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Abstract

Over time, viruses have evolved several strategies to infect host cells, which can be roughly
categorized into two distinct modes of viral transmission, namely cell-free and cell-to-cell.
Various studies have opted for the latter to play the dominant role in infections with human
immunodeficiency virus (HIV) and hepatitis C virus (HCV). How to quantify the exact con-
tribution of each transmission mode to the infection dynamics, without biasing results due
to the experimental protocol, remains to be answered to allow for more efficient drug and
vaccine development.

Previously, mathematical models based on mass-action kinetics were fitted to bulk measure-
ments obtained from in vitro cell cultures cultivated in aqueous media. This combination
of experiment and modeling is very specific and might not be appropriate to describe other
situations such as in vivo studies. To allow generalization, the effect of modeling strategy and
experimental protocol on the predicted contributions of cell-to-cell spread to the infection
dynamics should be studied in more detail. In this thesis, I therefore analyzed possible
consequences of varying extracellular microenvironments and types of target cells on the
different transmission modes during an infection and how certain modeling strategies affect
predictions.

In a first step, I studied the impact of varying extracellular microenvironments on in vitro
spread of HIV. To this end, I developed a detailed mass-action kinetics model combining
experiments and mathematical modeling to describe HIV infection dynamics in aqueous media
and two types of collagen. My results show that for HIV infection of motile target cells the
contribution of transmission modes varies dependent on the environment.

Next, I moved from motile to stationary cells analyzing cell-to-cell transmission of HCV among
immobile hepatocytes. To account for the local nature of cell-to-cell spread in stationary
target cells, I developed an agent-based model, which combines deterministic intracellular
viral processes with stochastic intercellular infection events. This model was applied to
spatially-resolved data, describing HCV infection dynamics obtained from an in vitro experi-
ment conducted on hepatocytes in a monolayer. I found that the contribution of cell-to-cell
transmission to the infection dynamics is dominant in the early stages of the experiment.
However, depending on the composition of the used serum, the contribution can shift towards
a stronger role of cell-free spread during the experiment.

Moreover, I investigated how to reconcile bulk measurement data with mass-action kinetics
models in the context of viral cell-to-cell transmission among stationary target cells. Fitting
complex models to describe various aspects of viral infections such as cell-to-cell transmission
usually requires sufficiently resolved data. Nonetheless, experimental protocols often only
allow bulk measurements, which are generally combined with mass-action kinetics models
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that assume a well-mixed system. In the context of locally confined movement of target
cells infected by viruses, which are capable of infecting via cell-to-cell transmission, this
assumption is likely violated. Therefore, I developed an extension of a previously published
model, incorporating the decreasing proportion of cells contributing to cell-to-cell transmission
with progression of infection. The extended model then allowed correct quantification of the
infection dynamics.

In summary, I developed different modeling approaches to analyze the contribution of cell-
to-cell transmission to the infection dynamics of HIV and HCV under varying conditions.
Furthermore, I provide an extension to a mass-action kinetics model to allow correct descrip-
tion of cell-to-cell transmission in the context of stationary cells while still keeping a simple
structure, which can be fitted to population-level data. All approaches can be adapted to
other viruses to allow quantification of transmission modes, which will help to guide drug and
vaccine development more efficiently.
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Zusammenfassung

Viren haben im Laufe der Zeit verschiedene Strategien entwickelt um Wirtszellen zu infizieren.
Dabei können grob zwei Übertragungswege unterschieden werden, nämlich zellfreie und
Zell-Zell-Übertragungen. Mehrere Studien kamen zu dem Ergebnis, dass sowohl bei dem
Humanen Immundefizienz-Virus (HIV) als auch dem Hepatitis C Virus (HCV) Wirtszellen
hauptsächlich durch Zell-Zell-Übertragungen infiziert werden. Es stellt sich jedoch die Frage,
wie stark die Resultate durch das verwendete experimentelle Protokoll beeinflusst wurden.
Um die Entwicklung neuer Medikamente und Impfungen effizienter zu gestalten, ist eine
korrekte Quantifizierung der Transmissionsmechanismen von großer Bedeutung.

Bisher wurden Modelle, die auf dem Massenwirkungsgesetz basierten, an Konzentrationsmes-
sungen angepasst, welche von Experimenten mit in vitro Zellkulturen in Suspension stammten.
Diese Kombination aus in vitro Experimenten mit einfachen Modellen ist jedoch sehr spezifisch
und lässt in der Regel keine Verallgemeinerung zu. Um eine allgemeingültige Aussage zu
ermöglichen, muss sowohl der Effekt der Modellierungsstrategie als auch des experimentellen
Protokolls auf das Verhältnis zwischen zellfreien und Zell-Zell-Übertragungen berücksichtigt
werden.

In dieser Arbeit untersuchte ich deshalb den Einfluss sowohl der extrazellulären Umgebung
als auch verschiedener Zelltypen auf die beiden Transmissionsmechanismen und analysierte,
wie verschiedene Modellierungsstrategien die Vorhersagen beeinflussen.

In einem ersten Schritt betrachtete ich den Einfluss verschiedener extrazellulärer Umgebungen
auf die in vitro Ausbreitung von HIV. Mithilfe einer Kombination aus Experimenten und
mathematischen Analysen entwickelte ich ein detailliertes, auf dem Massenwirkungsgesetz
basierendes Modell, um HIV Infektionsdynamiken in Suspension und zwei verschiedenen Kol-
lagentypen zu beschreiben. Meine Resultate zeigen, dass bei HIV Infektionen von beweglichen
T-Zellen der Beitrag der verschiedenen Transmissionsmechanismen von der extrazellulären
Umgebung abhängt.

Als Nächstes analysierte ich Zell-Zell Transmissionen von HCV zwischen unbeweglichen Hepa-
tozyten, also stationären statt beweglichen Zellen. Um dabei auch die räumliche Struktur zu
berücksichtigen, entwickelte ich ein Agenten-basiertes Modell, welches deterministische intra-
zelluläre Virusprozesse mit stochastischen interzellulären Infektionsereignissen kombinierte.
Dieses Modell wendete ich dann auf räumlich aufgelöste Daten an. Diese Daten resultierten
aus einem in vitro Experiment bei dem in einer flachen Schicht angeordnete Hepatozyten von
HCV infiziert wurden. Dabei zeigte sich, dass Zell-Zell-Übertragungen anfangs die Infektions-
dynamik dominierten. In Abhängigkeit vom verwendeten Serum kam es jedoch im Laufe des
Experiments zu einer steigenden Anzahl zellfreier Übertragungen.
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Ausgehend von diesen Beobachtungen untersuchte ich die Möglichkeit einfache Modelle zu
erweitern, um die Analyse von Konzentrationsmessungen einer experimentellen Virusinfektion
stationärer Zellen basierend auf Zell-Zell Übertragungen zu verbessern. Um verschiedene
Aspekte viraler Infektionen wie z.B. Zell-Zell Transmissionen zu beschreiben, benötigen
komplexe Modelle in der Regel hoch aufgelöste Daten. Oft erlauben die eingesetzten expe-
rimentellen Protokolle jedoch nur Konzentrationsmessungen. Unter der Annahme eines gut
gemischten Systems werden diese Daten häufig mit einfachen mathematischen Modellen ana-
lysiert. Falls die Bewegung von Zellen eingeschränkt ist, führt dies jedoch zu einer Verletzung
dieser Annahme. Deswegen erweiterte ich ein bereits publiziertes Modell, um den Verlust an
Zellen, welche zu Zell-Zell Infektionen beitragen können, zu berücksichtigen. Die Erweiterung
des Modells erlaubte damit eine korrekte Quantifizierung der Infektionsdynamik.

Zusammenfassend entwickelte ich verschiedene Modellierungsansätze, um den Beitrag von
Zell-Zell Transmissionen zu den Infektionsdynamiken von HIV und HCV bezüglich verschiede-
ner Bedingungen zu untersuchen. Des Weiteren resultiert meine Arbeit in einer Erweiterung
eines Modelles basierend auf dem Massenwirkungsgesetz, welches die korrekte Beschreibung
von Zell-Zell Transmissionen zwischen unbeweglichen Zellen erlaubt. Dabei behält das Modell
seine einfache Struktur bei und ermöglicht so eine Anpassung an Konzentrationsmessungen.
Alle Ansätze können außerdem auf andere Viren angewendet werden, um auch für diese
die jeweiligen Übertragungsmechanismen zu quantifizieren. Dies sollte zu einem erweiterten
Verständnis der untersuchten Viren führen. Die gewonnenen Erkenntnisse und entwickel-
ten Methoden könnten in Zukunft dabei helfen, die Entwicklung von Medikamenten und
Impfungen für verschiedene Viren effizienter zu gestalten.
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Part I

Introduction





1Introduction

1.1 Viruses
We are under attack!

Every day viruses try to intrude into our bodies and, by this process, challenge our immune
system. The viral invaders are minimal working examples of a life form with the most
elementary ones only consisting of a capsid and ribonucleic acid (RNA) or deoxyribonucleic
acid (DNA) acting as genetic material. Some have a few additional proteins all directed at
ensuring survival of the virus [1]. Without the possibility to replicate genetic material or
synthesize proteins themselves, viruses have always depended on the cellular machinery of
other organisms to multiply [2]. Therefore, the entry of viruses into and subsequent infection
of formerly uninfected cells is an essential part of the viral life cycle to ensure survival [1].
This leads to a constant struggle between the immune system trying to fight off the virus and
viral attempts to establish infection.

Viruses have evolved several evasion mechanisms to escape the immune response shifting
disease progression from acute to latent or persistent infections. A virus leading to an acute
infection is for example Influenza virus [3], which is in most cases cleared by the immune
response in healthy individuals within a couple of weeks. Others, like herpes simplex virus
[4], can persist in the body at low levels with sporadic outbursts during times of a weakened
immune response in latent infections. Similarly, in persistent infections the virus remains in
the body after an acute period. However, without treatment the viral life cycle continues as the
virus cannot be controlled by the immune system and constant occurrence of new infections
is observed, e.g., majority of cases in human immunodeficiency virus (HIV) [5] as well as
hepatitis C virus (HCV) [6]. Although we have learned a great deal about viral infections in
the past and even found cures or preventive vaccines for certain viruses, an essential part,
i.e., the exact processes governing viral entry into host cells, generally remains unknown [7].
As viral entry is the first step in establishing an infection, it is a likely candidate to target in
antiviral therapy. Therefore, deciphering its key aspects will help to guide efficient drug and
vaccine development as it allows identification of potential pharmaceutical targets.

1.1.1 Viral transmission modes

Albeit the varying shapes and structures of viruses, viral transmission between host cells can
be generally categorized into two distinct transmission modes [7].

Cell-free transmission
Viral entry was first assumed to be solely transmitted by cell-free diffusing viral particles. In
brief, upon encountering uninfected target cells, viruses can recruit internalization or entry
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Fig. 1.1. Sketch of viral transmission mechanisms. (A) A virion diffuses freely across the host cell’s membrane.
After attaching to virus specific receptors (1), the virus enters the cell via endocytosis (2) or membrane
fusion (not shown). After digestion of the endosome’s membrane and viral envelope, viral material is
released into the cytoplasm (3). (B-H) Several mechanisms of viral cell-to-cell transmission are known.
Passive viral transport processes involve plasma membrane fusion (B), tight junctions (C) and neural
synapses formation (D). Active processes include induction of actin- or tubulin-containing structure (E),
subversion of actin-containing structures such as filopodia (F) and membrane nanotubes (G). Last but
not least the virus can also polarize the infected cell towards a neighboring cell, budding the virus in
direction of a virological synapse (G). (B-H) Reprinted by permission from Springer Nature: Nature
Reviews Microbiology [7] © (2008).

receptors and subsequently infect the host cell via membrane fusion or endocytosis (Fig. 1.1A).
For many viruses, various elements such as the duration and receptors involved remain to be
elucidated [8]. This transmission mode has been termed cell-free (CF) transmission [7].

In general, cell-free transmission allows far-range spread. For example, virus surfing in the
blood stream can disseminate to distant uninfected tissue regions. In addition, cell-free viruses
in saliva droplets can spread from host-to-host [7, 9]. Within a host, cell-free transmission is
independent of cellular interactions as successful infections require only uninfected host cells
and cell-free virus. However, extracellular virions permanently risk of being neutralized by
antibodies or patrolling immune cells leading to constant immune pressure exerted by the
host’s immune response on cell-free virus [10].

Cell-to-cell transmission
Since experimental procedures have evolved, several other possibilities for the virus to enter
cells have been identified, which can be categorized into a second transmission mode known
as cell-to-cell (CC) transmission. In this process virus replicating cells can directly infect
adjoining cells through different passive or active transport processes of virions [7]. While
passive transport includes plasma membrane fusion, tight junctions and neural synapses,
active transport processes involve viral induction/subversion of actin- or tubulin-containing
structures, the formation of actin-containing nanotubes and virological synapses (Fig. 1.1).
Which process is exploited for the infection of cells depends on the virus and several other
environmental factors [7].

Sometimes, cell-to-cell transmission is also observed in the context of host-to-host infections.
For example, T cells are assumed to be the carrier from host-to-host of human T-lymphotropic
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virus type 1 [11]. To allow transfer of infected cells from host-to-host, a close interaction
between infected and uninfected host is generally needed. Within a host, local confinement of
infection in stationary cells due to the short-range nature of cell-to-cell transmission resulting
in large foci of infected cells, provides a barrier for fast infection dynamics [12]. This can
be explained by the decreasing proportion of infected cells contributing to the infection
with growing focus sizes as uninfected neighbors are required for successful cell-to-cell
transmissions [12]. Nonetheless, cell-to-cell transmission is believed to be highly efficient
on a per cell basis as it can avoid patrolling immune cells [7] or extracellular antibodies
[13] through the direct transfer of viral material from infected to uninfected cells, thus,
shielding the virus from the immune response. Since cell-to-cell transmission can effectively
circumvent the immune response, it is thought to play an important role in the establishment
of persistent infections [14–16]. Still, the immune system is able to enforce pressure on
cell-to-cell transmission through paracrine signaling, which can lead to protected neighbors,
limiting possible targets for cell-to-cell infections [17].

Considering the advantages and disadvantages of the two modes of viral transmission, it is
difficult to determine the main route of infection a priori. However, cell-to-cell transmission is
believed to be orders of magnitude more efficient than cell-free [9, 18–21] due to transfer
of large numbers of viral particles during cell-to-cell spread of various pathogens [22–24].
Nonetheless, the contributions of the different transmission modes might not only vary
between viruses, but also depend on the target cells and their behavior. As cell-to-cell
transmission relies on cellular interactions, it is shaped by communication between and
motility of target cells, where the latter is defined by a combination of the inherent cellular
motility as well as the cellular environment. Depending on the environment, changing cell
densities and cells interacting with the environment influence cellular motility.

The importance of getting reliable estimates goes beyond sheer scientific curiosity as in-depth
knowledge of the contributions to infection dynamics can help to identify targets to efficiently
fight viral pathogens [15]. While cell-free virus can be cleared by extracellular components
such as antibodies, cell-to-cell transmission is more difficult to prevent [24]. Here, blocking
early steps in the viral life cycle hindering the maturation into fully infectious virions, can be
an effective strategy to assist the host in fighting the pathogen [24].

1.1.2 Hepatitis C virus

Hepatitis C virus (HCV), the predominant causing agent of non-A, non-B hepatitis (nowadays
known as hepatitis C), an enveloped, positive-sense, single-stranded RNA virus, was discovered
in 1989 and classified as part of the family flaviviridae [25, 26]. A large number of viral variants
is known, rendering it a quasispecies rather than a conventional virus species with subtypes 1a
and 1b being the major cause of the approximately 120 million infections worldwide [27, 28].
Despite the major health burden and excessive research still no preventive vaccine exists. Early
treatments of HCV consisted of a combination therapy with pegylated interferon and ribavarin.
Unfortunately, this treatment had strong side effects and a sustained viral response (SVR)
was only observed in about 50% of HCV genotype 1 cases [29, 30]. With the development of
direct acting agents such as sofosbuvir and daclatasvir, SVR rose to over 90%, finally providing
clinicians with an effective drug to treat infected patients [31].
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The primary target cells of HCV are hepatocytes. However, there are also reports of rare
infections of peripheral blood mononuclear cells [32]. Within the host, the virus first needs to
enter a hepatocyte. This process is governed by complex interactions with several receptors,
e.g. low density lipoprotein receptor, CD81, claudin 1 and occludin [33, 34]. Once inside
its target, the viral genome is translated - using host ribosomes - into a single polyprotein,
which is subsequently cleaved and processed into structural and non-structural proteins [33].
Allowing the virus to escape humoral and cellular immune pressure [6, 35], negative-stranded
RNA is transcribed from its positive counterpart using an error-prone viral RNA polymerase
in the membranous web, which is induced by the viral protein NS4B. In a next step the
negative-stranded RNA acts as a template for the synthesis of new positive-stranded RNA
[33]. The exact processes within and the role of the membranous web, also known as viral
replication complex, are not yet fully characterized. So far, the membranous web is thought to
be the site of viral replication and assembly [36, 37]. Finally, assembled virions are released
into the extracellular space. How budding of HCV from the host cell exactly works is still
unknown and subject to ongoing research [38]. Whereas cell-free virions are capable of
infecting hepatocytes through a cascade of interactions with several host receptors, HCV can
additionally infect host cells through cell-to-cell transmission [16]. In contrast to other viruses,
e.g., HIV-1 and herpes simplex virus, the exact mechanism of infection establishment through
cell-to-cell transmission regarding HCV still needs to be elucidated [7]. Additionally, at which
step in the viral replication cell-to-cell transmission occurs remains unknown, where the most
important question is whether a viral envelope is necessary for successful cell-to-cell spread.
Despite this lack of knowledge, cell-to-cell transmission is considered the major cause for viral
persistence in the body due to viral escape from neutralizing antibodies [16, 39] or during
therapy [40].

Deciphering the various steps in the viral life cycle has been a challenging task in HCV research.
Missing small-animal models and, early on, a replication competent in vitro system made it
difficult to discover the processes governing infection. Knowledge of the hepatitis C virus
increased tremendously with the development of a replicon system in Huh-7 cells, a human
hepatoma cell line [41], and the discovery of JFH-1, a virus isolated from a patient with
Japanese fulminant hepatitis, which is capable of going through the full viral life cycle and is
infectious for naive Huh-7 cells [42, 43].

Despite identifying the viral structure and understanding most parts of its life cycle, the contri-
bution of each transmission mode to HCV infection dynamics remains an open question.

1.1.3 Human immunodeficiency virus

First described in 1983 by Barré-Sinoussi et al. [44], the human immunodeficiency virus (HIV)
is a positive-sense, single-stranded, enveloped RNA virus of the genus lentivirus, a subgroup
of retroviruses [45], which are known for their slow disease progression. It can be divided
into two groups, namely HIV-1 and HIV-2, where the former is more virulent and infective
and, thus, the main cause of the approximately 40 million HIV infections worldwide [46, 47].
Despite tremendous efforts, to this date pharmaceutical research has been unable to develop
a vaccine or complete cure for HIV. Current antiretroviral therapies are not able to clear the
virus from the patient, but increase life expectancy of infected people to the same level as
observed for uninfected individuals [48].

6 Chapter 1 Introduction



The main target cells for HIV are activated CD4+ T lymphocytes [49, 50] and rarely dendritic
cells, where the latter cell type is believed to play an important role in the early establishment
of the virus in humans [51]. At the beginning of the infection, small foci comprised of
infected cells can be observed at the location of viral entry in the body. These foci form due
to recruitment and activation of T cells in the proximity of already infected cells [52–54].
Upon interaction with CD4 and co-receptors C-C chemokine receptor type 5 (CCR5) or C-X-C
chemokine receptor type 4 (CXCR4) and subsequent entry [55], HIV follows the characteristic
path of retroviruses. First, viral RNA is transcribed into double-stranded DNA by reverse
transcriptase and then integrated into the host cell genome by the enzyme integrase [56, 57].
In this step depending on the activation state of the infected cell, the virus genome, integrated
into the host cell’s DNA at this point, can enter latency, a state of non-productive infection
with low gene expression levels. At later stages translated viral proteins and genomic RNA are
exported to the cytoplasm, where new particles are assembled at the plasma membrane [58,
59].

HIV has several strategies to evade the immune response. For example, reverse transcription
is an error-prone process, which leads to high mutation rates and subsequently viral escape
from immune pressure. Another mechanism is the down-regulation of surface markers on
infected cells, which limits their ability to present viral material to patrolling immune cells
[60]. In addition, latently infected cells provide the dormant virus with protection against the
immune response over long periods, thus, probably playing a key role in viral rebound after
therapy completion [61].

Similar to HCV, new infections can occur either via cell-free virions or cell-to-cell transmission,
which is assumed to predominantly occur through formation of viral synapses [22]. For HIV,
the latter mode of transmission is believed to be orders of magnitude more efficient than
cell-free spread [18–20]. However, experimental limitations (see below) may have biased
these results and the exact contributions still remain unresolved.

1.1.4 Experimental procedures

To experimentally investigate different aspects of viruses under controlled conditions, several
techniques have been developed to collect data [62]. These techniques range from case-control
studies on humans or animal models over ex vivo to in vitro experiments.

While case-control studies on humans or animal-models resemble realistic conditions, they
often struggle with low sample sizes, high variability within groups as well as difficulties
in assessing individual steps of the infection process. To address the latter, experiments are
usually conducted with cells submerged in aqueous media, allowing for easy manipulation of
processes and access to virus and cells. In this approach cells nourish on the supplemented
nutrients of the media and sediment to the bottom of the well forming a dense monolayer
(Fig. 1.2A) [63]. This technique is useful in the context of infection dynamics among tissue-
forming cells, e.g. hepatitis C or B virus infecting hepatocytes. Here, cells are stationary and a
dense layer resembles realistic conditions for hepatocytes.

However, this generally applied technique falls short, when studying viruses infecting motile
target cells, such as HIV or human T-lymphotropic virus, as high cell densities can affect
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BA 2D suspension 3D Matrix

Fig. 1.2. Different experimental environments. (A) Shortly after addition of cells to aqueous media, cells
sediment to the bottom of the well essentially forming a dense monolayer. (B) In contrast, collagen
provides a scaffold for the cells, decreasing cell density and allowing for movement in all directions.
Scale bar: 40 µm. Adapted by permission from Springer Nature: Nature Reviews Microbiology [63] ©
(2014).

cell motilities potentially biasing the results [63]. This shows the necessity of extending
the experimental technique of culturing cells in aqueous media to a more realistic setting.
Studying HIV for example in human tonsil explants, which provide the cells with a scaffold
structure, achieves a closer resemblance of the human lymph node. Although this allows for
more realistic cell densities, it is difficult to follow cells in real-time with live cell imaging as
microscopy beyond a few hundred microns in solid tissue is not yet possible [64]. Additionally,
manipulation of explants with regard to changes in the cellular environment such as the
cellular composition and activation state of lymphocytes is difficult to accomplish and, thus,
studying the effects of these changes on the infection dynamics cannot be conducted with
this technique [63]. To overcome these problems in the context of migrating cells with the
advantage of providing a scaffold structure allowing for reasonable cell densities and cellular
migration patterns, 3D collagen structures are an optimal solution (Fig. 1.2B) [63, 65]. For
these structures, Collagen I, obtained from bovine cartilage or rat tails [65], is favored over
natural occurring collagen as it allows retrieval of viable cells through the administration
of Collagenase, which digests the collagen matrix [66]. Without retrieval of viable cells,
fluorescence-activated cell sorting (FACS), an important experimental technique for the
sorting of cells, can lead to wrong results as dead cells can take up antibodies non-specifically
and are also often auto-fluorescent.

After determining a reasonable cell culture system for a particular virus, the contribution
of the different transmission modes to the infection dynamics still needs to be disentangled.
To this end, several in vitro approaches have been developed. Spatially separating infected
and uninfected cells with a transwell allows virus but not cells to diffuse between chambers
[67], thus, blocking cell-to-cell transmission. Using this technique generally leads to a bias in
favor of efficient cell-to-cell spread. Large distances as featured in transwells automatically
cause increased loss of viral infectivity [68] because diffusion of virions usually is too slow to
cover large distances [69]. A different experimental approach is to harvest infected cells or
virus from infected cultures and co-culture them with uninfected cells [68]. However, this
technique presents the scientist with another problem as it tries to link different entities, i.e.,
amount of cell-free virus and number of infected cells, which are not comparable. For example,
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infected cells can act as production sites for new virions over long time intervals. Despite their
shortcomings, both approaches were applied to measure the efficiency of transmission modes
during HIV infection [19, 20]. Using these experimental techniques indicated that cell-to-cell
is considerably more efficient than cell-free transmission.

Additionally, there have been efforts to infer relative contributions of the respective transmis-
sion modes for particular viruses such as HIV and HCV by blocking one transmission mode
without affecting the other. To achieve this in the context of HIV, cultures were shaken to
prevent cell-to-cell transmission [20, 70]. However, the authors came to conflicting results
[18, 20, 67], showing that this method is not yet applicable for HIV. In the case of HCV
administration of anti-E2, an antibody against a viral envelope protein, successfully blocked
cell-free transmission [16, 71, 72]. Interpretation of the obtained results was difficult, as
only differences between transmission modes were considered, neglecting possible synergistic
effects [70]. To my knowledge, no experimental approach has been developed, which can
block each transmission mode separately for a particular pathogen in the same experimental
set-up. However, developing such a technique would still not provide the opportunity of
disentangling the contribution of the respective transmission modes to the infection dynam-
ics experimentally as the simultaneous occurrence cannot be described as the sum of both
transmission modes individually due to synergistic effects.

Altogether, it is important to use an adequate system when studying a particular virus,
also having in mind the goals of the experiment as well as experimental limitations and
implications of the utilized environment on viral spread. When trying to quantify the efficacy
of transmission modes, experimental techniques are still limited with respect to interpreting
the obtained results. Here, mathematical modeling helps to fill this gap and disentangle the
contribution of each transmission mode to the overall dynamics.

1.2 Mathematical modeling of viral infections

Experimental techniques often suffer several limitations when addressing certain aspects of
viral kinetics, for example, to infer particular steps in the viral life cycle or to disentangle the
contribution of each transmission mode to the infection. Here, mathematical modeling has
been an important tool when studying viral infections. Several approaches, stretching over
multiple scales and including various steps in the infection dynamics, have been developed to
complement experimental procedures, providing valuable insights into processes that cannot
be measured directly. The following overview partly addresses aspects introduced in [73].
Further reading on this topic can be found in [74–76].

1.2.1 Standard model of viral dynamics

A general model, often used to describe viral dynamics, is an adaptation of a model developed
by Kermack and McKendrick in the field of epidemiology, namely the susceptible-infected-
recovered (SIR) model [77–79]. The model is comprised of a set of ordinary differential
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Fig. 1.3. Increasing complexity of developed models to determine virus dynamics. (A) Sketch of the stan-
dard model of virus dynamics. Virus production and export are merged into a single process occurring at
rate ρ proportional to the density of infected cells. Intracellular processes are not modeled explicitly.
(B) Sketch of a detailed model of the viral life-cycle of HCV in Huh7 cells, which follows a total of
eleven variables, ranging from processes in the cytoplasm to the formation of replication complexes and
synthesis of new viral RNA (adapted from [82], https://doi.org/10.1371/journal.ppat.1003561).

equations (ODE). It was first applied to viral spread of HIV in vivo [80] and is now known as
the standard model of viral dynamics (SMV) (Fig. 1.3A) [81]:

dT

dt
= λ− dT − βV T

dI

dt
= βV T − δI

dV

dt
= ρI − cV

(1.1)

Here, virus concentration, V, densities of susceptible target, T, and infected cells, I, are
followed. Target cells have an average lifetime of 1/d and constantly enter the system with
influx rate λ. Cell-free virions infect target cells proportional to the viral concentration and
target cell density with rate β and are produced by infected cells at constant rate ρ. Lastly,
infected cells have a half-life of log(2)/δ and virus is cleared with rate c.

This model merged several processes into individual constant rates, e.g., intracellular trans-
port, transcription, assembly of the virus and subsequent export were combined in the viral
production rate ρ. Still, these approximations provided first estimations of the viral life cycle
at that time not accessible through experimental procedures [83].

1.2.2 Viral dynamics modeling with clinical data

Various simple modifications and extensions of this model have been published to account for
additional processes, such as intracellular delays [84, 85], multiple infections of target cells
[86] and viral mutations [87–89], increasing our knowledge of several viruses such as HIV
and HCV. For instance, using viral load data from infected patients during therapy, Perelson et
al. [90] and Wei et al. [91] were able to show that HIV-1 replicates rapidly during chronic
infection, contradicting the former hypothesis of a slow viral turnover. A similar result was
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obtained for HCV [92]. Additionally, with these models identification of drug regimes under
which resistant mutants can arise [85, 87, 93] and appropriate targets for drug treatment
[85] were possible. Moreover, mathematical models could also propose the mode of action of
drugs in use and their efficacy [94].

1.2.3 Modeling of viral replication using in vitro data

Around the same time as Perelson et al. [90] and Wei et al. [91], other researchers used in vitro
data to get a deeper understanding of the intracellular processes governing viral infections
by developing in-depth models [95, 96]. Although the infection kinetics were described well,
they struggled with the limited amount of data and the complexity of their models, and
accordingly the confidence into their estimated rates was limited. With the development of
an HCV replicon system in vitro [41], the study of HCV replication progressed considerably.
Dahari et al. developed a first model of intracellular replication accounting for the subgenomic
processes involved [97]. Building on their model, Binder et al. extended it to additionally
capture early kinetics after infecting Huh-7 cells through electroporation (Fig. 1.3) [82]. Using
their model, they could show that replication compartments act as a protection to ensure
sustained RNA replication. Furthermore, applying a sensitivity analysis they learned that the
system can be disturbed best shortly after infection. In addition, they determined key steps
in the viral life cycle such as polyprotein translation and RNA polymerization rate of NS5B,
which should help to clear the virus when targeted by drugs [82]. In fact, this finding nicely
agreed with the proposed targets of newly developed direct acting antiviral drugs against HCV,
which were found to be highly effective with sustained viral responses of over 90% [31].

1.2.4 Infection dynamics in spatially heterogeneous environments

Models incorporating the viral life cycle and the turnover of infected cells gave already valuable
quantitative insights into viral dynamics [81]. However, the whole infection process in these
models was built on the assumption of cell-free transmission. For viruses able to exploit both
transmission routes, this meant that cell-to-cell spread had been neglected. As each mode of
transmission differs in the proposed infection patterns, which in turn have an effect on the
overall infection kinetics, results might have been biased.

With this in mind, Zhang et al. [98] developed a variation of the standard model of virus
dynamics to additionally account for cell-to-cell spread including a simple mass-action ki-
netics term βcIT , i.e., cells could get infected through cell-to-cell transmission with rate βc
proportional to the available density of target and infected cells. Based on this approach,
Komarova et al. [99] and Iwami et al. [70] developed a model to predict the proportion of
Jurkat cells, an immortalized human T cell line, infected through cell-free transmission in an
experiment, where they followed the experimental protocol as introduced in [20]. To get more
information on the individual modes of transmission, Iwami et al. investigated two scenarios
[70]. While they allowed the simultaneous occurrence of both transmission modes in some
cultures, cell-to-cell spread was blocked in others through constant shaking of the well-plate,
preventing the formation of cellular bonds necessary for successful cell-to-cell infection. Simul-
taneously fitting a model with both transmission modes or only cell-free transmission to the
static and shaking culture, respectively, they concluded that cell-free transmission accounted
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for approximately 40% of infections in this experimental setup. This gave a first estimate
of the contribution of each transmission mode to the infection kinetics for HIV-1. However,
various elements of their experimental procedure and modeling approach might have biased
their results, making it difficult to generalize their findings. From an experimental point of
view, they performed their experiments in a cancerous cell line in suspension as compared
to infecting peripheral mononuclear cells in collagen. Additionally, their model lacked an
eclipse phase accounting for the duration until cells become virus-producing cells and did
not explicitly account for the experimental change of media after each measurement. As
movement of Jurkat cells in a densely packed environment characteristic for aqueous media
is not yet characterized, the validity of assuming a well-mixed system, i.e., considering a
spatially homogeneous model, and its implications for their predictions will need further
investigation.

