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Abstract 

 

 Cancer drugs have among the lowest response rates across all diseases. Combining the 

wealth of omics data and machine learning is a promising way to reach this goal. In this thesis, 

we addressed the following aspects of precision oncology: (i) We used Macau, a bayesian 

multitask multi-relational algorithm to explore the associations between the drugs’ targets and 

signaling pathways’ activation. We applied this methodology to drug synergy prediction and 

stratification. (ii) We leveraged through a collaborative machine learning competition to 

understand the association between genome, transcriptome and proteome in tumors. The main 

focus of this thesis is to use machine learning to generate actionable insights, for more 

personalized therapies. 

 

 

Zusammenfassung 

 

 Die Ansprechrate bei Krebstherapeutika ist im Vergleich zu anderen Arzneimitteln niedrig. Die 

Kombination aus Omics-Daten und maschinellem Lernen ist ein vielversprechender Weg um 

eine höhere Ansprechrate zu erlangen. In dieser Arbeit haben wir uns mit den folgenden 

Aspekten der Präzisions-Onkologie befasst: (i) Wir verwendeten Macau, einen multi-relationalen 

bayesianischen Multitasking-Algorithmus, um die Assoziation zwischen den Zielproteinen und 

der Aktivierung von Signalwegen zu untersuchen. Diese Methode haben wir  zur Vorhersage 

und Stratifizierung von Synergien zwischen Medikamenten angewendet. (ii) Wir nutzten einen 

kollaborativen Wettbewerb zum maschinellen Lernen, um die Assoziation zwischen Genom, 

Transkriptom und Proteom in Tumoren zu verstehen. Der Schwerpunkt dieser Arbeit liegt auf 

dem Gewinnung wertvoller Erkenntnisse für personalisierte Therapien mit Hilfe von 

maschinellem Lernen. 
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General introduction 

 

 Precision medicine, also called "personalized medicine" is based on the customization of 

diagnosis and treatment according to molecular, genetic, transcriptomic and epigenetic 

information of the patient. This implies that patients are fundamentally different and therefore 

should be treated differently. Instead of the “one size for all” paradigm that ruled the 

pharmaceutical industry for decades, we are switching to the development of drugs which are 

efficient for only a subset of patients. With increasing spending in drug development industry 

due to adverse events of lack of efficacy, targeted therapies are evermore needed. Indeed, a 

drug that is toxic for one may be safe for another. Similarly, a drug that is ineffective for one may 

be effective for another. Different classes of targeted therapies are available in oncology 

(https://www.cancer.gov): hormone therapies, signal transduction inhibitors, gene expression 

modulators, apoptosis inducers, angiogenesis inhibitors, immunotherapies, and toxin delivery 

molecules. 

 

 In precision oncology, the therapeutic success for one patient can be used in a accurate way 

for many other patients whose tumors have a similar genetic profile. For instance, in breast 

cancer, a patient receives a standard chemotherapy, followed by remnography (MRI) to 

measure the efficacy. We now aim at including a genomic analysis of the breast tumor biopsy to 

choose a suitable combination therapy tailored to her genetic profile. This new approach adds 

several levels of information: a unique genetic profile, early MRI tracking, real-time assessment 

of the effectiveness of treatment, and the ability to respond quickly to new omics data.  

 

 The major technological advances of recent years have undeniably contributed in the rise of 

this new therapeutic approach. The decrease in the costs of sequencing of the human genome 

and custom analyzes such as DNA microarrays are examples of such advances. There are at 

least three essential implications in this metamorphosis of medical practices: (i) The first relates 

to the technological challenges necessary for this practice, such as bioinformatics 

infrastructures, in order to process genomic information in real time to guide the patient's 

treatment, as well as the power of the genome sequencing machines. (ii) The second is the 

training of the staff. Nowadays, it is essential to promote interdisciplinarity and a transversal 

approach to knowledge, e.g. to train highly qualified people in two or three fields of expertise. 

(iii) Finally, fundamental application of bioinformatics and machine learning in knowledge 

discovery. In this thesis, we will focus on the application of machine learning in deriving 

therapeutic insights for cancer. 

 

 We will present different projects to illustrate the role of machine learning and bioinformatics in 

precision oncology. The first project involves using matrix factorization to explore the underlying 

associations in cancer drug screenings (Yang et al. 2018a). We applied this concept in 

predicting drug combination synergy in breast and colorectal cancer. In this case, machine 

learning is used to generate hypothesis instead of purely prediction. In a second project, we 

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045110&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044829&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000537335&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046524&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046739&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045729&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046622&version=Patient&language=English
https://paperpile.com/c/RsGDPP/yrb24
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organized the NCI-CPTAC Proteogenomics challenge to understand the interplays between 

mRNA and protein level in breast and ovarian tumors.  

 

 Cancer cell lines have been the workhorse of preclinical study in oncology. Machine learning is 

widely used to predict drug response on the treated cell lines. However, insights derived from 

such studies usually refer to single drug-gene association. If the drug is a MEK inhibitor and the 

gene belongs to the MAPK pathway, researchers could report a relationship between MEK and 

MAPK. But it is not a direct and quantifiable association between protein MEK and MAPK 

pathway with respect to drug response. There is currently no such analysis regarding 

association between the features of the drug and the features of the cell lines. In order to 

directly capture the interaction between a protein target and a gene/pathway, we used Macau 

(Simm et al. 2017a), a matrix factorization type algorithm especially suited for cancer drug 

screening data. In a real life scenario, such interactions could answer the question: “which type 

of person likes which type of movie ?”, instead of a simpler high level association such as 

“which person likes which movies ?”. We analyzed the Genomics of Drug Sensitivity in Cancer 

(GDSC) (Iorio et al. 2016a) data, on 16 different cancer types and explored the interactions 

between drug targets and signaling pathways’ activations.  

 

 We applied this concept to drug synergy prediction and stratification. Cancer monotherapies 

are hampered by the ability of tumor cells to escape inhibition through rewiring or alternative 

pathways. Therefore, smart drug combination approaches are essential in controlling cancer 

proliferation and survival. We present two complementary workflows: One for prioritising drug 

synergy enrichment in high-throughput screens, and a consecutive workflow to predict 

hypothesis-driven patient stratification. Both workflows rely on bayesian matrix factorization to 

explore mechanistic relations between pathway activations derived from gene expression 

profiles and putative drug targets. We introduce the notion of Target functional similarity 

between 2 protein targets, which reflects how similarly effective drugs are as a function of 

targeted signaling pathway activities. Our synergy prediction workflow revealed that two drugs 

targeting the same or functionally opposite pathways are more likely to be synergistic, enabling 

experimental prioritisation in high-throughput screens and furthermore supporting the notion that 

synergy can be achieved by either redundant pathway inhibition or targeting independent 

compensatory mechanisms. We tested our synergy stratification workflow on a drug 

combination dataset for 7 pairs of protein targets (AKT/ALK, AKT/MTOR, AKT/EGFR, 

BCL2/MTOR, EGFR/MTOR and AKT/BCL2) applied to 33 breast cancer cell lines. For 

performance metric, we used the Pearson’s correlation of observed versus predicted synergy 

scores. We were able to reach an average drug-wise correlation of 0.27. We next 

experimentally validated our synergy stratification workflow with a BRAF/Insulin Receptor 

combination (Dabrafenib/BMS−754807) in 48 colorectal cancer cell lines. The performance is 

0.31 for all 48 cell lines and 0.4 by taking into account KRAS status. The synergy prediction 

workflow can be a powerful framework for compound prioritization in large scale drug 

screenings. For instance, only testing drugs targeting two functionally very similar or very 

distinct proteins could significantly reduce the search space. The synergy stratification workflow 

could potentially maximize the drug efficacy of drugs already known for inducing synergy. 

 

https://paperpile.com/c/RsGDPP/jkmvP
https://paperpile.com/c/RsGDPP/ELlDI
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 Signaling molecules, as well as most cancer drugs bind to protein receptors. If a protein is the 

most predictive of patient outcome, then making therapeutic decision based on the 

corresponding mRNA may be a mistake. Therefore, it is essential to characterize protein level to 

the best of our abilities. For this purpose, we launched a community-based collaborative 

competition: The NCI-CPTAC DREAM Proteogenomics Challenge. The challenge used public 

and novel proteogenomic data generated by the CPTAC to answer fundamental questions 

about how different levels of biological signal relate to one another. In particular, in Proteomics 

subchallenge we focused on the question: Can one predict abundance of any given protein from 

mRNA and genetic data? We predict the protein abundance based on mRNA and/or other 

molecular data. Proteins being the product of mRNA translation, there should be correlation 

between mRNA level and protein abundance. In cases where mRNA expression does not 

correlate with protein level, we explored through machine learning the potential post 

translational modifications and protein regulations e.g. the effect of other proteins.  

 

 This thesis is structured as follow: beside the abstract and the general introduction, two main 

chapters are presenting the main projects of the PhD, as described previously. Each research 

project is structured as follow: Introduction, Result, Methods, Discussion and Supplementary 

information in the annexe. Figures and tables are named separately for each chapter. Finally, a 

general conclusion and future perspectives. 
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Chapter 1: Target functional similarity based workflows for 

drug synergy prediction and stratification 
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1.1 Introduction 

 

 In the quest for clinical efficacy, drug combinations have been widely used in cancer therapies 

(Dry, Yang, and Saez-Rodriguez 2016a; Al-Lazikani, Banerji, and Workman 2012). Targeting a 

signaling pathway at one step may not be sufficient for reaching maximal effects on pathway 

inhibition. Resistance mechanisms to monotherapy can occur by activation of compensatory 

signaling, for example the activation of ERK signaling in melanoma when treated with BRAF 

inhibitors may lead to paradoxical activation of CRAF (Montagut et al. 2008). Targeting BRAF 

and downstream MEK at the same time proved to be beneficial for overall patient survival 

(Lopez and Banerji 2017), by inhibiting the initial BRAF driver mutation and paradox CRAF 

activation. Alternatively to inhibiting two key proteins within the same pathway, a common 

strategy is to parallel inhibit two separate cancer pathways to maximise drug efficacy. For 

example, parallel inhibition of ERK and AKT could be beneficial as those pathways may be 

connected through cross talks and feedback loops in breast cancer (Saini et al. 2013). 

 

 Many methods predict drug synergy using chemical structure and genomic information (Bulusu 

et al. 2016; Bansal et al. 2014; Preuer et al. 2017). Drug chemical structure does not reflect the 

drug’s mode of actions as well as the putative drug targets (Yang et al. 2018b). Preuer et al. 

used deep learning to predict synergy within the space of explored drugs and cell lines, but still 

underperformed in predicting untested drugs on untested cell lines (Preuer et al. 2017), with 

mean square errors (MSEs) of 255 versus 414. One common bottleneck for the application of all 

those methods is the limited publicly available training set. Jaeger et al identified new drug 

combinations using network topology of pathway cross-talk (Jaeger et al. 2017), however, they 

did not consider gene mutation, which could be highly relevant in cancer treatment. Synergy is 

not a universal property of the drugs’ chemical structures but also highly context dependent 

(Sun et al. 2015). 

 

 In the recent Dialogue on Reverse-Engineering Assessment and Methods (DREAM) drug 

combination challenge (Menden et al. 2017a), led by AstraZeneca, the best performing team 

used a mouse protein-protein interaction network to augment the genomic features based on 

their network distance from drug targets. Whilst the best performer achieved outstanding 

predictability on level of experimental replicates, synergy was predicted based on supervised 

machine learning algorithms. Sparsity in the DREAM training dataset was expert-knowledge 

driven, and therefore may bias towards biological known and ultimately bias the performance of 

supervised learning. In practice, the combinatorial explosion of drug pairs is the limiting factor to 

both the number of experimentally tested drugs, as for the number of tested cell lines. Finally, 

knowledge based cancer gene sets have been used to enhance predictive models. However 

such methods have been demonstrated to be less informative than data derived gene sets 

(Cantini et al. 2018; Schubert et al. 2018). 

 

 We here propose a methodology for identifying increased synergy likelihood based on the 

notion of target functional similarity and being independent from combinatorial experiments. This 

entity reflects how similarly effective drugs with common target are, as a function of signaling 

https://paperpile.com/c/RsGDPP/iSkBK+SNSIv
https://paperpile.com/c/RsGDPP/oUz2p
https://paperpile.com/c/RsGDPP/J61ZX
https://paperpile.com/c/RsGDPP/aMVND
https://paperpile.com/c/RsGDPP/2enIa+SQRMB+TYISN
https://paperpile.com/c/RsGDPP/2enIa+SQRMB+TYISN
https://paperpile.com/c/RsGDPP/50AdS
https://paperpile.com/c/RsGDPP/TYISN
https://paperpile.com/c/RsGDPP/I1Y8p
https://paperpile.com/c/RsGDPP/9dR4Z
https://paperpile.com/c/RsGDPP/O5Ltq
https://paperpile.com/c/RsGDPP/7y8lZ+86y0D
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pathways’ activities. Two target proteins that are functionally very similar are likely to belong to 

the same signaling pathway. We argue that functional similarities between protein targets shed 

light on different synergy mechanisms. We then use the resulting mechanisms to build models 

to predict synergy. Thus, our prediction model is hypothesis derived and does not originate from 

a training set of drug synergy. We applied our methodology to the AstraZeneca breast dataset 

for drug synergy prediction (Menden et al. 2017a) and experimentally validated on predicted 

drug combination in colorectal cancer cell lines. In the process of synergy prediction, we 

revealed different synergy mechanisms depending on the cancer type. 

