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Summary   

Although the molecular mechanisms by which haemoglobinopathic erythrocytes protect their 

carriers against life-threatening complications of severe malaria have yet to be elucidated, one 

of the contributing factors is believed to be reduced cytoadhesion in the microvasculatures of 

vital organs. Previous studies have described perturbations in host actin remodelling, reduced 

surface levels of PfEMP1 adhesin, abnormal knob sizes and distributions as well as malformed 

Maurer’s clefts in infected haemoglobinopathic erythrocytes, relative to those seen in infected 

HbAA erythrocytes. 

We attempted to establish super-resolution imaging with direct stochastic optical reconstruction 

microscopy (dSTORM) as an intermediate throughput method of visualising host actin 

remodelling in infected erythrocytes. Unfortunately, individual F-actin and spectrin filaments 

could not be resolved and no significant differences in the actin and spectrin labelling of 

uninfected versus infected erythrocytes were distinguishable.  

We also further explored the kinetics of adhesion phenotype and protein transport in 

haemaglobinopathic erythrocytes. We found that infected HbAS erythrocytes exhibited slower 

temporal increase in number of adherent cells as well as a lower total number of adherent cell 

relative to infected HbAA erythrocytes. A delay in the establishment of new permeability 

pathway (NPP) was also observed in infected haemoglobinopathic erythrocytes. 

We tested the hypothesis that the inherent redox imbalance found in uninfected 

haemoglobinopathic erythrocytes is the beginning of a cascade of events which precipitates in 

the reduced cytoadhesive phonotype associated with protection against severe malaria. By 

exposing uninfected HbAA erythrocytes to transient oxidative stress, we were able to mimic 

various phenotypes associated with the protective traits, including reduced cytoadhesion and 

surface PfEMP1 levels, malformed and dispersed knobs, aberrant Maurer’s cleft morphologies 

and inability to remodel host actin cytoskeleton.   

Taken together, our findings describe a cascade of events which begins with the redox 

imbalance inherent to uninfected haemoglobinopathic erythrocytes. This oxidative milieu 

interferes with parasitic protein export, host actin remodelling and knobs and Maurer’s cleft 

formation, which leads to aberrant display of PfEMP1 on the cell surface and a reduced level 

of cytoadhesion. This helps to alleviate the life-threatening consequences of severe malaria.     
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Zusammenfassung  

Obwohl die molekularen Mechanismen durch die hämoglobinopathische Erythrozyten ihre 

Träger gegen lebensbedrohliche Komplikationen schwerer Malaria schützen noch nicht geklärt 

sind, wird als einer der beitragenden Faktoren eine verminderte Zytoadhäsion in der 

Mikrovaskulatur lebenswichtiger Organe vermutet. Frühere Studien haben Störungen der 

Wirts-Aktin Remodellierung, eine reduzierte Expression des Adhäsins PfEMP1 an der 

Oberfläche von Erythrozyten, eine abnormale Größe und Verteilung von Knobs sowie 

fehlgeformte Maurer-Spalten in infizierten hämoglobinopathischen Erythrozyten im Vergleich 

zu infizierten HbAA-Erythrozyten beschrieben.  

 

Wir haben versucht, eine hochauflösende Bildgebung mittels direkter stochastischer optischer 

Rekonstruktionsmikroskopie (dSTORM) als intermediärer Durchsatzmethode zur 

Visualisierung der Wirts-Aktin Remodellierung in infizierten Erythrozyten zu etablieren. 

Unglücklicherweise konnten einzelne F-Aktin- und Spektrinfilamente nicht aufgelöst werden, 

zudem wurden keine signifikanten Unterschiede in der Aktin- und Spektrinmarkierung von 

nicht-infizierten gegenüber infizierten Erythrozyten gefunden. 

Wir untersuchten auch die Kinetiken des Adhäsionsphänotyps und des Proteintransports in 

hämoglobinopathischen Erythrozyten. Wir konnten zeigen, dass infizierte HbAS-Erythrozyten 

einen langsameren zeitlichen Anstieg der Anzahl adhärenter Zellen sowie eine geringere 

Gesamtanzahl adhärenter Zellen im Vergleich zu infizierten HbAA-Erythrozyten aufwiesen. 

Des Weiteren konnte auch eine Verzögerung bei der Etablierung des neuen 

Permeabilitätsweges (NPP) in infizierten hämoglobinopathischen Erythrozyten beobachtet 

werden. 

Wir testeten die Hypothese, dass das in nicht infizierten hämoglobinopathischen Erythrozyten 

vorhandene inhärente Redox-Ungleichgewicht der Beginn einer Kaskade von Ereignissen ist, 

die schlußendlich zu dem reduzierten zytoadhäsiven Phänotyp führen, der mit dem Schutz vor 

schwerer Malaria assoziiert ist. Indem wir nicht infizierte HbAA-Erythrozyten transientem 

oxidativen Stress aussetzten, konnten wir verschiedene, mit den schützenden Eigenschaften 

assoziierte Phänotypen nachahmen, einschließlich verringerter Zytoadhäsion und 

Oberflächenexpression von PfEMP1, fehlgebildeter und weit verteilter Knobs, abweichender 

Maurer-Spalten Morphologie und der Unfähigkeit, das Wirts-Aktinzytoskelett umzuformen. 
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Zusammengefasst beschreiben unsere Ergebnisse eine Kaskade von Ereignissen, die mit dem 

Redox-Ungleichgewicht beginnt, das nicht infizierte hämoglobinopathische Erythrozyten 

aufweisen. Dieses oxidative Milieu stört den parasitären Proteinexport, die Remodellierung des 

Wirts-Aktins, die Ausbildung von Knobs und Maurer-Spalten, was ultimativ zu einer anomalen 

Präsentation von PfEMP1 auf der Zelloberfläche und einem verringerten Grad an Zytoadhäsion 

führt. Dies trägt dazu bei, die lebensbedrohlichen Folgen einer schweren Malaria zu verringern.  
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1 Introduction 

1.1 Malaria Disease Burden 

Malaria is amongst the oldest and most influential of diseases, with written records of its 

characteristic cyclic fever stretching back to ancient civilisations in China (2700 BC), India and 

Egypt (1500 – 1600 BC) (Carter and Mendis, 2002; Cox, 2010). Many attempts at malaria 

control and eradication have been made over the years, both at the local and global levels, to 

varying degrees of success (Carter and Mendis, 2002; Nájera et al., 2011). In the year 2000, all 

members of the United Nations (UN) agreed to strive towards a set of eight goals, referred to 

as the Millennium Development Goals (MDGs), and achieve certain milestones by the year 

2015. One of this was Goal 6C: “Have halted by 2015 and begun to reverse the incidence 

of malaria and other major diseases.” (MDG-Monitor, 2016). 

Malaria exerts a great toll on the human population – not only in terms of morbidity and 

mortality, but also in terms of economic and social burden. Beyond the direct economic costs 

of medical treatments and income loss due to disease episodes, indirect costs such as changes 

in household behaviours, including schooling and migration, as well as macroeconomic effects, 

such as tourism and foreign investments, should also be taken into account when considering 

the impact of malaria as a disease (Sachs and Malaney, 2002). The influence of malaria on 

economic development is such that a comparison of average gross domestic product (GDP) 

between endemic and non-endemic countries shows more than a five-fold difference (US$1,526 

and US$8,268 respectively) (Gallup and Sachs, 2001). More importantly, this trend also applies 

to the rate of economic growth, where malaria endemic countries showing, on average, 0.4% 

economic growth rate per capita per year between 1965 – 1990, compared to 2.3% for their 

non-endemic counterparts. A 10% reduction in malaria index was also associated with a 0.3% 

rise in annual economic growth (Gallup and Sachs, 2001). 

With the UN declaring 17 “sustainable development goals” (SDGs) to succeed the MDGs 

which ended in 2015, global efforts to control and eradicate malaria will play a major role in 

how far we are able to achieve the SDGs by the target year of 2030, including the goal to end 

poverty, ensure healthy lives and well-being for all and promote sustainable economic growth 

(United Nations, 2017).    
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The world health organisation (WHO) estimated the number of malaria cases in 2016 to be 216 

million. Of the resulting 445,000 deaths, 70% are children under the age of 5 (WHO, 2017b). 

Moreover, previously published reports suggest that malaria may indirectly contribute to an 

increasing number of deaths through its interaction with other diseases such as HIV and 

invasive bacterial diseases (van Eijk et al., 2007; Scott et al., 2011; Church and Maitland, 2014; 

Cowman et al., 2016).  

There is a marked decrease in the number of malaria cases and mortality in 2016 compared to 

2010, where 237 million cases and 591,000 deaths were reported. This is reflected in the 18% 

reduction in incidence rate (the number of cases per 1000 population at risk) between 2010 – 

2016 (WHO, 2017b). The number of malaria endemic countries have also decreased from 106 

countries in 2000 to 95 countries in 2015 (Fig 1-1) (Phillips et al., 2017). Despite these 

encouraging news, the road to malaria eradication is still a long one, further complicated by 

emergence of insecticide and antimalarial drug resistance as well as climate change (Klein, 

2013; WHO, 2017b, a) 

Malaria is a disease centred in the tropical and subtropical zone, with 90% of cases and 91% of 

deaths reported in 2016 occurring in Africa (WHO, 2017b). This geographical distribution is 

partially governed by the effect of temperature on the development of Plasmodium parasites 

themselves as well as the availably of the female Anopheles vector (Gething et al., 2011; 

Phillips et al., 2017; Shapiro et al., 2017). Of the many members in the Plasmodium species, 

five causes malaria in human: Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale 

and Plasmodium malariae can also be transmitted by human while Plasmodium knowlesi is a 

zoonotic disease from long-tailed macaques (Macaca fascicularis) (Singh and Daneshvar, 

2013).  

Plasmodium falciparum, the deadliest of the five species, is most prevalent in Africa and South 

East Asia, whereas Plasmodium vivax has a wider geographical reach, including the colder 

temperate regions such as China and Korea (Fig 1-1) (Martens et al., 1999; Howes et al., 2016; 

Phillips et al., 2017; WHO, 2017b). The ability of Plasmodium vivax to survive in colder 

climates has been partially attributed to the presence of hypnozoites, a dormant hepatic stage 

which could escape treatment with standard antimalarial drugs and causes a relapse months or 

years after the initial infection (Campo et al., 2015). Plasmodium falciparum seems to be more 

sensitive to changes in temperature - a predicted rise of 2-3°C in global temperature could result 

in an additional 5% of the global population being at risk of malarial infection (Phillips et al., 
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2017; WHO, 2017a).  Not only that, the effects of climate change on other factors including 

length of seasons, amount of rainfall, vector availability, urbanisation, migration and increase 

in infrastructures such as dams and reservoirs would all contribute to changes in transmission 

intensities and the success of global malaria control strategies (Gething et al., 2011; Caminade 

et al., 2014).   

 

 

Figure 1-1 Global distribution of malaria in the year 2000 and 2015. 

The number of malaria endemic countries decreased from 106 in 2000 to 95 in 2015. Plasmodium falciparum 

cases are predominantly found in tropical areas such as Africa and South East Asia, whereas Plasmodium vivax 

has a slightly larger geological distribution, including countries with colder temperate climate such as china and 

korea. ‘Not applicable’ denotes countries which had not been separately surveyed. Figure reproduced from Phillips 

et al., (2017), with data from WHO, (2015b). 

 

1.2 Life cycle of Plasmodium falciparum 

Plasmodium falciparum goes through a complex series of sexual and asexual developmental 

stages in both the human host and the female Anopheles mosquito vector (Fig 1-2). The 

transmission begins with the bite of an infected mosquito, when approximately 100 sporozoites 

are deposited in the dermis of the human host. The sporozoites exhibit random gliding motility 
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until they encounter a blood vessel or a lymph node, while others remain in the skin (Amino et 

al., 2006; Jin et al., 2007; Ejigiri and Sinnis, 2009). Exiting the dermis through a process termed 

“cell traversal”, the sporozoites actively trespass through the endothelium of the blood vessel 

to be taken by the blood circulation, sweeping towards their next destination – the liver (Mota 

and Rodriguez, 2004; Amino et al., 2008).  

 

 

Figure 1-2 Life cycle of Plasmodium falciparum. 

Reproduced from Josling and Llinás, (2015). 

 

The slow rate of blood flow in the liver sinusoid allows the sporozoites to bind to the 

endothelium and interact with liver-specific, highly sulfated heparan sulfate proteoglycans 
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(HPSGs) found protruding through the fenestration into the sinusoid (Vaughan et al., 2008; 

Graewe et al., 2012). These interactions also trigger calcium signaling pathways, one of the 

factors believed to be involved in switching the sporozoites from “migratory” to “invasive” 

mode (Coppi et al., 2007) (Cowman et al., 2016). Individual sporozoites gain access to the liver 

parenchyma by transmigrating through Kupffer cells, resident hepatic macrophages, then 

continue to traverse through several hepatocytes before finally establishing a parasitophorous 

vacuole (PV) upon invasion of the final cell (Vaughan et al., 2008). The reason why the 

sporozoite traverses through several hepatocytes before finally infecting one remains under 

investigation, but it has been suggested that the traversal could both prime the sporozoite for 

invasion as well as render the hepatocytes more susceptible (Carrolo et al., 2003; Mota and 

Rodriguez, 2004). Another hypothesis is that it simply takes time to fully switched from 

migratory to invasive mode, and the cell traversal would continue to take place until the 

switching is complete (Graewe et al., 2012).      

After the sporozoite establishes itself inside a parasitophorous vacuole membrane (PVM), it 

undergoes changes from the elongated, motile sporozoite to a small, rounded trophozoite, 

called liver-stage (LS) or exo-erythrocytic form (EEF), before going through rounds of intense 

schizogony, producing up to 30,000 merozoites (Graewe et al., 2012). Membrane-bound 

vesicles termed merosomes containing these merozoites are found to bud from the hepatocytes 

into the sinusoid and directly release the merozoites into the circulation in order to avoid 

detection by Kupffer cells and other phagocytes (Sturm et al., 2006).  

Once a merozoite encounters an uninfected red blood cell, invasion is completed within 2 

minutes (Cowman et al., 2016). The steps include pre-invasion, active invasion and 

echinocytosis. Pre-invasion refers to the initial interaction of the merozoite with the erythrocyte 

which results in the deformation of the erythrocyte surface (Cowman et al., 2016). Active 

invasion then begins with the reorientation of the merozoite so that its apex faces the erythrocyte 

membrane. The binding of Plasmodium falciparum reticulocyte-binding protein homolog 5 

(PfRh5) to host receptor basignin initiates a series of downstream events, including the influx 

of calcium into the erythrocytes as well as the release of the microneme proteins such as the 

Rhoptry Neck Protein (RON) complex into the erythrocyte membrane (Weiss et al., 2015). The 

merozoite then invades the erythrocyte by establishing a Moving Junction through the binding 

of the surface protein Apical Membrane Antigen 1 (AMA1) to the RON complex (Delgadillo 

et al., 2016) and using the forces generated by the parasite actin-myosin motor to propel itself 

forward (Riglar et al., 2011). The parasitophorous vacuole membrane is believed to be formed 
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from the rhoptries content and membrane fusion at the posterior of the merozoite as it completes 

the active invasion seals the parasite inside the parasitophorous vacuole (Cowman et al., 2016). 

The brief formation of echinocytes after the active invasion phrase is believed to be due to the 

calcium influx instigated when PhRh5 binds to basignin at the beginning of the invasion process 

(Weiss et al., 2015). 

Once inside the host erythrocyte, the parasite undergoes an asexual replication cycle lasting 

approximately 48 h. This is the stage associated with most of the malaria pathophysiology such 

as fever, anaemia and further complications (Miller et al., 2002). During the intra-erythrocytic 

cycle, the parasite goes through three distinct stages: rings, trophozoite and schizont (Fig 1-2). 

The extensive remodelling of the host erythrocyte carried out by the parasite during this 

developmental stage will be covered in a later section of this thesis. At the end of the cycle, 

approximately 16 – 32 daughter merozoites are released – the parasite egress causing the 

destruction of the infected erythrocyte (Cowman et al., 2016). These daughter merozoites then 

continue the asexual replication cycle by infecting new red blood cells.     

During the intra-erythrocytic cycle, some parasites become committed to sexual development 

(Fig 1-2). Although the molecular mechanisms and factors behind this ‘switching’ remain 

unclear, increase in drug pressure as well as high parasitemia have been observed to increase 

gametocyte production (Price et al., 1996; Talman et al., 2004; Pietro, 2007). Five different 

stages of gametocyte maturation have been described for P. falciparum (Talman et al., 2004) 

and the immature gametocytes are found to sequester in the bone marrow during their 

development (Joice et al., 2014). Once the mature male and female gametocytes, termed micro- 

and macrogametocytes respectively, emerge into the blood stream, they are picked up by the 

Anopheles mosquito vector during a blood meal.  

The sexual development continues after the micro- and macrogametocytes are ingested by the 

mosquito. The abrupt decrease in temperature of approximately 5° C, the presence of 

xanthurenic acid (XA), a mosquito‐ derived molecule, as well as the increase in extracellular 

pH from 7.2 to about 8 are all reported triggers for the initiation of gametogenesis, which is 

when the microgametocytes exflagellate to produce motile microgametes and the 

macrogametocytes emerge from the erythrocytes and mature into rounded macrogametes 

(Billker et al., 1997; Billker et al., 1998; Pietro, 2007; Bennink et al., 2016). The fertilisation 

of micro- and macrogametes is followed by nuclear fusion and meiosis, resulting in a tetraploid 

zygote (Janse et al., 1986; Bennink et al., 2016). 
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The zygote matures into an elongated, motile ookinete containing micronemes, secretory 

organelles containing proteins involved in invasion, motility and tissue traversal. The ookinete 

exits the midgut lumen and traverses through several epithelial cells before exiting the 

epithelium through the basal side and transforms into an oocyst. The traversal of epithelial cells 

is believed to switch the ookinete from “traversal” to “sessile” mode (Aly et al., 2009). Laminin 

and other components of the mosquito’s basal lamina are also believed to be involved in the 

induction of the ookinete’s “sessile” mode and its development into an oocyst (Adini and 

Warburg, 1999).  

After several rounds of mitotic divisions, the oocyst grows to 50–60 μm in diameter and 

contains thousands of sporozoites, waiting to be released. The precise sequences and molecular 

mechanisms of sporozoite egress from the oocyst is still under investigation but a putative 

cystein protease named ECP1 (egress cysteine protease 1) is believed to be involved (Aly and 

Matuschewski, 2005; Aly et al., 2009). 

Once released into the hemocoel, the sporozoites are carried around the mosquito by the 

circulation (Rodriguez and Hernández-Hernández, 2004; Vlachou et al., 2006). Specific host 

receptors allow recognition and attachment to the basal lamina of the salivary glands, followed 

by transmigration through the acinar cells and exit into the salivary gland cavity (Pimenta et 

al., 1994; Aly et al., 2009). Gliding motility is reported to be involved in the migration of the 

sporozoite from the cavity into the salivary ducts, which allows transmission of the sporozoite 

to the human host upon injection of mosquito saliva while those remaining in the gland cavity 

are either lost or would have to be transmitted during future bites (Frischknecht et al., 2004; 

Rodriguez and Hernández-Hernández, 2004; Vlachou et al., 2006). The inoculated sporozoites 

then glide around the dermis until they encounter a blood vessel and thus the cycle begins again.  