To address some of the shortcomings on the modeling side, several other approaches have
been developed. For example Kandathil et al. [100] and Graw et al. [101] used statistical
processes describing focus formation to analyze liver biopsy samples of HCV-positive patients
for spatial patterns of infected cells. They found that foci contained between 4 and 50 infected
cells. This wide range convinced them that both transmission modes were exploited by HCV
in vivo. A different approach was used to include the time since a cell was infected and to
explicitly account for spatial effects. To this end, age-structured [84, 102, 103] and models
including spatial derivatives [104], both partial differential equation models, were developed.
However, applying these models to data is generally not feasible as they are difficult to fit
due to their complexity while also being limited to deterministic processes, thus, not able to
account for stochasticity. For example, a reaction diffusion equation model, which is described
by a set of partial differential equations, cannot explain the formation of new foci through
cell-free transmission in static cells at more or less random locations.

Deterministic mass-action kinetic models generally cannot capture stochastic processes such
as extinction of an infection due to low numbers of infected cells. Thus, a completely
different type of model was sought out to describe stochastic processes, which are often
a key element in viral infections. In this process infectious disease modelers made use of
cellular automata and cellular Potts models (CPM) [105, 106], rule-based and spatially explicit
discrete computational models that can describe a large variety of phenomena, used in a
wide range of fields. They are known to generate complex patterns despite their behavior
being governed by few and simple rules [107]. A famous example is the glider in John
Conway’s game of life [108]. An extension of cellular automata is also known as agent-
based models (ABM), where each cell is an individual agent following simple rules based on
stochastic processes. Their rule-based structure makes description of various mechanisms
including stochastic and spatial processes relatively easy compared to incorporating them into
conventional mass-action kinetics models. An overview of the success agent-based models
have provided in host-pathogen systems can be found in [109]. However, these models were
generally used to analyze the dependence of specific parameters [110] and mechanisms
[111] on the qualitative behavior of viral spread due to their high computational costs and
large number of unknown parameters, which in addition were often difficult to interpret.
Furthermore, the data obtained from experiments are often based on bulk measurements,
which usually provide too little information to allow discrimination of the various processes
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in an agent-based model. Therefore, despite their obvious advantages, these models were
seldom used for data fitting.

Making complex stochastic models accessible to quantitatively use with experimental data
has been a field of recent research. For example, approximate Bayesian computation allows
likelihood-free fitting of complex models in computationally reasonable time [112]. Imple-
mentations of these algorithms such as pyABC [113] nowadays become more important to
allow parameter estimation for agent-based models, thus, allowing prediction of processes,
which are difficult to model with conventional mass-action kinetics models and cannot be
measured directly.

1.3 Overview of the thesis
In this thesis I address the question how to quantify the impact of cell-to-cell transmission
on viral spread. To this end, I use several modeling approaches, which allow me to quantify
the infection dynamics of HIV and HCV in vitro. Furthermore, using estimated parameters I
predict the contribution of the individual transmission modes to the progression of infection
for the studied viruses in different experimental environments. Lastly, I analyze the effect of
modeling cell-to-cell transmission in stationary cells with the standard model of virus dynamics
and extend this model to correctly describe infection dynamics. A graphical overview of the
different topics treated in this thesis is shown in Fig. 1.4.

This thesis is structured as follows.

2. Material and Methods. Here, I explain the experimental procedures followed by my col-
laborators to collect data. These data are used to parameterize my models and to answer
the raised question of the contribution of the different transmission modes to viral spread.
Furthermore, I introduce some mathematical basics, which are needed in the subsequent
chapters.

3. Different environments shape the contribution of cell-to-cell transmission to HIV spread in
vitro. In this chapter I analyze the implications of experiments studying HIV spread conducted
in aqueous media, where abnormal high cell densities are often observed. With the help of
an extensive data set based on bulk measurements comprised of experiments conducted in
aqueous media as well as two types of collagen matrices, I build a model able to describe
the dynamics in the different environments as observed in the data. This model allows me
to predict the proportion of cells infected by each mode of transmission dependent on the
experimental condition.

4. Dissecting the contribution of cell-to-cell transmission to HCV spread in stationary cells in
vitro. After treating motile target cells, which are inherent to HIV in different environments,
I investigate stationary target cells, where spatial limitations of cell-to-cell transmission might
violate the assumption of homogeneous distributions, in the context of viral infections. To this
end, spatially-resolved data collected by my collaborators allow me to develop an agent-based
model, which describes the infection of hepatocytes in a monolayer with HCV. To parameterize
the model correctly, I use data that characterize intracellular replication of HCV in Huh7 cells
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Fig. 1.4. Graphical overview of the thesis. (A) In Chapter 3 I analyze the spread of HIV in motile T cells cultured
in different environments based on bulk measurements . (B) In Chapter 4 I use spatially-resolved data
to investigate the contribution of cell-to-cell transmission during the progression of HCV infection in
stationary hepatocytes. (C) In Chapter 5 I show that the standard model of virus dynamics falls short in
the context of cell-to-cell transmission, when the assumption of a well-mixed system is breached, and
introduce an extension, which allows to describe the infection dynamics correctly.
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and export of infective virions and the focus size distribution of infected cells in experiments
where cell-to-cell transmission is either blocked or not. The model is then able to predict
the proportion of cells infected by either transmission mode and the synergistic effect by the
combination of cell-to-cell and cell-free transmission.

5. Accounting for Space - How to Improve Quantification of Cell-to-Cell Transmission Using
Virus Dynamics Models. In contrast to the previous chapters, where either infection dynamics
in motile cells are studied or spatially-resolved data are available, experiments are often
performed with slow moving or immobile cells while only retrieving bulk measurements. As
pointed out previously, cell-to-cell transmission is a local process, showing spatial patterns in
the absence of motile cells. In general, spatially structured processes should be described with
appropriate models such as agent-based models. However, bulk measurements generally do not
provide sufficient information to fit an agent-based model with its large amount of parameters.
Additionally, fitting complex models is usually time-inefficient and computationally-expensive.
Hence, spatially homogeneous virus-dynamics models using simple mass-action kinetics are
often used. To address this issue, when studying stationary target cells, without loss of the
simple ODE structure of the standard model of virus dynamics, I develop an extension that
accounts for the decrease of cells contributing to cell-to-cell transmission with progression of
infection. Finally, I test this model on previously published data [70].

In summary, I introduce different modeling approaches to describe the infection dynamics of
HCV and HIV in vitro. These approaches subsequently allow prediction of the proportion of
cells infected by either transmission mode for the respective virus and environment. Consid-
ering the provided data and motility of target cells, these approaches can be generalized to
various viruses, thus, allowing disentanglement of the contribution of each transmission mode
to the infection dynamics. Subsequently, enabling the identification of potential targets, these
findings can be used for more efficient strategies in drug and vaccine development.

1.3 Overview of the thesis 15





Part II

Materials and Methods





2Materials and Methods

2.1 Experimental protocols

In this part, I explain the experimental protocols as followed by my collaborators from the
University Hospital Heidelberg and Loyola University Medical Center to collect data that were
analyzed in this thesis.

2.1.1 In vitro spread assays of HIV-1 in different environments

Experiments on HIV-1 were performed by the Fackler lab, Center for Integrative Infectious
Disease Research (CIID), Integrative Virology, University Hospital Heidelberg. A rough sketch
of the experimental procedure followed to analyze HIV infection kinetics in different environ-
ments is shown in Fig. 2.1. Details of the applied procedures were published in [69].

To produce a stock of replication-competent HIV-1, it was harvested from a cell line derived
from human embryonic kidney cells (HEK 293) two to three days after transient transfection,
filtered and concentrated via ultracentrifugation through a sucrose cushion. Experiments were
conducted in HIV-non-specific human peripheral blood mononuclear cells (PBMC), which were
obtained from healthy individuals, thus, resulting in HIV-non-specific CD8 cells not partaking
in the infection process. PBMCs were stimulated for 72 hours with phytohemagglutinin
(PHA) and surface-immobilized anti-CD3 monoclonal antibody in Roswell Park Memorial
Institute medium (RPMI 1640) supplemented with FCS, penicillin/streptomycin (PenStrep)
and interleukin-2 (IL-2). This procedure yielded PBMCs containing around 95% CD3-positive
T lymphocytes with approximately 80% CD4-positive and 20% CD8-positive T cells. After-
wards activated cells were subjected to spin-infection with HIV-1 in high IL-2 medium and
then cultured for 72 hours in media with IL-2. To prepare dense and loose collagen gels for
the experiments concentrated rat tail and bovine collagen I, respectively, were mixed with
bicarbonate-buffered minimal essential medium. Buffered collagen was then combined with
uninfected and spin-infected cells in 96 well-plates, such that approximately 1% to 1.7% in-
fected cells were present at the start of the experiment in each well, and allowed to polymerize
within half an hour. Cells were added to collagen at a density of 105 cells/100 µl gel. Finally,
polymerized gels were overlain with media, consisting of RPMI 1640, FCS, PenStrep and
IL-2. For the aqueous media environment (suspension) the same number of uninfected and
spin-infected cells as in the collagen were combined with media containing RPMI 1640, FCS,
PenStrep and IL-2. To ensure comparability, all cultures were treated with collagenase I on the
day of harvest, resulting in cell suspensions, which allowed analysis of infection kinetics. Cells
were then washed and stained with anti-CD8-PE Vio770 and anti-CD3-PE to detect CD8 and
CD4 T cells, where the latter were identified as CD3 positive/CD8 negative cells. To detect
intracellular p24, cells were permeabilized and stained with anti-p24-FITC. As my modeling
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Fig. 2.1. Sketch of experimental protocol for HIV-1 spread assays. Cells were drawn from a batch of T cells
without infection (mock), a batch containing cells, which underwent spin-infection 72 hours before the
start of the experiment (T20x2) or a mixture of the two (wt) and transferred into media containing
well-plates (suspension) additionally mixed with bovine collagen I (loose) or rat tail collagen I (dense).
At several time points, virus titer from the supernatant was collected from the different environments.
After removal of the supernatant, collagenase was added and the virus titer in culture was measured.
Furthermore, counts of CD8, CD4 and infected CD4 cells from the resulting cell suspensions were
measured. For the remaining wells, i.e., wells that were not harvested, the supernatant was removed and
new media was added. Experiments were performed by the Fackler lab, Center for Integrative Infectious
Disease Research (CIID), Integrative Virology, University Hospital Heidelberg.

approaches depended on absolute rather than relative counts, counting beads were added
prior to the analysis with a FACSVerse and FlowJo software.

Additionally, different experimental conditions including control cell cultures without infection
(MOCK) and cultures with high percentages of 8% to 10% infected cells supplemented with
fusion inhibitor T20 (T20), which is known to block HIV-1 infections, were followed.

Furthermore, a one step PCR-enhanced reverse transcriptase assay (SG-PERT) was performed
to measure viral concentrations in terms of reverse transcriptase activity as described in [114,
115]. Here, virus samples were lysed, RT-PCR reactions were performed and finally read out
using a Real-Time PCR detector. To obtain absolute values of RT activity, a standard curve of
replication-competent HIV-1 containing supernatant with known RT activity level was run
in parallel during quantification of the different experimental samples [115]. Absolute RT
activity levels were extrapolated from the Cq values of the standard curve.

2.1.2 In vitro experiments on HCV infection in Huh7 cells

Experiments on HCV were performed by the lab of Susan Uprichard, Department of Microbiol-
ogy and Immunology, Loyola University Medical Center, Maywood, Illinois, USA.
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Fig. 2.2. Photograph and sketch of experimental protocol for HCV spread assays. (A) Representative photo-
graph of a well-section showing foci of HCV-infected hepatocytes in red and uninfected hepatocytes in
transparent. Green lines were drawn for orientation. (B) Experimental protocol sketch of the spread
assays (Adapted from [117]). After Huh7 cells were plated and grown to a confluent monolayer, they
were co-cultured with approximately 30 FFU/well hepatitis C virus for 17 hours. Then, the inoculum was
removed, media was changed and in case cell-free transmission was blocked, anti-E2 was additionally
administered. The same procedure was repeated 72 hours post infection. At several time points the cells
were fixed, stained for NS5A or anti-E2 and the sizes of occurring foci were manually counted. Experi-
ments were performed by the lab of Susan Uprichard, Department of Microbiology and Immunology,
Loyola University Medical Center, Maywood, Illinois, USA.

Spread assays

Details of the procedure were published in [116]. Huh7 cells were plated at high densi-
ties, resulting in approximately 2.4 × 104 (Exp. 29D) and 1 × 104 (Exp. 29J) cells at time
of infection, in 100 µl/well with complete Dulbecco’s modified Eagle’s medium (cDMEM)
including fetal bovine serum (FBS) on a 96-well plate and incubated until confluence was
reached. To initiate infection genotype 2a cell culture-propagated hepatitis C virus from a
Japanese Fulminant Hepatitis patient (JFH-1 HCVcc, referred to as HCV in the following)
was diluted to approximately 35 (Exp. 29D) or 25 (Exp. 29J) focus forming units (FFU) per
well and added to each cell culture, which were incubated together for 17 hours. Afterwards
viral inoculum was removed and cells were rinsed with phosphate-buffered saline (PBS).
Media containing cDMEM and dimethyl sulfoxide (DMSO) was added to the culture. When
blocking cell-free spread, 10 µg/ml HCV E2 antibody MAb AR3A (anti-E2) was added to the
media. Cells were incubated and different wells were fixed at 48, 72, 96 and 120 hours
post infection. To visualize infected cells several steps were necessary. In a first step, cells
were fixed by adding paraformaldehyde (PFA), incubated 20 min at room temperature (RT),
rinsed with PBS and permeabilized with a cold methanol-acetone solution for 10 min at RT.
Next, cells were incubated with cold PBS containing hydrogen peroxide for 5 min to block
endogenous peroxidases, decanted and rinsed with PBS. Following this, a blocking solution
was administered for 1 h with PBS containing Triton X-100, bovine serum albumin (BSA) and
FBS to reduce nonspecific binding of antibodies. The blocking solution was aspirated off and
immediately mouse polyclonal serum anti-HCV NS5A 9E10 (Exp. 29D) or AR3A anti-E2 (Exp.
29J) was added. In a next step, antibodies were decanted and cells rinsed with PBS. Then
cells were incubated with a 1:500 dilution of horseradish peroxidase conjugated anti-mouse.
Cells were rinsed and incubated with aminoethyl carbazole detection substrate for 10 min at
RT and washed with dH2O, add dH2O:glycerol (1:1) solution for storage. Lastly, foci were
photographed using an appropriate microscope and cells per focus counted. A schematic
overview of the procedure is shown in Fig. 2.2.
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Fig. 2.3. Sketch of hexagonal grid for simulating viral spread. (A) Axial hexagonal coordinates as used in the
agent-based model of Chapter 4. (B) Coordinates and length units necessary to calculate the 7-point
finite difference approximation of the Laplacian.

Intracellular replication

Huh-7 cells were plated on a 96-well plate, with 4000 cells per well and infected with serum-
free cell-culture propagated HCV at a multiplicity of infection (MOI) of six in 50 µl serum-free
cDMEM. Three hours post infection, virus was removed from all wells and after rinsing with
cDMEM containing FBS, the wells were supplemented with 200µl cDMEM containing FBS. At
various later time points between 3 and 96 hours post infection supernatant and cell lysates
were harvested from three wells at each time point to quantify intra- and extracellular RNA.
Quantification was achieved by processing RNA, applying reverse transcriptase and, in a last
step, using quantitative polymerase chain reaction in relation to a serially diluted standard
JFH-1 plasmid curve and normalized to GAPDH. To retrieve cell numbers, parallel plates
were counted at 0, 36, 72 and 96 hours p.i. The percentage of infected cells was measured
in duplicates by fixing cells at 21, 30 and 72 hours. Extracellular RNA was measured in
duplicates.

2.2 Mathematical Methods

The mathematical basics used in this thesis to achieve the presented results are introduced in
this part.

2.2.1 Hexagonal grid structure for simulating viral spread

The underlying hexagonal grid of the agent-based model describing the spread of hepatitis
C virus in a monolayer of hepatocytes was implemented following the description in [118].
In the model, agents, i.e., hepatocytes, were distributed on a hexagonal grid with axial
coordinates describing the location (Fig. 2.3A). Neighbors were calculated assuming that a cell
with coordinates (i∗, j∗) is neighboring cell (i, j), if i∗ ∈ {i− 1, i, i+ 1}, j∗ ∈ {j − 1, j, j + 1}
and i∗ 6= j∗.

22 Chapter 2 Materials and Methods



Stencil method for discretization

Assume the distance between neighboring nodes is h (Fig. 2.3B). Using a Taylor series
expansion of a function u : R2 → R for nodes (x± h, y) around (x, y), gives

u(x± h, y) = u(x, y)± h∂xu(x, y) + h2

2 ∂xxu(x, y) +O(h3) (2.1)

Similarly, for nodes (x± h/2, y ±
√

3h/2) the Taylor series is as follows

u(x± h

2 , y ±
√

3h
2 ) =u(x, y)± h

2∂xu(x, y)±
√

3h
2 ∂yu(x, y)

+ 1
2

(
h2

4 ∂xxu(x, y) + 3h2

4 ∂yyu(x, y)
)

+O(h3)
(2.2)

Adding Eqs. (2.1) and (2.2) gives the 7-point finite difference approximation of the two-
dimensional Laplacian [119, 120]:

∆u(x, y) = 2
3h2 (u(x− 1, y) + u(x+ 1, y) + u(x, y − 1)

+u(x, y + 1) + u(x− 1, y + 1) + u(x+ 1, y − 1)− 6u(x, y))
(2.3)

2.2.2 Parameter estimation

Maximum Likelihood Estimator

In this thesis, ODE models of Chapter 3 and Chapter 5 were fitted using the optimizing
function optim in the statistical language R [121], which, in my case, minimized the negative
log-likelihood function [122]

l(θ) :=1
2

tm∑
t=t0

(
x̄(t)− f(θ, t)

σ

)2
+ n

2 ln σ2

with σ :=σ2
t

n
+ σ2

me and x̄(t) := 1
n

n∑
j=1

xj(t).
(2.4)

This results in the maximum likelihood estimator (MLE). Here, n is the number of independent
experiments, t the measured time points, and xj(t) the concentration or density of the different
measured variables at time t from experiment j. The empirical variation within the data is
denoted with σt and f(θ, t) the corresponding model prediction, where θ is defined as the
set of fitted parameters. Furthermore, a measurement error, σme, was estimated, which was
assumed to be either constant (homoscedastic) or relative (heteroscedastic). A homoscedastic
error was assumed in Chapter 5 for fits solely to the infected cells and a heteroscedastic error
in Chapters 3 and 5 when fitting to infected cells and extracellular virus. For all in vitro
data, empirical variation was neglected due to low sample sizes, i.e., σt = 0, and only the
measurement error was estimated. This log-likelihood function assumed normally distributed
errors within the data.
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Profile Likelihood
To construct pointwise 95%-confidence intervals for the parameters, a profile likelihood
approach was adopted [123]. The confidence intervals were calculated using likelihood-based
confidence intervals (CI) [124]

{θ|l(θ)− l(θ̂) < ∆0.05} with ∆0.05 = χ2(0.05, 1), (2.5)

where l(θ̂) is twice the negative log-likelihood of the best fitting parameter set θ̂ and χ2(0.05, 1)
is the χ2-distribution with one degree of freedom to a significance level of 0.05. Hence, all
parameter sets θ differing less than χ2(0.05, 1) from l(θ̂) are within the 95%-confidence
interval.

Akaike Information Criterion
Comparison of the performance of models can be achieved with the Akaike Information
Criterion (AICc), which compares models by their likelihoods as well as the number of fitted
parameters within those models. To account for small sample sizes, I evaluated performances
with the corrected Akaike Information Criterion [125]

AICc = l(θ) + 2K + 2K(K + 1)
n−K − 1 (2.6)

Here, l(θ) is the likelihood as defined above, K the number of fitted parameters and n the
sample size. Hence, inclusion of more parameters leads to higher AICc-values assuming
constant likelihoods. The AICc is typically used for comparison of a set of models,M, where
the absolute AICc-value of model m ∈M is not of importance, but the absolute difference to
the best performing model [125]

∆AICc(m) = AICc(m)− min
m∈M

{AICc(m)}. (2.7)

Distributed, likelihood-free inference method to fit a complex stochastic model
I used an approximate Bayesian computation approach based on sequential Monte Carlo
(ABC SMC) [112] to fit the agent-based model from Chapter 4 to experimental data such as
focus size distributions at different time points. This likelihood-free method is implemented
in pyABC [113], which uses dynamic scheduling as a parallelization strategy to minimize
runtime. The algorithm subsequently follows these steps to find the best fitting parameter
set:

1. Sample parameters from predefined prior distribution

2. Run simulation with sampled parameters

3. Calculate distance between simulation output and experimental data using a predefined
distance measure

4. If lower than ε, accept parameter set

5. If 100 parameter sets are accepted, calculate new distribution of parameters and repeat
steps 1-5 with ε := median(ε) of accepted parameter sets and the calculated distribution
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Part III

Results





3Different environments shape the
contribution of cell-to-cell
transmission to HIV spread in vitro

3.1 Introduction

Human immunodeficiency virus infects mainly motile cells of the immune system, thus,
allowing it to spread through the body without the need of movement on its own accord.
How the environment shapes the motility of T cells and subsequently the infection dynamics
of HIV-1 (termed HIV in the following) has not yet been studied in detail as most published
studies limited their work to cells cultured in aqueous media. Culturing cells in aqueous media
leads to 2D cell culture systems as cells sink to the bottom of wells, creating non-physiologically
high cell densities [63]. An additional caveat of previously designed studies was the use of
immortalized cell lines, which allowed for better reproducibility of experiments. However,
this might have changed the infection dynamics compared to healthy target cells such as
PBMCs due to changed viral replication, behavior and permissivity of target cells. Altogether,
this might have biased obtained results and impedes transfer of these studies to within-
host dynamics because different tissue architectures and cell types presumably shape the
infection kinetics. To address these points, an experiment was conducted following infection
of human peripheral blood mononuclear cells (PBMC) with HIV in different environments,
namely aqueous media, loose and dense collagen, resembling different tissue structures in the
body. Comparing parameters, which were obtained from fitting the data collected from this
experiment, across environments could give insights into differences regarding the infection
kinetics in a particular tissue structure, resulting in a deeper understanding of the virus.
From a clinical point of view investigating varying infection strategies with regard to the
transmission mode exploited by the virus can be helpful for efficient drug screenings.

In this chapter ordinary differential equation (ODE) models are used to parameterize viral
replication and spread following a stepwise approach. In a first step I quantify cell proliferation
and turnover using a data set without infection (MOCK). Next, with the parameters of cellular
turnover in hand, I parameterize viral kinetics by fitting a model following the decline of
infected cells and viral kinetics to a data set obtained from culturing infected cells in different
environments with fusion inhibitor T20, which blocks new infections. Lastly, I incorporate
the previously estimated parameters in a model describing the full infection kinetics in all
environments simultaneously. With this model, I predict the contribution of each transmission
mode to the infection process and the time course of cell-free and cell-to-cell transmission
separately. Additionally, I study the effect of different target cell densities on the infection
dynamics. In a last part of this chapter, I identify important processes necessary to describe
the data and compare my modeling results to a previously published model [70].
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In summary, in this chapter I develop a model able to describe the infection kinetics in
various environments. This analysis shows that cell-to-cell transmission is more important
in collagen environments than suspension, supporting the necessity of carefully choosing
experimental conditions. In addition, low target cell densities limit the infection in loose
collagen. However, this limitation could be overcome with high contact frequencies between
infected and uninfected cells.

3.2 Experimental data of HIV infection and T cell
dynamics

All experiments in this chapter were performed by the Fackler lab, Center for Integrative
Infectious Disease Research (CIID), Integrative Virology, University Hospital Heidelberg. The
experimental protocol is explained in Section 2.1.1.

The data set is comprised of several quantities, measured in aqueous media (suspension), loose
and dense collagen (Fig. 3.1). While three different cell types were measured, namely CD8+
and CD4+ T cells, with the latter being divided into uninfected and infected subpopulations,
viral RT activity was measured in the culture and the supernatant. In suspension this implied
measuring viral RT activity in the lower and upper half of the supernatant. To parameterize
T cell dynamics, experiments were performed only with uninfected PBMCs (MOCK). Co-
culturing uninfected and infected cells supplemented with fusion inhibitor T20 (termed T20
from here on) allowed parameterization of infected cell turnover and viral kinetics. Lastly, to
characterize the infection dynamics, uninfected and infected cells were co-cultured without
administration of T20 (Wild Type). To get stable measurements of the decline of infected cells
in the T20 scenario, higher amounts of initially infected cells were used (Fig. 2.1).

Recovery of T cells in collagen compared to suspension was diminished to about 55 percent
of original cells, presumably due to cells sticking to the collagen (personal communication
Dr. Andrea Imle). However, as all cells were initially drawn from the same batch, the initial
T cell counts should have been similar irrespective the environment. To compensate for this
experimental bias, I multiplied all cell counts in collagen environments with a factor of 1.8 to
obtain approximately the same T cell counts at start of the experiment assuming full recovery
of cells in suspension.

In the early phase, i.e., within the first two days, of the experiment a decrease across all
T cell subpopulations was observed in the data. This effect was least prominent in suspension.
Transfer of cells into new environments might have been the cause as the increase of cells
was lower at early (0-2 days) than intermediate (4-11 days) time points in the experiment.
Additionally, at the beginning of the experiment cells decreased more in collagen than suspen-
sion, which could be linked to cells sensing less growth factors form surrounding cells in low
cell densities as inherent to collagen environments (see Section 1.1.4). Nonetheless, T cell
capacities of each well were approximately the same across all environments (comparison of
combined CD8 and CD4 cells in MOCK between environments, Fig. 3.1). After reaching the
highest T cell concentrations around 11 days after start of the experiment, T cell numbers
showed oscillatory behavior. This observation was presumably a combination of measurement

28 Chapter 3 Different environments shape the contribution of cell-to-cell transmission to HIV spread in vitro



Suspension Loose Dense

CD8 
cells

Uninfected 
CD4 cells

Infected 
cells

Virus in 
culture

Virus in 
supernatant

8

4

6

8

4

6

2

1

0

3

1

0

2

0

1

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

C
el

ls
 [x

10
5 ]

C
el

ls
 [x

10
5 ]

C
el

ls
 [x

10
4 ]

Time [days]

R
T

 a
ct

iv
ity

 
[lo

g
10

,μ
l-1

]
R

T
 a

ct
iv

ity
 

[lo
g

10
,μ

l-1
]

2

2

MOCK
T20

Wild Type

2

Fig. 3.1. Experimental data used to evaluate HIV infection dynamics. Shown are the mean values (large solid
dots) of three independent experiments per scenario (small open dots) of CD8 (1st row), uninfected (2nd

row) and infected CD4 cell counts (3rd row), virus in culture (4th row) and in supernatant (5th row) in
suspension (left column), loose (middle column), and dense collagen (right column). Experiments were
conducted with no infection (MOCK, purple), administration of T20 at the beginning of the experiment
to block new infections (T20, green) or infection without T20 (Wild Type, blue). To compensate for
diminished recovery of T cells in collagen, all cell counts in collagen environments were multiplied with
a factor of 1.8. Experiments were conducted by the Fackler lab, Center for Integrative Infectious Disease
Research (CIID), Integrative Virology, University Hospital Heidelberg
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errors and loss of cell viability in the course of the experiment. Thus, these oscillations seemed
rather an experimental artifact than biologically meaningful.

Apparently, infection progressed faster in suspension than in collagen, with loose collagen
showing almost no infected cells (Fig. 3.1). The fast infection process in suspension lead
to a depletion of target cells, resulting in low residual numbers of uninfected CD4 cells.
The depletion of CD4 cells in turn lead to a prolonged proliferation of CD8 cells, which
overgrew CD4 cells substantially in this environment. A slower infection as observed in dense
collagen allowed CD4 cells an extended proliferation period. Subsequently, depletion was
not as pronounced in dense collagen even though the total number of infected cells over
the complete course of the experiment was higher compared to suspension. Comparison of
RT activity in collagen showed lower amounts in the supernatant than in culture, presumably
due to slow viral diffusion from culture to supernatant [69]. This difference was not observed
in suspension, also hinting towards viral diffusion being the key factor for the variation
between viral concentrations in supernatant and culture.

In case of T20 administration infected cells increased (suspension and loose collagen) or
stayed stable (dense collagen) at the first measured time points. As T20 was supposed to block
new infections, there seemed to be a time lag between the infection event and detection of
infected cells with FACS. Although total T cell counts in this scenario were surprisingly low,
this feature of the data did not skew my results as T cell turnover was of no importance. After
9 days infected cells dropped to background levels as indicated by measurements obtained
from the MOCK experiment.

3.3 A stepwise approach to parameterize HIV infection
in different environments

Several processes governed the infection dynamics in this experiment. Those ranged from
T cell turnover of the various subsets, over virus kinetics in culture and supernatant to
infection dynamics including change of media. Describing these processes with a biologically
reasonable model in all environments simultaneously required a large number of parameters
(more than 20). To reduce the number of free parameters, I applied a stepwise approach
with the help of additional experimental data obtained by my collaborators. First, parameters
governing T cell dynamics were fixed by fitting a model describing T cell dynamics to the
MOCK data. Subsequently, I fitted a model describing viral dynamics to experimental data
retrieved by administering T20 after spin infection of CD4 cells with HIV. Finally, the previously
estimated parameters were included in a model describing the full infection dynamics across all
environments simultaneously. If not mentioned otherwise, I took the initial conditions for all
variables from the experimental measurements. For all fitting procedures, I fitted the models
to the mean of three independent experiments, while neglecting the experimental standard
deviation due to the low sample size. To account for measurement and experimental errors, I
fitted a relative, i.e., heteroscedastic, standard deviation error as described in Section 2.2.2
for cells and virus, respectively. In the following, data used for fitting are indicated with solid
black dots and neglected/not used data with solid gray dots.
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3.3.1 Formulation of a T cell dynamics model

To describe T cell dynamics in the different environments, I used a competition model without
infection, in which CD8 and CD4 cells compete for resources and space during proliferation
after a given time of adaptation has passed

dTCD8

dt
= λCD8TCD8

(
1− TCD8 + TCD4

Tc

)
− δCD8TCD8

dTCD4

dt
= λCD4TCD4

(
1− TCD8 + TCD4

Tc

)
− δCD4TCD4

with TCD8(0) = TCD8,0, TCD4(0) = TCD4,0 and λCD8 = λCD4 = 0 for t < τ .

