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Abstract

This thesis is dedicated to provide physicists with new and improved techniques to
examine phase diagrams and phase transitions.

One the one hand, an analysis of the effects of different regularization schemes in
functional renormalization group calculations is provided. Building on this knowl-
edge, an investigation of the phase diagram of the Hubbard-Model on the square
lattice is performed using the functional renormalization group. The calculation
reveals leading instabilities in the d-wave superconducting and different antiferro-
magnetic channels. In the symmetry broken phases there are a changing Fermi
surface geometry, coexistence phases of d-wave superconductivity and antiferromag-
netism as well as a mutual tendency of superconductivity and antiferromagnetism
to repel each other.

On the other hand, a scheme to discover phase transitions using unsupervised
artificial neural networks is developed. Further, a method to interpret artificial
neural networks is introduced. These methods are applied to systems ranging from
the two dimensional Ising Model to four dimensional SU(2) lattice gauge theory.
They find the existence of different phases, calculate phase boundaries and derive
the explicit formulas of the quantities by which the neural network distinguishes
between phases. It turns out that these quantities are order parameters and other
thermodynamic quantities.

Kurzfassung

Diese Arbeit stellt Physikern neue und verbesserte Techniken zur Untersuchung von
Phasendiagrammen und Phasenübergängen zur Verfügung.

Einerseits wird eine Analyse der Effekte verschiedener Regularisierungsschemata
in funktionalen Renormierungsgruppenberechnungen präsentiert. Aufbauend auf
diesem Wissen wird eine Untersuchung des Phasendiagramms des Hubbard-Modells
auf dem Quadratgitter unter Verwendung der funktionalen Renormierungsgruppe
durchgeführt. Die Berechnung zeigt führende Instabilitäten in supraleitenden d-
Wellen und verschiedenen antiferromagnetischen Kanälen. In den symmetriege-
brochenen Phasen gibt es eine sich ändernde Fermiflächengeometrie, Koexisten-
zphasen von d-Wellen-Supraleitung und Antiferromagnetismus sowie eine gegenseit-
ige Tendenz, dass sich Supraleitung und Antiferromagnetismus abstoßen.

Andererseits wird ein Schema zur Entdeckung von Phasenübergängen unter Ver-
wendung von unüberwachten künstlichen neuronalen Netzen entwickelt. Ferner
wird ein Verfahren zur Interpretation von künstlichen neuronalen Netzen eingeführt.
Diese Methoden werden auf Systeme angewendet, die vom zweidimensionalen Ising-
Modell bis zur vierdimensionalen SU(2) Gittereichtheorie reichen. Sie finden die
Existenz verschiedener Phasen, berechnen Phasengrenzen und leiten die expliziten
Formeln der Größen ab, durch die das neuronale Netz zwischen Phasen unterschei-
det. Es stellt sich heraus, dass diese Größen die Ordnungsparameter und andere
thermodynamische Größen sind.
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2 Introduction

2.1 Phase Diagrams

Phase diagrams can be understood as a comprehensible collection of macroscopic

knowledge about physical systems. They describe under which conditions, internal

structure or external influence a given physical system exhibits certain macroscopic

properties. A phase diagram contains regions of certain phases of a physical system.

They are divided from each other by either phase transitions, where the system

undergoes a drastic macroscopic change, or crossovers, where the system changes

continuously. Phase diagrams are used to describe the macroscopic properties in

a wide range of physical disciplines. A first phase diagram many people learn in

school is the phase diagram of water. This is based on the fact that the Celsius

temperature scale is aligned at phase transitions from ice to liquid water and liq-

uid water to steam. Furthermore, phase diagrams are used to describe phases of

magnets, quantum chromodynamics (QCD), or superconductivity. In order to draw

phase diagrams, one needs to determine the nature of the occurring phases and the

location and the type of the transition. While the nature of the phases is unique

for each system, phase transitions can be grouped into certain classes. Ehrenfest

categorized phase transitions by a jump in the n-th derivative of the free energy

as a phase transition of n-th order [5]. Landau further explained that almost all

phases can be attributed to symmetries of the physical system [6]. The symmetry is

manifested on one side of the phase transition, while it is broken on the other side.

In the vicinity of phase transitions of second or higher order, the behavior of the

free energy can be described by so-called critical exponents. They only depend on

the dimensionality of the examined system and on the symmetry which is broken

at the phase transition, but not on the microscopic details. This phenomenon is

called universality. Beyond these classifications, lines of phase transitions can cross

to exhibit multi-critical phenomena or end in critical end points.

In physics very few phase diagrams can be calculated analytically. The most

prominent model which is analytically solvable and possesses a phase transition is

the two-dimensional Ising Model, which describes spins on a square lattice [7]. It
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2 Introduction

was solved1 by Onsager in 1944 [8].

Recently new types of phase transitions have been discovered which could not be

classified by either of the former schemes. For example, the Berezinskii-Kosterlitz-

Thouless transition (BKT transition) is a phase transition in the two-dimensional

XY model [9, 10]. It is a transition from bound vortex-antivortex pairs at low tem-

peratures to unpaired vortices and anti-vortices above a critical temperature, or in

other words the binding-unbinding transition of topological defects. In this system

conventional phase transitions are forbidden by the Mermin-Wagner-Hohenberg the-

orem [11, 12]. However, the theorem does not apply in this special case, since the

BKT transition is a phase transition of infinite order which does not break any sym-

metries. Another class of non-conventional phase transitions are topological phase

transitions. They are zero temperature transitions between different topological or-

ders. A prototype of a topological phase is the fractional quantum hall state [13, 14].

It is the effect that at low temperatures, the Hall conductance in a two-dimensional

electron system in a magnetic field is quantized on plateaus at fractional values.

The understanding of phase diagrams is a central task for experimental and theo-

retical researchers. The phase diagrams of many systems like QCD or high temper-

ature superconductors are still not fully explored. With the discovery of new types

of materials and phases of matter, we face even more complicated phases. Hence,

physics is in need of new techniques to calculate phase diagrams where conventional

methods have not succeeded. In order to achieve this task for more complicated

models we discuss two techniques in this thesis. We employ, examine and improve

the functional renormalization group. Further, we develop new methods based on

artificial neural networks, to automatically reveal phases with only little human

supervision.

2.2 The Renormalization Group

The renormalization group is a method in theoretical physics which translates pa-

rameters of physical models between different energy scales. It can be utilized to

calculate thermodynamic potentials like the free energy and thus obtain the partition

function.

1Solving a model means calculating the partition function or an equivalent thermodynamic po-
tential.
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2.2 The Renormalization Group
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Figure 2.1: Renormalization group flow of the effective average action Γk in theory
space. In the microscopic limit k = Λ the initial conditions are the mi-
croscopic action S. In the macroscopic limit k = 0 the effective average
action Γk approaches the full quantum effective action Γ. Different regu-
lators R1,R2 induce different flow trajectories which have identical start
and end points.

2.2.1 History of the Renormalization Group

Renormalization was first mentioned in 1953 [15] by Stueckelberg and Petermann.

They discovered the existence of a renormalization transformation which transfers

quantities in quantum field theory from the bare terms to the counter terms. In

1954 Gell-Mann and Low introduced the concept of a renormalization group trans-

formation being related to the energy scale in quantum electrodynamics (QED) [16].

The modern version of such an energy scale dependent renormalization group trans-

formation was introduced by Callan and Symanzik in 1970 [17]. In 1966 Kadanoff

gave an explanation of the physical meaning of the renormalization process, and

was able to incorporate physics on separate length scales via the “block-spin” renor-

malization group [18]. Wilson’s ideas in 1971 [19, 20] were responsible for putting

the renormalization group in a computational framework. With this development it

was able to solve problems like the Kondo-Problem and could be employed to ex-

amine phase transitions and critical phenomena in detail. It was later reformulated

in terms of exact equations by Wegner and Houghton [21] as well as Polchinski [22].

In this thesis we employ the exact renormalization flow equation for the effective

average action which was devised by Wetterich in 1993 [23] and shortly afterwards

by Morris [24].
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2 Introduction

2.2.2 The Functional Renormalization Group

The functional renormalization group equation, also known as Wetterich equation

[23]

∂kΓk =
1

2
STr [(Γ(2) +Rk)

−1
∂kRk] , (2.1)

is a functional differential equation for the effective average action Γk. This flow

equation interpolates between the microscopic action S and the full quantum effec-

tive action Γ. The Wetterich equation generates this interpolation by integrating

out quantum fluctuations on momentum scales larger than k. By lowering k con-

tinuously, the effective average action follows a flow trajectory in theory space, see

Fig. 2.1. The regularization scheme is formulated in terms of the regulator Rk. The

Wetterich equation is independent of the choice of the regulator as long as it obeys

certain conditions. However, truncating the effective average action destroys this

property. The magnitude of this effect is discussed in our paper Physics and the

Choice of Regulators in Functional Renormalisation Group Flows [1]. In this publi-

cation we also propose how to optimize the renormalization group flow in order to

obtain reliable physical results.

2.3 Artificial Neural Networks

Artificial neural networks, see Fig. 2.2, are computer algorithms that are based

on statistical learning inspired by the human brain. They belong to the class of

machine learning algorithms: without being explicitly programmed for a certain

task, the computer is able to learn from data and generalize their knowledge to

previously unseen examples.

2.3.1 History of Artificial Neural Networks

The elementary constituents of artificial neural networks have already been proposed

in 1943 by McCulloch and Pitts [25] as a simple mathematical model for neurons.

The first learning procedure for these neurons has been developed shortly after by

Hebb [26]. The application of such neurons as a machine learning algorithm started

in 1957 [27] when Rosenblatt employed the perceptron algorithm, built upon the

McCulloch-Pitts neuron, for character recognition. By that time a large scale ap-

plication of artificial neural networks was not possible due to limited computational
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Input
Hidden
Layers

Output

Figure 2.2: An artificial neural network is a weighted directed graph. In this picture
we see a feed-forward neural network, in which neurons are connected
with other neurons in the previous layer and the next layer. The in-
put is processed through several hidden layers, after which an output is
generated.

resources and the inefficiency of the training. Research on artificial neural networks

stagnated until 1986 when it was revived by Rumelhart, Hinton and Williams [28].

They rediscovered the backpropagation algorithm, originally discovered by Werbos

in 1974 [29], an efficient learning algorithm which is still employed today to train

state-of-the-art artificial neural networks. By now our computational resources have

grown so far that artificial neural networks are used to classify images [30], to rec-

ognize language [31] or to beat humans in complex games [32].

2.3.2 Artificial Neural Networks in Physics

Artificial neural networks have been applied to physics in its traditional form. This

means that these algorithms have been trained to perform a certain task on some

training data and applied to execute the same task on previously unseen data (su-

pervised learning). For example, these algorithms have been applied to classify jet

images from CERN [33]. In other cases physicists have applied machine learning al-

gorithms to find structure in data without supervision (unsupervised learning). For

example, unsupervised learning was employed to group different molecular systems

[34], where the number of parameters is too large to for conventional approaches.

Since 2016 machine learning in physics has undergone major change. Instead of

the conventional machine learning tasks, one is now able to simulate physical sys-

tems [35–45]. Furthermore, physicists have been able to answer specific questions

about physical systems, up to the point that one can now extract complete phase

diagrams. This is achieved by a combination of Monte-Carlo simulations and dif-
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ferent machine learning algorithms, without the need for any physical deduction

by humans. It is possible to calculate phase boundaries in the context of super-

vised learning [46], where it turned out that artificial neural networks outperform

other machine learning algorithms on complicated models. Within one year artifi-

cial neural networks have successfully calculated accurate transition temperatures

in systems with topological phases [47], in strongly correlated electron systems [48]

and in lattice gauge theory [3]. Information about the existence of different phases

in a physical system can be found by unsupervised learning algorithms [2, 49–51].

Furthermore, by interpreting the machine learning algorithms, one can extract ex-

plicit expressions of the order parameters, corresponding to the nature of the ordered

phases [3, 49]. The importance of the interpretation is twofold: on the one hand,

one can infer the dominant physical properties of the ordered phase. On the other

hand, one is able to trust the results of machine learning calculations, if they base

their results on physical quantities. This thesis includes the introduction of artificial

neural network-based autoencoders to detect phases in an unsupervised manner, see

Unsupervised Learning of Phase Transitions: From Principal Component Analysis

to Variational Autoencoders [2]. More about how to find phase transitions in lattice

gauge theory and how to interpret neural networks in such cases can be found in

Machine Learning of Explicit Order Parameters: From the Ising Model to SU(2)

Lattice Gauge Theory [3].

2.4 High-Temperature Superconductivity

In condensed matter physics, scientists examine emergent phenomena from the elec-

tromagnetic interaction between the building blocks of matter. One of the biggest

challenges of condensed matter physics in the last three decades was to explain

high-temperature superconductivity.

2.4.1 History of Superconductivity

The defining property of superconductivity is the vanishing of the electrical resis-

tance below a critical temperature Tc. Conventional superconductivity was already

found in 1911 by Kamerlingh Onnes in mercury below a critical temperature of

Tc = 4.2K [53]. In 1957 the underlying mechanism was explained by Bardeen,

Cooper and Schrieffer in the so-called BCS theory [54]. At low temperatures, lattice

vibrations introduce an attractive interaction between electrons, such that they form
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2.4 High-Temperature Superconductivity

Figure 2.3: Schematic phase diagram of a cuprate ceramic superconductor. At low
temperatures and zero doping the ground state is antiferromagnetic.
However, certain regions of doping allow for d-wave superconductivity
[52].

so-called Cooper pairs. Below the critical temperature Tc, the Cooper pairs condense

and undergo a phase transition to a superfluid exhibiting s-wave symmetry. A dif-

ferent kind of superconductivity was discovered in 1986 in doped cuprate ceramics

by Bednorz and Müller. While these materials are insulating at room temperature,

the resistance drops to zero at a temperature of 35K [55]. In these superconductors

the charge carriers are still Cooper pairs, though the formation of these pairs is no

longer induced by lattice vibrations. Since this kind of superconductivity is based

on a different mechanism and allows for much higher transition temperatures, it is

called high-temperature superconductivity. In the last three decades the examina-

tion of the phase diagram of high-temperature superconductors, see Fig. 2.3, and

the underlying mechanism of the Cooper pair formation have been subject of a huge

research effort. Despite much progress, the phase diagram is still not fully under-

stood. In recent years there have been discoveries of new types of superconductors

like iron-based superconductors [56, 57] or hydrogen sulfide at high pressure [58, 59].

The highest known transition temperatures are at Tc = 134K for cuprate ceramics,

Tc = 56K in iron-based superconductors and Tc = 204K for pressurized hydrogen

sulfide.
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2 Introduction

2.4.2 Hubbard Model

While many features of high-temperature superconductivity in cuprate ceramics are

still not understood, it is believed that many properties can already be addressed

by examining the electrons moving in the two-dimensional copper oxide layers. The

most promising model to describe the electrons in these layers is the Hubbard Model

on the square lattice [60–62]. It is defined by the Hamiltonian

H = −∑
ij,σ

tijc
�
i,σcj,σ + h.c. +U∑

i

(c�i,↓ci,↓)(c
�
i,↑ci,↑) . (2.2)

Here c�i,σ and cj,σ are the creation and annihilation operators of the electrons. The

first term describes the creation of electrons on one site while simultaneously re-

moving an electron on another site. Hence, this expression represents the hopping

of electrons from one fixed lattice site to another lattice site described by hopping

parameters tij. In cuprates only transitions to neighboring lattice sites are allowed.

Thus, a common convention is tij = t for nearest neighbors, tij = t′ for next-to-nearest

neighbors and tij = 0 otherwise. The last term counts electrons with opposing spins,

up or down, on the same lattice site. According to the Pauli principle only one

electron of each spin can occupy the same site. However, such a configuration is

penalized by a Coulomb repulsion U . Even tough this model is relatively simple, it

contains enough physics to explain most of the important features of cuprate super-

conductors, see Fig. 2.3. At low temperatures and zero doping the model correctly

exhibits an insulating antiferromagnetic ground state. Doping induces a transition

to a d-wave superconductor and even further doping can lead to a ferromagnetic

ground state. Furthermore, there are many other phases, like pseudogap phases and

a strange metal phase which are not completely understood. Until now the renor-

malization group has been employed to give insight into the physics of the Hubbard

Model. Purely fermionic renormalization calculations revealed the leading insta-

bilities of the Hubbard model in the antiferromagnetic and in the d-wave channel

[63–78]. They were unsuccessful in incorporating the interplay between antiferroma-

gentism and d-wave superconductivity. In order to analyze this interaction, a com-

bination of different schemes like renormalization group and mean field calculations

were employed [79–84]. The approach used in this thesis builds upon a bosonized

renormalization group analysis of the Hubbard model [85–92]. In this scheme the

truncation explicitly allows for emerging bosonic composite fields, corresponding to

superconductivity and antiferromagnetism. Thus, the interplay between the differ-

ent orders can be analyzed naturally within one consistent framework. In this thesis
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2.5 Strong Force

we contribute to the understanding of the phase diagram of the Hubbard Model at

zero temperature, for more details see Exploring the Hubbard Model on the Square

Lattice at Zero Temperature with a Bosonized Functional Renormalization Approach

[4]. While our results are consistent with purely fermionic zero temperature calcu-

lations [78, 83, 84], we have easier access to some parts of the phase diagram. We

are able to resolve a transition between two different kinds of antiferromagnetism,

commensurate and incommensurate. Furthermore, our renormalization flow can be

continued into the symmetry broken phases, where we find a coexistence between

antiferromagnetism and superconductivity, and their tendency to repel each other.

Lastly, our flow equations are able to follow the deformation of the Fermi surface by

antiferromagnetism.

2.5 Strong Force

While condensed matter physics deals with phenomena related to the electromag-

netic force, quantum chromodynamics (QCD) is the theory of the strong interaction

between quarks and gluons. They are constituents that make up the atomic nu-

cleus on length scales far below what is considered in condensed matter physics. A

prominent example where both research areas touch is nuclear fusion. Here, the

short ranged strong interaction needs to overcome the Coulomb repulsion of the

protons to form stable atomic nuclei under the release of energy.

2.5.1 History of Quantum Chromodynamics

QCD is the theory of the strong interaction. It was developed to describe many

new particles which were discovered in the 1950s. These particles were later in

1962 given the name hadrons, from greek: “large”, “massive”. The first to suc-

ceed in finding a mathematical description of the new particles were Gell-Mann and

Ne’eman [93]. At that point it was possible to group the hadrons into classes with

similar properties and masses. In 1963 Gell-Mann and Zweig [94, 95] proposed that

the structure of these groups could be explained if hadrons were composite particles

consisting of three flavors of smaller particles - the quarks. Experimentalists tried to

find evidence for these quarks, but failed, since they could not isolate quarks from

the hadrons. Gell-Mann’s mathematical model worked too well to dismiss it, but at

that point quarks were merely considered as convenient mathematical constructs,

but not real particles. It later turned out that quarks are real particles, but are
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2 Introduction

confined to hadrons at low energies2. In 1973 Fritzsch, Leutwyler and Gell-Mann

introduced the concept of quarks possessing a color charge which acts as the source

of the strong force [96]. This force is mediated by gluons, which themselves are

charged particles and thus interact with each other3. Their mathematical descrip-

tion is based on the general field theory developed in 1954 by Yang and Mills [97].

Gross, Politzer and Wilczek discovered in 1973 that the strong interaction becomes

asymptotically weaker as the energy scale, or temperature scale, increases [98, 99] .

This phenomenon, called asymptotic freedom, allowed physicists to explain many re-

sults of high-energy experiments by employing the quantum field theory technique of

perturbation theory. Finally, in 1979, evidence of gluons was discovered in three-jet

events at DESY. After the experiments got more precise, physicists where successful

in verifying perturbative QCD to a very high accuracy at CERN.

2.5.2 Quantum Chromodynamics

QCD is based on the gauge group SU(3) for the color degree of freedom. It is defined

by its Lagrangian density

LQCD = − 1

4
Ga
µνG

µν,a

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Lgluon

+∑
f

ψ̄bf(iγµDµ −mf)bcψcf
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Lquarks

, (2.3)

with the gauge covariant derivativeDµ = ∂µ−igAµ contracted with the Dirac matrices

γµ. The first term Lgluon describes the gluons in a Yang-Mills theory. The gluon field

strength tensor is the commutator of the covariant derivatives Gµν = 1/ig[Dµ,Dν].
In contrast to electromagnetism, which is described by a U(1) gauge theory, SU(3)

is a non-Abelian gauge group, this means the fields Aµ do not commute themselves

[Aµ,Aν] ≠ 0 . The second part Lquarks describes the dynamics of the quarks ψf ,

each with a different mass mf . The gauge covariant derivative couples the gluons

to the quarks.

The high temperature limit of QCD exhibits a quark-gluon plasma of asymptoti-

cally free interacting quarks and gluons. Since the interaction strength grows weak

at high energies, it can be accessed by perturbation theory. QCD at low energies is

inaccessible by conventional methods. In this regime the interaction strength grows

up to a point where QCD can only be examined by non-perturbative methods. The

most prominent features in this region of the phase diagram are the confinement of

2This observation is consistent with lattice QCD computations, but is not mathematically proven.
3This is in contrast to electromagnetism where the force is mediated by photons which do not

carry any charge.
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2.5 Strong Force

quarks and gluons and chiral symmetry breaking. Confinement is the observation

that quarks and gluons cannot be found isolated in ordinary matter. Chiral sym-

metry is an independent symmetry associated with each chirality, like left or right

handed. The classical Lagrangian for QCD couples left and right handed quark

fields only through mass terms which causes the explicit breaking of this symmetry.

Even without explicit mass terms, chiral symmetry is broken by the quark masses of

the QCD vacuum. Chiral symmetry breaking is responsible for the mass generation

of nucleons from elementary light quarks, accounting for approximately 99% of the

mass of visible matter.

A clean definition of these both properties as phase indicators is only valid in cer-

tain limits. For vanishing explicit quark masses the chiral symmetry gets restored

above a critical temperature. In the limit of infinitely heavy quarks a phase tran-

sition from a confining phase to a deconfined phase takes place. In full QCD with

physical quarks none of these assumptions are appropriate. In quenched calculations

where fermion fluctuations are neglected the chiral restoration and confinement-

deconfinement temperature coincide within reasonable accuracy [100]. The high

energy region, the quark-gluon plasma, and low energy regime, a gas of hadrons, are

depicted in the schematic phase diagram Fig. 2.4.

Figure 2.4: Phase diagram of QCD matter, ranging from regular nuclear matter to
quark-gluon plasma. Regular matter is confined while the quark-gluon
plasma is not [101].
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2.5.3 Lattice Gauge Theory

The most common approach to QCD is lattice QCD, which amounts to a discretiza-

tion of QCD on a spacetime lattice. One can link it to a continuous spacetime when

making the lattice infinitely large while its sites move infinitesimally close to each

other. Some of the most prominent features of QCD are already present without

considering dynamical quarks. This assumption reduces lattice QCD to lattice gauge

theory without fermions [102]. It can be employed to study pure gauge theory on a

discrete spacetime lattice. It is the simplest model which shares one of the most im-

portant features of QCD, color confinement. Confinement is the phenomenon that

gluons, or quarks, cannot be observed isolated. Lattice gauge theory is an approach

which allows us to study properties of QCD in a non-perturbative manner and is

thus one possible technique to explore the low energy limit of the phase diagram,

see Fig. 2.4. The discretization of spacetime allows for an efficient computation

of observables by Monte-Carlo simulations. The confinement-deconfinement phase

transition can be quantified by the Polyakov loop order parameter, which is defined

as the average of timelike loops on lattice configurations. It is zero in the confining

phase and finite in the deconfining phase.

This parameter plays a crucial role in our investigation of the phase diagram of

SU(2) lattice gauge theory. As it turns out, the Polyakov loop is the dominant

quantity, that an artificial neural networks learns automatically, when tasked to

find the phase diagram of lattice gauge theory. It is worth noting that the Polyakov

loop is an order parameter which is non-linear and non-local and thus an excellent

demonstration for the power of our neural networks. For more details on how to

explore the confinement-deconfinement transition with an artificial neural network,

see Machine Learning of Explicit Order Parameters: From the Ising Model to SU(2)

Lattice Gauge Theory [3].
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a b s t r a c t

The Renormalisation Group is a versatile tool for the study of
many systems where scale-dependent behaviour is important. Its
functional formulation can be cast into the form of an exact flow
equation for the scale-dependent effective action in the presence
of an infrared regularisation. The functional RG flow for the scale-
dependent effective action depends explicitly on the choice of reg-
ulator, while the physics does not. In this work, we systematically
investigate three key aspects of how the regulator choice affects
RG flows: (i) We study flow trajectories along closed loops in the
space of action functionals varying both, the regulator scale and
shape function. Such a flow does not vanish in the presence of
truncations. Based on a definition of the length of an RG trajec-
tory, we suggest a constructive procedure for devising optimised

* Corresponding author.
E-mail address:wetzel_s@thphys.uni-heidelberg.de (S.J. Wetzel).

http://dx.doi.org/10.1016/j.aop.2017.06.017
0003-4916/© 2017 Elsevier Inc. All rights reserved.



166 J.M. Pawlowski et al. / Annals of Physics 384 (2017) 165–197

regularisation schemes within a truncation. (ii) In systems with
various field variables, a choice of relative cutoff scales is required.
At the example of relativistic bosonic two-field models, we study
the impact of this choice as well as its truncation dependence. We
show that a crossover between different universality classes can
be induced and conclude that the relative cutoff scale has to be
chosen carefully for a reliable description of a physical system.
(iii) Non-relativistic continuum models of coupled fermionic and
bosonic fields exhibit also dependencies on relative cutoff scales
and regulator shapes. At the example of the Fermi polaron problem
in three spatial dimensions, we illustrate such dependencies and
show how they can be interpreted in physical terms.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In the past twenty years, the functional renormalisation group (FRG) approach [1] has been
established as a versatile method allowing to describe many aspects of different physical systems
in the framework of quantum field theory and statistical physics. Applications range from quantum
dots and wires, statistical models, condensed matter systems in solid state physics and cold atoms
over quantum chromodynamics to the standard model of particle physics and even quantum gravity.
For reviews on the various aspects of the functional RG see [2–19].

The functional renormalisation group approach can be set-up in terms of an exact flow equation for
the effective action of the given theory or model [1]. The choice of the initial condition at some large
ultraviolet cutoff scale, typically a highmomentumor energy scale, togetherwith that of the regulator
function determines both, the physics situation under investigation as well as the regularisation
scheme. The functional RG flow for the scale-dependent effective action depends explicitly on the
choice of regulator, while the physics does not. The latter is extracted from the full quantum effective
action at vanishing cutoff scale implying a vanishing regulator. Hence, at this point no dependence on
the choice of regulator is left, only the implicit choice of the regularisation scheme remains.

Typically, for the solution of the functional flow equation for the effective action one has to resort
to approximations to the effective action as well as to the flow. Such a truncation of the full flow
usually destroys the regulator independence of the full quantum effective action at vanishing cutoff.
Therefore, devising suitable expansion schemes and regulators is essential for reliable results. In the
context of perturbation theory and beyond, the principle of minimal sensitivity (PMS) [20] suggests
to use extrema in the regulator dependence of specific observables as the most accurate result, see,
e.g., [21–24]. Here, we strive for a constructive approach for finding an optimised regulator. Moreover,
related considerations also allow for a discussion of the systematic error within a given truncation
scheme. This has been examined in detail for the computation of critical exponents in models with
a single scalar field in three dimensions within the lowest order of the local potential approximation
(LPA), [7,25–33]: an optimisation procedure, [7,23,27] suggests a particular regulator choice – the flat
regulator – which is also shown to yield the best results for the critical exponents.

The optimisation framework in [7] has been extended to general expansion schemes in a functional
optimisation procedure including fully momentum-dependent approximation schemes. An applica-
tion to momentum-dependent correlation functions in Yang–Mills theory and ultracold atoms can be
found in [34–36].

Still, for more elaborate truncations, in particular higher orders of the derivative expansion in
the LPA, including, e.g., momentum dependencies or higher-order derivative terms, little has been
done when it comes to a practical implementation of constructive optimisation criteria. Also, more
complex physical models with different symmetries such as, e.g., non-relativistic systems, or models
with several different fields, for examplemixed boson–fermion systems, demand for a thorough study
of their regulator dependence in order to extract the best physical results from a given truncation.
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In this paper we study the impact of different regulator choices on truncated functional renormal-
isation group flows in various models and further develop the functional optimisation procedure set-
up in [7]. In its present form it allows for a practical and simple comparison of the quality of different
regulators and for the construction of an optimised one.

The rest of the paper is organised as follows: In Section 2 we shortly introduce the FRG approach
and explain how the choice of a specific regulator influences a truncated FRG flow. This is captured in
terms of an integrability condition for closed loops in theory space upon a change of the regulator
and RG scale, cf. Section 2.4. In Section 3 we then devise a road towards a practical constructive
optimisation procedure. We discuss the length of an RG trajectory which has to be minimal for
an optimised regulator, cf. Section 3.2. This procedure is then applied to a simply scalar model
(Section 3.4). Amore heuristic approach tomodelswith various degrees of freedom such as two-scalar
models and non-relativistic boson–fermion systems, is presented in Sections 4 and 5, respectively. To
this end, we introduce a shift between the regulator scales of the different fields and show how this
affects the results allowing for a change of the underlying physics upon varying the regulator. This,
again, clearly demands for carefully choosing a regularisation scheme which could be performed by a
optimisation procedure as suggested in this work.

2. Functional RG flows

The functional renormalisation group is based on the Wilsonian idea of integrating out degrees of
freedom. In the continuum, this idea can be implemented by suppressing the fluctuations in the theory
below an infrared cutoff scale k. An infinitesimal change of k is then described in terms of a differential
equation for the generating functional of the theory at hand — Wetterich’s flow equation [1]. The
infrared suppression can be achieved by adding a momentum-dependent mass term to the classical
action,

S[ϕ] → S[ϕ] +
1
2

∫
p
ϕ(p)Rk(p)ϕ(−p), (1)

with
∫
p =

∫ ddp
(2π )d

. The regulator Rk(p) tends towards a mass term for low momenta and vanishes
sufficiently fast in the ultraviolet, see (3) and (4).

