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I 

 

Summary 

The medial prefrontal cortex (mPFC) is critically involved in cognitive flexibility and top 

down control of behavior. Dysfunction of this brain region is a hallmark of many psychiatric 

disorders including addiction. The physiological and molecular mechanisms underlying 

mPFC function are largely unclear. A widely accepted theory posits that distinct memories are 

encoded in the brain by sparsely distributed sets of neurons, so called neuronal ensembles, 

which has been demonstrated for reward seeking behavior. However, in the case of alcohol 

seeking neuronal ensembles had not been identified and it is unclear how such ensembles 

might differ from those involved in natural reward seeking. Furthermore, excessive alcohol 

use causes damage to the mPFC, especially to its ventromedial subregion, also termed 

infralimbic cortex (IL). Long-term alcohol-induced changes in this brain area include a deficit 

in metabotropic glutamate receptor subtype 2 (mGluR2). These receptors modify the 

signaling properties of IL neurons to their projection targets and their dysfunction within 

corticostriatal projections of alcohol-dependent rats is known to be associated with loss of 

control over alcohol seeking behavior. 

Thus, this PhD thesis aims to provide insights into the organization of IL neuronal ensembles 

involved in alcohol and natural reward seeking and to further understand the role of an 

mGluR2 deficit for IL dependent control over alcohol seeking and cognitive flexibility. 

In Study 1 we identify a functional neuronal ensemble in the IL involved in the control of 

alcohol seeking behavior, using a chemo-genetic inactivation method. In Study 2 we 

demonstrate that IL neuronal ensembles involved in alcohol and saccharin seeking are highly 

overlapping, but also contain reward specific components by using retrograde tracing 

techniques in combination with a novel two-reward operant task. In Study 3 we develop an 

advanced methodological framework for measuring neuronal ensemble activity during an 

operant reward seeking task using in-vivo calcium imaging. By using viral mGluR2 

knockdown techniques, Study 4 and 5 establish an IL mGluR2 deficit as a common 

pathological mechanism for excessive alcohol seeking and impaired cognitive flexibility.  

In summary, the results of this thesis provide important insights into the function and 

organization of neuronal ensembles involved in reward seeking. Possible changes of 

organization and function of neuronal ensembles in pathological conditions, like addiction, 

should be addressed in future studies. Furthermore an IL mGluR2 deficit is established as a 

common pathological mechanism for excessive alcohol seeking and impaired cognitive 

flexibility, thus leading to a deeper understanding of the underlying molecular mechanisms of 

this frequent comorbidity and providing a promising target for future medication therapies. 
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Zusammenfassung 
 

Der mediale präfrontale Kortex (mPFC) ist entscheidend an der kognitiven Flexibilität und 

der Top-Down Kontrolle des Verhaltens beteiligt. Funktionsstörungen dieser Hirnregion sind 

charakteristisch für viele psychiatrische Störungen, einschließlich Suchterkrankungen. Die 

physiologischen und molekularen Mechanismen, die der mPFC-Funktion zugrunde liegen, 

sind bisher weitgehend unklar. Eine weithin akzeptierte Theorie postuliert, dass bestimmte 

Erinnerungen im Gehirn durch spärlich verteilte Neuronengruppen, so genannten neuronalen 

Ensembles, kodiert werden, was bereits für das Belohnungs- Suchverhalten demonstriert 

wurde. Bisher wurden jedoch noch keine solchen neuronalen Ensembles für das Alkohol 

Suchverhalten identifiziert und es ist unklar, wie sich diese von jenen Ensembles 

unterscheiden könnten, welche an dem Suchverhalten nach natürlichen Belohnungen beteiligt 

sind. Zusätzlich schädigt exzessiver Alkoholgebrauch den mPFC, insbesondere seine 

ventromediale Subregion, die auch als infralimbischer Kortex (IL) bezeichnet wird. Zu den 

langfristigen Alkohol-induzierten Veränderungen in dieser Gehirnregion gehört ein Defizit 

des metabotropen Glutamat-Rezeptor-Subtyps 2 (mGluR2). Diese Rezeptoren modifizieren 

die Signaleigenschaften von IL-Neuronen zu ihren Projektionszielen und deren Dysfunktion 

innerhalb kortikostriataler Projektionen in alkoholabhängigen Ratten ist bekanntlich mit dem 

Kontrollverlust über das Alkoholsuchverhalten verbunden. 

Ziel dieser Dissertation ist es, Einblicke in die Organisation von neuronalen Ensembles im IL 

zu geben, die an der Suche nach Alkohol und natürlichen Belohnungen beteiligt sind, und die 

Rolle eines mGluR2 Defizits im Zusammenhang mit der IL-abhängigen Kontrolle des 

Alkohol Suchverhaltens und kognitiver Flexibilität besser zu verstehen. 

In Studie 1 identifizieren wir mit Hilfe einer chemo-genetischen Inaktivierungsmethode ein 

funktionelles neuronales Ensemble im IL, das an der Kontrolle des Alkoholsuchverhaltens 

beteiligt ist. In Studie 2 zeigen wir mittels einer Kombination von retrograden Tracing 

Techniken und einem neuen operanten Verhaltensprotokoll zum abwechselnden Suchen nach 

zwei verschiedenen Belohnungen, dass IL-neuronale Ensembles, welche an Alkohol und 

Saccharin Suchverhalten beteiligt sind, stark überlappen, aber auch Belohnungsspezifische 

Komponenten enthalten. In Studie 3 entwickeln wir einen fortgeschrittenen methodischen 

Rahmen zur Aktivitätsmessung neuronaler Ensembles während eines operanten Belohnungs- 

Suchverhaltens unter Verwendung von in-vivo Kalzium-Bildgebung. Mittels viraler mGluR2-

Knockdown-Techniken etablieren die Studien 4 und 5 ein IL mGluR2-Defizit als einen 

gemeinsamen pathologischen Mechanismus für übermäßiges Alkoholsuchverhalten und 

beeinträchtigte kognitive Flexibilität. 
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Zusammenfassend liefern die Ergebnisse dieser Arbeit wichtige Einblicke in die Funktion und 

Organisation neuronaler Ensembles, welche an der Belohnungssuche beteiligt sind. Mögliche 

Veränderungen der Organisation und Funktion neuronaler Ensembles bei pathologischen 

Konditionen, wie z.B Suchterkrankungen, sollten in zukünftigen Studien behandelt werden. 

Darüber hinaus haben wir ein IL mGluR2 Defizit als gemeinsamen pathologischen 

Mechanismus für übermäßiges Alkoholsuchverhalten und eingeschränkte kognitive 

Flexibilität etabliert, was zu einem tieferen Verständnis der zugrunde liegenden molekularen 

Mechanismen dieser häufigen Komorbidität führt und ein vielversprechendes Ziel für 

zukünftige medikamentöse Therapien darstellt. 
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1. Introduction 
 

Reward seeking is a basic principle for satisfying our needs and desires. "Rewards are things 

that have positive effects on behavior, attitude, relationships, etc., or in technical jargon, 

stimuli that reinforce behavior." (Ikemoto and Bonci, 2014). Furthermore rewards can be 

defined as "an induced state that subsequently leads to conditioned approach behavior." 

(Ikemoto and Bonci, 2014). Rewards can be subdivided into natural rewards like food, water 

and sex, and drug rewards including alcohol. The underlying system of both natural and drug 

reward reinforcement is the mesolimbic dopamine system. It is generally assumed that drug 

seeking and drug intake are novel features of human behavior and drugs of abuse are thought 

to hijack incentive mechanisms, involved in natural reward seeking (Nesse and Berridge, 

1997). However, another theory considers the fact, that mammals have been ingesting drugs 

and alcohol over the course of millions of years as part of their natural behavior repertoire 

(Dudley, 2000; Sullivan and Hagen, 2002). Therefore alcohol seeking can be considered a 

part of our normal behavioral repertoire (Spanagel, 2009). Both, seeking for drugs and natural 

rewards, seem to engage similar reward circuitries in the brain. However, given the highly 

different consequences of natural and drug reward seeking, this thesis is aimed to provide an 

insight into the neuronal encoding of natural and drug reward seeking. Furthermore the 

molecular mechanisms underlying alcohol seeking behavior will be examined. 

 

1.1 Reward seeking behavior and its relevance in alcohol addiction 

 

All mammals engage in certain activities to obtain natural rewards, because these rewards 

produce a feeling of pleasure, which in turn increases the probability of the individual to 

repeat this activity in order to experience pleasure again (McClure et al., 2004). From an 

evolutionary point of view, appropriate responding to natural rewards is important for 

survival, reproduction and fitness (Kelley and Berridge, 2002). Also today, reward seeking 

behavior is a fundamental part of our everyday life, because the feeling of pleasure generated 

by rewards is essential for our normal sense of well-being (Berridge and Kringelbach, 2008). 

In addition to natural rewards, also drugs of abuse like alcohol can produce these positive 

mood states (Kelley and Berridge, 2002; Spanagel, 2009).  
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Alcohol is one of the most commonly used substances, constituting 5.9% of deaths worldwide 

(World Health Organization, 2014). Although most individuals successfully control their 

alcohol intake, the government of Germany reported that 21,4% of the current population 

consume potentially harmful amounts of alcohol (>12g ethanol per day for women and >24g 

ethanol per day for men), (Die Drogenbeauftragte der Bundesregierung). From the total 

German population of 3,38 Mio adults, 1.61 Mio abuse alcohol and 1.77 Mio are alcohol 

dependent (DHS Jahrbuch Sucht, 2018). Alcohol use disorders are characterized by chronic 

abstinence and relapse cycles, loss of control over alcohol intake, craving and the emergence 

of a negative emotional state or motivational withdrawal symptom (Koob and Volkow, 2010). 

Repeated cycles of abstinence and relapse can lead to the transition from controlled alcohol 

use to heavy alcohol use. This can result in an early dependence state, during which neutral 

environmental stimuli become associated with the pleasurable effects of alcohol. The early 

dependence state can be followed by the late dependence state, which is characterized by a 

low mood, high anxiety and sensitivity to stress. In the late dependence state the motivation 

for alcohol consumption is mainly driven by negative reinforcement in addition to the positive 

reinforcement, meaning that alcohol is consumed to counteract negative emotional states. The 

late dependence state is characterized by persistent neuroadaptations, which develop during 

the progression of alcohol dependence over time (Heilig and Koob, 2007; Meinhardt and 

Sommer, 2015). The Diagnostic and Statistical Manual of Mental Disorders, 5th ed. (DSM-V) 

(American Psychiatric Association, 2013) lists 11 clinical diagnostic criteria for alcohol use 

disorders. The presence of at least two of these symptoms indicate an alcohol use disorder 

(AUD). The presence of two to three symptoms indicates a mild grade of AUD. Four to five 

symptoms indicate a moderate grade and more than six symptoms indicate a severe grade of 

AUD. 

Individuals engage in voluntary and controlled alcohol consumption due to its reinforcing 

properties and hedonic effects, also called drug "liking". Reward "liking" is a distinct process 

from reward "wanting", describing the incentive motivation or desire, which drives approach 

behavior to rewards or promotes reward consumption (Berridge et al., 2009). Under healthy 

conditions an individual "wants" the drug because it "likes" the drug. However, under 

pathological conditions the controlled alcohol consumption can develop into habitual and 

ultimately compulsive alcohol seeking (Everitt et al., 2008; Koob and Volkow, 2010). This 

process is characterized by a strong increase of "wanting" and a simultaneous decrease of 

"liking" (Figure 1) (Robinson and Berridge, 1993; Berridge et al., 2009) and occurs during the 
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transition from positive reinforcement to negative reinforcement as a motivation for alcohol 

consumption (Figure 1) (Heilig and Koob, 2007; Koob and Volkow, 2010).  

 

 

Figure 1: Schematic representation of the incentive sensitization model of addiction. Initially subjects both 

‘like’ and ‘want’ the drug. During the development from controlled to compulsive drug use the incentive value 

of the drug increases over time, independent of the subjective feeling of pleasure or ‘liking’. This mechanism 

occurs in parallel to the transition from positive reinforcement to negative reinforcement as the motivation to 

take the drug. Figure adapted from (Robinson and Berridge, 1993; Berridge et al., 2009). 

 

In addition to the promotion of reward seeking, positive reinforcing properties of rewards also 

attribute positive motivational value to previously neutral stimuli or environmental contexts, 

which is called associative learning (Di Chiara, 1999). Following associative learning, these 

so called conditioned cues predict their associated rewards and thereby trigger the 

motivational "wanting" response to obtain the reward (Berridge et al., 2009). Through 

associative learning the drug-associated cues can acquire incentive-motivational properties 

(See, 2002). Repeated drug intoxication cycles can further strengthen the incentive salience of 

the conditioned cues and promote compulsive drug seeking behavior (Flagel et al., 2009). 
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1.2 Brain reward circuitry 

 

In 1954 Olds and Milner identified the brain reward system in the rat. This groundbreaking 

work led to the discovery of many brain areas involved in mediating the reinforcing effects of 

alcohol and other drugs of abuse. Specifically the midbrain dopamine (DA) system has been 

identified as a neurochemical substrate underlying reinforcement (Wise and Rompre, 1989; 

Wise, 2004; Schultz, 2007; Spanagel, 2009). Midbrain A10 DA neurons project from the 

ventral tegmental area (VTA) to the limbic system, especially the nucleus accumbens (NAc) 

shell and the medial prefrontal cortex (mPFC) (Fuxe, 1965; German and Manaye, 1993). It 

has been shown that alcohol increases extracellular dopamine levels in the NAc due to a 

decrease in GABAergic feedback projections from the NAc to the VTA, leading to a 

disinhibition of A10 DA neurons (Figure 2A) (Kalivas, 1993; Kohl et al., 1998; Spanagel and 

Weiss, 1999; Lüscher and Ungless, 2006). In addition to the GABAergic feedback system, the 

midbrain DA system is also regulated by the glutamate system (Lüscher and Ungless, 2006; 

Gass and Olive, 2008). The VTA receives glutamatergic input from the mPFC, the bed 

nucleus of stria terminalis (BNST), the laterodorsal tegmental nucleus and the lateral 

hypothalamus (Figure 2C) (Omelchenko and Sesack, 2007). Also the NAc receives 

glutamatergic input from mPFC, the hippocampus, the amygdala and the paraventricular 

nucleus of the hypothalamus (Figure 2B) (Blaha et al., 1997; Howland et al., 2002; Parsons et 

al., 2007). Glutamate release from these projections can act directly on ionotropic glutamate 

receptors in the NAc shell and facilitate dopamine release.  

Both drug as well as natural rewards lead to an increase in synaptic dopamine levels in the 

above described mesocorticolimbic system. This similarity in activation indicates a common 

neuroanatomical pathway (Di Chiara and Imperato, 1988; Wise and Rompre, 1989). A 

neuroimaging study in rats supports this theory, because voluntary consumption of a sweet 

saccharin solution and alcohol produced highly similar activation maps in manganese-

enhanced magnetic resonance imaging in the mesocorticolimbic and nigrostriatal system 

(Dudek et al., 2015). A meta-analysis of 176 human cue-reactivity studies also revealed 

highly overlapping neuronal substrates especially in the brain reward system underlying 

craving for natural and drug rewards (Noori et al., 2016). These findings strengthen the 

theory, that drug rewards “hijack” the brain’s natural reward pathway (Gardner, 2011). 
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Figure 2: Projections in the mesocorticolimbic system. A) A10 dopamine (DA) neurons project from the 

ventral tegmental area (VTA) to the nucleus accumbens (NAc). Alcohol-induced dopamine release in the NAc is 

further increased by a negative GABAergic feedback loop from the NAc to the VTA. Alcohol decreases 

GABAergic activity, thereby disinhibiting the A10 DA neurons in the VTA. B) The nucleus accumbens (NAc) 

receives glutamatergic input from the medial prefrontal cortex (mPFC), the hippocampus (Hippo), the 

paraventricular nucleus (PVN) and the amygdala (Amy). C) The ventral tegmental area (VTA) receives 

glutamatergic input from the mPFC, the bed nucleus of stria terminalis (BNST), and the lateral hypothalamus 

(LH). 
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1.3 Glutamate receptors in the brain 

 

Glutamate is the most important excitatory neurotransmitter in the brain and a crucial 

component for the induction of synaptic plasticity, learning, memory and cognition (McEntee 

and Crook, 1993; Zhou, 2014). Excessive elevated extracellular glutamate levels were found 

to trigger the pathophysiology of several neurological diseases like traumatic brain injury and 

stroke (Maragakis and Rothstein, 2001; Lau and Tymianski, 2010), which is why a tight 

regulation of the glutamate neurotransmitter system is crucial for normal brain function. 

Several types of glutamate receptors were identified in the brain. The following ionotropic 

glutamate receptors (iGluRs) mediate fast excitatory glutamate transmission: N-methyl-d-

aspartate (NMDA) receptor (Bonaccorso et al., 2011; Gonda, 2012), α-amino-3-hydroxy-5-

methyl-4-isoxazole propionic acid (AMPA) receptor (Rogawski, 2013) and kainate receptors 

(Lerma and Marques, 2013). Slow, modulatory glutamate transmission is mediated by the 

class of metabotropic glutamate receptors (mGluRs), which are G-protein coupled receptors 

(Olive, 2009).  

The class of mGluRs is comprised of eight subtypes of seven transmembrane domain G-

protein coupled receptors, with differences in cellular localization, pharmacological and 

intracellular signaling characteristics (Pin and Duvoisin, 1995; Conn and Pin, 1997). The 

mGluR group I family consists of mGluR1 and mGluR5 and is predominantly 

postsynaptically localized. The mGluR group II family includes mGluR2 and mGluR3. The 

mGluR group III family consists of mGluR4, mGluR6, mGluR7 and mGluR8 (Schoepp and 

Conn, 1993; Schoepp, 2001; Olive, 2009). mGluR2 is predominantly presynaptically 

localized, but was also found in postsynaptic elements. However, mGluR3 was found to be 

predominantly localized in postsynaptic elements, which demonstrates a clearly distinct 

expression pattern of both group II mGluRs (Tamaru et al., 2001). Group I mGluRs are 

coupled to the Gαq class of G-proteins, which leads to the activation of several 

phospholipases and hydrolysis of phosphoinositide (PI). This in turn leads to the formation of 

inositol triphosphate (IP3) and diacylglycerol (DAG), which can release calcium (Ca
2+

) from 

intracellular internal stores (Conn and Pin, 1997; Hermans and Challiss, 2001). Both group II 

and group III mGluRs are coupled to the Gαi class of G-proteins and are negatively coupled 

to adenylyl cyclase (AC), which leads to a reduction of intracellular cyclic adenosine 
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monophosphate (cAMP). Group II and III mGluRs, specifically mGluR2 and mGluR3 are 

thought to function as autoinhibitory receptors mediating the suppression of excessive 

glutamate release from the presynaptic terminal (Schoepp, 2001), thereby protecting neurons 

against excitotoxicity (Buisson and Choi, 1995). However, given the distinct cellular 

localization patterns, each mGluR is thought to have a unique function in regulating 

glutamatergic neurotransmission.   

Glutamate transmission has been reported to mediate natural rewards (Pitchers et al., 2012; 

Mietlicki-Baase et al., 2013), as well as drug rewards (D'Souza, 2015). Alcohol for example 

has acute effects on the glutamate system involving inhibition of postsynaptic glutamate 

transmission (Lovinger et al., 1989; Nie et al., 1993; Carta et al., 2003) and inhibition of 

presynaptic mechanisms mediating glutamate release (Hendricson et al., 2003; Ziskind-

Conhaim et al., 2003; Hendricson et al., 2004). Conversely, chronic alcohol exposure was 

shown to result in an upregulation of AMPA (Netzeband et al., 1999) and NMDA receptor 

signaling (Hu and Ticku, 1995), as well as altered metabotropic glutamate receptor function 

(Gass and Olive, 2008; Meinhardt et al., 2013; Goodwani et al., 2017), which may result in an 

overexcitable state of the central nervous system (Hermann et al., 2012). A transitional 

“hyperglutamatergic state” has been reported during acute and prolonged alcohol withdrawal, 

which is associated with alcohol craving and relapse (Spanagel et al., 2004). This 

hyperglutamatergic state can be attenuated by the drug acamprosate, which interacts with 

NMDA and mGluR5 receptors and restores the balance between excitatory and inhibitory 

neurotransmission (Spanagel and Zieglgänsberger, 1997; Spanagel and Kiefer, 2008). 

These long lasting changes in glutamate transmission after chronic alcohol exposure are likely 

due to synaptic plasticity mechanisms (Kroener et al., 2012; Zorumski et al., 2014). 

 

1.3.1 Group II mGluRs in addiction 

 

In the rodent brain the highest levels of mGluR2/3 receptors can be found in the olfactory 

bulb and the hippocampus, moderate levels can be found in the dorsal striatum, nucleus 

accumbens, amygdala, anterior thalamic nuclei, the cerebral cortex and cerebellum. Low 

levels were detected in the pallidum, colliculi, the ventral midbrain and the hypothalamus 

(Shigemoto et al., 1997; Olive, 2009). Therefore mGluR2/3 are expressed in brain areas 
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involved in the rewarding properties of alcohol and are a potential research target for alcohol 

use disorders (Moussawi and Kalivas, 2010). mGluR2/3 have been shown to be involved in 

neuropsychiatric diseases like Alzheimer's disease, Parkinson's disease, anxiety, depression, 

schizophrenia and addiction (Niswender and Conn, 2010). The mGlu2/3 receptor agonist 

LY379268 was shown to suppress alcohol self-administration as well as cue-induced and 

stress-induced reinstatement of alcohol seeking in rats (Bäckström and Hyytiä, 2005; Zhao et 

al., 2006). An escalation of alcohol intake was also observed in a genetic mGluR2 knockout 

rat model, compared to control rats (Zhou et al., 2013). In addition a previous study from our 

lab found a downregulation of mGluR2 mRNA specifically in the infralimbic (IL) cortex after 

chronic intermittent alcohol exposure in the so called postdependent rat model (Meinhardt et 

al., 2013). This mGluR2 deficit in the IL - NAc shell projection lead to excessive cue-induced 

alcohol seeking behavior in rats, which was normalized after a viral restoration of mGluR2 

expression in the IL. Thus, mGluR2 seems to play an important role in alcohol seeking 

behavior and could be a potential treatment target for alcohol use disorders. 

 

1.4 Rodent animal models of reward seeking and drug addiction 

 

An animal model is not a perfect replication of a complex clinical condition, but rather 

models aspects of a complex neuropsychiatric disorder (Denayer et al., 2014). In order to 

validate different animal models, a validity scoring system has been developed (Sams-Dodd, 

2006). The most commonly used system evaluates the validity of an animal model based on 

three criteria (McKinney and Bunney, 1969; Willner et al., 1992; Sams-Dodd, 1999): face, 

construct and predictive validity. Face validity indicates if the animal model "looks like" the 

clinical condition, e.g. similar physical symptoms. Construct validity defines that the 

underlying disease mechanism is the same in the animal model and in the clinical condition. 

Predictive validity defines that the responses to drug treatment and other manipulations are 

similar compared to the clinical condition.  
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1.4.1 Post-dependent animal model 

 

In the post-dependent model of alcoholism, a dependence-like state is induced in wildtype rats 

by repeated cycles of intoxication and withdrawal from alcohol. Chronic intermittent 

exposure (CIE) to alcohol vapor (Figure 3A) is a reliable model for anatomical, behavioral 

and biochemical features of alcohol addiction, providing construct, face and predictive 

validity (Rimondini et al., 2002; Sommer et al., 2008; Meinhardt and Sommer, 2015). 

Amongst other molecular and cellular changes, this procedure specifically induces a 

downregulation of mGluR2 in the infralimbic cortex, which makes it a promising model to 

study alcohol consumption and alcohol seeking behavior (Meinhardt et al., 2013). A key 

characteristic of this animal model is the high blood alcohol concentration (BAC) between 

150 - 300 mg/dl or 1.2 - 2.4 ‰ (Figure 3B) after a 14h exposure cycle (Gilpin et al., 2009; 

Meinhardt et al., 2013; Meinhardt and Sommer, 2015). The post-dependent (PD) state is 

induced by repeated intoxication and withdrawal cycles for 8 weeks and is characterized by 

excessive, voluntary alcohol seeking behavior, increased alcohol intake, as well as tolerance 

to alcohol, increased sensitivity to stress and the presence of withdrawal signs (Figure 3C) 

(Sommer et al., 2008; Meinhardt and Sommer, 2015). Although the alcohol administration in 

this model is passive and not voluntary, the following DSM5.0 criteria are fulfilled (American 

Psychiatric Association, 2013): tolerance to alcohol, withdrawal symptoms, loss of control 

over alcohol seeking and excessive voluntary alcohol consumption (Meinhardt and Sommer, 

2015). Furthermore, this model has very good predictive and construct validity, because 

pathological changes in the brain resemble the changes observed in alcoholic patients. 

Furthermore, several pharmacological substances used for relapse prevention in human 

alcoholics are also effective in reducing voluntary alcohol consumption in PD rats. The PD 

model does not have face validity, because alcohol administration is not based on a voluntary 

basis, but forced by the experimenter (Meinhardt and Sommer, 2015). Nevertheless, PD rats 

are an excellent model for long-term changes in the brain after chronic alcohol exposure. 
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Figure 3: Post-dependent animal model. A) Schematic of vapor exposure procedure The animals are housed in 

groups of four in their homecages and exposed to EtOH vapor or air. The animals undergo 8 weeks of repeated 

cycles of chronic intermittent EtOH (CIE) or air exposure for 14h per day and 7 days a week. B) Blood alcohol 

concentrations (BAC) reach a stable level between 150 - 300mg/dl after each 14h CIE cycle. C) Total somatic 

withdrawal scores, 8 hours after the last CIE or air cycle. Total withdrawal scores are the sum of the following 

withdrawal signs: tail rigidity, ventro-medial limb retraction, irritability to touch (vocalization), abnormal gait 

and body tremors.  

 

1.4.2 Genetically selected alcohol preferring rat lines 

 

Alcohol preferring as well as non-preferring rat lines were generated by genetic selection and 

breeding of animals with high alcohol preference and animals with low alcohol preference. 

Several alcohol preferring and non-preferring rat lines have been generated so far. The most 

commonly used lines are: the finish Alko alcohol (AA) and Alko non-alcohol (ANA) 

preferring rats (Eriksson, 1969), the high-alcohol drinking (HAD) and low-alcohol drinking 

(LAD) rats (Li et al., 1993), the Sardinian preferring (sP) (Colombo, 1997), the Marchigian 

Sardinian (msP) rats (Ciccocioppo et al., 1998) and the Indiana alcohol preferring (P) and 

non-preferring (NP) rats (Lumeng et al., 1977). In the framework of this thesis, the Indiana P 

and NP rats were used. Indiana P and NP rats were generated by selective breeding from a 

wild type Wistar rat colony (Figure 4). P rats are characterized by a voluntary daily alcohol 

consumption of more than 5g/kg. NP rats are characterized by a voluntary daily alcohol 

consumption of less than 1g/kg. 
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Figure 4: Generation of Indiana NP and P rats. Indiana alcohol preferring (P) rats and non-preferring (NP) 

rats were generated at the Indiana University Alcohol Research Center. The animals were generated by 

inbreeding low alcohol drinking Wistar rats to generate the NP line and high drinking Wistar rats to generate the 

P line.   

 

Indiana P rats reach high blood alcohol concentrations (BACs) of 50 - 200mg/dl under 24h 

voluntary drinking (Rodd-Henricks et al., 2001; Bell et al., 2006) or limited access conditions 

(Murphy et al., 1986). Furthermore Indiana P rats are homozygous for a premature stop codon 

in the Glutamate metabotropic receptor 2 (Grm2) coding sequence (Zhou et al., 2013). This 

premature stop codon is generated by a single nucleotide polymorphism (SNP) in the Grm2 

coding sequence changing the codon TGC for cysteine into TGA (stop codon) (Figure 5). As 

a result, a truncated version of the metabotropic glutamate receptor 2 (mGluR2) protein is 

translated, consisting of a partial ligand binding domain and none of the transmembrane 

domains. The resulting protein fragment is not functional, leading to a "knock-out" of 

mGluR2 in Indiana P rats. The Grm2 coding sequence and mGluR2 expression in NP rats is 

not affected. This genetic model for alcoholism has predictive, face and construct validity 

(Ciccocioppo, 2013).   
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Figure 5: Premature stop-codon in Grm2 coding sequence of Indiana P rats. Schematic representation of 

genomic location of premature stop-codon in Indiana P rats. Due to a point mutation the sequence TGC encoding 

cysteine is replaced by the stop codon TGA. The stop codon, present in P-rats leads to a truncated, non-

functional mGlur2 protein, consisting of a partial ligand binding domain, but none of the transmembrane 

domains. Adapted from (Zhou et al., 2013). 

 

1.4.3 Operant reinstatement of drug-seeking model 

 

The most frequently used and reliable procedure to study reward seeking behavior in rats is 

the reinstatement model (Shaham et al., 2003; Spanagel, 2003; Bossert et al., 2013). This 

operant conditioning model is an example for associative learning. The animals need to 

discriminate between two contingencies: responding at one lever, paired with a reward-

associated stimulus will lead to a reward delivery and responding at another lever, not paired 

with a reward-associated stimulus will not lead to reward delivery (Sanchis-Segura and 

Spanagel, 2006; Martin-Fardon and Weiss, 2013). Under these conditions, animals are trained 

to self-administer natural rewards or drug rewards until a stable baseline response rate is 

reached. Following this, the animals undergo extinction training which leads to a decrease in 

responding due to the absence of drug- or reward predictive cues and the reward itself. For the 

final reinstatement test lever responding can be reinstated by administration of a small 

quantity of the drug or reward, so called drug priming (de Wit and Stewart, 1981), by the 

presentation of previously conditioned cues and stimuli (Figure 6) (Katner et al., 1999) or by 

exposure to stressors (Lê et al., 1998).  

This model has excellent face validity to the clinical relapse condition, because craving and 

relapse in abstinent alcoholics can be also triggered by the re-exposure to the drug (de Wit, 

1996), exposure to drug associated cues or contexts (O'Brien et al., 1992) or the exposure to 

stressors (Sinha et al., 2011). Furthermore, drug consumption and drug seeking occur on a 
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voluntary basis and are not experimenter controlled, which is another aspect of face validity. 

The reinstatement model has also predictive validity in the case of heroin, alcohol, and 

nicotine: naltrexone, acamprosate, buprenorphine, methadone, or varenicline are used as anti-

relapse treatment in humans and were also shown to decrease drug priming or cue-induced 

reinstatement in rats (Bossert et al., 2013). The construct validity has not been demonstrated 

yet, because the drug-free state in the animal model occurs due to different reasons compared 

to the human condition. Furthermore, the contingencies involved in drug-priming and cue-

induced reinstatement are not the same as in the clinical condition (Epstein et al., 2006). Also 

stress-induced reinstatement is mostly induced by footshock (Kupferschmidt et al., 2011) or 

the administration of pharmacological stressors (Lê et al., 2005), which does not represent the 

human condition.  

 

Figure 6: Schemtatic representation of cue-induced reinstatement of alcohol seeking model. The operant 

chamber is equipped with one response lever at each side and a blinking light stimulus located above each lever. 

The animals are trained to self-administer an ethanol solution by responding at the left lever. The ethanol reward 

is paired with activation of the left blinking light stimulus and the continuous presence of an orange odor as a 

contextual cue. Following self-administration and cue-conditioning, the animals undergo extinction training. No 

contextual orange odor cue and no blinking light stimulus are presented. Responses at the left lever do not result 

in ethanol reward delivery anymore. After extinction training, the animals are tested on their cue-induced 

reinstatement of alcohol seeking performance. The contextual orange odor cue and the blinking light stimulus 

after left lever responses are presented again. However, lever responses do not result in ethanol reward delivery.  

 

1.4.4 Evaluation of the reinforcing properties of rewards 

 

For the above described self-administration and reinstatement procedures often a fixed ratio 

(FR) schedule is used, meaning the reward is delivered as soon as a pre-defined number of 

responses is reached. To assess the reinforcing potential of rewards and the animal's 

motivation to obtain the reward a progressive ratio (PR) schedule can be applied. During this 
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test, an increasing number of responses has to be made in order to obtain the reward (Hodos, 

1961).  The most commonly measured variable during a PR schedule is the "breaking point" 

(BP). The BP is defined as the highest completed ratio of responses during the operant session 

and presumably reflects the maximum effort the animal is willing to make in order to obtain a 

single portion of the reward. Therefore the BP is often used as a measure of an animal's 

motivation to obtain a reward and can be used to evaluate the reinforcing properties of 

different substances (Richardson and Roberts, 1996; Sanchis-Segura and Spanagel, 2006). 

 

1.5 The medial prefrontal cortex 

 

1.5.1 Top-down control over behavior 

 

The medial prefrontal cortex (mPFC) is a central part of the brain reward circuitry and is 

generally involved in higher cognitive abilities including self-control, regulation of emotion, 

motivation, working memory, decision making attention and cognitive flexibility (Heidbreder 

and Groenewegen, 2003; Goldstein and Volkow, 2011). It is furthermore involved in bottom-

up processes driven by the amygdala in emotional and motivational behavior as well as top-

down or executive control over goal directed behavior (Quirk and Beer, 2006). Goals are 

defined as desired states that an individual wants to achieve, for example a specific reward. In 

order to obtain the reward, an individual has to perform a certain activity, which is called 

goal-directed behavior (Buschman and Miller, 2014). Top-down control over behavior 

describes the use of previously acquired knowledge to plan and decide for appropriate actions 

in order to achieve a goal. It is hypothesized that goal-directed behavior is controlled by two 

complimentary systems: The basal ganglia structures (the ventral striatum, including the 

nucleus accumbens, and the dorsal striatum), which are known to be involved in reward 

conditioning and habit formation (Di Chiara and Imperato, 1988; Wise, 1996; Goldstein and 

Volkow, 2011), are thought to be involved in the rapid learning of simple and fixed goal-

directed behaviors (Buschman and Miller, 2014). The second system is based on the mPFC, 

which is involved in the learning of complex, abstract or long-term goal-directed behavior 

(Buschman and Miller, 2014). Therefore the mPFC is a critical structure for the acquisition 

and execution of reward seeking behavior. The mPFC also plays a crucial role in alcohol use 

disorders, as alcohol-associated stimuli were shown to induce robust activation in prefrontal 
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and limbic regions (Schacht et al., 2013). Activation of these brain areas was also found in 

abstinent alcoholics, which subsequently relapsed (Grüsser et al., 2004).  

 

1.5.2 Functional distinction of medial prefrontal subregions in rodents 

 

After a long period of controversial discussions it is now accepted that rats have a functional 

prefrontal cortex, which is divided into several subregions and is functionally comparable to 

the medial, orbital and dorsolateral areas of the primate prefrontal cortex (Uylings et al., 

2003). Similar to the human prefrontal cortex, also the rat prefrontal cortex has been shown to 

be involved in working memory, attention, behavioral flexibility, decision making, response 

initiation, autonomic control and emotion (Heidbreder and Groenewegen, 2003).  

Along the dorsal-ventral axis the rat medial prefrontal cortex can be subdivided into the 

anterior cingulate cortex (ACC), the prelimbic cortex (PL) and the infralimbic cortex (IL). 

The rat IL is thought to be a homologue to the Brodmann's area 25 and the PL a homologue to 

Brodmann's area 32 in primates (Gabbott et al., 2003) and humans (Quirk and Beer, 2006). 

The dorsal part of the mPFC comprised of the dorsal ACC and the dorsal PL is particularly 

involved in the temporal shifting of behavioral strategies. The ventral part of the mPFC 

comprised of the ventral PL and the IL is involved in behavioral flexibility and processing of 

spatial cue information (Heidbreder and Groenewegen, 2003). Furthermore the PL was found 

to be important for voluntary goal-directed behavior, whereas the IL was found to be involved 

in habit formation (Killcross and Coutureau, 2003). An important function of the medial 

prefrontal cortex is both to drive behavior, but also to suppress inappropriate responses 

(Miller and Cohen, 2001; Dalley et al., 2004; Euston et al., 2012). A functional dichotomy 

between the PL and the IL has been postulated for fear memory and addiction (Peters et al., 

2009). The PL was found to drive a behavioral sequence, while the IL is involved in 

behavioral suppression. However, there is growing evidence, that such a simple functional 

dichotomy cannot be generalized for reward seeking behavior, as promoting and suppressing 

neuronal correlates can be found in both the PL and IL (Bossert et al., 2011; Moorman and 

Aston-Jones, 2015; Moorman et al., 2015). Also in a previous study from our lab specifically 

the IL was found to be damaged by chronic alcohol intake and was found to be involved in 

the control over alcohol seeking behavior (Meinhardt et al., 2013). 
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1.5.3 Anatomical distinction of medial prefrontal subregions 

 

There are clear anatomical differences between the different medial prefrontal subregions. 