 

1.3  Malaria Pathogenesis  

1.3.1 Clinical manifestations and pathogenesis 

Clinical manifestations and the outcome of malaria infection can vary depending on a 

combination of parasite and host factors, including parasite species, age, immune status and 
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genetics of the host, as well as interaction with other infections and access to care (Miller et al., 

2002; Bartoloni and Zammarchi, 2012a; Acharya et al., 2017).  

The initial presentation of malaria is rather unspecific, including flu-like symptoms such as 

fever, headaches, nausea, vomiting and diarrhoea (Bartoloni and Zammarchi, 2012a). The 

incubation period, the time between the infection and the onset of symptoms, can vary from 

approximately 9 – 30 days, depending on the Plasmodium species as well as host immune status 

and use of prophylactic anti-malarial drugs (Miller et al., 2002; Bartoloni and Zammarchi, 

2012a).  

Although fever is generally present since the initial onset of symptoms, they do not exhibit the 

trademark periodicity until approximately 5-7 days after infection, when the asexual replication 

cycle becomes synchronous. The cyclic nature of these febrile paroxysms also gave rise to the 

name “benign tertian”, “quartian” and “malignant subtertian” fevers for P.vivax, P.malariae  

and P. falciparum malaria, respectively (Carter and Mendis, 2002).  

There are three stages to the classical malaria paroxysm: a cold stage, a hot stage and a sweating 

stage (Bartoloni and Zammarchi, 2012b). As the name implies, the cold stage is when the 

patient feels extremely cold, starts shivering and their skin feels cold and dry. During these 10-

30 minutes, their body temperature gradually rises, reaching a peak of 39 – 41°C and the 

shivering stops as they enter the hot stage of the attack. Their skin now feels hot and dry, their 

face is flushed, and vomiting is common at this stage. Other symptoms including diarrhoea, 

severe headache and dizziness are also possible, including convulsions in younger patients. 

Within 2-6 hours after the onset, the patient enters the last stage of the attack, the sweating 

stage. After sudden and profuse sweating, lasting between 2-3 hours, the temperature falls and 

the patient feels well again, although sleepy and tired. The entire cycle lasts between 6 – 10 h 

and most often manifests in the late afternoon to evening (Bartoloni and Zammarchi, 2012b).   

These “mild” or “uncomplicated” malaria constitutes the majority of cases, with pathogenesis 

attributed to the release of parasitic factors and erythrocyte materials upon schizont rupture, 

triggering cytokine cascades responsible for many of the symptoms (Trampuz et al., 2003a; 

Fairhurst et al., 2012). However, sudden development of severe and life-threatening 

complications can occur in 1-3% of the cases. Despite timely treatment, the mortality rate for 

severe malaria is still very high: 20% in adult and 15% in children (Mackintosh et al., 2004; 

Bartoloni and Zammarchi, 2012b; WHO, 2017b). Without treatment, it is nearly always fatal. 
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“Severe malaria” is a complex mixture of overlapping syndromes involving multiple organ 

systems, including but not limited to: the central nervous system (cerebral malaria), 

haematopoietic system (severe anaemia) as well as systemic metabolic problems (acidosis and 

hypoglycaemia) (Trampuz et al., 2003b; Bartoloni and Zammarchi, 2012b). Occurring mostly 

in non-immune patients and children under the age of five infected by P. falciparum, these 

complications can rapidly develop and lead to death within hours or days (Trampuz et al., 

2003b).  

Enlarged liver and spleen are often observed in young children and non-immune adult patients, 

whereas acute renal failure is more common in adults (Bartoloni and Zammarchi, 2012b). 

Pregnant women are particularly prone to develop acute respiratory failure and primigravidae 

from endemic areas is classified as a high-risk population for pregnancy-associated malaria 

(PAM).   

Cytoadherance and sequestration of infected erythrocytes in the microvascular beds of vital 

organs such as the brain or the lungs is believed to be one of the key pathogenesis of severe 

malaria, as observed in post mortem brain sections (Mackintosh et al., 2004). Not only does the 

cytoadhesive parasitized erythrocytes produce physical obstruction to the blood flow, resulting 

in subsequence tissue hypoxia, the host immune and inflammatory response to the release of 

parasitic and cell components such as glycosylphosphatidylinositol (GPI), uric acid and haem 

upon schizont rupture further exacerbates the situation (Mackintosh et al., 2004; Fairhurst et 

al., 2012). Free haem-induced oxidative damage to the endothelium as well as the decrease in 

bioavailability of nitric oxide (NO) both contribute to the blood brain barrier (BBB) dysfunction 

(Figure 1.3) (Yeo et al., 2007; Miller et al., 2013). This could lead to coma, seizures and 

possible neurological effects (table 1) (Carter et al., 2006; Idro et al., 2006).   

Severe anaemia is another complication often associated with severe malaria. Although the 

increased haemolysis of infected erythrocytes upon merozoite egress as well as immune 

clearance through phagocytosis and destruction of “by-stander” uninfected erythrocytes due to 

damages caused by reactive oxygen species (ROS) released by infected RBCs all contribute to 

the reduction in circulating erythrocytes and thus anaemia, another important contributing 

factor is the reduced erythropoiesis in infected individuals (Fig 1-3) (Autino et al., 2012; Miller 

et al., 2013). Studies have shown that accumulation of hemozoin-laden monocytes in the bone 

marrow can inhibit erythropoiesis through the production of bioactive aldehydes such as 4-

hydroxynonenal (HNE), which has been shown to inhibit growth and differentiation of 
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erythroid cells (Skorokhod et al., 2010). Dysregulation of cytokines as a response to malaria 

infection can also have a negative effect on erythropoiesis (Table 1)(Haldar and Mohandas, 

2009; Perkins et al., 2011). Other factors such as malnutrition and co-infection with HIV, 

bacteremia or hookworms can also contribute to the pathophysiology (Calis et al., 2008; Autino 

et al., 2012).  

Several factors are likely to contribute to metabolic acidosis found in children with severe 

malaria, which precipitate clinically as respiratory distress (English et al., 1996). Poor tissue 

perfusion due to cytoadhesion and occlusion of the microvasculature by the infected 

erythrocytes increases the production of lactic acid through anaerobic glycolysis. Decrease in 

hepatic blood flow and thus liver clearance as well as increased lactic acid production by the 

parasite due to cytokine stimulation and decrease in gluconeogenesis due to circulating tumor 

necrosis factor all contribute to elevated level of lactate in the blood (Sasi et al., 2007; Miller 

et al., 2013). Severe anaemia and hypovolaemia also exacerbate the issue (Table 1, Fig 1-3).   

Primigravidae living in endemic areas are most at risk of pregnancy-associated malaria (PAM), 

due to the transient depression of cell-mediated immunity as well as the lack of antibodies 

against CSA-binding P. falciparum multigravidae have developed during their first pregnancy 

(Meeusen et al., 2001; Uneke, 2007; Autino et al., 2012). PAM is also associated with high 

morbidity for both mother and child, with the mother at risk of severe anaemia, miscarriage and 

pre-term delivery and the fetus at risk of low birth weight, intrauterine growth retardation and 

death (Table 1) (Agan et al., 2010; Falade et al., 2010; Bardaji et al., 2011). 

The preferential binding of the VAR2CSA variant of PfEMP1 (Plasmodium falciparum 

erythrocyte membrane protein 1) to low sulfated form of chondroitin-4-sulfate (C4S) found in 

the placenta causes an accumulation of parasitized erythrocytes in the intervillous space (Fried 

and Duffy, 1996; Achur et al., 2000) (Salanti et al., 2004; Viebig et al., 2005). The subsequent 

activation and infiltration of phagocytes as well as the release of pro-inflammatory cytokines 

and depositions of fibrin and hemozoins contribute to an increased thickness of the trophoblast 

basement membrane and thus impair the materno-fetal exchange of oxygen and nutrients, 

leading to poor pregnancy outcomes (Table 1) (Rogerson et al., 2007; Uneke, 2007; Autino et 

al., 2012). 
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Table 1 Pathophysiology and pathogenesis of severe and pregnancy-associated malaria.  

GPI - glycosylphosphatidylinositol; RBC - red blood cell. Adapted from Mackintosh et al., (2004). 

 

 

 

 

Syndromes Clinical features Disease mechanisms 

Severe 

anaemia 

Shock; impaired 

consciousness; 

respiratory distress 

Reduced RBC production (reduced erythropoietin 

activity, proinflammatory cytokines); increased RBC 

destruction (parasite-mediated, erythrophagocytosis, 

antibody and complement-mediated lysis) 

Cerebral 

complications 

(cerebral 

malaria) 

Impaired 

consciousness; 

convulsions; long-

term neurological 

deficits 

Microvascular obstruction (parasites, platelets, 

rosettes, microparticles); proinflammatory cytokines; 

parasite toxins (e.g. GPI) 

Metabolic 

acidosis 

Respiratory distress, 

hypoxia, tachypnea; 

acidaemia; reduced 

central venous 

pressure 

Reduced tissue perfusion (hypovolaemia, reduced 

cardiac output, anaemia); parasite products; 

proinflammatory cytokines; pulmonary pathology 

(airway obstruction, reduced diffusion) 

Other Hypoglycaemia; 

disseminated 

intravascular 

coagulation 

Parasite products and/or toxins; proinflammatory 

cytokines; cytoadherence 

Pregnancy-

associated 

Malaria 

(PAM)  

Placental infection; 

low birth weight and 

fetal loss; maternal 

anaemia 

Premature delivery and fetal growth restriction; 

placental mononuclear cell infiltration and 

inflammation; proinflammatory cytokines 
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Figure 1-3 Severe malaria pathogenesis 

Possible mechanisms of pathogenesis in severe malaria. Cerebral malaria: Cytoadhesion of infected RBCs to 

endothelial cells as well as resetting of uninfected RBCs causes obstruction to the blood flow, leading to tissue 

hypoxia and lactic acidosis. Release of free haemoglobin (Hb) from ruptured erythrocytes contributes to 

endothelial injury and dysfunction as it catalyses oxidative damage to the ECs, through ROS production, and 

consumes nitric oxide (NO). Without the anti-inflammatory and endothelial regulation action of nitric oxide, the 

inflammatory reaction to the sequestered iRBC is exacerbated, which causes damage to the blood brain barrier 

(BBB). Severe anaemia: Haemolysis of infected and bystander (uninfected) RBCs causes anemia that may be 

exacerbated by impaired erythropoiesis caused by parasitic toxins. Rosetting of both infected and uninfected 

erythrocytes meant that fewer RBC are available to carry oxygen around the circulation. Oxidative damage to 

uninfected RBC, caused by parasitic production of ROS, accelerates the senescence and removal of erythrocytes. 

Metabolic acidosis: Sequestration and rosetting reduce the blood flow. Lowered oxygen delivery causes hypoxia 

which increases lactic acid production through anaerobic glycolysis. Coupled with the increased metabolism of 

glucose into lactic acid by the parasites, this causes deep breathing states that lead to respiratory distress and failure. 

Adapted from Miller et al., (2013). 
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1.3.2 Recommended treatments and anti-malarial resistance 

In order to increase effectiveness and reduce the possibility of drug resistant parasite 

development, artemisinin-based combination therapies (ACTs) are the current recommended 

first line treatment for uncomplicated P. falciparum malaria. Artemisinin and its derivatives are 

exceptionally fast-acting drug effective against all stages of the intra-erythrocytic parasite and 

is shown to reduce severe malaria mortality by approximately 30% compared to quinine (White 

et al., 2014). However, their in vivo half-lives are typically only around 1 h in humans (Dondorp 

et al., 2009). ACTs combine artemisinins with longer acting partner drugs with a different mode 

of action to prevent recrudescence as well as delay the emergence of drug resistance (Tilley et 

al., 2016).  

A 3-day regimen of one of these 5 commercially available ACTs are recommended for use for 

children and adult, except pregnant women in the first trimester:  Ariplus® (artesunate-

sulfadoxine-pyrimethamine), Artekin® (dihydroartemisinin-piperaquine), Coarsucam® 

(artesunate-amodiaquine), Coartem® (artemether-lumefantrine) or Mefliam Plus® (artesunate-

mefloquine) (WHO, 2015a).   

A 7-day regimen of quinine – clindamycin combination therapy is recommended to pregnant 

women in their first trimester to reduce adverse risks on the developing foetus (WHO, 2015a).  

For severe malaria, an intravenous or intramuscular application of artesunate for at least 24 h is 

recommended. Once the patient can tolerate oral medication, a 3-day regimen of ATC is 

recommended (WHO, 2015a). 

Despite the use of ACTs, reports of artemisinin resistance have emerged from the Greater 

Mekong Subregion in South East Asia (Imwong et al., 2017). Resistance has now been 

documented against all classes of anti-malarial drugs currently in use, which proves a great 

challenge for malaria control and treatment (Wongsrichanalai et al., 2002; WHO, 2015a). This 

highlights the need for continued basic research in malaria biology, in the hope of finding new 

avenues for drug development as well as ways to control and eventually eliminate malaria.   
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1.4 Parasitic remodeling of host erythrocytes  

1.4.1 Erythrocytic membrane cytoskeleton 

The mature human erythrocyte is a terminally differentiated cell, specialized in oxygen and 

carbon dioxide transport. It contains no nucleus or other cell organelles and instead, filling 95% 

of its cytosol with haemoglobin (Haldar and Mohandas, 2007; Kanias and Acker, 2010). It 

measures 7-8 µm in diameter and is between 1.5 – 2.5 µm thick, with a high surface area to 

volume ratio and a biconcave discoid shape, both enabling optimal gas exchange (Keohane et 

al., 2015). However, to withstand large shear stresses in the arteries as well as survive repeated 

passage though narrow capillaries 2-3 μm in diameter, the erythrocyte requires membrane that is 

both mechanically stable and deformable (Haldar and Mohandas, 2007; Keohane et al., 2015; 

Gokhin and Fowler, 2016). 

The inner membrane surface of an erythrocyte is lined with a 2D, quasi-hexagonal meshwork 

containing spectrin, actin and associated proteins such as tropomodulin1, ɑβ-adducin and 

tropomyosins (Gokhin and Fowler, 2016). Erythrocyte spectrin is composed of two parallel 

chains of ɑ- and β-spectrin oriented in opposite directions, with a self-association site at the 

“head” end (Fig 1-4a). The nucleation site at the “tail” end facilitates electrostatic binding of 

individual ɑ- and β-spectrin chains, allowing the rest of the molecule to “zip” together into coils 

(Fig 1-5b) (Lux, 2016). ɑ- spectrin consists of 21 spectrin-type repeats, each formed by three 

ɑ-helices labelled A-C (Fig 1-4b), plus an ɑ0 partial repeat at the N-terminus, containing only 

the C-helix. β-spectrin consists of 16 repeats plus a β17 at the C-terminus, containing only A 

and B helices. The partial repeats ɑ0 and β17 binds together to create a spectrin dimer. Some 

of these repeats, indicated by stars in figure 1-5a, are reported to be unstable under physiological 

conditions (An et al., 2006). This may contribute to the molecule’s flexibility as the repeats 

may partially unfold as the erythrocyte deform (Johnson et al., 2007).  

A bigger contributor to the ability of erythrocyte membrane to withstand large amounts of 

distortion may be the weak association between the oligomers. Most of spectrin in the 

erythrocytes are found as ɑ2β2 tetramers but the weak self-association between oligomers allow 

tetramers to dissociate and reform when the membrane is distorted by shear forces, thus 

enabling the erythrocyte to deform as it travels through microcapillaries (An et al., 2002; 

Salomao et al., 2006).       
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Figure 1-4 Spectrin structure and binding sites. 

(a) Schematic diagram showing the orientation of the ɑ- and β- spectrin in a dimer, as well as mapped binding sites 

for known associated proteins. 4.2 – protein 4.2; Ca2+ - calcium ion; CH – calponin homology; 4.1R – protein 

4.1R; Lu-BCAM – Lutheran/basal cell adhesion molecule. PS denotes repeats which are able to bind phosphatidyl 

serine; blue star denotes repeats which are unstable at physiological temperature. (b) Structure of β8 and β9 spectrin 

repeats, displaying the triple helical structures of helix A, B and C in a Z-configuration (PDB 1S35). The junction 

between the repeats is formed by helix C from β8 and helix A from β9. Adapted from Lux, (2016)  

 

In native erythrocyte membrane preparations, the spectrin tetramers are said to be in a ‘folded’ 

configuration, with an end-to-end distance of between 35 – 100 nm (Fig 1-5a) (Swihart et al., 

2001; Nans et al., 2011). However, the tetramers can be extended up to 190 nm when spread in 

vitro, allowing for flexibility and extension during erythrocyte membrane deformation (Fig 1-

5a) (Shotton et al., 1979).    

The spectrin tetramers are connected to protofilaments of β-actin to form a quasi-hexagonal 

network of 2D lattices (Fig 1-5a). The length of the F-actin nodes is uniformly kept at 

approximately 37 nm, suggesting tight regulations by actin binding proteins (Fowler, 2013). 

These include capping at the pointed end by two tropomodulin 1 (Tmod1) molecules, capping 

at the barbed end by an ɑβ-adducin heterodimer and binding along its length by two 

tropomyosin isoforms, TM5b and TM5NM1, for stabilisation (Fig 1-5a) (Gokhin and Fowler, 

2016). These lateral lattices of spectrin-actin and associated proteins are vertically connected 

to the erythrocyte plasma membrane through interactions with ankyrin-B, which links spectrin 

tetramers to Band 3, an integral membrane protein (Fig 1-5) (Bennett and Baines, 2001; Gokhin 
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and Fowler, 2016). Other proteins which can link the actin-spectrin lattice to the lipid bilayer 

include αβ-adducin, which binds Band 3 as well as actin barbed ends, and protein 4.1R enhances 

spectrin-actin binding but can also bind to Band 3 and glycophorin-C (Fig 1-5b) (Anderson and 

Lovrien, 1984; Pasternack et al., 1985; Anong et al., 2009; Gokhin and Fowler, 2016).     

 

 

Figure 1-5 Current model of erythrocytic membrane cytoskeleton and associated proteins.  

(a) Schematic diagram illustrating cytoskeletal components in native and spread erythrocyte membranes. Spectrin 

tetramers are found in ‘folded’ configuration in native membranes, interconnecting with actin ‘nodes’ and actin 

binding proteins. The spread network reveals a quasi-hexagonal lattice. Tmod1 – tropomodulin 1; 

TM5b/TM5NM1 – tropomyosin isoforms. Adapted from Gokhin and Fowler, (2016) (b) A model of a cross-

section through the lipid bilayer of the erythrocytic membrane. GPA – glycophorin A; Prx2 – peroxiredoxin 2; 

GEC – Glycolytic enzyme complex; 4.2 – protein 4.2; GPB – glycophorin B; RhAG – Rh-associated glycoprotein; 

LW – Landsteiner-Wiener; GPC/D – glycophorin C/D; 4.1 – protein 4.1R; Glut 1 – glucose transporter 1. 

Reproduced from Lux, (2016). 
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1.4.2 Parasitic remodelling of host erythrocyte 

As the uninfected erythrocyte contains no intracellular organelles or protein export machineries, 

the Plasmodium parasite needs to substantially remodel the host cell in order to acquire the 

necessary nutrients for growth as well as export parasitic factors necessary for the development 

and completion of the intra-erythrocytic replication cycle, including immune evasion (Fig 1-

6a) (Haldar and Mohandas, 2007).     