With the cutoff scale dependent action (1) also the one-particle-irreducible (1PI) effective action
or free energy, Γk[φ], acquires a scale dependence. The nth field derivatives of the effective action,
Γ

(n)
k [φ], are the 1PI parts of the n-point correlation functions in a general background φ = ⟨ϕ⟩. The

flow of Γk is given by

∂tΓk =
1
2
TrGk[φ] ∂tRk with Gk[φ] =

1

Γ
(2)
k [φ] + Rk

, (2)

where we have introduced the renormalisation time t = ln k/Λ. Here, Λ is some reference scale,
usually the ultraviolet scale, where the flow is initiated. The trace sums over all occurring indices,
including the loop integration over momenta. The regulator is conveniently written as

Rk(p) = Zkp2 r(p2/k2), (3)

with the dimensionless shape function r(y) that only depends on the dimensionless ratio y = p2/k2.
The regulator functions fulfil the infrared and ultraviolet conditions

lim
y→0

y r(y) > 0 , lim
y→∞,ϵ>0

yd/2+ϵ r(y) = 0. (4)

The first limit in (4) implements the infrared suppression of lowmomentummodes as the propagator
Gk acquires an additional infrared mass due to Rk. The second limit guarantees that the ultraviolet is
unchanged. The regulator Rk(p) has to decay with higher powers as pd in d dimensions in order to
have a well-defined flow equation without the need of an ultraviolet renormalisation. Approximating
the effective action, for example using a derivative expansion, can add additional constraints to the
regulator. With (4) the flow equation (2) is ultraviolet finite due to the sufficiently fast decay of the
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regulator in the ultraviolet. Here, we presented the relativistic case for simplicity. The arguments can
be extended to the non-relativistic case, e.g. [37]. We discuss one specific example for such a non-
relativistic system in Section 5.

2.1. Ultraviolet limit and regulator dependence

In the limit k → ∞, the cutoff term in (1) suppresses all momentum fluctuations. To discuss this
limit, we consider the RG running of the scale-k-dependent couplings gn(k) parametrising the theory
in terms of a suitable basis of field monomials, i.e., Γk =

∑
ngn(k)On(∂, φ) . We classify the gn(k)

according to their UV scaling dimension dn that follows from the running of the couplings towards
the ultraviolet (UV) with the flow equation (2). The UV scaling dimension dn is the full quantum
dimension, i.e., canonical plus anomalous dimension,

gn(k) ∼ kdn . (5)

Terms in the effective action Γk whose couplings gn(k) have semi-positive UV scaling dimension,
dn ≥ 0, dominate the UV behaviour. In turn, terms with couplings gn(k) with dn < 0 are sub-leading
or suppressed.

Let us demonstrate this at the example of the relativistic ϕ4 field theory in d = 3 dimensions. This
theory is super-renormalisable and the only parameter with a positive UV scaling dimension is the
mass parameter m2

k = Γ
(2)
k (p = 0, φ = 0). The flow of the mass is derived from (2) with a second

order field derivative evaluated at vanishing fields and momenta, to wit

∂tm2
k = −

1
2

∫
q
Gk(q) ∂tRk(q)Gk(q)Γ

(4)
k (q, q, 0, 0), (6)

where we have used that the three-point function vanishes due to the symmetry of the theory under
φ → −φ, i.e., Γ (3)

k [φ = 0] = 0. In the UV limit the flow (6) simplifies considerably. The four-point
function tends towards a local scale-independent vertex, i.e., Γ (4)

k→∞
(p1, . . . , p4) → λUV. For k → ∞,

the propagators in (6) are simply given by

Gk(q) =
1

q2[1 + r(q2/k2)] + m2
k
. (7)

Here, we have also used that the wave function renormalisation Zk → 1+O(1/k) in the limit k → ∞.
This can be proven analogously to the following determination of the asymptotic scaling of the mass.
For the mass we are hence led to the asymptotic UV flow

∂tm2
k = −k λUV

∫
q̄

q̄4∂q̄2 r(q̄2)

(q̄2[1 + r(q̄2)] + m̄2
k)2
, (8)

where quantities denoted with a bar are scaled with appropriated powers of k in order to make them
dimensionless, i.e., q̄2 = q2/k2 and m̄2

k = m2
k/k

2. The flow (8) is further simplified if we reduce it to the
leading UV scaling. To that end, we notice that the flow scales with k for m̄k = 0. Hence, for k → ∞

we havem2
k ∝ λUV k and m̄2

k ∝ λUV/k → 0. Accordingly, we have

m2
k = µ(r)λUV k + O(k0) ,

with the dimensionless factor

µ(r) = −

∫
q̄

∂q̄2 r(q̄2)
[1 + r(q̄2)]2

. (9)

We conclude that themass parameterm2
k diverges linearly with k. We also note that the constantµ(r)

is non-universal and depends on the chosen regulator r . Additionally, the above simple example nicely
reflects the regularisation and renormalisation scheme dependence in the present modern functional
RG setting: UV divergences in standard perturbation theory are reflected in UV relevant terms such
as µ(r)λUV k, that diverge for k → ∞. The subtractions or renormalisation in perturbation theory
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Fig. 1. Left panel: Pictorial representation of the integrability condition (12) in the theory space of action functionals. By
means of (11), we can map the two actions at the initial scale Λ onto each other. Integrating out momentum fluctuations
from k = Λ towards k = 0 then yields the full quantum effective action for both regulators, i.e., Γ0,k=0 = Γ1,k=0 . Middle
panel: Approximations lead to a violation of the integrability condition, cf. (15). Right panel: Pictorial representation of several
successively performed loops according to (15) within an approximation for the full propagator Gk . This sketch exhibits how
the result for the full effective action Γk=0 moves further and further away from its initial position in theory space.

are reflected in the consistent choice of the initial condition that makes the full effective action Γk=0
independent of the initial scale k = Λ. Accordingly, the initialmassm2

Λ has to satisfy the flowequation
(6) which again leads to (9) for m2

Λ. In other words, the Λ-dependence of the flow is annihilated by
that of the initial conditions. This accounts for a BPHZ-type renormalisation, for detailed discussions
see e.g. [7,13,38] and references therein. Consequently, a part of the standard renormalisation scheme
dependence is carried by the regulator dependence of µ(r).

Finally, the physics is entirely carried by the finite part of the UV limit, that is the O(k0) term in (9).
Since this finite UV part has first to be mapped to k → 0 via the flow, it also carries a renormalisation
scheme dependence. In summary, the latter is given by a combination of the shape dependence and
the finite part of the initial condition. This simple distinction can be used to rewrite the effective action
in terms of renormalised fields and parameters for obtaining a finite UV limit, see e.g. [7,13].

2.2. Initial actions and integrability condition

The above discussion already highlights the regulator- or r-dependence of the flow and the scale-
dependent effective action. However, despite this r-dependence of the flow, the final effective action
Γk=0, when expanded in the basis of n-point functions, is unique up to RG transformations, see
Appendix A for a discussion of this issue. This is illustrated in theory space in the left panel of Fig. 1.
The initial effective actions at the UV scaleΛ differ due to the different shape functions r . Nonetheless,
we can map the initial effective actions onto each other by the following flow equation

∂sΓs,Λ =
1
2
TrGΛ[φ] ∂sRs,Λ, (10)

with Rs,k = p2rs and where we use a one parameter family of shape functions rs(y) with r0(y) = rA(y)
and r1(y) = rB(y) which analytically transforms rA into rB. Then, (10) is easily derived similarly to the
cutoff flow (2). Consequently, the two initial actions are mapped onto each other by the s-integration
of (10),

Γ1,Λ = Γ0,Λ +
1
2

∫ 1

0
ds TrGΛ[φ] ∂sRs,Λ, (11)

and the full quantum effective actions agree trivially, Γ0,k=0 = Γ1,k=0, see also left panel of Fig. 1. This
statement can be reformulated as an integrability condition∫ 1

0
∂sΓs,Λ +

∫ 0

Λ

dk
k
∂tΓ1,k +

∫ Λ

0

dk
k
∂tΓ0,k = 0, (12)

which defines a closed loop in theory space.
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2.3. Integrability condition and approximations

In general, the integrability condition (12) is violated in approximations to the full effective action,
and the flow ceases to describe a total derivative with respect to t and s. The relation between
an approximation of the effective action or rather of the propagator in the flow equation and the
derivative operators ∂t and ∂s is more clearly seen in the general flow equation for a complete set of
composite operators {Ik} derived in [7],

∂t Ik[φ] =

(
−

1
2
TrGk[φ] ∂tRk Gk[φ]

δ2

δφ2

)
Ik. (13)

The set of general n-point correlation functions ⟨φ(x1) · · ·φ(xn)⟩ with connected and disconnected
parts forms such a complete set, and is part of the set {Ik} that satisfies (13). For a concise recent
derivation of (13) see [39]. A further relevant example is δΓk/δφ. For δΓk/δφ one easily sees that the
φ-derivative of the flow (2) gives (13) with Ik = Γ

(1)
k . Note, however, that the effective action Γk

does not satisfy (13). Another simple test is given by the full two-point function Gk(p, q) + φ(p)φ(q).
Importantly, as the set of composite operators that satisfy (13) includes all correlation functions it is
complete. We conclude that the total t-derivative has the representation

∂t =

(
−

1
2
TrGk[φ] ∂tRk Gk[φ]

δ2

δφ2

)
, (14)

on the – complete – set of composite operators {Ik}. Eq. (14) makes explicit the consequences of
approximations to the effective action for the total t-derivative: they imply approximations for the
full propagators Gk and hence approximations to the representation (14) of the total t-derivative ∂t .
Consequently, an integration along a closed loop in regulator space does not necessarily vanishwithin
an approximation to the effective action. Note that the notation ∂t for the total t-derivative is common
in the FRG community and we keep it for the sake of comparability.

For our discussion of flows that change regulators as well as cutoff scales we extend the notation
with the parameter s to general one-parameter flows in theory space. Such a flow includes changes
of the cutoff scale k with k(s), changes of the shape of the regulator rs and reparametrisations of the
theory, see Appendix B for a detailed discussion. Within this unified approach a closed loop such as
the global one in (12) has the simple representation∮

C
dΓ [φ, R] =

∫ 1

0
ds

d
ds
Γs[φ, Rs] = 0. (15)

here, s parameterises the closed curve C, and Rs describes a loop in regulator space with R0 = R1. In
general, approximations to the effective action Γk lead to∫ 1

0
ds

d
ds
Γs[φ, Rs] ̸= 0, (16)

for closed loops, see Fig. 2 for a pictorial representation. This also means that if such a loop is taken
many periods eventually the result will be dominated completely by the errors introduced by the
approximation of the representation to the total t-derivative. In particular, the global loop shown in
the left panel of Fig. 1 does not close.

A violation (16) of the integrability condition (15) is a measure for the self-consistency of the
approximation at hand. In the following we will use it in our quest for optimal regulators as well
as a systematic error estimate. In Appendix C we discuss under which circumstances (15) is violated
andwhen it is satisfied. A systematic error estimate of a given approximation can be set up as follows:
Consider general closed loops in theory space initiated from a given regulator RA

k . Then, we change the
regulator at a fixed initial scale as in (10), and subsequently flow to vanishing cutoff scale. For sensible
regulator choices, the spreading of the results for Γ [φ, R = 0] provides an error estimate, see Fig. 3
for a pictorial representation. This will be explicitly explored in the following Section 2.4.
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Fig. 2. Generalised one-parameter flows. Left panel: The exact flow equation provides the integrability condition, (15). Right
panel: In general, the integrability condition is violated when approximations to Gk are employed, cf. (16).

Fig. 3. A change of regulator at the UV scale Λ, Eq. (11), maps the action ΓA,Λ onto one of the others, ΓB,Λ,ΓC,Λ,ΓD,Λ ,
corresponding to different regulators. Then, integrating the RG flow in an approximation towards k = 0 results in different
approximations to the IR quantum effective action, i.e., Γi,0 with i ∈ {A,B,C,D}, cf. Eq. (15). The spreading of these results from
a large class of general regulators can be used as an error estimate for an approximation.

2.4. Scalar model

Generally, it is not possible to exactly solve the flow equation (2) for the flowing action Γk.
Therefore, we have to devise suitable truncation schemes for the functional Γk. A simple scheme is
given by the derivative expansion which assumes a small impact of momentum fluctuations on the
correlation functions. In this section, we will investigate a three-dimensional O(1) (also known as Z2)
symmetric scalarmodel to explore the effects of regulator choices on functional RG results. Our ansatz
is given by the local potential approximation (LPA)

Γk =

∫
x

[1
2
(∂µφ)2 + Uk(φ)

]
, Uk =

∑
i

λ̄i

i!
(ρ̄ − κ̄)i , (17)

with the real scalar field φ, the scale-dependent effective potentialUk and the field invariant ρ̄ =
1
2φ

2,
κ̄ denotes the minimum of the effective potential.

The parameters of the effective potential are scale dependent quantities λ̄n = λ̄n(k) and κ̄ = κ̄(k),
however for brevity, we will not indicate this in the following. Further, we have set the wave function
renormalisation to unity, dropping all non-trivial momentum-dependences. For calculations, we
introduce the dimensionless effective potential and couplings u(ρ) = Ukk−d, κ = k2−dκ̄, ρ = k2−dρ̄
and λi = λ̄ik−d+i(d−2). Then, we can write the flow equation for the effective potential as

∂tu = −d u + (d − 2)ρ u′
+ I(u′

+ 2ρ u′′), (18)
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Fig. 4. Change of the initial conditions for different choices of linear interpolations from rflat to ri . The parameter-dependent
regulator rcss was chosen with c = 0.5, b = 1, h = 0.5. The shape function rsl with c = 10.

where primes denote derivatives with respect to ρ and we have defined the threshold function

I(w) = vd

∫
∞

0
y

d
2 +1dy

−2 ∂yr(y)
y(1 + r(y)) + w

, (19)

with y = p2/k2 and v−1
d = 2d+1π

d
2Γ (d/2). Using the series expansion of the effective potential,

(17), also for its dimensionless version, we extract the flow equations for the individual couplings by
projections, see Appendix E for explicit expressions.

2.4.1. Switching regulators at fixed RG scale
As discussed in Section 2.2 a change in the regulator triggers a flow in the space of action

functionals. In particular this means that switching from one regulator to another induces a change in
the initial conditions as exhibited in (11). To visualise this change explicitly,we employ superpositions
of two regulators at a fixed scale k, with s ∈ [0, 1],

rs(y) = s rA(y) + (1 − s) rB(y) . (20)

The flow equation with respect to the variable s is then,

∂su = J(u′
+ 2ρ u′′) ,

J(w) = vd

∫
∞

0
y

d
2 dy

∂srs(y)
y(1 + rs(y)) + w

, (21)

where ∂srs(y) = rA(y) − rB(y). More generally, we do not require a linear superposition as specified
in (20), but we can switch regulators on an arbitrary smooth trajectory while keeping the scale k
fixed. The change of initial conditions from switching between different regulators is then given by
the solution of the flow equation (21).

In Fig. 4, we show this solution for a collection of representative regulator shape functions listed in
Table 1 which we switch by a linear interpolation. Here, we have integrated flow equations within an
LPA expanded to fourth order in φ in the symmetric regime, concentrating on the four-scalar coupling
and the only relevant coupling, the mass parameter. In Fig. 4 we follow the regulator-dependence of
the two dimensionless couplings λ1 = m2 and λ2, starting at s = 0 with the flat regulator rflat and the
initial conditions λ(in)1 = 0.1 and λ(in)2 = 5.0. Fig. 4 clearly exhibits the change in the initial conditions
upon variations of the regulator shape function at fixed RG scale k. Interestingly, the largest difference
in initial conditions starting from rflat is given by switching to the sharp regulator rsharp.
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Table 1
Step-like, compactly supported smooth [40,41], and exponential interpolating classes of regulator shape functions r , and re-
spective parameter choice that provide exponential, flat and sharp regulators in the respective class.

Regulator type Representation Limits

Exponential rexp(y) = (exp(y) − 1)−1 –

Flat (Litim) rflat(y) = ( 1y − 1)θ (1 − y) –

Step-like rsl(y) =
c
y θ (1 − y) limc→∞rsl(y) → rsharp(y)

Compactly supported smooth rcss(y) =
c θ (1−hyb)

exp( cyb

1−hyb
)−1

(i) limb→∞rcss(y) → rsharp(y) , for c > 0, h = 0
(ii) limc→0rcss(y) → rflat(y) , for b = 1, h = 1
(iii) rcss(y) = rexp(y) , for b = c = 1, h = 0

Exponential interpolating rint(y) =
(a−by)yn−1

exp(yn)−1

(i) lima,n→∞rint(y) → rsharp(y) , for b = 0
(ii) limn→∞rint(y) → rflat(y) , for a = 1, b = 1
(iii) rint(y) = rexp(y) , for a = 1, b = 0, n = 1

2.4.2. Loops in k − Rk space
In addition to the change of the regulator shape from RA

k to RB
k at a fixed RG scale, we now allow for

a dependence of the RG scale k on the loop variable s, i.e., k → k(s). Then, we can perform integrations
along closed loops in theory space, cf. Fig. 2, and study the violation of the integrability condition,
(15), explicitly. Such a combined change of regulator and RG scale can be incorporated in a linear
interpolation between two scale dependent regulators

Rs,k(s) = a(s)RA
k(s) +

(
1 − a(s)

)
RB
k(s), (22)

where a(s) ∈ [0, 1] parametrises the switching from one regulator function to another. In order to
solve the flow equations along a loop in k−Rk− space we add to (21) the termswhich include solving
the flow equations in k direction,

d
ds

u = J(u′
+ 2ρ u′′) +

∂sk(s)
k(s)

(
−d u + (d − 2)ρ u′

)
. (23)

The s-derivative of the regulator in the threshold function J(ω) defined in (21) can be decomposed
into two contributions

d
ds

rs(y) = ∂srs(y)
|

|  
change of shape

− 2
∂sk(s)
k(s)

y ∂yrs(y)  
explicit change of scale

, (24)

where the first term keeps track of the change of the shape of the regulator function rs(y), while the
second term tracks the change of the cutoff scale k(s). Evidently this is just a convenient splitting as
the change of k(s) can also be easily described by a change of rs. This is seemingly a trivial remark
but it hints at the fact that a change of the shape of the regulator may very well imply a change of
the physical cutoff scale. This discussion will be detailed further in Section 3. Explicitly, the involved
derivatives are given by

∂srs(y) =
(
rA(y) − rB(y)

)
∂sa(s) ,

∂yrs(y) = a(s)∂yrA(y) + (1 − a(s))∂yrB(y) . (25)

In the following, we again employ a linear superposition between two regulators, e.g., rexp and rsharp,
and solve the flow of the scalar model in LPA to order φ4 along a closed loop. Each closed loop in k−Rk
space along a rectangle contour then consists of four steps, see Fig. 5 for a representative contour:

1. The flow equation is solved from k1 to k2.
2. Switch the regulator continuously from rA to rB.
3. Reverse the flow from k2 to k1.
4. Switch back from regulator rB to rA.
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Fig. 5. Representative contours of a closed loop in k − Rk space including changes of regulator shape as well as RG scale. The
rectangle contour separates solving the flow equations and switching the regulators. The ellipse contour however, allows for
simultaneous changes in the scale and the regulator shape.

Fig. 6. Flow of the couplings λ1,2 along one closed-loop rectangle shaped contour as defined in Fig. 5. The red dashed curve
shows the switching from rflat to rsharp and the blue solid curve the switch from rflat to rexp . At the end of the closed-loop
integration the values of the couplings λ1,2 deviate slightly from their initial values.

The flow of the couplings λ1 and λ2 along one such closed loop is depicted in Fig. 6. For these
calculations,we again use the initial valuesλ(in)1 = 0.1 andλ(in)2 = 5.0.We switch from rflat to rsharp (red
dashed) or to rexp (blue solid), respectively. The change from rflat to rexp is smooth as both regulators
are finite for all momenta. In contrast, the change from rflat to rsharp shows a discontinuous peak in
the flow of λ1,2: the transition from the flat to the sharp regulator instantly lends an infinite infrared
mass to the propagator for momenta lower than the cutoff scale of the sharp regulator. In either case
the integration along one of our chosen closed-loop contours shows slight deviations from the initial
values of λ1 and λ2, see Fig. 6.

The deviations from the initial values add up when the procedure of integrating along a closed-
loop contour in k − Rk space is repeated. This is shown in the upper panel of Fig. 7 for a consecutive
integration along four of the closed loops as defined in Fig. 5. In fact, after these four closed loops
the values of the coupling constants λ1,2 strongly deviate from their initial values. For comparison, in
Fig. 7, we also show an integration along an alternative closed-loop, defined by an ellipse contour, cf.
Fig. 5. This integration can be performed in a completely analytical way for a transition from rflat to
rsharp as shown in Appendix F.

Our study clearly demonstrates the violation of the integrability condition, (15), for truncated
renormalisation group flows. The severeness of this violation depends on the chosen regulators,
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Fig. 7. Upper panels: Flow of the couplings λ1,2 along four rectangular closed loops switching from rflat to rsharp . Lower panels:
Flow in k − Rk space with rflat and rsharp along an ellipse contour (counter clockwise), with an interpolation starting with scale
k(in) = 2.0 and r = rflat(y) + rsharp(y/2), cf. Appendix F.

cf. Fig. 6 and indicates the necessity of an educated choice of the regularisation scheme in renormali-
sation group investigations to establish and improve the reliability of physical results. The following
section is dedicated to devising such an educated choice in terms of an optimisation procedure.

3. Optimisation

In order to obtain the best possible results from the functional renormalisation group approach
within a given truncationwewould like to single out the optimal regulator scheme for the underlying
systematic expansion. Here we follow the setup of functional optimisation put forward in [7]. The
discussion of systematic error estimates related to optimisation requires a norm on the space of
theories (at k = 0) in order to measure the severeness of the deviations. Here, we are not after a
formal definition but rather a practical choice of such a norm.

We illustrate complications with the definition of such a norm by means of a simple example: we
restrict ourselves to the local potential approximation (LPA), or LPA′ where in the latter we take into
account constant wave function renormalisations Zk. Then, a seemingly natural choice is the cartesian
normon theory space spannedby the constant verticesλn = Γ (n)

[φEoM] evaluated, e.g., at the equation
of motion φEoM. However, this falls short of the task as it weights a deviation in higher correlations or
vertices λn in the sameway as that of the lower ones, despite the fact that the lower ones are typically
more important. Additionally, the Γ (n) are neither renormalisation group invariant nor do they scale
identically, see (A.2).

If we extend the above setting to a general vertex expansion scheme, the coordinates in theory
space are related to Γ (n)

[φEoM](p1, . . . , pn). These quantities are operators and the definition of the
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related nth axis of the coordinates system requires a suitably chosen operator norm, for a more
detailed discussion see [7]. Even though this general case can be set-up, for most practical purposes
it is sufficient to rely on a simple definition of a norm adapted to the approximation at hand.

Let us assume that we found a norm that allows to define the length L[C] of a given flow along a
trajectory C in theory space parametrised with s ∈ [0, 1], flowing from some regulator Rs=0 to Rs=1.
For example, we can consider the global flow with a given regulator from k = Λ to k = 0, i.e., the
flow trajectory does not necessarily have to be a closed loop. The discussions in the previous section
suggest that, in a given approximation, a deviation from the full effective action gets amplified during
the renormalisation flow. We thus accumulate an error while solving the flow equation. In turn we
should try to minimise the flow length in order to minimise the systematic error. Accordingly, we
have to compare the lengths of different trajectories L[C]. This heuristic argument can be made more
precise, [7]: without approximation the final effective action Γ [φ, R = 0] does not depend on the
trajectory, in other words

δ

δRs(p)

∫ 1

0
ds ∂sΓ [φ, R] = 0. (26)

Note however, that this discussion bears an intricacy, as it implies the comparison of the length of
flow trajectories of physically equivalent effective actions Γ [φ, RA

] and Γ [φ, RB
] towards Γ [φ, 0].

Therefore, we should compare trajectories that always start at physically equivalent effective actions
at a large physical cutoff scale.

3.1. Physical cutoff scale

The cutoff parameter k is usually identifiedwith the physical cutoff scale, but such an identification
falls short in the general case. To understand this, let us re-evaluate the example of the flows with rA
and rB leading to the circular flow (12). In the spirit of the discussion above it seems to be natural to
compare the two flows from k = Λ to k = 0with the regulators rs=0 = rA and rs=1 = rB, respectively,
while the s-flow in this example simply switches the regulator at a fixed scale k = Λ. This picture
fails trivially for

r1(x) = r0(x/λ) , with R1,k = R0,λk, (27)

where the change of regulators simply amounts to changing the scale. As trivial as this example is, it
highlights a key question:

What is the physical cutoff scale for a given regulator?

In Ref. [7] it has been argued that within practical applications it is suggestive to use the physical
gap of the theory as the practical definition of the physical infrared or cutoff scale. Strictly speaking
this asks for the evaluation of the poles and cuts of the theory in a real time formulation. For
the scalar and Yukawa-type theories explicitly discussed in the present work it has been shown
in [42] that the real-time pole masses and the imaginary time curvature masses are very similar in
advanced approximations. For the present purpose these subtleties are not relevant andwe introduce
a definition of the inverse gap as the maximum of the imaginary time propagator,

1
k2phys

= max
p,φ

G[φ, R]. (28)

For the sake of simplicity we have restricted ourselves to constant backgrounds φ. In the general
case, (28) picks out the maximal spectral value of the propagator G [7]. Note also that in theories
with several fields one has to monitor the gaps of all the fields involved. In the present work this is
importantwithin the example theories studied: the relativisticO(M)⊕O(N)models as a simplemodel
theory, as well as a non-relativistic Yukawa model for impurities in a Fermi gas. A further intricacy
originates in different dispersion relations of the fields involved such as relativistic scalar field with
p2 and fermionic fields with /p. Then, the relative physical cutoff scale may involve a nontrivial factor
in comparison to the gap. The latter subtlety will be discussed elsewhere.
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Fig. 8. Comparison of different normalised and regularised propagators (y(1 + ri(y)))−1 with shape functions ri(y) as listed in
Table 1. Here, rcss is plotted with b = 1.25, c = 3 and h = 0.12.

Note also, that in (28) a fixed identical RG scheme for all regulators is required, as the propagator
is not invariant under RG transformations ∂sG[φ, R] = −2γφG[φ, R], cf. Appendix A. Such a fixed RG
scheme can be defined by first selecting one specific flow from kphys = Λ to kphys(k = 0), the latter
being the physical gap of the theory at k = 0. Then regulator changing flows such as defined in (10)
at the fixed physical UV scale kphys = Λ lead to initial conditions within the same RG scheme defined
at k = 0. This leads to closed flows without taking into account a further RG transformation at k = 0.
Hence, (28) implies that the normalised dimensionless propagator satisfies a renormalisation group
invariant bound,

Ḡ[φ, R] ≤ 1∀ p, φ , with Ḡ[φ, R] = k2physG[φ, R]. (29)

In summary, we call theories in the presence of a regulator physically equivalent, if the gaps kphys of all
fields agree. In Fig. 8 we present some examples for this criterion for classical propagators in a theory
with V ′′(φmin) = 0. These examples are relevant for the LPA approximation which we predominantly
use in the present work.

3.2. Optimisation and length of an RG trajectory

Now we are in the position to define the length of a flow trajectory C. Keeping in mind the
discussion of the coordinate system in theory space at the beginning of this Section,we reduce the task
by using the effective action itself, evaluated on fields close to the solution of the quantum equations
of motion φmin with

δΓ [φ, R]
δφ

⏐⏐⏐⏐
φ=φmin

= 0. (30)

The value of the effective action has no physics interpretation and depends on the renormalisation
procedure, i.e., the chosen regulator and initial condition. Therefore,we resort to the second derivative
Γ (2)

[φ, R] rather than to Γ [φ, R] itself. Indeed, the natural choice is the connected two-point correla-
tion function or rather thenormaliseddimensionless two-point function Ḡ[φ, R] = k2phys⟨φ(p)φ(−p)⟩c ,
cf. (29). Here, the subscript c refers to the connected part. This is motivated by the fact that themaster
equation (2) only depends on the propagator, as do the operator representations for the total t- and
s-derivatives, (14) and (B.2).

Measuring the length of the flow of the dimensionless propagator Ḡ[φ, R] requires a coordinate
system in theory space where the axes are, e.g., expansion coefficients of the propagator, Ḡ(n) or the
spectral values of the propagators linked to an expansion in the eigenbasis of Ḡ

λ̄max = 1 , for λ̄ ∈ spec Ḡ[φ, R(kphys)]. (31)
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To summarise, the procedure for finding an optimal regulator for a given truncation of the effective
action consists of: choosing an operator norm ∥.∥ for Ḡ as well as for ∂sḠ, then, defining the length of
a flow trajectory C with that of the length of ∥∂sḠ∥. Given a set of regulators, the one with the shortest
flow length is singled out.

3.3. Functional optimisation criterion

Before we come to integrated flows, let us evaluate the consequences of the discussion above.
Firstly, we assert that monotonous flows are shorter than non-monotonous ones. Assuming already
a restriction to monotonous flows for G and hence Ḡ, we find a simple optimisation criterion in
terms of the dimensionless propagator: Ḡ is bounded from above by unity, see (29). Moreover, for
optimal regulators the propagator is already as close as possible to this bound due to its monotonous
dependence on t . This leaves us with

∥p̄2(Ḡ[φ, Ropt] − Ḡ[φ, 0])∥ = min
R∈R(kphys)

∥p̄2(Ḡ[φ, R] − Ḡ[φ, 0])∥, (32)

where p̄2 = p2/k2phys. The prefactor p̄2 has been introduced for convenience to easily accommodate
also for massless modes at vanishing cutoff scale. The criterion (32) has been derived in [7], where it
also has been shown that for optimised regulators local integrability is restored.

With Eq. (32), for a given background φ, we have reduced theory space to a one-dimensional
subspace with a simple cartesian norm. Still, the space of regulators is infinite-dimensional and the
length of a given flow curve parametrised by s is related to the size of the flow operator equations (14)
and (B.2) for t-flows or s-flows, respectively. The flow operators involve second-order φ derivatives
as well as kernel of the flow operator,

K[φ, R] = G[φ, R] ∂sR G[φ, R]. (33)

The φ derivatives act on the complete set of observables and their action is general. Therefore, we
simply have to integrate the size of K[φ, R] along the flow for computing a relevant length. For
constant backgrounds φ we integrate over all spectral values of the operator

∥K[φ, R]∥ =

∫
∞

0
dp2 |K[φ, R]|, (34)

giving a dimensionless quantity. This spectral definition can be extended to general backgrounds.
Moreover, it can be extended to more general norms that, e.g., take into account the importance of
smooth regulators for the derivative expansion [7]. The norm in (34) diverges for K[φ, R] showing a
infrared singularity with more than 1/p2. This can be amended with additional powers of p̄2.

In summary this leads us to the final expression for the length of a trajectory at a given value of
V ′′(φ),

L[V ′′, R] =

∫ 1

0
ds
√
1 + ∥K[φ(V ′′), R]∥2, (35)

where φ(V ′′) is chosen such that V ′′(φ(ω)) is fixed. Then, (35) is the length of the trajectory for G,∫ 1

0

√
ds2 + ∥dG[φ(V ′′), R]∥2

= L[V ′′, R], (36)

where we have used that ∂sV ′′
≡ 0. With (36) the optimisation criterion (32) now can be recast into

L[V ′′, Ropt] = min
R∈R(Λphys)

L[V ′′, R], (37)

where Λphys indicates that all flows start at the same physical scale. Note that identical physical UV
scales are typically easily identified. Hence, for global flows from the ultraviolet to the infrared we
have trajectories with ΓΛ = Γ [φ, RΛ] with R(s = 0) = RΛ, and Γk=0 = Γ [φ, 0] with R(s = 1) ≡ 0.
The optimal regulator should minimise the length of the flow L[V ′′, R] for all φ. A comparison of the
length for different regulators will be presented in the following Section 3.4.
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We close with the remark that both criteria, (32) and (37), implement the functional optimisation
criterion from [7], and hence are identical. In practical applications the one or the other may be more
easily accessible.

