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Tests von modifizierten Gravitationstheorien mit dem schwachen kosmischen Grav-

itationslinseneffekt

Kosmische Scherung ist der schwache Gravitationslinseneffekt, der durch Fluktuationen der gravita-
tiven Gezeitenkräfte der kosmischen großskaligen Struktur hervorgerufen wird und der sich in kor-
relierten Verzerrungen der beobachteten Formen von Galaxien manifestiert. Der Linseneffekt hängt
sowohl von der Geometrie der Raumzeit wie auch vom Wachstum kosmischer Strukturen ab und ist
daher ein hervorragendes Werkzeug, um in Durchmusterungen die Eigenschaften der Gravitation zu
überprüfen.

In dieser Dissertation untersuche ich die Möglichkeit, mit Hilfe des schwachen Linseneffekts Alter-
nativen zu dem Standardmodell der Kosmologie zu untersuchen, die die beschleunigte Expansion des
Universums erklären können. Dabei konzentriere ich mich auf eine spezielle Klasse von Alternativen
zu allgemeiner Relativität, nämlich der Horndeski-Klasse von Gravitationstheorien, die die Mehrzahl
der universell an dunkle Materie gekoppelten Theorien mit einem zusätzlichen skalaren gravitativen
Freiheitsgrad darstellen.

Bei einem vorgegebenen Hintergrund ist die Zeitentwicklung von linearen Störungen in Horndeski-
Gravitation durch vier nur von der Zeit abhängenden Funktionen beschrieben. Zuerst bestimme ich
die Empfindlichkeit zukünftiger Durchmusterungen wie die des Euclid-Satelliten, diese Funktionen
zu bestimmen. Dabei vergleichen wir zwei verschiedene Ansätze: Tomographie, bei der Korrelatio-
nen des Linsensignals bei verschiedenen Rotverschiebungsintervallen untersucht wird und eine drei-
dimensionale Fourier-Bessel-Zerlegung in sphärischen Koordinaten. Die zweite Methode ist in der
Lage, genauere Messungen aller kosmologischen Parameter durchzufḧren, und liefert Verbesserungen
um Faktoren bis zu zwanzig.

Anschließend untersuche ich die Möglichkeit, mit Kreuzkorrelationen zwischen dem schwachen
Gravitationslinseneffekt und anderen Beobachtungen Horndeski-Gravitationstheorien stärker
einzuschränken. Ich analysiere die Kombination des Gravitationslinseneffeks, dem Clustern von Galax-
ien und dem Linseneffekt in Galaxienpaaren auf der Basis der Kilo Degree Survey und der Galaxy
And Mass Assembly Survey, um Horndeski-Parameter zu messen. Danach erweitere ich diese Unter-
suchung auf zukünftige Durchmusterungen des Linseneffekts, der Galaxienverteilung und des kosmis-
chen Mikrowellenhintergrunds. Während aktuelle Einschränkungen noch nicht sehr stark sind, ändert
sich die Situation in der nächsten Generation der Experimente grundlegend.

Zuletzt bespreche ich im Detail numerische Techniken, die ich für Analysen des schwachen kosmis-
chen Linseneffekts benutzt habe und vergleiche meine Ergebnisse mit einer alternativen, unabhängig
entwickelten Methode, wobei ich eine hervorragende Übereinstimmung finde. Ich benutze meine
Methode, um dreidimensionale Karten des schwachen kosmischen Linseneffekts aus den entsprechen-
den Kovarianzmatrizen zu konstruieren. Ich bestimme Minkowski-Funktionale dieser Zufallsfelder
und benutze sie, die Genauigkeit der Realisierung von Zufallsfeldern zu überprüfen ebenso wie zur
kosmologischen Inferenz einzusetzen.
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Testing modified gravity theories with weak gravitational lensing

‘Cosmic shear’ is the weak gravitational lensing effect generated by fluctuations of the gravitational
tidal fields of the large-scale structure that induce correlations in the distortion of observed galaxy
shapes. Being sensitive to spacetime geometry and the growth of cosmic structure, cosmic shear is
one of the primary probes to test gravity with current and future surveys.

In this thesis we analyse the power of cosmic shear to constrain alternatives to the standard cos-
mological model that could explain cosmic acceleration. We focus in particular on a large class of
alternatives to General Relativity, the Horndeski class, which includes the majority of universally
coupled extensions to ΛCDM with one scalar degree of freedom in addition to the metric.

Given a fixed background, the evolution of linear perturbations in Horndeski gravity is described
by a set of four functions of time only. First, we forecast the sensitivity to these functions that will be
achieved by future cosmic shear surveys like Euclid. We produce our forecasts with two methods to
analyse a cosmic shear survey: a tomographic approach, based on correlations of the lensing signal in
different redshift bins, and a fully 3D spherical Fourier-Bessel decomposition of the shear field. We
show how the latter produces tighter constraints on all cosmological parameters with a sensitivity gain
of the order of 20% in particular on the ones that describe Horndeski gravity.

We then consider the possibility of using cross-correlations of cosmic shear with other probes to
constrain Horndeski theories of gravity. We analyse a combination of cosmic shear, galaxy-galaxy
lensing and galaxy clustering data from the Kilo Degree Survey and Galaxy And Mass Assembly
survey and set constraints on the aforementioned Horndeski parameters. We also forecast the expected
sensitivity to the same parameters that could be achieved with future cross-correlations of Stage IV
cosmic shear, galaxy clustering and CMB experiments. While current constraints are not very tight,
our implementation could be used in the future with data coming from Stage IV surveys, which we
show to have great constraining power on these theories.

Finally, we present in detail the numerical techniques that we used to produce our 3D cosmic shear
forecasts and compare our predictions with an alternative, independent method developed with the
same purpose. We find excellent agreement between the two methods and use our simulated 3D cosmic
shear covariance matrices within a new algorithm that we develop to generate 3D lensing random
fields. We calculate the Minkowski Functionals associated to our random fields and use them to test our
field-generation procedure, as well as to demonstrate the possibility of a new approach to cosmological
inference leveraging the estimated Minkowski Functionals.
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1 Chapter 1

Introduction

Towards the end of last century supernovae observations (Riess et al., 1998; Perlmutter et al., 1999)
confirmed that the Universe has been experiencing an accelerated expansion in recent times. The ob-
served acceleration can be ascribed to a dark energy component accounting for approximately 70%
of the energy budget of the Universe. The simplest and best-known candidate for dark energy is the
energy of the vacuum, represented in Einstein’s equations by the cosmological constant term. This
vacuum energy density, unchanging in time and spatially constant, is currently in good agreement
with existing data and defines the standard concordance model for cosmology, denoted ΛCDM to
highlight its two most important (and least understood) ingredients: the cosmological constant and
a Cold Dark Matter component, i.e. a non-relativistic collisionless fluid that interacts only gravita-
tionally with baryonic matter. Together, dark energy (in the form of a cosmological constant in the
ΛCDM scenario) and dark matter constitute approximately 95% of the energy budget of the Universe.
However, despite the ΛCDM model being firmly established as the ‘standard model’ of cosmology,
as it is often referred to in analogy to particle physics, the nature of its major components is far from
understood: on the one hand, dark matter particles have not been detected yet; on the other hand, while
identifying the dark energy with a cosmological constant term Λ fits well the observations, it has long
been questioned in terms of naturalness and interpretation in terms of energy density of the vacuum
(see Martin, 2012, for a recent review).

Alternatives to the cosmological constant can be generally grouped into two main categories: either
dark energy is a modification of gravity on the largest scales (“modified gravity” theories), or it is
given by a scalar field that effectively behaves as a fluid with negative pressure (usually referred to
as proper “dark energy” models). The distinction between these two classes can at times be feeble
(see Joyce et al., 2016, for a recent discussion) and the vast amount of proposed theories (see Clifton
et al., 2012, for a review) urgently calls for methods to be developed, aiming at distinguishing among
the large number of theoretical options with advanced statistical methods and efficient computational
effort. This is particularly relevant in light of the unprecedented amount of data that will come from
many space- and ground-based experiments, such as Euclid 1(Laureijs et al., 2011), SKA 2(Maartens
et al., 2015), LSST 3(LSST Science Collaboration et al., 2009) and WFIRST 4(Spergel et al., 2013),
whose launch in the next few years is planned with the goal of unveiling the true nature of the cosmic
acceleration.

On the observational side, many different probes have been proposed to investigate dark energy and
modified gravity models. These include type Ia Supernovae, Baryon Acoustic Oscillations, galaxy
clustering and weak gravitational lensing, to name a few (see e.g. Weinberg et al., 2013, for an ex-
haustive review of the different probes). One of the most important lessons learned in cosmology in

1https://www.euclid-ec.org/
2https://www.skatelescope.org/
3https://www.lsst.org/
4https://wfirst.gsfc.nasa.gov/
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recent years, in particular following the scientific results produced by the Planck Collaboration (Planck
Collaboration et al., 2016b), is the need to move away from the cosmological background towards ob-
servational probes of the perturbations, if we want to distinguish between different models of dark
energy and modified gravity. Gravitational lensing is a leading observational tool in this context and
the main focus of this thesis.

We concentrate in particular on the weak gravitational lensing caused by the large-scale structure
of the Universe, or cosmic shear. Since the first detections in early 2000s (e.g. Bacon et al., 2000;
Van Waerbeke et al., 2000; Brown et al., 2003), this field has developed within a well-established
theoretical and experimental framework. Cosmic shear is particularly appealing as one of the most
promising probes of dark energy (Jain & Taylor, 2003; Bernstein & Jain, 2004; Hannestad et al., 2006;
Amendola et al., 2008; Huterer, 2010): the differential deflection in light bundles from distant galaxies
caused by variations of the gravitational fields of the large-scale structure result in a coherent distortion
of galaxy images as we observe them on the sky (see Bartelmann & Schneider, 2001; Hoekstra & Jain,
2008; Kilbinger et al., 2013, for reviews on the topic).

The main goal of this thesis is to investigate the possibility of studying dark energy/modified gravity
models with current and future cosmic shear surveys. This kind of work entails the production of
constraints on parameters that describe these alternatives to the cosmological constant, either by using
currently available datasets or by calculating predictions for next generation Stage IV surveys. A
significant part of the work implies the study of constraints achievable from weak gravitational lensing
on a large class of dark energy/modified gravity theories: the Horndeski class.

The Horndeski class represents indeed an example of a remarkably large set of extensions to General
Relativity. First discussed in 1974 by Horndeski (Horndeski, 1974) and subsequently rediscovered in
Nicolis et al. (2009) and Deffayet et al. (2011), the Horndeski Lagrange density is the most general
gravitational theory with one scalar degree of freedom, in addition to the metric tensor, with derivatives
in the equations of motion not higher than second order; this guarantees safety from ghost-like degrees
of freedom. This set of theories collects under its name many different models of dark energy/modified
gravity (see Sec. 2.5.2 for a list of some of them).

Recently (Gleyzes et al., 2013; Bellini & Sawicki, 2014), it has been demonstrated that given a
fixed background, the evolution of linear perturbations in Horndeski gravity can be described by a set
of four functions of time only. This is a very appealing result from an observational perspective, as it
reduces the range of possibilities to a few functions to constrain. In our work we will present different
analyses aimed at producing constraints on these functions.

The first results of this thesis concern the two main techniques for analysing a cosmic shear survey;
a tomographic method, where correlations between the lensing signal in different redshift bins are
used to recover redshift information, and a 3D approach, where the full redshift information is carried
through the entire analysis. In this thesis we compare the two methods, by forecasting cosmological
constraints for future surveys like Euclid. We extend the 3D formalism to theories beyond the stan-
dard model belonging to the Horndeski class. We model the time evolution of the functions mentioned
earlier, fully describing the evolution of linear perturbations in Horndeski gravity, assuming propor-
tionality to the dark energy density fraction, and estimate expected constraints from future surveys on
the proportionality coefficients. We find that a 3D analysis can constrain Horndeski theories better than
a tomographic one, in particular with a decrease in the errors of the order of 20%. Our work shows for
the first time a quantitative comparison on an equal footing between forecasts for both a fully 3D and
a tomographic analysis of cosmic shear surveys. The increased sensitivity of the 3D formalism comes
from its ability to retain information on the source redshifts along the entire analysis.

We then proceed to consider cosmic shear in combination with other observables, and present con-
straints on the aforementioned Horndeski functions, obtained from our joint analysis of the tomo-
graphic cosmic shear signal in ∼ 450deg2 of data from the Kilo Degree Survey (KiDS), the galaxy-
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matter cross-correlation signal of galaxies from the Galaxies And Mass Assembly (GAMA) survey de-
termined with KiDS weak lensing, and the angular correlation function of the same GAMA galaxies.
As expected, the available data do not allow for tight constraints on the Horndeski functions, however
the methodology and implementation that we have developed will allow for tighter constraints with
future data releases of the KiDS survey and/or future Stage IV surveys such as Euclid.

Looking ahead towards the future, we proceed in this thesis considering correlations of the cosmic
shear field with other observables, including galaxy clustering and Cosmic Microwave Background
(CMB) primary anisotropies and lensing, and forecast expected constraints on Horndeski gravity at-
tainable from a combination of future Stage IV surveys such as Euclid and CMB experiments such as
CMB-S4.

The aforemenetioned 3D analysis of the cosmic shear field, based on a spherical-Bessel decompo-
sition of the field (“3D cosmic shear”) is one way to maximise the amount of redshift information
in a lensing analysis and therefore provides a powerful tool to investigate in particular the growth
of cosmic structure that is crucial for dark energy studies. However, the computation of simulated
3D cosmic shear covariance matrices presents numerical difficulties, due to the required integrations
over highly oscillatory functions. In this thesis we present and compare two numerical methods and
relative implementations to perform these integrations. We then show how to generate 3D Gaussian
random fields on the sky in spherical coordinates, starting from the 3D cosmic shear covariances.
To validate our field-generation procedure, we calculate the Minkowski functionals associated to our
random fields, compare them with the known expectation values for the Gaussian case and demon-
strate parameter inference from Minkowski functionals from a cosmic shear survey. This is a first step
towards producing fully 3D Minkowski functionals for a lognormal field in 3D to extract Gaussian
and non-Gaussian information from the cosmic shear field, as well as towards the use of Minkowski
functionals as a probe of cosmology beyond the commonly used two-point statistics.

The detailed structure of this thesis is as follows: we start in Chapter 2 by reviewing the concordance
cosmological model, as well as introducing theories and parameterizations of dark energy/modified
gravity; we then proceed in Chapter 3 to the description of the statistical tools employed through-
out our analysis. In Chapter 4 we review the theory of cosmic shear, with emphasis on the spherical
Fourier-Bessel formalism and its relation to a tomographic approach. In Chapter 5 we present the ex-
pected constraints from future cosmic shear surveys on Horndeski gravity obtained in our comparison
between 3D cosmic shear and tomography. In Chapter 6 we present our cross-correlation analysis
of the KiDS and GAMA surveys and the forecasts produced considering cross-correlations of future
Stage IV surveys. Chapter 7 is devoted to the description of the numerical techniques used for the
evaluation of the 3D cosmic shear integrals and the generation of 3D lensing random fields, as well
as to the calculation of the Minkowski Functionals associated to these fields. Finally, we draw our
conclusions in Chapter 8.
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2 Chapter 2

An introduction to dark energy/modified
gravity cosmologies

The discovery of the accelerating universe from supernovae observations in the late 1990s (Riess
et al., 1998; Perlmutter et al., 1999) unambiguously indicated the presence of a new component in
the Universe dominating the energy density today, or of a modification of the laws of gravity. The
new component quickly became a fundamental costituent of the new standard cosmological model,
which also features baryonic matter, dark matter, and radiation (photons and relativistic neutrinos).
The simplest and best-known candidate for dark energy is the energy of the vacuum, represented
in Einstein’s equations by the cosmological-constant term. Vacuum energy density, unchanging in
time and spatially constant, is currently in good agreement with existing data and defines the standard
concordance model for cosmology, denoted ΛCDM to highlight the presence of a cosmological costant
Λ in addition to the (mainly Cold Dark) Matter component. Yet, there exists a rich set of other dark
energy models, including evolving scalar fields and modifications to General Relativity as the theory
of gravity on cosmological scales, which we will briefly introduce in this Chapter.

We will start by reviewing the basics of cosmology: Sec. 2.1 is dedicated to the background expan-
sion, while Sec. 2.3 discusses the growth of density fluctuations generating cosmological structures
as we observe them today, after reviewing in Sec. 2.2 the statistical tools to study the evolution of
cosmic fields. Sec. 2.4 is dedicated to briefly reviewing the main problems with the Λ paradigm, while
Sec. 2.5 introduces different possibilities to extend the concordance model to a dark energy component
or a different law of gravity on cosmological scales. Sec. 2.6 reviews general approaches to describe
gravity on cosmological scales, first through the possible background parameterizations for the dark
energy component and then considering effective theory of dark energy and phenomenological param-
eterizations of the gravitational potentials acting at the perturbations level. We conclude in Sec. 2.7
with a discussion of the screening mechanism.

2.1. Homogeneous and isotropic background

The cosmological principle is the fundamental assumption underpinning modern cosmology. It states
that the Universe on scales of a few hundred Mpc/h, i.e. greater than the largest observed cosmological
structures, appears homogeneous and isotropic in the spatial dimensions to a freely falling observer.
For this observer the line element ds2 = gµνdxµdxν, built from the metric tensor gµν and specifying the
geometry of space-time, takes the Friedmann-Robertson-Walker (FRW) form,

ds2 = c2dt2 − a2(t)
(

1
1 − Kχ2 dχ2 + r2dθ2 + r2 sin2 θdϕ2

)
, (2.1)

where we used spherical spatial coordinates (χ, θ, φ). χ is the comoving distance, obtained factoring
out from the radial coordinate the scale factor a(t); the latter describes the scaling of all physical dis-
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tances with cosmic time t measured by a freely falling observer on a clock. Usually, a(t) is normalised
to have value of unity at present time. The quantity K is the intrinsic curvature of three-dimensional
space; K = 0 corresponds to a spatially flat universe with Euclidean geometry, while K > 0 corre-
sponds to positive curvature (spherical geometry with finite volume) and K < 0 to negative curvature
(hyperbolic geometry with infinite volume). The cosmological principle is an assumption, but also
a testable hypothesis, as indeed there is excellent observational evidence that the Universe satisfies
homogeneity and isotropy on its largest spatial scales (e.g. Laurent et al., 2016).

Knowledge of the metric allows us to solve the gravitational field equations that link the local and
divergence-free curvature, given by the Einstein tensor Gµν, to the energy-momentum tensor Tµν

Gµν =
8πG
c4 Tµν with Gµν = Rµν −

R
2

gµν. (2.2)

The Riemann tensor Rµν and Ricci scalar R describe the geometry of the Universe, as they are related
to the metric tensor gµν and its first and second derivatives. The stress-energy tensor quantifies the
energetic content of the Universe and contains contributions from all species; it obeys local energy-
momentum conservation ∇µTµν = 0, where ∇ denotes a covariant divergence. The source of the
gravitational field is Tµν. The most general form of Tµν for a fluid in the FRW metric is given by an
ideal, relativistic fluid

Tµν =
(
ρc2 + p

)
υµυν − gµνp. (2.3)

The cosmic fluid can be completely parameterised specifying its density ρ = ρ(t) and pressure p =

p(t), which can be only functions of time; isotropy does not permit any spatial dependence. In Eq.2.3
υµ denotes the 4-velocity.

The scale factor a(t) is a function of the energy densities and pressures of the components that fill the
Universe. Its evolution is governed by the Friedmann equations, which can be derived from the field
equations Eq. 2.2 inserting the FRW metric Eq.2.1 and the expression for a general ideal relativistic
fluid Eq.2.3:

H2 ≡

( ȧ
a

)2
=

8πG ρ

3
−

k
a2 +

Λ

3
, (2.4)

ä
a

= −
4πG

3
(ρ + 3p) +

Λ

3
, (2.5)

where H is the Hubble parameter, defined as the time derivative of the logarithmic scale factor, i.e.,
H(t) = ȧ/a, Λ is a cosmological constant term that in general can be added to the field equations
Eq.2.2, ρ is the total energy density, and p is the pressure.

Th only free choice allowed by the FRW symmetries for a relation between pressure and density is
the equation of state

p = w ρc2, (2.6)

where c denotes the speed of light. Pressureless dark matter is characterised by w = 0, relativistic
matter by w = 1/3 and the value w ≡ −1 corresponds to the cosmological constant Λ.

We can define the critical density ρcrit ≡ 3H2/(8πG) as the density that leads to a flat universe with
K = 0. We can then express all densities as dimensionless density parameters:

Ωi(a) :=
ρi(a)
ρcrit(a)

Ωi0 :=
ρi(a = 1)
ρcrit(a = 1).

(2.7)

The expansion rate of the universe H ≡ ȧ/a from (2.4) can then be written as

H2 = H2
0[Ωm0a3 + Ωr0a4 + ΩΛ + ΩKa2] = H2

0 E(a) (2.8)
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2.2. STATISTICAL PROPERTIES OF RANDOM FIELDS IN STRUCTURE FORMATION

where H0 = H(a = 1) = 100h km
sMpc is the present value of the Hubble parameter (the Hubble constant),

Ωm and Ωr are the matter and radiation energy densities relative to critical, and the dimensionless
curvature “energy density” Ωk is defined such that

∑
i Ωi = 1. Since Ωr ' 8 × 10−5, we can typically

ignore the radiation contribution for low-redshift (z . 10) measurements; however, near the epoch
of recombination (z ∼ 1000), radiation contributes significantly, and at earlier times (z & 3300), it
dominates. The closure relation

∑
i Ωi = 1 and the scaling with a of the different terms in Eq. 2.8

means that by specifying the density parameters and the Hubble constant, the background evolution
of the Universe is completely determined.

2.2. Statistical properties of random fields in structure formation

The topic of this section is the formation of cosmic structure as we observe them today, deviating from
the homogeneous background described in the previous Section. Such a cosmological background
cannot originate the highly inhomogeneous structures that we observe around us: however, if there
exists a mechanism able to generate small inhomogeneities in the density field, these can grow by
gravitational instability and eventually form highly inhomogenenous structures. Currently the widest
accepted mechanism for the generation of these primordial fuctuations is inflation (Guth, 1981): the
fluctuations are seeded by quantum fluctuations of the inflaton field, which drives an era of rapid
accelerated expansion in the early Universe.

Given initial perturbations in the density field we will now briefly review how we can describe the
statistical properties of random fields and how the power spectrum of the initial perturbations looks
like. The ultimate goal is to make statistical predictions about cosmic fields which depend on the
statistical nature of the primordial fluctuations. The connection between these statistical descriptions
will be clearer later when we discuss the linear growth: ultimately it is thanks to the homogeneous
growth in the linear regime of structure formation that we can investigate initial conditions given
inflationary processes in the cosmological structures, by observing the large-scale structure today. Let
us start by summarising the basics of structure formation.

To describe the fluctuations of the cosmic density field ρ(x) one can choose the density contrast, i.e.
the relative deviation of the density field ρ(x) from the mean background density 〈ρ〉 = Ωmρcrit,

δ(x) =
ρ(x) − 〈ρ〉
〈ρ〉

. (2.9)

These fluctuations are random variables i.e. follow a certain probability distribution: considering a
hypothetical ensemble of statistically equivalent Universes, the probability of finding the amplitudes
δ(x1) and δ(x2) and positions x1 and x2 is assumed to be a bivariate Gaussian, with a covariance
matrix C =

〈
δTδ

〉
that contains the correlation function ξ(x1, x2) ≡ 〈δ(x1)δ(x2)〉 of the random field.

The brackets 〈. . .〉 denote averages over many (hypothetical, in fact) realisations of the density field.

The correlation function ξ(x1, x2) is the off-diagonal element of the covariance matrix C; if the
correlation function vanishes, this means that the amplitudes are mutually uncorrelated and follow
independently from univariate Gaussian distributions. In contrast, a finite correlation function defines
a correlation length in the density random field. Due to statistical isotropy and homogeneity of the
density field, the correlation function can depend only on the absolute value r of the separation r =

x2 − x1.

The most common descriptor of the density field is the power spectrum, a particularly convenient
description for a statistically homogeneous field. The power spectrum is defined as the variance of the
density contrast δ in Fourier space:〈

δ(k1)δ∗(k2)
〉

= (2π)3δD(k1 − k2)P(k1). (2.10)
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Here, the Fourier transform is defined as follows:

δ(k) =

∫
d3x δ(x) exp(−ikx) ↔ δ(x) =

∫
d3k

(2π)3 δ(k) exp(+ikx). (2.11)

Pδ(k) cannot depend on the orientation of the wavevector k due to isotropy; as long as the density field
is statistically homogeneous, there is no coupling between different modes, which is expressed by the
Dirac delta distribution in Eq.2.10. The power spectrum is the Fourier transform of the two-point
correlation function:

Pδ(k) =

∫
d3x

〈
δ(x1)δ(x2 + r) exp(−ikr)

〉
= 2π

∫
r2dr ξ(r) j0(kr), (2.12)

where the second equality is valid only for statistically homogeneous and isotropic fields. In principle,
Pδ(k) is a function of coordinate time, reflecting the evolution of the density field, and is sometimes
expressed as a function of redshift, i.e. Pδ(k, z). As we will see in the following, statistical homo-
geneity is preserved in the linear regime, so that the redshift evolution changes the amplitude of the
spectrum, but not its shape. Non-linear growth, in contrast, leads to mode coupling and moves power
to smaller scales as structures collapse; therefore the redshift dependence in the non-linear regime is
non-trivial.

All the above definitions can be extended to higher order correlators for statistically homogeneous
fields:

(2π)3Pn(k1,k2, · · · kn)δ(3)
D (k1 + · · · + kn) := 〈δ(k1, t) · · · δ(kn, t)〉C (2.13)

Here again the Dirac distribution ensures statistical homogeneity. The index C denotes the connected
part, corresponding to the cumulants of the distribution. The n = 2 correlator corresponds to the
power spectrum, while the n = 3 correlator is called the bispectrum. Gaussian random fields have the
useful property that all cumulants of higher order than two vanish. In Eq. 2.13 all spectra with n > 2
will vanish. This also has some important consequences for higher order moments of the distribution:
while odd n-point correlation functions of Gaussian random fields are equal to zero, even n-point
functions can be decomposed into products of two-point functions by virtue of the Wick theorem,

〈δ(k1) . . . δ(kn)〉 =
∑
pairs

∏
i, j∈pairs

〈
δ(ki)δ(k j)

〉
, (2.14)

As explained e.g. in Schäfer (2018), for a zero-mean Gaussian distributed random variable all moments
are proportional to the variance, therefore the latter is everything needed to reconstruct this probability
distribution from its moments.

2.3. The growth of density fluctuations

On scales much smaller than those on which spacetime curvature becomes important (i.e. on sub-
horizon scales k ≥ 2π/χH , where χH = c/H0 is the Hubble radius today), gravitational instability can
be treated in the Newtonian framework. As the matter budget of the Universe is dominated by cold
dark matter, the focus is on a collisionless, self-gravitating medium in a homogeneous and isotropic
background expanding at the Hubble rate.

2.3.1. Gravitational instability of collisionless dark matter

Since the collision term in the Boltzmann equation vanishes in the case of collisionless dark matter,
the equations governing the evolution of the matter density ρ, the gravitational potential Φ and the
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2.3. THE GROWTH OF DENSITY FLUCTUATIONS

velocity field υ have the same shape as the hydrodynamical equations describing the conservation of
mass and momentum and the self-gravity of a perfect fluid with negligible pressure. As long as the
overdensity is small, δ � 1, the treatment can be restricted to the first order in the perturbations. We
have the continuity equation

∂

∂η
δ + divυ = 0, (2.15)

and the linearised Euler equation,
∂

∂η
υ + aHυ = −∇Φ, (2.16)

which are valid only if the overdensity δ is small, δ � 1. η is the conformal time, related to coordinate
time t by dη = dt/a. The Newtonian Poisson-equation is instead always linear,

∆Φ =
3H2

0Ωm

2a
δ. (2.17)

These equations can be combined into a single differential equation for the density contrast (e.g. Linder
& Jenkins, 2003):

d2

da2 D+(a) +
1
a

(
3 +

d ln H
d ln a

)
d

da
D+(a) =

3
2a2 Ωm(a)D+(a). (2.18)

The second term, proportional to dδ/da, acts as a friction term and is sometimes called the ‘Hubble
drag’, since it reflects the Hubble expansion counteracting the gravitative attraction. As temporal and
spatial dependence decouple in the linear regime, the density factorises:

δ(x, a) = D+(a)δ(x). (2.19)

The function D+(a) describing the evolution is called the growth function and represents the growing
solution of Eq.2.18. The second solution decays with increasing a and consequently cannot describe
the amplification of density perturbations. The growth function is usually normalised to D+(a = 1) =

1. In a matter-dominated universe (Ωm = 1), the Hubble rate is H(a) ∼ a−3/2, so that D+(a) = a.

Knowledge of the Hubble function H(a) or the growth function D+(a) allows us to calculate the
other quantity: the two are not independent, in fact Peebles (1980) shows that D+(a) is given by

D+(a) ∝ H(a)
∫ 1

a

da
(aH(a))3 . (2.20)

This happens (Schäfer, 2018) because in General Relativity the dependence Ωm(a) on time is given
entirely by the Hubble function H(a), and that in Newtonian gravity the same term determines the
term on the right hand side driving structure formation. This is not true in general in modified gravity
theories, or in cosmologies with interactions between the cosmological fluids; different predictions
from the two terms would then represent a possible signature of such an alternative cosmology.

Homogeneous structure formation corresponds to independently growing Fourier modes,

δ(x, a) = D+(a)δ(x, a = 1) −→ δ(k, a) = D+(a)δ(k, a = 1), (2.21)

which conserves every statistical property of the initial conditions, in particular Gaussianity. The
Gaussianity of the initial density perturbations is a consequence of inflation, where a large number of
uncorrelated quantum fluctuations are superimposed, yielding a Gaussian amplitude distribution due
to the central limit theorem.
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2.3.2. Primordial power spectrum

The shape of the primordial spectrum is determined by the mechanism of inflation. Most models
predict Gaussian perturbations with a scale-invariant dimensionless power spectrum

k3PΦ(k) ∝ kns−1 (2.22)

where ns ∼ 1 is the spectral index. According to the Poisson equation, the scaling between Fourier
modes of the density contrast and the gravitational potential is δ(k) ∼ k2Φ(k). The initial matter
power spectrum then has the shape Pδ,ini(k) ∼ k4PΦ(k) ∼ kns , which is the Harrison-Zeldovich-Peebles
spectrum (Zeldovich, 1971). The suppression of growth during radiation-domination is accounted for
by the introduction of the transfer function T (k):

T (q) =
ln(1 + 2.34q)

2.34q

(
1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4

)− 1
4 ,

or the more accurate fit described by Eisenstein & Hu (1998) incorporating baryonic wiggles for flat
cosmological models with low matter density Ωm. The asymptotic behaviour of the transfer function
is such that T (k) ∝ const for k � 1 and T (k) ∝ k−2 at k � 1, such that P(k) ∝ kns on large scales and
P(k) ∝ kns−4 on small scales. The usual form of the linearly evolved power spectrum is then

Plin(k, a) = D2
+(a)T 2(k)Pδ,ini(k). (2.23)

In addition to the spectral index ns and the transfer function, the amplitude of the power spectrum
must be given. This is most commonly characterised by the parameter σ8 , which is the variance of
the smoothed density field, i.e. δ(x) convolved with a top hat filter of the radius R = 8h−1 Mpc:

σ2
R =

1
2π2

∫ ∞

0
dk k2P(k)W2(kR), (2.24)

W(x) = j1(x)/x is the three-dimensional Fourier transform of the top hat filter; j1(x) is the first
spherical Bessel function.

2.3.3. Nonlinear structure formation

In the linear regime of structure formation the growth is homogeneous and conserves the Gaussianity
of the initial conditions. Nonlinear structure formation implies instead inhomogeneous growth and the
emergence of non-Gaussian features. Following Schäfer (2018), we can understand this tight bound
in structure formation between non-gaussianity, non-linearity and inhomogeneity of the density field.
From non-linearity follows inhomogeneity, because if e.g. the density contrast approaches δ ' −1
in a deeply underdense region of the Universe, the linearisation fails and at the same time locally
the growth must decrease. Inhomogeneity implies non-Gaussianity because if the amplitudes of the
density contrast δ increase, their initially Gaussian distribution, p(δ)dδ must also become wider; how-
ever, the density contrast is bounded from below at the value −1, requiring the amplitude distribution
p(δ)dδ to become asymmetric, therefore losing Gaussianity. Finally in inhomogeneous growth the
Fourier-modes δ(k, a) couple to each other since the growth D+(x, a) now also depends on the posi-
tion; coupling of Fourier modes implies that the central limit theorem does not hold any more because
the superposition of the Fourier yields modes a non-Gaussian distribution.

Different approaches to modelling the nonlinear growth of structure

At late times during cosmological evolution the linear description breaks down and one can consider
an expansion to higher order

δ(x, a) =

∞∑
n=1

δ(n)(x, a) '
∞∑

n=1

Dn
+(a)δ(n)(x) (2.25)
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and similarly for the velocity divergence, such that δ(1) corresponds to the linear solution. Each field
δ(n) grows homogeneously at the rate Dn

+(a), but the sum does not. The second equality is exact if
Ωm = 1 and also approximately valid in dark energy cosmologies. Plugging this into Eqs.2.15,2.16,2.17,
we can see that the non-linearities in the continuity and Euler equation imply convolutions of the den-
sity and velocity fields in Fourier space. This couples the different Fourier modes. This perturbative
expansion is the basis of Eulerian perturbation theory. An alternative approach is Lagrangian pertur-
bation theory, where the focus is on the particle trajectories linking the initial positions q to their
positions x at time η, rather than on the density and velocity fields. A recent approach (Kinetic Field
Theory, Bartelmann et al., 2017) is based instead on a non-equilibrium statistical field theory for clas-
sical particles, which describes the dark matter particles as an ensemble occupying the phase space
subject to Hamiltonian dynamics.

Another promising possibility (albeit numerically challenging) is to rely on numerical N-body sim-
ulations (Vogelsberger et al., 2014). These simulations use effective particles with different properties,
for example dark matter particles interact only gravitationally and have typical masses of 109 M�.
The power spectrum of the Cosmic Microwave Background is used initially to correlate the position
and momenta of the particles, subject to the continuity equation. They are then evolved with analytic
methods up to a redshift of roughly 100. For smaller redshifts instead the full Newtonian dynamical
equations is solved numerically on an expanding background. Modern simulations also contain bary-
onic physics and sophisticated high-resolution methods to describe different types of baryon feedback
mechanism (Vogelsberger et al., 2014). The problem of these simulations is that they are computation-
ally very expensive. For applications to future surveys, a complication comes from the fact that they
will span an enormous amount of different scales, requiring a large volume needed for the simulations
and, at the same time, a sufficiently high resolution. Furthermore, the observable properties of the
LSS are of statistical nature, therefore one needs an ensemble of simulations for each individual set of
cosmological parameters. The development of techniques to model correctly and efficiently nonlinear
structure formation is of paramount importance for future surveys and in this sense a joint analysis
with analytic and numerical methods needs to be investigated for next generation surveys, to leverage
the strengths and reducing the weaknesses of both approaches.

2.4. Problems with the Cosmological Constant

The observed acceleration of the Universe (Riess et al., 1998; Perlmutter et al., 1999) can be ascribed
to a dark energy component accounting for approximately 70% of the energy budget of the Universe.
From a theoretical point of view, identifying the dark energy with a cosmological constant term Λ fits
well the observations, but has been questioned in terms of naturalness and interpretation in terms of
energy density of the vacuum (see Martin, 2012, for a recent review). Theoretical estimates for the
vacuum density are many orders of magnitude larger than its observed value. In addition, ΩΛ and Ωm
are of the same order of magnitude only at present, which marks our epoch as a special time in the
evolution of the Universe (the “coincidence problem”). This lack of a clear theoretical understanding
has motivated the development of a wide variety of alternative models, as described in Sec. 2.5.

The fine-tuning problem

A full solution of the cosmological constant problem would require a clear connection between Quan-
tum Field Theory and General Relativity. From the first Friedmann equation Eq.2.4 follows that the
cosmological constant is of the order of the square of the Hubble parameter today:

Λ ≈ H2
0 = (2.1h × 10−42GeV)2 (2.26)

corresponding to an energy density ρΛ = Λ/8πG of:

ρΛ ≈ 10−47GeV4 (2.27)

11



CHAPTER 2. AN INTRODUCTION TO DARK ENERGY/MODIFIED GRAVITY
COSMOLOGIES

where 1/G = mPl and the Planck mass is equal to mPl = 1019 GeV. If the vacuum energy density
comes from the zero point energy of a single field with mass m and momentum k, with energy E =√

k2 + m2/2, summing contributions from all momenta up to a cut-off scale kmax we obtain:

〈ρvac〉 =

∫ kmax

0

4πk2dk
(2π)3

√
k2 + m2

2
≈

k4
max

16π2 , (2.28)

since the integral will be dominated by large modes (k � m). The Planck mass mPl represents the limit
of validity of General Relativity, therefore it appears sensible to use this value as a limit of integration
for the integral. Doing so we find 〈ρvac〉 ' 1074GeV4, which is 10121 times larger than the value in
Eq. 2.27. This is a “fine-tuning” problem: we need a cancellation spanning 120 orders of magnitude
to match the measured and the predicted value of Λ. Even though this was just a rough estimate,
neglecting e.g. the equation of state of vacuum energy, performing the calculations more carefully
does not alter the main conclusion: in the absence of a powerful symmetry able to cancel vacuum
fluctuations, such as supersymmetry (e.g. Shadmi, 2017), an enormous fine tuning is required order
by order in perturbation theory.

The coincidence problem

Given the progression of dominating contributors to the energy budget, it seems fortuitous that the
influence of the cosmological constant is in fact comparable to that of matter at the present time
despite the rapid transition. The redshift at which the energy densities of matter and cosmological
costant coincide (zco) is:

zco =

(
ΩΛ

1 −ΩΛ

) 1
3

− 1 (2.29)

Using a value for today’s density ΩΛ = 0.7, the coincidence redshift is zco ≈ 0.3. This number
represent a very recent epoch, moreover it depends strongly on the ratio of ΩΛ/Ωm: if this ratio was
just 10 times smaller or larger, accelerated expansion would not even be observed today.

Despite the tremendous observational progress in measuring dark energy properties, no fundamen-
tally new insights into the physics behind this mysterious component have resulted. Remarkably, while
the error bars have shrunk dramatically, current constraints are still roughly consistent with the specific
model that was originally quoted as the best fit in the late 1990s — a component contributing about
70% to the current energy budget with an equation-of-state ratio w ' −1. This has led some in the
particle physics and cosmology community to suspect that dark energy really is just the cosmological
constant Λ and that its unnaturally small value is the product of a multiverse, such as would arise from
the framework of eternal inflation or from the landscape picture of string theory, which generically
features an enormous number of vacua, each with a different value for Λ. In this picture, we live in a
vacuum which is able to support stars, galaxies, and life, making our tiny Λ a necessity rather than an
accident or a signature of new physics. As such reasoning may be untestable and therefore arguably
unscientific, many remain hopeful that cosmic acceleration can be explained by testable physical the-
ory that does not invoke the anthropic principle. For now, improved measurements provide by far the
best opportunity to better understand the physics behind the accelerating universe.

2.4.1. A distinction between dark energy and modified gravity

Alternatives to the cosmological constant can be generally grouped into two main categories. Either
dark energy is a modification of gravity on the largest scales (“modified gravity” theories), or it is
given by a scalar field that effectively behaves as a fluid with negative pressure (usually referred to as
proper “dark energy” models). The distinction between the two scenarios is not rigidly set and here
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we report only one possible way of operating such distinction, recently put forward by Joyce et al.
(2016).

This distinction relies on the motion of bodies in the theory considered. To begin with, we recall
the weak equivalence principle (WEP), which states that there exists some metric to which all matter
species couple universally. Then, test bodies—regardless of their composition—fall along geodesics
of this metric. This is usually stated as the equivalence of inertial and gravitational mass.

To distinguish dark energy from modified gravity, Joyce et al. (2016) further invoke the strong
equivalence principle (SEP). The SEP extends the universality of free fall to massive bodies, i.e. to be
completely independent of a body’s composition, including gravitational binding energy, so compact
objects like black holes also follow geodesics. Following Joyce et al. (2016) we can call anything
which obeys the SEP dark energy, and anything which does not, modified gravity. The motivation
for this definition is to classify models which influence ordinary matter only gravitationally as dark
energy. In these models, the force felt between two bodies is only that of General Relativity (and
possibly other Standard Model forces). However, in models of modified gravity, bodies may carry
additional charges (e.g. scalar charge) which leads to them experiencing an additional force beyond
that of gravity. The appeal to the SEP is an attempt to make this intuition precise. A theoretical
motivation for this distinction based upon the SEP is that it is believed—though not proven—that
General Relativity is the only metric theory which obeys the SEP (Will, 2014).

2.5. Theories of gravity and dark energy

The quest to test gravity and find alternatives to the cosmological constant has produced many the-
ories beyond Einstein’s General Relativity (GR) and other descriptions of gravity on cosmological
scales. Those models which are close to ΛCDM are in broad agreement with current constraints on
the background cosmology, but the perturbations may still evolve differently. Here we will classify
the different means to modify Einstein’s theory.

The starting point for a fully covariant extended theory of gravity is a generalization of the Einstein-
Hilbert action

S GR =

∫
d4x
√
−g

R[gµν]
16πG

+ S m[gµν, · · · ] , (2.30)

where G is Newton’s constant and S m denotes the action of matter, universally and minimally coupled
to the metric gµν. Variation of the action (2.30) with respect to the metric leads to Einstein’s field
equations Eq.2.2.

At the classical level, the results of Lovelock imply that the Einstein-Hilbert action is unique in 4D
(Lovelock, 1971). It follows that alternative theories of gravity can be classified into those that

• Break the fundamental assumptions.

• Include additional fields.

• Make the graviton massive.

Theories may even fall within several of these categories. For instance: bimetric gravity has an
additional field (tensor) and contains a massive graviton, Einstein-Aether is both Lorentz-violating
and includes a vector field, TeVeS has a scalar in addition to a vector, and many extra-dimensional
models can be described in terms of additional fields in certain limits.

The most important case for our work is the addition of a scalar field: in Chapters 5 and 6 we will
present constraints on a very large class of these so-called scalar-tensor theories, the Horndeski class.
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2.5.1. Breaking fundamental assumptions

Lovelock’s theorem assumes a four dimensional pseudo-Riemannian manifold and local interactions
satisfying Lorentz invariance. Any departure from these principles can be the basis for the construction
of a new modified theory of gravity.5

Extra dimensions: Additional spatial dimensions allow the inclusion of new operators constructed
only from the metric tensor, such as the Gauss-Bonnet term (a topological term in 4 dimensions which
does not contribute to the equations of motion). The lack of observation of extra dimensions requires
however some mechanism to hide them. One example is compactification, when extra dimensions are
sufficiently small that they are not accessible to experimental tests Overduin & Cooperstock (1998).

Lorentz Invariance Violation In many of these alternatives to General Relativity Lorentz invari-
ance is broken by letting a preferred time direction emerge spontaneously (see Blas & Lim (2014) for
a review). Horava gravity (Horava, 2009), for example, has a preferred foliation of space-time which
implies violation of Lorentz invariance, but interestingly Lorentz symmetry can be recovered at low
energies.

Non-local theories Non-local theories include inverse powers of the Laplacian operator in the
action. These models can involve general functions (e.g. R · f (2−1R), Deser & Woodard, 2007) or
be linear (e.g. R m2

22 R, Jaccard et al., 2013). Non-local models are constructed using the Ricci scalar,
since non-local terms involving contractions of the Ricci tensor give rise to cosmological instabilities
(Nersisyan et al., 2017).

2.5.2. Additional fields

Gravity can be extended by the inclusion of additional fields that interact directly with the metric.
These theories will vary according to which type of field is added (scalar, vector, tensor) and its inter-
action with gravity. Since theories with additional tensors (bigravity and multigravity) are extensions
of massive gravity, we will group all of these in Sec. 2.5.2. We will assume a minimal universal cou-
pling of matter to the metric. For a very complete review of gravity theories containing additional
fields, see Heisenberg (2018).

Additional scalar field

Since a scalar field does not have a preferred orientation, a classical state can exist in the universe
without affecting the isotropy of the space-time if it depends only on time: for this reason scalar fields
are the simplest and most studied extensions to General Relativity. A potential term for the scalar can
mimic a cosmological constant very closely in the limit in which the field is varying very slowly (e.g. if
the potential is very flat), which is the foundation of the simplest single-field inflation and dark energy
models (quintessence). We notice that scalar fields may also arise as limits of more complex theories,
in other words as effective descriptions of more fundamental theories belonging to other categories,
such as braneworld (de Rham et al., 2011).

Ostrogradski’s theorem states that theories with second and higher (time) derivatives in the action
generically introduce unstable degrees of freedom (Woodard, 2015). This leads to a classification
(Ezquiaga & Zumalacárregui, 2018) based on the highest-order derivatives of the additional field
present in the action and the equations of motion, with three generations of theories. This way of

5GR extensions including additional geometric elements like torsion or non-metricity can be viewed as either breaking the
fundamental assumptions or including additional fields.
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categorising the theories should be interpreted in the sense of subsets: a class of theories with higher
derivatives includes the class of theories with lower derivatives.

(1) Simplest scalar tensor theories: 1st order derivatives in the action, 2nd order in equations.

These contain at most first derivatives of the scalar in the action. They can be seen as a general-
ization of the Jordan-Brans-Dicke theory of gravity (Brans & Dicke, 1961)

S =

∫
d4x
√
−g

M2
Pl

2
[
ω(φ)R − K(X, φ)

]
+ S m , (2.31)

where X ≡ −∇νφ∇νφ/2 is the canonical kinetic term of the scalar field. This theory includes GR
(ω = 1,K = Λ), quintessence (ω = 1,K = X − V) (Wetterich, 1988; Ratra & Peebles, 1988),
Brans-Dicke models (Brans & Dicke, 1961) (ω = φ, K =

ωBD
φ X−V(φ)), k-essence (Armendáriz-

Picón et al., 1999) (ω = 1, K = K(φ, X)). Archetypical modified-gravity models such as f (R)
(Carroll et al., 2004) are equivalent to instances of these theories. Chameleons and symmetrons
(Hinterbichler & Khoury, 2010) also belong to this class of theories.

(2) Horndeski theories (Horndeski, 1974): 2nd order derivatives in the action and 2nd order in equa-
tions.

The Horndeski class of modified gravity theories represents an example of a remarkably large
set of extensions to General Relativity, and the most important for this thesis. First discussed in
1974 by Horndeski (Horndeski, 1974) and subsequently rediscovered in Nicolis et al. (2009) and
Deffayet et al. (2011), the Horndeski Lagrange density is the most general way of writing the
Lagrangian of a scalar-tensor theory of gravity that is four-dimensional, Lorentz-invariant, local,
and has equations of motion with derivatives not higher than second order. This ensures the
safety of the theory against Ostrogradski instabilities and subsequent ghost degrees of freedom
(Woodard, 2007). The Horndeski action can be written as follows:

S [gµν, φ] =

∫
d4x
√
−g

 5∑
i=2

1
8πGN

Li[gµν, φ] +Lm[gµν, ψM]


L2 = G2(φ, X),

L3 = −G3(φ, X)2φ,

L4 = G4(φ, X)R + G4X(φ, X)
[
(2φ)2 − φ;µνφ

;µν
]
,

L5 = G5(φ, X)Gµνφ
;µν

−
1
6

G5X(φ, X)
[
(2φ)3 + 2φ;µ

νφ;ν
αφ;α

µ − 3φ;µνφ
;µν2φ

]
.

