection (work of Jihad El Andari), AAVJEA3-S1, AAVJEA3-S10, 

AAVJEA3-H15 and AAVJEA3-D20 furthermore support the hypothesis that 

DNA family shuffling is oftentimes yielding vectors with an increased 

specificity. However, none of the mentioned chimeras demonstrated a higher 

efficiency compared to their parental counterparts. The fact that only wild type 

AAV isolates are used for shuffling can potentially explain the phenomenon 

since the resulting chimeras are restricted to the provided sequences of the 

parents. Hence, the chimeric sequences presumably possess a lesser chance to 

form motifs needed for a complete retargeting.  

On the contrary, in random peptide display approaches, novel motifs are 

integrated into the capsids, thus offering the possibility to utilize a different 

entry mechanism. For instance, variants such as AAV9_PHP.B, AAV2_BR1 and 

AAV2_L1 were extracted from peptide displays and show a concurrent 

increase in specificity and efficiency (Figure 11 and Figure 14). Interestingly, 

the potency of the parental backbone for the insertion seems to play a minor 

role as illustrated by AAV2_L1 and AAV2_BR1. AAV2wt itself demonstrated a 

high liver specificity (Figure 13) and in general a weak efficiency in all tissues 

(Figure 10). Nevertheless, the incorporation of nine additional amino acids 
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converted the capsid to a particularly effective and specific mutant. Once more, 

the less important native activity of the parental wild type capsid for peptide 

display is in contrast to DNA family shuffling where enriched chimeras are 

oftentimes comprised of sequences from efficient serotypes in the respective 

organ or cells where they were selected in. For example, AAVDJ is a mixture of 

AAV2wt, AAV8wt and AAV9wt from which especially AAV8wt exhibited 

high efficiency in the liver (Figure 11). However, the chimera has the highest 

homology to AAV2wt, deviating in 60 amino acids. AAV2wt proved to be 

vastly effective in vitro, especially in the human hepatoma cell lines Huh7 and 

HepG2 (doctoral thesis of Eike Kienle), the cells AAVDJ was isolated from. 

Another example are the muscle-tropic chimeras of Jihad El Andari that 

comprise long stretches of the most potent wild type in the muscle, AAV9wt, 

at the C-terminus (data not shown). Finally, the shuffled variant AAVAH3-5, 

selected in stellate cells, consists of mainly AAV1wt (doctoral thesis of Anne-

Kathrin Herrmann), a serotype demonstrating a surprisingly similar efficiency 

(4.5) and specificity (Figure 20 and Figure 21) in the on-target further 

supporting the abovementioned theory. 

One very important aspect when choosing one of the two directed evolution 

approaches for the development of a tailored variant is the monitoring of the 

library during the selection. During every round, the library composition will 

change, which yields vital information about the enrichment of certain motifs. 

However, tracking a library created through DNA family shuffling is 

challenging since the whole 2.2 kb-long capsid gene undergoes alterations. 

Traditional Illumina sequencing cannot resolve these changes since 

homologous sequences are needed for the required alignment. Recently, 

another sequencing technology became available, namely PacBio sequencing221. 

The advantages are the particularly long read lengths covering the 2.2 kb with 

ease. Regardless, the system requires improvements since the total number of 

reads, roughly 50.000-100.000, cannot cover typical library diversities of up to 

1x107. In addition, the system is more expensive than traditional sequencing 

and, in its current iteration, introduces many insertions and deletions to the 

sequences based on our own experiences, which complicates the analysis. 

Random peptide libraries pose an advantage as one can readily exploit 

Illumina sequencing due to the only ~30 bp-long peptide-encoding DNA 

stretch that has to be resolved. Thereby, up to 450 million reads per sample can 

be generated when using the NextSeq500, which exceedingly covers a typical 

library. Accordingly, monitoring of every selection round can identify peptides 

with increasing abundance, as was perfectly exemplified in the original 

publication of AAV2_BR1218. By concomitantly also sequencing off-targets, the 
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collective information can be utilized to calculate the enrichment scores in the 

on-target while simultaneously determining tissue specificity208.  