In order to remodel the host cell to its liking, the parasite first need to establish its own protein 

export pathway. Now enveloped in a parasitophorous vacuole (PV), the parasite needs to export 

the protein across the parasitophorous vacuolar membrane (PVM) before it can target the 

protein to specific locations within the erythrocyte cytoplasm or to the erythrocyte plasma 

membrane (Przyborski et al., 2016). Protein transport across the PVM is shown to be mediated 

by a complex of proteins called PTEX (Plasmodium translocon of exported proteins) containing 

at least five members, although the individual components of the complex and their specific 

roles are still under investigation (Elsworth et al., 2014; Przyborski et al., 2016).  

Once the exported protein has successfully crossed the PVM, there is still the question of protein 

trafficking within the erythrocyte cytosol. Maurer’s clefts (MCs) are parasite-derived Golgi-

like membranous structures shown to act as a protein sorting station for many proteins exported 

to the erythrocyte surface, including the PfEMP1 (Plasmodium falciparum erythrocyte 

membrane protein 1) family of adhesins, best known for its role in cytoadhesion and 

pathogenesis (Fig 1-6c) (Mundwiler-Pachlatko and Beck, 2013). The Maurer’s clefts are shown 

to bud off from the PV shortly after infection, with many of the MC resident proteins being 

detectable from 2-6 h post invasion (Spycher et al., 2006; Gruring et al., 2011; McMillan et al., 

2013). Recent data from Cyrklaff et al., (2011) also reported vesicular trafficking between the 

MCs and the knobs, electron-dense protrusion on the erythrocytic surface involved in adhesin 

presentation (Fig 1-6d). The vesicles were shown to travel along elaborate networks of 

filamentous actin, which the parasite has mined and re-modelled from the erythrocyte 

cytoskeleton (Cyrklaff et al., 2011; Cyrklaff et al., 2012). 
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Figure 1-6 Plasmodium falciparum remodelling of host erythrocyte during the intra-erythrocytic stage.  

(a) Schematic depiction of parasite remodelling of host erythrocyte throughout the 48 h intra-erythrocytic stage. 

Maurer’s clefts are established in the host cytoplasm from approximately 12 h post infection (p.i.) and knobs and 

surface adhesin presentation are established by 24 h p.i. Adapted from Maier et al., (2009) (b) knob morphologies 

of infected HbAA erythrocytes as seen by SEM (top) and TEM (bottom). Scale bar 2µM for SEM and 0.5 µm for 

TEM. Blue arrow in the TEM image indicates an electron-dense knob on the erythrocyte membrane. Adapted from 

Fairhurst et al., (2012) (c) Adapted from Maurer’s cleft morphologies as seen by TEM on high-pressure frozen 

100 nm sections. Scale bar 100 nm. Adapted from Cyrklaff et al., (2016) (d) Surface-rendered reconstruction from 

cryo-electron tomograms of uninfected HbAA erythrocyte (i) and parasitized HbAA erythrocyte (ii). Scale bar 

100 nm. Erythrocyte actin cytoskeleton (yellow) in infected erythrocyte have been reorganised from short 

protofilaments in uninfected erythrocytes (i) into long filamentous network (ii), connecting the Maurer’s cleft 

(light blue) to the knob (red) at the plasma membrane (dark blue). Vesicles are seen to be associated with the actin 

filaments (light blue). Adapted from Cyrklaff et al., (2011). 

 

1.4.3 Knob, PfEMP1 and Cytoadhesion 

As shown in figure 1-6b, knobs are first identified as electron-dense protrusions on the surface 

of mature parasitized erythrocytes, with heights ranging from 2 – 20 nm and diameter ranging 

from 50-120 nm (Gruenberg et al., 1983; Quadt et al., 2012; Subramani et al., 2015). The main 

component of knobs is the aptly named knob-associated histidine rich protein (KAHRP), a 59-

72 kDa protein containing a PEXEL (Plasmodium export element) motif and an N-terminus 



 Introduction 

 

19 

signal sequence (Fig 1-7a) (Triglia et al., 1987; Marti et al., 2004; Watermeyer et al., 2016). 

KAHRP is shown to interact with components of the host cytoskeleton, including spectrin, actin 

and ankyrin R (Oh et al., 2000; Pei et al., 2005; Rug et al., 2006; Weng et al., 2014), as well as 

the parasite adhesin PfEMP1(Ganguly et al., 2015) (Fig1-7a).  

KAHRP expression has been shown to be essential for cytoadhesion of parasitized erythrocyte 

under physiological flow condition, as kahrp- parasites were unable to cytoadhere to CD36, 

despite the presence of PfEMP1 on the erythrocytic surface (Crabb et al., 1997; Rug et al., 

2006). This suggests an important role for the correct display and presentation of adhesins in 

cytoadhesion.  

 

 

Figure 1-7 Knob architecture and PfEMP1 structure and binding domains.  

(a) A model of a cross-section through a “knob”, a parasite-derived protrusion on the surface of an infected HbAA 

erythrocyte. The knobs are shown to be involved in adhesin presentation. EPM – erythrocyte plasma membrane; 

PfEMP1 – Plasmodium falciparum erythrocyte membrane protein 1; KAHRP – knob-associated histidine rich 

protein. Reproduced from Helms et al., (2016) (b) PfEMP1 is a family of single-pass transmembrane proteins 

involved in cytoadhesion of infected erythrocytes to various host receptors. A typical structure of PfEMP1 consists 

of a highly conserved intracellular acidic terminal segment (ATS) and a highly variable extracellular domain, 

assembled from four basic building blocks in various configurations: N-terminal segment (NTS), Duffy-binding-

like domain (DBL), cysteine-rich interdomain region (CIDR) and C2 domains. Known interactions between 

specific domains and host receptors are shown. TM – transmembrane domain. Adapted from Smith et al., (2001). 
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The parasite takes up more room in the infected erythrocytes as it develops (Waldecker et al., 

2017). The insertion of various proteins and channels into the erythrocytic membrane causes 

membrane stiffening as well as potential recognition of parasitic proteins by the host immune 

system (Maier et al., 2009; Watermeyer et al., 2016). Circulating erythrocytes need to be able 

to pass through the splenic interendothelial slit (IES) in order to avoid clearance - late stage 

parasitized erythrocytes are simply too stiff to pass this test (Pivkin et al., 2016). In order to 

avoid detection and elimination in the spleen, the parasite export and display adhesins from the 

PfEMP1 family, which can interact with host receptors on the endothelial cells and allow the 

parasitized erythrocyte to sequester in the microvasculature of various organs (Maier et al., 

2009; Tilley et al., 2011; Helms et al., 2016). Inadvertently causing obstruction of blood flow, 

leading to hypoxia and tissue necrosis, as well as endothelial cell activation, cytoadhesion has 

often been implicated in the pathogenesis of severe malaria (Mackintosh et al., 2004; Miller et 

al., 2013).  

PfEMP1, the parasitic protein responsible for cytoadhesion, is encoded by 60 different members 

of the var gene family. The protein size varies from 200 – 350 kDA but there are some 

conserved structural features, namely the N-terminal segment (NTA), followed by a semi-

conserved head structure containing Duffy Binding Like domains (DBL; α-ɛ) and cysteine-rich 

interdomain regions (CIDR; α-γ), a C2 domain, a transmembrane domain (TM) and a conserved 

intra-cellular acidic terminal segment (ATS) (Fig 1-7b) (Kraemer and Smith, 2006; Pasternak 

and Dzikowski, 2009). The highly variable extracellular domain allows for interactions with a 

multitude of host receptors, including CD31, CD36, intercellular adhesion molecule 1 (ICAM 

1), P-selectin and chondroitin‐ 4‐ sulfate (CSA) (Rowe et al., 2009; Tilley et al., 2011; Helms 

et al., 2016). 

Despite the variation in the extracellular domain and the binding partner, only one variant of 

PfEMP1 is expressed on each infected erythrocyte at a given time. How the parasite controls 

the PfEMP1 expression so tightly is still a matter of ongoing investigation, although it has been 

speculated that epigenetic mechanisms might be involved as the majority of the parasite in each 

new cycle express the same var gene, hinting at possible role of genetic imprinting (Scherf et 

al., 1998; Craig and Scherf, 2001; Scherf et al., 2008).  

Although what causes the parasite to switch the expression from one PfEMP1 variant to another 

is also still under investigation, the biological advantage of “allelic exclusion” is clear – to 
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minimise exposure of its antigenic repertoire means more successful immune evasion and thus 

a higher chance of transmission to a new host (Pasternak and Dzikowski, 2009). 

 

1.5 Haemoglobinopathic erythrocytes and protection against severe 

malaria 

1.5.1 Haemoglobinopathies 

Haemoglobin (Hb) is a metalloprotein adapted for oxygen transport, with a heme prosthetic 

group bound to a pocket in each of the four globin monomers (Hardison, 1996). Adult 

haemoglobin (HbA – α2β2) is a heterotetramer consisting of two α- and two β-globin chains, 

which allows the molecule to effectively bind oxygen at high partial pressure in the lungs and 

then release it in the tissue with lower oxygen partial pressure (Weatherall, 2010).  

Haemoglobinopathies are inherited disorders of the globin gene and can be broadly divided into 

two categories: the thalassemais affect the amount of protein output, while the Hb variants 

affect the structures of the proteins (Trent, 2006). Table 2 summarises some key features of the 

most common haemoglobinopathies, including their geographical distributions and genotypes.   

In sickle cell haemoglobin (HbS), a single amino acid substitution at position 6 of the β-globin 

chain causes glutamate to be substituted by valine. This compromises its ability to stay soluble 

at high concentration, thus resulting in self-aggregation of deoxy HbS molecules under low-

oxygen conditions (Weatherall, 2010). The resulting rope-like fibres can distort the cell shape 

into the distinctive “sickle” or “half-moon” shapes. HbS cells also have decreased elasticity and 

increased tendency to adhere to endothelial cells, resulting in intermittent vaso-occlusive events 

(Rees et al., 2010). The shortened lifespan of the cells is also said to contribute to chronic nitric 

oxide depletion, in addition to anaemia, due to the constant presence of haem released after 

intravascular haemolysis, resulting in pulmonary hypertension (Gladwin et al., 2004; De Castro 

et al., 2008).   

In parts of sub-Saharan Africa, Middle East and India, the allele frequency of HbS could be as 

high as 40% (Flint et al., 1998; Bauduer, 2013). This strongly correlates with the geographical 

distribution of malaria, suggesting a co-evolutionary selective pressure (Williams and 

Weatherall, 2012). 
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Comparatively, HbC has emerged much more recently, with its geographical reach only limited 

to West Africa – the allele frequency is up to 20% but only in central Ghana and Burkina Faso 

(Serjeant, 2013). A point mutation leading to an amino acid substitution at the same position as 

found in HbS, position 6 of β-globin gene, caused a negatively charged glutamic acid to be 

exchanged for a positively charged lysine (Feeling-Taylor et al., 2004). This resulted in 

formation of intracellular crystals and induced erythrocyte dehydration (Nagel et al., 2003). 

 

Table 2 The Major Haemoglobinopathies at a glance. Reproduced from Taylor et al., (2013) 

 

 

1.5.2 Epidemiological evidence of protection 

The “malaria hypothesis” was hypothesized by J.B.S. Haldane in 1949, stating that infectious 

diseases could be one of the naturally selective factors driving evolution, using the co-

occurrence of β-thalassemia and malaria in Mediterranean countries as an example 
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(Dronamraju et al., 2006). This was empirically shown in 1954 by Anthony Allison (1954), 

who was able to demonstrate a decreased malaria incidence in children with sickle cell traits 

compared to their peers without the traits.  

In a meta-analysis of recent publications, Taylor et al., (2012) was able to conclude that HbAS, 

HbCC, HbAC, homozygous α-thalassaemia and heterozygous α-thalassaemia conferred 

significant protection against severe malaria – but only HbAS was associated with protection 

against uncomplicated malaria. These findings do reflect the individual studies reported, where 

children carrying HbAS was shown to suffer fewer episodes of both severe and uncomplicated 

malaria, with a 10-fold lower risk of mortality in the former case (Aidoo et al., 2002; Cyrklaff 

et al., 2012; Fairhurst et al., 2012). HbC is also reported to protect against symptoms of severe 

malaria but not uncomplicated malaria (Agarwal et al., 2000). 

 

1.5.3 Aberrant ultrastructural morphologies, host actin remodelling 

and reduced cytoadhesion in parasitized haemoglobinopathic 

erythrocytes 

Regardless of the epidemiological evidence, the molecular mechanisms behind the protection 

of haemoglobinopathic erythrocytes against severe malaria have yet to be elucidated (Taylor et 

al., 2013).  

Recent studies by Fairhurst et al., (2005), Cholera et al., (2008) and Cyrklaff et al., (2011; 2016) 

have found that both parasitized HbS and HbC displayed aberrant knobs and Maurer’s cleft 

morphologies, as well as inability to reorganise host actin cytoskeleton (Fig 1-8). The 

cytoadhesive phenotype as well as levels of PfEMP1 surface presentation were also reduced in 

infected HbS and HbC, relative to HbAA.   
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Figure 1-8 Aberrant ultrastructural morphologies in infected HbAC and HbAS erythrocytes 

SEM and TEM showing enlarged and irregularly distributed knob morphologies in infected HbAC and HbAS. 

Blue arrows indicae knobs in the TEM images. The Maurer’s clefts (MCs) were malformed and the parasite was 

unable to reorganise host actin cytoskeleton (yellow) into elaborate filamentous networks as seen in infected HbAA 

(cryo-EM). The following colours were used for specific ultrastructures in the surface-rendered view of cryo-EM: 

MCs -light blue, actin cytoskeleton - yellow, knobs – red and plasma membrane – blue. Scale bars – SEM 2 µm, 

TEM (knobs) 0.5µm, TEM (MCs) 100 nm, Cryo-EM 100 nm. Adapted from Cyrklaff et al., (2011); Fairhurst et 

al., (2012); Cyrklaff et al., (2016). 
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In trying to find a common mechanism behind these morphological phenotypes, a hypothesis 

was generated around the effects of pro-oxidative environment and reactive oxygen species 

produced by the unstable HbS and HbC, which are prone to auto-oxidation (Hebbel et al., 1982; 

Macdonald and Charache, 1982; Hebbel et al., 1988; Krause et al., 2012). Actin cytoskeleton 

has been found to be destabilised in the presence of oxidatively damaged haemoglobin such as 

irreversible hemichromes (Jarolim et al., 1990; Cyrklaff et al., 2011). This would affect both 

the Maurer’s cleft morphologies as well as the trafficking of PfEMP1 to the erythrocyte surface, 

resulting in the final phenotypical outcome of reduced cytoadhesion and thus reduced malaria 

pathogenesis. 

 

1.6 Overall aim  

This thesis comprises of three distinct but interrelated projects, aimed to further our 

understanding of the molecular mechanisms behind the ability of haemoglobinopathic 

erythrocytes to protect their hosts against severe complications in malaria.   

Project I: Visualisation of erythrocyte cytoskeletal proteins by super-resolution 

microscopy 

Project I aims to establish a working protocol for imaging of actin and spectrin in erythrocyte 

samples using direct stochastic optical reconstruction microscopy (dSTORM). 

Project II: Kinetics of protein export in infected haemoglobinopathic erythrocytes 

Project II aims to investigate differential export kinetics of selected parasitic proteins in infected 

HbAA and haemoglobinopathic erythrocytes. 

Project III: Oxidative pre-treatment of uninfected erythrocytes to mimic the protective 

phenotypes of haemoglobinopathic erythrocytes 

Project III aims to investigate the effect of an induced pro-oxidative environment on the parasite 

morphologies and cytoadhesion phenotype.  

By better understanding the molecular mechanisms which underpins the protective phenotype 

of haemoglobinopathic erythrocytes against severe malaria, we hope to explore new venues of 

research into novel clinical interventions which could circumvent the rise of drug-resistant 

parasites.   
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2 Material and Methods 

2.1  Materials 

2.1.1  Equipment 

Equipment Model Company 

Analytical balance ABT 120-5DM Kern & Sohn, Balingen, Germany 

Autoclave ABT 120-5DM 

2540 EL 

Kern & Sohn, Balingen, Germany 

Tuttnauer, Breda, The Netherlands 

Balance  Sartorius GmbH, Göttingen 

Centrifuge Biofuge fresco 

 

Biofuge pico 

 

Megafuge 1.0 R 

Megafuge 2.0 R 

Thermo Fisher Scientific, Dreieich, 

Germany 

Thermo Fisher Scientific, Dreieich, 

Germany 

Heraeus, Hanau, Germany 

Heraeus, Hanau, Germany 

Confocal microscope LSM510 Zeiss, Jena, Germany 

Flow cytometer FACSCalibur Becton and Dickinson, Heidelberg, 

Germany 

Syringe pump 55-2316 Harvard Apparatus, Holliston, MA 

Freezer -20ºC LGex 3410 MediLine Liebherr, Biberach, Germany 

Freezer -80ºC HERAfreeze Thermo Fisher Scientific, Dreieich, 

Germany 

Fridge LKexv 3910 MediLine Liebherr, Biberach, Germany 

Heating block NeoBlock Mono I NeoLab, Heidelberg, Germany 

High precision pump 55-2316 Harvard Apparatus, MA, USA 
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Equipment Model Company 

AL-4000 World precision instruments, 

Florida,USA 

Ice machine  Ziegra, Isernhagen, Germany 

Incubator Heraeus Cytoperm2 

 

HeraCell 

Thermo Fisher Scientific, Dreieich, 

Germany 

Thermo Fisher Scientific, Dreieich, 

Germany 

Inverted microscope Zeiss Axio Observer Z1 

DM IL 

Carl Zeiss, Oberkochen, Germany 

Leica, Wetzlar, Germany 

Light optical microscope Axiolab Zeiss, Jena, Germany 

Liquid nitrogen tank MVE Cryosystem 6000 

 

LS 6000 

RS Series 

Thermo Fisher Scientific, Dreieich, 

Germany 

Taylor-Wharton, Husum, Germany 

Taylor-Wharton, Husum, Germany 

Magnetic sorter VarioMACS Miltenyi Biotec, Bergisch 

Gladbach, Germany 

Magnetic stirrer RCT 

COMBIMAG RCH 

IKA, Staufen, Germany 

IKA, Staufen, Germany 

MiliQ water system Purist ultrapure Rephile, Germany 

Particle counter Z1 Beckman Coulter, Krefeld, 

Germany 

pH meter pH 7110 WTW, Weilheim, Germany 

Pipets P2, P10, P20, P1000 Gilson,  Limburg an der Lahn, 

Germany 

Pipetus Forty\Standard Hirschmann, Eberstadt, Germany 

Adaptors for silicon tubing Elbow connector Ibidi, München, Germany 
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Equipment Model Company 

Luer connector male 

Luer lock connector 

male 

Luer lock connector 

female 

Female luer lock 

coupler 

Ibidi, München, Germany 

Ibidi, München, Germany 

 

Ibidi, München, Germany 

 

Ibidi, München, Germany 

Silicon tubing   1.6 mm 
 

Ibidi, München, Germany 

Scanning electron microscope Leo Gemini 1530 Carl Zeiss Oberkochen, Germany 

Shaker KS 501 digital IKA, Staufen, Germany 

Spectrophotometer UVIKON 923 Kontron instruments, Munich, 

Germany 

Sputter coatter EM MED 020  Leica, Wetzlar, Germany 

Sterile work bench Herasafe 

 