The medial prefrontal cortex is a highly interconnected structure, which receives from and 

sends extensive projections to a variety of different brain areas. Already the IL subregion of 

the mPFC is known to have more than 60 projection targets (Hurley et al., 1991; Vertes, 

2004; Noori et al., 2017). 

 

1.5.3.1 Cortico-cortical connections of the mPFC 

 

There are strong interconnections of the ventral and dorsal subregions of the mPFC between 

both hemispheres. There are also strong interconnections between the infralimbic and 

prelimbic cortices within the same hemisphere. However, the connection of the IL with the 

contralateral PL seems to be rather weak compared to the unilateral IL - PL projection 

(Vertes, 2004). The dorsal areas (ACC and dorsal PL) are strongly connected with the sensory 

and motor cortices while the ventral subregions (ventral PL and IL) are strongly connected 

with the association cortex and limbic system (Heidbreder and Groenewegen, 2003).  

 

1.5.3.2 Efferent mPFC projections 

 

The IL projects to the PL, the orbitofrontal cortex (OFC) and also to the ACC (Room et al., 

1985). Furthermore the agranular insular cortex, the piriform cortex, the entorhinal and 

perirhinal areas are IL projection targets (Hurley et al., 1991). The IL was also found to 

project to the lateral septum, the BNST, the medial and lateral preoptic nuclei, substantia 

innominata, endopiriform nuclei of the basal forebrain and the nucleus accumbens. 

Furthermore the IL innervates the medial, basomedial, central and cortical nuclei of the 

amygdala; the dorsomedial, lateral and perifornical, posterior and supramammillary nuclei of 

the hypothalamus, the VTA; and the parabranchial and solitary nuclei of the brainstem 

(Vertes, 2004) (Figure 7A). 
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The PL projects to the IL and ACC and less pronounced to the premotor area F2 and caudal 

cingulate areas. The PL also projects to the agranular insular cortex, and perirhinal as well as 

entorhinal areas. The ventral part of the PL strongly innervates the piriform cortex (Datiche 

and Cattarelli, 1996). Furthermore the PL projects to the claustrum, the nucleus accumbens, 

olfactory tubercle, the paraventricular, mediodorsal and reuniens nuclei of the thalamus, the 

central nucleus and the basolateral amygdala, the VTA, as well as the dorsal and median 

raphe nuclei of the brainstem (Vertes, 2004) (Figure 7B). 

Despite these overall similarities in afferent projection patterns, there are also differences 

between IL and PL projection patterns. For instance, the IL was shown to strongly innervate 

the shell of the NAc, whereas the PL was found to project mainly to the core of the NAc 

(Sesack et al., 1989; Brog et al., 1993; Voorn et al., 2004). Furthermore the PL was shown to 

innervate mainly the basal amygdala (Vertes, 2004; Gabbott et al., 2005), whereas the IL 

projects to the lateral division of the central amygdala and the intercalated cells (ITC) 

(McDonald et al., 1996; Berretta et al., 2005). These differences in projection targets are 

associated with the differential control of the IL and PL of drug seeking behavior and fear 

conditioning. The PL – basal amygdala projection was shown to be involved in the 

conditioned fear expression (Herry et al., 2008), whereas the IL – ITC projection is thought to 

be involved in conditioned fear extinction (Peters et al., 2009). Furthermore the PL – NAc 

core projection was found to promote cocaine and heroin seeking behavior in rats (McFarland 

et al., 2003; LaLumiere and Kalivas, 2008). Converseley, the IL – NAc shell projection was 

found to be involved in the extinction of cocaine seeking behavior in rats (Peters et al., 

2008a). 
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Figure 7: Efferent projections of infralimbic and prelimbic cortices. A) Afferent projections of the 

infralimbic cortex (IL). B) Afferent projections of the prelimbic cortex (PL). Projection targets: anterior 

cingulate cortex (ACC), orbitofrontal cortex (OFC), insular cortex (insula), nucleus accumbens (NAc), amygdala 

(Amy), bed nucleus of stria terminalis (BNST), thalamus, hypothalamus, ventral tegmental area (VTA), raphe 

nuclei, parabrachial nuclei (PBN) and nucleus of solitary tract (NTS). 
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1.5.3.3 Afferent PFC projections 

 

The IL and ventral PL are strongly innervated by the piriform cortex (Datiche and Cattarelli, 

1996), the perirhinal and ventral agranular insular areas (Van Eden et al., 1992). The dorsal 

parts of the PL and the ACC are innervated by the secondary visual, the posterior agranular 

insular and retrosplenial cortex. Rostral parts of the ACC receive projections from the fronto-

parietal motor cortex, the somatosensory and temporal association cortex, as well as the 

posterior agranular insular cortex (Heidbreder and Groenewegen, 2003).  

 

1.5.4 Laminar structure of the mPFC 

 

Within the cortex cytoarchitectonically distinct subregions exist, which are organized in 

layers. Most cortical areas contain six defined layers with characteristic functional and 

anatomical features. Layer I (Lamina molecularis) consists mainly of dendritic and axonal 

fibers and is a major target of "feedback" connections between cortical areas (Douglas and 

Martin, 2004). This layer does not contain pyramidal neurons and generally contains very few 

cell bodies (Trepel, 2017). The cortical layers II (Lamina granularis externa) and III (Lamina 

pyramidalis externa) are important for inter-laminar as well as cortico-cortical connections 

and contain mainly smaller pyramidal neurons (Trepel, 2017). Afferent projections typically 

integrate into Layer IV (Lamina granularis interna), which is rich in stellate neurons. The 

deep layers V (Lamina pyradmidalis interna) and VI (Lamina multiformis) project to 

subcortical areas and contain mainly pyramidal neurons (Douglas and Martin, 2004; Trepel, 

2017). Cortical circuit function has been extensively studied in sensory cortices, which 

revealed that thalamic input into layer IV is transferred to the layers II and III. In layer II and 

III the thalamic information is integrated with information from other cortical areas and 

forwarded through the output layer V to subcortical structures. In addition layer V neurons 

relay the signal also to layer VI neurons, which send a feedback to the thalamus (van Aerde 

and Feldmeyer, 2015) (Figure 8A). 

The rodent mPFC belongs to the agranular cortex type, because it is lacking the afferent input 

layer IV, which makes cortical circuit organization and function less clear (Uylings et al., 

2003; Shepherd, 2009). It has been demonstrated that both superficial and deep layers of the 

rodent mPFC receive afferent projections from cortical as well as subcortical regions and 
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project to other limbic structures (Gabbott et al., 2005; Riga et al., 2014). In comparison with 

the somatosensory cortex, the mPFC layer V cells receive a stronger input from layer I and VI 

cells, and less from layer III cells. Compared to the somatosensory cortex, the mPFC layer III 

is thinner and layer V thicker (Figure 8B). There are also differences in local vs. long-range 

inputs into layer V between the somatosensory cortex and the mPFC. The majority of layer V 

inputs in the somatosensory cortex originate from other cells in the ipsilateral cortex. 

Conversely, only a minority of layer V inputs in the mPFC originated from other ipsilateral 

cells. The majority of mPFC layer V inputs are long-range inputs, originating from the 

agranular insula, thalamic nuclei, contralateral mPFC regions, motor areas, hippocampus and 

basolateral amygdala. This indicates that the mPFC integrates information from very diverse 

brain areas, as opposed to the strict circuits in the somatosensory cortex (DeNardo et al., 

2015). The different cortical layers can be identified by the presence of specific neuronal 

subtypes and distinct gene expression patterns, which enables a clear discrimination between 

the layers not only on the cellular but also on the molecular level (Molyneaux et al., 2007). A 

clear differentiation between different cortex layers is especially important in the agranular 

mPFC, because the lack of the granular layer IV makes a visual discrimination based on 

nuclear coutnerstainings challenging. 

 

Figure 8: Comparison of layer organization between the somatosensory and the medial prefrontal cortex. 

A) The somatosensory cortex belongs to the neocortex and consists of six layers. Afferent input (e.g. from the 

thalamus) in layer IV is relayed to layer II and layer III, where the signal is integrated with other cortical areas. 

Information is then transferred through layer V to subcortical structures. Furthermore, the signal is also 

transferred from layer V to layer VI, which then sends a feedback to the source of the original signal (e.g. 

thalamus). B) The mPFC belongs to the agranular cortex type and consists of five layers, lacking the output layer 

IV. The mPFC lacks a clear information processing structure, as both the deep layers (V and VI) as well as the 

superficial layers (II and III) receive afferent inputs and are the source of efferent projections to cortical and sub-

cortical brain regions. In comparison with the somatosensory cortex, the mPFC layer V is thicker and the mPFC 

layer III is thinner. Furthermore the mPFC layer V receives strong input from layer I and layer VI, but only weak 

input from layer III, as compared to the somatosensory cortex.  
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1.6 Behavioral assessment of executive functions 

 

The medial prefrontal cortex (mPFC) is involved in top-down control over behavior and 

executive functions, including working memory, attention, cognitive flexibility and impulse 

control (Heidbreder and Groenewegen, 2003; Wood and Grafman, 2003; Logue and Gould, 

2014). Executive functions are often subdivided into three major classes: 1.) mental set 

shifting, 2.) updating and monitoring of information and 3.) inhibition of prepotent responses 

(Miyake et al., 2000). Sets are defined as a ‘tendency’, ‘disposition’ or ‘readiness’ and are 

involved in ‘facilitation’, ‘selection’, ‘determination’ or ‘guidance’ of activity (Gibson, 1941). 

Attentional sets are considered as hypothetical "‘stores’, that maintain the reward-predicting 

aspects of a stimulus, and the contents of an attentional set must be updated when new 

dimensions become relevant” (Tait et al., 2014). 

Executive dysfunctions have been found in several neuropsychiatric diseases including 

schizophrenia (Chan et al., 2004), autism (Hill, 2004) and alcohol use disorders (Brion et al., 

2017). Several tests exist to examine executive functioning in humans, including the 

Wisconsin Card Sorting Task (WCST) (Berg, 1948), the Tower of Hanoi (TOH) (Simon, 

1975) and the Tower of London (TOL) (Shallice, 1982) tasks and random number generation 

(RNG) (Ginsburg and Karpiuk, 1994). The WCST was found to be strongly related to 

attentional set shifting, the Tower tasks (TOH and TOL) were found to be predominantly 

related to inhibition of prepotent responses and the RNG task was found to be involved in 

inhibition of prepotent responses as well as updating and monitoring of information (Miyake 

et al., 2000). 

In humans, alcohol use disorders are characterized by impaired cognitive functions (Brion et 

al., 2017). Deficits in inhibition of prepotent responses have been demonstrated using a 

variety of psychological tests (Garland et al., 2012; Courtney et al., 2013). In addition heavy 

drinkers and alcoholics were found to be impaired in shifting abilities, as demonstrated by the 

WCST (Sullivan et al., 1993; Wicks et al., 2001; Oscar-Berman et al., 2009; Houston et al., 

2014) or Stroop task (Saraswat et al., 2006). In addition alcoholic patients were found to be 

impaired in the intradimensional-extradimensional set shift task (Trick et al., 2014). 
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1.6.1 Rodent attentional set shifting task 

 

The rodent attentional set shifting task (ASST) was adapted from the WCST by Birrell and 

Brown (2000) and is used to measure cognitive flexibility and set shifting. Successful 

performance in this test requires rule learning, recognition of rule changes, suppression of 

inappropriate responses and attention. In general, formation of an attentional set occurs when 

an animal has to classify or discriminate complex stimuli. Attentional set formation leads to a 

focus on the relevant stimulus and the suppression of responses at the irrelevant stimulus 

(Birrell and Brown, 2000). The most frequently used ASST for rats is the digging task (Birrell 

and Brown, 2000; Nikiforuk et al., 2010; Klugmann et al., 2011). Other forms of rodent 

ASST are T-maze based (Kroener et al., 2012), cross-maze based (Stefani et al., 2003) or are 

performed in operant chambers (Brady and Floresco, 2015; Scheggia and Papaleo, 2016). The 

advantages of operant or maze-based ASST protocols are the easy implementation and simple 

analysis. In the case of operant ASST, the operant responses are usually automatically 

counted. Analysis of the T- and cross-maze tasks can be done using video tracking. On the 

other hand, the digging task requires more equipment and cannot be analyzed in an automated 

way. However, rats aquire the digging task very fast, because it is similar to their natural 

foraging behavior (Tait et al., 2014).  

In the digging task, the animals have to collect a food reward from a pot, containing scented 

digging material. Based on the current rule of the task, reward availability is either indicated 

by the olfactory dimension (odor) or the tactile dimension (digging material). After 

acquisition of a simple discrimination task, reward contingencies can be reversed in the 

reversal stage of the ASST. The animals are furthermore required to apply a learned rule on a 

different set of stimuli, which is taking place during the intradimensional set shift (IDS). For 

the extradimensional set shift (EDS), the animals have to shift their attention from one 

stimulus dimension (e.g. digging material) to the other dimension (e.g. odor).  

The medial prefrontal cortex (mPFC) was found to be critically involved in the EDS, as 

mPFC lesions induced impaired EDS performance in rats in a digging task (Birrell and 

Brown, 2000). In mice it was shown that chronic intermittent alcohol exposure alters mPFC 

plasticity and impairs EDS performance in a T-maze task (Kroener et al., 2012). In the 
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framework of this thesis, an ASST digging task will be used to study the molecular 

mechanisms of alcohol-induced ASST impairments in rats. 

 

1.7 Neuronal ensembles in reward seeking and addiction 

 

In 1949 D.O. Hebb described the theory of functional 'cell assemblies' (Hebb, 1949), forming 

the basis for a new field of neuroscience research. According to Hebb's theory, memories are 

encoded in specific sub-populations of cells, which are synchronously activated upon memory 

recall (Schwindel and McNaughton, 2011; Holtmaat and Caroni, 2016). A functional neuronal 

ensemble is characterized by coordinated spatiotemporal activity patterns and reliable re-

activation during a specific behavioral task (Mayford, 2014; Sompolinsky, 2014; Tonegawa et 

al., 2015; Holtmaat and Caroni, 2016). Which cells are parts of a neuronal ensemble during a 

certain behavior task also depends on activity patterns of afferent inputs, meaning neuronal 

ensembles can be located in several different brain areas (Cruz et al., 2013; Cruz et al., 2015). 

Neuronal ensembles are thought to be dynamic, which means they are formed and changed 

throughout the learning of a certain behavioral response (Holtmaat and Caroni, 2016). 

Furthermore one and the same neuron can be part of several neuronal ensembles involved in 

different behavioral responses, neuronal ensembles can be spread throughout the brain and 

can co-exist in several brain areas, and neuronal ensembles encoding different behavioral 

responses can intermingle in the same brain area (Hebb, 1949; Schwindel and McNaughton, 

2011; Cruz et al., 2013; Cruz et al., 2015; Holtmaat and Caroni, 2016).  

Classical lesion studies or site-specific inactivation experiments were frequently performed in 

order to identify brain regions involved in learning and memory (e.g. de Bruin et al., 1994; 

Flavell and Lee, 2012; Hart and Izquierdo, 2017). In the context of addiction and reward-

seeking behavior, site-specific pharmacological inactivation of the IL revealed a critical role 

of the IL in extinction of cocaine self-administration (LaLumiere et al., 2010). Furthermore 

Peters and colleagues (2009) proposed a functional dichotomy of the IL and PL subdivisions 

of the mPFC in drug seeking behavior. The PL subdivision was found to promote drug-

seeking behavior, as site-specific inactivation of the PL using the sodium channel blocker 

tetrodotoxin (TTX) was found to impair cue-induced reinstatement of cocaine seeking in rats 

(McLaughlin and See, 2003). The IL subdivision of the mPFC was found to be involved in 
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the suppression of drug-seeking behavior, as site-specific inactivation of the IL using the 

GABAA- and GABAB-receptor agonists muscimol and baclofen induced reinstatement of 

cocaine seeking during extinction training (Peters et al., 2008a).  

Consistent with the 'cell assemblies' theory of D.O. Hebb (1949) several neuronal ensembles, 

involved in drug-and reward-seeking have been identified in the mPFC using the Daun02 

inactivation method (Koya et al., 2009; Koya et al., 2016). This method enables the specific 

inactivation of previously activated neurons in cFos-LacZ transgenic rats. A functional 

neuronal ensemble in the IL was found to promote context-induced heroin seeking (Bossert et 

al., 2011). Consistent with the results for context-induced heroin seeking, an IL ensemble was 

found to be involved in the promotion of food seeking behavior (Warren et al., 2016). 

However, other studies using non-selective inactivation techniques found an inhibitory role of 

the IL in cocaine seeking behavior (Peters et al., 2008a; LaLumiere et al., 2012), which 

suggests a possible co-existence of several functional neuronal ensembles in one brain area 

(Figure 9). In 2011 Schwindel and McNaughton described that several neuronal ensembles 

encoding learned associations can co-exist in one brain area and also other studies indicated a 

co-existence of functionally distinct neuronal ensembles specifically within the IL (Cruz et 

al., 2015; Suto et al., 2016; Warren et al., 2016).  

Within the mesocorticolimbic system several neuronal ensembles have been identified. In the 

medial prefrontal cortex (mPFC) neuronal ensembles involved in glucose and saccharin 

seeking (Suto et al., 2016), food reward (Warren et al., 2016) and heroin seeking (Bossert et 

al., 2011) have been identified. In the nucleus accumbens (NAc) neuronal ensembles involved 

in cocaine seeking were found (Koya et al., 2009; Cruz et al., 2014). In the central amygdala 

(CeA) a functional neuronal ensemble involved in excessive alcohol drinking was found (de 

Guglielmo et al., 2016). Neuronal ensembles involved in fear learning (Grewe et al., 2017) 

have been identified in the baslolateral amygdala (BLA). In the ventral tegmental area (VTA) 

neuronal ensembles, involved in appetitive spatial learning tasks were found to communicate 

with hippocampus ensembles (Gomperts et al., 2015). Neuronal ensembles are not only 

intermingled in the same brain area, but are thought to be highly interconnected throughout 

the mesocorticolimbic reward system (Figure 10) (Cruz et al., 2013).  
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Figure 9: Schematic representation of two neuronal ensembles coexisting in the same brain area. Neuronal 

ensembles can be activated by drug-related stimuli (blue circles) and natural reward-related stimuli (red circles). 

Both ensembles can co-exist in the same brain area. Adapted from (Cruz et al., 2015). 

 

 

Figure 10 Neuronal ensembles in the mesocorticolimbic system. Several interconnected ensembles have been 

identified in the mesocorticolimbic system including the medial prefrontal cortex (mPFC), nucleus accumbens 

(NAc), central (CeA) and basolateral (BLA) amygdala, the ventral tegmental area (VTA) and the hippocampus. 

The different brain areas of the mesocorticolimbic system are highly interconnected by glutamatergic (purple), 

dopaminergic (orange) and GABAergic (green) projections. Adapted from (Cruz et al., 2013). 



 

 

Introduction 

26 

 

 

1.8 Immediate early genes 

 

The so called immediate early genes (IEGs) represent a specific group of genes, which 

respond rapidly to a variety of extrinsic regulatory signals (Fowler et al., 2011). The IEG 

family is thought to consist of about a few hundred genes, most of which are involved in the 

regulation of the cell cycle and cellular growth (Greenberg and Ziff, 1984). Although there 

are differences in induction kinetics, typically expression of IEGs is fast and of transient 

nature. IEG expression requires no additional protein synthesis and is not influenced by 

translational inhibitors. IEGs are short genes (~19kb) and have fewer exons compared to other 

genes, but a high abundance of TATA boxes and CpG islands. Promoter regions of IEGs 

contain binding sites for certain transcription factors like: serum-response factor (SRF), 

nuclear factor kappa B (NF-kB) and cyclic AMP response element-binding protein (CREB) 

(Bahrami and Drablos, 2016). Despite these similarities, IEGs have different activators, are 

involved in different upstream regulatory pathways and have different expression patterns 

(Beckmann and Wilce, 1997; Herdegen and Leah, 1998; O'Donovan et al., 1999). Especially 

the IEGs cFos, Egr-1 and Arc are rapidly induced in activated neurons and are suitable 

markers for the detection of neuronal ensembles (Morgan and Curran, 1991; Herdegen and 

Leah, 1998; Cohen and Greenberg, 2008; Cruz et al., 2015). 

Arc (activity-regulated cytoskeleton-associated protein, also: arg3.1) is a frequently used IEG 

for the detection of neuronal activity and the identification of neuronal ensembles. Arc is 

regulated by neuronal activity and basal expression is driven by natural synaptic activity 

(Lyford et al., 1995). Activity-dependent morphological restructuring of existing synapses 

was shown to be driven by Arc expression, which indicates a role of Arc in plasticity during 

development and in adult animals (Dobbing and Smart, 1974; Greenough et al., 1985). 

Furthermore, Arc expression was shown to be crucial for the formation of long term memory 

(Plath et al., 2006). A unique property of Arc is its synaptic localization. Upon induction Arc 

mRNA is first detected in the nucleus and subsequently exported into the cytoplasm and 

translocated into the dendritic compartment (Wallace et al., 1998; Guzowski et al., 1999). 

Egr-1 (also known as zif 268, NGF1-A or Krox 24) is another IEG frequently used to map 

neuronal ensembles and is a transcription factor, containing a zinc-finger motif (Wang and 

McGinty, 1996). Increased egr-1 mRNA levels can be detected after induction of long term 
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potentiation (LTP), which indicates a role in synaptic plasticity (Cole et al., 1989). 

Interestingly following synaptic activation egr-1 binds to the Arc promoter, facilitating Arc 

transcription (Li et al., 2005). Furthermore egr-1 is involved in the control of complex 

transcriptional processes involved in synaptic reorganization on multiple levels (Duclot and 

Kabbaj, 2017). 

cFos is the most frequently used IEG for activity mapping and ensemble detection, especially 

in addiction research (Cruz et al., 2015). cFos expression was found to be associated with 

neuronal plasticity and learning and memory (Kaczmarek, 1993). Together with the proto-

oncogene c-Jun, cFos forms the activator protein-1 (AP-1) complex, which is a transcription 

factor complex that binds to the TPA (12-O-tetradecanoylphorbol 13-acetate) response 

element (TRE) in the promoter region of several AP-1 inducible genes (Angel and Karin, 

1991). The molecular mechanisms underlying cFos promoter activation have been intensively 

studied. The serum response element (SRE) and the calcium response element (CaRE) are the 

most important regulatory elements, responsible for cFos gene expression. cFos transcription 

in the adult rat brain is primarily mediated by calcium-dependent activation of the 

extracellular signal-regulated kinases (ERK)/ mitogen-activated protein kinases (MAPK) 

pathway (Bading et al., 1997; Cohen and Greenberg, 2008). Activation of the ERK/MAPK 

pathway is achieved by strong neuronal activity, which leads to calcium influx though 

activated N-methyl-D-aspartate (NMDA) receptors and L-type voltage sensitive calcium 

channels (VSCCs). Elevated intracellular calcium levels can then activate Ras-GRP, which in 

turn leads to activation of the Ras/Raf kinase pathway, which results in ERK phosphorylation 

(Agell et al., 2002; Cahill et al., 2014). Phosphorylated ERK is subsequently translocated to 

the nucleus and leads to phosphorylation and activation of the transcription factors CREB via 

the ribosomal S6 kinase (RSK) and Elk-1. Both transcription factors can then bind to the SRE 

and CaRE elements in the cFos promoter region and drive cFos gene expression (Morgan and 

Curran, 1991; Chen et al., 1992; Cohen and Greenberg, 2008) (Figure 11). However, there are 

several alternative cFos activation pathways distinct form ERK/MAPK (Cruz et al., 2015).  

Different cFos mRNA isoforms and the translated protein have characteristic expression 

kinetics in-vivo. It has been shown that the peak expression of the unspliced cFos mRNA 

transcript can be clearly separated from the expression peak of the spliced mRNA and the 

cFos protein. Unspliced cFos mRNA peaks as early as 5 minutes after induction, whereas the 

spliced mRNA species peaks around 30 minutes after induction (Jurado et al., 2007; Lin et al., 
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2011). Expression of the cFos protein reaches its peak around 90 minutes after induction 

(Sheng and Greenberg, 1990). The distinct kinetics of spliced and unspliced mRNA isoforms 

were used to label two neuronal ensembles in the same animal in Study 2.  

 

Figure 11: Mechanism of cFos induction. Schematic representation of the induction, transcription and 

translation of cFos mRNA and protein. Simultaneous activation of N-methyl-D-aspartate (NMDA) receptor and 

L-type voltage sensitive calcium channels (VSCC) leads to calcium (Ca
2+

) influx into the cell. As a result the 

Ras-Raf-MEKK pathway is activated, which leads to phosphorylation of ERK/MAPK. ERK/MAPK activation 

triggers phosphorylation of Elk-1, which binds to the serum response factor (SRF) in the cFos promoter region. 

Furthermore ERK/MAPK phosphorylates CREB via ribosomal S6 kinase (RSK). Together the phosphorylated 

transcription factors Elk-1/SRF and CREB can induce the transcription of the downstream cFos gene. 

Transcription of the cFos gene results in an unspliced mRNA product, which then undergoes splicing and 

translation into the cFos protein. cFos is an immediate early gene (IEG), with rapid induction kinetics. 

Transcription of the unspliced mRNA product takes 5 minutes. 30 minutes after induction the spliced mRNA 

product reaches its peak expression and 90 minutes following induction the protein product reaches peak 

expression. Adapted from (Cruz et al., 2015). 
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1.9 Genetically modified animals 

 

Both rats and mice have been proven to be valuable models in biomedical research. Although 

both species belong to the order of Rodentia (Wilson and Reeder, 2005), multiple differences 

on the transcriptomic, physiological and behavioral level have been reported (Ellenbroek and 

Youn, 2016). Between the 1970s and 1980s there was a strong increase in the use of mice in 

neuroscience research, which coincides with the simultaneous development of genetic 

manipulation methods in mice (Thomas and Capecchi, 1987). However, especially in the 

alcohol research field rats seem to be better suited compared to mice, because they show 

pronounced alcohol deprivation effects and compulsive alcohol drinking patterns, comparable 

to the human condition. This effect has not been observed in mice (Vengeliene et al., 2014). 

Furthermore differences in social interaction and impulsive behavior have been demonstrated 

(Ellenbroek and Youn, 2016). In the meantime genetic manipulation techniques have also 

been established in rats. Most available transgenic rat lines were generated by DNA 

microinjection into the pronuclei of fertilized oocytes using Bacterial artificial chromosomes 

(BAC), which results in a random integration of one or several transgene copies in the host 

genome of the rat (Cho et al., 2009; Schönig et al., 2012). In the framework of this thesis 

cFos-LacZ transgenic rats for activity-tagging of cells and a transgenic rat line, expressing the 

Cre-recombinase enzyme under the control of the CaM-kinase II promoter were used. 

 

1.9.1 cFos-lacZ transgenic rats 

 

The extensive knowledge about the induction mechanisms and expression kinetics of the cFos 

promoter lead to the development of several cFos-based animal models and molecular 

methods. The most extensively used cFos promoter-based rat model is the cFos-lacZ 

transgenic rat, generated by Drs. J. Morgan and T. Curran (St. Jude Children’s Hospital, 

Memphis, TN), expressing the bacterial lacZ gene under cFos promoter control (Kasof et al., 

1995). This rat model is a crucial component for the so called Daun02 inactivation method 

(Koya et al., 2009), which allows to selectively inactivate only cFos expressing neurons in a 

given brain area. The second component of the Daun02 inactivation method is the inactive 

prodrug Daun02, which is converted to daunorubicin by ß-galactosidase (lacZ) activity 
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(Farquhar et al., 2002). Daun02 has no effect on lacZ negative cells, but the conversion into 

the active compound daunorubicin leads to the inactivation of lacZ positive cells (Santone et 

al., 1986; Mortensen et al., 1992; Jantas and Lason, 2009; Engeln et al., 2016). The Daun02 

inactivation method has been frequently used to identify several neuronal ensembles involved 

in cocaine, heroin, alcohol and food seeking (Koya et al., 2009; Bossert et al., 2011; Pfarr et 

al., 2015; Warren et al., 2016). 

 

1.9.2 Cre recombination system 

 

In order to restrict transgene expression or knockdown of genes of interest to certain neuronal 

cell types, transgenic Cre (cyclization recombination) recombinase driver rat lines in 

combination with Cre-inducible viral vectors are powerful tools and are frequently used 

(Weber et al., 2011; Witten et al., 2011; Schönig et al., 2012).   

The Cre recombination system consists of the Cre-recombinase enzyme of the P1 

bacteriophage (Sternberg et al., 1986; Sauer, 1998) and its 34-base pair (bp) consensus loxP 

(locus of X-over P1) sequence (Hamilton and Abremski, 1984). The loxP site consists of a 

8bp core sequence flanked by two palindromic 13bp sequences. The asymmetric core 

sequence determines the direction of the loxP site, which determines if the sequence flanked 

by loxP sites (“floxed”) is excised or inverted (Figure 12) (Hoess et al., 1990). The Cre-loxP 

inversion mechanism is commonly used for Cre-mediated viral transgene expression e.g. 

using the  Double-floxed Inverted Orientation (DIO) system (Saunders et al., 2012). Also the 

excision mechanism is frequently used in transgenic animal models or viral vectors. Therefore 

a floxed Stop-casette, carrying a Stop-codon, is excised by Cre-recombination, which enables 

downstream transgene expression (Ventura et al., 2004; Weber et al., 2011). 
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Figure 12: The Cre-loxP system. Depending on the orientation of both loxP recognition sites (blue triangles), 

Cre-recombinase mediates inversion or excision of the floxed (flanked by two loxP sites) sequence. In case of 

the frequently used DIO (Double-floxed Inverted Orientation) systems, the gene of interest (G.O.I.) is inserted in 

the opposite direction of the promoter (black arrow). After Cre-mediated inversion gene expression is possible. 

The lox-STOP system is using the excision mechanism of the Cre-loxP system. Here, a floxed STOP cassette is 

located upstream of the G.O.I. After Cre-mediated excision of the floxed STOP-casette, gene expression is 

possible. 

 

For conditional transgene expression, the tamoxifen inducible Cre-ERT2 has been developed 

(Feil et al., 1997; Indra et al., 1999). The Cre-ERT2 recombinase is a fusion protein, 

containing the ligand binding domain of the human estrogen receptor. Cre-ERT2 

recombinases can be activated by a synthetic estrogen receptor ligand called tamoxifen (4-

hydroxytamoxifen). However, acute tamoxifen treatment has been shown to alter and 

influence learning behavior in mice (Chen et al., 2002b, a) and has also been shown to have 

long lasting effects on sexual behavior in adult rats (Csaba and Karabelyos, 2001).  

To overcome these negative effects of tamoxifen treatment on behavior, a constitutive 

tamoxifen-independent Cre-expression system can be used, if no precise time control of 

transgene expression is required.  
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1.10 Calcium imaging microendoscopy 

 

With methods like IEG in-situ hybridization (ISH), IEG immunohistochemistry (IHC) or the 

Daun02 inactivation method, previously activated neurons can only be analyzed post-mortem. 

The mentioned post-mortem methods have only a poor temporal resolution, which does not 

allow studying spatial and temporal patterns of neuronal ensemble activity during a certain 

behavior. In-vivo electrophysiology provides a good temporal resolution of cellular activity 

but lacks spatial resolution. Therefore, the most appropriate method to detect both spatial and 

temporal activity patterns is in-vivo calcium imaging (Table 1). Repeated ensemble detection 

under different behavioral conditions is another advantage of in-vivo calcium imaging over 

terminal post-mortem methods. 

 

Table 1: Comparison of neuronal ensemble detection methods. Comparison of immediate early gene in-situ 

hybridization (IEG ISH), immediate early gene immunohistochemistry (IEG IHC), the Daun02 inactivation 

method, in-vivo electrophysiology and in-vivo calcium imaging. (-) = criterion not fullfilled, (+) = criterion 

fullfilled, (++) = very good, (+++) = excellent. 

Method In-vivo Detection of 

multiple ensembles 

Temporal 

resolution 

Spatial 

resolution 

IEG ISH - + + +++ 

IEG IHC - - + +++ 

Daun02 + - + ++ 

In-vivo e-phys + + +++ + 

In-vivo Ca
2+ 

imaging + + ++ +++ 

 

Influx of calcium (Ca
2+

) ions into the intracellular space induces a large variety of 

downstream processes in almost every cell type in biological organisms (Berridge et al., 

2000). In neurons, an increase in intracellular Ca
2+

 has been reliably shown to regulate 

immediate early gene (IEG) expression (Figure 11) involved in activity-dependent 
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restructuring of synapses, regulation of dendritic complexity, synaptic strength, growth factor 

signaling and memory consolidation (Hagenston and Bading, 2011). Activity-dependent 

increases in intracellular Ca
2+ 

can activate two signaling pathways: the MAP 

kinase/extracellular signal-regulated kinase (ERK1/2) cascade (Figure 11) and the 

calcium/calmodulin (CaM) dependent protein kinase pathway (Hardingham et al., 2001). Both 

pathways result in CREB transcription factor activation and subsequently induce IEG 

expression. Therefore the influx of Ca
2+

 ions can be used to measure neuronal activity. 

 

1.10.1 Calcium indicators 

 

The two most frequently used classes of calcium indicators are the chemical small molecule 

calcium indicators and the genetically encoded calcium indicator (GECI) proteins 

(Grienberger and Konnerth, 2012). Small molecule calcium indicators are chemically 

engineered fluorophores, which undergo molecular conformational changes upon Ca
2+ 

binding,
 
leading to changes in fluorescence intensity (Paredes et al., 2008). For ex-vivo 

applications chemical calcium indicators (e.g fura-2, fluo and Oregon Green BAPTA) have 

several advantages compared to GECIs. Chemical indicators cover a broad range of Ca
2+ 

affinities, which enables individual adjustments to the respective experimental condition. 

Furthermore no viral transduction or transfection into the target cells is necessary as 

membrane-permeable chemical calcium indicators can simply be loaded to the target cells 

(Takahashi et al., 1999). A disadvantage of chemical calcium indicators is the frequently 

observed compartmentalization of the indicators to certain parts of the cell, and the clearance 

of the membrane-permeable indicator during the imaging experiment (Paredes et al., 2008).  

GECIs are the most suitable calcium indicators for in-vivo experiments where cell-type 

specific loading with the calcium indicator (Zariwala et al., 2012) or a specific subcellular 

localization of the indicator (Mao et al., 2008) is necesary. Furthermore, GECIs enable 

chronic calcium imaging experiments, because they are not cleared from the target cell but 

constantly expressed (Huber et al., 2012). There are two major classes of GECIs: those based 

on Förster resonance energy transfer (FRET) or single fluorophore indicators like the GCaMP 

family. FRETs consist of two fluorophores and are based on a non-radiative energy transfer 

between the excited donor fluorophore and an acceptor fluorophore (Jares-Erijman and Jovin, 

2003).  
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The GCaMP family is the most frequently used type of single fluorophore GECIs. GCaMPs 

consist of a circularly permuted enhanced green fluorescent protein (cpEGFP), flanked by the 

calcium-binding protein calmodulin (CaM) and the M13 domain of a myosin light chain 

kinase (Nakai et al., 2001). Upon Ca
2+ 

binding, the CaM domain undergoes a conformational 

change and binds to the M13 domain, resulting in an increase in fluorescence intensity (Figure 

13) (Nakai et al., 2001; Tian et al., 2009).  

Several versions of GCaMP proteins have been developed in the past by mutagenesis of the 

interface between the cpEGFP and the CaM domain (Akerboom et al., 2012; Chen et al., 

2013). The GCaMP6 family is widely used for in-vivo calcium imaging and consists of the 

following versions: GCaMP6s (slow kinetics), GCaMP6m (medium kinetics) and GCaMP6f 

(fast kinetics). Generally, the versions with slow kinetics have a higher sensitivity as 

compared to the versions with fast kinetics (Chen et al., 2013). GCaMP6s produces 10-fold 

larger signals as compared to GCaMP3 and threefold higher calcium-affinity as compared to 

GCaMP5G. The intensity of emitted fluorescence of calcium-saturated GCaMP6s is 27% 

brighter as compared to EGFP. GCaMP6f is one of the fastest GECIs for cytoplasmic calcium 

imaging in neurons, with similar sensitivity as Oregon Green BAPTA-1-AM (Chen et al., 

2013). In the framework of this thesis, the fast version of GCaMP6 was used for in-vivo 

calcium imaging experiments in freely moving rats. 