In general, to obtain organ-specific variants, the number of selection rounds 

is crucial for both mentioned directed evolution strategies. Most tissue-specific 

published vectors resulted from five iterative rounds and therefore had to 

survive a strong selection pressure. Attempts to save time by lowering the 

repetitions increases the riskto obtain sub-optimal progeny, as exemplified by 

the chimera AAVB1, a variant that was selected for central nervous system-

targeting after only one selection round190. Instead, the variant possesses a 

pronounced liver specificity (Figure 24). A second example are the chimeric 

muscle-tropic vectors from our laboratory that underwent either two or three 

selection rounds. All chimeras experiencing only two cycles were 

predominantly found in the liver followed by CD11b- and CD11c-positive cells 

as well as fat tissue. Notably, the four lead candidates with increased muscle-

targeting, AAVJEA3-S1, AAVJEA3-S10, AAVJEA3-H15 and AAVJEA3-D20, 

were all extracted after three rounds. One exception is the brain-specific 

peptide display mutant, AAV9_PHP.B, that was isolated after the second 

round of selection. The fact that this relatively short selection scheme was still 

successful is perhaps explained by the use of the novel CREATE system, in 

which only those viral genomes that had undergone Cre-mediated 

recombination in astrocytes can be rescued, which substantially raised the 

stringency of the system219. 

In conclusion, directed evolution is currently arguably the most promising 

method to identify highly selective and effective capsids, especially after 

several selection rounds. Clearly and not surprisingly, a major challenge is to 

selectively and robustly target individual cells types. Although AAVDJ 

managed to preferentially hit hepatocytes, the lead candidate of our laboratory 

from a stellate cell selection, AAVAH3-5, additionally transduced Kupffer cells 

and LSECs (Figure 21) indicating a limit for a highly specific tissue-targeting 

when solely relying on the capsid. Nevertheless, specificity can be enhanced by 

combining a beneficial capsid with tissue-specific promoters or cis-acting 

elements for the transcriptional regulation with endogenous mRNAs. Last but 

not least, synthetic AAVs generated by directed evolution strategies are 

simultaneously selected for a potent production efficiency (experiences made 

in our laboratory), which is essential considering the immense manufacturing 

effort to yield high titers for clinical trials245. 
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5.4 AAV9_P1 – AN UNEXPECTED NEWCOMER FOR 

MUSCLE GENE THERAPY 

Genetic disorders leading to muscle diseases are ideal targets for an AAV-

based gene therapy. In order to reach every affected muscle tissue in the whole 

body, an intravenous administration is required creating challenges concerning 

immune responses and off-targeting effects. To date, AAV9wt proved to be the 

most efficient wild type AAV in multiple animals229 therefore qualifying it for 

the use in clinical trials. However, this work revealed a strong bias towards the 

liver for the naturally occurring isolate (Figure 13 and Figure 24), illustrating 

the existing room for improvement and the urgent need in the AAV field of 

new, potent and muscle-tropic vectors that could foster the implementation of 

gene therapies for many muscle diseases.  

Surprisingly, a capsid added in the second barcode library, AAV9_P1, 

showed superior efficiency in the diaphragm, heart, biceps and quadriceps 

femoris (Figure 12 and Figure 18). In addition, it also exhibited a greatly 

improved specificity as compared to AAV9wt (Figure 15 and Figure 25). 

Importantly, separate validation of this capsid out of the library context could 

confirm the results on the cDNA (Figure 26) and protein level (Figure 29). In 

strong contrast to AAV9wt, the P1-displaying variant detargets the liver and 

many other organs, restricting ~70% of its activity to the muscles. These 

striking effects are caused by integrating the nine amino acid-long peptide 

GRGDLGLSA into the AAV9 capsid protein after position 588 (in VP1). The 

peptide, herein referred to as P1, was originally discovered during the 

screening of a random peptide display library based on AAV2wt inmurine 

breast cancer PymT cells213. In the course of his doctoral work in the Grimm 

laboratory, Eike Kienle had incorporated promising peptides from the 

literature, including P1, into AAV9 and 11 other AAV serotypes, with the aim 

to study the interplay of capsid and peptide concerning particle efficiency and 

specificity.  