(3.1)

Here, T cells, namely CD8, TCD8, and CD4 T cells, TCD4, proliferate with different rates λCD8

and λCD4 after an adaptation phase τ , competing for resources such that a carrying capacity,
Tc, is reached in the absence of virus and cell death. T cell subpopulations, i.e., CD8 and CD4
cells, die with rate δCD8 and δCD4, respectively. For simplification and to ensure parameter
identifiability, I assumed constant proliferation and death rates of T cells.

3.3.2 Parametrization of T cell dynamics in different environments

As already mentioned in the Introduction, cells in aqueous media settle on the bottom of wells
leading to high cell densities (Fig. 1.2). Therefore, in this media space is a limiting resource
restricting proliferation of T cells. In collagen low cell densities give rise to low concentrations
of growth factors in the surroundings of cells. These points predict disadvantages in both
types of environment in the context of proliferation, thus, obstructing a priori assumptions on
T cell proliferation and death with respect to different environments. Therefore, I allowed
proliferation and death rates as well as the carrying capacity to vary across environments,
implying separate fits of model (3.1) to the data collected from the different environments.
From the data it seemed that T cell counts decreased until day 2 and recovered afterwards. I
fixed the adaptation phase to 2.5 days, because trying several adaptation phases considerably
longer lead to high - biologically implausible - proliferation rates. While the initial decline of
cell counts was captured by my model, it could not entirely explain the oscillations present
in the experiment at late times (Fig. 3.2). I obtained the best fitting parameters and their
respective 95%-confidence intervals (Fig. A.1 and Table 3.1) by performing a profile likelihood
approach as described in Section 2.2.2.

While proliferation of CD8 cells occurred at a faster rate in suspension than in collagen
(λCD8 = 1.13 [0.74, 1.74] vs. 0.58 [0.24, 1.01] and 0.29 [0.12, 0.56] day−1), CD4 cells proliferated
at similar rates as implied by overlapping confidence intervals (λCD4 = 0.6 [0.36, 1.02] vs.
0.78 [0.36, 1.29] and 0.59 [0.32, 0.89] day−1). The capacity of total T cells per well were
comparable between environments again exhibiting overlapping confidence intervals (see
Table 3.1 and Fig. A.1). As the death rate during the adaptation phase was only a net rate,
differentiation between proliferation and death rate was not possible. However, I found
evidence that cells proliferated slower or died faster during adaptation phase in collagen
compared to suspension. This was indicated by lower death rates for CD8 and CD4 cells in
suspension, presumably due to cells being more adapted to this environment as cells were
kept in aqueous media before transfer at the start of the experiment (see Fig. 2.1). However,
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experiments (open black dots) of proliferating CD8 (top row) and CD4 (bottom row) cells in suspension
(left column), loose (middle column), and dense collagen (right column). Best fit of model (3.1) (thick
red line) with estimated 95%-prediction band (shaded red area) describing MOCK data. Corresponding
parameter estimates are shown in Table 3.1. Duration of the adaptation phase was fixed to 2.5 days.

Tab. 3.1. Estimated parameter values governing T cell dynamics. Best fitting parameters of the T cell dynamics
model (3.1) in the absence of infection across different environments. The 95%-confidence intervals in
brackets were obtained by performing a profile likelihood approach. To ensure parameter identifiability,
the adaptation phase was fixed to 2.5 days. I conducted no profile likelihood approach for the fitted
relative standard deviation. Thus, only the best estimate is given in this table. Graphical representation
of the profiles is shown in Fig. A.1.

Para-
meter

Description Unit Suspension Loose Dense

λCD8
Proliferation of CD8 cells

after adaptation phase
day−1 1.13

[0.74, 1.74]
0.58

[0.24, 1.01]
0.29

[0.12, 0.56]

λCD4
Proliferation of CD4 cells

after adaptation phase
day−1 0.60

[0.36, 1.02]
0.78

[0.36, 1.29]
0.59

[0.32, 0.89]

Tc Capacity of T cells
×105 cells

well−1
3.11

[2.72, 3.56]
3.53

[2.80, 4.52]
4.28

[3.15, 6.37]

δCD8

Net death rate of CD8
cells during adaptation

phase
day−1 0.07

(0, 0.19]
0.11

(0, 0.23]
0.08

(0, 0.19]

δCD4

Net death rate of CD4
cells during adaptation

phase
day−1 0.03

(0, 0.11]
0.23

[0.05, 0.39]
0.25

[0.09, 0.38]

σc
Relative standard
deviation for cells

1 0.17 0.20 0.20
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these differences were not significant as confidence intervals overlapped (see Fig. A.1 and
Table 3.1). Comparing T cell subsets, one should note that in collagen CD4 cells proliferated
faster than CD8 cells, in contrast to suspension, where the opposite was observed. The same
held true for net death rates of cells during adaptation phase. If these differences between
environments stemmed from variations in the data or were in fact governed by biological
processes needs further investigation.

3.3.3 Formulation of a virus dynamics model

To describe infected cell turnover and viral kinetics a model following non-productively
infected, J , and infectious cells, I, as well as virus in culture, Vc, and in the supernatant Vs
was used to fit the T20 data

dJ

dt
=− κIJ − δCD4J

dI

dt
=κIJ − δII

dVc
dt

=ρI − cvVc − κvVc
dVs
dt

=κvVc − cvVs

with J(0) =J0, I(0) = I0, Vc(0) = Vc,0, Vs(0) = Vs,0,

and Vc(t) =

Vc(t) for t ∈ tm in collagen

0.5× Vc(t) for t ∈ tm in suspension

Vs(t) =

0 for t ∈ tm in collagen

0.5× Vc(t) for t ∈ tm in suspension
.

(3.2)

Here, non-productively infected cells need on average 1/κI until they become infectious cells
and die at the same rate δCD4 as uninfected CD4 cells. Infectious cells have a half-life of
log(2)/δI and produce virus in culture with rate ρ. Virus irrespective its location is cleared
from the media with cv. Additionally, virus diffuses from culture to supernatant with rate
κv. In contrast to previously published models, I accounted for the change of media at days
tm ∈ {2, 4, 7, 9, 11, 14, 16, 18} by setting Vs in collagen at the specified time points to zero. In
suspension after removal of the supernatant and subsequent addition of new media, mixing
of the viral titer in the complete well occurred and, hence, the previous viral concentration
in culture was equally distributed between culture and supernatant. Furthermore, as fusion
inhibitor T20 blocked new infections I did not follow uninfected cells assuming that they had
no impact on viral dynamics.

3.3.4 Parametrization of HIV virus kinetics in different environments

Using model (3.2) to describe data from an experiment without new infections (T20, Fig. 2.1),
I fitted all environments simultaneously. Here, I assumed the same initial proportion of
non-productively infected cells, fJ , with respect to the target cell count measured in the
respective environments. This seemed like a reasonable assumption as cells before transfer
into the different environments originated from the same batch (Fig. 2.1). Death rates for
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Tab. 3.2. Estimated parameter values governing infected cell turnover and viral kinetics. Parameters best
describing the T20 experiment. The 95%-confidence intervals in brackets were obtained by performing a
profile likelihood approach. Average eclipse phase for non-productively infected cells, i.e., 1/κI , was set
to 17.3 hours and half-life of RT activity, cv, was fixed to 38 hours. I conducted no profile likelihood
approach for the relative standard deviations. Thus, only the best estimates are given in this table.
Graphical representation of the profiles is shown in Fig. A.2.

Para-
meter

Description Unit
Suspen-

sion
Loose Dense

fJ

Initial fraction of
non-productively infected
cells in T20 experiment

1
0.17

[0.10, 0.23]

ρ Viral production rate
×104 RT act.
(cell × day)−1

1.02
[0.80, 1.38]

0.48
[0.37, 0.66]

0.43
[0.32, 0.61]

δI Death of infected cells day−1 0.42
[0.40, 0.44]

0.48
[0.46, 0.50]

0.53
[0.51, 0.56]

κv
Viral diffusion rate from
culture to supernatant

day−1 0.72
[0.55, 0.95]

0.13
[0.10, 0.17]

0.15
[0.11, 0.19]

σc
Relative standard
deviation for cells

1 0.35

σv
Relative standard

deviation for RT activity
1 0.34

non-productively infected cells were taken from estimates obtained by fitting the MOCK
experiment (see previous section). As infected cell counts after day 9 dropped to background
levels of the MOCK experiment, those measurements were neglected in the fitting procedure
(not fitted points are indicated in gray in Fig. 3.3). In contrast, viral titers from all time
points were used for fitting as SG-PERT is a more sensitive assay than FACS with respect
to measuring absolute numbers. In suspension and loose collagen my model captured the
increase of infected cells between day 0 and 1 well assuming non-productively infected cells
appear on average within 17.3 hours, i.e., a half-life of 12 hours, after being transmitted into
their respective environments (Fig. 3.3). In dense collagen the early decline and later increase
in infected cell counts between day 0 and 2 could not be explained, but was presumably due to
measurement errors also indicated by the estimated 95%-prediction bands. Additionally, I set
the half-life of RT activity to 38 hours [69]. As cellular behavior might have been shaped by
its environment, death rates of infected cells and viral production rates were allowed to vary
across environments. Furthermore, different viral diffusion rates were fitted with respect to
the respective culture systems as viral diffusion was assumed to highly depend on the density
of the media. While the model captured all measured quantities well, it performed better
concerning RT activity than cell counts. Considering the higher sensitivity of the SG-PERT
assay compared to detection of absolute numbers of infected cells using a FACS, this was not
surprising.

Again, I obtained the best fitting parameters and their respective 95%-confidence intervals
(Fig. A.2 and Table 3.2) by performing a profile likelihood approach as described in Sec-
tion 2.2.2. At the start of the experiment a large proportion of target cells, almost 20%,
were estimated to be non-productively infected. Accordingly, only approximately 40% of
infected cells were detectable by FACS at the beginning. However, due to death some non-
productively infected cells did not become infectious in the course of the experiment as they
were lost before this transition. Across the different environments half-life of infected cells was
comparable, between 31 and 40 hours. Interestingly, viral production was around two-fold
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Fig. 3.3. Estimation of infected cell turnover and viral kinetics. Shown are mean counts (solid black dots)
from three independent experiments (open black dots) of infected cells (top row), virus in culture
(middle row) and virus in supernatant (bottom row) in suspension (left column), loose (middle column),
and dense collagen (right column). Best fit of model (3.2) (thick red line) with estimated 95%-prediction
band (shaded red area) describing the T20 data. All environments were fitted simultaneously with the
same initial fraction of non-productively infected cells. Corresponding parameter estimates are shown
in Table 3.2. Gray dots were not fitted (see main text for details). I set the average eclipse phase for
non-productively infected cells, i.e., 1/κI , to 17.3 hours and fixed the half-life of RT activity, cv, to 38
hours.

enhanced in suspension compared to collagen (ρ = 1.02 [0.80, 1.38] × 104 (suspension) vs.
0.48 [0.37, 0.66] × 104 (loose collagen) and 0.43 [0.32, 0.61] × 104 (dense collagen) RT act.
per day and cell). This has also been observed experimentally [69]. The exact mechanisms
responsible for different viral production rates dependent on the environment still remain to
be elucidated.

3.3.5 Formulation of a model describing HIV infection kinetics

Following my stepwise approach, all parameters estimated in the previous sections were fixed
to the values obtained from the respective best fit. To describe HIV infection dynamics in
different environments, I developed a model that follows various T cell and virus subsets.
The former included CD8 cells, TCD8, CD4 cells refractory to infection, Tr, target, T , non-
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productively infected, J , and infectious cells, I. Refractory cells, a subset of CD4 cells, were
assumed to be either not fully activated cells or cells that did not encounter an infected cell or
cell-free virus in the course of the experiment. While virus in culture was split into infective,
Vi, and non-infective, Vn, populations, this discrimination was not necessary for virus in
supernatant, Vs, as it did not participate in the infection process. A sketch of the full model is
shown in Fig. 3.4 and reads as follows

dTCD8

dt
= λCD8TCD8

(
1− TCD8 + T + Tr + J + I

Tc

)
− δCD8TCD8

dTr
dt

= λrTr

(
1− TCD8 + T + Tr + J + I

Tc

)
− δCD4Tr

dT

dt
= (λCD4T + (λCD4 − λr)Tr)

(
1− TCD8 + T + Tr + J + I

Tc

)
− βfTVi − βcTI − δCD4T

dJ

dt
= βfTVi + (1− fb)βcTI − κIJ − δCD4J

dI

dt
= κIJ − δII

dVi
dt

= fiρI − ciVi − cvVi − κvVi
dVn
dt

= (1− fi)ρI + ciVi − cvVn − κvVn
dVs
dt

= κv(Vi + Vn)− cvVs,

with TCD8(0) = TCD8,0, Tr(0) = fRT0, T (0) = (1− fR − fJ)T0, J(0) = fJT0, I(0) = I0,

Vi(0) = fV Vc,0, Vn(0) = (1− fV )Vc,0, Vs(0) = Vs,0

and Vi(t) =

Vi(t) for t ∈ tm in collagen

0.5× Vi(t) for t ∈ tm in suspension
,

Vn(t) =

Vn(t) for t ∈ tm in collagen

0.5× Vn(t) for t ∈ tm in suspension
,

Vs(t) =

0 for t ∈ tm in collagen

0.5× (Vi(t) + Vn(t)) for t ∈ tm in suspension
.

(3.3)
Here, tm := {2, 4, 7, 9, 11, 14, 16, 18} denotes the days of media change. In the model CD8
cells and refractory CD4 cells cannot be infected, but compete for resources and space
with target cells such that each well can only reach a carrying capacity of total T cells, Tc,
depending on the environment. The proliferation rate of target cells, λt, is defined such that
λCD4TCD4 = λtT + λrTr holds true with λr being the proliferation rate of cells refractory
to infection. Target and refractory cells die with the same rate δCD4. Depending on the
available number of target cells, activated CD4 cells become non-productively infected cells by
infection through cell-free transmission with rate βf proportional to the infectious virus in
culture. Furthermore, cell-to-cell transmission is also part of the model occurring with rate
βc proportional to the number of infectious cells. Whereas all target cells infected through
cell-free (CF) transmission become non-productively infected cells, a fraction, fb, of those
infected through cell-to-cell (CC) transmission is killed instantly due to abortive infections
[22, 126, 127]. The average time non-productively infected cells stay in eclipse phase is 1/κI
and their half-life is log(2)/δCD4. Infected and infectious cells are not allowed to proliferate in
this model. Whereas in culture, infectious and non-infectious virus, Vn, is followed over time,
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there is no discrimination in the supernatant as infection events are supposed to solely occur
in culture. Only a fraction, fi, of virus produced by infectious cells with rate ρ is infective, i.e.,
can infect uninfected target cells upon encounter. Virus is degraded at rate cv independent of
its location. Additionally, infectious virus looses infectivity with rate ci and is subsequently
considered non-infective virus. Viral diffusion from the culture to the supernatant is assumed
to take place with rate κv due to concentration gradients and regular diffusion of viral particles.
Finally, parameters fR and fJ represent the initial fraction of refractory and non-productively
infected cells in the population of target cells and fV is the fraction of infectious virus in the
culture at the beginning of the experiment with respect to the measurements from the data.

3.3.6 Parametrization of HIV infection dynamics in different
environments

To parameterize HIV infection dynamics in suspension and collagen, I first fitted model (3.3)
without abortive cell-to-cell infection (Rp-model), i.e., fb = 0, to data from the WT experiment
(Fig. 2.1). At a later stage, when different models were compared, the process of pyroptosis,
i.e., abortive infection in the context of cell-to-cell transmission, was included.

Except the initial fraction of non-productively infected cells, fJ , the best fitting or fixed
parameters from the previous sections were inherited. In the experiment no discrimination
between infective and non-infective virus was possible. Therefore, to ensure parameter
identifiability some rates had to be fixed, namely the half-life of viral infectivity, ci, to 17.9
hours [128] and the fraction of infective virus, fI , with respect to the produced virus to 10−3.
The following equations show that the dynamics of viral RT activity in culture is independent
of fi and different values thereof can be compensated by βf :

dVc
dt

= d(Vi + Vn)
dt

= ρI − cv(Vi + Vn)− κv(Vi + Vn) = ρI − cvVc − κvVc

and
dJ

dt
= βfTVi ... = β∗fTV

∗
i ... ,

(3.4)

where V ∗i := Vi/fi and β∗f := βffi are. In the fitting procedure I limited the initial fraction
of infective virus to values lower than 10−3 as loss of infectivity was assumed to occur
at a faster rate than loss of RT activity. Furthermore, in collagen the efficacy of cell-free
transmission was fixed to 14% its value in suspension, i.e., βcoll

f = 0.14 × βsusp
f based on

additional experimental observations [69]. Therefore, only one cell-free transmission rate was
fitted across all environments. Last but not least, I modeled the assumption that refractory
cells are not fully activated CD4 cells by limiting proliferation of Tr, enforcing the following
relation λr < λCD4 [129]. However, the refractory cell population also included uninfected
cells, which in principal could have been infected but did not encounter virus or infected cells
during the course of the experiment. This spatial process was not explicitly captured in my
model as it is based on the assumption of a well-mixed system. In loose collagen numbers of
infected cells were too low to explain measured RT activity in the well and, hence, were not
fitted (Fig. 3.5, indicated in gray). Interestingly, the model prediction for the true number
of infected cells in loose collagen (red line in center panel of Fig. 3.5) deviated only slightly
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Fig. 3.4. Sketch of the infection dynamics model. Model (3.3) describes HIV infection dynamics in different
environments. (A) Refractory CD4, Tr, and CD8, TCD8 cannot get infected, both indicated in gray. They
proliferate with rates λr and λCD8, respectively. While CD8 cells have an average lifespan of 1/δCD8, the
half-life of CD4 cells is log(2)/δCD4. In the absence of refractory cells, target cells, T (blue), proliferate
with rate λCD4 (for more information see main text). CD8 cells proliferate with rate λCD8. All T cells
compete for nutrients and space (indicated with gray double arrows) until a carrying capacity of total
T cells, Tc (not shown), is reached. (B) Target cells become non-productively infected cells, Jf (light red)
by cell-free infection of infective virus in culture, Vi (red stars), with rate βf . (C) Cell-to-cell infection of
target cells occurs with rate βc proportional to the concentration of infectious cells, Ic and If (both dark
red). While a fraction, fb, of newly CC-infected target cells dies due to abortive infection, (1 − fb) of
cell-to-cell infected cells proceeds to a non-productively infected state, Jc (light red). The half-life of
non-productively infected cells not subject to abortive infection is log(2)/δCD4 and they transit to an
infectious state with rate κI . (D) Infectious cells have an average lifetime of 1/δI and produce virus
in culture at rate ρ. A fraction, 1 − fi, of the produced virus is not infective, Vn (gray stars). (E) Virus
diffuses from culture to supernatant, Vs (red-gray stars), with diffusion rate κv, where infective and
non-infective virus is not longer discriminated. All virus is lost with rate cv and additionally, infective
virus looses infectivity with rate ci.
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Tab. 3.3. Estimated parameter values governing infection dynamics. Proliferation of refractory cells was
restricted to be slower compared to activated CD4 cells, i.e., target cells. Additionally, I fixed the fraction
of newly produced infectious virus to fi = 10−3 and limited the initial fraction fV to be smaller than fi
due to faster degradation of infectious than non-infectious virus. Following experimental analysis, cell-
free transmission in collagen was decreased to 14% its efficacy in suspension, i.e., βcoll

f = 0.14 × βsusp
f . I

conducted no profile likelihood approach for relative standard deviations. Thus, only the best estimates
are given in this table. When a parameter was still within the confidence region at its predefined limit
as explained above, this is indicated below with the parameter-name of this limit rather than its value.
Graphical representation of the profiles is shown in Fig. A.3.

Para-
meter

Description Unit
Suspen-

sion
Loose Dense

fJ

Initial fraction of
non-productively infected

cells in WT experiment
×10−2 3.3 [1.7, 4.8]

fV

Initial fraction of
infectious virus in WT

experiment
1 4.4 × 10−8 [0,fi]

fR

Initial fraction of
refractory cells in WT

experiment
1 0.10 [0.074, 0.12]

βf
Cell-free transmission

rate
×10−5 day−1

×RT act.−1 2.3 (0, 3.0]

βc
Cell-to-cell transmission

rate
×10−5

(cell × day)−1
1 × 10−6

(0, 7.0]
4.3

[3.6, 5.4]
1.7

[1.4, 2.6]

λr
Proliferation rate of

refractory cells
day−1

0.22
[0.16, 0.29]

and
[0.56, 0.58]

0.78
[0.77, λCD4]

0.49
[0.45, 0.52]

σc
Relative standard
deviation for cells

1 0.41

σv
Relative standard

deviation for RT activity
1 0.36

from the observed values. While the introduction of refractory cells allowed the model to
describe uninfected CD4 cell counts in suspension, it overestimated the number of CD8 cells
(top left panel in Fig. 3.5). However, as the latter did not partake in the infection process, this
was not considered a relevant shortcoming. Furthermore, the model was able to describe and
capture viral RT activity in culture and supernatant across all environments (lower two rows
in Fig. 3.5). Again, changes of media were clearly visible in the supernatant. In suspension
this was also observed for virus in culture due to the assumption of fast mixing in suspension.

The best fitting parameters and their respective 95%-confidence intervals (Fig. A.3 and Ta-
ble 3.3) were obtained performing a profile likelihood approach as described in Section 2.2.2.
Here, around 3.4% of target cells were initially non-productively infected cells, which were
counted as target cells as they presumably had too little viral material to be sorted into the
compartment of infected cells using FACS. This proportion corresponded to about 20% of total
infected cells. Interestingly, the estimated fraction was higher in the T20 experiment, which
could not be explained except by experimental uncertainties (see Section 3.3.3). While esti-
mates predicted that initially about 10% of uninfected CD4 cells were refractory to infection,
this fraction changed over the course of the experiment due to different proliferation rates and
cells being infected. Proliferation of refractory cells was fastest in loose (λr = 0.78 [0.77, λCD4]
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Fig. 3.5. Infection dynamics of HIV in PBMCs. Shown are mean counts (solid black dots) from three inde-
pendent experiments (open black dots) of CD8 (1st row), uninfected (2nd row) and infected CD4 cell
counts (3rd row), virus in culture (4th row) and virus in supernatant (5th row) in suspension (left
column), loose (middle column), and dense collagen (right column). Best fit of the Rp-model (model
(3.3) without abortive infection, thick red line) with estimated 95%-prediction band (shaded red area)
describing the WT experiment. All environments were fitted simultaneously with the same initial fraction
of non-productively infected cells, fJ , of infective virus, fV , and of refractory cells, fR. Infected cells in
loose collagen were not fitted (indicated in gray, see main text for more information). Corresponding
parameter estimates are shown in Table 3.3. Parameters already estimated or fixed in the previous
sections (except fJ) were adopted here. Additionally, I set the half-life of viral infectivity to 17.9 hours
[128] and the fraction of infective virus with respect to newly produced virus in culture to 10−3. Efficacy
of cell-free transmission was assumed to decrease in collagen to 14% of its efficacy in suspension, i.e.,
βcoll
f = 0.14 × βsusp

f .
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day−1), intermediate in dense collagen (λr = 0.48 [0.45, 0.52] day−1) and slowest in suspen-
sion (λr = 0.22 [0.16, 0.29] and [0.56, 0.58] day−1). In the latter environment, the split into two
distinct confidence intervals for the proliferation rate of refractory cells stem from difficulties
in simultaneously describing CD4 and CD8 cell dynamics. However, the interval with larger
proliferation rates could not capture the dynamics of CD4 cells, which were evidently more im-
portant to the overall infection dynamics than CD8 cells. This was also illustrated by a higher
maximum likelihood estimator for large proliferation rates of refractory cells. The T cell subset
of refractory cells was made up of target cells not encountering virus or infected cells during
the experiment, and cells not fully activated, which could not get infected. Therefore, a high
proliferation rate of this subset, as seen in loose collagen, could be linked to a large fraction of
susceptible cells within the refractory population that were not infected due to spatial issues
rather than a low level of activation. The initial fraction of infective virus was low indicating
towards a negligible role of cell-free transmission early on. Even though cell-free transmission
occurred at the same rate in both collagen environments and the cell-to-cell infection rate was
estimated to be higher in loose than dense collagen (βloose

c = 4.3 [3.6, 5.4]×10−5 (cell× day)−1

vs. βdense
c = 1.7 [1.4, 2.6]× 10−5 (cell× day)−1), more cells got infected in the latter. At a first

glance this seemed counterintuitive, but could be explained by refractory cells overtaking the
population of CD4 cells in loose collagen, thus, limiting target cell availability. Furthermore,
the infection stayed at low levels in dense collagen for a longer time after initiation of the
experiment compared to the other environments allowing target cell numbers to increase and,
thus, for a larger pool of susceptible cells.

Being able to describe the data with well-defined parameters, my model was used to infer
the proportion of cells infected through either transmission mode, thus, adding to current
knowledge of the virus. To predict the contribution of each transmission mode to the infec-
tion dynamics, the governing equations of non-productively infected and infectious cells as
described in model (3.3) had to be split as follows

dJinit

dt
=− κIJinit − δCD4Jinit

dJf
dt

=βfTVi − κIJf − δCD4Jf

dJc
dt

=(1− fb)βcTI − κIJc − δCD4Jc

dIinit

dt
=κIIinit − δIIinit

dIf
dt

=κIIf − δIIf
dIc
dt

=κIIc − δIIc

Jinit(0) = J0, Iinit(0) = I0, Jf (0) = Jc(0) = If (0) = Ic(0) = 0,

with J :=Jinit + Jf + Jc and I := Iinit + If + Ic ,

(3.5)

where fb was set to zero as death by abortive infections was neglected here. Non-productively
infected cells were split into initially, Jinit, cell-free, Jf , and cell-to-cell, Jc, infected subsets.
The same was done for infectious cells. All meanings of parameters were the same as described
for model (3.3). To study the effect of different environments on the contribution of each
transmission mode to the infection dynamics, only cells infected during the course of the
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experiment that became infectious were of importance. Thus, the proportion of cells infected
through cell-free transmission was defined as fcf := If/(Ic + If ).

Considering only the best fitting parameter set for the Rp-model (Tab. 3.3), cell-free transmis-
sion seemed to be the predominant route of infection in suspension. A different picture,
however, was painted in collagen environments, where the fraction of cells infected through
cell-free transmission after establishment of the infection was decreased to approximately 40%
and 25% in dense and loose collagen, respectively (Fig. 3.6A). However, the flexibility of the
model lead to wide confidence intervals with respect to the proportion of cells infected through
either transmission mode in the different environments (Fig. 3.6B). Nonetheless, the odds of
getting infected through cell-free transmission in a specific environment, fcf/(1−fcf ), after 21
days followed, on log-scales, an almost linear relationship between the respective environments
(Fig. 3.6C). The likelihood of getting infected through cell-to-cell spread were approximately
7- and 4-fold higher in loose and dense collagen, respectively, than in suspension.

3.3.7 HIV infection kinetics for each transmission mode separately

In a next step the model was used to predict the infection dynamics with one transmission
mode blocked. Again, modeling played a crucial role in deepening the understanding of HIV
as blocking a particular transmission mode experimentally is difficult (refer to Introduction
for more information). Fig. 3.6A hints towards cell-free being the predominant mode of
transmission in suspension. Thus, blocking cell-to-cell spread had no visible impact on the
time course of infection (Fig. 3.7, left column). In turn, when blocking cell-free transmission
no new infections occurred and the dynamics followed in principle that of the T20 experiment.
However, the contribution of cell-to-cell transmission in suspension may have been masked
due to the dominant role of cell-free spread and ongoing infection in the absence of cell-free
transmission could not be ruled out completely. This was also indicated by the large confidence
intervals with respect to the contribution of each transmission mode. Surprisingly, in dense
collagen blocking cell-free spread actually increased infected cell counts at the peak as it
presumably allowed the virus to be more “patient” and, thus, for higher target cell availability
(Fig. 3.7, center row and right column). To a smaller extent, the same could be observed in
loose collagen.

3.3.8 HIV infection kinetics for different initial cell densities

After quantifying the contribution of the different transmission modes, I additionally analyzed
the effect of target cell availability on the infection dynamics. To this end, an in silico
experiment was simulated with higher initial densities of CD8 and uninfected CD4 cells than
observed in the previously described experiments. Assuming that T cells in vitro divide only a
certain number of times until exhaustion and that nutrients are a limiting resource for high
cell densities, the capacity, Tc(x), needed to be adapted for varying initial conditions. Here, I
assumed that the capacity follows a saturated function dependent on the initial conditions, x,
leading to

Tc(x) = Tc,max
(
1− e−λx

)
, (3.6)

where Tc,max describes the maximal capacity per well reachable, which is restricted due to
nutrient limitations. Furthermore, x is a factor, which gives the relative deviation from the
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Fig. 3.6. Contribution of cell-free transmission to the infection dynamics. (A) Predicted percentage of cells
infected through cell-free transmission in suspension (red), dense (green) and loose (blue) collagen
using the best fitting parameters for the Rp-model (Tab. 3.3). (B) 80%-, 90%- and 95%-confidence
intervals of the predicted percentage of CF-infected cells after day 21 in suspension (red), loose (blue)
and dense (green) collagen (best fit is shown with solid black dots). (C) Odds for a cell to get infected
through cell-free transmission after 21 days of the experiment in loose collagen vs. suspension (left),
dense collagen vs. suspension (middle) and dense vs. loose collagen (right). In each panel the dashed
line marks equal odds for both environments.
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experiment, that is 1 for an initial cell density as observed in the experiment. Parameter λ
represents the decline of the capacity per well as combination of a maximal number of divisions
per cell and nutrient availability. Here, I assumed that for the initial density as observed in the
experiment, nutrient limitation was not a factor due to frequent media changes. Therefore,
the same should also hold for half the initial T cell density. Lastly, increasing the initial
T cell density by ten-fold resulted in an assumed increase in the capacity compared to the
experimental initial conditions of 10/3 (refer to Table 3.1 for estimated values of experimental
capacity). Using these assumptions and fitting to Eq. (3.6), the capacity for two-fold and
five-fold initial conditions was supposed to increase by 1.684 and 2.806 compared to the
experimental initial conditions, respectively.

Comparing the proportion of infected cells among total CD4 cells between the experimental
data and the predictions obtained from simulating the Rp-model with the best fitting parame-
ters showed a slight deviation over the course of the infection (Fig. 3.8A, solid gray dots and
blue lines). While varying initial T cell counts in suspension exhibited only minor effects on
the proportion of infected CD4 cells, the increase in the average infected proportion was most
notable in loose collagen (1x: 0.05, 2x: 0.05, 5x: 0.07 and 10x: 0.11) without changes in
the time of the peak (Fig. 3.8B). However, the average proportion was already overestimated
for the best fit (1x initial condition) in loose collagen, which was expected as the retrieval
of infected cells in this environment was impaired. Interestingly, while the average infected
proportion of CD4 cells stayed relatively constant in dense collagen (1x: 0.132, 2x: 0.127,
5x: 0.137 and 10x: 0.161) irrespective the initial number of T cells, the peak in infected
proportions occurred earlier for high initial cell densities.