 

 

Figure 13: Schematic representation of GCaMP function. The genetically encoded calcium indicator GCaMP 

was generated by a circularly permutated (cp) EGFP, fused to a calmodulin domain (CaM) and the M13 domain 

of a myosin light chain kinase. Upon calcium binding the CaM domain undergoes a conformational change and 

binds to the M13 domain, resulting in an increased fluorescence intensity compared to baseline levels.  
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1.10.2 Microendoscopy system for in-vivo calcium imaging in freely moving rats 

 

For ex-vivo calcium imaging experiments in cultured neurons or acute brain sections, 

conventional epifluorescence, confocal or two-photon microscope applications are used. Early 

methods used for in-vivo calcium imaging required a head-fixation of the animal, which is not 

compatible with most rodent behavior tasks (Nimmerjahn et al., 2009). In order to perform 

bulk in-vivo calcium imaging experiments in awake and freely moving rodents, the fiber 

photometry method can be used (Cui et al., 2013; Gunaydin et al., 2014). For fiber 

photometry, optical fibers are used to detect bulk calcium signals from GECI labelled cells. 

However, this approach does not provide single cell resolution.  

For in-vivo calcium imaging experiments in freely moving rodents with single cell resolution, 

the miniscope microendoscopy technique has been developed. The miniscope 

microendoscopy techniques enable the simultaneous recording of hundreds of neurons. 

Chronic and repeated recordings of the same field of view can be performed (Ghosh et al., 

2011; Ziv et al., 2013; Jennings and Stuber, 2014). All available miniscope systems (Inscopix 

nVista system, UCLA open source miniscope etc.) have similar underlying construction 

principles. A fully equipped, small and light-weight miniature epifluorescence microscope 

with a mass of ~2g can be directly mounted on the animal’s head. The miniature 

epifluorescence microscope consists of a small light-emitting diode (LED) providing the 

excitation light source. The excitation light beam derived from the LED is collected by a half 

ball lens and guided through an excitation filter and a dichroic mirror into an objective lens. 

The emitted light from the calcium sensor is guided through the emission filter, the dichroic 

mirror and an achromatic lens onto a complementary metal-oxide-semiconductor (CMOS) 

image sensor (Figure 14A). 

For in-vivo calcium imaging of deep brain areas, a gradient refractive index (GRIN) lens can 

be implanted into the brain, reaching the GECI expressing target cells in the target brain area. 

The Miniscope can then be mounted onto the animal’s head using an implanted baseplate as 

an anchoring mechanism, ensuring the same field of view during repeated imaging sessions. 

Excitation and emission light will then be guided through the GRIN relay lens, enabling in-

vivo calcium imaging of deep brain areas with single cell resolution (Figure 14B) (Ghosh et 

al., 2011; Ziv et al., 2013; Jennings and Stuber, 2014; Cai et al., 2016). In the framework of 
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this thesis, the open source UCLA (University of California) miniscope version was used 

(www.miniscope.org). 

 

Figure 14: In-vivo calcium imaging using microendoscopy. A) Schematic representation of a head-mountable 

miniature epifluorescence microscope. Excitation light is generated by a LED and guided into an objective lens 

through a half ball lens, an excitation filter and a dichroic mirror. Emission light from the calcium indicator is 

guided though the objective lens, the dichroic mirror, the emission filter and an achromatic lens onto the CMOS 

image sensor. A baseplate can be fixed on the animal head and serves to anchor the miniature microscope during 

recordings. Image adapted from www.miniscope.org. B) Schematic representation of a miniature epifluorescence 

microscope mounted onto an animal’s head using a baseplate. A gradient index (GRIN) lens is implanted into 

the brain. Calcium imaging of cell bodies located below the lens can be performed using this configuration. 
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1.11 Hypothesis and aims 

 

The molecular and cellular mechanisms underlying natural reward and alcohol seeking 

behavior are not well understood, which importantly contributes to the lack of effective 

medication for addictive disorders. The medial prefrontal cortex (mPFC) exerts top-down 

control over reward seeking behavior and executive functions, and alcohol-induced reductions 

in metabotropic glutamate receptor 2 levels in the infralimbic (IL) part of the mPFC were 

found to be involved in the control of alcohol seeking behavior. Furthermore, several studies 

recently identified functional neuronal ensembles in the IL involved in natural and drug 

reward-seeking. However, the existence of such a neuronal ensemble has not yet been 

established for alcohol seeking. Thus the following hypotheses will be tested in the 

framework of this thesis: 

 

Hypothesis 1: 

We hypothesize, that neuronal ensembles in the infralimbic cortex participate in the control of 

alcohol seeking behavior. Furthermore we will test the hypothesis that neuronal ensembles 

involved in natural reward and drug reward seeking are overlapping in the infralimbic cortex. 

 

Hypothesis 2: 

Given the previously observed mGluR2 deficit in thse IL of alcohol dependent subjects, we 

hypothesize, that a knockdown of this gene in the IL will induce excessive alcohol seeking 

behavior, as well as impairments in executive functioning. 
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1.12 Specific aims 

 

To identify cellular and molecular mechanisms in the infralimbic cortex, involved in the 

control of reward seeking behavior and cognitive flexibility. 

 

Specific Aim 1:  To characterize the function and spatial organization of infralimbic 

neuronal ensembles involved in drug reward and natural reward seeking 

 

Specific Aim 2:  To establish the link of IL mGluR2 expression levels in alcohol-seeking 

behavior and cognitive flexibility 

 

 

1.13 List of Studies 

 

Study 1:  Identification of an infralimbic neuronal ensemble involved in alcohol seeking 

behavior (Aim 1) 

Study 2:  Characterization of infralimbic neuronal ensembles involved in alcohol and 

saccharin seeking behavior (Aim 1) 

Study 3:  In-vivo calcium imaging of IL neuronal ensembles involved in an operant 

reward seeking task (Aim 1) 

Study 4:  The influence of infralimbic mGluR2 expression levels on alcohol seeking 

behavior (Aim 2) 

Study 5:  The influence of infralimbic mGluR2 expression levels on cognitive flexibility 

(Aim 2)  
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2. Materials and Methods 
 

2.1 Animals 

 

Male cFos-lacZ transgenic rats (Kasof et al., 1995; Koya et al., 2009), carrying a cFos-lacZ 

fusion protein (Schilling et al., 1991) (Figure 15A) and wild type litter mates, bred on a 

Sprague Dawley genetic background at the Central Institute of Mental Health (CIMH) of 

Mannheim (Germany), initially weighing 250 - 300g were used for Daun02 inactivation 

experiments in Study 1. Founder animals were kindly provided by Dr. Bruce T. Hope from 

the National Institute on Drug Abuse, Baltimore, USA. Breeding of the animals was 

performed by Valentina Vengeliene and Sabrina Koch at the CIMH. 

 

Male CAG-lacZ transgenic rats (Weber et al., 2011) (Figure 15B) bred on a Sprague Dawley 

genetic background at the Central Institute of Mental Health of Mannheim (Germany), 

initially weighing 250 - 300g were used for Daun02 inactivation experiments in Study 1. The 

animals were generated and provided by Dr. Kai Schönig and Prof. Dusan Bartsch from the 

department of Molecular Biology at the Central Institute of Mental Health of Mannheim. 

 

Male Wistar rats (Charles River Germany) initially weighing 250 - 300g were used for the 

ethanol and saccharin seeking behavior, the retrograde tracing and the double cFos fluorescent 

in-situ hybridization experiments of Study 2 and in-vivo calcium imaging experiments in 

Study 3. Furthermore male Wistar rats were used in Study 4 to test the effect of a general 

mGluR2 knockdown on alcohol seeking behavior. In Study 5 male Wistar rats were used to 

perform attentional set shift experiments after chronic intermittent alcohol exposure and for 

the general mGluR2 knockdown experiment.  
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Male Indiana alcohol preferring (P) and non-preferring (NP) rats (Lumeng et al., 1977) 

were obtained from the Animal Production Core facility at the Indiana Alcohol Research 

Center, Indiana University, USA. The animals had an initial weight of 250 - 300g and were 

used for attentional set shift experiments in Study 5. 

 

 

Figure 15: Schematic representation of cFos-LacZ and CAG-LacZ transgenes. A) A fusion protein of cFos 

and lacZ is expressed under control of the cFos promoter. The LacZ gene contains a stop codon, preventing 

expression of the C-terminal negative regulatory elements of the cFos coding sequence. Thus endogenous cFos 

expression is not affected. B) The CAG-LacZ transgenic rat line is a double reporter line. Without Cre-

recombination LacZ expression is driven by the pCAG promoter. In the presence of Cre recombinase, the floxed 

LacZ gene would be excised and EGFP expression would be driven by the pCAG promoter. 

 

 

Male CamKII-Cre transgenic rats (Figure 16), bred on a Sprague-Dawley genetic 

background were used for CamKII-targeted mGluR2 knockdown experiments in Study 4 and 

Study 5. These animals are characterized by a constitutive expression of Cre-recombinase 

under the control of the CamKII promoter. The animals had an initial weight of 250 - 300g 

and were generated using a random integration BAC-approach (Casanova et al., 2001; 

Schönig et al., 2012) and provided by Dr. Kai Schönig and Prof. Dusan Bartsch from the 

department of Molecular Biology at the Central Institute of Mental Health of Mannheim 

(Germany). 
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Figure 16: BAC construct for neuronal specific Cre-expression in trasngenic rats. A CamKII-Cre bacterial 

artificial chromosome was used to generate a transgenic rat based on a Sprague-Dawley background, expressing 

Cre-recombinase constitutively under control of the CamKII promoter. Transgenic CamKII-Cre rats were 

generated and provided by Dr. Kai Schönig and Prof. Dusan Bartsch based on (Casanova et al., 2001). 

 

All animals were housed in groups of 4 or in pairs (Study 3) under a reversed 12h light-dark 

cycle (lights on at 6am) for alcohol and saccharin operant experiments and under a normal 

12h light dark cycle (lights off at 6am) for attentional set shift experiments. CAG-LacZ rats 

and cFos-LacZ rats as well as wild type littermates from Study 1 were single housed after 

guide cannula implantation. Generally rat chow and water were available ad libitum with the 

following exceptions: 18h water deprivation during the first three days of operant 

conditioning for saccharin or ethanol and food restriction during attentional set shift 

experiments. All animal experiments including behavior experiments and surgical procedures 

were performed in the animal facility of the Central Institute of Mental Health in Mannheim. 

Operant behavior experiments and chronic intermittent alcohol vapor exposure was performed 

during the dark phase for 5 days per week. Attentional set shifting task experiments were 

conducted in the light phase for 5 days per week. Animal experiments were conducted in 

accordance with the European Union guidelines for the care and use of laboratory animals and 

were approved by the local animal care committee (Regierungspräsidium Karlsruhe, 

Karlsruhe,Germany).  
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2.2 General experimental designs 

 

2.2.1 Study 1: Identification of an infralimbic neuronal ensemble involved in alcohol 

seeking behavior 

 

For neuronal ensemble inactivation (Experiment 1), male cFos-LacZ rats were trained on an 

operant alcohol self-administration task, followed by extinction training and guide cannula 

implantation into the infralimbic cortex (IL). Next, the animals were tested on their cue-

induced reinstatement performance, followed by Daun02 infusions through the guide cannula. 

Following this, the animals were again tested on their cue-induced reinstatement performance 

after Daun02 inactivation. 

The above described experiment was repeated with male CAG-LacZ rats (Experiment 2), for 

a general inactivation of the IL and with wild type littermates (Experiment 3) of the cFos-

LacZ rats in order to control for unspecific effects of Daun02 on operant alcohol seeking 

behavior. 

For Experiment 4, male cFos-LacZ rats were trained on an operant alcohol seeking task, 

followed by extinction training and guide cannula implantation into the prelimbic cortex (PL). 

Next, the animals were tested on their cue-induced reinstatement performance, followed by 

Daun02 infusions through the guide cannula. Following this, the animals were again tested on 

their cue-induced reinstatement performance after Daun02 inactivation (Figure 17). 

 

 

Figure 17: Experimental timeline for Daun02 inactivation experiments (Study 1). The animals were first 

trained to self-administer a 10% EtOH solution for 3 weeks. Next the animals underwent extinction training, 

followed by guide cannula implantation to target the infralimbic (IL) cortex. After 1 week of recovery, the 

animals were tested in a cue-induced reinstatement (RE1) of alcohol seeking. 90 minutes after RE1, the animals 

received Daun02 or vehicle infusions into the IL through the guide cannula. After three days, the animals were 

again tested on their cue-induced reinstatement (RE2) performance. 
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2.2.2 Study 2: Characterization of infralimbic neuronal ensembles involved in alcohol 

and saccharin seeking behavior 

 

First, the behavioral protocol for a two-reward operant seeking task was established and 

validated using male Wistar rats. The animals were trained to self-administer a 10% ethanol 

solution or a sweet saccharin solution. Each reward was paired with a different set of visual 

and olfactory cues. During the self-administration (SA) training, the animals’ motivation for 

each reward was tested by breakpoint analysis under a progressive ratio (PR) schedule. After 

reaching a stable baseline, the animals underwent extinction training followed by 

counterbalanced cue-induced reinstatement sessions for each reward (Figure 18A).  

In a second experiment the previously established two-reward operant task was used to 

identify potential differences in infralimbic cortex (IL) ensemble size for EtOH and saccharin, 

and to identify potential differences in projection targets of these activated neurons. Therefore 

a second batch of Wistar rats was trained on the previously established behavior task. After 

the first counterbalanced cue-induced reinstatement sessions for both rewards, the animals 

received unilateral retrograde tracer injections into the IL, prelimbic cortex (PL), nucleus 

accumbens (NAc) and ventral tegmental area (VTA). After 5 days of recovery, the animals 

underwent either cue-induced reinstatement for EtOH or saccharin and were perfused in order 

to perform cFos immunohistochemistry and co-localization analysis with the respective 

retrograde tracer signal in the IL (Figure 18B).  

A third batch of Wistar rats was trained on the previously described task, in order to identify 

EtOH and saccharin cue-responsive neurons in the IL of the same animal. After self-

administration training, progressive ratio test, extinction and the first counterbalanced cue-

induced reinstatement sessions for both rewards the animals underwent additional two cue-

induced reinstatement sessions of 5 minutes length, separated by 30 mins. These animals were 

decapitated immediately after the final cue-induced reinstatement session and used for double 

cFos fluorescent in-situ hybridization for co-localization analysis of EtOH and saccharin cue-

responsive neurons in the IL (Figure 18C).  
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Figure 18: Experimental timelines for behavioral experiments in Study 2. A) Set-up of two-reward operant 

conditioning task. Timeline for ethanol (EtOH) and saccharin self-administration (SA), progressive ratio test 

(PR), extinction training (EXT) and counterbalanced cue-induced reinstatement (RE) of ethanol and saccharin 

seeking. B) Timeline for behavioral experiments to determine the size and projection targets of IL neuronal 

ensembles involved in EtOH (white) and saccharin (black) seeking. Experimental timeline for self-

administration (SA), extinction (EXT), counterbalanced cue-induced reinstatement (RE1+2) of ethanol and 

saccharin seeking, followed by retrograde tracer injections and the final cue-induced reinstatement for either 

ethanol or saccharin (RE3). C) Timeline for behavioral experiments to identify IL ensembles involved in ethanol 

or saccharin seeking in the same animal. Experimental timeline for ethanol and saccharin self-administration 

(SA), extinction (EXT), and counterbalanced cued reinstatement sessions (RE1+2) and a final session (RE3+4) 

for activation of ethanol and saccharin ensembles in the same animal. 
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2.2.3 Study 3: In-vivo calcium imaging of IL neuronal ensembles involved in an operant 

reward seeking task 

 

First, 8 week old Wistar rats were allowed to habituate to the animal facility for one week. 

Next, the animals received GCaMP6f AAV injections into the right hemisphere of the IL, 

followed by GRIN lens implantation. The animals were allowed to recover from surgery for 

one week, followed by operant self-administration training. After three weeks of operant self-

administration training, baseplates were secured to the animals' impants for in-vivo calcium 

imaging experiments. Next, the animals were habituated to the miniscope mounting 

procedure, followed by self-administration sessions combined with simultaneous calcium-

imaging. After reaching a stable self-administration baseline, the animals underwent 

extinction training combined with in-vivo calcium imaging recordings. After reaching the 

extinction criterion of <10% of baseline activity, the animals were tested on their cue-induced 

reinstatement performance, with simultaneous calcium-imaging (Figure 19). 

 

 

Figure 19: Experimental timeline for in-vivo calcium imaging experiments (Study 3). After 1 week of 

habituation the animals received GCaMP6f AAV injections into the right hemisphere of the IL, followed by 

GRIN lens implantation. After 1 week of recovery, the animals were trained to self-administer (SA) a 0.2% 

saccharin solution for 3 weeks. Next, a baseplate was fixed to the GRIN lens implant, enabling recording of self-

administration, extinction (EXT) and cue-induced reinstatement (RE) operant sessions. 

 

2.2.4 Study 4: The influence of infralimbic mGluR2 expression levels on alcohol seeking 

behavior 

 

First, male Wistar rats were trained to self-administer (SA) and associate a 10% ethanol 

solution with a specific set of visual and olfactory cues. Next, all animals underwent 

extinction (EXT) training. Following extinction training the animals received bilateral 
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injections of either a general mGluR2 knockdown AAV into the IL, or a control AAV. After a 

recovery period of 4 weeks, the animals were tested for their cue-induced reinstatement of 

alcohol seeking (Figure 20A).  

In a second experiment, a batch of male CamKII-Cre transgenic rats was also trained to self-

administer a 10% EtOH solution and underwent extinction training, as well as a cue-induced 

reinstatement session (RE1) prior to the AAV injection. Next, the animals received either a 

floxed mGluR2 knockdown AAV for cell-type specific knockdown or a control AAV. After a 

recovery period of 4 weeks, the animals were again tested for their cue-induced reinstatement 

(RE2) of alcohol seeking. (Figure 20B). 

 

Figure 20: Timelines for behavioral experiments in Study 4. A) Experimental timeline for general mGluR2 

knockdown experiment. 15 days of operant alcohol self-administration (SA) were followed by 5 days of 

extinction (EXT) training. After extinction the animals received bilateral control or knockdown AAV injections. 

Following a recovery period of 4 weeks, the animals were tested on their cue-induced reinstatement (RE) 

performance. B) Experimental timeline for CamKII-Cre targeted mGluR2 knockdown. 15 days of operant 

alcohol self-administration (SA) were followed by 5 days of extinction (EXT) training and one cue-induced 

reinstatement of alcohol seeking session (RE1). Next, the animals received bilateral control or knockdown AAV 

injections. Following a recovery period of 4 weeks, the animals were again tested on their cue-induced 

reinstatement (RE2) performance. 

 

2.2.5 Study 5: The influence of infralimbic mGluR2 expression levels on cognitive 

flexibility 

 

A batch of Indiana alcohol preferring (P) and non-preferring (NP) rats was tested on their 

ASST performance. Furthermore the Wistar rats and CamKII-Cre rats from Study 4, injected 
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with a general and Cre-inducible mGluR2 knockdown AAV respectively, were also tested on 

their ASST performance as part of Study 5.  

 

2.3 Behavioral procedures 

 

2.3.1 Operant chamber experiments 

 

2.3.1.1 Operant self-administration apparatus 

 

Standard operant chambers (Med Associates, Fairfax, VT, USA), enclosed in sound 

attenuating cubicles were used for operant conditioning and reward-seeking experiments in 

Study 1. Each chamber was equipped with a retractable response lever on each side panel, as 

well as a yellow stimulus light and a liquid receptacle on each side panel. Responses at the 

appropriate lever (active lever) activated a syringe pump, which lead to reward delivery 

(~30µl liquid reward) into the liquid receptacle next to the lever and cue-light activation 

above the respective lever. Recording of lever responses, fluid delivery and cue-light 

activation was controlled by an IBM-compatible computer. 

 

2.3.1.2 Operant alcohol self-administration and cue conditioning 

 

Study 1: 

Daily 30 minutes self-administration sessions were performed 3 hours after beginning of the 

dark phase of the 12h dark/light cycle. The animals were trained to self-administer a 10% 

(v/v) alcohol solution under a fixed ratio 1 (FR1) schedule using a saccharin fading procedure 

adapted from (Tolliver et al., 1988). During the first three days of self-administration training, 

the animals were kept water deprived for 20h per day, to motivate them to search for the 

liquid reward (Tabbara et al., 2016). During the next three days, the animals underwent the 

same procedure without water deprivation. Following acquisition of saccharin-reinforced 

responding, rats were trained to self-administer ethanol. In the next three sessions, responses 

at the left lever resulted in the delivery of 5% (v/v) ethanol plus 0.2% saccharin solution. 
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Responses at the right lever were recorded but had no programmed consequences. For the 

following sessions the concentration of ethanol was increased first to 8% and then to 10% 

(v/v), and the concentration of saccharin was decreased until saccharin was completely 

eliminated from the ethanol solution. Next, the animals were trained to associate a set of 

visual and olfactory cues with the availability of the alcohol reward, which is a well 

established method for alcohol self-administration (Ciccocioppo et al., 2002; Ciccocioppo et 

al., 2003; Meinhardt et al., 2013). An orange odor (orange oleum aurantii dulcis g420, Caelo, 

Hilden, Germany) served as an olfactory contextual stimulus for ethanol and was generated 

by application of six drops of orange oil onto the bedding material in the operant chamber 

before the start of each session. As a discrete, visual stimulus a 5 s blinking light was used, 

which was activated after a response at the active lever (left lever) and was therefore directly 

connected to alcohol availability. The 5 s period served as a “time out”, during which 

responses were recorded, but did not lead to reward delivery. After completion of 10 cue-

conditioning sessions with both the olfactory and visual cues, the animals were ranked based 

on their self-administration baseline performance (mean performance over the last six training 

sessions) and equally divided into two groups. 

 

Study 2: 

First, all animals were trained to self-administer a 10% (v/v) ethanol (EtOH) reward in daily 

30min operant sessions, without prior sucrose- (Tolliver et al., 1988) or saccharin (Meinhardt 

et al., 2013; Pfarr et al., 2015) fading procedures. Two natural odors were used as contextual, 

olfactory cues for ethanol (orange oleum aurantii dulcis g420, Caelo, Hilden, Germany) and 

saccharin (lemon grass oil w861, Caelo, Hilden, Germany). The animals underwent nine self-

administration sessions for the ethanol reward, during which only the active lever was 

presented. Following this also the inactive lever was introduced during the next four training 

sessions. Thereafter the same procedure was repeated for the saccharin-reward (Figure 18A, 

B, C). The concentration of the saccharin solution was adjusted to match the response rate for 

the 10% EtOH solution. The saccharin concentration for experiment 1 (Figure 18A) was 

0.04% (w/v), for experiment 2 (Figure 18B) was 0.08% (w/v) and for experiment 3 (Figure 

18C) was 0.025% (w/v). After acquisition of EtOH and saccharin self-administration, the 

animals underwent eight randomized concurrent self-administration (SA) sessions for each 
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reward, to obtain a stable baseline for each reward. The baseline was calculated as the mean 

over the last three SA sessions for each reward. 

 

Study 3: 

After AAV injection and GRIN lens implantation, the animals were trained to self-administer 

a 0.2% saccharin solution. The animals were trained in standard operant chambers (Med 

Associates, Fairfax, VT, USA). Active lever presses (right lever) activated the cue-light 

located above the right lever for 5 sec. However, there was no contextual odor cue presented. 

The animals underwent self-administration training for three weeks. After the baseplate 

surgery, the animals underwent further self-administration sessions in combination with 

miniscope calcium imaging recordings, using operant chambers with large liquid receptacle 

entry ports (CT-ENV-202M-S-6.0, Med Associates, Fairfax, VT, USA).  

 

Study 4: 

Operant EtOH self-administration was performed as described in Study 1. However, no 

saccharin fading procedure was used. 

 

2.3.1.3 Progressive ratio test 

 

After acquisition of self-administration for each reward, the animals from Study 2 were tested 

for their motivation to obtain each reward using a progressive ratio (PR) schedule (Figure 

18A + C). Each animal underwent two 30min counterbalanced PR sessions, to test its’ 

motivation to obtain each reward. During the PR test, the animals had to make an increasing 

number of lever presses during one trial (step size 2: 1, 2, 4, 6, 8, 10, 12, 14…) in order to 

obtain one drop (~30µl) of reward solution (Hodos, 1961). If an animal stopped responding 

for more than 2 minutes, the respective trial was aborted. The highest completed ratio of lever 

presses during the 30min PR session was used to calculate the breakpoint (Richardson and 

Roberts, 1996). 
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2.3.1.4 Extinction training 

 

Study 1: 

The animals underwent 30 minute extinction sessions for four days in a row. The animals 

reached the extinction criterion of <10 active lever presses or <25% of baseline activity at the 

previously active lever per session. During extinction sessions, both response levers were 

presented, without presentation of the contextual or visual conditioned cues. Responses at the 

previously active lever activated the syringe pump but did not result in reward delivery or 

presentation of the discrete CS (blinking light). After the last extinction session, all animals 

underwent guide cannulation surgery. 

 

Study 2 - 4: 

The animals underwent daily 30min extinction sessions for both rewards. Extinction training 

was performed for five days, which was sufficient to reach the extinction criterion of < 10% 

of baseline activity at the active lever per session. 

 

2.3.1.5 Cue-induced reinstatement of alcohol seeking 

 

Study 1: 

During the 30 minute cue-induced reinstatement sessions, the animals were presented with the 

olfactory orange odor cue. Active lever presses activated the visual blinking light stimulus, 

however active lever presses did not lead to reward delivery. Ninety minutes after the 

beginning of the first cue-induced reinstatement session, the animals received their respective 

microinfusions (Daun02 or vehicle) through the implanted guide cannulae targeting the 

infralimbic cortex (Experiments 1-3) or prelimbic cortex (Experiment 4). Two animals from 

Experiment 1 were killed to perform X-gal immunohistochemistry after the second cue-

induced reinstatement session. The remaining animals from Experiment 1 were subjected to 

repeated cue-induced reinstatement sessions, a well established procedure for alcohol 

reinstatement tests (Ciccocioppo et al., 2006; Cannella et al., 2009). Between repeated cue-

induced reinstatement sessions no extinction sessions were performed. 
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Study 2: 

In all three experiments from Study 2 the animals underwent counterbalanced cue-induced 

reinstatement sessions for each reward (Figure 18A, B and C). Next, the animals underwent 

further cue-induced reinstatement sessions, without further training or extinction sessions. 

The last counterbalanced cue-induced reinstatement sessions of experiment 3 were only 5 min 

long and separated by 30min (Figure 18C).  

 

Study 3: 

During 30min cue-induced reinstatement sessions, only the light cue was presented. 

 

Study 4: 

Cue-induced reinstatement as described under Study 1 

 

2.3.1.6 Stress-induced reinstatement of alcohol seeking 

 

A footshock protocol adapted from (Liu and Weiss, 2002) was used for stress-induced 

reinstatement of alcohol seeking in Study 1. Footshocks were delivered in a different kind of 

operant chamber (Imetronic, Pessac, France), environmentally distinct from the training and 

reinstatement operant chambers (Med Associates). After the last cue-induced reinstatement 

session, the animals underwent 5 days of extinction training. Prior to each extinction session, 

the animals were habituated to the Imetronic operant chambers for 10 minutes without the 

presentation of cues or response levers. After 10 minutes of habituation the animals were 

moved to the Med Associated operant chambers for extinction training (as described above). 

On the day of stress-induced reinstatement, the animals were placed in the Imetronic operant 

chambers for 10 minutes and received variable intermittent footshocks according to the 

schedule published by Liu and Weiss (2002). Footshock settings were 0.5 mA, 0.5 ms 

duration, 40 s mean inter shock interval with a range from 10 to 70 s. The shock was 

delivered through a scrambler to the stainless steel grid floor of the Imetronic chambers. After 
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the 10 minute variable intermittent footshock procedure the animals were immediately moved 

to the Med Associates operant chambers. For the stress-induced reinstatement test, the same 

settings as for extinction training were used, meaning no cue presentation and no reward 

delivery.  

 

2.3.2 Attentional set shifting task (Study 5) 

 

2.3.2.1 Test apparatus 

 

The test apparatus was made of dark grey PVC consisting of a small compartment (20 cm x 

40cm x 40 cm) adjacent to the test compartment (40 cm x 50 cm x 40 cm). The two 

compartments were separated by a sliding door (width 20 cm). Two small ceramic bowls 

(diameter 7 cm, depth 4 cm) were positioned into the test compartment 16 cm apart from each 

other, separated by a divider. The two bowls were filled with different digging materials 

and/or were differently scented. A casein pellet (Bio Serve Dustless Precision Pellets, 

Bilaney, Kent, UK) served as a reward and was deeply buried in one of the bowls. Rats were 

trained to dig in the bowl to retrieve the reward. The presence or absence of the reward pellet 

in the digging bowl was indicated by either an olfactory (odor) or a visual-tactile cue (shape 

and tactile quality of digging medium) (Klugmann et al., 2011).  

 

2.3.2.2 Habituation procedure 

 

Animals were familiarized with the food reward, the ceramic bowl and the different digging 

materials in their home cage prior to testing. During 1-2 nights prior to the test, the pots were 

filled with home cage bedding and several casein pellets were presented at the top of the 

bedding as well as deeply buried within the bedding. The pots were rebaited regularly and left 

in the home cage overnight. In the following night the digging media used for the pretraining 

period, simple and compound discrimination tasks were baited and equally placed in the home 

cage. On the second day of habituation two familiar animals were placed into the test 

apparatus and were allowed to explore it freely for 15 min. On the third day of habituation 

each rat was placed into the test apparatus individually for another 15min habituation period. 
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During the entire habituation and testing period the animals were maintained on 

approximately 90% of their body weight (12g/rat/day). Food restriction started one week prior 

to testing. 

 

2.3.2.3 Attentional set shifting test procedure 

 

The testing procedure was adapted from (Birrell and Brown, 2000; Klugmann et al., 2011). 

After habituation all animals underwent a pretraining schedule. Therefore the animals had to 

retrieve the reward from empty pots and subsequently from pots filled with digging medium. 

First, the reward was placed on top of the digging medium and was subsequently buried 

deeper into the medium in further trials. Each trial within the pretraining schedule was 

repeated until the reward was retrieved. The rats had to retrieve the pellet five times within 

two minutes followed by four pellet retrievals within one minute. As soon as the rat retrieved 

the reward pellet or the trial time expired, the animal was placed back into the starting area. 

The pots were rebaited during the inter-trial-interval (ITI, 30s). During this time the rat had to 

wait inside the starting area until the sliding door was lifted for the next trial. The digging 

medium from the pretraining was not used again in the further testing procedure. 

Eight common spices and media were used for all discrimination tasks, which are listed in 

Table 2. The digging media were intermixed with powdered casein pellets to avoid olfactory 

detection of the pellet in the bowl. In all testing sessions a criterion of six consecutive correct 

trials was used for successful learning (trials to criterion). 

 

Table 2: Examples of odor-medium pairs used for ASST 

Digging medium Digging medium Odor 1 Odor 2 

Seramis    

Colored silica sand Hamster bedding Cumin Capsicum 

Beech chipping Rough stones Nutmeg Basil 

Straw pellets Pine bark Thyme Dill 

Cork granules Black silica sand Rosemary Curcuma 

 



 

 

Materials and Methods 

 

54 

 

During the ASST the animals were tested in the following sub tasks: 

Simple Discrimination (SD): 

Two bowls containing different media but scented with the same odor were presented to each 

rat. The visual/tactile stimulus indicated the position of the reward (Medium 1 (M1)). 

Compound Discrimination (CD): 

For the compound discrimination an additional odor was introduced and used together with 

the two previously used media and the previously used odor. The previously baited digging 

medium used during SD (M1) also indicated the location of the reward during CD, 

independent from the presented odors. 

Compound Discrimination reversal (CDrev): 

The previously learned rule was reversed. The previously baited medium is not baited, but the 

second medium instead (M2). 

Compound Discrimination repetition (CDrep): A repetition test of CDrev. 

Intradimensional shift (IDS): 

Introduction of a new set of complex stimuli. The animals had to discriminate the baited from 

the unbaited bowl by using the same perceptual dimension (digging medium) as in the 

previous testing. 

Intradimensional shift 2 (IDS2): Repetition of IDS with new sets of stimuli. 

Extradimensional shift (EDS): 

A new set of stimuli was introduced. However, now the previously irrelevant dimension 

predicted the reward. Therefore not the type of digging material predicted the reward but the 

odor was relevant to obtain the pellet. 

If an animal stopped responding for several trials during a test session it was returned to the 

homecage for up to 1h before resuming the test again. In this case, the sum of the number of 

trials was taken for analysis. 
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2.4 Surgical procedures 

 

2.4.1 Guide cannula implantation 

 

The animals from Study 1 were anesthetized with isoflurane and fixed in a stereotaxic frame 

(David Kopf Instruments, Tujunga, CA, USA). A single double-barreled guide cannula (22 

gauge; Plastics One) was implanted using the following stereotaxic coordinates anterior-

posterior (AP): +3.2 mm, (medial-lateral) ML: ±0.5 mm for each cannula and dorsal-ventral 

(DV): −2.8 relative to bregma and midline as illustrated in Figure 21 (Paxinos and Watson, 

1998). Obturators were fixed to the guide cannula throughout the experiment. Following 

surgery, the animals were kept single housed to prevent possible damage to the cannula 

implant. The animals were allowed to recover for 7 days before further behavioral testing. 

 

Figure 21: Schematic representation of bregma, midline and the lambda coordinate on the rat skull. 

 

2.4.1.1 Guide cannula microinfusions 

 

Double-barreled injector needles (28 gauge, Plastics One) were connected to polyethylene 

tubing, attached to a Hamilton syringe, fitted into a syringe infusion pump (PHD 2000, 

Harvard Apparatus, Holliston, USA). The injector needles extended 3 mm beyond the end of 

the cannula to target the infralimbic cortex (IL) and 1.2 mm beyond the end of the cannula to 

target the prelimbic cortex (PL). Ninety minutes after the start of the first cue-induced 
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reinstatement session, half of the animals received 2µg Daun02 infusions (volume: 0.5µl), per 

hemisphere and the other half of the animals received vehicle infusions (5% DMSO and 5% 

Tween 80 in 1X PBS). Infusion speed was 0.25µl/min (Koya et al., 2009) and injector needles 

were kept in place for an additional 1 minute before the animals were placed back into their 

homecages for three days.  

 

2.4.2 Stereotaxic injections 

 

In Study 1, three CAG-lacZ rats were injected with 2 μg Daun02 in the IL of one hemisphere 

and 2 μg Daun02 + 80 ng of the pan caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-

fluoromethyl ketone (Z-VAD-FMK Promega, Mannheim, Germany; solved in 1× PBS 

containing 2% DMSO) in the other hemisphere. Another three CAG-lacZ rats were injected 

with Daun02 vehicle in the IL of one hemisphere and vehicle for both drugs in the other 

hemisphere. Rats were anesthetized, placed into a Kopf stereotaxic frame, and 1μl of the 

respective solutions was injected, using the coordinates: AP: + 3.2 mm, ML: ± 0.6 mm, DV: 

−5.2 relative to bregma and midline (Paxinos and Watson, 1998). 

The Wistar rats from experiment 2 (Study 2) received unilateral stereotaxic injections with the 

retrograde cholera toxin B (CTB) tracer coupled to fluorescent Alexa488 and Alexa647 dyes 

(Thermo Fisher, Darmstadt, Germany). The animals were anesthetized with isoflurane and 

fixed in a stereotaxic frame (David Kopf Instruments, Tujunga, CA, USA). Approximately 

1µl of CTB solution (1mg/ml in PBS) was injected into the IL using glass micropipettes 

(BLAUBRAND
® 

intraMARK, Brand, Wertheim, Germany). The injection coordinates were 

determined using the Paxinos and Watson rat brain atlas and calculated from the bregma and 

midline: prelimbic cortex (PL): anterior-posterior (AP): +3mm, medial-lateral (ML): ±0.5mm, 

dorsal-ventral (DV): – 4mm; infralimbic cortex (IL): AP: +3mm, ML: ±0.5mm, DV: - 

5.5mm; nucleus accumbens (NAc): AP: +1.6mm, ML: ± 0.9mm, DV: -7.5mm; ventral 

tegmental area (VTA): AP: -5.3mm, ML: ± 0.8mm, DV: -9.5mm. The animals quickly 

recovered from anesthesia and were further kept in groups of 4 for 5 days, before further 

behavioral testing.  

The Wistar rats from experiment 1 (Study 4) received bilateral IL injections of either 0.5µl 

general knockdown AAV or universal control AAV. The injection coordinates were 
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determined using the Paxinos and Watson rat brain atlas and calculated from the bregma and 

midline: anterior-posterior: +2.9, medial-lateral: ±0.5, dorsal-ventral: -5.1. After the surgery, 

the animals were kept in groups of four and allowed to recover from surgery for 4 weeks, 

before further behavioral testing. 

