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Abstract

Directed migration of eukaryotic cells is caused by a polarization of the actomyosin cy-
toskeleton (ACM). Throughout many cell types the polar alignment of the AMC is i.a.
initiated by the activation of the Rho GTPases Rac and RhoA. In response to an exter-
nal chemical gradient active Rac accumulates and determines the cell front, while active
RhoA predominantly accumulates at the rear of the cell. Current experimental evidence
indicates that in neutrophils mechanical tension of the plasma membrane confines Rac
activity patterns to the leading front.
The patterning mechanism behind the Rho-based polarization process of eukaryotic
cells has interested mathematical modellers over the last decades. While elaborated
concepts for purely biochemical and purely mechanical patterning processes are avail-
able, the basics of mechanochemical patterning with respect to cell polarization are not
well understood yet. In accordance to the aforementioned experimental findings, we
suggest a mechanochemical model for cell polarization, including Rho GTPase mediated
AMC dynamics and changes in membrane tension as upstream controller of Rho GTP,
in which active Rac patterns are locally confined to the cell front by membrane ten-
sion. Rho proteins can become activated or inactivated due to complex formation with
specific effector proteins. In the model active Rac and active RhoA mediate actin poly-
merization and the generation of myosin-dependent contractile force, respectively. The
model cell is considered as a two dimensional layer adhering to a flat substrate, wherein
the embedded AMC is modelled as a viscous active gel. Morphological changes of the
AMC induce changes in membrane tension. Rho based chemical signalling is modelled
by reaction-diffusion equations. Chemical signalling induces a mechanical response of
the AMC. Actomyosin mechanics are modelled by a Stokes-related equation. The spa-
tial change of the domain is determined by a free-boundary problem. We numerically
demonstrate that the model exhibits key features of neutrophil polarization and shape
generation and we explain the underlying patterning mechanism. The model accounts
for a minimal mechanochemical circuit capable of generating robust polarity patterns
and demonstrates how cell mechanics could serve as a long range signal transmitter in
Rho based cell polarization.
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Zusammenfassung

Die gerichtete Migration eukaryotischer Zellen bedingt eine Polarisation des Actomyosin-
Zytoskeletts (AMC). Die polare Anordnung des AMC wird in vielen Zelltypen u.a. durch
die Aktivierung der Rho GTPasen Rac und RhoA eingeleitet. Aktiviertes Rac akku-
muliert an der Zellfront, während aktiviertes RhoA im hinteren Teil der Zelle konzentriert
wird. Experimentelle Befunde über Neutrophile legen nahe, dass Rac-Aktivierung durch
die Generierung von Membranspannung auf die Zellfront beschränkt wird.
Während eine Fülle aussagekräftiger Modelle zur Beschreibung von sowohl rein bio-
chemischer als auch rein mechanischer Musterbildungsprozesse aufgestellt wurden, sind
mechanisch-chemische Musterbildungsprozesse, die bei der Polarisation von Zellen auf-
treten, in großen Teilen unerforscht. In dieser Arbeit wird ein mechanisch-chemisches
Zellpolarisationsmodell vorgeschlagen, in dem die Rho GTPasen Rac und RhoA die
Mechanik des AMC und damit indirekt die Plasmamembranspannung beeinflussen. An-
dererseits reguliert in dem Modell die Änderung der Membranspannung die Aktivierung
von Rho GTP, sodass Rac-Aktivierung lokal auf die Zellfront beschränkt bleibt.
Rho GTPasen können entweder aktiv oder inaktiv auftreten, indem sie an spezielle Ef-
fektorproteine binden. Aktives Rac und RhoA steuern sowohl die Polymerisation von
Actin als auch Myosin-Kontraktionen, die auf das Aktin-Netzwerk wirken. Die zugrunde
gelegte Geometrie des Modells wird durch eine zweidimensionale Schicht beschrieben,
welche den Verbund von Plasmamembran und AMC reprs̈entiert und die auf einem
flachen Substrat liegt.
Das Modell behandelt chemische Signaltransduktion per Reaktions-Diffusionsgleichungen,
welche die Mechanik des AMC beeinflusst. Im Modell wird die Mechanik des AMC wird
durch eine Viskositätsgleichung beschrieben, die der Stokes’schen Gleichung ähnelt. Die
geometrische Änderung der Zelle wird durch die Lösung eines freien Randwertprob-
lems bestimmt. Die Membranspannung im Modell wird durch eine Integralgleichung
beschrieben, die abhängig von der Zellmorphologie ist.
Wir weisen numerisch nach, dass das Model in der Lage ist, grundlegende Eigenschaften
der Polarisationscharakteristika von Neutrophilen reproduzieren zu können, und wir
erklären den zugrunde liegenden Musterbildungsprozess. Das Modell stell ein Minimal-
system dar, das in der Lage ist robuste Muster zu produzieren und dabei mechanische
Spannung als Langstreckensignalleiter mit einbezieht.
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Chapter 1

Introduction

1.1 What is cell polarity?

Polarization, a fundamental attribute of eukaryotic cells, means the spatial reorgani-
zation of certain lipids and proteins in response to a chemical external stimulus. This
symmetry break activates a whole cascade of downstream effectors initializing the di-
rectional alignment of the cytoskeleton. In particular, in motile cells like neutrophils
polarization of Rho proteins is regarded as the initial step of locomotion
The cellular key processes involved in polarization and their respective interactions have
been studied in great detail - both through theoretical investigation [1–8] and experimen-
tal research [9–11]. For many cell types it is assumed that biochemical signalling alone
is responsible for the establishment and maintenance of polarity patterns and precedes
mechanical responses involving cytoskeletal activity [12, 13]. In other cell structures like
keratocyte fragments solely the mechanical properties of the actin cytoskeletal network
appear sufficient for polarization of the cytoskeleton [14, 15]. However, in neutrophils
it has been shown that both, biochemical and mechanical signalling, are necessary to
generate and to maintain polarity patterns [11] in response to external chemical stim-
uli. Key players in the biochemical signalling pathway of neutrophils include the Rho
GTPases family, whose members Rac, RhoA and Cdc42 cycle between an active form
and an inactive form [16, 17].
Rac activity is highly polarized at the leading front in response to external chemical gra-
dients like cAMP as well as in the presence of uniformly distributed chemoattractants
[18, 19] and recruits downstream effectors like Arp2/3 and the Scar/WAVE complex that
promote actin polymerization [20, 21]. The so caused actin-driven membrane protrusion
at spots of high Rac activity induce an increase of the cell surface and thus induce a
global increase in membrane tension [11, 22].
Membrane tension, in turn, confines Rac activation to the leading front: Houk et al.
[11] demonstrate that increased tension, generated by stretching neutrophils using mi-
cropipette aspiration, inhibits both, the formation of protrusions and Rac activation

1
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aside from the leading front. In response to chemoattractants and in addition to in-
creased Rac activity at the leading front, active RhoA increases predominately at the
back of the cell where it targets its downstream myosin II [9].
Myosin II proteins form small aggregates via binding to each others tail region and
crosslink actin filaments. Conformational changes due to energy consumption provided
by ATP hydrolysis exerts a contractile force to the network [23]. The contractile force at
the rear of the cell induces the trailing of the dorsal cell, which reduces the cell surface
area and thus may decrease membrane tension. This balancing mechanism could serve
as a regulator in the maintenance of Rac signals at the front: Tension increases due to
front protrusion confines active Rac to the leading while tension decreases due to trailing
of the dorsal cell prevents the Rac signal at the front to expire.

1.1.1 State of research: Models for cell polarity

The mechanism behind Rho GTPase based cell polarity has interested modellers over the
last four decades and has led to various concepts to explain cell polarization mathemati-
cally. The most prominent model approaches can be subdivided into three qualitatively
different classes:

1) Turing based models,

2) LEGI mechanisms

3) wave based models.

In the following paragraphs we will briefly account to the first two classes. The third
class will be explained more in detail, since it shares some features with the presented
model in this thesis. For a more detailed discussion we refer to [7].

1) Turing based models Some diffusion-reaction systems expose the ability of a
symmetry break due the appearance of bifurcation branches in the linearized system. In
mathematical biology these types of pattern mechanisms are commonly called Turing
mechanisms.
Due to the capability to explain pattern formation processes in general, Turing mecha-
nisms provide a wide application in the theoretical investigation of cell polarity. From
a biological point of view these systems are based in their core on the following as-
sumptions: There is a slow diffusing activator, a fast diffusing inhibitor, and nonlinear
reaction functions that couple activator and inhibitor. [1, 2, 24, 25]. In the simplest
conceivable case, Turing patterns can occur in systems of the form

∂ta = Da∂
2
xa+ f(a, b) on R+ × (0, 1),

∂tb = Db∂
2
xb+ g(a, b) on R+ × (0, 1),
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together with homogenous Neumann boundary conditions, where a(t, x) and b(t, x) are
the concentration of the activator and the inhibitor, respectively. Da and Db are the
diffusion coefficients of the activator ant the inhibitor, respectively. Necessary conditions
for Turing pattern formation are that the system above is linearly unstable at steady
state and that the spatially homogenous system

∂ta = f(a, b),

∂tb = g(a, b),

is linearly stable at steady state. If the steady state is perturbed, patterns can evolve
due to occurring bifurcations.
Turing models are well-suited for modelling polarity in eukaryotic cell types lacking of
the ability to repolarize, like e.g. budding yeast. This is due to the fact that Turing
processes tend to freeze after the pattern is formed [7].

2) LEGI mechanisms Another approach to explain how cell polarity is provided
by local-excitation-global-inhibition (LEGI) models [26–28]. Therein a spatially static
activator is coupled to a fast diffusing inhibitor, both activated in direct proportion to
the external stimulus, which together regulate a downstream response element. The
simplest conceivable LEGI-mechanism is represented by the set of equations

∂ta = kaS(t, x)− k−aa on R+ × (0, 1),

∂tb = D ∂2
xb+ kbS(t, x)− k−bb on R+ × (0, 1),

∂tr = krA(rT − r)− k−rbr on R+ × (0, 1),

with homogenous Neumann boundary conditions for a(t, x) and initial conditions repre-
senting the steady state. Here a(t, x) denotes the concentration of the activator, b(t, x)
denotes the concentration of the inhibitor, r(t, x) is the concentration of the response
element, and S(t, x) is concentration profile for the external stimulus. D is the diffusion
coefficient of the inhibitor, rT is a constant that denotes the total amount of the response
element, and the letters k denote kinetic rates.
For appropriate choices of the constants and assumptions on S(t, x), this system is capa-
ble of generating patterns with respect to the response element r, see [28]. In particular,
LEGI accounts to certain features experimentally observed in some cell types like e.g. in
Dictyostelium discoideum: LEGI captures an increasing response to stronger gradients,
and the reversal of polarity if the gradient is reversed [7].

3) Wave-based models A relatively new approach to model cell polarity is to con-
sider polarization as a consequence of a wave-based process. Wave-based models are
designed to overcome a crucial issue of the formerly described model types: Both, Tur-
ing based polarity models and LEGI models require an inhibitor, but in cell types having
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a Rho GTPase driven polarization process a chemical inhibitor has not been experimen-
tally verified yet [7].
Various wave-based concepts have been suggested [29–32]. A prominent representative
of this class are reaction-diffusion systems that exhibit a phenomena commonly referred
to as wave-pinning [8, 33]. In these models a travelling wave is initiated at one end of
a finite, homogenous 1D domain. The triggered wave travels across the domain while
its speed simultaneously decreases. The wave-speed decelerates and the wave-front is
eventually stopped inside the domain. The initially homogenous concentration profile
(representative of a resting cell) develops into a an asymmetric stationary front profile
(typical of a polarized cell).
The key characteristics of the wave-pinning mechanism can be highlighted by a special
shadow system, which consists of a reaction-diffusion equation on R+ × [0, 1] coupled to
an integral equation having the form

ε∂tu− ε2∆u = f(u, v),

v = K −
∫ 1

0
u dx,

(1.1)

with boundary conditions

∂xu = 0, x = 0, 1. (1.2)

K is a positive constant. The scaling-parameter ε is thought to be very small (ε << 1),
and the right-hand side f(u, v) satisfies the following properties:

1) Bistability. The dynamical system dtu = f(u, v) has to be bistable for fixed v in
some parameter range vmin ≤ v ≤ vmax. The stable points are u−(v) < u+(v).

2) Spatial stability. The homogenous states (u±(v), v), vmin ≤ v ≤ vmax, are stable
states of system (1.1).

3) Maxwell condition. There is a value vc ∈ [vmin, vmax] for which the integral

I(v) =
∫ u+(v)

u−(v)
f(u, v) du

vanishes.

We briefly explain the model’s ability of wave-pattern generation. For a slightly different
access to wave-pinning, but an almost identical and a more detailed asymptotic analysis,
we refer to [33].
Consider the case where (1.1) is perturbed by the initial condition

u0(x) =

u+(v), 0 ≤ x < φ0,

u−(v), φ0 < x ≤ 1,
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where φ0 is an element of (0, 1).
By using matched asymptotic analysis can be explained that the a wavefront-like solution
is generated and the location of the front is pinned within finite time. Let φ(t) a position
in the interval (0,1) at time t > 0 such that φ(0) = φ0. Assume that the solution of
(1.1) is analytical with respect to ε in each subdomain (0, φ(t)− ε), (φ(t)− ε, φ(t) + ε),
(φ(t) + ε, 1) of (0, 1).
Expanding u = u0 + εu1 + ... and likewise for v, substituting the expansions into (1.1),
(1.2), and retaining leading order terms yield the outer solution:

u0(t, x) =

u+(v0), 0 ≤ x < φ(t)− ε,

u−(v0), φ(t) + ε < x ≤ 1.

For the condsideration of the inner on (φ(t) − ε, φ(t) + ε), a stretched coordinate ζ =
(x− φ(t))/ε is introduced. The inner solution is denoted by U , where

U(ζ, t) = u(t, (x− φ(t))/ε)

and ζ ∈ (−∞,∞). Expansion of U = U0 + εU1 + ... and likewise for φ, and substitution
into (1.1) leads in the leading order to the equation

∂2
ζU0 − dtφ0∂ζU0 + f(U0, v0) = 0, (1.3)

Inner and outer solution of u0 match, if the solution of (5.27) adopts the limits

lim
ζ→−∞

U0(ζ) = u+(v0), lim
ζ→∞

U0(ζ) = u−(v0).

Since v0 is spatially constant, can be shown that a heteroclinic solution Uφ0 (ζ, v0), unique
up to translation, exists. The profile of the solution is a travelling wave-front, having
the wave speed

c(v0) =
(∫ ∞
−∞

(∂ζUφ0 (ζ, v0))2 dζ

)−1 ∫ u+(v0)

u−(v0)
f(s, v0) ds.

It can be shown that the speed c(v0) and the rate of change dtv0 have opposite signs.
As long as c(v0) is positive depletes v0, until requirement 3) engages and the wave pins.
To the leading order, the result is a pattern with a plateau near u+(v0) in the front of
[0, 1] and a flat part near u−(v0) in the rear, mutually segregated by a sharp transition
zone.
Mathematical models for cell polarization relying on wave-pinning are commonly build
on the experimental observation that Rho proteins cycle between an active and an
inactive state, and that Rho is not resynthesized during the polarization process [8]. In
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a one dimensional domain Rho activation is modelled by the system

∂tu−Du∆u = f(u, v),

∂tv −Dv∆v = −f(u, v),

with zero flux boundary conditions, where u (resp. v) is the concentration of active Rho
(resp. inactive Rho).
In these models is supposed that the diffusion of inactive Rho is very fast. In the limit
Dv →∞, the system above formally reduces to (1.1). Thus, the concentration of inactive
Rho becomes effectively a global variable, enabling the cell to communicate with its back
while changes of Rho activity occur at the front.

Model issues The presented models consider Rho based polarization as a purely
bio-chemical phenomenon. More in particular, Turing-based-, LEGI- and wave-pinning-
models are based on the assumption that chemical polarization precedes the mechanical
response of the cell and that mechanical cell responses have no upstream effect on the
biochemical polarization process.
However, recent experimental findings of the group of Weiner suggest that polarity due
to Rac activation in neutrophils is affected by mechanical effects [11]. There is evidence
that membrane tension confines active Rac proteins to the leading , and that a sufficient
decrease in membrane tension leads to an expiration of the activated Rac pattern.
Moreover, it has been shown theoretically and experimentally that in highly elongated
but still polarized neutrophils biochemical signalling cannot be responsible for polarity
patterns exclusively, since diffusive processes are too slow to serve as viable long-range
signal transmitters. Consequently, the demanded diffusion in the models is unrealisti-
cally high [11].