As proportions sometimes can occlude various processes occurring, I additionally analyzed the
cumulative number of infected cells to gain more information. To allow for comparison of
different initial cell densities, the cumulative number was normalized by the corresponding
maximal value. While this revealed that in suspension the relative infection dynamics were
almost independent of the initial cell density, they were drastically changed in loose and dense
collagen due to their dependence on cell-to-cell transmission (Fig. 3.9A). In general, high
initial cell densities in collagen shifted the steepest increase of infected cells towards earlier
time points. Furthermore, comparing the increase in total infected cells for ten-fold initial cell
densities, it became evident that loose collagen benefited most from high initial cell densities
(10x/1x for suspension: 8.0, loose: 9.7 and dense: 3.4), reaching similar levels as observed in
dense collagen (1x loose/dense: 0.32 vs. 10x loose/dense: 0.92) (Fig.3.9B).

3.3.9 Identification of processes necessary to describe the data

Iwami et al. previously published a model to infer the proportion of cells infected with HIV
through either of the transmission modes [70]. Although their experimental setup was
different to the one adopted here and their model neglected several processes, which were
incorporated into my model, I compared their modeling approach to mine. To allow a fair
comparison, I followed the same step-wise approach as described in the previous sections with
an adaptation of their model, termed Standard-model in the following (for more information
refer to Section A.4). I also fitted adaptations of model (3.3) to the experimental data, to gain
more confidence in the predictions of the Rp-model. An overview of the compared models
with additional assumptions and their respective AICc values is shown in Table 3.4.
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Fig. 3.8. Proportion of infected cells among total CD4 cells for different initial CD8 and uninfected CD4
cell densities in collagen and suspension. Model predictions were generated with the best fitting
parameter set for the Rp-model (Fig. 3.5 and Tables 3.1, 3.2 and 3.3). (A) Time course of the mean
infected proportion among CD4 cells (solid gray dots) calculated from three individual experiments (open
gray dots) in suspension (left), loose (center) and dense (right) collagen. Lines represent predictions
with the same (blue), 2-fold (green), 5-fold (pink) and 10-fold (orange) initial conditions of CD8 and
uninfected CD4 cells compared to the experiment. (B) Infected proportion of CD4 cells averaged over
the course of the experiment for different initial conditions and environments as described above.

From Table 3.4 it is evident that the Standard-model has the biggest difficulties in describing
the data (see also Fig. A.5). Adaptations of model (3.3) could be divided into three categories.
Models that did not incorporate refractory cells, i.e., S, As and A, performed worst. The
category providing intermediate fits consisted of models including refractory cells, which
proliferated with the same rate as CD4 cells (R, R-As and R-A). The best fitting models
(Rp, Rp-As, Rp-A) allowed refractory cells to proliferate at different rates depending on the
environment with Rp and Rp-As being essentially the same models as death by abortive
infection was estimated to be zero (fb = 0) in the latter. Unfortunately, despite resulting in
the lowest AICc value overall, no conclusions could be drawn from model Rp-A concerning
the contribution of each transmission mode. The high flexibility of this model allowed
compensating varying rates of abortive infection with changing transmission rates. Thus, these
parameters were non-identifiable and contributions of the respective transmission modes could
vary between 0% and 100% without impairment of the fit. In summary, the Rp-model was the
only model able to capture the dynamics while still ensuring identifiability of parameters and
was therefore the most informative among all tested models.

To demonstrate the shortcomings of each category mentioned above, the best fit of representa-
tive models is shown in Fig. 3.10. While the S-model (green lines) as part of the worst fitting
category could not capture the dynamics - except CD8 cell dynamics - observed in suspension
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Fig. 3.9. Cumulative and total number of infected cells for different initial CD8 and uninfected CD4 cell
densities in collagen and suspension. Model predictions were generated with the best fitting parameter
set for the Rp-model (Fig. 3.5 and Tables 3.1, 3.2 and 3.3). (A) Time course of the mean cumulative
number of infected cells (solid gray dots) relative to the maximal value calculated from three individual
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with the same (blue), 2-fold (green), 5-fold (pink) and 10-fold (orange) initial conditions of CD8 and
uninfected CD4 cells compared to the experiment. (B) Total number of infected cells during the infection
calculated by the area under the curve representing the number of infected cells for different initial
conditions and environments as described above.

due to missing refractory cells, the R-model (blue lines) had difficulties describing virus and
infected cells in loose collagen (Fig. 3.10). Differences between models Rp and Rp-A (red and
orange lines) were only minor indicated also by similar AICc values (Fig. 3.10 and Table 3.4).

3.4 Discussion

In this chapter I followed a step-wise approach, which resulted in a model able to describe
infection kinetics in suspension, loose and dense collagen simultaneously, while still ensur-
ing parameter identifiability. This model features several processes neglected in previously
published models. The step-wise approach was based on models describing T cell and virus
dynamics.

In a first step I parameterized T cell dynamics with the assumption of constant proliferation
and death rates of T cells in the experiments. Albeit this being a simplification, as these
processes most likely also depend on the number of divisions each cell has undergone ([130]
and reviewed in [131]) and, hence, would change during the life of a cell, it was a necessary
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Tab. 3.4. Description and AICc comparison of different models. Models (A.1) and (A.2) describing T cell and
virus dynamics, respectively, underly model Standard (for more information see Section A.4). Except
the Standard-model, all models are adaptations of model (3.3). For those models T cell dynamics were
parameterized using model (3.1) and parameters governing infected cell turnover as well as viral kinetics
were estimated using model (3.2). Here, S stands for simple model without refractory cells, R, and
no death through abortive infection, A. Subscripts p and s represent different proliferation rates for
refractory cells compared to CD4 cells and estimation of only a single rate describing death trough
abortive infection across all environments, respectively. The difference of AICc-value for a given model
to the lowest AICc is denoted with ∆AICc. Best fitting (Rp-A) and most informative (Rp) models are
marked with bold letters.

Name Basic
equation

Additional
Assumptions

#
Parameters

AICc ∆AICc

Standard (A.3) - 9 4263.1 386.3

S (3.3) λr = fb = 0 8 4118.9 242.1

As (3.3)
λr = 0, only one

fb
9 4121.2 244.4

A (3.3) λr = 0 11 4041.8 165.0

R (3.3) λr = λCD4, fb = 0 9 3920.0 43.2

R-As (3.3)
λr = λCD4, only

one fb
10 3923.0 46.2

R-A (3.3) λr = λCD4 12 3922.5 45.7

Rp (3.3) fb = 0 12 3888.4 11.6
Rp-As (3.3) only one fb 13 3891.8 15
Rp-A (3.3) - 15 3876.8 0

assumption to ensure parameter identifiability. Furthermore, I only considered death rates
during the adaptation phase. This assumed that death rates were higher than proliferation
rates of T cells during this time leading to a net death of T cells concealing possible prolifera-
tion events. Following the observed drop of T cell counts in the first days of the experiment,
this seemed a reasonable assumption (Fig. 3.1). A different approach could consider a net
proliferation rate, i.e., no explicit cell death, for the time after adaptation while allowing
death and proliferation events to take place during the adaptation phase. However, when
trying to explain the T20 data, this approach was problematic as infected cells could not
compensate high death rates with proliferation. This lead to a steep decrease of infected cells
in this experimental setup, which was not observed in the data. Another possibility to model
T cell dynamics would be to neglect the adaptation phase. This seemed unfeasible, because
models not incorporating an adaptation phase tend to underestimate the first measurements
(Fig. A.4A) and, additionally, lead to lower proliferation rates compared to a model incorpo-
rating the biologically reasonable adaptation. Indeed, comparison between estimated rates
from model (3.1) and (A.1) revealed that all proliferation rates were higher in the model
with adaptation phase (compare Table A.1). In a publication by Yates et al. the estimated net
proliferation rate of activated CD8 cells was approximately 0 as proliferation and death rates
canceled each other out [130]. With the knowledge of an adaptation phase at hand, this is
not surprising as their experiment only lasted for 4 days, which was close to the time cells
needed to adapt to their new environment in the experiments presented here. This shows,
how disregarding the adaptation phase can bias results. A different publication by De Boer
and Perelson gave estimates for in vivo CD4 and CD8 cell life spans and proliferation rates
of CD8 cells in mice [131]. However, comparison across species and between environments
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Fig. 3.10. Comparison of different models describing HIV infection dynamics. Shown are mean counts (solid
black dots) calculated from three independent experiments (open black dots) of CD8 (1st row), un-
infected (2nd row) and infected CD4 cell counts (3rd row), virus in culture (4th row) and virus in
supernatant (5th row) in suspension (left column), loose (middle column), and dense collagen (right
column). The S- (blue-green), R- (blue), Rp- (red) and Rp-A-model (orange) were compared to visually
show their capability of explaining the data (for a description of the fitted models refer to Table 3.4)
indicated.

was difficult as already the in vitro situation presented here, yielded varying proliferation and
death rates.

Following the characteristics of the data, I presented - to my knowledge - the first model
that accounted for a period during which cells adapt to their new environment. It should be
noted, though, that the experimental data was not sufficient enough to completely disentangle
proliferation and death of T cells. It only allowed to estimate net death and proliferation rates
during and after the adaptation phase, respectively. Nonetheless, from my analysis it showed
that the adaptation of cells to a new environment at the beginning of an experiment should be
taken into account to correctly describe T cell dynamics. However, new experimental designs
would have to be employed to tackle the question of cell proliferation in vitro and in vivo
in more detail. Another limitation of the model was its inability to capture the oscillations
observed in the T cell measurements at late time points. Nonetheless, these could reflect
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measurement uncertainties and were most likely biologically irrelevant processes (see also
Section 3.2)

In a next step I introduced a model describing virus dynamics and infected cell turnover in
the presence of fusion inhibitor T20. Here, I used an exponentially distributed eclipse phase
until newly infected cells transit into an infectious state. Although modeling the eclipse phase
with an exponential distribution has been challenged previously [132, 133], in this context
the assumption seemed reasonable as cells had heterogeneous infection ages at the start of
the experiment due to being spin-infected 72 hours earlier. Thus, one could safely assume
that several rounds of infection occurred before transfer of cells into the different cultures at
the start of the experiment. Furthermore, I incorporated the change of media into the model.
Neglecting this would have given wrong predictions of the viral titers after media change and
thereby bias the predicted contribution of cell-free transmission to the infection dynamics,
which depended directly on the viral concentration in culture at any given time.

Interestingly, viral production was two-fold increased in suspension compared to collagen. This
again highlighted the necessity of performing in vitro experiments in physiologically plausible
environments, when trying to transfer the so-gained knowledge to in vivo situations. Why
viral production of HIV was increased in suspension as compared to collagen environments
remains unknown and still needs to be elucidated.

Using particle tracking of the virus, members of the Rohr lab, Heidelberg University, obtained
the mean squared displacement in each environment. With this in hand, Dr. Nikolas Schnell-
bächer from the Schwarz lab, Heidelberg University, calculated the average first passage time,
τ̄ for virus produced in collagen to reach the supernatant. Inverting τ̄ yielded a first order
diffusion rate constant, κexp

v , which I subsequently compared to the estimated rates from
model (3.2) in the different collagen environments (dense: κexp

v = 0.108 vs. κv = 0.15 and
loose: κexp

v = 0.105 vs. κv = 0.13). Contrary to intuition, viral diffusion from culture to
supernatant seemed slightly faster in dense than loose collagen. Besides raising confidence
in the estimated rates, it also indicated that diffusion as described in my model did not only
capture Brownian motion but also implicitly incorporated diffusion due to concentration
gradients. To enhance robustness of infected cell measurements and, thus, estimated rates, the
experimental setup was changed from the WT experiment to the T20 experiment, where the
latter included more initially infected cells (cf. Fig. 3.4). This difference in the experimental
protocols was nicely captured by the estimated initial proportion of non-productively infected
cells (fT20

J = 0.17 [0.10, 0.23] vs. fWT
J = 3.3 [1.7, 4.8]× 10−2).

Following this, I developed a model able to describe the infection dynamics of HIV in three
different environments simultaneously. This model featured the discrimination of infective
and non-infective virus to account for faster loss of viral infectivity compared to degradation
of viral particles. Additionally, viral titers were followed in culture and supernatant. This was
especially necessary in collagen as concentrations could vary between compartments due to
slow viral diffusion. While virus in culture drove the infection dynamics caused by cell-free
transmission, virus in supernatant was not partaking in the infection process. To compare my
modeling approach to an already published model [70], I adapted their model to allow for
a fair comparison. Although the S-model (model (3.3) without refractory cells or death by
abortive infections) had fewer parameters than the adapted model (Eq. (A.3)), it yielded better
results, emphasizing the necessity of the adaptation phase (see Table 3.4, Figures 3.5 and
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A.5). Comparing different sub-models of Model (3.3) showed that incorporating refractory
cells (model names including R) was essential to allow for a reasonable description of the
data (Fig. 3.10 and Table 3.4). Assuming refractory cells to be in a state of low activation
and, thus, allowing their proliferation rate to differ from that of target cells, i.e., activated
CD4 cells, improved the fits even further (model names including Rp). However, due to
the assumption of spatial homogeneity in the ODE model, it could not distinguish between
cells not getting infected due to their activation state or because they encountered neither
infective virus nor infected cells during the course of the experiment. While the proliferation
of refractory cells was slowest in suspension, my model estimated the same proliferation rate
for target and refractory cells in loose collagen. This could be linked to a high proportion of
target cells, which encountered neither infective virus nor infected cells during the course of
the infection, within the subset of refractory cells. The best model (Rp-A-model), including
death by abortive infection, however, over-fitted part of the data as indicated by a correlation
of the rates governing death by abortive infection and the two transmission rates (not shown).
This also limited the predictive power with respect to the contribution of each transmission
mode to the infection dynamics. Additionally, the process of pyroptosis, i.e., abortive infection,
has been reported only for kidney cells [127] and its occurrence in PBMCs is still debated in
the field. In summary, the Rp-model, i.e., a model with varying proliferation rates of refractory
cells without death by pyroptosis, was the most informative model despite a slightly higher
AICc-value than the Rp-A-model.

An important aspect of modeling is to predict certain elements of the infection process that
could not be observed experimentally. From simulating the infection with the most informative
model, I was able to predict the proportion of cells infected by either transmission mode
over the course of the experiment (Fig. 3.6A), which was not possible from an experimental
point of view. While cell-free transmission was the dominant mode in suspension, cell-to-
cell spread played an important role in collagen environments. However, estimates ranged
widely indicated by large confidence bounds (Fig. 3.6B). Nonetheless, a relationship between
environments with respect to the contribution of cell-free spread to infection was observed.
Following an almost linear relationship on a log-log scale, the odds of getting infected by
cell-free transmission were always highest in suspension (Fig. 3.6C). Between the two collagen
environments, cell-to-cell spread contributed more to the infection dynamics in loose than
dense collagen. After 21 days approximately 21% and 38% of infected cells were infected
through cell-to-cell transmission in loose and dense collagen, respectively. This could be
explained by low numbers of infected cells in loose collagen and subsequently low viral titers,
thus, not allowing for cell-free transmission to occur. Surprisingly, blocking cell-free spread
in collagen enhanced the infection in terms of maximal numbers of infected cells at peak of
infection (Fig. 3.7). This could be explained by the delayed onset of infection, which in turn
allowed for higher target cell densities. From an evolutionary point of view, this could suggest
the shift of HIV towards more cell-to-cell transmission as this allows for higher viral loads in
collagen. Furthermore, I performed an in silico experiment with high initial T cell densities.
Here, high target cell counts at the start of the experiment benefited the spread of virus in
loose collagen more than in the other environments (Fig. 3.8 and Fig. 3.9). A biological
explanation of this could be the formation of more stable cell-cell contacts in loose collagen,
thus, overcoming the disadvantage of fast moving cells in this environment. While high initial
cell densities shifted the peak of infection towards early time points in dense collagen, the
other environments showed no relevant change.
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In summary, one needs to be careful when drawing conclusions concerning the contribution
of each transmission mode from a single experiment as it seems to vary across different
environments. Additionally, the infection dynamics are probably also shaped by the specific
cell types used in an experiment. Comparing my result to that of Iwami et al., who predicted
around 40% of cells infected through cell-free spread in an experiment performed with Jurkat
cells, an immortalized cell line [70], indicated a difference between the contributions of
each transmission mode in aqueous media. However, both confidence intervals overlapped.
Although, at first glance both predictions contradicted the findings that cell-to-cell is orders of
magnitude more efficient than cell-free transmission [18–20], this could be reconciled when
recalling the experimental limitations explained above. Independent of the exact contribution,
a shift towards cell-to-cell transmission was observed in collagen environments compared to
aqueous media. As most HIV infections of target cells in the body occur in the lymph node,
which is fairly similar to the collagen structure, this might reflect the in vivo situation.

Summarizing this chapter, I developed a model that allowed the simultaneous prediction of
the proportion of cells infected through cell-free transmission of HIV in vitro in suspension,
loose and dense collagen at any given time.
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4Dissecting the contribution of
cell-to-cell transmission to HCV
spread in stationary cells in vitro

4.1 Introduction
In the previous chapter, I used population-level measurements to analyze how different envi-
ronments shape the contribution of each transmission mode to HIV infections of motile T cells.
In this case, the motility of target cells allowed the virus to spread to distant regions without
the need of extracellular diffusion. In principal, the main contribution of transmission modes
in HIV infection could be shifted towards cell-to-cell spread as motility of cells circumvents
the local confinement inherent to cell-to-cell infections. However, movement of cells impedes
cellular interactions, making cell-to-cell transmission more difficult. In stationary cells a
different picture is painted. Although immobile cells enforce the need of cell-free transmission
for far range spread, the immobility of target cells ensures long-lasting and stable cell-cell
contacts hinting towards increased cell-to-cell spread. With regard to modeling of infection
dynamics in stationary cells the assumption of a well-mixed system is violated due to local
confinement of infection in the context of cell-to-cell transmission, making application of
mass-action kinetics models difficult.

In this chapter, I present my studies on infections of stationary cells, namely hepatocytes,
with the hepatitis C virus. It is known that HCV utilizes both modes of viral transmission [7].
However, the exact contribution of each mode to viral dissemination remains unknown. I
analyzed how the immobility of target cells favors or impedes cell-to-cell spread. To account
for the local process of cell-to-cell transmission among stationary cells, my collaborators
conducted a spread assay experiment which resulted in spatially-resolved data, i.e., the focus
size distribution of infected cells. In theory, a freely diffusing virus, which utilizes only cell-free
transmission, should have more small foci than one depending solely on cell-to-cell transmis-
sion. Considering the spatially-resolved data, I developed a multi-scale, hybrid deterministic
stochastic agent-based model, which describes HCV-infection of hepatocytes in a monolayer,
resembling the experimental procedure with great detail. While viral intracellular replication
in infected cells and the extracellular diffusion of the virus were modeled with discretized
sets of differential equations, the infection processes occurred stochastically depending on the
intra- and extracellular RNA counts.

To parameterize the intracellular replication occurring within infected cells, a mass-action
kinetics model developed for the agent-based model was adapted and fitted to an additional
experiment conducted by the Uprichard lab. Assuming that nearly all cells were initially
infected, this experiment resulted in population-level measurements describing the intra- and
extracellular RNA counts per infected cell over time. Next, using the agent-based model (ABM)
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I generated in silico data, resembling the in vitro experiment. These data were used to fit the
agent-based model allowing to compare estimated and true parameters. Furthermore, the
predicted contribution of cell-free spread to the infection dynamics was analyzed with respect
to the true contribution. Having the parameters governing intracellular replication and the
knowledge of pyABC’s ability to recover parameters at hand, the unknown parameters, e.g.,
transmission rates, governing the infection dynamics were fitted to the focus size distributions
and the number of infected cells at various time points of two separate spread assays, namely
Exp. 29D and Exp. 29J.

4.2 Experimental data of in vitro HCV infection
dynamics

All in vitro experiments in this chapter were performed by the Uprichard lab, Department of
Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois, USA.
The experimental protocol is explained in Section 2.1.2.

4.2.1 Experiment 29D

In this data set focus sizes of infected cells at 48h, 72h, 96h and 120h after the start of the
experiment were counted by my collaborators. This allowed to plot the focus size distributions
as well as the number of foci, infected cell counts and the average focus sizes at indicated time
points post infection (Fig. 4.1). The experiment was conducted in duplicates with (AntiE2,
blue in Fig. 4.1) and without (UT, red in Fig. 4.1) the administration of anti-E2, which blocks
cell-free transmission in HCV spread.

After 48 hours mainly small foci were observed in both scenarios and the focus size distributions
were comparable. As time progressed, a discrepancy with respect to small foci developed
between anti-E2-treated and untreated wells. As administration of anti-E2 blocked cell-free
spread, the number of small foci was higher in the untreated cultures. This was also reflected
in the lower total focus counts and larger average focus sizes for AntiE2 after 120 hours p.i.
Counter intuition, the number of infected cells after 72 hours was higher when administering
anti-E2. This might have been due to experimental variation as in one well a focus of size
100, more than 1.5 fold larger than the next largest focus, was observed (not shown). The
administration of anti-E2 seemed to not completely block cell-free spread, indicated by the
appearance of small foci of infected cells at all times in the treated wells. Judging from
the data approximately 35 foci were initiated, assuming that all initially infected cells were
positive after 72 hrs and, at that time, anti-E2 was still efficiently blocking the formation of
new foci (Fig. 4.1B). Cell counts increased approximately 2.5-fold during the course of the
experiment with no difference between untreated and anti-E2-treated cultures (Fig. 4.1C).

4.2.2 Experiment 29J

In this data set focus sizes of infected cells at 48h, 53h, 72h, 83h, and 96h after start of the
experiment were counted. Again, this allowed to plot the focus size distributions as well as the
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Fig. 4.1. Experimental data of HCV spread in vitro as observed in Exp. 29D. (A) Mean focus size distribution
with (blue, AntiE2) and without (red, UT) anti-E2 calculated from two individual experiments at 48h
(top left), 72h (top right), 96h (bottom left), and 120h (bottom right) post infection. For illustration
purposes foci larger than 20 cells were combined to a single bin. In the data set this bin was resolved to
account for all infected cells within a focus. (B) Mean (solid dots) number of foci (left), mean infected
cell counts (middle) and mean average focus sizes (right) of AntiE2 (blue) and UT (red) calculated
from two individual experiments (open dots). (C) Mean cell count (solid dots) calculated from three
individual experiments (open circles) of cultures with (blue) and without (red) administration of anti-E2.
Experiments were performed by the Uprichard lab, Department of Microbiology and Immunology, Loyola
University Medical Center, Maywood, Illinois, USA.
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number of foci, infected cell counts and the average focus sizes (Fig. 4.2). With the exception
of AntiE2 at 83h p.i. (five replicates), the experiment was conducted using six replicates with
(AntiE2, blue in Fig. 4.2) and without (UT, red in Fig. 4.2) the administration of anti-E2.

As in the previous data set, focus size distributions 48 hours p.i. were comparable between
treated and untreated wells. In Exp. 29J, the difference between scenarios was already
observable after 59 hours p.i., which reached its maximum 83 hours p.i. With regard to
small foci, the anti-E2-treated cultures started to catch up with the untreated cultures after
96 hours p.i. Surprisingly, when administering anti-E2, the infected cell counts 96 hours
p.i. were higher than in untreated cultures. This could not be explained and might have
been due to experimental variation. Starting with lower initial cell counts compared to Exp.
29D, the proliferation of hepatocytes in untreated cultures was faster in this experiment,
doubling every 24 hours and increasing approximately 10-fold. Following previously obtained
results (personal communication Prof. Susan Uprichard), it was assumed that anti-E2-treated
cultures would proliferate with the same rate as untreated cultures. Again, following the data,
approximately 25 foci were initiated at the start of the experiment assuming that all initially
infected cells were positive after 72 hrs and, at that time, anti-E2 was still efficiently blocking
the formation of new foci through cell-free transmission (Fig. 4.1B).

4.2.3 Comparison of HCV spread data from two individual
experiments

Even though the experiments followed the same experimental protocol, some differences could
be observed between Exp. 29D and Exp. 29J. For example a doubling time of approximately
24 hours and a 10-fold increase of cells in Exp. 29J stood in contrast to a 32 hours doubling
time and a 2.5-fold increase in Exp. 29D (Fig. 4.3C). This lead to final hepatocyte counts of
1.3 × 105 and 0.6 × 105 in Exp. 29J and Exp. 29D, respectively. Furthermore, the maximal
number of infected cells observed in Exp. 29J was around four to six times higher than in Exp.
29D (Fig. 4.3B). The most striking difference between the experiments was observed when
comparing the cumulative densities of focus size distributions (Fig. 4.3A). Here, the densities
assumed completely distinct shapes indicating different infection kinetics underlying the two
experiments.

4.3 Agent-based model of HCV infection dynamics

To make use of the spatially-resolved data sets provided by my collaborators, I developed an
agent-based model, which described the infection of hepatocytes in a monolayer with HCV. It
is an extension of a previously published model by Graw et al. [101]. In short, their ABM was
a two-dimensional cellular automaton with a regular quadratic grid of 100× 100 stationary
hepatocytes, which could be uninfected, infected or infectious. On average, an infectious
cell produced α viral RNAs per day and could infect uninfected neighbors by cell-to-cell
transmission with a probability dependent on the scaling parameter βc and the intracellular
HCV RNA content. They assumed a Moore neighborhood, i.e., the number of neighbors per
cell was eight. To resemble a well, the authors used closed boundary conditions meaning that
no substances or cells could leave the domain.
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I adapted their model to resemble the experiments performed by my collaborators with more
detail. To account for the shape of hepatocytes, I used a hexagonal rather than a quadratic
grid resulting in six neighbors per cell. In the simulations, the complete grid could hold 24031
cells with the outer edges being comprised of 90 cells similar to the numbers observed in the
experiments. In a hexagonal grid, the total number of cells can be calculated depending on
the number of cells on the outer edge, c:

Total cells = 3c2 − 3c+ 1 (4.1)

In addition, I included proliferation of uninfected hepatocytes, which could proliferate into an
empty adjacent grid site with probability p ∼ N (µ, (0.1µ)2) On average, cells were assumed to
divide every 32 (in silico data and Exp. 29D) or 24 hours (Exp. 29J). In addition to Graw et al.
[101] I introduced the possibility of a second mode of viral entry into uninfected hepatocytes,
namely cell-free transmission. To this end, a second grid containing the extracellular viral
concentration was included, overlaying and interacting with the cell-grid. Cell-free infection
of uninfected hepatocytes occurred with a probability dependent on the virus concentration
at the specific site and a cell-free scaling parameter, βf . The extracellular virus was capable
of diffusing through the extracellular space. This was modeled such that in each time-step a
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fixed amount of HCV was able to diffuse to neighboring nodes, which was incorporated into
the model as introduced in [134]

Vi0,j0(tn+1) = Vi0,j0(tn)− m

k

∑
(i,j)∈Ω

(Vi0,j0(tn)− Vi,j(tn)) . (4.2)

Here, Vi0,j0(tn+1) is the extracellular HCV concentration at node (i0, j0) at time-step tn+1.
Parameter m describes the fraction of diffusing HCV particles and Ω is defined as the neighbor-
hood of (i0, j0). The fraction of diffusing HCV particles is divided by the number of neighbors
per cell, i.e., k = 6.

To compare the diffusion rate as implemented in the ABM with the theoretical diffusion
coefficient of HCV in aqueous media, I needed to discretize the Laplacian (see Section 2.2.1).
Discretization allowed me to re-write the diffusion equation as a difference equation, i.e.,

∂tx = D∆x⇔ x(t+ 1) = x(t)− 2∆t
3∆h2D

∑
i∈Ω

(x(t)− xi(t)) , (4.3)

where, h is the distance between two adjacent nodes and ∆t is a time step in the simulation,
i.e., one minute. Combining Eq. (4.2) and (4.3), the relation between diffusion coefficient
and the coupling parameter on a hexagonal grid becomes apparent, i.e.,

m = 4∆t
∆h2D. (4.4)

The diffusion coefficient of a spherical particle can be calculated using the Stokes-Einstein
equation, D = kBT

6πηr [135], where kB is Boltzmann’s constant, T the absolute temperature, η
the dynamic viscosity of the media, and r the radius of the spherical particle. The experiments
were conducted at 310K in media with an approximate dynamic viscosity of 0.94× 10−3 kg

ms (at
298K, [136]). The radius of HCV was assumed to be approximately 30 nm [137]. The diameter
of a hepatocyte was taken as 20 µm, which resulted from personally evaluating photographs
from the experiments, revealing diameters between 20 and 50 µm. With the Stokes-Einstein
equation, the theoretical diffusion coefficient of HCV in the presented experiment was D =
8.05 × 10−12m2

s = 8.05 × 10−2 µm2

s . Finally, this gave a coupling between lattice sites of
m = 4.83 × 10−2. For the in silico data a higher coupling parameter was assumed, i.e.,
m = 0.117.

Adding to the approach chosen by Graw et al., I explicitly modeled intracellular viral replication
in infectious cells. The concentration of positive-sense single-stranded RNA ((+)ssRNA, in
short positive-sense RNA), R, in an infectious cell at node (i, j) and its export is described
with the following set of ODEs:

dR(i,j)

dt
= λR(i,j)

(
1−

R(i,j)

Rc

)
− κR(i,j)

dV(i,j)

dt
= κR(i,j) − cV(i,j).

(4.5)
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In the simulation those ordinary differential equations were discretized to allow description
with a set of difference equations:

R(i,j)(tn+1) = R(i,j)(tn) + ∆t
(
λR(i,j)(tn)

(
1−

R(i,j)(tn)
Rc

)
− κR(i,j)(tn)

)
V(i,j)(tn+1) = V(i,j)(tn) + ∆t

(
κR(i,j)(tn)− cV(i,j)(tn)

)
.

Here, R(i,j)(tn) and V(i,j)(tn) are the intra- and extracellular RNA concentrations at node
(i, j) and time tn after initialization. In the simulation, I used time steps, ∆t, of one minute.
Intracellular HCV RNA, R, is produced with a maximal production rate λ, exported with
rate κ, and able to reach a carrying capacity of Rc per infectious cell assuming no export.
Extracellular virus looses infectivity with rate c. Administration of anti-E2, E2, was modeled
such that it neutralized extracellular virus dependent on the initial anti-E2 concentration, E20

V(i,j)(tn+1) = ∆tκR(i,j)(tn) + V(i,j)(tn)
(

1− E2(tn)
E20

)
(1−∆tc). (4.6)

Furthermore, anti-E2 was assumed to be depleted/consumed at rate cE2 due to neutralization
of extracellular virus as follows:

E2(tn+1) = E2(tn)−
∑

(i,j)∈Ω

cE2
E2(tn)
E20

V(i,j)(tn), (4.7)

where Ω is the set of all grid sites.

Whenever a cell was newly infected, it entered a re-orientation phase during which it could not
contribute to cell-to-cell spread but was still producing virus. While the exact mechanism used
by HCV during cell-to-cell transmission is unknown [7], all of the possible processes likely
need time between successful transfer of virions from cell to cell. Therefore, I incorporated
a re-orientation phase, which essentially provided a delay between successful cell-to-cell
transmissions originating from the same infected cell. In the agent-based model I assumed the
re-orientation phase lasted on average τ hours, following an exponential distribution.

As already mentioned above, HCV uses two different strategies to infect hepatocytes, namely
cell-to-cell transmission and infection by cell-free virions, which were considered in the ABM
as follows.