SterilGard Class II 

Thermo Fisher Scientific, Dreieich, 

Germany 

The Baker company, Sanford, ME, 

USA 

Thermocycler Labcycler Sensoquest, Göttingen, Germany 

UV chamber GS Gene linker Bio-Rad, München, Germany 

UV table TFX-35M Vilber Lourmat, Eberhardzell, 

Germany 

Vortex Genie 2 Scientific Industries, Bohemia, 

NY, USA 

Waterbath MP Julabo, Seelbach, Germany 
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2.1.2  Disposables 

 

Disposable Company 

μ-slide, 8-chamber    Ibidi, München, Germany 

96 well cell culture plates               Greiner bio one, Frickenhausen, Germany 

Aluminium foil               Carl Roth, Karlsruhe, Germany 

Cellstar Tubes               Greiner bio one, Frickenhausen, Germany 

Centrifuge bottles Nalgene 500 ml           Thermo Fisher Scientific, Dreieich,  

    Germany 

Clingfilm Saran             Dow, Schwalbach, Germany 

Cuvettes Gene Pulser           Bio-Rad, München, Germany 

Filters Millex GS (0,2 μm)           Merck  Millipore, Darmstadt, Germany 

Filter systems 500 ml             Corning, Kaiserslautern, Germany 

Gloves TouchNTuff           Ansell, München, Germany 

MACS CS column    Miltenyi Biotec, Bergisch Gladbach, 

    Germany 

Micro tubes 1.5 ml              Saarstedt, Nümbrecht, Germany 

Parafilm               Bemis, Londonderry, UK 

Petri dishes (10 ml diameter)               Greiner bio one, Frickenhausen, Germany 

Petri-dishes (25 ml diameter)              Greiner bio one, Frickenhausen, Germany 

Pipette Tipps     Corning, Kaiserslautern, Germany 

Plastic pipettes (1 ml; 2 ml; 5 ml; 10 ml; 25 ml) Corning, Kaiserslautern, Germany 

Precision wipes (11x21cm)    Kimberly Clark, Mainz, Germany 

Polypropylene tubes (14 ml)    Greiner bio one, Frickenhausen, Germany 

PyroMark Q96 Plate Low    QIAGEN, Hilden, Germany 

Disposable Scalpel    Feather, Osaka, Japan  
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Transfer pipettes    Sarstedt, Nümbrecht, Germany 

2.1.3 Kits 

Kits Company 

Ambion DNA-free kit Invitrogen - Thermo Fisher Scientific, 

Vilnius, Lithuania 

SuperScript III First Strand Synthesis   Invitrogen-Thermo Fisher Scientific, 

Vilnius, Lithuania 

Taq DNA polymerase kit Qiagen, Düsseldorf, Germany 

Gel extraction kit QIAGEN, Hilden, Germany 

PCR purification kit QIAGEN, Hilden, Germany 

2.1.4 Antibodies 

Antibodies Company 

Anti β-tubulin  Invitrogen - Thermo Fisher 

Scientific, Vilnius, Lithuania 

Anti spectrin  Invitrogen-Thermo Fisher Scientific, 

Vilnius, Lithuania 

Anti-VAR2CSA Gifted from Ali Salanti 

2.1.5 Fluorescent Dyes 

Dye Ex/Em Company 

Alexa Fluor 488 490/525 Invitrogen-Thermo Fisher Scientific, 

Vilnius, Lithuania 

Alexa Fluor 532 532/554 Invitrogen-Thermo Fisher Scientific, 

Vilnius, Lithuania 
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2.1.6 Buffers, media and solutions 

Buffer / Media / Solution Composition / Recipe 

Complete culture medium RMPI 1640 medium supplemented with 2 mM L-

glutamine, 25 mM HEPES, 100 µM hypoxanthine, 20 

µg/ml gentamicin and 10% (v/v) human serum. 

Freezing solution 6.2 M Glycerol, 140 mM Na-Lactat, 0.5 mM KCl, pH 

7.2 adjusted with 0.5 M of NaHCO3 at pH 9. 

Thawing solution I 12% (wt/v) sodium chloride. 

Thawing solution II 1.8% (wt/v) sodium chloride. 

Thawing solution III 0.9% (wt/v) sodium chloride, 0.2% (wt/v) glucose. 

Sorbitol lysis solution 

 

280 mM D-sorbitol, 5 mM HEPES, pH 7.4. 

(300 mOsm). Heat sterilized. 

MACS buffer PBS, 2mM EDTA, 0.05% (wt/v) BSA 

Gelatin solution 0.5% (wt/v) gelatin (from porcine skin type A) was 

dissolved in RPMI 1640 supplemented with 2 mM L-

glutamine and 25 mM HEPES for 30 min at 56°C. 

Alexa Fluor 647 650/665 Invitrogen-Thermo Fisher Scientific, 

Vilnius, Lithuania 

SiR Actin 652/674 Invitrogen-Thermo Fisher Scientific, 

Vilnius, Lithuania 

Phalloidin-Alexa Fluor 488 490/525 Invitrogen-Thermo Fisher Scientific, 

Vilnius, Lithuania 

Propidium Iodide 493 / 636  Invitrogen-Thermo Fisher Scientific, 

Vilnius, Lithuania 
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Buffer / Media / Solution Composition / Recipe 

RMPI incomplete RMPI 1640, 2 mM L-glutamine and 25 mM HEPES. 

Adhesion medium RMPI 1640, 2 mM L-glutamine and 25 mM HEPES, 

0.05% (wt/v) pH 7.2. 

Glucose solution for dSTORM 100 mg glucose, 900 µL PBS, 100 µL glycerin 

Enzyme solution for dSTORM 1 mg glucose oxidase (Sigma G2133-50KU), 20 µL 

Tris-HCl pH 7.5 (1M Stock), 25 µL KCL (1M Stock), 

2 µL catalase from bovine liver (C100-50MG), 4 µL 

TCEP/DTT (1M Stock), 0.5 mL glycerine, 0.45 mL 

water 

MEA/PBS for dSTORM 1M stock solution (freshly prepared from salt stock; 

MEA: cysteamine hydrochloride 

(Sigma M6500-25G)) 

dSTORM imaging buffer 

(Buffer I)  

950 µl PBS, 50 µl freshly prepared MEA/PBS,  

15 µl of 1M KOH 

dSTORM imaging buffer 

(Buffer II)  

900 µl PBS, 100 µl freshly prepared MEA/PBS  

15 µl of 1M KOH, 50 µl Enzyme solution 

dSTORM imaging buffer 

(Enzyme solution)  

1 mg glucose oxidase (Sigma G2133-50KU) 

20 µl Tris-HCl pH 7.5 (1M Stock) 

25 µl KCL (1M Stock) 

2 µl catalase from bovine liver (C100-50MG) 

4 µl DTT (1M Stock)  

0.5 ml glycerin 

0.45 ml water 

Hypotonic solution A 1:10 dilution of RPMI 1640 and distilled water, 20 

μg/ml leupeptin, 20 μg/ml pepstatin 
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Buffer / Media / Solution Composition / Recipe 

Hypotonic solution B 1:5 dilution of RPMI 1640 and distilled water, 20 

μg/ml leupeptin, 20 μg/ml pepstatin 

 

2.1.7 Primers  

Target Primers Sequence 

Cyclophilin PFE0505w_Fwd 5' AAACGGGAGATCCTTCAGGT 

 PFE0505w_Rev 5' AAGGACATGGGACAGTGGTT 

var2csa PFL0030c_ex_Fwd 5' GACGCGAAACGAAACCGTAA 

 PFL0030c_ex_Rev 5' ACTACTTGGGCCACAATTTTTTG 

 

2.1.8 Software  

Program   Company 

SigmaPlot 13.0     Systat, San Jose, CA, USA   

LSM imaging software       Zeiss, Jena, Germany 

FIJI      (Schindelin et al., 2012) 

RapidSTORM 3.3    (Wolter et al., 2012) 

Andor Solis 4.16    Andor, Belfast, Northern Ireland   

SuReSim     (Venkataramani et al., 2016) 
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2.2  Methods 

2.2.1 Ethical Clearance 

The text of the following paragraph has been taken from Kilian et al., (2015) and has originally 

been written by myself: 

All studies were approved by both the ethical review boards of Heidelberg University, 

Germany, and the Biomolecular Research Center (CERBA/Labiogene) at the University of 

Ouagadougou, Burkina Faso. Written informed consent was given by all blood donors. 

2.2.2 Blood collection and genotyping 

Haemoglobinopathic erythrocytes (HbAC and HbAS) were donated in Burkina Faso and 

immediately shipped at 4° C to Heidelberg University for further analysis. Fetal erythrocytes 

were obtained from the umbilical cord following delivery at Heidelberg University Hospital.  

The plasma and buffy coat were removed and discarded after 10 min of centrifugation at 800 g 

(RT). The erythrocytes were washed three times with three volumes of RPMI-1640 medium 

and stored at 4°C. Erythrocytes were used within two weeks after collection. Haemoglobin 

genotypes were performed by the Kooperatives Speziallabor of the Heidelberg University 

Hospital.  

2.2.3 Methods for Plasmodium falciparum cell culture 

2.2.3.1  In vitro culture of P. falciparum 

Throughout this study, the P. falciparum strains FCR3-CSA and HB3 were kept in continuous 

cultures as previously described (Trager and Jensen, 1976). The haemoglobin variant of 

uninfected erythrocytes used in the culture were sometimes varied according to the 

experimental setup. Briefly, cultures were maintained in a Petri dish of either 10 or 35cm 

diameter with 3.5% hematocrit. The medium used was RPMI 1640 supplemented with 2 mM 

L-glutamine, 25 mM HEPES, 100 μM hypoxanthine, 20 μg/ml gentamycin, 5% albumax and 

5% human heat-inactivated A-positive serum. AB-positive serum was substituted in case of 

cultures containing HbS or HbC blood.  
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Cultures were incubated at 37°C under controlled atmospheric conditions of 5% O2, 3% CO2, 

92% N2 and a humidity of 96%. The parasitemia was kept below 5%.   

 

2.2.3.2  Monitoring of parasitemia and intra-erythrocytic 

developmental stage  

2% Giemsa (BDH Laboratory Supplies) and thin blood smears were used to determine the 

developmental stage and parasitemia of the parasite cultures. A drop of the culture was collected 

from the bottom of the petri dish and spread onto the glass slide. After 10 sec of fixation in 

100% Methanol, the slide was stained in 2% Giemsa solution for 15 minutes and rinsed with 

deionised water. The stained blood smear was evaluated with a light microscope. 

2.2.3.3  Synchronization of Asexual Stages 

5% D-sorbitol was used for synchronisation and selection of ring stage parasites as previously 

described (Lambros and Vanderberg, 1979). Briefly, the resuspended culture is centrifuged at 

1900 rpm for 2 min and the supernatant is discarded. The pellet is resuspended in 5 volumes of 

5% sorbitol. The suspension is gently mixed and incubated at 37°C for 5 min. The suspension 

is centrifugated for 2 min at 1900 rpm, the sorbitol solution discarded and the pellet resuspended 

in 14 ml cell culture medium. The synchronised pellet is re-cultured after another round of 

washing with the medium.  

The activation of the New Permeability Pathway (NPPs) during the trophozoite stage allows 

uptake of sorbitol, which leads to hypotonic lysis during the washing step. Ring stages younger 

than 18 h p.i. are retained after the treatment. Tighter synchronisation can be achieved through 

repeated synchronization after 4–6 h. 

  

2.2.3.4  Gelatin sedimentation 

Gelatin sedimentation can be used to separate P. falciparum infected erythrocytes according to 

their densities, in that the schizont and trophozoite-stage have lower densities than ring-infected 

and uninfected erythrocytes, causing them to take longer to sediment (Goodyer et al., 1994). 

The parasite culture is resuspended and centrifuged for 2 min at 1900 rpm at room temperature. 

After removal of the medium, the pellet is resuspended in 9x volume of 0.5% gelatin for 1 h 

and kept at 37 °C. After the allotted time, the supernatant containing late-stage parasites was 
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carefully transferred to a new falcon tube and centrifugated for 2 min at 1900 rpm to pellet the 

parasitized erythrocytes. The cells were washed with RPMI 1640 and re-cultured.  

 

2.2.3.5  Selection of CSA adhesive P. falciparum infected erythrocytes 

Selection and enrichment of CSA binding parasites were carried out as previously described 

(Alkhalil et al., 2000). Briefly, sterile tissue culture flasks were coated with 30mg/ml CSA in 

PBS and incubated overnight at 4°C. Mature stage parasites were enriched via gelatin floatation 

as described above. In parallel, the flask was washed and blocked with 1% BSA for 1 h. The 

parasites were resuspended in adhesion medium and incubated on the CSA-coated flask for 1 

hour at 37°C. Non-adherent cells were gently removed with the supernatant and the flask was 

washed 5-10 times with adhesion medium using a gentle rocking motion. The last wash should 

be strong and the supernatant is taken to be centrifuged for 2 min at 1900 rpm to pellet the CSA-

adhesive parasites. The pellet is used for inoculum of further parasite culture. As the binding 

strength is reported to gradually decrease over time, the process was repeated once every 3 

weeks to maintain the adhesive phenotype (Achur et al., 2008). 

 

2.2.3.6  Purification of late stages P. falciparum through magnetic 

column 

The Magnetic Activated Cell Sorter (MACS) system was used to purify P. falciparum 

trophozoite and schizont. Briefly, the MACS CS column was washed twice with MACS buffer 

and inserted into the VarioMACS separator. The culture was resuspended, applied to the top of 

the column and allowed to flow through with the flow rate of 1 drop every 3 sec. The column 

was washed with MACS buffer until the flow through was clear. The column was then removed 

from the separator and the enriched late stages iRBC were eluted using 10 ml of MACS buffer. 

The cells were centrifuged at 1900 rpm for 2 min and to sediment the pellet and then further 

processed according to different experimental requirements.       

 

2.2.3.7  Infection of haemoglobinopathic erythrocytes 

Tightly synchronized parasites (±6 h) at trophozoite stage were magnetically enriched as 

described above. The purified iRBCs were washed with RPMI culture medium containing AB 
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serum and then added to fresh HbAS or HbAC erythrocytes to a parasitemia of 1-2% and 3.5% 

haematocrit for cell culture. Parasite invasion and development were monitored with thin blood 

smears. Paired and parallel infection of haemoglobin AA erythrocytes were used as control. 

 

2.2.3.8  Cryopreservation of P. falciparum 

The parasite culture was resuspended and centrifuged at 1900 rpm for 2 min and the supernatant 

discarded. Slowly, 1/3 pellet volume of freezing solution was added drop by drop and mixed 

carefully with the infected erythrocytes. The mixture was incubated at room temperature for 5 

min and then a further 4/3 volume of freezing solution were slowly added to the sample. The 

sample was transferred to 2 cryogenic vials that were kept at -80ºC for short term storage. The 

vials were transferred to liquid nitrogen tanks for long term storage of the samples. 

 

2.2.3.9  Thawing of P. falciparum 

The frozen cryovial was gently thawed and 5-7 drops of 12% NaCl solution was added over 

5 min while thoroughly mixing the suspension after every drop. The mixture was then 

transferred to a 15 ml falcon tube and 4.5 ml of 1.6% NaCl solution was slowly added over 

5 minutes while mixing. After centrifugation at 1900 rpm for 4 minutes, the supernatant was 

removed and the pellet was resuspended in 4.5 ml of 0.9% NaCl + 0.2% Dextrose solution. 

After centrifugation for 4 minutes at 1900 rpm, the supernatant was removed and the pellet was 

resuspended in 13 ml cell culture medium for cultivation. 

2.2.4 Microscopy 

2.2.4.1  Direct Stochastic Optical Reconstruction Microscopy (dSTORM) 

2.2.4.1.1 Cleaning and functionalisation of glass surface 

2M NaOH was pipetted into the imaging chamber and incubated for 20 minutes. After washing 

with PBS (3 x 5 min), the chamber was then incubated with 0.01% Poly-L-Lysine for 1 h, 

followed by 200µg/µl concanavalin A for 1 h before sample application. The chamber was kept 

moist at all times. 
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2.2.4.1.2 Sample preparation 

Uninfected and MACS-purified, infected trophozoite-stage HbAA erythrocytes were fixed with 

4% PFA and 0.0075% GA for 30 min, washed with PBS and briefly perforated with 5AU of 

activated streptolysin-O (SLO) in order to release some haemoglobin content and reduce 

background fluorescence. The samples were then labelled with primary mouse anti-spectrin 

antibody and anti-mouse Alexa Fluor 647 secondary antibody, immobilised on pre-coated 

glass-bottom ibidi µ-slides and imaged at 63x magnification with Buffer II as blinking buffer. 

For actin imaging, the same sample preparation protocol was followed but Phalloidin-

conjugated Alexa Flour 488 was used instead of the primary and secondary antibodies. 

2.2.4.1.3 Image acquisition 

2D-STORM imaging was carried out on a custom-built set up, as described by Flottmann 

(2014). A minimum of 5000 frames were recorded with Andor Solis software at an integration 

time of 100 ms, a preamplifier gain of 1, EM-gain of 200 and in frame transfer mode. The 

excitation was performed under TIR illumination to only excite and observe molecules within 

a short distance from the glass bottom.  

2.2.4.1.4 Data analysis 

RapidSTORM software and theoretical PSF was used to reconstruct the localisation from the 

video files. 

 

 

2.2.4.2  Stimulated Emission Depletion (STED) Microscopy  

2.2.4.2.1 Ghost membrane preparation 

The ghost membrane preparations were prepared as previously described (Blisnick et al., 2000). 

Briefly, uninfected erythrocytes were incubated in 40 volumes of hypotonic solution A for 15 

min at 4°C. The lysate was centrifuged for 30 min at 15 000×g, 4°C and the ghosts were 

collected and washed extensively before resuspension in 9 volumes of hypotonic solution A at 

4°C.  

Infected red blood cells were incubated in 40 volumes of hypotonic solution B for 15 min at 

4°C. The lysate was centrifuged for 30 min at 15 000×g, 4°C and the ghosts were collected at 



 Materials and Methods 

 

39 

the surface of the free parasite pellet, washed extensively and finally resuspended in 9 volumes 

of hypotonic solution B and stored at 4°C.  

 

2.2.4.2.2 Sample preparation and imaging 

Samples of uninfected and MACS-purified infected erythrocytes/ghost preparations were fixed 

with 4% PFA and 0.0075% GA for 30 min then washed with PBS and incubated with 5 µm of 

SiR actin for 30 min. The samples were mounted on a coverslip and first a confocal image was 

taken with the 642 nm excitation laser. Subsequently, the 775 nm laser was used to quench the 

fluorophores outside of the focal area through STED and an image was acquired. This work 

was carried out in collaboration with Dr. Janina Hahn, AG Hell.  

 

2.2.4.3  Transmission Electron Microscopy (TEM) 

Infected erythrocytes were high-pressure frozen using Balzers HPM010 (BAL-TECH AG, 

Lichtenstein) at 2100 bar (COS, University of Heidelberg). The vitreous samples were perfused, 

with slow exchange of bound water using organic solvents (anhydrous acetone) containing 

0.1% glutaraldehyde, 0.25% uranyl acetate, and 0.01% osmium tetroxide. Substitution with 

Lowicryl HM20 resins was initiated at –90°C and the temperature was increased by 10°C/h, as 

previously described (Hillmer et al., 2012). 100 nm sections were cut at room temperature and 

examined using a Zeiss EM900 transmission electron microscope at 80kV (BioQuant EM Core 

Facility, University of Heidelberg). 