Indeed, this prior work resulted in the identification of numerous 

combinations of capsid and peptide that often surpassed the parental wild type 

in a vast collection of cell types in culture. This comprises AAV9_P1 which 

clearly outperformed AAV9wt and many other capsids in cultured human 

astrocytes where it was the lead candidate202, as found and published together 

with a collaboration partner (Ruth Brack-Werner) at the Helmholtz Center in 

Munich. Intriguingly, the same capsid as well as the closely related AAV9_P3 

behaved very differently in this work in peripherally injected mice, as 
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discussed above. Interestingly, P1 (GRGDLGLSA) and P3 (GRGDAVGVA) 

both comprise an RGD motif that was shown to interact with integrins196,246,247 

suggesting an alternative entry mechanism potentially independent of the used 

N-linked galactose101,102, AAVR87 or LamR90. Of note, P2 (GCDCRGDCFCA) 

displayed by AAV9wt was markedly less efficient than its parent and not 

found in the top 10 in the analyzed muscle tissues (Figure 7), despite 

containing an RGD motif. In contrast to P1 and P3, the motif starts three amino 

acids later potentially explaining the differences. This hypothesis is 

furthermore backed up by AAV9_K3 which comprises a peptide 

(GRGDLRVSA) that is highly similar to P1, deviating in only two amino acids. 

Stunningly, AAV9_K3 was predominantly detected in the liver (Figure 24) and 

demonstrated a ~20-fold reduction in efficiency as compared to AAV9_P1 in 

the skeletal muscles and 6-fold in the heart. Importantly, K3 was integrated 

after amino acid 589 thereby marginally altering the position of the RGD motif. 

In conclusion, the exact position of the motif seems to be of high importance 

whereas the successive amino acids can tolerate more changes without losing 

the beneficial effects, as exemplified by AAV9_P3. The exact role of the RGD-

comprising peptide in the context of AAV9 and related capsids for muscle and 

astrocyte transduction is a matter of ongoing investigation in our group and 

the collaboration partner in Munich. By integrating P1, a ~10-fold reduction in 

the liver was observed in comparison to AAV9wt, indicating that fewer virus 

particles are trapped in the liver, which may add to the observed pronounced 

muscle activity. In fact, a double point mutation variant published by Adachi et 

al., AAV9LD222, largely detargets the liver by ~100-fold and concurrently 

showed higher specificity for the muscle tissues (Figure 24). However, 

transferring these two mutations to AAV9_P1 greatly diminished the 

expression of EGFP in the muscle sections (Figure 29), suggesting an even 

more complex correlation. 

In summary, based on the information provided by this work, the question 

remains whether the peptide-induced beneficial effects in the muscles are due 

to an improved muscle homing, the detargeting from the liver or a 

combination of both factors. Regardless of mechanism, the tremendous 

potential of AAV9_P1 as a candidate for muscle-directed gene therapy is 

obvious and undisputed. Currently, extremely high doses exceeding 

1x1014 vg/kg are injected into animals in order to reach curative effects with the 

best vector on the market, AAV9wt (American Society of Gene and Cell 

Therapy, ASGCT 2018). By using AAV9_P1, the vector load could be reduced 

by at least 10-fold while maintaining high levels of transgene expression and 

additionally limiting the transcriptional activity predominantly to the muscle 

tissues, thus preventing unwanted off-targeting effects. Furthermore, since 
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AAV9_P1 produces as efficiently as AAV9wt, injecting lower doses would 

significantly decrease manufacturing costs and ultimately lower the prize for a 

related gene therapy product. 