 

1.2 Results 

1.2.1 Synergy prediction workflow 

 We propose a workflow for highlighting synergy enrichment (Figure 1), based on multitask 

learning including the following steps: 1) We compute the pathway activity from gene expression 

using Pathway RespOnsive GENes (PROGENy) (Schubert et al. 2018). 2) Next, we apply the 

Macau algorithm (Simm et al. 2017b) to find interactions between the drugs’ nominal targets 

and pathway activities i.e. how targeting a protein may affect different signaling pathways(Yang 

et al. 2018b) (Methods). 3) We then use the previously determined interactions to compute the 

functional similarity between two protein targets i.e how similar are the system’s responses 

when targeting those two proteins. 4) Finally, functional similarity between protein targets 

pointing to different synergy mechanisms is estimated. This synergy prediction workflow allows 

for any given pair of protein targets, to estimate the likelihood of inducing synergy when 

targeting those 2 proteins. Our method returns a ranking of experimentally untested drug 

combinations from being likely to unlikely synergistic, which ultimately enables a prioritization for 

future experiments.  

 

https://paperpile.com/c/RsGDPP/O5Ltq
https://paperpile.com/c/RsGDPP/86y0D
https://paperpile.com/c/RsGDPP/2l134
https://paperpile.com/c/RsGDPP/50AdS
https://paperpile.com/c/RsGDPP/50AdS
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Figure 1: Methodology for drug synergy prediction and stratification. 

(a) First, we reduce gene expression of cancer cell lines of single compound drug screening, 

into a small subset of pathway activities. It consists in multiplying the transcriptomics data by a 

loading matrix, as described in Schubert et al. 

(b) We then use Macau algorithm(Simm et al. 2017c) to predict multiple drugs’ responses 

simultaneously by uncovering the common (latent) features that can benefit each individual 

learning task. We use the previously derived pathway scores as input features (side information) 

for cell lines, and nominal target for drugs. Each side information matrix is transformed into a 

matrix of L latent dimensions by a link matrix. Drug response is then computed by a matrix 

multiplication of the 2 latent matrices. 

(c) Concurrently to drug response prediction, we derive the interactions between drug features 

(targets) and cell line features (pathway activity), by multiplying the 2 link matrices. An 

association between protein X and pathway Y means that activation of pathway Y correlates 

with drug sensitivity when targeting protein X. In case of causality, we can say that activation of 

pathway Y confers sensitivity to any drug targeting protein X. 

(d) These interactions allow us to define the functional similarity between two protein targets. In 

this example of breast tissue, The functional similarity between proteins EGFR and AKT1 is the 

correlation of their interaction values with the 11 PROGENy pathways. As final step of the 

https://paperpile.com/c/RsGDPP/ftyev
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synergy prediction workflow, the derived target functional similarity inform us about the 

likelihood of synergy.  

(e) For synergy stratification workflow, we start with target pairs already known to be synergistic. 

The value of the functional similarity between the protein targets reflects different synergy 

mechanisms. If the similarity is close to 1, synergy occurs by targeting the same signaling 

pathways. A similarity close to -1 suggests a synergy induced by compensation of escape 

mechanism. We build specific synergy model for each case to predict synergy scores of cancer 

cell lines. 

 

1.2.2 Pathway activities 

 

 We transformed the transcriptomics data into pathway activity scores using PROGENy 

(Schubert et al. 2018) (Figure 1a), a more recent version of the Signaling Pathway Enrichment 

using Experimental Data sets (SPEED) signatures (Parikh et al. 2010). PROGENy is a data 

driven pathway method aiming at summarizing high dimensional transcriptomics data into a 

small set of pathway activities. PROGENy derives pathway signatures from the genes that are 

altered when perturbing a pathway instead of solely from the genes within the pathway as other 

methods do. This improves the estimation of pathway activities (Schubert et al. 2018). The 11 

PROGENy pathways are EGFR, NFkB, TGFb, MAPK, p53, TNFa, PI3K, VEGF, Hypoxia, Trail 

and JAK-STAT. 

 

 

1.2.3 Interactions between drug target and pathway scores 

 

 We then computed the interactions between protein targets and signaling pathway activation 

status with respect to drug response (IC50) using matrix factorization (Figure 1b, 1c, Methods). 

This interaction can be defined as the importance for those two entities to be simultaneously 

involved in order to have an impact on drug response (Yang et al. 2018b), e.g. how the 

simultaneous activation of a certain pathway and targeting a certain protein can be associated 

with drug response. For instance, a strong interaction between protein MEK1/MEK2 and 

pathway EGFR in pancreatic cancer is interpreted as follows: Activation of the EGFR pathway 

correlates with sensitivity when targeting MEK1/MEK2. If this were a causal relationship, it could 

mean that EGFR pathway activation confers sensitivity to any drug targeting protein 

MEK1/MEK2. 

 

 We used the Genomics of Drug Sensitivity in Cancer (Iorio et al. 2016b) (GDSC) cell line panel 

that contains drug response (IC50) data of 265 drugs on 990 cell lines. For each of the 16 

tissues (with more than 20 cell lines), we computed the interaction matrix between drug targets 

and pathway activities using the multitask learning algorithm Macau (Simm et al. 2017b; Yang et 

al. 2018b). Our algorithm tries to learn multiple tasks (predicting multiple drugs) simultaneously 

and uncovers the common (latent) features that can benefit each individual learning task (Pan 

and Yang 2010).  We used manually curated protein targets for the drug (Supplementary 

https://paperpile.com/c/RsGDPP/86y0D
https://paperpile.com/c/RsGDPP/D4VM5
https://paperpile.com/c/RsGDPP/86y0D
https://paperpile.com/c/RsGDPP/50AdS
https://paperpile.com/c/RsGDPP/uGF1Q
https://paperpile.com/c/RsGDPP/2l134+50AdS
https://paperpile.com/c/RsGDPP/2l134+50AdS
https://paperpile.com/c/RsGDPP/FkPvh
https://paperpile.com/c/RsGDPP/FkPvh
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Table 3), and gene expression derived pathway scores for the cell lines. The interaction matrix 

gives hints about the drug’s mode of action, by uncovering in which condition (pathway status) 

targeting a certain protein correlates with higher drug sensitivity. 

 

 

1.2.4 Target functional similarity 

 

 Next, we studied how similar two targets are in terms of pathway level impact on drug 

response. We reasoned that we can use the correlation as an estimate of the functional 

similarity between two protein targets: high correlation being the most similar pair and high anti-

correlation being the most opposite pair. A pathway contains more information than a single 

gene’s expression level. Therefore, functional similarity based on a small subset of essential 

pathways is likely to be more robust than using thousands of genes, of which the vast majority 

are not involved in drug response. We considered the target pathway interaction matrix for 

breast tissue and 102 protein targets which are targeted by at least two drugs in the GDSC 

dataset. We selected the 25 protein targets from GDSC that are also part of the AstraZeneca 

drug combination challenge data (Figure 1d, Figure 2a).  There are 
(𝑛2 

 − 𝑛) 

2 
= 300 pairwise 

combinations from the n=25 proteins. We then kept 99 target pairs where the two proteins are 

targeted by two different drugs in the GDSC panel. For each combination of targets, we 

computed the Pearson’s correlation of the interaction score with the 11 PROGENy pathways. 

The target combinations were then ranked from the most correlated pair to the most anti-

correlated pair. For instance, proteins BRAF and MEK have a functional similarity of 0.74 

(p=0.0088) in skin cell lines, which illustrates the synergy mechanism of inhibiting two key 

proteins within the same pathway. We consider a similarity greater than 0.7 to reflect similar 

effects upon perturbation of those targets that are closely related in the signaling cascade 

(Supplementary Figure 7 for distribution of similarity values). 

 

 Synergy scores in AstraZeneca breast dataset is derived from a dose-response surface of two 

drugs at different concentrations (Methods). A score of 50 is equivalent to an extra synergistic 

effect of 50% compared to the expected effect derived from the Loewe’s additivity model 

(Fitzgerald et al. 2006). To ascertain if target functional similarity can influence drug synergy, for 

each target pair, we plotted the observed average synergy scores of the top three ranked 

synergistic drug1-drug2-cell triplets, against it’s target functional similarity (Figure 2b). We 

observed that synergy arises in both highly correlated and highly anti-correlated target groups 

(Figure 2b). Very few synergistic target pairs were found with a functional similarity close to 

zero (lowly correlated target group). 

 

 

 

https://paperpile.com/c/RsGDPP/Tz3RR
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Figure 2: Influence of the similarity between protein targets on drug synergy. (a) We 

selected common targets from AstraZeneca and GDSC data sets. (b) The target functional 

similarity is the correlation between 2 targets by their interactions with the PROGENy pathways. 

A correlation of 1 implies that the activities of pathways correlates in the same way with drug 

efficacy on those proteins. A correlation of -1 implies opposite effects. The average synergy is 

computed for each target pair, as the mean of the top three synergistic drug-cell line pairs. We 

chose a threshold of 20 as synergistic effect, and a score lower than -20 as antagonistic effect, 

as in Menden et al (Menden et al. 2017b). 

 

 

 We tested the significance of our observation on breast (33 cell lines), colon (12 cell lines) and 

NSCLC (22 cell lines), by computing the correlation between the top synergistic combinations 

and the absolute value of the target functional similarity (Supplementary Figure 1). For breast, 

colon and lung tissues, the Pearson’s correlations are r=0.25 (p=0.014), r=0.45 (p=0.27) and 

r=0.14 (p=0.56), respectively. Although not optimal, the trend is stronger for colon than for lung, 

which was the reason guiding our choice for colorectal cancer cell lines in experimental 

validation. 

 

 Target functional similarity is therefore a metric that can be used for compound prioritization. 

For any given target pair, along with single drug response, we can increase the likelihood of 

synergy. This is, the more functional similar or opposite two proteins are, the mostly likely 

synergy will arise.  We reason that this could be due to complementary mechanisms of synergy 

that take place:  

https://paperpile.com/c/RsGDPP/ECHhO
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Mechanism 1: When two drugs have similar interaction profiles, they are most likely targeting 

some common mechanism. In this case, synergy may be achieved by double hit of the same 

pathway. Mechanism 2: Conversely, targeting one protein may lead to resistance by an escape 

pathway or feedback loop. Targeting another protein which has opposite functional similarity 

may act on the escape pathway. Here, synergy reflects a compensation of escape mechanisms. 

1.2.5 Synergy stratification workflow 

 

 As an addition to the synergy prediction workflow, we propose a consecutive step, which 

enables patient stratification. For this, we use the inferred synergy mechanism and pathway 

activities of new samples to build specific models to predict synergy for new drug combinations. 

The synergy stratification workflow predicts the actual synergy scores on samples for a given 

target pair for which synergy has been described (either through experiments or from literature). 

 

 

Synergy stratification for each model 

 

 For each of the previously described synergy mechanisms (Figure 1e), we built models to 

predict synergy scores on cancer cell lines. We only consider drug combination known to induce 

synergy, for several reasons: (i) Our method relies heavily on literature/pathway knowledge, 

therefore difficult to test on all drug pairs. (ii) Synergy stratification when there is no synergy can 

be difficult to interpret. (iii) In practice, it is more likely to decide about stratification after 

knowledge of synergy potential. 

 

Synergy Model 1: For functionally similar target pairs (Mechanism 1), we rank the pathways 

based on their sensitive or resistant interaction profile with respect to the drug targets 

(Supplementary Figure 2). We postulate that synergy is maximized under a pathway condition 

where both drugs’ effects are maximized. The optimal condition for synergy is therefore when 

pathways associated with drug sensitivity are upregulated, and pathways associated with drug 

resistance are downregulated. As a consequence, if two protein targets have strong functional 

similarity e.g. high correlation between their interaction profile with pathway activities, synergy is 

maximized by maximizing the sensitizing pathways and minimizing the pathways conferring 

resistance. We predict synergy by taking the average of the N top sensitive pathway scores, 

subtracted by the average of the M top resistant pathway scores. Therefore, for each cell line, 

we introduce the concept of Delta Pathway Activity (Delta PA) to predict synergy: 

 

 𝐷𝑒𝑙𝑡𝑎 𝑃𝐴 =  
∑  𝑁

1 (𝑇𝑜𝑝 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑎𝑡ℎ𝑤𝑎𝑦𝑠)

𝑁
 −  

∑  𝑀
1 (𝑇𝑜𝑝 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 𝑝𝑎𝑡ℎ𝑤𝑎𝑦𝑠)

𝑀
 ± 𝑔𝑒𝑛𝑜𝑚𝑖𝑐𝑠    

 

 We compute the average pathway score for both sensitive and resistant groups. Each group 

should include a minimum of one to a maximum of three pathways. We select the top pathways 

with cross validation of group membership thresholds (Methods). If applicable, we include in the 

formula the genomic information which can be mutation (SNP) or copy number variation (CNV). 
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For instance if protein EGFR is targeted, we include CNVEGFR. Group membership parameters 

are defined using cross validation (Methods). 