Cell-to-cell transmission
To model new infections by cell-to-cell transmission, a list of infected hepatocytes was used.
For each infected cell existed the possibility of a cell-to-cell transmission. Assuming a Bernoulli
trial with probability pc(i,j)(tn) gave a positive result for an infected cell at node (i, j) and there
was at least one uninfected neighbor, an infection at time-step tn took place, where pc(i,j)(tn)
is defined as follows

pc(i,j)(tn) := βc ·R(i,j)(tn). (4.8)

Here, βc is the cell-to-cell scaling factor. The probability was capped at one. If cell-to-cell
transmission was successful, intracellular viral RNA equivalent to R0 from the cell at node
(i, j) was subtracted assuming that R0 viral RNA particles were needed to initiate infection.
The cell originating the successful cell-to-cell transmission entered the same re-orientation
phase as described for newly infected cells.
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Cell-free transmission

The infection of hepatocytes by free diffusing, i.e., cell-free, virions is modeled using a
probability pf(i,j)(tn) to infect a hepatocyte (uninfected or infected in the same time-step by
CC) at node (i, j) at time tn, which is calculated by the following equation:

pf(i,j)(tn) = βf · V(i,j)(tn), (4.9)

where βf is the cell-free scaling factor. Again, the probability was capped at one. If infection
of an uninfected hepatocyte at node (i, j) by cell-free virus was successful and the viral
concentration at this site was higher than the concentration needed to initiate infection, R0

was subtracted. In case it was smaller, the virus load of the surrounding nodes was also taken
into account. One neighboring node was chosen at random and the viral concentration was
subtracted. More nodes were chosen until in total R0 viral particles were subtracted. Upon
infection by either transmission mode, the initial intracellular RNA was R0.

Simulation

Finally, the complete agent-based model was implemented in the C++ programming language
and simulated for a fixed time (up to ten days) with discrete time steps of one per minute. For
the first 17 hours of the simulation, a randomly chosen hepatocyte could get infected with the
following probability at time tn [117]:

pinit(tn) := αe−αtn

1− e−17α , (4.10)

with α = c× FFU describing the loss of viral infectivity multiplied by the focus forming units
considered in the respective experiments to initiate infection.

After intracellular positive-sense RNA was produced in infected cells and exported, the
described transmission modes were executed for each time-step. In a last step the extracellular
virus was allowed to diffuse using the above explained mechanism.

4.4 Parameterizing the agent-based model

To predict the proportion of cells infected through either one of the transmission modes,
correct description of the experimentally observed infection dynamics with the agent-based
model is of paramount importance. The first step to achieve this, was fitting an ODE model,
which described the intracellular viral replication and its export to the extracellular space, to
experimental data obtained by infecting hepatocytes with a high initial inoculum. Next, this
model and its best fitting parameters were incorporated into the ABM, which was subsequently
fitted to focus size distributions and number of infected cells observed in two separate spread
assay experiments (Section 4.2). To fit the agent-based model, I defined a measure describing
the distance between experimental measurements and model predictions with respect to the
relative difference of infected cell numbers and the relative area between cumulative density
distributions of focus sizes dependent on the average focus size.
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Fig. 4.4. Sketch and realization of the agent-based model. (A) Uninfected cells (gray) proliferate into empty
grid sites (white) with probability pρ following a normal distribution with mean ρ and standard deviation
0.1ρ. Newly infected cells (light red) are in a latent phase during which they cannot infect neighboring
cells via CC transmission. After a re-orientation phase in which infected cells spent on average τ hours
following an exponential distribution, they become infectious (dark red), allowing them to contribute to
CC transmission. Intracellular virus, R, is replicated within infected and infectious cells with rate λ up to
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factor βc. Upon successful CC transmission, the infectious cell becomes infected, thus, not contributing
to CC transmission until re-transitioning into the infectious state. Cell-free infection of an uninfected
hepatocyte depends on the extracellular viral concentration at the respective grid site and the cell-free
scaling factor βf . (B) Simulation of an individual ABM run after 4 days without (left) and with (right)
the administration of anti-E2. Here, initially infected cells are marked in magenta, CF-infected cells in
blue and CC-infected in orange. Light colors mark cells, which are currently in the re-orientation phase.
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4.4.1 Intracellular replication and export of HCV

Experimental data describing intracellular viral replication and export
In order to retrieve the parameters governing intracellular replication of the virus and its export
to the extracellular space, the Uprichard lab, Loyola University Medical Center, performed an
additional experiment. The description of the followed experimental protocol can be found in
Section 2.1.2.

In this experiment, viral intracellular replication was measured by infecting hepatocytes at
a high multiplicity of infection (MOI=6) ensuring synchronous infection. Three hours p.i.
the viral inoculum was removed. Despite removal of media, some viral particles adhered to
hepatocytes resulting in high initial intracellular RNA counts as indicated by a drop between
three and six hours p.i. (Fig. B.1A). Removal of viral inoculum seemed only partially successful
as a decrease in extracellular HCV RNA levels was observed until 18 hours p.i. Afterwards
counts increased, suggesting newly exported HCV RNAs (Fig. B.1B).

Estimating parameters governing intracellular HCV replication and export
I used a model that incorporated intracellular HCV RNA, R, residual, Vr and newly produced, V ,
extracellular HCV RNA, to parameterize intracellular replication in the agent-based model as
described in Section 4.3. The parameter values resulted from fitting the model to experimental
data obtained by infecting hepatocytes with high viral loads. The model is formulated as
follows

dR

dt
= λR

(
1− R

RC

)
− κR

dVr
dt

= −crVr
dV

dt
= κR− cV

with R(0) = R0, Vr(0) = Vr,0 and V (0) = V0

(4.11)

Here, each infected cell has a carrying capacity of positive-strand HCV RNA Rc, produces new
RNA with maximal production rate λ and is exported with rate ρ. While exported extracellular
RNA is subject to degradation at rate c, residual inoculum is degraded in the extracellular
space at rate cr.

To ensure parameter identifiability, degradation of intracellular RNA was neglected in model
(4.11). Therefore, λ described a net proliferation already including degradation of RNA
within infected cells. Additionally, I assumed loss of infectivity to occur at the same rate as
degradation of extracellular RNA and fixed c = cr in the fitting routine. At three and six hours
p.i. viral particles from the inoculum still adhered to cells skewing the measurements at these
time points. Hence, these data were neglected in the fitting procedure (Fig. 4.5, gray dots).

The dynamics of intracellular viral replication and export were captured well (Fig. 4.5). To
ensure validity of estimated parameter values, I performed a profile likelihood approach,
which showed good identifiability of all parameters (Fig. B.2 and Table 4.1). Even though
a reasonable description of the virus dynamics data, as presented in this section, could only
be achieved when including the initial inoculum, Vr, into the model (not shown), it was
not followed in the agent-based model. The excess amount of initial viral inoculum was not
observed in the context of spread assay experiments, because infection was started with low
initial viral titers.
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Tab. 4.1. Estimated parameter values governing viral kinetics. Shown are the best fitting parameters with
respective 95%-confidence intervals (CI) in brackets resulting from a profile likelihood approach.

Para-
meter

Description Unit Value [95%-CI]

R0 Initial intracellular HCV RNA RNA cell−1 80.07 [42.2, 192]

V0
Initial residual extracellular HCV

RNA
×103 RNA cell−1 5.91 [3.66, 10.5]

λ
Intracellular RNA production

rate
h−1 0.240 [0.194, 0.278]

κV Export rate of intracellular RNA ×10−3h−1 2.10 [1.24, 3.47]

RC
Carrying capacity of intracellular

HCV RNA
×104RNA cell−1 7.73 [6.30, 9.76]

cr
Viral degradation and loss of

infectivity
×10−2h−1 7.58 [4.88, 11.0]
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4.4.2 Infection dynamics of HCV

With the parameters governing intracellular viral replication and export at hand, I param-
eterized the infection dynamics observed in spread assay experiments using a distributed,
likelihood-free inference method, namely pyABC (for more information see Section 2.2.2). In
a first step, I formulated a distance measure to describe the difference between data and model
that was minimized with the help of pyABC. To ensure that this was a reasonable measure
and that pyABC converged to the correct solution, I generated in silico data which were
subsequently fitted. The estimates and predictions were then compared to the true parameters
and the percentage of cell-free infected cells. Finally, I applied the fitting procedure to two
sets of in vitro data to predict the contribution of each transmission mode to the infection
dynamics.

Distance measure

Judging from the data, I wanted to capture the changing focus size distributions as well as the
number of infected cells over the course of the experiment. To this end, I defined a relative
distance between the predicted, Ipred, and measured, Iexp, total number of infected cells as
follows

dI = |Iexp − Ipred|
Iexp

. (4.12)

To describe the focus size distribution (fsd), I calculated the predicted, fpred, and measured,
fexp, cumulative density function for the occurrence of a focus with a specific size I and
divided the resulting enclosed area between prediction and experiment by the average focus
size

dfsd =
∑
I |fexp(I)− fpred(I)|∑

I Ini,exp
. (4.13)

In this equation the relative frequency of each focus size in the experiment is denoted with
ni,exp. Dividing by the average focus size allowed comparable distances between early and late
time points as the occurrence of large foci at late times would otherwise bias the calculated
distance. A sketch of the individual distances is shown in Fig. 4.6.
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The sum of both distances formed the total distance of the prediction from the experiment,
i.e., dtotal = dI + dfsd. This distance was calculated for each scenario, i.e., with and without
administration of anti-E2. Finally, the complete distance was minimized using a likelihood-free
method implemented in pyABC (see Section 2.2.2 for more information).

Recovery of parameters and predicted contribution of transmission modes using in silico
data
Generation of in silico data. To test the ability of pyABC (see Section 2.2.2) with regard
to recovery of the true parameters and, additionally, correct prediction of the contribution
of each transmission mode, I generated in silico data. This yielded the knowledge of the
true parameters and also allowed to neglect measurement uncertainties. The data were
generated by simulating HCV spread in a monolayer of hepatocytes with help of the agent-
based model as described in Section 4.3. In the experiments, it took some time until infected
cells were detectable by NS5A- (Exp. 29D) or MAb AR3A-staining (Exp. 29J). To account
for this, I assumed a time delay of 18 hours between time point of infection and detection
with the applied visualization technique (personal communication Prof. Susan Uprichard).
To mimic the experimental situation, the same time delay was also applied to the in silico
data. Generating the in silico data, I assumed that infected cells halted their intracellular viral
replication and degradation during the re-orientation phase following a successful cell-to-cell
transmission and consequently keeping constant levels of intracellular RNA. When fitting
to the experimental data, this was not the case. For each scenario, i.e., with and without
administration of anti-E2, I ran the agent-based model five times. The parameters used to
generate the data are shown in Table B.2, the focus size distributions as well as the number of
infected cells, foci numbers and average focus sizes in Fig. B.4. In these data, approximately
20 percent of cells were infected with cell-free transmission after 120 hours (Fig. B.4C).

Fitting the agent-based model to in silico data. In the fitting procedure, I estimated the same
parameters that were fitted with the in vitro data, i.e., the cell-to-cell, sc, and cell-free,
sf , transmission rate scaling factors, the average re-orientation time after a successful cell-
to-cell transmission, τ , and the amount of antibody necessary to neutralize extracellular
RNA, cE2. I ran the fitting procedure for 15 generations where each generation needed
at least 100 individual simulations with a lower distance than the median distance of the
previous generation. This accumulated in 35078 model evaluations with each evaluation
using a different set of parameters. The median and lowest distance of the last generation
were 1.67 and 1.31, respectively. A summary of the pyABC run is shown in Table B.1. An
exemplary fit of a particle with distance 1.31 (ID 1) can be seen in Fig. B.5, which shows close
resemblance of the prediction to the data for the focus size distributions as well as the number
of infected cells. However, as indicated by the varying parameter values of the best fitting
model realizations (Fig. B.6), stochasticity had a strong impact on the individual realizations
and, accordingly, the distance between model output and data. Thus, ensembles of parameters
should be considered rather than parameters from individual runs. This was achieved with
the estimated kernel density of pyABC, which was calculated using the accepted particles
within one generation. The estimated densities of the final generation are shown in Fig. B.6.
Analyzing the estimated kernel densities revealed recovery of the re-orientation phase and
the cell-free transmission scaling factor within small bounds. While the estimated amount of
anti-E2 necessary to neutralize extracellular RNA was still reasonably confined, varying across
1.5 orders of magnitude, the cell-to-cell transmission scaling factor sc spanned three orders
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these evaluations are shown in Fig. B.6 and as an example the fit of ID 1 in Fig. B.5.

of magnitude. However, this was not surprising as the probability for a successful cell-to-cell
transmission was proportional to the intracellular RNA level, which was approximately 7× 104

after 2 days. Taking the true parameter of 10−2.5 in the in silico data into account implied that
a successful cell-to-cell transmission took place in case an infected cell was not in re-orientation
phase two days after its initial time of infection with an uninfected cell in its neighborhood.
Even for scaling factors as small as 1.5× 10−5 (min× intra RNA)−1 this held true.

Independent of the actual parameters, more importantly, all particles with a low distance
predicted the contribution of cell-free spread to the infection dynamics correctly (Fig. 4.7).
This gave confidence to apply my model with the help of pyABC also to experimental data
and, using the obtained results, to infer the contribution of each transmission mode to the
infection dynamics over the course of an experiment.

Inferred contribution of transmission modes to in vitro HCV infection dynamics

Even though recovery of the correct parameters was difficult due to the stochasticity of the
model and experiments, my model predicted the correct contribution of each transmission
mode to the infection dynamics. With this at hand, the model was fitted to two different
experiments, namely Exp. 29D and Exp. 29J. In this process, all data were shifted by 18 hours
to account for the delay between infection time point of a cell and detection with the applied
visualization technique.

Fitting Experiment 29D. The data of this experiment are shown in Fig. 4.1. Here, I assumed
an average doubling time of uninfected hepatocytes of 32 hours [16] and allowed for a
2.5-fold increase of cells as observed in the data (Fig. 4.1C), i.e., 60% of the grid was empty
at the start of the experiment. Even though cell numbers in the agent-based model were
approximately 2.5-fold lower than observed in the experiment, this had no effect on the
infection dynamics due to low proportions of infected cells (maximal 4% at any time in the
experiment, i.e., maximal 7.5% in the ABM.).
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(termed ID 1 in Figures 4.9 and Fig. 4.10). Axis breaks are the same for large figures and the respective
inlays. (B) Mean number of infected cells, calculated from two replicates, (black lines) and the prediction
(red dots) in untreated (top) and anti-E2-treated (bottom) wells.

While the cumulative densities of the focus size distributions at most time points were captured
well, the model had difficulties explaining the last time point in the untreated wells predicting
too many small foci (Fig. 4.8A). This shortcoming of the model could be linked to the
beforehand fixed diffusion rate of extracellular virus. Besides this, the number of infected cells
was fitted well for the anti-E2-treated and untreated wells, except the 72h time point in the
anti-E2-treated wells (Fig. 4.8B). However, the number of infected cells at this time point was
unexpectedly high due to an outlier in focus sizes of infected cells in one of the wells (1.5-fold
larger than any other focus) and a small sample size of only two replicates.

Within the last generation of pyABC, some parameter values varied less than others, indicating
strong influence on the infection dynamics of those parameters estimated within small bounds
(Fig. 4.9). For example, the re-orientation phase after a successful cell-to-cell transmission
was estimated within small bounds varying between 17 and 24 hours. While the cell-free
scaling factor varied about one order of magnitude, the cell-to-cell factor assumed values
across almost three order of magnitude. However, this was to be expected as the re-orientation
phase should have a stronger influence on the infection dynamics when the cell-to-cell
transmission factor is larger than 1.5× 10−5 min× intra RNA−1 (see the previous paragraph
for more information). Although, the estimated amount of antibody necessary to neutralize

68 Chapter 4 Dissecting the contribution of cell-to-cell transmission to HCV spread in stationary cells in vitro



extracellular virus ranged over several orders of magnitude, the bulk of estimates predicted
rather similar values with only some outliers. Running pyABC for more generations could
resolve the problem of parameter identifiability in this case. A negative correlation between
the re-orientation phase and cell-to-cell scaling factor was observed because decreasing the
former could be compensated by also decreasing the latter. A similar trend emerged from
the fitting routine between the neutralization rate of anti-E2 and the cell-free scaling factor.
Comparing the best fitting parameter sets (colored dots in Fig. 4.9) showed large variations
for some parameters, illustrating, besides the influence of certain parameters on the infection
dynamics, also the stochasticity of the agent-based model.

Judging from the best fitting particles obtained by running pyABC for 15 generations, cell-to-
cell transmission was initially the only source of infection in Exp. 29D (Fig. 4.10). Approx-
imately one day p.i. enough extracellular virus was produced leading to the first cell-free
infected cells (Fig. 4.10). As expected from Fig. 4.9, the proportion of cell-free infected
cells over the course of the experiment was differed between ID 2 and the other particles.
Especially an early increase of cells infected by cell-free virions in anti-E2-treated wells was
observed for this particle. However, despite the differences between parameter sets with
respect to the proportion of cell-free infected cells, the percentage was always below 25%.
This indicated a dominant role of cell-to-cell transmission in the infection dynamics of HCV
in Exp. 29D (Fig. 4.10). While the appearance of cell-free infected cells was slightly delayed
in anti-E2-treated compared to untreated wells, the proportion of cell-free infected cells was
approximately the same at the end of the experiment regardless their treatment for most
particles with low distances to the data (2/4 in Fig. 4.10). The decrease observed in the
proportion of cells infected through cell-free transmission after 72 hours p.i. was due to the
media change removing all extracellular virus from the supernatant.

To investigate the influence of stochasticity and the stability of certain parameter sets, I ran
ten replicates for eight parameter sets fitting best as obtained from pyABC and calculated the
distance of each replicate to the data (Fig. 4.11). I also used the replicates to calculate average
dynamics and compared it to the data. This showed that the best fitting particle exhibited
large distances. In contrast, distances of the individual replicates with parameter sets of IDs 4
and 5 were closer to the distance obtained from pyABC and varied less than replicates of ID 1,
indicating that the latter parameter set was chosen by pyABC as good fitting due to an outlier
in the infection dynamics.

Fitting Experiment 29J. To evaluate the predictions using the previous data, my collaborators
repeated the experiment (Exp. 29J). The data of this experiment are shown in Fig. 4.2.

In this experiment a doubling time of approximately 24 hours and a 10-fold increase of
cells was observed (Fig. 4.2). Because cells in my agent-based model kept their size, empty
space needed to be introduced to allow cell-proliferation. This lead to changing numbers
of neighbors per cells as only cells on adjoining grid sites were considered neighbors. A
ten-fold increase as observed in the data would result in 90% empty space in the simulations
at the beginning leading to few neighbors per cell. To test if this was necessary, the neighbor
distribution in the experiments from 48 hours onwards was analyzed by my collaborators.
This revealed that the number of neighbors per cell stayed approximately constant as cells
decreased in size during the course of the experiment. To keep the two in vitro experiments
comparable, I allowed a 2.5-fold increase from initial cell counts in the ABM, which implied a
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full grid after approximately 48 hours with the assumed doubling time of 24 hours, leading
to six neighbors per cell. The maximal number of infected cells observed in the data of Exp.
29J was around 3 × 103 cells. With the previously used grid structure this accounted for
approximately 12.5% infected cells in the model. The low percentage ensured that target cell
limitation was not an issue and allowed me to use the smaller and computationally cheaper
grid even though total cell numbers observed in the experiment reached up to 1.3 × 105,
around 5-fold higher than the maximal number of total hepatocytes in the ABM.

Several approaches to describe the data with my agent-based model were undertaken. In a
first step, all data were used for fitting. This showed that the agent-based model was not able
to capture the number of infected cells in either scenario at 96 hours p.i. due to the surprisingly
fast increase in the anti-E2-treated and the slow increase in untreated wells between 83 and 96
hours p.i. (see Fig. B.7). However, the last time point had some technical issues and was, thus,
not considered in the following analysis (personal communication Prof. Susan Uprichard).
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of pyABC used five individual ABM-simulations to calculate average infection dynamics. (A) Measured
(black) and predicted (red) cumulative densities of focus size distributions with (large panels) and
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stem from the third best fit (ID 3, parameters shown in Fig. 4.13) obtained by running pyABC for 13
generations fitting average cumulative densities and mean number of infected cells, which were both
calculated from five to six replicates, obtained from Exp. 29J neglecting data from 96h p.i.

Because my model was overestimating the number of small foci at late times (not shown),
I reconsidered the theoretically derived diffusion rate used when fitting Exp. 29D. Virions
released from an infected cell might not diffuse freely, but rather infect adjacent cells. There-
fore, the theoretically derived diffusion rate of extracellular virions could be too high as it
was calculated for freely diffusing particles. To account for this, I also fitted the diffusion rate
in the following. Despite this approach, comparison of predicted and measured focus size
distributions after 72 hours p.i. showed that my model was not able to capture the large variety
of different focus sizes observed in the data (Fig. B.8). This could be linked to fitting individual
simulations to data averaged over five to six independent replicates. In a last step, I therefore
used averages of five agent-based simulations with the same parameter set to describe the
averaged dynamics obtained from the experiment. Judging from the lowest distance reached
(Averaged: 3.66 vs. Individual: 4.23, see Table B.1), this approach described the data better.
Furthermore, visually comparing predicted and measured focus size distributions showed less
deviation in the latter fitting approach (Fig. 4.12).
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Studying the distribution of estimated parameter values of the 13th pyABC generation indicated
that more generations could improve the fit further as some outliers with respect to parameter
values were found in this generation while the best fitting particles assumed similar values
(Fig. 4.13). Presumably due to stopping pyABC early, all parameters varied largely except
the extracellular viral diffusion rate. Interestingly, the estimated values of the diffusion rate
were all smaller than the theoretically derived rate, following the above reasoning, while
still in the same order of magnitude. Considering only the parameters with the smallest
distances, the re-orientation phase varied between 33 and 42 hours. As pointed out previously,
cell-to-cell scaling factors below 1.5×10−5 could not be identified. Taken together, this implied
comparable values for the particles shown in Fig. 4.13 across all parameters.

With the particles obtained from running pyABC for 13 generations, I predicted the contribu-
tion of each transmission mode to the infection dynamics. After an initial phase during which
only cell-to-cell transmission occurred, enough virus was produced and exported, leading to
the first appearances of cell-free infected cells after approximately one day p.i. in the untreated
wells (Fig. 4.14). Although the appearance of cell-free infected cells in the anti-E2-treated
wells was delayed, these wells caught up to the untreated ones with respect to the proportions
of cells infected through cell-free transmission, resulting in approximately 75% at the end of
the experiment (Fig. 4.14). In Exp. 29J the media change after 72 hours was not observed
as incorporating a time shift of 18 hours into the data meant that the last measurement was
compared to the simulation output after 65 h.

To evaluate the influence of stochasticity on the estimated parameter values, I ran ten replicates
for the five best fitting parameter sets. Keeping the same structure as previously, I used 5
individual ABM-simulations to calculate average dynamics per replicate. This showed that
the distances obtained with pyABC were reasonably close to the ones from the individual
replicates, indicating little stochasticity between replicates of a given parameter set (Fig. 4.15).
Surprisingly, one replicate even resulted in a lower distance than accomplished with pyABC.

Long-term predictions and synergistic effects of transmission modes
Being able to describe the data reasonably well with my agent-based model, I made use of the
ABM to predict the long-term HCV infection dynamics for both experiments over the course
of ten days post infection. Furthermore, I studied possible synergistic effects between the
transmission modes.

Long-term HCV infection dynamics For both experiments, I used ten replicates of the best
fitting IDs as obtained from pyABC. In Exp. 29D however, this parameter set presumably fitted
the data well only due to stochastic effects. To account for this, I also looked at the fourth
best fit, which showed little variation between individual replicates and each was rather close
to the distance obtained from pyABC. Indeed, the number of infected cells for ID 1 was too
high compared to the data (not shown). Because ID 1 was rather stable in Exp. 29J, I chose a
parameter set exhibiting more variation, i.e., ID 3. Despite differences between the different
parameter sets and experiments, a trend was observed. The proportion of cell-free infected
cells approached a constant value irrespective of treatment between four to eight days p.i.,
while the numbers of infected cells still increased (Fig. 4.16). In Exp. 29D a larger difference
between anti-E2-treated and untreated wells was observed than in Exp. 29J.
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Simultaneous occurrence of both transmission modes exhibits synergistic effects A trait of
my agent-based model is the possibility of completely blocking one transmission mode while
not affecting the other. This allowed me to study possible synergistic effects between the two
transmission modes in terms of total infected cells. To this end, I ran the parameter sets of
IDs 1 and 4 obtained from fitting to Exp. 29D and IDs 1 and 3 for Exp. 29J without cell-free
or cell-to-cell transmission. Simultaneous occurrence of both transmission modes without
treatment was compared to the combined number of infected cells with either cell-free or
cell-to-cell blocked. I achieved comparability between combined individual and simultaneous
occurrence of the transmission modes by infecting only half the number of infected cells during
the initiation period in the former scenario compared to the latter. Ten replicates were run
for all scenarios, where the average dynamics in Exp. 29J were calculated as previously. This
showed that in both experiments the average number of infected cells was consistently higher
during simultaneous occurrence than the combined individual dynamics would have predicted
(Fig. 4.17). However, the synergistic effect was more prominent in Exp. 29D. Cell-free spread
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Fig. 4.17. Synergistic effect of simultaneous occurrence of both transmission modes predicted for Exp. 29D
and 29J. Parameter sets were obtained from pyABC. Black lines show the number of infected cells when
adding one simulation run without cell-free and one without cell-to-cell transmission to avoid synergistic
effects. Red lines represent the simultaneous occurrence of both transmission modes with respect to the
number of infected cells averaged over 10 simulations. While for Exp. 29D (A) parameter sets of ID 1
(solid lines) and ID 4 (dashed lines) were used, ID 1 (solid lines) and ID 3 (dashed lines) were taken to
represent Exp. 29J (B).

allowed to overcome the spatial limitations of cell-to-cell transmission through the formation
of new foci, thus, increasing the synergistic effect observed in Exp. 29D compared to Exp. 29J,
where this effect could not be exploited as much because cell-free spread was estimated to be
more efficient.

4.5 Discussion
In this chapter, I studied the infection dynamics of HCV among stationary hepatocytes in a
monolayer. The spatially-resolved data, provided by my collaborators, allowed fitting a newly
developed extension of a previously published agent-based model. My extended model incor-
porated intracellular viral replication and extracellular diffusion of virions deterministically
and infection processes stochastically while capable of utilizing two different transmission
modes.

To reduce the number of free parameters in the complex agent-based model, I first estimated
the parameters governing intracellular viral replication and export based on data from an
additional experiment, which provided time-resolved bulk measurements of the average intra-
and extracellular RNA content per infected cell. A simple mass-action kinetics model was able
to capture the viral kinetics (Fig. 4.5). This model was incorporated into the agent-based model
with minor modifications due to the changed experimental protocol for the performed spread
assays. All parameters governing the viral kinetics in the agent-based model were identifiable
and the best fitting estimates were adopted for the purpose of describing HCV spread in a
monolayer of Huh7 cells (Table 4.1). The estimated value for the initial intracellular RNA was
considerably larger than 1, hinting towards possible superinfections of cells when providing
an excess of viral inoculum initially. Furthermore, the capacity of intracellular viral RNA was
estimated to be approximately 10-30 times larger than previously reported [82, 138]. This was
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presumably due to differences in the applied detection assays, especially with regard to the
sensitivity. These results however should not bias any conclusions drawn from the agent-based
model as the total number of viral RNA was always scaled with transmission factors, which
were estimated in the fitting procedures. The loss rate of extracellular viral infectivity as
estimated in my approach (cr = 0.076 [0.049, 0.110] h−1) was comparable to the one stated
in [117] (cr = 0.065 h−1). Comparing my estimates for the export rate of virions and viral
production rate to values published by Guedj et al. [94] revealed that their estimates were
approximately 15-times higher and 4-times lower, respectively. However, besides choosing a
different modeling approach, they also intertwined in vitro and in vivo measurements making
comparison to my rates unfeasible.

In order to describe the infection dynamics observed in the data with reasonable accuracy,
some assumptions, which were not backed by data, had to be made. For example, even
though proliferation of infected hepatocytes cannot be ruled out completely, I did not account
for this process in my agent-based model as this would have rendered identifiability of
parameters impossible. In case infected cells could proliferate, this would mimic cell-to-cell
transmission, thus, leading to biased results towards more cell-to-cell infected cells. I also
included a re-orientation phase in my model, i.e., a delay between two successful cell-to-cell
transmissions originating from the same cell. To this date, the exact mechanisms behind cell-
to-cell transmission in the case of HCV are not known [7], giving rise to various interpretations
of the re-orientation phase. For example, it could stand for the time a cell needs to form a
virological synapse, as observed in the case of HIV [139], or to build tunneling nanotubes
used for transfer of viral material from an infectious to an uninfected cell, a process possibly
also exploited by HIV [140]. Another explanation could also be a multitude of unsuccessful
cell-to-cell transmissions between successful ones due to a low percentage of infectious virus
within infected cells.

The estimated parameters governing intracellular viral replication and export were incorpo-
rated into my agent-based model. With these parameters at hand, I used an approximate
Bayesian computation approach based on sequential Monte Carlo, which was implemented in
pyABC [113], to fit the agent-based model to two separate experiments, namely Exp. 29D and
Exp. 29J. These experiments provided focus size distributions, which could be considered as
spatially-resolved data, at several time points post infection. The experimental protocol was
set up such that cell-free transmission was blocked in half of the wells in each experiment by
administering anti-E2, an antibody against an envelope protein of HCV. Fitting my agent-based
model to data, required the definition of a distance measure that would allow a reasonable
description of the infection dynamics. As distance measure, I chose a relative deviation of
the number of infected cells and of the cumulative densities of focus size distributions at the
various times measurements were taken (Fig. 4.6). To validate the appropriateness of the
ABM to describe the data and correctly predict the contribution of each transmission mode to
the infection dynamics, I generated in silico data. In order to generate the in silico data, my
agent-based model was set up to mimic the experimental protocol. Subsequently, I fitted my
model to the in silico data set using pyABC. This showed, that the fitting method was able to
recover the true parameters reasonably well and, more importantly, predict the proportion of
cell-free infected cells correctly (Fig. B.5 and 4.7).

With confidence in my modeling approach and fitting method, I fitted the two separately
conducted experiments. To this end, I first compared the experiments to reveal any discrep-
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ancies a priori. This revealed faster proliferation and higher counts of Huh7 cells in Exp.
29J than in Exp. 29D (Fig. 4.3). Furthermore, the number of infected cells varied largely
between experiments, with approximately 5-fold more infected cells in Exp. 29J than in Exp.
29D after 96 hours, despite viral inoculum equivalents of about 25 and 35 FFU, respectively
(Fig. 4.3B). Additionally, the cumulative densities of the focus size distributions varied strongly
in shape and form (Fig. 4.3B). Although stochastic variations in Exp. 29D could have had a
large impact on the infection dynamics as a result of only two replicates per time point, the
observed differences seemed too large to be explained solely by stochasticity. Instead, the
change of fetal bovine serum (FBS) between experiments could be linked to the different cell
counts due to varying compositions between applied sera. The high discrepancy between
predicted contributions of cell-free transmission to the infection dynamics inferred by fits to
the experiments could also be explained by this change of sera, because a connection between
lipids and HCV entry, which can be associated with cell-free infections, has been reported
previously [141–143]. For example, HCV is known to exploit the very low density lipoprotein
pathway and needs lipid droplets for viral assembly [142, 144].