3.4. Practical implementation

Let us exemplify the above construction at the example of the LPA approximation for one real scalar
field. Its propagator for a given gap kphys reads

G[φmin, R] =
1

p2 + ωmin + R
, (38)

where it is understood that the cutoff scales in the regulator R is adjusted such that the maximum
of the propagator is 1/k2phys, and ωmin = V ′′(φmin) stands for the curvature at the minimum of the
effective potential. Now, we use that an optimised regulator minimises infinitesimal flows as well as
the rest of the flow towards k = 0. This statement holds for correlation functions and, in particular,
for the propagator entailing that the difference between the optimal propagator for a given physical
cutoff scale kphys and the propagator at k = 0 is minimal.

Let us assume for the moment that ωmin is already at the value it acquires at k = 0. Then, we are
left with the condition to minimise

|G[φmin, R] − G[φmin, 0]|

=

⏐⏐⏐⏐ R
(p2 + ωmin + R)(p2 + ωmin)

⏐⏐⏐⏐ , (39)

for all momenta with the constraint (28). We now make a further simplification and set ωmin = 0.
Then, we are left with minimising⏐⏐⏐⏐ r

(p2 + R)

⏐⏐⏐⏐ , (40)

for all momenta. For momenta p2 ≥ k2phys we immediately arrive at ropt = 0. For p2 < k2phys the
regulator has to be positive in order to account for the gap condition (28). If this condition is saturated,
(39) is minimised, leading to p2 + p2ropt = k2phys, and hence ropt = k2phys/p

2
− 1 for the momenta

p2 < k2phys. In combination with the vanishing for p2 ≥ k2phys this leads to the unique optimised
regulator in LPA,

ropt =

(
k2phys
p2

− 1

)
θ (k2phys − p2), (41)

the flat or Litim regulator [27–29]. Note that there it has been introduced as one of a set of optimised
regulators, being distinct by its analytic properties. It has been singled out as the unique solution of
the functional optimisation in Ref. [7]. Indeed, the critical exponents in O(N) theories truncated in a
local potential approximationwith this regulator are closest to the physical ones. The above simplified
derivation can be upgraded to also take into account a given fixed ωmin. Again this leads to (41) with
k2phys → k2 where k2 runs from k2phys − ωmin to zero.

Let us now also compare the lengths of the trajectories as defined in Section 3.2. The definition
was adjusted such that it does not require the knowledge about Γ (2)

[φ, R] along the flow leading
to simple practical computations. A more elaborate version of the present case is straightforwardly
implemented by relaxing ∂sV ′′

̸= 0.
In Fig. 9 we first compare the norms, (34), of the flow operator for different values of ω = V ′′/k2.

We show the deviation of the ratios ∥K[ω, Rexp,n]∥/∥K[ω, Rflat]∥ − 1 ≥ 0 from one for all values of ω.
Here, Rexp,n are the exponential regulators with the corresponding shape function

rexp,n(y) =
yn−1

eyn − 1
, (42)



180 J.M. Pawlowski et al. / Annals of Physics 384 (2017) 165–197

Fig. 9. Deviation of the ratio of ∥K[ω, Rexp,n]∥/∥K[ω, Rflat]∥−1, as a function of the power n in the exponential, forω ∈ [0,∞).
For ω → ∞ the bound saturates. For ω = 0 the norm is a total derivative and is independent of the choice of regulator, hence
the ratio is unity: ω = 0: red straight line, ω = 1: blue dashed line, ω = 3: magenta dotted line, ω = ∞: black dashed–dotted
line.

Fig. 10. Length L[V ′′, R]/L[V ′′, Rflat] − 1 for different exponential regulators in comparison to the flat one: n = 1: red dashed
line, n = 2: blue dotted line, n = 4: black straight line. The length is minimised for the flat regulator.

which is a specific subclass of the exponential interpolating regulator in Table 1 with a = 1, b = 0.
The deviation is always bigger than zero, which singles out the flat regulator as the optimal one in
LPA, see Fig. 9. Note in this context that Fig. 9 gives us the full information of the relative size of the
integrands in the length of the flow in (35): for a given V ′′ > 0 the related ω diverges with 1/k2phys.
This is easily confirmed with the explicit computation of the length, summarised in Fig. 10, where the
global length is shown for given V ′′. One can observe that the flat regulator minimises the flow length
L[V ′′, R] which supports the optimisation criterion developed in Section 3.2.

Note also that the norms are defined such that the information about the physical scales k2phys(s =

1)/k2phys(s = 0) is only encoded in ω(s = 1)/ω(s = 0). Hence, for large V ′′ in comparison to the
physical cutoff scales the difference between the different flows is large. However, in this regime the
absolute size of the flow is small.

This concludes the discussion of the constructive criterion for finding an optimised regulator. Note
thatwehave concentrated on the LPA for the sake of simplicity. In LPAwehave the peculiar feature of a
universal solution for the optimal regulator (41), neither depending on thedimension of the theory nor
on thedetails of the interaction. Partly this property also holds beyond LPAdue to the functional nature
of the optimisation. Still, in general the optimal regulator depends on the full two-point function
Γ

(2)
k (p) or parts of it, for more details see [7]. This takes into account the details of the theory in a

functional way. Moreover, an additional dimensional dependence originates in the operator norms
used within the optimisation procedure. While highly interesting, a related discussion is beyond the
scope of the present work.
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4. Critical behaviour of multi-field models

Many interesting systems include a collection of different field degrees of freedom. In this situation
the choice of suitable combinations of regulators is not straightforward and we have already men-
tioned the relativistic Yukawa models with structurally different dispersion for scalars and fermions.
Here we study this case within a simple situation, a bosonic O(M)⊕O(N) model in d = 3 dimensions.
We show that the choice of relative cutoff scales generally has a crucial impact on the obtained results
for the critical physics: The O(M) ⊕ O(N) model has two competing order parameter fields and the
competing order makes it particularly sensitive to small effective changes of the relevant parameters.
Themodel is studied in the lowest order of the derivative expansion, in LPA. It is well known that such
a truncation already captures well the critical physics of scalar models despite the lack of non-trivial
momentum dependences of propagators and vertices. The latter encode the anomalous dimensions
of the system which are quantitatively small, here, and hence can be neglected.

However, the momentum dependences are also important for taking into account the momentum
transfer present in the diagrams on the right hand side of the flow equation. For identical physical
cutoff scales this momentum transfer is minimised. In turn, for shifted relative physical cutoff scales
of different fields the diagrams have a sizeable momentum transfer. In such a case, physics that is
well incorporated in the LPA with identical physical cutoff scales, is lost if the difference between the
physical cutoff scales grows large. If one goes beyond LPA within systematic momentum-dependent
approximation schemes this relative cutoff scale dependence eventually disappears. The discussion
also emphasises the necessity of identical physical cutoff scales within a given approximation in the
sense of an optimisation of approximation schemes.

In the present section we highlight the physics changes that are triggered by the change of relative
cutoff scales in LPA. As discussed above, due to the missing momentum dependences of LPA, different
relative cutoff scales effectively lead to different actions at k = 0, see also Fig. 3. In LPA, the bosonic,
d-dimensional O(M) ⊕ O(N) model has the following effective action, [43–47],

Γk =

∫
x

[
1
2
(∂µφ)2 +

1
2
(∂µχ )2 + Uk(φ, χ )

]
, (43)

where φ and χ are N- and M-component fields, respectively. The effective potential Uk(ρ̄φ, ρ̄χ ) only
depends on the field invariants ρ̄φ = φ2/2 and ρ̄χ = χ2/2. The scale-dependent dimensionless
effective potential is given by

u = u(ρφ, ρχ ) = k−dUk(ρ̄φ, ρ̄χ ) with ρi = k2−dρ̄i, (44)

and i ∈ {φ, χ}. We further introduce the shape functions rφ and rχ to regularise the φ and χ field
modes, respectively. The flow equation for the dimensionless effective potential (44) reads

∂tu = − d u + (d − 2)ρφu(1,0)
+ (d − 2)ρχu(0,1)

+ IR,φ(ωφ, ωχ , ωφχ ) + (N − 1)IG,φ(u(1,0))

+ IR,χ (ωφ, ωχ , ωφχ ) + (M − 1)IG,χ (u(0,1)) , (45)

where we have introduced suitable threshold functions Ii,j(x, y, z), i ∈ {R,G}, j ∈ {φ, χ} to separate
the loop integration over the radial and Goldstone modes for the two fields. The explicit expressions
for these threshold functions are listed in Appendix D. The arguments of the threshold functions are
given by ωφ = u(1,0)

+ 2ρφu(2,0), ωχ = u(0,1)
+ 2ρχu(0,2) and ωφχ = 4ρφρχ

(
u(1,1)

)2. For calculations,
we expand the effective potential about the flowing minimum (κφ, κχ ), to wit

u(ρφ, ρχ ) =

∑
1≤i+j≤ord

λij

i!j!
(ρφ − κφ)i(ρχ − κχ )j. (46)

In this truncation we follow the flow of the couplings κi and λij which are given in Appendix E. These
O(N) ⊕ O(M) models possess a rich variety of fixed points exhibiting different types of multi-critical
behaviour relevant to a number of physical systems [48–51]. For our further investigations, we list
the properties of the three most important fixed points:
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Table 2
List of values for the largest critical exponent y1 in d = 3 dimensions for
selected fixed points in LPA to ascending order in the truncation.

Fixed point ρ2 ρ3 ρ4 ρ5 ρ6

BFP in O(2) ⊕ O(2) 1.78 1.61 1.78 1.77 1.75
BFP in O(1) ⊕ O(2) 2.16 1.42 1.65 1.63 1.62
WF in O(2) 1.61 1.32 1.40 1.42 1.41
WF in O(1) 2.00 1.37 1.54 1.55 1.54

(i) The decoupled fixed point (DFP) is characterised by a decomposition into two disjoint O(N) and
O(M) models where all mixed interactions vanish, e.g., λ11 = 0. It inherits all of the properties of the
Wilson–Fisher (WF) fixed points of the separate sub-sectors.

(ii) The isotropic fixed point (IFP) features a symmetry enhancement where at each order in the
fields the couplings are degenerate, e.g., λ20 = λ02 = λ11. Therefore, the fixed point coordinates
agree with the ones from an O(N + M) symmetric model and it inherits all of its critical exponents.

(iii) The biconical fixed point (BFP) is a non-trivial fixed point with interactions in both sectors that
does not provide a symmetry enhancement. This fact makes it interesting for our further analysis,
because it can be easily distinguished by means of the critical exponents of a single field model.

We have listed values for the largest critical exponent y1 = 1/ν1 for the models and fixed points
which are important to this work in Table 2, showing results for different levels of the truncation.
Generally, we sort the critical exponents according to the definition y1 > y2 > y3 > · · · .

4.1. Fixed points and relative cutoff scales

In this section, we examine the effects that occur when dealing with models whose sub-sectors
are defined on separate cutoff scales. To that end, we investigate the O(M) ⊕ O(N) model using flat
regulators in the two sectors, however, with separated cutoff scales

rφ(y) =

(
1
y

− 1
)
θ (1 − y) ,

rχ (y) = rφ
(y
c

)
=

(
c
y

− 1
)
θ

(
1 −

y
c

)
. (47)

Consequently, for a generic c ̸= 1 the fluctuations of one field are integrated out earlier than the
fluctuations of the other: The second regulator has a built-in shift of all scales k2 → c k2,Λ2

→ cΛ2.
For c < 1 this leads to a suppression of the χ sector and the RG flow does not experience any
χ fluctuations. Inversely, c > 1 suppresses the φ sector in a similar way. Only for c = 1 the
physical cutoff scales are identical. Note that the statement about identical physical cutoff scales
kphys(φ) = kphys(χ ) is only trivial in the present case where φ and χ are both scalar fields with the
same dispersion and interactions. In the general case it is non-trivial to identify the relative cutoff
scales and where the different representations of the optimisation may pay-off in particular.

The threshold functions for this choice of regulators with separate cutoff scales can be found in
AppendixD. Now,we discuss the dependence of critical exponents of different fixed points on changes
of the relative cutoff scale.

DFP critical exponents. At the DFP the fields φ and χ decouple. Introducing a scale-shifted regulator in
a singleO(N)-model, does not induce a difference in the critical exponents, since everymomentumcan
simply be rescaled. The results of our investigation for the DFP in the O(2)⊕O(1) model are displayed
in the left panel of Fig. 11, confirming the previous statement. The critical exponents for all values of c
can be identified with the Wilson–Fisher critical exponents Table 2 at the corresponding order of the
truncation.

IFP critical exponents. Introducing c ̸= 1 revokes the symmetry between φ and χ , destroying the key
property of this fixed point. Therefore, we will not further investigate this fixed point in the present
context. However, we note that this is an illustrative example for how a unphysical regulator choice
can lead to artificial regulator dependencies of FRG predictions.
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Fig. 11. Left panel: DFP critical exponents of the O(2)⊕O(1) model in LPA to order ρ2 using separated cutoff scales. Due to the
complete decoupling of both sectors, no dependence on the relative cutoff scale c can be observed. Middle panel: BFP critical
exponents of the same model in LPA to order ρ4 . Here, the two sectors are coupled showing a severe dependence on c . Right
panel: Close-up of the largest BFP critical exponent y1 of the O(2)⊕O(1)-model in LPA to order ρ4 exhibiting the limiting cases
c ≪ 1 and c ≫ 1where one of the sectors is effectively suppressed and the critical behaviour is described by theWilson–Fisher
FP of the other sector.

BFP critical exponents. New insights can be gained by looking at the c dependence of the BFP where
both sub-sectors are explicitly coupled. The critical exponents of the BFP clearly exhibit a severe
dependence on the relative scale factor c , see middle and right panel of Fig. 11 for the example of
the O(2) ⊕ O(1) model. In fact, the largest critical exponent, y1, of the BFP tends to the WF critical
exponents of one of the single sub-sectors as the other one is suppressed by a large relative cutoff
scale. Explicitly, for c ≪ 1, the critical exponent y1 of the O(2)⊕O(1) BFP approaches the value of the
WF fixed point of the O(2) model. Analogously, for c ≫ 1, y1 approaches the WF fixed point of O(1)
model.

We assert that in systems with various field degrees of freedom, the choice of their relative
cutoff scales has a severe impact on the described physics in LPA due to the missing momentum
dependences. The change of the ratio c of the cutoff scales induces a change of universality classes. In
the present simpleO(M)⊕O(N)models the generic choice is c = 1 as the fields involved have identical
dispersions and interactions. Identical dispersion relations minimise the momentum transfer, as
discussed at the beginning of this section.We also emphasise again, that inmore complicated systems
with different sectors, and in particular fermion–boson systems, there is no clear a priori criterion for
a suitable choice of regulators and their relative cutoff scales, see also the following section. In the
inset of the right panel of Fig. 11, we further show that the value of the critical exponent y1 at c = 1
is not singled out as a local extremum of the critical exponent y1(c). We note that, in contrast, the
principle of minimal sensitivity [20] would single out one of the various extrema in the vicinity of
c = 1 as a numerical prediction of the BFP critical exponent. We suggest that a control of this issue in
multi-field models can be gained by the constructive optimisation procedure presented in Section 3
which, however, is beyond the scope of the present work.

4.2. Truncation dependence

The integrability condition (12) fails as we truncate the effective action. In turn, this suggests that
the regulator dependence of the results becomes weaker when the level of truncation is increased. In
this section we examine the dependence of the BFP critical exponent y1 on the relative cutoff scale
factor c as a function of the level of truncation. We focus on the O(2) ⊕ O(2) model and compare
different orders of the LPA, i.e., to the orders between ρ2 up to ρ6.

Fig. 12 shows the deviation of y1 at a given c > 1 from the value at c = 1weighted by its difference
to the limiting case of the corresponding O(2) critical exponent

|∆y1| =

⏐⏐⏐⏐ y1(c) − y1(1)
y1(1) − y1,O(2)

⏐⏐⏐⏐ . (48)

We see that for increasing order in the LPA from ρ2 up to ρ6, the dependence of y1 on the relative
cutoff scale c becomes weaker and weaker as suggested by the consecutive flattening of the curves.
We conclude that a better truncation ismore robust to uneducated regulator choices or in otherwords
a low-level truncation requires a more sophisticated choice of the regulator scheme. This is expected
since the untruncated effective action yields the same results for every choice of the regulator.
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Fig. 12. Deviation from the critical exponent y1 at the BFP in the O(2) ⊕ O(2) model in LPA from order ρ2 to order ρ6 as a
function of the relative cutoff scale c. We clearly observe a flattening of the curves for higher orders of the truncation.

5. Non-relativistic Fermion–Boson models

In the last Section 4, we have discussed the question of relative cutoff scales in a simple scalar
model with identical dispersions and interactions for the different fields. In the present Section
we discuss relative cutoff scales and the impact of the shape dependence of regulators in a more
complicated situation of a non-relativistic Yukawa system describing fermionic atoms andmolecules.
In contradistinction to the LPA approximation used in the last Section we also take into account
momentum and frequency dependences of the propagators. Naturally, this does not fully cure the lack
of momentum dependences of the approximation and we expect a modest regulator dependence of
the corresponding results. Further aspects in non-relativistic systems are N-body hierarchies which
lead to complete resummation schemes for three-, four- andN-body systems, which has beenworked
out for fermionic three-, and four-body cases for various systems, [52–57]. This gives us further access
for an assessment of the regulator dependence of our results.

The FRG has found multiple applications in the study of non-relativistic systems, ranging from
few- [52,53,58] to many-body problems [59–65]. In a prototypical scenario in condensed matter
physics, fermionic and bosonic degrees of freedom interact with each other. Such situations occur for
instance in models which describe the formation of molecules from atoms. Other examples include
the interaction of electrons with collective excitations, such as phonons or magnons. In addition to
the question of equivalent cutoff scales of fermions and bosons, similarly to the coupled O(N) models
discussed in Section 4, the exact fermionic N-body hierarchies present an additional challenge for
the mixed non-relativistic bosonic–fermionic system within the evaluation of FRG flows. Optimal
approximations have to take into account these exact hierarchies in addition to taking care of the
momentum transfer. If both properties cannot be rescued in a given approximation, it is a priori not
clear, in which order the various fields have to be integrated out for optimal results. Hence, in this
situation, the question of the optimal ratio of cutoff scales is even more complicated as in the bosonic
example treated in Section 4.

In the present Section we do not aim at a full resolution of this intricate question, but rather
highlight the ensuing difficulties. We provide an analysis of the regulator dependences arising in
a system consisting of a single impurity immersed in a non-relativistic Fermi sea of atoms at zero
temperature. In this so-called Fermi polaron problem [66–69] the interaction of the impurity ψ↓

with the fermions ψ↑ in the Fermi sea is determined by the exchange of a molecular field φ which
represents a bound state of the ↓-impurity with one of the medium ↑-atoms. The system is described
by the action

S =

∫
x,τ

{ ∑
σ=↑,↓

ψ∗

σ [∂τ −∆− µσ ]ψσ

+ φ∗
[∂τ −∆/2 + νφ]φ + h(ψ∗

↑
ψ∗

↓
φ + h.c.)

}
, (49)
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where
∫
x,τ =

∫
d3xdτ ,∆ is the Laplace operator and we suppressed the arguments x, τ of the fields.

Furthermore the Grassmann-valued, fermionic fields ψ↑ and ψ↓ represent ↑- and ↓-spin fermions of
equal mass m. Note that we work in units h̄ = 2m = 1 and σ = (↑,↓). The associated chemical
potentials µσ are adjusted such that the ↑-fermions have a finite density n↑ = k3F/(6π

2), with kF the
Fermi momentum, while there is only a single ↓-atom. In this limit the action Eq. (49) describes the
problem of a single impurity immersed in a Fermi sea. The detuning νφ , together with the coupling h
determines the interaction strength between the ↓- and ↑-atoms which is mediated by the exchange
of the field φ.

The impurity is dressed by fluctuations in the fermionic background. It becomes a quasi-particle,
the Fermi polaron, which is characterised by particle-like properties such as an energy Ep, and a
quasi-particleweight Zp. The quasiparticle properties depend on the interaction between the impurity
and the Fermi gas. Due to the presence of bound states, this interaction cannot be described within
perturbation theory and requires non-perturbative approximations. Hence, it presents an ideal testing
ground for methods such as the FRG.

In the following theprediction of Ep will serve as our observable to study the regulator dependences
occurring in the RG evaluation of the model Eq. (49). The Fermi polaron problem is particularly
interesting for our study since accurate numerical predictions for various quantities exist based on
a bold diagrammatic Monte Carlo scheme [66]. For instance at unitarity, where the infrared scattering
amplitude at zero scattering momentum – given by the scattering length as – diverges, kFas → ∞,
the ground state energy is predicted to approach the value of Ep = −0.615 ϵF [66], with ϵF the Fermi
energy.

We note that also other non-relativistic systems of coupled bosons and fermions are described by
Eq. (49). For instance for a chemical potential µ↓ > −Ep the system exhibits the BEC–BCS crossover
at low temperature as interactions are varied [70–72]. This crossover has been studied extensively by
FRG methods [60,61,73–75].

5.1. Truncation and flow equations

In the following we will solve the FRG flow equation (2) for the truncation of the effective action

Γk =

∫
p,ω

{
ψ∗

↑
[−iω + p2

− µ↑]ψ↑ + ψ∗

↓
G−1

↓,k(ω, p)ψ↓

+φ∗G−1
φ,k(ω, p)φ

}
+

∫
x⃗,τ

h(ψ∗

↑
ψ∗

↓
φ + h.c.), (50)

where
∫
p,ω =

∫ d3p
(2π )3

∫ dω
2π . In this truncation the only RG scale k dependent quantities are G↓,k and

Gφ,k. While in previous work the flow of fully momentum dependent propagators G↓,k and Gφ,k has
been considered [63], we study here the regulator dependences arising in a field expansion of the
derivative expansion where

G−1
↓,k(ω, p) = S↓[−iω + p2

] + m2
↓
,

G−1
φ,k(ω, p) = Sφ[−iω + p2/2] + m2

φ, (51)

with scale-dependent wave function renormalisations S↓, Sφ . We neglect higher orders of bosonic
interactions. In [63] it has been found that this approximation allows to obtain accurate results for the
low-energy properties of the impurity–bath system, such as the ground state energy or the impurity
quasi-particle weight Z↓ = 1/S↓. The RG scale dependent coupling constants m2

↓
and m2

φ are related
to the flowing static self-energies Σ↓,φ(0, 0), e.g. m2

↓
= −µ↓ − Σ↓(0, 0). In the impurity problem

the majority fermions are not renormalised, S↑ = 1, and the density of the Fermi sea is determined
by the chemical potential µ↑ = εF = k2F . In summary, from this truncation, we obtain the four flow
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equations, cf. Appendix H,

∂tm2
φ =

h2

2π2

∫
∞

kF

dp
p2(∂tR↓ + S↓∂tR↑)

[m2
↓

+ R↓ + S↓(2p2 − µ↑ + R↑)]2

∂tSφ = −
h2

π2

∫
∞

kF

dp
S↓p2(∂tR↓ + S↓∂tR↑)

[m2
↓

+ R↓ + S↓(2p2 − µ↑ + R↑)]3

∂tm2
↓

=
h2

2π2

∫ kF

0
dp

p2(∂tRφ − Sφ∂tR↑)
[m2

φ + Rφ − Sφ(p2/2 − µ↑ + R↑)]2

∂tS2↓ = −
h2

π2

∫ kF

0
dp

Sφp2(∂tRφ − Sφ∂tR↑)
[m2

φ + Rφ − Sφ(p2/2 − µ↑ + R↑)]3
. (52)

We study the dependence of the predictions from the FRG using a continuous set of regulators R↓,↑

and Rφ which are dependent on various parameters. We choose

Rk
φ(p) = cφ

Sφk2

2
(aφ − bφy)

ynφ

ey
nφ

− 1

Rk
↓
(p) = c↓S↓k2(a↓ − b↓y)

yn↓

ey
n↓

− 1

Rk
↑
(p) = c↑S↑k2(a↑ − b↑y)σ (p2 − µ↑)

yn↑

ey
n↑

− 1
(53)

where y ≡ p2/(cik2) and σ (x) = 1, (−1) for x > 0 (x ≤ 1) for the impurityψ↓ and boson fieldφ. These
regulators are similar to the regulators studied in the relativistic models in the previous sections, cf.
Table 1. Note however that for the bath fermions the pole structure due to the Fermi surface has to
be accounted for so that here y ≡ (|p2

− µ↑|)/(c↓k2). Similar to the definitions used in Section 4, the
parameters ci (i = φ,↑,↓) allow for the study of changing the relative scales at which the various
field are integrated out, while the other parameters allow for deformations of the regulator shape,
cf. Fig. 8.

5.2. Initial conditions

As discussed in Section 2.1, first the initial values at the UV scale k = Λ have to be set. The initial
value ofm2

φ is determined by the interaction strength between the impurity and fermions in the Fermi
sea. This interaction strength is given by the low-energy scattering length as. The latter is determined
by the evaluation of the tree-level exchange of the molecule field φ in the two-body problem where
µ↓,↑ = 0. This results in the initial value

m2
φΛ = −

h2

8πas
−

h2

2π2

∫
∞

0
dp p2

[
1

2p2 + RΛ
↑

+ RΛ
↓

−
1

2p2

]
.

For large cutoff scales Λ this implies the scaling m2
φΛ ∼ µ(r)h2Λ with µ(r) being a regulator

dependent number. It is the non-relativistic equivalent to the UV scaling discussed earlier, cf. Eq. (9).
Furthermore, while the initial value of S↓ is determined by its classical value S↓Λ = 1, we choose
Sφ = 0 so that the bosonic field becomes a pure auxiliary field.

The Fermi momentum allows to define the dimensionless interaction parameter 1/(kFas). In the
followingwework in unitswhere kF = 1. Finally the initial value ofm2

↓Λ has to be chosen such that the
self-energy acquired by the impurity leads to the fulfilment of the infrared conditionm2

↓k=0 = 0. This
condition ensures that the system is just on the verge of occupying a finite number of impurity atoms,
which is the defining property of the impurity problem. This condition implies Ep = −m2

↓Λ = µ↓ [63].
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Fig. 13. Dependence of the polaron energy Ep/ϵF on the regulator shape. The FRG results (blue) are shown for a crossover from
a k2 to a sharp regulator by changing the exponent n ≡ ni in all regulators at constant prefactors ai = 100 and b = 0. The exact
result from diagrammatic Monte Carlo [66] is shown as dashed black line. The insets illustrate the structure of the regulator
R↓(p) and single scale propagator ∂̃kGc

↓,k = −(Gc
↓,k)

2∂kRk in dependence of momentum p. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

5.3. Regulator dependencies

Shape dependence. First we study the dependence of the results on the shape of the regulators when
integrating out the bosonic and fermionic fields synchronously for the choice cφ = c↓ = c↑ = 1.
Specifically, we monitor the energy of the polaron, Ep. In Fig. 13 we show the result for the polaron
energy at unitary interactions, kFa = ∞, as a function of the shape parameters n ≡ n↑ = n↓ = nφ
(blue line). We have studied such a variation previously in Section 3.4 in the context of a relativistic
ϕ4 theory. Here, we choose bi = 0 and ai = 100 so that the regulator interpolates between a masslike
k2 and a sharp regulator. The black dashed line corresponds to the result obtained from diagrammatic
Monte Carlo, Ep/ϵF ≈ −0.615 [66]. We note that a non-selfconsistent T-matrix approximation yields
the result Ep/ϵF ≈ −0.607 [76]. This approximation (leading order 1/N expansion) corresponds to
the sequence where first the dimer selfenergy is evaluated and then inserted into the self-energy of
the impurity.

The result from the FRG calculation is shown as blue line. We observe a strong regulator shape
dependence for small values of n (masslike regulator) as, here, the regulator leads to a non-local
integration of field modes in momentum space.

In contrast, for n → ∞ (sharp regulator), the regulator becomes very local in momentum, and
the results show only a small shape dependence. In the flows, the single scale propagator ∂̃kGc

k =

−(Gc
k)

2∂kRk determines the locality of the regulator in momentum space which is illustrated in the
insets in Fig. 13. Here, we show the formof the single scale propagator aswell as R↓(p = |p|) evaluated
at zero frequency ω = 0. We emphasise that momentum locality of the loop integration is but one
of the important conditions for the optimisation. Regularity of the flow is a further important one,
and the sharp cutoff fails in this respect. Indeed, it is the latter property which is crucial for critical
exponents.

For n → 0 the non-local structure of field integration leads to a great sensitivity of the RG flowofΓk
in theory space and hence a large sensitivity to the truncation chosen. This also finds an interpretation
in terms of physics: due to the non-local structure of Rk(p) the RG flow does not separate between the
few-body (vacuum) physics at large momenta on the one hand and on the other hand the emergence
of corrections to the vacuum flow due to finite density at small momenta. Such an unphysical mixture
of physically vastly separated energy scales leads to an artificially strong dependence of the FRG
results. We indicate the regime of artificial non-local, non-physical regulator choices by the grey
shaded area in Fig. 13. The results illustrate the significance of the statement that for local truncations
non-local cutoffs are a particularly bad choice of regularisation of RG flows. Instead general RG
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Fig. 14. Dependence of the polaron energy Ep/ϵF on the relative bosonic–fermionic cutoff scale for various choices of the
regulator shape. Results are shown for parameters as employed in Fig. 13 and also for the flat (Litim) regulator, cf. Table 1.
The inset shows the relative cutoff scale dependence for the flat regulator for various interaction strengths 1/kF a ̸= 0. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

flows should be kept sufficiently local. However, also an extremely local regulator such as the sharp
regulator is not desired as it prevents an interference of closely related momentum/length scales; it
lacks regularity. We have indicated this regime as shaded area at large values of n where the single
scale propagator becomes strictly peaked and interference of close-by momentum scales is heavily
suppressed. The non-shaded regime corresponds to regulator choices which satisfy the criterion of
sufficient interference of momentum scales while still avoiding an unphysical, non-local flow.

In summary, both extreme choices lack crucial properties of optimised FRG flows. This is also
reflected in the fact that both limits do not do well in the optimisation criterion in its representations
(32) and (37). Indeed, the combination of a sharp cutoff and amass cutoff gives theworst result within
the optimisation as it combines both failures, momentum nonlocality and lack of regularity.