 

Synergy Model 2: For functionally opposite target pairs (Mechanism 2), when a pathway’s 

activation is associated with resistance for one protein target, it is also associated with 

sensitivity for the other protein target, to compensate. Two drugs can be individually ineffective, 

but more effective when combined. Therefore, synergy may arise in a situation of drug 

resistance. This could be explained by the fact that if a cell line is resistant for one (or both) of 

the drugs, there is "more opportunities" to be synergistic. When both drugs kill a given cell very 

efficiently, there is no synergy, as both drug A alone, drug B alone and combination A + B can 

kill all the cells. Unsurprisingly, resistance biomarkers were found to be predictive of synergy in 

the recent AstraZeneca DREAM challenge(Menden et al. 2017a). Therefore Delta PA should 

maximize the pathways conferring resistance and minimize the sensitizing pathways. The 

formula becomes: 

 𝐷𝑒𝑙𝑡𝑎 𝑃𝐴 =  
∑  𝑀

1 (𝑇𝑜𝑝 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 𝑝𝑎𝑡ℎ𝑤𝑎𝑦𝑠)

𝑀
 −  

∑  𝑁
1 (𝑇𝑜𝑝 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑎𝑡ℎ𝑤𝑎𝑦𝑠)

𝑁
 ± 𝑔𝑒𝑛𝑜𝑚𝑖𝑐𝑠    

 

 Model 2 is less likely to suit functionally similar pairs (Mechanism 1). If the two drugs have 

similar functional profile, maximizing the resistance scenario equals increasing the dose of the 

same inefficient drug, thus, unlikely to improve the outcome. Likewise, Model 1 is less suitable 

for Mechanism 2, as maximizing the sensitizing pathways is the same as prioritizing a situation 

where drug 1’s sensitive effect outweighs drug 2’s resistant effect. Thus, Mechanism 2’s core 

idea would become obsolete, as by definition, the resistance scenario must prevail in case of 

escape mechanism. Of note, having an opposite functional profile does not imply Mechanism 2. 

An opposite pathway-response profile for 2 targets, offers the “functional scenario” for the cell to 

escape the damage induced by one drug. Yet, there could still be a scenario which maximizes 

the sensitizing pathways. This corresponds to 2 drugs targeting completely independent 

pathways, which is more due to independent actions rather than additivity or synergy(Palmer 

and Sorger 2017). 

 

 Our general framework to predict synergy scores follows several key steps and we emphasize 

on the notion of “target combination” which represents the dual inhibition of two protein targets, 

regardless of the drugs that are used (Methods). 

 

 Motivated by these general trends across all samples, we developed models to predict synergy 

in individual samples. We predicted synergy as a linear combination of pathway activation 

scores and built one model for functionally similar target pairs and one model for opposite pairs. 

We then applied our methodology on AstraZeneca drug combination data for breast tissue and 

experimentally validated a predicted synergistic drug combination for colorectal cancer cell 

lines. 

 

 

 

 

https://paperpile.com/c/RsGDPP/O5Ltq
https://paperpile.com/c/RsGDPP/Bn8zI
https://paperpile.com/c/RsGDPP/Bn8zI
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Application to the AstraZeneca breast data set (Supplementary text 1) 

 

 We tested our synergy models on different target pairs by computing the Pearson’s correlation 

of observed versus predicted average synergy on all available cell lines. The observed average 

synergy includes all drug combinations targeting the target pair of interest, computed as 

described in the Methods section. Therefore, for each cell line, the observed average synergy 

may be computed for different drug combinations since the matrix of drug-cell line synergy is 

very sparse. 

 

 We selected target pairs that fulfilled the following conditions: 1) Observed CombeneFit 

synergy score(Di Veroli et al. 2016) of top hits must be greater than 20 (Figure 2b), considered 

as a clear threshold for synergy(Menden et al. 2017a). 2) Drug combinations have had to be 

tested in at least 10 cell lines, owing to the limitations of measuring performance by Pearson’s 

correlation. 3) At least two different drug combinations for the target pair were tested in each cell 

line, otherwise we excluded the cell line. We focused on the target pairs rather than specific 

drug pairs, in order to derive more robust insights. 

 

 This leaves us with the following 7 target pairs: AKT/ALK, AKT/MTOR, AKT/PARP1, 

AKT/EGFR, BCL2/MTOR, EGFR/MTOR, and AKT/BCL2, each representing several distinct 

drug combinations (3, 5, 3, 4, 4, 6 and 4, respectively). We applied our methodology on those 

target pairs (Methods, Supplementary text 1), and the prediction performances defined as 

correlations of observed versus predicted synergies are as follow: AKT/ALK (r=0.33), 

AKT/MTOR (r=0.086), AKT/PARP1 (r=0.50), AKT/EGFR (r=0.15), BCL2/MTOR (r=0.20), 

EGFR/MTOR (r=0.43) and AKT/BCL2 (r=0.19) (Table 1, Figure 3), with an average 

performance of 0.27 using Leave One Out Cross Validation (Methods, Table 1). 

 

https://paperpile.com/c/RsGDPP/EFiot
https://paperpile.com/c/RsGDPP/O5Ltq
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Table 1: Drug synergy prediction for breast and colorectal cancer cell lines. 
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Figure 3: Prediction of drug synergy on breast tissue. (a), (b), (c), (d), (e), (f) and (g) show 

the prediction result for AKT/ALK, AKT/MTOR, AKT/PARP1, AKT/EGFR, BCL2/MTOR, 

EGFR/MTOR and AKT/BCL2 targets pairs on breast tissue, respectively (from AstraZeneca 

DREAM challenge). 
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Literature supporting the drug combinations 

 

AKT/ALK: 

(i) It has been shown that synergy arises by targeting ALK and a downstream signaling pathway 

such as PI3K/AKT/MTOR in neuroblastoma (Moore et al. 2014), but not yet known in breast. 

(ii) MAPK pathway is the top predictive feature of the Delta PA formula (Table 1), and it is 

known that MAPK is a critical downstream pathway necessary for ALK+ tumor cell survival 

(Hrustanovic and Bivona 2015), in agreement with the fact that Model 2 (synergy by maximizing 

resistance) was used as predictive model. 

 

AKT/MTOR: Since AKT and MTOR are from the same pathway, dual targeting of those proteins 

is an obvious choice since breast cancer growth is often dependant on the PI3K/AKT/MTOR 

cascade (Cidado and Park 2012). 

 

AKT/PARP1: PI3K pathway is among the top predictive features in the Delta PA formula (Table 

1). Unsurprisingly, PARP inhibitor and PI3K inhibitor were described as an effective combination 

therapy for breast and ovarian cancer (Condorelli and André 2017; D. Wang et al. 2016; 

Rehman, Lord, and Ashworth 2012). We haven’t found any literature evidence for dual targeting 

of AKT and PARP1 in breast cancer, but the efficacy would not be surprising since PI3K and 

AKT are closely related in the same pathway. 

 

AKT/EGFR: Inhibition of the PI3K/AKT pathway potentiates cytotoxicity of EGFR inhibitors in 

triple-negative breast cancer cells (Yi et al. 2013).  

 

BCL2/MTOR: There is a strong synergy between BCL2 and MTOR inhibitors(Hamunyela, 

Serafin, and Akudugu 2017). A cross talk between VEGF and BCL2(Bufalo et al. 2004) and the 

potential of targeting VEGF/MTOR(Chen et al. 2012) could explain that VEGF pathway score 

was the top predictive feature of synergy (Table 1). 

 

EGFR/MTOR: Dual inhibition of EGFR and MTOR has been described for small cell lung 

cancer(Schmid et al. 2010) and for breast cancer (Glaysher et al. 2014). 

AKT/BCL2: AKT regulates BCL2 expression in breast cancer(Bratton et al. 2010) but dual 

targeting of AKT and BCL2 has not been described. 

 Overall, among all target pairs, AKT/EGFR, AKT/MTOR, BCL2/MTOR, EGFR/MTOR and 

AKT/BCL2 were predicted with Model 1 (synergy by similarity). AKT/ALK and AKT/PARP1 were 

predicted using Model 2 (synergy by dissimilarity). 

 

 

 

https://paperpile.com/c/RsGDPP/6epln
https://paperpile.com/c/RsGDPP/Ku9rQ
https://paperpile.com/c/RsGDPP/MaTEp
https://paperpile.com/c/RsGDPP/zGlc6+sYjbV+7mxtD
https://paperpile.com/c/RsGDPP/zGlc6+sYjbV+7mxtD
https://paperpile.com/c/RsGDPP/M6Mdd
https://paperpile.com/c/RsGDPP/QTm8F
https://paperpile.com/c/RsGDPP/QTm8F
https://paperpile.com/c/RsGDPP/FTvOc
https://paperpile.com/c/RsGDPP/xMuvW
https://paperpile.com/c/RsGDPP/f6ewU
https://paperpile.com/c/RsGDPP/CN8w7
https://paperpile.com/c/RsGDPP/w4k4I
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1.2.6 Validation on colorectal cancer cell lines 

 

 Within our presented study, we chose to validate our target-pathway interaction metric, synergy 

prediction and synergy stratification workflows in colon cancer. In order to ascertain our 

method’s capability in detecting synergy, we chose a drug combination in the following way: 

 

(i) We focused on drug combination involving protein BRAF which is an important protein in 

colorectal cancer as a mutation can result in uncontrolled, non–EGFR-dependent cellular 

proliferation (Nazemalhosseini Mojarad et al. 2013). About 10% of TCGA patients have this 

mutation for colorectal tissue. 

(ii) From the 101 target combinations involving BRAF, we computed their functional similarities 

with BRAF. Insulin Receptor ranked first with a target functional similarity of 0.8 for BRAF/IR 

pair. We next computed the Delta PA formula and MAPK pathway ranked in the top three 

sensitizing pathways for BRAF/IR. Therefore, we chose BRAF/IR as a candidate for validation. 

We used Dabrafenib as a BRAF inhibitor and BMS−754807 as a selective inhibitor of IR/IGF1R 

(Carboni et al. 2009). 

(iii) We chose the proteins BRAF, IR, and IGF1R as drug targets and used the target pathway 

interaction matrix to derive the Delta PA formula. Hypoxia, p53 and MAPK pathways belong to 

the sensitive group. The top resistant pathways are Trail, VEGF and PI3K. The synergy formula 

for Model 1 is therefore: 

 

𝐷𝑒𝑙𝑡𝑎 𝑃𝐴 (𝐵𝑅𝐴𝐹/𝐼𝑅)𝑐𝑜𝑙𝑜𝑛  =  
 𝐻𝑦𝑝𝑜𝑥𝑖𝑎 +  𝑝53 +  𝑀𝐴𝑃𝐾

3
 −  

𝑇𝑟𝑎𝑖𝑙 +  𝑉𝐸𝐺𝐹 +  𝑃𝐼3𝐾

3
 

 

 We validated our methodology on 48 colorectal cancer cell lines from the GDSC panel. 

Synergy score is computed with DeltaXMID (Methods). The Pearson's correlation of observed 

versus predicted synergy score is 0.31 for all 48 cell lines (Methods, Table 1, Figure 4a). We 

further reasoned that inclusion of additional information of top predictive pathway should 

increase the predictive power. In this case, the most predictive pathway is Hypoxia. KRAS 

mutation has been shown to differentially regulate the hypoxic induction of HIF-1α and HIF-2α in 

colon cancer (Kikuchi et al. 2009). Hence, we added kRAS status in the Delta PA formula and 

the prediction performance rose to 0.4 (Figure 4c). The performance rose to 0.5 by including 

BRAF status in the Delta PA formula and by only considering the subset of 26 KRAS mutant cell 

lines (Figure 4d). 

 

 We applied our synergy stratification workflow on breast and colon tissues. As real world use 

case, we envision that for any drug combination described as synergistic, this method could 

potentially inform about the subset of patients most likely to benefit, based on their 

transcriptomics profiles. 

 

https://paperpile.com/c/RsGDPP/VqGew
https://paperpile.com/c/RsGDPP/HvbQz
https://paperpile.com/c/RsGDPP/81hIE
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Figure 4: Prediction of BRAF/IR synergy on colorectal tissue. (a) shows the prediction 

result of BRAF/IR (BMS−754807/Dabrafenib) on all 48 colorectal cancer cell lines. (b) shows 

the result with BRAF status included in Delta PA formula. (c) and (d) show the result on 

KRASmut colorectal cancer cell lines. Drug screens were performed by the Translational 

Cancer Genomics drug screening team of the Wellcome Sanger Institute. 
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1.2.7 Validation of synergy mechanism on external dataset 

 

 We explored the O'Neil et al Merck drug combination dataset(O’Neil et al. 2016) for colon, 

NSCLC lung and ovarian tissues, comprising data for 6, 6, and 5 cell lines, respectively. Given 

the number of samples per tissue, assessment of synergy is not possible on a drug wise setting. 

Nevertheless, we plotted the top synergistic pairs against the target functional similarity 

(Supplementary Figure 4). For colon tissue, the correlation between the average top 

synergistic pairs and the absolute value of target functional similarity is r=0.13 (p=0.11), versus 

r=0.45 (p=0.27) for AstraZeneca (Supplementary Figure 1). For NSCLC lung, there is no 

correlation with r=0.04 (p=0.62), versus r=0.14 (p=0.56) for AstraZeneca (Supplementary 

Figure 1). For ovarian tissue where the correlation is -0.16 (p=0.044), synergy seems to occur 

in case of low correlation between the drug targets. For colon and lung tissues, there is a slight 

agreement between the AstraZeneca and Merck datasets, supporting the methodology based 

on targeting functionally very similar or very opposite proteins. 