(2.32)

The four contributions Li of the gravitational sector depend on arbitrary functions of the met-
ric gµν and the kinetic term K = − 1

2∂µφ∂
µφ of the additional scalar degree of freedom φ. The

subscripts φ, X denote partial derivatives, e.g. GiX =
∂Gi
∂X . We write the normalization of the Gi

functions following the convention implemented in the hi_class code (Zumalacárregui et al.,
2017). We will consider only universal coupling between the metric and the matter fields (col-
lectively described by ψm and contained in the matter Lagrangian Lm), which are therefore
uncoupled to the scalar field. Most of the universally coupled models with one scalar degree
of freedom belong to the Horndeski class. These include for example quintessence (Wetterich,
1988; Ratra & Peebles, 1988), Brans-Dicke models (Brans & Dicke, 1961), k-essence (Ar-
mendáriz-Picón et al., 1999; Armendariz-Picon et al., 2001), kinetic gravity braiding (Deffayet
et al., 2010; Kobayashi et al., 2010; Pujolàs et al., 2011), covariant galileons (Nicolis et al.,
2009; Deffayet et al., 2009), disformal and Dirac-Born-Infeld gravity (de Rham & Gabadadze,
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2010; Zumalacárregui et al., 2013; Bettoni & Liberati, 2013), Chameleons (Khoury & Weltman,
2004; Khoury & Weltman, 2004), symmetrons (Hinterbichler & Khoury, 2010; Hinterbichler
et al., 2011), Gauss-Bonnet couplings (Ezquiaga et al., 2016) and models screening the cosmo-
logical constant (Charmousis et al., 2012; Martı́n-Moruno et al., 2015). Archetypical modified
gravity-models such as all variants of f (R) (Carroll et al., 2004) and f (G) (Carroll et al., 2005)
theories are also included. Models that are not within this broad class are those that contain
higher derivatives in the equations of motion (Zumalacárregui & Garcı́a-Bellido, 2014; Gleyzes
et al., 2015), and modifications of gravity with non-scalar degrees of freedom, e.g. Einstein-
Aether models (Jacobson & Mattingly, 2001) or ghost-free massive gravity (de Rham & Tolley,
2010; de Rham et al., 2011; Hassan & Rosen, 2012). The choice of the Gi(gµν,K) functions
completely specifies the single modified gravity model that one considers.

(3) Beyond Horndeski: 2nd order derivatives in the action and higher order in equations.

Theories beyond Horndeski have higher order equations of motion without including additional
degrees of freedom. The first examples of these theories (Zumalacárregui & Garcı́a-Bellido,
2014) were related to General Relativity by a metric redefinition involving derivatives of the
scalar field (Bekenstein, 1993). The best known beyond Horndeski theory is given by the
Gleyzes-Langlois-Piazza-Vernizzi (GLPV) action (Gleyzes et al., 2015).

The study of degeneracy conditions for scalar-tensor theories ultimately lead to the degenerate
higher-order scalar-tensor (DHOST) (Langlois & Noui, 2016) paradigm classification of the-
ories with the right number of degrees of freedom (also known as Extended Scalar-Tensor or
EST) (Crisostomi et al., 2016).

Additional vector field

A background vector field does not satisfy the isotropy requirements of the cosmological background,
unless it points in the time direction and only depends on time Aµ = (A0(t), 0, 0, 0). Isotropy can also
happen on average, if a vector with a space-like projection oscillates much faster than the Hubble time
(Cembranos et al., 2012). In that case the background is isotropic on average but the perturbations
(including gravitational waves) inherit a residual anisotropy (Cembranos et al., 2017). A large number
of vectors can also lead to statistical isotropy (e.g. if the orientations are random) (Golovnev et al.,
2008).

Additional tensor fields and massive gravity

Giving a mass to the graviton is another means to extend General Relativity, with gravity mediated
by a particle with mass mg, spin s = 2 and 2s + 1 = 5 polarization states (see de Rham et al. (2017)
for bounds on the graviton mass). The linear theory of massive gravity was formulated in 1939 by
Fierz & Pauli (Fierz & Pauli, 1939) It was later found that Fierz-Pauli theory was discontinuous and
gave different results from General Relativity in the limit where massive gravity should have recovered
Einstein’s theory. Considering non-linear interactions solved the apparent discontinuity, but made the
theory affected by ghost instability. The apparent difficulties were overcome in de Rham-Gabadadze-
Tolley theory (dRGT) (de Rham & Gabadadze, 2010), also known as ghost-free massive gravity (for
current reviews on the theory see Hinterbichler (2012); de Rham (2014)).

In order to write a mass term for the metric, dRGT incorporates an additional, non-dynamical tensor.
Massive gravity can be extended by including a kinetic term to the auxiliary metric, which becomes
fully dynamical. This leads to the theory of bigravity (or bimetric gravity) (Hassan & Rosen, 2012),
which contains two spin-2 particles: one massive and one massless. The same procedure can be ex-
tended to more than two interacting metrics, leading to multigravity theories (Hinterbichler & Rosen,
2012).
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2.6. Parameterizations of dark energy

Given the lack of a consensus model for cosmic acceleration, it is a challenge to provide a simple
yet unbiased and sufficiently general description of dark energy. The equation-of-state parameter
w has traditionally been identified as one useful phenomenological description; being the ratio of
pressure to energy density, it is also closely connected to the underlying physics. Many more general
parameterizations exist, some of them with appealing statistical properties. We now review a variety
of formalisms that have been used to describe and constrain dark energy (e.g. in Planck Collaboration
et al., 2016b).

(1) Background parameterizations. In this approach the only quantities to be parameterized are
the background-level ones. Perturbations are always included, but their evolution depends only
on the background.

(2) Perturbation parameterizations. Here the perturbations too are parameterized. There are two
main approaches within this category: effective field theory for DE (EFT, e.g. Gubitosi et al.,
2013; Bloomfield et al., 2013; Gleyzes et al., 2013), which contains all symmetry operators in
the Lagrangian, written in unitary gauge, i.e. in terms of metric perturbations only and therefore
is theoretically well motivated. A second approach includes a more phenomenological class
of models obtained by directly parameterizing two independent functions of the gravitational
potentials. This approach can in principle probe all degrees of freedom at the background and
perturbation level (e.g. Kunz, 2012) and is easier to handle in numerical codes. While the
connection to physical models is less obvious here than in EFT, this approach allows us to gain
a more intuitive understanding of the general constraining power of the data.

2.6.1. Background parameterizations

Constant equation of state

Assuming that dark energy is spatially smooth, its simplest parametrization is in terms of its equation-
of-state

w ≡
pde

ρdec2 = constant. (2.33)

Vacuum energy is represented by the choice w = −1. Together with Ωde, w provides a two-parameter
description of the dark-energy sector.

Varying equation of state

Promoting either the dark energy density or the equation of state to a general function of redshift —
Ωde(z) or w(z) — would be the most general way to describe dark energy, still assuming its spatial
homogeneity. In practice, however, either of these functions formally corresponds to infinitely many
parameters to measure, and measuring even a few such parameters is a challenge. Perhaps not sur-
prisingly, therefore, the most popular parametrizations of w have involved two free parameters. Other
low-dimensional parametrizations have been proposed (Gerke & Efstathiou, 2002); for low redshift
they are all essentially equivalent, but for large z they lead to different and often unphysical behavior.
The parametrization (Linder & Jenkins, 2003; Chevallier & Polarski, 2001)

w(a) = w0 + wa(1 − a) = w0 + wa
z

1 + z
, (2.34)

where a = 1/(1 + z) is the scale factor, avoids this problem, and it fits many scalar field and some
modified gravity expansion histories. This therefore leads to the most commonly used description of
dark energy, namely the three-parameter set {Ωde,w0,wa}.
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Principal components

The cosmological function that we would like to determine — w(z), ρde(z), or H(z) — can be ex-
panded in terms of principal components, a set of functions that are uncorrelated and orthogonal by
construction (Huterer & Starkman, 2003). In this approach, the data determine which parameters are
measured best.

Suppose we parametrize w(z) in terms of piecewise constant values wi (i = 1, . . . ,N), each defined
over a narrow redshift range zi < z < zi + ∆z). In the limit of small ∆z this recovers the shape of an
arbitrary dark energy history), but the estimates of the wi from a given dark energy probe will be very
noisy. Principal component analysis (PCA) extracts from those noisy estimates the best-measured
features of w(z). One finds the eigenvectors ei(z) of the inverse covariance matrix for the parameters
wi and the corresponding eigenvalues λi. The equation-of-state parameter is then expressed as

1 + w(z) =

N∑
i=1

αi ei(z) , (2.35)

Generalized dark energy phenomenology

The simplest and by far the most studied class of models is dark energy that is spatially smooth and
its only degree of freedom is its energy density — that is, it is fully described by either ρde(a) or
w(a) ∼ −1.

Another possibility is that dark energy has the speed of sound that allows clustering at sub-horizon
scales, that is, c2

s ≡ δpde/δρde < 1 (where cs is quoted in units of the speed of light). Unfortunately,
the effects of the speed of sound are small, and become essentially negligible in the limit when the
equation of state of dark energy w becomes close to −1, and are difficult to discern with late-universe
measurements even if w deviates from the cosmological constant value at some epoch. It will therefore
be essentially impossible to measure the speed of sound even with future surveys.

Another possibility is the presence of “early dark energy” (Wetterich, 2004; Pettorino et al., 2013),
component that is non-negligible at early times, typically around recombination or even earlier. The
early component is motivated by various theoretical models, and could imprint signatures via the
early-time Integrated Sachs-Wolfe effect.

Finally, there is a possibility that dark energy is coupled to dark matter (breaking adiabaticity),
or other components or particles (Amendola, 2000). This is a much richer — though typically very
model-dependent — set of possibilities, with many opportunities to test them using data.

As yet, there is no observational evidence for generalized dark energy beyond the simplest model
but, as with modified gravity, studying these extensions is important to understand how dark energy
phenomenology can be searched for by cosmological probes.

2.6.2. Parameterizations of cosmological gravity at the perturbations level

A great disadvantage of the full covariant approach described in Sec.2.5 is that the predictions for
every model/theory have to be obtained from scratch, which makes the exploration of the theory space
a daunting task.

An alternative route is to constrain deviations from General Relativity, without reference to any
fundamental theory. The tradeoff is to keep the theory of gravity as general as possible at the expense
of dealing with a very simple space-time. The simplest situation is where the background space-time
is flat and maximally symmetric (Minkowski), a setup useful to model gravity in the Solar System. In
this simple case one can define a series of quantities, known as Parameterized Post-Newtonian (PPN)
coefficients, that describe general modifications of gravity over Minkowski space (see Will (2014) for
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details, including constraints and additional assumptions). These PPN parameters can be constrained
by experiments (such as the deflection of light by massive bodies) and computed for any theory, and
thus provide a very efficient phenomenological dictionary.

When dealing with linear perturbations acting on a Friedmann-Robertson-Walker metric in modi-
fied gravity one can assume spatial flatness and, considering only scalar perturbations (see Durrer &
Tansella, 2016; Adamek et al., 2016, for vector and tensor perturbations), write the line element in
Newtonian gauge as

ds2 =

(
1 + 2

Φ

c2

)
c2dt2 − a2(t)

(
1 − 2

Ψ

c2

) (
dχ2 + r2dθ2 + r2 sin2 θdϕ2

)
(2.36)

with the Bardeen potentials Φ and Ψ. In General Relativity Φ = Ψ in absence of anisotropic stress,
while this is in general not true in modified gravity. The time-evolution of the cosmological back-
ground makes an extension of PPN approach to cosmology a difficult task, as instead of constant
coefficients one needs to deal with functions of time due to the evolution of the universe.

Describing the perturbations requires more functional freedom than for the background. Here we
will review two common procedures, namely the effective theory of dark energy and the modified
gravitational “constants”.

Effective theory of dark energy

The effective (field) theory of dark energy (Gubitosi et al., 2013; Bloomfield et al., 2013; Gleyzes
et al., 2013) can be used to systematically describe general theories of gravity over a cosmological
background. The original formulation applies to theories with a scalar field φ and uses the unitary
“gauge”: a redefinition of the time coordinate as the constant φ hypersurfaces (this is always possible
if φ,µ is time-like and non-degenerate, as in perturbed cosmological backgrounds, but not in general).
One then constructs all the operators compatible with the symmetries of the background (recalling that
the time translation invariance is broken by the cosmological evolution).

The action obtained with this procedure reads:

S =

∫
d4x
√
−g

m2
0

2
[1 + Ω(τ)] R + Λ(τ) − a2c(τ)δg00

+
M4

2(τ)
2

(
a2δg00

)2
− M̄3

1(τ)2a2δg00δKµ
µ

−
M̄2

2(τ)
2

(
δKµ

µ

)2
−

M̄2
3(τ)
2

δKµ
ν δKν

µ +
a2M̂2(τ)

2
δg00δR(3)

+ m2
2(τ)

(
gµν + nµnν

)
∂µ

(
a2g00

)
∂ν

(
a2g00

) 
+ S m

[
χi, gµν

]
. (2.37)

Here R is the Ricci scalar, δR(3) is its spatial perturbation, Kµ
ν is the extrinsic curvature, and m0 is the

bare (reduced) Planck mass. The matter part of the action, S m, includes all fluid components except
dark energy, i.e., baryons, cold dark matter, radiation, and neutrinos. The action in Eq. 2.37 depends
on nine time-dependent functions, here {Ω, c,Λ, M̄3

1 , M̄
4
2 , M̄

2
3 ,M

4
2 , M̂

2,m2
2}, whose choice specifies the

theory. In this way, EFT provides a direct link to any scalar field theory.

In Gleyzes et al. (2013) and Bellini & Sawicki (2014) it has been shown that one can parametrize
the evolution of linear cosmological perturbations in Horndeski theories by means of four functions of
(conformal) time only, which we will collectively refer to here as α functions. Each of them carries a
physical meaning, which we describe briefly here, referring to Bellini & Sawicki (2014) and references
therein for a more complete description:
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• αK is the kineticity term, i.e. the kinetic energy of the scalar perturbations arising directly from
the action. Increasing this term suppresses the sound speed of scalar perturbations. This makes
the sound horizon smaller than the cosmological horizon, allowing the scalar field to enter a
quasi-static configuration on smaller scales, below the sound horizon (Sawicki & Bellini, 2015).
In the quasi-static approximation where time derivatives are considered to be sub-dominant with
respect to space derivatives, αK does not enter the equations of motion and is therefore largely
unconstrained by cosmic shear (Bellini et al., 2016; Alonso et al., 2016, although see Kreisch &
Komatsu, 2017).

• αB is the braiding term, which describes mixing of the scalar field with the metric kinetic term,
leading to what is typically interpreted as a fifth force between massive particles.

• αM is the Planck-mass run rate, defined by

αM ≡
d lnM2

∗

d ln a
, (2.38)

where M2
∗ is the dimensionless product of the normalization of the kinetic term for gravitons and

8πGN measured on Earth. This function describes the rate of evolution of the effective Planck
mass.

• αT is the tensor speed excess, indicating deviations from the speed of light in the propagation
speed of gravitational waves. This can lead to anisotropic stress even in the absence of scalar
field perturbations, as a result of a change in the response of the Newtonian potential to matter
sources. Recently, very strong constraints have been placed on αT by the measurement of the
gravitational waves speed derived by the detection of the binary neutron star merger GW170817
and the gamma ray burst GRB170817A (Abbott et al., 2017a,b; Baker et al., 2017; Creminelli &
Vernizzi, 2017; Ezquiaga & Zumalacárregui, 2017; Sakstein & Jain, 2017; Lombriser & Lima,
2017; Bettoni et al., 2017). Since the speed has been found to be very close to the speed of light,
αT has been consequently constrained to be very close to zero at the present time. We remark
that the other three functions (as well as αT ’s past value), are instead still free to vary. Ezquiaga
& Zumalacárregui (2017) identify the models within the Horndeski classes that are still viable
after GW170817; Peirone et al. (2018) show that, even with the strict bound on the present-day
gravitational wave speed, there is still room within Horndeski theories for nontrivial signatures
of modified gravity that can be measured at the level of linear perturbations.

The specific model considered within the Horndeski class is defined by the choice of the αi func-
tions. The ΛCDM model corresponds to the choice αK = αB = αM = αT = 0. Once the α functions
are set, Bellini & Sawicki (2014) show that it is sufficient to solve the equations of motion for the
background and perturbations to fully determine the evolution of linear perturbations at the linear
level.

In our work we will need to choose a parametrization for the time evolution of the α functions.
Following a common procedure, already implemented in hi_class, we will often (though not al-
ways: see Sec. 6.2.4) choose to parameterize these functions such that they trace the evolution of the
dark energy component, to which they are proportional

αi = α̂i ΩDE(τ) (2.39)

This choice is the simplest and the most common in the literature (as used e.g. in Planck Collaboration
et al., 2016b) and, despite not being the only one, can already provide a lot of information on Horndeski
gravity, as remarked by (Gleyzes, 2017) who showed that simple parametrizations are sufficient to
describe the theory space in Effective Field Theory of dark energy (Gubitosi et al., 2013; Bloomfield
et al., 2013; Gleyzes et al., 2013), which the α parameterization belongs to.

20



2.6. PARAMETERIZATIONS OF DARK ENERGY

Modified Gravitational “constants”

A very commonly used approach employs general modifications of the equations relating the gravita-
tional potentials to the matter density contrast

∇2Ψ = 4πGa2µ(t, k)ρδ , (2.40)

∇2(Φ + Ψ) = 8πGa2Σ(t, k)ρδ (2.41)

(note that different conventions exist in the literature). Here δ is the density contrast in Newtonian
gauge and the functions µ,Σ parameterize the evolution of the gravitational potentials as a function
of time a and scale k. The functions µ,Σ are often referred to as Gmatter, Glight because gradients of
Ψ determines the force felt by non-relativistic particles and those of Ψ + Φ the geodesics of massless
particles (and thus the lensing potential). The ratio of the gravitational potentials,

η ≡
Φ

Ψ
=

2Σ

µ
− 1 , (2.42)

is of particular interest, since GR predicts that it is exactly one in the absence of radiation and any
sizable deviation could be an indication of modified gravity.

This approach has numerous advantages as a test of gravity against data. It is completely theory
agnostic, not requiring any information on the ingredients or laws of the theories being tested. Most
importantly, it is completely general for universally coupled theories: given any solution ∆,Ψ,Φ(a, k)
it is possible to obtain µ,Σ through Eqs. 2.40, 2.41. In this sense, any finding of µ,Σ , 1 might point
towards deviations from GR and warrant further investigation.

The main shortcoming of this approach is its great generality: any practical attempt to implement
Eqs. 2.40, 2.41 requires a discretization of the functional space, introducing 2 ·Nk ·Nz free parameters
for a homogeneous binning. In contrast, the EFT approach for Horndeski theories requires only 4 · Nz

parameters, making it a more economic parameterization for all but the simplest scale-dependencies
(Nk = 1, 2). Capturing the full scale dependence of µ,Σ requires either a large parameter space or
assumptions about the k-dependence.

A common practice to overcome this limitation is to choose a functional form for µ,Σ as a function
of scale. For Horndeski theories the functional form is a ratio of quadratic polynomials in k (Amendola
et al., 2013)

µ = h1
1 + h5k2

1 + h3k2 , η = h2
1 + h4k2

1 + h5k2 , (2.43)

for functions hi that depend on redshift through the theory and the scalar field evolution. The mapping
is exact on small scales in which the field dynamics can be neglected, below scalar sound horizon.

Another main shortcoming of the completely general approach is that there is no information from
other regimes. The major setback with respect to EFT is the lack of information from gravitational
wave observables, while in EFT the tensor and scalar sectors are modified accordingly i.e. GW data
restrict the modifications available to scalar perturbations, for instance, theories with η , 1 require
either αM or αT to be non-zero. Attempts to explore the connections between µ,Σ and the EFT ap-
proach in Horndeski-like theories have used very general parameterizations: connecting theoretical
viability conditions of the theory with the behavior of µ, η (Perenon et al., 2015), including the case
with αT = 0 to address the impact of the GW speed measurement (Peirone et al., 2018). General
properties of Horndeski theories could be inferred from detailed measurements of µ,Σ (Pogosian &
Silvestri, 2016).
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2.7. Screening mechanism

An important ingredient for all modified gravity theories which have a significant impact on cosmo-
logical scales is a screening mechanism which effectively screens modifications at small scales to
provide agreement with small scale tests of General Relativity such as in the Solar System. Screening
mechanisms act as non-linear effects by virtue of which the departures from General Relativity fade
in short scales or high-density environments. They can be generally divided into potential and kinetic
screening mechanisms. If one uses an additional scalar field φ (e.g. in the Brans-Dicke theory), the
interaction potential is given by a Yukawa potential with characteristic scale mφ, which gives the range
of the interaction. If the mass of the scalar, mφ depends on the environment in such a way that it is large
if the density is high, General Relativity will be recovered in these regions. This can be achieved by a
suitable choice of the interaction potential of the scalar field, since the mass corresponds to its second
derivative. This is called Chameleon mechanism (Khoury & Weltman, 2004). A kinetic screening
is for example the Vainshtein mechanism (Babichev & Deffayet, 2013), for which the kinetic term
X screens modifications on small scales. The screening feature of modified gravity has been studied
in a model-by-model basis using non-linear techniques, but has been often ignored in e.g. forecasts
for future experiments. In this thesis, we will use linear cosmological perturbation theory and hence
the screening effects have to be included in a phenomenological fashion. In this work we will always
model the small-scale recovery of General Relativity through a scale dependence of the α EFT func-
tions for Horndeski gravity or by acting on the effective Newtonian coupling, the gravitational slip and
the linear growth factor. Our prescription is certainly not the unique that can be followed: however,
we note that this or other prescriptions have to be introduced whenever screened scales are included in
the analysis. If they can be properly modeled, non-linear scales contribute greatly to constraint other
cosmological parameters, but not accounting for screening can in principle largely overestimate the
surveys capacity to test gravity.
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3 Chapter 3

Statistical methods in cosmology

The archetypical question of empirical science is: given a set of observations d and any information
or prejudices we had prior to making these observations (denoted I), what is our degree of belief in
some hypothesis H? That is, under the logical interpretation of probabilities, what is the probability
P(H|d,I)? Any testable theory will make predictions about the observations we should expect given
a certain hypothesis, i.e., P(d|H). Hence making statements about our state of belief in a certain
hypothesis, given our observations, requires us to take our forward model from theory to data P(d|H)
and solve the inverse problem to obtain P(H|d,I). Bayes’ theorem is precisely the tool for solving this
inverse problem, relating theoretical forward model, prior information and prejudices and inferences:

P(H|d,I) =
P(d|H)P(H|I)

P(d)
. (3.1)

Bayesian inference encompasses any inference process making use of Bayes’ theorem and taking
the logical interpretation of probabilities as degrees of plausibility. By allowing us to access the
probability of a proposition given our observations, Bayes’ theorem is of central importance in drawing
clear scientific statements from data.

Inference problems tend to fall into two categories: parameter inference and model comparison.
Parameter inference assumes a modelM with a set of parameters θ and asks the question: given my
observations, model assumptions and prior beliefs, what are my beliefs about the parameters θ of my
model M? Model comparison poses the more abstract question: given two models MA and MB ,
what is my relative belief in these models in light of my observations (and given my prior relative
belief in the two models)? Empirical science can be reduced to making observations and then asking
one of these two questions. In this Chapter we will focus on the former, since it is central to the
understanding of some aspects of this thesis, but we will also briefly mention the latter in Sec. 3.4.3,
as it helps understand one of the sampling methods for the posterior distribution that will be described
in the following.

We begin by reviewing the parameter inference process within a Bayesian framework in Sec. 3.1; we
then expand in Sec. 3.2 on the posterior distribution, the main target of any Bayesian inference process,
describing products that can be obtained from the posterior, such as errors on model parameters. In
Sec. 3.3 we comment extensively on an increasingly popular tool in statistical cosmology, the Fisher
matrix; finally, in Sec. 3.4 we review some of the sampling methods for the posterior distribution
widely used in Bayesian inference.

3.1. Bayesian parameter inference

Parameter inference is concerned with making probabilistic statements about the values of the param-
eters of a chosen model, given some observations. The ultimate goal of parameter inference is the
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distribution of parameter values given the observations, model assumptions and prior beliefs, i.e. the
posterior distribution P(θ|d,M).

In order to make statements about model parameters θ from observations d, we must have a forward
model that relates the parameters to the data, specifying the probability of obtaining data d given
our model M and parameters θ, i.e. P(d|θ,M). The forward model describes how the data were
generated from the theory and measurement process, covering two key elements: (1) what are the
physical predictions of the modelM (i.e., the physical theory) relevant for the observations, and (2)
how does the measurement process introduce uncertainties into the data (i.e., a physical model for
the measurement process/instrument). With a forward model specifying P(d|θ,M) in hand, Bayes’
theorem allows us to turn this around and find the probability of the parameters given the observations
(and model assumptions),

P(θ|d,M,I) =
P(d|θ,M) × P(θ|M,I)

P(d|M,I)
(3.2)

The distribution of the data given the parameters (and model) P(d|θ,M) is called the likelihood, the
prior P(θ|M,I) encodes our prior beliefs about the parameters (assuming the model is true), and
the normalization constant P(d|M,I) is called the evidence and has no dependence on the model
parameters (but is important for model comparison, see Sec. 3.4.3). The posterior distribution of the
parameters P(θ|d,M,I) is a complete description of our beliefs about the parameter values given the
observations and is the ultimate goal of parameter inference. The parameter inference process can
hence be summarized as follows:

(1) Write down a forward modelM from theory, and from it derive the likelihood P(d|θ,M),

(2) Specify our prior beliefs about the parameters (under the model) P(θ|M,I) and use Bayes’
theorem to write down the posterior distribution P(θ|d,M),

(3) Compute the posterior P(θ|d,M), i.e. our degree-of-belief in the parameter values.

Step (1) is the combined effort of theorists developing predictive theories for observable quantities,
and experimentalists developing a model for their designed measurement process. Step (2), employ-
ing Bayes’ theorem, requires the choice of a prior encoding our prior beliefs about the parameters
before conducting the new experiment. In the absence of previous data, we can attempt to define an
‘uninformative’ prior encoding our ignorance of the parameters – typically, a flat prior. If the new ob-
servations are successor to a series of previous experiments, the prior may simply be the accumulated
inference from all previous data, as we shall see in the folowing.

3.1.1. Updating the probability distribution for a parameter

If we obtain some more information from a new experiment, then we can use Bayes’ theorem to update
our estimate of the probabilities associated with each parameter. For Bayesian statistics to be logically
coherent, it should not matter how we gain our information, meaning that the effect on the probability
of the parameters should be the same if we either add the results of a new experiment to the probability
of the parameters, or if we carry out the two experiments first, and then see how they both affect the
probability of the parameters.

Let us demonstrate that these two interpretations are equivalent. We start with Bayes’ expression
for the posterior probability of a parameter (or more generally of some hypothesis), where we put
explicitly that all probabilities are conditional on some prior information I,

p(θ|dI) =
p(θ|I)p(d|θI)

p(d|I)
. (3.3)
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Let us imagine we carry out a new experiment with new data, d′. We have two ways to analyse the
new data:

• Interpretation 1: we regard d′ as the dataset, and dI (means d and I) as the new prior informa-
tion;

• Interpretation 2: we put all the data together, and call it d′d, and interpret it with the old prior
information I.

Let us start with Interpretation 1. We rewrite Bayes’ theorem, equation (3.3) by changing datasets
x→ x′, and letting the old data become part of the prior information I → I′ = dI. Bayes’ theorem is
now

p(θ|d′I′) =
p(θ|dI)p(d′|θdI)

p(d′|dI)
. (3.4)

We notice that the new prior in this expression is just the old posterior probability from equation (3.3),
and that the new likelihood is just

p(d′|dθI) =
p(d′d|θI)
p(d|θI)

. (3.5)

Substituting this expression for the new likelihood:

p(θ|dI′) =
p(θ|dI)p(d′d|θI)
p(d′|dI)p(d|θI)

. (3.6)

Using Bayes’ theorem again on the first term on the top and the second on the bottom, we find

p(θ|dI′) =
p(θ|I)p(d′d|θI)
p(d′|dI)p(d|I)

, (3.7)

and simplifying the denominator gives finally

p(θ|dI′) =
p(θ|I)p(d′d|θI)

p(d′d|I)
= p(θ| [dd′]I), (3.8)

which is Bayes’ theorem in Interpretation 2, i.e. it has the same form as equation (3.3), the outcome
from the initial experiment, but now with the data d replaced by d′d. In other words, we have shown
that d→ d′ and I → xI is equivalent to d→ d′d. This shows us that how we add in new information
makes no difference: Bayes’ theorem gives us a natural way of improving our statistical inferences as
our state of knowledge increases.

3.1.2. Frequentist versus Bayesian approach

Here we want to illustrate some differences and similarities between the frequentist maximum likeli-
hood and the Bayesian approach to inference.

In general, observations in an experiment follow a certain distribution for a fixed parameter value.
This distribution is the probability distribution over all possible observation values for the given value
of the parameter. We define ’parameter space’ the set of all possible parameter values, which has a
number of dimensions equal to the number of parameters. We will call ’sample space’ the set of all
possible values of the observations, whose dimension is the number of observations. We define the ’in-
ference universe’ of the problem to be the Cartesian product of parameter space and sample space. It
is the dimensional space where the first dimensions are the parameter space, and the remaining dimen-
sions are the sample space. We do not ever observe the parameter, so the position in those coordinates
are always unknown. However, we do observe the sample, so we know the last coordinates.

We will let the dimensions be p = 1 and n = 1 for simplicity, i.e. we consider a single parameter and
a single observation. Figs. 3.1, 3.2, and 3.3 are exact in this case, and serve as instructional examples
for the higher dimensional case.
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Figure 3.1.: The observation distribution (left) and the likelihood function (right)

Figure 3.2.: The prior and likelihood (left) and the joint density of θ and y (right)

Figure 3.3.: Posterior (left) and posterior when flat prior is used (right)

Figure 3.4.: Profile likelihood (left) and marginal posterior (right) for θ1
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Frequentist Maximum Likelihood estimation

The sampling distribution f (y|θ) is a function of both the value of the observation and the parameter
value. Given the value θ, it gives the probability distribution of the observation y. It is defined for
all points in the inference universe. Thus, it forms a surface defined on the inference universe. It
is a probability distribution in the observation dimension for each particular value of the parameter.
However, it is not a probability distribution in the parameter dimension. The first panel of Fig.3.1
shows the sampling distribution surface in 3D perspective. The likelihood function has the same
functional form as the sampling distribution, but y is held at the observed value and θ is allowed to vary
over all possible values. It is found by cutting the sampling distribution surface with a vertical plane
parallel to the axis through the observed value, as shown in the second panel of Fig.3.1. Likelihood
inference is based on the likelihood function. Since it is not a probability density, in the frequentist
approach the best estimator of the parameter is taken to be the value that has the highest value of the
likelihood function.

Bayesian estimation

Bayesian estimation requires that we have a probability distribution defined on the parameter space
before we look at the data: the prior distribution. It gives our belief weights for each of the possible
parameter values before we see the data. This requires that we allow a different interpretation of
probability on parameter space than on sample space. Probability on sample space has the usual
interpretation of relative frequency, while on parameter space it has a degree-of-belief interpretation.
The prior distribution of the parameter is shown with the sampling distribution surface in the first
panel of Fig.3.2. The joint distribution of the parameter and the observation is found by multiplying
each value of the sampling distribution surface by the corresponding height of the prior distribution.
This is shown in the second panel of Fig.3.2. To find the posterior distribution of the parameter given
the observed value we cut the joint distribution of the parameter and the observation with a vertical
plane parallel to the parameter axis through the observed value of y. This is shown in the first panel
of Fig.3.3. The posterior distribution summarizes the belief we can have about all possible parameter
values, given the observed data. It will always be a probability distribution, conditional on the observed
data.

Using a flat prior the posterior has same shape as the likelihood

If we decide to use a flat prior distribution that gives equal weight to all values of the parameters, the
joint distribution on the inference universe will be the same as the sampling distribution surface. This
is shown in the second panel of Fig.3.3.

3.1.3. Nuisance parameters, marginalization

In many cases we are forced to infer parameters from the data that we are both uncertain about and/or
not interested in, which nonetheless impact our analysis; these are the so–called nuisance parame-
ters. We want to make sure that the nuisance parameters do not interfere with our inference on the
parameter of interest. Since, in the Bayesian approach, the joint posterior distribution is a probability
distribution, while using the likelihood approach the joint likelihood function is not a probability dis-
tribution, the two approaches have different ways of dealing with nuisance parameters, even when we
use independent joint flat priors and the posterior distribution and likelihood function have the same
shape.
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Likelihood inference in the presence of nuisance parameters

For instance, suppose that θ1 is the parameter of interest, and θ2 is a nuisance parameter. Frequentist
likelihood inference on θ1 is often based on the profile likelihood function given by:

Lp(θ1|d) = maxθ2 L(θ1, θ2|d) (3.9)

where L(θ1, θ2|d) is the joint likelihood function. Essentially, the nuisance parameter has been elimi-
nated by plugging θ̂2|θ1, to be interpreted as the conditional maximum likelihood value of θ2 given θ1,
into the joint likelihood. Hence

Lp(θ1|d) = L(θ1, θ̂2|θ1 | d). (3.10)

This is shown in the left panel of Fig.3.4. The profile likelihood function may lose some information
about θ1, compared to the joint likelihood function. Note that the maximum profile likelihood value of
θ1 will be the same as its maximum likelihood value. However confidence intervals based on profile
likelihood may not be the same as those based on the joint likelihood.

Bayesian Inference in the presence of nuisance parameters

Bayesian statistics has a single way of dealing with nuisance parameters. Uncertainties in nuisance
parameters can be formally propagated through the inference process by jointly inferring the param-
eters of interest θ1 and nuisance parameters θ2 together, and then marginalising (integrating) over the
nuisance parameters, i.e.,

P(θ1|d) =

∫
P(θ1, θ2|d)dθ2 =

∫
P(d|θ1, θ2)P(θ1, θ2|M)dθ2

P(d|M)
(3.11)

where we used Bayes’ theorem in the second equality. In this way our prior beliefs and uncertainties
on θ2 have been updated in light of the new observations and explicitly propagated to the inference on
θ1, where the “prior information” I implicit on the right hand side of the posterior P(θ1, θ2|d,M,I)
explicitly includes our prior beliefs (uncertainties) about the nuisance parameters. The marginal pos-
terior is found by integrating the nuisance parameter out of the joint posterior, a process referred to as
marginalization.

3.2. Posterior interpretation

The interpretation of a posterior density is straightforward: P(θ|d,M,I)dθ is our degree-of-belief
that θ is in the interval [θ, θ + dθ], given my observations d, assuming model M and some prior
beliefs/information I. Whilst the full posterior density represents all of our beliefs about parameters
θ, it is often useful to define quantities derivable from the posterior that make simplified statements
about our inference. For example, Bayesian credible intervals allow us to declare a region RX that
contains X% of the posterior density, where the boundary of RX is an isoprobability contour of the
posterior (or an isoprobability level in 1D). It is commonplace to quote 68%, 95% and 99% credible
intervals, since these (roughly) correspond to 1-, 2- and 3-σ credible regions for a one-dimensional
Gaussian.

3.2.1. Errors

Let us assume we have a posterior probability distribution, which is single-peaked. Two common
estimators (indicated by a hat: θ̂) of the parameters are the peak (most probable) values, or the mean,

θ̂ =

∫
dθ θ p(θ|~x). (3.12)
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An estimator is unbiased if its expectation value is the true value θ0:

〈θ̂〉 = θ0. (3.13)

Let us assume for now that the prior is flat, so the posterior is proportional to the likelihood. This
can be relaxed. Close to the peak, a Taylor expansion of the log likelihood implies that locally it is a
multivariate Gaussian in parameter space:

ln L(~x; θ) = ln L(~x; θ0) +
1
2

(θα − θ0α)
∂2 ln L
∂θα∂θβ

(θβ − θ0β) + . . . (3.14)

or

L(~x; θ) = L(~x; θ0) exp
[
−

1
2

(θα − θ0α)Hαβ(θβ − θ0β)
]
. (3.15)

The Hessian matrix Hαβ ≡ −
∂2 ln L
∂θα∂θβ

controls whether the estimates of θα and θβ are correlated or
not. If it is diagonal, the estimates are uncorrelated. Note that this is a statement about estimates of
the quantities, not the quantities themselves, which may be entirely independent, but if they have a
similar effect on the data, their estimates may be correlated. Note that in cases of practical interest,
the likelihood may not be well described by a multivariate Gaussian at levels which set the interesting
credibility levels (e.g. 68%). We turn later to how to proceed in such cases.

3.2.2. Conditional and marginal errors

If we fix all the parameters except one, then the error is given by the curvature along a line through
the likelihood (or the posterior, if the prior is not flat):

σconditional,α =
1
√

Hαα

. (3.16)

This is called the conditional error, and is the minimum error bar attainable on θα if all the other
parameters are known.

3.2.3. Marginalising over a Gaussian likelihood

The marginal distribution of θ1 is obtained by integrating over the other parameters:

p(θ1) =

∫
dθ2 . . . dθN p(θ). (3.17)

The triangle contour plots typically presented in forecast papers (some examples will be presented
in Sec. 5.3) are plots of marginal distributions of all parameters in pairs, as a way to present some
complex results. In that case two variables are left out of the integration.

When plotting these error ellipses it is important to specify which contours are plotted, specifcally if
they are for the joint distribution (i.e. 68% of the probability lies within the inner contour), or whether
68% of the probability of a single parameter lies within the bounds projected onto a parameter axis.
The latter is a 1σ, single-parameter error contour (and corresponds to ∆χ2 = 1), whereas the former
is a 1σ contour for the joint distribution, and corresponds to ∆χ2 = 2.3.

Note that ∆χ2 = χ2 − χ2(minimum), where

χ2 =
∑

i

(xi − µi)2

σ2
i

(3.18)

for data xi with µi = 〈xi〉 and variance σ2
i . If the data are correlated, this generalises to

χ2 =
∑

i j

(xi − µi)C−1
i j (x j − µ j) (3.19)
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where Ci j = 〈(xi − µi)(x j − µ j)〉.
A multivariate Gaussian likelihood is a common assumption, so it is useful to compute marginal

errors for this rather general situation. The simple result is that the marginal error on parameter θα is

σα =
√

(H−1)αα. (3.20)

Note that we invert the Hessian matrix, and then take the square root of the diagonal components. Let
us prove this important result. In practice it is often used to estimate errors for a future experiment,
where we deal with the expectation value of the Hessian, called the Fisher Matrix:

Fαβ ≡ 〈Hαβ〉 =

〈
−
∂2 ln L
∂θα∂θβ

〉
. (3.21)

The expected error on θα is thus
σα =

√
(F−1)αα. (3.22)

It is always at least as large as the expected conditional error. This result applies for Gaussian-shaped
likelihoods, and is useful for experimental design; for real data, one would perform the marginalisation
a different way, as explained later.

To prove that the marginal error for a Gaussian likelihood is given by 3.22, we will use characteristic
functions.

Characteristic functions

In probability theory the Fourier Transform of a probability distribution function is known as the
characteristic function. For a multivariate distribution with N parameters, it is defined by

φ(k) =

∫
dNθ p(θ)e−ik·θ (3.23)

with reciprocal relation

p(θ) =

∫
dNk

(2π)N φ(k)eik·θ (3.24)

(note the choice of where to put the factors of 2π is not universal). Hence the characteristic function
is also the expectation value of e−ik·θ:

φ(k) = 〈e−ik.θ〉. (3.25)

Part of the power of characteristic functions is the ease with which one can generate all of the
moments of the distribution by differentiation:

〈θnα
α . . . θ

nβ
β 〉 =

[
∂nα+...+nβφ(k)

∂(−ikα)nα . . . ∂(−ikβ)nβ

]
k=0

. (3.26)

This can be seen if one expands φ(k) in a power series, using

exp(α) =

∞∑
i=0

αn

n!
, (3.27)

giving

φ(k) = 1 − ik · 〈θ〉 −
1
2

∑
αβ

kαkβ〈θαθβ〉 + . . . . (3.28)

Hence for example we can compute the mean

〈θα〉 =

[
∂φ(k)
∂(−ikα)

]
k=0

(3.29)
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and the covariances, from

〈θαθβ〉 =

[
∂2φ(k)

∂(−ikα)∂(−ikβ)

]
k=0

. (3.30)

(Putting α = β yields the variance of θα after subtracting the square of the mean).

3.2.4. The expected marginal error on θα is
√

(F−1)αα

The likelihood is here assumed to be a multivariate Gaussian, with expected Hessian given by the
Fisher matrix. Thus (suppressing ensemble averages)

L(θ) =
1

(2π)M/2
√

det F
exp

(
−

1
2
θT Fθ

)
, (3.31)

where T indicates transpose, and for simplicity we have assumed the parameters have zero mean (if
not, just redefine θ as the difference between θ and the mean). We proceed by diagonalising the
quadratic, then computing the characteristic function, and compute the covariances using Eq. 3.30.
This is achieved in the standard way by rotating the parameter axes:

ψ = Rθ (3.32)

for a matrix R. Since F is real and symmetric, R is orthogonal, R−1 = RT . Diagonalising gives

θT Fθ = ψT RFRTψ, (3.33)

and the diagonal matrix composed of the eigenvalues of F

Λ = RFRT , (3.34)

Note that the eigenvalues of F are positive, as F must be positive-definite.
The characteristic function is

φ(k) =
1

(2π)M/2
√

det F

∫
dMψ exp

(
−

1
2
ψT ΛFψ

)
exp(−ikT RTψ) (3.35)

where we exploit the fact that the rotation has unit Jacobian to change dMθ to dMψ. If we define
K ≡ Rk,

φ(k) =
1

(2π)M/2
√

det F

∫
dMψ exp

(
−

1
2
ψT Λψ

)
exp(−iKTψ) (3.36)

and since Λ is diagonal, the first exponential is a sum of squares, which we can integrate separately,
using ∫ ∞

−∞

dψ exp(−Λψ2/2) exp(−iKψ) =
√

2π/Λ exp[−K2/(2Λ)]. (3.37)

All multiplicative factors cancel (since the rotation preserves the eigenvalues, so det(F) =
∏

Λα), and
we obtain

φ(k) = exp

−∑
i

K2
i /(2Λi)

 = exp
(
−

1
2

KT Λ−1K
)

= exp
(
−

1
2

kT F−1k
)

(3.38)

where the last result follows from KT Λ−1K = kT (RT Λ−1R)k = kT F−1k. Having obtained the charac-
teristic function, Eq. 3.22 follows immediately from Eq. 3.30.
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3.3. Fisher Matrix Analysis

We have already mentioned that Fisher matrices can be useful for experimental design. Now we can
ask ourselves: how accurately can we estimate model parameters from a given data set?

Suppose for definiteness that our data set consists of N real numbers x1, x2, ..., xN , which we arrange
in an N-dimensional vector ~x. These numbers could for instance denote the N coefficients of a Fourier
expansion of an observed galaxy density field. Before collecting the data, we think of ~x as a random
variable with some probability distribution L(~x; θ), which depends in some known way on a vector of
M model parameters θ = (θ1, θ2, ..., θM).

Such model parameters might for instance be the cosmological parameters. We will let θ0 denote
the true parameter values and let θ refer to our estimate of θ. Since θ is some function of the data
vector ~x, it too is a random variable. For it to be a good estimate, we would of course like it to be
unbiased, i.e.,

〈θ〉 = θ0, (3.39)

and give as small error bars as possible, i.e., minimize the standard deviations

∆θα ≡
(〈
θ2
α

〉
− 〈θα〉

2
)1/2

. (3.40)

In statistics jargon, we want the BUE θα, which stands for the “Best Unbiased Estimator” (Tegmark
et al., 1997).

A key quantity in this context is the so-called Fisher information matrix, defined as

Fαβ ≡
〈
∂2L

∂θα∂θβ

〉
(3.41)

where
L ≡ − ln L. (3.42)

Another key quantity is the maximum likelihood estimator, or ML-estimator for brevity, defined as the
parameter vector θML that maximizes the likelihood function L(~x; θ).

Using this notation, a number of powerful theorems have been proven (see e.g. Kenney & Keeping,
1951):

(1) For any unbiased estimator, ∆θα ≥ 1/
√

Fαα (the Cramér-Rao inequality).

(2) If an unbiased estimator attaining (“saturating” ) the Cramér-Rao bound exists, it is the ML
estimator (or a function thereof).

(3) The ML-estimator is asymptotically BUE.

The first of these theorems thus places a firm lower limit on the error bars that one can attain, regardless
of which method one is using to estimate the parameters from the data.

The normal case is that the other parameters are estimated from the data as well, in which case, as
we have seen, the minimum standard deviation rises to

∆θα ≥ (F−1)1/2
αα . (3.43)

This is called the marginal error.
The second theorem shows that maximum-likelihood (ML) estimates have quite a special status: if

there is a best method, then the ML-method is the one. Finally, the third result basically tells us that
in the limit of a very large data set, the ML-estimate for all practical purposes is the best estimate, the
one for which the Cramér-Rao inequality becomes an equality6. It is these nice properties that have
made ML-estimators so popular.

Note that conditional and marginal errors coincide if F is diagonal. If it is not, then the estimates of
the parameters are correlated (even if the parameters themselves are uncorrelated).

6This is sometimes called ’saturating the Cramér-Rao bound’
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3.4. Posterior sampling

Step (3) described in Sec.3.1 involves computing the posterior distribution. For a small number of
parameters, the posterior can simply be evaluated exactly on a grid of points in the model-parameter
space. However, this approach quickly becomes computationally challenging as the number of pa-
rameters increases beyond ' 3. In this case, we can instead draw samples from the posterior, using
Monte Carlo methods. Given a (sufficiently large) set of samples of the posterior density, we can
reconstruct the full density function, or compute summary statistics (mean, mode, covariance etc) for
making clear scientific statements. In the following section we review the use of some Monte Carlo
sampling schemes for practical sampling from posterior densities.

3.4.1. Markov Chain Monte Carlo methods

Sampling from a (high-dimensional) probability density is non-trivial. We expect properly drawn
samples to come from regions of high probability, and these cannot be known a priori. Even if they
were (roughly) known, there is no obvious way to directly draw samples without evaluating the density
everywhere.

Markov Chain Monte Carlo (MCMC) methods provide an efficient way of sampling (high-dimensional)
probability densities and are now well established as a cornerstone of Bayesian inference. MCMC
methods work by generating a Markov chain of points {θi}, where each step θi depends probabilis-
tically on the previous θi−1, and the Markov process is carefully constructed so that the stationary
distribution of {θ} converges to the target density in our case, the posterior distribution.

MCMC Markov chains need to satisfy two conditions to ensure convergence to the target distribu-
tion:

• Firstly the transition probability of the Markov chain T (θ′|θ) and the target (posterior) density
must satisfy detailed balance,

P(θ|d)T (θ′|θ) = P(θ′|d)T (θ|θ′) (3.44)

to ensure that P(θ|d) is a stationary distribution of the Markov chain, i.e., for some starting
point(s) θ0, the equilibrium distribution of points in the chain θ converges to P(θ|d).