1.2 A mechanochemical model for cell polarization

In this thesis a model is presented that gives an account how biochemical and mechanical
signalling could interact as a self-stabilizing process in order to generate robust polariza-
tion in neutrophils. Although other proteins and lipids are involved in the polarization
of neutrophils [34] and several mutual crosstalk circuits have been identified [35], we
assume that only two types of Rho GTPases, namely Rac and RhoA, are decisive for
the control of downstream effectors for actomyosin dynamics.
Based on previous studies [8, 33], we model the Rho GTPase dynamics via reaction-
diffusion equations which include certain characteristics, that give them the ability of
wave-pinning. Wave-pinning systems are well suited to explain the mechanism of Rho
GTPase patterning in neutrophil polarization. As mentioned above, their mode of action
relies on a unrealistically fast diffusing inactive form and a slow diffusing active form of
the considered Rho GTPases. A possible aspirant to replace the fast diffusion form and
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to serve as a long-range signal transmitter for Rac is membrane tension, since tethering
experiments on neutrophils revealed that an an increase in membrane tension confines
Rac activity [11].
To take these phenomena into consideration, we incorporate membrane tension and its
generation due to dynamics of the actomyosin cortex (AMC) in our model to the Rho
GTPase circuit. The modelled kinetics of each considered Rho GTPase loosely relates
to [8]. Therein, GTPase activation relies on exchange of GDP by GTP, inactivation on
hydrolysis and dephosphorylation of GTP to GDP. Both processes are intrinsically very
slow and need the catalyzation by a GEF (guanine exchange factor) and GAP protein
(GTPase activating protein), respectively. As in [36] we assume that the effect of GEF
activity leads to an autocatalytic feedback of Rho activation while the GAP controlled
inactivation rate is assumed to be constant, provided both, GAP and GEF, are present
in sufficiently high amounts. Moreover, we hypothesize that increases in membrane ten-
sion globally lower the Rac activation rate and promote RhoA activation. A mutual
inhibitive feedback-loop between Rac and RhoA has been identified [35]. Taking this
into consideration, we explicitly model that Rac inhibits RhoA activation by affecting
the RhoA deactivation rate.
In order to describe AMC mechanics as simply as possible, we resort to an extension
of former models [37, 38] describing the cortex as a mechanochemical sol-gel complex:
Eliding the role of myosin filaments, filamentous actin (F-actin) is treated as an active
gel with viscous properties, while globular actin (G-actin) is regarded as a solute. Active
Rac mediates downstream effectors promoting G-actin to polymerize to F-actin. F-actin
treadmilling occurs at the front if a critical F-actin concentration is exceeded. We act
on the simplifying assumption that RhoA mediates myosin II cross linking and confor-
mational changes directly. Thus, in the model, myosin II induced AMC contraction
is directly controlled by active RhoA. Both in combination, F-actin treadmilling and
myosin II contraction, exert mechanical force that increases membrane tension. This
increase, in turn, suppresses Rac activation and promotes RhoA activation. In addition
to forces emanating from AMC dynamics, we assume that both, tension and curvature
related force act on the cell periphery. See Figure 1.1 for the model outline.

1.2.1 Goals of this thesis

The goal of this thesis is to present a minimal model explaining polarization as the
result of the interplay of the functional key units Rho GTPase activity, membrane ten-
sion, and AMC mechanics capturing the following qualitative key features of neutrophil
polarization [7]:

1) Spatial amplification. Neutrophils are able to sense both, steep and shallow exter-
nal gradients (where the difference between front and back receptor concentration
is as small as 1%-2%) within a vast range of concentrations. Polarization leads to
an amplification of this asymmetry to some macroscopic level.
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Figure 1.1: Model outline. An external stimulus triggers Rac activation. Rac acti-
vation promotes F-actin polymerization via downstream effectors. F-actin treadmilling
globally increases membrane tension. Membrane tension inhibits Rac activation and
promotes RhoA activation. RhoA a induces myosin contractions reducing membrane
tension. Rac activation is affected by external stimuli. Accumulation of active Rac de-
termines the cell front. Active RhoA is located in the dorsal cell, since Rac is supposed

to suppress RhoA.

2) Maintenance. In neutrophils, polarity is maintained after the triggering stimulus
is removed.

3) Re-excitability. Polarized neutrophils remain sensitive to new stimuli, and can
reorient when the stimulus gradient is changed [17] .

4) Resolving conflicts. In response to multiple stimuli (such as two sources of chemoat-
tractant), neutrophils form multiple ”fronts” in certain situations, and rapidly
resolve the conflict with a unique axis of polarity.

5) Noise sensitiveness. Neutrophils can spontaneously polarize, that is, they establish
an axis of asymmetry in the absence of spatial cues.

In the model morphological changes of the AMC and Rho pattern formation affect each
other. With respect to this, the goal is to validate if the model is capable of a realistic
rendering of the cell shape and the location of Rho patterns under various circumstances.
As biological reasonable, we consider the following features:

6) In response to a single chemical stimulus neutrophils develop a region of increased
Rac activity that defines the front of the cell. Directional cell movement is gener-
ated along the front-back axis with constant speed [39].

7) Migrating neutrophils develop a "V"-shape with a broad front and a tapered rear
[40].

8) Neutrophils adopt a dumbell-like shape if two spatially opposite stimuli are applied
[11].

9) If the cell depolarizes, a spherical resting state is adopted [40].
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The proposed mechanism is designed to provide the characteristics of formerly intro-
duced wave-pinning mechanisms without relying on an unrealistically fast diffusive con-
trol substance, but on biologically reasonable mechanical long-range signal transmission.
Similar to other pattern mechanisms, a rigorous representation of the underlying pat-
tering mechanism of the model is due to its complexity difficult to achieve. However,
one goal of this thesis is to provide at least an heuristic account for the model-based
generation of Rho patterns.

1.2.2 Results

We demonstrate numerically that the model captures item 1) quite well within an ac-
curate range between steep and shallow gradients; 2) very well: due to the bistable
behavior, the polarized cell does not change the axis of polarity in response to weak,
new applied stimuli, but changes its polarity as soon as the stimulus is sufficiently strong.
The model exhibits feature 3) in response to a broad variety of different stimuli. In par-
ticular, repolarization in response to spatially fixed stimuli is captured well by the model.
However, the model does not exhibit reorientation properly, when the applied stimulus
varies in space. The model captures feature 4) only to a certain extent. If the distance
of the multiple fronts is sufficiently high, the model is capable to erase all but one fronts.
If the multiple fronts are closely neighboured, the model is not capable to generate a
single polarity front. 5) A minor limitation of the model is that it is not noise sensitive.
We numerically validate: 6) The polarized model cell adopts a constant migration speed
and evolves in a morphological steady state. 7) The interplay of the considered units
in the model generates a morphology that is similar to the "V"-shape of migrating neu-
trophils. 8) If two spatially opposite stimuli are applied, the cell adopts a dumbell-like
shape. Thereby two possible scenarios occur. Either one Rac activity front erases while
the other persists and the cell develops one single axis of polarity and adopts a V"-shape
or both Rac activity fronts erase and the cell readopts a spherical resting state (9).
The model cell has the ability to depolarize and to readopt a spherical resting state if
membrane tension is artificially increased. This is in accordance to suction experiments
where neutrophils with a polarized front depolarize if the cell body is highly elongated
[11].
Apart from the aforementioned goals the model exhibits a further feature: Some cell
types exhibit adaptation in a uniform stimulus, that is, the cells generate a persistent
response to a gradient of chemoattractant, but transient response to a temporal change
in a uniform stimulus [7]. To a certain extent the model captures this feature: The model
cell swells in response to a uniform stimulus and shrinks if the stimulus is removed.
Finally, the provided explanation of the patterning mechanism does not serve as a rig-
orous proof. However, the explanation conveys insights of the necessary characteristics
that endow to model to capability to generate patterns. We consider the explanation as
a suitable starting point for a more sophisticated analysis of the patterning mechanism.
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Scientific contribution of the model In general, the interplay between cell mechan-
ics and chemical signalling in the cell polarization process is a current state of research
and of great scientific interest, experimentally as well as theoretically [22, 41–43]. The
presented approach in this thesis contributes to the rising demand of models that pro-
vide a coupling of mechanical and chemical signal transduction [22].
The presented model exhibits novelties that differ form the aforementioned biochemical
models and is capable to generate patterns that do not rely on long-range diffusion.
The model considers the mechanochemical interplay of the functional units regarded as
necessary for cell polarization and cell movement in a two dimensional spacial setting.
Therefore the model does not only provide an account for Rho-based cell polarization,
but gives also an account how cell mechanics may affect polarity characteristics.
The model is not restricted to particular choices of the functions chosen in this thesis,
but rather consists of basic units whose modelling requires certain qualitative charac-
teristics. Thus, our approach provides a suitable framework for more complex models
aiming at mechanochemical cell polarization.

1.3 Thesis outline

In Chapter 2 a brief survey of the biological background of cell polarity and motility
is displayed. We confine ourself to describe the basal composition of the actomyosin
cytoskeleton, its role in cell motility, Rho GTPase signalling and its effect on the acto-
myosin cytoskeleton.
In Chapter 3 the mathematical model is derived. As a starting point, we consider
in Section 3.2 a three-dimensional spacial setting for the model geometry that consist
of a bulk region and two subjacent thin layers. The bulk region refers to the cytosol,
the two layers refer to the AMC and the plasma membrane, respectively. Under the
assumption that the model equations exhibit certain scaling properties, it is shown that
the spatially three-dimensional model can be approximated by an essentially spatially
two-dimensional model. In Section 3.4 a characterization of the domain is presented if
the domain has do be determined by a free boundary problem. Section 3.4 is devoted to
model the biochemistry of Rho GTPase activation and actin dynamics. The mechanical
features of the model are derived in Section 3.5. Mechanical modelling of the AMC
is loosely based on active gel theory. A brief survey about the theory is presented in
Appendix B. In Section 3.6 the obtained model equations are listed. Section 3.7
is devoted to a brief assessment of the model assumptions with respect to biological
relevance.
In Chapter 4 the simulation results of the model are presented. The considered param-
eters are presented and briefly discussed in Section 4.2. The response of the model cell
to both, transient and persistent stimuli is simulated. Moreover, we test whether the
model cell exhibits certain qualitative features as the ability to repolarize if the stimulus
relocates and the behavior of the model cell in response to different stimuli, as well as
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the ability to form multiple fronts. In Section 4.5 we demonstrate how the simulation
results are affected by parameter variations. In Section 4.6 the most important simu-
lation results are summarized and are compared to biological data. Finally we draw a
conclusion to what extent the model is capable to exhibit the demanded features listed
in Section 1.2.1. In Appendix C.1 a brief survey of the numerical implementation of
the model system is presented.
InChapter 5 a phenomenological explanation of the patterning mechanism is presented.
A one-dimensional toy-model related to the original model is suggested for which we for-
mulate necessary conditions that may endow the model with the ability of wave-pinning.
The explanation is based on arguments provided by matched asymptotic analysis. It
is a priori not evident if the one-dimensional possesses a solution. In Appendix D we
proof that under certain conditions a solution for sufficiently small times exists.
In Chapter 6 we summarize the model and the obtained main results. We assess in
how far the model accounts to a reasonable approach for neutrophil polarization and
point out the most considerable limitations of the model. In the outlook, we briefly dis-
cuss experimental tests that can be used to verify the model predictions and highlight
possible extension of the model.



Chapter 2

Biological Background

The ability to migrate in response to external signals is an important feature of many
eukaryotic cells. Cell motility is necessary for foraging of single celled organisms and is
needed for immune response, wound healing and carcinogenesis in multi-celled organ-
isms. The social amoeba Dictyostelium discoideum migrates under starvation conditions,
relaying signals to one another to form aggregates. Immune system cells, such as neu-
trophils and macrophages chase after peptide gradients produced by bacteria. In wound
healing, Fibroblasts migrate in response to epidermal growth factors to the wound side
to remodel connective tissues. Cancerous cells develop the ability to scatter in response
to growth factors and invade surrounding tissue. Understanding the mechanisms that
enable the cell to sense external signals and directional migrate towards them is of a
great interest in cell biology. In this chapter a brief summary of the cellular actors that
contribute to cell motility is presented.

2.1 Actin-based cell motility

Under laboratory conditions, cell motility is usually studied on a flat substratum. Due
to the spatial assembly of the actomyosin cytoskeleton (AMC), migrating cells on a
flat substrate build a bulge. The bulge is called pseudopod (’false foot’). Movement is
generated by alternating extensions of the pseudopod and retraction of the cell body.
Consequently, pseudopodia are usually located at the front of the cell.
Pseudopodia are classified into several varieties (lobopodia, filopodia, lamellipodia, retic-
ulopodia, and axopodia), according to their optical appearance [44]. Neutrophils, in
particular, build a lamellipodium [45], a broad membrane protrusion, filled with a dense,
branched network of actin filaments. In migrating cells, the lamellipodium is propelled
forward due to treadmilling, i.e. a constant turnover of actin filament in which new fila-
ment polymerizes at the leading front. This endows the lamellipodium with a polarity,
since in the mean the actin filaments align towards the direction of movement. The

12



Chapter 2. Biological Background 13

Figure 2.1: Typical shape of a migrating neutrophil on a flat substrate from the top
view. The cell migrates to the left. The lamellipodium is located at the left hand side.

The concentration of actin filament (F-actin) decreases from the left to the right.

lamellipodium is flat (on the order of 10−1µm) compared to the diameter of the cell (on
the order of 100 − 101µm) [46].
A further functional unit of the AMC is the lamellum. The lamellum is located in the
cell body and is attached to the posterior of the lamellipodium via actin filament. The
lamellum also consists of actin filaments, but lacks of a significant polarity of filament
alignment since the filament network is more interlaced arranged. Actin filaments in the
lamellum do not treadmill. However, in the lamellum myosin motor proteins bind to the
filament network and exert under energy consumption provided by ATP a contractile
force. The contractile force induces the tailing of the posterior cell edge.
In the presence of adhesion sites between the cell and the substrate, the interplay of the
continuous extension of the lamellipodium and the retraction of the cell body due to
myosin activity generates directional movement. The reorganization of the AMC that
generates movement also induces a morphological change of the cell shape. Resting neu-
trophils have a spherical resting state. In the initiation of movement the shape changes
to a broad flat arc at the leading front and tapered cell body [47]. See Figure 2.1 for an
illustrated top view on a migrating neutrophil.
In the next sections we will discuss the molecular structures and processes of the AMC
more in detail and highlight to role of Rho GTPases activity in the orchestration cell
motility.

2.1.1 The actomyosin cytoskeleton

Eukaryotic cells contain a cytoskeleton. The cytoskeleton can be subdivided into differ-
ent structures. In eukaryotic cells the cytoskeleton consists mainly of three different
types of filaments: microtubules, intermediate filaments, and actin filaments. Each
of these types carries different functions. Microtubules primary serve as a transport
medium of organelles. Intermediate filaments act as scaffold in order to stabilize the cell
shape and to connect multiple cells among each other. The network consisting primary
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Figure 2.2: Standard model for F-actin assembly and disassembly in the lamel-
lipodium. Due to an external stimulus, activated Rho (not shown) recruits downstream
effectors like the WASP/Scar and the Arp2/3 complex that promote under ATP con-

sumption actin polymerization and branching. The scheme is taken from [48].

of actin filaments is called actomyosin cytoskeleton (AMC). The AMC is a highly dy-
namic structure that is involved in the determination of the cell morphology and is one
of the key players in the locomotion machinery [49]. Thus, an analysis of the interplay
between cell polarity and cell migration requires a deeper understanding of the AMC.
On a molecular level, the AMC predominantly consists of actin monomers (G-actin),
actin filaments (F-actin) and myosin proteins. G-actin is a globular protein with the
ability to polymerize to F-actin. F-actin builds a chain with a length of approximatively
375 amino acids and a weight of approximatively 42 kDa. Each filament consists of
two proto-filaments winding around each other in a right-handed helical arrangement.
Controlled by the activation of the protein families WASP/Scar/WAVE and PAK G-
actin assembles to F-actin over three sequent phases: 1) nucleation, 2) elongation, and
3) treadmilling [48] (see figure 2.2).
1) In the nucletation phase G-actin forms actin nuclei. The nuclei are complexes of
three G-actin monomers. The nuclei predefine a polar structure of the filament. One
end is called ’(+)-end’ and the other is the ’(−)-end’. 2) The elongation phase is char-
acterized through a rapid bonding of G-actin at the ’(+)-end’. In order to maintain the
polymerization process with a steady pool of actin filaments, G-actin dissociates from
the ’(−)-end’. Dissociation is mediated by cofilin, a protein which binds to F-actin at
the (−)-end, unwinds the helical proto-filaments of F-actin and dissociates in a complex
with G-actin from the filament. 3) The dissociation rate at the (−)-end is slower the
binding rate at the (+)-end [50]. The result is a steady state of actin assembly, where a
constant net flux of actin subunits throughout filament is conserved, even if the length
of the filament is kept constant. This steady state is called treadmilling.
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In motile cells extending a lamellipodium, the actin cytoskeleton assembles at the front
with the (+)-ends pointing towards the plasma membrane at the leading front and the
(−)-ends facing the cell body behind [50]. The force generated by the treadmilling pro-
cess of F-actin is transmitted to the substrate (in vitro) or to the extracellular matrix
(in vivo) via focal adhesions, respectively. Focal adhesions are linkings of F-actin and
membrane based integrins, that are interconnected by forming complexes with vinculin,
talin, and smaller proteins. Integrins are heterodimeric cell surface receptors. Moreover,
integrins mediate adhesion of cells to the substrate, the extracellular matrix as well as
to other cells. The cytosolic domain of an integrin is linked to the actin filaments of the
AMC [51].
A further characteristic of the AMC dynamic is filament branching. The Arp2/3 com-
plex, a protein family consisting of Arp2, Arp3 and five smaller proteins is a downstream
effector of Scar/WAVE that binds to sides of F-actin and nucleates to an assembly of
new filament branches [20]. Subsequent elongation of the branches forms a Y-shaped
structure with an angle of approximately 70◦. The physical advantage of this Y-shaped
structure is the increased bending rigidity of a branched interconnected network in com-
parison to a parallel alignment of the filaments [52]. This characteristic is also supported
by the proteins α-actinin and filamin. These proteins crosslink neighboring actin fila-
ments and thus organize actin filaments into networks.
Aside from actin, myosin is the principal component of the AMC. Myosin is a subclass
of an enzyme family that catalyze hydrolysis of ATP, the so called ATPases. Myosin
has a F-actin binding affinity and the ability to move along the filaments. In particular,
myosin II, a member of the myosin family predominantly found in the cytoskeleton,
consists of a head domain (also called heavy chain) and a tail region (also called light
chain). Myosin II proteins form small aggregates (mini filaments) by binding to each
others tail region. The head domain of myosin II binds to F-actin. Thus a mini filament
can crosslink several actin filaments [53]. The head domain performs conformational
changes due to energy consumption provided by ATP hydrolysis. Thereby, the head
domain folds around approximately 40◦ relative to the tail region. In this way myosin
II aggregates bound to the filament exert a contractile force to the network [23].
Myosin II induced ACM contractions take predominately place at lamellum. Compared
to the AMC located in the lamellipodium, the lamellum does not have the structure
of a branched network, but rather forms arc-like bundles oriented parallel to cell edge.
These bundles and focal adhesions form aggregates. When myosin II binds to F-actin
and undergo a change in conformation, contractile force is exerted to the underlying
substrate [45].