 

2.2.4.4  Scanning Electron Microscopy (SEM) 

P. falciparum-infected erythrocytes were washed in phosphate buffered saline (pH 7.2) and 

fixed in 2% glutaraldehyde and 4% paraformaldehyde for at least 30 min. Samples were spread 

onto poly-lysine coated glass cover slips and sequentially dehydrated using ethanol series and  

HMDS as a final chemical dehydration step. After mounting onto SEM pin and sputter-coating 

the sample with a 10 nm layer gold particles, samples were photographed at 5 kV using a 

Hitachi S-4500 field emission scanning electron microscope. 
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2.2.5 Adhesion Assay 

Adhesion assay of parasitized RBC to CSA bound on plastic Petri dish was carried out as 

previously described (Beeson et al., 1999; Buffet et al., 1999; Viebig et al., 2005). Briefly, 

circles of approximately 0.5 cm diameter were marked on the underside of a plastic Petri dish 

for each receptor, all in triplicates. 1mg/ml purified CSA or 1% BSA was dissolved in PBS and 

20 µl of each solution were applied to indicated spots. The receptor plates were incubated 

overnight at 4°C in a humid box. Trophozoites were purified using Magnetic Activated Cell 

Sorter (MACS) column as described by Staalsoe et al., (1999) and parasitemia after purification 

calculated. Meanwhile, the receptor spots were washed 3 times with PBS and blocking with 1% 

BSA for at least 30 minutes. After washing the spots with adhesion medium, 5*106 infected 

erythrocytes were applied to each spot and incubated for 1 h at room temperature. After gently 

washing off unbound cells, the remaining cells were fixed with 2% glutaraldehyde in PBS for 

at least 2 h. After staining for 10 minutes with 10% Giemsa and allowing the plates to dry, the 

spots were imaged using Zeiss Axiovert 200M, 10x objective. 3 areas from each spots were 

randomly selected and imaged. All results shown are averages of triplicate spots of binding 

above levels recorded for the BSA control. Statistical analysis was carried out using Sigma Plot. 

2.2.6 Flow cytometry 

The text of the following paragraph has been taken from Cyrklaff et al., (2016) and has 

originally been written by myself: 

The levels of VAR2CSA present was determined using flow cytometry, as previously described 

(Barfod et al., 2006). Briefly, samples of highly synchronised trophozoite-stage parasite 

cultures were collected and washed with PBS, supplemented with 2% fetal calf serum (FCS). 

A rabbit antiserum against baculovirus-produced recombinant domains of VAR2CSA was used 

as the primary antibody. 3ml of the sera was used to label the samples for 30 min in a final 

volume of 50 ml PBS/FCS. After several washing steps, the samples were then labelled with 

1:100 Alexa 488 goat anti-rabbit IgG (HþL) (Life Technologies) and 1:100 propidium iodide 

for 30 min in a final volume of 50ml PBS/FCS. Uninfected erythrocytes were treated 

concurrently throughout as a negative control. The fluorescence was finally determined using 

a FACScalibur (Becton Dickinson) and the CellQuest Pro Software 6.0.4 BD (Franklin Lakes). 
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2.2.7 Quantification of haemoglobin content by spectroscopy (NPPs 

activation 

Highly synchronized infected red blood cells were evaluated for hemolytic capability as an 

indirect measurement of NPPs activation over the entire intraerythrocytic life cycle. Briefly, 

samples of 1x107 iRBC were collected every 4 h, washed in PBS and then suspended in 800 μl 

of isosmotic sorbitol lysis solution for 10 min at 37°C. After 2 min centrifugation at 500 g, 700 

μl of the supernatant were collected and the absorbance at 540 nm was measured in order to 

estimate the haemoglobin concentration released from the lysed cells. Hemolysis of uninfected 

erythrocytes was assessed in parallel as negative control. Duplicates of at least two independent 

samples were carried out. 

2.2.8 Oxidative pre-treatment of erythrocytes 

Erythrocytes were incubated with the candidate oxidative agents at indicated concentration for 

1 hour RT. For treatments with H2O2 and tBOOH, an equimolar concentration of DTT was 

applied to the erythrocyte after 3 PBS washings to try and restore the oxidative balance. For 

treatments with menadione sodium bisulfate and diamide, the number of washing steps was 

increased to 5. 3-4ml of medium was added on top of the blood pellet after discarding the 

supernatant from the last wash. Store at 4°C. 

2.2.9 Hemozoin Quantification 

The text of the following paragraph has been taken from Cyrklaff et al., (2016) and has 

originally been written by myself: 

The amount of hemozoin was determined as previously described (Schwarzer et al., 1992). 

Briefly, infected erythrocytes at trophozoite and schizont stages were collected by 

centrifugation and washed twice with PBS. The pellet was then osmotically lysed by adding 50 

ml of ice-cold distilled water (dH2O) before centrifugation at 4,000 rpm at 4° C for 30 min to 

precipitate the hemozoin and the membrane ghosts. After the centrifugation, the white layer of 

RBC membrane ghosts was aspirated and the sticky black hemozoin pellet underneath washed 

twice with ice-cold dH2O. These were then dissolved in 1 ml of 0.1M NaOH and incubated at 

50 °C for 10 min. The absorbance at 400 nm was used to determine the amount of hemozoin 

present; 100 ml of each sample was added to 96-well plates and a serial dilution of 0.1M haemin 
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chloride (Sigma Aldrich) was used to plot a standard curve. The concentration of hemozoin 

present in each sample was extrapolated from said graph. 

2.2.10  RNA purification and cDNA synthesis 

Synchronized trophozoite/schizont-stage iRBC were isolated by MACS, as previously 

described (Staalsoe et al., 1999). Briefly, 50 μl of packed erythrocytes with ~50% parasitaemia 

was dissolved in 1 ml of TRIzol (Invitrogen) and RNA was prepared according to the 

manufacturer's instruction. RNA pellets were dissolved in 10 μl of RNase-free water and treated 

with DNaseI (Sigma-Aldrich) for 25 min at room temperature, followed by 10 min heat 

inactivation at 65°C. DNA-free RNA samples were used for synthesis of cDNA by reverse 

transcriptase (Superscript II, Invitrogen) and random hexamer primers as described by the 

manufacturer. cDNA synthesis was performed with assistance from Sophie Adjelley, EMBL 

Heidelberg. 

2.2.11  Quantitative real-time polymerase chain reaction (qRT-PCR) 

All q-PCR measurements were performed using the LightCycler 96 system (Roche). Reactions 

were prepared in volumes of 20μl using SYBR Green PCR master mix (Applied Biosystems) 

and a primer concentration of 1μM. The following PCR cycling conditions were used: initial 

heat activation step at 95°C for 15 min, followed by 40 cycles of 95°C for 30 s, 55°C for 30 s 

and 68°C for 40s with a final extension at 68°C for 40 s. The amplification specificity for each 

primer pair was determined by melting-curve analysis of each PCR product. 

Gene specific standard curves were generated by determining the 'amplification efficiency' 

relative to the single copy endogeneous control gene (cyclophilin), based on real-time 

measurements of 10-fold dilutions of genomic DNA. Transcript abundance was determined 

according to the ΔCt (cycle threshold) method, in which the Ct value for each specific gene was 

compared with that of the endogeneous control. Both qPCR measurement and analysis was 

performed with assistance by Sophie Adjelley, EMBL Heidelberg. Primer sequences used are 

shown in section 2.1.7 (Duffy et al., 2002; Salanti et al., 2003). 

2.2.12  Sample preparation for Mössbauer spectroscopy 

5ml aliquots of uninfected pre-treated HbAA, fetal and haemoglobionpathic erythrocytes were 

shipped from Heidelberg to Krakow with dry ice, keeping the temperature within range of 4° 
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C. Further sample processing and measurement of Mössbauer spectroscopy was carried out as 

described (Cyrklaff et al., 2016).  
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3 Project I: Visualisation of erythrocyte cytoskeletal 

proteins by super-resolution microscopy 

 

Impaired actin reorganisation in infected haemoglobinopathic erythrocytes has been implicated 

as one of the possible machanisms by which these hereditry conditions protect the host against 

life-threatening complications of severe malaria (Cyrklaff et al., 2012). Previous studies have 

utilised electron microscopy (EM), more specifically cryo-electron tomography, in visualising 

the actin reorganisation in infected erythrocytes (Cyrklaff et al., 2011). However, cryo-electron 

tomography as a technique is known to require great expertise in both image acquisition and 

data processing, with low throughput and high time investments required. Electron microscopy, 

in general, is also incompatible with live-cell imaging, as water molecules in the samples need 

to either be removed, as in classical EM, or immobilised, in the case of cryo-EM, to render the 

sample compatible with imaging under high vacumm.  

Classical confocal/light microscopy, although compatible with live cell imaging and requires 

less time and expertise, is faced with the lateral resolution limit of 200 nm and axial resolution 

limit of 500 nm, restricting it from the visualisation of small, intricate structures such as 

filamentous actin in erytrocytic membrane, which is approximately 37 nm in length (Henriques 

et al., 2011; Gokhin and Fowler, 2016). The recent development of different methods in super-

resolution microscopy, also refered to as single molecule localisation microscopy (SMLM), 

have enabled scientists to overcome the diffraction limit and gained deeper understanding of 

various cellular dynamics and protein complexes, with a lateral resolution of up to 20 nm, a 

spatial resolution of up to 50 nm and a temporal resolution of 0.5-1 s (Endesfelder et al., 2010; 

Jones et al., 2011; Sauer and Heilemann, 2017). 

 

3.1 Aim of the study 

In this project, our aim was to establish a working protocol for direct stochastic optical 

reconstruction microscopy (dSTORM) in uninfected and infected erythrocytes as a higher 

throughput method of nanoscale visualization, complementary to cryo-EM. Imaging of 

differential actin reorganization in infected haemoglobinopathic and HbAA erythrocytes would 
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be used as benchmark experiments to evaluate the applicability of dSTORM for the stated 

purpose.  

 

3.2 Alexa Fluor 647 is a suitable fluorophore for dSTORM 

visualisation 

As proof of principle, fixed HeLa cells were stained with anti-tubulin and Alexa Fluor 647 

antibodies (kindly provided by Dr. Benjamin Flottman) and imaged with the total internal 

reflection (TIRF)-dSTORM set-up as well as the traditional widefield illumination for 

comparison (Fig 3-1).    

 

 

Figure 3-1 Enhanced resolution of dSTORM imaging as compared to traditional widefield microscopy.  

(a) A widefield image of a fixed HeLa cell stained with anti β-tubulin antibody and Alexa Fluor 647 was taken 

prior to dSTORM image acquisition. (b) A dSTORM reconstruction of the same sample using RapidSTORM 

software. (c) and (d) A section of the widefield image and dSTORM reconstruction were magnified to illustrate 

the higher resolution provided by dSTORM imaging.  
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As shown in panel c and d (Fig 3-1), the dSTORM reconstruction was able to more distinctly 

resolve the tubulin filaments than traditional widefield microscopy. However, areas of over-

saturation were also present, especially at the junctions where several tubulin filaments seemed 

to cross, and if one would like to further investigate these junctions, adjustments in laser 

intensity and/or antibody concentrations would need to be considered.   

Although Alexa Fluor 647 worked well in the established system of HeLa cells, two additional 

fluorophores were tested for dSTORM imaging in the erythrocytes: Alexa Fluor 488 and Alexa 

Fluor 532. As there were several key differences between imaging tubulin in HeLa cells and 

actin and spectrin in infected and uninfected erythrocytes, we thought it prudent to test and 

select the optimal fluorophore in the target system. 

Alexa Fluor 488 was selected for its ability to exhibit blinking behaviour in PBS, circumventing 

the need for toxic blinking buffers containing mercaptoethalamine (MEA) (Dempsey et al., 

2011). However, we found that the haemoglobin autofluorescence (Khandelwal and Saxena, 

2007; Zhurova et al., 2014), even after sample perforation with streptolysin-O to release the 

haemoglobin content, as well as the low blinking rate rendered this particular fluorophore 

unsuitable for use due to low signal to noise ratio (data not shown). Alexa Fluor 532 also 

exhibited high background and low blinking rate, so much so that a reconstruction was not 

possible due to low photon count (data not shown). Alexa Flour 647 performed better than the 

previous two fluorophore, although it still exhibited signs of bleaching. However, the conditions 

were able to be marginally improved by adapting the imaging buffer to include an enzymatic 

oxygen scavenging system (Buffer II) (van de Linde et al., 2011). Although signs of bleaching 

still occurred, the photon count were sufficient for reconstructions, albeit the high background 

autofluorescence still remained (Fig 3-2a and d).    

One of key difference between the test sample of HeLa cells and our erythrocyte samples was 

the fact that HeLa cells were adherent cells. This is of a significant importance in dSTORM as 

adherent cells greatly reduce the problem of ‘drifting’ caused by movements of sample during 

the image acquisition. Several immobilisation methods were tested, including Matrigel, poly-

L-Lysine coated slides as well as varying concentrations of concanavalin-A. A sequential 

coating of 0.01% Poly-L-Lysine followed by 200µg/µl concanavalin A was selected as the final 

immobilisation protocol.  
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3.3 Differences between the cytoskeletal network of uninfected and 

infected RBCs cannot be resolve with dSTORM   

3.3.1 Spectrin  

In uninfected HbAA erythrocytes, spectrin tetramers are known to form a quasi-hexagonal 

meshwork connecting to junctional complexes containing short F-actin filaments of 

approximately 37 nm in length as well as actin-binding proteins such as tropomyosin, 

tropomodulin and protein 4.1R (Gokhin and Fowler, 2016) (Lux, 2016). This lends the 

erythrocytic membrane its characteristic flexibility and tensile strength. This network is said to 

be altered by the Plasmodium parasite upon infection (Shi et al., 2013). We began our 

experiments with spectrin rather than actin because we hypothesised that the regularity of the 

meshwork structures in uninfected erythrocytes might lend itself better to visualisation. 

Uninfected and magnetically-purified, infected trophozoite-stage HbAA erythrocytes were 

fixed with 4% PFA and 0.0075% GA for 30 min, washed with PBS and briefly perforated with 

5AU of activated streptolysin-O (SLO) in order to release some haemoglobin content and 

reduce background fluorescence. The samples were then labelled with primary mouse anti-

spectrin antibody and anti-mouse Alexa Fluor 647 secondary antibody, immobilised on pre-

coated glass-bottom ibidi µ-slides and imaged at 63x magnification with Buffer II as blinking 

buffer. A minimum of 5000 frames were taken for dSTORM reconstruction using 

RapidSTORM software.   
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Figure 3-2 Visualisation of spectrin network in uninfected and infected HbAA erythrocytes using dSTORM 

Uninfected (a-c) and infected (d-f) HbAA erythrocytes were labelled with anti-spectrin antibody and visualized 

using Alexa Fluor 647 and dSTORM imaging. The white arrow in (d) indicates the position of the parasite in the 

infected cell. Selected sections of the dSTORM reconstructions from (b) and (d) were magnified and displayed in 

(c) and (f) to allow for more direct comparison between the two samples. Images shown are representative of at 

least five different independent biological replicates. uRBC – uninfected erythrocyte; iRBC – infected erythrocyte.    

 

As shown in figure 3-2c and f, there were no distinguishable differences in the apparent spectrin 

network of uninfected and infected erythrocytes. Unlike the microtubule filaments seen in 

figure 3-1b and d, it is difficult to visualise any filamentous or mesh-like structure in this case. 

Figure 3-2a and d also showed a high degree of background fluorescence regardless of the SLO-

treatment. The parasite itself also seemed to acquire an especially intense fluorescence staining 

(Fig 3-2 d). 

3.3.2 Actin  

Although we could not visualise the hexagonal meshwork structures in uninfected samples and 

no discernible differences between spectrin network of uninfected and trophozoite-infected 

erythrocytes were detected, we continued with our attempt at actin visualisation. Since the 

filamentous actin reorganised by the parasite were reported to be, on average, 150 nm in length 
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(Cyrklaff et al., 2011), we expected that the longer length may increase the resolution, 

compared to the folded spectrin network at approximately 45 nm in length (Nans et al., 2011; 

Shi et al., 2013). The fact that the phalloidin-conjugate of Alexa Flour 647 is also commercially 

available also allowed us to expect a higher labelling efficiency, leading to a higher signal-to-

noise ratio, relative to secondary antibody labelling.  

Following the same sample preparation technique, fixed uninfected and infected HbAA 

erythrocytes were stained with phalloidin-conjugated Alexa Fluor 647 and imaged using TIRF-

dSTORM.  

Although a comparison between panels a-b and d-e from figure 3-3 suggest a more uniform, 

intense staining of F-actin around the rim of the uninfected erythrocytes, a closer look at the 

dSTORM reconstructions in panels c and f showed no visible differences between F-actin 

staining in the two samples. Unlike the images of the tubulin network in HeLa cells, the 

reconstructed images of F-actin staining in infected HbAA erythrocyte did not produce clear, 

filamentous structures. Instead, the individually localised fluorophores - seen as dots in the 

images - were spread out, making it difficult to judge whether the underlying structures could 

be arranged in any form of filaments.   
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Figure 3-3  Visualisation of actin network in uninfected and infected HbAA erythrocytes using dSTORM 

Uninfected (a-c) and infected (d-f) HbAA erythrocytes were labelled with phalloidin-Alexa 647 and imaged using 

dSTORM. The white arrow in (d) indicates the position of the parasite in the infected sample. Selected sections of 

the dSTORM reconstructions from (b) and (d) were magnified and displayed in (c) and (f) to allow for more direct 

comparison between the two samples. Images shown are representative of at least five different independent 

biological replicates. uRBC – uninfected erythrocyte; iRBC – infected erythrocyte.          

 

3.3.3 dSTORM Simulation Software (SuReSim)  

We consulted Dr. Varun Ventrankamani and Dr. Frank Herrmandörfer, both of whom were 

more experienced in dSTORM imaging, regarding our results. At the time, they were involved 

in the development of  the “SuReSim”, a software which would allow users to simulate 

dSTORM reconstructions based on ‘ground truth models’ of the structure of interest with 

variable experimental parameters such as labelling intensities, epitope densities, average 

blinking number and background signal (Venkataramani et al., 2016). Data regarding the 

length, branching angles and density of F-actin in uninfected and infected erythrocytes were 

extracted from previously publish electron microscopy experiments and used as ‘ground truth 

models’ – underlying structures of interest to be imaged by dSTORM (Fig 3-4c and d). For the 

simulated dSTORM reconstruction of F-actin in uninfected erythrocytes (Fig 3-4b), a 10% 
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labelling efficiency and an epitope density of 0.015 epitopes/nm2 for phalloidin-conjugated 

Alexa Flour 647 were assumed (Faulstich et al., 1993; Venkataramani et al., 2016). The 

outcome of the SuReSim simulation was consistent with the experimental reconstruction (Fig 

3-4a) performed by Varun and Frank, as well as those performed prior to our consultation (Fig 

3-3b and c). The SuReSim output of F-actin labelling in infected erythrocytes (Fig 3-4e) also 

showed similar images to those seen in our previous experimental reconstructions (Fig 3-3e and 

f).  

 

Figure 3-4 Simulation of likely dSTORM imaging outcomes based on ground-truth models by the software 

SuReSim.  