• Secondly, the Markov process must be ergodic – that is, any point can be reached from any
other point in the chain (although not necessarily in a single step). This ensures the stationary
distribution of the chain is unique; if any point can be reached from any other, the stationary
distribution can no longer depend on the starting point θ0, so combined with detailed balance
the stationary distribution is necessarily the target density, as required.

If we can construct a Markov chain that satisfies detailed balance with the posterior and is ergodic,
we have an efficient and generally applicable way of generating a set of samples from a posterior
density. We provide a brief discussion of practical MCMC implementations below, focusing on those
that have been employed in this thesis.

Convergence of MCMC chains and burn-in

MCMC methods guarantee convergence of the samples to the target density in the limit t → ∞. Given
that we cannot run infinitely long chains, we require a convergence test to determine when we can
consider our samples to be representative of the target and we can stop the CPUs. A wide range of
diagnostic tests are available but perhaps the most commonly used convergence test is the Gelman-
Rubin test. They define a statistic R computed from M chains of length N (with dispersed independent
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starting points),

R =

√
(1 − 1/N) +

M + 1
MN

Bi

W
(3.45)

where B is the sample variance of the individual chain means, W is the sample mean of the individual
chain sample variances. R is computed on a parameter-by-parameter basis. Heuristically speaking, in
the limit of converged chains R → 1 and it is commonplace to take R < 1.03 (or even smaller) as a
convergence criterion. It should be noted that convergence tests are inevitability heuristic, and there
does not exist a formal convergence test that absolutely guarantees MCMC convergence. However,
in practice for well-behaved posterior densities without pathologies – such as two widely separated
narrow peaks – tests such as the Gelman-Rubin test are practical and effective.

The final MCMC implementation issue is burn-in. In the case where the starting point of the MCMC
chain is in a region of low target density, the chain will have to random-walk over (aka “burn in”) to
where the bulk of the probability density is. These initial samples are an artefact of a way-out starting
point and will not be representative of the target density whilst in the limit of long chains, this burn-in
period will pale into insignificance, it is commonplace to identify and remove burn-in samples, for
example the first 30% of the chain.

3.4.2. Metropolis-Hastings

The Metropolis-Hastings (MH) algorithm is the simplest and most widespread MCMC sampling
scheme, and the basis for a multitude of more sophisticated methods. MH follows a simple itera-
tive procedure (illustrated in Algorithm 1 below) for sampling a target density P(θi|d):(1) Given the
current position θi, propose a new position θi+1 from a proposal distribution Q(θi+1|θi). (2) Accept
the proposed step with probability p = min[1, P(θi+1|d)Q(θi|θi+1)/P(θi|d)Q(θi+1|θi)], else remain at the
current position, i.e., θ+1 = θi. The form of the acceptance probability ensures that detailed balance is
satisfied, and for a sensible choice of proposal distribution the resulting Markov chain will be ergodic.
The MH algorithm is guaranteed to converge to a stationary set of samples from the posterior in the
limit t → ∞. However, how fast it converges depends critically on the choice of proposal density Q
and this inevitably requires some tuning; and for inference problems with > 10 parameters the ac-
ceptance rates tend to become too low for MH to be practical. There are a cornucopia of extensions
and alternatives to the vanilla MH sampling scheme that achieve faster convergence, are practical for
high-dimensional sampling problems, and often require less tuning. A notable example is Hamiltonian
Monte Carlo (Neal, 2012) that is now widely used in astronomy and has proven effective for ultra-high
dimensional > 106 inference problems, with fast and flexible public codes available.

Algorithm 1 The procedure for a single Metropolis-Hastings MCMC step.
1: Draw a proposal Y ∼ Q(Y; X(t))
2: q← [p(Y) Q(X(t);Y)]

[p(X(t)) Q(Y;X(t))] // This line is generally expensive

3: r ← R ∼ [0, 1]
4: if r ≤ q then
5: X(t + 1)← Y

6: else
7: X(t + 1)← X(t)
8: end if
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3.4.3. Model selection and Nested Sampling

We already mentioned that in parameter estimation the normalising evidence factor in Bayes’ theorem
(Eq.3.1) is usually ignored, since it is independent of the parameters θ, and inferences are obtained by
taking samples from the (unnormalised) posterior using standard MCMC sampling methods, where at
equilibrium the chain contains a set of samples from the parameter space distributed according to the
posterior. This posterior constitutes the complete Bayesian inference of the parameter values, and can
be marginalised over each parameter to obtain individual parameter constraints.

In contrast to parameter estimation problems, in model selection the evidence takes the central role
and is simply the factor required to normalize the posterior over θ:

Z =

∫
L(θ)π(θ)dDθ, (3.46)

where D is the dimensionality of the parameter space. As the average of the likelihood over the prior,
the evidence automatically implements Occam’s razor: a simpler theory with compact parameter space
will have a larger evidence than a more complicated one, unless the latter is significantly better at
explaining the data. The question of model selection between two models H0 and H1 can then be
decided by comparing their respective posterior probabilities given the observed data set D, as follows

Pr(H1|D)
Pr(H0|D)

=
Pr(D|H1) Pr(H1)
Pr(D|H0) Pr(H0)

=
Z1

Z0

Pr(H1)
Pr(H0)

, (3.47)

where Pr(H1)/Pr(H0) is the a priori probability ratio for the two models, which can often be set to
unity but occasionally requires further consideration.

Evaluation of the multidimensional integral (3.46) is a challenging numerical task. The standard
technique of thermodynamic integration draws MCMC samples not from the posterior directly but
from Lλπ where λ is an inverse temperature that is slowly raised from ≈ 0 to 1 according to some
annealing schedule. It is possible to obtain accuracies of within 0.5 units in log-evidence via this
method, but in cosmological model selection applications it typically requires of order 106 samples per
chain (with around 10 chains required to determine a sampling error). This makes evidence evaluation
at least an order of magnitude more costly than parameter estimation.

Nested Sampling

Nested sampling (Skilling, 2006) is a Monte Carlo method used for the computation of the evidence
that can also provide posterior inferences. It transforms the multi-dimensional integral of Eq. 3.46
into a one-dimensional integral over the prior volume. This is done by defining the prior volume X as
dX = π(θ)dNθ. Therefore,

X(λ) =

∫
L(θ)>λ

π(θ)dNθ. (3.48)

This integral extends over the region of parameter space contained within the likelihood contour
L(θ) = λ. The evidence integral, Eq. 3.46, can then be written as

Z =

∫ 1

0
L(X)dX, (3.49)

where L(X) is the inverse of Eq. 3.48 and is a monotonically decreasing function of X. Thus, if we
evaluate the likelihoods Li = L(Xi), where Xi is a sequence of decreasing values,

0 < XM < · · · < X2 < X1 < X0 = 1. (3.50)
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Figure 3.5.: Cartoon illustrating (a) the posterior of a two dimensional problem; and (b) the transformed
L(X) function where the prior volumes Xi are associated with each likelihood Li. Originally published in
Feroz et al. (2009).

The evidence can then be approximated numerically as a weighted sum

Z =

M∑
i=1

Liwi, (3.51)

where the weights wi for the simple trapezium rule are given by wi = 1
2 (Xi−1 − Xi+1). An example of a

posterior in two dimensions and its associated function L(X) is shown in Fig. 3.5.

The fundamental operation of nested sampling begins with the initial, ‘live’, points being chosen
at random from the entire prior volume. The lowest likelihood live point is removed and replaced by
a new sample with higher likelihood. This removal and replacement of live points continues until a
stopping condition is reached (MultiNest uses a tolerance on the evidence calculation). The difficult
task lies in finding a new sample with higher likelihood than the discarded point. As the algorithm
goes up in likelihood, the prior volume that will satisfy this condition decreases until it contains only
a very small portion of the total parameter space, making this sampling potentially very inefficient.
MultiNest tackles this problem by enclosing all of the active points in clusters of ellipsoids. New
points can then be chosen from within these ellipsoids using a fast analytic function. Since the ellip-
soids will decrease in size along with the distribution of live points, their surfaces in effect represent
likelihood contours of increasing value; the algorithm climbs up these contours seeking new points.
As the clusters of ellipsoids are not constrained to fit any particular distribution, they can easily en-
close curving degeneracies and are able to separate out to allow for multimodal distributions. This
separation also allows for the calculation of the ‘local’ evidence associated with each mode. Multi-
Nest has been shown to be of substantial use in astrophysics and particle physics (see Feroz et al.,
2009), typically showing great improvement in efficiency over traditional MCMC techniques.

3.4.4. Affine invariant sampling

Most uses of MCMC in the astrophysics literature are based on slight modifications to the Metropolis-
Hastings (M–H) method introduced above. Each step in a M–H chain is proposed using a compact
proposal distribution centered on the current position of the chain (normally a multivariate Gaussian
or something similar). Since each term in the covariance matrix of this proposal distribution is an
unspecified parameter, this method has N [N + 1]/2 tuning parameters (where N is the dimension of
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the parameter space). To make matters worse, the performance of this sampler is very sensitive to
these tuning parameters and there is no fool-proof method for choosing the values correctly. As a
result, many heuristic methods have been developed to attempt to determine the optimal parameters in
a data-driven way. Unfortunately, these methods all require a lengthy “burn-in” phase where shorter
Markov chains are sampled and the results are used to tune the hyperparameters. This extra cost is
unacceptable when the likelihood calls are computationally expensive.

The problem with traditional sampling methods can be visualized by looking at the simple but
highly anisotropic density

p(x) ∝ f
(
−

(x1 − x2)2

2 ε
−

(x1 + x2)2

2

)
(3.52)

which would be considered difficult (in the small-ε regime) for standard MCMC algorithms. In prin-
ciple, it is possible to tune the hyperparameters of a M–H sampler to make this sampling converge
quickly, but if the dimension is large and calculating the density is computationally expensive the tun-
ing procedure becomes intractable. Also, since the number of parameters scales as ∼ N2, this problem
gets much worse in higher dimensions. Eq. 3.52 can, however, be transformed into the much easier
problem of sampling an isotropic density by an affine transformation of the form

y1 =
x1 − x2
√
ε

, y2 = x1 + x2 . (3.53)

This motivates affine invariance: an algorithm that is affine invariant performs equally well under all
linear transformations; it will therefore be insensitive to covariances among parameters.

The stretch move (Goodman & Weare, 2010) proposed an affine-invariant ensemble sampling al-
gorithm informally called the “stretch move.” This algorithm significantly outperforms standard M–H
methods producing independent samples with a much shorter autocorrelation time. For completeness
and for clarity of notation, we summarize the algorithm here and refer the interested reader to the orig-
inal paper for more details. This method involves simultaneously evolving an ensemble of K walkers
S = {Xk} where the proposal distribution for one walker k is based on the current positions of the K−1
walkers in the complementary ensemble S [k] = {X j, ∀ j , k}. Here, “position” refers to a vector in the
N-dimensional, real-valued parameter space.

To update the position of a walker at position Xk, a walker X j is drawn randomly from the remaining
walkers S [k] and a new position is proposed:

Xk(t)→ Y = X j + Z [Xk(t) − X j] (3.54)

where Z is a random variable drawn from a distribution g(Z = z). It is clear that if g satisfies

g(z−1) = z g(z), (3.55)

the proposal of Eq. 3.54 is symmetric. In this case, the chain will satisfy detailed balance if the
proposal is accepted with probability

q = min
(
1, ZN−1 p(Y)

p(Xk(t))

)
, (3.56)

where N is the dimension of the parameter space. This procedure is then repeated for each walker in
the ensemble in series following the procedure shown in Algorithm 2.

Goodman & Weare (2010) advocate a particular form of g(z), namely

g(z) ∝


1
√

z
if z ∈

[
1
a
, a

]
,

0 otherwise
(3.57)

where a is an adjustable scale parameter that Goodman & Weare (2010) set to 2.
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Algorithm 2 A single stretch move update step from Goodman & Weare (2010)
1: for k = 1, . . . ,K do
2: Draw a walker X j at random from the complementary ensemble S [k](t)
3: z← Z ∼ g(z), Eq. 3.57
4: Y ← X j + z [Xk(t) − X j]
5: q← zN−1 p(Y)/p(Xk(t)) // This line is generally expensive

6: r ← R ∼ [0, 1]
7: if r ≤ q, Eq. 3.56 then
8: Xk(t + 1)← Y
9: else

10: Xk(t + 1)← Xk(t)
11: end if
12: end for

The parallel stretch move It is tempting to parallelize the stretch move algorithm by simultane-
ously advancing each walker based on the state of the ensemble instead of evolving the walkers in
series. Unfortunately, this subtly violates detailed balance. Instead, we must split the full ensemble
into two subsets (S (0) = {Xk, ∀k = 1, . . . ,K/2} and S (1) = {Xk, ∀k = K/2 + 1, . . . ,K}) and simultane-
ously update all the walkers in S (0) — using the stretch move procedure from Algorithm 2 — based
only on the positions of the walkers in the other set (S (1)). Then, using the new positions S (0), we can
update S (1). In this case, the outcome is a valid step for all of the walkers. The pseudocode for this
procedure is shown in Algorithm 3. This code is similar to Algorithm 2 but now the computationally
expensive inner loop (starting at line 2 in Algorithm 3) can be run in parallel.

The performance of this method — quantified by the autocorrelation time — is comparable to the
serial stretch move algorithm but the fact that one can now take advantage of generic parallelization
makes it extremely powerful.

Algorithm 3 The parallel stretch move update step
1: for i ∈ {0, 1} do
2: for k = 1, . . . ,K/2 do
3: // This loop can now be done in parallel for all k

4: Draw a walker X j at random from the complementary ensemble S (∼i)(t)
5: Xk ← S (i)

k
6: z← Z ∼ g(z), Eq. 3.57
7: Y ← X j + z [Xk(t) − X j]
8: q← zn−1 p(Y)/p(Xk(t))
9: r ← R ∼ [0, 1]

10: if r ≤ q, Eq. 3.56 then
11: Xk(t + 1

2 )← Y
12: else
13: Xk(t + 1

2 )← Xk(t)
14: end if
15: end for
16: t ← t + 1

2
17: end for

All the sampling methods presented in Secs. 3.4.3 and 3.4.4 have been used in the analyses shown
in Chapter 6. Specifically, Nested Sampling has been employed in Sec. 6.2 through its MultiNest
implementation (Feroz et al., 2009), while affine invariant sampling has been used in Secs. 6.2 and
6.3, through both the CosmoHammer suite (Akeret et al., 2012) and an independent implementation.
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4 Chapter 4

The theory of weak gravitational lensing

In this Chapter we review the formalism of weak gravitational lensing, starting in Sec. 4.1 with an in-
troduction to the phenomen and general theory of lensing; we then specialise our treatment in Sec. 4.2
to cosmic shear, the gravitational lensing caused by the large-scale structure, which we describe with
two different formalisms, tomography and a spherical Fourier-Bessel expansion of the shear field.

4.1. An introduction to the weak gravitational lensing effect

In this section we introduce the phenomenon of gravitational lensing and show how the general-
relativistic treatment of light deflection leads to the lens equation. We introduce the fields charac-
terising gravitational lenses and their effect on image shapes: the lensing potential; the deflection
angle; the convergence, shear and reduced shear; and the magnification. In our review of the basics of
gravitational lensing we follow closely the presentation given in Bartelmann & Schneider (2001) and
we refer to them for details and rigorous derivations of the equations presented here.

4.1.1. Light propagation in perturbed spacetime

The propagation of a light bundle in arbitrary spacetimes is governed by the equation of geodesic
deviation, or Jacobi equation, which links the deformation of the cross-section of the bundle to the
optical tidal matrix, quantifying spacetime curvature. In the following we consider a homogeneous and
isotropic spacetime described by a Friedmann-Lemaitre-Robertson-Walker metric (already introduced
in Sec. 2.1) with ‘small’ perturbations such that the gravitational potential of the inhomogeneities is
small (φ � c2) peculiar velocities are small, (υ � c) and inhomogeneities are localised, i.e. φ varies on
a scale that is small compared to the Hubble scale. Then the local neighbourhood of inhomogeneities
can be approximated as flat space and the perturbed metric has the form

ds2 = a(η)2
{
−

(
1 +

2Φ

c2

)
c2dη2 +

(
1 −

2Φ

c2 )
[
dχ2 + χ2(dθ2 + sin2θdΦ2)]} (4.1)

where η is the conformal time, related to coordinate time t by dη = dt/a.

The optical tidal matrix can then be split up into two contributions, from the homogeneous and
isotropic background on the one hand and inhomogeneities on the other. The Jacobi equation can be
brought into the following form:

( d2

dχ2 + K
)
xi = −

2
c2 ∂

iΦ. (4.2)

(χ1, χ2)T is the comoving separation between a fiducial ray in the light bundle and a closely neighbour-
ing ray, measured perpendicular to the tangent vector to the fiducial ray; χ is the comoving distance
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from the observer measured along the fiducial ray; K is the spatial curvature of the background. The
derivative ∂iΦ is the transverse gradient of the gravitational potential, perpendicular to the fiducial ray.
If the two rays enclose an angle (θ1, θ2)T at the observer, the boundary conditions are

xi|χ=0 = 0,
dxi

dχ

∣∣∣∣∣
χ=0

= θi. (4.3)

Eq. 4.2 is then solved by

xi(χ) = χθi −
2
c2

∫ χs

0
dχ′(χ − χ′)∂iΦ[x j(χ′), χ′]. (4.4)

In the Born approximation the integration is carried out along the unperturbed path with x j(χ′) ≈
χ′θ j. Denoting by χs the comoving distance to the light source and transforming from the comoving
separation xi to the angle βi = xi(χs)/χs, one finds

βi = θi −
2
c2

∫ χs

0
dχ′

χs − χ
′

χs
∂iΦ[χ′θ j, χ′]. (4.5)

4.1.2. The lens mapping

Eq. 4.5 is the lens equation

βi = θi − αi(θ j), (4.6)

where

αi(θ j) =
2
c2

∫ χs

0
dχ′

χs − χ
′

χs
∂iΦ[χ′θ j, χ′] (4.7)

is the reduced deflection angle, which can be written as the transverse gradient of the lensing potential

φ(θ j) =
2
c2

∫ χs

0
dχ′

χs − χ
′

χsχ′
Φ[χ′θ j, χ′]. (4.8)

Note that ’gradient’ here refers to the derivative with respect to angular coordinates:

αi(θ j) =
∂

∂θi
φ(θ j), (4.9)

hence the additional factor of χ′−1 in the integrand. The deflection angle αi cannot be observed because
the true position of a source is not normally known. If, however, αi varies across the extent of a source,
it will appear deformed. The linear variation is described by the Jacobian of the lens mapping, Eq.4.6:

A =

(
∂βi

∂θ j

)
=

(
1 − κ 0

0 1 − κ

)
−

(
γ+ γ×
γ× γ+

)
(4.10)

Here A has been split up into a diagonal part proportional to the trace and a trace-free part. In this
linear approximation a circle is mapped onto an ellipse. The convergence κ quantifies the isotropic
dilation of the image, while the components of the shear tensor γ describe its elongation. The inverse
of the determinant of the Jacobian is the magnification

µ = (detA)−1 =
[
(1 − κ)2 − γ2

+ − γ
2
×

]−1
. (4.11)
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Convergence and shear can be expressed in terms of the lensing potential:

κ =
1
2

(
∂2φ

∂(θ1)2 +
∂2φ

∂(θ2)2

)
, (4.12)

γ+ =
1
2

(
∂2φ

∂(θ1)2 −
∂2φ

∂(θ2)2

)
, (4.13)

γ× =
∂2φ

∂θ1∂θ2 . (4.14)

The derivation above has made use of the flat-sky approximation, measuring separations in Cartesian
coordinates θ1, θ2. On scales on which the curvature of the celestial sphere becomes important, a
suitable basis must be defined and derivatives are expressed in terms of the ð operator and its complex
conjugate, as we shall see in detail in next Section. The convergence κ is closely related to the mass
density ρ: taking the appropriate derivative of the lensing potential given in Eq. 4.8,

κ(θ j) =
1
c2

∫ χs

0
dχ′

(χs − χ
′)χ′

χsχ′
∂2Φ

∂θi∂θi [χ′θ j, χ′]. (4.15)

Poisson’s equation states that

∂i∂iΦ = ∇⊥Φ + ∇‖Φ = 4πGρ, (4.16)

where the Laplacian has been split up into a transverse part and the derivative along the light path. The
latter averages out in the line-of-sight integration, so that the derivative perpendicular to the light path

∇⊥Φ = χ′−2 ∂2Φ

∂θi∂θi (4.17)

can safely be replaced by the three-dimensional Laplacian. Then

κ(θ j) =
4πG
c2

∫ χs

0
dχ′

(χs − χ
′)χ′

χs
ρ[χ′θ j, χ′]. (4.18)

i.e. the convergence is a weighted projection of the density, integrated along the unperturbed light
path. The shear tensor parametrises the elliptical distortion of an image. Writing the complex shear
as γ = |γ|e2iφ, the angle φ is the position angle of the elliptical image of a circle. The shear tensor is
invariant under rotations of π and therefore has spin 2, which is intuitive, since an ellipse is mapped
onto itself under such rotations.

Information about shape can be extracted from a brightness distribution I(θ) in terms of its moments.
Defining the centre of brightness as

θ̄ =

∫
d2θ θ I(θ)∫
d2θ I(θ)

. (4.19)

The second moments are given by

Qi j =

∫
d2θ(θi − θ̄i)(θ j − θ̄ j)I(θ)∫

d2θ I(θ)
, i, j ∈ [1, 2] (4.20)

An ellipticity parameter is derived from these moments as

ε =
Q11 − Q22 + 2iQ12

Q11 + Q22 + 2
√

Q11Q22 − Q2
12

. (4.21)
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Defining the reduced shear as

g =
γ

1 − κ
, (4.22)

the transformation between the (complex) source ellipticity ε′ and the image ellipticity ε by lensing is
given by

ε =
ε′ + g

1 + g∗ε′
for |g| ≤ 1 ε =

1 + ε′∗g
ε′∗ − g∗

for |g| ≥ 1. (4.23)

4.2. 3D and tomographic cosmic shear

We begin by reviewing here the two main methods used to analyse a cosmic shear survey, so called
‘tomography’ and ‘3D cosmic shear’ as they are commonly referred to, whose cosmological con-
straining power we will later compare in Sec. 5.3. The main idea behind both techniques is to retrieve
redshift information in the analysis: this is a crucial feature to investigate the evolution of cosmic
structure, particularly important for dark energy/modified gravity studies. After a brief introduction to
these two methods, we derive explicitly the equations for the power spectrum of the lensing potential
in both formalisms, since from that we can derive the spectra of all lensing observables. We show
in particular how the tomographic case can be derived from the 3D approach by means of a series of
approximations. We assume General Relativity throughout this section. In Sec. 5.1 we will extend our
discussion to alternative theories of gravity, as well as compare the performance of the two methods
in constraining Horndeski parameters in Sec. 5.3.

4.2.1. Including redshift information in a cosmic shear analysis

Cosmic shear is the weak gravitational lensing effect caused by the large-scale structure of the Uni-
verse: the differential deflections in light bundles from distant galaxies caused by fluctuations of the
gravitational fields of the large-scale structure result in a coherent distortion of galaxy images as we
observe them on the sky (see Bartelmann & Schneider, 2001; Hoekstra & Jain, 2008; Kilbinger et al.,
2013, for reviews on the topic).

In contrast to studies of weak lensing by individual haloes of galaxies or galaxy clusters, which
typically aim at constraining the mass or the density profile of the object, in cosmic shear analyses
the focus lies on the statistical properties of the distribution of matter in the Universe. The lensing
effect is not associated with a particular intervening lens, but rather corresponds to small distortions
(of the order of 1%) by all potential fluctuations along the line of sight; detecting the extremely faint
cosmic shear signal requires averaging over many background galaxies. In this sense, cosmic shear
measurements are of a statistical nature and the statistical properties of the shear field reflect those of
the underlying density field by virtue of the gravitational field equations.

The cosmic shear field has zero mean; at the level of one-point statistics, cosmological information
can be extracted from e.g. peak counts (Lin, 2016; Peel et al., 2017; Fluri et al., 2018), while for
two-point statistics one looks in configuration space at the angular correlation function of the shear
field, or its equivalent in Fourier space, the cosmic shear angular power spectrum. At higher order,
cosmic shear can break degeneracies between the dark sector and neutrinos (Peel et al., 2018). As far
as two-point statistics are concerned, there are two main advantages in using the power spectrum over
the correlation function – sparsity of the covariance matrix, as a consequence of isotropy (as discussed
in Sec.5.1.2), and the property of isolating more easily contributions from different k-scales. We will
come back to this last point in the next Chapter, where we will briefly discuss the advantages of using
3D cosmic shear power spectra within a Bayesian Hierarchical Model for cosmological inference.
Here we concentrate on the cosmic shear angular power spectrum and derive formal expressions to
describe it in the tomographic and 3D approach, which we will motivate and introduce in the following.
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Since the first detections in early 2000s (e.g. Bacon et al., 2000; Van Waerbeke et al., 2000; Brown
et al., 2003), cosmic shear analyses have developed within a well-established theoretical and exper-
imental framework. Cosmic shear is appealing in particular as one of the most promising probes of
dark energy (Jain & Taylor, 2003; Bernstein & Jain, 2004; Hannestad et al., 2006; Amendola et al.,
2008; Huterer, 2010). To understand why, let us start from considering the lensing potential φ(χ, n̂),
as it is the quantity from which all lensing observables are derived (cf. Eqs. 4.12, 4.13, 4.14). The
lensing potential is defined as a weighted projection of the gravitational potential (cf. Eq. 4.8):

φ(χ, n̂) =
2
c2

∫ χ

0
dχ′

χ − χ′

χχ′
Φ(χ′, n̂). (4.24)

where General Relativity and spatial flatness have been assumed, and the integration is carried out
in Born’s approximation, i.e. along the unperturbed light path. The weight function (χ − χ′)/(χχ′)
quantifies the influence of geometry and represents the ‘efficiency’ of the lens: like that of an optical
lens, the efficiency of a gravitational lens is determined by the distances between source, lens and
observer, implying that observed variations with redshift will be sensitive to the cosmological model.
In addition, as the shear is linked to the tidal field of the gravitational potential, it probes the matter
distribution in the Universe.

Thus cosmic shear is sensitive to the growth rate of the perturbations of the gravitational poten-
tial (through the matter power spectrum) and to the geometry of the Universe (through the distance-
redshift relation). These features are crucial for dark energy studies, as they allow us to study the
dark energy component as a dynamical effect in redshift (or equivalently, time). It follows that the
sensitivity of cosmic shear to dark energy can be fully exploited only if the analysis performed is able
to recover information on the evolution in redshift of the large-scale structure. This is only to a little
extent achieved in a 2-dimensional analysis: galaxy shapes are observed on the 2-dimensional celes-
tial sphere and the shear components are line-of-sight projected quantities, with the projection causing
loss of information on the redshift evolution (Jain & Seljak, 1997; Takada & Jain, 2003a,b; Munshi &
Kilbinger, 2006; Jee et al., 2013; Kilbinger et al., 2013).

We can understand this by looking at Eq. 4.24: since the lensing observables, i.e. convergence and
cosmic shear, are derived from the lensing potential with linear relations (cf. Eqs. 4.12, 4.13, 4.14),
already at the level of the lensing potential we see how cosmic shear provides an integrated measure-
ment of the evolution of the cosmic density field weighted by the lensing efficiency function. In turn,
the weak lensing convergence and shear fields, being line of sight-averaged quantities, are statistically
not as constraining as the full 3-dimensional density field, implying loss of information. This is due
to the mixing of spatial scales that takes place in the projection and to the fact that integrating the
signal along the line of sight averages out the sensitivity to those parameters that, entering the model
in a nonlinear way, may produce different effects on the lensing signal at different redshifts (Schäfer
& Heisenberg, 2012).

For this reason, as an improvement with respect to a pure 2D projection, a tomographic analysis
based on a binning in redshift of the sources has been first proposed in Hu (1999) and has since become
the standard technique for cosmological weak lensing studies (Takada & White, 2004; Simon et al.,
2004; Takada & Jain, 2004; Hollenstein et al., 2009; Kilbinger et al., 2009; Schäfer & Heisenberg,
2012; Heymans et al., 2013). Galaxies are assigned to different bins according to their redshifts, so
that intra- and inter-bin correlations of the binned shear field can be computed. This reduces the range
of the projection to the width of the bins and allows for some gain in redshift information through
the inter-bin correlations. Despite its success in providing some sensitivity to the growth of structure
with its ‘2D 1

2 ’ nature, as it has sometimes been relabelled, tomography has still the disadvantage of
representing a compression of data: while the 2D analysis performed within a single bin is such that
the range of the projection is smaller than in the pure 2D case, being restricted to the width of the bin,
it is also true that this does not represent yet a fully 3D treatment of the shear field, still entailing some
loss of information that needs to be accurately evaluated and possibly avoided.
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As an alternative to tomography, a method to retain information on the redshift of each source
galaxy along the entire weak lensing analysis, based on a spherical Fourier-Bessel decomposition of
the shear field, has been first proposed in Heavens (2003) and subsequently refined in Castro et al.
(2005), Heavens et al. (2006) and Kitching et al. (2011). In addition to avoiding any binning and
averaging in redshift, the spherical Fourier-Bessel formalism allows for a cleaner separation between
angular (`) and radial (k) modes (Kitching et al., 2014), in a sense that will be specified in Sec.5.1,
where we describe this 3D formalism. This feature makes it easier than in tomography to reduce
the impact of problematic small scales, where models for the non-linear growth of structure (Smith
et al., 2003; Takahashi et al., 2012; Mead et al., 2015) or baryon feedback (Semboloni et al., 2011;
van Daalen et al., 2011; Semboloni et al., 2013) do not yet provide a fully reliable description. These
advantages compensate for the extra computational time required by the more complicated integrations
in the covariance of the shear modes, which represent a challenge for standard numerical approaches;
in Chapter 7 we will discuss in detail the numerical techniques that have been implemented to tackle
these issues in order to produce the forecasts presented in Sec. 5.3.

4.2.2. Shear as a spin-2 field, convergence as a spin-0 field

A particularly elegant way of representing the shear and convergence fields is through spin raising
ð and lowering ð̄ operators acting on the lensing potential (see Castro et al., 2005; Goldberg et al.,
1967; Newman & Penrose, 1962, for detailed discussions). The ð-derivative (and its conjugate ð̄) acts
as a covariant differentiation operator on the celestial sphere and relates quantities of different spin,
raising (lowering) the spin s of a function, a number which characterises its transformation properties
under rotations. The shear components γ1 and γ2 for example, which we defined in Sec. 4.1.2, can be
conveniently packaged into a single complex scalar field γ = γ1 + iγ2. Under S O(2) rotations (on the
sky), the complex shear field transforms as γ → e−isαγ with s = 2 and a rotation angle α - this can be
straightforwardly verified by rotating the shear part of the distortion matrix A introduced in Eq. 4.10.
This phase dependence expresses the fact that the complex shear field γ(~χ) is invariant under a rotation
over π radians. The complex shear is therefore a spin-2 field7.

In general, any spin-s field can be generated from a spin-0 scalar through successive application of
spin raising ð and lowering ð̄ operators. Acting twice on φ, for example, the ð operator relates the
scalar (spin-0) lensing potential to the spin-2 shear field γ, so that we can define: 8

γ(χ, n̂) := 2γ(χ, n̂) =
1
2
ððφ(χ, n̂), γ̄(χ, n̂) := −2γ(χ, n̂) =

1
2
ð̄ð̄φ(χ, n̂). (4.25)

The ð formalism becomes particularly important when considering big portions of the sky, where
the curvature of the celestial sphere is not negligeable: in the flat-sky approximation, we recover the
expressions already introduced in Sec. 4.1.2 (cf. Eq. 4.13):

ð =
∂

∂θ1 + i
∂

∂θ2 . (4.26)

Similarly, the convergence field κ is invariant under S O(2) rotations and is hence a spin-0 field; it is
also sourced from the lensing potential by application of the ð operators:

κ =
1
4

[ðð̄ + ð̄ð]φ(r). (4.27)

7This fact turns out to be intuitive if we think that the shear transforms the image of an ideal perfectly circular source into
an ellipse; we recognise that an ellipse gets mapped into itself by rotations of 180 degrees.

8This can be verified by comparing the combinations of covariant derivatives contributing to the shear components γ1 and
γ2 in their definition to the explicit form taken by the ð differential operators on the 2D spherical full-sky. For a detailed
derivation see Castro et al. (2005).
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4.2.3. Lensing fields in the spherical Fourier-Bessel basis

Since we are interested in computing the power spectra of the lensing fields, we must choose a con-
venient basis for the spectral expansion. The natural choice of basis functions are eigenfunctions
of the Laplace operator in spherical coordinates, i.e. products of spherical harmonics and spherical
Bessel functions {Y`m(θ, φ) j`(kχ)}9 , since this choice leads to a very simple relationship between the
coefficients of the gravitational potential and those of the density contrast field, related by Poisson’s
equation (cf. Eq. 4.74). Spherical coordinates are a sensible choice for a number of reasons: the shear
field has spin-weight 2 on the angular sky, and by virtue of being an integrated effect, the lensing fields
are isotropic on the sky but not homogeneous. Furthermore, when comparing to observations, the se-
lection function for a survey can usually be separated into a radial and angular part, with photometric
redshifts introducing purely radial errors in galaxy positions (cf. Eqs. 5.24 and 7.28).

The Bessel-harmonic transform in the basis {Y`m(θ, φ) j`(kχ)} for a scalar field φ is given by

φ(~χ) =

√
2
π

∑
`

∑̀
m=−`

∫
dk k2 j`(kχ) φ`m(k) Y`m(θ, φ) (4.28)

φ`m(k) =

√
2
π

∫
d3 ~χ φ(χ) j`(kχ) Y∗`m(θ, φ). (4.29)

This expression is valid e.g. for the lensing potential φ and the convergence field κ, since they are
both spin-0 scalars. Using the Bessel-harmonic expansion of the potentials in Eq. 4.24, we find that
the lensing and gravitational potential expansion coefficients are related by

φ`m(k) =

√
2
π

∫
φ(~χ) Y∗`m(n̂) j`(kχ) d3χ (4.30)

=
2
c2

√
2
π

∫
d3χ

∫ ∞

χ

χ − χ′

χχ′
Φ(~χ′) d3χ′ Y∗`m(n̂) j`(kχ) (4.31)

=
2
c2

√
2
π

∫
d3χ

∫ ∞

χ

χ − χ′

χχ′

√
2
π

∑
`m

∫ ∞

0
k′2dk′Φ`′m′(k′) Y`′m′(n̂′) j`′(k′χ′) dχ′ Y∗`′m′(n̂) j`(kχ)

(4.32)

=
4
πc2

∫ ∞

0

∫ ∞

0

∫ ∞

χ

χ − χ′

χχ′
j`′(k′χ′)dχ′χ2 j`(kχ)dχk′2dk′Φ`m(k′) (4.33)

=
4
πc2

∫ ∞

0
dk′k′2

∫ ∞

0
dχ χ j`(kχ)

∫ χ

0
dχ′

χ − χ′

χ′
j`(k′χ′)Φ`m(k′) (4.34)

=
4
πc2

∫
dk′ k′2η`(k, k′)Φ`m(k′). (4.35)

9The spherical Bessel functions j`(x) of order ` ∈ N can be derived from the Bessel functions J`(x)

j`(x) :=
π

2x
J`+ 1

2
(x),

or, using another representation,

j`(x) = (−1)`x`
(

1
x

d
dx

)`
j0(x) = (−1)`x`

(
1
x

d
dx

)` sin x
x

.

The J` functions are defined as solutions of the Bessel differential equation

x2 d2y
dx2 + x

dy
dx

+ (x2 − `2)y = 0.
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where we made us of the normalization of the spherical harmonics
∫

dΩY`m(n̂)Y∗`′m′(n̂) = δK
``′δ

K
mm′ and

we defined

η`(k, k′) =

∫
χ2dχ

∫
dχ′

χ − χ′

χχ′
j`(kχ) j`(k′χ′). (4.36)

The transform 4.28 is suitable for scalars like the lensing potential φ, the gravitational potential Φ

and the density contrast δ. It may also be applied to each component of the shear γ1,2. It is, however,
more elegant to introduce a set of basis functions that share the spin properties of the field that is to
be expanded. By this means the expansion coefficients are scalars, while the behaviour of the tensor
under transformations is encoded in the basis functions. For a generic spin-s field the spin-weighted
spherical harmonics sY`m(n̂) (Newman & Penrose, 1962) are the natural choice. As the derivative ð
acts as a spin-raising operator, they are defined as

sY`m =

√
(l − s)!
(l + s)!

ðsY`m. (4.37)

This description encompasses the scalar spherical harmonics for s = 0 and generally defines fields of
spin s. The derivative ð and its complex conjugate ð̄ raise and lower the spin by one, respectively:

ð(sY`m) = +
√

(l − s)(l + s + 1)s+1Y`m, (4.38)

ð̄(sY`m) = −
√

(l + s)(l − s + 1)s−1Y`m. (4.39)

Like the standard spherical harmonics, the spin-weighted spherical harmonics are orthonormal,∫
dΩsY`m(n̂)sY∗`′m′(n̂) = δK

``′δ
K
mm′ . (4.40)

The spin-2 shear field can therefore be expanded in the basis {
±2Y`m(θ, φ) j`(kr)}, defining

±2γ`m(k) =

√
2
π

∫
χ2dχ

∫
dΩγ(χ, n̂) j`(kχ)±2Y∗`m(n̂). (4.41)

It is convenient to rotate the shear expansion coefficients
±2γ(r) of Eq. 4.25 into parity-(−1)` E-mode

and parity-(−1)`+1 B-mode components (see Fig. 4.1),

γE
`m(k) =

1
2

[2γ`m(k) +−2 γ`m(k)] =
1
2

√
2
π

∫
d3χ φ(~χ) k j`(kχ) (2Y∗`m +−2 Y∗`m) (4.42)

γB
`m(k) =

i
2

[2γ`m(k) −−2 γ`m(k)] =
1
2

√
2
π

∫
d3χ φ(~χ) k j`(kχ) (2Y∗`m −−2 Y∗`m) (4.43)

Gravitational lensing sourced from a real scalar potential φ predicts E-mode- only shear, whilst B-
modes are expected to enter only at second order in φ/c2. Recovering B-modes hence provides a
powerful test of residual systematics in a weak lensing analysis, which could introduce spurious B-
modes as a leading order effect. Owing to the simple relationships between shear, convergence and
the lensing potential (in terms of ð operators) the shear and convergence expansions are related to the
lensing potential coefficients as 10

±2γ`m(k) =

[
(l + 2)!
(l − 2)!

]1/2

φ`m(k) '
1
2

l2φ`m(k), (4.44)

γE
`m(k) =

[
(l + 2)!
(l − 2)!

]1/2

φ`m(k) '
1
2

l2φ`m(k), γB
`m(k) = 0 (4.45)

κ`m(k)
1
2
`(` + 1)φ`m(k) '

1
2
`2φ`m(k). (4.46)

10The `-dependent factors come from the action of ð operators on spherical harmonics: ððY`m =
[

(l+2)!
(l−2)!

]1/2

2
Y`m and (ðð̄ +

ð̄ð)Y`m = `(` + 1)Y`m.
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Figure 4.1.: Schematic demonstration of irrotational/pure-divergence E-mode pattern versus the
divergenceless/pure-curl B-mode patterns. Weak lensing predicts pure-E-mode shear to leading order
in Φ/c2 , where B-modes enter only at second order. The lack of B-modes predicted from weak lensing
makes B-modes a useful test of residual systematic effects, which can introduce spurious B-modes.

The two coefficients +2γ`m and −2γ`m are therefore identical, as expected since the potential φ is a real
function.

4.2.4. Lensing spectra in the spherical case

Armed with the expansion in the Bessel-harmonic basis of the lensing potential, the shear and conver-
gence field we set out to evaluate their power spectra. In this section we will focus on the potential
power spectra, noting that the simple mappings from φ to κ and γ in Bessel-harmonic space given in
Eqs. 4.44, 4.45, 4.46 can be used to convert between the various lensing power spectra.

Lensing potential power spectrum

We would like to calculate the covariance between the spherical Fourier coefficients φ`m(k)〈
φ`m(k)φ∗`′m′(k

′)
〉

=

∫
dΩ

∫
dΩ′

〈
φ(~k)φ∗(~k′)

〉
Y`m(k̂)Y∗`m(k̂′) (4.47)

and we would like to link it to the power spectrum Pφφ of the Fourier modes, defined by〈
φ(~k)φ∗(~k′)

〉
= (2π)3δ(3)

D (~k − ~k′)Pφφ(k). (4.48)

In our conventions, the Fourier transform of the potential and its inverse are defined as

Φ̂(~k) =

∫
d3χΦ(~χ)ei~k·~χ (4.49)

Φ(~χ) =

∫
d3k

(2π)3 Φ̂(~k)e−i~χ·~k, (4.50)

where the integration range for both integrals is R3. We notice that for the normalised Dirac delta
function δD the following holds:∫

d3kδD(~k) = 1 =

∫ ∞

0
dk

∫
Ω

dΩkk2δD(k) =

∫ ∞

0
dkk2δD(k)δD(k̂), (4.51)

from which we see that

δ(3)
D (~k) =

1
k2 δD(k)δD(k̂). (4.52)
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Also, we notice that starting from the plane wave expansion, which decomposes a plane wave into a
sum of spherical waves

e−i~k·~χ =
∑
`

(2` + 1)i` j`(kχ)P`(cos(γ)), γ = k̂ · χ̂, (4.53)

using the vector addition theorem for the spherical harmonics Y`m

P`(cos(γ)) =
4π

2` + 1

∑
m

Y`m(k̂)Y∗`m(χ̂) (4.54)

we can explicitly derive the Rayleigh expansion for spherical waves

e−i~k·~χ = 4π
∑

l

il jl(kχ)
∑

m

Ylm(k̂)Y∗lm(χ̂). (4.55)

For a generic field (in our case the lensing potential) φ(~χ)

φ(~χ) =
1

(2π)3

∫
d3k φ(~k) ei~k·~χ (4.56)

=
1

(2π)3

∫
k2dΩk dk φ(k) 4π

∑
`m

i` j`(kχ)Y`m(n̂k)Y`m(n̂χ) (4.57)

=
1

2π2

∫
k2dΩk dk φ(k)

∑
`m

i` j`(kχ)Y`m(n̂k)Y`m(n̂χ). (4.58)

It follows that

φ`m(k) = i`k
∫

dΩk
1
√

8π3
φ(k) Y`m(n̂k). (4.59)

Therefore, we can write for the covariance of the spherical Fourier-Bessel modes〈
φ`m(k)φ∗`′m′(k

′)
〉

= i`i∗`
′

∫
dΩk

1
√

8π3
Y`m(n̂k)

∫
dΩk′

1
√

8π3
Y∗`′m′(n̂

′
k)(2π)3Pφφ(k)δD(k − k′) (4.60)

=

∫
dΩk Y`m(n̂k) Y∗`′m′(n̂

′
k) Pφφ(k) δD(k − k′) (4.61)

= Pφφ(k) δ``′ δmm′ δD(k − k′). (4.62)

This expression is valid for the lensing potential power spectrum Pφφ and an analogous expression is
valid for the gravitational potential power spectrum PΦΦ.

3D lensing potential power spectra

Taking the covariance of the expansion coefficients in Eq. 4.29, using Eq. 4.35 to connect the co-
efficients of the lensing and gravitational potential and appealing to isotropy, 〈φ`m(k)φ`′m′(k′)〉 =

C`(k, k′)δ``′δmm′ , we obtain the 3D weak lensing power spectrum coefficients C`(k1, k2),

C`(k1, k2) =
16
π2c4

∫ ∞

0
k2 dk η`(k1, k) η`(k2, k) (4.63)

where

η`(k, k′) =

∫
χ2dχ

∫
dχ′

χ − χ′

χχ′
j`(kχ) j`(k′χ′)

√
PΦΦ(k; χ′). (4.64)
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The η matrices represent the lensing ‘efficiency’ in the spherical Fourier-Bessel formalism.
At this point we could use the Poisson equation Eq. 4.74 to relate the gravitational potential power

spectrum to the matter power spectrum, which describes the correlation between the Fourier modes
of the density contrast. We will present this connection in Sec. 5.1.2, to highlight the modifications to
the Poisson equation required in a modified gravity context. Here we will stick to the lensing potential
power spectrum to highlight how all lensing spectra can be derived from this one, even in a modified
gravity context as we show in Sec. 5.1.1.

Before proceeding, we note that in Eq. 4.63 we have actually assumed for convenience that the
gravitational potential power spectrum can be accurately approximated by

PΦΦ(k; χ, χ′) '
√

PΦΦ(k; χ) PΦΦ(k; χ′). (4.65)

This can be done because the correlations in the potential field are significantly non-zero for small
separations (much smaller than the speed of light times the timescale over which it evolves), which
can be seen by noting that Poisson’s equation implies that

Φ(~k; χ) = −
3ΩmH2

0

2a(t)k2 δ(
~k; χ) (4.66)

and so 〈
Φ(~k; χ)Φ∗(~k′; χ′)

〉
=

3ΩmH2
0

2

2 ∫
d3χd3χ′

a(t)a(t′)

〈
δ(~k; χ)δ∗(~k′; χ′)

〉
k2k′2

e−i~k·~χ+i~k′·~χ′ (4.67)

and the correlation of δ is restricted to small scales |~χ− ~χ′| ≤ 100Mpc. The lookback time over such a
distance is small, so we can approximate ~χ ' ~χ′ (or t ' t′). Therefore we can replace the power spectra
PΦΦ(k; χ, χ′) by either PΦΦ(k; χ) or PΦΦ(k; χ′). For algebraic convenience, we choose the geometric
mean of the power spectra, which allows us to separate two internal integrals. A further justification
will be apparent from looking at the shape of the covariance matrices in Sec. 5.1.2 (cf. Fig. 5.4): the
Bessel functions cut off long-wavelength contributions with k ≤ `/χmax where χmax is the extent of
the survey.

The type of cross-power spectrum in Eq. 4.65 between different cosmological epochs χ and χ′ was
introduced in Castro et al. (2005) and recently studied in Kitching & Heavens (2017). The oscillating
Bessel functions in equation (4.63) ensure that only relatively close epochs contribute to the lensing
potential correlation. This is sensible since observed light rays from two galaxies at different positions
on the sky that necessarily converge at the observer today, pick up the density fluctuations at similar
times while propagating through the large-scale structure. A similar argument has been made in
Bartelmann & Schneider (2001): since the matter power spectrum scales with k for k → 0, there
is decreasing power towards larger and larger scales. In particular, the correlation of cosmic fields
decreases strongly above a coherence scale |χ − χ′| >∼ Lcoh which is significantly smaller than the
horizon scale χH = c/H0.