2.1.2 Ameobid motion

Cell migration on a flat substrate is commonly explained by the contraction-protrusion
model. Therein, the cooperation of F-actin treadmilling, myosin motor activity, and the
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Figure 2.3: Schematic representation of the mechanism generating cell locomotion.
Due to the strong adhesion at the cell front, F-actin treadmilling generates a protrusive
force that propels the leading cell edge forward. Myosin II motor aggregates, pre-
dominantly located at rear end of the lamellipodium, exert contractile stress to the
filamentous network. Since the adhesion to the substrate at the back of the cell is low
compared to the front, the contractile force induces the retraction of the posterior.

linkage of adhesion sites to the network are responsible to generate an ameboid motion
of the cell [45, 54].
At the lamellipodium, where the F-actin concentration of a moving cell is high compared
to the rest of the cell also the adhesion to the substrate is strong. The F-actin network
is anchored to the substrate via adhesions sites. In consequence, the fixation of filament
at the front enables the treadmilling process to generate a protrusive force propelling
the leading cell edge forward. In addition to the protrusion mechanism at the front,
a contractile stress is exerted along the filaments due to myosin motor activity. The
posterior of the cell does not resist the emanating contractile stress since the adhesion
sites are predominantly located at cell front and myosin motors mostly aggregate at
the rear end of the lamellipodium. Thus, the exerted contractile stress promotes the
retraction of the posterior. In combination, protrusion at the leading edge and retraction
at the back results in directional movement of the cell (see Figure 2.3) [45].
Although the strong adhesion at the leading front prevents the retraction of the cell front,
the anterior of the F-actin network is not completely unaffected by myosin mediated
contraction: A retrograde flow of F-actin induced by myosin contractions has been
observed in experimental studies [55]. The net flux of the AMC is oppositely directed
to the direction of motion of the cell. A possible role of this retrograde material flow is
that it clears the space between the network and the cell membrane and thus facilitate
the binding of G-actin at the tip of the filament located at the leading front. This would
promote the maintenance of filament treadmilling [55, 56].
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Figure 2.4: Downstream effectors of Cdc42, Rac, and Rho. Effectors that have func-
tions unrelated to the cytoskeleton are not shown. The scheme is a modified version of

the scheme presented in [57].

2.2 Regulation of cell motility: Rho GTPases

Rho GTPases are members of the GTP-binding proteins (G-proteins) superfamily, which
are conserved across a broad range of eukaryotic cells [16, 17]. G-proteins are an im-
portant class of cell messengers containing a GTP-binding domain that function as
molecular switches. Rho GTPases have a molar mass of 20-40kDa.
Rho GTPases relay external stimuli to the AMC and thus provide a coupling link be-
tween external stimuli and the interior of the cell. Rho proteins do not directly interact
with the AMC, but bind to downstream effectors, which regulate the AMC [58, 59].
Common to the diverse families of GTPase is the cycling between an active state and
an inactive state. Rho GTPases must be bound to GTP in order to become activated:
GTP-bound Rho proteins undergo a conformational change such that they can interact
with downstream effectors.
Besides the activation-inactivation cycle there is also a spatial cycle: in the cytosol
almost all Rho GTPase is inactive whereas the active state is only present at the mem-
brane.
The most prominent and best studied subclasses of Rho GTPases are Cdc42, Rac, and
RhoA [13]. In motile cells Rac and Cdc42 affect F-actin polarization and F-actin align-
ment in the AMC: Active forms of Rac and Cdc42 stimulate via the Scar/WAVE complex
Arp2/3 activation [13]. Arp2/3, in turn, stimulates actin polymerization. Moreover, the
active forms of Rac and Cdc42 trigger PAK and LIM to interact with the AMC [13].
These proteins contribute to the branching of the actin network [48].
Active RhoA targets at the myosin-filament interaction. Active RhoA induces the phos-
phorylation of the light chain of myosin (MLC) via its downstream target ROCK. Phos-
phorylated MLC promotes myosin motor linkage to the actin network and so produces
contractile actomyosin bundles [60]. See Figure 2.4 for details of the Rho GTPase me-
diated regulation of the cytoskeleton. However, it should be mentioned that the signal
transduction is even more complex than displayed. The listed activation and inhibition
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Figure 2.5: A schematic diagram of the activation and membrane translocation cycles
of a Rho family GTPase. Active Rho is bound to GTP-bound. Inactive Rho is bound
to GDP. Translocation of Rho from the membrane into the cytosol is induced by the
binding of Rho to GDI. Dephosphorylation from the GDP-bound to the GDP-bound
form is facilitated by GEF. Phosphorylation of GTP to GDP is facilitated by GAP.

Rho-GDP forms a complex with Rho GDI and detaches from the membrane.

pathways can change their role under certain circumstances and mechanical upstreams
of the AMC have been observed [43, 61].

Rho activation. Throughout the Rho GTPase subclasses Rac, Cdc42, and RhoA sev-
eral key-properties are shared.
Rho GTPases can form complexes with GTP (Guanine-tri-phosphate) and GDP (Guanine-
di-phosphate). Rho GTPases act as cell internal messengers. Their cycling between a
GTP- bound and a GDP-bound state has the role of a molecular switch: GTP-bound
Rho is the active and GDP-bound Rho is the inactive state.
Each Rho GTPase cycles between a GTP- and a GDP-bound state. Interconversion be-
tween these states is due to hydrolysis followed by dephosphorylation of GTP to GDP or
the exchange of GDP by GTP, respectively. Being intrinsically slow processes, GDP-to-
GTP-exchange is catalyzed by GEF (guanine exchange factor) and dephosphorylation
is catalyzed by GAP (GTPase activating protein) [62, 63]. GTP-bound Rho is known
to recruit GEF-effector complexes [64].
Moreover, GEF is regulated by an upstream signal. In response to chemical stimulation
of integrins and receptor tryosine kineases located at the plasma membrane, GEF accu-
mulates at the leading front of a motile cell [65]. In eukaryotic cells GEF outnumbers
Rho protein by a threefold, such that multiple GEFs are capable to activate one single
Rho protein [66].
The second regulator of Rho activity, GAP, affects the rate of phosphorylation of GTP
to GDP. Phosphorylation of GTP to GDP leads to a conformational change of the Rho
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protein, such that the protein GDI (GDP dissociation inhibitors) can bind to Rho-GDP
complexes.
While GTP-bound Rho proteins are predominantly located at the cell membrane, GDP-
bound can detach from the membrane: Membrane attached, GDP-bound Rho binds to
GDI. GDI dissociates the complex from the membrane and prevents re-association [67].
Although it is less clear how Rho GTPase is decoupled from the complex with GDI
and how it associates to the membrane again, mediation by a GDI displacement factor
(GDF) as a possible mechanism has been proposed [68].
It is assumed that RHO proteins need to be both, membrane-based and bounded to
GTP in order to interact with downstream effectors that affect the cytoskeleton. In
the following we refer to membrane based, GTP-bound Rho-GTP as the active and to
GDP-bound Rho as the inactive form.

Rho GTPase pattern formation. Eukaryotic cells have spatial gradient sensing
(unlike bacteria, which use a temporal mechanism), that is, they can detect chemical
concentration gradients [7]. In response to external chemical gradients (e.g. a ligand
like cAMP) transmembrane receptors like integrins activate Rho GTPases. In motile
cells Rac and Cdc42 are predominantly activated where the ligand concentration is the
highest [69, 70]. In this way Rac and Cdc42 predefine the location and alignment of
the lamellipodium. Active RhoA predominantly accumulates at the posterior, where it
triggers myosin induced contractions promote the tailing of the back [71, 72].
From a general point of view is the directional redistribution of Rho proteins due to
external signals a symmetry break: Formerly homogeneously distributed substances be-
come more concentrated (or activated) in what will become the front of the cell, and
others become more concentrated in what will become the back of the cell. With respect
to Rho GTPases this symmetry break is called cell polarization. The interplay of the
processes that generate the symmetry break is experimentally not easy to determine,
although many contributors of the activation process are known. On a macroscopic
level, various features of polarization are shared by many cell types [7]:

1) Cells are able to sense both steep and shallow external gradients (where the differ-
ence between front and back receptor concentration is as small as 1%–2%) within
a vast range of concentrations. Polarization leads to an amplification of this asym-
metry to some macroscopic level.

2) Polarized chemotactic cells remain sensitive to new stimuli, and can reorient when
the stimulus gradient is changed.

3) In many types of cells, polarity is maintained after the triggering stimulus is re-
moved (maintenance).

4) Some cells spontaneously polarize, that is, they establish an axis of asymmetry in
the absence of spatial cues.
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5) Some cell types exhibit adaptation in a uniform stimulus, that is, the cells generate
a persistent response to a gradient of chemoattractant, but transient response to
a temporal change in a uniform stimulus.

6) In response to multiple stimuli (such as two sources of chemoattractant), some
cells form multiple fronts in certain situations, whereas others rapidly resolve the
conflict with a unique axis of polarity.

7) In some cells, pseudopods are continually extended and retracted. Some of these
types of cells reorient by splitting one pseudopod into two, one of which becomes
dominant.

Budding yeast, Saccharomyces cerevisiae, exhibits features 3),4),6). The social amoeba
D. discoideum exhibits features 1)-5), and 7). Mammalian neutrophils polarize and di-
rectionally migrate in response to N-formylated peptide gradients produced by bacteria.
These cells exhibit features 1)– 4), 6). Some evidence suggests that in neutrophils feature
3) requires an intact AMC and plasma membrane. We will highlight this requirement in
the next section. Successful mathematical modelling that provides possible qualitative
characteristics of interacting contributors has to reflect some of these features.

2.3 The plasma membrane and membrane tension

In eukaryotic cells the plasma membrane confines the interior of the cell from the exter-
nal environment. Although it prevents the cytosol from deliquescence into the external
environment, the plasma membrane is far from being a passive participant. The plasma
membrane regulates processes as endo- and exocytosis, and serves as a signalling link be-
tween the external and the internal of cell. As already displayed in Section 2.2 messenger
proteins, lipids, integrins, and Rho GTPases are associated at the membrane.

Signal transduction via mechanical changes of the plasma membrane In re-
cent years it has come clear that the plasma membrane does not solely communicate
via biochemical pathways with the interior cell and the external environment. Also
communication via mechanical signal transduction and, moreover, via mechanochemical
interactions of the plasma membrane is crucial for the organization of eukaryotic cells
[73]. Some evidence suggests that in neutrophils and fibroblasts changes of membrane
tension contribute to cell motility and Rac signalling [11, 74].
For neutrophils in particular, it has been experimentally validated that membrane ten-
sion serves as a long-range deactivator for Rac [11]. The authors of [11] found that mem-
brane tension doubles during leading-edge protrusion, and that this increase in tension
is sufficient for long-range inhibition of actin assembly and Rac activation. Moreover,
they reported that a decrease of membrane tension causes uniform actin assembly. In



Chapter 2. Biological Background 21

consequence the authors suggest that tension, rather than diffusible molecules generated
or sequestered at the leading front, is the dominant source of long-range Rac deactiva-
tion.
However, the molecular mechanisms by which cells sense and respond to mechanical
signals are not fully understood yet. Several concepts of membrane tension induced
chemical response have been proposed. Mechanosensitive channels in the plasma mem-
brane, curvature sensing proteins, and actomyosin cortex associated proteins are possible
aspirants for the missing link (see [43] for a review). We will reconsider these concepts
more in detail in the discussion of this thesis.

Mechanical features of the plasma membrane From a theoretical viewpoint the
plasma membrane is commonly described as a lipid bilayer in which proteins are thought
to diffuse freely [75]. This lipid bilayer has low shear modulus of the magnitude 10−3–
10−2N/m2, and a high elastic modulus of the magnitude 103N/m2. The viscosity and
the bending stiffness of the lipid bilayer vary in dependance of the membrane composi-
tion. The viscosity of membranes in vesicles has the magnitude 102–103Pa s, while the
bending stiffness is of the order of 10−19 Nm (see [43] for a review).
In the literature membrane tension is not uniformly equal defined. However, most defini-
tions have in common that the notion membrane tension is related to the required force
in order to deform the membrane. A definition of membrane tension which is frequently
used aims at the elastic properties of the membrane. This approach was initially used
for the measurement of tension of lipid vesicles [76]. Presuming the membrane is an
isotropic, two dimensional, flat medium with a linear elasticity, the membrane tension
τ∗ is defined to be proportional to the deviation of the cell surface area A + ∆A area
from its value A at rest:

τ∗ = E
A+ ∆A

A
,

where E is the elastic area stretch modulus and A is the surface area of the vesicle.
In eukaryotic cells the structure of the plasma membrane is more complex than in lipid
vesicles. Eukaryotic cells contain an actomyosin cortex beneath the membrane. The
cortex is a layer of actomyosin that runs parallel to the membrane at the cytosolic
side. The cortex is attached to the plasma membrane via actomyosin adhesions [43].
Similar to the ACM, the actomyosin cortex is in constant turnover and influences the
configuration of the membrane: The actomyosin cortex activity causes membrane ruffling
and wrinkling. It has been argued that large changes in plasma membrane tension
primarily reflect changes in actomyosin activity [77]. In experiments it is hard to distinct
between the elastic portion of the plasma membrane and the force impact of the cortex
[43]. Therefore in experimental settings the apparent tension τ is often measured. The
apparent tension is based on the assumption that the membrane-cortex-complex behaves
like an elastic material, such that τ can still be written to the linear order as

τ = Em
A+ ∆A

A
,
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where Em is the apparent elastic area stretch modulus. The apparent elastic area stretch
modulus varies from cell to cell and also depends on the properties of the cortex. The
apparent stretch modulus is usually lower than the elastic modulus of the membrane
itself since the cortex provides the membrane with wrinkles that unfold if the membrane
is stretched.
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Mathematical Formulation of the
Model

3.1 Cell geometry

Consider a cell adhering to a flat substrate. The AMC spreads along the horizontal plane,
parallel to the substrate, like a thin sheet. The intermediate layer between the actin
area and the substrate is the plasma membrane. The cross section of the superposed
layers consist of the substrate itself, the plasma membrane, the AMC, and the cytosol,
see Figure 3.1. We assume that these layers comprise the functional units of the cell
that are sufficient for robust cell polarization.
The average diameter of a neutrophil on a surface is about ∼ 10µm. The height of
the cell is about ∼ 0.1 – 0.2µm [46, 53]. We aim at a description of the AMC-cytosol-
plasma-membrane compound as a two dimensional sheet embedded in the x1-x2-plane.
Both, the AMC and the plasma membrane are highly heterogenous structures. We
will assume that considered proteins may diffuse without restriction in the tangential
direction of each layer, while the diffusion in the normal direction is constrained due to
the heterogeneity of the plasma membrane and the AMC. In the cytosol, however, we

x1

x3

actomyosin

Figure 3.1: Schematic cross section of the contact layers between substrate and cell
from a sideview. The top layer is the AMC. The intermediate layer represents the
plasma membrane, where active form of Rho is located. The bottom layer stands for

the substrate.