 

1.2.8 Comparison with supervised learning approach 

 

 In the AstraZeneca DREAM challenge, an ensemble of best performing models was trained on 

the AstraZeneca DREAM combinatorial data, and consecutively tested on an independent 

combinatorial screen from Merck (O’Neil et al. 2016), which achieved a weighted mean 

correlation of 0.15-0.17. We considered this setting for predicting synergy of new drugs and new 

cell lines (Supplementary Figure 5). In comparison, our synergy stratification workflow uses 

the GDSC panel for hypothesis generation and the AstraZeneca dataset for testing. For the 7 

target pairs (29 drug combinations) from breast tissue and one pair of drug combination 

validated on colorectal cancer cell lines, we were able to reach an average drug-wise correlation 

of 0.27. Of note, the two methods are of very different nature and have very different 

applications. Therefore, prediction performances should not be compared directly. In the 

DREAM challenge, synergy scores of drugs/samples are predicted without any prior knowledge 

of a drug combination leading to synergy or not. In contrast, in our synergy stratification 

workflow, we assume that at least one drugs/samples is synergistic and consecutively predict 

the stratification based on pathway activity and mutational profiles. We highlight the pros and 

cons for each methodology in Supplementary Table 2: 

 

(i) Naive supervised learning approaches are easy to implement, do not require extensive 

domain expertise, and can be used for all possible prediction settings, drug wise and cell line 

wise (Supplementary Figure 5). On the other hand, it requires an extensive set of drug 

combination drug response data as training set. 

(ii)  For our synergy stratification methodology, linear combination of pathway activities is well 

suited for biological interpretation. However, it can only be used in drug wise setting and 

requires significant domain knowledge and literature evidence. 

https://paperpile.com/c/RsGDPP/6TFWu
https://paperpile.com/c/RsGDPP/6TFWu
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1.3 Methods 

1.3.1 Matrix factorization with Macau 

 

 Macau trains a Bayesian model for collaborative filtering by also incorporating side information 

on rows and/or columns to improve the accuracy of the predictions (Simm et al. 2017b) (Figure 

1b). Drug response matrix (IC50) can be predicted using side information from both drugs and 

cell lines. We use protein target as drug side information and transcriptomics/pathway as cell 

line side information. Each side information matrix is then transformed into a matrix of L latent 

dimension by a link matrix. Drug response is then computed by a matrix multiplication of the 2 

latent matrices. Macau employs Gibbs sampling to sample both the latent vectors and the link 

matrix, which connects the side information to the latent vectors. It supports high dimensional 

side information (e.g. millions of features) by using conjugate gradient based noise injection 

sampler. 

 

1.3.2 Drug synergy metrics 

 

 For AstraZeneca dataset, drug effects on cancer cell lines are measured at several 

concentrations for each drug. Therefore, the effect is described by a dose-response surface 

rather than a curve.  The benefit of a drug combination can be partly assessed by the extra 

effect obtained when combining the drugs. Drug combinations are classified as synergistic, 

additive or antagonistic, based on the deviation of the observed drug combination response 

from the expected response. The expected response is quantified with the Loewe additivity 

model (Loewe 1953; Berenbaum 1989; Loewe 1928; Fitzgerald et al. 2006). Loewe additivity 

assumes the two drugs act on a protein through a similar mechanism. Synergy score is 

quantified with Combenefit (Di Veroli et al. 2016). 

 

 “In colorectal cancer we tested the drug combination of BMS-754807 and dabrafenib in 48 

colorectal cancer cell lines.  BMS-754807 (S2807, Selleckchem) was screened at 0.5 μM 

against a 7 point dose response of dabrafenib (S1124, Selleckchem), ranging from 10 nM- 10 

μM. The XMID, which is akin to an IC50, of dabrafenib alone and dabrafenib in combination with 

BMS-754807 were calculated and the  ΔXMID=XMID(dabrafenib)-XMID(dabrafenib+BMS-

754807) calculated. The fold difference in XMID can be calculated by y-fold=2^ΔXMID, hence a 

ΔXMID of 3.32 corresponds to a 10-fold lower XMID for dabrafenib + BMS-754807 compared to 

dabrafenib alone.” (Text written by Patricia Jaaks, Wellcome Sanger institute) 

 

 

 

 

https://paperpile.com/c/RsGDPP/2l134
https://paperpile.com/c/RsGDPP/pw8lx+t5Ay1+LKWHu+Tz3RR
https://paperpile.com/c/RsGDPP/EFiot
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1.3.3 General framework for predicting synergy score 

 

Step 1: For two given protein targets T1 and T2, find their interactions with the PROGENy 

pathways using Macau (Supplementary Figure 3).  

 

Step 2A: If available, use literature to guide the choice of Model e.g if we know that a drug 

combination is synergistic when a pathway X is activated, the model would be the one which 

gives a positive sign for pathway X. Otherwise go to Step 2B. 

 

Step 2B: Compute the functional similarity between T1 and T2 (pearson correlation between T1 

and T2’s interactions with the pathways).  

 

- If the correlation is close to 1, use Model 1 to define the Delta PA formula.  

- If the correlation is close to -1, use Model 2 to define the Delta PA formula.  

- If the correlation is between -0.3 and 0.3, it is an undetermined case. 

 

Step 3: Find top sensitive and top resistant pathways (as previously described in synergy 

models). Take into account literature evidence in choice of pathways (for known drugs or 

targets). If a pathway is described as important in literature but does not appear in top 3 of a 

group, we include it, as well as any pathway separating the first from the one of interest, while 

respecting the limit of three pathways per group. 

 

Step 4: In case of multiple drugs representing the same target pair, as in the AstraZeneca data 

set, remove as many drugs as possible to reduce off target effects (at least 3 drug pairs left). An 

alternative is to take the off target into account if some drugs are targeting one of PROGENy 

pathways.  

 

Step 5: Use the Delta PA formula to predict synergy of a drug combination targeting T1 and T2. 

The pathway activities of the formula are computed by PROGENy on the cell lines of interest.  

 

1.3.4 Cross validation of group membership thresholds 

Prediction using a fixed threshold for both groups 

 For computing the Delta Pathway Activity formula, we chose the group membership to be the 

same in the top sensitive and top resistant groups. We only included pathways producing more 

than 70% of the effect of the first selected pathway. This choice of parameter seems to be a 

reasonable choice between including no additional pathway (threshold close to 100%) and 

including too many potentially irrelevant pathways (50%). We did a sensitivity analysis for this 

parameter and used different thresholds for the 2 different groups (sensitive and resistant). We 

fixed one group’s threshold while varying the other group’s threshold. We observe that for many 

target pairs, the sensitive group’s threshold is rather stable (Supplementary Figure 6). For the 

sensitive group, the model is quite robust to variation of this parameter, whereas for the 
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resistant group, a lower threshold (including more pathways) seems to yield better result. This 

could be explained by the fact that GDSC drug screening adjusts the drug concentration so that 

only a few cell lines respond while most are resistants. Therefore, more information are 

reflected from the resistant side than from the sensitive side. 

 

Prediction using cross validated and different thresholds for each group 

 We next predicted each target pairs of AstraZeneca breast data with a Leave One Out Cross 

Validation (LOOCV) to optimize the group membership thresholds. For each target pair, we 

used as thresholds the best values all target pair of the training set. The average prediction of 

the 7 target pairs is 0.27. Finally, we used the average parameters for the breast data to predict 

the BRAF/IR in colon data (Table 1). 

 

 

1.3.5 Data 

 

GDSC data were downloaded from: http://www.cancerrxgene.org/ 

Drug IC50 version 17a 

Basal gene expression 12/06/2013 version 2 

Drug target version March 2017 

 

DREAM drug combination challenge data were acquired through an AstraZeneca Open 

Innovation Proposal. 

 

Merck drug combination data is downloaded from the publication O’Neil et al(O’Neil et al. 2016) 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.cancerrxgene.org/
https://paperpile.com/c/RsGDPP/6TFWu
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1.4 Discussion 

 

 In this project, we presented two workflows for drug synergy prediction and patient stratification.  

The synergy prediction workflow can be a powerful framework for compound prioritization in 

large scale drug screenings. For instance, only testing drugs targeting two functional very 

similar or very opposite proteins (|correlation| > 0.7) could significantly reduce the search space, 

therefore decreasing the cost of drug combination research. The synergy stratification workflow 

could potentially be used to maximize the drug efficacy of drugs already known for inducing 

synergy. Indeed, knowing that a pair of compounds is synergistic does not tell us on whom to 

use it. We modeled the genomic context with linear combination of pathway activities. 

 

 We introduced the notion of functional similarity between two protein targets. This metric shed 

lights on two scenarios where drug synergy occurs: when drugs are targeting functionally similar 

proteins (AKT/EGFR, AKT/MTOR, BCL2/MTOR, EGFR/MTOR and AKT/BCL2) and when they 

are targeting functionally opposite proteins (AKT/ALK and AKT/PARP1). Our results support 

that synergy occurs and is much easier predicted when the targets are functionally very similar 

or very anti similar. Portraying the interaction between protein targets and pathway activities 

allowed us to recognize the different synergy cases. Based on that, we predicted synergies of 7 

target pairs (AKT/ALK, AKT/MTOR, AKT/EGFR, BCL2/MTOR, EGFR/MTOR and AKT/BCL2, for 

29 drug combinations) in breast cancer cell lines. We validated the synergy hypothesis for colon 

and lung tissues in an independent dataset. Finally, we predicted and validated a drug 

combination synergy (Dabrafenib/BMS−754807) on 48 colorectal cancer cell lines. 

 

 There are several limitations to this study that can be the focus of future work: (i) Better synergy 

models are needed, such as one which takes into account non-linear effects of pathways; we 

could envision adding coefficients to each pathway and including AND/OR gates. But this would 

require an extensive training set. (ii) In this present work, target functional similarity is defined 

with respect to 11 PROGENy pathways, which do not necessarily capture all cancer 

mechanisms. Therefore, the need to expand this geneset to include more cancer relevant 

pathways. (iii) In order to predict synergy of new compounds, drug targets have to be profiled by 

large scale monotherapy drug screening experiments across hundreds of cell lines. Thus, the 

need to expand single drug response data, while this is at a complexity cost of O(n), running 

drug combinations are O(n2). 

 

 Our study findings are aligned to those of the DREAM drug combination challenge(Bansal et al. 

2014), where synergy was found to be highly context dependent. In our case, we predicted 

synergy with a linear combination of pathway activities. Bansal et al. predicted synergy from 

single-compound perturbation data e.g. synergy occurs for drug pairs which induce very similar 

or very opposite gene perturbation statuses. We used single-compound drug response data and 

the Macau algorithm to compute the target functional similarity, which reflects the similarity of 

drug response changes for different pathways after targeting a specific protein. We found that in 

breast and colorectal cancer, compounds which have very similar or very opposite functional 

profiles tend to be more synergistic. We used the inferred synergy mechanism and pathway 

https://paperpile.com/c/RsGDPP/SQRMB
https://paperpile.com/c/RsGDPP/SQRMB
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activities to predict synergy of new compounds. We found that whether synergy arises in case 

of similarity or dissimilarity was also tissue specific. Hence adding more complexity in drug 

synergy predictions. 

 

 Palmer et al stated that successful drug combination in tumour shrinkage are mostly due to 

targeting unrelated pathways, without any real synergy(Palmer and Sorger 2017). Drug action 

similarity is defined by the correlation of single drug response data, which resembles our use of 

target - pathway based similarity score. We used synergy and not additivity as response 

variable, thus in line with the lack of real synergy in lowly correlated group both in our analysis 

and as described by Palmer et al. They also concluded that drug interaction (synergy and not 

additivity) can explain the majority of combination clinical trial only if the drugs have strong 

cross-resistance (i.e. highly correlated independent drug responses), whereas low cross-

resistance (i.e. lowly correlated independent drug responses) makes independent action of 

drugs the dominant mechanism in clinical populations. While the assessment of synergy is 

different in our case, as we used cell line data, the overall conclusions are in agreement. 

 

 In summary, exploring the interactions between drug targets and signaling pathways in a tissue 

specific manner can provide a novel in-depth view of cellular mechanisms and drug modes of 

action, which can ultimately rationalize drug combination strategies in cancer. Target functional 

similarity could be used as a metric for compound prioritization. Synergy by similarity hypothesis 

could be a rational for first line treatment, while synergy by opposite effect could potentially fit 

patients having acquired resistance.  

 

 

  

https://paperpile.com/c/RsGDPP/Bn8zI
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Chapter 2: Quantitative prediction of proteome for large scale 

proteogenomics characterization of tumor samples 
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2.1 Introduction 

 

 DNA sequence information is transcribed into mRNA, which is then translated into protein. 

Such process is known as the central dogma of molecular biology, and characterizes a complex 

series of events allowing the flow of genetic information to phenotype. Since proteins are the 

product of mRNA translation, their abundance is likely to correlate with mRNA level. In steady-

state conditions, protein abundances are largely determined by mRNA levels (Liu, Beyer, and 

Aebersold 2016). But during highly dynamic phases, such as cellular differentiation or stress 

response, post-transcriptional modifications (PTM) may weaken the protein/mRNA correlation 

(Liu, Beyer, and Aebersold 2016). This could explain the correlation between protein/mRNA of 

0.36-0.5 for the majority of human tissues (Kosti et al. 2016). 

 

 Characterization and analyses of alterations in the proteome hold the promise to revolutionize 

cancer research, through understanding the association between genome, transcriptome and 

proteome in tumors. Signaling molecules bind to protein receptors, which are the targets of 

many cancer therapies. Therefore, it is essential to characterize them to the best of our abilities. 

For this purpose, we launched a community-based collaborative competition: The NCI-CPTAC 

DREAM Proteogenomics Challenge. The challenge used public and novel proteogenomic data 

generated by the CPTAC to answer fundamental questions about how different levels of 

biological signal relate to one another. In particular, we focused on the following questions: (i) 

Can one predict abundance of any given protein from mRNA and genetic data ? (ii) Can one 

predict phosphoprotein abundances from protein abundance ?  