Tomographic lensing potential power spectra

By virtue of being an integrated effect along the line-of-sight (cf. Eq. 4.24), at moderate redshifts the
lensing fields vary relatively slowly with z. An analysis that bins the field into a small number of broad
redshift bins can bring in a substantial compression of the 3D fields with relatively small information
loss. Tomographic weak lensing involves dividing the observed galaxies into a number of redshift
slices i, where the sub-populations in each slice follow redshift distributions n(i)(z)dz = p(i)(χ)dχ. The
lensing field probed by each tomographic slice is hence the full 3D field φ averaged over the redshift
distributions n(i)(z), i.e.,

φ(i)(θ, φ) =

∫ ∞

0
φ(χ)p(i)(χ)dχ, (4.68)
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Figure 4.2.: Typical source redshift distribution separated into three tomographic slices n(i) (left), and their
associated lensing kernels g(i) (right). The lensing efficiency peaks around half way between the observer
(z = 0) and the source plane.

where the p(i)(χ) are normalized to unity
∫

p(i)(χ)dχ = 1. Hence, the full 3D lensing field is com-
pressed into a set of 2D tomographic fields {φ(i)(θ, φ)}. Replacing φ(χ) with its Bessel-harmonic
expansion of Eq. 4.28, and again appealing to isotropy

〈
φ(i)
`mφ

( j)
`′m′

〉
= C`,i jδ``′δmm′ , we find the to-

mographic power spectra between bins i and j:

C`,i j =
8
πc2

∫
k2 dk dχ dχ′g(i)(χ) g( j)(χ′) j`(kχ) j`(kχ′)

√
PΦΦ(k, χ)

√
PΦΦ(k, χ′) (4.69)

where the lensing kernels {g(i)(χ)} are given by,

g(i)(χ) = χ

∫ ∞

χ
dχ′p(i)(χ′)

χ′ − χ

χ′
. (4.70)

The tomographic weak lensing power spectra are integrals of the gravitational potential power spec-
trum, over a geometric kernel. The lensing kernels determine which structures along the line-of-sight
the lensing power spectra are most sensitive to, for given source redshift populations. Fig. 4.2 shows
the lensing kernels for three redshift bins in a typical 3-bin tomography situation; for a given source
plane redshift, most of the lensing signal comes from sources around half-way between the source
plane and the observer.

Limber approximation

The exact expressions for the power spectra, Eqs. 4.63 and 4.69 are time consuming to evaluate accu-
rately at high multipoles due to the rapid oscillations of the spherical Bessel functions. Many analyses
adopt the Limber approximation instead, which is accurate at large ` and much easier to compute. To
leading order in `−1 we can expand∫

f (r) j`(kr)dr =

√
π

2`
f
(
`

k

)
+ O(`−2). (4.71)

In the Limber approximation, we effectively replace the spherical Bessel function with a delta-function,

j`(kχ)→
√

π

2`
δD(` − kχ). (4.72)

The tomographic power spectra are then given by:

C`,i j =
4
`5c4

∫
k4dkg(i)

(
`

χ

)
g( j)

(
`

χ

)
PΦ(k; `/k). (4.73)
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Shear power spectrum

Our ultimate goal is to provide expressions connecting explicitly the power spectrum of the shear
and convergence field to the matter power spectrum. We will present only the equations in the case
of tomography here, showing explicitly how to derive them from the power spectrum of the lensing
potential. We could repeat the same exercise in the spherical Fourier-Bessel formalism, however in
the 3D case there are additional observational effects that we would like to include in the formalism.
We will comment extensively on them in Sec. 5.1.2, within our extended modified gravity scenario.

The 3D potential is related to the density contrast δ via the Poisson equation. Assuming General
Relativity, this relation is written in Fourier space as

Φ̂(~k; χ) = −
3
2

ΩmH2
0k−2a−1(χ)δ̂(~k; χ), (4.74)

where Ωm is the matter density parameter, H0 the Hubble constant, ~k a 3D Fourier wave vector with
modulus k being the comoving wave number, and a the scale factor with a = 1 today.

We recall from Sec. 4.2.3 that ±2γ`m = 1
2

√
(`+2)!
(`−2)!φ`m. The tomographic shear power spectrum is

defined by 〈
2γ`m,i 2γ

∗
`′m′, j

〉
= δ``′δmm′C

γ
i j(`). (4.75)

This is given by

Cγ
i j(`) =

1
4

(` + 2)!
(` − 2)!

Cφ
i j(`)

=
2
π

(` + 2)!
(` − 2)!

(
3
2

Ωm

(H0

c

)2)2 ∫ ∞

0

dχ
χ

qi(χ)
a(χ)

∫ ∞

0

dχ′

χ′
q j(χ′)
a(χ′)

∫ ∞

0

dk
k2 Pδ(k, χ, χ′) j`(kχ) j`(kχ′)

(4.76)

where the matter power spectrum Pδ(k, χ, χ′) is defined by〈
δ̂(~k; χ)δ̂∗(~k′; χ′)

〉
=(2π)3δD(~k − ~k′)Pδ(k; χ, χ′). (4.77)

Eq. 4.77 reaches our goal to connect the shear power spectrum with the matter power spectrum.

Convergence power spectrum

The convergence is related to the lensing potential on the sphere via the product of spin-raising and
spin-lowering ð operators, which are identical to the spherical Laplacian differential operator.

κ(θ, ϕ) =
1
2
ðð̄φ(θ, ϕ) =

1
2
∇2φ(θ, ϕ). (4.78)

The spherical harmonics are eigenfunctions of the Laplacian,

∇2Y`m(θ, ϕ) = −`(` + 1)Y`m(θ, ϕ). (4.79)

The convergence power spectrum is then similar to the shear power spectrum (Eq. 4.75) with a different
spherical pre-factor,

Cκ
i j(`) =

`(` + 1)
(` − 1)(` + 2)

Cγ
i j(`). (4.80)

The convergence power spectrum is thus larger than the shear power spectrum, but only by 10% for
` = 4, 1% for ` = 14, and less than 0.1% for ` > 45.
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4.2.5. A first comparison between tomographic and 3D cosmic shear

We conclude this section with an outlook on tomography and 3D cosmic shear. Loosely speaking, we
can think of these two techniques in the following terms:

• in tomography the lensing effect first acts on the density field and subsequently a decomposition
of the galaxies into redshift bins is performed;

• in 3D analyses we first decompose the density field in the spherical Fourier-Bessel formalism
and then let the lensing effect take place.

Let us consider for example the convergence field κ in a pure 2D analysis, describing a change in
size of the images of the sources. We know that it is related to the overdensity field δ by an integral
along the line of sight: schematically,

κ(χs) =

∫ χs

0
W(χs, χ)δ(χ)dχ (4.81)

where χs is the comoving radial distance of the source. As we discussed already, the lensing efficiency
W is a function that peaks at about half the distance between the observer and the source (cf. Fig. 4.2).
Thus, the main contribution to the integral is given by the “lenses” localised at that point, and little
information can be gained by such a naive 2D approach. This is the motivation to introduce a binning
in redshift in tomography. To the purpose of extracting more information on the localisation of the
lenses, the convergence κ now takes values that are different for each bin i, therefore it acquires an
index i:

κi(χs) =

∫ χs

0
Wi(χs, χ)δ(χ)dχ (4.82)

where it is important to notice that also the Wi functions are now different from the original W: even
if they are still defined on the entire range from the observer to the source, they are now modified so
that they can peak at a different location for each redshift bin, enhancing the contribution given to the
integral by the overdensity field in the corresponding bin. The binning in redshift allows now for a
calculation of the auto- and cross-correlations between the convergence field in the bins, producing a
covariance matrix Ci j = 〈κiκ j〉, in general different from zero as a result of the overlap of the efficiency
functions Wi.

Kitching et al. (2011) show that to convert from 3D cosmic shear to weak lensing tomography
(in Limber approximation, as typically used) the Limber approximation must be applied to the full
3D shear estimator and a discretisation of physical modes through k = `/ri needs to be performed.
Interestingly for a specific redshift bin at χi and a specific azimuthal `-mode the tomographic approx-
imation only probes a single physical k-mode ki = `/χi from the full 3D shear field; in contrast in 3D
cosmic shear we have control over the k and ` modes over the entire redshift range.

In tomography by fixing the distances of the tomographic binning we lose some flexibility over the
physical wavenumbers probed, so there is a risk that either not all useful modes are included (increas-
ing statistical errors), or that, for the nearby shells, the physical wavenumber range sampled extends
to too high a value of k, where theoretical uncertainties become a potential source of systematic error.
A way to reduce this contamination requires that the ` range chosen should be redshift-dependent –
increasing `max = χ[z]kmax for the distant shells, and reducing it for nearby shells.

This is the reason that lead Casas et al. (2016, 2017) to use a diagonal “cutoff” matrix to be added
to the covariance matrix in their tomographic cosmic shear analysis, a matrix whose entries increase
to very high values at the scales where the power spectrum P(k) has to be cut to avoid the inclusion
of uncertain non-linear scales. The matrix is chosen therefore to have further control on the inclusion
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of non-linearities. Without that matrix, due to the redshift-dependent relation between k and ` coming
from the Limber approximation, a very high `max would correspond at low redshifts to a very high
kmax where the accuracy of predictions for the matter power spectrum cannot be trusted anymore.
Therefore the maximum multipole `max considered in their analysis, to obtain the Fisher matrix as a
sum over multipoles of many contributions (cf. Eq. 5.23) is limited by the minimum scale imposed
either by `max or kmax, which is the maximum wavenumber considered in the matter power spectrum.

Isolation of scales

Let us now see why we expect the 3D weak lensing approach to be more efficient than tomography in
isolating features of the matter power spectrum. This has been claimed many times in the literature
(e.g. in Kitching et al., 2014) and is a crucial point in weak lensing analysis, deeply connected to the
nature itself of the weak gravitational lensing effect: the lensing fields (both convergence and shear)
are integrated quantities along the line of sight. Particularly, they are integrated measurements of
the density contrast field and this integration procedure does involve a mixing of scales, because the
integration kernels are famously ’broad’.

In lensing analysis it is not the convergence or shear fields itself to be probed, but their covariance.
We showed e.g. in Sec. 4.2.4 that they are connected to the matter power spectrum, which makes
cosmic shear an excellent tool to study in particular the growth of cosmic structure. One of the highest
desirable properties of the covariance matrices would be to have a connection with the matter power
spectrum that allows for isolation of features at different scales in Pδ. This way, one would for ex-
ample be very sensitive to deviations in the matter power spectrum as predicted e.g. by different dark
energy/modified gravity models. Schematically, one would like to have a relation lensing covariance -
matter power spectrum of the following kind

C` =

∫
dk δ(k) δ(k) Pδ(k) (4.83)

where the delta functions help isolate features of the matter power spectrum. It turns out, as we show
here, that the weights associated to the 3D cosmic approach indeed have this “delta”-like behaviour,
at least in comparison with the weights associated to tomography. This explains why e.g. Grassi &
Schäfer (2014) were able to isolate some of the Baryon Acoustic Oscillations features in the matter
power spectrum using 3D weak lensing, while this is very hard to accomplish with tomography (Zhang
et al., 2009).
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5 Chapter 5

Testing dark energy and modified
gravity with weak gravitational lensing

In this Chapter we investigate the constraining power of future cosmic shear surveys like Euclid (Lau-
reijs et al., 2011) on the Horndeski class of modified gravity theories. We forecast in particular the
expected sensitivity to the functions, introduced in Sec. 2.6.2, that fully describe the evolution of linear
perturbations in Horndeski gravity. We produce our forecasts using the two main methods employed
to analyse a cosmic shear survey: a traditional tomographic technique, where correlations between the
lensing signal in different redshift bins are used to recover redshift information, and a less common
3D spherical Fourier-Bessel decomposition of the shear field, which allows for the inclusion of the
full redshift information throughout the entire analysis.

We have already reviewed in Sec. 4.2 the tomographic and 3D approach assuming initially a stan-
dard General Relativity scenario, showing how to derive the expressions for the cosmic shear power
spectrum in both formalisms. In Sec. 5.1 we proceed by extending the 3D approach to theories beyond
the standard cosmological model, producing equations valid for very general modifications of grav-
ity; we later concentrate on the Horndeski class. We present the methodology followed to obtain our
forecasts in Sec. 5.2, before showing our results in Sec. 5.3 and drawing our conclusions in Sec. 5.4.

Our findings represent the first quantitative comparison on an equal footing between Fisher matrix
forecasts on cosmological parameters (describing the concordance model as well as Horndeski gravity)
for both a fully 3D and a tomographic analysis of cosmic shear surveys. The increased sensitivity of
the 3D formalism, which we explicitly demonstrate by means of our Fisher matrix forecasts, comes
from its ability to retain information on the source redshifts along the entire analysis.

Part of the content of this Chapter is based on the paper “Testing (modified) gravity with 3D and
tomographic cosmic shear”, by A. Spurio Mancini, R. Reischke, V. Pettorino, B.M. Schäfer, M. Zu-
malacárregui (Spurio Mancini et al., 2018a), accepted for publication in MNRAS and available online
at arXiv:1801.04251.

5.1. 3d cosmic shear and tomography in modified gravity

To date, the 3D weak lensing approach has been applied to real data only in Kitching et al. (2007,
2014, 2016) for a ΛCDM model. Grassi & Schäfer (2014) investigated the possibility of detecting
Baryon Acoustic Oscillation features in the cosmic matter distribution by 3D weak lensing; Zieser &
Merkel (2016) studied the cross-correlation between the 3D weak lensing signal and the integrated
Sachs-Wolfe effect; Camera et al. (2011) investigated the constraining power of 3D cosmic shear on
a class of Unified Dark Matter models, where a single scalar field mimics both dark matter and dark
energy, whereas Ayaita et al. (2012) employed 3D cosmic shear to explore the capability of future
surveys to constrain dark energy clustering. While 3D weak lensing has been partially studied in
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the context of modified gravity theories in Pratten et al. (2016) to constrain f (R) chameleon models
and environmentally dependent dilaton models, showing that for an all-sky spectroscopic survey the
f (R) parameter fR0 can be constrained in the range fR0 < 5 × 10−6(9 × 10−6) for n = 1(2) with a
3σ confidence level, there has not been any application to a larger class of modified gravity theories.
Alonso et al. (2016) forecast the sensitivity of future surveys to Horndeski theories using different
probes, among which tomographic weak lensing.

In the following we will move to the description of the 3D cosmic shear formalism in a general mod-
ified gravity context. The aim is to produce an expression for the 3D cosmic shear power spectrum, for
a general theory where the two Bardeen potentials Φ and Ψ may be different from each other. When
dealing with linear perturbations acting on a Friedmann-Robertson-Walker metric in modified grav-
ity one can assume spatial flatness and, considering only scalar perturbations (see Durrer & Tansella,
2016; Adamek et al., 2016, for vector and tensor perturbations), write the line element in Newtonian
gauge as

ds2 = −

(
1 + 2

Φ

c2

)
c2dt2 + a2 (t)

(
1 − 2

Ψ

c2

)
dx2 (5.1)

with the Bardeen potentials Φ and Ψ. In General Relativity Φ = Ψ in absence of anisotropic stress,
while this is in general not true in modified gravity.

5.1.1. 3D weak lensing signal from lensing potential

Information on the gravitational potential is encoded in a weighted projection along the line of sight,
the lensing potential. In a modified gravity context, considering perturbations at the linear level, the
lensing potential φ is related to the Bardeen potentials Ψ and Φ by

φ(χ, n̂) =

∫ χ

0
dχ′

χ − χ′

χχ′
Φ(χ, n̂) + Ψ(χ, n̂)

c2 , (5.2)

where χ is a comoving distance, and the normalized vector n̂ selects a direction on the sky. Here and
throughout the Chapter spatial flatness will be assumed, and the integration in Eq. 5.2 is carried out in
Born approximation, i.e. along the unperturbed light path.

We investigate the relation between the coefficients φ`m of the lensing potential and those of the
Bardeen potentials Φ`m and Ψ`m. We insert Eq. 5.2 in the spherical Fourier transform of the lensing
potential, Eq. 4.29, obtaining

φlm(k) =

∫
k′2dk′

(
ηΦ
` (k, k′)Φ`m(k′) + ηΨ

` (k, k′)Ψ`m(k′)
)
, (5.3)

where the lensing efficiency η has been defined in Eq. 4.36 and the superscript Φ,Ψ refers to the
Bardeen potential on which the efficiency acts. Therefore the covariance of the lensing potential takes
the form

Cφφ
l (k, k′) =

〈
φ`m(k)φ`m(k′)

〉
(5.4)

= 〈
[
ηΦ
` (k, k1)Φ(k1) + ηΨ

` (k, k2)Ψ(k2)
] [
ηΦ

l (k′, k3)Φ(k3) + ηΨ
l (k′, k4)Ψ

]
〉. (5.5)

where the multiplication over a repeated k wavenumber stands short for integration over k2dk. We can
rewrite this expression, exploiting the definition of the power spectra PΦΦ, PΦΨ and PΨΨ and making
implicit the dependecies of the matrices on the wavectors for clarity of notation

Cφφ
`

= ηΦ
` η

Φ
` PΦΦ + ηΨ

` η
Φ
` PΨΦ + ηΦ

` η
Ψ
` PΦΨ + ηΨ

` η
Ψ
` PΨΨ. (5.6)
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Exploiting the symmetry of PΦΨ and PΨΦ and the equality of ηΦ and ηΨ, the previous expression can
be rewritten as

Cφφ
`

= η (PΦΦ + 2PΨΦ + PΨΨ) η. (5.7)

Eq. 5.7 tells us that in principle the lensing spectra can be obtained (e.g. in a Boltzmann code) extract-
ing the power spectra of the Bardeen potentials Φ and Ψ. In the following we will move our discussion
from the level of the (gravitational and lensing) potentials down to the level of the lensing observables
and in particular the shear. This will allow us to better consider and reflect on observational effects
such as the distribution in redshift of the sources and the error associated to our photometric estimates
of the redshift, and include these aspects in our formalism. The neat effect of these features on our
spectra will be to add computational complexity since the η matrices will have to be multiplied by
other matrices that contain the distribution of sources and the photometric error. Each of this addi-
tional matrix entails one further integration and introduces further correlations between the amplitudes
of the signal on different scales.

5.1.2. 3D cosmic shear

We present here a general formalism for a fully 3D expansion of the shear field that does not perform
any binning in redshift. This is based on a spherical Fourier-Bessel decomposition of the shear, first
introduced in lensing studies by Heavens (2003). Here we follow the notation and conventions of
Zieser & Merkel (2016) and extend the presentation given there to a general modified gravity scenario
characterised by the Bardeen potentials Φ and Ψ defined in eq. 5.1.

Inserting Eq. 5.2 and the definition of the shear in terms of ð derivatives of the lensing potential
given by Eq. 4.25 in the spherical Fourier-Bessel expansion for the shear field Eq. 4.41, and applying
a spherical Fourier-Bessel expansion to the Bardeen potentials Φ and Ψ, we can rewrite γ as

γ(χ, n̂) =

√
2
π

1
c2

∫ χ

0
dχ′

χ − χ′

χχ′
(5.8)

×

∫
k2dk

∑
`m

√
(` + 2)!
(` − 2)!

[
Φ`m(k, χ′) + Ψ`m(k, χ′)

2

]
j`(kχ′) 2Y`m(n̂),

where the division by 2 comes from the prefactor in Eq. 4.25.

Poisson’s equation can be used to link the coefficients in the spherical Fourier-Bessel decomposition
of the lensing potential to those of the overdensity field δ`m(k, χ),

Φ`m(k, χ)
c2 = −

3
2

Ωm

(kχH)2

δ`m(k, χ)
a(χ)

µ(k, a(χ)), (5.9)

with the Hubble radius χH ≡ c/H0. Here the function µ(k, a(χ)) describes the mapping from the
potential fluctuations to the density fluctuations. Eq. (5.9) can also be used as a parametrization of
modified gravity theories (e.g. Planck Collaboration et al., 2016b). The latter approach, however, only
holds in the quasi-static regime, where one neglects terms involving time derivatives in the Einstein
equations for perturbations and keeps only spatial derivatives (Sawicki & Bellini, 2015; Baker & Bull,
2015). For the Euclid survey, it could be questionable if this approximation holds, given the large
scales in principle accessible by the survey. The validity of the quasi-static approximation depends
also on the single modified gravity model considered and its predictions for the sound speed of the
additional scalar degree of freedom. That said, we stress that we are not using this parametrization,
but rather take the potential and density statistics directly from hi_class, which does not use the
quasi-static approximation.
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zm n0[arcmin−2] σz Ωsurvey[deg2] `min `max kmax nbins

0.9 30 0.05 15000 10 1000 1.0 10

Table 5.1.: Specifications used in the Fisher matrix analysis for the Euclid survey: the median redshift
zm; the source density n0; the error in photometric redshifts, σ(z) = σz(1 + z); the field size Ωsky. `min,
`max and kmax describe instead the minimum and maximum radial modes and the maximum angular mode,
respectively, considered in the computation of the shear covariances (5.11) and the Fisher matrix (5.23).
nbins is the number of bins considered in the tomographic analysis.

The density field is statistically homogeneous and isotropic, characterised by a power spectrum
which is diagonal in harmonic space

〈
δlm(k, z)δ∗`′m′(k

′, z′)
〉

=
Pδ(k, z, z′)

k2 δD(k − k′)δK
``′δ

K
mm′ . (5.10)

Using this, we can relate the covariance of shear modes to the matter power spectrum by

〈
γ̄lm(k)γ̄∗`′m′(k

′)
〉

=
9Ω2

m

16π4χ4
H

(` + 2)!
(` − 2)!

×

∫
dk̃
k̃2

G`(k, k̃) G`(k′, k̃) δK
``′ δ

K
mm′ (5.11)

where

G`(k, k′) =

∫
dz nz(z) F`(z, k) U`(z, k′), (5.12)

F`(z, k) =

∫
dzp p(zp|z) j`[kχ0(zp)], (5.13)

U`(z, k) =
1
2

∫ χ(z)

0

dχ′

a(χ′)
χ − χ′

χχ′
j`(kχ′) P1/2

δ
(k, z (χ)) (5.14)

× µ(k, a(χ))
[
1 +

1
η(k, a(χ′))

]
.

The bar over the γ`m coefficients stands for estimates of these quantities. This is done to keep into
account practical considerations arising while trying to estimate the shear modes γ`m from real cosmic
shear data, which consist of the shear γ(z, n̂) measured at discrete positions labelled by redshift z and
angular coordinates n̂ = (θ, φ). An estimate for the amplitude γ`m(k) of a mode may then by obtained
by dividing the three-dimensional space into cells and approximating the volume integral Eq. 4.41
by a sum. In the continuum, this estimate depends on the spatial distribution of sources in radial
direction. In addition, redshifts are typically measured with photometry and therefore their associated
errors need to be taken into account:

γ̄`m(k) =

√
2
π

∫
dz

nz(z)
4π

∫
dzp p(zp|z) j`

[
kχ(zp)

] ∫
dΩγ(z, n̂) 2Y∗`m(n̂). (5.15)

γ̄ are estimates of the shear modes that, in addition to the pure lensing effect, keep into account the
redshift distribution of galaxies and the redshift estimation error (see Sec. 5.2.2 for details on observa-
tional effects), as evidenced by the definition of the quantities in Eqs. 5.12, 5.13, 5.14, which contain
the redshift distribution nz(z) of the lensed galaxies and the conditional probability p(zp|z) of estimat-
ing the redshift zp given the true redshift z. These two elements and the lensing kernel contained in the
function U`(z, k) introduce correlations between the amplitudes of the signal on different scales; the
covariance matrix then acquires off-diagonal terms, the calculation of which is numerically involved.
The basis of spherical Bessel functions leads to integrals with rapidly oscillatory kernels, which have
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Figure 5.1.: Differential signal-to-noise ratio of a tomographic analysis relative to a 3D analysis. The
number of tomographic bins is shown in the colour bar.

to be solved for a large number of parameter combinations. η(k, a(χ′)) is defined as the ratio between
the Bardeen potentials

η(k, a(χ)) =
Φ(k, a(χ))
Ψ(k, a(χ))

. (5.16)

The P1/2
δ

(k, z (χ)) term comes from an approximation, introduced and justified in Castro et al. (2005),
to calculate unequal-time correlators appearing in the comoving distance integrations by means of a
geometric mean P (k, z, z′) '

√
P (k, z) P (k, z′) (see also Kitching & Heavens, 2017). This expression

simplifies considerably in the linear regime of structure formation, retrieving the one presented in the
seminal paper of Heavens (2003) where a product of the linear growth factors at different redshifts is
present, acting on the matter power spectrum evaluated at the present time.

The noise term for the covariance matrix of the shear modes is given by the intrinsic ellipticity
dispersion of source galaxies, as a result of the fact that the observed ellipticity ε is assumed to be
the sum of the shear γ and the intrinsic ellipticity εS . The intrinsic ellipticity dispersion is given by〈
ε2

S

〉
= σ2

ε . In the spherical Fourier-Bessel formalism (see Appendix A.1 for an explicit derivation),
this gives

〈
γ`m (k) γ`′m′

(
k′
)〉

SN =
σ2
ε

2π2

∫
dz nz(z) j`

[
kχ0(z)

]
j`′

[
k′χ0(z)

]
δK
``′δ

K
mm′ (5.17)

and we set σε = 0.3. This expression for the noise holds only in absence of intrinsic alignments, i.e.
assuming that the intrinsic ellipticities of galaxies are uncorrelated (see Merkel & Schäfer, 2013, for a
study of intrinsic alignments in 3D weak lensing).

5.1.3. Tomography

Instead of keeping track of the photometric redshift error, as done in the 3D approach, by means of the
probability p(zp|z) of estimating the redshift zp conditional on the true redshift z, another possibility is
to assign every galaxy to a redshift bin. In this case, as opposed to Eq. 5.11, the flat sky tomographic
cosmic shear power spectrum in tomographic bins i and j is given by

Cκ
i j(`) =

∫
dχ
χ2 Wi(`/χ, χ)W j(`/χ, χ) Pδ(`/χ, χ), (5.18)
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Figure 5.2.: Differential signal-to-noise ratio (Eq. 5.28), i.e. Σ2 gained at each multipole `: impact of the
non-linear power on the 3D lensing signal. The solid curve shows the differential signal-to-noise with a
non-linear power spectrum, while the dashed curve refers to a linear one.

where we used the Limber projection. The lensing efficiency function Wi(`/χ, χ) is defined as

Wi(`/χ, χ) =
3Ωm

4χ2
H

∫ ∞

χ
dχ′

dz
dχ′

ni(z(χ′))
a(χ′)

χ − χ′

χχ′

×

(
1 +

1
η(`/χ, χ′)

)
µ(`/χ, χ′),

(5.19)

ni(z(χ)) being the distance distribution of sources in the i-th bin normalised to one,
∫

dχ ni(z(χ)) = 1.
Observed spectra suffer from Poissonian noise due to the intrinsic ellipticity dispersion of galaxies

σε and their finite number n0. Choosing our tomographic bins so as to have equal number of galaxies
in each of them, the observed tomographic weak lensing spectrum is given by

Ĉκ
i j(`) = Cκ

i j(`) +
σ2
ε nbins

n0
δi j. (5.20)

It should be noticed that comparing tomographic and 3D lensing must be done with some care since
some approximations enter in Eq. (5.18). In particular, we made use of the flat sky approximation and
the Limber projection (Kaiser, 1992, 1998; Loverde & Afshordi, 2008), neither of which is included
in the 3D formalism. For a detailed discussion on this we refer to Kitching et al. (2017); Kilbinger
et al. (2017); Lemos et al. (2017) for an excellent discussion of various approximations performed in
cosmic shear analyses.

5.2. Forecasts methodology

5.2.1. Fisher matrix forecasts

In order to present forecasts for a Euclid-like experiment on the parameters considered, we perform a
Fisher matrix analysis (Tegmark et al., 1997). Provided that the likelihood surface near the maximum
is well approximated by a multivariate Gaussian, the Fisher matrix gives a realistic expectation of the
foreseen error for a given experimental setting. The Fisher matrix is defined as the expectation value
of the derivative of the logarithmic likelihood L with respect to the parameters θα:

Fαβ ≡ −

〈
∂2lnL
∂θα∂θβ

〉
, (5.21)
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evaluated at the maximum of the log-likelihood L, which in a forecast analysis coincides with the
reference fiducial model. Once we have the Fisher matrix, the Cramer-Rao bound ∆θ2

α ≥ (F−1)αα gives
a lower limit on the expected marginal error on the parameter θα. If the data are Gaussian distributed
and the mean values vanish, the Fisher matrix can be calculated from the covariance matrix and its
derivatives with respect to the parameters (Tegmark et al., 1997)

Fαβ =
1
2

Tr
[
C−1C,αC−1C,β

]
. (5.22)

where derivatives have been denoted with a comma. Assuming full-sky coverage this expression can
be simplified for a 3D weak lensing survey, as modes with different ` and m are uncorrelated (δK

``′δ
K
mm′

in Eq. (5.11)), leading to

Fαβ =
1
2

∑
`

(2` + 1)Tr
[
C−1
` C`,αC`C`,β

]
, (5.23)

as there are 2` + 1 statistically independent m− modes for each `. Note that expressions 5.22 and
5.23 are only exact if the data, in this case the modes γ`m(k), follow a Gaussian distribution. This
is not the case for high ` values, where structures due to non-linear clustering dominate the lensing
signal (for a discussion on non-Gaussian statistics of the weak lensing field see e.g. Taruya et al., 2002;
Joachimi et al., 2011; Clerkin et al., 2017). However, for the purpose of this Section this assumption
will not be of any harm since the basic parameter dependencies are captured well enough within this
approximation.

5.2.2. Observational effects and specifications

A 3D weak lensing analysis depends crucially on redshift estimation of the source galaxies, which for
next generation surveys like Euclid (Laureijs et al., 2011) will be achieved using photometry, being
the number of sources prohibitively high for spectroscopy. The estimated shear modes in Eq. 5.11
keep into account two observational effects, which are inherent in a redshift survey. The first one
is described by the quantity G in Eq. 5.12 and represents the distribution in redshift of the galaxies,
mainly due to the fact that they become fainter as redshift increases. For the source distribution we
follow (Amendola et al., 2016) and choose in Eq. 5.12

nz(z) ∝ n0

 √2
zm

3

z2 exp

−  √2z
zm

3/2 , (5.24)

where zm is the median redshift of the survey and n0 is the observed redshift-integrated source density
n0. The second observational effect, kept into account in the quantity F in Eq. 5.13, is the error
associated to redshift estimation. This is described by the probability of estimating the reshift zp given
the measured redshift z. We take this probability distribution to be a Gaussian

p(zp|z) =
1

√
2πσ(z)

exp
− (zp − z)2

2σ2(z)

 , (5.25)

with a redshift-dependent dispersion

σ(z) = σz(1 + z). (5.26)

If the sky coverage is not complete Eq. 5.23 is not completely correct, since the spherical basis is no
longer orthogonal. Nonetheless, Eq. 5.23 is a good approximation by just multiplying the right hand
side with the sky-fraction fsky = Ωsurvey/Ωsky. The choice we make for the specifications used in the
analysis is summarized in Table 5.1.
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5.2.3. Scales considered and non-linear corrections

The cuts in angular and radial scales that we perform, `max = 1000 and kmax = 1.0 h/Mpc, are such
that we avoid the deeply non-linear regime of structure growth. We demonstrate this point in Eq. 5.4,
showing the signal and noise parts of the covariance matrices (Eq. 5.11 and Eq. 5.17) for two `-modes,
10 and 1000, which correspond to the mininum and maximum multipole considered in our analysis,
respectively. We notice how even for the higher ` case, the range of k scales considered justifies our
choice to use the linear power spectrum for our analysis, since the higher-k part of the spectrum is
dominated by the noise (notice the different orders of magnitude between the signal and noise conti-
butions). In Fig. 5.5 we plot only the diagonal contributions to the covariance matrices, distinguishing
between the signal and noise parts, for ` = 10 and ` = 1000, our minimum and maximum angular
multipoles. One can see how the orders of magnitude of the covariance matrices between different
multipoles change and also how the dominance of the signal over the noise part gets inverted going
from low to high ` values.

We compare forecasts obtained with a linear matter power spectrum in the calculation of the shear
covariances to those obtained with a non-linear power spectrum. The current lack of solid under-
standing for non-linear corrections, in ΛCDM and even more in a modified gravity context, implies
that any non-linear prescription should be employed with caution. The matter power spectra are pro-
duced using the hi_class code (Zumalacárregui et al., 2017), a modification of the Class Boltzmann
solver (Lesgourgues, 2011) for Horndeski theories of gravity. In particular, hi_class allows the user
to choose the parameterization for the α(τ) functions which traces the evolution of the dark energy
component, and the code takes then as input the proportionality coefficients α̂ (Eq. 2.39). The choice
for the fiducial values of α̂B and α̂M, reported in 5.2, is close enough to ΛCDM to represent Gen-
eral Relativity with an additional cosmological constant, without incurring in numerical difficulties in
hi_class if the α̂ coefficients are all set to zero exactly. Since hi_class is a linear code it produces
linearly evolved power spectra only. Non-linear corrections can however be incorporated by applying
a non-linear transfer function using halofit (Smith et al., 2003; Takahashi et al., 2012; Bird et al.,
2012) as implemented in hi_class or a more state of the art version, HMcode, developed by Mead
et al. (2015), which we employ for our non-linear forecasts. Both halofit and HMcode however deal
with non-linearities only in a setting where standard General Relativity is true. In order to get con-
sistent constraints we therefore follow Alonso et al. (2016) and introduce a screening mechanism to
recover General Relativity on small scales by a phenomenological modification of the α(τ) functions,
employing a Gaussian kernel in Fourier space with a characteristic scale kV :

α(τ)→ α(τ, k) = α(τ) exp

−1
2

(
k

kV

)2 . (5.27)

We marginalise over the scale kV = 0.1 h/Mpc at which the screening mechanism becomes effective.
The fiducial choice for the screening is important in the sense that non-linear effects become important
at scales smaller than 0.1 h/Mpc. Additionally, Barreira et al. (2013) showed that the typical scale of
Vainshtein screening is roughly at 0.1 h/Mpc. A plot with two different choices of kV can be found in
Appendix A.3.

5.2.4. Implementation

Here we describe the structure of the C++ code that we used to produce our Fisher matrix forecasts,
obtained tackling the 3D cosmic shear integrations by means of the Levin integration method discussed
in the next Chapter. A diagram summarising the structure of the code is reported in Fig. 5.3:

• As a first step, the user specifies the fiducial cosmology in the Cosmology class and the pa-
rameters describing the survey considered, i.e. the redshift distribution n(z) and the redshift
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error probability distribution p(z|zp) (cf. Eqs. 5.24 and 5.25) in the Survey class. Specifically,
the user should specify the n0 parameter representing the integrated source density, the median
redshift zm and the width of the redshift error distribution σz. Given these values, the Survey

class computes and normalises the source distribution n(z) ∝ n0

( √
2

zm

)3
z2 exp

[
−

( √
2z

zm

)3/2
]

and a

photometry distribution p(zp|z), assumed to be Gaussian as in Eq. 5.25;

• Subsequently, the user specifies parameters relevant for the calculation of the covariance ma-
trices and the Fisher matrix, i.e. the range of multipoles `, from `min to `max, for which the
covariance matrices C`(k, k′) need to be calculated and summed over in the expression for the
Fisher matrix (cf. Eq. 5.23). The number of ` modes defines the spacing ∆` that appears in the
expression for the Fisher matrix. We verified that the code is very stable against the choice of
the number of ` modes considered. This is due to the smoothness of the signal-to-noise curve
(see Fig. 5.1), which results from the high precision achieved thanks to the Levin integration;

• The number of Fourier modes for the covariance matrix, ranging from kmin to kmax, has to be
set. For the range [5 · 10−3h/Mpc, 1.0h/Mpc] that we used in our forecasts, we recommend to
use at least 500 k-values linearly spaced between those extremes, in order to make sure that the
3D cosmic shear signal is sufficiently sampled;

• A Covariance class and subsequent inherited classes will account for:

– the distance-redshift relation, calculated by the class Cosmometry;

– classes producing quantities relevant to the clustering of structure, i.e.

- Growth: this produces the linear growth factor D+(a) (in GR, or D+(a, k) in modified
gravity), sourcing it directly from Class/HiClass and storing it in tables after interpola-
tion in a and k. The Growth class also stores interpolated table for µ, η and their screened
versions;

- CDMspectrum, standing for ‘cold dark matter power spectrum’, connects the C++ code
to Class/HiClass(written in C) via a C/C++ wrapper;

- the Covariance class itself produces the covariance matrix calculations, i.e. the integra-
tions in Eqs. 5.12, 5.13, 5.14 by means of the Levin integration scheme, implemented in
three classes levinFunctions, levinBase, levinIteration(not shown in Fig.5.3);

• For the statistical analysis, a FisherMatrix class accounts for

– calling the covariance matrix class methods to

- compute signal and noise part of the C` matrices;

- evaluate the C`’s at slightly bigger and slightly smaller values of each cosmological
parameters, to be able to perform the differentiation of the covariance matrices by means
of central finite differences;

- compute the inverses C−1
` ;

- assemble the cosmic shear covariance matrices, their derivatives and inverses to produce
the Fisher matrix elements Fαβ following Eq. 5.23.

5.3. Constraints on Horndeski gravity

Here we propose for the first time 3D cosmic shear as a probe of Horndeski theories of modified
gravity. We analyse in detail the expected performance of a Euclid-like experiment, with the aim of
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Survey
- contains

Cosmology

- contains fiducial cosmology

Cosmometry

- gets called every time 
distance-redshift relation

 is needed

Covariance

- calculates all elements of covariance matrices 
calling classes for Levin integration

-calls all Growth and CDMspectrum classes to get

-calls cosmometry every time distance-redshift relation is needed

- takes from survey class

Fisher

- calls Covariance to calculate 

- calls Covariance to calculate all derivatives of 

- compute inverse of covariance matrices

- assembles covariance matrices, inverse and derivatives 
to build the Fisher matrix 

Growth
- contains interpolated look up tables for

-HMcode interface

CDMspectrum
- gets modifications of GR

- interface to Class / HiClass

Figure 5.3.: Schematic map describing the mdular structure of the C++ implementation for our Fisher
forecasts.
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CHAPTER 5. TESTING DARK ENERGY AND MODIFIED GRAVITY WITH WEAK
GRAVITATIONAL LENSING

forecasting the precision with which future stage IV surveys will be able to constrain this class of al-
ternatives to General Relativity using cosmic shear datasets. We choose the parametrization of linear
perturbations in Horndeski gravity that we already described in Sec. 2.6.2, first proposed by Gleyzes
et al. (2013); Bellini & Sawicki (2014) and based on four functions of time only, which completely
describe the evolution of linear perturbations once the background evolution is fixed. We model their
time evolution assuming proportionality to the density fraction of dark energy and constrain the pro-
portionality coefficients under the assumption of Gaussian likelihood. We simultaneously also place
constraints on a set of standard cosmological parameters describing the evolution of the background,
including the sum of the neutrino masses.

We produce our forecasts for both a fully 3D and a tomographic analysis of the measurements, with
the aim of comparing the performances of the two methods on both modified gravity and standard
cosmological parameters. Kitching et al. (2011) showed the relationship between weak lensing to-
mography and the 3D cosmic shear field, connected by the Limber approximation, a harmonic-space
transform and a discretization in wavenumber. Our work presents for the first time a quantitative
comparison on an equal footing between 3D and tomographic techniques for cosmic shear in terms of
Fisher forecasts, showing that the 3D approach has more sensitivity than tomography to both standard
and modified gravity cosmological parameters. We vary both the background cosmological parameters
and those describing Horndeski theories, and consider only weak gravitational lensing as a cosmolog-
ical observable, to test its power in constraining modified gravity theories without other probes and
compare 3D and tomographic methodologies.

In this section we will investigate the signal strength of a weak lensing analysis carried out using
the full photometric redshift information via the 3D method, as well as by using a tomographic tech-
nique. As already mentioned we calculate the tomographic lensing power spectrum using the Limber
approximation; for a more detailed discussion we refer to Kitching et al. (2017). We then show the
possible constraints on Horndeski cosmological models with survey specifications given in Tab. 5.1.

5.3.1. Signal to noise for 3D and tomographic weak lensing

Fig. 5.1 shows the differential signal-to-noise (SNR) curve for a tomographic survey relative to a 3D
analysis as a function of the number of tomographic bins. The total signal-to-noise ratio is calculated
as

Σ2(≤ `) = fsky

∑̀
`′=`min

2`′ + 1
2

Tr
[
C−1
`′ S`′C−1

`′ S`′
]
≡

∑̀
`′=`min

∆Σ2(`′) , (5.28)

where S is the signal covariance (5.11) or (5.18) only, while C refers to the sum of signal and noise,
i.e. (5.11)+(5.17) or (5.20). The number of tomographic redshift bins is shown in the colour bar.
Clearly an increase of the number of bins used increases the SNR, however, the gain in signal saturates
for nbins ≈ 15 due to the non-vanishing cross-correlation between the different bins (caused by the
overlap of the redshift distributions of different bins). It should be noted that there is in principle an
additional effect due to the finite width of the photometric redshift estimation. If the average bin width
in the tomographic case is of the order of the width of the distribution of redshift estimation error,
the correlation between neighbouring bins will be underestimated, thus producing artificially signal.
This effect is, however, very small as long as σz is sufficiently small. In the 3D case this correlation is
represented by the covariance (5.11).

Fig. 5.2 displays the impact of non-linear clustering: if one only considers linear structure growth
(dashed line), the shot noise starts dominating the signal at ` ≈ 450. For the non-linear power spectrum
instead the differential signal-to-noise rises until ` ≈ 1000 (solid line) due to the enhancement of small
scale structure by non-linear clustering. This shows the importance of the inclusion of high multipoles
into the analysis. More specifically we see that the non-linear effects become important already at a
relatively low ` . 200.
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Figure 5.4.: Signal (left, labelled C`) and noise (right, labelled CSN
`

, where the subscript stands for shot
noise) parts of the covariance matrix (Eqs. 5.11 and 5.17, respectively) for the minimum and maximum
`-mode considered in the analysis, ` = 10 (upper panels) and ` = 1000 (bottom panels), respectively.
Note the different ranges of the colour bars, in logarithmic scale. See also Fig. 5.5 for a comparison
between the diagonal elements of the matrices, highlighting how different multipoles have contributions
with different orders of magnitude and how the signal and noise part become dominant for low and high `
values, respectively.
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Figure 5.5.: Comparison between the diagonal elements of the signal (solid line, as given by eq. 5.11 and
labelled C`) and noise (dashed line, as given by eq. 5.17 and labelled CSN

`
, where the subscript stands for

shot noise) contributions to the covariance matrices of the shear modes, for the minimum and maximum
angular multipole considered in this analysis, i.e. ` = 10 (blue) and ` = 1000 (red), respectively. Note the
different orders of magnitude for the different multipoles, and how the signal prevails on the noise for low
multipoles, while the noise dominates for higher ` values. Note also the log-scale on the x-axis, to help
identify the different k-regions where most of the contributions come from, for different multipoles.
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Figure 5.7.: Plots of the “sensitivity” curves to some selected cosmological parameters (they same chosen
for Fig.5.6), where the sensitivity is defined by 2`+1

2 fskyTr
(
C−1
` C`,θ

)2
, i.e. the value of the summand in the

formula 5.23 for the Fisher matrix, for different parameters θ (the comma denotes derivative with respect
to θ). We notice that while increasing the number of bins (we plot in different dashed lines the curves for
2 and 10 bins) also increases the sensitivity, even considering 10 bins the curve does not reach the one
achieved by 3D cosmic shear (plotted in solid line).
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Figure 5.8.: 1-σ forecast contours for a Euclid-like survey, showing a comparison between a fully 3D
(blue) and a tomographic cosmic shear analysis (red). The fiducial values can be found in Tab. 5.2, while
α̂K = 0.01 and the survey specifications are given in Tab. 5.1. We used the linear matter power spectrum
for both.

In Fig. 5.7 the contribution of individual angular modes to the full Fisher information is illustrated:
we plot the value of the summand in the formula Eq. 5.23 for the Fisher matrix, for different parameters
(the same considered in Fig. 5.6), i.e. α̂B, α̂M,Ωm, σ8,

∑
mν), as a function of the multipole order `,

which is identical to the Fisher matrix if only a single angular mode is considered. We plot these
curves for the 3D cosmic shear case in solid lines and for tomography with 2 and 10 bins in different
styles of dashed lines. We can interpret these curves as the “sensitivity” curves to the parameters
considered. While we notice an increase of the sensitivity when increasing the number of bins, it still
remains well below the 3D cosmic shear level.

5.3.2. Cosmological constraints on Horndeski functions

In our forecasts we fix αT very close to zero and do not consider it as a parameter in our Fisher
matrix analysis, reflecting the recent very strong constraints on the gravitational waves speed set by
the detection of the binary neutron star merger GW170817 and the gamma ray burst GRB170817A
(Abbott et al., 2017a,b; Baker et al., 2017; Creminelli & Vernizzi, 2017; Ezquiaga & Zumalacárregui,
2017; Sakstein & Jain, 2017). Furthermore, the kineticity αK is largely unconstrained by cosmological
observables (Bellini et al., 2016; Alonso et al., 2016), therefore we fix the coefficient α̂K to its fiducial
value. However, we study the impact of the choice of α̂K on the constraints on the other parameters
by choosing two values which differ by three orders of magnitude.

As already seen in Fig. 5.1 a lot of signal comes from non-linear scales, in fact for Euclid one
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expects that about two thirds of the total signal to noise, Σ(< `max) with `max ≈ 2000, originate from
non-linear scales. It is therefore evident that one has to include non-linear clustering in the analysis in
order to get the necessary statistical power to constrain a high-dimensional parameter space.

As seen before, increasing the number of tomographic bins yields more signal. In the inference
process, however, the sensitivity to the model parameters plays an important role. For linear model
parameters one expects the sensitivity to be a rescaled version of the SNR curve. In Fig. 5.6 we
show the marginal and conditional errors of a tomographic analysis relative to the 3D analysis for
a few parameters. The marginal errors are more strongly affected, since the contributions from the
conditional errors add up during the marginalization procedure. Furthermore, we see the same trend
as for the SNR: the expected errors tend towards the errors of a 3D analysis for nbins � 1.

Fig. 5.8 shows a comparison between cosmological constraints obtained with 3D cosmic shear and
tomography with specifications from Tab. 5.1. Constraints from a 3D analysis are tighter than those
from tomography, due to the increased redshift information. Furthermore, the degeneracies are in
all cases very similar for the two methods, which is expected since the two methods probe the same
quantity. In particular we find the usual degeneracy in Ωm and σ8, which is slightly reduced in the 3D
case. Generally the biggest improvement can be seen for parameters carrying information about the
background evolution and the growth of structures; in contrast, parameters such as the spectral index
ns are not that much influenced.

In Fig. 5.9, instead, we study the impact of the choice of α̂K and compare constraints obtained only
with 3D cosmic shear using a linear matter power spectrum, but with two different choices of fixed
α̂K , namely α̂K = 0.01 and α̂K = 10. We find, in agreement with Alonso et al. (2016), that the choice
of α̂K does not affect the large-scale structure observables significantly. Since the largest effect on
structure formation of α̂K comes from very large scales beyond those considered in this work, we do
not expect any significant dependence of the Fisher matrix on this parameter.

Finally we investigate the impact of non-linear clustering in Fig. 5.10 as outlined before. Constraints
are, as expected, tighter with the addition of the non-linear corrections. In particular we find a signif-
icant gain in Ωm, σ8 and

∑
mν[eV]. Other parameters such as the spectral index ns and the Hubble

constant h are not that much affected, since the main characteristics are already captured in the linear
power spectrum. Furthermore, we find a gain in sensitivity in α̂B and α̂M. This reduction of the error
for the modified gravity parameters is mainly due to the marginalisation process and the degeneracies
with the other parameters such as Ωm, which are better constrained now. In fact, it should be noted
that the conditional constraints on α̂M and α̂B become slightly worse then in the linear case, which has
a subtle reason: the screening scale is chosen such that modified gravity effects are suppressed as soon
as non-linear effects set in, on the other hand however, there is loss of power on intermediate scales.
This effectively yields a loss in sensitivity, since the full effect of modified gravity is only present up to
intermediate scales, whereas the signal gain on small scales does not contribute to the Fisher matrix.
Finally, as a consequence of the screening mechanism, the orientation of the ellipses, for example in
the case Ωm− α̂M and σ8− α̂M, can change; this is due to the increase in signal at high ` values and the
change of the sensitivity to cosmological parameters, especially because the sensitivity to the modified
gravity parameters on those scales vanishes by construction.