23
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assume that the substance may diffuse freely in every direction. In each compartment
chemical reactions may occur.
In the next section we will give an account for the assumptions that enable us to consider
the plasma membrane and the AMC as effectively two dimensional sheets.

3.2 A boundary-layer approximation for a parabolic-elliptic
system

In this section, we argue that we may reduce a spacial three dimensional problem on
two thin heterogenous layers to an effectively two dimensional problem in space. Our
model problem consists of a semi-linear reaction diffusion system defined in each layer
with transmission conditions on the interfaces and a diffusion equation in a bulk domain.
The heterogeneity of the layers induces a fast diffusion in the tangential direction but a
slow diffusion in the normal direction of the interfaces. We assume that the thickness of
each layer is of order ε and the diffusion in the normal direction towards the interfaces
is of order ε1+2l, l > 1/2.

3.2.1 Scaling properties of the system

For the lower-dimensional approximation we assume that the considered substances in
the plasma membrane and in the AMC possess certain scaling properties whose biological
reasonability will be discussed below.
In biochemistry, concentration is the abundance of a constituent with respect to the unit
volume. As approximation, we seek a scaling property of the concentrations, such that
the amounts of the substances are conserved if the height of the layer ε changes. Let nU
be the amount of a substance U contained in the unit volume [0, 1]3. The concentration
of U is

u = nU
|[0, 1]3| .

Let [0, 1]2 × [0, ε] be a reference volume of a layer having the height ε. If the amount of
a substance is conserved, the concentration is

u = nU
|[0, 1]2 × [0, ε]| = 1

ε

nU
|[0, 1]3| = 1

ε
u.

In the following section we will consider concentrations having this scaling property. We
model the actin and Rho-protein kinetics as reaction-diffusion systems.The considered
reaction functions are of the form

f(u) ∝ k+(u1)u2 − k−(u3)u4,
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where k±(·) are either Michaelis-Menten-type-functions of order two or constants. In
the first case we have with respect to the unit volume

k±(u1) = u2
1

K2 + u2
1
,

where the apparent dissociation constant K is derived from the law of mass action (the
equilibrium constant for dissociation). Let u1, w, and z be the concentrations of the
protein U , the ligand L, and the product Z at homogenous steady state, respectively.
From the law of mass action, the apparent dissociation constant K is an equilibrium
constant, having the form:

K(u1, w, z) = u1w
2

z
.

Since we assumed that the amounts of the substances are conserved in [0, 1]2× [0, ε], we
obtain the scaling property

K(u1, w, z) = 1
ε
K(u1, w, z),

where the bar · denotes the concentration of the substance in [0, 1]2×[0, ε]. Consequently,
the reaction functions have the scaling property

f(u) = f

(1
ε
u

)
= 1
ε
f(u).

Both, the plasma membrane and the AMC are highly structured media. Rho proteins
bind to the plasma membrane and the Rho-receptor-complex diffuses tangentially to
the membrane. Since Rho proteins are relatively big, diffusion in the normal direction
to the membrane is highly attenuated due to the composition of the membrane [78].
We assume that, depending on the height of the layer ε, the diffusion normally to the
membrane is of the order εl1 , l1 > 0, while the diffusion tangentially to the membrane
remains independent of ε.
The AMC consists of a dense polymer network that aligns parallel to the plasma mem-
brane. Diffusion in the normal direction may be constrained due to the density of the
network. As in the plasma membrane, we assume that, depending on the height of the
layer ε, the diffusion normally to the AMC is of the order εl2 , l2 > 0. However, we
assume that diffusion parallel to the network is unaffected by the thickness of the layer.
In the following section, we present a reaction-diffusion system defined on three compart-
ments with variable height on each domain and transmission conditions. The presented
reaction-diffusion system has the assumed scaling properties. We will determine the
scaling-powers l1 and l2, such that in the limit ε→ 0 fluxes between the compartments
vanish and the occurring reaction-diffusion equations in the AMC and in the plasma
membrane reduce to spatially two dimensional systems. The dimension of the solutions
of the limit equations in the layer transforms from volume density to area density.
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Figure 3.2: a) The domain Ω for ε > 0 including the thin layers Ω1
ε and Ω2

ε. The
bulk domain Ω0

ε represents the cytosol, the layer Ω1
ε represents the AMC, the layer Ω2

ε

represents the cell membrane. b) The structure of the domain Ω in the limit ε = 0.

3.2.2 Setting of the problem

Let ε > 0 be a sequence of strictly positive numbers tending to zero, with the property
1
ε ∈ N. Let H be a fixed real number.
For each ε > 0, we consider the domain Ω = (0, 1)n−1 × (0, H) ⊂ Rn, n ≥ 2, consisting
of three subdomains: The bulk region Ω0

ε and the thin heterogeneous layers Ω1
ε, Ω2

ε. Ω0
ε

and Ω1
ε are separated by the interface S1

ε ; Ω1
ε and Ω2

ε are separated by the interface S2
ε ;

see Figure 3.2 a.
More precisely, we consider

Ω = Ω0
ε ∪ Ω1

ε ∪ Ω2
ε ∪ S1

ε ∪ S2
ε ,

where Ω0
ε = (0, 1)n−1 × (2ε,H), Ω1

ε = (0, 1)n−1 × (ε, 2ε), Ω2
ε = (0, 1)n−1 × (0, ε), S1

ε =
(0, 1)n−1 × {2ε}, S1

ε = (0, 1)n−1 × {ε}. We denote

Σ = (0, 1)n−1 × {0}.

The outer unit normals at the boundaries of the domains Ω and Ω1
ε are denoted by ν

and ν1, respectively. If there is no likelihood of confusion, we will simply write ν instead
of ν1. For x ∈ Ω, we set x = (x′, y), where x′ ∈ (0, 1)n−1, y ∈ (0, H), and we write for
u : R→ R, w : Rn → R

∇x′u := (∂1u, ..., ∂n−1u, 0)T , ∇yu := (0, ..., 0, ∂nu)T ,

∆x′u :=
n−1∑
i=1

∂2
i u, ∆yu := ∂2

nu,

divx′w :=
n−1∑
i=1

∂iwi, divyw := ∂xnwxn .
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Let l > 1/2 and let I = (0, T ), T > 0, be a time interval. We consider the following
reaction-diffusion system for the unknown vector uε = (u1ε, ..., umε) : I × Ω→ Rm :

∂tu
0
jε − div

(
D0
j∇u0

jε

)
= f0

j (u0
ε) in I × Ω0

ε,

1
ε
∂tu

1
jε −

1
ε
divx′

(
D1
j∇x′u1

jε

)
+ ε1+2ldivy

(
D

1
j∇yu1

jε

)
= 1
ε
f1
j

(
u1
ε

)
in I × Ω1

ε,

1
ε
∂tu

2
jε −

1
ε
divx′

(
D2
j∇x′u2

jε

)
+ ε1+2ldivy

(
D

2
j∇yu2

jε

)
= 1
ε
f2
j

(
u2
ε

)
in I × Ω2

ε,

(3.1)

with the boundary conditions

∇ujε · ν = 0 on ∂Ω, (3.2)

and the initial condition

uε(0, x) = Uε(x) x ∈ Ω. (3.3)

On the interfaces S1
ε and S2

ε we impose natural transmission conditions for uε, i.e the
continuity of the solution and of the transversal fluxes:

u0
ε = u1

ε on S1
ε ,

D0
j∇u0

jε · ν = ε1+2l∇u1
jε · ν on S1

ε ,

u1
ε = u2

ε on S2
ε ,

∇u1
jε · ν = ∇u2

jε · ν on S2
ε .

(3.4)

3.2.3 Variational formulation of the problem

The variational formulation of problem (3.1)–(3.4) is given as follows: Find

uε : I × Ω→ Rm,

such that uε ∈ L2(I, L2(Ω,Rm)), ∂tuε ∈ L2(I, L2(Ω,Rm)), and for almost every t ∈ I
and for all ϕ ∈ L2(I,H1(Ω,Rm)) holds

∫
Ω0
ε

∂tu
0
jεϕj dx+

∫
Ω0
ε

D0
j∇u0

jε∇ϕj dx+ Σ2
k=1

(
1
ε

∫
Ωkε
∂tu

k
jεϕj dx

)

+Σ2
k=1

(
1
ε

∫
Ωkε
Dk
j∇x′ukjε∇x′ϕj dx

)
+ Σ2

k=1

(∫
Ωkε
ε1+2lD

k
j∇yukjε∇yϕj dx

)

= Σ2
k=1

(
1
ε

∫
Ωkε
fj
(
ukε

)
ϕj dx

)
+
∫

Ω0
ε

fj(u0
ε)ϕj dx.

(3.5)

Moreover, the initial conditions

uε(0, x) = Uε(x) for a.e. x ∈ Ω (3.6)
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need to be satisfied.

3.2.4 Assumptions on the data.

We assume that the diffusion coefficients

D0
j (x), Di

j(x′), D
i
j(x′, y/ε) ≥ c > 0 for a.e. x = (x′, y)

are essentially bounded functions on Ω0
ε, and Ωi

ε (i = 1, 2), respectively. For the initial
function Uε we assume that

U ijε ∈ H2(Ωi
ε) ∩ L∞(Ωi

ε), i = 0, 1, 2,

satisfy the boundary conditions (3.2) and the compatibility conditions (3.4), and that
the following estimates hold:

1√
ε
‖U ijε‖L2(Ωiε) + 1√

ε
‖∇U ijε‖L2(Ωiε) ≤ C (i = 1, 2), (3.7)

We assume the reaction terms f ij : Rn → are Lipschitz continuous. Moreover, we assume
that c > 0, C > 0, l > 1/2, and M > 0 exist such that

f ij(z) < czj for zj > M,

and
m∑
j=1

f ij(z)(zj)− ≤ C
m∑
j=1
|(zj)−|2,

where (zj)− := min(zj , 0).
Then, for each ε > 0 a unique solution (uε, uε) exists, where

ujε ∈ L2(I,H1(Ω)) ∩ L∞(I × Ω),

∂tujε ∈ L2(I, L2(Ω)),

vjε ∈ L2(I,H1(Ω1
ε)) ∩ L∞(I × Ω1

ε),

(3.8)

If the initial conditions for uε are a.e. non-negative, the solution uε is a.e. non-negative.
The assertions can be achieved by usage of standard techniques and the a priori estimates
provided in the proof of the following result.

3.2.5 Statements

The main result of Section 3.2 is, roughly spoken, that the solutions of the system
above converge to solution of a reaction-diffusion system defined in the bulk region and
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and to solutions of a parabolic-elliptic system in defined the limit-layer for ε, and the
subsystems do not interact with each other. More precisely it holds

Theorem 3.1. For ε→ 0 a sequence uε of solutions of (3.5), (3.6) and a limit function
u0 exists which is a weak solution of the problem

∂tu
0
j0 − div

(
D0
j∇u0

j0

)
= f0

j (u0
0) in I × Ω, (3.9)

∂tu
1
j0 − div

(
D1
j∇u1

j0

)
= f1

j (u1
0) in I × Σ′, (3.10)

∂tu
2
j0 − div

(
D2
j∇u2

j0

)
= f2

j (u2
0) in I × Σ′, (3.11)

with the initial conditions

u0
0(0, ·) = U0

0 in Ω, (3.12)

u1
0(0, ·) = U1

0 in Σ′, (3.13)

u2
0(0, ·) = U2

0 in Σ′, (3.14)

and the boundary conditions

∂νu
0
j = 0 on I × ∂Ω/Σ, (3.15)

∂νu
1
j = 0 on I × ∂Σ′, (3.16)

∂νu
2
j = 0 on I × ∂Σ′, (3.17)

The solution u0 is unique.

The proof Theorem 3.1 is presented in Appendix A.4.

We assume that the considered reaction-diffusion equations in the model satisfy the
required scaling properties on each compartment, such that we can treat the plasma
membrane and the cytosol as a two dimensional sheet. The proof can be extended easily
for more complex domains of the form Ω×(0, H), where Ω ⊂ Rn−1 is a convex Lipschitz-
domain. For the next section, we assume that the approximation still remains valid if
Ω(t) ⊂ R2 is time-dependent.
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3.3 The cell geometry described as a moving boundary
problem

One feature of the model cell is the ability to transform the shape in response to ac-
tomyosin activity. Both, the position of the cell relative to the substrate, and the cell
shape itself may change. Thus, the domain that describes the geometry in the x1-x2-
plane may change its shape in the course of time. To indicate this, we denote at time
t ∈ R+ the cell area by an open domain Ωt ⊂ R2, and the circumferential cell boundary
by Γt := ∂Ωt. For the initial time t = 0, we suppose a spherical resting cell area Ω0 with
radius R0:

Ω0 :=
{
x = (x1, x2) ∈ R2 : ‖x‖2 < R0

}
.

The AMC is connected to the substrate via adhesion sites. We assume that local dis-
placement of the actomyosin cytoskeleton induces the colocated local displacement of
the cell relative to the substrate. Thus, the model cell is convected and deformed by
the velocity field v, which describes the material flux of F-actin. More precisely, we
assume that the boundary of Γt is convected by v along the outward normal unit vector
n = n(t, x) of Γt. From this, we obtain the Stefan condition:

Vn = v · n, on Γt, (3.18)

where Vn denotes the a priori unknown normal velocity of the boundary. Hence, the a
priori unknown shape of the model cell Ωt at time t is defined as the enclosure of Γt.
In a polarized cell, the F-actin concentration in the lamellipodium is higher than in the
cell body. We identify the lamellipodium as the subdomain of Ωt, where the F-actin
concentration a(t, x) exceeds a threshold athr:

ΩL
t := Ωt ∩

(
{x | a(t, x) > athr}

)◦
.

The boundary segment of the lamellipodium is denoted by ΓLt := ∂ΩL
t . The cell body

is the remaining subdomain ΩB
t := Ωt\ΩL

t and the corresponding boundary segment is
ΓBt := Γt\ΓLt .
The corresponding time-space cylinder for the evolution of the domain Ωt is denoted as

Ω(t) :=
⋃
t∈I

({t} × Ωt) .

The time-space cylinder with respect to the boundaries is

Γ(t) :=
⋃
t∈I

({t} × Γt) .

The subdomains ΩB(t), ΩL(t) and ΓB(t), ΓL(t) are defined analog.
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3.4 Chemical signalling

We model the biochemical processes of Rho-GTPase activation and actin polymerization
by reaction-diffusion equations. If we describe reaction-diffusion equations on the moving
domain Ω(t) in Eulerian coordinates, the equations receive an additional advection-
dilution term [79]:
Let U denote the concentration of a considered substance, let f(U) be a reaction function
and let J(U) = −D∇U be the occurring diffusive flux. Let v = v(t, x(t, x0)) ∈ R2 denote
the flow by which the material point x0 ∈ Ω0 is in Ωt convected. Let Vt ⊂ Ωt, t > 0, be
a sequence of open, regular subdomains, such that x(t, x0) ∈ Vt iff x′(t) = v(t), t > 0
and x(t) = x0 ∈ V0 ⊂ Ω0.
The conservation equation in integral form is given by

d

dt

∫
Vt
U(t, x(t, x0)) dx =

∫
Vt
div(D∇U) + f(U) dx.

Application of Reynolds’ transport theorem on the left-hand side yields:

d

dt

∫
Vt
U(t, x(t, x0)) dx =

∫
Vt

[∂tU + div(Uv)] dx,

Since Vt ⊂ Ωt is arbitrary, the equation above is equivalent to

∂tU − div(D∇U) + div(Uv) = f(U) on Ω(t). (3.19)

If U is conserved in the cell, we obtain zero-flux boundary conditions:

(−D∇U + Uv) · n = 0 on Γ(t), (3.20)

where n = n(x(t)) denotes the outward unit vector at the boundary Γt of the cell-domain.

3.4.1 Rho GTPase dynamics

Although other proteins and lipids are involved in the polarization of neutrophils [34]
and several mutual crosstalk circuits have been identified [35], we act on the assumption
that only the GTPases Rac and RhoA are decisive for triggering downstream effectors
that regulate AMC activity. Based on the derivation of the former section, we restrict
ourselves to the investigations of processes in plasma membrane only. We formulate a
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system of PDEs for the following unknowns:

u1 : Ω(t)→ R concentration of Rac-GTP,

u2 : Ω(t)→ R concentration of Rac-GDP,

w1 : Ω(t)→ R concentration of RhoA-GTP,

w2 : Ω(t)→ R concentration of RhoA-GDP,

z1 : Ω(t)→ R concentration of GEF-GTP-Rho complexes,

z2 : Ω(t)→ R concentration of GEF,

a : Ω(t)→ R concentration of F-actin,

b : Ω(t)→ R concentration of G-actin,

mF : Ω(t)→ R concentration of myosin-II-F-actin-complexes.