5.5 RESTRICTED TRANSFERABILITY – YOU GET 

WHAT YOU SCREEN FOR 

Many synthetic AAV variants have been generated over the last 15 years by 

directed evolution approaches, trying to develop more efficient vectors for the 

transduction of cells or organs. This work showed that results obtained from 

published variants can indeed be reproduced when recapitulating the same 

experimental outlines. For instance, AAV2_L1 was selected for the murine lung 

after intravenous injection and demonstrated a drastically increased efficiency 

and specificity208. This could be confirmed after intravenously injecting the 

barcoded AAV library comprising AAV2_L1 into C57BL/6J mice. However, 

changing the injection route most likely alters the properties of a selected 

variant, as exemplified by AAV2_7m8186. Dalkara et al. intravitreally injected an 

AAV library in search of a lead candidate for the outer retina. The resulting hit, 

AAV2_7m8, was able to rescue two retinal diseases in mouse models186. Here, 

the peptide display mutant was added to the 2nd generation library. Notably, it 

showed a 90% specificity for the liver after systemic application, supporting 

the theory that the injection route should be kept constant to achieve the same 

result.  

Another crucial aspect is the target tissue that was used for the selection. 

The shuffled chimera AAVLK03 was extracted from human hepatocytes in a 

xenograft mouse model and showed high efficiency in the human cells, in 

contrast to poor transduction of murine hepatocytes191. In this doctoral work, 

this variant was tested in a murine liver and exhibited a 200-fold lower activity 

than AAV8wt albeit 91% of LK03 targeted the liver. Hence, in the absence of its 

on-target (human hepatocytes), AAVLK03 exhibited a unique behavior. The 

same applies for the variants AAV9_K1 and AAV9_K3 that were selected on 

human coronary artery endothelial cells215. Both vectors were predominantly 

liver-tropic in the present work, barely showing any specificity for the heart in 

vivo.  

Arguably the most important factor is the transferability of a selected AAV 

variant to clinically relevant animal models such as non-human primates and 

eventually to humans. The challenges are best exemplified by the brain-

targeting peptide display mutant AAV9_PHP.B. Deverman and colleagues 
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isolated the capsid after two selection rounds in C57BL/6J mice utilizing their 

novel CREATE system and demonstrated superior efficiency and specificity 

compared to AAV9wt219. These effects could be fully confirmed in this work 

(Figure 11 and Figure 14). However, follow-up publications by Matsuzaki et al. 

and Hordeaux et al. could not prove the superiority of AAV9_PHP.B in the 

marmoset239 and rhesus macaques241 brain, respectively. Furthermore, 

unpublished work from the groups of Gray-Edwards and Sena-Esteves 

presented at the ASGCT conference in 2018 showed no transduction increase in 

the sheep and cat brain. Most strikingly, the abovementioned publication by 

Hordeaux et al. in addition demonstrated a discrepancy between the mouse 

strains C57BL/6J and BALB/cJ. The impressive features of AAV9_PHP.B were 

entirely absent in BALB/cJ mice, indicating a lack of transferability even within 

the same species. Nevertheless, it has to be noted that, for example, AAV2_L1 

and AAV2_BR1 were selected in FVB/N mice and validated in this work in 

C57BL/6J mice, suggesting that AAV9_PHP.B may represent an exceptional 

case. 

In summary, isolating and characterizing a variant for a specific application 

does not guarantee similar results when altering the injection route or the 

animal model, or when switching from in vitro to in vivo. Thus, the notable 

effects observed for AAV9_P1 in mice should be considered with caution. 

Nonetheless, it is certain that AAV9_P1 is a superior variant for muscle-

targeting in C57BL/6J mice after intravenous injection. However, the 

transferability to higher animal models has to be elucidated first prior to 

considering AAV9_P1 as a potential vector for clinical trials. Generally, to 

increase chances to obtain capsids that are relevant for use in humans, it seems 

advisable to perform library selections directly in non-human primates. 