 

 We explore through machine learning the role of mRNA, potential PTMs, protein regulations 

and degradation (e.g. the effect of other proteins), in predicting protein abundance. PTMs of 

proteins play essential roles in a large number of biological processes. However, technical 

difficulties and high costs of PTMs profiling greatly hamper the abilities of scientists to study and 

understand these important molecules in biological systems. Thus, it is of great interest to 

assess the ability of predicting PTMs activities based on more easily accessible molecular data 

(e.g. mRNA). 

 

 We also construct prediction models for phospho-protein abundances based on global protein 

abundances, RNAseq data and copy number variation (CNV) data from CPTAC breast and 

ovarian studies. Moreover, it is of interest to assess which data type can better predict 

phosphorylation activities and whether an integrative framework could outperform analysis 

based on single-data type. 

 

 As a result of this competition, we used the winning method for downstream analysis of protein 

translation and regulation. We then assessed the utility of of predicted protein abundance using: 

(i) TCGA samples of breast tissue which were not used in the challenge, for survival analysis. 

(ii)  Cancer cell line for drug response prediction.  

https://paperpile.com/c/RsGDPP/aQkA7
https://paperpile.com/c/RsGDPP/aQkA7
https://paperpile.com/c/RsGDPP/aQkA7
https://paperpile.com/c/RsGDPP/iRpFV
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2.2 Results 

2.2.1 Challenge design 

 

 The NCI-CPTAC Proteogenomics DREAM challenge is divided into different subchallenges: (1) 

imputing missing proteomics data (not described in this thesis). (2) The Proteomics 

subchallenge (sc2, led by myself) consists in predicting protein abundance based on mRNA and 

CNA. (3) The Phosphoproteomics subchallenge (sc3, led by Francesca Petralia, Icahn Institute) 

consists in predicting phosphosite abundance based on protein, mRNA and CNA (Figure 1). 

Each subchallenge is composed of multiple rounds: 2 leaderboard rounds, a validation round 

and a collaborative round. To cope with data confidentiality, participants used a docker 

container to store their pre trained models (infrastructure implemented by Thomas Yu, Sage 

Bionetworks). Submission consists of applying the pre trained model to the test data. 

Participants were given a leaderboard dataset to test their model and generate one prediction 

file and one confidence file per leaderboard round. Scores were returned to participants so that 

they can improve their model throughout these rounds for their final round submission which 

was scored against a held-out dataset. In this thesis, we will mainly focus on the Proteomics 

subchallenge. 

2.2.2 Challenge data 

 

 As training data, we used TCGA retrospective collection of 77 breast and 174 ovarian tumor 

samples measured at four biological level along with their measured numbers in breast and 

ovarian tissue: proteomics (10005, 7061), phosphoproteomics (31981, 10057), transcriptomics 

(15107, 15121) and copy number alterations (16884, 11859) (Methods, Figure 1). 

Retrospective proteomics and phosphoproteomics data were downloaded from CPTAC data 

portal and processed by the common data analysis pipeline from CPTAC. For both tissues, 

proteome and phosphoproteome data were acquired using iTRAQ (isobaric Tags for Relative 

and Absolute Quantification) protein quantification methods. As testing data, we used 108 

prospective samples of breast tissue and 82 samples of ovarian tissue, for all four level of 

measurements (Methods, Figure 1). 
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Figure 1: Challenge design and data. For both training and test sets, we have four layers of 

omics data (Copy Number Alteration, mRNA, Proteomics and Phosphoproteomics). CNA and 

mRNA can be used to predict Protein level (Proteomics subchallenge). CNA, mRNA and Protein 

level can be used to predict Phosphosites abundances (Phosphoproteomics subchallenge). 

Data prepared by Zhi Li, New York University. 
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2.2.3 General outcome of the challenge 

 

 A total of 29 teams submitted for Proteomics subchallenge breast. Prediction were evaluated 

based on Pearson’s correlation of observed versus predicted protein abundance across new 

patient samples (Methods, Figure 2). The average prediction performance is r=0.26 (sd=0.17), 

and the best performance r=0.51. For Proteomics subchallenge ovarian, 32 teams submitted, 

with average performance of 0.29 (sd=0.18) and best performance r=0.53. If we consider the 

subset of proteins for which the corresponding mRNA is available, the winning team reached an 

average correlation of 0.55 and 0.53 for ovarian and breast tissues, respectively. The 

improvement are 17% (ovarian) and 15% (breast) compared to the naive correlation between 

mRNA and protein level. 

 

 For Phosphoproteomics subchallenge breast, 16 teams submitted, with average performance 

of r=0.17 (sd=0.16) and best performance r=0.42. For Phosphoproteomics subchallenge 

ovarian, 22 teams submitted, with average performance of r=0.11 (sd=0.11) and best 

performance r=0.33. 

 
Figure 2: Overall performances in the challenges. For each subchallenge, we plot the 

performances of all participating teams in breast and ovarian tissues. The random distribution is 

generated by permutation of protein/phosphoprotein abundances across each patient. Figure 

made by Zhi Li, New York University. 
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2.2.4 Global insights 

 

Data preprocessing and algorithms 

 

 The best performing methods in this challenge were tree and ensemble based. Missing value 

were excluded from predictor variable in training phase. External information such as KEGG 

pathways, Interaction networks, CODON count, GC percentage, protein folding energy and 

transcription factors were also used. Training data were scaled or feature wise standardized. 

The best performing team performed quantile normalization on the training and testing data 

altogether. 

 

 The best performing teams only used mRNA to predict protein abundance for Proteomics 

subchallenge, and found no benefit in including CNA data. For Phosphoproteomics 

subchallenge, protein abundance was the chosen omics layer to predict phosphosite 

abundance. mRNA and CNV were not used as no additional improvement compared to 

proteomics only. 

 

Factors influencing protein prediction performance  

 

 We observed that proteins for which the corresponding mRNA is present were better predicted 

compared to those where it is not measured (Figure 3, p<2.2e-16). Similarly, proteins that are 

“free” were better predicted than those belonging to a protein complex from CORUM database 

(Figure 3, p<2.2e-16). This could be explained by the fact that “free ”proteins are more likely to 

follow the corresponding mRNA level. On the other hand, proteins inside a complex are co-

regulated by other proteins and the structure is more robust to transient variation of mRNA level. 

The best predicted proteins are those which are directly influenced and accessible by mRNA. 

Another factor could be protein size, as complex proteins are bigger, thus mass spectrometry is 

less able to fractionalize the peptides. 

 

 One could hypothesize that more abundant proteins are better predicted, as easily measured 

by mass spectrometry. But we found no evidence of positive correlation between protein 

abundance and predictability. For breast and ovarian tissues, the correlation between prediction 

performance and average abundance across samples are respectively -0.077 (p=7.6e-13) and -

0.25 (p=7.2e-75). The slightly negative correlation could be explained by the fact that proteins in 

complex are generally more abundant than protein out of complex (p<2.2e-16 and p<4.7e-07, 

for ovarian and breast, respectively). 
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Figure 3: Factors influencing predictability. We present for each tissue, the winning team’s 

prediction performance for: (i) all proteins; (ii) subset of proteins for which the corresponding 

mRNA is measured; (iii) subset of proteins for which the corresponding mRNA is missing; (iv) 

subset of proteins belonging to a protein complexe (CORUM); (v) subset of proteins not 

belonging to a protein complexe. 
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 We further grouped the genes into HGNC families, then plotted the average prediction 

performance of each family for breast and ovarian (Figure 4).  The prediction performance do 

not vary a lot between breast and ovarian tissues (r=0.88, p=6.4e-33). The best predicted 

families were Aldehyde dehydrogenase, Acyl-CoA synthetase, Integrin alpha subunits and 

Glutathione S-transferase. The least predicted families were histones and ribosomal proteins, in 

both cases functioning as complexes. 

 

 
 

Figure 4: predictability by family of genes. We define the stability of each family as the 

inverse of the coefficient of variation of the predictability across the family. The more stable a 

family is, the less variation in predictive performances across all proteins of the family. 
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2.2.5 Common protein regulators predict survival 

 

 We used the best performing method to explore the feature importance and considered only 

the predictor genes that are top ranked across all proteins. Those genes are likely to be the 

common protein regulators. We took the top 10 regulators with corresponding protein prediction 

performance greater than 0.7, for ovarian: NNMT, SFRP4, FAP, SULF1, MYLK, MCM7, PLS3, 

KRT17, HBB and CILP. And for breast: GBP5, MMP11, DOPEY2, LASP1, CXCL9, ICAM1, 

DENND2D, WDR12, PLCD1 and HOPX. 

 

 We want to assess if the best predicted common regulators can also be predictive of patient 

survival. We chose breast cancer as it has the biggest sample size of patients and used the 

predicted proteomics (901 samples) based on the winning model. After log rank tests of the 10 

predictors after correcting for age, gender, and false discovery rate, proteins PLCD1 and 

WDR12 are the top predictive biomarker of survival with q-values of 0.039 and 0.013, 

respectively. Similarly, we used mRNA of those two proteins for the same survival prediction. 

mRNA PLCD1 and WDR12 have an q-value of 0.079. Protein Phospholipase C Delta 1 

(PLCD1) functions as a tumor suppressor in several types of cancer(Xiang et al. 2010), and it 

comes with no surprise that a higher level of PLCD1 is associated with a better outcome 

(Figure 5). Protein WDR12 is required for maturation of ribosomal protein (Lewinska et al. 

2017), therefore an increase of this protein may result in cell proliferation, thus associated to 

poor clinical outcome. 

 

 

https://paperpile.com/c/RsGDPP/KxI41
https://paperpile.com/c/RsGDPP/3roAf
https://paperpile.com/c/RsGDPP/3roAf
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Figure 5: Patient stratification from common regulators. Kaplan Meier plot with proteins 

PLCD1 and WDR12 as the top predictive protein regulators, using predicted proteomics data of 

901 breast cancer samples. 

 

2.2.6 Proteomics insights from patient stratification 

 

 Patient stratification is an important goal in oncology research. However, it is difficult to do any 

survival analysis using real proteomics data due to the small sample size (77 samples for  

breast tissue). Therefore, we applied the winning method to 901 new breast samples from 

TCGA to generate predicted protein abundances from mRNA. Another issue in patient 

stratification is that testing all predictors for survival (log rank test) is highly inefficient, as a 

simple multiple hypothesis correction may invalidate all selected biomarkers. Therefore, we 

used the state of the art Multi Omics Factor Analysis (Argelaguet et al. 2017) to reduce an 

omics dataset into a subset of hidden variables (Factors) that capture the biological/technical 

variability of the dataset (Methods). We applied MOFA on proteomics, mRNA and a 

https://paperpile.com/c/RsGDPP/502On
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combination of proteomics and mRNA. The derived factors were then tested as prognostic 

biomarker of patient survival (Supplementary Table 1). 

 

 We used the top predictive factors to stratify patients. Predicted protein alone identified 2 

predictive factors with respective q values of 0.0014 and 0.00071 of log rank test 

(Supplementary Table 1). One factor was identified from mRNA with comparable q value of 

0.0025 (Supplementary Table 1). Using the combined proteomics and mRNA, we identified 3 

predictive factors with q values of 0.0050, 0.044, 0.0071. 

 

 The top predictive factor of predicted protein is enriched in Peptide chain elongation pathways 

(Supplementary Table 1). Top contributing genes of those factors includes RPL26, RPL29, 

RPL34 and RPL37. A factor analysis on predicted protein abundance was able to identify this 

class of proteins which play an important role in breast cancer (Goudarzi and Lindström 2016; 

Belin et al. 2009; Van Long et al. 2016). Another predictive factor includes TMEM26 and VGLL1 

as to predictive genes. TMEM26 is highly expressed in triple negative breast cancer, and is 

associated with higher risk of recurrence particularly in ERα-negative cases (Mitra 2017; Nass 

et al. 2016). VGLL1 expression is associated with a triple-negative basal-like phenotype in 

breast cancer and correlates with poor survival (Castilla et al. 2014). 

 

 By combining predicted protein with mRNA, we identified the same factor enriched in Peptide 

chain elongation pathway. Another important predictor of survival is Factor 4, with top weighted 

genes in the protein view: ARGLU1, SULT1E1, CEACAM5, AKR1B10 and ING4. And the top 

enriched pathway is Extracellular matrix organization. ARGLU1 has been described as new 

MED1-interacting protein for breast cancer cell growth (Zhang et al. 2011). Genetic 

polymorphisms of SULT1E1 were found to be associated with increased risk and a disease free 

survival of breast cancer (Choi et al. 2005). CEACAM6 plays a role in tumor cell migration, 

invasion and adhesion, and formation of distant metastases (Choi et al. 2005; Blumenthal, 

Hansen, and Goldenberg 2005). AKR1B10 promotes breast cancer metastasis through 

FAK/Src/Rac1 signaling pathway(Huang et al. 2016). ING4 inhibits estrogen receptor activity in 

breast cancer cells (Keenen and Kim 2016). For most of the factors, protein view and mRNA 

view are in agreement for top enriched pathways. 