Dependence on relative cutoff scale. Next, we investigate the dependence of the results on the relative
scale at which the fermionic and bosonic degrees of freedom are integrated out. As in Section 4, this
is achieved by changing the parameter cφ relative to the choice of cF ≡ c↓ = c↑ in Eq. (53). The result
is shown in Fig. 14 where we choose the same regulator shape parameters as in Fig. 13. Also we show
the result for a flat regulator choice (red curves).

For cφ/cF → ∞ the flow is equivalent to a purely fermionic flow since here the auxiliary bosons
are integrated out only in the last step of the RG flow. In this last step the fermions are not subject to
an RG gap Rσ anymore. In consequence, since the flow of the boson propagator is solely dependent
on fermions, its self-energy Σφ reached its final RG value already before this last RG step is taken.
This leads to results which are independent of the regulator shape, Ep/ϵF → −0.57, and which is the
result obtained from an leading order 1/N expansion [77] within our truncation for the momentum
dependence of the bosonic propagator Pφ .

Contrary, for cφ/cF → 0 the bosonic field is integrated out first. The flow of the boson propagator,
being only a functional of the fermionic Green’s functions, is then completely suppressed in the first
stage of the RG flow. This stage correspondingly amounts to a mere reversion of the introduction of
the bosonic field φ as an auxiliary degree of freedom mediating the atom–atom interaction. Since Pφ
cannot acquire anymomentumdependence in this step, the resulting – nowpurely fermionic – theory
has a truncation with a completely momentum independent coupling constant λ ∼ −h2/m2

φ,Λ.
Such a truncation of the effective flowing action Γk is of course a very poor one so that strong

regulator dependencies are expected as also observed in Fig. 14. This result also represents an example
supporting the discussion given in Section 2.2, cf. also Fig. 2: by choosing a poor truncation the flow
is particularly sensitive to its path in theory space and hence can lead to strong regulator depen-
dences of infrared quantities. Furthermore this result reflects the observation that the integrability
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condition (12) is more severely violatedwhen the effective action is truncated to a larger degree (here
by loosing the momentum dependence of interactions altogether).

Having shown that the regulator dependences in the two extreme limits for cφ/cF can be under-
stood in simple termswe now turn to the intermediate regimewhere the bosonic and fermionic fields
are integrated out synchronously. In this regime we observe a variation of the result for Ep/ϵF on the
order of ±10%, with the exact result Ep/ϵF = −0.615 being in the vicinity of the predicted result by
the FRG.

We also show the result when applying the flat regulator (red line) which shows similar variations
with the relative cutoff scale. Our results indicate that within the regime of an ‘informed regulator
choice’, indicated by the non-shaded region in Fig. 13, regulator dependences in FRG flows might
allow for determining an error estimate on its own predictions.

6. Conclusion

In this work, we have presented a systematic investigation of the impact of different regulator
choices on renormalisation group flows in given approximation schemes. To this end, we studied the
functional RG which is based on the scale-dependent effective action. As an important aspect, this
exact flow equation clearly exhibits the role played by the regulator within the RG, see (2), as it is
directly proportional to its scale derivative. This already indicates the need for a thorough under-
standing of regulator dependencies. Such an understanding is not only important to the functional
RG, in particular, but, more comprehensively, extends to the analysis of approximations schemes in
the renormalisation group framework in general.

Here, we focused on three key aspects of how the regulator choice affects RG results: First,
we discussed how the choice of a specific regulator influences FRG flows by integrating over flow
trajectories along closed loops in the space of action functionals varying both, the regulator scale and
its shape function. For these flows we have discussed an integrability condition, [7], which is violated
in the presence of truncations. Consequently, an educated regulator choice is mandatory to extract
the best possible results from the RG in a given truncation. To this end we have extended the work
on functional renormalisation in [7]. For the construction of such an optimised regulator, we have
introduced the definition of the length of an RG trajectorywhich isminimal for an optimised regulator.
This provides a pragmatic optimisation procedure which at the example of a single scalar field yields
the flat regulator as a unique and analytical solution. A comparison of the lengths of these trajectories
can also be set up straightforwardly inmore complexmodels in order to identify optimised regulators.
We leave explicit applications of this procedure for future work.

As a second aspect, we have investigated systems with two field degrees of freedom which both
have to be regularised. Here a choice of relative cutoff scales is required. In given momentum-
independent approximations this choice has a severe impact on the RG results and, hence, for the
described physics. At the example of relativistic bosonic two-field models, we have discussed the
consequences of a variation of the relative cutoff scales as well as its truncation dependence. We
have shown that a crossover between different universality classes can be induced, triggered by the
regulator-dependence of physical parameters in truncated flows. This entails that the relative cutoff
scale has to be chosen carefully for a reliable description of a physical system in a given approximation.
A controlled approach towards devising an optimised choice of relative cutoff scales can be provided
by our optimisation procedure.

Third, we also have exhibited corresponding dependencies on relative cutoff scales and regulator
shapes in non-relativistic continuummodels of coupled fermionic and bosonic fields. At the example
of the Fermi polaron problem in three spatial dimensions, we have illustrated such dependences and
showed how to interpret them in physical terms. We suggested that, in the regime of an informed
regulator choice, regulator dependences in FRG flows can provide error estimates. This has been
discussed here at the example of a coupled non-relativistic many-body model. It will be interesting
to investigate these capabilities further in more elaborate many-body models. Finally, it is of great
interest to extend the functional optimisation framework laid out here and in [7] to an approach for
general systematic error estimates in the functional RG.
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Appendix A. Effective action and RG transformations

Note also, that the above renormalisation scheme dependence carries over to the full quantum
effective action Γ [φ] = Γk=0[φ]. It satisfies the standard homogeneous RG equation

s
dΓk=0[φ]

ds
= 0, (A.1)

(A.1) is non-trivially achieved as all correlation functions Γ (n) transform according to the anomalous
dimension of the fields,(

∂s + nγφ
)
Γ (n)

= 0 , with γφφ = s
dφ
ds
. (A.2)

For the purpose of the presentwork theRG-transformations of the full effective action are not relevant.
Hence, from now we shall identify observables that are identical up to RG transformation of the
underlying theory. Note however, that this identification does not remove the relevant UV scaling
carried by (9).

Appendix B. General one-parameter flows

We have introduced one-parameter flows, referring to general changes of the cutoff scale k
with k(s), changes of the shape of the regulator, rs as well as reparametrisations of the theory. The
corresponding flow equation has the same form as that for the k-flow in (2). It reads

s
dΓ [φ, R]

ds
=

1
2
TrG[φ, R]

(
∂s + 2γφ

)
R, (B.1)

where the total derivative w.r.t. s also includes reparamterisations of the fields with dφ/ds = γφφ

reflected in the term proportional to the anomalous dimension γφ on the right hand side of (B.1). The
representation of the total s derivative similar to (14) is simply given by

d
ds

=

(
−

1
2
TrG[φ, R]

(
∂s + 2γφ

)
R G[φ, R]

δ2

δφ2

)
. (B.2)

Note that (B.2) has to vanish as an operator if it represents a reparameterisation of the theory at hand,
that is a standard renormalisation group transformation in the presence of a regulator. We infer, [7],(

∂s + 2γφ
)
R !

= 0. (B.3)

Eq. (B.3) entails that the regulator has to be transformed as a two-point correlation function under
RG-transformations in order to fully reparameterise the theory.

Appendix C. Integrability condition and self-consistency of approximations

In case the integrability condition (15) holds, the flow necessarily has a (local) representation
as a total derivative w.r.t. s, and hence it can be written as a total derivative of a diagrammatic
representation. This entails that the integrated flow has a diagrammatic representation in terms of
full vertices and propagators in the given approximation to the effective action Γk.
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A simple example for such an approximation is perturbation theory: at perturbative n-loop order
the integrated flow simply reproduces renormalised perturbation theory within a generalised BPHZ-
scheme. Note however that the ordering scheme is an expansion in the fundamental coupling of the
theory for both, the effective action and the flow equation, rather than one in expansion coefficients
of the effective action such as the vertex expansion in terms of Γ (n)

k . A more interesting example are
2PI-resummation schemes such as 2PI perturbation theory or 1/N-expansions: it has beenworked out
how to implement renormalised versions of these schemes in the FRG, see [78,79]. Hence in this case
integrated flows provide renormalised perturbative or 1/N 2PI-resummations, and the integrability
condition (15) is satisfied to any order of such an expansion. Againwe note that the ordering scheme is
an expansion in the fundamental coupling of the theory or the number of fields for both, the effective
action and the flow equation. Similarly it is possible to find approximation schemes that lead to
renormalised solutions of Dyson–Schwinger equations.

We emphasise that in both cases discussed above the flow operators (14), (B.2) evaluated on the
solution of the effective action in the given approximation, does not satisfy the integrability condition.
In the case of n-loop perturbation theory the flow operators (14), (B.2) then generates n-loop FRG-
resummed perturbation theory which fails to satisfy (15). In the case of the n-loop 2PI approximation,
the flow operators then generate n-loop FRG-resummed 2PI perturbation theory. To summarise,
the violation of the integrability condition is a measure for the incompleteness, in terms of the full
quantum theory, of fully non-perturbative resummation schemes.

Appendix D. Threshold functions

Scalar model

The scalar model from Section 2.4 requires the threshold function I(ω) defined in (19). Here, we
explicitly give the analytical expressions for this integral for the cases of the flat regulator rL and the
sharp regulator rsharp. For the flat regulator, we obtain I(ω) → I (L)(ω)

I (L)(ω) = vd
4
d

1
1 + ω

. (D.1)

Choosing the sharp regulator yields I(ω) → I (sharp)(ω)

I (sharp)(ω) = −2vd log(1 + ω) . (D.2)

Two-field-model

For the two-field models from Section 4, we have introduced similar threshold functions reading

IR,φ(ωφ, ωχ , ωφχ ) = vd

∫
∞

0
y

d
2 +1dy

(
−2r ′

φ(y)
)

×
y(1 + rχ (y)) + ωχ

(y(1 + rφ(y)) + ωφ)(y(1 + rχ (y)) + ωχ ) − ωφχ
, (D.3)

IR,χ (ωφ, ωχ , ωφχ ) = vd

∫
∞

0
y

d
2 +1dy

(
−2r ′

χ (y)
)

×
y(1 + rφ(y)) + ωφ

(y(1 + rφ(y)) + ωφ)(y(1 + rχ (y)) + ωχ ) − ωφχ
, (D.4)

and

IG,i(x) = vd

∫
∞

0
y

d
2 +1dy

−2r ′

i (y)
y(1 + ri(y)) + x

, (D.5)

with i ∈ {φ, χ}.
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Two-field model & separate cutoff scales

For the discussion of the two-field model in Section 4, we use the flat regulator functions with a
relative cutoff scale, as given in Eq. (47).With these shape functions,we obtain the threshold functions
for the Goldstone modes

IG,φ(x) =
4vd

d (x + 1)
, IG,χ (x) =

4vd cd/2+1

d (x + c)
. (D.6)

The threshold function including radial modes are given by the expressions

IR,φ(ωφ, ωχ , ωφχ ) = 2vdθ (1 − c)F1(ωφ, ωχ , ωφχ )

+
4vd(c + ωχ )

(
cd/2θ (1 − c) + θ (c − 1)

)
d
(
(ωφ + 1)(c + ωχ ) − ωφχ

) , (D.7)

IR,χ (ωφ, ωχ , ωφχ ) = −2c vdθ (c − 1)F2(ωφ, ωχ , ωφχ )

+

4vd(ωφ + 1)
(
c

d
2 +1θ (1 − c) + c θ (c − 1)

)
d
(
(ωφ + 1)(c + ωχ ) − ωφχ

) , (D.8)

where we have introduced the two integral functions

F1(ωφ, ωχ , ωφχ ) =

∫ 1

c
dy

y
d
2 −1(ωχ + y)

(ωφ + 1)(ωχ + y) − ωφχ
, (D.9)

F2(ωφ, ωχ , ωφχ ) =

∫ 1

c
dy

y
d
2 −1(ωφ + y)

(c + ωχ )(ωφ + y) − ωφχ
. (D.10)

This completes our list of required threshold functions for the two-field model with shape functions
defined on separate cutoff scales.

Appendix E. Flow equations for the couplings

Scalar model

In the symmetric regime, where κ = 0, we obtain the flow of the coupling constants ∂tλi =

(∂tu)(i)|ρ=0 from the ith derivative of ∂tu(ρ) with respect to ρ.
Analogously, in the symmetry broken regime, where λ1 = 0 and κ > 0, we get

∂tκ = −
(∂tu)′

λ2

⏐⏐⏐
ρ=κ

, ∂tλi≥2 = (∂tu)(i) + u(i+1)∂tκ

⏐⏐⏐
ρ=κ

.

Two-field model

Projecting the flow equation on the definition of u gives us the system of beta functions for the
couplings

∂tκφ = −
λ02(∂tu)(1,0) − λ11(∂tu)(0,1)

λ20λ02 − λ211

⏐⏐⏐
κφ ,κχ

,

∂tκχ = −
λ20(∂tu)(0,1) − λ11(∂tu)(1,0)

λ20λ02 − λ211

⏐⏐⏐
κφ ,κχ

, (E.1)

and

∂tλij = (∂tu)(i,j) + u(i+1,j)∂tκφ + u(i,j+1)∂tκχ

⏐⏐⏐
κφ ,κχ

,

where the field invariants ρj are understood to be evaluated at their scale dependent expansion
points κj.
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Appendix F. Calculation of explicit loop flows

Explicit loop flows I

Starting with Eqs. (21) and (23), we can calculate a flow which translates continuously from one
regulator to another as long as both regulators are finite. These equations can be easily extended to
an O(N) model

d
ds

u = J(u′
+ 2ρ u′′) + (N − 1)J(u′) +

∂sk(s)
k(s)

(
−d u + (d − 2)ρ u′

)
. (F.1)

A commonly used regulator is the sharp regulator rsharp(y) = c/y θ (1 − y)|c→∞, which is infinite in
[0,1]. In order to interpolate between rsharp and other regulators in a continuous manner we need to
extend our calculations. Here, we interpolate between rsharp and rL using an interpolationwhich shifts
the cutoff scale in rsharp by a factor a(s) ∈ [0, 1].

rs(y) = rL(y) + rsharp
(
y/a(s)2

)
. (F.2)

Hence, a(s) → 0 causes rsharp to vanish. On the other hand, if a(s) = 1, then rsharp causes the
regulator to diverge on [0, 1] such that there is no residual influence of rL. The threshold function
can be decomposed into two parts

J(ω) = vd

∫
∞

0
y

d
2 dy

d
ds rs(y)

y(1 + rs(y)) + ω

= JA(ω) + JB(ω) , (F.3)

where JA contains the regulator derivative from rflat such that it can be inferred from (D.1)

JA(ω) =
k′(s)
k(s)

(1 − a(s)d)I (L)(ω)

= vd
k′(s)
k(s)

4
d

1
1 + w

(1 − a(s)d). (F.4)

Similarly, JB corresponds to the regulator derivative of rsharp and can be calculated by inserting (D.2)

JB(ω) =

(a′(s)
a(s)

+
k′(s)
k(s)

)
a(s)d−2I (sharp)(ω)

= −2vd
(a′(s)
a(s)

+
k′(s)
k(s)

)
a(s)d−2 log(1 + ω) . (F.5)

Explicit loop flows II

In case we insist on a linear superposition between rsharp and other finite regulators, the solution of
the flow equation will show a discontinuity. As soon as we allow for a small contribution from rsharp,
it will dominate over all finite regulators because it is infinite in the region [0, 1]. This discontinuity
can be seen in Figs. 6 and F.15 for the couplings λ1 and λ2. In order to calculate the magnitude of this
discontinuity, we start at the flow equation at fixed k for an O(1)-model, Eq. (21)

d
ds

u|k=const = J(ω) , ω = u′
+ 2ρ u′′ , (F.6)

which we want to solve from s = 0 to s = 1. Since the only change occurs at s = 0, we can simply
denote the magnitude of the discontinuity∆u = u(s = 1) − u(s = 0). The threshold function

J(ω) = vd

∫
∞

0
y

d
2 dy

∂srs(y)
y(1 + rs(y)) + ω

, (F.7)
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Fig. 15. Change of the initial conditions for different choices of interpolations between the flat regulator and the step like
regulator, for various c and the sharp regulator.

only depends on the change of shape ∂srs(y), but not on the scale change, since we are keeping k fixed.
Inserting a linear superposition between rsharp and rL

rs(y) = (1 − s)rL(y) + s rsharp(y), (F.8)

evaluates to

J(w) = vd

∫ 1

0
y

d
2 −1dy

c(1 + 1/c − y/c)
1 + sc(1 − 1/c + y/c) + w

⏐⏐⏐
c→∞

.

We now shift the flow variable from s ∈ [0, 1] to s̄ = s c ∈ [0, c] and take the limit c → ∞. The new
modified flow equation, reading

d
ds̄

u|k=const =
2vd
d

1
s̄ + 1 + w

, (F.9)

must be solved from s̄ = 0 to s̄ = ∞. This equation leads to a logarithmic divergence if s̄ → ∞.
However, the divergent part is just a constant shift of the effective potential which can be removed
by subtracting it

d
ds̄

u|k=const = −
2vd
d

1
s̄ + 1

ω

s̄ + 1 + ω
. (F.10)

Our construction ensures that the discontinuity is expressed as∆u = u(s̄ = ∞)−u(s̄ = 0) which can
be evaluated in a continuous flow equation.

Appendix G. Two-field-model & critical exponents

In Fig. 16, we show a variant of Fig. 12, exhibiting the deviation of the critical exponent y1 in the
O(2)⊕ O(2) model from its value at c = 1 without taking the absolute value and the weighting factor
from (48).

Appendix H. Flows for the polaron problem

The flow equations, graphically represented in Fig. 17, are given by

∂kP↓,k(Q ) = h2∂̃k

∫
P
Gc
φ,k(P)G

c
↑,k(P + Q )

∂kPφ,k(Q ) = −h2∂̃k

∫
P
Gc

↓,k(P)G
c
↑,k(Q − P), (H.1)
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Fig. 16. Deviation from the critical exponent y1 using separated cutoff scales in the O(2) ⊕ O(2) model in LPA from order ρ2 to
order ρ6 .

Fig. 17. Feynman diagrams for the flow of the dimer and impurity inverse propagators.

where P ≡ (ω, p). The flowing inverse propagators Pk ≡ G−1
k on the left-hand side are definedwithout

the regulators, while the regulated propagators Gc
k are given by

Gk ≡ 1/PkGc
k ≡ 1/(Pk + Rk), (H.2)

and ∂̃k implies that the derivative acts only on the regulator term Rk inside the cutoff propagators Gc
k.
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We examine unsupervised machine learning techniques to learn features that best describe configurations of the
two-dimensional Ising model and the three-dimensional XY model. The methods range from principal component
analysis over manifold and clustering methods to artificial neural-network-based variational autoencoders. They
are applied to Monte Carlo–sampled configurations and have, a priori, no knowledge about the Hamiltonian
or the order parameter. We find that the most promising algorithms are principal component analysis and
variational autoencoders. Their predicted latent parameters correspond to the known order parameters. The latent
representations of the models in question are clustered, which makes it possible to identify phases without prior
knowledge of their existence. Furthermore, we find that the reconstruction loss function can be used as a universal
identifier for phase transitions.
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I. INTRODUCTION

Inferring macroscopic properties of physical systems from
their microscopic description is an ongoing work in many
disciplines of physics such as condensed matter, ultracold
atoms, or quantum chromodynamics. The most drastic changes
in the macroscopic properties of a physical system occur at
phase transitions, which often involve a symmetry-breaking
process. The theory of such phase transitions was formulated
by Landau as a phenomenological model [1] and later devised
from microscopic principles using the renormalization group
[2,3]. Different phases can be identified by an order parameter
that is zero in the disordered phase and nonzero in the ordered
phase. Whereas in many known models the order parameter
can be determined by symmetry considerations of the under-
lying Hamiltonian, there are states of matter where such a
parameter can only be defined in a complicated nonlocal way
[4]. These systems include topological insulators, quantum
spin Hall states [5], or quantum spin liquids [6]. Therefore, it
is important to develop new methods to identify parameters
capable of describing phase transitions in these systems.

Such methods might be borrowed from machine learning.
With the development of more powerful computers and artifi-
cial neural networks, machine learning has become one of the
most influential disciplines of this century. It has been shown
that such neural networks can approximate any continuous
function under mild assumptions [7,8]. They quickly found
applications in image classification [9], speech recognition
[10], and natural language understanding [11].

In recent years physicists have started to employ machine
learning techniques. Most of the tasks were tackled by super-
vised learning algorithms or with the help of reinforcement
learning [12–24]. In supervised learning the algorithm is
trained on labeled data to assign labels to data points. After
successful training it can predict the labels of previously
unseen data with high accuracy.

In addition to supervised learning, there exist unsupervised
learning algorithms that can find structure in unlabeled data. It
is already possible to employ unsupervised learning techniques
to reproduce Monte Carlo–sampled states of the Ising model
[25]. Phase transitions were found in an unsupervised manner

using principal component analysis [26,27]. In this article we
examine several other unsupervised learning algorithms such
as manifold methods, clustering, and autoencoders. As a result
of this examination we conclude that principal component
analysis and variational autoencoders are the most promising
among them to reveal phase transitions. This motivates us to
transition to the employment of variational autoencoders and
test how the latter handles different physical models. This
algorithm finds a low-dimensional latent representation of the
physical system that coincides with the correct order param-
eter. Furthermore, we find that autoencoders can reconstruct
samples more accurately in the ordered phase, which suggests
the use of the reconstruction error as a universal identifier for
phase transitions.

Whereas for physicists this work is a promising way to find
order parameters of systems where they are hard to identify,
computer scientists and machine learning researchers might
find an interpretation of the latent parameters.

II. MODELS

A. Ising model in two dimensions

The Ising model is one of the most studied and well
understood models in physics. Whereas the one-dimensional
classical Ising model does not possess a phase transition, the
two-dimensional model does. The Hamiltonian of the Ising
model on the square lattice with vanishing external magnetic
h field reads

H (S) = −J
∑

〈i,j〉NN

sisj , (1)

with uniform interaction strength J and spins si ∈ {+1 =
↑,−1 = ↓} on each site i = 1, . . . ,N . The notation 〈i,j 〉NN

indicates a summation over nearest neighbors. A spin configu-
ration S = (s1, . . . ,sN ) is a fixed assignment of a spin to each
lattice site and � denotes the set of all possible configurations
S. We set the Boltzmann constant kB = 1 and the interaction
strength J = 1 for the ferromagnetic case and J = −1 for
the antiferromagnetic case. A spin configuration S can be
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expressed in matrix form as

S =̂

⎛
⎜⎜⎝

↑ ↓ ↑ · · · ↑
↓ ↑ ↑ · · · ↑
...

...
...

...
↓ ↓ ↑ · · · ↓

⎞
⎟⎟⎠

L×L

. (2)

Onsager solved the two-dimensional Ising model [28] and
thereby calculated the critical temperature Tc = 2/ ln(1 +√

2) = 2.269.
For the purpose of this work, we assume a square lattice

with length L = 28 such that L × L = N = 784 and periodic
boundary conditions. We sample the Ising model using a
Monte Carlo algorithm [29] at temperatures T ∈ [0,5] to
generate 50 000 samples in the ferromagnetic case and 10 000
samples in the antiferromagnetic case. The Ising model obeys
a discrete Z2 symmetry, which is spontaneously broken below
Tc. The magnetization of a spin sample is defined as

M(S) = 1

N

∑
i

si . (3)

The partition function

Z =
∑
S∈�

exp [−H (S)/T ] (4)

allows us to define the corresponding order parameter. It is the
expectation value of the absolute value of the magnetization at
fixed temperature

〈‖M(T )‖〉 = 1

Z

∑
S∈�

‖M(S)‖ exp[−H (S)/T ]. (5)

Similarly, with the help of the matrix Aij = (−1)i+j , we define
the order parameter of the antiferromagnetic Ising model, the
expectation value of the staggered magnetization. The latter is
calculated from an elementwise product with a matrix form of
the spin configurations

Mst = M(S 	 A). (6)

B. The XY model in three dimensions

The Mermin-Wagner-Hohenberg theorem [30,31] prohibits
continuous phase transitions in d � 2 dimensions at finite
temperature when all interactions are sufficiently short ranged.
Hence, we choose the XY model in three dimensions as a
model to probe the ability of a variational autoencoder to
classify phases of models with continuous symmetries. The
Hamiltonian of the XY model reads

H (S) = −J
∑

〈i,j〉NN

si · sj , (7)

with spins on the one-sphere si ∈ R2, ‖si‖ = 1. Employing
J = 1, the transition temperature of this model is Tc = 2.2017
[32]. Using a cubic lattice with L = 14 such that N = L3 =
2744, we perform Monte Carlo simulations to create 10 000
independent sample spin configurations in the temperature
range of T ∈ [0,5]. The order parameter is defined analogously
to the Ising model magnetization (5), but with the L2 norm of
a magnetization consisting of two components.

III. METHODS

Principal component analysis [33] is an orthogonal linear
transformation of the data to an ordered set of variables,
sorted by their variance. The first variable, which has the
largest variance, is called the first principal component, the
variable with the second largest variance is the second principal
component, and so on. The linear function 〈·,w〉, which maps
a collection of spin samples (S(1), . . . ,S(n)) to its first principal
component, is defined as

arg max
‖w‖=1

⎡
⎣∑

j

[(S(j ) − μ) · w]2

⎤
⎦, (8)

where μ is the vector of mean values of each spin averaged over
the whole data set. Further principal components are obtained
by subtracting the already calculated principal components
and repeating Eq. (8) on the remaining subspace.

Kernel principal component analysis [34] projects the data
into a kernel space in which the principal component analysis
is then performed. In this work the nonlinearity is induced by
a radial basis functions kernel.

Traditional neural-network-based autoencoders [35,36]
consist of two artificial neural networks stacked on top of
each other. They are created from an encoding artificial neural
network, which outputs a latent representation of the input
data, and a decoding neural network that tries to accurately
reconstruct the input data from its latent representation (see
Fig. 1). Very shallow versions of autoencoders can repro-
duce the results of principal component analysis [37]. The
parameters of this algorithm are trained by performing gradient
descent updates in order to minimize the reconstruction loss
(reconstruction error) between input data and output data.

Variational autoencoders [38] are a modern version of
autoencoders that impose additional constraints on the en-
coded representations, i.e., the latent variables in Fig. 1. These
constraints transform the autoencoder to an algorithm that
learns a latent variable model for its input data. Whereas the
neural networks of traditional autoencoders learn an arbitrary
function to encode and decode the input data, variational
autoencoders learn the parameters of a probability distribution
modeling the data. After learning the probability distribution,
one can sample parameters from it and then let the encoder
network generate samples closely resembling the training
data. To achieve this, variational autoencoders employ the
assumption that one can sample the input data from a unit
Gaussian distribution of latent parameters. The weights of
the model are trained by simultaneously optimizing two loss
functions, a reconstruction loss and the Kullback-Leibler

Input Encoder Latent
Variables Decoder Output

FIG. 1. Autoencoder neural network architecture. The encoder
network translates the input to its latent representation, from which
the decoder reconstructs an approximation of the input as output.

022140-2



UNSUPERVISED LEARNING OF PHASE TRANSITIONS: . . . PHYSICAL REVIEW E 96, 022140 (2017)

FIG. 2. Ferromagnetic Ising model showing the principal components and latent representations versus magnetization for different
algorithms: (a) principal component analysis, (b) kernel principal component analysis, (c) autoencoder, and (d) variational autoencoder.
Red points correspond to configurations of the unordered phase, while yellow points belong to the ordered phase.

divergence between the learned latent distribution and a prior
unit Gaussian.

In this work we use autoencoders and variational autoen-
coders with one fully connected hidden layer in the encoder as
well as one fully connected hidden layer in the decoder, each
consisting of 256 neurons. The number of latent variables is
chosen to match the model from which we sample the input
data. The activation functions of the intermediate layers are
rectified linear units. The activation function of the final layer
is a sigmoid in order to predict probabilities of spin ↑ or ↓ in
the Ising model or tanh for predicting continuous values of spin
components in the XY model. We do not employ any L1, L2, or
dropout regularization. However, we tune the relative weight
of the two loss functions of the variational autoencoder to fit
the problem at hand. The Kullback-Leibler divergence of the
variational autoencoder can be regarded as regularization of the
traditional autoencoder. In our autoencoder the reconstruction
loss is the cross-entropy loss between the input and output
probability of discrete spins, as in the Ising model. The recon-
struction loss is the mean-square error between the input and
the output data of continuous spin variables in the XY model.

To understand why a variational autoencoder can be a
suitable choice for the task of classifying phases, we recall

what happens during training. The weights of the autoencoder
learn two things. On the one hand, they learn to encode the sim-
ilarities of all samples to allow for an efficient reconstruction.
On the other hand, they learn a latent distribution of the param-
eters that encode the most information possible to distinguish
between different input samples. Let us translate these consid-
erations to the physics of phase transitions. If all the training
samples are in the unordered phase, the autoencoder learns
the common structure of all samples. The autoencoder fails to
learn any random entropy fluctuations, which are averaged out
over all data points. However, in the ordered phase there exists
a common order in samples belonging to the same phase. This
common order translates to a nonzero latent parameter, which
encodes correlations on each input sample. It turns out that in
our cases this parameter is the order parameter corresponding
to the broken symmetry. It is not necessary to find a perfect
linear transformation between the order parameter and the
latent parameter as is the case in Fig. 2. A one-to-one corre-
spondence is sufficient, such that one is able to define a function
that maps these parameters onto each other and captures all
discontinuities of the derivatives of the order parameter.

Principal component analysis and autoencoders seem
very different, but they share common characteristics.
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FIG. 3. Ferromagnetic Ising model showing a comparison of manifold and clustering methods: (a) PCA, (b) DBSCAN, (c) one-component
TSNE, (d) one-component MDS, (e) two-component TSNE, and (f) two-component MDS.
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Reconstructing the input data from its principal components
minimizes the mean-square reconstruction error. Hence,
a single-layer autoencoder with linear activation functions
closely resembles principal component analysis [37]. Principal
component analysis is much easier to apply and in general
is characterized by fewer parameters than autoencoders.
Autoencoders based on convolutional layers can have a
reduced number of parameters. In extreme cases this number
can be even less than the parameters of principal component
analysis. Furthermore, such autoencoders can promote
locality of features in the data.

We further examine manifold methods, where high-
dimensional data are embedded in a low-dimensional manifold
in which similar data points are represented close to each other.
For this purpose we employ t-distributed stochastic neighbor
embedding (TSNE) [39], a technique that is particularly
sensitive to local structure. We also consider multidimen-
sional scaling (MDS) [40], which seeks a low-dimensional
representation of the data in which the distances respect
the distances in the original high-dimensional space. In the
following sections we embed the spin configurations into a
one- (one-component TSNE or MDS ) or two-dimensional
manifold (two-component TSNE or MDS).

As an example of clustering methods we try to employ
density-based spatial clustering of applications with noise
(DBSCAN) [41]. It associates clusters with areas of high
density separated by areas of low density. The DBSCAN can
also find convex-shaped clusters.