(a) and (b) cortical actin in uninfected erythrocytes (uRBC), visualized by dSTORM imaging and SuReSim 

simulation respectively. Adapted from Venkataramani et al., (2016) Scale bar 500 nm. (c) surface-rendered view 

of infected trophozoite stage HbAA erythrocyte, reconstructed from cryo-tomographic tilt series. Actin filaments 

seen in yellow. MC – maurer’s cleft; PM – plasma membrane; k – knob. Scale bar 100 nm. Adapted from Cyrklaff 

et al., (2012). (d) extraction of actin filament coordinates from (c) to apply as ‘ground truth model’ – a basis for 

SuReSim simulation for actin in infected erythrocytes. (e) simulated dSTORM reconstruction, assuming 10% 

labelling efficiency, 20 nm axial resolution and 30 nm lateral resolution. Scale bar 500 nm. uRBC – uninfected 

erythrocyte; iRBC – infected erythrocyte.    
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3.4 Differences between the actin network of uninfected and 

infected RBCs cannot be resolve with STED 

As both our experimental results and the SuReSim simulations showed that it was unlikely for 

dSTORM to be able to resolve the differences in actin re-arrangement between uninfected and 

infected erythrocytes, we attempted another method of super-resolution imaging – namely, 

stimulated emission depletion (STED) microscopy. SiR-Actin, a far-red fluorophore developed 

by Lukinavičius et al., (2014), was an attractive option as it would further minimize the 

autofluorescence of haemoglobin in the green spectrum. This work was carried out in 

collaboration with Dr. Janina Hahn, AG Hell, University of Heidelberg.  

3.4.1 Infected erythrocytes could not be imaged with STED 

microscopy 

Samples of uninfected and magnetically-purified infected erythrocytes were fixed with 4% PFA 

and 0.0075% GA for 30 min, washed with PBS and incubated with 5 µm of SiR actin for 30 

min. The samples were mounted on a coverslip and first a confocal image was taken with the 

642 nm excitation laser (Fig 3-5a and c). Subsequently, the 775 nm laser was used to quench 

the fluorophores outside of the focal area through STED and an image was acquired (Fig 3-5b 

and d).  

While STED images showed an improved resolution of the cortical actin in uninfected red blood 

cell relative to confocal images, infected erythrocytes entirely failed to be imaged with STED 

(Fig 3-5). The initial confocal imaging of the infected sample could be performed as expected, 

but once the STED laser reached the position where the parasite resided in the infected red 

blood cell, the cell seemed to simply burst (Fig 3-5c and d). This was observed in all repeats of 

infected trophozoite-stage erythrocyte samples from at least three independent biological 

replicates.       
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Figure 3-5 STED imaging of uninfected and infected HbAA erythrocytes.  

Uninfected (a-b) and infected (c-d) HbAA erythrocytes were fixed and stained with 5 µM SiR-Actin for 30 min. 

The sample slide was then loaded onto a Leica DMI6000B microscope and confocal image was taken with 645 

nm laser, followed by STED imaging with 775nm laser (performed by Dr. Janina Hann). White arrows in (c) point 

towards the position of the parasite in the infected sample. Images shown are representative of at least three 

independent biological replicates. uRBC – uninfected erythrocyte; iRBC – infected erythrocyte.        

 

3.4.2 STED imaging cannot resolve actin on ghost membrane 

preparations  

To circumvent the problem of “exploding” infected erythrocytes, ghost membrane preparations 

from both uninfected and infected erythrocytes were prepared using hypotonic solutions and 

protease inhibitors (Blisnick et al., 2000). These samples were then fixed, labelled and imaged 

in the same way as the previous attempt. The ghost membrane preparations from infected 

erythrocytes were able to be imaged with STED without further problems (Fig 3-6e and f).   
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Figure 3-6 STED imaging of ghost preparations from uninfected and infected HbAA erythrocytes.  

Erythrocyte membrane ghosts were prepared according to stated protocol (Blisnick et al., 2000). Ghost 

preparations from uninfected (a-c) and infected (d-f) HbAA erythrocytes were fixed and stained with 5 µM SiR-

Actin for 30 min. The sample slide was then loaded onto a Leica DMI6000B microscope and confocal image was 

taken with 645 nm laser, followed by STED imaging with 775 nm laser (performed by Dr. Janina Hann). White 

arrows in (c) point towards the position of the parasite in the infected sample. Images shown are representative of 

at least three independent biological replicates. uRBC – uninfected erythrocyte; iRBC – infected erythrocyte.        

 

Although cortical F-actin from both infected and uninfected ghost preparations were now able 

to be imaged with STED, a closer look at the resolved images in panel c and f (fig 3-5) did not 

reveal any significant differences in the arrangement of actin filaments in uninfected versus 

infected samples.  
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3.5 Discussion 

Unfortunately, both dSTORM and STED microscopy failed to visualize the differential 

arrangements of cortical F-actin in uninfected and infected HbAA erythrocytes. In the case of 

dSTORM, the experimental findings were also supported by the simulations from the software 

SuReSim (Venkataramani et al., 2016). Although the length of F-actin in uninfected 

erythrocytes is reported to be approximately 37 nm, technically within the axial resolution limit 

of super-resolution microscopy (Gokhin and Fowler, 2016), we could not visualize individual 

actin filaments. One of the possible reasons could be due to the high density of actin in the 

cortical membrane of the uninfected erythrocytes (Lux, 2016; Venkataramani et al., 2016). 

Kudryashev et al., (2010) also discussed the impact of actin length and orientation and the 

subsequent effects thereof on its detection by cryo-electron tomography. Although different in 

the imaging modality and system, the paper points to several factors effecting actin visualization 

that could also play a role in our super-resolution imaging. Cortical F-actin in erythrocytes are 

reported to lie at approximately 20° to the membrane plane and have random orientations (Picart 

and Discher, 1999; Lux, 2016). As we were using 2D TIRF-dSTORM to image the cortical 

actin, the lack of information regarding the 3D arrangement of the filaments could contribute 

to the “crowding effect” of the localized fluorophore, making it more difficult to distinguish 

individual filamentous structures in the reconstructed images.  

Increasing evidence have emerged that erythrocytic F-actin is more dynamic than previously 

believed: Gokhin et al., (2015) has reported that between 25-30% of erythrocytic F-actin are 

mobile and able to undergo both lateral movements and subunit assembly/disassembly  (Gokhin 

et al., 2015; Gokhin and Fowler, 2016). In HbAA parasitized erythrocytes, surface-rendered 

views of cryo-electron tomographic tilt series have previously shown elaborate actin networks 

of filaments between 40 – 600 nm in length, with some filaments branching at 70° and 110° 

angles (Cyrklaff et al., 2011; Cyrklaff et al., 2012; Rug et al., 2014). These dynamic processes 

and transient structures could be affected by the process of sample fixation. This could explain 

why we could not visualize the longer actin filaments in infected erythrocytes, even though the 

average length were reported to be over 170 nm (Cyrklaff et al., 2016). Several recent studies 

have tried to investigate the effect of fixatives such as paraformaldehyde (PFA) and 

glutaldehyde (GA) on actin filaments in super-resolution imaging more systematically (Whelan 

and Bell, 2015; Bachmann et al., 2016; Leyton-Puig et al., 2016). While both Bachmann et al., 

(2016) and Whelan and Bell, (2015) found GA to be more efficient at preserving thin and short 

actin filaments, Leyton-Puig et al., (2016) argued that under optimal conditions, PFA performed 
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just as well as GA in structural preservation. However, these studies were performed in adherent 

cells such as HeLa or COS-7, whose actin filaments were longer and much more visible. The 

same systematic approach should also be carried out in our erythrocyte samples – but the dense 

arrangements and much shorter filaments would most likely prove problematic for 

visualization, as we have found.  

One could argue for live-cell imaging, which would remove potential artifacts that would arise 

from fixatives currently used in the sample preparation. However, the current imaging protocols 

for dSTORM and STED microscopy need to be substantially adapted first. In the case of 

dSTORM, the imaging buffer requires oxygen scavenging, which is not conducive to keeping 

cells alive (Dempsey et al., 2011). There should also be minimal movement of the cell during 

image acquisition to prevent ‘drift’ – an artifact where a photon cannot be accurately localized 

and appears elongated due to sample movement. This is of special concern with erythrocytes as 

they are non-adherent cells and the live parasite in infected samples could cause substantial 

vibration during imaging. As for STED microscopy, the high laser intensity required would 

result in phototoxicity in live cell – one must then consider a compromise between the 

resolution, size of area of interest and speed (Cox, 2015).  

The fact that STED microscopy of infected erythrocyte was only possible with ghost membrane 

preparation is another point to consider. Although the cause of the sample disruption during 

STED image acquisition of infected erythrocytes was not experimentally determined, one 

possible explanation could be the interaction between hemozoin crystal and the 775 nm STED 

laser. Lukianova-Hleb et al., (2014) reported that nanobubbles could be generated by aiming a 

short pulse of laser at the hemozoin. The absorption of the optical energy and conversion to 

heat by the crystal causes rapid evaporation of the surrounding liquid, creating nanobubbles. 

The mechanical force generated by the collapse of these nanobubbles was sufficient to destroy 

the infected erythrocyte within nanoseconds (Hleb and Lapotko, 2014). Although a 532 nm 

laser was used in the excitation pulse, one could imagine a similar scenario occurring in our 

case. Unfortunately, no absorption spectra for hemozoin above 700 nm has been reported (Lee 

et al., 2012).  

At the time of writing, Pan et al., (2018) was able to image spectrin and actin in uninfected 

erythrocyte with 3D-STORM by letting the cells adhere to poly-lysine coated coverslip before 

fixation to create a flat surface for optimal imaging. Both the spectrin and actin images reported 

had much more regular labelling than ours, most likely due to the flattened surface of the cell. 

However, the images still fail to show filamentous structures as would be seen by the 
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reconstructions from cryo-EM (Cyrklaff et al., 2011). This is not to say that STORM is inferior 

to cryo-EM – only that the extraction of relevant information such as filament length, 

orientation or branching from pointillistic reconstructions would need much more careful 

analysis of the data and one cannot rely simply on the visual information of the images as one 

may have been accustomed to in confocal microscopy.     

Despite the advances in super-resolution microscopy, cryo-EM is still a very important tool in 

imaging transient and fragile ultrastructures. Although incompatible with live cell imaging, the 

plunge-frozen sample could give us a snapshot into a cell which has been preserved at close-

to-life state. Both techniques have their own limitations but with the emergence of super-

resolution microscopy, scientists now have more options than ever in their toolbox to help 

investigate the inner workings of cells and proteins.  

   

3.6 Outlook 

Although both dSTORM and STED microscopy failed to distinguish the differences in actin 

filaments in uninfected vs HbAA-infected erythrocytes, there are still several potential 

experiments that could be attempted.    

Gokhin et al., (2015) reported a 60% decrease in soluble G-actin after treatment of the 

erythrocyte with Jasplakinolide, a drug which enhances actin nucleation. However, the 

corresponding TIRF image of F-actin shows no visible differences when compared to non-

treated samples. The differences in cortical F-actin may become more apparent at higher 

resolution. 

Cortical actin in uninfected erythrocytes are also bound by tropomyosin, tropomodulin and 

adducin. What happen to these molecules as the parasite remodels the host actin cytoskeleton 

is as yet unknown. Super-resolution microscopy may be able to help clarify the fates of these 

proteins. 

Alternatively, there are still a lot of unanswered questions with regards to parasitic protein 

export pathway, knob assembly and adhesin clustering, to name a few. Putting aside the 

problems associated with visualisation of actin and spectrin, using super-resolution microscopy 

to localise other proteins of interest might reveal some interesting paradigm – especially now 

that we are able to first use SuReSim to determine if dSTORM experiments would yield 

meaningful outcomes or not (Venkataramani et al., 2016).      
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4 Project II: Kinetics of protein export in infected 

haemoglobinopathic erythrocytes 

 

Cytoadhesion of infected erythrocytes to the microvasculature of vital organs is one of the key 

hallmarks of severe malaria pathogenesis. Both the levels of cytoadhesion and the amount of 

surface adhesin, PfEMP1, are reduced in infected haemoglobinopathic erythrocytes, relative to 

infected HbAA erythrocytes (Fairhurst et al., 2005; Cholera et al., 2008). Cyrklaff et al., (2011) 

have previously reported that Plasmodium falciparum is able to reorganise host actin 

cytoskeleton into long filamentous structures that seemed to be involved in the trafficking and 

display of PfEMP1 on knobs. This process is also found to be impaired in haemoglobinopathic 

erythrocytes (Cyrklaff et al., 2011). Coupled with the aberrant knob structures and distribution, 

these findings indicate possible disruptions in the parasitic export pathway of infected 

haemoglobinopathic erythrocytes.  

Previous studies have mostly performed experiments with infected HbAA erythrocytes or 

infected haemoglobinopathic erythrocytes at particular stages in the intra-erythrocytic life 

cycle; for instance, most adhesion assays are performed with trophozoites or schizonts, where 

the level of surface adhesin expressions are highest (Fairhurst et al., 2005; Cholera et al., 2008). 

Madhunapantula et al., (2007) characterised the adhesion phenotype of infected HbAA 

erythrocytes to placental CSPG between 6 – 46 h post infection. However, the kinetics of 

placental adhesion phenotype during the entire intraerythrocytic cycle has never been described 

for infected haemoglobinopathic erythrocytes before.   

 

4.1 Aim of the study 

In this project, we aim to investigate the kinetics of adhesion phenotype and protein export in 

infected HbAA and haemoglobinopathic erythrocytes over the course of the 48 h intra-

erythrocytic cycle. This would help to further investigate the impact of haemoglobinopathic 

erythrocytes on the parasitic protein export system and quantitatively describe the  dynamics of 

reduced cytoadhesion in more detail. 
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4.2 Infected haemoglobinopathic erythrocytes exhibited delayed and 

reduced adherence and surface antigen presentation 

Tightly synchronized FCR3-CSA parasites, pre-selected for their CSA-adhesive phenotype, 

were cultured in erythrocytes containing either HbAA, HbAS or HbCC, henceforth referred to 

only by their haemoglobin variants, for two replication cycles before the start of the 

experiments. Purified chondroitin sulfate A (CSA) was used as a surrogate receptor for 

placental malaria. The number of infected erythrocytes used for the static adhesion assay was 

kept constant between all timepoints and haemoglobin variants. All experiments were 

performed as paired and parallel assays, with infected HbAA erythrocytes as a control.  

The number of adherent cells at each timepoint was quantified and a sigmoidal function was 

fitted to the dataset for each haemoglobin variant (Fig 4-1a). Both HbAA and HbAS first 

exhibited signs of adherence around 14 h post infection (p.i.) and reached a plateau of maximal 

adherence around 26 h p.i. However, infected HbAS showed an approximately 40% reduction 

in the final number of adherent cells/mm2 relative to infected HbAA (513±102 cells/mm2 for 

HbAS and 876±211 cells/mm2 for HbAA, respectively, p < 0.01). 

A slower increase in the kinetics of adherence was also observed in infected HbAS. Linear 

functions fitted to the slope of each dataset revealed that in infected HbAS, adherence rose at a 

rate of 20±2 cells per hour, compared to 61±4 cells per hour in infected HbAA (Fig 4-1a, p < 

0.01). Infected HbCC showed no adhesive phenotype at all.   

We then went on to investigate the temporal appearance of parasitic adhesins on the erythrocytic 

surface in both HbAA and haemoglobinopathic erythrocytes (Fig 4-1b). Samples were taken at 

specified time points and fixed with 0.05% glutaldehyde (GA). Quantification of surface 

adhesins was carried out by flow cytometry, using pooled sera from individuals living in 

malaria holoendemic regions from Burkina Faso as the primary antibody. 

Similar to the trend seen in the adhesive phenotypes, surface adhesins were detected in infected 

HbAA and HbAS from 16 h p.i. onwards, with the temporal increase of 30±4 arbitrary 

fluorescence units per hour in HbAA and 10±4 arbitrary fluorescence units per hour in HbAS 

(Fig 4-1b, p < 0.01). The final plateau value for infected HbAS was also approximately 50% 

less than those for infected HbAA erythrocytes (157±20 units and 373±52 units, respectively) 

(Fig 4-1b, p < 0.01). No surface antigen was detected for infected HbCC until 36 h p.i. and the 

maximum value detected was even lower than those in infected HbAS at 94±8 arbitrary 

fluorescence units (Fig 4-1b).    
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Figure 4-1 Kinetics of adhesion and surface antigen presentation in infected HbAA and haemoglobinopathic 

erythrocytes. 

(a) Static adhesion assay was performed on tightly synchronized FCR3-CSA parasite cultures at specified time 

points between 6-40 hrs post infection. The number of CSA-adherent cells were quantified by Giemsa staining 

and image analysis with FIJI. All experiments were performed as paired and parallel assays with infected HbAA 

samples as control. Each data point represents the mean of at least three independent biological replicates with 

blood donated from at least three different donors ± standard error of the mean. (b) Surface antigen presentation 

of each Hb variant was assessed using FACS and pooled sera from residents of malaria endemic regions in Burkina 

Faso. Samples were taken at specified time points and fixed with 0.05% GA. Further steps were carried out as 

stated in the protocol. All experiments were performed in paired and parallel assays with infected HbAA samples 

as control and each data point represents the mean of at least three independent biological replicates with blood 

donated from at least three different donors ± standard error of the mean. Figures adapted from Kilian et al., (2015)   
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4.3 Infected haemoglobinopathic erythrocytes exhibited delayed 

onset and activation of the New Permeability Pathway  

As infected HbAS showed delayed kinetics in both surface adhesin presentation and adherent 

phenotype, we wondered if this phenomenon could also be seen in other pathways unrelated to 

cytoadhesion. The New Permeability Pathway (NPP), first described in  1983 by Ginsburg et 

al., (1983), is responsible for the increase in permeability of the erythrocytic membrane to a 

wide range of solutes, including amino acids, peptides, sugars and different organic and 

inorganic ions (Kirk and Lehane, 2014). The molecular components of the NPP as well as its 

physiological functions are still currently under investigation and is a matter of some debate 

(Ginsburg and Stein, 2004; Staines et al., 2004; Thomas and Lew, 2004; Kirk and Lehane, 

2014). The NPP has been hypothesised to be involved in uptake of essential nutrients from the 

plasma, excretion of parasitic waste product and the swelling of late-stages infected 

erythrocytes due to the dissipation of the Na+/K+ gradient and the subsequent influx of water 

(Mauritz et al., 2009; Kirk and Lehane, 2014).  

In order to investigate the kinetics of NPP development in parasitized HbAA and 

haemoglobinopathic erythrocytes, sorbitol-induced haemolysis was used as a read-out. Samples 

of highly synchronised parasites were taken every 4 h throughout the 48 h intra-erythrocytic 

cycle and lysed in iso-osmotic sorbitol lysis buffer as previously described (Kirk et al., 1994). 

Spectroscopic absorbance at 540 nm wavelength (A540) is correlated to the amount of 

haemoglobin released due to cell lysis. This was used to semi-quantitatively describe the 

establishment and functionality of the NPP as the osmosis of water into the cell would increase 

after influx of sorbitol through the NPP, driving cell lysis. All experiments were performed in 

a paired and parallel assay with infected HbAA erythrocytes as control. The mean of at least 

three independent experiments ± standard error of mean for each timepoint and each 

haemoglobin variant was plotted, and a three parameter Hill function fitted to each dataset (Fig 

4-2). For ease of visual comparison, a dotted line indicating 50% induction of the NPP in 

infected HbAA erythrocyte was also shown. This corresponded to 26 h p.i. in infected HbAA 

and 30 h p.i. in both infected HbAS and HbAC erythrocytes (Fig 4-2). F-statistic also showed 

a significant difference between the timecourses of NPP induction and development between 

infected HbAA and HbAS and HbAA and HbAC (Fig 4-2, p < 0.001 in both cases) but no 

significant difference between infected HbAS and HbAC samples (Fig 4-2, p < 0.77).     
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Figure 4-2 Induction of the new permeability pathways (NPP) in infected HbAA and haemoglobinopathic 

erythrocytes.  