In order to exploit the full potential of non-linear clustering one would need to have a reliable
model for non-linear structure formation in a modified gravity setting. The way it is presented here
effectively assumes that modifications of the gravitational field equation only play a role at linear order,
while higher orders are treated in the usual framework of perturbation theory in a ΛCDM cosmology.
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Figure 5.9.: Impact of the choice of α̂K for a 3D cosmic shear analysis with fiducial values from Tab. 5.2
and survey specifications given in Tab. 5.1. We used a linear power spectrum for the analysis and show
the difference in the 1-σ contours when fixing α̂K = 0.01 (blue) or α̂K = 10 (orange).
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Figure 5.10.: Impact of non-linear clustering with fiducial values from Tab. 5.2 and survey specifications
are given in Tab. 5.1. We show the constraints obtained with the linear power spectrum in blue and with
the non-linear one in magenta.
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5.4. Discussion and conclusions

In this Chapter we investigated the performance of a 3D analysis of cosmic shear measurements as
a probe of Horndeski theories of modified gravity. We set constraints by means of a Fisher matrix
analysis on a set of parameters that completely describe the evolution of linear perturbations in Horn-
deski gravity, using the specifications of a future Euclid-like experiment. We placed simultaneously
our constraints on both the modified gravity parameters and on a set of standard cosmological param-
eters, including the sum of neutrino masses. Analogous forecasts for a tomographic analysis with six
bins were produced given the same specifications of the cosmic shear experiment, with the aim of
comparing the two methods. Our analysis was restricted to angular modes ` ≤ 1000 and k ≤ 1 h/Mpc,
to avoid the deeply non-linear regime of structure growth. We summarize our results as follows.

The signal-to-noise ratio of both a 3D analysis and a tomographic one is very similar, since it is
mainly driven by the amplitude of the lensing signal and a tomographic method effectively agrees
with a decomposition into spherical harmonics and radial Bessel functions if the bin width gets as
small as the width of the photometric redshift errors.

3D cosmic shear provides tighter constraints than 10 bins tomography. Even with our conservative
cut in angular and radial scales and using a linear matter power spectrum for the calculation of the
covariance of the shear modes, 3D weak lensing performs better than tomography for all cosmological
parameters, with both methods showing very similar degeneracies. For the parameters of the Bellini
& Sawicki (2014) parametrization describing Horndeski theories, the gain is of the order of roughly
20 % in the errors.

We investigated the impact of the fiducial value chosen for the kineticity and found that the con-
straints are largely unaffected by the choice of α̂K . In particular we used α̂K = 0.01 and α̂K = 10.

To illustrate the importance of non-linear corrections, we showed the expected improvement in the
size of the constraints obtained employing a non-linear matter power spectrum: the results obtained
in this case serve as an illustrative example of the constraining power of non-linear scales. In order
to obtain a complete and self-consistent picture, one would need a formalism to construct the non-
linear corrections in a general modified gravity setting (see e.g. Lombriser, 2016; Fasiello & Vlah,
2017). Here we introduced an artificial screening scale, which pushes the deviations from General
Relativity to zero below its value. This is however not a fully exhaustive ansatz and many more
investigations in this direction are required. The gain in signal if non-linear clustering is considered
clearly shows the importance and calls for the development of analytic or semi-analytic prescriptions
for the treatment of non-linear scales in ΛCDM and modified gravity. These will play a crucial role
in allowing cosmic shear measurements to set strong constraints on parameters describing deviations
from General Relativity. Due to the screening the constraints on modified gravity parameters are only
improved because of the marginalization over the remaining parameters.

Compared to the analysis of Pratten et al. (2016), who considered 3D weak lensing only for a
restricted number of modified gravity theories, our study extends the scope to the full Horndeski class
and we do not fix all the parameters describing the background to their ΛCDM values.

This large parameter space and the fact that we only considered weak gravitational lensing as our
observable makes our constraints less tight than the ones presented in Alonso et al. (2016), given also
that our range in scales is less extended. Additionally, while Alonso et al. (2016) considered only a
tomographic analysis, we present a 3D analysis along with a tomographic one, showing the increase
in sensitivity of the former.

In our analysis we did not consider spurious contributions to the pure lensing signal coming from
systematics such as the intrinsic alignments of source galaxies (Joachimi & Bridle, 2010; Mandel-
baum, 2017). These are expected to dominate the error budget for future cosmic shear surveys and
need therefore to be carefully accounted for. These contributions are also expected to influence mostly
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the lensing signal on small, non-linear scales. The scales we considered were also chosen with the
purpose of avoiding the regime of domination of these effects, which we considered neither in our
fully 3D approach nor in the tomographic one, so that the comparison could remain fair. However, it
has been shown that this kind of systematics can be carefully accounted for in 3D analyses (Merkel &
Schäfer, 2013) and we plan to investigate their impact in future work, together with cross-correlations
with other probes which we envisage as one of the most powerful tools to test gravity on cosmological
scales.
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6 Chapter 6

Testing dark energy and modified
gravity with current and future
cross-correlations of weak gravitational
lensing

In this Chapter we investigate the possibility of obtaining constraints on Horndeski gravity with cross-
correlations of cosmic shear with other probes, either using currently available datasets or making
predictions for future Stage IV surveys.

First, we present cosmological constraints on Horndeski theories of gravity obtained from the joint
analysis of tomographic cosmic shear power spectra from ∼ 450deg2 of data from the Kilo Degree
Survey (KiDS), galaxy-matter cross-correlation power spectra of foreground galaxies from the Galax-
ies And Mass Assembly (GAMA) survey and background KiDS sources, and the angular clustering
power spectra of the same GAMA galaxies.

As expected, the data from the KiDS and GAMA surveys available to us while performing this
analysis did not allow for very tight constraints on the Horndeski parameters. However, our analysis
represents the first example in the literature of a complete inference pipeline producing weak lensing
constraints on Horndeski gravity: the methodology and numerical implementation that we have devel-
oped could be used in the future to either repeat the same analysis with larger data releases from the
KiDS survey or, in the next decade, to fully exploit the statistical richness of even larger datasets com-
ing from Stage IV surveys such as Euclid (Laureijs et al., 2011) or LSST (LSST Science Collaboration
et al., 2009).

These next-generation surveys are the focus of attention in the second part of the analysis developed
in this Chapter. We forecast constraints on a large parameter space that includes standard cosmological
parameters as well as Horndeski parameters, considering the combination of cosmic shear, galaxy
clustering, Cosmic Microwave Background anisotropies and lensing as will be available to us in the
next decade from surveys such as Euclid and CMB-S4 (Abazajian et al., 2016). We produce our
forecasts with both a Fisher matrix approach and a full MCMC sampling of the posterior distribution.
We find that datasets such as the ones provided by those surveys will effectively be able to constrain
Horndeski theories with relative errors on their gravitational parameters below 10%.

The structure of this Chapter is as follows: we begin in Sec. 6.1 with an introduction to the possible
cross-correlations that can be obtained from optical surveys between estimates of the ellipticity and
of the number density contrast. This allows us to introduce the probes mentioned subsequently in the
Chapter, such as galaxy-galaxy lensing and galaxy clustering. We proceed in Sec. 6.2 to describe our
analysis of the KiDS and GAMA surveys. In Sec. 6.3 we present our forecasts on cross-correlations
of Stage IV surveys. Finally, we draw our conclusions for this Chapter in Sec. 6.4.
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6.1. Cross-correlations shear-density field

In the previous Sections we have considered tomography and 3D cosmic shear as the two main tech-
niques to analyse a cosmic shear survey: despite being based on different formalisms, both methods
share in common the need of galaxy ellipticity measurements in order to build estimates of the shear
modes. Such a gravitational lensing analysis requires therefore information on the shapes of the ob-
served galaxies; an estimate of their ellipticity quantifies the shear distortion and subsequently allows
for the study of the correlation of these distorted shapes on the sky. Additionally, redshift informa-
tion can be incorporated in the analysis (in different ways as we have seen) to increase the amount of
information available.

Assuming the gravitational shear to be weak (see e.g. Bartelmann & Schneider, 2001), as in the case
of cosmic shear, the ellipticity can be inferred from the galaxy shapes in a given region of space as

ε(i)(θ) = γ(i)
G (θ) + γ(i)

I (θ) + ε(i)
rnd(θ) , (6.1)

where the superscript in parentheses assigns a photo-z bin i, while the vector θ denotes angular co-
ordinates (θ, φ). The observed ellipticity ε has contributions from the gravitational shear γG and an
intrinsic shear γI, which is caused by the alignment of a galaxy in its surrounding gravitational field.
Moreover, ε is assumed to have an uncorrelated component εrnd, which accounts for the purely random
part of the intrinsic orientations and shapes of galaxies.

Here we would like to widen the context of our study and review how shape information can be
combined with information on the positions of galaxies; the latter can be used to construct an estimate
of the number density contrast

n(i)(θ) = n(i)
m (θ) + n(i)

g (θ) + n(i)
rnd(θ) , (6.2)

determined by the intrinsic number density contrast of galaxies ng and the alteration of galaxy counts
due to lensing magnification nm. An uncorrelated shot noise contribution is added via nrnd.

In contrast to ε(i)(θ) the number density contrast n(i)(θ) cannot be estimated from individual galaxies.
One can understand n(i)(θ) as the ensemble average over a hypothetical, Poisson-distributed random
field of which the observed galaxy distribution is one particular representation. The formal relation
between the projected number density contrast as used in Eq. 6.2 and the three-dimensional galaxy
number density fluctuations will be provided below, see Eq. 6.12.

As noted e.g. in Joachimi & Bridle (2010), Eqs. 6.1 and 6.2 are symmetric in that they both contain
an intrinsic contribution and a term caused by gravitational lensing effects. The intrinsic contributions
are both normally dominant over the lensing parts, when considered singularly. In fact, the intrinsic
ellipticity of galaxies modifies their shape from circular even in absence of lensing, and is about
two orders of magnitude larger than the gravitational shear. As a (very rough) first approximation
one can assume that the intrinsic ellipticities of galaxies are randomly distributed on the sky, so that
they are correlated neither with the intrinsic ellipticities nor with the shears of other galaxies. As a
consequence, the correlation of ellipticities becomes dominated by the gravitational shear; in contrast,
the largest term in Eq. 6.2 is due to the intrinsic number density contrast, which is also responsible for
the major contribution in the correlation of the number density constrast.

Both ellipticity and number over-density vanish if averaged over sufficiently large scales. Thus,
one considers to lowest order two-point statistics of these quantities. Since all real-space two-point
measures are related to the power spectrum (see e.g. Kaiser, 1992), one can work in terms of power
spectra insted of correlation functions, which is desirable in particular due to a simpler structure of the
signal covariances in Fourier space. Denoting the Fourier transform by a tilde, the power spectrum
C(i j)

ab (`) between redshift bins i and j can then be defined by〈
x̃(i)

a (`) x̃( j)
b (`′)

〉
= (2π)2 δ(2)

D (` − `′) C(i j)
ab (`) , (6.3)
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measured correlation 2D PS 3D PS
shear CGG Pδδ
intrinsic-shear CIG PδI
intrinsic CII PII
galaxy clustering Cgg Pgg
clustering-magnification Cgm Pgδ
magnification Cmm Pδδ
clustering-shear CgG Pgδ
clustering-intrinsic CgI PgI
magnification-shear CmG Pδδ
magnification-intrinsic CmI PδI
galaxy ellipticity (observable) Cεε

galaxy number density (observable) Cnn

number density-ellipticity (observable) Cnε

Table 6.1.: Overview on the two-point correlations considered in this Section 6.1. Listed are the symbols
used for the two-dimensional projected power spectra and the underlying three-dimensional power spectra.

where δ(2)
D is the two-dimensional Dirac delta-distribution, and where ` denotes the angular frequency,

i.e. the Fourier variable on the sky. The measures xa and xb can correspond to any of the set{
γG, γI, ng, nm

}
. The random contributions in Eqs. 6.1 and 6.2 are not correlated with any of the other

measures and only yield a contribution to the noise.

Following e.g. Joachimi & Bridle (2010), we can insert Eqs. 6.1 and 6.2 into 6.3, thus obtaining
the complete set of tomographic two-point observables which are available from shape and number
density information

C(i j)
εε (`) = C(i j)

GG(`) + C(i j)
IG (`) + C( ji)

IG (`) + C(i j)
II (`) (6.4)

C(i j)
nn (`) = C(i j)

gg (`) + C(i j)
gm (`) + C( ji)

gm (`) + C(i j)
mm(`) (6.5)

C(i j)
nε (`) = C(i j)

gG (`) + C(i j)
gI (`) + C(i j)

mG(`) + C(i j)
mI (`) , (6.6)

Signals originating from galaxy shape information are denoted by capital letters (‘G’ for gravita-
tional shear, ‘I’ for intrinsic shear), while signals related to galaxy number densities by small letters
(‘g’ for intrinsic number density fluctuations, ‘m’ for lensing magnification). Table 6.1 summarizes the
nomenclature used for the correlations in Eqs. 6.4, 6.5, 6.6. Note that Eqs. 6.4 and 6.5 are symmetric
with respect to their photo-z bin arguments. Hence, if Nzbin denotes the number of available photo-z
bins, one has Nzbin(Nzbin + 1)/2 observables for every considered angular frequency. In contrast, one
can exploit N2

zbin ellipticity-number density cross-correlation power spectra (Eq. 6.6) for each `.

The set of observables in Eq. 6.4 is the one that cosmic shear analyses are based on. The shear
correlation signal (GG) is a clean probe of the underlying matter power spectrum and is thus powerful
in constraining cosmological parameters. However, shape measurements incorporate further terms
stemming from correlations of intrinsic ellipticities (II) and shear-intrinsic cross-correlations (IG, or
equivalently GI) whose contribution can be substantial, but is to date poorly known. These terms
exist because the shapes and orientations of galaxies are influenced via the tidal gravitational fields
of the matter structures in their surrounding, which firstly induce correlations between neighbouring
galaxies, and secondly cause correlations by determining the intrinsic shape of a foreground object
and adding to the shear signal of a background galaxy (see Joachimi et al., 2015; Troxel & Ishak,
2015, for reviews on the topic). The matter structure around galaxies can modify their intrinsic shape
and their orientation. Firstly, this can result in correlations between the intrinsic shapes of galaxies
which are close both on the sky and in redshift (intrinsic ellipticity correlations, or II correlations).
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Moreover, a dark matter halo can intrinsically align a physically close galaxy in the foreground and
at the same time contribute to the lensing signal of a background object, which induces gravitational
shear-intrinsic ellipticity correlation (GI contribution).

Intrinsic galaxy clustering (gg) adds a strong signal to the correlations of galaxy number densi-
ties (Eq. 6.5), but its use to obtain cosmological parameter estimates is faced by poor knowledge of
galaxy bias i.e. the relation between the distribution of galaxies and the underlying dark matter density
field. Gravitational lensing modifies the flux of objects and thus reduces or increases number counts
of galaxies above a certain limiting magnitude. This produces magnification correlations (mm) and
intrinsic number density-magnification cross-correlations (gm). The gm correlations occur when a
foreground mass overdensity (underdensity) contains an overdensity (underdensity) of galaxies and
(de)-magnifies background objects along the same line of sight causing an apparent over- or under-
density of galaxies at higher redshift.

Cross-correlations between galaxy number densities and ellipticities (Eq. 6.6) contain contributions
from cross terms between intrinsic clustering and shear (gG), intrinsic clustering and intrinsic shear
(gI), magnification and shear (mG), and magnification and intrinsic shear (mI). For instance, one
expects to find gI and gG signals when a mass structure leads to an overdensity in the local galaxy dis-
tribution and influences the intrinsic shape of galaxies at the same redshift or contributes to the shear
of background objects. The latter case, where an overdensity in the foreground galaxy distribution
contributes to the shear of background sources, is typically referred to as galaxy-galaxy lensing. Be-
cause a foreground overdensity can in addition enhance galaxy counts due to lensing magnification,
the mG and mI signals will also be non-vanishing. In our analysis in next Section we will ignore the
magnification contribution, since it was not considered in the first place in the original ΛCDM analy-
sis of the Kilo-Degree Survey (van Uitert et al., 2018), of which our work represents an extension to
modified gravity.

6.1.1. Connection to the matter power spectrum

All non-random terms in Es. 6.1 and 6.2, given for a photometric redshift bin i, can be related to a
source term S, which is a function of spatial coordinates, i.e.

x(i)
a (θ) =

∫ χhor

0
dχ w(i)(χ) Sa (χθ, χ) , (6.7)

where we defined a weight function w that depends on the photo-z bin i (for a similar approach see Hu
& Jain, 2004). Here and throghout the Section we consider a flat Universe (expressions for the non-flat
case can be obtained generalising χ to a non-flat Universe fK(χ)). If Eq. 6.7 holds for two quantities x(i)

a
and x( j)

b , their projected power spectrum is given by the line-of-sight integral of the three-dimensional
source power spectrum PSaSb via Limber’s equation in Fourier space (Kaiser, 1992),

C(i j)
ab (`) =

∫ χhor

0
dχ

w(i)(χ) w( j)(χ)
χ2 PSaSb

(
`

χ
, χ

)
. (6.8)

By identifying weights and source terms for gravitational and intrinsic shear, as well as intrinsic clus-
tering and magnification, we can derive Limber equations for all power spectra entering Eqs. 6.4-6.6.

To compute the equivalent of Eq. 6.7 for the cosmic shear case, we first note that in Fourier space
the shear and the convergence are related by the simple equation κ̃G(`) = γ̃G(`) e−2iϕ` , where ϕ` is the
polar angle of `. As a consequence, we can use for simplicity the convergence as the cosmic shear
observable in our calculations. The convergence is related to the three-dimensional matter density
contrast δ via

κ(i)
G (θ) =

∫ χhor

0
dχ q(i)(χ) δ (χθ, χ) , (6.9)
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where the weight is given by

q(i)(χ) =
3H2

0Ωm

2 c2

χ

a(χ)

∫ χhor

χ
dχ′ p(i)(χ′)

χ′ − χ

χ′
, (6.10)

see Bartelmann & Schneider (2001) for details. Here a denotes the scale factor and p(i)(χ) the comov-
ing distance probability distribution of those galaxies in bin i for which shape information is available.

Analogously to the lensing case, one can define a convergence of the intrinsic shear field κ(i)
I (θ),

which is directly related to the intrinsic shear via κ̃I(`) = γ̃I(`) e−2iϕ` . This intrinsic convergence is a
projection of the three-dimensional intrinsic shear field κ̄I, which can be written as

κ(i)
I (θ) =

∫ χhor

0
dχ p(i)(χ) κ̄I (χθ, χ) , (6.11)

and analogously in terms of intrinsic shear.

Likewise, angular galaxy number density fluctuations n(i)
g (θ) are given by the line-of-sight projection

of three-dimensional number density fluctuations δg as

n(i)
g (θ) =

∫ χhor

0
dχ p(i)(χ) δg (χθ, χ) . (6.12)

The distribution of galaxies is expected to follow the distribution of dark matter, so that the galaxy
clustering power spectra should be related to Pδδ, the (cold dark) matter power spectrum. However, to
date it is unknown how much the galaxy clustering deviates from dark matter clustering, in particular
on small scales. This is usually expressed in terms of the galaxy bias bg, which is a function of both
angular scale k and redshift or line-of-sight distance χ. Hence, one can write

Pgg(k, χ) = b2
g(k, χ) Pδδ(k, χ) (6.13)

Pgδ(k, χ) = bg(k, χ) rg(k, χ) Pδδ(k, χ) ,

where to describe the cross-correlation between matter and galaxy clustering, we introduced a corre-
lation coefficient rg in the second equality.

The intrinsic alignment power spectra depend on the intricacies of galaxy formation and evolution
within their dark matter environment. Again, precise models of the intrinsic alignment have to rely on
baryonic physics and are currently not available. For symmetry reasons we parameterize our lack of
knowledge about the intrinsic alignment power spectra similarly to the galaxy bias as

PII(k, χ) = b2
I (k, χ) Pδδ(k, χ) (6.14)

PδI(k, χ) = bI(k, χ) rI(k, χ) Pδδ(k, χ) ,

with the intrinsic alignment bias bI and correlation coefficient rI. Although the power spectrum PgI
could in principle contain a third, independent correlation coefficient, we assume that it is sufficient to
write

PgI(k, χ) = bI(k, χ) rI(k, χ) bg(k, χ) rg(k, χ) Pδδ(k, χ) , (6.15)

i.e. we hypothesize that correlations between intrinsic number density fluctuations and intrinsic align-
ments can entirely be traced back to the effects of the intrinsic alignment bias and the galaxy bias.
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We insert the parameterizations Eqs. 6.13, 6.14 and 6.15 into the set of Limber equations and can this
way relate all power spectra entering Eqs. (6.4-6.6) to the three-dimensional matter power spectrum:

C(i j)
GG(`) =

∫ χhor

0
dχ

q(i)(χ) q( j)(χ)
χ2 Pδδ

(
`

χ
, χ

)
(6.16)

C(i j)
IG (`) =

∫ χhor

0
dχ

p(i)(χ) q( j)(χ)
χ2 × bI

(
`

χ
, χ

)
rI

(
`

χ
, χ

)
Pδδ

(
`

χ
, χ

)
(6.17)

C(i j)
II (`) =

∫ χhor

0
dχ

p(i)(χ) p( j)(χ)
χ2 × b2

I

(
`

fK(χ)
, χ

)
Pδδ

(
`

χ
, χ

)
(6.18)

C(i j)
gg (`) =

∫ χhor

0
dχ

p(i)(χ) p( j)(χ)
χ2 × b2

g

(
`

χ
, χ

)
Pδδ

(
`

χ
, χ

)
(6.19)

C(i j)
gG (`) =

∫ χhor

0
dχ

p(i)(χ) q( j)(χ)
χ2 × bg

(
`

χ
, χ

)
rg

(
`

χ
, χ

)
Pδδ

(
`

χ
, χ

)
(6.20)

C(i j)
gI (`) =

∫ χhor

0
dχ

p(i)(χ) p( j)(χ)
χ2 bg

(
`

χ
, χ

)
rg

(
`

χ
, χ

)
× bI

(
`

χ
, χ

)
rI

(
`

χ
, χ

)
Pδδ

(
`

χ
, χ

)
. (6.21)

6.2. KiDS+GAMA: constraints on Horndeski gravity from
cross-correlations of current surveys

In this Section we present cosmological constraints on Horndeski theories of gravity obtained from
the joint analysis of tomographic cosmic shear power spectra from ∼ 450deg2 of data from the KiDS
survey, galaxy-matter cross-correlation power spectra of foreground galaxies from the GAMA survey
and background KiDS sources, and the angular clustering power spectra of the same GAMA galaxies.

This work extends the analysis of van Uitert et al. (2018), carried out in a ΛCDM scenario, to the
parameters that fully describe the evolution of linear perturbations in Horndeski gravity, which we
introduced in Sec. 2.6.2; however, our results are obtained with a numerical implementation that is
completely independent from the one used in van Uitert et al. (2018). To validate our implementa-
tion, before producing constraints on Horndeski gravity we demonstrate that our ΛCDM results show
excellent agreement with those of van Uitert et al. (2018). Our likelihood module, developed for the
sampler Monte Python (Audren et al., 2013), will be publicly released, with the goal of providing
the cosmological community with a benchmarked weak lensing inference pipeline that is able to pro-
duce cosmological constraints both within the concordance model and in an extended modified gravity
scenario.

Our analysis also represents an important cross-check of the robustness of the cosmological con-
straints derived by van Uitert et al. (2018), which alleviated the existing tension between the fiducial
cosmological analysis of the KiDS survey (Hildebrandt et al., 2017) and the Planck results (Planck
Collaboration et al., 2016a).

The cosmological inference module developed in our analysis is completely independent from the
pipeline used in van Uitert et al. (2018), having been written in a different programming language
and for a different likelihood sampler; only the data input in the form of power spectra catalogues is
shared between the two analyses. With our new likelihood module the user has the freedom to choose
all possible combinations of the three probes to analyse, allowing them to either consider the different
probes singularly, in pairs or all together. The user can also choose whether to perform the analysis
in a ΛCDM scenario or in a Horndeski gravity context. For all the possible probe combinations we
find excellent agreement with van Uitert et al. (2018) and we present constraints on the Horndeski
functions in each of these configurations.

We start in Sec. 6.2.1 describing the motivation for a joint analysis that considers cosmic shear,
galaxy-galaxy lensing and angular clustering; in Sec.6.2.2 we briefly describe the theoretical back-
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ground for the three probes in terms of their projected power spectra; in Sec.6.2.3 we provide details
concerning our methodology, such as the calculation of the covariance, the intrinsic alignment and
baryonic feedback models employed in our analysis; in Sec.6.2.4 we show our results, first in terms
of comparison with the constraints obtained by van Uitert et al. (2018), and subsequently focusing on
the constraints on Horndeski parameters. The conclusions from this analysis will be drawn in Sec. 6.4
and compared with those reached in the Stage IV-analysis of Sec. 6.3.

6.2.1. Introduction: multi-probe analyses

The statistic describing at lowest order the galaxy spatial distribution is the two-point correlation
function, which in the past provided early evidence for the ΛCDM model (Baugh, 1996; Eisenstein &
Zaldarriaga, 2001; Saunders et al., 2000; Huterer et al., 2001; Hamilton & Tegmark, 2002; Cole et al.,
2005; Tegmark et al., 2006). Today, studying the spatial distribution of galaxies and its evolution in
time is crucial to analyse possible extensions to the cosmological concordance model, in particular to
shed light on the true nature of cosmic acceleration. However, the interpretation of galaxy clustering
is complicated by galaxy bias, the relation between the galaxy spatial distribution and the theoretically
predicted matter distribution.

In addition to galaxy clustering, weak gravitational lensing has become one of the principal probes
of cosmology, providing a direct measurement of the total mass distribution including dark and bary-
onic matter. Distortions in the galaxy shapes of background galaxies are caused by fluctuations of
the gravitational field of the large-scale structure in the foreground (Bartelmann & Schneider, 2001).
Information on these distortions can be extracted by correlating the observed shapes of galaxies, i.e.
studying the so-called cosmic shear field (for a review, see Kilbinger, 2015), which we introduced
in the previous Chapters. Alternatively, one can correlate the positions of lens galaxies in the fore-
ground (tracing the large-scale structure) with the shapes of source galaxies in the background, i.e.
considering the galaxy-matter cross-correlation, often referred to as galaxy-galaxy lensing, introduced
in Sec. 6.1.

The shape distortions produced by gravitational lensing, while cosmologically informative, are ex-
tremely difficult to measure, since the induced source galaxy ellipticities are at the percent level, and a
number of systematic effects can obscure the signal. For this reasons, only recently have cosmic shear
measurements begun to provide competitive constraints on cosmological parameters. Galaxy–galaxy
lensing measurements have also matured to the point where their combination with galaxy clustering
breaks degeneracies between the cosmological parameters and bias, thereby helping to constrain dark
energy (see e.g. Kwan et al., 2017).

Most cosmic shear studies to date have been using the shear correlation functions (e.g. Heymans
et al., 2013; Abbott et al., 2016; Hildebrandt et al., 2017) or its equivalent in Fourier space, the shear
power spectrum (e.g. Brown et al., 2003; Heymans et al., 2005; Kitching et al., 2007; Lin et al.,
2012; Kitching et al., 2014; Köhlinger et al., 2016; Abbott et al., 2016; Alsing et al., 2017; Köhlinger
et al., 2017), to constrain cosmological parameters. An important result of the fiducial cosmic shear
analyses of the Canada-France-Hawaii Lensing Survey (CFHTLenS; Heymans et al., 2013) and the
Kilo Degree Survey (KiDS; Hildebrandt et al., 2017), two of the most constraining surveys to date, is
that they prefer a cosmological model that is in mild tension with the best-fitting cosmological model
from Planck Collaboration et al. (2016a). The first cosmological results from the Dark Energy Survey
(DES; Abbott et al., 2016) are consistent with Planck, but their uncertainties are considerably larger.
Also, the result from the Deep Lens Survey (DLS; Jee et al., 2016) agrees with Planck. This tension
is currently being further investigated in order to understand its origin: if confirmed and not due to yet
unexplored systematics, it could potentially lead to very interesting new cosmological scenarios (see
e.g. Battye & Moss, 2014; MacCrann et al., 2014; Kitching et al., 2016; Joudaki et al., 2017).

Modern optical imaging surveys measure the positions and gravitational lensing-induced shears of
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millions of galaxies. From these measurements, one can compute two fields on the sky: the spin-0
galaxy overdensity field, δg, and the spin-2 weak lensing shear field, γ. Two-point cross-correlations
between these fields are powerful cosmological probes, as they are sensitive to both the geometry of
the Universe and the growth of structure. Joint fits to multiple two-point correlations offer the possibil-
ity of breaking degeneracies between cosmological and nuisance parameters, as well as significantly
improving cosmological constraints.

In the past a number of studies have combined individual large-scale structure probes with SNIa
or Cosmic Microwave Background (CMB) measurements (see e.g. Betoule et al., 2014; Abbott et al.,
2016; Planck Collaboration et al., 2016a; Alam et al., 2017). In both of these cases, the information
from the two sets of probes is largely uncorrelated. However, weak lensing and galaxy clustering, i.e.
the major cosmological probes from large galaxy surveys, are highly correlated with each other in that
they are tracers of the same underlying density field, and in that they share common systematic effects.
Moreover, future surveys will cover large, overlapping regions of the observable Universe and will
therefore not be statistically independent. In general, each cosmological probe provides a measure-
ment of the cosmic structures through a different physical field, such as density, velocity, gravitational
potentials, and temperature. A promising way to test for new physics, such as modified gravity, is
to look directly for deviations from the expected relationships of the statistics of the different fields.
Consequently, a multi-probe analysis based on correlated photometric probes can no longer simply
combine the optimal versions of individual analyses. Instead, to take full advantage of the power of
combining probes of large-scale structure, one must build a tailored analysis pipeline that can model
cosmological observables and their correlated systematics consistently. In addition to this modeling
framework, multi-probe analyses require the ability to compute joint covariance matrices that properly
account for the cross-correlation of various observables. The integrated treatment of the probes from
the early stages of the analysis will thus provide the cross-checks and the redundancy needed not only
to achieve high-precision but also to challenge the different sectors of the cosmological model.

Several earlier studies have considered joint analyses of various cosmological probes. Mandelbaum
et al. (2013); Cacciato et al. (2013) and Kwan et al. (2017) for example derived cosmological con-
straints from a joint analysis of galaxy-galaxy lensing and galaxy clustering. Recently, Singh et al.
(2017) performed a joint analysis of CMB lensing as well as galaxy clustering and weak lensing. Fur-
thermore, Eifler et al. (2014) and Krause & Eifler (2017) have theoretically investigated joint analyses
for photometric galaxy surveys by modelling the full non-Gaussian covariance matrix between cos-
mic shear, galaxy-galaxy lensing, galaxy clustering, photometric Baryon Acoustic Oscillations (BAO),
galaxy cluster number counts and galaxy cluster weak lensing.

The combination of galaxy clustering, cosmic shear, and galaxy-galaxy lensing measurements, in
particular, powerfully constrains structure formation in the late universe. It has been recognized for
more than a decade that such a combination contains a tremendous amount of complementary infor-
mation, as it is remarkably resilient to the presence of nuisance parameters that describe systematic
errors and non-cosmological information (Joachimi & Bridle, 2010).

Such a combined analysis has recently been executed by van Uitert et al. (2018), who presented
a joint analysis of cosmic shear, galaxy–galaxy lensing and galaxy clustering using power spectrum
measurements, combining weak lensing from ∼450 deg2 of KiDS with a spectroscopic galaxy sample
from the Galaxies And Mass Assembly (GAMA) survey in ∼180 deg2 of KiDS–GAMA overlap area.

In their analysis van Uitert et al. (2018) did not combine the different cosmological probes at the
likelihood level; instead they followed a more optimal ‘self-calibration’ approach by modelling them
within a single framework, as this enables a coherent treatment of systematic effects and a lifting of
parameter degeneracies (Nicola et al., 2017). They adopted a formalism from Schneider et al. (2002) to
estimate power spectra by performing simple integrals over the real-space correlation functions using
appropriate weight functions. In a last step they computed the power spectrum covariance matrix and
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combined it with theoretical predictions to derive constraints on cosmological parameters from a joint
fit to the measured power spectra.

In the following, after briefly reviewing the theoretical background behind the power spectra for the
three probes considered both in this work and in van Uitert et al. (2018), we describe the methodology
we followed for our analysis. Since this shares some aspects with that of van Uitert et al. (2018), we
will focus in particular those aspects that are different, in particular when altered in a modified gravity
with respect to a standard ΛCDM scenario. We will not repropose here some of the details presented
in van Uitert et al. (2018) (especially those concerning the computation of the power spectra from the
correlation functions) that are totally unchanged with respect to their analysis. We refer the reader to
the original paper van Uitert et al. (2018) for details regarding these common aspects.

6.2.2. Power spectra

The data vector for the analysis carried out in van Uitert et al. (2018) (and shared by our analysis)
is represented by estimates of the projected power spectrum for each probe, as a function of the
tomographic bin and the angular multipole `.

Although the shear correlation functions may be easier to measure, power spectrum estimators have
a number of advantages (Köhlinger et al., 2016). Firstly, they enable a clean separation of different
`-modes, which makes it easier to identify systematics that may affect only certain `-modes. Fur-
thermore, the covariance matrix of the power spectra is more diagonal than its real-space counterpart
and this also helps towards a cleaner separation of scales. Finally, the power spectrum estimators can
be readily modified to extract the B-mode part of the signal, which should be consistent with zero at
lowest order in lensing if systematics are absent and hence serves as a systematic check.

For the estimation of the power spectra, the authors of van Uitert et al. (2018) followed the for-
malism, originally developed for cosmic shear only by Schneider et al. (2002), to calculate the power
spectra by performing simple integrals over the real-space correlation functions using appropriate
weight functions. van Uitert et al. (2018) extended the formalism to galaxy–galaxy lensing and galaxy
clustering, integrating over the corresponding real-space correlation functions, which can be readily
measured with existing public code.

There are several advantages from this type of approach to power spectra estimation. Computing
power spectra directly from the data, for example using a quadratic estimator (Hu & White, 2001), is
usually a complicated and CPU-intensive task (e.g. Köhlinger et al., 2016). This is particularly chal-
lenging for cosmic shear studies as the high signal-to-noise regime of the cosmological measurements
is on relatively small scales, thus requiring high resolution measurements. Alternatively, pseudo-C`

methods can be used (Hikage et al., 2011; Asgari et al., 2018), but they are sensitive to the details of
the survey mask.

We conform to van Uitert et al. (2018) in calling the power spectra associated to cosmic shear,
galaxy-galaxy lensing and galaxy clustering as PE, Pgm, Pgg, respectively. The cosmic shear label
stands for E-mode, as in fact van Uitert et al. (2018) also measured the B-modes power spectra: they
found that the inclusion of B-modes corrections shifted their main cosmological result by less than
0.5σ and therefore decided to ignore those B-modes corrections. Since PE does not vary rapidly with
`, van Uitert et al. (2018) only needed a few `-bins to capture most of the cosmological information.
They used five logarithmically-spaced bins, whose logarithmic means range from ` = 200 to ` = 1500.
Pgm and Pgg are estimated adopting the same ` ranges.

Modifications of Poisson equation and ratio of Bardeen potentials

In order to provide equations for the power spectra of the three probes in a general modified gravity
scenario, we need to introduce the modifications to the Poisson equation and the ratio of the Bardeen
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potentials that distinguish a modified gravity theory from General Relativity in absence of anisotropic
stress. In Newtonian gauge the linear perturbation equations in Fourier space in a general modified
gravity scenario are given by

Φ = −
3
2

ΩmH2
0

k2

δ

a
µ(k, χ) (6.22)

Ψ

Φ
= η(k, χ) (6.23)

where µ and η are in general functions of both time and scale, and equal to 1 in General Relativity in
absence of anisotropic stress. The equations presented in the following are for this generic modified
gravity scenario, and the ones used in van Uitert et al. (2018) for ΛCDM can be deduced from ours
by setting µ = η = 1 identically. For all our power spectrum estimators we assume the Limber
approximation, in the form given by Loverde & Afshordi (2008), which uses `+1/2 in the argument of
the matter power spectrum but no additional prefactors. A number of recent papers have demonstrated
for the case of cosmic shear that these approximations are very good on the scales that we consider
(Kitching et al., 2017; Lemos et al., 2017; Kilbinger et al., 2017).

Cosmic shear

The weak lensing convergence power spectrum can be obtained from the 3-D matter power spectrum
Pδ via

PE
i j(`) =

3H2
0Ωm

2c2
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0
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(
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χ
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)
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(
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χ

, χ

)2
1 + η

(
`+1/2
χ , χ

)
2


2

(6.24)

where

gi(χ) =

∫ χH

χ
dχ′ni(χ′)

χ′ − χ

χ′
(6.25)

and with H0 the Hubble constant, Ωm the present-day matter density parameter, c the speed of light,
χ the comoving distance, a(χ) the scale-factor, fK(χ) the comoving angular diameter distance, χH the
comoving horizon distance, and g(χ) a geometric weight factor, which depends on the source redshift
distribution pz(z)dz = pχ(χ)dχ:

g(χ) =

∫ χH

χ
dχ′ pχ(χ′)

fK(χ′ − χ)
fK(χ′)

. (6.26)

Hence for a given theoretical matter power spectrum Pδ, we can predict the observed convergence
power spectrum once the source redshift distribution is specified.

Galaxy-galaxy lensing

The projected galaxy-matter power spectrum is related to the matter power spectrum via:

Pgm
i j (`) = bi
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(
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)2
1 + η

(
`+1/2
χ , χ

)
2


(6.27)

with pF(χ) the redshift distribution of the foreground sample. We assume that the galaxy bias is linear
and deterministic11 such that bi is the effective bias of the lens sample labelled by the index i.
11In other words, the cross-correlation coefficient r presented in e.g. Pen (1998); Dekel & Lahav (1999) is fixed to unity.
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Galaxy clustering

The angular power spectrum can be determined from the matter power spectrum via:

Pgg
i j (`) = bib j

∫ χH

0
dχ

pFi(χ)pF j(χ)
χ2 Pδ

(
` + 1/2
χ

; χ
)
µ

(
` + 1/2
χ

, χ

)2

(6.28)

where, as above, b corresponds to the effective bias of the sample. The 0th order Limber approxima-
tion for the angular correlation function is accurate to less than a percent at scales ` > 5χ(z0)/σχ, with
χ(z0) the comoving distance of the mean redshift of the foreground sample and σχ the standard devi-
ation of the galaxies’ comoving distances around the mean (see Sect. IV-B of Loverde & Afshordi,
2008). For our low- and high-redshift foreground samples, we obtain scales of ` & 15 and ` & 25,
respectively. Since the minimum ` scale entering the analysis is 150, the Limber approximation is
valid here.

6.2.3. Cosmological inference

We derive cosmological constraints from the measured tomographic power spectra in a Bayesian
framework. For the estimation of model parameters θ we sample the likelihood

− 2 lnL(θ) =
∑
α, β

dα(θ)(C−1)αβ dβ(θ) , (6.29)

where the indices α, β run over the probes considered, as well as the tomographic bins and the angular
multipole `. The analytical covariance matrix C is calculated as outlined below. Eq. 6.29 assumes
that the estimated power spectra are Gaussian distributed around their mean. While this is a valid
approximation at high ` as a consequence of the Central Limit Theorem, we notice that its validity
may be questionable at lower angular multipoles.

The components of the data vector are calculated as

dα(p) = Pα − 〈Pα(θ)〉model , (6.30)

where the dependence on cosmological parameters enters only in the calculation of the predicted
power spectra, 〈Pα(`)〉model.

For an efficient evaluation of the likelihood (in the ΛCDM case) we employ the Nested Sampling
algorithm Multinest (Feroz et al., 2009) included in the framework of the cosmological likelihood
sampling package Monte Python (Audren et al., 2013) with which we derive all cosmology-related
results in this analysis.

Covariance

As Eq. 6.29 indicates, the covariance matrix, or more precisely its inverse, the precision matrix, is
the decisive quantity that determines the errors on cosmological parameters. Obtaining precision
matrices is an area of active research; methods can be broadly separated into 3 categories: estimation
from numerical simulations, estimation from data directly, and analytical modeling/computation. We
briefly summarize the current state of research, before detailing the prescription that was followed for
the calculation of our covariance matrix, which we share with the analysis of van Uitert et al. (2018).

• Estimation from simulations The precision matrix can be estimated from numerical N-body
simulations using a standard Maximum Likelihood estimator. However, already in the single-
probe case this approach is computationally prohibitively expensive due to the number of sim-
ulations required, as well as the high particle resolution and box size needed in the simulations
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to overcome the intrinsic noise properties of the estimator; the situation becomes even more
complicated in the multi-probe case, where the covariance is substantially larger.

• Estimation from data Estimating covariance matrices from the data directly (through bootstrap
or Jackknife estimators12) avoids any assumptions about cosmological or other model parame-
ters that need to be specified in the numerical simulation approach (and in the theoretical mod-
eling approach). However, given the limited survey area, it is difficult to obtain a sufficiently
large number of regions of sky for the method to work, and it is unclear if these regions can be
treated as independent.

• Analytical modeling/computation The analytic computation of weak lensing covariances was
detailed in Krause et al. (2017), which derive straightforward expressions for Fourier and con-
figuration space covariances under the assumption that the density field is Gaussian, so that the
four-point correlation of the density field can be expressed as the product of two-point correla-
tions. On small and intermediate scales this assumption is inaccurate; analytical expressions of
non-Gaussian weak lensing covariances were derived in Takada & Jain (2009) and Sato et al.
(2009). These expressions were generalized to a 3x2pt analysis13 in Krause & Eifler (2017).
The main advantage of an analytical (inverse) covariance matrix is the lack of a noisy estima-
tion process, which substantially reduces the computational effort in creating a large number of
survey realizations; the disadvantage is that the modeling of the non-Gaussian covariance terms,
which employs a halo model is less precise compared to sophisticated numerical simulations.

Our covariance matrix is unchanged with respect to the one used by van Uitert et al. (2018), i.e. is
determined analytically, following a similar formalism as in Hildebrandt et al. (2017). The assumption
behind this is that the covariance does not depend on the model considered. In order to compute the
covariance matrix, an initial fiducial cosmology as well as values for the effective galaxy bias are
assumed, which are the same used in van Uitert et al. (2018): for the fiducial cosmology, the best-fit
parameters from Planck Collaboration et al. (2016a) are used, while the effective galaxy biases are
assumed to be unity for both bins. We refer to van Uitert et al. (2018) for the description of an iterative
approach that is used to update the covariance with the parameter values of the best-fitting model
after the initial cosmological inference; such an iterative approach benefits greatly by the use of an
analytical covariance matrix, which is relatively fast and easy to compute. We also refer to van Uitert
et al. (2018) for details on how the complication arising from the partial sky overlap of the different
probes is accounted for.

The analytical covariance matrix consists of three terms: (i) a Gaussian term that combines the
Gaussian contribution to sample variance, shape noise, and a mixed noise-sample variance term, es-
timated following Joachimi et al. (2008), (ii) an in-survey non-Gaussian term from the connected
matter trispectrum, and (iii) a super-sample covariance term, which deals with the cosmic variance
modes that are larger than the survey window and couple to smaller modes within. To compute the
latter two terms, van Uitert et al. (2018) closely followed the formalism outlined in Takada & Hu
(2013), which can be readily expanded to galaxy-galaxy lensing and clustering measurements (e.g.
Krause & Eifler, 2017). Intrinsic alignments and baryonic feedback are not included in the covariance
modelling, since given that the measurements are dominated by the cosmological signals, the impact
of the astrophysical nuisances on sample variance is small.

The covariance matrix includes the analytic cross-covariance between the different probes. One
advantage of this approach is that it properly accounts for super-sample covariance. This term is typi-
cally underestimated when the covariance matrix is estimated from the data itself, for example through
12These estimators (the latter being a more sophisticated version of the former) first divide the data set into subsamples,

which consist either of individual objects or groups of objects, which are then resampled in a particular way (Efron,
1979).

13‘3x2pt’ is the technical name given to this type of cross-correlation analysis shear-shear, shear-density, density-density.
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Figure 6.1.: Normalised redshift distribution of the four tomographic source bins of KiDS (solid lines),
used to measure the weak gravitational lensing signal, and the normalised redshift distribution of the
two spectroscopic samples of GAMA galaxies (histograms), that serve as the foreground sample in the
galaxy-galaxy lensing analysis and that are used to determine the angular correlation function. For plotting
purposes, the redshift distribution of GAMA galaxies has been multiplied by a factor 50.

jackknifing, or when it is estimated from simulations. Another advantage is that it is free of simulation
sampling noise, which could significantly affect a joint probe analysis with large data vectors.

Data

Our power spectra are estimated from the KiDS-450 shape measurement catalogues (Hildebrandt
et al., 2017), to measure the weak lensing signals, and the foreground galaxies from the GAMA survey
(Driver et al., 2009, 2011; Liske et al., 2015) from the three equatorial patches that are completely
covered by KiDS, to determine the galaxy-matter cross-correlation as well as the projected clustering
signal.

The Kilo Degree Survey (KiDS; de Jong et al., 2013) is an optical imaging survey that aims to
span 1500 deg2 of the sky in four optical bands, u, g, r and i, complemented with observations in five
infrared bands from the VISTA Kilo-degree Infrared Galaxy (VIKING) survey (Edge et al., 2013).
The exceptional imaging quality particularly suits the main science objective of the survey, which is
constraining cosmology using weak gravitational lensing. In this study, we use data from the most
recent public data release, the KiDS-450 catalogues (Hildebrandt et al., 2017; de Jong et al., 2017),
which contains the shape measurement and photometric redshifts of 450 deg2 of data, split over five
different patches on the sky, which include the three equatorial patches that completely overlap with
GAMA.

In this work, we use the samples associated to the same four KiDS tomographic source redshift bins
adopted in Hildebrandt et al. (2017) and van Uitert et al. (2018), spanning in redshift zB the intervals
0.1 < zB ≤ 0.3, 0.3 < zB ≤ 0.5, 0.5 < zB ≤ 0.7 and 0.7 < zB ≤ 0.9. The redshift distribution of the four
source samples is shown in Fig. 6.1: note that the redshift distributions are higher in correspondence of
the relevant redshift bin, but their tails extend beyond that. The main properties of the source samples,
such as their average redshift, number density and ellipticity dispersion, can be found in Table 1 of
Hildebrandt et al. (2017).
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GAMA (Driver et al., 2009, 2011; Liske et al., 2015) is a highly complete spectroscopic survey
up to a Petrosian r-band magnitude of 19.8. In total, it targeted ∼240 000 galaxies. van Uitert et al.
(2018) used a subset of ∼180 000 galaxies that reside in the three patches of 60 deg2 each, as those
patches fully overlap with KiDS. Due to the flux limit of the survey, GAMA galaxies have redshifts
between 0 and 0.5. van Uitert et al. (2018) selected two GAMA samples, a low redshift sample with
zspec < 0.2, and a high redshift sample with 0.2 < zspec < 0.5. Their redshift distributions are also
shown in Fig. 6.1.