 

2.4.3 Stereotaxic AAV injection and GRIN lens implantation (Study 3) 

 

A batch of eight week old male Wistar rats (n=8) received unilateral IL injections of 

AAV1.Syn.GCaMP6f.WPRE.SV40 (AV-1-PV2822, U Penn Vector Core, Pennsylvania, 

USA). The animals were anesthetized with isoflurane and fixed in a stereotaxic frame (David 

Kopf Instruments, Tujunga, CA, USA). Approximately 1µl of a 1:20 AAV dilution was 

injected into the IL of the right hemisphere using glass micropipettes (BLAUBRAND
® 

intraMARK, Brand, Wertheim, Germany). Next, three self-tapping stainless steel bone screws 

(Fine Science Tools, Heidelberg, Germany) were fixed to the skull. A modified linear actuator 

(Luigs & Neumann, Ratingen, Germany; modified by Ivo Sonntag from the Institute of 

Anatomy and Cell Biology at Heidelberg University) was controlled by Pronterface 3D 

software (Printrun, created by Kliment Yanev) and used for slow insertion (~ 300 μm/min) of 

an optic glass fiber (127µm diameter) into the brain. This step served to create a path for the 

GRIN lens implantation. Next, the GRIN lens (1.0 mm diameter, ~9.0 mm length, 1050-

002177, Insopix, Palo Alto, CA, USA) was slowly inserted using the linear actuator. When 

fully inserted into the target position, the lens was secured to the skull using Surgibond tissue 

adhesive (190740, Praxisdienst, Longuich, Germany). Next, the skull surface was pre-treated 

with the OptiBond™ FL Kit (Kerr, Orange, CA, USA) according to the manufacturer's 

instructions, in order to improve adhesion of the implant to the skull. After preparation of the 

skull surface a stable implant was created by surrounding the GRIN lens with black dental 

cement (Contemporary Ortho-Jet™, black, Lang Dental, Wheeling, USA).   

The injection coordinates were determined using the Paxinos and Watson rat brain atlas and 

calculated as distance in mm from bregma and midline: anterior-posterior: +3.0, medial-

lateral: ±0.5, dorsal-ventral: -5.0. The priming glass fiber and the GRIN lens were inserted to 

the following coordinates: +3.0, medial-lateral: ±0.5, dorsal-ventral: -4.7. After the surgery, 
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the animals were housed in pairs and allowed to recover from surgery for 1 week, before 

behavioral training. 

 

2.4.4 Baseplate surgery (Study 3) 

 

The baseplate serves as an anchor for the miniscope and therefore has to be permanently 

secured to the skull above the GRIN lens implant. Therefore, the previously implanted GRIN 

lens had to be exposed and cleaned using lens paper and acetone. Next, the baseplate was 

fixed to a miniscope. Both were fixed to a stereotactic arm using a gripper tool (Insopix, Palo 

Alto, CA, USA). Then, the excitation LED and imaging settings of the miniscope were 

adjusted using the UCLA Miniscope control software (Cai et al., 2016). After correct 

positioning of the miniscope above the implanted GRIN lens, when GCaMP6f expressing 

cells were clearly visible and in focus, the baseplate was permanently fixed to the GRIN 

implant using a mixture of black dental cement powder (Contemporary Ortho-Jet™, black, 

Lang Dental, Wheeling, USA) and super glue. Next, the miniscope was removed from the 

implanted baseplate and a baseplate cover was fixed to the baseplate to protect the exposed 

GRIN lens from dust or other physical damage. 

 

2.4.5 Transcardial perfusion 

 

Study 1: Ninety minutes after the beginning of the last cue-induced reinstatement, at the 

timepoint of highest cFos expression (Sheng and Greenberg, 1990), rats were deeply 

anesthetized with isoflurane and transcardially perfused with 100 ml of 1× PBS followed by 

200 ml of fixative solution (phosphate buffer, containing 4% paraformaldehyde and 14% 

saturated picric acid). Brains were collected and postfixed for 24 h at 4°C in fixative solution. 

Postfixation for X-gal staining was for 1.5 h at room temperature.  

Study 2 + 4: 90 minutes after the beginning of the last cue-induced reinstatement session, the 

animals were transcardially perfused with 100ml 1xPBS (137 mm NaCl, 2.7 mm KCl, 8 mm 

Na2HPO4, 1.46 mm KH2PO4, pH 7.4), containing 10000 units of Heparin sodium/L. Next, the 

animals were perfused with 50ml of 4% paraformaldehyde (PFA) in 1xPBS solution (pH 7.4). 
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The brains were removed and postfixed in 4%PFA in 1xPBS over night at 4°C. The brains 

were washed in 1xPBS before further processing of brain tissue.  

Study 3: The animals were perfused as described in Study 2. The perfused animals were 

decapitated and the head containing the implant was postfixed in 4% PFA in 1xPBS for two 

weeks at 4°C. After two weeks, the brains were removed and stored in 1xPBS until further 

processing. 

 

2.5 Immunohistochemical procedures 

 

2.5.1 X-Gal immunohistochemistry 

 

For X-gal immunohistochemistry in Study 1, 55 μm coronal sections were cut using a 

vibrating blade microtome (Leica Microsystems). Brain sections were incubated in freshly 

prepared X-gal reagent (0.6 mg/ml in 1× PBS plus 5 mm K4Fe(CN)6, 5 mm K3Fe(CN)6, and 2 

mm MgCl2) at 37°C for ~10 minutes. The reaction was stopped by washing the sections with 

1× PBS, brain sections were mounted on Super Frost Plus microscope slides (Thermo Fisher) 

using Immu-Mount (Fischer Scientific) and were investigated using a stereo microscope (Carl 

Zeiss). For quantification, the number of positively stained nuclei was determined using the 

cell-counter analysis macro of ImageJ covering an area of 1 mm
2
 within the IL. 

 

2.5.2 Fluorescent double labeling immunohistochemistry and image analysis 

 

Study 1: 40-μm-thick coronal sections were cut, collected in 1× PBS, washed three times in 

1× TBS and then incubated in blocking solution (7.5% donkey serum, 2.5% BSA in 1× TBS 

with 0.2% Triton X-100) for 1h at room temperature (RT). For cFos/NeuN double-labeling 

sections were incubated with the anti-cFos antibody (c-Fos (9F6) mAb no. 2250, Cell 

Signaling Technology, rabbit, 1:500) and the anti-NeuN-Cy3-conjugated primary antibody 

(clone A60, Cy3 conjugate, MAB377C3, Millipore, mouse, 1:500) in blocking solution over 

night at 4°C. The sections were then washed three times in 1× TBS and incubated for 1h at 

RT in 1× TBS with 0.2% Triton X-100 (TBS-Tx) containing the secondary antibody 
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AlexaFluor 488-labeled donkey anti-rabbit (A-21206, Invitrogen, 1:200 dilution). For 

cFos/CaMKII and Fos/GAD67 double-labeling sections were incubated for 24 h at 4°C with 

the anti-cFos antibody (rabbit, 1:500 dilution) and either anti-CaMKII (6G9 MA1-048, Pierce 

Biotechnology, mouse, 1:500) or anti-GAD67 (1G10.2 MAB5406, Millipore, mouse, 1:1000) 

antibody in blocking solution, then washed three times in 1× TBS and incubated for 1 h in 

TBS-Tx containing a mixture of secondary antibodies (AlexaFluor 488-labeled donkey anti-

rabbit, 1:200, and AlexaFluor 555-labeled donkey anti-mouse, 1:200, A-31570, Invitrogen). 

For cFos/β-gal double-labeling anti-cFos antibody (rabbit, 1:500) and anti-β-gal antibody 

(ab9361, Abcam, chicken, 1:10,000) in blocking solution were used. Secondary antibody 

solution contained AlexaFluor 488-labeled donkey anti-rabbit (1:200) and Cy3-labeled 

donkey anti-chicken (703-165-155, Jackson ImmunoResearch, 1:1000). Following staining all 

sections were washed three times in 1× TBS and mounted as described above. 

Slides were investigated using a Leica TCS SP confocal imaging system attached to a DM 

IRE2 microscope using a HCX PL APO 63× oil planchromat lens with a NA 1.40 (Leica, 

Mannheim, Germany). Z-stacks were acquired with sections taken every 0.99 μm. All images 

were saved as Tiff files. For quantification, three Z-stacks were acquired per hemisphere from 

IL or PL of eight rats. The number of all NeuN stained cells and the number of cFos and 

NeuN colocalized cells was counted using the cell counter analysis macro of ImageJ. The 

ratio of colocalization was calculated for each animal and the mean ± SEM for the eight 

animals was calculated. For quantification of cFos + GAD67 or CaMKII colocalization, the 

number of all cFos stained cells and the number of the cFos and GAD67 or CaMKII 

colocalized cells was counted and the ratio of colocalization was determined as described 

above. 

Study 2: 70µm thick brain sections were prepared from the perfused and fixed brains from 

experiment 2 (Figure 18B) using a vibratome (VT1000S, Leica, Wetzlar, Germany). Sections 

were stained using the above described protocol for cFos (Alexa 568) and NeuN (Alexa 405). 

NeuN and cFos stained mPFC sections (see 2.3.3 Immunohistochemistry procedures) were 

examined by confocal microscopy using a Leica TCS SP5 microscope (Leica Microsystems, 

Wetzlar, Germany) equipped with a 63x HCX PL APO (1.45 NA) objective. Four image 

stacks were acquired at random positions in the IL of each hemisphere (image resolution: 512 

x 512 pixels; voxel size: 0.459 x 0.459 x 2.519 µm; image dimensions: x,y = 234.32 µm, z = 

2. 52 µm). Three slices were examined per animal. 
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Image analysis was performed in a semi-automated way. A custom-written Matlab 

(MATLAB, RRID:SCR_001622 Mathworks, Natick, MA, USA) procedure was generated 

and provided by Dr. Frank Herrmannsdörfer from the Institute of Anatomy and Cell Biology 

at Heidelberg University. This procedure was used to determine the number of objects 

recorded in each imaging channel (NeuN, cFos, two tracer signals) and the number of objects 

positive for cFos. All channels were first smoothed by a 2D Gaussian filter (sigma = 3 pixels, 

1 pixel = 0.459 µm) before the intensities of all channels were binarized. The threshold for the 

binarization was chosen such that 95% of the NeuN signal and the 98% of the cFos signal and 

of both tracer signals were defined as background pixels. Thresholds were calculated for each 

frame individually to correct for decreasing intensities in deep tissue layers. The NeuN signal 

was eroded by removing two pixels from the edge of the signal. A connected components 

analysis with a connectivity of 26 was performed for each channel. Connected components 

that did not reach a certain size (500 voxels for NeuN and cFos, 750 voxels for tracer 

channels) were excluded from analysis as they are likely to not represent true signals. The 

center of mass of each connected component in each channel was determined. Co-localization 

between cFos signals and objects in the other three channels was assigned by close proximity 

analysis (range: 10 µm) based on the centers of mass. The results of the co-localization 

analysis were confirmed by manual inspection. 

Study 4: In order to characterize cells expressing the Cre-inducible mGluR2 knockdown 

AAV, three CamKII-Cre rats received bilateral injections of the knockdown AAV into the IL 

as described above. Four weeks after virus injection rats were perfused and postfixed as 

described above. 60µm coronal sections were cut using a vibrating blade microtome (Leica 

Microsystems) and collected in 1x PBS. Immuno-labeling for either NeuN, GAD67 or 

CamKII were performed as described above using Alexa-555 secondary antibodies. Two 

brain sections containing the mPFC were analyzed per animal. Three image stacks per 

hemisphere were recorded in random positions in the IL using a Leica TCS SP confocal 

imaging system attached to a DM IRE2 microscope using a HCX PL APO 63× oil 

planchromat lens with a NA 1.40 (Leica, Mannheim, Germany). Co-localization 

quantification of eYFP with the respective neuronal marker was performed manual using the 

cell counter macro in ImageJ (Fiji, RRID:SCR_002285). 
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2.5.3 Fluorojade B immunohistochemistry 

 

For Fluorojade B staining in Study 1 rats were perfused as described above and the brains 

were postfixed in the fixative for 24 h at 4°C, dehydrated in 1× PBS/10% sucrose solution for 

3 days and flash frozen at −80°C. A standard Fluorojade B staining protocol was used 

(Schmued and Hopkins, 2000). Briefly, sections were dried for 30 minutes at 50°C. The 

sections were then incubated in a solution containing 1% sodium hydroxide (NaOH) and 80% 

EtOH for 5 minutes, followed by 2 min incubation in 70% EtOH. Next, the sections were 

washed in aqua dest. and incubated in 0.06% potassium permanganate for 10 minutes. After 

another washing step with aqua dest. the sections were incubated in 0,001% Fluorojade B und 

0.1% acetic acid for 30 minutes. After three washing steps with aqua dest. the sections were 

dried at 50°C for 10 minutes, cleared by immersion in xylene for 1 min and coverslipped with 

Eukitt quick-hardening mounting medium (Sigma-Aldrich). 

Images of Fluorojade B-labeled sections were acquired using a Zeiss Axioskop 2 plus 

microscope with a 2.5× lens. Image analysis was performed using ImageJ. First, the images 

were transformed into an 8-bit gray scale image. Then a region-of-interest (ROI) was defined 

for the mPFC in each image, followed by the measurement of the integrated density of each 

ROI. 

 

2.5.4 Injection site mapping 

 

Brain sections containing the brain area of interest were mounted on microscope slides (Super 

Frost Plus, Thermo Fisher) using Immu-Mount (Fischer Scientific) and validated using a 

Zeiss Axioskop 2 plus microscope with a 2.5× lens. 

 

2.5.5 Fluorescent in-situ hybridization (FISH) 

 

Study 2: 

In order to detect both, IL neuronal ensembles involved in EtOH and saccharin seeking, we 

used a double cFos fluorescent in-situ hybridization (FISH) approach. Therefore we made use 
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of the different temporal profiles of nascent (unspliced) and mature (spliced) cFos mRNA 

species. After a certain stimulus, cFos mRNA is rapidly induced within 5 mins (unspliced 

mRNA), but quickly undergoes splicing (spliced mRNA) (Jurado et al., 2007), which peaks 

around 30mins after the stimulus presentation (Lin et al., 2011). These specific time courses 

were used in the cue-induced reinstatement design of experiment 3 (Study 2). The cue-

responsive neurons from the first cue-induced reinstatement session can be detected using 

spliced cFos mRNA and the second session can be detected using unspliced cFos mRNA 

(Figure 18C).   

For double cFos FISH, the animals were decapitated 5min after the final cue-induced 

reinstatement session. The brains were quickly removed, snap frozen in isopentane (-50°C) 

and stored at -80°C until further processing. Next, 20µm brain sections were cut using a 

cryostat and thaw-mounted onto Super Frost Plus slides (Thermo Fisher, Darmstadt, 

Germany). Mounted sections were stored at -80°C in sealed boxes until FISH processing. 

FISH experiments were performed using the RNAscope Multiplex Fluorescent Reagent Kit 

(Advanced Cell Diagnostics, Newark, USA; Probes Rn-Fos-O1-C2, Rn-Fos-Intron1-C3, Rn-

Bcl11b and Rn-Rgs8-C3) according to the manufacturer's instructions for fresh frozen tissue 

(Wang et al., 2012). The Rn-Fos-o1-C2 and Rn-Fos-Intron1-C3 probes were used to detect 

spliced and unspliced cFos mRNA, respectively. Rn-Bcl11b and RnRgs8-C3 were used to 

detect the cortical layers 5/6 and 2/3, respectively. 

Briefly, the slides were transferred from -80°C into sterile 4%PFA in 1xPBS at 4°C for 

15min. The slides were rinsed 3 times in sterile 1xPBS and dehydrated in 50%, 70% and two 

times 100% EtOH. Next, the slides were dried at room temperature (RT) and sections were 

surrounded with a physical barrier using a hydrophobic barrier pen (ImmEdge
TM

 Hydrophobic 

Barrier Pen, Vector Laboratories). The sections were then pretreated with protease IV solution 

(PN 322340, ACD) for 15min at RT. After two 1XPBS washing steps the sections were 

incubated in 1x target probe solutions for 2h at 40°C using the HybEZ Hybridization Oven 

(ACD). Following two washing steps using 1xRNAscope® Wash Buffer the sections were 

incubated in preamplifier and amplifier solutions: AMP1 (30min, 40°C), AMP2 (15min, 

40°C), AMP3 (30min, 40°C). The sections were then hybridized to fluorescently labeled 

probes using the AMP AltB solution, which labels C1 with Atto 550, C2 with Alexa 488 and 

C3 with Atto 647. Two washing steps using 1xRNAscope® Wash Buffer were performed 
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between each amplification step. Finally the sections were incubated in DAPI solution for 

30sec and coverslipped with Shandon™ Immu-Mount™ (Thermo Scientific™). 

Brain sections containing the mPFC were examined by confocal microscopy. Three images 

were acquired at random positions in the IL of each brain slice. Two slices were examined per 

animal. For layer specific cFos expression, three images were then taken per layer in each 

brain slice. 

Data was analyzed for co-localization of FISH signals in both fluorescent channels using the 

cell counter macro of ImageJ (Fiji, RRID:SCR_002285). Specificity of FISH signal was 

verified by co-localization with DAPI. In case of double labeling for spliced and unspliced 

cFos mRNA, the scattered signal pattern prevented semi-automated analysis. This dataset was 

manually analyzed as follows: first, the fraction of DAPI-positive cells expressing spliced 

cFos was calculated for each animal. Then, expression of unspliced cFos mRNA was 

measured as mean gray value per cell, based on manually determined regions of interest using 

ImageJ. To discriminate basal from activity induced expression of unspliced cFos, gray values 

were ranked and the fraction of cells showing the highest unspliced cFos mRNA expression, 

identical to the fraction of spliced cFos mRNA, were used for co-localization analysis. 

Study 4: 

In order to quantify the knockdown efficiency of the Cre-inducible mGluR2 knockdown AAV 

on mRNA level, three male CamKII-Cre rats were injected with the control AAV expressing 

shUnc and three rats were injected with the mGluR2 knockdown AAV. Four weeks after 

AAV injection the animals were rapidly decapitated. Brains were removed, frozen in 

isopentane (-50°C) and kept at -80°C until further processing. Brain slices of 20 µm thickness 

were cut on a cryostat and thaw-mounted onto Super Frost Plus slides (Thermo Fisher, 

Darmstadt, Germany). FISH analysis was performed using the RNAscope Multiplex 

Fluorescent Reagent Kit (Advanced Cell Diagnostics, Newark, USA; Probes Rn-Grm2 and 

EYFP-C2) according to the manufacturer's instructions (freshly frozen tissue).  

Brain sections containing the mPFC were examined by confocal microscopy using a Leica 

TCS SP5 microscope (Leica Microsystems, Wetzlar, Germany) equipped with a 63x HCX PL 

APO (1.45 NA) objective. Three images were acquired at random positions in the IL of each 

hemisphere. Two brain slices were examined per animal. 
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Co-localization of mGluR2 and EYFP signals were analyzed using the cell counter macro in 

ImageJ. Specificity of FISH signal was verified by co-localization with DAPI. Next, the mean 

grey value of mGluR2 signals were determined by manually drawing ROIs containing the 

perinuclear mGluR2 signals of each cell. For control as well as knockdown AAV injected 

animals the mGluR2 mean grey value ratio was calculated:  
𝑚𝐺𝑙𝑢𝑅2+ 𝐸𝑌𝐹𝑃+

𝑚𝐺𝑙𝑢𝑅2+ 𝐸𝑌𝐹𝑃− = 𝑚𝐺𝑙𝑢𝑅2 𝑟𝑎𝑡𝑖𝑜. 

 

2.6 Western blot (Study 4): 

 

Protein levels of mGluR2 were examined within the NAc Shell of male CamKII-Cre rats, 

injected either with the control shUnc AAV or the Cre-inducible knockdown AAV into the IL 

as illustrated in Figure 22 (n=8/group). 

NAc Shell brain tissue was micropunched as previously described (Meinhardt et al., 2013). 

Brain tissue was transferred to a lysis buffer: 100mM Tris HCl pH 8 and 20mM EDTA 

containing cOmplete mini protease inhibitor (Roche Diagnostics, Mannheim, Germany). 

Ultrasonic lysis was performed using an ultrasonic device (Branson Sonifier 250, Danbury, 

CT, USA). Protein concentrations were analyzed using BioRad Protein Assay (Bio-Rad 

Laboratories, Munich, Germany) and visualized using a microplate spectrophotometer 

(PowerWave XS, BioTek Instruments, Bad Friedrichshall, Germany). 

Next, samples were mixed with Laemmli 2x buffer (4% sodium dodecyl sulfate, 10% β-

mercaptoethanol, 0,004% bromphenol blue and 0,125 Tris-HCl pH 6.8). An amount of ~10 

µg of total protein as well as 5µl of pre-stained protein ladder (Chameleon® Duo Li-Cor, 

Lincoln, NE, USA) was loaded and separated on Novex
TM

 WedgeWell
TM

 4-12% Tris-Glycine 

Gels using 1x Tris Glycine SDS Running Buffer (Invitrogen, Carlsbad, CA, USA). Proteins 

were then transferred to nitrocellulose membranes (Protran BA85, Cat no. 10401196, GE 

Healthcare Life Sciences Whatman
TM

) in a blotting chamber (X Cell II
TM

 Blot Module, 

Invitrogen) using Novex
TM

 Tris-Glycine Transfer buffer (invitrogen). Membranes were then 

incubated in Odyssey® Blocking Buffer in PBS (Li-Cor) for 1h at room temperature (RT) and 

probed with mouse anti-metabotropic glutamate receptor 2 antibody (1:1000, mG2Na-s, 

ab15672, Abcam, MA, USA) and rabbit anti-beta actin (1:3000, #4970, Cell Signaling 

Technology, Danvers, MA, USA) diluted in Odyssey® Blocking Buffer in PBS for 2 days at 

4°C. Blots were then washed with 1x PBS followed by 1x PBS-T (containing 0.5% 
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Tween20). Next, blots were incubated for 2h at RT in secondary antibody solution containing 

IRDye 800 CW Donkey Anti-Mouse IgG (1:1000, LI-COR®, 926-32212) and IRDye 680LT 

Donkey Anti-Rabbit IgG (1:1000, LI-COR®, 926-68023) in Odyssey® Blocking Buffer/PBS, 

followed by washing steps with 1x PBS, 1xPBS-T and aqua bidest. Signals were detected 

using an ODYSSEY® CLx234 (LI-COR®, Lincoln, NE, USA) fluorescent imaging system. 

The signal was quantified using Image Studio
TM

 235 software (LI-COR®, Lincoln, NE, USA) 

by calculating the ratio of mGluR2 signal normalized to ß-actin. 

 

Figure 22: Schematic representation of Western blot procedure. The animals received bilateral injection of 

either the control (shUnc) or Cre-inducible mGluR2 knockdown AAV into the IL. Tissue for western blot 

analysis of mGluR2 protein levels was micropunched from the nucleus accumbens (NAc), which is a major 

projection target of the IL 

 

2.7 TaqMan quantitative realtime PCR 

 

2.7.1 Genotyping for Grm2 Cys407* mutation (Study 4) 

 

Tissue for Grm2 cys407* genotyping was obtained from the animals by tail biopsy. Genomic 

DNA was isolated using the NucleoSpin® 8 / 96 Tissue kit (Macherey – Nagel, Düren, 

Germany) according to the manufacturer’s protocol. The Grm2 cys407* SNP (c.1221C>A, 

p.Cys407*) was detected by a custom TaqMan® SNP Genotyping Assay (Assay ID: 

AHGJ96C, Applied Biosystems, Carlsbad, USA, Table 3) on an ABI QuantStudio 7 Flex RT-
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PCR system with QuantStudio
TM 

Real-Time PCR software (20 µl reaction volume containing 

10 ng genomic DNA, 55 cycles of 95 °C for 15 sec and 57 °C for 30 sec). Only homozygous 

wild type allele carriers were used for further experiments. 

 

Table 3: TaqMan Assay information for Grm2 Cys407* genotyping. 

TaqMan Assay ID AHGJ96C 

Forward primer TGCCCTCTGTCCCAACAC 

Reverse primer GCGGCGCCCATTGAC 

Wildtype allele reporter (VIC) TAGCATCGCAGAGGTG 

Mutant allele reporter (FAM) CATAGCATCTCAGAGGTG 

 

 

2.7.2 TaqMan PCR validation of cFos mRNA time course (Study 2) 

 

In order to validate the time course of spliced and unspliced cFos mRNA expression reported 

by Lin et al. (2011), we trained nine Wistar rats on a standard operant alcohol-seeking 

protocol (described in 2.3.1.2). Three animals were decapitated without previous behavioral 

testing. Three animals were decapitated immediately after a 5min cue-induced reinstatement 

of alcohol seeking session. And three animals were decapitated 30 minutes after a 5 min cue-

induced reinstatement of alcohol seeking session. Following decapitation, the brains were 

quickly removed, snap frozen in isopentane (-50°C) and stored at -80°C until further 

processing. Next, 120µm thick sections were cut using a cryostat. The IL area was extracted 

from the sections using a micropunch and the samples were stored at -80°C until RNA 

isolation. 

The total RNA was extracted from the micropunched tissue using 1ml of TRIzol
®
 Reagent 

(Invitrogen) and isolated using the RNeasy Kit (Qiagen, Hilden, Germany) according to the 

manufacturer’s protocol. The total RNA was transcribed into cDNA using the SuperScript™ 

VILO™ cDNA Synthesis Kit (Therma Fisher). 200ng of total RNA were transcribed into 

cDNA. 2µl of a 1:5 dilution of the cDNA product were used in a 20µl TaqMan reaction mix 

for gene expression analysis.  
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The spliced cFos cDNA (Rn.103750) was detected by a TaqMan® Gene Expression Assay 

(Assay ID: Rn02396759_m1; Applied Biosystems, Carlsbad, USA). The unspliced cFos 

cDNA was detected by a customized TaqMan® Gene Expression Assay (Assay ID: 

APCE4TY, Applied Biosystems, Carlsbad, USA, Table 4) on an ABI QuantStudio 7 Flex RT-

PCR system with QuantStudio
TM 

Real-Time PCR software (20 µl reaction volume containing 

2µl  cDNA solution, 40 cycles of 95 °C for 15 sec and 60 °C for 1 min). 

Quantification of the TaqMan gene expression assay was done using the ΔΔCT method 

(Livak and Schmittgen, 2001). Expression data for spliced and unspliced cFos of the cue-

induced reinstatement groups (killed immediately or after 30 minutes) were normalized to the 

no-behavior (control) group. Therefore the mean ΔCT for the three untreated samples was 

calculated. The ΔΔCT for each treatment sample was calculated by subtracting the mean 

value of the control group from each ΔCT value of the sample group.  Data are expressed as 

fold change to control by calculating ΔΔCT
2
. 

 

Table 4: TaqMan Assay information for customized unspliced cFos mRNA gene expression assay. 

TaqMan Assay ID APCE4TY 

Probe sequence (VIC) AGACTCCGGAGCAGCGCCTGCGT 

Forward primer CGGTGTGTAAGGCAGTTTCATTGATAA 

Reverse primer TTCAGCATCACTCGCTCGAAAG 

 

 

2.8 AAV Plasmid cloning 

 

2.8.1 Generation of a general mGluR2 knockdown shRNA AAV plasmid 

 

We used a commercial siRNA sequence (siRNA ID: s127825, Silencer® Select Pre-

Designed, Ambion, Thermo Fisher) to construct a shRNA targeting mGuR2 in the rat. In 

order to generate an AAV plasmid expressing a shRNA against rat mGluR2, we first 

generated the shRNA by annealing the following oligo nucleotide strands: 
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5’-3’ forward primer: 

P-GATCCAAAAGCTACAACATCTTCACCTATTCAAGAGATAGGTGAAGATGTTGT 

AGCTTTTTTTCCAAA 

 

3’-5’ reverse primer: 

GTTTTCGATGTTGTAGAAGTGGATAAGTTCTCTATCCACTTCTACAACATCGAAAA

AAAGGTTTTCGA-P 

Oligo annealing was done using the following protocol: 

- 2µl forward primer 

- 2µl reverse primer 

- 5µl nuclease-free water (AM9938 Ambion, Thermo Fischer) 

- 1µl New England Biolabs 2 buffer (NEB, USA)  

10µl total volume 

 

First nuclease-free water and both oligo strands were heated up to 95°C for 5 min. Next NEB 

buffer 2 was added and the mixture was again heated up to 95°C for 5 min. Next, the mixture 

was incubated at room temperature for 10 minutes resulting in the following double stranded 

shRNA sequence (Figure 23, Table 5): 
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Figure 23: Schematic representation of mGluR2 shRNA. The shRNA consists of a sense and antisense strand, 

connected by a loop sequence. A poly T termination sequence is located downstream of the antisense strand. The 

shRNA sequence is flanked by a BamHI and HindIII restriction site for cloning into the target vector backbone. 

 

Table 5: Nucleic acid sequences of mGluR2 shRNA features. 

Feature Sequence 

BamHI GGATCC  AAAA 

shRNA sense strand GCTACAACATCTTCACCTA 

Loop sequence TTCAAGAGA 

shRNA anti sense strand TAGGTGAAGATGTTGTAGC 

Poly T termination sequence TTTTTTTCCAA 

HindIII AAGCTT 

 

 

For AAV-mediated expression of the shRNA, we cloned the shRNA sequence into the 

following backbone provided by Hilmar Bading, Department of Neurobiology, University of 

Heidelberg: U6-shUnc-CamkII-eGFP (Figure 24) (Mauceri et al., 2015). Using the BamHI 

and HindIII restriction sites, the universal control shRNA (shUnc) was replaced by the 

mGluR2 knockdown shRNA. The resulting AAV plasmid was purified, sequenced, tested in 

cell culture, and finally used for AAV production. 
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Figure 24: Circular plasmid for AAV-mediated shRNA expression. The plasmid contains an ampicillin 

resistance gene (Amp R) for antibiotic-based bacterial colony selection. Expression of the universal control 

shRNA (shUnc) is driven by the U6 Promoter. eGFP marker gene expression is driven by the CamKinaseII 

promoter (CKII-promoter). eGFP expression was enhanced by the Woodchuck Hepatitis Virus 

Posttranscriptional Regulatory Element (WPRE) and a bovine growth hormone (bGH) poly (A) sequence. The 

shRNA and eGFP expression casette is flanked by two inverted terminal repeats (ITR), for transfer into an AAV 

vector. This plasmid was kindly provided by Hilmar Bading (Mauceri et al., 2015). 

 

2.8.2 Generation of a Cre-inducible mGluR2 knockdown shRNA AAV plasmid 

 

In order to generate a Cre-inducible version of the above mentioned mGluR2 knockdown 

AAV, we cloned a construct based on the double-floxed inverted orientation technique 

(Schnütgen et al., 2003; Saunders et al., 2012). To prevent Cre-independent unspecific 

shRNA expression, both the sense and antisense sequences were separated from each other as 

can be seen in Figure 25. Only after Cre-recombination, the floxed sequence flips and a 

functional shRNA sequence is expressed under control of U6 promoter and eYFP is expressed 

under control of EF1α promoter. The fragment containing the split shRNA sequence and the 

eYFP sequence was cloned into a pMK-RQ_U6_COIN vector (obtained from GeneArt, 
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Thermo Fisher). This vector was generated by Ana Gallego-Roman as part of her Master 

Thesis under the joint supervision of Kai Schönig (Institute of Molecular Biology, CIMH) and 

myself (Gallego-Roman, 2016). 

 

 

Figure 25: Schematic representation of Cre-inducible mGluR2 shRNA expression cassette. The shRNA 

was split in the middle and inserted into opposite directions into the floxed cassette. The reporter gene eYFP was 

also inverted and inserted opposite of the EF1α promoter. Without Cre-recombination no shRNA and no eYFP 

expression are possible. After Cre recombination shRNA expression is driven by U6 promoter and eYFP 

expression is driven by EF1α. 

 

2.9 Cell culture 

 

2.9.1 AAV production 

 

A standard protocol was used for AAV production (Xiao et al., 1999; Hauck et al., 2003). 

Briefly HEK293 cells were transfected with 3 helper plasmids (pFdelta6, pRV1 and pH21) 

and the respective shRNA containing AAV plasmid by calcium phosphate precipitation. 60 

hours after transfection cells were harvested and purified using heparin columns. 

The general mGluR2 knockdown AAV and the shUNC AAV were produced in the Institute 

for Psychopharmacology at the Central Institute for Mental Health, Mannheim. The Cre-

inducible mGluR2 shRNA AAV was produced and kindly provided by the research group of 

Thomas Kuner from the Institute of Anatomy and Cell Biology at Heidelberg University. 
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2.9.2 Dual luciferase assay 

 

In order to quantify the knockdown efficiency of the Cre-inducible mGluR2 knockdown AAV 

a dual luciferase assay was performed. To induce the Cre-mediated switch of the floxed 

mGluR2 knockdown cassette, the plasmid was transformed into EL350 E.coli cells (Liu et al., 

2003). For quantification of mGluR2 knockdown efficiency, the mGluR2 target sequence was 

inserted into a pMIR-REPORT miRNA Expression Reporter Vector System (Thermo Fisher, 

Waltham, MA, USA). Both the control AAV construct (shUnc) and the recombined mGluR2 

knockdown AAV construct were each co-transfected with the pMIR-REPORT vector 

(containing the mGluR2 knockdown target site and Firefly luciferase) and pSV40-Renilla 

containing Renilla luciferase for normalization into HeLa cell cells (jetPRIME™, Polyplus 

transfection, Illkirch, France). Three technical replicates were performed for each plasmid. 

Transfected HeLa cells were incubated for 48h at 37 °C and 5% CO2 in Dulbecco´s Modified 

Eagle Medium (DMEM) + GlutaMax-I (Invitrogen) supplemented with 10% fetal calf serum 

(FCS) (Invitrogen) and 1% Streptomycin/Penicillin (Invitrogen). After 48h cells were washed 

with 1x PBS and placed on ice. PBS was replaced with 1x Passive lysis buffer (Promega) and 

cells were harvested using cell scrapers (VWR). The cell suspension was transferred into a 

pre-cooled Eppendorf tube and centrifuged for 5min at 4°C at 13200rpm. 10µl of each lysate 

were then analyzed using VICTOR 1420 Multilabel Counter (PerkinElmer, Hamburg, 

Germany) with automatic LAR II (Firefly luciferase) and Stop & Glo Reagent (Renilla 

luciferase) injection. All Firefly luciferase signals were normalized to Renilla luciferase 

signals. 

 

2.10 In-vivo Calcium Imaging 

 

2.10.1 Set-up for in-vivo calcium imaging recordings 

 

Operant behavior for in-vivo calcium imaging recordings was performed in extra tall operant 

chambers (ENV-007, Med Associates, Fairfax, VT, USA), equipped with large liquid 

receptacle ports and switchable liquid dipper cups for reward delivery (CT-ENV-202M-S-6.0, 

Med Associates, Fairfax, VT, USA). TTL outputs from the operant chamber were generated 

by a SuperPort Output Module (DIG-726TTL –G). An Arduino board was used to deliver the 
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output signals from the operant chamber to a laptop (Lenovo Ideapad 510-15ISK), for 

synchronization with the calcium imaging data. 

Calcium imaging data were recorded using self-assembled open source epifluorescence mini-

microscopes (UCLA Microscopes) (Cai et al., 2016). Digital imaging data was sent from the 

CMOS imaging sensor to data acquisition (DAQ) board over a lightweight, highly flexible 

cable. Data was then transmitted over super speed USB (USB 3.0) to the laptop running the 

Miniscope Data Acquisition Software (miniscope.org). Images were acquired with 20 frames 

per second and maximum gain (64) and saved as uncompressed avi files to the local hard 

drive. Simultaneously, time stamps of all elements of the cue-conditioned operant self-

administration paradigm were acquired on separate streams (cue presentation, lever pressing, 

time spending at the liquid receptacle) using Bonsai software (http://www.open-

ephys.org/bonsai/) (Lopes et al., 2015). The Med Associates operant chamber was controlled 

using the MedPC IV software (Med Associates, Fairfax, VT, USA). 

 

2.11 Statistical analysis 

 

Study 1: 

Data are expressed as mean ± SEM. Behavioral data were analyzed using two-way ANOVA 

with repeated measures, followed by Newman–Keuls post hoc tests, where appropriate, using 

the program Statistica 10 (StatSoft). Alpha level for significant effects was set to 0.05. The 

dependent measures and the factors used in the statistical analyses are described in Results. 