Although the initial costs would be significantly higher and ethical 

considerations will have to be made, costs may be saved in the long run since 

fewer validations have to be performed due to the increased chance for 

enhanced transferability of resulting lead candidates. 
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5.6 CONCLUSIONS AND PERSPECTIVES 

In the course of this doctoral work, a barcode-based AAV capsid screening 

pipeline was established allowing the simultaneous tracking of over 100 

variants in the context of a living organism. The applied comprehensive 

normalization strategy produces essential values denoting the specificity and 

efficiency of every analyzed barcoded AAV. The system turned out to be 

highly robust and especially helpful for the characterization of lead candidates 

after directed evolution approaches, consequently reducing animal numbers 

and downstream processing. These benefits not only promote a barcode-based 

capsid screening in higher animals such as non-human primates, but 

furthermore allow applying the pipeline to answer capsid-unrelated questions. 

For instance, different doses of the same vector, represented by corresponding 

barcodes, can be tested in one organism, once more omitting high animal 

numbers. Even the transduction differences143,144 between barcode-labeled self-

complementary and single-stranded AAV genomes could be assessed in more 

detail exemplifying the enormous potential of this technology. 

The P1-displaying variant AAV9_P1 was an unexpected discovery of the 

herein used barcode-based capsid screenings, demonstrating superior 

efficiency in the muscle tissues and increased muscle-targeting on the 

transcript and protein level. The question remains how AAV9_P1 mediates the 

improved effects and how crucial the placement of the RGD motif is. One 

simple experiment might be to generate mutants comprising a slightly shifted 

P1 peptide by one amino acid upstream or downstream. Additionally, an 

alanine walk should elucidate the importance of each position. Although P1 

was originally extracted by Michelfelder et al.213 and found once more in 2016 

by Körbelin et al.208, the peptide was selected in the context of AAV2 and 

therefore not optimized for AAV9. Hence, based on the information provided 

by altering the RGD position and the alanine walk, amino acids that are 

essential for the improvements in the muscle tissues can be fixed while the 

remaining ones offer the possibility to be randomized. The resulting peptide-

displaying AAV library can subsequently be screened in muscles tissues for 

new mutants with an improved P1 peptide. In conclusion, despite the already 

great promise of AAV9_P1, the development of an optimized muscle-tropic 

gene therapy vector will continue, raising hopes to eventually be able to cure 

patients with severe muscle diseases. 
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Figure 30: Transcriptional efficiency in various tissues 

Bar plots show the transcriptional efficiency as normalized proportion of the top 10 AAV 

variants of the 1st generation library in the abdominal aorta, thoracic aorta, brain, colon, 

duodenum, brown fat, white fat, inner ear, kidney, pancreas and spleen. The cDNA values 

are the average from six C57BL/6J mice with SD. 
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Figure 31: Transduction efficiency in various tissues 

Bar plots show the transduction efficiency as normalized proportion of the top 10 AAV 

variants of the 1st generation library in the abdominal aorta, thoracic aorta, brain, colon, 

diaphragm, duodenum, eye, brown fat and white fat. The gDNA values are the average 

from six C57BL/6J mice with SD. 
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Figure 32: Transduction efficiency in various tissues 

Bar plots show the transduction efficiency as normalized proportion of the top 10 AAV 

variants of the 1st generation library in the heart, inner ear, kidney, liver, lung, pancreas, 

quadriceps femoris and spleen. The gDNA values are the average from six C57BL/6J mice 

with SD. 
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Figure 33: Transcriptional efficiency in various tissues 

Bar plots show the transcriptional efficiency as normalized proportion of the top 10 AAV 

variants of the 2nd generation library in the abdominal aorta, thoracic aorta, brain, colon, 

duodenum, brown fat, white fat, inner ear, kidney, pancreas and spleen. The cDNA values 

are the average from six C57BL/6J mice with SD. 
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Figure 34: Transduction efficiency in various tissues 

Bar plots show the transduction efficiency as normalized proportion of the top 10 AAV 

variants of the 2nd generation library in the abdominal aorta, thoracic aorta, blood cells, 

brain, colon, diaphragm, duodenum, eye, brown fat, white fat, heart and inner ear. The 

gDNA values are the average from six C57BL/6J mice with SD. 
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Figure 35: Transduction efficiency in various tissues 