Physical units are given by

[ui] = [wi] = [zi] = [a] = [b] = [mF ] = mol
dm2 , i = 1, 2.

Much more extended sets of variables could be considered here. In particular we do not
explicitly take into account the cascade of downstream effectors and GAP concentrations.
The inactivation process will be described implicitly and the concentrations of GDP-
bound Rho will be approximated by a constant amount.

Reaction kinetics

We assume simple mass action kinetics or a Hill type law for catalyzed reactions. With
respect to the scheme presented in Figure 2.5, for the change of concentration of the
above variables due to reactions we prescribe the following equations. Our choices for
the biochemical interactions are similar to the models in [8, 36]. Based on findings of
Houk et al. [11], we additionally suggest that membrane tension inhibits Rac activation,
and in accordance to [35] we incorporate an inhibitory feedback from Rac on RhoA.
Moreover, we hypothesize that increasing membrane tension promotes RhoA activation.
The concentration of GTP-Rho is increased by the activation process, which is catalyzed
by GEF. Additionally, slow Rho activation also occurs in the absence of GEF (in the
following modelled by the rate k1). For the corresponding rates we assume that they
are proportional to the GTP-Rho concentration and the concentrations of the catalysts.
Vice versa GTP-Rho is produced by the inactivation of GDP-Rho. Since we have not
taken the GAP concentration into account, we here assume a rate δ1 for GAP mediated
Rho inactivation which is constant with respect to the GEF concentration. The change
of u1 due to Rac activation we therefore describe by

[∂tu1]reaction = k1u2 + k3z2u2 − δ1u1.
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Each GEF has two Rho-specific binding sides and a cooperative binding of active Rho to
GEF complex formation has been experimentally verified [80]. Then complex formation
and dissociation lead to the following laws for the concentration of the complex and
GEF

[∂tz2]reaction = k4z1u
2
1 − k5z2,

[∂tz1]reaction = −k4z1u
2
1 + k5z2,

We assume that the complex formation is fast compared to the whole activation process.
Thus, we use a quasi-steady state approximation for the complex formation. If we
proceed as in [81], this approximation yields

z2 = γ1u
2
1

K2
1 + u2

1
, (3.21)

where γ1 is the concentration of z1 + z2 at steady state and K1 = k5/k4. From this we
obtain the simplified kinetics for Rac activation:

[∂tu1]reaction = k1u2 + k3
γ1u

2
1

K2
1 + u2

1
u2 − δ1u1.

Since Rho activation cycling is conserved through the subclasses Rac and RhoA, RhoA
activation via GEF catalyzation and GAP mediated RhoA inactivation are similar to
the kinetics discussed above. If we assume first oder kinetics and also use a quasi-steady
state approximation for GEF-RhoA complex formation, we obtain for RhoA activation
the same kinetics as for Rac (apart from the specific values of the rates). Moreover,
GTP-Rac is an inhibitor for RhoA activation. The choice of the particular inhibitory
function is to a large extend arbitrary. We here assume a Hill function of second order
with respect to u1 as a pre-factor for the GAP mediated inactivation kinetics. The
change of w1 due to activation is described by

[∂tw1]reaction = k2w2 + k6
γ2w

2
1

K2
2 + w2

1
w2 −

δ2u
2
1

K2
3 + u2

1
w1,

where k2 is the activation rate for RhoA that is not catalyzed by GEF, the factor of w2

in the second term models the GEF-catalyzed activation of RhoA, and the factor of w1

in the third term combines the GAP-mediated RhoA inactivation and the GTP-RhoA
suppression due to GTP-Rac.
We model the inhibition of Rac activation due to increasing membrane tension by the
assumption that the activation rates k1 and k3 depend on the amount of tension τ , such
that k1 and k3 monotonously decrease if the tension increases. To capture this feature,
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we suggest that these rates can be written as

k1(τ) := h1(τ)k1,

k3(τ) := h1(τ),

where h1(τ) is a monotonously decreasing function with respect to τ and k1 is a propor-
tionality factor. h1(τ) will be specified in Section 3.5.4. In the model, tension generation
primary dues to the recruitment of downstream effectors of active Rac. Moreover, active
Rac is inhibitory for RhoA activation even at long ranges [82]. However, Rac mediated
long-range inhibitors for RhoA are currently unknown. We hypothesize that active Rac
constrains RhoA activation implicitly via tension by setting

k2(τ) := h2(τ)k2,

k6(τ) := h2(τ),

where h2(τ) is a monotonously increasing function with respect to τ and k2 is a propor-
tionality factor. h2(τ) will be specified in Section 3.5.4.
Finally, we assume that both, GDP-Rac and GDP-RhoA, are homogeneously distributed
and are present in the plasma membrane in sufficiently high concentrations such that we
may approximate u2 and w2 in the reactions by constants. We set w.l.o.g. u2 = w2 = 1
and consider the actual values of u2 and w2 implicitly in the fitting of the respective
rates. Based on these assumptions, we obtain the simplified reaction functions for Rac
and RhoA activation:

[∂tu1]reaction = h1(τ)
(
k1 + γ1u

2
1

K1 + u2
1

)
− δ1u1 := f1(τ, u1),

[∂tw1]reaction = h2(τ)
(
k2 + γ2w

2
1

K2 + w2
1

)
− δ2u

2
1

K3 + u2
1
w1 := f2(τ, u1, w1).

(3.22)

Remark 3.2. In the further course we simply write u instead of u1 and w instead of w1.

Properties of the reaction functions

To a large extend the particular choices of the kinetic functions used in our model are
arbitrary. However, the reaction functions need to exhibit certain characteristics to
achieve the wave-based patterning mechanism we aim at. In this section we briefly
render the basic requirements, such that we can define initial values for model cell at
rest. We refer to Chapter 5 for a more detailed discussion of the requirements on the
reaction functions.
A necessary feature is that the kinetic function f1 of Rac activation has a biologically
reasonable parameter regime in which bistability with respect to the variable u occurs.
More precisely, it is required that the dynamical system dtu = f1(τ, u) is bistable for
fixed τ in a parameter range τmin < τ < τmax, i.e for fixed τ ∈ (τmin, τmax) the reaction
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f1(τ, u) = 0 has three roots
u− < um < u+

and
∂uf(τ, u−(τ)) < 0, ∂uf(τ, um(τ)) > 0, ∂uf(τ, u+(τ)) < 0

holds. The initial tension τ = τ0 has to be contained in (τmin, τmax). The stable points
are u−(τ), u+(τ). The unstable point is uc(τ). It holds u−(τ) < uc(τ) < u+(τ).
A requirement for the function f2 of RhoA activation with respect to the initial values
is that

f2(τ, u, w) = 0

has for fixed τ ∈ (τ−, τ+) and u(τ) = u−(τ), a unique homogenous solution w−(τ).
The suggested reaction functions in (3.22) posses a parameter space in which bistability
occurs and the uniqueness of a homogenous solution w−(τ) is granted, respectively. The
specific parameters setting is listed in Section 4.2.

Model equations for Rho

Taking reaction, diffusion, and displacement of the domain Ωt into account and assume
that active Rho is conserved in the domain, we obtain from Section 3.4 the set of
equations

∂tu−Du∆u+ div(uv) = f1(τ, u), on Ω(t),

∂tw −Dw∆w + div(wv) = f2(τ, u, w), on Ω(t),
(3.23)

where Du and Dw are the apparent diffusion coefficients of active Rac and active Rho,
respectively. The boundary conditions are given by

(∇Duu+ uv) · n = 0 on Γ(t),

(∇Dww + wv) · n = 0 on Γ(t).
(3.24)

Let τ0 ∈ (τ−, τ+) be the amount of membrane tension of the model cel at rest. The
initial conditions model the resting state in which the Rho proteins are at homogenous
steady state. We use the denotations introduced in the former section. The initial values
are given by

u(0, x) = u−(τ0) := u0, w(0, x) = w−(τ0) := w0 on Ω0. (3.25)

3.4.2 Actin dynamics

The model distinguishes between two types of actin, G-actin and F-actin, which are
assumed to interconvert into each other. Polymerization and depolimerization are mod-
elled by a first oder kinetics: Let a and b be the concentration of F-actin and G-actin,
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respectively. We denote the rate of polymerization by kba and the rate of depolymeriza-
tion by kab. Finally, we assume that neither F-actin nor G-actin is synthesized on the
timescale we are investigating. The contributing kinetics of F-actin polymerization is
given by

g(a, b, u) = kba(u)b− kab(u)a. (3.26)

Experimental evidence shows that the rate of actin polymerization is affected by Rac
via downstream effectors [83]. We act on the simplifying assumption that the activation
of downstream effectors occurs proportional to the activation of Rac without delay.
According to this, we propose the specific rates

kba(u) = k3 + γ3u

K4 + u
, kab(u) = k4.

The rate constants k3 and k4 indicate a constant turnover between G-actin and F-actin,
while the Hill-term models the promoted F-actin polymerization in response an increase
of active Rac. Assuming that the mass of actin is conserved in Ωt throughout the
timespan of interest, we obtain the reaction-diffusion equations

∂ta−Da∆a+ div(av) = g(a, b, u),

∂tb−Db∆b+ div(bv) = −g(a, b, u),
(3.27)

on Ω(t) and the boundary conditions

(∇Daa+ av) · n = 0 on Γ(t),

(∇Dbb+ bv) · n = 0 on Γ(t).
(3.28)

3.4.3 Myosin dynamics

We assume that myosin is present in high concentrations in the whole cell. Furthermore,
we neglect possible occurring fluxes. We model myosin-actin-filament binding by first
order kinetics:

∂tmF = k5a mG − k6mF ,

where mF and mG is the concentration of myosin II bound and unbound to F-actin,
respectively. k5 and k6 denote the binding and the detachment rate, respectively. Let
m0 be the total initial concentration of myosin. If myosin is not resynthesized during
the timespan of observation, mG can be written as m0 −mF . We assume that myosin
binding to F-actin is fast compared to the other kinetics in our model. A quasi-steady-
state assumption yields that the concentration of myosin bound to F-actin simplifies
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to

mF = m0k5a

k5a+ k6
.

RhoA activity mediates myosin-II-F-actin complex formation [84]. We neglect the sig-
nal transduction via downstream effectors by assuming that active RhoA mediates the
binding affinity of myosin to F-actin directly. This yields that w 7→ k5(w) is increasing
and w 7→ k6(w) is non-increasing. Setting

k5(w) := k̃5w, k6(w) := k̃6,

where k̃5 and k̃6 are constants satisfies this requirement. Dropping the tildes, we obtain
for the concentration of myosin II bound to F-actin

mF = mF (wa) = m0k5wa

k5wa+ k6
. (3.29)

For small perturbations of the steady state concentrations a0 and w0, we may replace
(3.29) by its linearization with respect to wa in w0a0:

mF (wa) ≈ K5(wa− w0a0) +mF (w0a0), (3.30)

where
K5 := m0k5

k5w0a0 + k6

(
1− k5w0a0

k5w0a0 + k6

)
.

Obviously, K5 is a positive parameter since k6 > 0. The concrete parameter values for
the model are presented in Section 4.2. We assume that the concentration mF can be
described adequately by approximation (3.30).
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3.5 Cytoskeletal mechanics

We model the AMC as an active gel. A brief survey of active gel theory and its appli-
cation in Cytoskeletal mechanics is given in Appendix B.
We briefly summarize the main statements: Active gel theory is a mechanical theory
that considers the AMC as a viscoelastic medium with the ability to generate stresses ac-
tively due to F-actin treadmilling and myosin mediated contraction. Neglecting possible
additional stresses that arise from torque (i.e. neglecting σpol

αβ in (B.3)), the occurring
stress tensor σtot

αβ is composed of both, a passive and an active element, denoted by σpas
αβ

and σact
αβ , respectively:

σtot
αβ = σpas

αβ + σact
αβ . (3.31)

The passive stress is determined by the viscoelasticity of the material. The active part
depends in general on various factors like ATP-provided energy, F-actin density as well
as the myosin II density. The total stress σtot

αβ is completed by the following components:

1) a constitutive equation,

2) a force-balance equation,

3) an equation of state and

4) a polarity field.

1) The AMC is a highly viscous medium with a complex rheology. In general, its viscosity
may depend on the temperature T and on the densities a(t, x) and mF (t, x). Due to
the effects of permeation the viscosity may also depend on b(t, x), u(t, x), and w(t, x).
However, since the AMC is a continuously dense network of cross-linked polymeres that
rather resist shear stresses due to its architecture than to its density, we hypothesize
that its viscosity is not affected drastically by minor fluctuations of a(t, x), mF (t, x)
b(t, x), u(t, x), and w(t, x), such that the viscosity may be modelled approximatively by
a constant η.
We describe the viscoelastic properties of the AMC by the Maxwell model. If we use
Einstein’s notation, the Maxwell model reads as

ε̇ =
σ̇pas
αβ

E
+
σpas
αβ

η
, (3.32)

where E denotes Young’s modulus of the gel and ε̇ denotes the the strain-rate tensor.
Let v be the velocity of the material flow, then is ε̇ given by

ε̇ = 1
2(∂αvβ + ∂βvα).
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2) Let δαβ be the Kronecker delta. Neglecting inertial forces, typically valid on a cellular
scale, we write the force-balance equation as

∂α
(
σtot
αβ −Πδαβ

)
+ F ext

β = 0, (3.33)

where Π and F ext denote the internal pressure and an external force contribution, re-
spectively.
3) The pressure Π is defined by an equation of state and will be modelled in the next
section.
4) Since F-actin treadmilling is directional, the actin gel is in a natural way endowed
with a polarity. The corresponding polarity field is a vector field consisting of unit vec-
tors. We denote the polarity field by p. The polarity field points in the direction in
which F-actin assembles.

3.5.1 The polarity field

Polymers such as actin gels are naturally endowed with a polarity field, i.e. a field of
unit vectors, running locally parallel to the averaged direction of polymer alignment
[85]. Neglecting possible organizational mechanisms that induce polar actin alignment,
we phenomenologically assume that 1) F-actin treadmilling occurs in the lamellipodium
perpendicular to the boundary, 2) in a moving cell, the polarity field remains static in
ΩL
t with respect to the substrate, and 3) stable F-actin aligns in periphery of the cell

body parallel to the boundary while it is unpolar in interior of ΩB
t .

1) Perpendicular F-actin treadmilling endows the AMC with a polarity field p = (px, py) :
Ω(t)→ R2 which is initiated at the boundary of the lamellipodium. We write

p = n on ΓL(t). (3.34)

2) The leading front is pushed forward due to polymerization of new F-actin at the
very front, whereas the orientation of old F-actin remains stationary with respect to
the substrate. Thus, we assume that the polarity field is conserved in the bulk if ΓL(t)
extends. Then, if x ∈ ΩL

t has been a former boundary point, the polarity at x ∈ ΩL
t is

given by the outward normal unit vector of this former boundary point.
More precisely, we consider for (t, x) ∈ ΩL(t) the set P (t, x) of all previous times, where
x has been a boundary point:

P (t, x) := {t′ ∈ R+|t′ < t, x ∈ ΓLt′}.
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If P (t, x) is not empty, we set t̃ := supP (t, x) and denote by n(t̃, x) the outward unit
vector in x ∈ ΓL

t̃
. For the polarity field in ΩL(t) we take

p(t, x) =

n(t̃, x), if P (t, x) 6= ∅,

0, if P (t, x) = ∅.
(3.35)

For the following course, we assume that the evolution of [t 7→ ΓLt ] is sufficiently regular,
such that we may assume p ∈ L∞(ΩL(t),R2).
3) We suppose that the polarity of F-actin is randomly distributed in ΩB

t . Thus, direc-
tional forces exerted on adhesion sites due to myosin contraction cancel each other out.
This is equivalent to setting p = (0, 0) on ΩB(t). Non-treadmilling stable F-actin aligns
parallel to the boundary ΓBt [47]. We indicate this by setting

p = n⊥ on ΓB(t). (3.36)

3.5.2 Constitutive equations and force balance

In this section we consider the combination of both, the constitutive equation (3.32) and
the force balance equation (3.33). We will adapt these equations in our framework and
reduce the viscoelastic part to a purely viscous material.