For this work we employed the PYTHON libraries sklearn
[42] and keras [43]. A detailed introduction to autoencoders
can be found in [44].

IV. RESULTS

A. Ferromagnetic Ising model

First we compare the four most successful algorithms ap-
plied to the Ising model: principal component analysis (PCA),
kernel principal component analysis, autoencoders, and

variational autoencoders. They all share the characteristic that
the first principal components or the latent parameters (Fig. 2)
show a clear correlation to the magnetization. However, the
traditional autoencoder fails to capture this correlation in the
vicinity of magnetization M(S) = 0; this fact lets us favor
variational autoencoders over traditional autoencoders. The
principal component methods show the most accurate results,
slightly better than the variational autoencoder. This is to be
expected, since the former are modeled by fewer parameters.

In Fig. 3 we compare manifold and clustering methods to
principal component analysis. All algorithms are employed
on raw data in the temperature range T ∈ [0,5]. The PCA is
the only method that successfully manages to approximate
the magnetization. The DBSCAN completely fails to find
clusters on raw data. Moreover, the one-component TSNE can
separate clusters of positive and negative magnetization. One-
component MDS finds a structure that separates the ordered
phase (yellow) from the unordered phase (red). However,
this structure cannot be interpreted in a physical sense. Two-
component TSNE and two-component MDS both successfully
place samples belonging to the same phases close to each other.
They also distinguish between two sorts of magnetization. We
expect that in the case of supervised learning, where one can
cluster the training data, one would obtain much clearer results.

In the following results we concentrate on the variational
autoencoder as the most promising and powerful algorithm for
unsupervised learning.

As a starting point, we choose the number of latent
parameters in the variational autoencoder to be one. After
training the network for 50 epochs and observing a saturation
of the training loss, we visualize the results in Fig. 4. In
Fig. 4(a) we see a close linear correlation between the latent
parameter and the magnetization. In Fig. 4(b) there is a
histogram of spin configurations encoded into their latent
parameter. The model learned to classify the configurations
into three clusters. The identification of the latent parameter
as a close approximation of the magnetization M(S) allows

FIG. 4. Ferromagnetic Ising model. (a) The correlation between the latent parameter and magnetization is shown for each spin sample. Red
dots indicate points in the unordered phase, while yellow dots correspond to the ordered phase. (b) The histogram counts occurrences of latent
parameters. (c) One can see the average values at fixed temperature of the absolute value of magnetization, the absolute value of the latent
parameter, and the cross-entropy reconstruction loss. The reconstruction loss is mapped on the T = 0 and 5 values of the magnetization and
the latent parameter is rescaled to the magnetization at T = 0.
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FIG. 5. Ferromagnetic Ising model with visualization of data
in a two-dimensional latent space. Red dots indicate points in the
unordered phase, while yellow dots correspond to the ordered phase.
The axis for parameter 1 has a smaller range than the axis for
parameter 2.

us to interpret the properties of the clusters. The right and left
clusters in Fig. 4(b) correspond to an average magnetization
of M(S) ≈ ±1, while the middle cluster corresponds to the
magnetization M(S) ≈ 0. Employing a different viewpoint,
from Fig. 4 we conclude that the parameter that holds the most
information on how to distinguish Ising spin samples is the
order parameter. In Fig. 4(c) the average of the magnetization,
the latent parameter, and the reconstruction loss are shown
as a function of the temperature. A sudden change in the
magnetization at Tc ≈ 2.269 defines the phase transition
between paramagnetism and ferromagnetism. Even without
previous knowledge of this order parameter, we can use the
results of the autoencoder to infer the position of the phase
transition. As an approximate order parameter, the average

absolute value of latent parameter also shows a steep change
at Tc. The averaged reconstruction loss also changes drastically
at Tc. While the latent parameter is different for each physical
model, the reconstruction loss can be used as a universal
parameter to identify phase transitions. In conclusion, without
any knowledge of the Ising model and its order parameter but
sample configurations, we can find a good estimation for its
order parameter and the occurrence of a phase transition.

It is a priori not clear how to determine the number of latent
neurons in the creation of the neural network of the autoen-
coder. Due to the lack of theoretical groundwork, we find the
optimal number by experimentation. If we expand the number
of latent dimensions by one (see Fig. 5), the results of our anal-
ysis change only slightly. The second parameter contains much
less information compared to the first, since it stays very close
to zero. Hence, for the Ising model, one parameter is sufficient
to store most of the information of the latent representation.

B. Antiferromagnetic Ising model

After having identified variational autoencoders as the most
promising unsupervised learning algorithms to determined
phase transitions, we concentrate on this algorithm in the
following and present the results of the other algorithms in
the Appendix.

While the ferromagnetic Ising model serves as an ideal
starting ground, in the next step we are interested in models
where different sites in the samples contribute in a different
manner to the order parameter. We do this in order to show
that our model is even sensitive to structure on the smallest
scales. For the magnetization in the ferromagnetic Ising model,
all spins contribute with the same weight. In contrast, in the
antiferromagnetic Ising model, neighboring spins contribute
with opposite weight to the order parameter (6).

Again the variational autoencoder manages to capture the
traditional order parameter. The staggered magnetization is
strongly correlated with the latent parameter (see Fig. 6). The
three clusters in the latent representation make it possible to

FIG. 6. Antiferromagnetic Ising model. (a) Correlation between the latent parameter and staggered magnetization for each spin sample.
Red dots indicate points in the unordered phase, while yellow dots indicate points in the ordered phase. (b) The histogram counts occurrences of
latent parameters. (c) Average at fixed temperature of the absolute value of staggered magnetization, the absolute value of the latent parameter,
and the cross-entropy reconstruction loss. The reconstruction loss is mapped on the T = 0 and 5 values of the staggered magnetization and the
latent parameter is rescaled to the magnetization at T = 0.
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FIG. 7. Reconstruction of images, each consisting of 28 × 28 pixels, from the latent parameter. The brightness indicates the probability
of the spin to be up [white indicates p(↑) = 1 and black p(↓) = 1]. The first row is a reconstruction of sample configurations from the
ferromagnetic Ising model. The second row corresponds to the antiferromagnetic Ising model. The third row is the prediction from the AF
latent parameter, where each second spin is multiplied by −1, to show that the second row indeed predicts an antiferromagnetic state.

interpret different phases. Furthermore, we note that all three
averaged quantities, the magnetization, the latent parameter,
and the reconstruction loss, can serve as indicators of a phase
transition.

Figure 7 demonstrates the reconstruction from the latent
parameter. In the first row we see the reconstruction from
samples of the ferromagnetic Ising model; the latent parameter
encodes the whole spin order in the ordered phase. Recon-
structions from the antiferromagnetic Ising model are shown
in the second and third rows. Since the reconstructions clearly
show an antiferromagnetic phase, we infer that the autoencoder
encodes the spin samples even to the most microscopic level.

C. The XY model

In the XY model we examine the capabilities of a variational
autoencoder to encode models with continuous symmetries.

The application of other algorithms is compared in the
Appendix. In models like the Ising model, where discrete
symmetries are present, the autoencoder only needs to learn a
discrete set, which is often finite, of possible representations
of the symmetry-broken phase. If a continuous symmetry
is broken, there are infinitely many possibilities of how the
ordered phase can be realized. Hence, in this section we test
the ability of the autoencoder to embed all these different
realizations into latent variables.

The variational autoencoder handles this model equally
well as the Ising model. We find that two latent parameters
model the phase transition best. The latent representation in
Fig. 8(b) shows the distribution of various states around a
central cluster. The radial symmetry in this distribution leads to
the assumption that a sensible order parameter is constructed
from the L2 norm of the latent parameter vector. In Fig. 8
one sees the correlation between the magnetization and the

FIG. 8. The XY model. (a) Correlation between the L2 norm of the latent parameter vector and the L2 norm of the magnetization for each
spin sample. Red dots indicate points in the unordered phase, while yellow dots indicate points in the ordered phase. (b) Representation of
the spin configurations in two-dimensional latent space. (c) For each L2 norm of the magnetization, the L2 norm of latent parameter, and the
average of the square root of the mean-square error reconstruction loss, we plot the average at fixed temperature. The reconstruction loss is
mapped on the T = 0 and 5 values of the magnetization and the latent parameter is rescaled to the magnetization at T = 0.
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FIG. 9. Antiferromagnetic Ising model showing a comparison of the manifold and clustering methods: (a) PCA, (b) DBSCAN, (c)
one-component TSNE, (d) one-component MDS, (e) two-component TSNE, and (f) two-component MDS.
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FIG. 10. The XY model showing a comparison of the manifold and clustering methods: (a) PCA, (b) DBSCAN, (c) one-component TSNE,
(d) one-component MDS, (e) two-component TSNE, and (f) two-component MDS.
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absolute value of the latent parameter vector. Averaging the
samples for the same temperature hints at the fact that the
latent parameter and the reconstruction loss can serve as an
indicator for the phase transition.

V. CONCLUSION

We have shown that it is possible to observe phase tran-
sitions using unsupervised learning. We compared different
unsupervised learning algorithms and found that principal
component analysis and variational autoencoders are the best
algorithms for examining phase transitions. We were motivated
by the need for an upgrade of the traditional autoencoder to a
variational autoencoder. The weights and latent parameters of
the variational autoencoder are able to store information about
microscopic and macroscopic properties of the underlying
systems. The most distinguished latent parameters coincide
with the known order parameters. Furthermore, we have
established the reconstruction loss as a universal indicator for
phase transitions. We expanded the toolbox of unsupervised
learning algorithms in physics by powerful methods, most no-
tably the variational autoencoder, which can handle nonlinear
features in the data and scale very well to huge data sets.
In the future one may employ autoencoders to capture phase
transitions with nonlinear order parameters, which PCA cannot
reproduce. These theories include lattice gauge theories, where
the order parameters are defined by a loop along several
lattice sites. We expect the prediction of unseen phases or
exposure of unknown order parameters, e.g., in quantum
spin liquids. We look forward to the development of deep
convolutional autoencoders that have a reduced number of
parameters compared to fully connected autoencoders to probe
locality in feature selection. Furthermore, since there exists a
connection between deep neural networks and renormalization
group [45], it may be helpful to employ deep convolutional
autoencoders to further expose this connection.
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APPENDIX: PCA, MANIFOLD, AND
CLUSTERING RESULTS

1. Antiferromagnetic Ising model

In Fig. 9 we compare different unsupervised learning
algorithms applied to the antiferromagnetic Ising model.
Principal component analysis approximates the magnetization
by its first principal component equally well as variational
autoencoders (Fig. 6). The DBSCAN fails to find any mean-
ingful structure. One-component TSNE finds two clusters of
staggered magnetizations. One-component MDS is able to
discover structure in the data, however we cannot relate it
to any physical quantity. Two-component TSNE projects the
ordered phase (yellow) to the outside of the manifold, while
the unordered phase (red) is mapped to the inside. It also finds
substructure in the unordered phase. Two-component MDS is
able to separate points belonging to the unordered phase from
points belonging to the ordered phase.

2. The XY model

Figure 10 compares the results of different unsupervised
learning algorithms applied to raw Monte Carlo simulations
of the XY model. The Euclidean norm of the first two
principal components analysis is perfectly correlated with
the magnetization. Principal component analysis thus yields
similar results as variational autoencoders (Fig. 8). One-
component TSNE (one-component MDS) finds a structure
where two (three) points in the embedded manifold correspond
to a finite magnetization. The most promising result is achieved
by two-component TSNE: Spin configurations belonging
to the unordered phase are centered at the origin, while
configurations belonging to the ordered phase are mapped to
the exterior. This result is similar to the clustering from the
variational autoencoder (see Fig. 8). Two-component MDS
finds two clusters of a higher density of data points belonging
to the ordered phase; the result is less pronounced compared
to TSNE.
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We present a solution to the problem of interpreting neural networks classifying phases of matter. We devise
a procedure for reconstructing the decision function of an artificial neural network as a simple function of the
input, provided the decision function is sufficiently symmetric. In this case one can easily deduce the quantity by
which the neural network classifies the input. The method is applied to the Ising model and SU(2) lattice gauge
theory. In both systems we deduce the explicit expressions of the order parameters from the decision functions
of the neural networks. We assume no prior knowledge about the Hamiltonian or the order parameters except
Monte Carlo–sampled configurations.

DOI: 10.1103/PhysRevB.96.184410

I. INTRODUCTION

Machine learning enables computers to learn from expe-
rience and generalize their gained knowledge to previously
unseen problems. The development of better hardware and
algorithms, most notably artificial neural networks, propelled
machine learning to one of the most transformative disciplines
of this century. Nowadays such algorithms are used to classify
images [1], to recognize language [2] or to beat humans in
complex games [3]. Recently, machine learning has even been
successfully employed to tackle highly complex problems
in physics [4–15] and in turn physics has also inspired
developments in machine learning [16–24]. It is now possible
to classify phases of matter in the context of supervised
learning [25–31] only from Monte Carlo samples. Phases can
also be found without any information about their existence
by unsupervised learning [32–35].

These algorithms suffer from a huge drawback: there is no
comprehensive theoretical understanding of what they actually
learn [36–40]. Without knowing if the neural networks base
their decision on physical quantities one has no reason to trust
the results if applied to an unknown system. Previous works
suggest that machine learning discriminates phases of the Ising
model by the order parameter [25,41]; others use the weights
of the neural network to formulate a new order parameter [30].

In this paper (a) we propose a method to fully interpret neu-
ral networks, provided their decision function is sufficiently
symmetric, (b) we explain this method at the Ising model and
demonstrate its power at SU(2) gauge at theory, (c) we thereby
justify the use of neural networks to classify phases, (d) this
method yields such a clear interpretation that it can be used to
determine the nature of the ordered phase.

To this end we introduce the correlation probing neu-
ral network. It can reduce the complexity of sufficiently
symmetric decision functions. Since physical quantities are
typically highly symmetric, this network is ideal for probing
whether a physical quantity is responsible for the learned
decision function. After reducing the complexity, we show
that it is possible to fully reconstruct the explicit mathematical
expression of the decision function in a simple form. From this
expression one can extract the quantities by which the neural
network distinguishes between phases.

This procedure is introduced at the Ising model, where we
show that neural networks at distinguish between phases by
the expected energy per spin (dominant) and the magnetization

(subleading). We apply our method to SU(2) lattice gauge
theory, where we find that the decision function is based on a
nonlocal order parameter, the Polyakov loop.

II. ARTIFICIAL NEURAL NETWORKS

In this work we employ feed-forward artificial neural
networks as a tool to distinguish between two classes in
the context of supervised learning. After being successfully
trained, the algorithm is able to predict the class of unseen
test samples with high accuracy. We consider a neural network
as an approximation of the decision function D. The decision
function assigns to each sample S a probability P ∈ [0,1]
to be in class 1. The decision boundary is a hyperplane in
the space of the parameters of sample configurations defined
by D(S) = 0.5, where the neural network is most unsure
about the correct label. If there exists an explicit quantity
Q(S) which is learned by the neural network, and which is
responsible for the distinction between phases, we expect
that a change in the quantity Q is always related to a
change in the prediction probability, hence ∇Q||∇D in the
vicinity of the decision boundary. In our neural networks
the output can be written as D(S) = sigmoid(ξ (S)), where
sigmoid(x) = 1/[1 + exp(−x)] maps the latent prediction
ξ (S) to a probability. It follows that ∇Q||∇ξ and thus Q can be
expressed as a linear function of ξ in a linearized regime close
to the decision boundary ξ (S) = w Q(S) + b. The decision
function of neural networks is encoded in a highly elusive and
highly nonlinear way. In order to decode the decision function,
we present a type of neural network that is tailored to probe
if specific correlations between different variables contribute
to the decision function of the neural network. We call it the
correlation probing neural network; see Fig. 1. The neural
network architecture can be found in Appendix B.

The idea is to construct a tunable neural network which
is able to interpolate between a traditional feed-forward
neural network in one limit and an optimal minimal neural
network, that still yields a similar classification performance,
in the other limit. A neural network is an algorithm that
excels in identifying hierarchical structure on data. These
hierarchical functions can in principle be decomposed into
simpler subfunctions. To this end the correlation probing
neural network is decomposed into subnetworks of which each
can only learn a specific function. The subfunctions are unique

2469-9950/2017/96(18)/184410(8) 184410-1 ©2017 American Physical Society
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FIG. 1. The correlation probing neural network consists of three
types of neural networks stacked on top of each other. The localization
network is a fully convolutional neural network which prohibits
connections outside of the receptive field of each output neuron and
thus only recognizes correlations in the receptive field. The averaging
layer averages over the input from the localization network, similarly
to how the magnetization averages over all spins. The prediction
network is a fully connected neural network, which transforms the
output of the averaging layer to a prediction probability.

up to a linear transformation. The procedure for finding the
optimal minimal neural network is to reduce the capacity of
each of these subnetworks in an ordered manner until the neural
network experiences a significant drop in the classification
performance. The decision function of the optimal minimal
neural network can then be written in a simplified form. If the
quantity by which the neural network classifies the input is
highly symmetric it is often possible to read off the quantity
from the decision function. This is the case in the classification
of phases in many physical systems.

III. ISING MODEL

The Hamiltonian of the ferromagnetic nearest-neighbor
Ising model on the square lattice with vanishing external
magnetic field is

H (S) = −J
∑

〈i,j〉nn

sisj , (1)

with J = 1, S = (s1, . . . ,sN ) denotes a spin configuration,
where si ∈ {1,−1}. It is a simple, well studied, and exactly
solvable model from statistical physics that undergoes a
second-order phase transition at Tc = 2/[kBln(1 + √

2)] [42].
At Tc the specific heat CV = ∂〈E〉/∂β diverges, as does the
temperature derivative of the expectation value of the absolute
value of the magnetization 〈M〉, where M(S) = |1/N

∑
i si |.

The existence of different phases in the Ising model in the
low- and high-temperature limit is known from unsupervised
learning [32,33,35]. Using this knowledge we train the
correlation probing neural network to predict phases of Monte
Carlo–sampled configurations of size 28 × 28 below T = 1.6
in the ordered phase and above T = 2.9 in the unordered
phase. More information about Monte Carlo simulation can
be found in Appendix A. Using the full receptive field of
28 × 28, we allow the neural network to learn all possible spin
correlations to approximate its decision function. In this case,
the correlation probing network is equivalent to a standard
convolutional neural network. Training and validation losses
close to zero indicate that the neural network has found all

TABLE I. Ising model: Losses of neural networks with different
receptive fields of the neurons in the localization network. Smaller
numbers mean better performance. The baseline classifier is a random
classifier which predicts each phase with a probability of p = 0.5.

Receptive field size Train loss Validation loss

28 × 28 6.1588 × 10−4 0.0232
1 × 2 1.2559 × 10−4 1.2105 × 10−7

1 × 1 0.2015 0.1886
Baseline 0.6931 0.6931

necessary information it needs to reliably classify the phases.
By successively lowering the receptive field size, we do not
observe a drop in performance, except from 1 × 2 to 1 × 1 and
from 1 × 1 to the baseline classifier; see Table I. In each of
these steps the neural network loses important information
about the samples. In Fig. 2(c) we can see the average
classification probability, as a function of the temperature,
of both networks. The phase-transition temperature can be
found where P = 0.5. This is at T = 2.5 ± 0.5 for the 1 × 1
network and T = 2.25 ± 0.25 for the 1 × 2 network. An
accurate estimation can be found in [25]. We however focus
on examining what information got lost while lowering the
receptive field size.

By construction, the decision function D of the 1 × 1 neural
network can be expressed as

D(S) = F

(
1

N

∑
i

f (si)

)
= sigmoid

[
ξ

(
1

N

∑
i

f (si)

)]
,(2)

where F is the function approximated by the prediction
network and f is the function approximated by the localization
network. The function f can be Taylor expanded:

f (si) = f0 + f1 si + f2 s2
i︸︷︷︸
1

+f3 s3
i︸︷︷︸
si

+ · · · . (3)

Since s2
i = 1, all higher-order terms can be neglected. The

constants f0 and f1 can be absorbed by the bias and the weights
of the prediction network approximating F . Thus, the decision
function reduces to

D(S) = F

(
1

N

∑
i

si

)
. (4)

In order to determine the function F , we compare the latent
prediction ξ of the neural network, with the argument of
F : 1/N

∑
i si , in the vicinity of the decision boundary; see

Fig. 2(a). This knowledge allows us to construct the decision
function

D(S) ≈ sigmoid

(
w

∣∣∣∣∣ 1

N

∑
i

si

∣∣∣∣∣ + b

)
, (5)

with weight w and bias b of the prediction neuron. The perfect
correlation between the latent prediction ξ (S) and |1/N

∑
i si |

further reinforces that our above deduction was correct. Until
this point we have not used any information about the Ising
model except Monte Carlo configurations. We have found that
the decision function determines the phase by the quantity
Q(S) = |1/N

∑
i si |. This function is the magnetization.
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FIG. 2. Results of the correlation probing neural network applied to the Ising model. The latent prediction ξ is the argument of the sigmoid
function in the last layer of the prediction network. (a) The latent prediction is perfectly correlated with the absolute value of the average of
spins, i.e., the magnetization in the 1 × 1 network, for all sampled configurations. (b) The latent prediction of the 1 × 2 network is perfectly
correlated with the average product of neighbors, i.e., the expected energy per site.

By examining the 1 × 2 network, we require by construc-
tion that the decision function is of the form

D(S) = F

⎛
⎝ 1

N

∑
〈i,j〉T

f (si,sj )

⎞
⎠. (6)

Here the sum only goes over transversal nearest neighbors,
collecting each spin only once. The Taylor expansion,

f (si,sj ) =f0,0 + f1,0 si + f0,1 sj

+ f2,0 s2
i + f1,1 si sj + f0,2 s2

j + · · · , (7)

contains only three terms of note; all other terms can be reduced
to simpler ones by using s2

i = 1. The terms f1,0 si and f0,1 sj

represent the magnetization. From Table I and the analysis
of the 1 × 1 network, we know that these terms contain less
information than the quantity we are looking for. So the leading
term must be f1,1sisj . Thus, the decision function can be
written as

D(S) ≈ F

⎛
⎝ 1

N

∑
〈i,j〉T

sisj

⎞
⎠. (8)

In Fig. 2(b) we see the perfect correlation between the latent
prediction ξ (S) and 1/N

∑
〈i,j〉T sisj . This also means that

the correction from the subleading terms f1,0 si and f0,1 sj is
indeed negligible. Hence, we end up with the decision function

D(S) ≈ sigmoid

⎡
⎣w

⎛
⎝ 1

N

∑
〈i,j〉T

sisj

⎞
⎠ + b

⎤
⎦. (9)

By translational and rotational symmetry, the sum can be
generalized to all neighbors Q(S) = 1

N

∑
〈i,j〉nn

sisj . This
quantity is, up to a minus sign, the average energy per
spin site. It is worth noting that the energy per site can be
used to distinguish between phases more reliably than the
magnetization; see Table I.

IV. SU(2) LATTICE GAUGE THEORY

We examine SU(2) lattice gauge theory, which shows
confinement, one of the most distinct features of QCD. It
builds on the idea of discretizing the Euclidean path integral of
SU(2) Yang-Mills theory. Lattice configurations are defined by
a set of link variables Ux

μ ∈ SU(2). Each matrix connects two
sites on a four-dimensional x ∈ Nτ × N3

s space-time lattice
with Nτ = 2 (temporal direction) and Ns = 8 (spatial volume).
The direction is indicated by μ ∈ {τ,x,y,z}. A sample lattice
configuration collects all link variables on the lattice S =
({Ux

μ}). Each Ux
μ is parametrized by four real parameters,

Ux
μ = ax

μ1 + i
(
bx

μσ1 + cx
μσ2 + dx

μσ3
)
, (10)

where σi are the Pauli matrices; the coefficients obey (ax
μ)2 +

(bx
μ)2 + (cx

μ)2 + (dx
μ)2 = 1. The trace of Ux

μ is given by 2 ax
μ,

since the Pauli matrices are traceless. We employ the lattice
version of the Yang-Mills action, the Wilson action [43],

SWilson[U ] = βlatt

∑
x

∑
μ<ν

Re tr
(
1 − Ux

μν

)
, (11)

where βlatt is the lattice coupling. Here Ux
μν =

Ux
μUx+μ̂

ν U
x+μ̂+ν̂
−μ Ux+ν̂

−ν is the smallest possible closed
rectangular loop. The order parameter for the deconfinement

TABLE II. SU(2): Losses of neural networks with different
receptive fields of the neurons in the localization network (* no hidden
layers in the prediction net).

Receptive field size Train loss Validation loss

2 × 8 × 8 × 8 1.0004 × 10−4 2.6266 × 10−4

2 × 1 × 1 × 1 8.8104 × 10−8 6.8276 × 10−8

2 × 1 × 1 × 1∗ 2.2292 × 10−7 4.2958 × 10−7

1 × 1 × 1 × 1 0.6620 0.9482
Baseline 0.6931 0.6931
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phase transition is the expectation value of the Polyakov loop

L(	x) = tr

⎛
⎝Nτ −1∏

x0=0

Ux
τ

⎞
⎠ Nτ =2= tr

(
U 0,	x

τ U 1,	x
τ

)
= 2

(
a0,	x

τ a1,	x
τ − b0,	x

τ b1,	x
τ − c0,	x

τ c1,	x
τ − d0,	x

τ d1,	x
τ

)
. (12)

It is the trace of a closed loop that winds around time direction
using periodic boundary conditions. The expectation value of
the Polyakov loop is zero in the confined phase and finite in
the deconfined phase. More details on the simulations can be
found in Appendix A.

The existence of different phases in SU(2) lattice gauge
theory can be found by unsupervised learning; see Appendix D.
This knowledge allows us to train the correlation probing
neural networks with different receptive fields, to classify
phases on Monte Carlo–sampled configurations at lattice cou-
pling β ∈ [1,1.2] in one phase and β ∈ [3.3,3.5] in the other
phase. We test the neural network in β ∈ [1.3,3.2] to predict a
phase transition at β = 1.99 ± 0.10 (2 × 1 × 1 × 1 network)
and β = 1.97 ± 0.10 (2 × 8 × 8 × 8 network); see Fig. 3(c).
Our direct lattice calculation reveals β = 1.880 ± 0.025. By
successively lowering the receptive field size we lose important
information for classifying phases below 2 × 1 × 1 × 1; see
Table II. This means that crucial information about the phase
transition is contained in this specific structure.

The decision function of the 2 × 1 × 1 × 1 network is
constrained to

D(S) = F

(
2

N

∑
	x

f
({

Ux0,	x
μ

}))
, (13)

where the arguments of f are eight matrices at spatial location
	x. A general approach to find F and f is presented in
Appendix F. A simpler approach is based on the observation
that we do not need any hidden layers in the prediction network,
i.e., we only keep the output neuron; see Table II. Then the
decision function simplifies to D(S) = sigmoid[w Q(S) + b],

where

Q(S) = 2

N

∑
	x

f
({

Ux0,	x
μ

})
(14)

reduces to a sum of functions acting only on a single patch
of size 2 × 1 × 1 × 1 each. This allows us to split all samples
to a minimum size of 2 × 1 × 1 × 1. We train a new local
neural network to classify the phases of each local sample.
By performing a regression on the latent prediction of the
local neural network, we find that a second-order polynomial
performs best (a comparison of different algorithms is found
in Appendix E). The regression approximates the latent
prediction by a sum of 561 terms,

f
({

Ux0
μ

}) ≈ + 7.3816 a0
τ a

1
τ + 0.2529 a1

τ b
1
τ + · · ·

− 0.2869 d0
τ c1

τ − 7.2279 b0
τ b

1
τ

− 7.3005 c0
τ c

1
τ − 7.4642 d0

τ d1
τ . (15)

We only keep the leading contributions and assume that the
differences between the leading contributions originate from
approximation errors. Since overall factors and intercepts can
be absorbed in the weights and biases of the neural network,
we can simply rescale the above parameter to

f
({

Ux0
μ

}) ≈ a0
τ a

1
τ − b0

τ b
1
τ − c0

τ c
1
τ − d0

τ d1
τ = tr

(
U 0

τ U 1
τ

)
. (16)

This is the Polyakov loop on a single spatial lattice site (12).
We promote f ({Ux0

μ }) → f ({Ux0,	x
μ }) to act on the full lattice,

such that we can formulate the decision function of the neural
network with the full receptive field as

D(S) ≈ sigmoid

[
w

(
2

N

∑
	x

f
({

Ux0,	x
μ

})) + b

]
. (17)

Here Q(S) = 2
N

∑
	x f ({Ux0,	x

μ }) is the Polyakov loop on the
full lattice. A confirmation of this deduction can be seen in
the perfect correlation between the latent prediction and the
Polyakov loop in Figs. 3(a) and 3(b).

FIG. 3. Results of the correlation probing network applied to SU(2) lattice gauge theory. (a),(b) The latent prediction shows a strong
correlation with the Polyakov loop in both the 2 × 8 × 8 × 8 network and the 2 × 1 × 1 × 1 network. (c) The average prediction probability
of the two networks.
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TABLE III. Ising model neural network. A, B, C determine the
receptive field size of each neuron in the averaging layer.

Layer Output shape Kernel size

InputLayer (784, 1)
Convolution1D (784/(A),nA) A
Convolution1D (784/(A × B),nB ) B
Convolution1D (784/(A × B × C),nC) C
Average pooling (1, nC)
Flatten (nC)
Dense (nD)
Dense (1)

V. CONCLUSION

We proposed and demonstrated a method to fully interpret
neural networks, which is based on the correlation probing
neural network. The method was introduced at the Ising model
on the square lattice, where the neural network predicts phases
via the magnetization (5) or the expected energy per site (9).
We then demonstrated the power of this method at SU(2)
lattice gauge theory, where the reconstructed decision function
reveals the explicit mathematical expression of the Polyakov
loop (17), a nonlinear, nonlocal order parameter. This method
provides the means to judge whether neural networks have
learned physical properties and thus whether their results can
be trusted. Furthermore, our procedure can be used to deduce
the explicit formulas of physical order parameters. Since our
approach is vastly different than conventional methods, it could
determine the nature of phases where conventional methods
have not yet succeeded.

A first application could be identifying if machine learning
methods classify sign problematic models by physical quanti-
ties [26]. Then we could reliably determine the phase diagram
of QCD at finite density [44–46] or examine the pseudogap
[47–50] or the competition between d-wave and antiferromag-
netic order [51–54] in the two-dimensional Hubbard model.
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APPENDIX A: MONTE CARLO SIMULATIONS

In statistical physics and lattice gauge theory, Markov
Chain Monte Carlo algorithms are used to sample lattice
configurations from the Boltzmann factor. This is done by
constructing a stochastic sequence that starts at some random
initial configuration. This stochastic sequence is constructed
such that the configurations obey Boltzmann statistics in the
equilibrium. For more details on algorithm requirements and
algorithms see, e.g., [55].