In my fitting routine, I assumed a re-orientation phase, i.e., a delay between time point of
infection and experimental detection of infected cells, of 18 hours. Even though this delay
varied between cells even within individual experiments (not shown), it could be considered
as a lower bound. When fitting to the data, this meant that at any time probably more
cells were already infected, but could not be detected yet. However, this proportion should
be more or less constant over the course of the experiments, rendering the effect on the
dynamics negligible. Besides this, my model had difficulties explaining some features of the
data observed in the experiments. For instance, the agent-based model predicted too many
small foci in the untreated wells after 120 hours p.i. compared to the measurements obtained
from Exp. 29D (Fig. 4.8). Upon leaving an infected cell, HCV virions might attach directly to
an adjoining cell. This would result in more cell-free infections close to already existing foci of
infected cells than anticipated with the theoretically obtained diffusion rate of extracellular
virions. Therefore, using a fixed diffusion rate could bias results towards more small foci
in the model than observed in the data. Fitting the extracellular viral diffusion rate could
potentially improve fits in Exp. 29D with regard to this aspect. It could also confirm the above
reasoning if the estimated value was lower than the theoretical diffusion rate. The possibility
of infected cells being infected by defective virus, thus, not partaking in the infection, while
still being detectable, was not considered here. Although this could potentially lead to small
foci even at late times for the anti-E2-treated wells, the high fraction of small foci could not
fully explain the high absolute numbers of small foci as this number exceeded the initially
infected cell counts. Furthermore, the number of infected cells in the anti-E2-treated wells
was underestimated at 72hrs p.i. (Fig. 4.8). A closer look at the data revealed one single large
focus increasing the average number of infected cells at this time point disproportionately.
Fitting my model to Exp. 29J, too many small foci were predicted across all time points with
and without anti-E2 treatment (Fig. 4.12). Additionally fitting the diffusion rate could not
resolve this discrepancy. In terms of infected cell numbers, the sudden increase between 59
and 72 hours p.i. was recovered only to some extent. What lead to the observed dynamics,
remains an open question.

Comparing the estimated parameter values on the basis of the exemplary parameter sets,
showed various differences between the two experiments with all of them favoring cell-free
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transmission in Exp. 29J compared to Exp. 29D (Figs. 4.9 and 4.13). The most striking
disparity was the cell-free scaling factor, which was estimated three orders of magnitude
larger in Exp. 29J. Furthermore, the re-orientation phase was almost twice as long and larger
amounts of anti-E2 were estimated to be necessary to neutralize extracellular virus in Exp.
29J. As expected, favoring cell-free transmission with respect to the parameters also increased
the proportion of cell-free infected cells in Exp. 29J, reaching almost 80% at its peak. This
stood in stark contrast to the inferred cell-free proportion in Exp. 29D, where it did not
exceed 25%. As already pointed out, this could be explained by the change of FBS between
experiments, leading to higher amounts of supplied lipids in Exp. 29J [141]. To validate the
above reasoning, I compared four different experimental data sets from Exp. 29C (cultured
in serum of Exp. 29D), Exp. 29D, Exp. 29I (cultured in serum of Exp. 29J) and Exp. 29J.
This showed a striking similarity in the cumulative densities of focus size distributions in
the untreated wells within groups of experiments, which used the same serum (Fig. B.3A).
With this knowledge at hand, I also fitted my model to another experiment, Exp. 29I, which
was conducted after changing the FBS compared to Exp. 29D (Fig. B.3). The proportion
inferred from this experiment coincided nicely with Exp. 29J (not shown), hinting towards an
important role of the supplied FBS with respect to the infection dynamics and the contribution
of each transmission mode over the course of the experiment.

The parameter values obtained from running pyABC in combination with my model allowed
me to make several predictions besides the contribution of each transmission mode to the
infection dynamics. Running my simulations for up to ten days p.i. showed that a constant
proportion cell-free infected cells was established after 3 (Exp. 29J) and 8 (Exp. 29D) days p.i.
while infected cell counts still increased (Fig. 4.16). It also revealed that upon exhaustion of
anti-E2, treated wells were able to catch up to untreated wells with respect to the proportion
of cell-free infected cells. However, long-term dynamics should be taken with care as for later
time points differences in total hepatocyte counts between experiments and model could bias
results due to target cell limitations occurring at different cell numbers.

Finally, the question of why HCV evolved and kept two different transmission modes remained
open. To address this, I ran simulations blocking either cell-free or cell-to-cell spread and
compared their combined number of infected cells with a simulation, where both transmis-
sion modes occurred simultaneously (Fig. 4.17). This showed a synergistic effect of both
transmission modes during simultaneous occurrence. Here, the synergistic effect was more
prominent in Exp. 29D. Judging from the high proportion of cell-free infected cells in Exp. 29J,
cell-free transmission was more efficient in this experiment than cell-to-cell. When combining
efficient short-range cell-to-cell spread with far-range less efficient cell-free transmissions,
local restrictions of cell-to-cell transmission can be circumvented and therefore lead to a strong
synergistic effect. Another reason that could explain the need of two transmission modes
for HCV is the discrepancy between predicted contributions of cell-free infected cells in the
experiments. As the conducted experiments differed only in the utilized FBS, which could
stand for lipid-rich and -poor environments in the body, the difference in cell-free proportions
hinted towards the necessity of HCV to adapt to changing environments.

In summary, I developed an agent-based model able to describe complex spatially-resolved
data allowing predictions of the contribution of transmission modes to HCV infection dynamics
in vitro. This revealed a possible impact of the supplied lipids on the infection dynamics and
also on the proportion of cell-free infected cells during the course of the experiment.
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5Quantification of cell-to-cell
transmission among stationary
cells using virus dynamics models

5.1 Introduction

The results of this chapter have been mainly published in a study by Kumberger et al. [12].

Many viruses are able to exploit two different transmission modes, namely cell-free (CF) and
cell-to-cell (CC) [7]. How a virus spreads in tissue strongly depends on the contribution of
each transmission mode. To allow efficient drug and vaccine development, this needs to be
taken into account in the future. In this thesis I have presented two approaches how to quantify
cell-to-cell transmission in viral infections. However, transfer of these modeling approaches
to all viral infections also depends on the availability of data. In the following, I introduce
a new extended version of the standard model of virus dynamics to allow quantification of
cell-to-cell transmission among immobile or slow moving cells also in the context of sparse
data.

In Chapter 3, I inferred the contribution of cell-to-cell transmission in different extracellular
microenvironments to HIV infection dynamics among motile CD4 T cells from in vitro bulk
measurements. This was achieved with a detailed mass-action kinetics model, which was
developed with a data-driven modeling approach. Although an adaptation of this model
could in principal be applied to stationary cells, the local nature of cell-to-cell transmission
might violate assumptions necessary to build the most informative model from Chapter 3.
Next, I built an agent-based model to predict the proportion of Huh7 cells infected with
HCV by cell-free spread in vitro from spatially-resolved data (Chapter 4). Even though this
method could be applied to other viruses, mass-action kinetics models are often preferred
to more complex models when describing infection dynamics due to their easy application
in data fitting. Furthermore, population-based measurements as obtained from a variety of
experimental protocols are often not sufficiently resolved to allow fitting of more complex
models. However, the assumption of a well-mixed system, necessary for mass-action kinetics
models, is in general violated in the context of stationary cells. To still permit application
of mass-action kinetics models, they should be improved to correctly predict cell-to-cell
spread among immobile cells while containing a simple structure necessary for fitting bulk
measurements.

In this chapter, I show that the standard model of virus dynamics (see Section 1.2.1 for further
information), which assumes a well-mixed system, is not able to capture the dynamics of
cell-to-cell transmission in the context of stationary cells. Non-motile target cells can be found
for example in the context of Influenza and Hepatitis C virus infecting epithelial cells and
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hepatocytes, respectively. To rigorously test various models and their capability describing the
infection dynamics of cell-to-cell transmission among immobile cells, I used a slight variation
of the previously described agent-based model (see Section 4.3) to generate in silico data,
to which models were subsequently fitted. Here, the usage of in silico data proofed to be
advantageous over experimental data as it allowed to reveal model shortcomings without the
confounding factors of experimental bias and measurement errors (see also Section 4.4.2).
Additionally, every process in the agent-based model was known, thus, avoiding unwanted
behavior of the system. After establishing shortcomings of the standard model when trying
to describe infection dynamics by cell-to-cell spread among non-moving cells, I developed a
simple extension of the standard model of virus dynamics incorporating an adjustment term.
This allowed the model to capture the decreasing proportion of infected cells contributing to
cell-to-cell transmission among stationary cells in the course of an infection. In contrast to
previous models, the extended model is able to correctly quantify the infection dynamics of
cell-to-cell spread without loss of the overall simple structure.

In a next step, the model was tested for its ability to disentangle the simultaneous occurrence of
cell-free and cell-to-cell transmission dynamics, while also predicting the correct contribution
of each transmission mode to viral dissemination. For all models tested, the latter was difficult
to achieve. However, my extended model gave more appropriate predictions. Finally, I
fitted my model to previously published data of HIV-1 infection dynamics revealing that the
contribution of each transmission mode might be more variable during progression of infection
than suggested by the authors [70]. Even though Jurkat cells, an immortalized T cell line,
are supposed to be motile [145], thus, violating the assumption of stationary cells necessary
to develop the adjustment term, my novel approach gave a better description of the data.
This hints towards locally confined cellular movements or the formation of syncytia in this
environment resulting in large foci of infected cells.

5.2 Data generation

The agent-based model as described in the previous chapter was simplified to generate in silico
data (Fig. 5.1A and Table C.1). Here, to limit the number of confounding factors, I neglected
proliferation of target cells, the re-orientation phase was set to zero, and no media change
after 72 hours was simulated. Furthermore, I added sufficient amounts of anti-E2 in silico to
prevent cell-free transmission in treated scenarios and used a different parameterization for
the intracellular replication. A representation of the intracellular viral RNA and extracellular
infective virus produced by one infected cell over the course of 100 hours is shown in Fig. 5.1B.
To generate the data, the ABM was run for 10 days, while sampling the number of infected
cells and the extracellular viral concentration every 24 hours mimicking realistic experimental
conditions. Realizations of the model after approximately three days are shown in Fig. 5.1C,
where both transmission modes or only cell-to-cell transmission occurred. The probability of
cell-free and cell-to-cell infection were defined by pf := sfV and pc := scfinfR, respectively.
Here, the intracellular RNA content per infected cell is denoted by R and the extracellular viral
concentration above each cell by V . Only a fraction finf of intracellular RNA was assumed to
be infective virus. Furthermore, intra- and extracellular viral concentrations were scaled with
scaling factors sc and sf , respectively. As before, cells were distributed on a hexagonal grid,
i.e., each cell had six different neighbors, in the agent-based model. Furthermore, the ABM
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Fig. 5.1. Agent-based model of infection dynamics among stationary cells in a monolayer. (A) Schematic
view of the agent-based model simulating intracellular viral replication and spread by cell-free and
cell-to-cell transmission among stationary cells. Cells were assumed to be hexagonally shaped and could
be either uninfected (gray) or infected (red). The parameters pc and pf define the probability of infection
by cell-to-cell and cell-free transmission, respectively. They depend on the intra- (CC transmission) and
extracellular (CF transmission) viral load at the corresponding grid sites. (B) Time course of intracellular
viral load (black line) and produced extracellular virus (gray line) for one infected cell in the ABM. (C)
Realization of simulation outcomes after approximately three days post infection assuming simultaneous
occurrence of cell-free and cell-to-cell transmission (left) or only CC-transmission (right). Cells infected
by CF- or CC-transmission are shown in blue and orange, respectively. Figure as published in [12]

accounted for intracellular viral replication and intercellular viral spread (see Section 4.3 for
a detailed explanation). All other processes were taken from the agent-based model described
in the previous chapter, e.g. no proliferation or death of hepatocytes.

5.3 Standard models of virus dynamics fail to describe
cell-to-cell transmission among stationary cells

The standard model of virus dynamics has been used extensively to analyze time course data
of various infections. It describes the coupled dynamics of the concentration of target cells, T ,
infected cells, I, and the extracellular viral load, V (see Introduction for more information)
[81]. To also account for cell-to-cell transmission, previous model extensions of the standard
model of virus dynamics introduced an additional infection term. Here, target cells can get
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at rate c. However, viral dynamics are not taken into account when analyzing a situation, where cell-free
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proliferation are neglected in the ABM as well as the fitted models. (B) Simulated dynamics and model
predictions for viral spread only considering CC-transmission (βf = 0) among stationary cells starting
with a single infected cell in the center of the grid. Black dots indicate the mean and vertical lines
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sampled every 24 hours. Thick red line indicates the best fit of the basic model as described in Eq. (5.1)
with the red shaded area indicating the 95%-prediction band using the estimated standard deviation
(Table 5.1). Figure as published in [12].

infected at rate βc proportional to the concentration of infected cells [70, 98, 146], where
parameter βc describes the rate of cell-to-cell transmission. In summary, the basic model
incorporating both transmission modes (Fig. 5.2A) can be written with the following set of
ordinary differential equations

dT

dt
= −βfV T − βcIT − δTT

dI

dt
= βfV T + βcIT − δII

dV

dt
= ρI − cV ,

(5.1)

where the terms βfV T and βcIT define the contributions of cell-free and cell-to-cell trans-
mission, respectively, to the newly infected cells. Due to the well-mixed assumption in this
model all infected cells contribute to cell-to-cell spread at any given time. However, for viral
dissemination among stationary or slowly moving cells, as e.g. cells in solid tissues, this
assumption is violated. To test the effect of violating this assumption and the overall ability of
the basic model (Eq. 5.1) to describe cell-to-cell transmission among stationary cells, I fitted it
to the generated in silico data as described in the previous section assuming βf = 0. Here, I
only considered the simplest form of the infection dynamics by blocking cell-free spread and
starting with a single infected cell in the center of the simulated well, thus, providing the
infection with virtually unlimited target cell numbers.

Figure 5.2B shows the time course of infected cell counts over ten days sampling every 24
hours, where the mean and 95%-confidence intervals were calculated from 100 individual
ABM-simulations. Fitting model (5.1) (with βf = δI = δT = 0), which assumed standard
mass-action kinetics, to these data, clearly illustrated its inability to describe the infection
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dynamics (Fig. 5.2B). As long as target cells were not limiting, this model predicted an
exponential increase of infected cells due to its linear relationship between infection of new
target cells and the density of already infected cells. Hence, it could not explain the decreasing
growth rate of a focus of infected cells over time. Accordingly, this showed the failure of
simple mass-action kinetics as previously used [70, 90, 146] to appropriately describe viral
spread by cell-to-cell transmission among stationary cells.

5.4 Improved description of cell-to-cell transmission by
accounting for spatial effects

By examining the ABM-simulated data with blocked cell-free spread, it became apparent that
focus growth of infected cells was not constant. To better understand the dynamics of focus
growth as a consequence of cell-to-cell transmission, a thought experiment was conducted.
Assume a hypothetical virus is only capable of spreading via cell-to-cell transmission among
stationary cells during infection. Then, newly infected cells appear next to already infected
cells resulting in large foci of infected cells, which in turn lead to a lower proportion of cells
that can contribute to cell-to-cell spread (Fig. 5.3A), affecting and especially decelerating
focus growth. Thus, the assumption of model (5.1) that all infected cells partake in cell-to-cell
transmission at any given time was could not be true for stationary cells and needed to be
adapted.

Accordingly, improvement of the standard model could be achieved by adding a correction
function fc(I) to the cell-to-cell infection term βcIT , where fc(I) describes the decreasing
proportion of cells contributing to cell-to-cell transmission during progression of infection.
The proportion of cell-to-cell contributors (CC contributors), fc, in a monolayer of stationary
cells can be calculated by the ratio of cells in the perimeter and the total focus size under the
assumption that cells with the same distance from the focus-founding cell are always infected
simultaneously (Fig. 5.3A), i.e., radial focus growth. Thus, fc is formulated as follows

fc := No. cells in perimeter of focus
No. cells in focus ,

where the number of cells in the perimeter is determined by the number of neighbors, k, and
the expansion phase, n (Fig. 5.3A). Independent of k, the focus-founding cell contributes
to cell-to-cell spread for n = 0, i.e., fc = 1. At the end of the first expansion phase, n = 1,
the number of neighbors per cell is located in the perimeter. After the second and third
expansion phase, the number of cells in the perimeter doubles and triples, respectively, while
the total focus size grows slightly faster (Fig. 5.3A). In general, the proportion of cells in
a focus contributing to cell-to-cell transmission after completion of expansion phase n and
dependent on the assumed number of neighbors, k, can be calculated by

fc(n, k) = kn

1 + k
∑n
j=1 j

= 2kn
kn2 + kn+ 2 for n ≥ 1. (5.2)

Similarly, the total number of infected cells in a focus is described by

I(n, k) = k

2n
2 + k

2n+ 1. (5.3)
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set to 10. Figure as published in [12].
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By solving Eq. (5.3) for n and substituting in Eq. (5.2), the proportion of cell-to-cell contribu-
tors as a continuous function depends on the number of infected cells in the focus as well as
the number of neighbors (Fig. 5.3B, red dashed line) and is determined by

fc(k, I) =
√
k2 + 8kI − 8k − k

2I . (5.4)

However, Eq. (5.4) only holds true if I ≥ k. Otherwise, all infected cells in the focus contribute
to cell-to-cell transmission because not all neighbors of the founding cell are infected (see
Fig. 5.3A). Thus, Eq. (5.4) needs to be adapted to allow a correct approximation of the
correction term for small foci sizes. To this end, I set fc(I) = f1 = 1 for I ≤ k. To prevent a
sudden drop at I = k, I introduced a smooth function f2 in the interval k < I < k + z with
z ∈ R+ (see Fig. 5.3B and Section C.2 for a detailed derivation of the connection term f2).
This linked the proportion of contributors for small focus sizes, f1, with the general function
for larger focus sizes as obtained in Eq. (5.2). Here, parameter z defines the number of
infected cells for which the transition term is used. Combining the above, the final adjustment
term fc(I) for a single focus comprising I infected cells on a grid with k neighbors reads as
follows

fc(I) :=


1 for I ≤ k

a (I − k)3 + b (I − k)2 + 1 for k < I < k + z
√
k2+8kI−8k−k

2I for I ≥ k + z,

(5.5)

where a := a(z, k) and b := b(z, k) depend on z and k. These functions ensure smoothness
(see Section C.2 for more information) of the complete adjustment term at the limits of the
connecting polynomial f2. In Fig. 5.3C the progression of the cell-to-cell contributor proportion
with increasing focus size, I, for different numbers of neighbors per cell is shown. Even though
I developed the adjustment term for discrete values of I, it is also valid for continuous I, e.g.,
when I represents the concentration of infected cells within one focus instead of the absolute
number. To approximate the proportion of cells contributing to cell-to-cell transmission in a
culture with several foci, I needs to be substituted with I/φ, where I defines the total number
of infected cells and φ the number initial foci.

The derivation of the adjustment term fc allowed extension of model (5.1) to account for the
decreasing proportion of cell-to-cell contributors with progression of infection

dT

dt
= −βfV T − fc(I)βcIT − δTT

dI

dt
= βfV T + fc(I)βcIT − δII

dV

dt
= ρI − cV .

(5.6)

To limit the number of confounding factors and concentrate solely on the spatial effects of
cell-to-cell transmission, cellular turnover was initially not considered, i.e., δI = δT = 0.
However, when applying this model to previously published data [70], it was adapted to
consider cellular turnover and proliferation due to the followed experimental protocol (see
Section 5.8).
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5.5 Adjusted model improves description of cell-to-cell
transmission for individual focus growth

In a next step, the adjusted model was tested to see if it could correctly explain and quantify
cell-to-cell transmission in the context of stationary cells. To this end, it was fitted to in silico
data as described in Section 5.2 with one initially infected cell in the center of the grid (see
Section 2.2.2 for more information on the fitting procedure). The adjusted model (aCC-model,
Eq. (5.6) with βf = δT = δI = 0, see also Table C.2) was able to describe the observed
dynamics better than the standard CC-model (Eq. (5.1) with βf = δI = δT = 0 and Fig. 5.4A).
In contrast to the CC-model, my aCC-model was able to capture the decelerating infection
dynamics with increasing focus size (Fig. 5.4A). Additionally, the comparison of the corrected
Akaike Information criterion values (see Section 2.2.2 for more details on the calculation of
AICc values) of both models to the best fitting model (∆AICc = 823.1 and ∆AICc = 29.2 for
the CC- and aCC-model, respectively, showed better performance of the adjusted model.
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Fig. 5.4. Simulated data and corresponding model predictions describing growth of an individual focus of
infected cells. (A+B) Individual focus growth by CC-transmission among stationary cells starting with
a single infected cell. The mean and 95%-confidence interval for the total number of infected cells
averaged over 100 individual ABM-simulations sampled every 24 hours are indicated with black dots and
black lines, respectively. (A) Best fits of the CC-model (Eq. (5.1) with βf = δI = δT = 0, magenta) and
the adjusted model (aCC-model, Eq. (5.6) with βf = δI = δT = 0, green) without estimated prediction
band for better illustration. Inlay: Profile likelihoods of the estimated cell-to-cell transmission rate, βc,
derived from the CC- (magenta) or aCC- (green) model. (B) Model fits were improved when using an
extension of model (5.6), which considered a time-delay for cells to become infectious (aCC-dI,red). (C)
Proportion of CC contributors as predicted by the aCC-model (green line), and the aCC-dI-model (red
dashed line) in comparison to the proportion observed in the individual ABM-simulations (gray lines).
The corresponding parameter estimates are given in Table 5.1. Figure as published in [12].

Neglecting the decreasing proportion of cell-to-cell contributors during progression of infection
lead to roughly 1.5-times larger estimates for the transmission rate characterizing cell-to-
cell spread in the aCC-model than in the CC-model (βc = 1.49 × 10−6cell−1h−1 [1.47, 1.50]
aCC-model vs. βc = 1.04 × 10−6cell−1h−1 [1.00, 1.07] CC-model, Fig. 5.4(A, insertion) and
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Table 5.1). Profile likelihood analysis indicated that all parameters were identifiable based on
the given data (Figure C.1).

However, both models did not account for the intracellular RNA dynamics within infected
cells in the agent-based model, which followed a sigmoidal growth pattern. This implied a
delay in cell-to-cell spread as the majority of this transmission mode would occur only after
enough intracellular RNA had been produced. To incorporate this into my adjusted model, I
introduced a time-delay accounting for the time that cells need to become infectious in order
to participate in cell-to-cell spread. To this end, the term fc(I)βcIT describing cell-to-cell
transmission in the aCC-model was replaced by fc(I)βcI(t − τ)T , where τ represented the
considered time-delay (see Eq. (C.3) in Section C.4 with λT = δT = δI = 0). This defined a
new model, namely the aCC-dI -model. It further improved the description of the infection
dynamics (Fig. 5.4B and ∆AICc = 29.2 compared to the aCC-model, Table 5.1).

With my model capturing the overall dynamics of the infected cells in the in silico data correctly,
I tested if my theoretically derived adjustment term was able to predict the correct proportion
of cells contributing to cell-to-cell transmission. To this end, I compared the proportion
predicted by fc with the proportions obtained from the individual ABM-simulations. The
aCC-model predicted a slightly higher proportion of cell-to-cell contributors with respect
to the focus size than observed in the simulations (Fig. 5.4C, green line). However, this
discrepancy dissolved in the aCC-dI -model, which accounted for the time an infected cell
needed to accumulate intracellular viral particles, leading to good agreement of the predicted
and observed proportions (Fig. 5.4C, red line).

In summary, simple mass-action kinetics fell short when describing individual focus growth
among stationary cells. Here, the adjusted model, accounting for the decreasing proportion of
cells contributing to cell-to-cell spread provided a more appropriate approach. Additionally,
it captured the time course of infected cells participating in cell-to-cell transmission, even
though this is a spatial process. The correct prediction of CC contributors allowed a meaningful
interpretation of the adjustment term, while still keeping the simple structure of an ODE
model.

5.6 Determining cell-to-cell transmission across multiple
foci
To apply the adjusted model in the future to data, the in silico data should resemble character-
istics of experiments more closely. Usually an experiment follows the simultaneous growth
of multiple foci, when measuring the viral concentration and density of infected cells on a
population level, to reduce experimental variation and ensure reliability of the experiment.
The simultaneous growth of multiple foci could impair the ability of the adjustment term fc

to describe the infection dynamics and correctly predict the proportion of cells contributing
to cell-to-cell transmission. In this scenario, asynchronous initiation of foci as well as their
merging during progression of infection could be confounding factors (Fig. 5.5A).

To investigate the ability of the adjusted model to describe cell-to-cell spread under these
conditions, i.e., no cell-free transmission and initiation of several infected cells, the ABM
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Tab. 5.1. Estimated rates for different models fitted to in silico data with blocked cell-free spread. All
models were fitted to the concentration of infected cells obtained for the growth of single and multiple
foci. Best fitting parameters are given with 95%-confidence intervals shown in brackets. The difference
in the corrected AIC values, ∆AICc, was calculated relative to the AICc of the best fitting model
(∆AICc = 0) for single and multiple focus growth, respectively. Among others the adjustment term
depended on the parameter θ, which represents a measurement for irregular focus growth and initiated
number of foci (see Section C.2). As infection through cell-to-cell transmission was independent of the
extracellular viral concentration, I did not consider viral turnover rates, i.e., c and ρ, in the fitted models
when studying the infection dynamics with blocked cell-free transmission.

Model CC aCC aCC− dI

Single focus
βc (×10−6h−1cell−1) 1.04 [1.00, 1.07] 1.49 [1.47, 1.50] 2.04 [1.82, 2.34]
θ - 2.7 [2.58, 2.82] 1.62 [1.31, 1.94]
z (cells) - 13.6 [8.82, 17.9] 20.2 [12.5, 28.6]
τ (hours) 5.71 [3.73, 7.89]
∆AICc 823.1 29.2 0

Multiple foci
βc (×10−6h−1cell−1) 1.13 [1.07, 1.18] 1.72 [1.70, 1.74] 1.72 [1.70, 1.79]
θ - 1.78 [1.70, 1.86] 1.78 [1.66, 1.86]
z (cells) - 2.19 (0, 6.61] 2.09 (0, 6.31]
τ (hours) 1.65× 10−5 (0, 0.664]
∆AICc 92.88 0 7.33

was used to generate in silico data. Following previous experimental conditions (compare
Chapter 4 and [116, 117, 144]), a monolayer of cells, in which infected cells were randomly
seeded during a time period of 17 hours after start of the experiment, was simulated with
the agent-based model. To resemble realistic experimental intervals between individual
measurement, infected cells were sampled every 24 hours. Because the initiation of infected
cells could be considered as cell-free spread due to its random distribution, the processes of
infection initiation and focus growth arising from new infections needed to be separated. To
this end, the initial infection period was neglected and the number of infected cells 17 hours
p.i. was considered as initial condition.

Due to averaging effects, a situation in which several infected cells are initiated can be
considered closer to the well-mixed assumption than the growth of a single focus. Still, the
aCC-model performed better than the CC-model, which assumed a completely mixed system
(Fig. 5.5B and Table 5.1, ∆AICc = 92.88). Even in this scenario, including confounding
factors such as heterogeneous initiation of several infected cells and merging of foci, the
decelerated infection dynamics could not be explained by a model neglecting the proportion
of cell-to-cell contributors. Again, a 1.5-fold increase in the cell-to-cell transmission rates
estimated from the two models was observed (βc = 1.13 × 10−6 cell−1h−1 [1.07, 1.18] CC-
model, βc = 1.72×10−6cell−1h−1 [1.70, 1.74] aCC-model, Table 5.1). Introducing a delay in the
cell-to-cell infection term (aCC-dI) did not improve fits leading to an estimated delay of zero.
This was to be expected due to the initiation process resulting in a heterogeneous population
of infected cells with respect to their time of infection at the start of the fitting procedure
17h p.i. Hence, several infected cells were already infectious 17 hours p.i. Consequently, an
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Fig. 5.5. Cell-to-cell spread in a culture with several foci. (A) Left and right panel show the same foci, with the
smaller focus being lowered in the right panel by one row resulting in fewer CC contributors (orange) in
the merged foci compared to the individual foci on the left. Boundaries of the two foci are marked in blue
and CC non-contributor in red. (B) Simulated data and model predictions for a scenario, where cell-free
spread was blocked and several foci were initiated within 17 hours p.i. The mean and 95%-confidence
interval for the total number of infected cells averaged over 100 individual ABM-simulations sampled
every 24 hours are indicated with black dots and black lines, respectively. Colored lines show the
best fit of the CC- (magenta) or aCC-model (green). Corresponding parameter estimates are shown in
Table 5.1. For better comparability between models the estimated prediction bands are not shown. In
the aCC-dI -model the time-delay until cells become infectious was estimated to be 0. Thus, this model is
not shown here as it is essentially the aCC-model. (C) Prediction of the proportion of CC contributors
(green solid line) obtained from the adjustment term with the best fitting parameter set compared to
the proportions resulting from 100 individual ABM-simulations (gray lines). The corrected adjustment
term, which was multiplied with the proportion of target cells relative to the number of target cells
at the beginning of the simulation, i.e., fc(I(t))T (t)/T0, is indicated with a dashed green line. (D)
Approximate increase of infected cells per minute in the ABM (black dots, mean and 95%-CI based on
100 simulations) as defined by Eq. (5.7). Additionally, this increase was calculated for the ODE model
(red line) using Eq. (5.8). Figure as published in [12].

additional time-delay could be neglected and only the aCC-model was considered for this
scenario.

As previously, the ability of the adjustment term fc to correctly predict the proportion of
cell-to-cell contributors was tested. To this end, the proportion obtained from running the
respective models with the best fitting parameter set was compared to the proportion of the
individual agent-based model simulations (Fig. 5.5C, green solid line). In contrast to the
prediction with regard to single focus growth, my aCC-model seemingly performed worse in
this more complex scenario. Especially for later time points the proportion of cells contributing
to cell-to-cell spread was overestimated. However, this discrepancy could be explained, when
analyzing CC contributors in the ABM and ODE model in more detail. The average increase of
infected cells per time step, ∆ABMI(t) = I(t+ 1)− I(t), in the agent-based model could be
approximated with

∆ABMI(t) = β̃cV̄ccf̃c(I, T )I(t)

with V̄cc := I(tend)− I(tstart)
β̃c
∫ tend
tstart

I(s)f̃c(I, T )ds
.

(5.7)
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Here, tstart and tend stand for the start and end time of the simulation run, respectively. Over
the course of the infection, the average viral concentration per infected cell, which contributes
to cell-to-cell spread, is denoted with V̄cc. Furthermore, β̃c := finfsc defines the infectivity
per intracellular viral particle and f̃c(I, T ) the proportion of infected cells contributing to
cell-to-cell transmission. A requirement for an infected cell to participate in cell-to-cell spread
are uninfected neighboring targets.

In the aCC-model (Eq. (5.6) with βf = δI = δT = 0) the increase of infected cells was
calculated with

∆ODEI(t) = βcfc(I(t)) I(t)T (t). (5.8)

Because the aCC-model captured the infection dynamics observed in the ABM-simulations well,
both equations, Eqs. (5.7) and (5.8), should describe the same increase, i.e., ∆ABMI(t) =
∆ODEI(t). Indeed, this can be seen in Fig. 5.5D, where the small step just before three days
p.i. was due to foci growing larger leading to the appearance of the first CC non-contributors
described by the adjustment term. Coercing constants and comparing Eq. (5.7) and Eq. (5.8)
showed that target cells, T (t), occur in the ODE - but not the agent-based model. Additionally,
reconsidering term f̃c(I, T ) revealed that it implicitly depended on the available target cells
at a given time. Thus, the resulting fc(I(t)), obtained from the best fitting parameter set to
the in silico data, needed to be corrected with the proportion of still available target cells
(Fig. 5.5C, dashed green line), i.e., f̃c(I, T ) = fc(I(t))T (t)/T0. Here, T (t)/T0 describes the
proportion of available target cells at time t with T0 defining the total number of target cells
at the start of the infection dynamics.