Reduction F-actin is convected by the the material flux "av", where v is the velocity
field that has to be obtained from the components 1)-4) listed in Section 3.5. Since the
stress itself is generated by F-actin activity, it is also affected by the convection of F-
actin. Application of Reynold’s transport theorem states that we have to exchange the
time derivative "∂t" in constitutive equation (3.32) with the convective time derivative
" DDt := ∂t ·+∇ · (v·)". Then, (3.32) transforms to

1
t∗

(
∂tσ

pas
αβ +∇vσpas

αβ

)
+ σpas

αβ = η

2(∂αvβ + ∂βvα), (3.37)

where t∗ := η/E is the relaxation time of the viscoelastic medium. t∗ indicates the
time at which the viscosity of the material starts to dominate the elastic response and
at which the material starts to flow. Experimental observations suggest that E is of
order 103-105 Pa [86–88], while η is of order 102-103 Pa s [89], implying that t∗ is in the
timescale of seconds. For times t >> t∗, we may neglect the elastic response in (3.37)
and obtain a purely viscous gel, satisfying the constitutive equation

σpas
αβ = η

2(∂αvβ + ∂βvα). (3.38)

Chemical polarization of Rho GTP occurs in most motile cells on a timescale of about
10 − 100s. Thus, we consider the AMC within these time-spans as a purely viscous
material.
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Force balance The constitutive equation (3.38) has to be complemented by a force
balance equation. Recall from (3.31) that the composition of the total stress is σtot

αβ =
σpas
αβ + σact

αβ . Let F ext be a body force. The force balance reads as

∂α

(
η

2(∂αvβ + ∂βvα)−Πδαβ + σact
αβ

)
= −F ext

β .

If we write ∆v := (∆v1,∆v2)T and ∇⊥v := (−∂x2v1, ∂x1v2)T and set

F act := (∂x1σx1,x1 + ∂x2σx2,x1 , ∂x1σx1,x2 + ∂x2σx2,x2)T ,

the force balance equation in two space dimensions can be written as

η∆v + η

2∇
⊥rot(v)−∇Π = −F ext − F act. (3.39)

Equation of state for the pressure Actomyosin gels are relatively resistant to
compression. If the shear deformations are large compared to the compression, a gel is
classified as weakly compressible [46]. In particular, this holds for an elastic body having
a small ratio between shear and compression modulus. A perfectly incompressible gel
has a Poisson ratio ν of exactly ν = 0.5. Shear field measurements by using magnetic
tweezers have shown, that the Poisson ratio of actin gels ranges from ν = 0.4 to ν = 0.5
[90], categorizing actin gels as weakly compressible. The relation of pressure and density
of weakly compressible media can be modelled by Taint’s equation. If we neglect the
effect of permeation of the solvent through the gel and use Taint’s equation, the pressure
Π with respect to the F-actin density is given by

Π(a) = K6
θ

((
a

a0

)θ
− 1

)
+ Π0,

where θ denotes the adiabatic index of the gel, K6 is the compression modulus, and Π0

(resp. a0) is the pressure (resp. F-actin concentration) in the resting cell.

External Force The cell exerts force to the substrate via adhesion sites which link
the actin filament to the substrate. We assume that F-actin is bounded to the adhesion
sites and that the filament slides with an approximately constant velocity v relative to
the substrate. Then frictional force is exerted to the substrate. Hence, we take friction
as external force responsible for cell movement and set

F ext = −ξv, (3.40)

where ξ denotes the friction coefficient. In general, the friction coefficient may depend
on the sliding velocity v. We assume that |v| is small compared to L/τb, where L stands
for the typical length of a focal adhesion molecule and τb stands for the binding rate of
focal adhesions to F-actin. Then we may treat ξ as a constant, see [46].
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Active Force F act denotes the actively generated force due to AMC dynamics. The
active force is thought to be generated by two components. F-actin treadmilling at the
leading front generates a protrusive force F tread and myosin mediated contractions of
the AMC generate a trailing force F cont of the posterior:

F act = F tread + F cont.

F-actin treadmilling occurs in the lamellipodium ΩL
t . Based on the observation that

F-actin treadmilling propels the cell front forward with constant speed [39, 91–93], we
assume that the generated force due to F-actin treadmilling is constant and points
towards the leading front:

F tread := −ζF1{a≥athr}p, (3.41)

where ζF is a positive constant. The mapping [(t, x) 7→ 1{a≥athr}(t, x)] is the indicator
function of the subdomain ΩL(t) on Ω(t) defined by

1{a≥athr}(t, x) =

1, if a(t, x) ≥ athr

0 otherwise.
(3.42)

The retraction of the cell body ΩB
t is mediated by AMC contractions due to myosin

motors [46, 85, 94]. Myosin motors crosslink neighbouring F-actin and exert contractile
force on the network due to conformational changes [23]. We assume that the contractile
force acts perpendicular to the direction of F-actin polarity. Since the polarity field in
ΩB
t is zero, Fcont vanishes in ΩB

t :

F cont := 0 on ΩB(t).

3.5.3 Boundary values

F cont is zero in the cell body. On the boundary ΓBt , however, follows from (3.36) that
perpendicular contractile force points in the direction of the inward normal vector. If the
density of myosin motors bound to F-actin is high, we expect a high directional force.
Moreover, we assume that the contractile force is zero if the cell is at rest. The simplest
ansatz satisfying these requirements is to set Fcont proportional to mF (wa)−mF (w0a0).
From (3.30) follows

F cont := −ζB1{a<athr}K5(wa− w0a0)n on Γ(t) (3.43)

where ζB is a positive constant and [(t, x) 7→ 1{a<athr}] is the indicator function of ΓB(t)
on Γ(t) defined analogously to (3.42).
We assume that the membrane confines the AMC at the boundary. Hence, two addi-
tionally forces are thought to be dominant on Γt: A curvature induced force Hel due
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to bending rigidity of the membrane and an elasticity-related force S due to membrane
tension. Force balance on the boundary formally leads to

η
(
∇v + (∇v)T

)
· n− (Π−Π0)n = F cont +Hel + S on Γ(t), (3.44)

where Π0 denotes the atmospheric pressure outside of Ωt. We define the curvature
induced force Hel by

Hel := γm1 (κm − κ0)n.

The parameter γm1 is a material constant and κm(t, x) represents the mean curvature in
x ∈ Γt. Since the membrane is a lipid bilayer, we assume that it possesses a spontaneous
curvature κ0. Thus, the curvature induced force is zero if Γt has the curvature κ0 [95].
It seems biologically reasonable that for a resting cell holds κm = κ0. Hence, we take
for κ0 the curvature of the initial boundary Γ0, i.e. κ0 = 1/R0.

Remark 3.3. In a two-dimensional spatial setting the mean curvature reduces simply
to curvature. Let (Xt(s), Yt(s)), s ∈ [0, 1), be a parametrization of the boundary Γt in
cartesian coordinates, then the curvature κm(x) in x = (Xt(s), Yt(s)) can be written as

κm(x) = dsXt(s)d2
sYt(s)− d2

sXt(s)dsYt(s)
(Xt(s)2 + Yt(s)2)

3
2

.

We hypothesize that the elastic stress acts in the normal direction of the cell boundary
Γt and is spatially homogenous in Γt. We set

S = −γm2 |Γt|n = −γm2
∫

Γt
1 ds n.

We assume that the resting cell corresponds to the equilibrium of the mechanical system.
Thus, we obtain −γm2 = Π(a0)

|Γ0| . The term S contributes to the stretching resistance due
to wrinkles in the outer boundary of the membrane. Mathematically it presents a simple
means to prevent the model cell from unrestricted swelling. In a more comprehensive
model unrestricted swelling may be limited by more factors as e.g. volume conservation.
In summary, we obtain for the velocity field the boundary condition

η
(
∇v + (∇v)T

)
· n = −ζB1{a<athr}K5(wa− w0a0)n+ γm1 (κm − κ0)n

−γm2
(∫

Γt
1 ds

)
n+ (Π−Π0)n.

(3.45)

3.5.4 Membrane tension

As in [14, 15] we suppose the membrane to be an isotropic medium with linear elasticity
and define the membrane tension τ to be proportional to the deviation of the cell surface
area from its value at rest. We denote by |Ωt| the surface area of Ωt. Then, for membrane



Chapter 3. Model Equations 44

tension holds

τ ∝ |Ωt|
|Ω0|

= 1
πR2

0

∫
Ωt

1 dx,

where R0 is the radius of the cell at rest. In the model we consider a normalized version
of membrane tension:

τ := 1
πR2

0
|Ωt|.

An increase in membrane tension is supposed to lower the Rac activation rate. On the
other hand, we supposed that an increase in tension promotes RhoA activation. In the
simplest conceivable case these requirements are satisfied by

h1(τ) := −α1(τ − 1) + h0, h2(τ) := α2(τ − 1) + h0,

where α1, α2, h0 ≥ 0 are positive constants.
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3.6 Model equations

We summarize the model equations.
The model is a spatially two dimensional projection of the cell to the flat substrate from
a top view. For fixed R0 ∈ R+ the initial domain describing the shape of this domain
at time t = 0 is given by

Ω0 =
{
x ∈ R2 : ‖x‖2 < R0

}
.

The domain can be convected by a velocity field v which is induced by an actin flow.
At time t > 0 the domain Ωt is defined as the inner of the boundary Γt, where Γt has
to be determined from the Stefan condition

Vn = v · n, on Γt.

The model can be subdivided into two units, whose equations will be consecutively
displayed:

1) Reaction-diffusion equations (modelled in Section 3.4),

2) Cytoskeletal mechanics (modelled in Section 3.5).

Let I ⊂ R+ be an open time interval starting at t = 0. Let n = nt be the outward
oriented unit vector on Γt. Symbols that are not explicitly mentioned in the following
are fixed parameters and are listed in Section 4.2.

1) Reaction-diffusion equations. Let u, w, a, b be the concentration of active Rac,
active RhoA, F-actin, G-actin, respectively. The spatiotemporal dynamics are given by
the equations

∂tu−Du∆u− div(uv) = f1(τ, u) on Ω(t),

∂tw −Dw∆w − div(wv) = f2(τ, u, w) on Ω(t),

∂ta−Da∆a− div(av) = g(a, b, u) on Ω(t),

∂tb−Db∆b− div(bv) = −g(a, b, u) on Ω(t),

(3.46)

where the reaction functions on the right hand side are

f1(τ, u) = h1(τ)
(
k1 + γ1u

2

K1 + u2

)
− δ1u,

f2(τ, u, w) = h2(τ)
(
k2 + γ2w

2

K2 + w2

)
− δ2u

2

K3 + u2w,

g(a, b, u) =
(
k3 + γ3u

K4 + u

)
b− k4a.

(3.47)
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The impact of tension in the activation functions is

h1(τ) = −α1(τ − 1) + h0, h2(τ) = α2(τ − 1) + h0,

where α1, α2, h0 ≥ 0 are positive constants. The boundary conditions are

(Du∇u+ uv) · n = 0 on Γ(t),

(Dw∇w + wv) · n = 0 on Γ(t),

(Da∇a+ av) · n = 0 on Γ(t),

(Db∇b+ bv) · n = 0 on Γ(t).

(3.48)

The initial conditions are determined by the homogenous steady state of (3.46) on Ω(0) =
{0} × Ω0. The initial conditions are denoted by

u0, w0, a0, b0.

Recall that f1(τ0, u) = 0 has three homogenous solutions for u−(τ0) < um(τ0) < u+(τ0).
As initial condition, we take u0 := u−(τ0). The conditions on the remaining reaction
functions then imply that w0, a0, b0 are unique.

2) Cytoskeletal mechanics. Let v(t, x) : Ω(t) → R2 be the velocity field. In the
bulk, the velocity field has to be determined by

η∆v + η

2∇
⊥rot(v)− ξv = ∇Π + ζF1{a≥athr}p, on Ω(t), (3.49)

where

Π = Π(a) = K6
θ

((
a

a0

)θ
− 1

)
+ Π0. (3.50)

The polarity field p has the values

p =


n on ΓL(t),

−n on ΓB(t),

0 on ΩB(t),

and on ΩL(t) the polarity field p is defined by

p(t, x) =

n(t̃, x), if P (t, x) 6= ∅,

0, if P (t, x) = ∅,

where P (t, x) := {t′ ∈ R+|t′ < t, x ∈ ΓLt′}, t̃ := supP (t, x), and n(t̃, x) denotes the
outward unit vector in x ∈ ΓL

t̃
.
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On the boundary Γ(t), the velocity field has to satisfy

η
(
∇v + (∇v)T

)
· n = −ζB1{a<athr}K5(wa− w0a0)n+ γm1 (κm − κ0)n

−γm2
(∫

Γt
1 ds

)
n+ (Π−Π0)n.

(3.51)

Membrane tension is given by

τ := 1
πR2

0
|Ωt|.

In particular, the initial membrane tension is τ0 = 1.

3.7 Discussion

We derived a simple model for mechanochemical cell polarization that considers Rho
GTPase activation as a mediation process for directional F-actin polymerization and
myosin-II-F-actin complex formation. The model contains a mechanical description
of the AMC-layer which induces morphological changes and directional movement if
F-actin polymerization and myosin-II-F-actin complex formation is triggered. In the
model morphological changes affect membrane tension. The activation kinetics for the
considered Rho GTPases are assumed to be dependent on membrane tension.
In Chapter 5 a heuristic explanation for the patterning mechanism of the model is
given. In Chapter 4 the simulation results of the model in response to spatiotemporal
perturbations are presented. Here, we briefly discuss the model assumptions with respect
to their biological relevance.

Layer approximation The model geometry Ωt describes the contact surface between
the cell body and the substrate. The contact surface is considered as an effectively two
dimensional sheet consisting of the plasma membrane at the basement. In the model,
shape changes and movement of Ωt are induced by the Rho GTP mediated material flux
of F-actin. The layer approximation presented in Section 3.2 is adequate if, compared to
the thickness of the layers, the normally directed diffusion in each layer is very small. In
Section 3.2.1 we argued that normally directed diffusion in the layers is highly restrained
due to the structure of the AMC and the plasma membrane. We suppose that plasma
membrane located diffusion in the tangential direction is unaffected by the thickness
of the membrane since membrane based Rho proteins are bound to receptor proteins
that are anchored in the membrane. Variations in the thickness of the membrane may
not affect lateral diffusion of the anchored protein complexes. Considering the diffusion
properties in the AMC with vanishing thickness is more complicated. Although it is
conceivable that the horizontal alignment of the polymers in the network has a less
restraining effect for tangentially directed diffusion than for normally directed diffusion,
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it is likely that also diffusion in the tangential diffusion is restrained due to the effects of
densification. In the extreme case, where tangential diffusion is degraded by the same
order as normal diffusion, we expect for the limit ε→ 0 of the layer-approximation that
also the tangential diffusion component vanishes. Thus, the modelled spatiotemporal
reaction dynamics in the AMC (which are the actin dynamics) are characterized by
convection-reaction equations. This, however, is not a limitation for the patterning
process. In the next chapter we will describe the patterning process in the case, where
actin concentrations are controlled directly by spatiotemporal changes of active Rho,
and in particular where the diffusion of actin is set to zero. Therefore, we expect that
the model would lead to similar characteristics if the tangentially directed diffusion in
the AMC is drastically reduced.

GTPase assumptions The reaction functions for Rac and RhoA base the observation
that Rho GTP cycles between an inactive and active state [13]. Based on the known
GEF complex formation in the Rho-activation pathway we derived, similarly as in [8, 25],
an autocatalytic activation term for Rac and RhoA. According to experimental findings
[35], we include that active Rac is inhibitory for RhoA activation by suggesting that Rac
activity affects the deactivation rate of RhoA. Furthermore, we assumed that tension
inhibits Rac- and promotes RhoA activation. The first assumption is supported by
experimental findings [11]. The second assumption is hypothetical. However, due to the
structural similarity within the family of small GTPases, it is conceivable that changes in
tension also may affect RhoA. Moreover, it has been shown that microinjection of active
Rac in Swiss 3T3 fibroblasts leads to immediate changes in lamellipodial dynamics and
then, after a delay, to RhoA-dependent induction of F-actin-myosin-II complex formation
[84]. Due to the hypothesized tension impact on RhoA, our model captures this motif via
mechanical signal transduction: RhoA activity lowers membrane tension by promoting
the contraction of the cell. A decrease in tension, in turn, promotes Rac activation.
Although we only model a very limited set of variables responsible for Rho activation,
we consider the modelled characteristics mentioned above as biologically reasonable.
However, a crucial simplification is the treatment of the concentrations u2 and w2 of
inactive Rac and inactive RhoA as constants. This model assumption has primary
numerical reasons. Necessary for the patterning mechanism is the existence of a domain
D ⊂ R2 such that the dynamical system

du1
dt

= f1(τ, u1, u2)

is bistable for any (τ, u2) ∈ D. The determination of D and the required parameters
for the model is numerically very expensive. By setting u2 to a constant, the fitting of
the system is tremendously simplified. We conjecture that the model is able to expose
similar characteristics if u2 is modelled explicitly. However, in this thesis, we confine
ourselves to the cases in which u2 is kept fixed.
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Actin polymerization assumptions The actin kinetics are subjected to rough sim-
plifications. The model only considers two types of actin, G-actin and F-actin that can
interconvert into each other. Intermediate conversion steps as nucleation, elongation,
and cofilin mediated dissoziation were neglected. Furthermore, we neglected the whole
cascade of downstream effectors of Rho GTPases for the actin machinery, containing the
Scar/WAVE complex and Arp2/3. This traces back to two reasons: First, the course of
events starting from Rho signalling and ending by actin polymerization are very complex
and not completely understood yet, cf. [48]. An in-depth-modelling of the contained cas-
cades and subprocesses would go beyond our scope. Second, the model gives an account
how mechanical and chemical signalling units need to interplay in order to achieve robust
polarity. An heuristic model approach of F-actin dynamics avoids the danger of mak-
ing predictions that are based on wrong conditions. Our appraoch provides a general
framework that can be extended to more complex models. The patterning mechanism
requires an increase of membrane tension due to changes of the cell morphology. How
these changes are achieved in the mechanical modelling of the AMC is subordinate.
It should be stressed that the particular choice of the kinetics for both, Rho activation
and actin filamentation, is to a wide extent arbitrary. More complex kinetics could be
implemented easily as long as they do not contradict the conditions listed in Section 5.4.