Observables are then computed by taking the average
over many spin or lattice configurations from the equilibrium
distribution

〈O〉 = lim
N→∞

1

N

N∑
i=1

Oi . (A1)

Taking the limit in the last equality is practically not possible.
Hence, the expectation value of the observable is approximated
by large N and gives rise to a statistical error. It is important
to take enough configurations such that ergodicity is achieved.
In the case of two distinct regions of phase space, this can take
a very long simulation time.

For the Ising model, we produced a total of 55 000 spin
configurations, of size 28 × 28, equally distributed over 11
equidistant temperature values T ∈ [0,5] by employing the
Metropolis-Hastings algorithm [56] with simulated annealing.

For SU(2), we used the Heatbath algorithm [57] to produce a
total of 15 600 decorrelated configurations equally distributed
over 26 values in the range of βlatt = 4/g2 ∈ [1,3.5]. In the
context of this paper it is important to have decorrelated
data, since neural networks are good at finding structures, and
thus correlations between configurations, if existent. Due to
center symmetry breaking, in the deconfined phase the average
Polyakov loop can take either positive or negative values of
equal magnitude. In our simulations, we initiated all links with
the unit matrix, hence we introduced a bias for large values of
βlatt, i.e., our simulations are not fully ergodic. At large values
of βlatt, this will prevent a full exploration of phase space. If we
were to employ neural networks to extract the position of the
phase transition, this nonergodicity leads to a shift in the value
of critical βlatt. Generally speaking, ergodicity can be retained
by doing more simulations and employing algorithms such as
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FIG. 4. Results of the correlation probing neural network applied to the Ising model. (a) The latent prediction is perfectly correlated with
the absolute value of the average of spins, i.e., the magnetization in the 1 × 1 network. (b) The latent prediction of the 1 × 2 network is not
correlated with the absolute value of the average of spins. (d) The latent prediction of the 1 × 2 network is perfectly correlated with the average
product of neighbors, i.e., the expected energy per site. (c) The latent prediction of the 1 × 1 network is not correlated with the average of
neighbors.

simulated annealing or overrelaxation, thus in principle it is
possible to extract the critical temperature reliably.

APPENDIX B: NEURAL NETWORK ARCHITECTURE

We constructed our machine learning pipeline using Scikit-
learn [58] and Keras [59]. The neural network architectures
are presented in Tables III and IV. Since there is no Convo-
lutional4D in Keras, we just rearranged our samples to fit a
Convolutional1D layer. We used neural networks with number
of filters nA,nB,nD ∈ {1,4,8,32,256,1024}. The kernel sizes
A, B, C are used to set the receptive field size. For our
problems, nC = 1 is sufficient to capture the structure of
the order parameter. This was probed in the same manner
as finding the optimal receptive field size. In other models one
might need a higher nC , e.g., in the Heisenberg model, nC = 3
could be optimal. Hence, this can already be an early indicator
for the type of the broken symmetry. The activation functions
are rectified linear units relu(x) = max(0,x) between all layers

and the sigmoid function sigmoid(x) = 1/[1 + exp(−x)] in
the last layer. We do not employ any sort of regularization.
The training objective is minimizing the binary cross entropy
loss function

C(Y,P ) = − 1

N

∑
i

[yi lnpi + (1 − y)ln(1 − pi)], (B1)

where Y = yi is a list of labels and P = pi is the corresponding
list of predictions. Our baseline classifier is the classifier which
assigns each label with a probability of pi = 0.5. This means
that this classifier just assigns a label to each sample randomly.
The binary cross entropy then evaluates to 0.6931. The neural
networks learn by optimizing the weights and biases via
RMSprop gradient descent. The neural networks were trained
for 300 epochs or less, if the loss already saturated in earlier
epochs. The validation set is 20% of the training data.
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FIG. 5. (a) Finding a possible phase transition in SU(2) lattice
gauge theory with PCA. Green solid: The average mean squared
error reconstruction loss as a function of temperature is a universal
identifier for a phase transition. It was calculated in 100 independent
incremental PCA runs with two principal components (PC), measured
in units of ×10−5 and shifted by the value at β = 3.5. Blue dotted:
The average norm of the PC also indicates a phase transition.
(b) There is no correlation between the principal components and
the Polyakov loop.

APPENDIX C: CROSS COMPARISON OF ISING MODEL
NEURAL NETWORK RESULTS

In Fig. 4 we show that latent parameters of the neural
networks applied to the Ising model cannot be simultaneously
correlated with the magnetization and the average energy per
spin.

APPENDIX D: UNSUPERVISED LEARNING OF PHASE
TRANSITIONS IN SU(2) LATTICE GAUGE THEORY

We assume no prior knowledge of the phase transition,
even its existence. Hence, we employ unsupervised learning
to find any possible indications for a phase transition. For the
sake of simplicity we employ principal component analysis
(PCA) [32,60] with two principal components. PCA is an
orthogonal linear transformation of the input samples to a
set of variables, sorted by their variance. Here, unsupervised
learning algorithms that are based on the reconstruction loss
like autoencoders [33] are doomed to fail, since the states
are gauge invariant. The autoencoder would need to predict a
matrix which is not unique.

Even though the Polyakov loop is a nonlinear order
parameter, PCA captures indications of a phase transition
at β ∈ [1.8,2.2], which is demonstrated in Fig. 5(a). Here
we employed the average reconstruction loss [33] and the
Euclidean norm of the principal components as identifiers
for a phase transition. In Fig. 5(b) we show that there is
no correlation between the Polyakov loop and the principal
components.

It is worth noting that this example shows that PCA can
capture phase indicators even when the principal components
cannot approximate any order parameter.

APPENDIX E: REGRESSION OF THE POLYAKOV LOOP
IN THE LOCAL NEURAL NETWORK

We perform a regression on the latent prediction of the local
neural network on only 1% of the local samples of size 2 ×
1 × 1 × 1 and use another 1% as validation set. By comparing
different algorithms, we find that a second-order polynomial
regression gives the best results; see Table V.

APPENDIX F: FULL REGRESSION OF THE POLYAKOV
LOOP IN THE GLOBAL NEURAL NETWORK

Here we present the general procedure for reconstructing
the decision function of a neural network applied to SU(2)
gauge theory. Since it requires separating the correlation
probing network into subnetworks, and transferring weights
between different networks, it requires more advanced knowl-
edge of artificial neural network architecture.

The decision function of the 2 × 1 × 1 × 1 neural network
which predicts the lattice SU(2) phase transition is by
construction

D(S) = F

(
2

N

∑
	x

f
(
U 0,	x

τ ,U 0,	x
x ,U 0,	x

y ,U 0,	x
z ,

U 1,	x
τ ,U 1,	x

x ,U 1,	x
y ,U 1,	x

z

))
. (F1)

In general, we cannot assume that the prediction network
consists only of the output neuron. Therefore, we suggest a
different procedure for constructing the decision function. We
split the full correlation probing net into subnetworks: we
extract the localization network plus averaging layer and the
prediction network as separate networks. In order to deter-
mine F (S) = sigmoid(ξ (S)), we use polynomial regression to
fit the latent prediction of the prediction network to the output
of the averaging layer. We find a polynomial of degree 1 is
enough to fit the data, and ξ is approximated by

ξ (x) ≈ −0.7101 x + 9.851 434 19. (F2)

The slope and intercept can be absorbed by the weight w and
bias b of the output neuron, such that we can infer

ξ (x) ≈ w x + b. (F3)

The function f requires us to build a new local neural
network which only acts on patches of size 2 × 1 × 1 × 1. By
construction this network has the same number of weights and
biases as the full neural network acting on the input of size
2 × 8 × 8 × 8. Instead of training the local neural network,
we transfer the weights and biases from the full correlation
probing network to the local neural network. Hence, one can
obtain the output of the localization network for each patch
separately. Again, we employ polynomial regression to fit the
input from the local patches to the output of the localization
network. The result of a regression of degree 2 with 561
parameters yields

f
({

Ux0
μ

}) ≈ − 26.8354 a0
τ a

1
τ − 2.4972 d0

τ c1
τ + · · ·

+ 1.5653 b0
τ c

0
τ + 26.5908 b0

τ b
1
τ

+ 27.7054 c0
τ c

1
τ + 27.8939 d0

τ d1
τ . (F4)
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After absorbing overall factors and the intercept by the weights
and biases of the prediction network and neglecting the
subleading terms, we rewrite f as

f
({

Ux0
μ

}) ≈ a0
τ a

1
τ − b0

τ b
1
τ − c0

τ c
1
τ − d0

τ d1
τ . (F5)

This is the Polyakov loop on a single lattice site. By employing
(F5) as an argument of (F3), we can promote f ({Ux0

μ }) →
f ({Ux0,	x

μ }) to depend on space again. We obtain the definition

of the decision function

D(S) ≈ sigmoid

[
w

(
2

N

∑
	x

f
({

Ux0,	x
μ

})) + b

]
, (F6)

where Q(S) = [ 2
N

∑
	x f ({Ux0,	x

μ })] is the Polyakov loop on the
full lattice.
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We employ the functional renormalization group to investigate the phase diagram of the t − t′
Hubbard model on the square lattice with finite chemical potential µ at zero temperature. A
unified scheme to derive flow equations in the symmetric and symmetry broken regimes allows
a consistent continuation of the renormalization flow in the symmetry broken regimes. At the
transition from the symmetric regime to the symmetry broken regimes, our calculation reveals
leading instabilities in the d-wave superconducting and antiferromagnetic channels. Furthermore,
we find a first order transition between commensurate and incommensurate antiferromagnetism. In
the symmetry broken regimes our flow equations are able to renormalize around a changing Fermi
surface geometry. We find a coexistence of d-wave superconductivity and antiferromagnetism at
intermediate momentum scales k. However, there is a mutual tendency of superconductivity and
antiferromagnetism to repel each other at even smaller scales k, which leads to the eradication of
the coexistence phase in the limit of macroscopic scales.

I. INTRODUCTION

The t − t′- Hubbard model [1–3] is a promising model
to describe the phase diagram of electrons in CuO planes
as they occur in cuprate high-temperature superconduc-
tors. The most distinct phases are antiferromagnetism
and d-wave superconductivity in close vicinity to each
other[4–20]. Early works could already infer d-wave su-
perconductivity by scaling arguments [21–23]. More ad-
vanced purely fermionic renormalization calculations re-
vealed the leading instabilities of the Hubbard model in
the antiferromagnetic and in the d-wave channel [24–39].
While these methods have problems to calculate results
in the symmetry broken phases, a combination of differ-
ent schemes like renormalization group and mean field
calculations can give insights in the interplay of different
orders [40–45]. Our approach builds upon a bosonized
renormalization group analysis of the Hubbard model
which allows the renormalization flow to enter symme-
try broken phases [46–53]. For this purpose we employ
a scale dependent Hubbard-Stratonovich transformation
[54, 55] which is generated during the renormalization
flow [56, 57].

We employ a bosonized functional renormalization
group calculation to examine the phase diagram of the
t − t′ Hubbard model with finite chemical potential µ
at zero temperature. We formulate a consistent set of
flow equations in the symmetric and symmetry broken
phases, which are supplied by a renormalization scheme
which works in the symmetric and all symmetry broken
phases. This allows us to renormalize around a changing
Fermi surface in the magnetic symmetry broken phase.

The initial conditions of our flow equations are given by
the fermionic Hubbard action in the Matsubara formal-
ism, eq. (4). By examining the leading instabilities of the
flow equations in the symmetric regime, we identify three
different channels in which symmetry breaking occurs,
see fig. 1. These correspond to commensurate antifer-
romagnetism, incommensurate antiferromagnetism and

d-wave superconductivity. An advantage of our method
is the way of identifying incommensurate antiferromag-
netism. This is because the the minimum of the inverse
magnetic propagator is directly related to the type of an-
tiferromagnetism. This property allows for an accurate
examination of the transition between commensurate and
incommensurate antiferromagnetism, see fig. 4, which we
identify as a transition of first order. By continuing the
flow equations into the regimes of symmetry breaking,
we are able to examine the interplay of the magnetic and
d-wave order parameters. We find that at intermediate
scales k there is a regime of coexisting antiferromagnetic
and d-wave condensate. Our results suggest that these
two phases have a tendency to repel each other, which
leads to the vanishing of the coexistence phase at macro-
scopic scales, see fig. 7.

II. FIELD THEORETIC FORMULATION OF
THE HUBBARD MODEL

A. Hubbard Model

The t−t′ Hubbard model on the square lattice is defined
by the Hamiltonian

H = − ∑
ij,σ

tijc
�
i,σcj,σ + h.c. +U∑

i

(c�i,↓ci,↓)(c�i,↑ci,↑) , (1)

where tij = t for nearest neighbors, tij = t′ for next-to-
nearest neighbors and tij = 0 otherwise. We define the
energy scales by setting t = 1. The fermionic dispersion
relation in momentum space is

ξ(Q) = −µ − 2t(cos(qx) + cos(qy)) − 4t′(cos(qx) cos(qy)) ,
(2)

where we have already included the chemical potential µ,
which denotes the level of doping.
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B. Functional Renormalization Group

We address the phase diagram of the Hubbard model
by calculating the quantum effective action Γ via the flow
equation for the effective average action Γk [58]

∂kΓk = 1

2
STr(Γ

(2)
k +Rk)−1 ∂kRk = 1

2
STr ∂̃k ln (Γ

(2)
k +Rk) .

(3)

We also introduce a short form notation of the scale
derivative ∂̃k = (∂kRk)∂Rk

acting only on the regulator.
For small k → 0, the effective average action becomes the
full effective action Γ. In the limiting case of large scales
k → Λ, the effective action equals the microscopic action
Γk → S. Thus the initial condition for our renormaliza-
tion group calculation is defined by the Hubbard model
action in the Matsubara formalism

S =∑
Q

ψ�(Q) (iωQ + ξ(Q))ψ(Q)
+ U

2
∑

Q1,...,Q4

(ψ�(Q1)ψ(Q2)) (ψ�(Q3)ψ(Q4))
× δ(Q1 −Q2 +Q3 −Q4) . (4)

The fields depend on a collection of momenta and
the Matsubara frequency Q = (ωQ, q⃗) = (ωQ, qx, qy).
The sum is a short hand notation for an integra-
tion over all momenta and Matsubara frequencies∑Q = ∫ ∞−∞ dω

2π ∫[−π,π]2 dq2(2π)2 . The electrons are written

as four component Grassmann valued fields ψ(Q) =(ψ(Q)↓, ψ(Q)↑)T . While the Matsubara frequencies are
discrete at nonzero temperature, they take on continu-
ous values at zero temperature. This has a strong ef-
fect on the flow equations: The fermionic propagator is
no longer gapped by the lowest Matsubara frequencies
ω = ±πT , thus fermionic fluctuations contribute even for
small energy scales k. This fact is also responsible for
the increased effect of the shape of the Fermi surface on
the renormalization flow. Hence, special care needs to be
taken when dealing with contributions close to the Fermi
surface. Furthermore, in the bosonic sector at finite tem-
perature, only the Matsubara zero mode contributes to
the flow equations, which induces dimensional reduction
at low scales k ≪ πT . In this case, the theory can be
influenced only by spatial fluctuations. These two finite
temperature properties cannot be exploited in the deriva-
tion of flow equations at zero temperature and thus yield
an extra challenge for our calculations.

C. Truncation

While the Hubbard action, eq. (4), is the initial condi-
tion for the flow equation, other couplings are generated
during the renormalization flow. The average effective
action can be decomposed into contributions with respect

to their fermionic and bosonic content

Γk =ΓF,k + ΓFB,k + ΓB,k . (5)

The fermionic part ΓF,k contains the Hubbard action (4)

and contributions ΓmF ,Γ
d
F mimicking the magnetic and d-

wave contributions of the Hubbard interaction U . They
absorb the respective momentum dependence of U arising
during the renormalization flow.

ΓF,k =∑
Q

ψ�(Q)PF (Q)ψ(Q)
+ U

2
∑

Q1,...,Q4

(ψ�(Q1)ψ(Q2)) (ψ�(Q3)ψ(Q4))
× δ(Q1 −Q2 +Q3 −Q4) + ΓmF + ΓdF (6)

While we keep the Hubbard interaction U fixed, we al-
low for a fermionic wave function renormalization ZF in
the kinetic term PF = ZF (iωQ + ξ(Q)). The fermionic
momentum channels

ΓmF = − 1

2
∑

Q1,...,Q4

λmF (Q1 −Q2)δ(Q1 −Q2 +Q3 −Q4)
× (ψ�(Q1)σ⃗ψ(Q2)) (ψ�(Q3)σ⃗ψ(Q4)) (7)

and

ΓdF = − 1

2
∑

Q1,...,Q4

λdF (Q1 +Q3)δ(Q1 −Q2 +Q3 −Q4)
× fd((Q1 −Q3)/2)fd((Q2 −Q4)/2)× (ψ�(Q1)εψ∗(Q3)) (ψT (Q2)εψ(Q4)) (8)

will be kept zero during the renormalization flow. Their
flow will be redefined as contributions to the Yukawa cou-
plings hm, hd of the magnetic and d-wave bosons by flow-
ing bosonization, see appendix B 5.

The purely bosonic part of the effective average action
is defined by

ΓB,k =1

2
∑
Q

m⃗T (−Q)Pm(Q)m⃗(Q)
+∑
Q

d∗(Q)Pd(Q)d(Q)
+∑
X

Uk(ρm, ρd) . (9)

Here m⃗ describes a magnetic boson and d a d-wave su-
perconducting Cooper-pair. The effective potential U
depends on the symmetry invariants ρm = 1

2
m⃗T m⃗ and

ρd = d∗d. The kinetic contributions can be decomposed
into a frequency dependent part and a momentum de-
pendent part.

Pm(Q) = Zmω2
Q +AmFm(Q)

Pd(Q) = Zdω2
Q +AdFd(Q) . (10)
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The minimum of the spatial shape factor Fd is found
at (0,0), however the minimum of the magnetic kinetic
shape factor Fm can take different values for different
kinds of magnetism. A minimum at (0,0) denotes ferro-
magnetism, while a minimum at π⃗ = (π,π) denotes anti-
ferromagnetism. In our phase diagrams we also find in-
commensurate antiferromagnetism, where the minimum
is fourfold degenerate on the axis at (π,π ± δic) and(π ± δic, π).

We parametrize the bosonic propagators with func-
tions which allow for an accurate examination of the ex-
pansion around their minima. The magnetic propagator
in the case of commensurate antiferromagnetism is given
by

Fm,c(Q) = Dm∣[q⃗ + π⃗]∣2
Dm + ∣[q⃗ + π⃗]∣2 , (11)

where [q⃗] = ((qx + π mod 2π) − π, (qy + π mod 2π) − π)
denotes the projection of momenta into the 1st Brillouin
zone [−π,π]2. In the case of incommensurate antiferro-
magnetism this parametrization is enhanced by

Fm,ic(Q) = DmF̃ (q⃗)
Dm + F̃ (q⃗) , (12)

where

F̃ (q⃗) = 1

4δic
((∣[q⃗ + π⃗]∣2 − δ2ic)2 + 4[qx + π]2[qy + π]2)

(13)

is employed to expand around the incommensurate min-
imum. The d-wave propagator is similarly parametrized
by

Fd(Q) = Dd∣[q⃗]∣2
Dd + ∣[q⃗]∣2 . (14)

The interactions in the bosonic sector are contained in
the effective potential

Uk(ρm, ρd) = ord∑
n=1un , (15)

to various orders in ρm and ρd. The lowest order of the
effective potential

u1 = λ10(ρm − ρm0) + λ01(ρd − ρd0) (16)

contains the mass terms λ10 = m2
m and λ01 = m2

d. They
are finite in the symmetric phases and zero in the sym-
metry broken phases. In the latter case we expand the ef-
fective potential around the minimum at (ρm0, ρd0). The

second order interactions

u2 = λ20
2

(ρm − ρm0)2 + λ11(ρm − ρm0)(ρd − ρd0)
+ λ02

2
(ρd − ρd0)2 (17)

determine the curvature around the expansion point. As
long as detBB = λ20λ02 − λ211 > 0, the expansion point is
a true minimum. The third order contributions are

u3 = λ30
6

(ρm − ρm0)3 + λ21
2

(ρm − ρm0)2(ρd − ρd0)
+ λ12

2
(ρm − ρm0)(ρd − ρd0)2 + λ03

6
(ρd − ρd0)3 .

(18)

The interactions between the bosonic and the fermionic
sector are mediated by the Yukawa couplings

ΓFB,k =− ∑
Q1,Q2,Q3

hm(Q1)m⃗(Q1) (ψ�(Q2)σ⃗ψ(Q3))
× δ(Q1 −Q2 +Q3)

− ∑
Q1,Q2,Q3

1√
2
hd(Q1)fd((Q2 −Q3)/2)

(d∗(Q1)(ψT (Q2)εψ(Q3) − d(Q1)(ψ�(Q2)εψ∗(Q3))× δ(Q1 −Q2 +Q3) . (19)

We parametrize the magnetic Yukawa couplings by the
momentum-weighted average of a ferromagnetic inter-
action and an antiferromagnetic interaction hm(Q) =∣[q⃗]∣√

2π
hm(Π)+√

2π−∣[q⃗]∣√
2π

hm(0). While solving the flow equa-

tions at T = 0, we find ∂khm(0) = 0 and thus hm(0) = 0.
Here fd(Q) = 1

2
(cos(qx) − cos(qy)) is the d-wave form

factor. The 1/√2 prefactor of hd together with a redefi-
nition of the d-wave boson into real fields d = 1√

2
(d1+id2)

is useful to treat the magnetic and d-wave bosons on an
equal footing. Then they can be summarized in a com-
mon language in form of a O(2)×O(3) symmetric bosonic
submodel.

The regulator function introduces an artificial mass to
the kinetic terms of the bosonic and fermionic fields. In
our regularization scheme it only acts on the spatial mo-
mentum dependent part

Am Fm,k(Q) = Am Fm(Q) +RB(Fm(Q))
Ad Fd,k(Q) = Ad Fd(Q) +RB(Fd(Q))
ZF ξk(Q) = ZF ξ(Q) +RF (ξ(Q)) (20)

for slow momentum modes. In our work we chose the
Litim regulator [59]. It acts on the bosonic fields as

RB(Fm(Q)) = Am (k2 − Fm(Q))Θ(k2 − Fm(Q))
RB(Fd(Q)) = Ad (k2 − Fd(Q))Θ(k2 − Fd(Q)) , (21)
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and on the fermionic fields as

RF (ξ(Q)) = ZF sign(ξ(Q))(k − ∣ξ(Q)∣)Θ(k − ∣ξ(Q)∣) .
(22)

The choice of the infrared cutoff function RF can be con-
tinuoulsy extended to the symmetry broken regimes to
address the changing Fermi surface which is discussed in
section IV A.

III. LEADING INSTABILITIES IN THE
SYMMETRIC REGIME

We solve the set of flow equations, see appendix B,
in the symmetric and symmetry broken regimes from
ln(Λ) = ln(k) = 12 to ln(k) = −8. The initial condition
in the form of the Hubbard action (4) dictates the initial
conditions for all other couplings. In the fermionic sec-
tor the wave function renormalization starts at ZF = 1.
The bosonic sector is initially completely decoupled from
the fermions, hence hm(Q) = hd = 0. The bosons start
at their Gaussian fixed points, hence λ10 = λ01 = 1,
Pm(Q) = Pd(Q) = 0 and λij = 0 if i + j > 1. Exem-
plary we plot the flow of the most important quantities
at µ = −0.4, t′ = −0.1 in fig. 3. The parameters correspond
to a region in the µ, t′-diagram, fig. 1, where the renor-
malization group flow enters all four possible regimes: the
symmetric regime, antiferromagnetism, d-wave supercon-
ductivity and coexistence regime of antiferromagnetism
and d-wave superconductivity.

A. Phase Diagram of Leading Instabilities

In this section we examine the solutions of the flow
equations in the symmetric regime, in order to obtain
a phase diagram of leading instabilities in the Hubbard
model on the square lattice. More precisely, a leading
antiferromagnetic instability occurs if λ10 vanishes at a
symmetry breaking scale kSB > 0, while λ01 is still posi-
tive at kSB . Similarly, a leading superconducting insta-
bility is characterized by λ01 vanishing first. The bound-
ary between antiferromagnetism and superconductivity is
found where λ10 and λ01 vanish simultaneously at a com-
mon symmetry breaking scale kSB . Finally, in the un-
ordered phase λ10 and λ01 remain positive for k → 0. The
diagram of leading instabilities corresponds to phase dia-
grams typically computed by purely fermionic flow equa-
tions. Indeed, integrating out the bosonic fields leads to
a diverging four fermion interaction in the corresponding
channels. In the vicinity of the transition between the
antiferromagnetic and the superconducting regions the
diagram of leading instabilities does not correspond to
the true zero temperature phase diagram, since it does
not capture the interplay between the two orders. The
full phase diagram can only be obtained by following the
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commensurate 
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incommensurate 
antiferromagnetism

d-wave
superconductivity

unordered

Figure 1: Leading instabilities in the Hubbard model. The di-
agram was obtained by solving the renormalization flow equa-
tions in the symmetric phase for each µ − t′. The truncation
includes the effective potential expanded up to ρ3.

flow in the spontaneously broken regime to k → 0. This
is discussed in section IV B. The free parameters of our
model are the chemical potenital µ, the hopping parame-
ters t, t′, and the Hubbard on-site interaction U . We set
t = 1 so that all other quantities are measured in units of
t. The on-site interaction is set to U = 3, which is lower
than found in many cuprates. It is the choice for com-
parable renormalization group calculations, in order to
avoid problems with too high interaction strengths. Pre-
vious experiments and calculations for cuprates agree on
U/t ≈ 6−8 [60–62]. Even with lower interaction strength,
the important mechanisms are already present and allow
us to investigate the emergence of antiferromagnetism
and superconductivity in the phase diagram of the Hub-
bard model from functional renormalization group calcu-
lations.

The diagram is calculated on a 21 × 21 grid con-
taining values of t′ ∈ [0,−0.2] and µ ∈ [0,−1]. The
phase boundaries are statistically optimized using a ma-
chine learning algorithm called support vector machine.
Doped cuprates, like La2−xBaxCuO4 and La2−xSrxCuO4,
can be found for different levels of doping x → µ at
t′/t ≈ 0.14 − 0.17 [63, 64]. Undoped, they exhibit antifer-
romagnetic order at low temperatures. However doping,
or in our picture changing the chemical potential, leads
to high-temperature superconductivity.

The diagram of leading instabilities, fig. 1, contains
four different phases. At small chemical potential µ and
small next-to-nearest neighbor hopping t′ there are two
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Figure 2: Phase diagrams of leading instabilities calculated with different truncations of the effective potential: expansion up
to (a) ρ1, (b) ρ2, (c) ρ3.

different antiferromagnetic regions. The commensurate
region is separated from the incommensurate region by
the line of Van-Hove singularities µ = 4t′. This transition
is further analyzed in section III C. At larger chemical
potential and next-to-nearest neighbor hopping the lead-
ing instability is the d-wave superconductivity. In section
IV B we further demonstrate that it is possible to observe
coexistence regions of both antiferromagnetism and d-
wave superconductivity. Furthermore, at high chemical
potential the ground state is unordered. We are aware
that we might have underestimated the size of the an-
tiferromagnetic region, where an accurate quantitative
treatment requires the inclusion of charge density and s-
wave bosons [53]. Along the Van-Hove line one always
observes a broken symmetry in the antiferromagnetic or
the d-wave channel. Our approach is not able to resolve a
possible ferromagnetic instability [39, 65] for large nega-
tive chemical potential and large negative next-to-nearest
neighbor hopping on the Van-Hove line. This is a prob-
lem of momentum-shell schemes, like ours, and can be
circumvented by temperature-flow renormalization tech-
niques for the reasons explained in [30]. Nevertheless,
in all other properties the diagram of leading instabili-
ties is in agreement with µ − t′−diagrams from fermionic
renormalization group calculations [45].

B. Convergence of Diagrams

It is a priori not clear to which order the effective po-
tential, eq. (15), needs to be expanded to include all nec-
essary effective interactions needed to calculate the phase
diagram reliably. We calculated the diagram of leading
instabilities for effective potentials to three different pow-
ers of the symmetry invariants ρm, ρd. In fig. 2 one can
see on the left (a) a diagram containing only expansion
terms to the order ρ1, these are the bosonic mass terms,

eq. (16). In the middle (b) the effective potential contains
interactions up to ρ2 or, in other words, up to quartic in-
teractions for the fields. On the right (c) the diagram
corresponds to the solution of the flow equation includ-
ing terms up to order ρ3. One can see a convergence of
the phase diagrams for higher orders in ρ. We conclude
that a truncation containing terms up to ρ2 is sufficient
to reliably calculate the phase diagram of the Hubbard
model on the square lattice.

C. Transition between Commensurate and
Incommensurate Antiferromagnetism

We examine the phase diagram of leading instabili-
ties with a 16 × 16 resolution of the inverse magnetic
propagator in the positive quadrant of the Brillouin zone[0, π]2. We find that it can obtain two distinct min-
ima. A minimum at (π,π) corresponds to commensurate
antiferromagnetism. A fourfold degenerate minimum at(π,π + δic) ,(π,π − δic) ,(π + δic, π) and (π − δic, π) cor-
responds to incommensurate antiferromagnetism. There
is no other possible minimum, that the inverse magnetic
propagator can obtain.

Earlier zero temperature calculations suggest that at
vanishing next-to-nearest neighbor hopping t′ the in-
commensurability takes on the value δ̃ic(t′ = 0) =
2 arcsin(∣ µ

2t
∣)[66]. Our results at the t′ = 0 line of

the phase diagram are larger by ≈ 15%, δic(t′ = 0) ≈
2.3 arcsin(∣ µ

2t
∣) . Considering for example µ = −0.3, the

result of the earlier work is δ̃ic = 0.301, while our result
is δic ≈ 0.35, see fig. 4. Our values of δic(t′ = 0) are
in agreement with earlier renormalization group studies
[51].

The domains of commensurate antiferromagnetism
and incommensurate antiferromagnetism are divided by
a first order transition around the line µ ≈ 4t′. This
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Figure 3: Solutions of the flow equation at µ = −0.4, t′ = −0.1 from ln(Λ) = ln(k) = 12 to ln(k) = −8. The horizontal red
dashed lines indicate transitions between symmetric and symmetry broken regimes. When the renormalization flow enters any
symmetry broken phase, the flow of the masses λ10, λ01 is continued by the flow of the minima of the effective potential ρm0, ρd0.
This particular flow trajectory visits all four possible regimes: the trajectory starts in the symmetric regime, then enters the
antiferromagnetic regime, followed by a coexistence between d-wave and antiferromagnetism, afterwards the flow trajectory
enters the d-wave regime. The minima of the effective potential ρm0 and ρd0 are rescaled ×20.

line corresponds to Van-Hove filling. In fig. 4 (a)–(e) we
closely examine the transition for fixed µ = −0.3 between
the two regions, starting in the commensurate region by
lowering t′. Each picture is calculated with 32 sampling
points along the axis in the Brillouin zone. In the com-
mensurate domain δic(t′ > 0.075) = 0 (a) the magnetic
propagator begins to flatten as it approaches the tran-
sition. At t′ = 0.075 the system undergoes a first order
transition, where a new minimum emerges at a finite dis-
tance δic(t′ = 0.075) ≈ 2/3× δic(t′ = 0) from the commen-
surate minimum. This minimum moves away (b),(c),(d).
Finally, it converges slowly to δic(t′ = 0) = 0.35 (e). Also
note that there is no significant change of the minimum
of the propagator during the renormalization flow. This
first order transition was also found in earlier calculations
in [44], by examining the jump in the incommensurability
δic.