The X-gal staining was analyzed by two-tailed t test. Fluorojade-B data were analyzed by 

one-way ANOVA. 

Study 2: 

Data are presented as mean ± SEM. Behavioral data was analyzed using two-tailed paired t-

test or two-way repeated measures ANOVA followed by Newman-Keul’s post hoc test, where 

appropriate (Statistica 10, RRID:SCR_015627, Statsoft, Hamburg, Germany). Animals were 

excluded from analysis if they either failed to discriminate the active and inactive lever during 

self-administration or they did not show significant (> 15 lever presses in 30 min) 

reinstatement behavior in response to either of the cues. Immunohistochemistry and FISH 
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data were analyzed by two-tailed unpaired t-test and two-way ANOVA and TaqMan data 

were analyzed by unpaired one-tailed t-test using GraphPad Prism 5 (Graphpad Prism, 

RRID:SCR_002798, La Jolla, CA, USA). The alpha level for significant effects was set to 

0.05. The dependent measures and the factors used in the statistical analyses are described in 

Table 6, Table 7 and Table 9 in the Results part. In case of co-localization of spliced and 

unspliced cFos mRNA, statistical significance of co-localization was tested by shuffle test 

using custom written IGOR macros (100.000 repetitions, RRID:SCR_000325, Wavemetrics, 

Lake Oswego, OR), performed and provided by Janine K Reinert from the Institute of 

Anatomy and Cell Biology at Heidelberg University. Therefore, the thresholded signal of 

unspliced cFos (see above) and the signal of mature cFos were binarized and analyzed for co-

localization. 

Study 3: 

Behavioral data are expressed as mean ± SEM. Preprocessing of calcium imaging data was 

done with customized code in combination with available repositories 

(https://github.com/zhoupc/CNMF_E) both coded in MATLAB. Initial preprocessing of the 

data includes correction of movement artefacts by aligning all the recorded frames with the 

average of all recorded frames. Detection of neurons and their activity was done by a 

constrained nonnegative matrix factorization (CNMF-E) delivering spatiotemporal features of 

each neuron: spatial coordinate of each ROI (neuron) and calcium signal as a function of time. 

Data was then analyzed using custom made MATLAB routines. 

Study 4: 

Data are expressed as mean ± SEM. Behavioral data were analyzed using one-way or repeated 

measures ANOVA using the program Statistica 10 (Statsoft; RRID:SCR_015627). Unpaired 

t-tests for mGluR2 knockdown quantification were analyzed using GraphPad Prism 5 

(Graphpad Prism, RRID:SCR_002798, La Jolla, CA, USA). Alpha level for significant effects 

was set to 0.05. Detailed statistics and dependent measures for the operant alcohol-seeking 

experiments can be found in Table 10 and Table 11. 
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Study 5: 

Data are expressed as mean ± SEM. Behavioral data were analyzed using one-way ANOVA. 

Overall statistical significance was analyzed by repeated measures ANOVA or MANOVA 

using the program Statistica 10 (Statsoft; RRID:SCR_015627). 
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3. Results 
 

3.1 Study 1: Identification of an infralimbic neuronal ensemble involved in 

alcohol seeking behavior 

This study contains experiments published in the Journal of Neuroscience with the title 

“Losing Control: Excessive Alcohol Seeking after Selective Inactivation of Cue-Responsive 

Neurons in the Infralimbic Cortex”, as well as additional experiments characterizing an 

infralimbic neuronal ensemble involved in alcohol seeking and further characterizing the 

mechanism of action of the Daun02 inactivation method. 

 

3.1.1 Introduction 

 

The medial prefrontal cortex (mPFC) is involved in top-down control over behavior in 

humans and rodents and controls whether or not to engage in excessive alcohol drinking 

(Heidbreder and Groenewegen, 2003; Wood and Grafman, 2003). A previous study from our 

lab found that the infralimbic cortex (IL) exerts inhibitory control over alcohol seeking 

behavior in rats (Meinhardt et al., 2013). This inhibitory function is severely impaired after a 

history of chronic intermittent alcohol exposure in rats. However, the pathophysiological 

mechanisms underlying this impaired IL control function are still poorly understood. Alcohol 

seeking behavior is a prototypical example of associative learning, which is thought to be 

represented in distinct neuronal ensembles (Hebb, 1949). Several neuronal ensembles have 

been identified in the IL, involved in drug and natural reward seeking (Bossert et al., 2011; 

Cruz et al., 2015; Suto et al., 2016; Warren et al., 2016). Furthermore it has been reported, 

that the prelimbic cortex (PL) and the IL have opposing effects on drug seeking behavior 

(Peters et al., 2008a; Peters et al., 2008b; Peters et al., 2009).  

In order to identify IL and PL neuronal ensembles and their effect on alcohol seeking 

behavior, we used the Daun02 inactivation method (Koya et al., 2009; Koya et al., 2016). The 

Daun02 inactivation method is based on the inactive prodrug Daun02, which gets converted 

into the active form by ß-galactosidase activity, encoded by the bacterial LacZ transgene. In 

order to test the effect of IL and PL ensemble ablation on alcohol seeking behavior, the 
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Daun02 inactivation method was used in cFos-LacZ rats (Kasof et al., 1995; Farquhar et al., 

2002), which express LacZ only in activated neurons. To compare this effect with an IL 

lesion, the Daun02 inactivation method was used in the IL of CAG-LacZ rats, which 

constitutively express LacZ in all cells (Weber et al., 2011). In order to test for unspecific 

drug effects of Daun02, IL Daun02 infusions were performed in wild type littermates of the 

cFos-LacZ rats, which do not express LacZ. Characterization of the ensemble size and 

containing cell types was done using double fluorescent immunohistochemistry for cFos and 

the cell type markers NeuN, GAD67 and CamKII. In order to further examine the mechanism 

of action of Daun02 we used the Fluorojade B neurodegeneration staining method, to identify 

apoptotic neurons. 

The guide cannula implantation into the cFos-LacZ rats targeting the IL was performed by 

Marcus Meinhardt at the Institute of Psychopharmacology, Central Institute of Mental Health, 

Mannheim. The operant conditioning and perfusion of the IL cFos-LacZ batch was performed 

by me as part of my Master Thesis under the supervision of Dr. Wolfgang Sommer (Pfarr, 

2013). The guide cannula implantations into the CAG-LacZ rats and the wild type littermates 

of the cFos-LacZ rats were performed by Manuela Klee at the Institute of 

Psychopharmacology, Central Institute of Mental Health, Mannheim. Operant conditioning 

training for the CAG-LacZ rats and the wild type rats was performed by Jana Zell under my 

supervision at the Institute of Psychopharmacology, Central Institute of Mental Health, 

Mannheim.  

 

3.1.2 Results 

 

3.1.2.1 Daun02 permanently inactivates neurons via induction of neurodegeneration 

 

Although the Daun02 method was used to inactivate and study various neuronal ensembles in 

several brain areas (Koya et al., 2009; Bossert et al., 2011; Cruz et al., 2013; Cruz et al., 

2014), the mechanism of action of Daun02 inactivation of LacZ expressing cells was still 

unclear (Bashir and Banks, 2017). One possible mechanism of action is temporal silencing of 

neurons by inhibition of calcium channels, which would lead to reduced excitability (Santone 

et al., 1986; Engeln et al., 2016). Another possible mechanism of action is permanent 
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inactivation of LacZ expressing neurons by induction of apoptosis (Mortensen et al., 1992; 

Jantas and Lason, 2009). In order to identify the mechanism of action of Daun02 we used a 

new transgenic rat line, the CAG-LacZ line, which constitutively expresses LacZ (Weber et 

al., 2011). Injection of Daun02 into this rat leads to non-selective inactivation of the entire 

brain area. To test the apoptosis hypothesis, we injected CAG-LacZ rats with 2µg Daun02, 

2µg Daun02 + 80ng Z-VAD-FMK or vehicle alone into the mPFC. Z-VAD-FMK is a general 

caspase inhibitor with anti-apoptotic properties (Hara et al., 1997). Three days after injection, 

the animals were killed, transcardially perfused and mPFC brain sections were stained with 

Fluorojade B to detect degenerated neurons (Schmued and Hopkins, 2000). We found that 

Daun02 injection induced massive neurodegeneration, which was almost completely 

prevented by Z-VAD-FMK (F(1,18) = 54.8, p < 0.001; Figure 26). These results show that 

Daun02 inactivation of β-gal-expressing neurons involves apoptotic mechanisms. Therefore 

Daun02 inactivation is a permanent method. 

 

Figure 26: Characterization of Daun02 inactivation in pCAG-lacZ rats. Representative image of Daun02 

and Daun02 + Z-VAD-FMK injections into the mPFC of pCAG-lacZ rats. Scale bar, 300μm. Green fluorescence 

represents Fluorojade-B signal, labeling neurodegeneration. Massive neurodegeneration was induced by Daun02 

injections, whereas there was less neurodegeneration at the Daun02 + Z-VAD-FMK injection site. Integrated 

density measurement of Fluorojade-B signal in mPFC (mean ± SEM, n = 30 sections/group) revealed that the 

combination of Daun02 + Z-VAD-FMK significantly reduced neurodegeneration. ***p < 0.001. For detailed 

statistics, see Results. Adapted from (Pfarr et al., 2015). 

 

3.1.2.2 Selective, but not non-selective Daun02 inactivation of the IL induces excessive 

alcohol seeking behavior 

 

In order to investigate the role of IL neuronal ensembles in cue-induced alcohol seeking 

behavior, we used cFos-LacZ and CAG-LacZ rats for specific and non-specific Daun02 

inactivation. Following acquisition of alcohol self-administration and cue-conditioning, the 
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two cohorts of rats were ranked based on their baseline response rate at the active lever and 

assigned into separate prospective Daun02 and control groups (cFos-lacZ: n = 10 vs11, F(1,19) 

= 1.214, n.s.; pCAG-lacZ: n = 7/group, F(1,11) = 0.618, n.s.). Next, all rats underwent 

extinction training resulting in <10 responses at the active lever, followed by guide cannula 

implantation to target the IL, and tested after 1 week of recovery for cue-induced 

reinstatement (RE1), which served to activate cue-responsive neurons. All cFos-lacZ and 

pCAG-lacZ animals showed a significant increase in responding between the last extinction 

session and cue-induced reinstatement of alcohol seeking (RE1) (two-way repeated-measures 

ANOVA; cFos-lacZ rats: main effect of sessions, F(1,19) = 14.8, p = 0.001; of prospective 

group assignment, F(1,19) = 0.1, n.s., and interaction, F(1,19) = 0.04, n.s.; Newman–Keul's post 

hoc test extinction vs RE1 p < 0.001 for both groups; pCAG-lacZ rats: session, F(1,11) = 55.3, 

p < 0.001; group, F(1,11) = 0.3, n.s., and interaction, F(1,11) = 0.06, n.s.; post hoc test for both 

groups p < 0.05; Figure 27A+B). Ninety minutes after the beginning of the first reinstatement 

session (RE1), all animals received their respective vehicle or Daun02 microinjections (Figure 

27C+D show respective cannula placements). The animals were then returned to their home 

cages for 3 d before being tested on a second cue-induced reinstatement (RE2). Selective 

inactivation of IL cue-responsive neurons by Daun02 in cFos-lacZ rats caused a significant 

increase in alcohol-seeking responses in the Daun02 group, but not in the control group 

(Figure 27A). Two-way repeated-measures ANOVA confirmed a significant main effect of 

the sessions (F(1,19) = 18.2, p < 0.001) and a significant interaction (F(1,19) = 10.05, p < 0.01), 

but no significant effect of treatment (F(1,19) = 3.71, p = 0.069). The post hoc test revealed a 

significant difference between RE1 versus RE2 for the Daun02 group (p < 0.001) but not for 

the control group (p > 0.05; Figure 27A). Interestingly, nonselective inactivation of IL 

neurons in CAG-lacZ rats had no significant effect on alcohol-seeking behavior (two-way 

repeated-measures ANOVA: effect of session, F(1,1) = 2.2, n.s.; treatment, F(1,11) = 0.003, n.s.; 

and interaction, F(1,11) = 0.272, n.s.; Figure 27B). Inactive lever presses and cannula 

placements are illustrated in Figure 27C for cFos-LacZ and Figure 27D for CAG-LacZ rats. 

Thus, only task-specific inactivation of cue-responsive neurons leads to excessive alcohol 

seeking in a cue-induced reinstatement paradigm, whereas a nonspecific lesion did not affect 

alcohol seeking. Consequently, the resulting deficits from a global lesion of the IL can either 

be rapidly compensated by other brain regions or opposing processes within the IL could 

result in a zero net effect. 
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Figure 27: Effect of infralimbic Daun02 inactivation on alcohol-seeking behavior. Responses at the active 

and inactive lever (mean + SEM) are shown for extinction (EXT) as well as reinstatement before (RE1) and after 

(RE2) Daun02 injection. Grey triangles represent LacZ negative cells. Blue triangles represent LacZ expressing 

cells and red triangles represent inactivated cells. A) Daun02 microinjection into the IL of cFos-lacZ rats after 

RE1 resulted in a significant increase in alcohol seeking in RE2 (n = 10–11/group). There were no significant 

differences in inactive lever presses between the groups. B) Nonselective IL inactivation by Daun02 in pCAG-

lacZ rats (n = 7/group) had no effect on reinstatement behavior. C) Injection site mapping of cFos-LacZ rats. D) 

Injection site mapping of CAG-LacZ rats. Approximate locations of the 28 gauge injection-cannula tips are 

indicated by small black triangles. Cannula placements were verified within the infralimbic cortex from +3.2 to 

+2.7 anterior to bregma (Paxinos and Watson, 1998). *p < 0.05; ***p < 0.001. For detailed statistics, see 

Results. Figure adapted from (Pfarr et al., 2015). 

 

Using double fluorescent immunohistochemistry we showed that cue-induced reinstatement 

of alcohol seeking induces both cFos and LacZ expression in the mPFC of cFos-LacZ rats 
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(Figure 28A). In order to validate the Daun02 inactivation of cue-responsive neurons, we used 

two cFos-LacZ animals per group for X-gal immunohistochemistry after the second cue-

induced reinstatement (RE2). Daun02 microinjections into the IL after the first cue-induced 

reinstatement (RE1) caused a significant decrease of β-gal-positive cells in the second 

reinstatement compared with the vehicle injected group (t = 5.23, p < 0.01; Figure 28B). 

 

Figure 28: Activity-dependent Daun02 inactivation in cFos-lacZ rats. A) Exposure to alcohol-associated 

cues results in coexpression of cFos and lacZ in cFos-lacZ rats. Scale bar, 20μm. B) Representative X-Gal 

staining of lacZ-positive cells in the IL region of cFos-lacZ rats after RE2. Scale bar, 300μm. Drawing of coronal 

section adapted from Paxinos and Watson (1998). Quantification of LacZ-positive nuclei after RE2 showed a 

significant reduction in cFos-lacZ rats after Daun02 treatment compared with vehicle. **p < 0.01. Figure taken 

from (Pfarr et al., 2015). 

 

3.1.2.3 Effect of IL Daun02 inactivation in cFos-LacZ rats is permanent 

 

In previous studies the Daun02 effect was only followed up for 3 days after inactivation 

(Koya et al., 2009; Bossert et al., 2011). Due to our previous finding, that Daun02 induces 

apoptosis in neurons, we hypothesized that the effect of Daun02 on alcohol seeking behavior 

should be long lasting. Therefore the remaining cFos-LacZ rats were tested on two additional 

cue-induced reinstatement tests (RE3 and RE4, days 7 and 14 post-Daun02 infusion). As 
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expected, there were no differences in alcohol-seeking behavior between sessions RE2 and 

RE4 (two-way repeated-measures ANOVA: effect of treatment, F(1,15) = 5.41, p < 0.05; 

session, F(2,30) = 0.01, n.s.; and interaction, F(2,30) = 0.29, n.s.; Figure 29). Thus, the behavioral 

effects of Daun02 lesions last at least for 2 weeks. 

 

 

Figure 29: Permanent increase in alcohol seeking after IL Daun02 inactivation in cFos-LacZ rats. The 

increase in alcohol seeking in the cFos-lacZ rats after Daun02 treatment persists for at least 2 weeks (RE 2 same 

as in Figure 27A), RE3 at 7, and RE4 at 14 days after RE1 (n = 8–9/group). There was no significant difference 

between the groups in inactive lever presses. Data is expressed as mean ± SEM. *p < 0.05. Figure adapted from 

(Pfarr et al., 2015). 

 

3.1.2.4 Neuronal circuits for cue- and stress-induced reinstatement of alcohol seeking 

differ in the IL 

 

Apart from the exposure to alcohol conditioned cues, a reinstatement of alcohol seeking can 

be also elicited by exposure to stress (Lê et al., 1998; Liu and Weiss, 2002; Martin-Fardon 

and Weiss, 2013). The IL is known to integrate information from various brain areas 

including those that process emotional states. Therefore we asked, whether the previously 

inactivated ensemble, involved in cue-induced reinstatement of alcohol seeking would be also 

involved in the processing of stress-induced reinstatement of alcohol seeking. To do so, the 
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cFos-LacZ animals from the previous experiment were exposed to 10 min of intermittent 

footshocks before the beginning of the reinstatement session. The baseline responses from the 

previous experiment were 30.8 ± 6.2 for the control and 32.5 ± 4.9 for the Daun02 group. 

Both the control and the Daun02 group significantly increased their active lever presses in the 

stress-induced reinstatement compared with their extinction performance, however, there was 

no significant difference between the groups (two-way repeated-measures ANOVA: main 

effect of the sessions, F(1,11) = 31.57, p < 0.001; treatment, F(1,11) = 0.51, n.s.; and interaction, 

F(1,11) = 0.33, n.s.; Newman–Keul's post hoc test: p < 0.05 extinction vs reinstatement session 

for both groups; Figure 30). Thus, the response to stress involves different neuronal substrates 

than the ones processing specific alcohol associated cues. 

 

 

Figure 30: Cue-responsive neurons in the IL are not involved in stress-induced reinstatement of alcohol 

seeking. There was no significant difference between the groups in active lever presses and inactive lever 

presses in a footshock stress-induced reinstatement session. *p < 0.05. For detailed statistics see Results. Figure 

adapted from (Pfarr et al., 2015). 
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3.1.2.5 Cue-responsive neurons involved in alcohol seeking are not involved in alcohol self-

administration 

 

Because the same set of olfactory and visual cues was used in alcohol self-administration and 

cue-induced reinstatement sessions, we tested both groups of animals from the previous 

experiments again on their alcohol self-administration performance. During five consecutive 

alcohol self-administrations sessions, there was no significant difference in active lever 

responses between the groups (Figure 31). Repeated measures ANOVA analysis of the 

alcohol self-administration data with the treatment group as a between group factor and the 

five self-administration sessions as within group factors revealed no significant effects of 

treatment [F1,15 = 0.498, p > 0.05], time points (self-administration sessions 1-5) [F1,15 = 

2.293, p > 0.05] or the interaction between treatment and the time points [F1,15 = 0.737, p > 

0.05]. 

 

Figure 31: Neurons involved in the control of cue-induced reinstatement are not involved in self-

administration. Mean ± SEM responses at the active lever are shown. Responses of the Control group (circles , 

n = 9) are compared to the Daun02 treated group (squares, n = 8). There was no significant difference between 

the groups. 
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3.1.2.6 Daun02 does not have unspecific side effects on behavior 

 

To test for potential unspecific treatment effects, a group of wild-type littermates (n = 8) of 

cFos-lacZ rats, which do not express LacZ, underwent the reinstatement procedure as 

described before. As expected, neither vehicle injection into the IL after RE1 nor Daun02 

after RE2 resulted in a significant change in lever pressing (baseline and extinction 

responding: 118.3 ± 15.6 and 7.8 ± 1.2, respectively, one-way repeated-measures ANOVA; 

F(2,14) = 0.41, n.s.; Figure 32). Therefore we confirm, that Daun02 is an inactive prodrug, 

which does not induce unspecific side effects on animal behavior in the absence of ß-

galactosidase activity. 

 

 

Figure 32: No unspecific effect of Daun02 on behavior. A) There was no significant difference in active and 

inactive lever presses in wild type littermates of cFos-LacZ rats (n=8) after IL vehicle or IL Daun02 injections. 

B) Cannula placements were verified within the infralimbic cortex from +3.2 to +2.7 anterior to bregma (Paxinos 

and Watson, 1998). Figure adapted from (Pfarr et al., 2015). 
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3.1.2.7 Selective inactivation of prelimbic neuronal ensembles have no effect on alcohol 

seeking behavior 

 

The prelimbic cortex (PL) was found to be functionally distinct from the IL in behavioral 

control (Heidbreder and Groenewegen, 2003) and was previously found to have an opposing 

effect on cocaine seeking as compared to the IL (Peters et al., 2009). Apart from cocaine 

seeking, the PL was previously found to be involved in the expression of context-induced 

reinstatement of alcohol seeking (Willcocks and McNally, 2013). Therefore we next studied 

the role of neuronal ensembles in the PL on alcohol seeking behavior.  

A separate cohort of cFos-lacZ rats was trained to self-administer alcohol and implanted with 

guide cannulae as described above. There were no differences in alcohol self-administration 

behavior between the prospective Daun02 and control groups (n = 7 vs 8, F(1,13) = 0.16, n.s.). 

There was also no difference between the groups in their cue-induced reinstatement 

performance after extinction (two-way repeated-measures ANOVA: main effect of the 

sessions, F(1,13) = 79.14, p < 0.001; treatment, F(1,13) = 0.09, n.s; and interaction, F(1,13) = 0.2, 

n.s.; post hoc test p < 0.001 extinction vs reinstatement for both groups; Figure 33). Daun02 

treatment did not alter cue-induced reinstatement performance in the second test (RE2) (two-

way repeated-measures ANOVA: main effect of treatment, F(1,13) = 0.63, n.s.; session, F(1,13) = 

1.89, n.s.). There was a significant interaction effect (F(1,13) = 8.99, p < 0.05) due to a decrease 

in responding in the control (post hoc test RE1 vs RE2, p < 0.05), but not in the Daun02 

treated group. A Fluorojade B staining was performed with mPFC sections injected with 

Daun02 into the PL, to confirm degradation of neurons. Figure 34 shows fluorescent 

Fluorojade B signal, which labels apoptotic neurons in the PL of the cFos-LacZ animals. It 

can be also seen, that the signal is less dense as compared to the Daun02 injections into the 

constitutive CAG-LacZ line.  

Because our previous experiment in wild-type littermates of the cFos-LacZ rats showed no 

indication for unspecific drug effects and because of the induction of apoptosis in the PL after 

Daun02 injection, we interpret the overall outcome of the PL experiment as a lack of 

treatment effect. This result sets alcohol apart from other drugs like cocaine or heroin which 

show a different involvement IL and PL in the seeking response (Fuchs et al., 2005; Peters et 

al., 2009; Bossert et al., 2011; Willcocks and McNally, 2013).  
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Figure 33: No effect of selective inactivation of PL ensembles on alcohol seeking. A) Daun02 microinjection 

into PL of cFos-lacZ rats after RE1 had no effect on active lever presses in RE2. There was no difference in 

inactive lever presses between the groups in extinction (EXT), RE1 or RE2. B) Cannula placements were 

verified within the infralimbic cortex from +4.2 to +2.7 anterior to bregma (Paxinos and Watson, 1998). Figure 

adapted from (Pfarr et al., 2015). 

 

 

 

Figure 34: Neurodegeneration induced by Daun02 in CAG-LacZ and cFos-LacZ rats. Representative 

images of Flurojade-B stainings are shown for cFos-LacZ rats after cue-induced reinstatement and for CAG-

LacZ rats. 2 μg Daun02 injections into the PL of CAG-LacZ rats induced massive neurodegeneration. Daun02 

infusions into cFos-lacZ rats after cue-induced reinstatement caused less, therefore specific neurodegeneration. 

Vehicle injections into cFos-lacZ rats caused no neurodegeneration. Scale bar, 25 μm. Figure adapted from 

(Pfarr et al., 2015). 
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3.1.2.8 Cell types participating in IL neuronal ensemble 

 

To further characterize the cue responsive neurons in the mPFC, eight cFos-lacZ rats were 

killed 90 min after a cue-induced reinstatement session and brain sections were double-

stained for cFos and cell-type-specific markers (NeuN, GAD67 or CamKinaseII as pan-

neuronal, GABAergic and glutamatergic projection neuron markers, respectively; Figure 

35A). Co-localization analysis demonstrated that both in the IL and PL regions somewhat 

>10% of all neurons are cFos-positive, and more than two-thirds of those belong to the 

glutamatergic class (Figure 35B). In line with similar studies (Bossert et al., 2011; Cruz et al., 

2014), cue responsive neuronal ensembles are formed by a small but substantial number of 

neurons in a given brain region. 

 

Figure 35: Characterization of cue-responsive neurons in the prelimbic and infralimbic cortex of cFos-

lacZ rats after cue-induced reinstatement of alcohol seeking. A) Representative images of cFos and NeuN 

(top row), cFos and GAD67 (middle row), cFos and CaMKII (bottom row) double-labeling are shown. Scale bar, 

50 μm. Arrows indicate colocalization. B) Quantification of double-labelings of the PL neurons, 12.7% were 

cFos-positive; 6% of the cFos-positive neurons were GAD 67-positive, and 66.6% of all cFos-positive neurons 

were CaMKII-positive; 11.2% of all IL neurons were cFos-positive; 8.8% of the cFos-positive neurons were 

GAD67-positive, and 70.6% of the cFos-positive neurons were CaMKII-positive. Figure taken from (Pfarr et al., 

2015). 
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3.1.3 Summary 

 

In Study 1, we identified an inhibitory neuronal ensemble in the IL of cFos-LacZ transgenic 

rats, which is involved in the control over alcohol seeking behavior. Pharmacogenetic ablation 

of this ensemble using the Daun02 inactivation technique resulted in excessive cue-induced 

alcohol seeking behavior. The identified neuronal ensemble consisted of ~11% if IL neurons, 

the majority belonging to the glutamatergic projection neuron class and only a minority 

belonging to the class of inhibitory interneurons. After further characterization of the 

identified IL neuronal ensemble, we found that neuronal substrates for cue-induced and stress-

induced reinstatement of alcohol seeking behavior differ in the IL, as the animals only showed 

excessive alcohol seeking behavior in a cue-induced, but not stress-induced reinstatement of 

alcohol seeking behavior. Furthermore, the identified ensemble, involved in cue-induced 

reinstatement of alcohol seeking was not involved in alcohol self-administration. Opposed to 

a selective inactivation of neuronal ensembles, a general inactivation of the IL, using the 

constitutive CAG-LacZ line had no effect on alcohol seeking behavior.  

Although the cFos response in the PL after cue-induced reinstatement of alcohol seeking was 

comparable to the cFos response in the IL, there was no effect of Daun02 inactivation in the 

PL of cFos-LacZ rats on alcohol seeking behavior. Using CAG-LacZ rats, we furthermore 

clearly identified the induction of apoptosis as the underlying mechanism of action of the 

Daun02 inactivation method. 
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3.2 Study 2: Characterization of infralimbic neuronal ensembles involved in 

alcohol and saccharin seeking behavior 

This study contains experiments published in the Journal of Neuroscience with the title 

“Choice for drug or natural reward engages largely overlapping neuronal ensembles in the 

infralimbic prefrontal cortex”, as well as additional experiments characterizing neuronal 

ensembles involved in alcohol and saccharin seeking. 

 

3.2.1 Introduction 

In Study 1, we identified a functional neuronal ensemble in the infralimbic cortex (IL), 

involved in the control of cue-induced alcohol seeking behavior (Pfarr, 2013; Pfarr et al., 

2015). Other IL ensembles have been identified for context- or cue-induced seeking of other 

drugs or natural rewards (Bossert et al., 2011; Cruz et al., 2015; Suto et al., 2016; Warren et 

al., 2016). Although there is evidence, that several neuronal ensembles could co-exist in the 

same brain area (Schwindel and McNaughton, 2011), comparisons between several studies 

are difficult because of differences in experimental setup or batch- and strain differences of 

the animals used. Therefore we first established a two-reward operant conditioning model for 

the concurrent self-administration of ethanol as a drug and saccharin as a natural reward. 

First, we tested for differences in projection target areas of activated neurons upon cue-

induced alcohol or saccharin seeking, using a combination of retrograde tracing and cFos 

immunohistochemistry. In order to answer the question, if both ensembles in the IL are 

distinct, overlapping or partially overlapping, we used the two-reward operant conditioning 

protocol in combination with double cFos fluorescent in-situ hybridization (FISH). This 

technique enabled us to specifically label cue-responsive neurons for alcohol and saccharin 

within the same animal. 

The set-up of the two-reward operant conditioning model was done in collaboration with 

Elisabeth Paul at the Institute of Psychopharmacology at the Central Institute of Mental 

Health, Mannheim. Immunohistochemistry, image acquisition and analysis of the retrograde 

tracer experiment were done by Marion Schmitt and Christoph Körber from the Institute of 

Anatomy and Cell Biology at Heidelberg University. Operant training of the animals for FISH 

experiments and analysis of FISH experiments was done by Laura Schaaf at the Central 
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Institute of Mental Health as part of her Master Thesis under my supervision (Schaaf, 2017). 

The bootstrap analysis of the double cFos FISH data was performed by Janine K Reinert from 

the Institute of Anatomy and Cell Biology at Heidelberg University. 

 

3.2.2 Results 

3.2.2.1 Set-up of two-reward operant conditioning protocol 

In order to set-up the two-reward operant conditioning task for concurrent self-administration 

of ethanol and saccharin solutions, 16 male Wistar rats were trained to self-administer a 10% 

(v/v) ethanol solution. Following this, the animals were trained to self-administer a 0.04% 

(w/v) saccharin solution. The saccharin solution was adjusted to reach a similar lever response 

ratio as compared to 10% ethanol. This was necessary in order to prevent potential neuronal 

ensemble biases caused by motor activity effects, because typically Wistar rats respond more 

than 200 times per session under these conditions. Following acquisition of ethanol and 

saccharin self-administration, the animals underwent a random training sessions for ethanol or 

saccharin self-administration until a stable baseline (BL) for each reward was reached. Two 

counterbalanced progressive ratio (PR) sessions were performed between the random baseline 

sessions, to test for the animals’ motivation to self-administer each reward. After reaching a 

stable self-administration baseline for each reward, the animals underwent five extinction 

(EXT) sessions, followed by a cue-induced reinstatement (RE) session for either ethanol or 

saccharin. Three animals were excluded from analysis, because they failed to reach the 

criterion for successful reinstatement (>15 lever presses per session). 

As can be seen in Figure 36A and Table 6, there were no significant differences in active 

lever presses in baseline and extinction training. After five days of extinction all animals 

reached the criterion of < 10% lever presses of the respective baseline responding for each 

reward. There was a significant increase in active lever responding in cue-induced 

reinstatement for each reward. However the animals responded significantly more at the 

active lever for ethanol seeking compared to saccharin, indicating that 10% ethanol is more 

rewarding under reinstatement conditions, compared to 0.04% saccharin. This is consistent 

with the PR test, where the animals had a significantly higher breakpoint for ethanol 

compared to saccharin (t=-4.38, p=0.0009, n=13, two-tailed paired t-test, Figure 36C). 
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Inactive lever responses are illustrated in Figure 36B and the respective detailed statistics are 

displayed in Table 6. There was a significant difference in baseline and cue-induced 

reinstatement responding for the ethanol and saccharin reward. There was no significant 

difference between inactive lever presses during extinction for both rewards. Independent of 

the presented reward, all animals responded more often at the active than at the respective 

inactive lever (Figure 36, Table 6), which demonstrates that the animals successfully acquired 

the behavioral contingencies and are able to discriminate between the two rewards and the 

associated cues. 

 

 

 

Figure 36: Set-up of two reward operant conditioning task. A) Active lever presses during baseline self-

administration (BL), extinction (EXT) and cue-indued reinstatement (RE) of ethanol (black bars) and saccharin 

(white bars). B) Inactive lever presses forBL, EXT and RE. C) Progressive ratio test: *p < 0.05; **p < 0.01; 

***p < 0.001. For detailed statistics, see Table 6. Figure taken from (Pfarr et al., 2018). 
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Table 6: Statistics for set-up of two reward operant conditioning task.  Results for repeated measures 

ANOVA and Newman-Keuls post hoc test are shown. Comparison between active and inactive lever was done 

using two-tailed paired t-test. Abbreviations: DF = degrees of freedom, F = F-value, p = p-value, t = t-value, BL 

= self-administration baseline, EXT = extinction, RE = cue-induced reinstatement, Sac = saccharin, EtOH = 

ethanol 

L

e

v

e

r 

Repeated measures ANOVA Newman-Keuls post hoc test 

t-test 

(comparison active/ 

inactive) 
Test DF Effect F p Within group comparison 

Between 

reward 

comparison 

      reward Test p Test p Test p 

a
c

t

i
v

e 

BL, 

EXT 
1, 24 

reward 0.136 0.716      EtOH 

Test-

session 
53.099 0.0001 EtOH BL, EXT 0.0002 BL 0.559 BL 0.0002 

interaction 0.214 0.648 Sac BL, EXT 0.0002 EXT 0.939 
EXT 0.273 

EXT

, RE 
1, 24 

reward 4.194 0.052  

Test-

session 
61.623 0.0001 EtOH EXT, RE 0.0001  

RE 0.0001 

interaction 3.851 0.061 Sac EXT, RE 0.001 RE 0.007 

i
n

a

c
t

i
v

e 

BL, 

EXT 
1, 24 

reward 3.242 0.084      Saccharin 

Test-

session 
51.616 0.0001 EtOH BL, EXT 0.0001 BL 0.01 BL 0.0012 

interaction 3.873 0.06 Sac BL, EXT 0.001 EXT 0.72 
EXT 0.273 

EXT

, RE 
1, 24 

reward 1.544 0.225  

Test-

session 
43.587 0.0001 EtOH EXT, RE 0.002  

RE 0.0012 

interaction 1.419 0.245 Sac EXT, RE 0.0001 RE 0.1 

 

 

3.2.2.2 Analysis of IL neuronal ensemble size for ethanol and saccharin reward 

In order to determine the size of the neuronal ensembles activated during cue-induced 

reinstatement of saccharin or ethanol seeking, a second batch of 32 Wistar rats was trained on 

the newly established two-reward operant conditioning paradigm and ranked based on their 

cue-induced reinstatement performance, followed by stereotaxic retrograde tracer injections 

into the contralateral IL, prelimbic cortex (PL), nucleus accumbens (NAc) and ventral 

tegmental area (VTA). Five days after tracer injections, the animals underwent either an 

additional cue-induced reinstatement of 10% ethanol or 0.08% saccharin seeking, followed by 

perfusion 90min after the start of the reinstatement session. Four animals had to be excluded 

from analysis, because they failed to reach reinstatement criterion (>15 active lever responses 

in 30 min). Active and inactive lever responses for baseline (BL), extinction (EXT) and the 

first counterbalanced cue-induced reinstatement sessions for ethanol and saccharin (RE1+2) 

are shown in Figure 37A. Detailed statistics are shown in Table 7. There were no significant 

differences in active lever presses for both rewards in BL and EXT. Consistent with the 

previous Wistar batch (Figure 36A), the animals made significantly more active lever 
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responses in the cue-induced reinstatement (RE1+2) for ethanol, compared to saccharin 

(Figure 37A), however the animals made significantly more responses at the active compared 

to the respective inactive lever in all stages of the operant conditioning paradigm (Table 7). 

There were no significant differences in inactive lever responding for ethanol or saccharin in 

BL, EXT and RE1+2. After stereotaxic tracer injection, the difference in active lever 

responses for cue-induced reinstatement of ethanol and saccharin (RE3) seeking still persisted 

(Figure 37B). Also in RE3, there was no significant difference in inactive lever responses for 

each reward and the animals made significantly more responses at the respective active 

compared to the inactive lever (Figure 37B), demonstrating that the animals successfully 

learned the task and are able to discriminate between the rewards and associated cues. 90 

minutes after the final cue-induced reinstatement for either ethanol or saccharin, the animals 

were perfusion and brains were processed for cFos and NeuN immunohistochemistry, 

detecting activated neurons and the total neuronal population, respectively (Figure 37C). 