Samples of infected erythrocytes were taken at specified timepoints throughout the 48 h intra-erythrocytic cycle.  

Onset and development of the NPP were assessed through sorbital-induced hemolysis. Absorption spectroscopy 

at 540 nm wavelength (A540) was used to quantify the amount of haemoglobin released. Dotted line designates a 

50% NPP induction in infected HbAA erythrocytes. All experiments were performed in paired and parallel assays 

with infected HbAA samples as control and each data point represents the mean of at least three independent 

biological replicates with blood donated from at least three different donors ± standard error of the mean. Statistical 

significance between each dataset was calculated using F-statistics (p < 0.001 between HbAA and HbAS, p < 

0.001 between HbAA and HbAC and p < 0.77 between HbAS and HbAC). a.u. – arbitrary units. Figure adapted 

from Waldecker et al., (2017). Data generated in a collaboration with Dr. Christine Lansche.  

 

4.4 Discussion 

Our timecourse for CSA-adhesion in infected HbAA erythrocytes agreed well with previously 

publish result for adherence to Cluster of Differentiation 36 (CD36), intercellular adhesion 

molecule-1 (ICAM-1) and thrombospondin (TSP) (Gardner et al., 1996). In contrast, 

Madhunapantula et al., (2007) showed that adhesion to isolated placental chondroitin sulfate 

proteoglycan (CSPG) exhibits a peak adhesion at 22 to 26 h p.i. then the binding capacity 

gradually decreased during trophozoite maturation instead of remaining constant. They have 

argued that this could be due to the increase in apperance of other parasitic export proteins on 

the surface of the infected erythrocytes, which could sterically mask the chondroitin-4-sulfate 

(C4S) binding protein(s). They hypothesised that the parasite could utilize this mechanism to 

limit exposure of the adhesin to the host immune system. However, this seems somewhat self-

contradictory since the reduction in binding capability at the late trophozoite/schizont stage 



 Project II: Kinetics of protein export 

 

63 

would also result in many parasitized erythrocytes being unable to escape splenic clearance and 

thus enable the host to generate of parasite-specific adaptive immune response, to the detriment 

of the remaining parasites (Engwerda et al., 2005; Del Portillo et al., 2012).  

One possible explaination for the discrepancy between our result and those published by 

Madhunapantula et al., (2007) could be the difference in the ligand used for the adhesion assays: 

bovine chondroitin sulfate A (CSA) was used in our experiment while low-sulfated CSPG 

isolated from the placenta was used in theirs. Although many studies have previously used 

CSA-coated petri dishes to investigate the binding characteristics of CSA-adherent iRBCs 

(Beeson et al., 1999; Achur et al., 2000; Alkhalil et al., 2000), new methodologies have 

emerged which attempt to mimic in vivo settings more closely. Placental cryosections have 

previously been used (Flick et al., 2001; Avril et al., 2004; Muthusamy et al., 2004) but one 

could argue that the fixation and cryopreservation may cause some damage to the receptors and 

epitopes present, despite attempts otherwise. The fixation and cryopreservation also prevented 

studies of signalling pathways and downstream consequnces of the binding on the trophoblasts 

(Lucchi et al., 2006). For such studies, as well as further cytoadhesion studies, the human 

syncytiotrophoblast and the choriocarcinoma cell line (BeWo) has been adopted (Haase et al., 

2006; Lucchi et al., 2006; Viebig et al., 2006). Most recently, Pehrson et al., (2016) described 

a method to profuse freshly donated placenta for ex vivo studies of adherent phenotypes under 

physiological flow conditions in the villous trees. Although this is by far the method with 

conditions nearest to the in vivo placental tissue, it does require access to the labor ward and 

prompt delievery of freshly donated placenta, so it remains to be seen if this method could 

become more widely used in the field.       

With regards to the adherence phenotype of infected haemoglobinopathic erythrocytes (Fig 4-

1a), our results are in good agreement with previously published data, even though the receptors 

under investigation were different: infected HbCC erythrocytes show no adhesion to both 

human dermal microvascular endothelial cells (HDMECs) and human microvascular 

endothelial cells (HMVECs) (Fairhurst et al., 2005; Cholera et al., 2008) and infected HbAS 

show approximately 50% reduction in adhesion to HMVECs relative to infected HbAA 

erythrocytes (Cholera et al., 2008).  

The detection of surface antigen at 16 h p.i. (Fig 4-1b) is also supported by both Kriek et al., 

(2003) and Dahlbäck et al., (2007) for parasitized HbAA erythrocytes. The timing is consistant 

with the results published by Kyes et al., (2000), demonstrating that transcription of var genes 

begins as early as 3 h p.i. and peaks at approximately 10-12 h p.i. Cholera et al., (2008) showed 
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that the reduction in surface PfEMP1 signal for parasitised HbAS erythrocytes is approximately 

14% relative to parasitized HbAA, which is much lower than our 50% reduction. However, this 

maybe explained by the fact that pooled sera was used in our experiments while PfEMP1-

specific antibody was used in the other study. For parasitized HbCC erythrocytes, our result of 

approximately 75% reduction in surface antigen presentation relative to parasitized HbAA 

erythrocytes is also in agreement with previously published data (Fairhurst et al., 2005).  

The delayed onset of the NPPs seen in infected haemoglobinopathic erythrocytes are also in 

agreement with other reports of delayed protein export in infected haemoglobinopathic 

erythrocytes (Kilian et al., 2015). No significant reduction in the replication rates and hemozoin 

digestion in infected haemoglobinopathic erythrocytes were observed in our experiments 

(Waldecker et al., 2017), also in agreement with previously published report (Kilian et al., 

2015). NPP impacts the volumetric changes of the infected erythrocyte over the course of the 

intra-erythrocytic life cycle through the pertubation of the Na+/K+ gradient. The delay in its 

establishment would account for the delay in volume expansion seen in infected HbAC 

erythrocytes as well as infected HbAS, although to a lesser extent (Waldecker et al., 2017). Not 

only does the change in cell shape affects its cytoadhesive properties such as contact area as 

well as its behaviour in flow, it also affects endothelial cell activation and host immune 

responses (Lansche et al., manuscript under preparation). This would most likely contribute to 

the molecular mechanism by which haemoglobinopathic erythrocytes protect its carrier against 

the severe complications of malaria.  

 

4.5 Outlook 

Our results contribute to the growing collection of evidence that delayed protein export, reduced 

surface adhesin presentation and reduced cytoadhesive phenotype are involved in the protection 

of haemoglobinopathic carriers against severe malaria. However, more molecular detail behind 

this protection remains to be elucidated.  

Previous reports suggest that the parasite’s inability to reorganise host actin cytoskeleton in 

infected haemoglobinopathic erythrocytes leads to the impaired presentation of PfEMP1 

adhesin at the erythrocytic surface as actin is believed to be involved in vesicular transport of 

proteins between the Maurer’s clefts and the knobs (Cyrklaff et al., 2011; Cyrklaff et al., 2012; 

Rug et al., 2014). Our result with the delayed establishment of NPP in infected 
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haemoglobinopathic erythrocyte suggests a wider range of affected proteins and processes. It 

would be interesting to investigate the fates of proteins involved in both the export pathway 

between the parasitophorous vacuole (PVM) and the erythrocyte cytoplasm such as components 

of the PTEX (Chisholm Scott et al., 2018). In addition, the involvement of chaperones and other 

proteins in transporting the parasitic protein through the host cytoplasm to the Maurer’s clefts 

such as PfTRiC (Mbengue et al., 2015) remains to be investigated for infected 

haemoglobinopathic erythrocytes.     

Kilian et al., (2013) also reported that in infected haemoglobinopathic erythrocytes, the 

movements of the Maurer’s clefts were faster compared to infected HbAA erythrocytes. 

Additionally, the malformed Maurer’s cleft ultrastructures seen in electron micrographs of 

infected haemoglobinopathic erythrocytes (Cyrklaff et al., 2011; Cyrklaff et al., 2016) strongly 

suggest that both the formation and the function of the Maurer’s clefts have been adversely 

affected. Insights into the protein sorting machinery and the establishment and maintenance of 

the Maurer’s clefts, as well as the fates of its resident proteins, would also be of great benefit to 

our understanding of the molecular mechanism of protection against severe malaria conferred 

by haemoglobinopathic erythrocytes.   
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5 Project III: Oxidative pre-treatment of uninfected 

erythrocytes to mimic the protective phenotypes of 

haemoglobinopathic erythrocytes  

As previously mentioned, there have been many reports describing the differences between 

infected HbAA and haemoglobinopathic erythrocytes in cytoadhesion, protein transport 

kinetics, host actin remodelling as well as knobs and Maurer’s clefts morphologies (Fairhurst 

et al., 2005; Cholera et al., 2008; Cyrklaff et al., 2011; Cyrklaff et al., 2012; Kilian et al., 2013; 

Kilian et al., 2015; Waldecker et al., 2017). Fetal haemoglobin (HbF) is also believed to be one 

of the key contributing factors to the protection against severe malaria in the first six months of 

life, with reported impaired cytoadhesion and abnormal display of PfEMP1 on the erythrocytic 

surface (Amaratunga et al., 2011). Although the precise molecular mechanisms underlying 

these changes have yet to be elucidated, some features appear to be common to the 

haemoglobinopathies conferring protective phenotypes. These include abnormal accumulation 

of heme and hemichromes on the erythrocytic membranes as well as an abundance of reactive 

oxygen species (ROS) such as superoxide radicals generated from accelerated heme 

autooxidation (Hebbel et al., 1982; Hebbel et al., 1988; Chaves et al., 2008). Oxidised forms 

of haemoglobin also interfere with the parasite’s ability to remodel host actin into long 

filamentous network (Cyrklaff et al., 2011). However, the involvement of oxidative stress and 

oxidised haemoglobin products as parts of the mechanisms of protection against severe malaria 

by haemoglobinopathic erythrocytes has yet to be investigated.    

5.1 Aim of the study 

In order to examine the involvement of oxidative stress and irreversibly oxidised haemoglobin 

as a mechanism of protection against severe malaria, the pro-oxidative environment of 

uninfected haemoglobinopathic erythrocytes will be experimentally replicated. 

Uninfected HbAA erythrocytes were transiently exposed to various oxidative agents prior to 

infection with Plasmodium falciparum parasites. Various parameters associated with 

pathogenicity such as cytoadhesion, levels of surface PfEMP1, and knobs and Maurer’s cleft 

morphologies were investigated to determine the degree to which the oxidative pre-treatments 

were able to replicate the effects seen in infected haemoglobinopathic or fetal erythrocytes.    
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5.2 Transient oxidative insult to uninfected HbAA erythrocytes 

reduces cytoadhesion and surface VAR2CSA expression, 

phenotypes characteristic of infected haemoglobinopathic and 

fetal erythrocytes  

Uninfected HbAA erythrocytes were subjected to transient oxidative stress through incubation 

with 1 mM of either hydrogen peroxide (H2O2), tert-butyl hydroperoxide (tBOOH) or 

menadione sodium bisulfite (MD). Both H2O2 and tBOOH have been widely used as oxidising 

agents in various in vitro systems (Srivastava et al., 1974; Caprari et al., 1995; Zou et al., 2001) 

and are able to diffuse freely across the plasma membrane due to their small size and lipophilic 

nature, respectively. Menadione sodium bisulfite, also used as a water-soluble form of vitamin 

K3 precursor in animal feeds, has likewise been widely used to study oxidative stress (Chiou 

and Tzeng, 2000; Criddle et al., 2006; Heart et al., 2012). It generates intracellular ROS through 

redox-cycling in the presence of molecular oxygen (Thor et al., 1982; Desagher et al., 1997; 

Criddle et al., 2006). This would more closely reflect the physiological conditions found in 

haemoglobinopathic erythrocytes, where ROS are constantly generated, in contrast to direct 

exposure to H2O2, which has a more transient effect (Heart et al., 2012). 

The irreversibly oxidised ferryl haemoglobin and hemichromes have been shown to inhibit in 

vitro actin polymerisation and destabilise interactions between actin, spectrin and protein 4.1 

(Jarolim et al., 1990; Cyrklaff et al., 2011). Reversible oxidative damage caused by the transient 

oxidative pre-treatment was alleviated by incubating the freshly pre-treated erythrocytes with 1 

mM dithiothreitol (DTT) (Caprari et al., 1995) before storage and use in cell culture of 

Plasmodium falciparum. We also treated uninfected HbAA erythrocytes with DTT alone to 

control for possible effects that may arise from the reducing agent. The treatment of HbCC with 

DTT would serve as a control to distinguish between possible effects of reversible and 

irreversible oxidative damage on the aberrant morphologies and cytoadhesive phenotypes seen 

in infected HbCC erythrocytes.  

The fitness of the parasites grown in pre-treated, haemoglobinopathic or fetal erythrocytes were 

monitored through replication rates and hemozoin quantification. The replication rates of 

parasites grown in all Hb variants and pre-treated HbAA were recorded over at least eight 

replication cycles and the mean ± SEM is summarised in Table 5-1. As indicated, both the 

parasitized pre-treated erythrocytes and those cultivated in haemoglobinopathic or fetal 
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erythrocytes have comparable replication rates to infected HbAA erythrocytes, similar to 

previous reports (Kilian et al., 2013; Kilian et al., 2015).  

While the replication rates demonstrated that the parasites were able to complete their asexual 

replication cycle regardless of the haemoglobin variant or the pre-treatments of HbAA 

erythrocytes that they have been cultured in, the comparable amount of hemozoin incorporation 

suggests that the parasites cultured in all conditions were equally metabolically active during 

their intra-erythrocytic life cycle (table 5-1).   

 

Table 5-1 Replication rate and hemozoin digestion levels of parasites in haemoglobinopathic and pre-treated 

HbAA erythrocytes.  

FCR3-CSA parasites were cultured in indicated haemoglobin variant or pre-treated HbAA erythrocytes and the 

replication rates documented over at least eight replication cycles. The mean replication rates ± standard error of 

mean is displayed below. The amount of hemozoin digested by schizont-stage parasite cultivated in designated 

haemoglobin variant or pre-treated HbAA erythrocytes for at least two replication cycles was quantified according 

to stated protocol (Schwarzer et al., 1992). All experiments were done as paired and parallel assays with infected 

HbAA as positive control. The value is the mean of at least three independent biological replicates ± standard error 

of mean. H2O2 – hydrogen peroxide; tBOOH – tert-butyl peroxide; MD – menadione; DTT – dithiothreitol.   

 

Hb variant Replication Rate 
(per cycle) 

Normalised amount of 
hemozoin (%) 

HbAA 11.5 ± 0.7 100 

HbAS 10.8 ± 0.5 108 ± 5 

HbAC 12.1 ± 0.4 98 ± 19 

HbF 11.8 ± 0.4 106 ± 4 

HbAA – H2O2 11.7 ± 0.5 104 ± 2 

HbAA – tBOOH 10.9 ± 0.6 107 ± 4 

HbAA – MD 11.1 ± 0.3 113 ± 13 

HbAC – DTT 10.6 ± 0.5 97 ± 8 

HbAA – DTT 12.1 ± 0.4 106 ± 3 

 

After at least two replication cycles in specified Hb variant or pre-treated HbAA, tightly 

synchronised trophozoite stage parasitized erythrocytes were taken as samples to investigate 

their CSA-adhesion phenotype and the amount of surface-presented VAR2CSA (Fig 5-1a and 

b). To measure the CSA-adhesive phenotype, 1 mg/ml of purified bovine CSA were used as a 
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surrogate receptor for parasite adhesion in placental intervillous space. The amount of adhesive 

parasites were stained with Giemsa and quantified microscopically. All experiments were 

performed in paired and parallel assays and normalised to their respective infected HbAA 

control sample (Fig 5-1a). Each dot on the graph represents an independent experiment and the 

mean for each Hb variant is indicated by the red line.  

Relative to infected HbAA control, all infected haemoglobinopathic, fetal or pre-treated Hb AA 

erythrocytes exhibited significantly reduced CSA adhesion (P < 0.001 according to Kruskal-

Wallis one-way analysis of variance test). The level of CSA adhesion seen in pre-treated HbAA 

erythrocytes was also of comparable range to those seen in parasitized haemoglobinopathic and 

fetal erythrocytes: iHbAS 53%, iHbAC 27%, iHbF 45%, iHbAA-H2O2 25%, iHbAA-tBOOH 

33%, iHbAA-MD 16% (Fig 5-1a). Pre-treatment of uninfected HbAA with DTT alone had no 

effect on the adhesion phenotype (Fig 5-1a, iHbAA-DTT) while pre-treatment of HbAC with 

DTT could not rescue the reduced adherence phenotype (Fig 5-1a, iHbAC-DTT). 

A similar trend was observed for the amount of surface VAR2CSA detected by flow cytometry 

(Fig 5-1b). The amount of VAR2CSA detected on the erythrocytic surface was significantly 

reduced in infected fetal and haemoglobinopathic erythrocytes as well as in infected pre-treated 

HbAA erythrocytes, relative to infected HbAA erythrocytes (P < 0.001 according to Kruskal-

Wallis one-way analysis of variance test). Pre-treatment of HbAC with DTT still resulted in the 

same level of VAR2CSA as those seen in infected HbAC erythrocytes.  

To investigate the cause of the reduction in cytoadherence and surface adhesin presentation in 

more detail, the mRNA expression level of var2csa was quantified with quantitative reverse 

transcription PCR (qRT-PCR). Instead of collecting the samples at trophozoite stage as we’ve 

done for the previous two assays, the samples were collected at ring stage, approximately 12 h 

p.i., as it was shown to be the peak of var transcription level (Kyes et al., 2000; Dahlbäck et al., 

2007). The mRNA level of cyclophilin was used as internal control and the result for each 

condition was normalised to the paired infected HbAA control sample. The mean of at least 

three independent biological replicates and three independent blood donors ± SEM for each 

condition was plotted (Fig 5-1c). There were no statically significant differences between the 

var2csa mRNA levels of all infected Hb variants and pre-treatments.     
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Figure 5-1 Effects of oxidative pre-treatments of HbAA erythrocytes on CSA adhesion, surface PfEMP1 

levels and mRNA expression level, relative to infected haemoglobinopathic and fetal erythrocytes. 

Prior to infection with the CSA adhesive strain of Plasmodium falciparum (FCR3-CSA), uninfected HbAA 

erythrocytes were transiently exposed to 1 mM of different oxidative agents; either hydrogen peroxide (H2O2), 

tert-butyl peroxide (tBOOH) or menadione (MD). 1 mM of dithiothreitol (DTT) was used to restore the redox 

balance of the uninfected HbAA erythrocytes after the oxidative pre-treatment. The prefix “i” indicates infected 

erythrocytes. All experiments were performed in paired and parallel assays with infected HbAA erythrocytes as 

control. (a) After at least two replication cycles in pre-treated, haemoglobinopathic or fetal erythrocytes, the level 

of CSA-adhesiveness at trophozoite stage (20 – 30 h p.i.) was measured. Each dot in the graph represents a mean 

value for an independent experiment, normalised to its paired HbAA values. The red line indicates the mean values 

for each Hb variant or pre-treatments. *P < 0.001 compared with parasitized HbAA erythrocytes (Kruskal-Wallis 

one-way analysis of variance test). (b) Amount of surface VAR2CSA presented was detected by flow cytometry 

with rabbit antiserum against recombinant domains of VAR2CSA. Samples were harvested at trophozoite stage 

(24-26 h p.i.) and prepared according to previously published protocol (Barfod et al., 2006). The mean fluorescence 

was normalised to infected HbAA readouts in each paired experiment. Error bars indicate SEM. *P < 0.001 

compared with parasitized HbAA erythrocytes (Kruskal-Wallis one-way analysis of variance test). (c) var2csa 

mRNA levels in parasitized Hb variants and pre-treated HbAA erythrocytes as detected by qRT-PCR. Samples 

were harvested at ring stages (12 h p.i.) and prepared according to established protocol (Cyrklaff et al., 2016). The 

qPCR results were normalised against levels of cyclophilin transcripts in each sample as internal controls. The 

result for each conditions was normalised to its paired HbAA value and the mean plotted. Error bars indicate SEM. 