IV. RENORMALIZATION FLOW IN THE
SYMMETRY BROKEN REGIMES

A. Deformation of the Fermi Surface

The Fermi surface in the antiferromagnetic broken
phase changes its geometry according to the formula

Z2
F ξ(Q)ξ(Q +Π) −∆a = 0 ,∆a = 2hm(Π)2ρa . (23)

In fig. 5 one can see how a finite antiferromagnetic con-
densate deforms the Fermi surface, such that Fermi pock-
ets emerge. In the symmetric phase ∆a = 0 the definition
of the Fermi surface correctly reduces to ZF ξ(Q) = 0. As
the fermionic propagator at zero temperature diverges
at the Fermi surface, it naturally occurs in all fermionic
contributions to the flow equations in the denominator.
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We now consider the effects of the deformation of the
Fermi surface on the flow equations. At finite temper-
ature when there is a finite lowest fermionic Matsubara
mode, the flow equations are still gapped at sufficiently
large scales k in the magnetic symmetry broken phase.
Practically this means that the flow equations in the sym-
metry broken regimes at finite temperature can be solved
approximately by regularizing around the Fermi surface
belonging to the symmetric regime ZF ξ(Q) = 0. This is
scheme is formulated by choosing the regulator, here the
Litim regulator [59],

RF (ξ(Q)) = ZF sign(ξ(Q))(k − ∣ξ(Q)∣)Θ(k − ∣ξ(Q)∣) .
(24)

A major problem arises at zero temperature. The lowest
fermionic Matsubara frequency is zero and can thus no
longer introduce a gap in the fermionic propagator. At
zero temperature the flow equations would diverge at the
Fermi surface at any scale when employing the just intro-
duced Litim regularization scheme. Thus, it is imperative
to regularize around the correct Fermi surface (23). In
order to capture the deformation of the Fermi surface in
the flow equations, we introduce a set of regulators act-
ing differently on different patches in the Brillouin zone,
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Figure 5: The Fermi surface changes with increasing antiferromagnetic condensate. For next-to-nearest neighbor hopping
t′/t = −0.2, chemical potential µ/t = −0.5, fermionic wave function renormalization ZF = 1 and different sizes of the commensurate
antiferromagnetic condensate (a) ∆a = 0, (b) ∆a = 0.05, (c) ∆a = 0.1.

fig. 6, and thus differently on ξ(Q) and ξ(Q +Π),
RF (ξ(Q)) =
θ(π − ∣[qx]∣ − ∣[qy]∣)ZF sign(ξ(Q) − ∆a

Z2
F ξk(Q +Π))

× (k − ∣ξ(Q) − ∆a

Z2
F ξk(Q +Π) ∣)Θ(k − ∣ξ(Q) − ∆a

Z2
F ξk(Q +Π) ∣)+ θ(−π + ∣[qx]∣ + ∣[qy]∣)ZF sign(ξ(Q))× (k − ∣ξ(Q)∣)Θ(k − ∣ξ(Q)∣) . (25)

In appendix C we describe how this regulator ensures
a gapped propagator in the vicinity of the Fermi sur-
face. This is possible since in all flow equations the con-
tributions from ξ(Q) and ξ(Q + Π) occur in pairs. In
addition, this regulator ensures that one approaches the
Fermi-surface with the correct sign.

While there are other regulators that are capable of
capturing the Fermi surface, and in agreement with all
requirements of regulators [58] there are more conditions
to be fulfilled in order to obtain reliable physical results:
(i) In the symmetric case and the microscopic limit the
regulator must reduce to the free case, i.e. the regula-
tor (25) reduces to the Litim regulator (24). We exper-
imented with different regulators, not fulfilling this con-
dition, which completely changed the results. (ii) The
regulator must be the same in all regimes. It was shown
that switching the regulator while solving the flow equa-
tions has a strong impact on the results and introduces
severe non-physical artifacts [67]. (iii) The Fermi surface
needs to be approached with the correct sign. (iv) The
regulator may not contain any divergences itself. Our
regulator (25) complies with all of these conditions.

0 π-π

π

-π

0

py

px

1st Brillouin Zone

(π,π)

Figure 6: The regulator (25) acts differently on the red and
blue patches of the Brillouin zones. A shift by Π = (π,π)
induces a switch in the regulator function.

B. Flow Diagram in the Symmetry Broken
Regimes

In the symmetry broken phase we continued the flow
of the effective potential including bosonic and fermionic
fluctuations. The renormalization group flow is calcu-
lated within one consistent scheme of flow equations
with which we also calculated the flow in the symmet-
ric regime. The renormalization group flows of the wave
function renormalizations Zm,Am, Zd,Ad and the flows
of the Yukawa couplings hm, hd are not continued. All
flow equations are projected on commensurate antifer-
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Figure 7: Flow diagram at t′ = −0.1. This diagram collects so-
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of finite condensates in dependence of the scale k. In the limit
k → 0 or ln(k) → −∞, the diagram shows the phases of the full
effective action. Other scales 0 < k < 2π describe the physics
in finite physical samples or local ordering. A coexistence
phase is only present at intermediate scales.

romagnetism in the symmetry broken phases. We solve
the flow equations from t = ln(k) = 12 to t = ln(k) = −8,
where the numerical solution of the flow equation starts
to break down.

In fig. 7 we summarize the solutions of the flow equa-
tions for fixed next-to-nearest neighbor hopping t′ = −0.1
for various values of the chemical potential −µ ∈ [0,1].
This diagram corresponds to a collection of µ-phase di-
agrams for different sizes of physical samples. This flow
diagram contains, in addition to antiferromagnetism and
d-wave superconductivity, regions of coexistence of these
two phases. However, the coexistence vanishes in the
limit of small momentum scales k and thus large physi-
cal sample sizes. In other words, a coexistence phase in
macroscopic physical systems can only be observed lo-
cally. The corresponding renormalization flow is shown
in the flow of ρm0 and ρd0 of fig. 3. Here we see that
both condensates emerge, however at scales ln(k) < −4
they start to repel each other. Between the two co-
existence regions in fig. 7 there is a region where only
antiferromagnetism is present. While in the middle at
t′ ≈ −0.025 the d-wave mass λ01 stays positive, there is a
regime incapsulated by the dashed lines, in the vicinity of
the coexistence phases, where this is not the case. Here
the mass of the d-wave boson reaches a value of zero,
however, the d-wave condensate is repelled immediately,

such that the d-wave minimum ρd of effective potential
always stays zero. Even though our calculation is not
quantitatively accurate in the symmetry broken phase,
the mechanism responsible for the mutual repellence is
independent of the exact sizes of both condensates. That
is why we expect the eradication of the coexistence phase
at macroscopic scales to be a rather robust result.

La2CuO4 cuprates exhibit an orthorombic crystal
structure with a very small asymmetry in lattice param-
eters in the CuO4 plane a ≈ b ≈ 5.4Å and c ≈ 13.2Å [68].
It is possible to quantitatively relate the renormalization
group scale k approximately to physical scales. A scale of
k = 2π corresponds to the size of a Brillouin zone and can
thus be related to the physics of the size of one unit cell.
Applying this deduction to fig. 7 we find that supercon-
ductivity is most prominent at ln(k) ≈ −7 corresponding
to a size of roughly 4 × 104Å. Furthermore, one can see
that it is eradicated by allowing bosonic fluctuations at
ln(k) < −9 corresponding to > 3 × 105Å.

C. On the Vanishing of Superconductivity

From fig. 7 one can infer that in the limit of k → 0 the
superconductivity vanishes. The question arises if this
observation bears any physical relevance or whether it is
a pitfall of our limited truncation in the symmetry bro-
ken phases. We believe the true physical phase diagram
shows superconductivity for large sample sizes. There are
two possible scenarios to explain our results. First, our
model could be incomplete in a sense that there would be
the need for an effect limiting the scale of physical fluc-
tuations to a size of roughly 105Å in order to still obtain
a d-wave superconductivity at macroscopic scales.

A second and much more likely scenario is that our
limited truncation in the symmetry broken phases lim-
its the emergence of d-wave superconductivity. The d-
wave condensate emerges quadratically from a growing
Yukawa coupling hd, see eq. (B32). In the symmetry
broken phases we do however not continue the flow of
the Yukawa couplings. It is likely that hd grows larger
as a natural continuation of the flow in the symmetric
phase, see fig. 3. As a consequence, the d-wave mini-
mum ρd0 would grow much larger than in our calculation
and in turn could not be so easily destroyed by bosonic
fluctuations.

While we cannot continue the renormalization flow of
the d-wave Yukawa coupling, we examined if it would in
principle be possible to obtain a non-vanishing d-wave
condensate at even smaller scales k. We observe that the
fermionic contributions, in the superconducting regime,
always enhance the d-wave minimum ρd0, while only the
bosonic fluctuations can reduce it.

If we, for the moment, consider a sub-theory contain-
ing only bosonic fields and neglecting all fermionic con-
tributions, this theory would, in the limit k → 0, become
an effective three-dimensional statistical field theory. In
accordance with the Mermin-Wagner theorem this the-
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ory can have a phase transition. Since fermionic con-
tributions can only enhance the d-wave minimum ρd0,
we conclude that the full theory containing bosonic and
fermionic fields could in principle exhibit a phase transi-
tion.

The main effect of hd on the effective potential is the
enhancement of the d-wave minimum of the effective po-
tential ρd0. In fig. 8 we compare the flow of the minimum
ρd0 for different initial values at the symmetry breaking
scale. One can see that in principle there exists a param-
eter range such that it is possible to be in the symmetry
broken phase for an arbitrary finite scale k. However, the
bosonic fluctuations tend to strongly reduce the d-wave
condensate at any scale ln(k) < −7.
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Figure 8: Renormalization flow at µ = −0.66, t′ = −0.1 of the
superconducting mass λ01, which is continued with the flow
of the superconducting minimum ρd0 below the symmetry
breaking scale kSB . The initial values of ρd0 are artificially
enhanced at kSB , from bottom to top: ρd0 = 0, ρd0 = 0.001,
ρd0 = 0.002, ρd0 = 0.004, ρd0 = 0.01. The superconducting
minimum of the effective potential ρd0 is rescaled ×100.

V. CONCLUSION

In this article we explored the µ − t′−phase diagram
of the Hubbard model on the square lattice at zero tem-
perature. A calculation in the symmetric phase revealed
phases of commensurate antiferromagnetism, incommen-
surate antiferromagnetism and d-wave superconductiv-
ity, see fig. 1. By comparing different truncations of
the effective potential we examined the robustness of the
results, see fig. 2. Furthermore, our truncation allows
for the continuation of the renormalization flow into the
symmetry broken regimes, see fig. 3. We examined the
transition between commensurate and incommensurate
antiferromagnetism in detail. We find that it coincides
with the Van-Hove line and is of first order, see fig. 4.
A nonzero antiferromagnetic condensate induces a con-
tinuous deformation of the Fermi surface, see fig. 5. Our

regularization scheme (25) allows us to properly include
fluctuations around the changing Fermi surface. Calcu-
lations in the symmetry broken regimes reveal a coexis-
tence of antiferromagnetism and d-wave superconductity
only on intermediate scales, see fig. 7. Beyond that, our
results suggest that these phases have a tendency to repel
each other. This mechanism leads to an eradication of
the coexistence phase at macroscopic scales. A weakness
of our calculations is the inability to decide the fate of
the d-wave superconductivity at macroscopic scales, this
can be resolved in the future by continuing the flow of
the Yukawa couplings in the symmetry broken phases.
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Appendix A: DEFINITIONS

1. Pauli Matrices

σ1 = (0 1
1 0

) σ2 = (0 −i
i 0

) σ3 = (1 0
0 −1

) (A1)

2. Antisymmetric Matrix

ε = ( 0 1−1 0
) , ε2 = −1 (A2)

3. Dual Matrix

If a matrix A can be written in terms of Pauli Matri-
ces A = a1 + b⃗σ⃗ and four real parameters a, b1, b2, b3, its
determinant evaluates to

det(a1 + b⃗σ⃗) = ( a + b3 b1 − ib2
b1 + ib2 a − b3 ) = a2 − b21 − b22 − b23

= ( a − b3 −b1 + ib2−b1 − ib2 a + b3 ) = det(a1 − b⃗σ⃗) , (A3)

such that we can define a dual matrix A′ = a1 − b⃗σ⃗ with
the same determinant. In the special case detA = 1, it
follows A ∈ SU(2).
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Appendix B: FLOW EQUATIONS

The derivation of the flow equation employs the flow
equation of the effective average action, eq. (3).

1. Bosonic Contributions to the Effective Potential

The flow equation of the effective potential can be
decomposed into bosonic and fermionic contributions
∂kU = (∂kU)F + (∂kU)B . The bosonic contributions cor-
respond to the flow equations of a bosonic O(2) × O(3)
model. They can be obtained in a straightforward man-
ner by calculating the second field derivative of the effec-
tive action

Γ
(2)
BB +RBB =

⎛⎜⎜⎜⎜⎜⎝

Rm 0 0 Imd 0
0 Gm 0 0 0
0 0 Gm 0 0
Imd 0 0 Rd 0

0 0 0 0 Gd

⎞⎟⎟⎟⎟⎟⎠
, (B1)

which contains radial modes Rm,Rd, Goldstone modes
Gm,Gd and exchange modes Imd

Rm = Pm + 2ρmU
2,0 +U (1,0) +RB

Gm = Pm +U (1,0) +RB
Rd = Pd + 2ρdU

0,2 +U (0,1) +RB
Gd = Pd +U (0,1) +RB
Imd = 2

√
ρmρdU

(1,1)
detBB = RmRd − I2md . (B2)

Inverting this matrix

(Γ(2)
BB +RBB)−1 =

⎛⎜⎜⎜⎜⎜⎜⎝

Rd

detBB
0 0 − Imd

detBB
0

0 G−1
m 0 0 0

0 0 G−1
m 0 0− Imd

detBB
0 0 Rm

detBB
0

0 0 0 0 G−1
d

⎞⎟⎟⎟⎟⎟⎟⎠
,

(B3)

immediately leads to the flow equation for the effective
potential of an O(2) ×O(3) model

(∂kUk)B =
1

2
∑
Q

( Rm
detBB

+ 2G−1
m + Rd

detBB
+G−1

d )∂kRB . (B4)

2. Fermionic Contributions to the Effective
Potential

The fermionic contribution to the effective potential

(∂kU)F = 1

2
∂̃kSTr ln Γ

(2)
FF,k(Q,Q′)

= −1

2
∂̃k ∑

Q,Q′
ln det Γ

(2)
FF,k(Q,Q′) , (B5)

is much harder to obtain due to the momentum shift
by Π = (0, π, π) in the antiferromagnetic channel. The
fermionic part of the second field derivative of the effec-
tive action

(Γ(2)
FF +RFF )(Q,Q′) = (−hdε(d1 − id2) hm(Π)σ⃗ ⋅ m⃗−hm(Π)σ⃗ ⋅ m⃗ hdε(d1 + id2))

+ ( 0 −1(PF (−Q) +RF (−Q))
1(PF (−Q) +RF (−Q)) 0

)
(B6)

contains contributions from the fermionic propagator and
the Yukawa couplings hm(Π), hd. It can be simplified by
identifying similar terms

Γ
(2)
FF,k(Q,Q′) = (Γ(2)

FF +RFF )(Q,Q′) =
(B̃(Q)δ(Q −Q′) −AT (−Q,Q′)

A(Q,Q′) B(Q)δ(Q −Q′)) , (B7)

where

A(Q,Q′) = ZF (iωQ + ξk(Q))δ(Q −Q′)− hm(Π) m⃗´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M⃗

⋅σ⃗ δ(Π −Q +Q′)
B(Q) = hd ε (d1 + id2) fd(Q) =D(Q)ε
B̃(Q) = −hd ε (d1 − id2) fd(Q) = −D̃(Q)ε . (B8)

A straightforward calculation that employs doubling the
matrix in the argument of the determinant and employ-
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ing its dual matrix (A3) leads to

det Γ
(2)
FF,k(Q,Q′)

= det(Γ
(2)
FF,k(Q,Q′′) (0 1

1 0
)Γ

(2)
FF,k(−Q′′,−Q′) (0 1

1 0
))1/2

= det (B̃(Q)B(−Q)δ(Q −Q′) +A(Q,Q′′)A(−Q′′,−Q′))
= det ( (D̃(Q)D(Q) +Z2

Fω
2 + ξk(Q)2 + M⃗2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a(Q)
δ(Q −Q′)

+ (ξk(Q) + ξk(Q +Π))M⃗´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b⃗(Q)

⋅σ⃗δ(Q −Q′ +Π))
= det ( (a(Q)δ(Q −Q′′) − b⃗(Q) ⋅ σ⃗δ(Q −Q′′ +Π))

× (a(Q′′)δ(Q′′ −Q′) + b⃗(Q′′) ⋅ σ⃗δ(Q′′ −Q′ +Π)) )1/2
= det ((a(Q)a(Q +Π) − b⃗(Q) ⋅ b⃗(Q))δ(Q −Q′))1/2 ,

(B9)

where we have used symmetry properties of the fermionic
kinetic term ξk(Q) = ξk(−Q) and the d-wave form factor
fd(Q) = 1

2
(cos(qx) − cos(qy)) = −fd(Q +Π). Plugging all

together and solving for ω yields

det Γ
(2)
FF,k(Q,Q′) = det (J+ J− δ(Q −Q′))1/2 , (B10)

where

J± = Z2
Fω

2 + D̃(Q)D(Q) + (ZF
2

((ξk(Q) + ξk(Q +Π))
±
√
M⃗2 + Z2

F

4
(ξk(Q) − ξk(Q +Π))2 )2

= Z2
Fω

2 + 2h2dfd(Q)ρd + (ZF
2

((ξk(Q) + ξk(Q +Π))
±
√

2hm(Π)2ρm + Z2
F

4
(ξk(Q) − ξk(Q +Π))2 )2 .

(B11)

The sum over Q′ can be performed trivially

∑
Q,Q′

ln det Γ
(2)
FF,k(Q,Q′) = ∑

Q

1

2
(lnJ+ + lnJ−) , (B12)

which concludes the calculation of the fermionic contri-
bution to the flow equation of the effective potential

(∂kU)F = −1

2
∂̃k∑

Q

1

2
(lnJ+ + lnJ−) . (B13)

3. On Matsubara Integrals

While the Matsubara integrals for higher order cou-
plings can be integrated in a straightforward manner, the
Matsubara integral for the effective potential itself eval-

uates to ∞. Since we are not interested in finite shifts
of the overall energy minimum, we extract the finite part
which depends on ρm, ρd via

∫ ∞
−∞ dω ln(Z2

Fω
2 +A2)

= ∫ ∞
−∞ dω ln(Z2

Fω
2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶∞
+ ln(1 + A2

Z2
Fω

2
) . (B14)

The finite contribution can then be safely integrated

= ∫ ∞
−∞ dω ln(1 + A2

Z2
Fω

2
)

= ω ln(1 + A2

Z2
Fω

2
) + 2A

ZF
arctan(ZFω

A
)∣∞−∞

= 2π
A

ZF
. (B15)

4. Flow Equations for the Bosonic Couplings

We expand the effective potential (15) around its min-
imum, thus we need to adjust the flow equations for a
change in the minimum ∂kρm, ∂kρd.

∂kλi,j = ∂iρm∂jρd∂kU(ρm, ρd)∣ρm0,ρd0= (∂iρm∂jρd∂kU(ρm, ρd)) ∣ρm0,ρd0+ (∂i+1ρm ∂
j
ρd
U(ρm, ρd)) ∣ρm0,ρd0∂kρm0+ (∂iρm∂j+1ρd
U(ρm, ρd)) ∣ρm0,ρd0∂kρd0 (B16)

The flow equations of the minima of the effective poten-
tial are in the magnetic broken phase

∂kρm0 = −∂ρm(∂kU)
λ20

∣ρm0,ρd0 , (B17)

in the d-wave broken phase

∂kρd0 = −∂ρd(∂kU)
λ02

∣ρm0,ρd0 , (B18)

and in the regimes where both symmetries are broken

∂kρm0 = −∂ρm(∂kU)λ02 − ∂ρd(∂kU)λ11
λ20λ02 − λ211 ∣ρm0,ρd0

∂kρd0 = −∂ρd(∂kU)λ20 − ∂ρm(∂kU)λ11
λ20λ02 − λ211 ∣ρm0,ρd0 . (B19)

5. Flowing Bosonization

Flowing bosonization induces a scale-dependent
Hubbard-Stratonovich transformation [56, 57]. In the
present work we translate all diverging momentum chan-
nels of the Hubbard action U to Yukawa interactions me-
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diated by magnetic and d-wave bosons. To this purpose
we derive exemplary the flowing bosonization in magnetic
channel. In ΓFHS

m,k we collect all couplings involved in the
flowing bosonization.

ΓFHS
m,k

=1

2
∑
Q

m⃗T (−Q) (Pm(Q) +m2
m) m⃗(Q)

− ∑
Q1,Q2,Q3

hm(Q)m⃗(Q1) ⋅ (ψ�(Q2)σ⃗ψ(Q3))
× δ(Q1 −Q2 +Q3)

− 1

2
∑

Q1,...,Q4

λmF (Q1 −Q2)δ(Q1 −Q2 +Q3 −Q4)
× (ψ�(Q1)σ⃗ψ(Q2)) (ψ�(Q3)σ⃗ψ(Q4)) (B20)

We introduce an artificial scale-dependent bilinear field

˜⃗m(P )k = ∑
Q

(ψ�(Q)σ⃗ψ(P +Q)) , (B21)

whose scale-dependence is chosen such that

∂km⃗(Q) = αmk (Q) ˜⃗m(Q) . (B22)

The function αmk (Q) will be specified later. Then we can
rewrite ΓFHS

m,k in terms of the artificial bilinear

ΓFHS
m,k

=1

2
∑
Q

m⃗T (−Q) (Pm(Q) +m2
m) m⃗(Q)

−∑
Q

hm(Q)m⃗T (−Q) ˜⃗m(Q)
− 1

2
∑
Q

λmF (Q) ˜⃗mT (−Q) ˜⃗m(Q) . (B23)

The flow equation of the effective action obtains addi-
tional terms which arise from the scale-dependent bilin-
ear

∂kΓk =∂kΓk ∣mk+∑
Q

αmk (Q)m⃗T (−Q) (Pm(Q) +m2
m) ˜⃗m(Q)

−∑
Q

αmk (Q)hm(Q) ˜⃗mT (−Q) ˜⃗m(Q) . (B24)

The flow equations for the couplings hm and λFm obtain
additional terms

∂khm(Q) = ∂khm(Q)∣mk
− αmk (Q) (Pm(Q) +m2

m)
∂kλ

m
F (Q) = ∂kλmF (Q)∣mk

+ 2αm(Q)hm(Q) != 0 . (B25)

By choosing αmk (Q) such that the flow of λFm becomes
zero, we induce an additional contribution to the flow of
the Yukawa coupling hm. A similar deduction can be
done for the d-wave channel. Thus we arrive at modified
flow equations

∂khm(Q) = ∂khm(Q)∣mk
+ Pm(Q) +m2

m

2hm(Q) ∂kλ
m
F (Q)∣mk

∂khd(Q) = ∂khd(Q)∣dk + Pd(Q) +m2
d

2hd(Q) ∂kλ
d
F (Q)∣dk .

(B26)

6. Flow Equations for Yukawa Couplings

The flow equations for hm and hd consist of a direct
contribution and an indirect contribution arising from
flowing bosonization, eq. (B26). In the latter case the
flow of λmF , λ

d
F is transformed into a contribution to the

corresponding Yukawa coupling. When deriving the flow
equations for λmF and λdF , there arises an ambiguity in
choosing the external momenta, we choose L = (0, π,0)
and L′(0,0, π) in order to evaluate our contributions close
to the Fermi surface.

∂kλ
m
F = 1

3
∂kΓ

(4)
F,ph(L,L′,−L,−L′)

∂kλ
d
F = 1

2
(∂kΓ

(4)
F,pp(L,L,−L,−L)

− ∂kΓ
(4)
F,pp(L,L′,−L,−L′)) (B27)

As a real boson the magnetic channel collects all contri-
butions arising from particle-particle diagrams. The d-
wave boson describes Cooper pairs, which is why we col-
lect the particle-particle diagrams in this channel. The
prescription of how to extract the contributions to the
d-wave coupling λdF was motivated in [50].

a. Magnetic Yukawa Coupling
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∂khm(Π)2 = ∂̃k∑
Q

1

6
λ10(8h2dFd,k(L +Q/2)Fd,k(L′ +Q/2)U(ω2 − ξk(L +Q)ξk(L′ +Q))

Z2
F (Zdω2 + Fd,k(Q))(ω2 + ξk(L +Q)2)(ω2 + ξk(L′ +Q)2)

+ 2U2(ω2 − ξk(Q)ξk(Q +Π))
Z2
F (ω2 + ξk(Q)2)(ω2 + ξk(Q +Π)2)

+ 8h4dFd,k(L +Q/2)Fd,k(L′ +Q/2)Fd,k(Π/2 +Q/2)(ω2 − ξk(L +Q)ξk(L′ +Q))
Z2
F (Zdω2 + Fd,k(Q))(Zdω2Fd,k(Π +Q))(ω2 + ξk(L +Q)2)(ω2 + ξk(L′ +Q)2)

− 6hm(Q +L)2hm(Q +L′)2(ω2 − ξk(Q)ξk(Q +Π))
Z2
F (Zmω2 + Fm,k(L +Q))(Zmω2 + Fm,k(L′ +Q))(ω2 + ξk(Q)2)(ω2 + ξk(Q +Π)2))

+ 4hm(Π)2h2dFd,k(L +Q/2)Fd,k(L′ +Q/2)(ω2 − ξk(L +Q)ξk(L′ +Q))
Z2
F (Zdω2 + Fd,k(Q))(ω2 + ξk(L +Q)2)(ω2 + ξk(L′ +Q)2)

− 2hm(Π)2hm(Q)2(ω2 − ξk(L +Q)ξk(L′ +Q))
Z2
F (Zmω2 + Fm,k(Q))(ω2 + ξk(L +Q)2)(ω2 + ξk(L′ +Q)2)

+ 2hm(Π)U(ω2 − ξk(Q)ξk(Q +Π))
Z2
F (ω2 + ξk(Q)2)(ω2 + ξk(Q +Π)2) (B28)

b. D-Wave Yukawa Coupling

∂kh
2
d = ∂̃k∑

Q

6h2dFd,k(Q)hm(Q +L)2
Z2
F (Zmω2 + Fm,k(L +Q)(ω2 + ξk(Q)2))

+ 1

4
λ01

9hm(Q +L)4
Z2
F (Zmω2 + Fm,k(L +Q))2(ω2 + ξk(Q)2)

− 1

4
λ01

9hm(Q +L)2hm(Q +L′)2
Z2
F (Zmω2 + Fm,k(L +Q))(Zmω2 + Fm,k(L′ +Q))(ω2 + ξk(Q)2) (B29)

7. Flow Equation for the Momentum-Dependent
Propagators

The spatial momentum curvature at the minimum of
the propagator Am,Ad can be deduced by solving the
flow equation for the momentum dependent propagators
Pm, Pd. A straightforward method to obtain the flow of
Am,Ad is a derivative projection. However, we employ
a finite difference projection, because it turned out to
enhance the stability in our numerical calculations. We
chose to evaluate the propagator at a finite distance from
the minimum P = (0, p,0), with p = 0.5. The results are
practically independent of the choice of p as long as it is

0 ≪ p≪ π.

Am = (Pm((0, π + p, π)) − Pm((0, π, π))) /p2
Ad = (Pd((0, p,0)) − Pd((0,0,0))) /p2 (B30)

∂kPm(P ) = ∂̃k∑
Q

1

4π

( 5λ20
Zmω2 + Fm,k(Q) + 2λ11

Zdω2 + Fd,k(Q)
− 4h2m(P )(ω2 − ξk(Q)ξk(Q + P ))
Z2
F (ω2 + ξk(Q)2)(ω2 + ξk(Q + P )2)) (B31)
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∂kPd(P ) = ∂̃k∑
Q

1

4π

( 3λ11
Zmω2 + Fm,k(Q) + 4λ02

Zdω2 + Fd,k(Q)
− 4h2dFd,k(Q + P /2)2(ω2 + ξk(Q)ξk(Q + P ))

Z2
F (ω2 + ξk(Q)2)(ω2 + ξk(Q + P )2) ) (B32)

8. Flow Equations for Wave Function
Renormalizations

The flow equations for the wave function renormal-
izations Zm, Zd, ZF of the bosons and fermions can be
extracted from the flow equations of the corresponding
propagator. For this purpose we evaluate the flow of the
propagators at a finite momentum P = (ωp,0,0) from the
minimum of the corresponding propagator. We choose
ωp = 0.5.

Zm = (Pm((ωp, π, π)) − Pm((0, π, π))) /ω2
p

Zd = (Pd((ωp,0,0)) − Pd((0,0,0))) /ω2
p

ZF = (PF ((ωp,0,0)) − PF ((0,0,0))) /(iωp) (B33)

In the incommensurate case the flow equations are evalu-
ated at the minimum of the magnetic propagator (0, π +
δic, π). This definition leads to the corresponding flow
equations

∂kZm = ∂̃k∑
Q

1

4πω2
p

( 4hm(Π)2(ω(ω + ωp) − ξk(Q)ξk(Q +Π))
Z2
F (ω2 + ξk(Q)2)((ω + ωp)2 + ξk(Q +Π)2)

− 4hm(Π)2(ω2 − ξk(Q)ξk(Q +Π))
Z2
F (ω2 + ξk(Q)2)(ω2 + ξk(Q +Π)2)) , (B34)

where in the incommensurate case all fermionic kinetic
terms ξk(Q +Π) are shifted to ξk(Q +Π + (0, δic,0)).