Assumption for cell mechanics Our model of cytoskeletal mechanics is phenomeno-
logically and bases loosely on active gel theory [85]. Therein G-actin monomers are
treated as a sol and the cross-linked network of actin filaments is characterized by a
viscoelastic material. The active gel approach captures certain experimentally observed
features of actin networks: On short time-scales, the mechanical response after a per-
turbation of the network is elastic with a shear modulus E in the range of 103 − 105 Pa
[88]. On longer timescales, the actin network flows with a finite viscosity η of the order
100 Pa s [89].
The rheologic model which is used to describe the mechanical properties of the AMC
bases on the Maxwell model. Our model contains a very basic and simplistic description
of the AMC’s rheology, were features as ATP consumption, the observed retrograde
actin flow [46], filament stiffness and filament alignment induced polarity are neglected.
A major simplification is that our model neglects the elastic response at short time
scales. Since the mechanism only relies on a protrusion-retraction based generation of
membrane tension, the mechanism may still work if a more complex representation of
ACM mechanics is included in the model. However, a viscoelastic material might endow
the model to exhibit additional biologically relevant features. We will reconsider this
point in the summary given in Chapter 6.
The implementation of the boundary force terms play, apart from its biological moti-
vation, a supporting role for the patterning mechanism: Curvature force acts for the
polarized cell as a restoring force that drags the cell back into its spherical resting state,
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if the Rho activity pattern erase. This induces a reset of the model cell and gives the
cell the ability to remain re-excitable. This will be numerically verified in Chapter 4.



Chapter 4

Simulation

In this chapter the simulation results for the model listed in Section 3.6 are presented.
The model at steady state is perturbed by a local stimulus that mimics an external
signal.

4.1 Stimuli repertoire

An external stimulus increases activation of proteins such as Rho GTPases by up-
regulating the GEFs that promote Rho GTP activation. To model the external stimu-
lus, we superimpose an additional activation function fS perturbing Rac dynamics (by
adding to the first equation in system (3.46)). We suggest that stimulus induced ac-
tivation recruits inactive Rho up to a certain level uact as long as (uact − u) > 0 and
becomes inefficient as soon as this concentration is exceeded:

fstim(t, x, u) = kstim(t, x)(uact − u),

where kstim(t, x) is the increased rate of Rac activation due to an external signal. The
threshold uact is set to the value that u adopts at the wave front, provided the system
is excited.
Depending on the nature of the stimulus, the rate kstim(t, x) may be space- and time-
dependent. In the simulations kstim = kl

t, kstim = kr
t , and kstim = kt

t are used. Each
stimulus affects approximately 10% of the cell for a duration of t seconds. The super-
scripts l, r, t indicate that the stimulus targets the cell at the left, right, and top of the
cell, respectively.

Input stimuli The threshold uact is set to the value that u adopts at the wave front,
provided the system is excited. Under the default parameters listed in Table 4.1 this

51
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value is uact = 1. We define

sT (t) =


1
4 + 1

8(1 + cos(πt/T )) if 0 ≤ t ≤ T,

0 otherwise.

We set for any t ∈ I

xl := min{x1 ∈ R : (x1, x2) ∈ Ωt},

xr := max{x1 ∈ R : (x1, x2) ∈ Ωt},

yt := max{x2 ∈ R : (x1, x2) ∈ Ωt},

and L(t) := diam (Ωt). We define

kt
T (t, x) := sT (t)

(
1 + cos

(
x2 − yt
L(t)

))
1Dt(x1, y2),

and for j = l, r

kjT (t, x) := sT (t)
(

1 + cos
(
x1 − xj
L(t)

))
1Dj (x1, x2),

where

Dt := {(x1, x2) ∈ Ωt : 0 ≤ yt − yl ≤ L(t)/5},

Dl := {(x1, x2) ∈ Ωt : 0 ≤ x1 − xl ≤ L(t)/5},

Dr := {(x1, x2) ∈ Ωt : 0 ≤ xr − x1 ≤ L(t)/5}.

The stimuli kltt and kldt whose impact will be discussed in the text below are defined as
follows. For any t ∈ I we set

m = 1/2(min{x1 ∈ R | (x1, x2) ∈ Ωt}+ max{x1 ∈ R | (x1, x2) ∈ Ωt})

and define subsections

Dlt := {(x1, x2) ∈ Ωt : x2 >= ylt(x1)}, Dld := {(x1, x2) ∈ Ωt : x2 <= yld(x1))},

where

ylt := x1 − (m−
√

2R0 − 1), ylu := x1 − (m−
√

2R0 − 1).

The respective stimuli are given by

kjT (t, x) := sT (t)1Dj (x1, x2), j = lt, ld.
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4.2 Parameter setting

Macroscopic parameters: Neutrophil granulocytes have an average diameter of 12−
15µm in peripheral blood smears. When analyzing neutrophils in suspension, neutrophils
have an average diameter of 8.85µm [96]. As a compromise, we take the radius of the
resting cell Ω0 to be R0 = 5µm.
Rho GTP related parameters: Following [97] the diffusion coefficients of the active
Rho GTPs are set to Di = 0.1µm2/s (i = u,w). Similar values have been measured for
membrane bound Cdc42 in saccharomyces cerevisiae [98].
The remaining parameter considering Rho dyniamics are fitted to the model: GEF
hydrolysis is responsible for Rho inactivation. Thus, we take for the inactivation rate
δi = 1s−1 (i = 1, 2). As in [8], we assume that GAP hydrolysis matches in magnitude
GEF activation by setting γ1 = 1s−1, γ2 = 2s−1. Again, following [8] , we take the
baseline activity of GEF to be ki = 6.7 · 10−2s−1, i = 1, 2. The dissociation constant Ki

(i = 1, 2, 3) has the same unit of measurement as u,w, the concentration of active Rho.
Here are the occurring concentrations normalized, such that Ki = 1µmol/dm2 (i = 1, 2),
and K3 = 0.25µmol/dm2. Then, the homogenous steady state concentration of active
Rho GTP is u0 = w0 = 0.25µmol/dm2.
Actin related biochemical parameter: The diffusion coefficient of G-actin is set to
Db = 10µm2s−1. This value is a compromise with respect to reported values for G-actin
in the cytoplasm, ranging from 3 to 30µm2s−1 [99–101]. The diffusivity of F-actin is
a model assumption for numerical reasons. We assume the diffusion coefficient of F-
actin to be significantly smaller than Db by taking Da = 0.01µm2s−1. We deal with a
normalized version of the F-actin dynamics and set K4 = 1µmol/dm2.
Mechanical parameter: We modelled the AMC as a purely viscous material. From
a more realistic point of view, however, the AMC can be characterized as a viscoelastic
material. The actin gel is a very soft material, and its elastic modulus is in the range
of E ≈ 103-104 Pa [102]. At longer time scales, actin flows and has a finite viscosity η.
In in vitro experiments on actin, the characteristic viscoelastic relaxation time t∗ where
actin starts to flow is on the order of 102-103s [102]. In the simplest viscoelastic model
proposed by Maxwell, the viscosity is related to the elastic modulus and the viscoelastic
relaxation time by the so-called Maxwell relation η = Et∗[103]. Although we neglected
the elastic character of the AMC we take these findings into account and set the dynamic
viscosity to η = 107Pa · s.
The friction coefficient strongly depends on the surface the cell adheres to. Micropipette
experiments show that the frictional force of an actin gel on a 2µm diameter polystyrene
bead coated with an activator of actin polymerization is on the order of 10nN [104]. We
assumed the frictional force per unit area to be proportional to the migration velocity.
Thus, by taking the mean migration speed v = 0.4µm/s of neutrophils [39] we obtain that
the friction coefficient is of the magnitude 107 Pa s/m. The reported friction coefficient
of an actin gel on a latex bead is of the magnitude 1010 Pa s/m [105]. As a compromise
we set the friction coefficient to ξ = 3 · 108Pa · s/m. Π0 is set to the normal pressure
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Quality Value Source Quality Value Source
R0 5 µm [96] k1, k2 6.7 · 10−2 s−1 [8]
Du, Dw 10−1 µm2/s [97, 98] k3, k4 6.3 s−1 ?

Da 10−2 µm2/s ? K1, K2, K4 1 µmol/dm2 [8]
Db 10 µm2/s [99–101] K3 0.25 µmol/dm2 ?
δ1, δ2, γ1 1 s−1 [8] K5 0.566 ?
γm

1 75 ? K6 9 · 104 Pa ?
γ2 2 s−1 [8] h0 1.987 ?
γ3 4.3 s−1 ? α1 2.1 ?
α2 11.92 ? ξ 3 · 108 Pa · s/m [104, 105]
ζF , ζb −2.1 · 108 Pa ? athr 0.938 µmol/dm2 ?
θ 3 ? Π0 105 Pa [106]
η 107 Pa · s [102, 103]

Table 4.1: Parameter values considered in the model simulations. ? = fitted model
parameter.

Π0 = 105Pa [106].
The remaining parameters displayed in Table 4.1 are fitted model parameters.

4.3 Simulation results

Polarization characteristics

At first, we demonstrate that the model cell adopts a pinned wave front in u and w in
response to a suitable stimulus and captures the features maintenance and amplification
mentioned in Section 1.2.1. Therefore, we consider an initially unpolarized cell. In
the model the cell is unpolarized if the mathematical system is at steady state. Then,
the cell is geometrically represented by the spherical domain Ω0, whose center is the
origin of the x1-x2 plane. Figure 4.1 a displays a sequence of the evolution of the Rac
distribution and of the cell shape in response to a local, transient stimulus applied at
the left-hand side. The stimulus is modelled by kl10. The computational results show
that the model cell responds to the stimulus by an increase in u at the front from the
initial concentration u0 = 0.25 up to umax = 1.2 within the first 10 seconds. After
10 seconds the stimulus expires and u at the front settles down to u ≈ 1 within 40
seconds. This characteristic is maintained during the simulated time of 200 seconds.
At the rear of the cell u remains throughout the simulated time close to its steady
state value. Increased Rac activity induces an increase in membrane tension and locally
suppresses RhoA activation. Conversely, membrane tension promotes RhoA activation.
Figure 4.1 b displays a sequence of the induced evolution of active RhoA. Therein, the
concentration of active RhoA, w, at the rear increases from the initial concentration
w0 = 0.25 up to wmax = 1.5 while w at the front decreases to wmin = 0.02 in the first 10
seconds and stabilizes at w = 0.15 after the stimulus is removed.
Figure 4.1 c displays the concentration profile of u along the central axis {x2 = 0} at
different times. The horizontal axis indicates the percentage distance from the leading
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front in relation to the cell length at each time t. The local rise in u is spatially amplified
by a sharp wavefront. The graph at t = 0 displays the concentration profile of u induced
by the stimulus kl10. A comparison of the profiles reveals that the initial profile is
amplified up to the threefold on longer timespans. We performed test simulations up
to t = 2000 seconds. Despite of slight shifts in the concentration and broadness of the
wavefront, the profile in u adopts a constant wave-shape over the simulated time. The
dotted line at x = 27% represents the mean horizontal axis of the inflection points of
the waves.
In Section 5.5 we conjectured that the wave-speed oscillates relative to the moving
domain. The oscillation of the wave-plateau displayed in Figure 4.1 c supports this
hypothesis.

Actin dynamics

Figure 4.3 a and b display the evolution of the F-actin distribution a(t, x) and the
G-actin distribution b(t, x) in response to stimulus kl10, respectively. A comparison
with Figure 4.1 a shows that the spatial increase of a(t, x) co-locates with the increase
of u(t, x). The delay between the half-value time of u(t, x) and a(t, x) at the front
is approximately 6s. While the stimulus is active, the F-actin concentration a(t, x)
increases at the front, starting from its initial value a0 = 0.93 up to the maximal value
a(t, x) = 1. Afterwards, the concentration at the front settles at a(t, x) = 0.96 and
remains stable from t = 150s on. At the back of the cell a(t, x) remains approximately
constant.
Changes in a(t, x) cause changes in b(t, x) due to mass conservation and a slow diffusion.
At the homogenous steady state the G-actin concentration is b(0, x) = 0.93. Since
a(t, x) increases at the front, b(t, x) decreases to 0.85 at the front within 50s while b(t, x)
in the cell body remains approximately constant. The profile is maintained, but the
concentration at the front slightly increases to b(t, x) = 0.86 within t = 150.

Shape generation

The increased Rac activity locally promotes actin filamentation segmenting Ωt in ΩL
t

and ΩB
t (see Figure 4.3 a). The actively generated force Ftread acts outward and per-

pendicular to ΓLt , which leads to an even swelling of ΩL
t . In ΩB

t , however, the increased
concentration of RhoA generates an inwardly directed force on ΓBt (see Figure 4.2 c).
The inwardly directed force tapers the back of the cell. In combination, the joint forces
effectuate a morphological change of the whole cell: The spherical resting shape trans-
forms in response to a stimulus to a cone. In the simulation, a morphological steady
state is adopted within 150s as displayed in the third panel of Figure 4.1 a.
The evolution of the shape undergoes three subsequent phases, an elongation phase
(0-80s), a broadening phase (80-160s), and a stable phase (> 160s) (see Figure 4.5 a).
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Figure 4.1: Polarization plots. The scale is in µm. The arrows indicate the regions of
the applied stimuli. a, b: Polarization behavior and morphological change of the cell
in response to kl

10. Panel a (b) displays the distribution of active Rac (active RhoA).
c: Distribution of u in relation to the cell length at different times. The graph at t = 0
shows the concentration profile of u induced by the stimulus kl

10. d: Redistribution of
u and morphological changes in response to repolarization. e: Two different located
stimuli initiate competing fronts. The front created by the longer lasting stimulus is
maintaned. f : Shape change and Rac erasure in response to an external increase in

tension. g: Cell swelling due to decoupling of tension mediated Rac inhibition.
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Figure 4.2: Vector field plots. The scale size is in µm. Panel a displays the generation
and alignment of the polarity field p. Panel b (resp. c) displays the evolution of the
pressure gradient ∇Π (resp. active force Fact). Panel d displays the evolution of the

velocity field v.

In the first phase, the cell elongates by 35% due to a rapid increase of Ftread pointing
towards the cell front. The elongation increases the surface area by ∼ 10% and thus
increases membrane tension. In the broadening phase the distribution of Ftread is al-
most constant, while the cell contracts due to an increase of Fcont. This results in an
increase of the width of the front by 18% and a decrease of the length by 12%. In the
last phase, the system stabilizes and length and width settle at ∼ 12µm and ∼ 10µm,
respectively. Throughout the broadening and the stable phase the surface area remains
approximately constant (see Figure 4.3 e).
After t = 80 the cell adopts a constant migration speed of about v∗ = 0.19µm/s that is
maintained throughout the duration of the simulation.
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Repolarization characteristics

We tested if the already polarized model cell has the ability to become reexcited, i.e.
to respond to new incoming stimuli with reorientation. This refers to feature 3) listed
in Section 1.2.1. We prepolarized the model cell by stimulus kl10. At time t = 150s
a new stimulus kr40 at the opposite site of the cell is applied for 40s. In Figure 4.1 d
a sequence of the simulation results is displayed. The stimulus triggers a new wave
front in u on the right hand side. Consequently, the two opposing fronts generate an
increase in membrane tension due to the triggered opposed F-actin treadmilling (see
Figure 4.3 e). The increasing membrane tension erases the wavefront located on the left
side within 15s after the new stimulation of the cell. The new wavefront on the right
persists, since there the stimulus is still maintained. The erasure of the old front in u
leads to a local increase in w, since u suppresses w. This induces an increased force
pointing to the inward normal at the old front, which reduces membrane tension. In
the simulations membrane tension approaches a steady state within 40s after the new
stimulus was applied. The cell adopts an intermediate dumbbell-like shape. Afterwords
the cell readopts a "V"-shape at t = 80s. The model cell remains in this shape and u
and its downstream maintain their newly gained wavefronts.