Model fitting

To costrain the cosmological parameters, we used the sampler MontePython and built a likelihood
module to analyse the three probes we considered. The likelihood module is based on the one devel-
oped in Köhlinger et al. (2017) for the KiDS-450 quadratic estimator analysis of cosmic shear data
from the same 450deg2 considered in our analysis. The likelihood module has been built having
in mind as high priority the flexibility to choose different combinations of cosmological probes and
allowing the user to perform the analysis in both a standard ΛCDM cosmological scenario and an
extended modified gravity scenario within the Horndeski class of theories.

In contrast, the analysis of van Uitert et al. (2018) was carried out with a modified version of the
sampler CosmoMC (Lewis & Bridle, 2002) for cosmological parameter estimation. The version used
in van Uitert et al. (2018) is based on the one used in Joudaki et al. (2017) for the fiducial KiDS cosmic
shear analysis, which includes prescriptions to deal with intrinsic alignment, the effect of baryons on
the non-linear power spectrum, and systematic errors in the redshift distribution. van Uitert et al.
(2018) extended the module to consider galaxy–galaxy lensing and angular clustering, and modified
the code in order to fit the power spectra instead of the correlation functions.

Non-linear structure formation and baryonic feedback model

In order to derive accurate cosmological parameters from the cosmic shear power spectrum measure-
ment it is important to account for a number of astrophysical systematics and model accurately the
power on non linear scales.

The effect of non-linear structure formation and baryonic feedback can be now modelled in Mon-
tepython using a module called hmcode (available to us in a beta, still unreleased version), which is
based on the results of Mead et al. (2015). Feedback from AGN modifies the matter distribution at
small scales (e.g. Semboloni et al., 2013), resulting in a modification of the dark matter power spec-
trum at high multipoles. Although the full physical description of baryon feedback is not established
yet, hydrodynamical simulations offer one route to estimate its effect on the matter power spectrum.
In general, the effect is quantified through a bias function with respect to the dark-matter only Pδ (e.g.
Semboloni et al., 2013; Harnois-Déraps & van Waerbeke, 2015):

b2(k, z) ≡
Pmod
δ (k, z)

Pref
δ (k, z)

, (6.31)

where Pmod
δ and Pref

δ denote the power spectra with and without baryon feedback, respectively. The
KiDS cosmic shear analysis presented in Köhlinger et al. (2017) makes use of the results obtained
from the OverWhelmingly Large Simulations (OWLS van Daalen et al., 2011) by implementing the
fitting formula for baryon feedback from Harnois-Déraps & van Waerbeke (2015):

b2(k, z) = 1 − Abary[Aze(Bz x−Cz)3
− DzxeEz x] , (6.32)

where x = log10(k/1 Mpc−1) and the terms Az, Bz, Cz, Dz, and Ez are functions of the scale factor
a = 1/(1 + z). These terms also depend on the baryonic feedback model and we refer the reader to
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Harnois-Déraps & van Waerbeke (2015) for the specific functional forms and constants. Additionally,
Köhlinger et al. (2017) introduce a general free amplitude Abary that they use as a free parameter to
marginalise over while fitting for the cosmological parameters.

In the formalism of Mead et al. (2015), baryonic effects are accounted for by modifying the param-
eters that describe the shape of dark matter haloes. AGN and supernova feedback, for example, blow
material out of the haloes, making them less concentrated. This is incorporated in hmcode by choosing
the following form for the mass-concentration relation,

c(M, z) = cmin
1 + zf

1 + z
, (6.33)

with zf the formation redshift of a halo, which depends on halo mass. The free parameter in the fit,
cmin, modulates the amplitude of this mass-concentration relation. It also sets the amplitude of a ‘halo
bloating’ parameter η0 which changes the halo profile in a mass dependent way (see equation 26 of
Mead et al., 2015). van Uitert et al. (2018) followed the recommendation of Mead et al. (2015) by
fixing η0 = 1.03 − 0.11cmin. Setting cmin = 3.13 corresponds to a dark-matter-only model. The result-
ing model is verified with power spectra measured on large hydrodynamical simulations, and found to
be accurate to 5% for k ≤ 10h/Mpc. This is a relative uncertainty, not an absolute one (the absolute
accuracy of any theoretical matter power spectrum prediction is not well established), and indicates
the relative accuracy of their halo model fits with respect to hydrodynamical simulations, which are
uncertain themselves. In addition, as Fig. 2 of Mead et al. (2015) shows, this accuracy is strongly k-
dependent, and at small k (k < 0.05 h/Mpc), the agreement is much better than 5%. Therefore, putting
a meaningful prior on the accuracy of the theory predictions is currently out of reach. However, the
main source of theoretical uncertainty is caused by baryonic feedback, which mainly affects the small
scales (high k). By marginalizing over cmin, one can account for this main source of uncertainty. This
will be done in the following every time we show the contour plots for pairs of parameters, marginal-
ising over all the others.

Intrinsic alignments model

Intrinsic alignments affect both the cosmic shear power spectrum and the galaxy-matter power spec-
trum. For the cosmic shear power spectrum, there are two contributions, the intrinsic-intrinsic (II)
and the shear-intrinsic (GI) terms (see Eqs. 5 and 6 of Joudaki et al., 2017). The galaxy-matter power
spectrum has a galaxy-intrinsic contribution (e.g. Joachimi & Bridle, 2010). These three terms can be
computed once the intrinsic alignment power spectrum is specified, which is assumed to follow the
non-linear modification of the linear alignment model (Catelan et al., 2001; Hirata & Seljak, 2004;
Bridle & King, 2007; Hirata & Seljak, 2010):

PδI(k, z) = −AIAC1ρcrit
Ωm

D(k, z)
Pδ(k, z) , (6.34)

with Pδ(k, z) the full non-linear matter power spectrum, D(k, z) the linear growth factor, normalised
to unity at z = 0 and in general dependent on scale and redshift in modified gravity, ρcrit the critical
density, C1 = 5 × 10−14h−2M−1

� Mpc3 a normalization constant, and AIA the overall amplitude, which
is a free parameter in our model. Our intrinsic alignment model is minimally flexible with a single,
global amplitude parameter.

To model Pgm and Pgg, we assume that the galaxy bias is constant and scale-independent. Since
we include non-linear scales in our fit, this bias should be interpreted as an effective bias. It is fitted
separately for the low-redshift and high-redshift foreground sample. The scale dependence of the
bias has been constrained in observations by combining galaxy-galaxy lensing and galaxy clustering
measurements for various flux-limited samples and was found to be small (e.g. Hoekstra et al., 2002;
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Table 6.2.: Priors on the fit parameters. Rows 1–5 contain the priors on cosmological parameters, rows 6–
9 the priors on astrophysical ‘nuisance’ parameters, rows 10–13 the priors on modified gravity parameters.
All priors are flat within their ranges.

Parameter Description Prior range
Ωch2 Cold dark matter density [0.01, 0.99]
Ωbh2 Baryon density [0.019, 0.026]

ln(1010As) Scalar spectrum amplitude [1.7, 5.0]
ns Scalar spectral index [0.7, 1.3]
h Dimensionless Hubble parameter [0.64, 0.82]

AIA Intrinsic alignment amplitude [−6, 6]
cmin Baryonic feedback amplitude [2, 4]
bz1 Galaxy bias of low-z lens sample [0.1, 5]
bz2 Galaxy bias of high-z lens sample [0.1, 5]
α̂B Prop. coeff. αB = α̂BΩDE [−2, 2]
α̂M Prop. coeff. αM = α̂MΩDE [−2, 2]
Ω0 Prop. coeff. Ω(τ) = Ω0a(τ) [0, 1]
ks screening scale [0, 10]Mpc−1

Simon et al., 2007; Jullo et al., 2012; Cacciato et al., 2012). We refer to van Uitert et al. (2018) for
a study of how this approximation of scale-independent bias is benign in their analysis as well as in
ours.

For cosmic shear, the intrinsic alignments contributions are given by:
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while for galaxy-galaxy lensing, the intrinsic alignments contribution is given by:
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. (6.37)

Priors

We adopt top-hat priors on the cosmological parameters, as well as the physical ‘nuisance’ parameters
discussed earlier in this section. The prior ranges are listed in Table 6.2. Furthermore, we fix kpivot,
the pivot scale where the scalar spectrum has an amplitude of As, to 0.05/Mpc. Even though the sum
of the neutrino masses is known to be non-zero, we adopt the same prior as Hildebrandt et al. (2017)
and van Uitert et al. (2018) and fix it to zero.
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Parameter PE PE + Pgm + Pgg PE + Pgm PE + Pgg Pgm + Pgg

Ωcdmh2 0.139+0.051
−0.041 0.165+0.033

−0.045 0.142+0.032
−0.043 0.177+0.035

−0.038 0.175+0.034
−0.051

ln1010As 2.65+0.21
−0.92 2.47+0.44

−0.48 2.63+0.43
−0.72 2.22+0.14

−0.49 2.53+0.41
−0.48

Ωbh2 0.0225+0.0030
−0.0033 0.0225+0.0030

−0.0033 0.0225+0.0036
−0.0031 0.0225+0.0034

−0.0029 0.0226+0.0035
−0.0029

ns 1.09+0.21
−0.08 0.95+0.10

−0.21 1.03+0.20
−0.15 0.93+0.11

−0.19 0.89+0.09
−0.18

h 0.74+0.07
−0.06 0.73+0.08

−0.07 0.74+0.08
−0.04 0.73+0.07

−0.07 0.74+0.08
−0.05

cmin 3.24+0.74
−0.54 2.87+0.34

−0.79 3.19+0.79
−0.36 2.98+0.69

−0.66 2.66+0.25
−0.65

AIA 0.91+0.75
−0.57 1.24+0.37

−0.36 1.36+0.36
−0.37 0.88+0.65

−0.47 1.38+0.42
−0.43

biasz1 - 1.17+0.16
−0.18 0.84+0.15

−0.21 1.25+0.16
−0.17 1.18+0.18

−0.19

biasz2 - 1.29+0.18
−0.19 1.55+0.28

−0.33 1.49+0.20
−0.19 1.27+0.19

−0.20

Ωm 0.30+0.08
−0.08 0.35+0.06

−0.06 0.30+0.06
−0.07 0.38+0.06

−0.07 0.36+0.06
−0.08

σ8 0.77+0.07
−0.16 0.74+0.06

−0.09 0.77+0.08
−0.12 0.68+0.05

−0.08 0.77+0.07
−0.10

S 8 0.760+0.039
−0.038 0.792+0.032

−0.031 0.756+0.039
−0.035 0.752+0.036

−0.036 0.840+0.045
−0.040

Table 6.3.: Mean and marginalised 68% confidence interval on the parameters listed, obtained with our
new likelihood in a ΛCDM scenario with the priors specified in Tab. 6.2.

6.2.4. Results

Our cosmological results have two primary goals:

• test the validity of the new pipeline in the ΛCDM scenario, with the goal of reproducing the
results from van Uitert et al. (2018)

• produce constraints on the α functions belonging to the Bellini & Sawicki (2014) parametriza-
tion

Therefore the presentation of our results will follow these two main guidelines for the analysis of
our work.

Comparison with van Uitert et al. (2018)

In Figs. 6.2, 6.3, 6.4, 6.5, 6.6 we show the comparison of our constraints with those produced by van
Uitert et al. (2018). For all combinations of probes considered we find excellent agreement with the
previous KiDSxGAMA analysis. Our results are obtained with a completely different implementation,
which strengthens both the validity of the KiDS analysis and the consistency of our likelihood. In
Fig. 6.7 the comparison is performed between constraints obtained only with our likelihood, and
specifically comparing the cosmic shear only case with the three probes-case. We notice how the
combination of probes tightens significantly the costraints, in particular on nuisance parameters such
as the intrinsic alignment amplitude A.

Tabs. 6.3, 6.4 and 6.5 summarise the comparison between our results and the ones obtained by van
Uitert et al. (2018): they show respectively the mean and 68% confidence intervals obtained from
our analysis, the mean and 68% confidence intervals from van Uitert et al. (2018) and the percentage
difference between the two analyses at the level of both the mean values and the 68% confidence
intervals. We notice in particular the excellent agreement in the parameter S 8 = σ8

√
Ωm/0.3, derived
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Parameter PE PE + Pgm + Pgg PE + Pgm PE + Pgg Pgm + Pgg

Ωcdmh2 0.134+0.044
−0.046 0.153+0.030

−0.040 0.132+0.032
−0.044 0.169+0.034

−0.039 0.159+0.035
−0.041

ln1010As 2.76+0.30
−1.06 2.63+0.36

−0.44 2.81+0.52
−0.78 2.30+0.21

−0.53 2.67+0.37
−0.45

Ωbh2 0.0224+0.0036
−0.0034 0.0225+0.0035

−0.0035 0.0224+0.0036
−0.0034 0.0225+0.0034

−0.0035 0.0225+0.0034
−0.0033

ns 1.11+0.19
−0.05 0.97+0.15

−0.19 1.08+0.22
−0.07 0.97+0.14

−0.18 0.93+0.08
−0.22

h 0.74+0.08
−0.04 0.73+0.09

−0.06 0.74+0.08
−0.03 0.73+0.04

−0.08 0.73+0.09
−0.08

cmin 3.27+0.73
−0.23 2.97+0.56

−0.71 3.28+0.72
−0.22 3.08+0.81

−0.39 2.86+0.30
−0.84

AIA 0.92+0.78
−0.59 1.27+0.39

−0.40 1.46+0.41
−0.42 0.88+0.70

−0.50 1.38+0.46
−0.49

biasz1 - 1.12+0.14
−0.15 0.78+0.14

−0.19 1.21+0.14
−0.15 1.13+0.15

−0.16

biasz2 - 1.25+0.16
−0.17 1.45+0.27

−0.33 1.45+0.18
−0.18 1.23+0.16

−0.17

Ωm 0.29+0.07
−0.10 0.33+0.05

−0.06 0.29+0.06
−0.08 0.36+0.06

−0.06 0.34+0.05
−0.06

σ8 0.80+0.09
−0.18 0.78+0.06

−0.08 0.81+0.09
−0.14 0.70+0.05

−0.08 0.80+0.07
−0.09

S 8 0.761+0.040
−0.038 0.800+0.030

−0.026 0.769+0.037
−0.032 0.759+0.036

−0.032 0.835+0.038
−0.037

Table 6.4.: Mean and marginalised 68% confidence interval on the parameters listed, obtained by van
Uitert et al. (2018) in a ΛCDM scenario with the priors specified in Tab. 6.2.

Parameter PE PE + Pgm + Pgg PE + Pgm PE + Pgg Pgm + Pgg

% diff.
mean

% diff.
68% int.

% diff.
mean

% diff.
68% int.

% diff.
mean

% diff.
68% int.

% diff.
mean

% diff.
68% int.

% diff.
mean

% diff.
68% int.

Ωcdmh2 3.8 2.0 7.7 10.4 8.0 1.7 4.5 1.1 9.7 11.9
ln1010As 4.0 16.8 5.8 14.3 6.1 11.3 3.2 15.1 5.3 8.7

Ωbh2 0.4 10.0 0 10.0 0.4 4.3 0 8.7 0.4 4.5
ns 1.8 13.6 2.2 6.9 4.2 22.4 3.7 3.9 3.7 9.2
h 0.1 10.0 0.1 4.5 0.4 0.9 0.2 12.9 0.4 25.2

cmin 0.8 32.8 3.5 11.0 2.9 22.5 3.2 12.0 6.9 20.7
AIA 1.1 3.5 1.8 8.3 6.8 12.2 0.2 7.6 0.6 11.3

biasz1 - - 3.8 15.4 7.6 10.5 3.2 15.4 4.3 18.2
biasz2 - - 3.4 13.5 6.9 2.1 2.5 8.9 3.1 14.4
Ωm 3.4 7.0 6.6 14.3 6.2 1.8 3.7 7.9 7.9 20.6
σ8 3.6 15.8 4.0 3.9 4.9 13.2 2.6 0.8 3.1 0.10
S 8 1.5 0.6 1.0 13.5 1.6 6.1 0.9 5.9 0.6 14.9

Table 6.5.: Percentage difference on the mean values and on the 68% marginalised confidence intervals
obtained from our analysis with respect to the results of van Uitert et al. (2018). The mean values and 68%
marginalised confidence intervals of both analyses can be found in Tabs. 6.3 and 6.4.
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Figure 6.2.: Comparison of the marginalised 68 and 95% contours obtained with our new likelihood
module for the KiDSxGAMA analysis and the results obtained by van Uitert et al. (2018). Here the probe
considered is cosmic shear alone (PE).
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Figure 6.3.: Same as in Fig. 6.2, but here the combination of probes considered is given by all three probes
in this analysis, i.e. cosmic shear, galaxy-galaxy lensing and angular clustering (PE + PGM + PGG).
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Figure 6.4.: Same as in Fig. 6.2, for the combination of cosmic shear and galaxy-galaxy lensing (PE +

PGM).
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Figure 6.5.: Same as in Fig. 6.2, for the combination of cosmic shear and angular clustering (PE + PGG).
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Figure 6.6.: Same as in Fig. 6.2, for the combination of galaxy-galaxy lensing and angular clustering
(PGM + PGG).
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Figure 6.7.: Comparison between the constraints obtained with our 3 probes (PE + PGM + PGG) and with
cosmic shear alone (PE).
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Parameter PE PE + Pgm + Pgg PE + Pgm PE + Pgg Pgm + Pgg

Ωcdmh2 0.122+0.019
−0.029 0.126+0.017

−0.024 0.122+0.018
−0.024 0.124+0.017

−0.026 0.134+0.018
−0.023

ln1010As 2.95+0.41
−0.35 2.91+0.33

−0.23 3.01+0.38
−0.28 2.82+0.41

−0.31 2.95+0.29
−0.22

Ωbh2 0.0225+0.0036
−0.0037 0.0227+0.0035

−0.0040 0.0222+0.0015
−0.0035 0.0226+0.0037

−0.0038 0.0228+0.0035
−0.0032

ns 1.07+0.23
−0.11 1.14+0.16

−0.05 1.13+0.17
−0.05 1.15+0.15

−0.04 1.09+0.21
−0.07

h 0.73+0.09
−0.09 0.74+0.08

−0.03 0.76+0.06
−0.02 0.74+0.08

−0.03 0.74+0.08
−0.03

cmin 3.18+0.82
−0.34 3.40+0.60

−0.23 3.33+0.67
−0.20 3.36+0.64

−0.24 3.25+0.74
−0.26

AIA 0.57+1.09
−0.66 1.36+0.47

−0.43 1.35+0.51
−0.45 0.70+0.97

−0.60 1.40+0.51
−0.52

biasz1 - 1.00+0.06
−0.08 0.99+0.13

−0.14 1.06+0.08
−0.14 1.00+0.07

−0.09

biasz2 - 1.05+0.06
−0.09 1.15+0.11

−0.21 1.16+0.09
−0.18 1.03+0.06

−0.09

σ8 0.85+0.09
−0.09 0.88+0.06

−0.04 0.91+0.09
−0.06 0.84+0.09

−0.06 0.92+0.06
−0.05

Ωm 0.27+0.04
−0.05 0.27+0.02

−0.03 0.25+0.03
−0.04 0.27+0.03

−0.05 0.29+0.02
−0.03

S 8 0.800+0.050
−0.047 0.834+0.037

−0.034 0.832+0.041
−0.038 0.790+0.043

−0.039 0.894+0.046
−0.043

α̂B 0.19+0.47
−0.53 0.55+0.42

−0.62 0.44+0.48
−0.73 0.56+0.56

−0.67 0.50+0.45
−0.64

α̂M 0.56+0.44
−0.78 0.12+0.31

−0.43 0.53+0.54
−0.72 0.34+0.38

−0.73 0.23+0.35
−0.58

ks 0.17+0.02
−0.17 0.12+0.05

−0.09 0.14+0.01
−0.14 0.10+0.02

−0.10 0.11+0.03
−0.10

Table 6.6.: Mean and marginalised 68% confidence interval on the parameters listed obtained with all
different combinations of probes. The parameterization for the α functions is given by proportionality to
ΩDE so that the free parameters become the proportionality coefficients (in this case α̂B and α̂B, since we
fix αT = 0 and α̂K = 0.01).

from Ωm and σ8, i.e. the two parameters whose degenerate combination cosmic shear is most sensitive
to (Hildebrandt et al., 2017).

Interpolations between the redshift distributions of the two foreground GAMA samples and the four
KiDS cosmic shear background distributions (shown in Fig. 6.1) are needed, in order to calculate the
galaxy-galaxy lensing signal (cf. Eq. 6.27), because the cosmic shear bins have redshift distributions
more extended in z-range than the foreground samples, and at the same time the foreground samples
have a finer resolution in z. In our implementation we decided to interpolate both background and
foreground distributions. All interpolations are B-splines obtained with scipy in Python, specifically
with the combination of the methods splrep and splev. The interpolation of the redshift distributions
is a very delicate step in the implementation of the likelihood module: the lack of smoothness in the
lensing source distributions makes the result strongly dependent on the methodology used for the
interpolation.

The key to the success in the comparison with van Uitert et al. (2018) results has been the use of
the Mead et al. (2015) recipe for the non-linear prescription. This has been made possible only very
recently, thanks to a yet unpublished version of HMcode developed for the Boltzmann code Class
(Lesgourgues, 2011).

The constraints on Modified Gravity have benefited greatly from this last point.

101



CHAPTER 6. TESTING DARK ENERGY AND MODIFIED GRAVITY WITH CURRENT AND
FUTURE CROSS-CORRELATIONS OF WEAK GRAVITATIONAL LENSING

Parameter PE PE + Pgm + Pgg

Ωcdmh2 0.130+0.015
−0.021 0.134+0.016

−0.022

ln1010As 3.05+0.19
−0.18 3.07+0.22

−0.20

Ωbh2 0.0223+0.0037
−0.0036 0.0223+0.0040

−0.0035

ns 1.03+0.27
−0.21 1.13+0.17

−0.05

h 0.72+0.10
−0.08 0.76+0.06

−0.02

cmin 3.15+0.85
−0.39 3.27+0.73

−0.37

AIA 0.34+1.12
−0.75 1.30+0.46

−0.40

biasz1 - 1.00+0.05
−0.06

biasz2 - 1.04+0.05
−0.07

σ8 0.78+0.06
−0.08 0.87+0.05

−0.04

Ωm 0.30+0.04
−0.05 0.27+0.02

−0.03

S 8 0.769+0.051
−0.046 0.827+0.037

−0.028

Ω0 0.55+0.45
−0.20 0.46+0.50

−0.46

ks 0.10+0.04
−0.05 0.08+0.03

−0.07

Table 6.7.: Mean and marginalised 68% confidence interval on the parameters listed, obtained considering
only cosmic shear (PE) and the combination of cosmic shear, galaxy-galaxy lensing and galaxy clustering
(PE + Pgm + Pgg). The parameterization for the α functions is the planck linear parameterization im-
plemented in hi_class, where the α functions depend on only one function of time Ω(τ) (see Eqs. 6.38),
which is assumed to be proportional to the scale factor, Ω(τ) = Ω0a(τ). The only free parameter as far as
the α functions are concerned becomes then Ω0.
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Modified gravity constraints

In order to produce our constraints on the functions describing Horndeski theories at linear level, we
used hi_class code (Zumalacárregui et al., 2017) as our Boltzmann code to extract our linear power
spectrum in a Horndeski scenario.

The problem of non-linear contributions in this modified gravity context is even more exacerbated
than in ΛCDM, since clear prescriptions for modified gravity models on nonlinear scales are even less
abundant and reliable than for the standard cosmological scenario.

We decided to produce our nonlinear corrections using HMcode, which take into account baryonic
effects. The main obstacle in this sense has been the absence of an implementation of HMcode in
hi_class. We developed ourselves our version of HMcode for hi_class, using the one provided
to us for Class as a starting point, but modifying substantially the code, not easily transferable to a
modified gravity context.

With this at hand, we decided to investigate the strength of our likelihood by testing different time
parameterizations for the α functions. We started with the usual proportionality to ΩDE , and set con-
straints on the α̂ coefficients. Specifically, we considered α̂B and α̂M on top of our usual cosmological
parameters. For both of them we took flat priors spanning [−2,+2], however as we can see from the
very sharp cutoff in the plane α̂B-α̂M in Fig. 6.8, hi_class applies some stability checks that prevents
the chains to end up in regions of parameter space where both of them are significantly negative. The
investigation of these stability conditions is of the highest priority for extensions of this analysis.

Rather than plotting results for many different combinations of probes, we show in Fig.6.8 and
6.9 the comparison of the constraints obtained when considering cosmic shear only and the three
probes, and we choose two different parameterization in time for the EFT functions. The first one is the
standard proportionality to ΩDE; the second parameterization is called planck linear in hi_class,
since it has been studied in Planck Collaboration et al. (2016b). It represents a subclass of models,
specifically k-essence conformally coupled to gravity. In this parameterization the four α functions
can specified through a single function of time Ω (τ) affecting three of the α functions:

αK =
3(ρDE+pDE)

H2 +
3Ω(ρm+pm)

H2(1+Ω) −
Ω′′−2aHΩ′

a2H2(1+Ω)

αM = Ω′

aH(1+Ω)

αB = −αM

αT = 0 .

(6.38)

The parameterization for Ω(τ) is given by Ω0a(τ): the only free modified gravity parameter becomes
then Ω0, for which we take the same prior range Ω0 ∈ [0, 1] as in Planck Collaboration et al. (2016b).

In Figs. 6.8 and 6.9 we present marginalised 68% and 95% contours from the full likelihood analysis
carried out on the parameter space. Our numerical results, always compatible with ΛCDM, are sum-
marised in Tabs. 6.6 and 6.7. In this modified gravity case, since the chains are slower, we employed
highly parallelised affine invariant sampling through the CosmoHammer (Akeret et al., 2012) suite,
embedded in MontePython. CosmoHammer embeds in turn emcee, an implementation by Foreman-
Mackey et al. (2013) of the affine invariant ensemble sampler by Goodman & Weare (2010).

Screening mechanisms were modelled in a phenomenological way, by applying a scale-dependent
filter to the effective Newtonian coupling, the gravitational slip and the linear growth factor:

µ(k, a)→ µGR + µMG(a, k) exp(−(k/ks)2)

η(k, a)→ ηGR + ηMG(a, k) exp(−(k/ks)2)

D+(k, a)→ D+GR(a) + D+MG(a, k) exp(−(k/ks)2).

(6.39)

This achieves the recovery of General Relativity predictions on scales k > ks. A typical value for ks

would be 0.1hMpc−1; we vary over this scale with a flat prior spanning [0, 10]Mpc−1.
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Figure 6.8.: Comparison of the marginalised 68 and 95% contours obtained with the three probes (PE +

PGM + PGG) and cosmic shear alone (PE) on the parameter space described earlier and augmented with the
Horndeski parameters α̂B and α̂M .
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Figure 6.9.: Same as in Fig. 6.8, this time considering however the time dependence Ω(τ) = Ω0a(τ) for
Ω, the only free function in this parameterization, related to the α functions by Eqs. 6.38.
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6.3. Cosmological constraints on Horndeski gravity from future
cross-correlations

In this Section we take a look at future constraints on Horndeski gravity that may come from the
synergy of different probes, which include cosmic shear. We produce forecasts considering cosmic
shear, galaxy clustering, CMB primary anisotropies and CMB lensing. The forecasts are produced for
future Stage IV surveys, such as Euclid (Laureijs et al., 2011) for galaxy clustering and cosmic shear,
and the next generation ground-based Cosmic Microwave Background experiment CMB-S4 (Abaza-
jian et al., 2016). Both CMB and optical surveys are expected to provide a dramatic leap forward in
our understanding of the fundamental nature of space and time and the evolution of the Universe and
in unravelling the origin of its accelerated expansion. The constraints we produce include numeri-
cal estimates for the expected sensitivity on the parameters that fully describe the evolution of linear
perturbations in Horndeski gravity, introduced in Sec. 2.6.2.

A dataset as big as the one provided by the combination of stage IV surveys has the statistical
power to achieve the significance required to constrain parameters belonging to a very large parameter
space (including gravitational, cosmological, astrophysical and nuisance parameters). Additionally,
the inclusion of CMB data in the analysis can help tighten the constraints coming from optical surveys
on neutrino masses; this in turn will prove crucial in breaking degeneracies between neutrino masses
and modifications of gravity (Baldi et al., 2014; Baldi & Villaescusa-Navarro, 2016).

However, such a big parameter space calls for sophisticated statistical techniques for the inference
process. They will be certainly needed in the real data analysis phase, but are also important now,
in preparation for these surveys. It would be highly desirable to have a realistic expectation of the
constraining power of these surveys, which is as unbiased as possible in terms of assumptions entering
the statistical analysis.

In particular, the Gaussian approximation for the posterior distribution, underlying the common use
of the Fisher matrix as a method to produce forecasts for future experiments, needs to be carefully
assessed in order to avoid erroneous conclusions on the expected sensitivity of future surves. This
motivated the comparison, in this analysis, of results obtained with both a Fisher matrix approach and
a full MCMC sampling of the posterior.

We give more details concerning the statistical tools employed in this analysis in Sec. 6.3.1. In
Sec. 6.3.2 we present the probes considered and, very importantly, describe carefully all their possible
correlations. In Sec. 6.3.3 we present our results. We draw our conclusions in Sec.6.4, jointly with
those from the analysis presented in the previous Section.

This Section contains some of the results presented in the paper “Investigating scalar-tensor gravity
with statistics of the cosmic large-scale structure” (Reischke et al., 2018), co-authored by the author of
this thesis. The paper, submitted for publication to MNRAS and available online at arXiv:1804.02441,
was authored by R. Reischke, A. Spurio Mancini, B. M. Schäfer and Ph. M. Merkel.

6.3.1. MCMC and Fisher forecasts

All probes considered (see Sec. 6.3.2 for a detailed description of each of them) are decomposed in
spherical harmonic modes {aX

`m}, where the superscript X labels the specific probe. Given statistical
isotropy and homogeneity, the likelihood of a set of modes to be represented by its covariance is given
by a product over the ` modes (and m modes, as evident by the exponent of each term that takes into
account the multiplicity of the 2` + 1 m modes for each `, since the covariance does not depend on m)

L({a`m}) =
∏
`

p [{a`m} |Ca(`)]2`+1 . (6.40)
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n0 z̄ nbin fsky `min `max

30 arcmin−2 0.9 6 15.000 deg2 10 2000, 2500

Table 6.8.: Basic parameters of the experimental setup for a stage IV experiment. While the noise prop-
erties of galaxy clustering and cosmic shear is controlled by n0, nbin and σε ≈ 0.3, the noise of CMB
anisotropies depends on various parameters, which are summarised in Thornton et al. (2016). The two
values for `max refer to LSS and CMB observations respectively.

We assume that the modes are Gaussian distributed, i.e.

p ({a`m} |Ca(`)) =
1√

(2π)NdetC(`)
exp

[
−

1
2

a†
`mC−1

a (`)a`m
]
. (6.41)

The covariance matrix evaluated at the fiducial model Ĉa has, for each ` and independently of m, the
form given by

Ĉa =



TT T E 0 T D Tg1 . . . Tgn Tγ1 . . . Tγn

ET EE 0 ED 0 . . . 0 0 . . . 0
0 0 BB 0 0 . . . 0 0 . . . 0

DT DE 0 DD Dg1 . . . Dgn Dγ1 . . . Dγn

g1T 0 0 g1D g1g1 . . . g1gn g1γ1 . . . g1γn
...

...
...

...
...

. . . . . .
...

. . .
...

gnT 0 0 gnD gngn . . . gng1 gnγn . . . gnγn

γ1T 0 0 γ1D γ1g1 . . . γ1gn γ1γ1 . . . γ1γn
...

...
...

...
...

. . . . . .
...

. . .
...

γnT 0 0 γnD γng1 . . . γngn γnγ1 . . . γnγn



.

The expression for the average of the logarithmic likelihood averaged over the data is

〈L〉 =
∑
`

(2` + 1)
[
ln (detCa) + tr(C−1

a Ĉa)
]
, (6.42)

If the prior is uniform, the posterior is proportional to the likelihood, allowing us to sample the like-
lihood directly to reconstruct the shape of the posterior distribution. The sampling is done with an
affine invariant sampler based on the work of Goodman & Weare (2010). After initial burn in, we let
the random walkers of the sampling method run for a time period equal to multiple times the auto-
correlation time; this way we check for convergence of the chains, in combination with running many
chains.

Our forecasts with the Fisher matrix method are a straightforward implementation of the expression
for the Fisher matrix for data that are Gaussian distributed (Tegmark et al., 1997)

Fµν =

`max∑
`=`min

2` + 1
2

tr
(
∂µln[Ca(`)] ∂νln[Ca(`)]

)
. (6.43)

6.3.2. Cosmological probes considered and their correlations

A crucial part of this analysis resides in the correct evaluation of the inter-probe correlations. From a
statistical point of view, considering the different probes as correlated rather than independent leads to
a decreasing signal with respect to the independent case. However, precious cosmological information
is encoded in the cross-correlations and a valid cosmological model has to explain this, which may
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Figure 6.10.: Right: Cumulative signal-to-noise ratio (see Eq. 6.44). For a survey with settings as in
Tab. 6.8 adding galaxy clustering and cosmic shear with (×) and without (+) cross-correlation.

finally lead to increased constraining power. We can appreciate this concept by looking at Fig.6.10,
depicting the signal-to-noise ratio for the two probes galaxy clustering and cosmic shear, as a function
of the multipole `. The signal-to-noise ratio is given by

Σ2(≤ `) =

`max∑
`=`min

2` + 1
2

tr
(
C−1

a (`)Sa(`)C−1
a (`)Sa(`)

)
, (6.44)

If we were to consider the two probes as uncorrelated we would overestimate the signal-to-noise ratio
of ' 16%. However, considering their cross-correlation in the analysis does not automatically imply
that our constraints are less stringent than the uncorrelated case by the same amount; on the contrary,
the inter-probe correlation contains valuable cosmological information, which tightens our constraints
as long as our model is able to account for it.

We proceed here to list the probes considered in our analysis and for each of them we describe their
power spectra:

• Cosmic shear. For this analysis we consider tomographic cosmic shear, since we need to
perform fast evaluations of the covariance matrices in our MCMC chains, which would be
extremely computationally challenging in the 3D cosmic shear formalism. We have already
derived the expressions for the cosmic shear power spectrum in terms of the spectra of the
Bardeen potentials Φ and Ψ, which we report here for simplicity; the angular power spectrum
of the lensing potential ψ is related to that of the Bardeen potentials by

Cψiψ j(`) =

∫ χH

0

dχ
χ2 Wψi(χ)Wψ j(χ)PΦ+Ψ(`′/χ, χ) . (6.45)

where the tomographic efficiency function is

Wψi(χ) =
1

aχ

∫ χi+1

min(χ,χi)
dχ′p(χ′)

dz
dχ′

(
1 −

χ

χ′

)
, (6.46)

The redshift distribution is given by the usual expression

p(z)dz ∝ z2 exp

− (
z
z0

)3/2 . (6.47)
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The noise contribution to the observed lensing spectra is given by the Poissonian shape noise
arising from the finite number of galaxies in each bin that contribute to the lensing signal

Ĉψiψ j = Cψiψ j + σ2
ε

nbin

n̄
δi j, (6.48)

In this work we did not consider intrinsic alignments of galaxies and we stress that in the future
this could be a potentially interesting feature to investigate in order to quantify their impact on
cosmological inference.

• Galaxy clustering. The main issue affecting galaxy clustering analyses is the missing knowl-
edge of completely reliable models for the bias relating the distribution of matter to that of
galaxies. If the bias is known or assumed, the angular clustering power spectrum reads

Cgig j(`) =

∫ χH

0

dχ
χ2 Wgi(`

′/χ, χ)Wg j(`
′/χ, χ)Pδ(`′/χ, χ), (6.49)

and in addition we will have also in this case a Poissonian shot noise term,

Ĉgig j = Cgig j +
nbin

n̄
δi j. (6.50)

The galaxy weight function is defined as

Wgi(`/χ, χ) =
H(χ)

c
b(`/χ, χ)p(χ) if χ ∈ [χi, χi+1). (6.51)

The model we assume for the galaxy bias is linear in redshift and without scale dependence
Ferraro et al. (2015)

b(χ) = b0(1 + z(χ)) . (6.52)

In our forecasts we do not consider correlations between the six bins; if we were to consider a
higher number of bins, following Bailoni et al. (2017) we would have to include their correla-
tions in the forecacst to avoid biases up to 30% in the estimated errors.

• CMB primary anisotropies. Maps of CMB temperature (T ) and polarisation (E, B) data are
given in spherical harmonics with some instrumental noise whose root mean square is σP. We
characterize the noise contributions to the observed CMB spectra by the (Gaussian) beam size
θbeam of the experiment and its instrumental sensitivity (white noise) with respect to temperature
and polarization (Knox, 1995)

NP(`) ≡ 〈nP∗
`mnP′

`m〉 = θ2
beamσ

2
P exp

`(` + 1)
θ2

beam

8ln2

 δPP′ . (6.53)

diagonal in P as the noise of different maps is uncorrelated. The angular power spectrum is then
given by

〈aP∗
`maP′

`′m′〉 ≡ ĈPP′(`) =
(
CPP′(`) + NP(`)

)
δ``′δmm′ . (6.54)

and is diagonal in ` and m due to statistical isotropy and homogeneity.

• CMB lensing. The lensing potential for the CMB lensing case is

ψCMB =

∫ χH

0
dχWCMB(Φ + Ψ), (6.55)

where the lensing efficiency function for the CMB, similarly to Eq. 6.46, is given by

WCMB(χ) =
χ∗ − χ

χ∗χ

H(χ)
ca

. (6.56)
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and where χ∗ is the comoving distance to the last scattering surface The CMB lensing signal then
has a similar expression to Eq.6.45, but Eq. 6.56 replaces the weight function of cosmic shear.
The noise properties of the lensing signal are completely determined by the reconstruction of
the lensing signal and its expression is given in Hu & Okamoto (2002); Okamoto & Hu (2003).

• Cross-correlations of cosmic shear, galaxy clustering and CMB primary anisotropies and
lensing. The cross-spectra can be derived assigning weight functions and power spectra accord-
ing to the combination of probes considered. For example galaxy clustering and cosmic shear
will have a cross-spectrum given by

Cgiψ j(`) =

∫ χH

0

dχ
χ2 Wgi(`

′/χ, χ)Wψ j(`
′/χ)Pδ,Φ+Ψ(`′/χ, χ). (6.57)

to which a Poissonian noise term must be added, again due to the finite sample of the same
galaxies used to calculate the lensing and the clustering signal. The correlation of cosmic shear
the CMB lensing signal is described e.g. in Kitching et al. (2014); Merkel & Schäfer (2017)
and similarly we can calculate the correlation between galaxy clustering and CMB lensing. Due
to the integrated Sachs Wolfe effect (iSW, Sachs & Wolfe, 1967), CMB temperature flucta-
tions are also correlated with the clustering, shear and CMB temperature signal. The iSW has a
characteristic weight function

WiSW(k, a) =
3

2χ3
H

a2E(a)F′(k, a), (6.58)

where the derivative is taken with respect to a and

F(k, a) = µ(k, a)
D+(k, a)

a

(
1 +

1
γ(k, a)

)
. (6.59)

In our analysis we do not consider the cross-correlation between CMB lensing and polarization,
while the EB and T B cross-spectra vanish for parity arguments.

6.3.3. Cosmological constraints

The specifications used in our analysis for the optical surveys are reported in Tab. 6.8, while for
the CMB anisotopies noise we refer to Thornton et al. (2016) as it depends on many parameters.
We used linear predictions for the matter power spectrum (obtained with the software hi_class
code (Zumalacárregui et al., 2017)). Halo model corrections (Smith et al., 2003; Takahashi et al.,
2012) were applied to this linear power spectrum and baryonic effects modelled via a fitting formula
by Schneider & Teyssier (2015), which adds some nuisance parameters to our analysis such as the
average halo mass Mc. Similarly to what done in the KiDSxGAMA case, screening mechanisms were
modelled in a phenomenological way, by applying a scale-dependent filter to the effective Newtonian
coupling, the gravitational slip and the linear growth factor:

µ(k, a)→ µGR + µMG(a, k) exp(−(k/ks)2)

γ(k, a)→ γGR + γMG(a, k) exp(−(k/ks)2)

D+(k, a)→ D+GR(a) + D+MG(a, k) exp(−(k/ks)2).

(6.60)

This achieves the recovery of General Relativity predictions on scales k > ks.

In producing our forecasts we choose the time parameterization for the α functions given by the
proportionality to the dark energy density fraction

αi = α̂iΩDE (6.61)
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Parameter fiducial σ σF prior comments
α̂K 0.05 - - [0,∞) fixed
α̂B 0.1 0.067 0.037 [0,∞)
α̂M 0.2 0.050 0.035 [0,∞)
α̂T 0.01 - - [0,∞) fixed
w0 -0.8 0.0135 0.0062 [−1, 1]
wa 0.2 0.030 0.017 [0,∞)∑

mν[eV] 0.05 0.017 0.012 [0,∞)
Ωm0 0.314 0.0011 0.0009 [0,∞)
σ8 0.834 0.0021 0.0017 [0,∞)
h 0.674 0.0013 0.0009 [0,∞)

Ωb 0.0486 0.00019 0.00013 [0,∞)
ns 0.962 0.00145 0.00139 [0,∞)
zre 11.357 0.28 0.026 [0,∞)
ks 0.1 0.011 0.013 [0,∞)
b 0.68 0.0016 0.0013 [0,∞)

Mc 0.26 0.0024 0.0022 [0,∞)
ηb 0.5 0.0063 0.006 [0,∞)

Table 6.9.: Parameters used for the inference process and the 68% marginalised errors from the Fisher
analysis, σF and the MCMC σ. The fiducial values are taken from Planck Collaboration et al. (2016a),
Schneider & Teyssier (2015) and Ferraro et al. (2015).

and set constraints on the proportionality coefficients. We vary only αB and αM, following the re-
cent constraints on αT from gravitational waves detection and considering that the kineticity αK is
unconstrained by cosmological observations. Additionally, we vary over the standard cosmological
parameters reported in Tab. 6.9. We consider a time-varying equation of state for the dark energy
component, parameterised by w0 and wa and include other phenomenological and astrophysical pa-
rameters that form in total a 17-dimensional parameter space, such as the reionisation redshift zre, the
bias parameter b and the baryons-to-photons ratio ηb.

In Fig. 6.11 we show constraints on αB and αM obtained marginalising over all the other parame-
ters. In Fig. 6.12 we show a comparison between the 68% probability contours obtained with both an
MCMC sampling and a Fisher matrix analysis. Each contour is marginalised over all the other param-
eters. The plot clearly shows that the Fisher matrix performs usually well in predicting degeneracies
directions, however this is not true for the combination given by the sum of neutrino masses and the
braiding proportionality coefficient. Furthermore, the errors obtained with the Gaussian approxima-
tion are constantly underestimated, confirming the Cramér-Rao bound.

6.4. Discussion and conclusions

In this Chapter we have investigated constraints achievable from current and future cross-correlation
analyses of cosmic shear with other probes. We have analysed real data from the KiDS and GAMA
survey, in a joint framework for tomographic cosmic shear power spectra, galaxy-galaxy lensing power
spectra and angular clustering power spectra. Our numerical implementation reproduces the results of
van Uitert et al. (2018) and extends their analysis to a Horndeski scenario. As far as future surveys
are concerned, we have produced forecasts, with both a full MCMC reconstruction of the posterior
distribution and a Fisher matrix analysis, for a combination of cosmic shear, galaxy clustering and
CMB primaries and lensing, as can be achieved by future Stage IV surveys such as Euclid and CMB-
S4.
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Figure 6.11.: Joint plot of the resulting posterior estimated from the MCMC for the remaining free modi-
fied gravity parameters. All other parameters have been marginalised over. Note that the contours shown
do not correspond to certain σ-regions, but rather depict the full posterior distribution.

In the KiDSxGAMA analysis we have considered two different time parameterizations for the α
functions: the one where these EFT functions are proportional to ΩDE has also been analysed in the
work on future Stage IV surveys. We find that, as expected, constraints achievable from future surveys
are tighter than those obtained with current data, especially considering that in the forecast analysis we
had a larger parameter space including a parameterised dark energy component and a neutrino compo-
nent. We estimate that future Stage IV surveys will allows us to constrain the Horndeski gravitational
parameters with relative errors below 10%; this number is likely to be even reduced when cosmolog-
ical surveys are considered in synergy with gravitational waves experiments, which may provide us
with tight bounds on αM (Lombriser & Taylor, 2016).

A comparison between the two analyses must be carried out with care, however, due to the fact that
the probes considered are not the same: in particular, the forecast analysis includes CMB primaries
and lensing. On the other hand, in the KiDSxGAMA we have included a model for the intrinsic
alignments contributions, while these have been neglected in our forecasts. Future work should go
into the direction of extending these analyses with e.g. evaluating the KiDSxGAMA likelihood jointly
with the CMB likelihood from Planck Collaboration et al. (2016a) and including an intrinsic alignment
model in the forecast analysis.

Common to both analyses is the difficult interpretation of parameter space as far as the Horndeski
functions are considered. Assuming proportionality to ΩDE, in the forecasts the priors for the propor-
tionality coefficients have been set to be strictly positive, while in the KiDSxGAMA analysis these
parameters have been let free to vary over negative values as well. However, in the latter analysis
we have found a very distinctive cutoff in the α̂B − α̂M plane, which prevents the chains to end up
in regions of parameter space where both proportionality coefficients are significantly negative. This
is due to some stability checks (in particular those concerning the positivity of the speed of sound)
which reject points ending up in the aforementioned regions of parameter space. These regions are,
however, interesting because they may refer to models of relevance, such as f (R) for which the relation
αB = −αM holds. While we have found that some of these stability conditions may in some cases be
harmlessly bypassed, because they reject points in parameter space even when they produce a negative
speed of sound only at very early times, the exploration of these stability conditions and their feedback
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Figure 6.12.: Comparison of the MCMC results (green) with the Fisher-matrix forecast (red ellipse).
The contour plot shows the probability only in the 68% region and can therefore be seen as a direct
comparison with the Fisher-matrix, i.e. the outermost contour corresponds to the 1σ region. All contours
are marginalised over all other parameters summarised in Tab. 6.9 where also the marginal errors are given.
The experimental setup is the one described in Tab. 6.8.
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on the class of valid models is an active area of research. The very recent analysis of Denissenya &
Linder (2018), for example (but see also a discussion on this in Kreisch & Komatsu, 2017), has in-
vestigated the relation between parameterization and stability in Horndeski gravity, showing that the
relation is not trivial. In particular, they have shown how stability evolves with redshift, picking out
different regions of parameter space that can have complex structure: the final allowable stable part of
parameter space is the intersection of stability for all redshifts. This can exhibit disconnected islands
in parameter space and also shows significant sensitivity to the time dependent form assumed for the
property functions, even for the case where only two property functions contribute, as considered in
our analysis. Denissenya & Linder (2018) conclude that such sensitivity raises questions about the
utility of EFT-like approaches to give robust, general conclusions about modified gravity, and that
therefore simple, model independent parameterizations as binning in redshift (Casas et al., 2017) of
the modified gravitational strengths (introduced in Sec. 2.6.2) can be a highly useful first step in un-
covering signatures of modified gravity. The investigation of these stability conditions seems therefore
a high priority issue to be addressed and had already been pointed out e.g. in the analysis of Planck
Collaboration et al. (2016b).