∂kZd = ∂̃k∑
Q

1

4πω2
p

( 4h2dFd,k(Q)(ω(ω + ωp) + ξk(Q)2)
Z2
F (ω2 + ξk(Q)2)((ω + ωp)2 + ξk(Q)2)

− 4h2dFd,k(Q)
Z2
F (ω2 + ξk(Q)2)) (B35)

∂kZF = ∂̃k∑
Q

1

8πωp

( 6hm(Q)2(ω + ωp)
ZF (Zmω2 + Fm,k(Q))((ω + ωp)2 + ξk(Q))
− 6hm(Q)2(ω − ωp)
ZF (Zmω2 + Fm,k(Q))((ω − ωp)2 + ξk(Q))

+ 4h2df(Q/2)2(ω + ωp)
ZF (Zdω2 + Fd,k(Q))((ω + ωp)2 + ξk(Q)2)

− 4h2df(Q/2)2(ω − ωp)
ZF (Zdω2 + Fd,k(Q))((ω − ωp)2 + ξk(Q)2)) (B36)

Appendix C: REGULATOR

The fermionic propagator diverges at the Fermi surface

Z2
F ξ(Q)ξ(Q +Π) −∆a = 0 ,∆a = 2hm(Π)2ρa . (C1)

Thus it is imperative to regularize the fermionic propa-
gator at the Fermi surface. In the presence of a nonzero
antiferromagnetic condensate the geometry of the Fermi
surface changes, which requires the regulator to capture
this deformation. Exemplary we demonstrate here how
the regulator (25) removes the divergence at the Fermi
surface. ξ(Π), ξ(Π+Q) occur interchangeably as a prod-
uct, thus at fixed Q the Fermi surface is regularized by

Z2
F ξk(Q)ξk(Q +Π) −∆a = 0 , (C2)

where the kinetic terms ZF ξk(Q) = ZF ξ(Q) +RF (ξ(Q))
and ZF ξk(Q+Π) = ZF ξ(Q+Π) +RF (ξ(Q+Π)) are reg-
ularized by different terms of the regulator, which are
without loss of generality

RF (ξ(Q)) = ZF sign(ξ(Q) − ∆a

Z2
F ξk(Q +Π))

× (k − ∣ξ(Q) − ∆a

Z2
F ξk(Q +Π) ∣)Θ(k − ∣ξ(Q) − ∆a

Z2
F ξk(Q +Π) ∣)

RF (ξ(Q +Π)) = ZF sign(ξ(Q +Π))× (k − ∣ξ(Q +Π)∣)Θ(k − ∣ξ(Q +Π)∣) . (C3)

We now examine what happens if the fermionic kinetic
terms get too small and come too close to the Fermi sur-
face. The first regulator in eq. (C3) is responsible for
introducing a gap at the Fermi surface

Z2
F ξk(Q)ξk(Q +Π) −∆a =

Z2
F ξk(Q +Π) sign(ξ(Q) − ∆a

Z2
F ξk(Q +Π))k . (C4)
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The second regulator in eq. (C3) acts if the kinetic terms
get too close to zero

Z2
F sign(ξ(Q +Π))k sign(ξ(Q) − ∆a

Z2
F ξk(Q +Π))k

= Z2
F sign(Z2

F ξ(Q +Π)ξ(Q) −∆a)k2 . (C5)

We have used here that sign(ξ(Q+Π)) = sign(ξk(Q+Π)).
An important property is that the Fermi surface is always
approached with the correct sign.
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[17] D. Sénéchal, P.-L. Lavertu, M.-A. Marois, and A.-

M. S. Tremblay, Physical Review Letters 94 (2005),
10.1103/physrevlett.94.156404.

[18] T. A. Maier, M. S. Jarrell, and D. J. Scalapino,
Physical Review Letters 96 (2006), 10.1103/phys-
revlett.96.047005.

[19] T. A. Maier, A. Macridin, M. Jarrell, and D. J.
Scalapino, Physical Review B 76 (2007), 10.1103/phys-
revb.76.144516.

[20] D. J. Scalapino, Reviews of Modern Physics 84, 1383
(2012).

[21] H. J. Schulz, Europhysics Letters (EPL) 4, 609 (1987).
[22] I. E. Dzialoshinskii, Zhurnal Eksperimentalnoi i Teo-

reticheskoi Fiziki 93, 1487 (1987).
[23] P. Lederer, G. Montambaux, and D. Poilblanc, Journal

de Physique 48, 1613 (1987).
[24] D. Zanchi and H. J. Schulz, Zeitschrift für Physik B Con-

densed Matter 103, 339 (1996).
[25] D. Zanchi and H. J. Schulz, Europhysics Letters (EPL)

44, 235 (1998).
[26] C. J. Halboth and W. Metzner, Physical Review Letters

85, 5162 (2000).
[27] C. J. Halboth and W. Metzner, Physical Review B 61,

7364 (2000).
[28] M. Salmhofer and C. Honerkamp, Progress of Theoretical

Physics 105, 1 (2001).
[29] C. Honerkamp, M. Salmhofer, N. Furukawa, and

T. M. Rice, Physical Review B 63 (2001), 10.1103/phys-
revb.63.035109.

[30] C. Honerkamp and M. Salmhofer, Physical Review B 64
(2001), 10.1103/physrevb.64.184516.

[31] A. A. Katanin and A. P. Kampf, Physical Review B 72
(2005), 10.1103/physrevb.72.205128.

[32] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden,
and K. Schönhammer, Reviews of Modern Physics 84,
299 (2012).

[33] C. Husemann and M. Salmhofer, Phys. Rev. B 79, 195125
(2009).

[34] C. Husemann, K.-U. Giering, and M. Salmhofer, Physi-
cal Review B 85 (2012), 10.1103/physrevb.85.075121.

[35] S. Uebelacker and C. Honerkamp, Physical Review B 86
(2012), 10.1103/physrevb.86.235140.

[36] A. Eberlein, Physical Review B 92 (2015), 10.1103/phys-
revb.92.235146.

[37] K.-U. Giering and M. Salmhofer, Physical Review B 86
(2012), 10.1103/physrevb.86.245122.

[38] J. Lichtenstein, D. S. de la Peña, D. Rohe, E. D. Napoli,
C. Honerkamp, and S. Maier, Computer Physics Com-
munications 213, 100 (2017).

[39] K. Veschgini and M. Salmhofer, To appear soon (2017).
[40] W. Metzner, J. Reiss, and D. Rohe, physica status solidi

(b) 243, 46 (2006).
[41] J. Reiss, D. Rohe, and W. Metzner, Physical Review B

75 (2007), 10.1103/physrevb.75.075110.
[42] A. Eberlein and W. Metzner, Physical Review B 89

(2014), 10.1103/physrevb.89.035126.
[43] J. Wang, A. Eberlein, and W. Metzner, Physical Review

B 89 (2014), 10.1103/physrevb.89.121116.
[44] H. Yamase, A. Eberlein, and W. Metzner, Phys-

ical Review Letters 116 (2016), 10.1103/phys-
revlett.116.096402.

[45] K. Veschgini, PhD Thesis, Heidelberg University Library
(2017), 10.11588/heidok.00022476.

[46] T. Baier, E. Bick, and C. Wetterich, Physical Review B
62, 15471 (2000).

[47] T. Baier, E. Bick, and C. Wetterich, Physical Review B
70 (2004), 10.1103/physrevb.70.125111.

[48] T. Baier, E. Bick, and C. Wetterich, Physics Letters B
605, 144 (2005).

[49] H. Krahl and C. Wetterich, Physics Letters A 367, 263
(2007).

[50] H. C. Krahl, J. A. Müller, and C. Wetterich, Physical
Review B 79 (2009), 10.1103/physrevb.79.094526.



17

[51] H. C. Krahl, S. Friederich, and C. Wetterich, Physical
Review B 80 (2009), 10.1103/physrevb.80.014436.

[52] S. Friederich, H. C. Krahl, and C. Wetterich, Physical
Review B 81 (2010), 10.1103/physrevb.81.235108.

[53] S. Friederich, H. C. Krahl, and C. Wetterich, Physical
Review B 83 (2011), 10.1103/physrevb.83.155125.

[54] J. Hubbard, Physical Review Letters 3, 77 (1959).
[55] R. L. Stratonovich, Soviet Physics Doklady 2, 416 (1957).
[56] H. Gies and C. Wetterich, Physical Review D 65 (2002),

10.1103/physrevd.65.065001.
[57] S. Floerchinger and C. Wetterich, Physics Letters B 680,

371 (2009).
[58] C. Wetterich, Physics Letters B 301, 90 (1993).
[59] D. F. Litim, Physical Review D 64 (2001), 10.1103/phys-

revd.64.105007.
[60] R. Coldea, S. M. Hayden, G. Aeppli, T. G. Perring, C. D.

Frost, T. E. Mason, S.-W. Cheong, and Z. Fisk, Physical
Review Letters 86, 5377 (2001).

[61] N. M. R. Peres and M. A. N. Araújo, Physical Review B
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7 Discussion

The different topics in this thesis unite under the purpose to calculate phase dia-

grams of various physical systems. We have resolved problems in existing methods,

invented new methods and applied all these methods to examine phase diagrams.

7.1 Functional Renormalization Group Flows

The first part of this thesis, Physics and the Choice of Regulators in Functional

Renormalisation Group Flows , addresses the reliability of the results of functional

renormalization group calculations [23] and their robustness with respect to changes

in the regularization scheme. Even though the functional renormalization group

is formulated in an exact functional differential equation, it can only be solved by

truncating it to a finite number of coupled differential equations. The results of

the full functional differential equation are independent of the explicit choice of the

regulator. However, the results of a truncated system of differential equation depend

on the regulator choice. In this case reliable physical results can only be obtained by

a suitable regulator. An obvious question arises: is there an optimal regulator which

yields the results that agree best with the underlying physical system? Until now,

it has been shown that a functional a priori criterion can be employed to deduce

the best regulator if the physical system is described by a model in local potential

approximation [103]. However, many physical systems cannot be formulated in this

approximation.

In order to address the search for an optimized regulator practically, we con-

struct a new a priori criterion to identify the best regulator from a given set of

regulators. It is based on comparing the length of the renormalization flow trajec-

tories in theory space. When applying our criterion to models in local potential

approximation, our optimal regulator coincides with the regulator obtained in [103].

Our criterion is however more practicable to implement, because it circumvents the

difficult functional optimization step. Thus our optimization procedure might be

suitable for finding the optimal regulator for more complicated systems, where a

direct functional optimization is not feasible.
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7 Discussion

In our work we discuss how the results of previous functional renormalization

group calculations are influenced by different choices of regulators. In a two-boson

system we show that a change in the regulator can influence the critical behavior

so far that it induces a change of the universality class. Moreover, in this model

we measure explicitly the robustness of the critical exponents in various truncations

with respect to a change in the regulator. We confirm that a better truncation is

much more robust with respect to unsuitable regulator choices. At the example of

the Fermi polaron problem we explain the difficulty of formulating a regularization

scheme which treats fermions and bosons on an equal basis.

In the Hubbard model in the antiferromagnetic regime the Fermi surface is de-

formed by the antiferromagnetic condensate. At that point conventional regulators

cannot renormalize around a changing Fermi surface geometry. For this reason,

this work was crucial in determining a suitable regularization scheme for the flow

equations of the Hubbard model.

7.2 High-Temperature Superconductivity

High-temperature superconductivity was already found in cuprate ceramics in 1986

[55]. Now, more than 30 years of efforts of many condensed matter physicists

later, there is still no comprehensive understanding of the phase diagram of high-

temperature superconductors. The phase diagram of high-temperature supercon-

ductors displays many unconventional phases: at low temperature and close to half-

filling, cuprates are in an insulating antiferromagnetic state. Depending on the level

of doping, which is defined by the chemical potential, and the hopping parameters,

this antiferromagnetic state can either be commensurate or incommensurate. Higher

levels of doping lead to d-wave superconductivity. Even higher levels of doping in-

duce a ferromagnetic phase. At higher temperatures there is an elusive precursor

phase called the pseudogap phase.

The most promising model to describe the physics of cuprate superconductors is

the Hubbard model on the square lattice [60–62]. It describes electrons moving in

two-dimensional copper oxide planes. Most of the phases of the Hubbard model

cannot be theoretically accessed by many traditional methods, thus the mechanisms

of their emergence are still not fully understood. It is difficult to apply pertur-

bation theory, because there is no suitable small expansion parameter. Hence, by

perturbation theory, the phase diagram can only be accessed from the limits of very

small or very strong interaction strengths [104, 105]. Monte-Carlo simulations can

successfully describe the Hubbard model at half-filling. However, these simulations
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fail in regions with electron or hole doping, since away from half-filling they suffer

from the fermion sign problem [106].

We address the problem of examining the phase diagram of the t − t′ Hubbard

model on the square lattice with the functional renormalization group [23]. Here,

the flow equation interpolates between the microscopic Hubbard action in Mat-

subara formalism and the full quantum effective action. The first applications of

this method were formulated in a purely fermionic language [63–78]. They were

successful in identifying the dominant channels leading to a diverging four-Fermi

interaction at some symmetry breaking scale or temperature. At this divergence,

the flow equations signal the onset of magnetic or d-wave superconducting sym-

metry broken regimes. In the purely fermionic formalism it is very challenging to

circumvent the divergence to continue the flow equations into the symmetry bro-

ken regimes. In order to calculate the full quantum effective action it is important

to follow the renormalization flow into the symmetry broken phases. So far re-

searchers have treated this problem by switching to other methods like mean field

theory [79–84]. One concept to address this problem within one consistent renor-

malization calculation is the bosonization of the diverging momentum channels of

the four-Fermi interaction.

In the article Exploring the Hubbard Model on the Square Lattice at Zero Tempera-

ture with a Bosonized Functional Renormalization Approach we build upon previous

work [85–92] and translate the diverging momentum channels into bosons via a scale

dependent Hubbard-Stratonovich transformation, called flowing bosonization. In

contrast to traditional Hubbard-Stratonovich transformations, where the fermionic

action is formulated in a bosonic model right from the start, flowing bosonization

only generates the bosonic channels if their corresponding fermionic momentum

channels would enhance the four-Fermi interaction. Any divergence of the four-

Fermi interaction is transmitted via Yukawa interactions into bosonic sectors. There,

a vanishing bosonic mass term then signals the instability in the respective momen-

tum channel. Flowing bosonization makes it possible to continue the flow equations

into the symmetry broken regimes and allow for a calculation of the full quantum

effective action. Furthermore, the nature of the bosons yields a direct interpreta-

tion of the underlying phase. As long as all possible divergencies of the four-Fermi

interaction are covered by the flowing bosonization, this procedure gives rise to an

unbiased treatment of all possible phases on an equal basis.

Previous work has established and improved this scheme and explained many im-

portant parts of the Hubbard model phase diagram at finite temperature. Still using

the standard Hubbard-Stratanovich transformation, an early examination revealed
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antiferromagnetism at half filling and close to it [86, 87]. The introduction of flow-

ing bosonization allowed for the examination of d-wave superconductivity at higher

doping [89]. And finally, the inclusion of charge density and s-wave bosons allowed

for an accurate calculation of the phase boundaries [92].

In this thesis we examine the zero temperature phase diagram of the Hubbard

model on the square lattice dependent on the internal properties of the underlying

cuprates. These are the next-to-nearest neighbor hopping t′ and the chemical po-

tential µ, which indicates the level of doping. The nearest neighbor hopping t sets

the energy scale and the Coulomb interaction is fixed at U = 3 1.

At zero temperature we face extra challenges not present in finite temperature

calculations. The Matsubara frequencies are discrete at nonzero temperature, how-

ever, in the limit of zero temperature, they take on continuous values. Thus at

finite temperature, at small momentum scales k, the flow equations are dominated

by only one Matsubara frequency in the denominator of the bosonic propagator

ω = 0 and two Matsubara frequencies in the fermionic propagator ω = ±πT . At zero

temperature one needs to integrate over all Matsubara frequencies. Because of this,

the fermionic propagator is no longer gapped by the lowest Matsubara frequencies

ω = ±πT . In other words, while at finite temperature the macroscopic bosonic de-

grees of freedom decouple from the fermions, at zero temperature, the fermionic

fluctuations contribute even on macroscopic scales. The absent Matsubara gap at

zero temperature causes the fermionic propagator to diverge at the Fermi surface.

Thus special care needs to be taken to renormalize around the correct Fermi surface,

which has thereby also an increased effect on the flow equations compared to finite

temperature calculations. Another simplifying observation at finite temperature is

the dimensional reduction in the bosonic sector at macroscopic scales. Since in this

scenario only the Matsubara zero mode contributes to the flow equations, the theory

can be influenced only by spatial fluctuations.

In this work we carefully treat these problems in order to be able to examine

the phase diagram of the Hubbard model at zero temperature. For this purpose we

formulate a consistent system of flow equations valid in all symmetric and symmetry

broken regimes. These flow equations are regularized within a scheme that considers

the changing Fermi surface geometry and topology arising from an antiferromagnetic

condensate. By solving the flow equations in the symmetric regime, we examine

the leading instabilities of the four-Fermi interaction. We identify three different

channels in which symmetry breaking occurs. These correspond to commensurate

antiferromagnetism, incommensurate antiferromagnetism and d-wave superconduc-

1For a definition of the Hubbard model refer to eq. (2.2)
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tivity. Compared to the purely fermionic calculations, our framework can much more

easily distinguish between commensurate and incommensurate antiferromagnetism.

This is because the minimum of the magnetic inverse propagator is directly related

to the type of antiferromagnetism. This property allows for an accurate identifica-

tion of the first order transition between commensurate and incommensurate order.

We are able to pin down the location of this transition and find that it coincides

with the line of Van Hove singularities.

By continuing the flow equations into the regimes of symmetry breaking, we are

able to examine the interplay of the magnetic and d-wave order parameters. At

intermediate scales there is a regime of coexisting antiferromagnetism and d-wave

superconductivity. However, these two phases have a tendency to repel each other.

This property leads to the eradication of the coexistence phase at macroscopic scales.

In conclusion, we have studied the emergence of three different phases in the

Hubbard model at moderate doping and electron hopping: commensurate antifer-

romagnetism, incommensurate antiferromagnetism and d-wave superconductivity.

Furthermore, we have identified the transitions between these phases and examined

the interplay between different orders while including fluctuations even deep in the

symmetry broken regimes. Our work leaves open the fate of d-wave superconduc-

tivity at scales of physical samples. Although very demanding, this question can

in principle be answered by continuing the flow of the Yukawa interactions into the

symmetry broken regimes. The major technical achievement of this thesis is the

proper treatment of the Fermi surface, which changes its geometry and topology in

the symmetry broken phases. The most important physical results are the emergence

and the vanishing of the coexistence phase and the nature and location of the first

order transition between commensurate and incommensurate antiferromagnetism.

7.3 Artificial Neural Networks and Phase Transitions

While many methods to examine the physics of phase diagrams have been applied

to their limits, there are still open questions. For example the pseudogap phase in

the phase diagram of high-temperature superconductors or the critical end point in

quantum chromodynamics are still not fully understood. Also, many new types of

materials and phases of matter exhibit features in phase diagrams where conven-

tional methods have not been successful. We expect to solve some of these problems

with radically different methods. In this thesis we develop machine learning algo-

rithms as methods for examining phase diagrams. They are not bound by limits of

human intuition or intelligence and could thus lead to some new and unexpected
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results.

Since 2016 machine learning methods have been transitioning from a data science

and image recognition to the physics of phase diagrams. Physicists were able to

simulate physical systems on restricted Boltzmann machines [35]. Their method is

successful in finding the ground state and describing the unitary time evolution of

one- and two-dimensional spin models. Standard feed-forward neural networks were

employed to calculate accurate phase boundaries [46]. They were trained on Monte-

Carlo configurations, without giving the algorithm any knowledge of the Hamilto-

nian or of the occurring orders. This is achieved by training the neural network in a

supervised manner in different regimes where the nature of the phases is known. In

many physical systems, the algorithm can then successfully predict the phases on

configurations where the phases are a priori unknown. This algorithm has demon-

strated the best overall performance among machine learning algorithms on difficult

physical systems. Until now it has been employed to find phase transitions in sys-

tems with topological phases [47], in strongly correlated electron systems [48] and in

lattice gauge theory [3]2. Furthermore, they are a good candidate to approximately

circumvent the sign problem [107]. Phases can also be found by linear unsupervised

learning algorithms, i.e. principal component analysis [49], without even knowing of

the existence of different phases. Because of its linear nature, principal component

analysis has trouble finding the phases in more complicated models. Therefore, the

need for a nonlinear unsupervised machine learning algorithm arises. It was sug-

gested to employ supervised learning methods to do unsupervised learning [50] in

such cases. In Unsupervised Learning of Phase Transitions: From Principal Com-

ponent Analysis to Variational Autoencoders we propose the first direct nonlinear

unsupervised learning algorithm, the neural network based autoencoder, to detect

phase transitions.

At the time of developing the autoencoder approach, very little was known about

unsupervised machine learning of phase transitions. Hence, we had the freedom to

examine the results of many different algorithms without prejudice. In our arti-

cle we compare principal component analysis, kernel principal component analysis,

clustering methods, manifold methods, autoencoders and variational autoencoders.

All of these algorithms were exemplary trained on Monte-Carlo samples of the fer-

romagnetic Ising model in two dimensions, the simplest model to exhibit a phase

transition. They did not receive any further information of the Hamiltonian or of

the underlying orders. It turns out that most of these algorithms are successful in

2For more details see Machine Learning of Explicit Order Parameters: From the Ising Model to
SU(2) Lattice Gauge Theory .

94



7.3 Artificial Neural Networks and Phase Transitions

discovering some structures on the Monte-Carlo samples. However, most of the re-

sults of the machine learning algorithms can only be recognized if one already knows

them. Hence, we focus on the algorithms which can potentially give insights which

are not known before. The only algorithms satisfying this request are (kernel) prin-

cipal component analysis and (variational) autoencoders. It turns out, that these

algorithms learn the order parameter, the magnetization, in a latent representation,

in order to discriminate between different samples. The latent representation takes

on different values in different phases of the Ising model. Hence, we propose to

employ the average absolute value of the latent representation as an indicator to es-

timate a phase transition between different regimes. Starting from the insight that

the ordered phase contains more structure than the disordered phase, we introduce

the average reconstruction loss function as a universal identifier for phase transi-

tions. We further demonstrate the ability of (kernel) principal component analysis

and (variational) autoencoders to successfully find the correct phase transition in the

antiferromagnetic Ising model in two dimensions and in the three-dimensional XY

model. Until now, the autoencoder framework has been applied to different systems

including the Ising model [51], the BKT phase in the two dimensional XY model [108]

and spin glasses [109]. Furthermore, it inspired progress in molecular simulations

[110]. In order to find the BKT phase the variational autoencoder was improved by

physical constraints like energy conservation. This enabled the autoencoder to be

employed to sample meaningful physical configurations of the unordered phase and

the BKT phase. The spin glass transitons were found by relating the cross entropy

reconstruction loss of autoencoders to the entropy of the physical system [109]. For

extracting information out of molecular simulations, the autoencoder was improved

by calculating a weighted average reconstruction loss. This new autoencoder was

trained on a supercomputer to find an optimal and physically interpretable reaction

coordinate and an optimum probability distribution which can be used for sampling.

All these results were obtained within one year from our proposal, which highlights

the potential of autoencoders as a tool to discover physical phases.

Over the last year it turned out that the most powerful algorithm for exploring

phase diagrams of complex physical systems is the artificial feed-forward neural

network in the supervised context. These artificial neural networks suffer from a

huge drawback. There is still no comprehensive theory of what they actually learn

while training in order to make their predictions. This unpredictability is a serious

issue in many disciplines where neural networks are employed. In physics, as a

quantitative research area, it is imperative to explain research results on physical

ground to gain reliable insights. So far these machine learning algorithms have only
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been applied to uncover phase diagrams of systems which are already known, in

these cases one can judge the reliability of the results by comparing them to existing

calculations. However, when applying artificial neural networks to new systems one

has no reason to trust the results.

One way to deal with this problem is to resort to other machine learning algo-

rithms, which can be more easily interpreted. One such machine learning algorithm

is the support vector machine. It is less powerful in learning hierarchical structures,

however the decision boundary can be read off directly from the learned coefficients.

A first application to the two-dimensional Ising model and the two-dimensional Ising

gauge theory demonstrates the ability of support vector machines to correctly pre-

dict phases in these models. In the Ising model this algorithm distinguishes between

phases via the magnetization, the underlying order parameter [111].

In Machine Learning of Explicit Order Parameters: From the Ising Model to SU(2)

Lattice Gauge Theory we successfully address the problem of interpreting artificial

neural networks classifying physical phases. We develop a new way to interpret neu-

ral networks. It is based on a discrete interpolation between a general neural network

and a minimal neural network which still performs equally well on the training data.

At the heart of this interpretation method is the parameter-dependent correlation

probing neural network. It consists of several hierarchically stacked neural network

building blocks. Each of these building blocks has one or several parameters which

can reduce the expressibility of the neural network. By training a sequence of neu-

ral networks to predict phases in a physical system and by stepwise lowering the

expressibility of the whole neural network, one eventually finds the optimal mini-

mal neural network. This minimal neural network still performs equally well as the

original full neural network. However, reducing the expressibility below the minimal

neural network causes a drastic drop in the classification performance. In general

there can be more than one optimal minimal neural networks, corresponding to

different independent decision functions. If the decision function of these minimal

neural networks is sufficiently symmetric, it can be expressed as a simple function of

the input data. In this form one can easily perform a regression analysis on very few

parameters compared to the millions of parameters of the original neural network.

If artificial neural networks are tasked with classifying phases of physical models,

it turns out that the decision functions of these minimal neural networks all corre-

spond to physical quantities. In the case of the two-dimensional Ising model this is

the magnetization, as also learned by the support vector machine. However, another

quantity which is learned by neural networks is the expected energy per spin. In

conclusion, we have explained the results of neural networks classifying phases of
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the Ising model by physical quantities. Thus, we have justified the results, even if

the phase transition of the Ising model would have been unknown.

These findings bear another significance. Our method of interpreting neural net-

works is constructive and it does not rely on the knowledge of any order parameter

beforehand. In other words, we have found the order parameter of the Ising model,

just by interpreting a neural network, without any physical deduction. This provides

the last component needed for an automatic determination of phase diagram: (i)

We use unsupervised learning to infer the existence of different phases on the basis

of Monte-Carlo samples. (ii) We employ supervised feed-forward neural networks to

find the accurate phase boundary. (iii) By interpreting what the neural network has

learned, we identify the underlying order parameter, which determines the nature

of the ordered phase.

This three-step determination of phase diagrams can be applied to more compli-

cated models than spin models. In our article we automatically detect and interpret

the confinement-deconfinement transition in four-dimensional Euclidean SU(2) lat-

tice gauge theory. Unsupervised learning successfully detects the existence of two

different phases. Supervised learning estimates the phase boundary close to the re-

sults from direct lattice calculations. Finally, by interpreting the decision function of

the supervised learning neural network, we find that it distinguishes between phases

by the Polyakov loop. This quantity is the order parameter corresponding to the

confinement-deconfinement phase transiton in lattice gauge theory.

To summarize to impact on physical phase diagrams: using machine learning,

we performed an automatic evaluation of the phase diagrams of the Ising model

and SU(2) lattice gauge theory, including the determination of the order parameter,

which is in agreement with previous calculations. Since this method of determining

the nature of the order is radically different from other existing methods, it might

help uncover the nature of phases where conventional methods have failed.

From a different perspective, we have developed a successful method to interpret

artificial neural networks. Perhaps this work can contribute to the understanding of

artificial neural networks in general, such that, some time in the near future, they

will not be considered as black box algorithms any more.

Based on the developments in this thesis we plan to apply artificial neural networks

to the Hubbard Model in the near future.
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In this thesis we have improved existing techniques and developed new methods to

explore phase diagrams. These methods were applied to several systems including

the Ising model, the Hubbard model and SU(2) lattice gauge theory.

In Physics and the Choice of Regulators in Functional Renormalisation Group

Flows we examined how much one can trust results obtained by functional renor-

malization group calculations. Further, we devised a criterion for finding an optimal

regulator in renormalization group flows.

We analyzed the zero temperature phase diagram of the Hubbard model on the

square lattice in Exploring the Hubbard Model on the Square Lattice at Zero Tem-

perature with a Bosonized Functional Renormalization Approach. Our calculation

was able to find leading instabilities which correspond to the phases of d-wave su-

perconductivity and commensurate and incommensurate antiferromagnetism. We

examined the transition between each of these phases and found a coexistence of su-

perconductivity and antiferromagnetism, but only on intermediate energy scales. We

pinned down the location of the commensurate-incommensurate transition, which

coincides with the line of Van Hove singularities and found that it is of first order.

The major technical achievement is the continuation of the renormalization group

flow into regimes of antiferromagnetism where the geometry of the Fermi surface

changes.

The article Unsupervised Learning of Phase Transitions: From Principal Compo-

nent Analysis to Variational Autoencoders contains the proposal of a machine learn-

ing algorithm to find phases in physical systems in an unsupervised manner. While

we introduced it at simple spin models, this algorithm has so far been employed

to explore systems like spin glasses, the two-dimensional XY model and molecular

configurations.

In Machine Learning of Explicit Order Parameters: From the Ising Model to SU(2)

Lattice Gauge Theory we developed a method to interpret artificial neural networks.

The procedure is tailored to neural networks classifying phases of matter, where

many physical quantities can be formulated in equations obeying many symmetries.

We found that neural networks base their decisions on order parameters and other
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8 Summary

thermodynamic quantities. We further determined the phase diagram of SU(2)

lattice gauge theory, including the existence of different phases, the nature of the

ordered phase and the phase boundary. The benefit of this article is twofold: on the

one hand it justifies the application of neural networks to classify phases of matter

on a physical basis. On the other hand our procedure can be used to determine the

order parameter of the underlying system.
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9 Contributions to the Articles

1. Physics and the Choice of Regulators in Functional Renormalisation

Group Flows

Sebastian J. Wetzel was the corresponding author of this article, however in

this discipline it is conventional to order the authors alphabetically. Sebastian

J. Wetzel contributed to the theoretical basics and performed the examination

of the regulator loops and the multi-field models. Jan M. Pawlowski had the

idea for this work and devised the theoretical framework and the optimization

criterion. Michael Scherer contributed substantially to the introduction and

the theoretical basics and was a direct supervisor to Sebastian J. Wetzel dur-

ing all stages of the work. Richard Schmidt was responsible for the content of

the Fermi-Polaron chapter.

2. Unsupervised Learning of Phase Transitions: From Principal Com-

ponent Analysis to Variational Autoencoders

Sebastian J. Wetzel concepted and conducted all of the work for this arti-

cle.

3. Machine Learning of Explicit Order Parameters: From the Ising

Model to SU(2) Lattice Gauge Theory

Sebastian J. Wetzel concepted and conducted all of the work for this article,

except the Monte-Carlo simulations which were used as input in the SU(2)

case. Those were produced by Manuel Scherzer.

4. Exploring the Hubbard Model on the Square Lattice at Zero Tem-

perature with a Bosonized Functional Renormalization Approach

Sebastian J. Wetzel concepted and conducted all of the work for this arti-

cle. Christof Wetterich helped with advice.
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Physik und für die für die inspirierenden Ratschläge, von denen diese Doktorarbeit
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