 

 In overall, predicted proteomics identified more predictive factors than mRNA, with comparable 

predictive performance. It was also able to identify new insights as predictor of survival, which 

were not found using mRNA.  

https://paperpile.com/c/RsGDPP/ZpP6l+iZE0m+z30UA
https://paperpile.com/c/RsGDPP/ZpP6l+iZE0m+z30UA
https://paperpile.com/c/RsGDPP/IzWmm+Aefra
https://paperpile.com/c/RsGDPP/IzWmm+Aefra
https://paperpile.com/c/RsGDPP/zgZsw
https://paperpile.com/c/RsGDPP/R6MTa
https://paperpile.com/c/RsGDPP/Dpm4f
https://paperpile.com/c/RsGDPP/Dpm4f+qcYlP
https://paperpile.com/c/RsGDPP/Dpm4f+qcYlP
https://paperpile.com/c/RsGDPP/pJ2r1
https://paperpile.com/c/RsGDPP/NBQ2


 45 

2.2.7 Validation on colorectal cancer cell line 

 

 We applied the best performing model (from ovarian) on 47 colorectal cancer cell 

lines(Roumeliotis et al. 2017). The input feature is microarray mRNA and the real proteomics 

data was acquired by isobaric peptide labeling (TMT-10plex) and MS3 quantification. There are 

3039 proteins in common between the DREAM CPTAC predicted and the ones measured in the 

reference paper. The average correlation between the predicted protein and the real protein 

abundance is 0.36 (from -0.37 to 0.88), which is an encouraging result considering that the 

model was: (i) trained on RNAseq and tested on microarray. (ii) trained on proteomics acquired 

using iTRAQ and tested on proteomics acquired by isobaric peptide labeling (TMT-10plex) and 

MS3 quantification.  

 

2.2.8 Application to drug response prediction  

 

 We applied the winning model (from ovarian) to 990 cancer cell lines from the Genomics of 

Drug Sensitivity in Cancer (GDSC) screening(Iorio et al. 2016c). Each cell line is treated by 265 

drugs. We used Elastic net algorithm to predict drug response IC50 (Concentration of Inhibition 

at 50% viability) using 10 fold cross validation, repeated 100 times. The average predictive 

performance for the 265 drugs is 0.41 using mRNA and 0.40 using predicted proteomics. We 

found no significant difference between the two groups in term of performance (p=0.37).  

 

 

  

https://paperpile.com/c/RsGDPP/B1N8I
https://paperpile.com/c/RsGDPP/FJmvI


 46 

2.3 Methods 

2.3.1 Challenge data 

 

 TCGA retrospective collection of breast and ovarian tumor samples quantitatively measured at 

four biological levels (proteomics, phosphoproteomics, transcriptomics (mRNA) and copy 

number alterations (CNA) were used as training data for CPTAC-NCI dream challenge. 

Prospective samples of the same cancer types with all four level measurement was generated 

and used as testing data for performance evaluation. Sample size varies between different 

platforms due to the availability and quality of original tumor samples at the time of the study. 

Mass-Spectrometry based proteomic and phosphoproteomic characterization of these tumor 

samples yield more than hundred of thousand protein and phosphosite identifications combined, 

which will serve as the target to be predicted in the sub-challenges. 

 

Training Data 

  

Breast cancer: 

■ Proteome: 10005 proteins for 105 patients 

■ Phosphoproteome: 31981 phospho-sites for 105 patients 

■ CNA: 16884 genes for 77 patients 

■ mRNA: 15107 genes for 77 patients 

Ovarian cancer: 

■ Proteome from PNNL: 7061 proteins for 84 patients 

■ Proteome from JHU: 7061 proteins for 122 patients 

■ Phosphoproteome: 10057 phosphosites for 69 patients 

■ CNA: 11859 genes for 559 patients 

■ mRNA(Array): 15121 genes for 569 patients 

■ mRNA(RNA-seq): 15121 genes for 294 patients 

  

 Training proteomics and phosphoproteomics data of breast and ovarian tumors were 

downloaded from CPTAC data portal and processed by the common data analysis pipeline from 

CPTAC. For both tissues, global proteome and phosphoproteome data were acquired using 

iTRAQ (isobaric Tags for Relative and Absolute Quantification) protein quantification methods 

as described previously. For breast proteome, 105 (77 passed QC) tumors from different 

patients were analyzed at the Broad Institute. The protein log ratios of the protein abundance 

were calculated including only peptides that map unambiguously to the protein. Breast tumor 

samples ('TCGA-AO-A12B', 'TCGA-AO-A12D', 'TCGA-C8-A131' assayed in duplicate for quality 

control purposes) were mean aggregated in the uploaded training data (https://cptac-data-

portal.georgetown.edu/cptac/s/S015). For ovarian proteome, there are 206 samples from 174 

unique patients (84 from Pacific Northwest National Laboratory (PNNL), 122 from Johns 

Hopkins University and 32 measured by both centers). We provided participants with both 

proteome collections for training to cover the maximum number of samples for Proteomics 

subchallenge.  
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 CNA data were directly downloaded from two CPTAC publications. Non unique gene IDs were 

median aggregated. Transcriptomics data for both cancer types were downloaded from TCGA 

firehose. RNA-seq (RSEM z-score, median aggregated) were chosen for breast cancer. 

Microarray data and RNA-seq data were both downloaded for participants to use for ovarian 

cancer. The main reasons of providing participants with both datasets are sample coverage is 

greater between microarray and proteome, however only RNA-seq was performed for 

prospective collection. 

 

 

Testing Data 

 

CNA, RNA-seq, Proteome from prospectively collected patients were provided as testing data.  

  

First and second round: 

Ovarian cancer: 

■ Proteome: 7061 proteins for 20 patients 

■ Phosphoproteome: 10057 phosphosites for 20 patients 

■ CNA: 11859 genes for 20 patients 

■ mRNA(RNA-seq): 15121 genes for 20 patients 

Final round: 

Breast cancer: 

■ Proteome: 10005 proteins for 108 patients 

■ Phosphoproteome: 31981 phospho-sites for 108 patients 

■ CNA: 16884 genes for 108 patients 

■ mRNA: 15107 genes for 108 patients 

Ovarian cancer: 

■ Proteome: 7061 proteins for 62 patients 

■ Phosphoproteome: 10057 phosphosites for 62 patients 

■ CNA: 11859 genes for 62 patients 

■ mRNA(RNA-seq): 15121 genes for 62 patients 

 

The training data has been prepared by both Zhi Li (New York University) and I. The testing 

data has been exclusively prepared by Zhi Li. 
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2.3.2 Scoring 

 

Proteomics subchallenge: prediction of protein abundance based on mRNA 

 

 These models are evaluated in two novel, unpublished held-out datasets: ovarian and breast 

tissue. We will only focus on 5220 proteins for ovarian and 8649 proteins for breast with less 

than 30% missing values in both training and testing data. We first compute the pearson 

correlation between observed and predicted abundances across all samples for each protein. 

We then take the mean correlations of proteins in the test data set as the final evaluation score. 

If there is a tie, we will further use NRMSE for all proteins to select the winner. 

  

 

Phosphoproteomics subchallenge: prediction of phosphosites abundance based on protein 

abundance 

 

 We will only focus on 1318 phosphosites for ovarian and 4907 phosphosites for breast with less 

than 30% missing values in both training and testing data. We first compute the pearson 

correlation between observed and predicted phosphosite abundances across all samples for 

each phosphoprotein. We then take the mean correlations of phosphoproteins in the test data 

set as the final evaluation score. If there is a tie, we will further use NRMSE for all 

phosphoproteins to select the winner. 

  

 

2.3.3 Winning method 

 

 The winning team (Hongyang Li, Yuanfang Guan, University of Michigan) used a weighted 

average of four major models for prediction (Figure 6): 

 

Protein proxy model: This model is based on the observations that protein and transcript levels 
are correlated, and simply uses the transcript level of a given gene as a proxy for its protein 
level. Missing values positions are replaced with the gene average across non-missing samples. 
This model has several limitations including that it assumes no differential translational 
regulation and degradation, and it disregards interaction between genes. 
 
Interaction model: Since different genes are regulated differently, individual models were built 
for each gene using random forests with maximum depth of 5 and 100 trees. The response 
variables for training are the non-missing observations across all samples, and as features the 
values for all genes as training features to take into account gene interactions. 
 
Pan-cancer model: The performance of individual model is limited by the sample size. The 
training data only contain 77 and 174 tumors for breast and ovarian, respectively. This is a 
relatively small sample size, but when combining all the samples, a better performance was 
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achieved as the majority of genes have similar regulation across different tissues (Wang, 
Zhang, and Du 2013). 
 
 For the phosphorylation prediction task, the proxy model was changes to use protein levels 
instead of transcript levels and a fourth model was added: 

 
Phosphorylation proxy model: This model is based on the observations that protein and 
phosphorylation levels are correlated albeit only modestly, and simply uses the protein level of a 
given gene as a proxy for its phosphorylation level. This model assumes that for any given gene 
a constant fraction of the proteins are phosphorylated. 
 
Phosphosite correlation model: The levels of multiple phosphorylation sites from the same 
protein are not independent. The biological rationale behind this model is that if a protein is 
phosphorylated, it is likely that multiple phosphosites are phosphorylated co-regulated. In 
addition, for technical limitations it is sometimes not possible to distinguish two phosphosites 
that are very close in the linear sequence so that they are in the same peptide after digestion 
and no fragment peaks are observed from fragmentation between them. Therefore, a 
phosphorylation site is correlated with other phosphorylation sites on the same protein, the 
winning team utilized this and calculated the weighted average prediction from all 
phosphorylation sites of the same gene as the multi-site prediction. 

 

2.3.4 Ensemble method from top performers 

 

 We next sought to further improve the prediction by the organizing a collaboration round 

between the top 4 ranked teams (led by Francesca Petralia, Icahn Institute). Each team has for 

objectives to improve their own methods and to incorporate other teams’ specificities (Figure 6).  

 

 Team hyu used Random Forest algorithm and mRNA as proxy. mRNA features were filtered 

based on KEGG signaling pathway and human PPI network information, as well as their 

correlation with the responses. When applicable, all neighbors within a distance of 2 from a 

protein, in either KEGG pathway or PPI network, were selected. This set is then expanded by all 

genes belonging to pathways of mRNA surveillance, RNA degradation, RNA polymerase, basal 

transcription factors, cell cycle, protein processing in endoplasmic reticulum and microRNAs in 

cancer, because these pathways are assumed to play important roles in regulating translation. 

 

 Team DEARGENpg predicted protein and phosphoprotein abundances, by grouping genes 

into signalling pathways, selected 300 Protein, CNA, mRNA features using Pearson correlation 

scores and an ensemble model of XGboost, Extra Tree and Random Forest, using stacking. 

PAM50 breast subtypes (basal-like&HER2 and LuminalA&LuminalB) have been added to each 

patient (0 or 1) using PCA in 2 dimensions and then K-means clustering. Gene meta information 

were added considering Codon count, GC count and Folding energy. 

 

 Team DMIS_PTG trained models for each protein using LASSO regression. Features were 

selected based on PPI networks (BioGRID, BTNET and CORUM) and biological pathways. The 

genes which are 1-hop from the target protein gene in the union network explained above. The 

https://paperpile.com/c/UZ7q68/ayuZ
https://paperpile.com/c/UZ7q68/ayuZ
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average of the number of these features for all protein models is approximately 20. Gene sets 

were selected using MSigDB where all the component genes are included in the training gene 

expression data. Then, a median value of the expression value for each gene set were used as 

feature. Around 700 median values of gene sets were included. Both microarray and RNAseq 

data were used for training. Although the testing data only provides RNAseq, microarray training 

data contain more sample than RNAseq.  

 

 “To improve the prediction performance, we assembled the models of the top 4 teams from the 

challenge. By analysing the 5-fold cross validation results of these models on the training data, 

the prediction correlation of each protein was calculated. For each protein, the correlation 

scores were used as the stacking weights of these top 4 models (hereafter referred to as the 

individual ensemble model). To estimate the overall performance, the average correlation of all 

proteins was calculated and used as the weights for all proteins (hereafter referred to as the 

global ensemble model). For the ovarian cancer, we observed a significant improvement 

(0.5605) of the global ensemble model, compared with the best performer in the challenge final 

round (0.5284), p<2.2e-16. However, the improvement of the global ensemble model is very 

marginal in breast cancer, only from 0.5052 to 0.5063, p=1. We further calculated the 

normalized root mean square error (NRMSE) of these model and found that the global 

ensemble model reduced the error from 0.1863 to 0.1750 in the ovarian cancer. Similar 

correlation scores were observed for predictions of the individual ensemble model in both breast 

and ovarian cancers.” (Analysis performed and text written by Hongyang Li, University of 

Michigan) 
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Figure 6: Prediction models of the best performers. 
 

The input data are on the left (mRNA, DNA, proteomics) and the prediction output are on the 
right (Proteomics and Phosphoproteomics subchallenges). Each team starts with the input data 
on the left and navigates to the right side, the stations they crossed representing the methods 
they used. 
 

Paths taken by each team for the Proteomics Subchallenge: 
1) Team Hongyang Li and Yuanfang Guan used Protein proxy model, Random forest and Pan 
cancer model.  
2) Team Hyu used Random forest. Features were selected by KEGG pathway and PPI (Human 
Protein Reference Database).  
3) Team DEARGENpg built models on a groups of proteins, used ensemble of Random 
Forest+XGboost+Gradient Boost, and additional features such as gene metadata (codon bias, 
GC count and folding energy of each protein). 
4) Team DMIS_PTG used LASSO. Features were selected based on Gene Regulatory 
Network, CORUM protein complexes, PPI, and LASSO.  
 

Paths taken by each team for the Phosphoproteomics Subchallenge:  
 

1) Team Hongyang Li and Yuanfang Guan used Phosphoprotein proxy model, Random forest, 
Pan cancer model and Phosphoprotein correlation model.  
2) Team Ardigen used Phosphoprotein proxy model and used algorithm LARS. 
 

Figure made by Nicolàs Palacio and designed by both of us. 
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2.3.5 Multi Omics Factor Analysis 

 

 

 MOFA is a statistical model which can identify the principal sources of variation in multi omics 

datasets (Argelaguet et al. 2017). It infers a set of hidden variables (Factors) that capture the 

biological/technical variability of the dataset. MOFA takes an arbitrary number of data matrices 

(omics layers)  (Y1,..., YM) with co-occurrent samples but possibly differing number of features. 