Bar plots show the transduction efficiency as normalized proportion of the top 10 AAV 

variants of the 2nd generation library in the kidney, liver, lung, ovaries, pancreas, quadriceps 

femoris, spleen, stomach. The gDNA values are the average from six C57BL/6J mice with 

SD. 
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Figure 36: Composition of 3rd generation library 
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Figure 37: Biodistribution of all variants of the 3rd generation library 

Calculated Bαβ values are depicted as a heat map simultaneously illustrating the 

transcriptional efficiency and specificity of all variants in the 3rd generation library in the 

aorta (A), biceps (Bi), colon (C), diaphragm (Di), duodenum (Du), eye, brown fat (FatB), 

white fat (FatW), heart (H), inner ear (I), kidney (K), liver (Li), lung (Lu), ovaries (O), 

pancreas (P), quadriceps femoris (QF), stomach (St) and CD3-, CD19-, CD11b- as well as 

CD11c-positive cells. A logarithmic scale is used with blue representing the value 0, white 

0.37 and red 3.71. 
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Figure 38: Transcriptional efficiency in various tissues 

Bar plots show the transcriptional efficiency as normalized proportion of the top 10 AAV 

variants of the 3rd generation library in the aorta, colon, duodenum, kidney, ovaries, 

pancreas and stomach. The cDNA values are the average from four C57BL/6J mice with SD. 
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Figure 39: Transcriptional efficiency in brain cells 

Bar plots show the transcriptional efficiency as normalized proportion of the top 10 AAV 

variants of the 3rd generation library in the astrocytes and oligodendrocytes of the cortex as 

well as the neuroblasts and oligodendrocytes in the subventricular zone (SVZ). The cDNA 

values are the average from six C57BL/6J mice with SD. 
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Figure 40: Transduction efficiency in various tissues 

Bar plots show the transduction efficiency as normalized proportion of the top 10 AAV 

variants of the 3rd generation library in the aorta, biceps, colon, diaphragm, duodenum, eye, 

brown fat, white fat and heart. The gDNA values are the average from four C57BL/6J mice 

with SD. 
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Figure 41: Transduction efficiency in various tissues 

Bar plots show the transduction efficiency as normalized proportion of the top 10 AAV 

variants of the 3rd generation library in the inner ear, kidney, liver, lung, ovaries, pancreas, 

quadriceps femoris and stomach. The gDNA values are the average from four C57BL/6J 

mice with SD. 
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Figure 42: Transduction efficiency in liver cell types 

Bar plots show the transduction efficiency as normalized proportion of the top 10 AAV 

variants of the 3rd generation library in hepatocytes, Kupffer cells, liver sinusoidal 

endothelial cells (LSECs) and stellate cells. The gDNA values are the average from four 

BALB/c mice with SD. 
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Figure 43: EGFP fluorescence of PBS and AAV9wt group 

Images show 10 µm cryosections of the liver, diaphragm, heart, biceps and quadriceps 

femoris. Representative sections were chosen from C57BL/6J mice injected with 

5x1011 vg/mouse of AAV9wt or PBS as a control. Direct EGFP fluorescence was detected 

(green) together with the DAPI signal (blue). Scale bar in the full section is 1 mm and 

100 µm for the 10x magnification. Exposure was normalized to the liver of the AAV9wt 

group. 
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Figure 44: EGFP fluorescence of AAV9_P1 and AAV9LD_P1 group 

Images show 10 µm cryosections of the liver, diaphragm, heart, biceps and quadriceps 

femoris. Representative sections were chosen from C57BL/6J mice injected with 

5x1011 vg/mouse of AAV9_P1 or AAV9LD_P1. Direct EGFP fluorescence was detected 

(green) together with the DAPI signal (blue). Scale bar in the full section is 1 mm and 

100 µm for the 10x magnification. Exposure was normalized to the liver of the AAV9wt 

group (Figure 43). 
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