To conclude, we stress that the contribution given by our KiDSxGAMA analysis is twofold. On the
one hand we have a developed a first likelihood module for Horndeski gravity that can analyse cosmic
shear data, as well as including correlations with galaxy-galaxy lensing and galaxy clustering. On the
other hand, our likelihood module can be also run in a standard ΛCDM scenario and in this regard
our results are in excellent agreement with those of van Uitert et al. (2018). In the future it will be
interesting to carry out a similar analysis with larger data releases from the KiDS survey and with data
from Stage IV surveys such as Euclid.

114



7 Chapter 7

3D cosmic shear: numerical challenges
and 3D lensing random fields for
cosmological inference

In the previous Chapters we highlighted the importance of cosmic shear as one of the most promising
tools for current and future cosmological analyses. We also described how the spherical Fourier-Bessel
decomposition of the cosmic shear field (“3D cosmic shear”) is one way to maximise the amount of
redshift information in a lensing analysis and therefore provides a powerful tool to investigate in
particular the growth of cosmic structure, crucial for dark energy/modified gravity studies. However,
we also already commented on how the computation of simulated 3D cosmic shear covariance matrices
presents numerical difficulties, due to the required integrations over highly oscillatory functions.

In this Chapter we first present and compare two numerical techniques and relative implementations
to perform these integrations; we then show how to generate 3D Gaussian random fields on the sky in
spherical coordinates, starting from the 3D cosmic shear covariances. To validate our field-generation
procedure, we calculate the Minkowski functionals associated to our random fields, compare them
with the known expectation values for the Gaussian case and demonstrate the possibility of performing
parameter inference through Minkowski functionals calculated from 3D cosmic shear data. This is a
first step towards producing fully 3D Minkowski functionals for a lognormal field in 3D to extract
Gaussian and non-Gaussian information from the cosmic shear field, as well as towards the use of
Minkowski functionals as a probe of cosmology beyond the commonly used two-point statistics.

The 3D spherical Fourier-Bessel formalism presents challenging integrals to evaluate numerically:
we highlight them while briefly reviewing the main equations of the 3D cosmic shear formalism, here
specialised to the General Relativity case, in Sec. 7.1. Subsequently we describe two different numer-
ical techniques used to evaluate those integrals, namely the numerical recipes underlying the results
presented in Spurio Mancini et al. (2018a) and Taylor et al. (2018a,b): we present them in Secs. 7.2.1
and 7.2.2, respectively. In Sec. 7.3 we present a comparison of 3D cosmic shear covariance matrices
obtained with the two numerical methods. Having two completely independent numerical techniques
to tackle the 3D cosmic shear integrations, producing results in excellent agreement between them, is
useful for a number of future applications that employ the simulated 3D covariance matrices. These
include e.g. a cross-correlation analysis of 3D cosmic shear and galaxy clustering (see Lanusse et al.,
2015, for a spherical-Bessel analysis of a spectroscopic galaxy clustering survey), or the development
of a Bayesian Hierarchical Model for 3D cosmic shear power spectra estimation (see Alsing et al.,
2016, 2017, for a Bayesian Hierarchical Model for tomography); at the end of the Chapter we dis-
cuss some of these future applications in Sec. 7.7. After having tested the solidity of our numerical
implementation for the calculation of the 3D covariance matrices, in Sec. 7.4 we show how to make
use of these matrices to generate Gaussian random fields on the sky. We explain in particular how to
overcome the difficulties arising from the non-diagonality of the covariance matrices in the radial co-
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ordinate, which originates from the inhomogeneity of the lensing field along the line of sight. We test
the validity of our field-generation procedure in Sec. 7.5, where we briefly describe and then calculate
the Minkowski Functionals of our generated Gaussian random fields, and compare them with their
expectation values, known analytically in the Gaussian case. We also demonstrate how a likelihood
analysis for cosmological inference can be carried out using the estimated Minkowski Functionals.
Our conclusions are reported in Sec. 7.6.

Part of the content of this Chapter is based on the paper “3D cosmic shear: numerical challenges, 3D
lensing random fields generation and Minkowski Functionals for cosmological inference”, by A. Spu-
rio Mancini, P. L. Taylor, R. Reischke, T. Kitching, V. Pettorino, B. M. Schäfer, B. Zieser, P. M. Merkel
(Spurio Mancini et al., 2018b), submitted to PRD and available online at arXiv:1807.11461.

7.1. 3D cosmic shear

In the following Sections we will extensively make use of the 3D cosmic shear equations shown in
the previous Chapter, as our first goal will be to describe two different numerical implementations
that have been developed to perform the challenging integrations characterising the spherical Fourier-
Bessel formalism applied to cosmic shear. Throughout the Chapter we will remain in the framework
of General Relativity; our implementation is capable of producing forecasts for both a standard cos-
mological scenario and a modified gravity setting, but we choose the former because we would like
to compare our predictions with those produced by another, completely independent implementation,
whose computations however need to assume General Relativity. Therefore in the following we review
the main expressions for the spherical Fourier-Bessel formalism describing cosmic shear, specialised
to the General Relativity case. Since we already derived these equations in the previous Chapter in a
more general non-standard gravitational scenario, here we limit ourselves to remind the reader of the
final, main equations that we will need in the following: intermediate expressions, not reported here
for brevity, can be derived from the more general ones for a non-standard gravitational scenario and
reported in the previous Chapter, by setting µ = η = 1.

We will be mainly concerned with the covariance of the coefficients γ̄`m(k) in the spherical Fourier-
Bessel expansion of the cosmic shear field, considering both the signal and noise contribution (Eqs. 5.11
and 5.17) which for General Relativity read

〈
γ̄lm(k)γ̄∗`′m′(k

′)
〉

=
9Ω2

m

16π4χ4
H

(` + 2)!
(` − 2)!

∫
dk̃
k̃2

G`(k, k̃) G`(k′, k̃) δK
``′ δ

K
mm′ (7.1)

and

〈
γ̄`m (k) γ̄`′m′

(
k′
)〉

SN =
σ2
ε

2π2

∫
dz nz(z) j`

[
kχ0(z)

]
j`′

[
k′χ0(z)

]
δK
``′δ

K
mm′ (7.2)

respectively. In these formulas

G`(k, k′) =

∫
dz nz(z) F`(z, k) U`(z, k′) , (7.3)

F`(z, k) =

∫
dzp p(zp|z) j`[kχ0(zp)] , (7.4)

U`(z, k) =

∫ χ(z)

0

dχ′

a(χ′)
χ − χ′

χχ′
j`(kχ′)

√
Pδ (k, z (χ)) (7.5)

and we have assumed that the intrinsic ellipticities of galaxies are uncorrelated.
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We remind the reader that γ̄ are estimates of the shear modes that, in addition to the pure lensing
effect, keep into account the redshift distribution of the lensed galaxies nz(z) and the conditional prob-
ability p(zp|z) of estimating the redshift zp given the true redshift z. The contribution to the total signal
coming from sources situated at different distances is governed by the source density nz(z); through
this term, the survey depth affects the strength of the overall signal. Angular variations are assumed to
be negligible by considering a uniform source density: the number of sources per steradian and red-
shift interval is approximated by the mean nz(z)/(4π) across the sky. The influence of incomplete sky
coverage is ignored in this formalism: for applications to a Fisher matrix analysis, for example, the ef-
fect of partial sky coverage can be well compensated by a multiplying factor fsky denoting the fraction
of sky spanned by the survey, prepended to the expression for the Fisher matrix (Heavens et al., 2006;
Spurio Mancini et al., 2018a). A finite field of view can be incorporated in the analysis by considering
a suitable window function W(n̂) that represents the angular distribution of the sources (e.g. a top hat
filter corresponding to a rectangular field of view). For details on the extended formalism to include
in the analysis this inhomogeneous sampling we refer the reader to e.g. Heavens (2003), while e.g.
Leistedt et al. (2015) consider alternative methods, such as wavelets, to deal with survey geometry in
3D cosmic shear.

Statistical isotropy guarantees that the covariance in Eq. 7.1 does not depend on the multipole order
m, while the assumed full sky coverage also prevents mixing of different ` modes. If the finite field of
view is taken into account, statistical isotropy is broken (e.g. by the absence of data across parts of the
sky) leading to a coupling of different `-modes; furthermore, if the field of view is not square, even for
a fixed ` there will be different results for different m-modes. The lensing weight function, the redshift
errors and the redshift-dependence of the source distribution, instead, always introduce correlations
between the amplitudes of the signal on different scales; the covariance matrix then acquires off-
diagonal terms, the calculation of which is numerically involved (see Kitching et al., 2014, for how
to take these into account using a pseudo-C` approach in 3D). The basis of spherical Bessel functions
leads to integrals with rapidly oscillatory kernels, which in the inference process have to be solved for
a large number of parameter combinations.

7.2. Numerical implementation

In this Section we will briefly describe the two methods used to calculate the correlations from Eqs. 7.1
and 7.2. While one code implements in C++ the Levin collocation method (Levin, 1996, 1997) that
makes use of the periodic oscillations of the Bessel functions and has been used to produce the results
of Zieser & Merkel (2016) and Spurio Mancini et al. (2018a), the other implements the integrations by
matrix multiplications and appropriate use of the Limber approximation (Kaiser, 1992, 1998; Loverde
& Afshordi, 2008) at high `. The second method is a Pythonmodule, implemented in the code GLaSS
and used in Taylor et al. (2018a,b).

7.2.1. Levin integration

The method presented in (Levin, 1996, 1997) can be used for efficient evaluation of rapidly oscillatory
integrals, once certain conditions are satisfied. The main idea behind the method is to transform the
quadrature problem into the solution of a system of linear ordinary differential equations. These are
then tackled by collocation, i.e. choosing candidate solutions (polynomials) and a number of points in
the domain (called collocation points), and selecting that solution which satisfies the given equations
at the collocation points.

As seen in Sec. 7.1 the 3D cosmic shear signal and noise (cf. Eqs. 7.1 and 7.2) present several
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integrals of the form

I1[h] =

∫ z2

z1

dz h (z) j` (kχ (z)) (7.6)

or

I2[h] =

∫ z2

z1

dz h (z) j` (k1χ (z)) j` (k2χ (z)) . (7.7)

The comoving distance between two events at redshift z1 and z2 is given by

χ(z1, z2) =

∫ a(z1)

a(z2)

cda
a2H(a)

= χH

∫ z2

z1

dz
E(z)

, (7.8)

where a is the scale factor and ȧ/a = H(a) = H0E(a) is the Hubble function. Rather than redshift
integrals, Eqs. 7.6 and 7.7 can be rewritten, using dz = dχ E[z(χ)], with the comoving distance as the
integration variable:

I1[h] =
1
χH

∫ χ(z2)

χ(z1)
dχ E[z(χ)] h[z(χ)] j`(kχ) , (7.9)

I2[h] =
1
χH

∫ χ(z2)

χ(z1)
dχ E[z(χ)] h[z(χ)] j`(k1χ) j`(k2χ) . (7.10)

Due to the highly oscillatory nature of the spherical Bessel functions, especially at high ` or k, the
numerical solution of these integrals by standard quadrature routines is extremely inaccurate when
a large number of zero-crossings occurs in the interval [χ(z1), χ(z2)], unless an enormous number
of points is used to sample the integrand: however, the procedure becomes then exceedingly time-
consuming, especially if many combinations of ` and k need to be considered.

Here we describe an alternative method, presented by Levin (1996, 1997), which we use to evaluate
our integrals. It is applicable to integrals of the form

I[F] =

∫ b

a
dx FT (x)w(x) =

∫ b

a
dx 〈F,w〉 (x) , (7.11)

where F(x) = [F1(x), . . . , Fd(x)]T and w(x) = [w1(x), . . . ,wd(x)]T are vectors of functions, for which
the second equality of Eq. 7.11 defines a scalar product 〈, 〉 and the functions wi(x), i = 1, 2, ..., d, but
not Fi(x), are rapidly oscillatory across the integration domain. A matrix of functions A(x) is defined,
such that the derivatives of w(x), denoted by w′(x), fulfill

w′(x) = A(x)w(x) . (7.12)

The components Aiq(x) should not be highly oscillatory. We show below an example of such a matrix
for the particular cases given in Eqs. 7.9 and 7.10. In the Levin formalism a vector p(x) is constructed
to approximate the integrand in Eq. 7.11 by

〈p,w〉′ =
〈
p′ + AT p,w

〉
≈ 〈F,w〉 . (7.13)

The first equality follows from applying the Leibniz rule for derivatives and Eq. 7.12, with 〈p, Aw〉 =〈
AT p,w

〉
. If such a vector is found, then the integral in Eq. 7.11 can be approximated by

I[F] ≈
∫ b

a
dx 〈p,w〉′ (x) = 〈p,w〉 (b) − 〈p,w〉 (a) . (7.14)
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This can be achieved by demanding that both terms should be equal, 〈p,w〉′ = 〈F,w〉, at n collocation
points x j, j = 1, 2, ..., n. The requirement〈

p′ + AT p − F,w
〉

(x j) = 0, j = 1, ..., n (7.15)

generally means that the vector
〈
p′ + AT p − F

〉
must be orthogonal to w at the points x j, for example

by demanding that it should be the null vector:

p′(x j) + AT (x j)p(x j) = F(x j). (7.16)

Finding a vector p which has this property can be achieved by choosing a set of n linearly independent
and differentiable basis functions um(x) and writing each component pi(x) as a linear combination:

pi(x) = c(m)
i um(x), i = 1, ..., d; m = 1, ..., n . (7.17)

Equation 7.16 then leads to the following linear system of equations for the d × n coefficients c(m)
i :

c(m)
i u′m(x j) + Aqic

(m)
q um(x j) = Fi(x j), i, q = 1, ..., d; j,m = 1, ..., n . (7.18)

Levin (1996) showed how to concretely apply this algorithm to several cases of integrals with highly
oscillatory kernels. The performance varies depending on the integrand, but accuracies below 10−6

can often be achieved with less than 10 collocation points. As suggested by Levin (1996), in our
implementation we use equidistant collocation points

x j = a + ( j − 1)
b − a
n − 1

, j = 1, ..., n (7.19)

and choose the n lowest-order polynomials as basis functions:

um(x) =

 x − a+b
2

b − a

m−1

, m = 1, ..., n . (7.20)

We note that the polynomials with m > 1 and the derivatives with m > 2 share the root x = (a + b)/2:
to prevent the linear system of equations from becoming singular, that root should not be used as a
collocation point. The factor 1/(b − a) is included for numerical reasons: if b � 1 or b � 1, the
values of polynomials of different order may differ by several orders of magnitude; the normalising
factor guarantees that |um(x)| ≤ 1 across the integration domain, in order to regulate the range of the
coefficients of the linear system of equations in Eq. 7.18 and thus the condition of the corresponding
matrix. Suitable vectors w for the integrals in Eqs. 7.9 and 7.10 can be identified by considering the
following recurrence relations for the spherical Bessel functions (Abramowitz et al., 1988):

d
dx

j`(x) = j`−1(x) −
` + 1

x
j`(x) , (7.21)

d
dx

j`−1(x) = − j`(x) +
` − 1

x
j`−1(x) . (7.22)

Rewriting these relations in the form w′ = Aw, one finds that

w(χ) =

(
j`(kχ)

j`−1(kχ)

)
, A(χ) =

− `+1
χ k
−k `−1

χ

 (7.23)

is a suitable choice for the integral in Eq. 7.9, with F(χ) = {E[z(χ)]h[z(χ)], 0}T . It is easy to verify that
neither the entries of the matrix A nor the integral kernels F are rapidly oscillatory. For integrals of
the type in Eq. 7.10, four-dimensional vectors are needed:

w(χ) =


j`(k1χ) j`(k2χ)

j`−1(k1χ) j`(k2χ)
j`(k1χ) j`−1(k2χ)

j`−1(k1χ) j`−1(k2χ)

 , A(χ) =


−

2(l+1)
χ k1 k2 0

−k1 − 2
χ 0 k2

−k2 0 − 3
χ k1

0 −k2 −k1
2(`−1)
χ

 . (7.24)

Similarly, F(χ) = {E[z(χ)]h[z(χ)], 0, 0, 0}T .
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Figure 7.1.: Comparison of the differential signal-to-noise curve (Eq. 7.30) as a function of the angular
multipole. The two curves have been obtained from the signal and noise parts of the covariance matrices
produced with GLaSS (red) and the Levin method (blue).
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Figure 7.2.: Relative difference of the signal-to-noise curve calculated with the GLaSS and Levin method,
as a function of the multipole `.

7.2.2. GLaSS

The Generalised Lensing and Shear Spectra (GLaSS) code is written in Python and integrated into the
modular cosmological package Cosmosis (Zuntz et al., 2015). Cosmological information can be read
from an external source as in this work, or directly from the Cosmosis pipeline. More information
can be found in Taylor et al. (2018b). GLaSS is written to compute the lensing spectra for an arbitrary
weight function W`[kχ0(zp)] which takes the place of the Bessel functions in Eq. 7.4; see Taylor et al.
(2018a) for more details about this generalized spherical-transform. Nevertheless, 3D cosmic shear
comes as an in-built run-mode option.

All nested integrals in Eqs. 7.1-7.5 are computed as matrix multiplications because this is one of
the few operations that releases the Global Interpreter Lock in Python allowing parallelisation. For
example,

U` (z, k) ≈
∑
χ′

A
(
χ (z) , χ′

)
B

(
χ′, k

)
, (7.25)

A (χ, χ′) ≡ ∆χ′
FK (χ,χ′)

a(χ′) , where ∆χ′ is the spacing between the sampled points in χ′ and B (χ, χ′) ≡

j` (kχ′)
√

P (k; χ′) .
To further speed up computations all Bessel functions data is pre-computed in GLaSS. To save

memory, values of the Bessel functions j` (x) are stored in a 2D look up table in ` and x and the j` (kχ)
are found as needed. This procedure was first described in Seljak & Zaldarriaga (1996); Kosowsky
(1998).
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Ωm Ωb Ωr Ωk w0 wa σ8 ns h
0.315 0.0486 9.187 × 10−5 0.0 -1.0 0.0 0.834 0.962 0.674

Table 7.1.: Values of the cosmological parameters in the fiducial model assumed for the code comparison.

While computing the lensing spectra in terms of nested matrix multiplications allows for easy par-
allelisation, this procedure does not efficiently sample the z-k space as efficiently as the Levin integra-
tion. At high-` where the Bessel functions oscillate quickly this means the lensing spectra must be
evaluated at very high resolutions. To reduce the resolution at which the lensing spectra must be eval-
uated, GLaSS takes the extended Limber approximation (Loverde & Afshordi, 2008) above ` > 100.
This was shown to have negligible impact for stage IV surveys (Kitching et al., 2017). Taking the
Limber approximation, equation 7.5 can be rewritten as:

U` (χ, k) =
Fk (χ, ν (k))

ka (ν (k))

√
π

2 (` + 1/2)

√
P (k, ν (k)) , (7.26)

where ν (k) ≡ `+1/2
k . Meanwhile at low-` the Bessel functions oscillate slowly and the nested integrals

can be evaluated at lower resolution.

7.3. Code comparison

In the following we compare the predictions for the 3D cosmic shear covariance matrices produced
with the Levin method and with the algorithm implemented in the GLaSS code. For the code compari-
son we fix the fiducial cosmological model to a flat cosmology with parameters given in Tab. 7.1. The
source distribution and the redshift error probability need to be the same for the two codes. For the
source distribution we follow Amendola et al. (2016) and choose

nz(z) ∝ n0

 √2
zm

3

z2 exp

−  √2z
zm

3/2 , (7.27)

where zm is the median redshift of the survey and n0 is the observed redshift-integrated source density.
We set zm = 0.9, n0 = 30 arcmin−2. We take the redshift error distribution to be a Gaussian

p(zp|z) =
1

√
2πσ(z)

exp
− (zp − z)2

2σ2(z)

 , (7.28)

with a redshift-dependent dispersion

σ(z) = σz(1 + z) . (7.29)

We first compare the signal-to-noise curve. The cumulative signal-to-noise ratio, summed over the
contributions at different multipoles up to a maximum multipole `, is defined as

Σ2(≤ `) = fsky

∑̀
`′=`min

2`′ + 1
2

Tr
[
C−1
`′ S`′C−1

`′ S`′
]
≡

∑̀
`′=`min

∆Σ2(`′) , (7.30)

where S is the signal covariance (Eq. 7.1) only, while C refers to the sum of signal and shot noise, i.e.
Eqs. 7.1+7.2. The signal-to-noise curves produced by both codes are shown in Fig.7.1, depicting the
differential contributions to the signal-to-noise coming from the different multipoles. The Levin and
GLaSS predictions for the signal-to-noise curves show agreement with each other for the multipoles
considered, reaching differences below 4%, as evidenced by Fig. 7.2 where the relative difference
between the predictions of the two codes are shown. GLaSS has slightly lower signal-to-noise at high
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`. This is because GLaSS is not designed specifically for 3D cosmic shear and the signal-to-noise
converges as the resolution of the computation grid is increased. This problem will be exacerbated as
one includes higher and higher ` (e.g. ` = 3000 where there is still useful signal to add) because the
Bessel functions oscillate more quickly. For our comparison we used 2000 k-modes linearly spaced
between k = 0.005 h/Mpc and k = 2.0 h/Mpc, and restricted the comparison to multipoles ` ≤ 1000;
see Taylor et al. (2018b) for details on how much information is captured by GLaSS at different k-
resolutions and Taylor et al. (2018a) for a discussion of the run time at different resolutions.

As a second diagnostic for our comparison, we consider individually the signal and noise contribu-
tions to the covariance matrices (Eqs. 7.1 and 7.2, respectively) for two different multipoles, ` = 100
and ` = 500. For both signal and noise we compare the elements on the diagonal C`(k, k), and plot
them respectively in Fig. 7.3 and Fig. 7.4. In the noise case we also multiply the curves by k2, to check
that they effectively become flat as expected. The predictions show good agreement, with differences
of at most a few percent (in the lower k range for the signal, and over the entire k range for the noise),
as visible also from Fig. 7.5, where we show the differences between the codes, normalised to the sum
of their predictions. The disagreement in the signal plot towards the higher end of the k range is due
to the numerical noise present in the GLaSS computations; however, this discrepancy can be disre-
garded because the contributions from those k-regimes (k & 0.2h/Mpc for ` = 100, k & 0.4h/Mpc
for ` = 500) are many orders of magnitude smaller than the main contributions around the peak of
the curves, and also much smaller than contributions from the noise (cf. Fig 7.4). For ` = 100, the
Levin and GLaSS predictions coincide until approximately k ' 0.2h/Mpc: at this point the behaviour
of the curve for GLaSS starts being dominated by numerical noise, while the Levin signal decreases
in a smoother way. The same happens for ` = 500, but the disagreement starts at approximately
k ' 0.4 h/Mpc. In both cases however, the signal predictions in those k-regimes are at least 3-4 or-
ders of magnitude smaller than the contributions around the peak of the curves, just before and after
approximately k ' 0.1h/Mpc, respectively. Importantly, the values of the signal curves for those k-
regimes are even smaller than the contributions from the noise, which dominates in that regime by
many orders of magnitude. This means that for practical purposes we can safely ignore the contribu-
tions from those k-regimes where the codes are apparently in disagreement in their signal predictions.
In Figs. 7.3,7.4, and the left panels of Fig. 7.5 we demonstrate this point by shading the regions where
the signal contribution represents a fraction ≤ 1/1000 of the noise contribution at the same k. These
regions turn out to be the same where the signal predictions of the two codes disagree, thus demon-
strating that this discrepancy can be safely disregarded. In the bottom panel of Fig. 7.3 we plot the
same comparison between the signal predictions produced by both two codes, with a linear scale on
the y-axis instead of the logarithmic one used in the top panel; this is another way to appreciate how
subdominant the contributions coming from the higher end of the k-range are with respect to the signal
coming from the lower k-range.

It is interesting to note that the disagreement is practically only evident in the signal predictions,
while the noise part is much less affected. This may be due to the increased number of matrix mul-
tiplications that need to be performed in the calculation of the signal with respect to the noise (cf.
Eqs. 7.1 and 7.2). The fact that the number of integrations to carry out for the noise is higher means,
in the GLaSS implementation, that more matrix multiplications are required and these are sensitive to
the resolution in k. Additionally, since in the noise part of the covariance matrix there are no multipli-
cations by Bessel functions, this may suggest that the spikes at high-k in the signal may also be due
to the Bessel function resolution breaking down (as explained in Sec. 7.2.2, in GLaSS the Bessel func-
tions j`(x) are precomputed in a look up table in ` and x). The code implementing the Levin method
sources the matter power spectrum from the Einstein-Boltzmann solver Cosmic Linear Anisotropy
Solving System (CLASS, Lesgourgues, 2011), while for this code comparison the matter power spec-
trum used by GLaSS has been sourced from the Code for Anisotropies in the Microwave Background
(CAMB, Lewis et al., 2000). The CLASS and CAMB codes have been compared in their predic-
tions (Lesgourgues, 2011). Therefore, in comparing the Levin and GLaSS methods, the matter power
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Figure 7.3.: Comparison of the diagonal elements of the signal part of the covariance matrices (Eq. 7.1)
for two multipoles ` = 100 and ` = 500, produced with GLaSS (solid lines, cyan and red for ` = 100
and ` = 500, respectively) and the Levin method (dashed lines, blue and black for ` = 100 and ` = 500,
respectively). All curves have been plotted without performing any interpolation. We show the same
curves using a linear (upper panel) and a logarithmic (bottom panel) scale on the y-axis. The differences
at higher k (k & 0.2 h/Mpc for ` = 100, k & 0.4 h/Mpc for ` = 500) arise from the higher numerical noise
present in the GLaSS computations in that k regime. However, these contributions are many orders of
magnitude smaller than the main contributions around the peaks of the curves, and much smaller than the
contributions from the noise (cf. Fig. 7.4), therefore can be safely neglected. We demonstrate this point in
the upper panel by indicating the shaded region for each multipole ` where the signal represents a fraction
≤ 1/1000 of the noise: these regions correspond to the k-ranges where the GLaSS and Levin predictions
for the signal are in apparent disagreement (cf. also Fig. 7.5). In both panels the curves for ` = 500 have
been multiplied by a factor 1000 for easier visualisation.
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Figure 7.5.: Differences between the predictions for the signal (left panels) and noise (right panels) con-
tributions to the covariance matrices for multipoles ` = 100 (top panels) and ` = 500 (bottom panels),
normalised to their sum. We stress here again that the discrepancies at high k should not be a concern
because the k-regimes where they originate produce contributions very much subdominant with respect
to the peaks of the signal curves, and also with respect to the relevant contributions from the noise (cf.
Figs. 7.3, 7.4). In the signal plots we shade the regions where the signal is a fraction ≤ 1/1000 of the noise
(cf. Fig. 7.3): these regions correspond tho the k values where the differences between the two codes are
bigger, however since the signal contributions from these regions are negligeable, this discrepancy can be
safely ignored.
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spectrum has been ruled out as a possible source of discrepancy.

We conclude this Section with a note on the performance of the two codes. The code implementing
the Levin integration has been developed explicitly for the production of precise 3D cosmic shear
cosmological forecasts and has been recently used to this purpose in Spurio Mancini et al. (2018a).
As one can see from Figs. 7.3 and 7.4, the curves produced with the Levin method are very smooth,
showing the high precision achieved by the method. This compensates for the relatively low speed of
the code, necessary to achieve that precision. GLaSS on the other hand, has not been developed for 3D
cosmic shear only; in Taylor et al. (2018a,b) it is introduced as a means to compute lensing spectra
for arbitrary weighting functions and, importantly, for integration within the cosmological module
Cosmosis. This means that speed has been a crucial goal in developing the code and the method
used for the matrix multiplications indeed allows for greater speed than the one achieved with the
Levin method. However, numerical noise remains higher: to overcome this issue, one would need to
increase the resolution at which the matrix multiplications are performed, but this would inevitably
imply a slower performance of the code. We conclude that the use of the Levin or the GLaSS method
depends on the task to perform: if a high level of precision is required, the Levin method should be
preferred, while if speed is a crucial requirement, GLaSS can be a better option. For our purposes in
this paper, i.e. the demonstration of a method for generating 3D lensing random fields on the sky and
the calculation of Minkowski Functionals associated to these fields, both methods are equally valid
for the computation of the 3D cosmic shear covariance matrices, which represent the starting point of
the algorithms described in the following sections.

7.4. Generation of spin-2 random fields on the sky

In this section we show how to generate random fields on the sky starting from the full 3D cosmic
shear covariance matrix. As shown in Sec. 7.1, the full covariance matrix can be decomposed in
C`(k, k′) for each multipole `, given that the assumed isotropy of the shear field implies multipole in-
dependence 〈γ`m(k)γ`′m′(k′)〉 = C`(k, k′)δ``′δmm′ . We detail our procedure considering for simplicity
the convergence κ, as it is a scalar field and therefore easier to analyse. The convergence shares essen-
tially the same covariance matrix with the shear field, each `-block only being rescaled by a prefactor
`(`+1)

(`+2)(`−1) (Castro et al., 2005) that plays a role only for the very largest angular scales (cf. Sec. 4.2.4).
The generalisation to the spin-2 case for the shear field simply requires starting from the original shear
covariance matrix and replacing the transforms from Fourier coefficients to configuration space with
their spin-2 extensions. To demonstrate our field generation procedure we use the covariance matrices
produced with the Levin integration.

Our aim is to generate modes of the convergence field in Fourier space κ`m and to transform them
back into configuration space using the HEALPix (Górski et al., 2005) in-built function alm2map,
in its scalar version for the convergence case (for the shear, one simply needs to activate the option
pol = True that allows the user to deal with spin-2 fields). This way we can obtain samples of
the convergence field in configuration space κ(r, θ, φ), on spherical shells corresponding to different
values of the radius; on each shell, the field can be discretised on a HEALPix map. An example of 3D
reconstruction on 3 slices in redshift or, equivalently, comoving distance is shown in Fig. 7.6.

The procedure described in the following is similar to the one used in the code FLASK (Xavier
et al., 2016) to generate samples of the density, convergence and shear fields on redshift slices, start-
ing from tomographic weak lensing covariance matrices Ci j(`), where the indices i and j run over the
redshift slices and the type of field (density, convergence or shear). In FLASK, the problem of gen-
erating correlated random fields across different redshift slices is dealt with by means of a Cholesky
decomposition of the correlated covariance matrices Ci j(`). The Cholesky decomposition rewrites the
covariance as the product of an upper and lower triangular matrix (see Appendix A.4 for mathematical
details on using a Cholesky decomposition to generate correlated random fields). Here, the situation
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is similar in that we also have correlated multipoles belonging to the different radial slices, however
the correlation is in terms of the wavector k rather than the tomographic/field index i. This difference
originates from the fact that we start from the 3D cosmic shear covariance matrices C`(k, k′), as op-
posed to the tomographic Ci j(`) matrices in FLASK. Additionally, in FLASK correlations between
density, convergence and shear fields can be considered if the user desires, while here we concentrate
singularly on the generation of convergence or shear fields and do not consider their cross-correlations.
The fact that the random fields at different wavectors are correlated is ultimately due to the fact that
the lensing field is not homogenenous along the line of sight, due to the mode-coupling effect of the
lensing kernel, the source redshift distributions and the redshift error probability (cf. Eqs. 7.1-7.5).

The assumption of statistical isotropy implies that modes κ`m of the convergence field at different
multipoles ` and m can be generated independently. The number of ` multipoles is in principle infinite,
however practically there will be a `max which sets the maximum resolution. We use `max = 3Nside,
where Nside is a HEALPix parameter describing the resolution of the HEALPix grid (Górski et al.,
2005). The choice `max = 3Nside is the same made by Lim & Simon (2012) in their CMB analysis and
guarantees that the grid size is comparable to the smallest angular scale considered, corresponding to
`max. For each ` value, m ranges from −` to +`, so that there are 2` + 1 m values for each multipole
`. However, due to the hermiticity of the convergence field, we actually consider only ` + 1 modes
from 0 to `. We employ a Cholesky decomposition of the covariance matrices to deal with the fact
that modes corresponding to different k values are correlated:

C`(k, k′) =
∑

p

T`(k, p)T`(p, k′), (7.31)

where T(`) are (lower) triangular matrices, which we can later use to generate correlated random
variables κ`m(k), e.g. Gaussian distributed,

κ`m(k) =
∑

p

T`(k, p) n`m(k), (7.32)

where n`m(k) are independent, Gaussian distributed random variables with zero mean and unit variance
(see Appendix A.4 for a motivation for this method as a means to generate correlated random fields).
To obtain our convergence field samples in configuration space, we transform back from Fourier space,
first by multiplying by a spherical Bessel function and k2 and integrating over k, as indicated by
Eq. 4.41 which defines the spherical Fourier-Bessel transform and its inverse, and then acting with the
HEALPix routine alm2map to obtain the field samples on a discretised grid in the angular coordinates.

We summarise schematically our procedure in Algorithm 4. We implemented it in a Python routine,
leveraging parallelisation on multiple cores with joblib. The problem is embarassingly parallel, since
the correlation of the fields on different radii is preserved by the starting cosmic shear covariance
matrix, while different realisations of the random fields are completely independent. The fact that the
covariance does not depend on m, but only on the multipole `, can be used to speed up calculations, as
one needs to perform the Cholesky decomposition only once per each multipole `, and can then use the
decomposition for all m’s pertaining to that ` mode. In Fig. 7.10 we report a study of the time scaling
with Nside of the full procedure including the random fields generation process and the estimation of
the Minkowski Functionals, described in next Section.

7.5. Minkowski Functionals of scalar fields on the sphere

In this Section we briefly introduce the notion of Minkowski Functionals (MFs) and apply them to the
generated random fields introduced in Sec. 7.4. For Gaussian random fields the MFs can be calculated
analytically. We will compare these theoretical predictions with the MFs calculated directly from the
HEALPix maps as a proof of concept. In particular we will calculate the MFs on spheres of different
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Algorithm 4 Algorithm for generation of lensing Gaussian random fields on spherical shells
input Covariance matrix (e.g. for the convergence) 〈κ`mκ`′m′〉 = C`(k, k′)δ``′δmm′

output κ(r, θ, φ). For each fixed radius r in r1, . . . rNχ , create a HEALPix map on discretised θ and φ
method ∀r ∈ [r1, . . . rNχ]:

∀` ∈ [0, `max]:
Cholesky decompose C` = T`TT

`

∀m ∈ [0, `]:
sample z ∼ N(0, I)
κ`m(k) = T` z
κ`m(k)→

∫
dk k2 j`(kr)→ κ`m(r)

κ`m(r)→ HEALPix alm2map→ κ(r, θ, φ)

radii (cf. Fig. 7.6) and estimate the covariance between the different MFs at those radii. Repeating
this whole procedure for different starting lensing covariance matrices (e.g varying each time one
cosmological parameter), we can then produce a likelihood function dependent on the underlying
cosmology.

7.5.1. Mathematical background on Minkowski Functionals

Here we define the MFs, concentrating on the aspects that are more interesting for cosmological
applications and referring the reader to e.g. Mecke et al. (1994) for further mathematical details. In
our definitions we follow the notation of Schmalzing & Gorski (1998) and Lim & Simon (2012).

MFs are integral morphological measures that characterise the geometry and topology of spatial
patterns; in particular, they characterize the morphological properties of convex, compact sets in a
d dimensional space. A morphological property must be invariant under translation and rotations.
Hadwiger’s theorem (Hadwiger, 1957) states that on a d-dimensional convex ring embedded in a d
dimensional space there exist d + 1 linearly independent morphological functionals. On the 2-sphere,
S2, there are 2 + 1 = 3 MFs which, up to normalization, have clear geometrical interpretations. Let us
expand these ideas, starting from an introduction to the role of MFs in integral geometry.

Integral geometry and properties of Minkowski Functionals

Let us first introduce integral geometry in flat space, or, to be more precise, in a d–dimensional Eu-
clidean space Ed. We wish to characterize the morphology of a suitable set Q ⊆ Ed. A possible
starting point for integral geometry (Santaló, 1976) is some manifold with a group of transformations
G. Usually we are dealing with the d-dimensional Euclidean space, for which the natural choice is the
group that contains as subgroups rotations and translations. One can then consider the setK of convex
bodies embedded in this space and, as an extension, the so–called convex ring R of all finite unions of
convex bodies. In order to characterize a body B from the convex ring one looks for scalar functionals
M that satisfy the following requirements (Schmalzing et al., 1996):

• translation invariance: the functional should be independent of the body’s position and orienta-
tion in space, M(gB) = M(B) for any g ∈ G, B ∈ R;

• additivity: When two bodies B1 and B2 are united, the functional of the union is M(B1 ∪ B2) =

M(B1) + M(B2) − M(B1 ∩ B2) for any B1, B2 ∈ R;

• conditional continuity: The functionals of convex approximations to a convex body converge to
the functionals of the body, M(Ki)→ M(K) as Ki → K for K,Ki in K .

127



CHAPTER 7. 3D COSMIC SHEAR: NUMERICAL CHALLENGES AND 3D LENSING
RANDOM FIELDS FOR COSMOLOGICAL INFERENCE

Figure 7.6.: Convergence field sampled at three different values of the radius χ, with the observer situated
in the centre. A section of the outer and middle sphere has been removed to facilitate visualisation. The
lensing covariance matrix which we used for sampling the random field is given by Eq.7.1. We consider
only contributions from the signal part of the covariance matrix, and use 30 ` modes ranging between 10
and 1000. We use a linear matter power spectrum for the calculation of the covariance, since the condition
` ≤ 1000 ensures that we are less sensitive to the highly non-linear k-regime (cf. also Fig.7.3).

While we might be led to think that these fairly general requirements leave a vast choice of such
functionals, Hadwiger’s theorem states that under a few simple requirements there are only d + 1
independent such functionals if the space is d-dimensional: these are the so–called Minkowski Func-
tionals V j, with j ranging from 0 to d.

If the set Q has a smooth boundary ∂Q, its Minkowski Functionals – except for the d–dimensional
volume V0, which is calculated by volume integration – are given by simple surface integrals (Schnei-
der, 1993). We use ω j to denote the surface area of the j–dimensional unit sphere. Some special
values are ω0 = 2, ω1 = 2π, ω2 = 4π, while in general

ω j =
2π( j+1)/2

Γ(( j + 1)/2)
. (7.33)

MFs are formally defined as:

V0(Q) =

∫
Q

dv,

V j(Q) =
1

ω j−1

(
d
j

) ∫
∂Q

dsS j (κ1 . . . κd−1) .
(7.34)

Here dv and ds denote the volume element in Ed and the surface element on Q, respectively, κ1 to
κd−1 are the boundary’s d − 1 principal curvatures, and S j is the j-th elementary symmetric function
defined by the polynomial expansion

d−1∏
i=1

(x + κi) =

d∑
j=1

xd− j
S j (κ1 . . . κd−1) ; (7.35)
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d 1 2 3
V0 length area volume
V1 χ circumference surface area
V2 – χ total mean curvature
V3 – – χ

Table 7.2.: Some of the d+1 Minkowski Functionals in d–dimensional Euclidean space may be interpreted
as familiar geometric quantities (apart from numerical factors). This table summarizes the geometric
interpretations of all Minkowski Functionals for one, two and three dimensions. The symbol χ denotes the
connectivity, a purely topological quantity that describes a topological space’s shape or structure regardless
of the way it is bent.

hence S1 = 1, S2 = κ1 + . . . + κd−1, and so on up to Sd = κ1 . . . κd−1. Table 7.2 summarizes the
geometric interpretations of the Minkowski functionals in one, two and three dimensions. In three-
dimensional Euclidean space, in particular, the first functional equals the volume V of the body, the
second one is the surface area A. The third functional corresponds to the integral mean curvature
of the body’s surface and provides information about the shape. Lastly, the fourth functional can be
interpreted as the Euler characteristic χ which is a purely topological quantity that can be calculated
using the simple formula

χ = number of components − number of tunnels + number of cavities. (7.36)

Spaces of constant curvature

Let us now consider the d–dimensional space of constant curvature kK. The sign k equals +1, 0 or
−1, for the spherical space Sd, the Euclidean space Ed and the hyperbolic space Hd, respectively. K
is a positive constant of dimension [Length]−2, hence its inverse square root K−1/2 can be interpreted
as the radius of curvature. Santaló (1976) shows how to obtain an integral geometry on such spaces.
Curvature integrals as in Eq. (7.34) can still be defined, provided that care is taken in using the geodesic
curvatures κi. If we do so, we can consider these quantities the Minkowski Functionals in curved
spaces.

Some of the geometric interpretations are altered with respect to the flat case. While in flat space the
curvature integral Vd(Q) is equal to the Euler characteristic χ(Q), curved spaces require a generalized
Gauss–Bonnet Theorem proved for arbitrary Riemannian manifolds by Chern (1944). The theorem
states that the Euler characteristic is a linear combination of all Minkowski functionals as defined by
Eq. (7.34),

χ(Q) =

d∑
j=0

c jV j(Q), (7.37)

with the coefficients c j given by

c j =


(

d
j

)
2(kK)(d− j)/2

ωd− j
if d − j even,

0 if d − j odd.
(7.38)

Note that from the point of view of Hadwiger’s theorem, which is also valid on curved spaces, all
linear combinations of Minkowski functionals are equally suitable as morphological descriptors, so
one may both use the integrated curvature Vd and the Euler characteristic χ as the last Minkowski
functional. 14 In the following, we will consider Vd, having in mind the connection Vd ↔ χ just
described.
14To develop an intuitive understanding of the Euler characteristic χ we could consider its ‘classical’ definition for the
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Two–dimensional unit sphere

We now focus on the supporting space for our convergence and shear maps, the sphere S2 of radius
R. The parameters introduced in the previous section now take the values d = 2 for the dimension,
k = +1 for the curvature sign, and K = R−2 for the absolute value of the curvature.

Let us now consider a smooth scalar field u(x) on S2, for example the convergence field. We wish
to calculate the Minkowski functionals of the excursion set Qν over a given threshold ν. An excursion
set for the field u is a region where the field exceeds some threshold level: for a given threshold ν, the
excursion set Qν and its boundary ∂Qν for a smooth scalar field u on the sphere are mathematically
defined as

Qν =
{
x ∈ S2 | u(x) > ν

}
, (7.39)

∂Qν =
{
x ∈ S2 | u(x) = ν

}
. (7.40)

On the 2-sphere, S2, there are 2 + 1 = 3 MFs which, up to normalization, have clear geometrical in-
terpretations and represent the area, circumference and integrated geodesic curvature of the excursion
set. Rewriting the definition in Eq. (7.34), we obtain the Minkowski functionals for a set Q ⊆ S2 with
smooth boundary ∂Q by

V0(Q) =

∫
Q

da, (7.41)

V1(Q) =
1
4

∫
∂Q

d`, (7.42)

V2(Q) =
1

2π

∫
∂Q

d` κ, (7.43)

where da and d` denote the surface element of S2 and the line element along ∂Q, respectively. Being
a linear object, the boundary ∂Q has only one geodesic curvature κ. Using the generalized Gauss–
Bonnet Theorem in Eq. (7.37) with the coefficients for two dimensions substituted, we can calculate
the Euler characteristic χ(Q) from the Minkowski functionals via

χ(Q) = V2(Q) +
1

2πR2 V0(Q). (7.44)

The zeroth Minkowski functional V0, i.e. the area, can be evaluated by integration of a Heaviside
step function over the whole sphere

V0(Qν) =

∫
S2

da Θ(u − ν). (7.45)

The other Minkowski functionals are actually defined by line integrals along the isodensity contour
in Eq. (7.43), but they can be transformed into surface integrals by inserting a delta function, and the

surfaces of polyhedra, i.e. according to the formula χ = V − E + F, where V , E, and F are respectively the numbers of
vertices (corners), edges and faces in the given polyhedron. Any convex polyhedron’s surface has Euler characteristic
V −E + F = 2. This is known as the Euler’s polyhedron formula and corresponds to the Euler characteristic of the sphere
(i.e. χ = 2), and applies identically to spherical polyhedra. A spherical polyhedron is a tiling of the sphere in which
the surface is partitioned into bounded regions called spherical polygons. The most familiar spherical polyhedron is the
football, which can be thought of as a spherical truncated icosahedron.
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appropriate Jacobian

V1(Qν) =
1
4

∫
∂Qν

d` =
1
4

∫
S2

da δ(u − ν)|∇u|,

V2(Qν) =
1

2π

∫
∂Qν

d` κ =
1

2π

∫
S2

da δ(u − ν)|∇u| κ.
(7.46)

The geodesic curvature, κ, describes the deviation of the curve γ from being geodetic, i.e. a straight
line. For a normalised tangent, i.e. |γ̇| = 1, it is defined through

κ := |∇γ̇γ̇| , (7.47)

where ∇γ̇ represents the covariant derivative along the tangent vector γ̇ of the curve. Thus κ vanishes
if and only if γ is a geodesic. However, for the numerical calculation of V2, it is convenient to express
κ in terms of u. To do so, one can use the fact that u does not change along γ and thus du(γ̇) = 0
which implies that γ̇µ = εµν∇νu, where εµν is the totally antisymmetric second-rank tensor. Upon
normalization, this can be used in equation (7.47) to yield κ in terms of the metric and derivatives of
u in a local coordinate system. Schmalzing & Gorski (1998) show how to calculate κ on a generic
manifold, which in the case of S2 reads

κ =
2u;θu;φu;θφ − u2

;θu;φφ − u2
;φuθθ

u2
;θ + u2

;φ

, (7.48)

where the semicolon denotes a covariant derivative. Since the integrands can now be written as
second–order invariants, we have succeeded in expressing all Minkowski functionals as surface in-
tegrals over the whole sphere S2,

V j(Qν) =

∫
S2

daI j, (7.49)

with integrands I j depending solely on the threshold ν, the field value u and its first– and second–order
covariant derivatives. In summary,

I0 = Θ(u − ν), (7.50)

I1 =
1
4
δ(u − ν)

√
u2

;1 + u2
;2, (7.51)

I2 =
1

2π
δ(u − ν)

2u;1u;2u;12 − u2
;1u;22 − u2

;2u;11

u2
;1 + u2

;2

. (7.52)

In the following, when we refer to the MFs we will actually mean the surface densities of the Minkowski
functionals, i.e. the same quantities normalised by a constant numerical factor given by the area of S2,

v j(ν) =
1

4πR2 V j(Qν) =
1

4πR2

∫
S2

daI j. (7.53)

Summarising:

• The first MF V0(ν) is the area fraction of Qν, given by

V0(ν) :=
1

4π

∫
S2

dΩ Θ(u − ν) , (7.54)

where Θ is the Heaviside function.
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• The second MF is proportional to the total boundary length of Qν and is thus

V1(ν) :=
1

16π

∫
∂S2

dl =
1

16π

∫
S2

dΩ δ(u − ν) |∇u| . (7.55)

Here δ is the delta distribution and |∇u| is the norm of the gradient of u.

• Finally, the third MF is the integral of the geodesic curvature κ along the boundary

V2(ν) :=
1

8π2

∫
∂S2

dl κ =
1

8π2

∫
S2

dΩ δ(u − ν) |∇u| κ . (7.56)

Expectation values for a Gaussian random field

Minkowski functionals and other geometric characteristics of Gaussian random fields are extensively
studied by Adler (1981). Analytical expressions for the average Minkowski functionals of a Gaus-
sian random field in arbitrary dimensions were derived by Tomita (1986); in the special case of two
dimensions, the results for the isodensity contour at threshold ν are15

v0(ν) =
1
2
−

1
2

Φ

(
ν − µ
√

2σ

)
,

v1(ν) =
τ1/2

8σ1/2 exp
(
−

(ν − µ)2

2σ

)
,

v2(ν) =
τ

2π3/2σ

ν − µ
√

2σ
exp

(
−

(ν − µ)2

2σ

)
.