Quantification of activated neurons revealed no difference in the activated neuronal 

population after saccharin or ethanol cue-induced reinstatement (saccharin: 15.32% ± 0.63%, 

ethanol: 14.9% ± 0.58%, p = 0.63, n = 14/reward; Figure 37D). Thus, IL neuronal ensembles 

involved in ethanol and saccharin seeking are of similar size. 
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Figure 37: Neuronal ensembles involved in ethanol and saccharin seeking are of similar size. A, B) Active 

and inactive lever presses for ethanol and saccharin self-administration baseline (BL), extinction (EXT) and cue-

induced reinstatement (RE) (B: RE1+2, C: RE3). C) Representative images of NeuN and cFos immuno double-

labelling in the IL after ethanol and saccharin reinstatement (RE3). Arrows indicate co-localization. Kindly 

provided by Christoph Körber. D) Quantification of cFos and NeuN double labeled neurons in the IL, provided 

by Christoph Körber. Results are expressed as the fraction of double-labelled neurons (Data presented as mean ± 

SEM). *p < 0.05. For detailed statistics, see Table 7. Figure taken from (Pfarr et al., 2018). 

 

 

 

  

 

 

 



 

 

Results 

 

97 

 

Table 7: Statistics for two-reward conditioning of Wistar batch 2.  Results for repeated measures ANOVA 

and Newman-Keuls post hoc test are shown. Comparison between active and inactive lever was done using two-

tailed paired t-test. Abbreviations: DF = degrees of freedom, F = F-value, p = p-value, t = t-value, BL = self-

administration baseline, EXT = extinction, RE = cue-induced reinstatement, Sac = saccharin, EtOH = ethanol 

 

Lever 

Repeated measures ANOVA Newman-Keuls post hoc test 
t-test 

(comparison 

active/ inactive) 
Test DF Effect F P Within group comparison 

Between 

group 

comparison 

      reward Test p Test p Test p 

Active 
 

RE 1+2 

BL, 

EXT 

1, 

54 

reward 0.01 0.917  EtOH 

Test-

session 
107.94 0.0001 EtOH 

BL, 
EXT 

0.0001 BL 0.89 BL 0.0001 

Interaction 0.008 0.928 Sac 
BL, 

EXT 
0.0001 EXT 0.99 

EXT 0.889 

EXT, 
RE 

1+2 

1, 

54 

reward 3.468 0.068  

Test-

session 
205.14 0.0001 EtOH 

EXT, 
RE1+2 

0.0001  
RE 

1+2 
0.0001 

interaction 3.246 0.077 Sac 
EXT, 

RE1+2 
0.0001 

RE 

1+2 
0.01 

Inactive 
RE 1+2 

BL, 
EXT 

1, 
54 

reward 0.098 0.755  Saccharin 

Test-

session 
159.09 0.0001 EtOH 

BL, 

EXT 
0.0002 BL 0.54 BL 0.0001 

interaction 0.422 0.518 Sac 
BL, 

EXT 
0.0001 EXT 0.93 

EXT 0.889 

EXT, 

RE 

1+2 

1, 
54 

reward 0.029 0.865  

Test-

session 
41.168 0.0001 EtOH 

EXT, 

RE1+2 
0.0002  

RE 

1+2 
0.0001 

interaction 0.078 0.78 Sac 
EXT, 

RE1+2 
0.0002 

RE 
1+2 

0.75 

active 

RE 3 

BL, 

EXT 

1, 

26 

reward 1.226 0.278      EtOH 

Test-

session 
68.683 0.0001 EtOH 

BL, 

EXT 
0.0001 BL 0.12 BL 0.0001 

interaction 1.334 0.259 Sac 
BL, 

EXT 
0.0002 EXT 0.99 

EXT 0.586 

EXT, 

RE3 

1, 

26 

reward 9.576 0.005  

Test-

session 
315.38 0.0001 EtOH 

EXT, 

RE3 
0.0001   

RE3 0.0001 

interaction 13.967 0.0009 Sac 
EXT, 

RE3 
0.0001 RE3 

0.00

01 

inactive 

RE 3 

BL, 
EXT 

1 
,26 

reward 2.367 0.136  Saccharin 

Test-

session 
107.27 0.0001 EtOH 

BL, 

EXT 
0.0001 BL 0.02 BL 0.0026 

interaction 3.275 0.082 Sac 
BL, 

EXT 
0.0001 EXT 0.91 

EXT 0.586 

EXT, 

RE3 

1, 

26 

reward 1.16 0.291  

Test-

session 
37.699 0.0001 EtOH 

EXT, 

RE3 
0.0002  

RE3 0.0003 

interaction 1.101 0.304 Sac 
EXT, 

RE3 
0.004 RE3 0.14 
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Figure 38: Activated IL projections during ethanol and saccharin seeking behavior. A) Representative 

images of retrograde tracer signals and cFos immunolabeling in the IL. From top to bottom colocalization of 

cFos with retrograde tracer signals from contralateral IL (cIL), ipsilateral prelimbic cortex (PL), nucleus 

accumbens (Nac) and ventral tegmental area (VTA). Arrows indicate co-localization. B) Injection placements 

are represented by black circles for ethanol and red circles for the saccharin group. Injection sites were verified 

in contralateral IL and PL+3.0mm anterior to bregma, Nac +1,6mm anterior to bregma and VTA -5.3 posterior 

to bregma, Adapted from (Paxinos and Watson, 1998). C) Quantification of the fraction of cFos positive tracer 

neurons (mean ± SEM) of activated IL projections during ethanol and saccharin seeking *p < 0.05. Figure taken 

from (Pfarr et al., 2018). 
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3.2.2.3 Analysis of projection targets of ethanol and saccharin cue-responsive neurons 

In Study 3.1, we found that the majority of cue-responsive neurons involved in cue-induced 

reinstatement of ethanol seeking belong to the class of glutamatergic projection neurons (Pfarr 

et al., 2015). Even though the size of neuronal ensembles involved in ethanol and saccharin 

seeking is highly similar, we performed retrograde tracer injections into known projection 

targets of the IL (Figure 38B). Co-localization of retrograde tracer signals with the neuronal 

activity marker cFos revealed an overall significant difference in activated projections for 

ethanol compared to saccharin. Taking together all tracer injections from contralateral IL 

(cIL), prelimbic cortex (PL), nucleus accumbens (Nac) and ventral tegmental area (VTA), 

there was significantly more co-localization of IL cFos with the tracer signals in the saccharin 

group compared to the ethanol group (2-way ANOVA for reward x target: reward effect F[1,27] 

= 6.69, p=0.018; region effect F[1,27]= 0.57, p=0.64; interaction F[1,27]= 0.16, p=0.92; Figure 

38A+C). Given, that there was no difference in the size of each IL ensemble (Figure 37D), 

our results indicate that ethanol cue-responsive neurons might engage a wider long-range 

network compared to saccharin cue-responsive neurons.  

 

3.2.2.4 Analysis of ethanol and saccharin cue-responsive neurons in the IL using double 

cFos FISH 

The previous experiments revealed that the IL ethanol and saccharin ensembles are of similar 

size and seem to engage different neuronal networks as indicated by differences in co-

localization wit retrograde tracer signals from the contralateral IL, prelimbic cortex, nucleus 

accumbens and ventral tegmental area (Figure 38). In order to answer the question, if the 

respective ensembles are distinct, overlapping or partly overlapping it is necessary to activate 

and label both populations in the same animal. Therefore we combined our two-reward 

operant model with double cFos-fluorescent in-situ hybridization. 24 Wistar rats were trained 

on the two-reward operant protocol using 10% ethanol and 0.025% saccharin solution, 

including counterbalanced progressive ratio (PR) tests for each reward. Following extinction 

(EXT) training and counterbalanced cue-induced reinstatement sessions (RE1+2) for each 

reward, the animals were ranked based on their reinstatement performance and split into two 

groups. In the final reinstatement session, each animal underwent two 5min cue-induced 

reinstatement sessions for each reward, separated by a break of 30mins (RE3+4), followed by 
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decapitation immediately after the last 5min reinstatement session. The final reinstatement 

sessions were performed in a counterbalanced design, meaning half of the animals underwent 

cue-induced reinstatement of ethanol seeking first followed by cue-induced reinstatement of 

saccharin seeking and vice versa.  

The time course for RE3 and RE4 was adapted from the cat-FISH experiments of Lin et al. 

(2011) in order to induce the spliced cFos mRNA species for RE3 and unspliced cFos mRNA 

species, labeling neurons activated during RE4. Both mRNA species can then be detected by 

double cFos fluorescent in-situ hybridization (FISH) using specific probes for spliced cFos 

mRNA and against intron1, which is present in the unspliced cFos mRNA isoform. This time 

course was also confirmed by a preliminary experiment, using mRNA extracted from IL 

tissue punches of six Wistar rats, which underwent a 5min cue-induced reinstatement session 

for ethanol seeking. Three animals were decapitated immediately after the 5min reinstatement 

session (RE), which should mainly induce unspliced cFos mRNA. Three animals were 

decapitated 30 minutes after the 5min reinstatement session (RE + 30min), which should 

mainly induce spliced cFos mRNA. Quantification of mRNA levels was done by quantitative 

TaqMan PCR, using probes for spliced cFos mRNA and intron1 of the unspliced cFos mRNA 

(Figure 40, Table 8). There was significantly more unspliced cFos mRNA after RE, compared 

to RE + 30min as confirmed by unpaired one-tailed t-test (t1,4 = 2.27, p = 0.04, n=3/group, 

normalized to baseline cFos expression of control animals, Figure 40A). There was 

significantly more spliced cFos mRNA in the RE + 30min group compared to RE (unpaired 

one-tailed t-test: t1,4 = 5.94, p = 0.002, n=3/group, normalized to baseline cFos expression of 

control animals, Figure 40A). 

The lever responses from all animals before the final cue-induced reinstatement sessions are 

displayed in Figure 39A and full statistics are listed in Table 9. There were no significant 

differences in active lever presses for each reward in BL and EXT. Consistent with the 

previous experiments, the animals made significantly more active lever presses in cue-

induced reinstatement of ethanol seeking compared to saccharin (RE1+2). There were no 

significant differences in inactive lever responses for each reward in BL, EXT and RE1+2. 

Consistent with the first experiment (Figure 36C) the animals had a significantly higher 

breakpoint for ethanol compared to saccharin (t1,46=3.122, p=0.0031, two-tailed, paired t-test 

Figure 39B). 
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Figure 39: Double cFos FISH of IL ethanol and saccharin ensembles. A) Active and inactive lever presses 

(mean ± SEM) for ethanol and saccharin self-administration baseline (BL), EXT and RE1+2. B) Breakpoint 

analysis for the ethanol and saccharin rewards. C) Lever presses (mean ± SEM) for EtOH and saccharin in 

RE3+4. D) Representative images of double cFos in-situ hybridization for DAPI counterstaining, spliced and 

unspliced cFos. Arrows indicate a double positive cell, triangles indicate a single positive cell for unspliced Fos 

and asterisks indicate a single positive cell for spliced Fos only. E) Venn diagram indicating the size of saccharin 

and ethanol ensembles in relation to total cell number (DAPI). F) Quantification of overlay between both 

ensembles (mean ± SEM). *p < 0.05; **p < 0.01; ***p < 0.001. For detailed statistics, see Results and Table 9. 

Figure taken from (Pfarr et al., 2018). 
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Figure 40: Expression time course of unspliced and spliced cFos isoforms. A) TaqMan analysis of unspliced 

and spliced cFos expression levels immediately after 5min cue-induced reinstatement (black bars, RE) or 30 

minutes after a 5 min cue-induced reinstatement of ethanol seeking session (white bars, RE + 30min). Data are 

expressed as mean ± SEM fold change to control (animals undergoing no reinstatement test). B) Scheme of 

expression time courses of spliced and unspliced cFos mRNA isoforms as well as the cFos protein relative to 

activity controlled induction. Arrows indicate the chosen time-points for RE3 and RE4. Time courses are based 

on TaqMan results and (Lin et al., 2011). *p < 0.05; **p < 0.01. For ΔCT, ΔΔCT and fold change values see 

Table 8. 

 

 

 

Table 8: ΔCT, ΔΔCT and fold change results for cFos TaqMan Assay. 

Sample 
Spliced 

ΔCT 

Spliced 

ΔΔCT 

Spliced fold 

change 

Unspliced 

ΔCT 

Unpliced 

ΔΔCT 

Unspliced 

fold change 

Control 1 8,16   12,09   

Control 2 8,19   16,89   

Control 3 8,07   12,80   

RE 1 5,92 -2,22 4,91 10,74 -3,18 10,12 

RE 2 5,95 -2,19 4,79 12,27 -1,65 2,74 

RE 3 6,41 -1,73 2,99 11,56 -2,37 5,60 

RE + 25min 1 5,00 -3,14 9,84 14,52 0,60 0,36 

RE + 25min 2 4,47 -3,67 13,48 13,19 -0,74 0,54 

RE + 25min 3 4,48 -3,66 13,38 12,39 -1,53 2,34 
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Table 9: Behavioral statistics for double cFos FISH experiment. Results for repeated measures ANOVA and 

Newman-Keuls post hoc test are shown. Comparison between active and inactive lever was done using two-

tailed paired t-test. Abbreviations: DF = degrees of freedom, F = F-value, p = p-value, t = t-value, BL = self-

administration baseline, EXT = extinction, RE = cue-induced reinstatement, Sac = saccharin, EtOH = ethanol. 

L

e

v

e

r 

Repeated measures ANOVA Newman-Keuls post hoc test t-test 

(comparison 

active/ inactive) 
Test DF Effect F-

value 

P-

value 

Within group comparison Between group 

comparison 

      reward Test p-

value 

Test p-

value 

Test p-

value 

a

c
t

i

v
e

  

BL, 

EXT 

1,46 reward 1.547 0.219  EtOH 

Test-

session 

146.81 0.0001 EtOH BL, EXT 0.0001 BL 0.07 
BL 0.0001 

interaction 1.771 0.189 Sac BL, EXT 0.0001 EXT 0.99 
EXT 0.949 

EXT, 

RE 

1+2 

1,46 reward 5.551 0.023  

Test-

session 

176.80 0.0001 EtOH EXT, RE1+2 0.0002  

RE1+2 0.0001 

interaction 6.788 0.012 Sac EXT, RE1+2 0.0001 RE 0.0009 

i

n

a
c

t

i
v

e 

BL, 

EXT 

1,46 reward 0.219 0.642  Saccharin 

Test-

session 

16.127 0.0002 EtOH BL, EXT 0.006 BL 0.48 
BL 0.0001 

interaction 0.336 0.565 Sac BL, EXT 0.049 EXT 0.95 
EXT 0.949 

EXT, 

RE 
1+2 

1,46 reward 0.394 0.533  

Test-

session 

7.285 0.009 EtOH EXT, RE1+2 0.195  

RE1+2 0.0001 

interaction 0.707 0.405 Sac EXT, RE1+2 0.073 RE 0.31 

 

 

In order to specifically label the cell population activated during ethanol and saccharin 

seeking behavior, all animals underwent counterbalanced 5min cue-induced reinstatement 

sessions for each reward, separated by 30min (RE3+4). 14 animals successfully reinstated 

under these conditions and were included in the analysis. For each reward there was a 

significant difference in responses at the respective active and inactive lever (Two-tailed 

paired t-tests: EtOH: t1,13 = 8.33, p = 0.0001; saccharin: : t1,13 = 7.01, p = 0.0001; Figure 39C). 

The order of the rewards in RE3+4 did not influence the lever responses (EtOH first vs EtOH 

second: t1,12 = 0.74, p = 0.48; saccharin first vs. saccharin second: t1,12 = 0.07, p = 0.95; 

unpaired two-tailed t-tests), so responses from both groups were pooled for analysis. 

All animals were decapitated immediately after RE4 and the brains were processed for double 

cFos FISH. Representative images of double cFos FISH are shown in Figure 39D. There were 

no significant differences in spliced cFos expression after ethanol or saccharin cue-induced 

reinstatement (25±1% vs. 23±2%, respectively; t1,12=0.715, p=0.488, two-tailed, unpaired t-

test). There was also no significant difference in unspliced cFos expression after ethanol or 

saccharin cue-induced reinstatement (49±2% vs. 51±2%, respectively; t1,12=0.44, p=0.67, 
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two-tailed, unpaired t-test). Co-localization analysis revealed an overlap of 50% of both 

ensembles, regardless of the order of the rewards presented (t1,12=1.190, p=0.257, unpaired 

two-tailed t-test, Figure 39E+F). 

Bootstrap analysis of the double cFos FISH data confirmed, that the experimentally obtained 

distributions of cells expressing either both, one or none of the investigated cFos mRNA 

species are significantly different from a random sampled population. This confirms that our 

results are highly non-random and that the order of the reward in RE3 and RE4 does no 

influence the results (Figure 41).  
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Figure 41: Bootstrap analysis of double cFos FISH. Bootstrap analysis confirms that neuronal IL ensembles 

activated by cue-induced reinstatement and detected by FISH against different Fos mRNA species are highly 

non-random, independent of the order of cues presented for reinstatement. A, B) Histograms of random 

distributions of cells expressing one, both or none of the Fos mRNA obtained by 100,000 shuffles. The vertical, 

dashed lines mark the fractions of cells experimentally determined. C) Quantification of cells expressing one, 

both or none of the Fos mRNA species, according to the reward reinstated first. Kindly provided by Janine K 

Reinert. Figure taken from (Pfarr et al., 2018). 
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3.2.2.5 Analysis of layer distribution of cue-responsive neurons involved in ethanol and 

saccharin seeking 

In order to analyze, if there are differences in the cortical layer distribution of IL cFos 

activated by saccharin or ethanol conditioned cues, we performed FISH using a probe against 

spliced cFos and either RGS8 as a layer 2/3 marker or Bcl11b as a layer 5/6 marker (Figure 

42 + Figure 43). Analysis was performed with seven animals, which underwent cue-induced 

reinstatement of ethanol seeking in RE3 and seven animals, which underwent saccharin 

reinstatement in RE3. There was no significant difference in the number of saccharin and 

ethanol cue-induced cFos in layer 2/3 (unpaired two-tailed t-test: t1,12=0.24, p=0.81, Figure 

42C). There was also no significant difference in cFos induced by either reward in layer 5/6 

(unpaired two-tailed t-test: t1,12=0.19, p=0.85, Figure 43C).  

 

 

Figure 42: Layer 2/3 distribution of Fos mRNA expression. A) Representative images of fluorescent in-situ 

hybridization for spliced Fos mRNA (green), layer 2/3 marker RGS8 (magenta) and DAPI (blue). Expression of 

the layer marker was used to confirm image acquisition within the correct layer of the IL. B) Schematic of 

laminar structure of the IL. The analyzed region (layer 2/3) is highlighted in magenta. C) Quantification of the 

ratio of spliced Fos expressing cells in layer 2/3 of the IL. Figure adapted from (Pfarr et al., 2018). 
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Figure 43: Layer 5/6 distribution of Fos mRNA expression. A) Representative images of fluorescent in-situ 

hybridization for spliced Fos mRNA (green), the layer 5/6 marker Bcl11b (magenta) and DAPI (blue). B) 

Schematic of laminar structure of the IL. The analyzed region (layer 5/6) is highlighted in magenta. C) 

Quantification of the ratio of spliced Fos expressing cells in layer 5/6 of the IL. Figure adapted from (Pfarr et al., 

2018). 

 

3.2.3 Summary 

In the framework of this study we established a novel two-reward operant training protocol 

for the concurrent self-administration, extinction and cue-induced reinstatement of two 

different rewards. Using cFos immunohistochemistry, we identified infralimbic (IL) neuronal 

ensembles involved in ethanol and saccharin seeking of similar size (~15% of total neurons). 

Retrograde tracing of contralateral IL, prelimbic cortex, nucleus accumbens and ventral 

tegmental area projections originating from the IL revealed a significant difference in 

projections activated after ethanol or saccharin cue-induced reinstatement. Using the two-

reward operant conditioning protocol in combination with fluorescent in-situ hybridization, 

we specifically labeled ethanol and saccharin activated ensembles in the same animal, using 

probes detecting intronic (unspliced) and spliced cFos. Together the data from Study 1 show 

that IL neuronal ensembles activated by ethanol and saccharin conditioned cues are of similar 

size with differences in projection targets. Furthermore both ensembles are highly overlapping 

(~50%) and comprise of a general (overlapping) and a specific (non-overlapping) component. 
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3.3 Study 3: In-vivo calcium imaging of IL neuronal ensembles involved in an 

operant reward seeking task 

 

3.3.1 Introduction 

 

In Study 1 (Pfarr et al., 2015) and Study 2 (Pfarr et al., 2018) of this thesis, we identified IL 

neuronal ensembles involved in alcohol and saccharin seeking. We found that both ensembles 

are highly overlapping, but also contain a reward specific component. However, we used post 

mortem cFos immunohistochemistry or cFos in-situ hybridization methods, which is why the 

temporal resolution of neuronal activity during the 30min operant task remains unknown. 

In-vivo calcium imaging methods with head-fixed animals are frequently used to record 

neuronal ensemble activity in the mPFC (Low et al., 2014; Kondo et al., 2017; Otis et al., 

2017; Tian et al., 2018). However, a head-fixed setup clearly limits the possible behavioral 

tasks, as the animals’ movements are restricted. For live recordings of neuronal activity in the 

mPFC during a behavior task in freely moving animals, in-vivo electrophysiology is often 

used (Hajos et al., 2003; Ji and Neugebauer, 2012). Although this method provides excellent 

temporal resolution of neuronal activity patterns, the information about spatial distribution is 

very limited. In-vivo calcium imaging using the miniscope system enables live calcium 

imaging of deep brain regions in freely moving animals. So far, this method has been only 

successfully used in mice (Ghosh et al., 2011; Resendez and Stuber, 2014; Jennings et al., 

2015; Cai et al., 2016; Gulati et al., 2017). 

In order to obtain a deeper understanding about the role of the mPFC in reward seeking 

behavior, we setup in-vivo calcium imaging in freely moving rats combined with a saccharin 

reward seeking task. Recordings were done during self-administration, extinction and cue-

induced reinstatement of saccharin seeking behavior using the UCLA open source miniscope 

version (www.miniscope.org). 

The set-up of the surgery protocol was done in collaboration with Ivo Sonntag from the 

Institute of Anatomy and Cell Biology at Heidelberg University. Pre-training of the animals 

for operant saccharin self-administration was done with the help of several students during 

their internship at our lab (Laura Schaaf, Rebecca Hoffmann, Katja Lingelbach, Nicole 

Weigelt, Arian Hach, and Valentina Neukel) under my supervision. Operant sessions 

combined with in-vivo calcium imaging were performed in collaboration with Janet Barroso-
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Flores, Ivo Sonntag, Valentina Neukel and Arian Hach. Data were analyzed and kindly 

provided by Janet Barroso-Flores and Ivo Sonntag. Histological analysis of GRIN lens 

placement and AAV injection site was done by Ivo Sonntag. 

 

3.3.2 Results 

 

In order to perform in-vivo calcium imaging recordings during an operant saccharin seeking 

task, several batches of male Wistar rats (n = 70) were trained and underwent surgery. 

However, in this thesis the results of only one batch will be presented, because data analysis 

for the remaining animals has not yet been completed. A batch of seven wild type Wistar rats 

received unilateral stereotaxic injections with a GCaMP6f AAV, followed by the implantation 

of a GRIN lens (9mm x 1mm) into the infralimbic cortex in the right brain hemisphere 

(Figure 44A). After one week of recovery, the animals were trained to self-administer a 0.2% 

saccharin solution in standard operant chambers for three weeks (Figure 44B). Next, a 

baseplate was secured at the GRIN lens implant, which served to anchor the miniscope for in-

vivo calcium imaging recordings. In general only ~25% of all animals could be successfully 

used for in-vivo calcium imaging experiments. Reasons for the high drop-out rate of ~75% 

were misalignments of the GRIN lens and the AAV injection site, no clear field of view even 

though the GRIN lens and AAV injections were correctly placed or losses of the GRIN lens 

headmount during the long-term imaging and operant behavior sessions. In-vivo calcium 

imaging recordings were performed during five saccharin self-administration (SA) sessions, 

followed by four extinction (EXT) sessions and two cue-induced reinstatement (RE) sessions 

(Figure 45A). In this thesis calcium imaging data from one animal will be shown, because 

data analysis of the remaining animals is not yet completed. 
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Figure 44: GRIN lens placement and pretraining for saccharin self-administration. A) Placement of GRIN 

lens in the infralimbic cortex. Left image: illustration of anatomical boundaries adapted from (Paxinos and 

Watson, 1998). Right image: DAPI (blue) and GCaMP6f (green) merge image. Dashed white lines indicate the 

placement of the GRIN lens. B) Active and inactive lever presses as well as the amount of delivered rewards are 

shown for the saccharin self-administration pretraining of Wistar rats (n=7). 

 

 

Figure 45: In-vivo calcium imaging recordings from one rat. A) Operant behavior during 30 min in-vivo 

calcium imaging sessions. Active lever presses, the number of delivered rewards and inactive lever presses are 

shown for the five self-administration (SA), four extinction (EXT) and two cue-induced reinstatement (RE) 

sessions for one animal. B) Synchronization of operant behavior in- and outputs with calcium imaging 

recordings. Only 15min of the 30min operant session are displayed. The frame trigger (light blue) serves to 

synchronize the calcium imaging video with the cue-light activation (green), the head entry into the right 

(rewarded) liquid receptacle port (purple), the right (active) lever press (orange), the head entry into the left 

liquid receptacle port (not rewarded, red) and the left (inactive) lever presses (blue). C) Correlation spatial map 

containing all active neurons in an operant session. D) Calcium transients recorded during 15 min opertant 

session and extracted from selected neurons marked in the spatial map. 
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Up to ~100 neurons were simultanously recorded in each operant-recording session from the 

same animal (Figure 45C). Activity traces for each cell were extracted and synchronized with 

behavior data (Figure 45B + D). To determine if the overall activity was reward related, 

calcium traces of all active neurons were aligned around the active lever response (5 seconds 

before and after the onset of the lever press) (Figure 46A), averaged across all rewarded lever 

presses (Figure 46B) and compared with the overall activity of the same active neurons across 

all inactive lever presses (Figure 46C). Mean activity of the same neurons, within the same 

behavioral session, showed different activity patterns if the lever press was rewarded or not, 

indicating a reward related main activity.  

 

Figure 46: Overall neuronal activity around active or inactive lever presses. A) Activity of all neurons 

around the lever press (+/- 5 sec or +/- 100 frames; recording at 20Hz). B) Individual activity of a neuron around 

each lever press (LP) (gray) and the mean activity across all lever presses (red). C) Heatmap of activity of all 

active neurons across all lever presses (active lever (57 LPs) vs inactive lever (9 LPs)). 

 

A preliminary analysis includes a simple classifier based on the sign of the first derivative of 

the main activity of each neuron around the lever press event (± 15 frames) (Figure 48A). The 

mode of the slope of the activity histogram is slightly negative, meaning that the main activity 

of most neurons is decreasing at the onset of the active lever press (Figure 48B). Neurons 

displaying steeper slope values (mean ± STD) were selected and the main activity displayed 

as separate activity heatmaps. These heatmaps have been generated for all stages of the cue-

conditioned operant paradigm: self-administration, extinction and reinstatement showing 



 

 

Results 

 

112 

 

different structures of neuronal activity (Figure 47A). Interestingly for each condition (self-

administration, extinction and cue-induced reinstatement), two groups of neurons were 

detected. One group decreased their activity around the lever press event (Figure 47C), while 

the other group clearly increased their activity (Figure 47B). Furthermore, the overall number 

of detected activated neurons during the self-administration and cue-induced reinstatement 

session was highly similar, while the number of activated neurons was clearly increased 

during extinction sessions (Figure 47D).  
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Figure 47: Neuronal activity heatmaps and space maps around rewarded lever press events. A) Activity 

heatmaps of all active neurons across all rewarded lever presses in different operant sessions: self-administration 

session 7 (SA), extinction session 4 (EXT), cue-induced reinstatement of saccharin seeking session 2 (RE). B) 

Individual heatmaps for neurons increasing their activity around the lever press event (from left to right: SA, 

EXT and RE). C) Individual heatmaps for neurons decreasing their activity around the lever press event (from 

left to right: SA, EXT and RE). Dashed lines represent the timepoint of the lever press. Each heatmap illustrates 

the activity 5sec before and after (100 frames before and after) the lever press. D) Spatial maps illustrating the 

location of neurons increasing (green) or decreasing (red) their activity around the lever press event (from left to 

right. SA, EXT and RE). 
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Figure 48: Classification of neurons with increasing or decreasing activity. A) Mean activity of 

representative neurons showing an increase (red slope) or a decrease (blue slope) in average activity around the 

lever press event (dashed line). B) Histogram of slopes of all neurons in a recording session. 

 

 

3.3.3 Summary 

 

In Study 3, we setup an in-vivo calcium imaging protocol using the UCLA miniscope system 

in freely moving adult rats. Furthermore, we combined in-vivo calcium imaging with an 

operant saccharin seeking task and established synchronization of the calcium imaging data 

with all in- and outputs from the operant box: active and inactive lever presses, cue-light 

activation and reward consumption based on head entry detection. By generating activity 

heatmaps of all active lever presses during a 30 min operant session, we identified two 
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populations of neurons each comprising about 10-13% of the total population of recorded 

neurons. One subpopulation is characterized by an increase in activity, while the second 

subpopulation is characterized by a decrease in activity around the lever press event. Thus, 

this method enables analysis of neuronal activity during specific parts of operant saccharin 

seeking behavior with relatively high temporal and spatial resolution. Both, increases and 

decreases in activity can be analyzed using this method, which will provide important 

information about activity patterns underlying complex behavior tasks like operant reward 

seeking.  
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3.4 Study 4: The influence of infralimbic mGluR2 expression levels on alcohol 

seeking behavior 

3.4.1 Introduction 

 

A previous study from our lab revealed a link between infralimbic (IL) metabotropic 

glutamate receptor 2 (mGluR2) expression and alcohol seeking behavior in postdependent 

(PD) Wistar rats (Meinhardt et al., 2013). PD rats were found to have reduced IL mGluR2 

mRNA expression levels after chronic intermittent alcohol vapor exposure and a period of 

prolonged abstinence. This reduction in IL mGluR2 mRNA was associated with an increase 

in alcohol seeking behavior. After lentiviral restoration of mGluR2 mRNA levels in the IL of 

PD rats, alcohol seeking was normalized to control level. A similar link between mGluR2 

expression and alcohol seeking behavior was found in the Indiana alcohol preferring (P) and 

non-preferring (NP) rat lines (Ciccocioppo et al., 2001). The Indiana P rat carries a point 

mutation in the mGluR2 coding sequence, which prevents functional mGluR2 expression 

(Zhou et al., 2013). In line with the previous findings, pharmacological blockade using the 

mGluR2/3 antagonist LY341495 resulted in an escalation of alcohol self-administration in 

Wistar rats (Zhou et al., 2013) and mGluR2/3 agonist LY379268 treatment reduced alcohol 

seeking behavior in rats (Bäckström and Hyytiä, 2005). The above mentioned findings 

suggest a role of mGluR2 expression levels and function in alcohol seeking behavior. While 

these studies provide evidence that the IL mGluR2 deficit is necessary for excessive alcohol 

seeking, it remains unclear if an IL mGluR2 deficit would be sufficient to induced this 

phenotype. Therefore, we constructed an adeno-associated virus (AAV) expressing a short 

hairpin (sh)RNA against mGluR2 mRNA. We used this AAV to specifically knockdown 

mGluR2 in the IL of wild type Wistar rats to directly test the effect of reduced IL mGluR2 

expression levels on operant conditioned alcohol seeking. 

Cloning of the Cre-inducible mGluR2 knockdown AAV was done by Ana Gallego-Roman as 

part of her Master Thesis under the joint supervision of Kai Schönig (Institute of Molecular 

Biology, CIMH) and myself (Gallego-Roman, 2016). Production of the AAV was performed 

by the research group of Thomas Kuner at the Institute of Anatomy and Cell Biology at 

Heidelberg University. Operant training of Wistar rats was done in collaboration with Jana 

Zell at the Central Institute of Mental Health. Operant training of Cam-iCre animals and 

mGluR2 western blots were done by Rebecca Hoffmann at the Central Institute of Mental 
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Health as part of her Master Thesis under my supervision (Hoffmann, 2017). Analysis of 

mGluR2 in-situ hybridization was done by Konstantin Wagner under my supervision.  

 

3.4.2 Results 

 

3.4.2.1 In-vitro and in-vivo validation of mGluR2 knockdown AAVs 

 

In order to validate the efficiency of the mGluR2 knockdown AAVs, dual luciferase assays 

were performed with the in-vitro recombined Cre-dependent AAV (Figure 49D) and a 

standard mGluR2 shRNA AAV (general knockdown, Figure 49B). As both knockdown AAV 

versions contained the same shRNA sequence, one target-firefly luciferase construct was 

generated as a knockdown target for both versions. Each knockdown AAV version or a 

control AAV were co-transfected with the target-firefly luciferase plasmid and a renilla 

luciferase plasmid, which served as a loading control. The general mGluR2 knockdown 

construct significantly reduced firefly luciferase activity to ~30% compared to control AAV 

(two-tailed t-test: t (1,4) = 37.99, p = 0.0001, Figure 49A). The Cre-inducible mGluR2 

knockdown construct reduced firefly luciferase activity to ~27% compared to control AAV 

(two-tailed t-test: t (1,4) = 3.255, p = 0.03; Figure 49C).  

To test the knockdown efficiency of the Cre-inducible knockdown AAV version in-vivo, three 

CamKII-Cre rats were injected with the knockdown AAV and three animals with the control 

AAV (Figure 50A). After four weeks of virus expression mRNA levels of mGluR2 were 

analyzed using fluorescent in-situ hybridization (Figure 50B). Compared to the control AAV, 

the knockdown AAV significantly reduced mGluR2 mRNA levels to ~60% (Two-tailed t-test: 

t (1,2) = 16.8, p = 0.004; Figure 50C).  

To test the knockdown efficiency of the Cre-inducible knockdown AAV in-vivo on the 

protein level, western blots (Figure 51B) for mGluR2 and ß-actin were performed on NAc 

shell samples (Figure 51A) from CamKII-Cre rats from the operant alcohol seeking 

experiment (see Study 4) and attentional set shift experiment (see Study 5) (n=8/group). 

Compared to control AAV, the knockdown AAV significantly reduced mGluR2 protein levels 

to ~26% (One-tailed t-test: t (1,14) = 1.84, p = 0.04; Figure 51C).  
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Thus, the chosen shRNA sequence produces a significant downregulation of mGluR2 mRNA 

and protein. The knockdown efficiency was validated in-vitro using a dual-luciferase assay as 

well as in-vivo using RNAscope FISH and western blot. 

 

 

Figure 49: In-vitro validation of mGluR2 knockdown AAVs. A) Dual luciferase assay of control AAV (white 

bar) and general mGluR2 knockdown AAV (black bar). There was a significant downregulation of mGluR2 

reporter luciferase activity when co-transfected with the knockdown AAV compared to control AAV. B) 

Schematic representation of general mGluR2 knockdown AAV construct. The shRNA targeting mGluR2 mRNA 

is expressed under the control of a U6 promoter. EGFP expression is driven by CamKII promoter.  C) Dual 

luciferase assay of control AAV (white bar) and Cre-inducible mGluR2 knockdown AAV (black bar). There was 

a significant downregulation of mGluR2 reporter luciferase activity when co-transfected with the knockdown 

AAV compared to control AAV. D) Schematic representation of AAV construct. The shRNA was split in the 

middle and inserted into opposite directions into the floxed cassette. The reporter gene eYFP was also inverted 

and inserted opposite of the EF1α promoter. Without Cre-recombination no shRNA and no eYFP expression are 

possible. After Cre recombination shRNA expression is driven by U6 promoter and eYFP expression is driven 

by EF1α. *p<0.05, ***p<0.001 
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Figure 50: Knockdown efficiency of Cre-inducible shRNA AAV on mRNA level. A) Schematic 

representation of Cre-inducible mGluR2 knockdown AAV expressing eYFP in the IL adapted from (Paxinos and 

Watson, 1998). B) Representative image of eYFP and mGluR2 fluorescent in-situ hybridization of CamKII-Cre 

rats injected with Cre-inducible mGluR2 knockdown AAV. Arrow indicates a single cell for mGluR2. Triangle 

indicates a double positive cell expressing eYFP and mGluR2. Scale bar: 10µm. C) Quantification of Cre-

inducible knockdown efficiency on mRNA level using fluorescent in-situ hybridization in CamkII-Cre rats. 

There was a significant reduction of mGluR2 mRNA transcripts in animals injected with the knockdown AAV 

(black bar) compared to control AAV (white bar). **p<0.01 

 

 

Figure 51: Knockdown efficiency of Cre-inducible shRNA AAV on mRNA level. A) Schematic 

representation of AAV injection into the IL and projection to the nucleus accumbens (NAc). Knockdown of 

mGluR2 protein level was determined by western blot using NAc tissue punches. B) Representative Western 

blot for mGluR2 and ß-actin in micropunched NAc shell tissue of CamKII-Cre rats after Cre-inducible 

knockdown AAV (KD) or control AAV (Ctrl) injection. M = Marker. C) Quantification of mGluR2 protein 

levels in NAc shell of CamKII-Cre rats after injection of control (white bar) or Cre-inducible knockdown AAV 

(Black bar). There was a significant downregulation of mGluR2 protein in IL after knockdown AAV injection. 