MOFA decomposes these matrices into a matrix of factors, Z, for each sample and M weight 

matrices, one for each view (loadings W1,.., WM). MOFA approximates the true posterior using a 

variational distribution in a factorized form, which is optimized by minimizing the lower bound of 

the marginal likelihood (also called evidence lower bound, ELBO). Unlike the standard principal 

component analysis, each Factor can be defined by several layers of information (proteomics 

AND/OR mRNA AND/OR mutation...etc). Kernel and graph based methods also allow to 

combine multiple omics data, but those approaches suffer from the lack interpretability. Our 

motivation for using MOFA is the panoply of downstream analysis to biologically define a factor 

of interest and associate it with clinical phenotype (such as patient survival). In addition to that, 

MOFA is highly scalable and handle missing values and non-gaussian omics layers (such as 

mutation data). Gaussian distribution was used to model protein and mRNA’s likelihood. For 

binary mutation, we used Bernoulli. We iterated until convergence. 

 

2.4 Discussion 

 

 The winning method of this competition is an ensemble of four models, which consist in: (i) 

Using input feature as proxy of the response variable (Generic model). (ii) Modeling each 

protein based on mRNA expression of other genes, with Random Forest. (iii) Including another 

tissue in training phase (Trans-tissue model). (iv) Modeling phosphosite abundance based on 

the biology and the mass spectrometry technology. 

 

 Unsurprisingly, proteins were better predicted when the corresponding mRNA is available. 

Proteins outside a protein complex were also better predicted than those belonging to a 

complex. The best predicted families were Aldehyde dehydrogenase, Acyl-CoA synthetase, 

Integrin alpha subunits and Glutathione S-transferase. The least predicted families were 

histones and ribosomal proteins. Analysis of commonly protein regulators revealed key proteins 

predictive of patient survival e.g. WDR12 and PLCD1. 

 

 We then assessed the utility of the predicted proteins using: (i) TCGA samples of breast tissue 

which were not used in the challenge for survival analysis and (ii) Cancer cell line for drug 

response prediction. 

 

 We used Multi Omics factor Analysis to reduce the proteomics/mRNA dimension and used 

breast tissue to assess the predicted proteomics’ performance in patient stratification. Predicted 

protein’s performance is comparable to mRNA, and revealed more predictive biomarker. 

https://paperpile.com/c/RsGDPP/502On
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Predicted proteomics identified L ribosomal proteins contributing to patient stratification, which 

were not found using mRNA. Another group of proteins identified by combining proteomics and 

mRNA, were ARGLU1, SULT1E1, CEACAM5, AKR1B10 and ING4, many of them involved in 

cell migration and Extracellular matrix organization. Those results suggest the use of predicted 

protein abundance to explore biological insights under a new angle. 

 

 We applied the winning model to predict protein level on 48 colorectal cancer cell lines from the 

GDSC screening, and reached an average correlation of 0.36 between predicted protein level 

and real protein level, despite the difference of technology used in training and testing. Drug 

response prediction based on predicted proteomics is comparable to using mRNA, which is 

encouraging considering that the model was built on mRNA. These results suggest the potential 

use of predicted proteomics to facilitate drug mode of action elucidation and improve therapeutic 

decisions. 

 

 Regarding prediction of protein level based on mRNA, Wilhelm et al. reported correlations of 

approximately 0.9 between observed versus predicted protein levels (Wilhelm et al. 2014) and 

concluded that protein abundance can be predicted with good accuracy from the corresponding 

gene’s mRNA levels. Fortelny et al. replied that the model was built within genes, whereas the 

assessment of performance was done across genes (Fortelny et al. 2017). This is due to a  

discrepancy between model building and model assessment. The reported performance score 

is not generalizable to new experiments.  

 Cancer drugs are mostly targeting proteins. Therefore, protein targets with low/anti correlated 

protein/mRNA could lead to therapeutic mistakes. If the measured protein abundance reflects 

better the biology, then using mRNA to make clinical decision would be a mistake. On the other 

hand, if mRNA reflects the biology better than the measured proteomics, this could point to 

potential directions of improvement of the mass spectrometry technology or data processing. To 

determine which situation prevails, domain specific gold standards are needed.  

 

 

 

 

 

 

  

https://paperpile.com/c/RsGDPP/srYpd
https://paperpile.com/c/RsGDPP/djrmC
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General conclusions and outlook 

 

 We presented in this thesis different applications of machine learning in knowledge discovery 

for systems pharmacology and cancer biology. We mined the largest public available databases 

of cancer drug screenings (GDSC, CTRPv2 and CCLE), and drug combination data from 

AstraZeneca and Merck. We then worked with the largest primary tumor databases: TCGA for 

mRNA and CPTAC for proteomics. Mining public available databases has several advantages 

over generating your own data: (i) The sample size for a given omics layer is much bigger, thus 

allowing more exploration, discovery, stronger statistical power and use of more sophisticated 

algorithms. (ii) The overlapping samples between different omics layers is also bigger, allowing 

more exploration of the underlying associations between omics layers. We argue that 

biomedical scientists should always start with an initial step of data driven hypothesis generation 

or confirmation, and then experimentally validate the hypothesis. This could significantly 

increase the success rate and better allocation of research time and fund. 

 

 Multitask learning and matrix factorization have been successfully applied to preclinical drug 

response prediction on cancer cell lines. Since the response data is in a matrix format (cell lines 

treated by drugs), this class of algorithm can easily capture the underlying associations between 

the descriptors of the cell lines and the descriptors of the drugs. Such association is on a deeper 

level than a simple drug-gene association, and could potentially be applied to target discovery, 

drug repurposing and patient stratification. 

 

 Machine learning has been widely used for prediction purpose. In the drug combination project, 

we used Macau, a multitask learning algorithm, in a unsupervised way for hypothesis 

generation. Based on the generated hypothesis, we built specific models for prediction. We 

applied this workflow to drug synergy discovery and prediction. This method could: (i) Predict 

whether a pair of compounds could be synergistic for a given tissue, therefore used as a 

compound prioritization framework. (ii) Predict synergy of new drug combinations on new cell 

lines, without performing any experiments. 

 

 In this last project, we explored through a collaborative machine learning competition, the 

relations between protein level and mRNA expression. The best performing algorithm can 

accurately predict protein level on tumor samples from mRNA. Since cancer drugs mostly target 

proteins, the possibility to explore the protein level of tumor samples, could potentially reveal 

new facets of cancer biology. 

 

 In this thesis, we successfully applied machine learning to preclinical drug development and 

cancer biology in real patient tumors. Due to the availability of data, matrix factorization is 

especially suited for in vitro drug screenings. 3D Tensor factorization could also be used, 

provided the availability of a third mode, which could be drug concentration or treatment by an 

additional drug (combination). In clinical scenario, such class of algorithm is unlikely to be 

applied for response prediction (patient survival or drug response), as this would require treating 

the same patient with hundreds of drugs. Therefore, the most commonly used algorithm for 
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clinical data are single task Cox regression, linear regression and Random Forest. 

Nevertheless, Tensor factorization and Factor Analysis could be applied to reduce the 

dimensions of multi omics data (Transcriptomics, Proteomics, Metabolomics...etc). The resulting 

Factors or latent matrix could be used as input features for prediction purpose.  

 

 Cancer drug screenings most often only focus on drugs targeting intracellular processes of the 

cancer cells (Dry, Yang, and Saez-Rodriguez 2016b). It is essential to also consider primary 

tumors and other systems, as cancer cell lines, although the best existing model to study drugs’ 

mode of action, do not take into consideration the immune system nor the 3D structure of the in 

vivo tumor. In the future, ex vivo tumor culture (such as organoids and patient-derived 

xenografts) could be used to reproduce the drug response matrix as in preclinical drug 

screenings. Organoids could mimic in vivo architecture of the tumor within an organ (Dutta, Heo, 

and Clevers 2017), therefore more realistic than in vitro cell line experiments. Patient-derived 

xenografts are immunodeficient mice implanted with patients’ tumors and are currently the best 

in vivo system beside the patient (Lai et al. 2017).  

 

 Clinical trial data and electronic health record are likely to play an important role in precision 

medicine. However, clinical trial data are difficult to obtain and electronic health record could be 

sparse and noisy. Biosensors and smart wearables are promising ways for real-time monitoring 

of patient response, health, and adverse events (Dry, Yang, and Saez-Rodriguez 2016b; 

Cleeland et al. 2012). Such technologies are more efficient in collecting data than from a 

hospital (expensive and slow). 

 Big data approaches could significantly improve the drug development process, decrease the 
cost of making a new drug, and potentially reducing the need for animal experiments. However, 
such perspectives are often perceived as risky by the pharmaceutical industry which most often 
prefers to do what has always been done. In this context of drug development attrition, industry-
academia collaborations are evermore needed. 

 In this thesis, we extensively used machine learning for cancer bioinformatics, from preclinical 
drug screenings to patient outcome prediction. We hope that those results could be used for 
new drug developments, repositioning of old drugs, synergy and biomarker discovery.  
 

 

  

https://paperpile.com/c/RsGDPP/qII95
https://paperpile.com/c/RsGDPP/Aine6
https://paperpile.com/c/RsGDPP/Aine6
https://paperpile.com/c/RsGDPP/L4MCl
https://paperpile.com/c/RsGDPP/qII95+htZoo
https://paperpile.com/c/RsGDPP/qII95+htZoo
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A   Supplementary information to chapter 1 

A.1 Supplementary text 1: Methodology applied to breast tissue 

 

 We explained through target-pathway interactions, two mechanisms of drug synergy. In order 

to validate our synergy models, we first looked at public data, using the DREAM AstraZeneca 

drug combination challenge(Menden et al. 2017a), which experimentally tested >120 folds drug 

combinations compared to the previous Bansal et al. challenge. Furthermore, the AstraZeneca 

challenge expanded the number of tested cell lines including their deep molecular 

characterisation enabling for the first time identification of synergy biomarkers. We tested our 

model on 7 target pairs (29 drug combinations) from the AstraZeneca DREAM 

challenge(Menden et al. 2017a), and chose breast as the most represented tissue with 33 cell 

lines.  

 

 We applied our general framework to predict synergy scores. The first step was to determine 

the top sensitive and top resistant pathways for a certain target - pathway pair (Supplementary 

Figure 3). We then derived the formula of Delta Pathway Activity and predicted the drug 

synergy (Table 1). When choosing between Model 1 and 2 for the synergy model, the target 

functional similarity was the main criteria. If the similarity is close to 1, we use Model 1. If the 

similarity is close to -1, we use Model 2. 

 

 PI3K/AKT/MTOR pathway plays a significant role in treatment resistance in breast 

cancer(Paplomata and O’Regan 2014). Therefore, we hypothesized that the PI3K pathway will 

be informative of the synergy if AKT is targeted. Therefore, each time AKT is targeted, we 

included PI3K pathway as well as any pathway between the first one and PI3K, while respecting 

the limit of maximum 3 pathways per group. 

 

 When grouping pathways in the top sensitive and top resistant groups, we consider only those 

that have at least one significant interaction with the drug targets. If not significant, we discard 

the pathway. Exceptions are made when only one pathway is included (the top sensitive or top 

resistant one) and when the pathway has a stronger interaction than a pathway included by 

prior knowledge (literature). 

 

 For AKT/ALK (Supplementary Figure 3a, Figure 3a): the top sensitive pathway is EGFR and 

the top resistant pathways are MAPK and TNFa. The target functional similarity between 

AKT1/2 and ALK is -0.4 (Table 1). Therefore, we used synergy Model 2:  

 

 𝐷𝑒𝑙𝑡𝑎 𝑃𝐴 (𝐴𝐾𝑇/𝐴𝐿𝐾)𝑏𝑟𝑒𝑎𝑠𝑡  =  
𝑀𝐴𝑃𝐾 +  𝑇𝑁𝐹𝑎

2
 −  

𝐸𝐺𝐹𝑅 +  𝑉𝐸𝐺𝐹 + 𝑃𝐼3𝐾

3
 

 

 For AKT/MTOR (Supplementary Figure 3b, Figure 3b): the top sensitive pathways are EGFR 

and VEGF. The top resistant pathways are MAPK and TNFa. The target functional similarity 

between AKT1/2 and MTOR is 0.8 (Table 1). Therefore, we used synergy Model 1:  

https://paperpile.com/c/RsGDPP/O5Ltq
https://paperpile.com/c/RsGDPP/O5Ltq
https://paperpile.com/c/RsGDPP/gTwvx
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 𝐷𝑒𝑙𝑡𝑎 𝑃𝐴 (𝐴𝐾𝑇/𝑀𝑇𝑂𝑅)𝑏𝑟𝑒𝑎𝑠𝑡  =  
𝐸𝐺𝐹𝑅 +  𝑉𝐸𝐺𝐹 +  𝑃𝐼3𝐾

3
−

𝑀𝐴𝑃𝐾 +  𝑇𝑁𝐹𝑎

2
 

 

 

 

 For AKT/PARP1 (Supplementary Figure 3c, Figure 3c): the top sensitive pathway is EGFR 

and the top resistant pathways are MAPK and TNFa. The correlation between AKT1/2 and 

PARP1 is -0.8 (Table 1). In this case, we used Model 2:  

 

 𝐷𝑒𝑙𝑡𝑎 𝑃𝐴 (𝐴𝐾𝑇/𝑃𝐴𝑅𝑃1)𝑏𝑟𝑒𝑎𝑠𝑡  =   
𝑀𝐴𝑃𝐾 + 𝑇𝑁𝐹𝑎

2
 −  

𝐸𝐺𝐹𝑅 + 𝑉𝐸𝐺𝐹 +  𝑃𝐼3𝐾

3
 

 