In summary, even though initiation of several foci with subsequent heterogeneous focus growth
and merging of foci stands in conflict with the assumptions used to derive the adjustment
term fc, it provided a good description of the data, especially capturing the decelerated
infection dynamics during progression of infection (Fig. 5.5B). Furthermore, correcting the
adjustment term for the proportion of available target cells, resulted in correct predictions of
cell-to-cell contributors (Fig. 5.5C). Therefore, the aCC-model provided a better description of
the observed infection dynamics than conventional models when analyzing viral spread by
cell-to-cell transmission among stationary cells.

5.7 Using population-dynamics models to disentangle
combined transmission dynamics

So far, cell-free transmission was neglected in my analyses. However, in experiments studying
the spread of viral infections both transmission modes generally occur simultaneously, if the
virus is able to exploit cell-free and cell-to-cell transmission. Therefore, it was important to
investigate the ability of population-dynamics models (Eq. (5.1) and Eq. (5.6)) to disentangle
the contribution of cell-free and cell-to-cell transmission to viral dissemination. To this end,
the agent-based model was simulated with both transmission modes occurring simultaneously.
As cell-free transmission is dependent on the extracellular viral concentration, the intracellular
production of virions as well as their diffusion through the extracellular space upon release
was incorporated in the ABM and the extracellular viral load was followed (see Section 4.3).

92 Chapter 5 Quantification of cell-to-cell transmission among stationary cells using virus dynamics models



Tab. 5.2. Estimated transmission rates obtained from fitting models CCF and aCCF to in silico data with
simultaneous occurrence of both transmission modes. Transmission rates βf (cell-free) and βc (cell-
to-cell) are given in units ×10−7h−1 and ×10−6h−1, respectively. Fitting only the number of infected
cells to in silico data, where both transmission modes occurred, without separate quantification of
cell-free transmission (Fig. 5.6A), no reasonable estimates for βf could be obtained, i.e., βf was not
identifiable (ni). Confidence intervals were calculated from 2×103 (CC/CF) and 103 (CC/CF + CF)
individual fits using random starting conditions and considering all parameter combinations within 3.84
of the best MLE. The performance of the different models was evaluated with the corrected AIC, ∆AICc,
which was calculated relative to the AICc of the best fitting model for each scenario, i.e., ∆AICc = 0.

Scenario Both transmission modes Both transmission modes + only CF
Model CCF aCCF CCF aCCF
βc 1.42 (0, 1.45] 1.64 [1.60, 1.80] 0.92 [0.90, 0.93] 0.92 [0.90, 0.98]
βf ni ni 2.58 [2.19, 3.12] 2.58 [2.20, 2.88]

∆AICc 60 0 0 9.5

Using this in silico data, I tested various ODE models in their ability to predict the proportion
of cells infected by cell-free transmission (CF proportion) observed in the ABM-simulations.

In line with the previous sections, cellular turnover was neglected in the agent-based and
ODE models. Again, to disentangle the initiation and subsequent infection dynamics, the
first 17 hours of the in silico data were not considered in the fitting procedure, essentially
shifting the in silico data. In a first step, I assumed viral diffusion to be slow in the extracellular
space. Even though the occurrence of cell-free transmission resulted in a better-mixed system
than observed from a situation without cell-free transmission (Fig. 5.1C), the adjusted model
(aCCF-model, Eq. (5.6) with δI = δT = 0) performed significantly better than the standard
model (CCF-model, Eq. (5.1) with δI = δT = 0) (see Fig. 5.6A and ∆AICc = 60 in Table 5.2).

Besides the inability of the CCF-model to correctly describe the infected cell dynamics, it
also incorrectly predicted the contribution of each transmission mode. Within confidence
of the best fit of this model lay all possible proportions, i.e., proportion of cells infected by
cell-free transmission varied between 0 and 1, while the individual time courses did not
reflect the dynamics observed in the agent-based simulations (Fig. 5.6B, thick magenta line
represents the best fit with shaded area showing part of the confidence interval and dashed
lines indicating examples of individual fits). The aCCF-model on the contrary predicted an
increasing proportion of cells infected by cell-free transmission during progression of infection,
with a relatively narrow confidence bound, comparable to the observations in the in silico
data (Fig. 5.6B, green line). At later time points, however, the proportion of cells infected by
cell-free transmission was underestimated. This was not surprising as slow viral diffusion as
used in the ABM mimicked cell-to-cell spread. Nonetheless, the adjusted model provided a
reasonable approximation, especially compared to the inability of the standard model to infer
the proportion of cells infected by cell-free transmission during progression of infection.

The underestimation of cells infected through cell-free transmission observed in the aCCF-
model was presumably caused by slow viral diffusion mimicking cell-to-cell spread. Next, I
tested, if a standard mass-action kinetics model was able to describe cell-free transmission
dynamics obtained from the ABM. To this end, the agent-based model was simulated with
slow and fast viral diffusion and without cell-to-cell spread (Fig. 5.6C). Indeed, fitting the
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Fig. 5.6. Disentangling viral transmission modes. (A) Simulated data for a scenario assuming simultaneous
occurrence of both transmission modes with slow diffusion of cell-free virus. The mean and 95%-CI for
the total number of infected cells averaged over 100 individual ABM-simulations sampled every 24 hours
are indicated with black dots and black lines, respectively. Lines show the best fits of a model without
(CCF-model, magenta, Eq. (5.1)) or with adjusted cell-to-cell transmission dynamics (aCCF-model, green,
Eq. (5.6)) fitted to the number of infected cells. (B) The predicted and observed (black dots) proportion
of cells infected by CF-transmission. While thick lines indicate the best fit of the respective models, 95%-
CI are shown with shaded areas and individual example fits with thin dashed lines. Confidence intervals
shown here were calculated from 2×103 individual fits using random starting conditions and considering
all parameter combinations within 3.84 of the best MLE. Colors correspond to the same models as in
(A). Confidence interval for the CCF model stretched to 100% cells infected by cell-free transmission,
but was cropped at 50% in this figure for illustration purposes. (C) ABM-simulations only allowing
CF-transmission to occur with slow (gray) and fast viral diffusion (black). Lines indicate the best fit of the
standard model (Eq. (5.1) with βc = 0) to the in silico data with slow (blue line) and fast viral diffusion
(rose-colored line). (D-F) ABM-simulations with fast viral diffusion only considering CF-transmission
(gray) or simultaneous occurrence of both transmission modes (black). Here, both scenarios were fitted
simultaneously to the number of infected cells (D) and the dynamics of the extracellular viral load (E).
(F) The observed (black) and predicted proportions of cells infected through CF-transmission during
simultaneous occurrence of both transmission modes. While the 95%-CI of the CCF-model was too
narrow to visualize, it is indicated with the shaded green area for the aCCF-model. Corresponding
parameter estimates for each of the different models are shown in Table 5.2. Figure adapted from [12].
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standard model of virus dynamics (CF-model, Eq. (5.1) with βc = δI = δT = 0) showed that
infection dynamics with slow viral diffusion could not be captured by this model. This could be
linked to occurrence of spatially confined infections rather than a homogeneous distribution
of infected cells, which breaches the assumption of a well-mixed system (Fig. 5.6C). However,
assuming fast viral diffusion rates (approximately 165 times faster) the agent-based model
resembled a well-mixed system, thus, allowing the CF-model to correctly describe the infection
dynamics (Fig. 5.6C). Thus, cell-free transmission can only be quantified correctly for fast
viral diffusion rates.

In a next step, following a similar approach as taken by Iwami et al. [70], I tried to disentangle
the contribution of each transmission mode using two distinct in silico data sets, i.e., one with
the simultaneous occurrence of both transmission modes and one with blocked cell-to-cell
spread. Here, the diffusion of virus was assumed to be a fast process. Under these conditions
both models, CCF and aCCF, provided a good description of the dynamics for infected cells
as well as the extracellular viral load (Fig. 5.6D+E). Fitting this data, the necessity of the
adjustment term vanished due to the constant formation of new foci through cell-free spread
(∆AICc = 9.5, Table 5.2). This lead to small foci sizes and, thus, a high proportion of
cell-to-cell contributors, which only decreased due to target cell limitations at late stages of
the in silico experiment. Therefore, both models lead to similar estimates for the cell-free and
cell-to-cell transmission rates, βf and βc, respectively (Table 5.2). Surprisingly, despite the
correct description of the infection kinetics (Fig. 5.6D+E), both models overestimated the
proportion of cells infected by cell-free virus (Fig. 5.6F).

Summarizing, the population-dynamics models presented here provided a rough approxi-
mation for the proportion of cells infected by either transmission mode assuming fast viral
diffusion and separate quantification of the transmission kinetics. In this scenario, however,
no evidence for the application of the adjusted model was found. For slowly diffusing virus, in
contrast, the aCCF-model is recommended as it correctly described the data and provided a
better approximation of the contribution of each transmission mode to the infection dynamics
than the previously published CCF-model.

5.8 Evaluating the transmission dynamics of HIV-1
spread in vitro
In Chapter 3, I already showed that the contribution of transmission modes to the infection
dynamics of cells cultured in suspension presumably varied between my results and previously
published results [70]. To investigate a possible impact of the modeling approach on the
obtained contribution of cell-free transmission during infection in the previous study, I re-
analyzed their data on the spread of HIV-1 in vitro [70]. In this data set Iwami et al. either
kept their cell culture under static or shaking conditions. In the latter this inhibited cell-cell
contacts and, therefore, blocks cell-to-cell spread without influencing cell-free transmission
[20, 70].

When applying the adjusted model to this data, one should have in mind that HIV-1 primarily
infects motile cells. However, assuming no prior knowledge on T cell migration, e.g., due to
limited insight into the motility of T cells in high cell densities as observed in aqueous media,
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the adjustment term might prove useful, even though this neglects the fact that cells are not
stationary in this context.

In this section, I compared the previous approach by Iwami et al., which was based on mass-
action kinetics (CCF-model, Eq. (C.3)), to an adaptation of the aCCF-model (see Table C.2 for
more information). To this end, I fitted the data obtained from the static and shaking cell
cultures using the mean parameters for viral loss, c, target cell proliferation, λT and carrying
capacity, TC , as published in [70]. Following their hypothesis, I assumed complete blocking of
cell-to-cell spread in the shaking culture, i.e., βc = 0.

In general, introducing a delay on the viral production of infected cells rendered the biggest im-
provement on model predictions compared to the previously published model [70] (Fig. 5.7A,
magenta and blue lines, ∆AICc = 31.7 of CCF-model vs. CCF-dp-model, Table C.3). Addi-
tionally incorporating the adjustment term, i.e., accounting for decreasing proportions of
cell-to-cell contributors, further improved model predictions. In particular, it provided a
better description of the kinetics observed in the shaking culture (Fig. 5.7A, blue and green
lines, ∆AICc = 4.4 of aCCF-dp-model vs. CCF-dp-model, Table C.3). As observed previ-
ously, the estimate of the cell-to-cell transmission rate was slightly higher in the adjusted
model with delayed viral production (aCCF-dp), than in a model neglecting the adjustment
term (βc = 1.59 [1.26, 2.15] × 10−6(p24 day)−1 in aCCF-dp vs. βc = 1.01 [0.84, 1.18] × 10−6

(p24 day)−1 in CCF-dp) (TableC.3). Accordingly, the cell-free transmission rate was estimated
to be lower in the latter model (βc = 5.58 [4.88, 6.78] × 10−6 (p24 day)−1 in aCCF-dp vs.
βc = 4.19 [3.39, 5.30]×10−6(p24 day)−1 in CCF-dp). While the value of the introduced delay
obtained from the best fit varied between the CCF-dp- and aCCF-dp-model, the 95%-confidence
intervals overlapped (τ = 0.9 [0.75, 1.82] vs. τ = 1.76 [1.51, 1.87]). Thus, in agreement with
previous publications [147, 148], an HIV-infected Jurkat cell probably needed between 21
and 44 hours until viral production was initiated in this experiment. Viral production and
death of infected cells were comparable between models (Table C.3).

Even though cells used in this experiment were motile T cells, the adjusted model provided a
better description of the data than a model assuming a well-mixed system. The improvement
in this set-up could stem from locally constrained cellular movement due to high cell densities
or the formation of syncytia during the course of infection. While the basic model (CCF-model)
as used by Iwami et al. [70] predicted a nearly constant proportion of approximately 60% of
the infections being due to cell-to-cell transmission, the extended models showed oscillatory
behavior of this fraction with values between 25% and 75% (Fig. 5.7B). Thus, the contribution
of each transmission mode to HIV spread in vitro could be more dynamic than previously
suggested. Interestingly, following the analysis from Chapter 3, suspension and loose collagen
did not show oscillations with regard to the contribution of transmission modes. However, in
dense collagen slight oscillations were observed.

5.9 Discussion

In this chapter, I showed that previously used population-based modeling approaches fall
short when trying to explain spatially heterogeneous infection patterns. Those patterns
can be observed in stationary or slow-moving cell cultures without cell-free transmission
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Fig. 5.7. In vitro spread of HIV-1 in shaking and static cell cultures. (A) Performance of different models in
describing the data published in [70]. The measured dynamics of the average densities of uninfected
(top) and infected cells (middle), as well as the viral load (bottom) from three independent experiments
are indicated with black dots. In comparison to Iwami et al. [70], who analyzed each experimental run
individually, I performed my analysis on pooled data, i.e., the mean value calculated from the individual
experiments per time point. Nonetheless, parameter estimates for the CCF-model were comparable
between the two approaches (see Table C.3). Model predictions for the standard model (CCF, magenta),
the standard model accounting for a viral eclipse phase (CCF-dp, blue) and, additionally, considering
the adjustment term (aCCF-dp, green) using the best parameter fits as given in Table C.3 are shown
here. (B) Predicted CF proportion of total infected cells in the static culture at any given time. Black
line indicates the CF proportion published in [70]. Confidence intervals shown here were calculated
from 2×103 individual fits using random starting conditions and considering all parameter combinations
within 3.84 of the best MLE.

(Fig. 5.4A and Fig. 5.5B) or a slowly diffusing virus (Fig. 5.6C). The difficulty mass-action
kinetics models encounter when trying describe this kind of infection dynamics is to be
expected as they generally assume a well-mixed system and, thus, implicitly that all infected
cells contribute to cell-to-cell spread. However, the proportion of contributors decreases
with increasing focus sizes as infected cells get surrounded by other infected cells leaving
no target cells to infect during progression of infection. A model not accounting for the
decrease of cell-to-cell contributor proportions leads to overestimation of infected cells that
actually drive the spread of infection. Therefore, such a model cannot explain the decelerated
infection dynamics. This shortcoming could be compensated by introducing an adjustment
term accounting for the decreasing proportion of cell-to-cell contributors during progression
of infection as developed in this chapter (Fig. 5.4B and Fig. 5.5C). The adjusted model was
able to explain the decelerated infection dynamics observed for a virus solely spreading
through cell-to-cell transmission among stationary cells. Furthermore, it correctly predicted
the proportion of cell-to-cell contributors over time. Merging and heterogeneous growth of
multiple foci was also captured by the adjustment term (Fig. 5.5).
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In general, to disentangle the contribution of cell-free and cell-to-cell transmission, during
simultaneous occurrence, is a challenging task for mass-action kinetics models even when
accounting for the loss of contributors (Fig. 5.6). Nonetheless, when cell-free virus diffused
slowly, the adjusted model provided better approximations of the proportion of cells infected
through either transmission mode than previous approaches (Fig. 5.6A+B). However, in this
scenario the contribution of cell-free spread to infection was underestimated at late stages
of the experiment due to slow viral diffusion leading to locally confined cell-free infections,
thus, mimicking cell-to-cell transmission. Analyzing experiments with one transmission mode
blocked for separate quantification [70, 117], might be helpful to get better predictions.
Unfortunately, cell-free spread needed fast viral diffusion to be reasonably well described by
population-dynamics models (CF-model, Fig. 5.6C), which in turn impaired the performance
of ODE models as they had difficulties describing the formation of new foci as well as the
synergistic effects observed for the simultaneous occurrence of both transmission modes
(Fig. 5.6F).

Without assuming prior knowledge on the motility of T cells, I re-analyzed data on the spread
of HIV-1 in vitro [70] using the newly derived adjusted model. My novel approach described
the data best, hinting towards locally confined cellular movements or the formation of syncytia
as both explanations would result in the formation of large foci of infected cells. However,
incorporating a delay on virus production exhibited the biggest improvement. Both models
showed a more dynamic and oscillatory behavior of proportions of cells infected through
either transmission mode during the experiment than suggested by Iwami et al. [70] with
phases of cell-to-cell or cell-free dominated spread (Fig. 5.7B). This oscillatory behavior
presumably arose from the interplay between both transmission modes. Limited cell-to-cell
transmission due to decreasing proportions of cell-to-cell contributors could be compensated
by the formation of new foci by cell-free spread. These dynamics could be observed if cell-to-
cell transmission was more efficient or virus diffused slowly leading to large foci of infected
cells (see also Chapter 4). For HIV this could in principal be the case as cell-to-cell transmission
has been estimated to be 100-18.000 times more effective than cell-free spread [18, 19].
Similar predictions have been reported for other viruses as cell-to-cell transmission shields
the virus from host neutralizing antibodies and other viral clearance mechanisms [10, 14].
However, these findings on the efficacy of cell-to-cell spread might be specific to the utilized
experimental conditions as pointed out in Chapter 3 and 4.

The adjusted model presented here, can be viewed as a first step towards improved quantifica-
tion of cell-to-cell transmission among stationary cells using population-based measurements.
However, the shortcomings of mass-action kinetics models during the simultaneous occurrence
of both transmission modes, showed the necessity of more elaborate models. Individual
cell-based approaches, such as agent-based or cellular Potts models presented here (Chapter 4)
and elsewhere [106, 109], might be able to allow a more detailed description and analysis of
the transmission kinetics. Combining more sophisticated data, which does not solely rely on
bulk measurements, with advances in computational methods allowing parameter estimation
for stochastic models (see Chapter 4 and [149]), could enhance the possibility to infer the
infection kinetics and predict the correct contribution of each transmission mode to viral
spread for different pathogens.

98 Chapter 5 Quantification of cell-to-cell transmission among stationary cells using virus dynamics models



Part IV

General discussion





6General discussion

The way a virus spreads within tissues using cell-free and cell-to-cell transmission strongly
influences the infection dynamics and also affects possible targets for drug and vaccine develop-
ment. While several experimental studies have tried to shed some light on the efficiency of
transmission modes [9, 18–20], they were limited in their attempt to disentangle the contribu-
tion of transmission modes to the infection dynamics due to experimental limitations. On that
account, it is surprising that from a mathematical modeling point of view the disentanglement
of transmission modes has been a neglected field of study with only few publications address-
ing this topic [70, 111, 150]. Interestingly, most studies including mathematical modeling
predict higher contributions of cell-free transmission than would be anticipated from studies
only relying on experimental data (with the exception of HBV, where both, experiments and
modeling, predicted mainly cell-free transmission [111]). To enhance the limited literature
on mathematical modeling of cell-to-cell spread, I studied the dissemination of HIV and HCV,
viruses capable of infecting cells with both modes of transmission, under different conditions
with various modeling approaches.

6.1 Contribution of transmission modes to the infection
dynamics is shaped by the environment

From previous studies it has become evident that mathematical modeling in combination with
experimental data can give valuable insights not achievable otherwise (e.g. [90, 92]).

To guide drug and vaccine development efficiently, knowledge of the contribution of cell-to-cell
transmission in the context of viral infections in vivo would be helpful. However, without the
ability to measure quantities governing the infection dynamics in-detail, e.g., viral load or
number of infected cells in lymph nodes over time, or sufficient possibilities to modify certain
within-host aspects, such as cell densities in lymph nodes, disentangling the contribution of
transmission modes in vivo is not yet within reach, given the available experimental tools. So
far, in vitro studies have not been designed carefully enough or mathematical models were not
sufficiently detailed to obtain in vitro results transferable to in vivo situations with respect to
the utilized transmission modes of particular viruses [21, 70, 99]. In an attempt to resolve the
problems of transferability between in vitro and in vivo situations, I studied the spread of HIV
and HCV under varying conditions with different modeling approaches. This revealed that
the contribution of the transmission modes to the infection dynamics depended on a variety
of factors, such as the amount of externally provided lipids or the density of cells. The latter
could be linked to the provided extracellular micro-environment, which could either lead to a
dense monolayer of cells in the case of aqueous media or serve as a scaffold for motile cells
allowing exploration of all space dimensions in collagen environments. While my analysis
gave no clear cut answer for the in vivo situation with regard to the predominant mode of
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transmission utilized by HIV and HCV, it still provided quantification of the transmission
modes in specific conditions. This comes as no surprise, because my analysis showed that the
studied viruses were able to adapt to the encountered extracellular environments, therefore
impeding statements as to which transmission mode is used mainly in vivo, where the virus
is confronted with various environments. In contrary to the general opinion that cell-to-cell
transmission is orders of magnitude more efficient than cell-free transmission and, thus, plays
a dominant role in the infection dynamics [9, 18–21], I found conditions under which cell-free
transmission was the main contributor. For example, in a lipid-rich environment HCV spread
mainly by cell-free transmission and in the case of HIV this was predicted in aqueous media
with its high cell densities.

Using the best fitting parameter set, my studies on HIV predicted approximately 0%, 60%, 80%
cell-to-cell infected cells in aqueous media, dense collagen, and loose collagen, respectively,
with estimates ranging widely, reaching values of up to 100% in all environments (see
Chapter 3). However, irrespective of the exact estimates, viruses in collagen environments
exhibited a stronger shift towards cell-to-cell transmission in comparison to aqueous media.
The low densities of CD4 T cells observed in collagen environments result in large distances,
which need to be covered by the virus until encountering a target cell, presumably causing
differences in the contribution of cell-free transmission between aqueous media and collagen.
A virus diffusing in the extracellular space is exposed to immune pressure as it may be
encountered by patrolling immune cells. Covering large distances therefore increases the risk
of being detected by the immune response and, additionally, of loosing infectivity. With this
knowledge a shift towards cell-to-cell transmission in the context of low cell densities seems a
beneficial or even necessary strategy for HIV. Comparing data obtained from bovine (loose)
and rat tail (dense) collagen revealed that infection of T cells was more efficient in dense
than loose collagen, which could be linked to differences in the velocity profiles of T cells
[69]. This presumably illustrates, why viral spread is predominantly observed in the lymph
node, a densely packed 3D structure similar to the dense collagen environment [63]. High
target cell densities as observed in lymph nodes lead to an increase of the total number of
long contacts between uninfected and infected cells compared to other tissues. Following my
analysis, this could promote cell-to-cell spread, therefore cell-to-cell being the predominant
transmission mode in the lymph node. Because transfer of drawn conclusions from in vitro
to in vivo situations is desirable and the collagen environment resembles the lymph node
more closely, this highlights the importance of 3D cell cultures in the context of HIV infection
[63].

In contrast to HIV, a monolayer of cells seems a reasonable set-up to study HCV in vitro as
hepatocytes in vivo also form dense layers of stationary cells. Although in vivo hepatocytes
occur in a 3D structure, using a 2D system in vitro should not affect the results, because the
liver is a regular organized organ, where each space dimension can be treated equally. At
first glance, the contribution of cell-to-cell transmission to HCV infections of Huh7 cells in a
monolayer appeared to vary largely across identical experiments, assuming values between
25% and 75% of cell-free infected cells after an initial phase, during which only cell-to-cell
transmission was exploited (see Chapter 4). On a second look, when analyzing the precise
experimental setup, it showed that my collaborators had changed the fetal bovine serum (FBS)
supplied to the cells between experiments (before change: Exp. 29C and 29D, after change:
Exp. 29I and 29J). The discrepancy could therefore be linked to varying compositions of the
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FBS, providing uneven amounts of lipids. Referring to the data obtained from the various
experiments, proliferation and infected cell counts were higher in experiments performed after
change of the FBS, hinting towards a serum richer with lipids. Tying in with these observations,
previous publications showed that lipids were necessary for hepatocyte proliferation [151]
and viral replication of HCV [141, 142, 144]. This theory was supported when additionally
fitting Exp. 29I resulted in similar dynamics of the contributions of cell-free transmission as
predicted for Exp. 29J. The missing lipids in the earlier experiments could also result in lower
numbers of cell-free infected cells as lipids previously have been associated with viral release
[142]. To study HCV spread in vivo, several studies made use of single cell laser capture
microdissection, which lead to the discovery of focal distributions of infected cells in the liver
[101, 152, 153]. While the infection patterns could be linked to cell-to-cell transmission, my
results show that in case of slow viral diffusion clustering is also observed for high proportions
of cell-free infected cells as seen in Exp. 29J. A strong contribution of cell-free spread in the
liver would go hand in hand with high availability of lipids in this organ.

Besides adaptation of the virus to changing environments, my studies also offered valuable
clues on why HCV and HIV have evolved and kept two separate modes of transmission. For
example, in case of HCV a synergistic effect between transmission modes was predicted in this
thesis, which could act as an evolutionary benefit. For a virus to keep both modes of transmis-
sion is presumably less energy efficient than entertaining only one of them. Nonetheless, the
possibility of adapting to different environments and the synergistic effect between transmis-
sion modes seems to provide HCV with an evolutionary advantage counteracting a possibly
less energy-efficient strategy when possessing two separate transmission modes. In the context
of HIV infections, my results showed strong dependence of the contribution of transmission
modes with regard to the encountered extracellular environments. As HIV moves through the
body, it encounters various tissues, thus, making both transmission modes indispensable. My
analyses showed that HIV and HCV are capable of spreading within different environments
exploiting both modes of transmission to adapt to various environments. Unfortunately this
means that a drug or vaccine would have to block both transmission modes simultaneously.
Otherwise the virus would most likely escape the pressure applied by the drug or vaccine.
Effective vaccines or drugs therefore need to attack either early points in the viral life cycle or
components involved in both transmission modes.

6.2 Modeling approach influences predicted contribution
of transmission modes

The ability to determine the contribution of each transmission mode to viral spread and,
thus, to judge their biological importance also depends on the modeling approach. To
enhance the knowledge on the effect of different modeling approaches to the contribution of
transmission modes during viral infections, I studied viral spread in the context of stationary
cells (Chapter 5). Here, a standard mass-action kinetics model missed to capture the infection
dynamics even in the simplest form, i.e., one cell, infected with a virus only capable of using
cell-to-cell transmission, initially seeded in the middle of a well. Extending this model with
an adjustment term, which took the decreasing proportion of cells contributing to cell-to-
cell transmission with increasing focus sizes into account, allowed correct description and
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quantification of this process. Assuming slow viral diffusion, my adjusted model, in contrast
to the standard model, was able to recover the changing proportion of cell-free infected cells
during simultaneous occurrence of both transmission modes over the course of the in silico
experiment. Although faster viral diffusion allowed similar performance of both models, they
failed to recover the correct proportion of cell-free infected cells.

To what extent the motility of cells in the context of HIV might circumvent spatial limitations,
allowing constant mixing between target and infected cells, still remains to be investigated.
An indication towards the need to apply the newly developed adjustment term even for motile
target cells could be my results obtained in Section 5.8, where I fitted the adjusted model
to a previously published data set [70]. This revealed a varying contribution of cell-free
transmission to the infection dynamics, which was not captured by the authors of this study
using the standard mass-action kinetics model. However, improvement was just minor with
the largest difference stemming from incorporating a delay between infection and start of
viral production. The data described in Chapter 3 could give more insights on this topic in the
context of motile target cells.

Altogether, my analyses showed that a correct description of cell-to-cell spread is important
to obtain reliable results. In motile cells, the contact duration between cells is an essential
factor that should be captured by the applied model. When it comes to stationary or slow
moving cells, local constraints on the infection exerted by cell-to-cell transmission should also
be incorporated into the model used to analyze the infection dynamics. Several possibilities to
include a spatial dimension have been studied. For example, Funk et al. used a grid-based
approach to discretize partial differential equation models describing virus-immune dynamics
[134]. This revealed that spatially homogeneous and heterogeneous models behaved consid-
erably different, especially with regard to the infected cell numbers at peak of infection. Other
possibilities include agent-based [104, 109] and cellular Potts [105, 106] models. Especially
in the case of HIV, the latter seems a necessary choice for future modeling approaches as it is
able to account for cell motility, a factor that can influence HIV infections among PBMCs.

6.3 Mathematical modeling of cell-to-cell transmission in
other studies

Interestingly, most publications treating cell-to-cell spread mathematically have acknowledged
the spatial dimension of this transmission mode and have refrained from simple mass-action
kinetics models applying more complex models. Following a similar approach as presented
in Chapter 4, Yakimovich et al. were able to show that the infection dynamics of Human
Adenovirus could be described solely with cell-free transmission [150]. They infected human
lung carcinoma cells in a monolayer and overlaid some wells with agarose. This blocked con-
vection and therefore far-range diffusion of cell-free viral particles. However, they neglected
cell-to-cell spread completely and the impact thereof was not discussed in their publication.
For the duck hepatitis B virus, the experimentally derived hypothesis of cell-free transmission
being the main source of infection [154] was validated using an agent-based model [155].
They also hypothesized that the virus under immune pressure might be able to adjust its
strategy shifting towards more efficient cell-to-cell transmission [155], which is in line with the
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findings presented in this thesis. In a different study considering only cell-to-cell transmission,
Miyashita et al. estimated the number of viral genomes establishing infection of cells with the
tomato mosaic virus [156]. For HCV a study on the efficiency of transmission modes is still
lacking. In the context of HIV infections, several publications have tried to disentangle the two
transmission modes. The first publication, combining experimental data with mathematical
modeling to estimate the efficiency of transmission modes, stated that the efficiency of cell-to-
cell was orders of magnitude higher than cell-free transmission [21]. Since they co-cultured
uninfected with infected cells or viral inoculum produced by the same number of infected
cells, their result was most likely biased as described in the Introduction. The first study
presenting an estimate for the actual contribution of cell-to-cell transmission to HIV infection
dynamics in vitro was published by Komarova et al. [99], closely followed by a publication
of Iwami et al. [70]. Both studies predicted between 50% and 60% of infections occurring
due to cell-to-cell transmission. While this gave a first rough estimate during steady state,
they neglected the dynamics of the predicted contribution and, using a simple-mass action
kinetics model, presumably further impaired their predictions (see Chapter 5). Comparing
their result to mine is difficult due to their usage of a cancerous cell line. Their estimate of
approximately 50% was considerably lower than the best estimate obtained in Chapter 3,
with almost exclusive occurrence of cell-free infections in aqueous media. However, the large
confidence interval found in my analysis with regard to this estimate could not exclude the
possibility of comparable results.

6.4 Outlook

Besides providing us with new insights, proper research always leads to new unknowns that
need unraveling. Along those lines, the research presented in this thesis is far from done and
gives various possibilities to extend it.