*p<0.05 
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3.4.2.2 Effect of a general mGluR2 knockdown in the IL on alcohol seeking behavior 

 

In order to test the effect of a general mGluR2 knockdown in the IL on alcohol seeking 

behavior, 20 wild type Wistar rats were trained to self-administer a 10% ethanol solution 

followed by extinction training. After extinction training the animals were ranked based on 

their baseline performance (last three self-administration sessions) and equally divided into 

two groups. The animals either received bilateral control AAV injections (n=10) or mGluR2 

knockdown AAV injections (n=10) into the IL (Figure 52C). After a 4 week recovery period 

the animals were then tested on their cue-induced alcohol seeking behavior.  

 

Table 10: Statistics for operant alcohol seeking behavior for general IL mGluR2 knockdown experiment. 

Results for repeated measures ANOVA and Newman-Keuls post hoc test are shown. Comparison between active 

and inactive lever was done using two-tailed paired t-test. Abbreviations: DF = degrees of freedom, F = F-value, 

p = p-value,  KD = knockdown, BL = self-administration baseline, EXT = extinction, RE = cue-induced 

reinstatement 

Lever Repeated measures ANOVA Newman-Keuls post hoc test t-test 

(comparison 

active/ inactive) 
Test DF Effect F p Within group comparison Between 

group 

comparison 

      group Test p Test p Test p 

active 

BL, 
EXT 

1,18 group 0.002 0.97      control 

Test-

session 

33.75 0.0001 control BL, EXT 0.003 BL 0.93 BL 0.002 

interaction 0.0077 0.93 KD BL, EXT 0.0008 EXT 0.97 
EXT 0.0002 

EXT, 
RE 

1,18 group 0.007 0.94  

Test-

session 

132.65 0.0001 control EXT, RE 0.0002  

RE 0.0001 

interaction 0.0003 0.99 KD EXT, RE 0.0002 RE 0.97 

inactive 

BL, 

EXT 
1,18 

group 2.49 0.13      KD 

Test-

session 

14.73 0.001 control BL, EXT 0.02 BL 0.3 BL 0.002 

interaction 0.19 0.67 KD BL, EXT 0.07 EXT 0.13 
EXT 0.009 

EXT, 

RE 
1,18 

group 3.99 0.06  

Test-

session 

70.64 0.0001 control EXT, RE 0.0002  

RE 0.0001 

interaction 0.004 0.95 KD EXT, RE 0.0002 RE 0.14 

 

 

There were no significant differences between the prospective experimental groups during in 

alcohol self-administration baseline (BL) and extinction (EXT). Four weeks after AAV 

injection there was also no difference in cue-induced reinstatement of alcohol seeking (RE) 

between the groups (Figure 52A, Table 10). There was also no difference in RE performance 

when data was normalized to BL responding (within control group BL – RE: t (1,17) = 1.45, p = 
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0.16; within knockdown group BL – RE: t (1,17) = 1.54, p = 0.14; between group RE: t (1,17) = 

0.06, p = 0.95; Figure 52B). Thus, general mGluR2 knockdown in the IL had no effect on 

alcohol seeking behavior. 

 

 

 

Figure 52: No effect of a general IL mGluR2 knockdown on alcohol seeking behavior. A) Active and 

inactive operant responses of wild type Wistar rats before and after control (white bars, n=10) and general 

knockdown (black bars, n=10) AAV injection. There was no significant difference between the groups in 

baseline (BL) and EXT responding. There was also no significant difference between the groups in RE 

performance after AAV injection. B) BL and RE responses at the active and inactive lever of general knockdown 

and control group, normalized to BL responses. Also after normalization to BL responding, there was no 

difference in cue-induced reinstatement between the groups. C) Injection placements of general knockdown 

AAV and control AAV are represented by black circles. Injection sites were verified within the IL from +3.2 to 

+2.2mm anterior to bregma (Paxinos and Watson, 1998). 
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3.4.2.3 Effect of a CamKII-targeted mGluR2 knockdown in the IL on alcohol seeking 

behavior 

 

To test the effect of a neuron- specific mGluR2 knockdown in the IL on alcohol seeking 

behavior, a CamKII-Cre transgenic rat line in combination with a Cre-dependent mGluR2 

knockdown AAV was used.  19 CamKII-Cre transgenic rats were trained to self-administer 

10% ethanol solution. After reaching a stable self-administration baseline (BL) all animals 

underwent extinction training (EXT) and one cue-induced reinstatement session before AAV 

injection (RE1). The animals were ranked based on their BL and RE1 performance and 

equally divided into two groups. Next, the animals received bilateral control (n=9) or Cre-

inducible mGluR2 knockdown AAV (n=9) injections (Figure 53C). Four weeks after AAV 

injection the animals were again tested on their operant alcohol seeking performance. Two 

control and two knockdown animals had to be excluded from analysis, because they failed to 

reach the criterion for successful cue-induced reinstatement of alcohol seeking (>10 lever 

active lever presses). 

There were no significant differences between the prospective experimental groups in BL, 

EXT and RE1 (Figure 53A, Table 11). However, there was a significant increase in 

reinstatement of alcohol seeking in the knockdown group compared to the control group in 

RE2 (t (1,11) = 2.54, p = 0.03; data normalized to RE1 performance, Figure 53B). There was 

also a significant difference within the knockdown group between RE1 (before AAV 

injection) and RE2 (after AAV injection) (t (1,11) = 3.2, p = 0.007).  

Thus, a neuron- specific mGluR2 knockdown in the IL of CamKII-Cre rats but not a general 

mGluR2 knockdown induces increased cue-induced reinstatement of alcohol seeking. 
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Figure 53: Escalation of alcohol seeking behavior after CamKII targeted IL mGluR2 knockdown. A) 

Active and inactive operant responses of CamKII-Cre rats before control (white bars, n=7) and knockdown 

(black bars, n=7) AAV injection. There was no significant difference between the groups in baseline (BL), 

extinction (EXT) and cue-induced reinstatement (RE1) responding. B) Performance of CamKII-Cre rats injected 

with control (white bars, n=7) or Cre-induced mGluR2 knockdown AV (black bars, n= 7). Data normalized to 

RE1 performance (before AAV injection). There was a significant difference between the groups in RE2 as well 

as a significant difference in the knockdown group between RE1 (before AAV injection) and RE2. C) Injection 

placements of Cre-inducible knockdown AAV and control AAV are represented by black circles. Injection sites 

were verified within the IL from +3.2 to +2.2mm anterior to bregma (Paxinos and Watson, 1998). *p<0.05, 

**p<0.01. 

 

Table 11: Statistics for operant alcohol seeking behavior for CamKII targeted IL mGluR2 knockdown 

experiment. Results for repeated measures ANOVA and Newman-Keuls post hoc test are shown. Comparison 

between active and inactive lever was done using two-tailed paired t-test. Abbreviations: DF = degrees of 

freedom, F = F-value, p = p-value,  KD = knockdown, BL = self-administration baseline, EXT = extinction, RE 

= cue-induced reinstatement 

Lever Repeated measures ANOVA Newman-Keuls post hoc test t-test 

(comparison 

active/ 

inactive) 

Test DF Effect F p Within group comparison Between 

group 

comparison 

      group Test p Test p Test p 

active 

BL, 

EXT 
1,12 

group 0.272 0.611      control 

Test-

session 

23.77 0.0003 control BL, EXT 0.0009 BL 0.58 BL 0.023 

interaction 0.005 0.82 KD BL, EXT 0.017 EXT 0.81 
EXT 0.02 

EXT, 

RE 
1,12 

group 0.089 0.77      

Test-

session 

29.88 0.0001 control EXT, RE 0.008  
 

RE 0.008 

interaction 0.048 0.048 KD EXT, RE 0.005 RE 0.92 

inactive 

BL, 
EXT 

1,12 

group 1.52 0.24      KD 

Test-

session 

1.19 0.3 control BL, EXT 0.69 BL 0.73 BL 0.005 

interaction 0.28 0.61 KD BL, EXT 0.28 EXT 0.39 
EXT 0.49 

EXT, 
RE 

1,12 

group 1.01 0.34      

Test-

session 

0.17 0.34 control EXT, RE 0.22  
 

RE 0.006 

interaction 2.03 0.18 KD EXT, RE 0.45 RE 0.7 
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3.4.2.4 Characterization of Cam-iCre transgenic rat line 

 

In order to characterize the Cre expression pattern of CamKII-Cre rats in the mPFC, we 

combined the Cre-dependent AAV-induced eYFP expression with immunolabeling for the 

neuronal marker NeuN, the interneuron marker GAD67 and CamKII as a marker for 

prefrontal projection neurons. Three CamKII-Cre rats were injected with the Cre-inducible 

mGluR2 knockdown AAV, expressing eYFP after Cre-recombination and three rats received 

control AAV injections (Figure 54A). Four weeks after the AAV injection rats were killed 

and brain sections were stained with TOTO-3 for nuclear counter staining and either NeuN, 

GAD67 or CamKII (Figure 54C). We found that ~43% of all TOTO-3 cells colocalized with 

eYFP expression and 52% of all neurons (NeuN) colocalized with eYFP. From all eYFP 

positive cells, ~88% were NeuN positive, ~64% were CamKII positive and ~11% were 

GAD67 positive (Figure 54B). Thus, there is no exclusive co-localization of Cre with CamKII 

neurons in the mPFC of CamKII-Cre rats, however the majority of Cre-expressing neurons is 

CamKII positive and we reach a strong neuronal restriction of the AAV expression in this rat 

line. 
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Figure 54: Characterization of Cre-expression pattern in mPFC of CamkII-Cre rats. A) Schematic 

representation of Cre-inducible mGluR2 knockdown AAV expressing eYFP in the IL. B) Pie chart illustrating 

the characterization of eYFP expressing cells. C) Representative images of eYFP co-localization with TOTO-3 

(nuclear acid stain), NeuN, GAD67 and CamKII. Triangles indicate single positive eYFP expressing cells, 

asterisks indicate single positive cells for the respective cellular marker and arrows indicate co-localized cells.  

Scale bar 20µm. 

 

3.4.3 Summary 

 

Taken together the results described above, we generated two AAV viral vectors expressing 

an shRNA against mGluR2 mRNA.  Both the general version and the Cre-inducible version 

induced an efficient downregulation of the target mRNA in a dual luciferase assay. 

Furthermore, we demonstrated a strong knockdown of endogenous mGluR2 mRNA and 

protein in the IL-NAc projection after injection of the Cre-inducible version into CamKII-Cre 

transgenic rats. Injection of the general mGluR2 knockdown AAV into the IL of wild type 

Wistar rats did not affect cue-induced reinstatement of alcohol seeking behavior. However, 

injection of the Cre-inducible version of the mGluR2 knockdown AAV into the IL of 
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CamKII-Cre rats induced an increase in alcohol seeking behavior, both compared to their cue-

induced reinstatement performance before AAV injection and compared to the control group. 

Characterization of Cre-induced eYFP expression in the IL of CamKII-Cre rats revealed no 

exclusive co-localization of Cre in CamKII positive cells. However, the majority of Cre-

expressing neurons is CamKII positive and the vast majority of Cre-expressing cells was 

neuronal. Taken together the results obtained from Study 4 show that CamKII targted, but not 

a general knockdown if IL mGluR2 induces excessive alcohol seeking behavior. The 

observed alcohol-seeking phenotype was similar compared to the postdependent rats after 

chronic intermittent alcohol exposure (Meinhardt et al., 2013). Therefore, we demonstrated 

that a mGluR2 deficit in IL projection neurons is not only necessary but also sufficient to 

induce the high alcohol-seeking phenotype observed after chronic intermittent alcohol 

exposure.  
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3.5 Study 5: The influence of infralimbic mGluR2 expression levels on cognitive 

flexibility 

 

3.5.1 Introduction 

 

The medial prefrontal cortex (mPFC) is critically involved in cognitive flexibility and top 

down control over behavior (Heidbreder and Groenewegen, 2003; Wood and Grafman, 2003). 

Both, in humans and animals, excessive alcohol use causes damage in the prefrontal cortex 

(Jernigan et al., 1991; Pfefferbaum et al., 1997; Meinhardt et al., 2013; Meinhardt and 

Sommer, 2015). A previous study from our lab showed that chronic intermittent alcohol 

exposure induced damage especially in the infralimbic (IL) subregion of the mPFC in Wistar 

rats (Meinhardt et al., 2013). This damage in the IL subregion was characterized by a 

downregulation of metabotropic glutamate receptor 2 (mGluR2) in the IL. The IL mGluR2 

deficit induced a high-alcohol seeking phenotype in Wistar rats and could be rescued to 

control level after restoration of mGluR2 expression in the IL (Meinhardt et al., 2013). In 

Study 2, we demonstrated that a viral knockdown of mGluR2 in the IL of wild type Wistar 

rats can mimic the high-alcohol seeking phenotype, observed after chronic intermittent 

alcohol exposure. An open question is, if this IL mGluR2 deficit is also involved in cognitive 

deficits like impaired cognitive flexibility, which is frequently observed in human alcoholics 

(Loeber et al., 2009; Houston et al., 2014) or mice after chronic alcohol exposure (Kroener et 

al., 2012). A behavioral model to test executive functions and cognitive flexibility in rats is 

the attentional set shifting test (ASST) (Birrell and Brown, 2000; Klugmann et al., 2011), 

which is a rodent equivalent for the human Wisconsin Card Sorting Task (Berg, 1948).  

In order to study the role of IL mGluR2 expression levels on cognitive flexibility, we used 

postdependent (PD) rats, Indiana alcohol preferring (P) and non-preferring (NP) rats, as well 

as the CamKII-Cre animals and the Wistar rats with general IL mGluR2 knockdown from 

Study 2, which received bilateral IL injections of a Cre-inducible mGluR2 knockdown AAV. 

In order to induce a ‘postdependent’ state (PD), chronic intermittent alcohol vapor exposure 

was used, followed by a period of prolonged abstinence (Rimondini et al., 2002; Meinhardt 

and Sommer, 2015). This procedure leads to high alcohol intoxication levels around 200mg/dl 

and induces behavioral as well as molecular changes in the brain (Hansson et al., 2008; 

Sommer et al., 2008; Meinhardt et al., 2013). Alcohol preferring Indiana P rats carry a stop 

codon in the mGlur2 coding sequence and can be considered as an mGluR2 knockout rat 
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(Zhou et al., 2013). The CamKII-Cre rats from Study 2, injected with an mGluR2 knockdown 

AAV have been already characterized in Study 4 and were tested in Study 5 on their cognitive 

flexibility. 

Chronic intermittent alcohol vapor exposure of the wild type Wistar rats and subsequent 

ASST, as well as the lentiviral rescue experiment was performed by Manuela Klee (Klee, 

2014) as part of her Master Thesis under the supervision of Marcus Meinhardt at the Central 

Institute of Mental Health.. These data are important for the interpretation of my own data and 

are shown with permission of the investigators. The ASST of Indiana P and NP rats was 

performed by Elisabeth Paul under my supervision at the Central Institute of Mental Health, 

Mannheim. The ASST of CamKII-Cre rats injected with Cre-inducible mGluR2 knockdown 

AAV was performed by Rebecca Hoffmann as part of her Master Thesis (Hoffmann, 2017).  

 

3.5.2 Results 

 

3.5.2.1 No impaired ASST performance in Grm2 knockout rats 

 

Previous, unpublished experiments from our lab indicated a role of mGluR2 in ASST 

performance. Chronic intermittent alcohol exposure, which is known to induce an IL mGluR2 

deficit, caused impairments in the most complex subtask of the ASST (IDS2 and EDS). After 

lentiviral restoration of mGluR2 expression in the IL in PD rats, a normal ASST performance 

was partially restored in the IDS2, but not in the EDS subtask (see Supplementary 

Information). 

In order to investigate, if a global knockout of mGluR2 will lead to similar impairments in 

ASST performance as chronic intermittent alcohol exposure or local IL mGluR2 knockdown, 

we used 12 male Indiana alcohol preferring (P) rats and 14 male Indiana non-preferring (NP) 

rats. 2 NP rats were excluded from the experiment, because they failed to learn the early 

stages of ASST. As can be seen in Figure 55, there was a significant difference in SD (F(1,21) = 

8.9, p = 0.007). However there were no significant differences in the other subtasks of the 

ASST (CD: F(1,21) = 1.49, p = 0.24; CDrev: F(1,21) = 0.07, p = 0.8; CDrep: F(1,21) = 0.74, p = 

0.4; IDS: F(1,21) = 0.75, p = 0.4; IDS2: F(1,21) = 4.15, p = 0.05; EDS: F(1,21) = 0.0002, p = 0.99). 
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There was also no overall significant difference as confirmed by repeated measures ANOVA 

analysis (F (1,21) = 1.55; p=0,23). 

Thus, a global mGluR2 knockout does not result in cognitive impairments in the ASST.   

 

Figure 55: A whole brain knockout of mGluR2 does not influence ASST performance. There was no 

significant difference in ASST performance in Indiana P rats (n=12, black bars) compared to Indiana NP rats 

(n=12, white bars) in CD, CDrec, CDrep, IDS, IDS2 or EDS. The NP rats needed significantly more trials to 

criterion in the SD task. Overall there was no significant difference between the lines. SD=simple discrimination, 

CD=compound discrimination, CDrev=compound discrimination reversal, CDREP=repetition of CDrev, 

IDS=intradimensional shift, IDS2=intradimensional shift 2, EDS=extradimensional shift. **p<0.01 

 

3.5.2.2 No effect of a general mGluR2 knockdown in the IL on ASST performance 

 

To test, if an AAV-induced general knockdown of mGluR2 in the IL will lead to similar 

impairments in ASST performance as chronic intermittent alcohol exposure, we used 20 male 

Wistar rats. Six animals had to be excluded, because they failed to learn the early stages of the 

task or did not accept the food reward (final group size n=7/group). The animals were divided 

into two groups and received either bilateral U6-shUnc-CamkII-eGFP AAV (control) or U6-

shRNA25-CamkII-eGFP AAV (Figure 56B) injections into the IL. After 4 weeks of recovery 

and AAV expression the animals were first tested on their operant alcohol seeking 

performance (see Study 4) and then tested on their ASST performance. As can be seen in 

Figure 56A, there was no significant difference between the groups in any of the ASST 

subtasks as confirmed by one-way ANOVA (SD: F(1,12) = 0.67, p = 0.43; CD: F(1,12) = 0.0001, 

p = 0.99; CDrev: F(1,12) = 0.05, p = 0.83; CDrep: F(1,12) = 3.7, p = 0.08; IDS: F(1,12) = 0.44, p = 

0.52; IDS2: F(1,12) = 1.23, p = 0.29; EDS: F(1,12) = 1.27, p = 0.28). There was also no overall 
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significant difference as confirmed by MANOVA analysis (Wilk’s λ=0.46; F (7,6) = 0.99; 

p=0,51). Thus, a general mGluR2 knockdown in the IL is not sufficient to induce cognitive 

impairments in the IDS2 or EDS subtasks of the ASST. 

 

Figure 56: CamKII-targeted but not a general knockdown of IL mGluR2 affects ASST performance. A) 

There was no significant difference in ASST performance in animals injected with a general mGluR2 

knockdown AAV or a control AAV. B) Schematic representation of general knockdown AAV construct. The 

shRNA is driver by a U6 promoter and eGFP is driven by a CamKII promoter. C) ASST performance of 

CamKII-Cre rats injected with either control AAV (n=9, white bars) or Cre-inducible knockdown AAV (n=9, 

black bars) into the IL. The knockdown animals needed significantly more trials to criterion in the EDS subtask 

and overall needed more trials to criterion as compared to control animals. D) Schematic representation of AAV 

construct. The eYFP reporter gene is expressed under control of CamKII promoter. For the Cre-inducible 

shRNA construct the shRNA was split in the middle and inserted into opposite directions into the floxed 

cassette. The reporter gene eYFP was also inverted and inserted opposite of the EF1α promoter. Without Cre-

recombination no shRNA and no eYFP expression are possible. After Cre recombination shRNA expression is 

driven by U6 promoter and eYFP expression is driven by EF1α. ***p<0.001, Repeated measures ANOVA: 

##p<0.01 
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3.5.2.3 Effect of CamKII-targeted IL mGluR2 knockdown on ASST performance 

 

To test if an IL mGluR2 deficit induces the PD ASST phenotype, the 18 CamKII-Cre rats 

from the operant alcohol seeking experiment (see Study 4) were tested on their ASST 

performance (Figure 56C). One control animal had to be excluded as it showed aversive 

behavior when the casein pellet was presented. There were no significant differences in ASST 

subtasks SD – IDS2 as confirmed by one-way ANOVA (SD: F(1,15) = 2.85, p = 0.11; CD: 

F(1,15) = 0.16, p = 0.69; CDrev: F(1,15) = 0.16, p = 0.69; CDrep: F(1,15) = 1.18, p = 0.29; IDS: 

F(1,15) = 2.78, p = 0.12; IDS2: F(1,15) = 0.18, p = 0.68). However there was a significant 

difference between the groups in EDS performance as confirmed by one-way ANOVA (F(1,15) 

= 18.07, p = 0.0006) and an overall significant difference between the control and knockdown 

group as confirmed by repeated measures ANOVA (F(1,15) = 9.02, p = 0.009). 

Thus, CamKII-Cre restricted mGluR2 knockdown in the IL leads to similar impairments in 

EDS performance as seen after chronic intermittent alcohol exposure. 

 

3.5.3 Summary 

 

Taken together the results described above, our lab previously found that a history of alcohol 

dependence leads to impaired executive functions and cognitive flexibility in PD rats. A 

significant impairment in PD rats in the IDS2 and EDS subtasks of the ASST was reported, 

which represent the cognitive most demanding subtasks of the ASST. Interestingly there does 

not seem to be a general impairment in ASST, but only impairments in the intra- and 

extradimensional set shift. This shows that chronic intermittent alcohol exposure does not 

impair ASST performance in general, but specifically the cognitive most demanding subtasks. 

Furthermore, we showed that a general loss of mGluR2 function in Indiana Alcohol preferring 

(P) rats did not affect ASST performance at all. Importantly, we showed that a CamKII-

targeted, but not a general knockdown of IL mGluR2 induced impairments in the EDS 

subtask, similar to those seen in PD rats. Therefore, we identified an IL mGluR2 deficit in 

CamKII neurons as a molecular mechanism of alcohol-induced impaired cognitive flexibility.  
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4. Discussion 
 

4.1 Discussion Study 1: Identification of an infralimbic neuronal ensemble 

involved in alcohol seeking behavior 

 

Most research about brain areas involved in drug seeking behavior is based on classical lesion 

studies (Whitelaw et al., 1996; Ito et al., 2004; Lasseter et al., 2009) or non-selective 

pharmacological inactivation/ activation studies of whole brain regions (McFarland and 

Kalivas, 2001; Peters et al., 2008a; LaLumiere et al., 2010; Willcocks and McNally, 2013). 

However, based on a hypothesis of D.O. Hebb (1949), information is not processed by all 

cells in a given brain area, but by subgroups of neurons, so-called neuronal ensembles, which 

have been identified in several brain areas (Pennartz et al., 1994; Nicolelis et al., 1997; 

Buzsáki, 2004; Schwindel and McNaughton, 2011; Cruz et al., 2015). Neuronal ensembles 

are defined as subpopulations of neurons, which are selectively activated by certain 

environmental cues. Using the Daun02 inactivation method several of such neuronal 

ensembles have been identified in different brain areas, involved in drug and reward-seeking 

behavior (Koya et al., 2009; Bossert et al., 2011; Cruz et al., 2014; de Guglielmo et al., 2016; 

Suto et al., 2016; Warren et al., 2016). Although the Daun02 inactivation method has been 

frequently used, little was known about the mechanism of action of Daun02 inactivation. 

Daun02 is supposed to be an inactive prodrug, which gets converted into daunorubicin by ß-

galactosidase (ß-gal) activity, encoded by the bacterial LacZ transgene (Koya et al., 2009). 

Daunorubicin was thought to inactivate cells either temporally by inhibition of calcium 

channels, which would lead to reduced excitability (Santone et al., 1986; Engeln et al., 2016), 

or permanent via the induction of apoptosis (Mortensen et al., 1992; Jantas and Lason, 2009). 

In order to clarify the mechanism of action of Daun02 inactivation we used a constitutive 

CAG-LacZ rat line and injected either Daun02 alone or Daun02 in combination with a pan-

caspase inhibitor (Z-VAD-FMK). Daun02 injections into the mPFC of CAG-LacZ rats 

induced massive neurodegeneration, as detected by Fluorojade B staining. This 

neurodegeneration was almost completely prevented by simultaneous injection of Z-VAD-

FMK. Therefore, we are certain, that the Daun02 concentration used in our experiments 

permanently inactivated neurons via the induction of apoptosis.  



 

 

Discussion 

 

133 

 

Using cFos-LacZ and CAG-LacZ transgenic rats, for cFos-induced and constitutive LacZ 

expression respectively, we found that selective cFos-dependent, but not a general ablation of 

IL neurons after cue-induced reinstatement of alcohol seeking induced excessive alcohol 

seeking in a second cue-induced reinstatement test. The lack of effect after a general ablation 

of IL neurons on alcohol seeking behavior confirms  other findings in rats with no effect on 

context-induced reinstatement of alcohol seeking after reversible baclofen/muscimol 

inactivation of the IL (Willcocks and McNally, 2013). Although manipulations of IL activity 

were found to affect the seeking response for several drugs of abuse (Peters et al., 2008a; 

Bossert et al., 2011; LaLumiere et al., 2012), there is no evidence for a generally inhibitory or 

stimulatory role of this brain region. If the IL is more involved in inhibition or stimulation of 

a certain behavior seems to depend strongly on the drug itself, the specific cues and stimuli, or 

the setting and timing of the experiment (Moorman et al., 2015). In our present study we used 

a combination of contextual and discrete cues for reinstatement of alcohol seeking 

(Ciccocioppo et al., 2002; Ciccocioppo et al., 2003), which is similar to the context-induced 

reinstatement procedure used by (Bossert et al., 2011) for heroin seeking, but which is 

different from the highly discrete cues used by (LaLumiere et al., 2012) for cocaine seeking.  

In addition to alcohol-associated cues also stress and alcohol itself can induce cFos expression 

in the mPFC and other brain areas (Morrow et al., 2000; Zhao et al., 2006; Funk et al., 2008; 

Hansson et al., 2008). Therefore, we tested the cFos-LacZ animals, which showed excessive 

alcohol seeking in the cue-induced reinstatement task, on a footshock stress-induced 

reinstatement of alcohol seeking task and found no elevated alcohol seeking response. Thus, 

we provide evidence that the neuronal correlates involved in cue-induced and stress-induced 

reinstatement of alcohol seeking differ in the IL. In addition, we found that the neuronal 

ensemble involved in cue-induced alcohol seeking is not critically involved in alcohol self-

administration.  

There is evidence that different mPFC subregions play opposing roles in the control of 

behavior. Based on findings from fear conditioning and cocaine seeking studies, a functional 

dichotomy of the PL and IL is proposed (Peters et al., 2009; Van den Oever et al., 2010; Gass 

and Chandler, 2013), because the PL seems to promote both fear expression and drug seeking, 

while the IL seems to suppress fear expression and drug seeking. To test, if this "PL-go/ IL-no 

go" model also applies to cue-induced alcohol seeking, we performed the Daun02 inactivation 

experiment in the PL of cFos-LacZ transgenic rats to specifically inactivate PL cue-
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responsive neurons. There was no effect of neuronal ensemble inactivation in the PL on 

alcohol seeking behavior, although we detected a similar level of cFos activation as compared 

to the IL.  

The above discussed findings indicate that the mPFC subregions IL and PL are differentially 

involved in the control of alcohol seeking behavior. However, the "PL-go/ IL-no go" model 

seems to be oversimplified. Furthermore, our results indicate that IL and PL control over 

alcohol seeking is distinct from IL and PL control over cocaine or heroin seeking.  

 

4.1.1 Summary 

 

The results discussed above provide new insights into the IL control over alcohol seeking 

behavior, as cue-induced alcohol seeking recruits a highly specific neuronal ensemble in the 

IL, which is not involved in stress-induced reinstatement of alcohol seeking or alcohol self-

administration. Furthermore, we identified the induction of apoptosis as the underlying 

mechanism of action of the Daun02 inactivation method, meaning that Daun02 inactivation is 

permanent. 

 

4.2 Discussion Study 2: Characterization of infralimbic neuronal ensembles 

involved in alcohol and saccharin seeking behavior 

 

Recently, several neuronal ensembles in the infralimbic cortex (IL) involved in context- or 

cue- induced seeking of drugs or natural rewards have been identified (Bossert et al., 2011; 

Cruz et al., 2015; Pfarr et al., 2015; Suto et al., 2016; Warren et al., 2016). Although it is 

hypothesized that several neuronal ensembles could co-exist in the same brain area 

(Schwindel and McNaughton, 2011; Cruz et al., 2015), little is known about the organization 

and formation of co-existing ensembles in a given brain area. This lack of knowledge is likely 

due to the lack of appropriate methods to study co-existing neuronal ensembles in the same 

brain area and within the same subject.  

Most Methods to identify and study the function and spatial organization of neuronal 

ensembles are immediate early gene (IEG) based. For example the Daun02 inactivation 

method is frequently used to inactivate a neuronal ensemble in a certain brain area (Koya et 
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al., 2009; Bossert et al., 2011; Cruz et al., 2013; Cruz et al., 2014; Cruz et al., 2015; de 

Guglielmo et al., 2016; Koya et al., 2016; Suto et al., 2016; Warren et al., 2016). However, 

we previously identified the induction of apoptosis as mechanism of action of Daun02 (Study 

1) (Mortensen et al., 1992; Jantas and Lason, 2009; Pfarr et al., 2015), which limits its 

application to study only one neuronal ensemble in a certain brain area. Immunohistochemical 

labeling of cFos protein or cFos mRNA in-situ hybridization are frequently used to identify 

and quantify such neuronal ensembles (Dayas et al., 2007; Koya et al., 2009; Bossert et al., 

2011; Cruz et al., 2014; Rubio et al., 2015; de Guglielmo et al., 2016; Suto et al., 2016; 

Warren et al., 2016). However, both cFos immunohistochemistry and cFos in-situ 

hybridization are post-mortem methods, which only allow to study one neuronal ensemble at 

the time. In addition to the lack of detection methods for two co-existing neuronal ensembles 

in one brain area, there was also a lack of an appropriate activation protocol of two ensembles 

in the same animal.  

In Study 2 we set-up a two-reward operant conditioning task for concurrent self-

administration of a sweet saccharin solution, which can be considered a natural reward (Green 

et al., 2015), and an ethanol solution as a drug reward. Therefore we modified a standard 

operant protocol for alcohol self-administration, extinction and cue-induced reinstatement, 

which is frequently and reliably used (Spanagel, 2000; Crombag and Shaham, 2002; Epstein 

et al., 2006; Sanchis-Segura and Spanagel, 2006; Martin-Fardon and Weiss, 2013; Marchant 

et al., 2015). If rats are allowed to choose, they will nearly always chose a high concentrated 

saccharin solution over most other drug rewards, including alcohol (Lenoir et al., 2007; 

Madsen and Ahmed, 2015). In order to achieve a similar operant response rate and preference 

for both, the saccharin and the ethanol reward, we first determined the response rate for the 

ethanol reward and then diluted the saccharin solution to reach a similar response level. By 

matching the behavioral performance for both rewards, we prevented unspecific effects on 

ensemble activity, which could be possibly induced by a high versus low response rate or 

differences in preference. Availability of both rewards was predicted by a combination of a 

contextual odor as well as a response-contingent light stimulus. Although similar cue 

combinations were used to predict both rewards, the animals clearly discriminated between 

both sets of cues and both rewards, as demonstrated by reward specific differences in 

breakpoint and cue-induced reinstatement tests. In the three tested Wistar rat batches, the 

animals had a higher breakpoint and higher cue-induced reinstatement performance for the 

ethanol reward, although there was no significant difference in self-administration between 
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both rewards. This response bias clearly shows that the animals do not simply generalize their 

lever response behavior, which makes this new two-reward operant conditioning model a 

powerful tool to study two neuronal ensembles in the same animals.  

cFos immunolabeling after either cue-induced reinstatement for ethanol or saccharin seeking 

revealed an ensemble size of ~15% for both rewards. This ensemble size is slightly larger 

than the IL ensemble size involved in the control of alcohol seeking in a previous experiment 

(~11%) (Pfarr et al., 2015) (Study1). Other IL ensembles involved in cocaine, heroin or 

natural reward seeking were reported to be even smaller comprising 3-6% of neurons (Koya 

et al., 2009; Bossert et al., 2011; Cruz et al., 2014; Suto et al., 2016; Warren et al., 2016). The 

larger ensemble size detected in our operant reward seeking models compared to other 

ensembles reported in the literature could be explained by the complex and similar predictive 

cue sets. It is possible that the combined contextual and visual cues, the positive valence and 

the shared properties of both rewards engage a more complex neuronal network compared to 

studies using highly distinct predicting cues. 

Using retrograde tracer injections into the contralateral IL, the prelimbic cortex, the nucleus 

accumbens and the ventral tegmental area, brain areas involved in the mesolimbic reward 

system (Arias-Carrión et al., 2010), we identified differences in projection targets of ethanol 

and saccharin cue-responsive neurons. Due to the small group sizes of ~3 animals per tracer 

region/ treatment group, there were no significant differences between the groups in a single 

brain area. However, there was a higher degree of overall co-localization of cFos positive 

neurons with all retrograde tracer signals in the saccharin cue-induced reinstatement group, 

compared to the ethanol group. The difference in co-localization indicates differences in the 

projection targets of the respective neuronal ensemble in the IL. The IL is a highly 

interconnected brain area with more than 60 detected projection target areas and receives 

inputs from more than 40 brain areas (Hurley et al., 1991; Vertes, 2004; Noori et al., 2017) 

and the ethanol ensemble could possibly engage a wider long range network, as compared to 

saccharin. For a more precise analysis, activity-dependent anterograde tracing methods should 

be used (Sørensen et al., 2016), as the retrograde tracing method is not suitable to investigate 

all 60 projection target areas of the IL.  

Fluorescent in-situ hybridization (FISH) for cFos and layer II/III and layer V/VI specific 

cellular markers revealed, that there was no difference in laminar distribution of cFos positive 

nuclei between the EtOH and saccharin group. cFos positive cells in both reinstatement 
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groups were distributed throughout layers II – VI, which can be explained because the mPFC 

belongs to the class of the agranular cortex. In contrast to barrel cortices, the mPFC is lacking 

clearly defined input or output layers and both superficial and deep layers receive input from 

subcortical and cortical structures and project to other limbic structures (Gabbott et al., 2005; 

Riga et al., 2014). 

The above discussed experiments gave a basic insight into the size and connectivity of the 

respective ensemble. In order to directly compare the size and potential overlap of both 

ensembles in the IL, a slightly modified cue-induced reinstatement procedure was used in 

combination with a double cFos FISH method. Co-localization analysis of both ensembles 

revealed a large overlap of ~50%. The high degree of overlap could be explained by a general 

motivation to obtain rewards. However, the tested rewards are highly distinct both in their 

sensory perception (taste and smell) and the internal states they produce and are therefore 

perceived as different by the animal. The obtained behavioral results in the breakpoint and 

cue-induced reinstatement tests support this theory. Similarly large overlapping cFos positive 

neuronal populations were also reported after exploration of two different environmental 

contexts (Cai et al., 2016). 

 

4.2.1 Summary 

 

Our study demonstrated that a drug reward (ethanol) and a natural reward (saccharin) engage 

neuronal ensembles in the IL of similar size. Furthermore, we identified differences in the 

downstream projection targets of the respective cue-responsive neurons. Using a double cFos 

FISH approach we identified the organization of two co-existing neuronal ensembles in the IL 

of the same animal. Each ensemble consists of a general overlapping component as well as a 

specific component for each reward. Thus, we provide a powerful tool to study co-existing 

neuronal ensembles involved in different reward seeking behaviors in the same animal. In 

addition we provide essential insights into the coding for different behaviors in the IL, by 

distinct, but overlapping neuronal ensembles. 
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4.3 Discussion Study 3: In-vivo calcium imaging of IL neuronal ensembles 

involved in an operant reward seeking task 

 

In Study 1 (Pfarr et al., 2015) and Study 2 (Pfarr et al., 2018) of this thesis we identified 

infralimbic (IL) neuronal ensembles involved in drug and natural reward seeking behavior. 