 For AKT/EGFR (Supplementary Figure 3d, Figure 3d): the top sensitive pathway is EGFR 

and the top resistant are MAPK. The target functional similarity between AKT1/2 and EGFR is 

0.9 (Table 1). Therefore, we used synergy Model 1. Since protein EGFR is targeted, we also 

added CNV information: 

 

𝐷𝑒𝑙𝑡𝑎 𝑃𝐴 (𝐴𝐾𝑇/𝐸𝐺𝐹𝑅)𝑏𝑟𝑒𝑎𝑠𝑡  =   
𝐸𝐺𝐹𝑅 +  𝑁𝐹𝑘𝐵 +  𝑃𝐼3𝐾

3
− 𝑀𝐴𝑃𝐾 + 𝐶𝑁𝑉𝐸𝐺𝐹𝑅 

 

 For BCL2/MTOR (Supplementary Figure 3e, Figure 3e): the top sensitive pathways are 

VEGF, NFkB and Trail and the top resistant pathways are MAPK and TNFa. The target 

functional similarity between BCL2 and MTOR is 0.7 (Table 1). Therefore, we used synergy 

Model 1: 

 

𝐷𝑒𝑙𝑡𝑎 𝑃𝐴 (𝐵𝐶𝐿2/𝑀𝑇𝑂𝑅)𝑏𝑟𝑒𝑎𝑠𝑡  =   
𝑉𝐸𝐺𝐹 +  𝑁𝐹𝑘𝐵 + 𝑇𝑟𝑎𝑖𝑙

3
+

𝑀𝐴𝑃𝐾 +  𝑇𝑁𝐹𝑎

2
 

 

 For EGFR/MTOR (Supplementary Figure 3f, Figure 3f): the top sensitive pathways are 

EGFR and NFkB. The top resistant are MAPK and TNFa. The target functional similarity 

between EGFR and MTOR is 0.6 (Table 1). Therefore, we used synergy Model 1. Since protein 

EGFR is targeted, we also added CNV information: 

 

𝐷𝑒𝑙𝑡𝑎 𝑃𝐴 (𝐸𝐺𝐹𝑅/𝑀𝑇𝑂𝑅)𝑏𝑟𝑒𝑎𝑠𝑡  =   
𝐸𝐺𝐹𝑅 +  𝑁𝐹𝑘𝐵

2
−

𝑀𝐴𝑃𝐾 +  𝑇𝑁𝐹𝑎

2
+ 𝐶𝑁𝑉𝐸𝐺𝐹𝑅 

 

 For AKT/BCL2 (Supplementary Figure 3g, Figure 3g): the top sensitive pathway is EGFR 

and the top resistant pathway is MAPK. The correlation between AKT1/2 and BCL2 is 0.5 

(Table 1). In this case, we used Model 1: 

 

 𝐷𝑒𝑙𝑡𝑎 𝑃𝐴 (𝐴𝐾𝑇/𝐵𝐶𝐿2)𝑏𝑟𝑒𝑎𝑠𝑡  =  
𝐸𝐺𝐹𝑅 +  𝑉𝐸𝐺𝐹 + 𝑃𝐼3𝐾

3
 −  𝑀𝐴𝑃𝐾 
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A.2 Supplementary tables 

 

  

Setting 1 

predicting new 

cell lines 

Setting 2 

predicting new 

drugs 

Setting 3 

predicting existing 

drugs on existing 

cell lines 

Setting 4 

predicting new drugs 

on new cell lines 

 

 

 

use case 

- Personalized 

medicine 

- Drug 

repositioning 

- prioritization for 

new experiments 

- Interaction matrix 

generation 

- Personalized 

medicine with 

previously untested 

drugs 

- Quality control of 

the interaction matrix 

drug 

features 

optional required optional required 

cell line 

features 

required optional optional required 

cross 

validation 

 

10 fold CV 10 fold CV NA 2 x 10 fold CV 

 

 

 

prediction 

metrics 

For each drug, 

correlation of 

observed versus 

predicted IC50 

across all cell 

lines. 

For each cell line, 

correlation of 

observed versus 

predicted IC50 

across all drugs. 

correlation of 

observed versus 

predicted IC50 for 

all drug-cell line 

pairs. 

correlation of 

observed versus 

predicted IC50 for all 

drug-cell line pairs. 

Supplementary Table 1: Different settings for drug response prediction 
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  Supervised learning Hypothesis driven synergy 

stratification 

Data source Drug combination drug response 

on cancer cell lines 

Single agent drug response on 

cancer cell lines 

Input features Gene expression and drug target Gene expression and drug target  

Additional information mutation, CNV, cancer subtypes mutation, CNV, cancer subtypes 

 

Synergy prediction 

algorithm 

Supervised learning algorithms 

such as tree based algorithms 

(Random Forest, XGBOOST) and 

matrix factorization. 

Linear combination of gene 

expression derived pathway scores 

(from PROGENy) 

 

 

 

Prediction settings 

(Supplementary Figure 5, 

Supplementary Table 1) 

Setting 1: prediction of new cell 

lines for existing drugs 

Setting 2: prediction of new drugs 

for existing cell lines 

Setting 3: prediction of existing 

drugs for existing cell lines 

Setting 4: prediction of new drugs 

on new cell lines 

Setting 1: prediction of new cell 

lines for existing drugs 

 

 

 

 

Setting 4: prediction of new drugs 

on new cell lines 

 

 

 

Strength 

(1) General purpose usage in drug 

wise and cell line wise settings 

(2) Does not require domain 

expertise 

(3) Easy to implement 

(1) Does not require many drug 

combination experiments as prior 

knowledge 

(2) Linear combination of pathway 

activation is suited for biological 

interpretation 

 

 

Weakness 

Requires an extensive set of drug 

combination drug response data 

 

(1) Relies heavily on domain 

knowledge and literature evidence, 

making automated processing 

challenging 

(2) Can only be used in a drug wise 

setting 

Supplementary Table 2: Comparison of synergy stratification workflow with supervised 

learning. 
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Supplementary Table 3: drug target information downloaded from 

https://www.cancerrxgene.org on March 2017. 

 

 

 

 

  

https://www.cancerrxgene.org/
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A.3 Supplementary figures 

 
Supplementary Figure 1: Influence of target functional similarity in drug synergy for 

AstraZeneca DREAM dataset. The target functional similarity is the correlation between 

two protein targets by their interactions with the PROGENy pathways. For each tissue, we 

plot the synergy against the target functional similarity and its absolute value. (a) and (b) for 

breast tissue. (c) and (d) for colon tissue. (e) and (f) for NSCLC lung tissue. 
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Supplementary Figure 2: Interpretation of the interaction matrix. Enhanced sensitivity 

occurs when targeting several proteins involved in drug response under the activation of the 

right pathway. The same rule applies to resistance. 
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Supplementary Figure 3: Functional profile of protein targets in breast and colorectal 

tissues. (a), (b), (c), (d), (e), (f) and (g) describe the functional profile of AKT/ALK, AKT/MTOR, 

AKT/PARP1, AKT/EGFR, BCL2/MTOR, EGFR/MTOR and AKT/BCL2 pairs in breast tissue. (h) 

describes BRAF/IR’s functional profile in colorectal tissue. The functional profile is a subset of 

the target pathway interaction in the Macau model. Pathways are ordered from the most 

sensitizing to the least. Significance of the interaction values is corrected according to Benjamini 

& Yekutieli procedure (20% FDR) as described in Yang et al. (Yang et al. 2018c). 

https://paperpile.com/c/RsGDPP/seEuq


 70 

 
Supplementary Figure 4: Influence of target functional similarity in drug synergy for 

O'Neil et al Merck dataset. The target functional similarity is the correlation between two 

protein targets by their interactions with the PROGENy pathways. For each tissue, we plot the 

synergy against the target functional similarity and its absolute value. Only tissues with at least 

5 cell lines were chosen. (a) and (b) for colon tissue. (c) and (d) for NSCLC lung tissue. (e) and 

(f) for ovary tissue. 
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Supplementary Figure 5: Different settings in drug synergy prediction. (a) Predicting new 

cell lines for existing drugs. For each drug pair, we compute the pearson correlation of observed 

versus predicted synergy across all cell lines of the test set. (b) Predicting new drug synergy for 

existing cell lines. For each cell line we compute the pearson correlation of observed versus 

predicted synergy across all drug pairs of the test set. (c) Predicting existing drug synergy for 

existing cell lines. This is a missing value imputation setting where side information of drug and 

cell lines are not required, but can be used to improve the result. The test data is defined by a 

percentage of the whole data set. We compute the pearson correlation of observed versus 

predicted synergy for all randomly chosen drugs - cell line triplets of the test set. (d) Predicting 

new drug synergy for new cell lines. We do 2 simultaneous cross validation on both drug and 

cell line sides. The test data is defined by association of the test set of the drug side with the 

test set of the cell lines side. We compute the pearson correlation of observed versus predicted 

synergy for all drug - cell line pairs of the test set. 

 

 
 

 

 

 

 



 72 

 
Supplementary Figure 6: Sensitivity analysis for group membership parameters. In the 

determination of Delta Pathway Equation, we explored the prediction performance for each 

target pair in AstraZeneca breast data and colorectal validation data, based on the following 

parameters: threshold for group membership of the top sensitive pathways and top resistant 

pathways. 
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Supplementary Figure 7: Distribution of similarity values across tissues. For each tissue, 

we plotted the target functional similarities of the profiled protein targets and set the cut off of 

high similarity and high dissimilarity at 0.7 and -0.7. 
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B   Supplementary information to chapter 2 

B.1 Supplementary analysis 1: MOFA, Robustness assessment 

 

  As we use MOFA factor as prognostic biomarker, one essential condition is to be able to 

recover the relevant factor in a new dataset.  We ran MOFA in a multi omics setting (predicted 

protein + mRNA + mutation) on the breast dataset with 2 fold cross validation, with 1000 MOFA 

iterations, repeated 50 times.  At each run, we identified the most predictive Factor on the 

training set, using log rank test on binarized Factor after correcting for age, and gender, then 

false discovery rate. We then retrieved the corresponding Factor on the test set using 

correlation of the weights, as a factor’s weights is really what defines it. The average absolute 

correlation between the training Factor weight and the testing’s identified Factor weights is 0.76 

(sd=0.14). In addition to that, the numbering of factor is conserved 33 times out of 50. We can 

conclude that it is possible to retrieve a biologically relevant Factor from external dataset.  

 

 We tested the robustness to downsampling of the top predictive factor for different inclusion 

ratios (1, 0.9, 0.8, 0.7, 0.6, 0.5), in a 2 fold cross validation setting, with 100 MOFA iterations, 

repeated 30 times. In overall, the correlation between the top predictive factor of the training set 

and the corresponding factor in test set is conserved (Supplementary Figure 1). 

 

 

  



 75 

B.2 Supplementary tables 

 

Omics  
layer 

Top  
Factors 

q-value  
Top genes contributing  

to each Factor 

Top enriched pathways using 
PCGSEA with Reactome 

Predicted 
Protein10006 

Factor 
1 

0.0014 
MT1X, FABP7, SFT2D2, 
TMEM26, VGLL1, MT1F, MAEL 

Processing of Capped 
Intron−Containing Pre−mRNA 

Antimicrobial peptides 

Factor 
6 

0.00071 

RPL26, RPL29, RPL34, RPL37, 
DPYSL5, BRI3BP, ABCA2, 
GABARAP 

Peptide chain elongation 

mRNA15107 
Factor 

2 
0.0025 

FOXA1, LBR, CDCA7, GATA3, 
PRKX, B3GNT5, MSN 

Cell Cycle, Mitotic Prometaphase,  
RHO GTPases Activate Formins 

Predicted 
Protein10006 

       +  

mRNA15107 

Factor 
2 

0.0050 

Protein view: TMEM26, 
TMEM259, SFT2D2 

mRNA view: TTK, SUV39H2, 
SRPK1, WDR43, CDCA8 

Protein view: Mitotic Prometaphase 

mRNA view: Cell Cycle, Mitotic 
Prometaphase 

Factor 
4 

0.044 

Protein view: SULT1E1, 
ARGLU1, AKR1B10, ING4, 
CEACAM5 

mRNA view: NRF1, RALB, 
DFFB 

Protein view: Extracellular matrix 
organization 

mRNA view: Degradation of DVL, 
Hh mutants abrogate ligand 
secretion 

Factor 
6 

0.0071 

Protein view: RPL34, RPL37, 
GABARAP 

mRNA view: HCFC1 

Protein view: Peptide chain 
elongation 

mRNA view: Peptide chain 
elongation 

 
Supplementary Table 1: Top predictive Factors and their functional characterization. We 
applied MOFA algorithm on protein, mRNA and a combination of both. The algorithm is run 20 
times and the best model is chosen based on highest Evidence Lower Bound (ELBO). For each 
predictive factor of survival, we showed relevant pathways ranked in top 3. The top contributing 
genes of each factor are those ranked in top 10 and with at least one Pubmed association with 
the keywords “breast cancer”. The genes in bold are those described in the result section. For 
the combination of protein and mRNA, we described for each view (protein and mRNA), the 
enriched pathways and top weighted genes. 
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B.3 Supplementary figures 

 

 
Supplementary Figure 1: MOFA robustness to downsampling. For each ratio of the total 

number of samples, we identify the top predictive Factor in the training set and retrieve the 

corresponding factors in the test set. 
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