(7.57)

Note that these expressions contain only three parameters, namely µ, σ, and τ. All three are easily
estimated from a given realization of the Gaussian random field, by taking averages of the field itself,
its square, and the sum of its squared derivatives; then

µ = 〈u〉

σ =
〈
u2

〉
− µ2

τ =
1
2

〈
u;iu;i

〉
.

(7.58)

With these relations and the spherical harmonics expansion of u, the parameters σ and τ may also be
calculated directly from the angular power spectrum C`, with the results

σ =

∞∑
`=1

(2` + 1)C`,

τ =

∞∑
`=1

(2` + 1)C`
`(` + 1)

2
.

(7.59)

7.5.2. Numerical calculation of MFs

In order to numerically estimate the MFs calculated on our realisations of the lensing fields we make
use of the HEALPix suite of tools (Górski et al., 2005). We first generate full sky maps of e.g. the
convergence field, on concentric spherical shells at different radii, starting from the 3D covariance
matrices; to this purpose we follow the procedure described in sec. 7.4. We then calculate numerically

15The function Φ(x) is the Gaussian error function given by Φ(x) = 2
√
π

∫ x

0
dt exp(−t2).
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Figure 7.7.: Numerical estimations of the first MF VG
0 (dots), calculated on our generated Gaussian fields

at different values of the radius (represented by different colours), compared with the theoretical predic-
tions given by Eq. 7.67 (joined by lines), as a function of the threshold ν. The range of the thresholds
always varies between −4

√
σ and +4

√
σ, where σ is the (average) variance of the lensing field at a fixed

radius.
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Figure 7.8.: Numerical estimations of the second MF VG
1 (dots), calculated on our generated Gaussian

fields at different values of the radius (represented by different colours), compared with the theoretical
predictions. The colour scheme is the same as in Fig. 7.7.

the MFs by directly implementing the integrals in Eqs. 7.54-7.56; our algorithm closely follows the
one used in Schmalzing & Gorski (1998) and Lim & Simon (2012) and is detailed in the following.

Given a pixelated map with field values u(xi), HEALPix easily allows for the calculation of first and
second partial derivatives at each pixel in (`,m) spherical harmonic space. As seen in 7.5.1, the three
numerical MFs for S2, which we label Vi(i = 0, 1, 2) can be computed via a sum over all pixels

Vi(ν) :=
1

Npix

Npix∑
j=1

Ii(ν, x j) (7.60)
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Figure 7.9.: Numerical estimations of the third MF VG
2 (dots), calculated on our generated Gaussian

fields at different values of the radius (represented by different colours), compared with the theoretical
predictions. The colour scheme is the same as in Fig. 7.7.

of the respective integrands

I0(ν, x j) := Θ(u − ν) , (7.61)

I1(ν, x j) :=
1
4
δ(u − ν)

√
u2

;θ + u2
;φ , (7.62)

I2(ν, x j) :=
1

2π
δ(u − ν)

2u;θu;φu;θφ − u2
;θu;φφ − u2

;φuθθ

u2
;θ + u2

;φ

, (7.63)

where the semicolon indicates a covariant derivative.

Using the well–known parametrization of the unit sphere through azimuth angle ϑ and polar angle
ϕ we can express the covariant derivatives at a point (ϑ, ϕ) in terms of the partial derivatives16;

u;ϑ = u,ϑ,

u;ϕ =
1

sinϑ
u,ϕ,

u;ϑϑ = u,ϑϑ,

u;ϑϕ =
1

sinϑ
u,ϑϕ −

cosϑ
sin2 ϑ

u,ϕ,

u;ϕϕ =
1

sin2 ϑ
u,ϕϕ +

cosϑ
sinϑ

u,ϑ.

(7.64)

The partial derivatives in turn are best calculated from the spherical harmonics expansion

u(ϑ, ϕ) =

∞∑
`=0

∑̀
m=−`

a`mY`m(ϑ, ϕ). (7.65)

This is simply done by replacing the harmonic function Y`m with its appropriate partial derivative.
Since the functions Y`m depend on ϕ via sine and cosine functions only, the derivatives with respect
to ϕ can be obtained analytically. Partial derivatives with respect to ϑ are calculated via recursion

16Note that we use indices following a semicolon, such as u;i to denote covariant differentiation of u with respect to the
coordinate i, as opposed to partial derivatives where we write indices following a comma, e.g. u,i.

134



7.5. MINKOWSKI FUNCTIONALS OF SCALAR FIELDS ON THE SPHERE

formulae constructed by differentiating the recursion for the associated Legendre functions Pm
`

, given
for example by Abramowitz et al. (1988). In HEALPix, these partial derivatives are implemented in
the function alm2mapder, which given a set of a`m returns a pixelised map in the angular coordinates
of a field, as well as its angular partial derivatives.

We still have to account for the finite number of sample points. The integrands I1 and I2 involve the
delta function, which is numerically approximated through a discretization of threshold space in bins
of width ∆ν by the Heaviside function

δN(x) := (∆ν)−1[Θ(x + ∆ν/2) − Θ(x − ∆ν/2)] . (7.66)

This approximation of the delta function produces some numerical noise, which Lim & Simon (2012)
demonstrate to be due to the delta function discretization rather than some random noise which should
disappear averaging over nR realisations. For our purposes, we do not consider the corrections pro-
posed by Lim & Simon (2012) to remove this discretisation effect and simply average over many
realisations of the field. This is enough for our purposes, as our main goal is to test the field genera-
tion procedure rather than using the MFs to study e.g. non-Gaussianity as in Lim & Simon (2012) (in
which case these corrections should be taken into account).

For Gaussian fields, as the ones we are considering here, the expectation values for the MFs are
known analytically and equal to

V̄G
0 (ν) :=

〈
VG

0 (ν)
〉

=
1
2

(
1 − erf

(
ν − µ
√

2σ

))
, (7.67)

V̄G
1 (ν) :=

〈
VG

1 (ν)
〉

=
1
8

√
τ

σ
exp

(
−

(ν − µ)2

2σ

)
, (7.68)

V̄G
2 (ν) :=

〈
VG

2 (ν)
〉

=
1

(2π)3/2

τ

σ

ν − µ
√
σ

exp
(
−

(ν − µ)2

2σ

)
. (7.69)

Therefore we can compare our numerical estimates with the theoretical expectation values as a check
for the validity of our field generation procedure. We perform this comparison in Figs. 7.7, 7.8, 7.9,
where we overplot our numerical estimates and their expectation values. We consider all three MFs
and show the comparison for five values of the radii, corresponding to five concentric shells over
which we generate our lensing field. We calculate our MFs over a set of thresholds that always ranges
between −4

√
σ and +4

√
σ, where σ is the variance of the lensing field at a certain radius. The error

bars associated to our numerical estimates of the MFs are taken as the square root of the diagonal
elements of the covariance matrix of the MFs, computed as

Covi j =
1

nR − 1

nR∑
m=1

(
Vm

i − 〈Vi〉
) (

Vm
j − 〈V j〉

)
, i, j = 0, · · · 3 · nχ · nν (7.70)

where the indices i, j run over the type of Minkowski Functional (the three MFs V0,V1,V2), the number
of radii nχ and the number of thresholds nν. 〈Vi〉 denotes the mean of the MFs over all realisations nR,
〈Vi〉 = 1

nR

∑nR
m=1 Vm

i .

An example of this matrix is presented in Fig. 7.11. We consider the covariance between all three
MFs (V0, V1, V2, each of them as a function of the threshold ν, ranging from ν1 to νmax), and we
include the correlations between MFs belonging to each different radius (labelled by different χ value,
from χ1 to χmax). The values of the radii are the same used for Figs. 7.7, 7.8, 7.9. We stress here
that the error bars depicted in Figs. 7.7, 7.8, 7.9, associated to the MFs calculated for each value of
the threshold are not independent. Also, since the realisations of the random fields on different radial
shells are not statistically independent, the MFs on different radii are not independent either. To give
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Figure 7.10.: Scaling of the run time in seconds for the code implementing the generation of a convergence
random field and the estimation of the relative Minkowski Functionals, as a function of the HEALPix
parameter Nside used to discretise the map. All values refer to a single realisation of the random field at
χ = 1000Mpc/h. The scaling is approximately O(N1.5

side).

a flavour of the correlations between the MFs, in Fig. 7.12 we show the elements of the correlation
matrix, i.e. the Pearson correlation coefficients ri j calculated as

ri j =
Covi j

√
Covii

√
Cov j j

, i, j = 0, · · · 3 · nχ · nν (7.71)

from the covariance matrix Covi j of our numerical estimates of the MFs, Eq. 7.70. It follows from the
Cauchy-Schwarz inequality that −1 ≤ ri j ≤ 1. A value of ri j = 1 indicates a perfect linear correlation
between the two variables i and j; a common interpretation is that in this case all data points in
a sample lie on a straight line. This is also true if ri j = −1, but the slope of the line is negative. A
vanishing correlation coefficient implies that there is no linear correlation. If the correlation coefficient
is positive, deviations of both variables from the mean tend to have the same sign, whereas opposite
signs lead to a negative correlation coefficient.

As expected, we notice in particular a strong anti-correlation for V0 centered around ν = 0, as was
expected by looking at Fig. 7.7. The same is true for V2 (cf. Fig. 7.9), while V1 is strongly positively
correlated (cf. Fig 7.8). This high amount of (anti)correlation suggests that in the Gaussian case
analysed here it is not necessary to consider a very high number of threshold values; however, this
may not be true in the non-Gaussian case, where a higher resolution in the threshold values may be
important to identify non-Gaussian features. Crucially important is, in all cases, a sufficient resolution
in the HEALPix maps used at the beginning for the generation of the random fields, and later for
the calculation of the MFs (in our estimates, we used the HEALPix parameters Nside = 256 and
`max = 3Nside = 768). This affects considerably the speed of the numerical implementation of these
computations, however as mentioned earlier in Sec. 7.4 the generation of random fields and, separately,
the calculation of the MFs (both happening at each realisation and at each radius) are embarrassingly
parallel problems; this can be leveraged in practical implementations by employing parallelisation
across multiple cores and nodes, without the need to worry about inter-process communication. In
Fig. 7.10 we report a study of the scaling of the code performance (considering one realisation of the
convergence field and the estimation of the associated Minkowski Functionals) with the HEALPix
parameter Nside. Overall, we identify a scaling approximately O(N1.5

side).
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Figure 7.11.: Covariance matrix between different MFs at different radii. We consider correlations be-
tween all three MFs V0, V1, V2, all functions of the threshold ν (ranging from ν1 to νmax), as calculated at
different radii (labelled by different χ values, ranging from χ1 to χmax and specifically equal to 1000, 2000,
3000, 4000 and 5000 Mpc/h, as in Figs. 7.7, 7.8, 7.9). In the matrix we indicate the block sub-matrices
that represent the covariance between the three MFs. We used a logarithmic scale for both positive and
negative values to highlight the many orders of magnitude spanned by the entries of the matrix and the
different contibutions given by the three MFs.
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Figure 7.12.: Correlation matrix between different MFs at different radii; the matrix entries represent
the Pearson correlation coefficient, obtained from the covariance matrix entries (the same plotted in in
Fig. 7.11) following Eq. 7.71. We consider correlations between all three MFs V0, V1, V2, all functions
of the threshold ν (ranging from ν1 to νmax), as calculated at different radii (labelled by different χ values,
ranging from χ1 to χmax and specifically equal to 1000, 2000, 3000, 4000 and 5000 Mpc/h, as in Figs. 7.7,
7.8, 7.9). In the matrix we indicate the block sub-matrices that represent the correlation between the three
MFs.
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Figure 7.13.: χ2 obtained considering the covariance of different combinations of MFs, i.e. consider-
ing the three MFs singularly (〈V0,V0〉 (blue), 〈V1,V1〉 (green) and 〈V2,V2〉 (red)). Our fiducial model is
represented by the choice Ωm = 0.3.

7.5.3. Inference from Minkowski Functionals of Gaussian fields

Introduced in cosmology by Mecke et al. (1994), the main applications of MFs so far have been as
probes of primordial non-Gaussianities (Schmalzing & Buchert, 1997; Winitzki & Kosowsky, 1998;
Schmalzing & Gorski, 1998), widely used in two and three dimensions, for instance on WMAP CMB
data (Hikage et al., 2008), Planck CMB data (Ducout et al., 2013; Novaes et al., 2016; Buchert et al.,
2017) and on the SDSS galaxy catalogue (Park et al., 2005; Hikage et al., 2006). In the CMB case,
MFs constitute an attractive alternative to an analysis with polyspectra for a number of reasons. Firstly,
contrary to the bispectrum, they are defined in configuration rather than in Fourier space, so that a
robust implementation for MFs becomes in practice easier to achieve. Secondly, MFs are sensitive to
the full hierarchy of higher order correlations, instead of third order only, and can provide additional
information on all the non-linear coupling parameters fNL, gNL, ... which appear in the perturbative
development of the primordial curvature perturbation (Komatsu & Spergel, 2001; Okamoto & Hu,
2002). Additionally, MFs can be analytically determined for Gaussian random fields; lastly, they
are additive which makes accounting for complicated survey geometries much easier compared to
estimators of polyspectra.

In this work we propose (for the first time, as to our knowledge) MFs as an alternative probe of
Gaussianity, in addition to non Gaussianity, in the sense specified in the following. We show how,
assuming our MFs to be Gaussian distributed, we can use the MFs to probe the cosmology dependence
of the fields realisations. This can be leveraged in future work to develop a full cosmological inference
process based on the MFs calculated on lensing fields, of which we provide a first example here.

From a Bayesian perspective, assuming that our likelihood L(Vi|Ω) (the probability of having MFs
Vi given the cosmological parameters Ω) is Gaussian is equivalent, considering a flat prior p(Ω) on the
cosmological parameters Ω, to having a Gaussian posterior p(Ω|Vi), since by virtue of Bayes theorem

p(Vi|Ω) ∝ L(Ω|Vi)p(Ω). (7.72)

It follows that we are allowed to consider the likelihood and the posterior equivalently. In the Gaussian
case, defining L = −lnL and ignoring additive constants, we have that −2L = χ2, where the χ2 can be
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evaluated as

χ2(θ) =

nν·nχ∑
i, j=1

(
〈Vi(θ)〉 − 〈Vi(θ0)〉

)
cov−1

i j (θ0)
(
〈V j(θ)〉 − 〈V j(θ0)〉

)
, (7.73)

where the averages are performed over the number of realisations nR, while the indices i, j run over
the length of our data vector, i.e. we consider the MFs evaluated at all the nν thresholds and all the
nχ radii. The MFs depend on the cosmological parameters and so does the covariance matrix; for the
calculation of the chi-square, we use the inverse evaluated at the fiducial model θ0.

We calculate the χ2 statistics with MFs obtained from the realisations of the lensing random fields
(we consider the convergence in this example) at different values of one cosmological parameter, for
simplicity. We consider 11 values of Ωm, ranging from 0.25 to 0.35 in equidistant intervals of 0.01
centered on the fiducial value of 0.3. For each of the Ωm values we produce our 3D cosmic shear
covariance matrix following the equations in Sec. 7.1, with either the Levin or the GLaSS method.
Once the full lensing covariance matrix is available, we use it to generate, according to the procedure
described in Sec. 7.4, nR realisations of the convergence field at rNχ values of the radius in configura-
tion space. On each shell and for each realisation we also calculate the associated MFs, and store them
in memory. Subsequently we use them to build the full covariance matrix, exactly as the one shown
in the previous subsection, however this time we will have one covariance matrix of the MFs for each
starting value of Ωm. Inverting the covariance corresponding to our fiducial value Ωm = 0.3, we can
then use it to calculate the χ2 following Eq. 7.73.

The calculation of this inverse covariance matrix poses a numerical problem, in that its entries are
very small and standard methods such as Gaussian elimination fail in producing a sensible inverse. We
use therefore a Moore-Penrose pseudo-inverse matrix (Dresden, 1920; Penrose, 1955), after checking
that it effectively produces an inverse covariance matrix that, multiplied by the covariance, gives back
the identity matrix to within numerical precision.

We calculate the χ2 isolating the different MFs in our data vector. This implies isolating from the
full covariance matrix the relevant sub-blocks for the auto-correlation of V0,V1 and V2 (which we will
in the following schematically indicate with 〈V0,V0〉 , 〈V1,V1〉 , 〈V2,V2〉, or Cov(V0,V0), Cov(V1,V1),
Cov(V2,V2)). These sub-blocks can be visualised by looking at the corresponding sub-blocks in the
covariance matrix plotted in Fig.7.11 (e.g. the correlation 〈V0,V0〉 isolates the top left corner block);
in Fig. 7.13 we plot the χ2 curves obtained with the three MFs. We notice how the χ2 increases going
from V0 to V2.

7.6. Discussion and conclusions

3D cosmic shear constitutes an alternative to a traditional tomographic analysis of a cosmic shear
survey. The spherical-Bessel expansion of the shear field at the core of its formalism maximises the
amount of redshift information; however, the calculation of the covariance matrices presents numerical
difficulties due to the numerous integrations over highly oscillatory functions.

In this Chapter we described and compared two methods for the calculation of simulated 3D cosmic
shear covariance matrices. While the first method implements the Levin technique for integration of
the periodic oscillations of the Bessel functions, the second method, implemented in the code GLaSS,
tackles the integrations by matrix multiplications and appropriate use of the Limber approximation.

We first compared the predictions of the two codes in terms of covariance matrices and found ex-
cellent agreement. We compared the output of the codes both in terms of the total signal-to-noise ratio
and the single contributions to the covariance matrices C`, for two different values of the multipole `,
for both the signal and noise parts.
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Once tested the accuracy of the predictions for the covariance matrices, we used the simulated ma-
trices to generate Gaussian lensing fields on the sky. The procedure we described, based on a Cholesky
decomposition of the C` matrices, allowed us to generate correlated Gaussian fields at different slices
in comoving distance. The generation of normal and lognormal fields (the latter being easily obtain-
able from the former, by exponentiation of the Gaussian maps) can be used in future work to compute
a realistic covariance matrix for a full 3D cosmic shear likelihood analysis. This should improve upon
e.g. the CFHTLenS analysis for 3D cosmic shear (Kitching et al., 2014), where a covariance imple-
mentation similar to GLaSS was used. Kitching et al. (2014) constructed a likelihood, in which the
parameter dependency was in the covariance rather than the mean shear transform coefficients. This
could be improved by having a likelihood in which the covariance is used as the mean and the 4-point
covariance of the covariance used.

The generation of normal and lognormal random fields, starting from the 3D cosmic shear covari-
ance matrices, also constitutes the first step for the development of a Bayesian Hierarchical Model for
3D cosmic shear power spectra estimation (following e.g. the work of Alsing et al., 2016, 2017, and
extending it to a spherical-Bessel formalism), which can be investigated in future work.

Finally, we tested our random field generation procedure by calculating Minkowski Functionals
associated to our Gaussian random fields and comparing them with their known expectation values.
We found good agreement between our numerical estimates and their theoretical expectation values.
We calculated our Minkowski Functionals separately on each spherical shell, however we stress here
that the realisations of the random fields on different radial shells are not statistically independent, as
one can appreciate from the correlation matrix presented in Fig. 7.12. Future work should concentrate
on estimating the full correlation between the Minkowski Functionals at different values of the radii,
implementing a fully three-dimensional approach for their calculation (see e.g. Hikage et al., 2003;
Gleser et al., 2006; Yoshiura et al., 2017; Appleby et al., 2018, for examples of Minkowski Functionals
in 3D). Producing fully 3D Minkowski Functionals for a lognormal field in 3D can be used in particular
to extract non-Gaussian information from the shear field.

Finally, we showed how Minkowski Functionals can also be used to extract Gaussian information
by means of a likelihood analysis. We show an example of this in Fig. 7.13, where we plot the χ2

obtained from the covariance of the different Minkowski Functionals as a function of the varying
cosmological parameter Ωm. This is a first example of a full cosmological inference process, making
use of the Minkowski Functionals, that we plan to develop in future work.

7.7. Future applications

We already mentioned earlier in this Chapter that a reliable algorithm for the realisation of 3D normal
and lognormal lensing random fields generated from the 3D cosmic shear covariance matrices is a
necessary ingredient for the development of a Bayesian Hierarchical Model for 3D cosmic shear power
spectra estimation. In this concluding Section we will explain in greater detail what this means and
how such a method could be concretely developed in future work. We will also describe prospects for
a future joint 3D cosmic shear - galaxy clustering analysis, which could also be developed within the
context of a Bayesian Hierarchical Model.

Computing the posterior

To introduce the statistical concept of a Bayesian Hierarchical Model let us step back to the ultimate
goal of Bayesian inference analysis, already introduced in Sec. 3.1: the posterior probability. A very
general description of an experiment is that there is some prior information I, some new data d, and
one or more models M with parameters θ; we wish to infer the parameters of a given model in the
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light of the new data collected by the experiment. From a Bayesian perspective, the ultimate goal of
any statistical analysis is therefore the posterior probability,

p(θ|d, I) ∝ p(d|θ, I)p(θ|I) (7.74)

where we have used Bayes’ theorem to write it in terms of the likelihood and the prior, and the
dependence on the model has been suppressed. Once the posterior is known, one can, if desired, form
Bayesian credible intervals or estimates of the parameters, but all these are ultimately byproducts of
the posterior itself.

Therefore, if possible, one should always try to reconstruct the posterior distribution from an exper-
iment. Unfortunately, this turns out to be effectively impossible in a direct way for all but the simplest
experiments, since the posterior normally does not have an analytic form; for this reason, in Bayesian
analysis one typically draws samples from the posterior distribution, as already discussed in Sec. 3.4
where we reviewed different sampling algorithms to target the posterior distribution. Asymptotically,
these methods will sample the posterior with a density of samples that is proportional to the target,
so that with a sufficient number of samples, the chain can characterise the target in principle to any
arbitrary accuracy required. The caveat is that for some situations this may be a very demanding
computational task.

However, while the posterior itself may be complicated, it may be broken down into a hierarchy
of elements, each of which we can sample from. This forms what is called a ‘Bayesian Hierarchical
Model’: a statistical model, written in multiple levels (hierarchical form) that estimates the parameters
of the posterior distribution using the Bayesian method (Allenby et al., 2005). The sub-models com-
bine to form the hierarchical model, and Bayes’ theorem is used to integrate them with the observed
data and to account for all the uncertainty that is present. The result of this integration is the posterior
distribution.

Cosmic shear as a Bayesian Hierarchical Model

Drawing inferences about cosmology from cosmic shear survey data is computationally very challeng-
ing, because it involves a number of complex modelling elements. Cosmological parameter inference
from observed galaxy shapes and redshifts requires first of all a forward model relating the cosmol-
ogy to the cosmic shear field and in turn its impact on observed galaxies. Measuring galaxy shapes
and redshifts from pixelized images and photometric data requires detailed models for the telescope
point-spread function (PSF), seeing effects, pixel noise and other instrumental effects, as well as mod-
els for the intrinsic distributions of galaxy properties which determine their physical and photometric
appearance (see Schneider et al., 2015, for a discussion).

This complex forward model entails a huge number of model parameters and data, connected via
conditional probability distributions. To visualise this complex network, let us for simplicity isolate
the following sub-problem, relating the cosmic shear power spectrum C to the realisation of the field
s. We will assume the shear field is Gaussian and fully characterized by its two-point statistics, i.e.
its power spectrum (covariance matrix) C. The model is summarized in Fig. 7.14: a prior is specified
for the power spectrum P(C) which generates a power spectrum C, which in turn generates a shear
field s via the density P(s|C) (which is Gaussian under our assumptions); we then specify a noise
covariance matrix N and add noise to the realised shear map to produce a realisation of the data, i.e. a
noisy estimate of the shear field, via the conditional density P(d|s,N). Note that so far C and s are not
specified to be in either their tomographic or fully 3D versions: the forward model described here is
valid for both formalisms. The graph in Fig 7.14 shows explicitly the conditional structure of the full
posterior P(C, s|d) since we can simply write the posterior as the product of the conditional densities
(and priors) appearing on the edges of the graph:

P(C, s|d,N) =
P(d|s,N)P(s|C)P(C)

P(d)
. (7.75)
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Figure 7.14.: Hierarchical forward model for noisy pixelized shear maps d from the shear power spectra
C: the shear power spectrum C is drawn from some prior distribution, a realization of the shear field s
is then generated given the power spectra, and finally noisy shear maps d are realised by adding noise
with covariance N. Model parameters and data (nodes, represented by white circles) are connected via
conditional probability distribution (represented by blue-framed boxes). The red arrow denotes the part
of the model where the field-generation algorithm developed in this Chapter may represent a key tool
allowing for an extension of the Bayesian Hierarchical Model developed for tomography by Alsing et al.
(2016) to the 3D spherical Fourier-Bessel formalism.

In the more general case, considering the full complex forward hierarchical model for cosmic shear,
the full statistical structure could be visualised with similar graphs 17 where model parameters and data
(nodes) are connected via conditional probability distributions (represented by boxes). This represen-
tation clearly elicits the conditional structure of the inference problem; parameters and data which
are directly connected (via a single conditional density) are dependent, whereas parameters and data
which are not directly connected are conditionally independent. The posterior distribution for the
full set of model parameters is straightforwardly obtained by taking the product of all distributions
appearing in the graph. Furthermore, the distribution of a single parameter node conditional on all
others is given by the product of the conditional densities on all incoming and outgoing edges for that
parameter.

Each conditional probability distribution can be thought of as a separate modelling step; the hierar-
chical model thus breaks up the global problem into a number of sub-models, where one only needs
to be able to write down conditional distributions for the various sub-sets of model parameters with
all other parameters held fixed. Whilst the hierarchical model describes the global inference problem,
it is still modular in the sense that the model neatly factorizes into a set of sub-problems that can be
attacked in turn. The ultimate goal of the Bayesian Hierarchical Model is to solve the global inference
problem, simultaneously inferring all of the model parameters given the data and marginalizing over
all latent parameters that are not of direct interest. This approach correctly accounts for the compli-
cated web of interdependencies; it is optimal in the sense that no information is lost, and rigorous
in the sense that the uncertainties in all parameters are correctly and completely propagated through-
out the analysis, from the raw data all the way through to the cosmological parameter inference. In
contrast, the frequentist approach typically analyses each part of the model in a series of consecutive

17Sometimes in the literature these types of diagram are referred to as directed, acyclic bipartite graph, (see e.g. Constantinou
& Fenton, 2018)
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steps, where the results of each step are used as inputs for the next. This makes it challenging to both
correctly account for the full statistical interdependency and to propagate uncertainties consistently,
leading to potentially very dangerous biases that must be carefully corrected for. Whilst the typical
frequentist approach estimates fixed values for parameters at each step and feeds them into the next,
the hierarchical approach feeds the full probabilistic inference about each parameter throughout the
analysis.

Reconstructing the cosmic shear power spectra posterior distribution

Alsing et al. (2016) developed a hierarchical Bayesian inference approach to inferring cosmological
parameters from a weak lensing survey (a set of estimated shears and redshifts); rather than attempt
to infer cosmological parameters directly, they achieve this via intermediate inference of the cosmic
shear power spectrum.

The posterior distribution of the power spectrum is a desirable intermediate product, since cosmo-
logical models provide a deterministic relationship between cosmological parameters and the shear
power spectrum. Therefore once the smooth posterior P(C|d) is obtained, cosmological parameter in-
ference can be performed for a large number of cosmological (and systematics) models directly from
P(C|d) without having to re-analyse the entire data-set.

In the following we propose a number of extensions to the work of Alsing et al. (2016), that leverage
the algorithms developed in this Chapter.

3D cosmic shear power spectra estimation

From a practical perspective Alsing et al. (2016) constructed their actual implementation of the Bayesian
Hierarchical Model using tomographic cosmic shear power spectra: the reason for this is mere com-
putational simplicity. The statistical formalism developed in their work extends naturally to a fully 3D
shear analysis (albeit at additional computational cost) and should be pursued.

Indeed, ideally one would like to analyse the full 3D shear field rather than the tomographic one in
the context of Bayesian hierarchical inference. A forward model for the shapes of galaxies at points
in 3D space necessarily requires some reference to the full 3D shear field; by restricting the analysis
to a tomographic analysis without modelling the fluctuation of the field within the redshift bins, one
cannot forward model a catalogue of individual galaxy shapes, angular positions and redshifts. It is
possible, however, to write down a forward model for the average ellipticities of sources binned in
redshift at angular positions on the sky with reference only to the tomographic shear fields. However,
this way one is forced to process the catalogue of galaxy shapes and positions further into pixelized
2D maps of the average shapes in each pixel for sources in each redshift bin.

This demonstrates clearly that a tomographic analysis is sub-optimal on two counts: information
is lost in compressing the data from a full 3D catalogue of galaxy shapes to a collection of averages
(since the detailed redshift dependence of the power spectrum contains cosmological information),
and secondly in a tomographic analysis it is not possible to include the full interdependence of the
shear field and galaxy redshifts.

The algorithm we developed for the generation of lensing random fields starting from the 3D covari-
ance matrices could be used in this Bayesian Hierarchical Model for 3D cosmic shear power spectra
estimation, to link the spectra C to the field s. In this case, C would specialise to the C`(k, k′) and the
field s would be given by the coefficients γ`m(k) in the spherical Fourier-Bessel formalism. The red
arrow in Fig. 7.14 shows the passage that we made possible with our work. Normally, when given
the task to generate Fourier modes from a given power spectrum, dependent only on the absolute
value of the wavevector, one would generate e.g. Gaussian random fields in Fourier space from this
power spectrum by exploiting the independence of the Fourier modes δk, which can be extracted from
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a Gaussian distribution with variance equal to the power spectrum at the corresponding value of the
wavevector:

δk ∼ N(0,
P(k)

2
). (7.76)

In the spherical Fourier-Bessel formalism, the cosmic shear power spectra C`(k, k′) are not diagonal in
k space. As explained in Sec.7.1, this reflects the inhomogeneity of the lensing fields, as a consequence
of the lensing efficiency, the source redshift distribution and the redshift error distribution: all these
effects contribute to the radial correlation of the lensing field. Employing a Cholesky decomposition
of the covariance matrices, we demonstrated how to overcome this complication and generate 3D
correlated lensing random fields.

Lognormal fields

The method developed by Alsing et al. (2016) is exact and optimal under the assumption of Gaus-
sian shear fields.The general Bayesian hierarchical approach extends however naturally to include
non-Gaussian models for the lensing fields, exploiting information beyond the power spectrum. This
could be achieved by finding a transform of the shear field that Gaussianizes it. For example, there are
good reasons to believe that the lensing fields are better described by lognormal rather than Gaussian
statistics (Neyrinck et al., 2009). Under a lognormal model for the shear, the log-field is now fully
characterised by its power spectrum and so the power spectrum inference (now of the log-field) re-
mains an attractive intermediate product. In a 3D spherical Fourier-Bessel context, the generation of
lognormal lensing fields can also be obtained thanks to our algorithms, by exponentation of the maps
created in the Gaussian case. This would allow us to use the method for generating lognormal fields
within a 3D Bayesian Hierarchical Model.

3D cross-correlation cosmic shear - galaxy clustering

A 3D Bayesian Hierarchical Model can (and should) be extended to perform joint inference of the
lensing and clustering observables, including the cross-correlation between the two. A joint lensing-
clustering analysis is very attractive for a number of reasons: lensing and clustering probe the same
underlying cosmological field – the matter field – so that combining two independent measurements
(including the cross-correlations) contains more statistical information than the two fields treated sep-
arately. At the same time the two observables are troubled by very different systematic effects; at
the astrophysical level, lensing needs to account for intrinsic alignments whilst galaxy clustering has
to model the galaxy bias. Jointly analysing lensing and clustering together allows for internal self-
calibration of systematic effects, leading to a dramatic improvement in the cosmological constraints
and more robust science.

Formalism for a fully 3D analysis of galaxy clustering has been already considered in the literature
(see e.g. Heavens & Taylor, 1995; Rassat & Refregier, 2012; Nicola et al., 2014). A spherical Fourier-
Bessel decomposition of the galaxy clustering observable has been recently considered in the literature
by Lanusse et al. (2015). They found that the spherical Fourier-Bessel analysis is more robust than the
tomographic one with respect to the inclusion of nuisance parameters. As a consequence of this, to
the purpose of optimising a stage-IV type spectroscopic galaxy survey, the authors found that a given
level of accuracy can be achieved for shallower surveys if a 3D spherical Fourier-Bessel analysis is
performed, and that a given increase of the survey depth yields more information performing a 3D
analysis than a tomographic one.

However, the cross-covariance between the lensing and clustering observables has never been stud-
ied in the spherical Fourier-Bessel formalism. A possible complication here arises from the treatment
of the bias, relating the matter to the galaxy overdensity, as we shall see here.
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The galaxy clustering observable does not have a broad kernel integration like in lensing, which in
the spherical Fourier-Bessel cosmic shear covariance matrices appears in Eq. 7.5 and correlates differ-
ent radial modes. However, relating the coefficients in the 3D expansion of the galaxy overdensity to
those of the matter overdensity becomes complicated because of the bias function, therefore affecting
also the relation between the cross-covariance of lensing-clustering coefficients and the matter power
spectrum.

Let us first consider how the 3D expansion for the galaxy number density n(χ) = (χ, θ, ϕ), the
quantity observed in a galaxy clustering survey, looks like. The galaxy number density can be defined
in terms of the galaxy overdensity δg through

n(χ) = n̄(χ)(1 + δg(χ, z(χ))) , (7.77)

where n̄(χ) is the mean number density of observed galaxies at comoving distance χ. In this expres-
sion, the time dependence of the observed overdensity as a function of comoving distance is made
explicit through the z(χ) relation. In reality, we only partially observe this field due to the finite survey
volume. The mean number density n̄(χ) can be expressed in terms of the survey selection function
φ(χ) as

n̄(χ) = φ(χ)n̄ =
N
V
φ(χ) , (7.78)

with n̄ the mean number density of observed galaxies, N the total number of observed galaxies, and V
the volume of the survey that fulfills V =

∫
φ(χ)dχ. The observed field is thus no longer homogeneous

because of the radial selection function. For the full galaxy number density field the expressions for the
spherical Fourier-Bessel coefficients of a scalar field n`m(k), as introduced in Chapter 4 (cf. Eq. 4.29),
apply

n`m(k) =

√
2
π

∫ ∞

0
dχ χ2

∫
dΩ n(χ, θ, ϕ) j`(kχ)Y∗`m(θ, ϕ). (7.79)

The spherical Fourier-Bessel coefficients of the finite-depth field can be related to those of the field
n(χ, θ, ϕ) (Heavens & Taylor, 1995) by

nobs
`m (k) =

∫ ∞

0
dk′W`(k, k′)n`m(k′), (7.80)

with

W`(k, k′) =
2
π

∫
dχ χ2φ(r) j`(kr) j`(k′r). (7.81)

The observed 2-point function can be written as

〈nobs
`m (k)nobs∗

`′m′ (k
′)〉 = C`(k, k′)δ``′δmm′ (7.82)

then C`(k, k′) can be expressed as

C`(k, k′) =

(
2
π

)2

dk′′ k′′2P(k′′)W`(k, k′′)W`(k′, k′′), (7.83)

where P(k) is the matter power spectrum.

In expression (7.77), the time (or redshift) dependence of the galaxy overdensity is due to the growth
of structure and the evolution of galaxy bias with respect to the matter density field with time. Fol-
lowing the approach of Rassat & Refregier (2012) and Lanusse et al. (2015), in the linear regime this
dependence on redshift can be separated in the form of growth and bias prefactors,

δg(χ, z(χ)) = b(χ, k)D(χ)δ(χ) , (7.84)

146



7.7. FUTURE APPLICATIONS

where b(r, k) is a bias with a possible scale dependence, D(r) is the growth factor, δ(r) = δ(r, z = 0)
is the matter overdensity field at present day, and we ignored for simplicity the contribution from a
Poisson noise term arising from the discrete nature of the observed galaxy number density (which can
be included in the noise part of the covariance matrix). We can define a modified selection function
that includes the effects of bias and growth in the linear regime,

φevol = b(χ, k)D(χ)φ(χ) . (7.85)

Using this modified selection function, the observed galaxy density can now be expressed directly as
a function of the true matter overdensity at present time:

n(r)
n̄

= φ(r) + φevol(r, k)δ(r) . (7.86)

Remembering that

γ̄`m(k) = −
3Ωm

4π2χ2
H

√
(` + 2)!
(` − 2)!

∫
dznz(z)

∫
dzp p(zp|z) j`[kχ(zp)]

∫ χ(z)

0
dχ′

χ − χ′

χχ′

∫
dk′δ`m(k′) j`(k′χ′)

(7.87)

The calculation of the cross-covariance between the coefficients for lensing and clustering leads then
to

〈
nobs
`m (k)γ̄`′m′(k′)

〉
=

〈( ∫
dk

2
π

∫
dχχ2φ(χ) j`(kχ) j`(k′χ′)

√
2
π

∫
dχχ2

∫
dΩn̄

(
φ(χ)

[
1 + b(χ, k)D(χ)δ(χ)

]) )
(
−

3Ωm

4π2χ2
H

√
(` + 2)!
(` − 2)!

∫
dznz(z)

∫
dzp p(zp|z) j`[kχ(zp)]

∫ χ(z)

0
dχ′

χ − χ′

χχ′

∫
dk′δ`m(k′) j`(k′χ′)

)〉
(7.88)

We see how the functional form of the bias is needed, in order to relate the covariance of the lensing-
clustering observable to the matter power spectrum.
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8 Chapter 8

Conclusions

In this thesis we have investigated the constraints achievable on dark energy/modified gravity theories
by means of cosmic shear, in different ways.

After reviewing the cosmological concordance model and the dark energy/modified gravity issue
in Chapter 2, we have also had a brief overview in Chapter 3 on the statistical techniques underlying
the results presented in this thesis. Chapter 4 has served as an introduction to the gravitational lensing
effect, the main cosmological probe considered in this thesis. In particular, we have shown explicitly
how to derive expressions for the power spectra of the lensing signal in the two formalisms for a
cosmic shear survey analysed in the following of the thesis: tomography and 3D cosmic shear.

In Chapter 5 we have demonstrated that a 3D cosmic shear analysis has the power to constrain
parameters describing Horndeski gravity (as well as standard cosmological parameters) better than a
tomographic one. We have performed this forecast for Stage IV surveys such as Euclid. The increase
in sensitivity for the Horndeski parameters amounts to approximately 20%, and for all cosmological
parameters considered in the analysis we have identified a neat increase in the sensitivity using a
fully 3D spherical Fourier-Bessel decomposition over a tomographic analysis. This suggests that 3D
cosmic shear should be considered and actively further developed as a way of analysing a cosmic shear
survey. Even though the computational complexity of the calculation of the signal increases, the gain
in sensitivity compensates for this.

Our analysis has been restricted to multipoles up to ` = 1000 and radial wavenumbers below
k = 1 h/Mpc, avoiding uncertainties associated with smaller scales. Modes above these cuts require an
adequate and fully reliable description of the non-linear matter power spectrum, currently unavailable
in ΛCDM and even more in a general modified gravity context as the Horndeski class of models. To
give a flavour of the potential information content of these smaller scales, to which cosmic shear is
highly sensitive, we have employed a non-linear prescription of the matter power spectrum that lever-
ages the work of Mead et al. (2015) to account for baryonic physics. We stress again here that we
do not claim this prescription to represent a rigorous approach to non-linearities in modified gravity;
we have rather used the Mead et al. (2015) prescription, developed for a ΛCDM context, to provide
a rough estimate of the increasing constraining power that may be achievable by including non-linear
corrections. Furthermore, our analysis has not included intrinsic alignments – finite auto-correlations
of the intrinsic shapes of galaxies and cross-correlations with the cosmic shear signal.

Extensions of this work should then go into the direction of improving the treatment of non-linear
scales. If more reliable prescriptions for non-linearities become available, they should be implemented
in our framework and the analysis should be extended to smaller scales. This also implies the inclu-
sion of intrinsic alignments models in the forecasts and the investigation of alternative forms for the
screening mechanism, which we have implemented with a phenomenological cutoff at a varying scale,
prior to marginalising over it.
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Some of these conclusions are common to the other analyses carried out in this thesis. For exam-
ple, in Chapter 6 we have considered constraints that are achievable with current surveys (specifically,
the KiDS and GAMA surveys) on Horndeski parameters, and we have found that as expected the
constraints are not tight. The same analysis, performed with larger data releases from the KiDS sur-
vey, could in principle lead to tighter constraints. The importance of our work lies in the fact that the
methodology and numerical implementation has now already been developed and tested, and can eas-
ily be applied in the future to larger datasets. Our implementation has been compared in the ΛCDM
scenario against the previous fiducial analysis of the KiDS collaboration, and we have achieved excel-
lent agreement with their results. This represents an important benchmark and strengthens the reliabil-
ity of our implementation, which is completely independent from the previous analysis. Additionally,
our likelihood module is able to carry out a modified gravity analysis. On this side, the same problem
with non-linear corrections found in the 3D cosmic shear forecasts has been a common point to this
analysis: for the non-linear power spectrum we have followed the official KiDS prescription, using
the Mead et al. (2015) correction; however, this should again be interpreted as a means to give a
flavour of the constraining power of the data, but more realistic prescriptions are needed in a modified
gravity context. The same applies to the screening mechanism, which also in this analysis has been
implemented in a phenomenological way.

All these points need to be addressed in future work towards a realistic setup for the analysis of data
coming from Stage IV surveys. In this regard, we stress that our KiDSxGAMA likelihood can well be
regarded as a first implementation that could set the path for the development of a likelihood module
for Stage IV surveys such as Euclid. Regarding Stage IV surveys, in Chapter 6 we have produced
forecasts with both a full likelihood analysis and a Fisher matrix approach on Horndeski parame-
ters and found that the scope for constraining these parameters is great. Our implementation can and
should be extended to the inclusion of intrinsic alignments, and similar conclusions reported earlier
in these Conclusions as regards non-linear prescriptions and screening mechanism implementations
apply here.

As far as cross-correlations are concerned, we believe that our work in this thesis represents an
important step towards the development of a multi-probe analysis in the spherical Fourier-Bessel for-
malism, which this thesis has studied in detail for the cosmic shear case. Our code comparison work
in Chapter 7 shows the numerical stability of our implementation for the calculation of the 3D cosmic
shear integrals. With such a reliable technique at hand, many possibilities are open for an extension
of the covariance matrix to other observables, first and foremost galaxy clustering as we outline in
Sec. 7.7.

The random fields generation procedure described in Chapter 7 is a necessary ingredient for the
development of a Bayesian Hierarchical Model for 3D cosmic shear power spectra estimation, which
we aim at developing in future work, possibly extending the analysis to galaxy clustering for the
reasons mentioned in Sec. 7.7.

Finally, our work in Chapter 7 on the Minkowski Functionals associated to our random fields has
successfully demonstrated the feasibility of a cosmological inference pipeline making use of the es-
timated Minkowski Functionals. We plan to develop this approach further in future work, first by
implementing a Fisher matrix analysis and then moving away from the Gaussian likelihood approxi-
mation.

In conclusion, we believe that our work has succeeded in providing an overview on current and
future possibilities achievable in terms of understanding the laws of gravity by means of the study of
the weak gravitational lensing effect.
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A Appendix A

Appendices

A.1. Shot noise in 3D cosmic shear

Here we derive explicitly the expression for the shot noise contribution to the 3D cosmic shear covari-
ance matrix, as given by Eq. 5.17. The noise contribution is present in all the literature on 3D cosmic
shear (see e.g. the seminal papers Heavens, 2003; Heavens et al., 2006), however in the context of our
code comparison for 3D cosmic shear it may arise difficulties due to the different conventions used
for the spherical-Bessel formalism. We refer the reader also to Appendix C in Lanusse et al. (2015),
where a derivation of the shot noise term for 3D galaxy clustering is presented.

Shot noise arises by discretising the survey in cells that either contain one or zero galaxies (Peebles,
1980). We will keep the discussion more general here, for a random field f (~x) that is discretised on our
series of cells labelled by index i. We will later specialise to our intrinsic ellipticity field. ni represents
the occupation number of the cell and fi the value of the field in cell i:

f (~x) =
∑

i

δ(~x − ~xi) ni fi. (A.1)

We calculate the correlation (where V is the “volume” factor for our field):〈
f (~x) f (~x)

〉
=

∑
i, j

〈
δD(~x − ~xi)δD(~x − ~xi) ni n j fi f j

〉 1
V2 (A.2)

=
∑
i, j

δD(~xi − ~x j)
〈
n2

i

〉 〈
f 2
i

〉 1
V2 (A.3)

=
∑

i

δD(0) 〈ni〉
〈

f 2
i

〉 1
V2 (A.4)

=
∑

i

〈ni〉
〈 f 2

i 〉

V
(A.5)

where we used the fact that ni and fi are uncorrelated, 〈n2
i 〉 = 〈ni〉 due to Poisson sampling and we

assumed that only equal cells are correlated. In the last step we used that δD(0) = V = 4π. In our case,
the random field we consider is the intrinsic ellipticity of the galaxies εS . This is because, as alredy
mentioned in Sec. 5.1.2, we assume the observed ellipticity ε to be the sum of the shear γ and the
intrinsic ellipticity εS , and neglect correlations between γ and εS as given by intrinsic alignments. We
denote the intrinsic ellipticity dispersion as σε (with a typical value σε ' 0.3). Expressing the field f
in a spherical basis as

f`m(k) =

√
2
π

∑
i

ni fi j`(kχi) Y`m (n̂i), (A.6)

and taking into account the redshift distribution of galaxies, one arrives at Eq. 5.17.
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Figure A.1.: Fiducial values from Tab. 5.2 and survey specifications are given in Tab. 5.1. We point out
that α̂K is unconstrained.

A.2. Varying α̂K and α̂T

We show in Fig. A.1 the contour plots that we obtain if we also vary α̂K and α̂T . We notice in particular
that, as expected, α̂K is unconstrained, therefore we decide to fix it at its fiducial value.

A.3. Influence of kV

In Fig. A.2 we show the influence of the screening length on the constraining power. Clearly, if kV

becomes smaller, GR is retained at larger scales already, thus decreasing the sensitivity on the modified
gravity parameters. For a more complete discussion we refer the reader to Alonso et al. (2016).

A.4. Cholesky Decomposition

We review the Cholesky Decomposition algorithm to generate Gaussian random fields with a known
covariance in Algorithm 5. This is widely used in statistics (see e.g. Fox & Parker, 2015), but is
relatively new in cosmology.

The covariance matrix of any random vector Y is given as E(YYT ). Consider now a random vector
XY consisting of uncorrelated random variables with each random variable, Xi, having zero mean and
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Figure A.2.: Constraints on α̂B and α̂M for two different choices of the screening length kV .

unit variance. It follows that

E(XXT ) = I, (A.7)

with I the identity matrix. To generate a random vector with given covariance matrix Q, consider
the Cholesky decomposition of Q such that Q = LLT , where L is lower triangular and LT upper
triangular. Note that it is possible to obtain a Cholesky decomposition of Q since by definition the
covariance matrix Q is symmetric and positive definite.

Consider now the random vector Z = LX. We have

E(ZZT ) = E((LX)(LX)T ) = E(LXXT LT ) (A.8)

= LE(XXT )LT = LILT = Q. (A.9)

Hence, the random vector Z has the desired covariance matrix Q.

Algorithm 5 Cholesky sampling to generate Gaussian Random Fields
Input Covariance matrix C`

Output γ` ∼ N(0,C`)
Cholesky factor C` = T`T T

`
sample z` ∼ N(0, I)
γ` = T`z`

Cholesky factor Σ = CCT

sample z ∼ N(0, I)

y = Cz ∼ N(0,Σ)
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