However, in both studies cFos-based post-mortem methods were used for ensemble 

identification, providing a very good spatial resolution, but a limited temporal resolution. 

cFos expressing cells, identified in these studies could have been activated at every timepoint 

during the 30min operant session. This means, cells could have been activated by the general 

context of the operant chamber, active or inactive lever presses, rewarded or non-rewarded 

active lever presses, reward consumption or the activation of the cue-light. A clear separation 

of these events can only be achieved using in-vivo electrophysiology, light-activated 

manipulations or labeling methods, or in-vivo calcium imaging techniques. Although in-vivo 

electrophysiology provides excellent temporal resolution it does not provide a good spatial 

resolution. Light activated manipulation or labeling techniques like CaMPARI (Fosque et al., 

2015), Cal-Light or FLARE (Lee et al., 2017; Wang et al., 2017) provide a good spatial 

resolution, however labeling or manipulations can only be targeted against one of the specific 

behavioral actions during a 30min operant session, e.g. only active lever presses or only 

inactive lever presses. Furthermore these techniques cannot be repeatedly used in the same 

individual across different behavior sessions. Although the temporal resolution is not as good 

as with in-vivo electrophysiology techniques, in-vivo calcium imaging provides the most 

powerful tool for good temporal and excellent spatial resolution of neuronal activity patterns. 

In contrast to light-activated labeling or manipulation techniques (e.g. CaMPARI) 

longitudinal in-vivo calcium imaging recordings can be repeatedly performed within the same 

animal. Furthermore, all behavioral responses during a complex behavior session can be 

recorded and analyzed. However, this method alone does not enable targeted or specific 

manipulation of neuronal ensembles. 

A first analysis of the calcium imaging data during saccharin self-administration, extinction 

and cue-induced reinstatement of saccharin seeking revealed at least two sub-populations of 

neurons, which either increased or decreased their activity during responses at the active 

lever. Specifically the population which decreased the activity around the lever press event 

would most likely not have been identified using standard IEG-based methods. Also previous 

studies using single unit electrophysiological in-vivo recordings revealed that some prefrontal 
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neurons decrease their activity while others increase their activity during drug seeking 

behavior (Chang et al., 1997b; Chang et al., 1997a; Rebec and Sun, 2005; West et al., 2014). 

A clear limitation of single-unit recordings is the lack of the spatial component. In our 

approach simultaneous recordings of up to 100 neurons are possible, which will enable us to 

detect specific activity patterns between groups of neurons.  

Despite the advantages of in-vivo calcium imaging, there are also certain limtiations and 

drawbacks. In our hands we found that only about ~25% of animals showed clear and usable 

calcium signals during the recording sessions. This low number of usable preparations was 

due to problems during surgery like misplacement of the GRIN lens relative to the AAV 

injection site or due to losses of the headmounts in some cases. Furthermore some animals did 

not have a clear field of view, which made recordings of calcium dynamics not possible. In 

addition to these problems, we found that some animals were distracted from the operant self-

administration task by the miniscope cable. Although we used very thin and light weight 

cables we found that the animals' performance during the recording sessions dropped 

compared to the pre-training sessions. This effect cannot be due to the implant and the 

resulting brain damage itself, because the animals were already implanted during the pre-

training session. Animals distracted by the Miniscope cable frequently tried to bite it, which 

made it necessary to constantly observe the animal. This fact makes parallel recordings of 

animals difficult and clearly limits the possible throughput of recordings per day. 

Despite these limitations, in-vivo calcium imaging in freely moving rats provides an 

enormous gain of knowledge. To date, no other method provides a comparable level of spatial 

and temporal resolution to record neuronal activity patterns during complex behavior tasks. In 

contrast to in-vivo electrophysiology approaches, simultaneous recordings of >100 neurons is 

possible, which enables to detect complex network dynamics (Russell, 2011; Patel et al., 

2015). Furthermore, using cell-type specific expression of calcium indicators, local 

information processing in specific microcircuits can be studied (Pinto and Dan, 2015). 

In addition some of the described problems could be solved by the implementation of a 

wireless miniscope version (Liberti et al., 2017). Using this version, the animals will not be 

distracted by the cable anymore, which might increase the performance during the operant 

behavior task. Without the possibility of cable bites/ breaks, it could be furthermore possible 

to run several animals in parallel, supervised by only one experimenter.  
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4.3.1 Summary 

 

In summary, we successfully setup in-vivo calcium imaging in freely moving rats using the 

UCLA miniscope version. In addition we managed to combine live calcium recordings with 

an operant reward seeking-task. Using the Bonsai software we are able to combine and 

synchronize all inputs and outputs from the operant chamber with the recorded calcium 

signals. A first analysis revealed that during saccharin self-administration, extinction training 

and cue-induced reinstatement of saccharin seeking some cells increase their activity, while 

others decrease their activity around the active lever responses. Furthermore our results 

indicate, that a similar number of neurons are engaged in self-administration and cue-induced 

reinstatement tasks, while extinction training requires a larger number of neurons. 

 

4.4 Discussion Study 4: The influence of infralimbic mGluR2 expression levels on 

alcohol seeking behavior 

 

In a previous study from our lab a link between an alcohol-induced reduction of infralimbic 

mGluR2 expression levels and excessive alcohol seeking behavior was found. Chronic 

intermittent alcohol exposure specifically reduced mGluR2 mRNA expression levels in the 

infralimbic cortex (IL). Lentiviral restoration of IL mGluR2 expression also reduced alcohol 

seeking behavior to control level (Meinhardt et al., 2013). A link between mGluR2 expression 

and alcohol intake has also been established using the Indiana alcohol preferring (P) and non-

preferring (NP) rat lines. The P rat carries a single nucleotide polymorphism, leading to a 

premature stop codon in the mGluR2 coding sequence, and thereby preventing functional 

mGluR2 expression (Zhou et al., 2013). Indiana P rats are characterized by high voluntary 

alcohol intake, compared to NP rats (Murphy et al., 1986; Rodd-Henricks et al., 2001; Bell et 

al., 2006). Furthermore a link between mGluR2 function and alcohol seeking was found using 

the mGluR2 positive allosteric modulator AZD8529, which blocked cue-induced 

reinstatement of alcohol seeking in male Wistar rats (Augier et al., 2016). Also the mGluR2/3 

agonist LY379268 prevented cue-induced reinstatement of alcohol seeking (Bäckström and 

Hyytiä, 2005; Kufahl et al., 2011). 
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The above mentioned studies implicate mGluR2 function to be is necessary for control of 

alcohol seeking. Furthermore these data show that an alcohol induced IL deficit of mGluR2 is 

necessary to induce the high alcohol seeking phenotype of the postdependent model 

(Meinhardt et al., 2013). However, none of these studies have demonstrated that the IL 

mGluR2 deficit is sufficient to induce the high alcohol-seeking phenotype, observed after 

chronic intermittent alcohol exposure.  

In order to conclusively demonstrate causality between mGluR2 expression and the 

investigated phenotypes, we used a viral knockdown approach. We constructed a general 

mGluR2 knockdown AAV expressing a shRNA under control of the non-selective U6 

promoter (Kunkel et al., 1986). We found, that a general mGluR2 knockdown in the IL did 

not alter cue-induced reinstatement of alcohol seeking, compared to control AAV injected 

animals. This finding is consistent with a mGluR2 knockdown study in the prelimbic cortex 

(PL), which did not change alcohol drinking behavior in rats (Ding et al., 2017). The lack of 

effect in the study by Ding and colleagues (2017) could be due to the chosen brain area for 

mGluR2 knockdown, as the study by Meinhardt and colleagues (2013) identified an alcohol-

induced reduction of mGluR2 levels specifically in the IL but not in the PL. Furthermore, we 

showed in Study 1, that neuronal ensembles in the IL but not in the PL are critically involved 

in alcohol seeking (Pfarr et al., 2015). We also showed that this effect was only observed after 

selective inactivation of IL ensembles but not after a general lesion of the IL. Therefore, we 

constructed a Cre-inducible mGluR2 knockdown AAV, for targeted mGluR2 downregulation 

in the IL in predominantly excitatory projection neurons (Liu and Murray Karl, 2012).  

A CamKII-targeted mGluR2 knockdown in the IL induced excessive alcohol seeking 

behavior, which was similar to the postdependent phenotype.  

Taken together these results, a CamKII-targeted but not a general mGluR2 knockdown in the 

IL induced excessive alcohol seeking behavior. This effect is due to the cell-type restriction of 

the Cre-inducible AAV, as both viruses carry the same shRNA sequence and both AAV 

constructs produced highly comparable knockdown efficiencies in a dual luciferase assay. We 

further characterized the Cre-inducible AAV on mRNA and protein level. A significant 

downregulation of endogenous IL mRNA was detected using fluorescent in-situ 

hybridization. Furthermore a significant downregulation of mGluR2 protein in the nucleus 

accumbens projection was detected by western blot after IL AAV injections. 
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The Cre-inducible mGluR2 knockdown AAV was also used to characterize the Cre 

expression pattern in the transgenic CamKII-Cre rat line. We found that the CamKII-Cre rat 

line provides a strong neuronal localization of Cre expression. However, this transgenic line is 

not entirely CamKII-positive, as a minority of Cre-expression is also found in interneurons. In 

turn, the lack of effect of a general mGluR2 knockdown versus the excessive alcohol seeking 

behavior after Cre-restricted mGluR2 downregulation demonstrates the importance of a 

neuronal restriction of this genetic manipulation. This finding indicates that alcohol-induced 

mGluR2 downregulation in the IL might be specifically restricted to neuronal mGluR2 

without affecting the glial mGluR2 population (Petralia et al., 1996) or the microglial 

mGluR2 population, which is involved in the induction of apoptosis (D’Antoni et al., 2008). 

While neuronal mGluRs play a role in synaptogenesis and synaptic plasticity, mGluRs located 

in glia cells are thought to be mainly involved in the regulation of glia function and the 

interaction between glia and neurons (Aronica et al., 2000).  

 

4.4.1 Summary 

 

Our study demonstrated that a neuronal restricted, but not a general downregulation of 

mGluR2 in the IL induces excessive alcohol seeking behavior, similar to the postdependent 

phenotype. Thus we demonstrated that a neuronal IL mGluR2 deficit is not only necessary, 

but also sufficient to induce the high alcohol seeking phenotype, observed after chronic 

intermittent alcohol exposure. Our data further indicate that the downregulation of IL mGluR2 

observed in the postdependent animal model could be predominantly neuronal and not in the 

glia population. 

 

4.5 Discussion Study 5: The influence of infralimbic mGluR2 expression levels on 

cognitive flexibility 

 

The medial prefrontal cortex (mPFC) is involved in top-down control over behavior and 

executive functions, including working memory, attention, cognitive flexibility and impulse 

control (Heidbreder and Groenewegen, 2003; Wood and Grafman, 2003; Logue and Gould, 

2014). Furthermore it is known, that excessive alcohol consumption leads to damage in the 
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PFC, both in humans and in animal models (Jernigan et al., 1991; Pfefferbaum et al., 1997; 

Meinhardt et al., 2013; Meinhardt and Sommer, 2015). In addition significant impairments in 

cognitive flexibility were reported in human alcoholics (Loeber et al., 2009; Houston et al., 

2014). 

A previous study from our lab found that excessive alcohol seeking behavior in 

postdependent (PD) rats after chronic intermittent ethanol (CIE) exposure is based on an 

alcohol-induced downregulation of mGluR2 in the infralimbic cortex (IL) of the mPFC 

(Meinhardt et al., 2013). In this study viral restoration of mGluR2 expression in the IL of PD 

rats normalized alcohol seeking behavior to control level. Therefore, we first answered the 

question, if CIE exposure also leads to changes in cognitive flexibility in PD rats. Using the 

attentional set shifting task (ASST) adapted from (Birrell and Brown, 2000; Klugmann et al., 

2011), a rodent analogue of the Wisconsin Card Sorting Task using in humans (Berg, 1948). 

Previous experiments from our lab identified significant impairments in the intradimensional 

shift 2 (IDS2) and the extradimensional shift (EDS) subtasks of the ASST in PD rats, 

compared to controls (see Supplementary Information; Klee 2014). This finding confirms 

results from a study in mice, which showed cognitive impairments after CIE exposure 

(Kroener et al., 2012). Next, we asked if the IL mGluR2 deficit observed in PD rats is also 

responsible for the ASST impairments. Therefore, a lentiviral rescue experiment similar to the 

Meinhardt et al. (2013) study was performed (see Supplementary Information; Klee 2014). 

Restoration of IL mGluR2 rescued the impaired IDS2 performance in PD rats, but did not 

rescue the EDS deficit. The partial rescue of ASST performance after IL mGluR2 restoration 

could be due to additional alcohol-induced alterations in mPFC function, which are not 

mGluR2 dependent. 

These previous data suggest the involvement of IL mGluR2 function in executive control. 

Furthermore, it has been reported that the mGluR2 positive allosteric modulator (PAM) 

LY487379 improved ASST performance in rats (Nikiforuk et al., 2010). In order to further 

identify the role of mGluR2 function in executive functioning, the ASST was performed with 

the Indiana alcohol preferring (P) and non-preferring (NP) rat lines. The Indiana P rats are 

homozygous knockout animals for mGluR2 (Zhou et al., 2013) but did not show any 

impairments in ASST performance when compared to NP rats. This finding does not support 

a role for mGluR2 in executive control. A possible explanation for the normal cognitive 

performance of P rat could be a possible compensatory mechanism of mGluR3. Both mGluR2 
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and mGluR3 are autoinhibitory metabotropic glutamate receptors (Niswender and Conn, 

2010; De Filippis et al., 2015). Compensatory mechanisms of mGluR3 taking over mGluR2 

function could be the underlying mechanism in the Indiana P rat, as these rats are born 

without functional mGluR2 receptors (Rodd et al., 2006; Augier et al., 2016). In addition, 

unspecific phenotype changes caused by tightly-linked loci flanking the deleted gene are 

frequently observed in knockout animals (Eisener-Dorman et al., 2009), which however is 

unlikely in the case of the Indiana P rat, as this rat has only one point mutation in the Grm2 

gene. In order to circumvent possible compensatory mechanisms of mGluR3, which is known 

to play an important role in working memory and PFC-dependent cognitive tasks (Walker et 

al., 2015; Caprioli et al., 2018; Hernandez et al., 2018), we tested the effect of local mGluR2 

knockdown in the IL on ASST performance. First, we investigated the general mGluR2 

knockdown animals from Study 4 on their ASST performance and found that there was no 

impairment in any of the ASST subtasks. Next, we tested if a CamKII-targeted IL mGluR2 

knockdown had an effect on cognitive flexibility. Therefore we tested the CamKII-Cre rats 

from Study 4, injected with a Cre-inducible mGluR2 shRNA AAV on their ASST 

performance. We found, that the knockdown group was significantly impaired in the EDS 

subtask and showed an overall impaired performance throughout the ASST procedure.  

Although the PD rats and CamKII-Cre rats injected with a Cre-inducible mGluR2 knockdown 

AAV into the IL showed an overall impairment throughout the ASST procedure, the most 

pronounced impairments were seen in IDS2 and EDS in PD rats and EDS in CamKII-Cre rats. 

These subtasks represent the cognitive most demanding subtasks of the ASST, because in 

IDS2 a completely new and unknown set of media and odors is introduced and during the 

EDS the animals have to shift their attention to the previously irrelevant dimension and have 

to ignore the previously relevant dimension. There were no significant differences between 

the groups in the compound discrimination (CD) and the reversal of compound discrimination 

(CDrev). This confirms findings from a study in mice, which showed a facilitation in pairwise 

visual discrimination and reversal learning and clearly no impairment in a touchscreen based 

task after chronic alcohol exposure (DePoy et al., 2013). The CDrev performance has been 

shown to be critically dependent on orbitofrontal cortex (OFC) function (McAlonan and 

Brown, 2003). The lack of impairment in CDrev in the PD rats may be explained by the fact 

that chronic intermittent alcohol exposure mainly affects the IL subregion of the mPFC, but 

not the OFC (Meinhardt et al., 2013). Furthermore it has been reported, that mPFC lesions 
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specifically impaired the EDS subtasks of the ASST but not the early compound 

discrimination or reversal stages (Birrell and Brown, 2000). 

 

4.5.1 Summary 

 

Taken together, we established a role of IL mGluR2 in executive functions and cognitive 

flexibility. After chronic intermittent alcohol exposure, PD rats are clearly impaired in the 

IDS2 and EDS subtasks, which represent the cognitive most demanding subtasks of the 

ASST. Lentiviral restoration of mGluR2 expression in the IL of PD rats improved IDS2 

performance, but not EDS performance. Therefore, the impairments seen after chronic 

intermittent alcohol exposure were only partially rescued by mGluR2 overexpression, which 

could be explained by additional alcohol-induced alterations in the brain independent of IL 

mGluR2 downregulation. A CamKII targeted knockdown of IL mGluR2 also induced an 

impairment in the EDS subtask, similar to the EDS impairment seen after chronic intermittent 

alcohol exposure. Consequently, our data indicate a critical role of IL mGluR2 expression and 

function on executive functions and cognitive flexibility. Although an IL mGluR2 deficit is 

not the only molecular mechanism underlying cognitive impairments after chronic 

intermittent alcohol exposure, we clearly established a critical role of IL mGluR2 expression 

levels and normal cognitive function and flexibility. 

 

4.6 General discussion 

 

4.6.1 Detection of neuronal ensembles 

 

In summary, this thesis provides conclusive evidence for the important role of neuronal 

ensembles in the control of reward seeking behavior. Study 1 identified a functional neuronal 

ensemble in the infralimbic cortex (IL), which serves to control alcohol seeking behavior. 

Activity-dependent and targeted ablation of this ensemble induced excessive alcohol seeking, 

demonstrating the inhibitory function of this IL ensemble. Furthermore Study 1 showed, that 

a general, non-selective lesion of the IL had no effect on alcohol seeking behavior, which is 

consistent with findings after non-selective reversible inactivation of the IL (Willcocks and 
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McNally, 2013). This negative finding after the classical lesion experiment could be 

explained by opposing processes in the IL, possiblly resulting in a zero-net effect. Such 

opposing mechanisms in the IL have already been demonstrated in a recent study showing 

bidirectional modulation of a learned behavior by functionally distinct IL neuronal ensembles 

(Suto et al., 2016). The above discussed findings highlight the importance of appropriate 

methods and techniques for a certain scientifc question. We show that classical lesion studies 

or non-selective inactivation studies, especially ones with negative outcome (Saksida et al., 

2006; Willcocks and McNally, 2013), have to be carefully interpreted, as it is possible that a 

similar zero net effect was generated as in Study 1 of this thesis. In Study 2 we demonstrated, 

using a novel two-reward concurrent operant self-administration task, that both seeking for 

natural rewards and drug rewards are encoded in the IL by co-existing neuronal ensembles. 

These results confirm previous hypotheses and findings of co-existing and intermingled 

neuronal ensembles within the same brain area (Hebb, 1949; Schwindel and McNaughton, 

2011; Cruz et al., 2015; Suto et al., 2016). Furthermore, we identified the organization of both 

co-existing neuronal ensembles in the IL and found that both neuronal ensembles were highly 

overlapping, but each ensemble also had a reward-specific component. Thus, the IL seems to 

function as a general integration hub for reward-seeking behavior, but also contains distinct 

subsets of neurons, which encode cue-and reward-specific information.  

 

4.6.2 Limitations of cFos-based post-mortem methods 

 

In the above discussed studies permanent or post-mortem cFos based methods were used, with 

a limited temporal resolution. The Daun02 inactivation method, cFos immunohistochemistry 

(IHC) and cFos fluorescent in-situ hybridization (FISH) detect strongly activated cells 

throughout the whole behavioral test-session. The detected cells could be possibly activated 

by the exposure to the respective context of the operant chamber, by the presentation of cues, 

by the execution of lever pressing behavior, by the seeking for the reward or other actions. 

This is a clear limitation of these methods, as neuronal ensembles involved in e.g. the lever 

pressing event cannot be separated from cells encoding the other aspects of reward-seeking 

behavior. Furthermore, the Daun02 inactivation method is a permanent ablation method, as 

demonstrated in Study 1, which does not allow to test the inactivation effect of different 

neuronal ensembles in one animal. Detection of two different neuronal ensmebles and 
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quantification of the overlap between both was possible by using a double cFos FISH 

approach in Study 2. However, this method has to be performed post-mortem, and does not 

allow to study neuronal ensembles at different timepoints during a long-term behavior 

experiment.  

 

4.6.3 Advantages of in-vivo calcium imaging 

 

One possibility to overcome these limitations in temporal precision is in-vivo 

electrophysiology, which is reliably used to record the acitivity of mPFC neurons during 

behavior tasks (Hajos et al., 2003; Ji and Neugebauer, 2012). Although this method provides 

excellent temporal resolution, the spatial information of neuronal ensembles is clearly limited 

using this approach. A method with good temporal and spatial resolution is in-vivo calcium 

imaging. Although the temporal resolution of the calcium-indicator signal is slower compared 

to in-vivo electrophysiology signals, the temporal resolution enables separation of events 

during several aspects of the animal’s behavior. In-vivo calcium can be performed in head-

fixed preparations (Low et al., 2014; Kondo et al., 2017; Otis et al., 2017; Tian et al., 2018) or 

more advanced in freely moving animals (Ghosh et al., 2011; Resendez and Stuber, 2014; 

Jennings et al., 2015; Cai et al., 2016; Gulati et al., 2017). Advantages of head-fixed in-vivo 

calcium imaging experiments are stable recordings with only little movement artefacts. 

However, behavioral experiments are clearly limited in such an approach. In-vivo calcium 

imaging using the miniscope system enables live calcium imaging of deep brain regions in 

freely moving animals but so far, this method has been only successfully used in mice. In 

order to detect specific activity patterns during a certain behavioral response, e.g. responding 

at the active lever, we used the miniscope system for live calcium imaging in freely moving 

rats during an operant saccharin seeking task (Study 3). This method allowed us to detect a 

subgroup of neurons which decreased their activity and another subgroup of neurons that 

increased their activity around the lever pressing event, which is consistent with findings from 

in-vivo single neuron recordings in the mPFC during drug seeking behavior (Chang et al., 

1997b; Chang et al., 1997a; Rebec and Sun, 2005; West et al., 2014). Compared to these 

single unit recording techniques, our calcium recording technique regularily detects more than 

hundred neurons simultanously and thus enables the analysis of specific activation patterns 

with single cell resolution. 
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4.6.4 Infralimbic mGluR2 deficit as a common molecular mechanism for excessive 

alcohol seeking behavior and impaired executive functioning 

 

Both, loss of control over alcohol seeking behavior (Goldstein and Volkow, 2011) and 

impaired executive functions have been reported in human alcoholics (Loeber et al., 2009; 

Houston et al., 2014) and can be caused by impaired top-down control of the mPFC over 

behavior. Chronic alcohol exposure was found to cause damage in the prefrontal cortex in 

humans as well as in animals (Jernigan et al., 1991; Pfefferbaum et al., 1997; Zahr et al., 

2011; Meinhardt et al., 2013; Meinhardt and Sommer, 2015). In rats chronic alcohol exposure 

was found to be especially damaging to the infralimbic (IL) subregion of the mPFC, as IL – 

NAc shell projection neurons exhibit deficits in the NR-2A subunit of the NMDA receptor, as 

well as significant reductions in egr-1 and mGluR2 gene expression (Meinhardt et al., 2013). 

This alcohol-induced mGluR2 deficit was found to be associated with loss of control over 

alcohol seeking behavior. Restoration of mGluR2 expression levels in the IL normalized the 

alcohol seeking behavior, which demonstrated that an IL mGluR2 deficit is necessary for this 

high alcohol seeking phenotype (Meinhardt et al., 2013). 

In order to answer the question if an mGluR2 deficit in the IL is only necessary or even 

sufficient to induce this high alcohol seeking phenotype, we used viral knockdown strategies 

to reduce mGluR2 gene expression levels in the IL (Study 4). Interestingly a general, non-

selective knockdown of mGluR2 in the IL had no effect on alcohol seeking. However, a 

CamKII- neuron targeted downregulation of mGluR2 in the IL induced the excessive alcohol 

seeking phenotype, comparable to the post dependent animals (Study 4) (Meinhardt et al., 

2013). A similar finding was obtained from Study 5, where a CamKII- targeted, but not a 

general knockdown induced impairments in the EDS subtask of the ASST, similar to the ones 

after chronic intermittent alchol exposure in post dependent rats. Thus, a downregulation of 

mGluR2 in IL projection neurons seems to be a common molecular mechanism underlying 

both, excessive alcohol seeking and impaired executive functions. Interestingly, similar to 

Study 1, non-selective manipulation methods in the IL do not induce changes in alcohol 

seeking or ASST behavior. Similarly, mGluR2 knockout rats (Indiana P rat) were not 

impaired in ASST performance when compared to Indiana NP rats. These findings strengthen 

the hypothesis, that the IL area does not generally excert an inhibitory tone, but rather that 

different subsets or specific cell types are involved in the control of alcohol seeking and 

ASST behavior.  
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4.6.5 Validation of mGluR2 knockdown approach 

 

Both, the general and the Cre-inducible mGluR2 shRNA AAV constructs contained the 

identical shRNA sequence. The knockdown efficiency of this shRNA sequence in comparison 

with a non-targeting shRNA was validated in-vitro using a dual luciferase assay. Using post-

mortem FISH analysis for quantification of mRNA and western blot for quantification of 

protein levels, the knockdown efficiency of the shRNA was validated in-vivo. The 

downregulation of mGluR2 protein by our shRNA approach is comparable with a study in the 

PL using lentiviral shRNA vectors (Ding et al., 2017).  

All knockdown data shown here were generated in comparison with a universal control 

shRNA (Mauceri et al., 2015), which has no known targets in the mouse or rat genome. The 

comparison with non-targeting shRNAs is important, because they also recruit the same 

enzymatic mRNA degradation machinery, including the Dicer enzyme and RNA-induced 

silencing complex (RISC) (Moore et al., 2010). The comparison with control shRNAs can 

prevent unspecific effects on behavior by the recruitment of the mRNA degradation 

machinery. Potential off-target knockdown effects of the mGluR2 shRNA cannot be 

completely ruled out (Jackson and Linsley, 2010) however, the shRNA sequence used in our 

studies to our knowledge does not have any other targets in the rat genome, so off-target 

knockdown effects are unlikely. 

 

Summary and Outlook 
 

By combining transgenic cFos-based neuronal ablation techniques with molecular and 

behavioral techniques, this PhD thesis provides important insights into the function and 

organization of neuronal ensembles in the infralimbic cortex, invovled in reward seeking 

behavior (Study 1 - 3). Furthermore this thesis identifies an IL mGluR2 deficit as a common 

molecular mechanism underlying excessive alcohol seeking behavior, as well as impared 

cognitive functioning (Study 4 + 5). 

In order to further clarify the underlying neuronal activity patterns during reward seeking, 

further studies are necessary. Study 2 of this thesis identified largely overlapping neuronal 
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ensembles in the IL, involved in alcohol and saccharin seeking. In order to identify potential 

differences in neuronal activity patterns during alcohol and saccharin seeking behavior, in-

vivo calcium imaging should be performed during this task, e.g. using the miniscope 

technique from Study 3.  

To further analyze differences in the neurocircuitry involved in alcohol and saccharin seeking, 

activity-dependent anterograde tracing experiments should be performed. One possible 

experiment would be activity dependent labeling of IL projection neurons using e.g. Cal-Light 

(Lee et al., 2017), FLARE (Wang et al., 2017) or pRAM promoter (Sørensen et al., 2016) 

based viral fluorescence marker expression systems. In order to perform a brain-wide 

neurocuircuit analysis, the activated projection neurons can be recorded and traced by 

combining brain clearing techniques (Azaripour et al., 2016) and single plane illumination 

microscopy (Economo et al., 2016). After identifying key projections, GCaMP6f could be 

expressed specifically in these projections in order to study acitvity patterns of these specific 

subgroups of neurons. Projection specific expression could be achieved using e.g. the novel 

rAAV2-retro serotype (Tervo et al., 2016).  

Study 4 and 5 revealed that a general loss or downregulation of mGluR2 in the IL does not 

influence alcohol seeking behavior or ASST performance. Excessive alcohol seeking behavior 

and imapaired ASST performance were only observed after restricting the IL mGluR2 

knockdown to projection neurons. In order to further characterize the neurocircuitry involved 

in both behavioral phenotypes, a projection specific knockdown of mGluR2 could be 

performed. Together with the above described future experiments, these studies will help to 

further characterize the neurocircuitry invovled in the control of reward seeking behavior and 

cognitive functions. 
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Supplementary Information 
 

Supplementary Methods 

 

Experimental design 

 

Male Wistar rats underwent seven weeks of chronic intermittent ethanol (CIE) vapor 

exposure. After a prolonged abstinence phase of three weeks, the animals were tested on their 

ASST performance (Figure 57A). A second batch of Wistar rats also underwent CIE vapor 

exposure. After an abstinence period of 3 weeks, the animals either received bilateral mGluR2 

overexpression or control lenti virus injections into the IL. After a recovery period of two 

weeks, the animals were also tested on their ASST performance (Figure 57B). Both 

experiments were performed by Manuela Klee as part of her Master Thesis (Klee, 2014), 

under the supervision of Marcus Meinhardt at the Central Institute of Mental Health, 

Mannheim.  

 

Figure 57: Experimental timelines for ASST in PD rats. A) One batch of Wistar rats underwent seven weeks 

of chronic intermittent ethanol (CIE) vapor exposure. After a prolonged abstinence period of three weeks, the 

animals were tested on their attentional set shifting task (ASST) performance. B) A second batch of Wistar rats 

also underwent seven weeks of CIE vapor exposure. After an abstinence period of three weeks the animals 

received either bilateral mGluR2 overexpression or control lenti virus injections into the IL. After a recovery 

period of two weeks, the animals were tested on their ASST performance. 
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Generation of PD rats 

 

For ethanol vapor/ air exposure a protocol adapted from (Rimondini et al., 2002) was used. 

Briefly, pumps (Knauer) delivered alcohol into electrically heated stainless-steel coils (60°C) 

connected to an airflow of 18 L/min into glass and steel chambers (1 × 1 × 1 m). For the next 

8 weeks rats were exposed to five cycles of 14 h of ethanol vapor per week (0:00 A.M. to 2:00 

P.M.) separated by daily 10 h periods of withdrawal. Twice per week, blood (∼20 μl) was 

sampled from the lateral tail vein, and blood alcohol concentrations were determined using an 

AM1 Analox system (Analox Instruments). After the last exposure cycle the rats stayed 

abstinent for three weeks before further behavioral testing (Meinhardt et al., 2013; Meinhardt 

and Sommer, 2015). Etanol vapor exposure was performed by Manuela Klee as part of her 

Master Thesis under the supervision of Marcus Meinhardt (Klee, 2014). 

 

Stereotaxic lenti virus injections 

 

For lenti virus injections postdependent Wistar rats were anesthetized with isoflurane and 

placed in a Kopf stereotaxic frame. Bilateral injections of 1.2µl lenti virus into the IL (AP: 

+2.9, ML: +/- 0.5, DV -5.1) according to (Paxinos and Watson, 1998) were performed using a 

WPI microinjection pump through a 33 gauge beveled needle at a rate of 200 nl/min. 

Behavioral testing was started two weeks after lenti virus injection. Lenti virus injections 

were performed by Manuela Klee as part of her Master Thesis under the supervision of 

Marcus Meinhardt (Klee, 2014). 

 

Supplementary Results 

 

Effect of chronic intermittent alcohol exposure on ASST performance 

 

In mice it was shown, that a history of chronic intermittent alcohol exposure leads to 

structural neuronal changes in the mPFC as well as impairments in an attentional set shifting 

task (ASST) (Kroener et al., 2012). 
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To investigate the effect of chronic intermittent alcohol exposure on ASST performance in 

rats, 16 alcohol exposed (post dependent) and 16 air exposed Wistar rats were used. Three 

weeks after alcohol/ air exposure, the animals were tested on their ASST performance (Figure 

58A). Two post dependent (PD) and one control animal were excluded from the experiment, 

because they failed to learn the simple discrimination task. There was no significant 

difference between the groups in the simple discrimination (SD) task as confirmed by one-

way ANOVA (F(1,26)= 0.33, p = 0.57). There were also no significant differences between the 

groups in the compound discrimination (CD) (F(1,26)= 0.36, p = 0.55), compound 

discrimination reversal (CDrev) (F(1,26)= 2,72, p = 0.11) and compound discrimination 

repetition (CDrep) (F(1,26)= 0.001, p = 0.98), confirmed by one-way ANOVA. There was no 

significant difference between the groups in the intradimensional shift 1 (IDS) (F(1,26)= 1.91, p 

= 0.18), but there was a significant difference between the groups in the intradimensional shift 

2 (IDS2) as confirmed by one-way ANOVA (F(1,26)= 5.99, p = 0.02). There was also a 

significant difference between the groups in the extradimensional shift (EDS) as confirmed by 

one-way ANOVA (F(1,26)= 7.4, p 0.011). Repeated ANOVA analysis revealed an overall 

significant difference between post-dependent and control animals for the ASST (F(1,27) 

=11.34, p = 0.002). Thus, ASST performance is not generally impaired after chronic 

intermittent alcohol exposure. However, significant impairments were observed when the 

rules of the task were changed (IDS2 and EDS). This inability to change their strategy 

indicates a reduced cognitive flexibility of the post dependent (PD) rats. 
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Figure 58: Alcohol-induced mGluR2 deficit leads to impaired ASST performance. A) ASST performance of 

post-dependent (PD) rats (n=14, black bars) and control rats (n=15, white bars). PD rats needed significantly 

more trials to criterion in the IDS2 and EDS subtasks. There was also an overall significant difference between 

PD and control rats. B) Schematic representation of lentiviral constructs. Lenti-mGluR2 expresses Grm2 and 

copGFP under control of EF1α promoter. Lenti-control only expresses copGFP under EF1α control. C) ASST 

performance of PD rats injected with either Lenti-mGluR2 (n=16, red bars) or Lenti-control (n=16, black bars) 

into the IL. Lenti-mGluR2 injected animals overall needed significantly less trials to criterion in the IDS2. D) 

Injection placements are represented by black circles. Injection sites were verified within the IL from +3.2 to 

+2.2mm anterior to bregma (Paxinos and Watson, 1998). SD=simple discrimination, CD=compound 

discrimination, CDrev=compound discrimination reversal, CDREP=repetition of CDrev, IDS=intradimensional 

shift, IDS2=intradimensional shift 2, EDS=extradimensional shift. ANOVA: *p<0.05, ***p<0.001. Repeated 

measures ANOVA: 
##

p<0.01. These experiments were performed by Manuela Klee as part of her Master Thesis 

under the supervision of Marcus Meinhardt (Klee, 2014). 

 

Partial rescue of ASST performance of PD rats after mGluR2 restoration in IL 

 

In a previous study from our lab it was shown that chronic intermittent alcohol exposure leads 

to a significant reduction of mGluR2 in the infralimbic cortex (IL) (Meinhardt et al., 2013). 

Furthermore, restoration of IL mGluR2 using lentiviral overexpression also normalized the 

elevated alcohol seeking behavior of post-dependent rats to control level. In order to test the 

effect of mGluR2 restoration in the IL of post-dependent rats on ASST performance 32 post 

dependent male Wistar rats were used. After chronic intermittent vapor exposure the animals 
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received bilateral IL injections (Figure 58D) with the respective lenti vectors (lenti-mGluR2 

n=16; lenti-control n=16, Figure 58B). The animals were allowed to recover for 2 weeks 

before the start of the ASST. As can be seen in Figure 58C, the impairment of PD rats in the 

IDS2 could be reversed by IL mGluR2 restoration. There was a significant reduction of the 

number of trials to criterion in the lenti-mGluR2 group, compared to lenti-control, as 

confirmed by one-way ANOVA (F(1,23) = 19.45, p = 0.0002). There were no significant 

differences in the other ASST subtasks as confirmed by one-way ANOVA (SD: F(1,23) = 1.27, 

p = 0.27; CD: F(1,23) = 0.14, p = 0.71; CDrev: F(1,23) = 1.35, p = 0.26; CDrep: F(1,23) = 0.06, p = 

0.801; IDS: F(1,23) = 0.03, p = 0.87; EDS: F(1,23) = 0.008, p = 0.93). There was no overall 

significant difference between lenti-mGluR2 animals and lenti-control animals for the ASST 

as confirmed by repeated measures ANOVA (F (1,23) = 3,22; p=0,08). IL restoration of 

mGluR2 expression did not affect the other ASST subtasks, leading only to a partial rescue of 

cognitive flexibility.  

 