Figure adapted from Cyrklaff et al., (2016). 
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5.3 Infected pre-treated HbAA erythrocytes exhibited knob and 

Maurer’s cleft morphologies comparable to infected 

haemoglobinopathic erythrocytes  

 

The morphologies of the Maurer’s clefts and knobs in infected haemoglobinopathic and fetal 

erythrocytes have previously been reported by Cholera et al., (2008), Fairhurst et al., (2005) 

and Amaratunga et al., (2011). However, the TEM sample preparations were done through 

chemical fixation and Epon embedding. In order to minimize possible artifacts and 

ultrastructural damages, we perserved our samples with high pressure freezing/freeze 

substitution (HFP/FS) for TEM examinations. As opposed to chemical fixation, where the rate 

at which the sample can be preserved is limited by the diffusion of fixatives or cross linkers 

through the sample, HPF repidly freezes the sample at very low temperatures in a nanoseconds 

timescale. This allows preservation of the ultrastructures as well as other processes in the cell, 

whereby the water inside and around the cell turns to vitreous ice and prevents formation of ice 

crystals that would damage the structures (Griffiths et al., 1984; Müller and Moor, 1984; 

Griffiths et al., 1993).  

In order to avoid possible artifacts and discrepancies that may arise due to differences in sample 

preparation techniques, we chose to prepare all samples by HPF instead of relying on previously 

published images for the knobs and Maurer’s cleft morphologies. Transmission electron 

micrograph of 100 nm thick sections are shown in figure 5-2, first column (TEM). Magnified 

images of knobs and Maurer’s clefts can be seen to the right of the images. We did not detect 

any distinguishable morphological differences in the developing parasites grown in 

haemoglobinopathic, fetal or oxidatively pre-treated erythrocytes (Fig 5-2). However, both 

oxidatively pre-treated samples and DTT-treated HbAC sample exhibited ulterations in their 

ultrastructures such as enlarged and dispersed knobs as well as malformed Maurer’s clefts. The 

aberrant knob distribution and phenotypes could be more clearly observed in scanning electron 

micrograph (Fig 5-2, right column); only infected HbAA erythrocytes exhibited small, regular, 

and numerous knobs on the surface of the infected erythrocyte.  
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Figure 5-2 Ultrastructural morphologies in infected Hb variants and pre-treated HbAA erythrocytes.  

Parasitized trophozoite-stage erythrocytes cultured for at least two replication cycles in haemoglobinopathic, fetal 

or pre-treated HbAA erythrocytes were taken for imaging with transmission and scanning electron microscopy 

(TEM and SEM, respectively) to examine the knob and Maurer’s clefts morphologies. Samples for TEM were 

prepared by high-pressure freezing and freeze-substitution, as previously described (McDonald, 2007). A 

representative from at least 25 images was selected for display in each condition. A zoomed in section of knobs 

and Maurer’s clefts are shown in the inset. SEM samples were prepared according to previously published protocol 

(Cyrklaff et al., 2016). After chemical dehydration through ethanol series and hexamethyldisalzan, samples were 

sputter-coated with 5 nm gold and imaged with SEM. Images displayed are representative of at least 25 images in 

each condition. Scale bar 2 µm. H2O2 - hydrogen peroxide; MD – menadione; DTT – dithiothreitol. Figure adapted 

from Cyrklaff et al., (2016). 
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5.4 Pre-treatment of uninfected HbAA erythrocytes elevated the 

levels of irreversibly oxidized haemoglobin to those comparable 

with haemoglobinopathic and fetal erythrocytes 

The pre-treatment of uninfected HbAC with the reducing agent DTT prior to infection was 

unable to rescue the aberrant knobs and Maurer’s cleft morphologies as well as the reduced 

adhesion phenotype. This strongly suggests the involvement of irreversible oxidized 

haemoglobin species in the molecular mechanisms behind the observe phenomena. In order to 

more precisely quantify the levels of irreversibly oxidized hemoglobin in differently treated 

erythrocytes, Mössbauer spectroscopy was used. This was performed in collaboration with the 

group of Kvestoslava Burda in Krakow, where we shipped our samples of the uninfected 

haemoglobinopathic, fetal or oxidatively pre-treated erythrocytes. The samples were from three 

independent pre-treatments or donors and were all examined by Mössbauer spectroscopy within 

one week of pre-treatment or acquisition, to avoid the confounding effects of erythrocyte aging. 

The mean values of oxy-haemoglobin, met-haemoglobin and irreversibly oxidised 

haemoglobin species found in each haemoglobin variant/ pre-treatment are summarised in 

Table 5-2.  

Table 5-2 Levels of oxidized haemoglobin species found in different variants of uninfected erythrocytes.  

Mössbauer spectroscopy was used to measure the levels of various species of oxidized haemoglobin in uninfected 

haemoglobinopathic and pre-treated HbAA erythrocytes. The results are an average between at least three different 

independent biological replicates ± standard error of mean. H2O2 – hydrogen peroxide; tBOOH – tert-butyl 

peroxide; MD – menadione; Hb – haemoglobin; Oxy-Hb – oxy-haemoglobin; Met-Hb – met-haemoglobin. Table 

adapted from Cyrklaff et al., (2016).  

Hb variant Oxy-Hb (%) Met-Hb (%) Irreversibly oxidized Hb (%) 

HbAA 94.0 1.0 5.0 

HbAS 85.6 2.3 12.2 

HbAC 83.5 3.9 12.6 

HbF 84.7 3.1 12.2 

HbAA – H2O2 78.1 1.3 20.6 

HbAA – tBOOH 77.7 5.4 16.9 

HbAA – MD 70.1 7.3 22.0 

 

In all haemoglobinopathic, fetal or pre-treated samples, the levels of irreversibly oxidised 

haemoglobin were markedly higher than those seen in uninfected HbAA. Interestingly, the level 
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of met haemoglobin in the H2O2 pre-treated sample was comparable to those seen in uninfected 

HbAA erythrocytes. Pre-treatment with menadione, on the other hand, seems to elevate the 

level of met-haemoglobin even higher than those found in haemoglobinopathic erythrocytes.    

5.5 Discussion 

Haemoglobinopathic erythrocytes such as HbS and HbC are known to have reduced lifespan in 

circulation as well as higher accumulation of hydroxyl radicals due to haemoglobin instability 

and auto-oxidation (Hebbel et al., 1982; Hebbel et al., 1988; Rees et al., 2010; Hannemann et 

al., 2011). Previous reports have shown that parasitized HbS, HbC and HbF exhibit reduced 

cytoadhesion, reduced surface PfEMP1 levels and enlarged and dispersed knobs (Fairhurst et 

al., 2005; Cholera et al., 2008; Amaratunga et al., 2011). Here, we were able to implicate 

irreversibly oxidized haemoglobin species as possible causative agents of the aforementioned 

protective phenotypes through the pre-treatment of HbAA erythrocytes with oxidative agents. 

The comparable replication rates and hemozoin digestion levels between parasitized pre-treated 

HbAA erythrocytes and untreated HbAA control showed that the parasites had no problems 

growing in the pre-treated HbAA erythrocytes. This was also the case for infected 

haemoglobinopathic and fetal erythrocytes, both in our experiment and previously published 

studies (Fairhurst et al., 2005; Cholera et al., 2008; Amaratunga et al., 2011). Moreover, the 

aberrant knobs sizes and distribution, as well as the malformed Maurer’s clefts previously seen 

in infected haemoglobinopathic and fetal erythrocytes were also observed in our pre-treated 

samples, along with comparable reduction in cytoadhesion and surface adhesin levels.  

The fact that pre-treatment of uninfected HbAC erythrocytes with a reducing agent (DTT) could 

not restore the cytoadhesion, surface adhesin levels and Maurer’s cleft and knob morphologies 

to those seen in infected HbAA erythrocytes points to the involvement of irreversibly oxidized 

molecules in these processes. Surface rendered views of cryo-electron tomographic tilt series 

also showed that parasites in pre-treated HbAA erythrocytes were unable to reorganize host 

actin into long filamentous network, similar to those seen in infected haemoglobinopathic and 

fetal erythrocytes (Cyrklaff et al., 2016). Although all of the oxidative agents used in our study 

have been shown to interact with actin in various ways (Bellomo et al., 1990; Caprari et al., 

1995; DalleDonne et al., 1995; DalleDonne et al., 1999), this would not have been the cause of 

the aberrant host actin remodelling seen in the infected pre-treated erythrocytes as the H2O2 , 

tBOOH and menadione were only transiently applied to the uninfected erythrocytes and were 

subsequently removed through washing steps and incubation with equimolar concentration of 
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DTT. What could be of interest, however, are the molecular mechanisms through which these 

oxidising agents exert their effects. H2O2 is able to rapidly generate ferryl (Fe4+) haemoglobin 

and can form the highly reactive hydroxyl radical (OH·) through the ferrous iron-dependent 

reaction (Fenton, 1894; van den Berg et al., 1992). tBOOH is found to rapidly generate radicals 

after reacting with cellular haemoglobin and also readily oxidized glutathione (Van der Zee et 

al., 1989; Caprari et al., 1995; Rossi et al., 2001; Domanski et al., 2005). Menadione is reported 

to undergo redox-cycling in the presence of molecular oxygen, thereby generating intracellular 

ROS, including H2O2 (Thor et al., 1982; Desagher et al., 1997; Criddle et al., 2006; Loor et al., 

2010). It is also reported to oxidise the haem groups of oxy-hemoglobin to met-hemoglobin 

and, to a smaller extent, hemichrome (Winterbourn et al., 1979). This would explain the highly 

elevated level of met-haemoglobin found in the MD-treated sample, according to our 

Mössbauer spectroscopy results (Table 5-2).    

As previous studies have suggested that actin is involved in proper formation and establishment 

of Maurer’s clefts, vesicular trafficking of parasitic proteins to the erythrocytic surface and 

knob formation, it is tempting to attribute the functional outcome of reduced surface adhesin 

presentation and cytoadhesion to disruption in the protein export pathway due to interference 

of irreversible oxidized haemoglobin products and other ROS with actin (Rug et al., 2006; 

Kilian et al., 2013; Cyrklaff et al., 2016). However, both the delayed establishment of NPPs 

seen in our experiment and a previously published paper by Kilian et al., (2015) suggest a 

broader effect of the oxidative stress in haemoglobinopathic erythrocytes on the parasitic 

processes and transport system, not just actin. The delayed and reduced amounts of protein 

translocation across the parasitophorous vacuole in infected haemoglobinopathic erythrocytes, 

relative to infected HbAA erythrocytes, begs the question of which other components may have 

been adversely affected by the oxidative milieu found in haemoglobinopathic erythrocytes. 

Although the results from the pre-treated infected erythrocytes seem promising, confirmation 

with ex vivo field isolates would also be ideal as long-term parasite cultures have been shown 

to lower the adherence as well as knob densities of the lab strains, compared to field isolates 

(Achur et al., 2008; Quadt et al., 2012). The fact that alterations to the knob morphologies and 

reduced cytoadhesion observed in haemoglobinopathic erythrocytes infected with lab-strains 

and ex vivo field isolates were reported to be comparable suggests that our findings could also 

be representative of field isolates (Fairhurst et al., 2005; Cholera et al., 2008).    

As pre-treatment with menadione was able to mimic the phenotypes seen in infected 

haemoglobinopathic and fetal erythrocytes and menadione as a drug is approved for use in 
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human, Cyrklaff et al., (2016) further extended this research to the malaria mouse model with 

Plasmodium berghei and C57BL/6 mice. Although the mice model system remains 

controversial in many aspects, including an altered pathogenesis of cerebral malaria compared 

to those found in humans and the lack of PfEMP1 orthologues (Cabrales et al., 2010; White et 

al., 2010; Craig et al., 2012), the fact that the mice pre-treated with intraperitoneal injection of 

menadione before challenge with Plasmodium berghei ANKA infected erythrocytes develop 

significantly less brain damage, microhaemorrhage and blood-brain barrier disruption than the 

untreated control remains promising. After all, one of the proposed mechanisms of action of 

artesunate, the current drug of choice for treatment of severe malaria, is through increased 

intracellular ROS and subsequent DNA damage to the parasite (Gopalakrishnan and Kumar, 

2015; WHO, 2015a).   

Taken together, our results suggest a key role for inherent oxidative stress and irreversibly 

oxidised haemoglobin as a starting point in a cascade of events, including delayed protein 

export and aberrant actin remodelling, which eventually lead to reduced cytoadhesion of 

haemoglobinopathic erythrocytes, protecting its carrier from severe complications of malaria. 

However, the overall picture is still far from complete. Previously published studies suggest a 

more complex, multifactorial mechanisms of protection against severe malaria, including 

disruption of parasitic protein translation by host microRNAs (LaMonte et al., 2012), increased 

phagocytosis of infected HbAS erythrocyte by monocytes (Ayi et al., 2004; Lang et al., 2009) 

and host immune modulation (Ferreira et al., 2011). There is also emerging evidence suggesting 

that infected haemoglobinopathic erythrocytes have reduced endothelial cell activation upon 

binding (Lansche et al., manuscript in preparation), adding another piece to the complex puzzle 

that is the molecular mechanisms underlying the protection against severe malaria by 

haemoglobinopathic erythrocytes.   

5.6 Outlook 

Further characterisation of the parasitized pre-treated HbAA erythrocytes would be of great 

interest, especially to investigate how far the induced similarities between the parasitized pre-

treated erythrocytes and the haemoglobinopathic erythrocytes runs. For example, whether the 

parasitized pre-treated HbAA erythrocytes are able to induce endothelial cell activation or 

whether parasitic protein transport would also be delayed at the parasitophorous vacuole (Kilian 

et al., 2015).    
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Along the same line, it would also be interesting to investigate how individual components of 

the Plasmodium translocon of exported proteins (PTEX) are affected in both 

haemoglobinopathic and pre-treated erythrocytes (Przyborski et al., 2016). Other proteins of 

interest might include PfTRiC as well as human TRiC, where conflicting reports claimed either 

one or the other is involved in chaperoning parasitic proteins through the host cytoplasm to the 

Maurer’s cleft (Mbengue et al., 2015; Batinovic et al., 2017). This may help to narrow down 

which section(s) of the parasitic protein export pathway are particularly adversely affected. 

Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme involved in the erythrocyte’s 

antioxidant response, as it catalyses the reduction of nicotinamide adenine dinucleotide 

phosphate (NADP+) into NADPH (Peters and Van Noorden, 2009). G6PD-deficiency is 

widespread in Africa, Asia, the Middle East and the Mediterranean, with allele frequencies of 

up to 30%, giving rise to the hypothesis that this is due to the selective pressure exerted by the 

malaria parasite (Ruwende and Hill, 1998; Uyoga et al., 2015). However, the epidemiological 

evidence for the protection of G6PD-deficiency against malaria is found to be confusing and 

often contradictory (Mbanefo et al., 2017). As we have pointed to pro-oxidative environments 

and irreversibly oxidised haemoglobin products as one of the key factors in the protective roles 

of haemoglobinopathic erythrocytes against severe malaria, further investigation into G6PD-

deficient erythrocytes could prove insightful. 
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6 Conclusion 

Despite many epidemiological studies linking haemoglobinopathies to protection against severe 

malaria, the molecular mechanisms behind the protective traits have yet to be elucidated. 

In project I, we attempted to establish a working protocol for visualisation of actin and spectrin 

in uninfected and infected erythrocytes using 2D TIRF-dSTORM. Unfortunately, we were not 

able to distinguish between the short F-actin in uninfected erythrocytes and long filamentous 

actin remodelled by the parasite upon infection. STED imaging also yielded similar results. 

Kinetics of cytoadhesive phenotype, surface adhesin presentation and induction and 

establishment of the new permeation pathways (NPPs) were investigated in project II. Infected 

haemoglobinopathic erythrocytes showed delayed and reduced levels of cytoadhesion, surface 

adhesin presentation and NPPs development, compared to infected HbAA erythrocytes. These 

results suggest an impaired parasitic protein export pathway in parasitized haemoglobinopathic 

erythrocytes. 

In order to determine the effects of irreversibly oxidised haemoglobin products and elevated 

levels of reactive oxygen species (ROS) inherent in uninfected haemoglobinopathic 

erythrocytes on the parasite’s ability to remodel the host cell, uninfected HbAA erythrocytes 

were transiently oxidised prior to infection by Plasmodium falciparum in project III. The pre-

treated samples exhibited reduced cytoadhesion and surface PfEMP1 levels, comparable to 

infected haemoglobinopathic and fetal erythrocytes. Maurer’s clefts and knob morphologies, as 

investigated by transmission and scanning electron microscopy, were also visually similar to 

those seen in infected fetal and haemoglobinopathic erythrocytes, namely enlarged and 

dispersed knobs as well as malformed Maurer’s clefts. 

Based on the studies described above, we hypothesise that one of the molecular mechanisms by 

which haemoglobinopathic and fetal erythrocytes protect their carriers against severe malaria 

is due to their inherent oxidative imbalance as well as elevated levels of reactive oxygen species 

(ROS) and irreversibly oxidised haemoglobin products such as ferryl-haemoglobin and 

hemichromes. These interfere with the parasite’s ability to establish functional Maurer’s clefts, 

knobs and long filamentous actin networks in the host cytoplasm, resulting in reduced export 

of  PfEMP1 to the erythrocytic surface, reduced cytoadhesion and, consequently, a reduced risk 

of severe malaria for their carriers (Fig 6-1).  
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Figure 6-1  Current model for one of the molecular mechanisms of protection against severe malaria by 

haemoglobinopathic and fetal erythrocytes. 

Top panel: Under normal circumstances, HbA-containing erythrocytes are able to mitigate and reverse possible 

damages from haemoglobin oxidation associated reactive oxygen species (ROS), including globin-based radicals 

(Hb·). Once infected with Plasmodium falciparum, the parasite carries out several changes in its host cell, 

including: establishing parasitic membranous structures termed Maurer’s clefts in the erythrocytic cytosol, 

displaying parasitic adhesins on membrane protrusions termed knobs and reorganising host actin into long 

filamentous structures connecting the Maurer’s clefts and the knobs. These modifications allow the parasitized 

erythrocyte to cytoadhere in microvascular beds of vital organs and causes severe complications in malaria which 

could lead to coma and death. Bottom panel: In haemoglobinopathic and fetal erythrocytes, the elevated levels of 

oxidative stress and ROS interfere with the Maurer’s clefts and knobs morphologies as well as the host actin 

remodelling, leading to reduced cytoadhesion and less likelihood of developing severe malaria for their carriers. 

Transient oxidative treatment of HbAA erythrocytes is able to replicate the morphologies and phenotypical 

outcomes of infected haemoglobinopathic or fetal erythrocytes. Figure adapted from Cyrklaff et al., (2016) 
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