My studies on PBMCs in several environments revealed the necessity of an adaptation phase
to describe the data. As this has to my knowledge neither been reported nor studied, the
mechanisms governing this process are not yet known and would need more work to be
identified. Furthermore, the implications of previous models omitting the adaptation phase
with regard to parameter estimates should be analyzed and previously published values
adjusted accordingly. Although overfitting the data, a model including pyroptosis, i.e., an
inflammatory process describing cells lost by apoptosis during HIV cell-to-cell transmission,
allowed better description of the data than a model without pyroptosis. If this process
is an artifact of in vitro infection of kidney cells or could also be observed in PBMCs is
still unresolved. An interesting fact not directly related to cell-to-cell transmission was the
enhanced viral production in aqueous media compared to collagen environments. To address
this point, intracellular measurements would be most informative.

Concerning my agent-based model, more confidence in the predictions could be gained, if the
model would resemble the data more closely, especially with regard to the comparatively high
number of small foci in the model. In this thesis, I raised the hypothesis that the lipid content
of the used FBS impacted the contribution of the transmission modes largely. To address this
point, the lipid content of the respective sera could be measured and compared for differences.
Subsequently, spread assays could be performed enriching the lipid-poor FBS with lipids found
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in the lipid-rich serum. Another possibility of extending my work would be to study how the
assumed delay between time point of infection and detection of 18 hours, which was the
lower bound for delays reaching more than 48 hours for some cells, affected my results.

Furthermore, my hypothesis of varying contributions of transmission modes in different
environments would benefit largely from experimental validation. As long-term dynamics
are not feasible in the presented experimental protocol used for HIV spread due to observed
cell death after 21 days in culture, one could imagine an experiment with varying densities
of target cells. These data could be used to validate the predictions presented in this thesis.
In the case of HCV, a possibility to enhance parameter identifiability would be to add higher
anti-E2 concentrations, allowing complete blocking of cell-free transmission over the whole
course of the experiment.

From a theoretical point of view, my newly developed adjustment term could be improved by
incorporating the formation of new foci. A different possibility would be to analyze the influ-
ence of non-productively infected cells on the perimeter of foci and adapt the adjustment term
accordingly. An interesting study could be to investigate how movement of cells challenges
the necessity of the adjustment term with the help of in silico data obtained from a cellular
Potts model (CPM), especially as this could confirm the hypothesis of slow moving Jurkat cells
predicted for the experimental protocol followed in [70].

Finally, there are many viruses which were not yet or only experimentally studied in the context
of exploiting different viral transmission modes [7]. For example, cell-to-cell transmission
of the human cytomegalovirus (HCMV) is known to occur through cell-cell fusion [157].
Experimental findings associate cell-to-cell spread mainly with clinical HCMV, whereas cell-
free spread is thought to play a dominant role in passaged laboratory strains [158]. For
the measles virus experimental data suggested that cell-to-cell transmission is the main
contributor to new infection within host and cell-free virions are believed to regulate the
inter-host infections [159]. Forming different viral particles vaccinia virus, essential part of the
only vaccine that eradicated a disease [160], namely small pox, is able to disseminate via cell-
to-cell and probably cell-free transmission [161]. Several other viruses are also able to exploit
both modes of viral transmission within hosts [7]. Applying any of the approaches presented
in this work could add to the existing knowledge of the studied viruses. Because cell-to-cell
transmission is often linked to chronic infections [14–16], its role should be evaluated for
more viruses. Studying the evolutionary advantage of viruses with regard to the contribution
of transmission modes to the infection dynamics would also be interesting. The question, if
there is an optimal cell-free to cell-to-cell ratio and what the influencing factors of such a ratio
are, could be addressed with any of the models presented in this thesis.

In summary, I have presented several techniques to quantify cell-to-cell spread and its con-
tribution to the infection dynamics of viruses exploiting both modes of transmission. While
mass-action kinetics models feature many advantages over more elaborate models, the latter
should be favored, if the data are sufficiently resolved, as complex models, e.g., ABM or CPM,
are able to describe the experimental data with more detail. Furthermore, I have highlighted
the necessity of carefully choosing experimental protocols as they can have a strong impact
on virus dynamics. To allow generalization and translation to in vivo situations, structures
resembling the environments found in the body should be used to study viruses in a setting
close to their natural habitat.
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AAdditional Material to Chapter 3:
Environments shape cell-to-cell
spread during HIV infections

A.1 Profile likelihoods for T cell dynamics in different
environments
Profile likelihoods for parameters of model (3.1). The adaptation phase was fixed to 2.5 days.
For illustration purposes all y-axes were scaled such that ∆MLE(i) := MLE(i)−min(MLE).
The 95%-confidence intervals, i.e., ∆MLE = χ2(0.05, 1) ≈ 3.84 (see Section 2.2.2 for more
information), are indicated by the dashed black line. Best fitting parameter values with
95%-confidence intervals are shown in Table 3.1.

Suspension
Loose
Dense

0

0

0.1 0.2 0.3 0 0.5 1

1 2 0 0.5 1 1.5 0 0.2 0.4

δCD8 [day-1]

δCD4 [day-1]

TC [106 cells] 

λCD4 [day-1]λCD8 [day-1]

0

5

10

0

5

10

Δ
M

LE
Δ

M
LE

A C

D E

B

Fig. A.1. Profile likelihoods for parameters governing T cell dynamics. For illustration purposes, y-axes were
scaled such that ∆MLE(i) := MLE(i) − min(MLE). 95%-confidence intervals are indicated by the
dashed black line. Shown are the profile likelihoods for proliferation rates of CD8 (A), CD4 (B) and
death rates for CD8 (C) and CD4 (D). Panel (E) displays the capacity of T cells per well. The different
environments are indicated in solid red (suspension), solid blue (loose) and dashed green (dense) lines.
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Fig. A.2. Profile likelihoods for parameters governing infected cell turnover and viral kinetics. For illustra-
tion purposes, y-axes were scaled such that ∆MLE(i) := MLE(i) − min(MLE). 95%-confidence intervals
are indicated by the dashed black line. Black lines representing profile likelihoods imply equal values
across environments. (A) Profile likelihood of the target cell fraction of initially non-productively infected
cells. The profile likelihoods of the viral production rate (B), death rate of infected cells (C) and viral
diffusion rate (D) are also shown. The different environments are indicated in solid red (suspension),
solid blue (loose) and dashed green (dense) lines.

A.2 Profile likelihoods for HIV virus dynamics in different
environments

Profile likelihoods for parameters of model (3.2). Average eclipse phase for non-productively
infected cells, i.e., 1/κI , was set to 17.3 hours and half-life of RT activity, cv, was fixed to
38 hours. As in the previous section, y-axes were scaled such that ∆MLE(i) := MLE(i) −
min(MLE) and the 95%-confidence intervals are indicated by the dashed black line. Best
fitting parameter values with 95%-confidence intervals are shown in Table 3.2.

A.3 Profile likelihoods for HIV infection kinetics in
different environments

Profile likelihoods for parameters of model (3.3) without death by abortive infections, i.e.,
the Rp-model. Additionally to the above assumed rates, I fixed the half-life of viral infectivity
to 17.9 hours and efficiency of cell-free transmission was decreased in collagen to 14% of
its efficacy in suspension, i.e., βcoll

f = 0.14 × βsusp
f . Again, y-axes were scaled such that
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Fig. A.3. Profile likelihoods for parameters governing the infection dynamics. For illustration purposes, y-
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the dashed black line. Black lines representing profile likelihoods imply equal values across environments.
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refractory cells (B) and infective proportion of total virus in culture (C). In panel (D) the proliferation
rate of refractory cells is displayed. Finally, panels (E) and (F) show cell-free and cell-to-cell transmission
rates, respectively. The different environments are indicated in solid red (suspension), solid blue (loose)
and dashed green (dense) lines.

∆MLE(i) := MLE(i) − min(MLE) and the 95%-confidence intervals are indicated by the
dashed black line. Best fitting parameter values with 95%-confidence intervals are shown in
Table 3.3.

A.4 Adaptation of recently published model describing
HIV infection dynamics

To compare my models to an already published approach by Iwami et al., I adapted their
model and fitted it in a stepwise approach as described in Chapter 3. The HIV infection
kinetics model is termed Standard model.

The underlying model describing T cell dynamics for model Standard is as follows

dTCD8

dt
= λCD8TCD8

(
1− TCD8 + TCD4

Tc

)
dTCD4

dt
= λCD4TCD4

(
1− TCD4 + TCD8

Tc

)
with TCD8(0) = TCD8,0, TCD4(0) = TCD4,0

(A.1)

Here, CD8 and CD4 cells proliferate with rates λCD8 and λCD4, respectively, competing for
resources until a capacity Tc is reached. This model is comparable to model (3.1) without
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adaptation phase and death of T cell subsets. To follow the approach in [70], I fitted initial
conditions for CD8, TCD8,0, and CD4 cells, TCD4,0.

Description of the T20 experiment was accomplished using model (3.2) without explicitly
following non-productively infected cells, which then served as underlying model for the
Standard model. Additionally, I did not account for the change of media, which lead to the
following model

dI

dt
=− δII

dVc
dt

=ρI − cvVc − κvVc
dVs
dt

=κvVc − cvVs

with I(0) =fI(T0 + I0), Vc(0) = Vc,0 and Vs(0) = Vs,0,

(A.2)

where I assumed one parameter describing the initial proportion of infected cells across all
environments. Furthermore, T0 and I0 are target and infected cell counts, respectively, as
observed in the experiments.

In a last step, model (3.3) was adapted to resemble the model as described in [70]. To this
end, refractory cells, non-productively infected cells and non-infective virus in culture were
not followed explicitly. However, to some extent initial conditions were allowed to vary, i.e.,
I fitted an initial proportion of CD8 cells, TCD8,0, within the pool of all T cells, Tall,0. In
addition, an initial proportion, fI , of target and infected cells as observed in the experiments
was fitted across all environments. Besides that I accounted for variability of measurements at
the start of the experiment in viral titers by fitting an initial proportion of virus in culture and
supernatant, respectively. Furthermore, no adaptation phase, change of media, death through
abortive infection or death of uninfected T cells was considered. In summary, the model reads
as follows

dTCD8

dt
= λCD8TCD8

(
1− TCD8 + T + I

Tc

)
dT

dt
= (λCD4T

(
1− TCD8 + T + I

Tc

)
− βfTVi − βcTI

dI

dt
= βfTVi + βcTI − δII

dVi
dt

= ρI − ciVi − κvVi
dVs
dt

= κV Vi − cvVs,

with TCD8(0) = TCD8,0, T (0) = Tall,0 − TCD8,0, I(0) = fI(T0 + I0), Vi(0) = Vi,0, Vs(0) = Vs,0 .
(A.3)

Here, T0 are the target and I0 the infected cell counts observed in the experiments.

Fits of model (A.1) and (A.2) are shown in Fig. A.4A and B, respectively. Fits of the infection
dynamics model (A.3) can be seen in Fig. A.5.

112 Chapter A Additional Material to Chapter 3: Environments shape cell-to-cell spread during HIV infections



CD8 
cells

CD4 
cells

Time [days]

Suspension Loose Dense

C
el

ls
 [x

10
5 ]

C
el

ls
 [x

10
5 ]

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
0

0

1

2

3

0.5

1

1.5

Infected 
cells

Virus in 
culture

Virus in 
supernatant

Suspension Loose Dense

8

7

6

5

8

7

6

5

0

0.5

1

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Time [days]

C
el

ls
 [x

10
4 ]

R
T

 a
ct

iv
ity

 
[lo

g
10

,μ
l-1

]
R

T
 a

ct
iv

ity
 

[lo
g

10
,μ

l-1
]

1.5

2

B

A

Mean value 
(Experiment)

Individual value 
(Experiment)

Best fit w/ 
95%-prediction band

Fig. A.4. T cell dynamics, infected cell turnover and viral kinetics as predicted by an adapted version of
a previously published model. Shown are mean counts (solid black dots) calculated from three
independent experiments (open black dots) of CD8 (A, top row), CD4 (A, bottom row) and infected cells
(B, top row), virus in culture (B, center row) and virus in supernatant (B, bottom row) in suspension
(left column), loose (middle column), and dense collagen (right column) . (A) Best fit of model (A.1)
(thick red line) with estimated 95%-prediction band (shaded red area) to MOCK data. Environments
were fitted separately. (B) Best fit of model (A.2) (thick red line) with estimated 95%-prediction band
(shaded red area) to T20 data. Environments were fitted simultaneously with the same initial fraction of
measured infected cells. Gray dots were not fitted (see main text for details). Half-life of RT activity, cv,
was fixed to 38 hours.
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Fig. A.5. HIV infection dynamics as predicted by an adapted version of a previously published model.
Shown are mean counts (solid black dots) calculated from three independent experiments (open black
dots) of CD8 (1st row), uninfected (2nd row) and infected CD4 cell counts (3rd row), virus in culture
(4th row) and virus in supernatant (5th row) in suspension (left column), loose (middle column), and
dense collagen (right column). Best fit of the Standard-model (Eq. (A.3), thick red line) with estimated
95%-prediction band (shaded red area) to WT data. All environments were fitted simultaneously with
the same initial fraction of CD8 cells, of virus in culture and of infected cells. Infected cells in loose
collagen were not fitted (indicated in gray, see main text for more information). Parameters already
estimated or fixed previously were adopted here. Efficacy of cell-free transmission was assumed to
decrease in collagen to 14% of its efficacy in suspension, i.e., βcoll

f = 0.14 × βsusp
f .
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A.5 Comparison of estimated proliferation rates for
models with and without adaptation
A model neglecting the initial adaptation phase (Eq. (A.1)) estimated lower proliferation
rates than one incorporating this phase (Eq. (3.1)). Table A.1 shows the ratio of proliferation
rates between model with and without adaptation. As model (A.1) neglected cell death, a
net proliferation rate for model (3.1) was also calculated (Table A.1, lower two rows) and
compared to the estimated proliferation rate of the model including an adaptation phase
(Eq. (3.1)). This ratio revealed that a model neglecting the adaptation phase estimated higher
proliferation rates irrespective the environment and cell type than one with adaptation phase.

Tab. A.1. Proliferation rates for models w/ and w/o adaptation. Comparison of estimated proliferation rates
for model (3.1) (with adaptation) and model (A.1) (without adaptation). Here, the ratio of the estimated
proliferation rates between the former and latter model are given for CD8 and CD4 cells in different
environments. As model (A.1) has no explicit cell death, I also calculated the ratio with an approximated
net proliferation rate, i.e., λnet

adapt := λadapt − µadapt, for model (3.1) in all environments.

Suspension Loose Dense
λadapt/λno_adapt

CD8 2.31 1.87 1.71
CD4 1.94 3.90 4.21

λnet
adapt/λno_adapt

CD8 2.16 1.52 1.24
CD4 1.84 2.75 2.79
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BAdditional Material to Chapter 4:
Contribution of cell-to-cell
transmission to HCV spread in
vitro

B.1 Intracellular HCV replication and export
To parameterize intracellular viral replication and export, my collaborators conducted an
additional experiment (see Section 2.1.2). A mass-action kinetics model was fitted to the
obtained data to estimate the parameters governing intracellular viral replication and export.

B.1.1 In vitro data of intracellular HCV replication and export

In this data set the intra- and extracellular RNA counts per cell were measured at frequent
intervals (Fig. B.1). After an initial decline due to an excess of viral inoculum, the intracellular
RNA counts per cell started to increase after 6 hours p.i. A steady state at approximately 105

cells was reached after 50 hours p.i. The extracellular RNA decreased for longer with the first
clear signal of newly produced extracellular RNA between 36 and 48 hours.

B.1.2 Profile likelihoods of parameters governing intracellular
replication

Profile likelihoods showed identifiability of all parameters governing intracellular viral replica-
tion of HCV in Huh7 cells within small bounds (Fig. B.2). The best fitting parameter set was
used to parameterize viral dynamics in the agent-based model. The profiles of the initial intra-
and extracellular RNA counts, intracellular replication rate, and the capacity of intracellular
RNA per infected cell is shown in Fig. B.2. Furthermore, the profiles of the export rate and
the loss of extracellular RNA rate are presented in this figure. The 95%-confidence intervals,
i.e., ∆MLE = χ2(0.05, 1) ≈ 3.84 (see Section 2.2.2 for more information), are indicated by the
dashed black line.

B.2 Comparison of different experiments
Several experiments were conducted by my collaborators to measure HCV infection kinetics in
a monolayer of hepatocytes. Comparing the experiments showed that cumulative densities of
untreated wells could be binned into two groups consisting of Exp. 29C and 29D on the one
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Tab. B.1. Summary of different pyABC runs fitting in vitro HCV spread in stationary cells. The median
distance of each generation, i.e., 100 accepted particles, is denoted with ε. Number of simulations used
to calculate average cumulative densities and mean number of infected cells is shown in column 3. If
not mentioned in the comments all time points were used for fitting, the diffusion rate was fixed and on
average 35 cells were infected during the initiation period.

Data
Genera-

tions
Simulations

per fit

Total
Evalu-
ations

ε of last
genera-

tion

Lowest
distance

Comments

In silico
data

15 1 35078 1.67 1.31

Exp.
29D

15 1 95826 4.46 3.61

Exp.
29J

12 1 32143 7.42 6.68

Exp.
29J

14 1 64584 4.98 4.23
Neglected 96h p.i.,
diffusion fitted

Exp.
29J

13 5 21013 4.64 3.66

Neglected 96h p.i.,
diffusion fitted, 25
initially infected
cells

side and Exp. 29I and 29J on the other (Fig. B.3A). To some extent this was also visible in
the number of infected cells without anti-E2 treatment (Fig. B.3B). While similarities were
also visible in the anti-E2-treated wells within groups, more deviation was observed between
groups. This could be due to different efficacies or amounts of provided anti-E2.

B.3 Summary of different fitting approaches using
pyABC

I used various approaches to fit my model to the different data sets, which describe HCV
spread among hepatocytes in a monolayer. A summary is shown in Table B.1. As expected the
in silico data provided the smallest distance between measurements and predictions. Because
I used the same number of time points in Exp. 29D and the last pyABC run of Exp. 29J, they
could be compared showing that both experiments were fit equally good with my model as
indicated by the same smallest distance.

B.4 Validation of modeling and fitting approach with in
silico data

I generated in silico data by running the ABM five times with and without administration of
anti-E2 to evaluate the performance of pyABC with respect to recovery of true parameters
and prediction of the correct contribution of cell-free infected cells. The parameters used in
the ABM to generate the in silico data are summarized in Table B.2 and the data are shown in
Fig. B.4. Here, the focus size distributions, the number of foci, infected cells and the average
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Fig. B.3. Comparison of different in vitro experiments of HCV spread. The different experiments are indicated
in orange (Exp. 29C), blue-green (Exp. 29D), blue (Exp. 29I) and purple (Exp. 29J). (A) The average
cumulative densities of focus size distributions at 48 (left), 72 (middle) and 96 (right) hours p.i. of anti-
E2-treated (top) and untreated (bottom) wells. (B) Average numbers of infected cells in anti-E2-treated
(left) and untreated (right) wells. Experiments were performed by the Uprichard lab, Department of
Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois, USA.
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focus sizes are presented. Additionally, the proportion of cells infected through cell-free
transmission obtained from the in silico data at various times can be seen (Fig. B.4C).

An example fit to the in silico data retrieved from pyABC is shown in Fig. B.5, where panel A
and B show the measured (black) and predicted (red) focus size distributions and the number
of infected cells, respectively. I included Fig. B.6 to visualize the estimated kernel densities
and individual particles of the last generation fitting the ABM to the in silico data with pyABC.

Tab. B.2. Parameters used to generate in silico data fitted with pyABC. In contrast to the model describing the
experimental data, cells in re-orientation phase halt their intracellular replication and degradation.

Para-
meter

Description Unit Value

cells Total cells per well cells 24031
% empty

sites
Percent empty sites at start of
simulation

1 0.6

tsim Simulation time h 120
tinit Initialization period h 17
tmc Time of media change h 17 and 72

τ
Average re-orientation time after
successful cell-to-cell
transmission

h 23.0

tprolif
Average doubling time of
uninfected hepatocytes

h 32

αinit
Infection probability during
initialization period

h−1 1.27× 10−3

cinit
Average number of cells infected
during initialization period

cells 35

R0
Initial positive-strand RNA at
infection

RNA 80.07

α Maximal RNA production rate h−1 4.00× 10−3

ρ RNA export rate h−1 3.48× 10−5

Rcap
Capacity of intracellular RNA
per infected cell

RNA 7.74× 104

sf
Scaling factor for CF
transmission probability

(h× intra. RNA)−1 6.00× 10−4

sc
Scaling factor for CC
transmission probability

(h× extra. RNA)−1 0.190

m
Coupling between lattice sites
for viral diffusion

1 0.117

c
Loss of infectivity of
extracellular virus

h−1 1.27× 10−3

E2,0
Initial anti-E2 concentration,
when administered

a.u. 1× 104

cE2
Antibodies necessary to
neutralize one extracellular RNA

anti-E2 × extra. RNA−1 1
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Fig. B.4. In silico data used to evaluate performance of pyABC. The in silico data was generated using the
ABM described in Section 4.3 with parameters shown in Table B.2. In silico measurements were shifted
by 18 hours to model a delay between detection of infected cells and time point of infection mimicking
the experiments. (A) Mean focus size distributions calculated from 5 individual simulation runs with
(blue) and without (red) administration of anti-E2. (B) Mean number (solid circles with colored lines)
of foci (left), infected cells (center) and average focus sizes (right) at four time points calculated from
5 individual simulation runs (open circles) with (blue) and without (red) administration of anti-E2.
(C) Average percentage of cell-free infected cells with 95%-confidence intervals calculated from five
individual ABM simulations at 2, 3, 4 and 5 days post infection. The data are shifted slightly for
illustration purposes.
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Fig. B.5. Fit of ABM to in silico data simulating HCV spread. (A) Measured (black) and predicted (red)
cumulative densities of focus size distributions with (large panels) and without (inlays) administration
of anti-E2 after 48 hrs (top left), 72 hrs (top right), 96 hrs (bottom left) and 120 hrs (bottom right).
Average measured cumulative densities were calculated from 5-6 replicates. The predicted values stem
from the best fitting particle after 15 pyABC generations (termed ID 1 in Fig. 4.7 and B.6). Axis breaks
are the same for large figures and the respective inlays. (B) Number of infected cells obtained from
the in silico experiment (black lines) and the prediction (red dots) with (top) and without (bottom)
administration of anti-E2.

B.5 Different fitting approaches of Exp. 29J
In an attempt to fit my model to Exp. 29J, I first followed the same approach as in Exp. 29D.
However, the surprisingly fast increase of infected cell counts between 83 and 96 hours p.i. in
anti-E2-treated wells and a rather slow increase in the untreated wells could not be captured
by my model (Fig. B.7). As the last time point had technical issues (personal communication
Prof. Susan Uprichard), it was neglected in the following. Additionally, the model predicted
too many small foci at any given time. To account for the fact that extracellular virus upon
release might preferably infect adjoining cells, leading to a slower diffusion than theoretically
calculated, I also fitted the extracellular diffusion rate of the virus. Unfortunately, this could
not resolve the overestimation of small foci (Fig. B.8).
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Fig. B.6. Estimated kernel densities of fitted parameters to in silico data after 15 pyABC generations. 1st
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units. 2nd row and column display the rate of re-orientation after a successful cell-to-cell transmission
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rose (ID 3) after 15 generations run with pyABC.
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CAdditional Material to Chapter 5:
Quantification of cell-to-cell spread
among stationary cells

C.1 Parameters used in agent-based model simulations

Table C.1 shows the parameters used for generation of in silico data with the agent-based
model described in Section 5.2.

Tab. C.1. Parameters used in generation of in silico data for Chapter 5. For simulations shown in Fig. 5.6D,F
sc = 1 × 10−5 (min × intra. RNA)−1 and sf = 1 × 10−4 (min × extra. virus)−1.

Parameter Description Unit Value
cells Total cells per well cells 24031
tsim Simulation time h 240
tinit Initialization period h 17
αinit Infection probability during initializa-

tion period
h−1 6.5× 10−3

cinit Average number of cells infected dur-
ing initialization period

cells 35

R0 Initial positive-strand RNA at infec-
tion

RNA 1

α Maximal RNA production rate h−1 0.446
ρ Export rate for enveloped virus h−1 2.01× 10−3

γ Degradation rate of intracellular RNA h−1 0.2
Rcap Capacity of intracellular RNA per in-

fected cell
RNA 2369

sf Scaling factor for CF transmission
probability (h×intra. RNA)−1 49.2

sc Scaling factor for CC transmission
probability (h×extra. virus)−1 1680

finf Fraction of infectious virus per intra-
cellular RNA

1 1× 10−3

m Diffusion parameter (slow) µm2 × h−1 37.5
m Diffusion parameter (fast) µm2 × h−1 6.25× 103

c Loss of infectivity of extracellular
virus

h−1 6.34× 10−2
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C.2 Mathematical derivation of a continuous adjustment
term for cells contributing to cell-to-cell transmission

Assuming regular growth of infected cells within one focus, the adjustment term, fc(k, I), can
be written as follows

fc(k, I) =
√
k2 + 8kI − 8k − k

2I . (C.1)

It describes the proportion of cells contributing to cell-to-cell transmission as a continuous
function of the assumed number of neighbors per cell, k, and the total number of infected
cells in the focus, I.

The general function describing the fraction of cell-to-cell contributors (Eq. (5.4)) is only valid
for large focus sizes. It is not suitable for foci smaller than the assumed number of neighbors,
I < k, as for these focus sizes all cells are able to contribute to cell-to-cell transmission,
i.e., f1 = 1. In order to attain a smooth transition between those two parts, I introduced a
transition term f2 connecting f1 and fc(k, I). Here, I used a third-order polynomial for f2

defined by
f2(x) = a(x− k)3 + b(x− k)2 + c(x− k) + d, (C.2)

where k is the number of assumed neighbors. To obtain a smooth transition from f1 to f3,
parameters a, b, c and d were chosen such that f2 satisfied the following conditions:

1. f2(k) = f1(0) = 1

2. df2
dI (k) = df1

dI (0) = 0

3. f2(k + z) != f3(k + z) =: J1

4. df2
dI (k + z) != df3

dI (k + z) =: J2

Here conditions 1 and 2 ensure a continuous connection between the first, f1, and second,
f2, part of the adjustment term at position k. Similarly, the last two conditions ensure a
continuous connection for the second and third part at k + z cells in the focus with z ∈ R+.
Thus, parameter z defines the number of infected cells for which the transition term applies.
Assuming f1 ≡ 1, and solving Eq. (C.2) and Eq. (5.4), I obtained the following coefficients of
the polynomial describing f2:

a = J2z + 2− 2J1

z3

b = 3J1 − J2z − 3
z2

c = 0

d = 1
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Here, J1 and J2 define the value of f2 and f3 at position k + z, respectively. Thus, parameters
a and b depend on the number of neighbors as well as the number of infected cells for which
the transition term applies. According to Eq. (5.4), J1 and J2 can be written as

J1 =
√

9k2 + 8kz − 8k − k
2(k + z)

J2 =
k
(√

9k2 + 8kz − 8k − 5k − 4z + 8)
)

2(k + z)2
√

9k2 + 8kz − 8k
.

The combined adjustment term, fc(I), is a measure for the proportion of cell-to-cell contribu-
tors during the growth of an average focus dependent on the number of infected cells located
in this focus. The derivation of fc(I) was based on the assumption that focus growth is circular
and synchronous (compare Fig. 5.3A). To account for non-circular and asynchronous focus
growth, the number of infected cells needed to be scaled, i.e., fc(I/θ), where θ = 1 stands
for perfect circular and synchronous focus growth. Larger values correspond to deviations
from this assumption. In case simultaneous growth of multiple foci is analyzed, the number of
infected cells has to be divided by φ := ψθ, as described in Section 5.4, where ψ defines the
number of initiated foci. Parameter θ is estimated when fitting the model to data.

C.3 Profile likelihood analysis for parameter estimates
considering single and multiple focus growth

Identifiability of parameters was studied performing a profile likelihood analysis (see Sec-
tion 2.2.2). All parameters were identifiable for single and multiple focus growth (Fig. C.1
and Fig. C.2). The cell-to-cell transmission rate in the standard CC-model was significantly
lower compared to the aCC- and aCC-dI model (Fig. C.1A and Fig. C.2A). For multiple focus
growth aCC- and aCC-dI model performed equally good as the delay was estimated to be
approximately 0 hours (Fig. C.2D). Additionally, almost identical profile likelihoods for all
other parameters indicated similar performance of the models.

C.4 Model extensions

In Section 5.4 several models were tested. In addition to the models introduced in Eq. (5.1)
and Eq. (5.6), an extended model incorporating cellular turnover as well as a time-delay,
τ , which accounts for the time an infected cell needs to start viral replication and, thus, to
become infectious [84, 147], was also applied. In this case, the model system in Eq. 5.6
changed to

dT

dt
= λT

(
1− T + I

Tc

)
− βfV T − fc(I)βcI(t− τI)T − δTT

dI

dt
= βfV T + fc(I)βcI(t− τI)T − δII

dV

dt
= ρI(t− τP )− cV .

(C.3)
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Fig. C.1. Profile likelihoods for individual focus growth. All profiles indicate the identifiability of parameters
based on the in silico data. Standard CC-model, adjusted model with (aCC-dI) and without (aCC) delay
are shown in solid magenta, solid green as well as dashed red lines, respectively. (A) Profile likelihood of
the cell-to-cell transmission rate βc. (B) Profile likelihood for the parameter θ := φ · ψ, where ψ defines
a measure of non-circular focus shapes and φ the number of initially seeded foci (see previous section for
more information). (C) Profile likelihood for the number of infected cells, z, for which the connection
term, f2, in the adjustment term is applicable. (D) Profile likelihood for the duration infected cells need
to become infectious.

To evaluate experimental data on HIV infection dynamics as published in [70], proliferation of
target cells with rate λT up to a capacity of Tc cells had to be taken into account. In this model
τP and τI define the time delay for a cell to start viral production and to participate in cell-
to-cell transmission, respectively. Eq. (5.1) can be adapted accordingly. Models additionally
accounting for the viral eclipse phase are indicated by −dP and −dI dependent on the delay
considered. An overview of the models used, is shown in Table C.2.

C.5 Parameter estimates obtained from fitting in vitro HIV
spread data under static and shaking conditions
Table C.3 shows the parameter estimates gained from fitting to in vitro HIV spread data
under static and shaking conditions. The estimates obtained in a previous study [70] are
also shown. The confidence intervals were calculated using a profile likelihood approach (see
Section 2.2.2).
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Tab. C.2. Overview of models applied in Chapter 5. Description of all models considered in Section 5.4 either
applied to in silico or experimental data.

Name Description Equation No. Assumptions
Applied to ABM-simulated data

CF
cell-free (CF)
transmission model

(5.1) βc = δT = δI = 0

CC
cell-to-cell (CC)
transmission model

(5.1) βf = δT = δI = 0

CCF CF and CC model (5.1) δT = δI = 0
aCC adjusted CC model (5.6) βf = δT = δI = 0

aCC-dI
adjusted CC model with
delay on infected cells

(C.3)
λT = βf = δT =
δI = τP = 0

aCCF
CF and adjusted CC
model

(5.6) δT = δI = 0

Applied to experimental data [70]

CCF CF and CC model (C.3)
τI = τP = 0,
fc(I) = 1

CCF-dP
CF and CC model with
delay on viral production

(C.3) τI = 0, fc(I) = 1

aCCF
CF and andjusted CC
model

(C.3) τI = τP = 0

aCCF-dP
CF and adjusted CC
model with delay on viral
production

(C.3) τI = 0
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