Resolving conflicts

Referring to feature 4) in Section 1.2.1, we tested whether the model cell is capable of
the resolution of neighboring fronts. Two competing stimuli, kl30 and kt10, were applied
perpendicular to each other to the model cell. Both stimuli individually have the ability
to polarize the model cell. However, the left-handed stimulus kl30 lasts 20s longer than
the stimulus kt10 at the top. Figure 4.1 e displays the behavior of the model cell if both
stimuli were applied. The arrows indicate the targeted locations of each stimulus, kl30
on the left and kt10 at the top. The stimuli trigger two local fronts in u. Thus, in turn,
membrane tension increases by a factor of 1.3 within 15s (see Figure 4.3 e). The increase
globally lowers the active Rac concentration u. This leads to an expiration of the wave
front generated by the shorter lasting stimulus as soon as kt10 ends. Simultaneously,
membrane tension settles down at τ ≈ 1.1. Hence, the wavefront generated by the
longer lasting stimulus is maintained. The maintained wavefront causes the model cell
to migrate along the negative x1-direction. The formerly crooked shape of Ωt settles
back to the normal "V"-shape beginning at t = 20s and approaches a morphological
steady state at t = 150s.
We also tested whether the model cell is capable of the resolution of opposing fronts. If
one stimulus lasts longer than the other, the result is similar to the described behavior
above: The wavefront induced by longer lasting stimulus is maintained and the other
wavefront erases (see Figure 4.3 c). Moreover, we tested the behavior of the cell in
response to two qualitatively identical stimuli applied at different locations (see Figure
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4.3 s). In this case, even for closely located stimuli, the competing wavefronts erase each
other due to the generation of membrane tension and the cell readopts the homogenous
steady state.

Membrane tension confines active Rac to the leading front.

During the simulated time, the plateau of increased u remains confined to the leading
front of the model cell. We claimed membrane tension τ to be responsible for the
confinement. To exclude other possible subliminal factors that might be responsible for
the confinement, we performed simulations in which hi(τ(t)) (i = 1, 2) were replaced
by hi(τ0), where τ0 = 1 denotes the initial membrane tension of the resting cell. The
simulated cell shape and active Rac distribution after 100 seconds is displayed in Figure
4.1 g. The plot reveals that the Rac activity wave is not stalled and continued to traverse
the model cell from front to back. This is accompanied by a swelling of the cell: Since
u is homogeneously increased after 100 seconds, the F-actin concentration exceeds the
threshold athr in the whole cell. The swelling is generated by the pushing force due to
treadmilling which acts in this scenario on the whole boundary of the whole cell.
Furthermore, we tested whether a sufficient increase in membrane tension is capable to
erase the Rac activity front in a polarized cell. In response to the stimulus kl10, tension
τ peaks at τmax = 1.18 at time t = 13.75s. (See Figure 4.3 e). To test the behavior of
the cell when the tension exceeds this value due to external effects, we stimulate the cell
by ks and artificially set τ = 1.25 at t = 50 for 10s. Figure 4.1 f displays the response
of u and of Ωt. The numerical experiment shows that the increased front of u erases.
Thus, the downstream w, a, and b also approach a spatially homogenous state while the
mechanical system tends to an equilibrium. The shape at equilibrium is Ω0, which the
cell adopts at t = 150s.

Competing wavefronts

Figure 4.3 c displays the evolution of the cell shape and the redistribution of Rac in
response to the oppositely applied stimuli kl30 and kr10. The behavior is similar to the
case described in 4.1 e. Each stimulus triggers a wavefront of active Rac. The cell starts
to expand due to oppositely directed F-actin treadmilling which increases membrane
tension. The increase leads to an expiration of the wavefront created by kr10, the shorter
lasting stimulus, within 15s and the increase of contractile force reduces the cell surface.
Thus, membrane tension lowers. Due to the decreased membrane tension, the front
created by kl30 is maintained. The cell adopts a steady ”V ”-shape within 80s.
Figure 4.3 d displays the evolution of the cell shape and the redistribution of Rac in
response to the stimuli klt10 and kld10. As in Figure 4.1 e the stimuli are perpendicular
to each other, but in this case both stimuli have the same time course. The generated
wavefronts broaden the cell and induce a crescent shape. The broadening increases
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Figure 4.3: a – d. Polarization characteristics and morphological change in response
to different stimuli. The scale is in µm. The arrows indicate the regions of the applied
stimuli.Evolution of the distribution of F-actin (a) and G-actin (b). c. Two different
stimuli initiate competing fronts. The front created by the shorter lasting stimulus
expires. d. Two equally long lasting stimuli create competing fronts. Both fronts
erase due to an increase in tension. e. Time-versus-tension plot of the model in the
four different scenarios. Evolution of tension if the cell is polarized by the transient
single stimulus kl

10 (blue profile), two oppositely applied stimuli kl
30 and kt

10 (yellow
profile), two neighboring stimuli kld

10 and klt
10 (purple profile). The red profile displays

the evolution of the tension if an already to the left polarized cell is exposed to the new
stimulus kt

40.
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Figure 4.4: a. Polarization characteristics in response to the temporal maintained
stimulus kl

∞. b. Polarization characteristics in response to a 10s lasting spatially uni-
form stimulus. The concentration of Rac increases uniformly and uniformly generated
active force induces swelling. The cell reapproaches its resting state if the stimulus is
removed. c. Cell response to the stimulus kl

10 when the cell back locally fixed. The cell
elongates due the triggered protruding front. Increasing membrane tension induces the
Rac front to expire. d–e. Plots of the divergence div(v) and the rotation rot(v) in the

unit s−1, respectively.

membrane tension within the first 10s up to τ = 1.25, cf. panel e. This induces an
expiration of both wave fronts as soon as the stimuli are removed. The cell tightens and
tends back to its spherical steady state accompanied by a decrease of membrane tension.

Polarity in response to maintained stimuli

The model also generates polarity fronts in response to permanent stimuli. The behav-
ior of the cell shape and the distribution of active Rho in response to the permanent
stimulus kl∞ = limT→∞ k

l
T and in response to the transient stimulus kl10 are very similar.

The simulation result is presented in Figure 4.4 a. In response to two simultaneously
beginning stimuli, kl∞ and kr10 (resp. kt10), the cell forms a unique axis of polarity point-
ing towards kl∞. The front originated by kr10 (resp. kt10) expires. (Data not shown). The
model, however, is not capable of resolving conflicts and fails to produce interpretable
results if both of the simultaneously beginning stimuli are permanent.
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Cell swelling in response to spatially uniform stimuli

Some cell types exhibit adaptation in a uniform stimulus, that is, the cells generate
a persistent response to a gradient of chemoattractant, but transient response to a
temporal change in a uniform stimulus [7]. To a certain extent the model captures this
feature. In response to the spatially uniform stimulus

fstim(t, x, u) = (uact − u),

active Rac increases homogeneously and the model cell swells until the stimulus is re-
moved at t = 10s. Afterwards the cell returns to its resting state. The simulation results
are displayed in Figure 4.4 b.

Expiration of polarity in response to mechanical manipulation.

Suction experiments provide evidence that neutrophils with a polarized front depolarize
if the cell body is fixated to the substrate [11]. The protrusion of the front induces an
elongation of the cell which increases membrane tension. The increased tension regarded
to be responsible for the expiration of the Rac activity front.
We tested whether our model captures this feature. We virtually fixated the cell back
by setting the velocity v(t, x) to zero for x1 > 4 and stimulated the opposite side of the
cell by kl10. Figure 4.4 c displays the morphological response and the evolution of the
Rac pattern at selected times. The cell expands in the horizontal axis by a magnitude
of 1.5 within 60s. Simultaneously, the tension τ increases up to τ = 1.22. This induces
an expiration of the Rac activity front within 100s.

Behavior of the velocity field

The model cell migrates in the direction of an applied stimulus. At the generated cell
front ΩL

t the velocity field aligns almost parallel to the direction of the stimulus while
myosin mediated contractions in the back generate a velocity field perpendicular to the
boundary ΓB

t , see Figure 4.2 d. The flow is compressible. Thus, the divergence of the
velocity field is non-zero. In Figure 4.4 d the divergence of v with respect to the cell
domain is displayed at selected times. Since at the front holds a(t, x) > athr, the actively
generated force Fact(a) at the front is constant. Moreover, the slope of a(t, x) is flat at
the front, which implies that there the pressure gradient ∇Π(a) is small. The simulation
results show that there the divergence of v is close to zero. At the back of the cell the
active force vanishes apart from the boundaries and, due to the flatness of a(t, x) the
pressure gradient ∇Π(a) is small. According to the simulation results, the divergence of
v is also close to zero in this regions. Close to the transition zone, where a(t, x) − athr

changes its sign, the divergence adopts positive values if a(t, x) < athr and negative
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Phase IIPhase I Phase III

Figure 4.5: Evolution of cell length, Lmax, and cell width, Bmax if the cell is stim-
ulated by kl

10. The evolution can be divided into three subsequent phases: a phase in
which Lmax increases and Bmax decreases (Phase I), a phase in which Lmax decreases
and Bmax increases (Phase II), and a phase in which the deflections settle down (Phase

III).

values if a(t, x) > athr. The absolute value of the divergence peaks at t = 6s, where
|div(u)| = 1.21s−1.
We investigated the vorticity of the flow, see Figure 4.4 e. As to be expected for a slow
creeping flow [107], the rotation of the vector field rot(v) is with a magnitude of about
10−1s−1 very low. Vortices predominantly occur in the transition zone, where a(t, x) is
close to athr and in the periphery of ΩB

t . In the positive half space {x2 > 0} the vortices
are mainly clockwise, rot(v) < 0. In the negative half space {x2 < 0} the vortices are
mainly counterclockwise, rot(v) > 0.
The terms

∇⊥rot(v)

in (3.39) and
(∇v)T

in (3.44) are predominantly constitutive for the generation of vortices. We tested whether
we can neglect these terms by taking the equations

η∆v − ξv −∇Π = −F act on Ω(t),

and

η∇v · n = −ζB1{a<athr}K5(w − w0)n+ γm1 (κm − κ0)n

−γm2
(∫

Γt
1 ds

)
n+ (Π−Π0)n on Γ(t),

for the velocity field. The qualitative behavior of this system with respect to shape and
pattern generation remains the same. The quantitative differences in comparison to the
original model are minor. The simulation results for the case in which the operators
∇⊥rot(v) and (∇v)T are neglected will be presented more in detail in [108].
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b

a

Figure 4.6: Rac distribution and morphological changes in response to different stim-
uli. The arrows indicate the location of the applied stimuli. Panel a: Behavior of the
cell in response to the double stimulus defined by (4.1). Panel b:Behavior of the cell in

response to the linearly graded stimulus defined by (4.2) with (T, α) = (6, 0.5).

4.4 Limitations

The model exhibits several shortcomings. Many of them may be resolved due to addi-
tional assumptions, others are model specific. We briefly discuss three model specific
limitations.
There is evidence that spontaneous polarization in mammalian neutrophils is triggered
by fluctuations of RhoA [109]. However, due to its deterministic nature a limitation
of the model is that it does not cover stochastic effects like spontaneous polarization
in response to noise. An adaptation of the model to noise sensitivity would require a
coupling with a stochastic system as an upstream that translates stochastic inputs into
well-regulated signals. Another limitation is that the model is very likely not capable of
fusing neighboring wavefronts into one single front. We performed simulations in which
the cell is stimulated in two adjacent regions by taking

kstim(t, x) :=

k
l
10(t, x), if |x2| < 2/3,

0, otherwise.
(4.1)

Figure 4.6 a displays a sequence of the evolution of the cell shape and of the Rac distribu-
tion. Therein two neighboring wavefronts are generated, but do not coalesce. On the con-
trary, the activity fronts tear the cell in different directions until the increased membrane
tension induces an expiration of the front. We hypothesized that neighboring wavefronts
do not coalesce due to the very slow diffusion of active Rac and tested whether a fusion
occurs for increased values of Du. We took the values Du ∈ {0.5, 0.75, 1, 2.5, 5, 10}. For
Du = 0.5 the simulation result is similar to the formerly described case: The wavefronts
do not coalesce, but expire within 80s. For Du ≥ 0.75 both wavefronts extinguish signif-
icantly earlier. We conjecture that this dues to a failure of the patterning mechanism,
since the mechanism requires a sufficiently slow diffusion of active Rac. A biologically
reasonable modification that potentially endows the model with the ability to fuse neigh-
boring fronts aims at the explicit inclusion of inactive Rac. Inactive Rac might diffuse
faster than active Rac [97]. While active Rac is locally pinned, inactive Rac might be
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free to diffuse on a medium range and become activated at the periphery of the pinned
wave patterns. This would locally smoothen the patterns and may induce a fusion of
closely neighboring wavefronts.
In some experimental settings the lamellipodium of neutrophils often tends to remain
intact and cell migration follows a semicircular path (”U” turn) in response to a spatially
change of the stimulus [110, 111]. For this purpose we performed test simulations with a
spatially changing stimulus over time. However, we model was not capable to reproduce
this feature with an realistic account.
Finally, a limitation is that the cell requires for a stable polarization a stimulus which
spatially decreases superlinearly: We tested wether the model cell responds to linearly
graded stimuli. The linearly graded stimuli were defined by setting in fstim

kstim(t, x) := sT (t)α
(
x1 − xb
Lt

)
, (t, x) ∈ Ω(t), (4.2)

for fixed T > 0, α > 0. For the values (T, α)= (10, 0.5), (10, 0.3), (8, 0.8), (6, 1), (6, 0.5),
(3, 0.4), the cell only develops transient polarity patterns. Figure 4.6 b shows that the
cell area in response to a linearly graded stimulus is highly increased. This leads to
an expiration of active Rac. However, the transduction from a external gradient to
an interior signal via integrins is not well understood yet. It may well be that the
transmission from external linear gradients to interior signals acting on Rho GTP bears
nonlinear transformations. On a multicellular level, e.g., it has been shown that cells
can amplify shallow gradients by transforming them into steep local gradients [112]. We
conjecture that this also applies to a certain extent on a singular cell level.

4.5 Parameter dependance

The model equations can be subdivided into a mechanical and a biochemical part. The
mechanical part consists of equations (3.49) and (3.51). The biochemical part consists
of equations (3.46) and (3.48).
A qualitative requirement of the mechanical system is that the default resting state has
to be an equilibrium point. This assures the cells ability to readopt the default resting
state in the event of expired polarity.
Qualitatively, parameter variations in the mechanical system primary effect the shape
determination of the model cell. The plots b-e in Figure 4.7 display the horizontal and
vertical extension of the cell after t = 80s for parameter variations including viscos-
ity, pressure, treadmilling force, and contractile force, respectively. Viscosity: In the
parameter regime log(v∗) ∈ [−2, 1] the expansion of the cell along the horizontal axis
and the shrinkage in the vertical direction is almost linearly correlated to log(v∗). For
log(v∗) > 1 the cell shape transforms from the ”V ”-shape to an elliptic shape. We could
not achieve robust polarity patterns if log(v∗) > 1.5. Pressure: Changes in the pressure
coefficient in the regime log(Π∗) ∈ [−1, 2] have a minor influence on the cell shape. The
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Figure 4.7: Shape and motility dependance on parameter variation. Panel a: A
spherical model cell with parameters listed in Table 4.1 was stimulated by kl

10. The
contour displays the shape of the cell at t = 80s. The green line denotes Lmax, the
horizontal extension of the cell. The orange line denotes Bmax, the horizontal extension
of the cell. Panels b-e display the effect on Lmax and Bmax at t = 80s for variations of
a parameter p ∈ R, respectively. The symbols η, K6, ζF , ζB denote the parameters as
listed in table 4.1. Panel b shows the effect of variations if p is the viscosity coefficient.
η∗ is defined as η∗ := p/η. Panel c shows the effect of variations if the pressure factor
K6 is replaced by p. Π∗ is defined as Π∗ := p/K6. Panels d and e display the effect of
variations if ζF and ζB are replaced by p, respectively. ζ∗i is defined as ζ∗i = p/ζi for
i = F,B. Panel f displays the correlation between the movement velocity of the cell
at t = 80s and the intensity of active force if Ftread in (3.41) and Fcont in (3.45) are

replaced by F ∗actFtread and F ∗actFcont.

cell adopts a biologically unrealistic, bulky shape if log(Π∗) > 2. Treadmilling force:
The system is sensitive to changes in ζ∗F . If ζ∗F ≤ 0.25, the cell remains almost static
with a spherical shape. The Rac activity front expires within t = 100s. In the parame-
ter regime ζ∗F ∈ [0.3, 1.25] ζ∗F correlates almost linearly with L∗max while having a minor
influence on B∗max. If ζ∗F ≥ 1.5, the model cell adopts a biologically unrealistic cylindri-
cal shape. The polarity pattern, however, is still maintained for ζ∗F = 1.5. Contractile
force: For small parameters log(ζB) < −0.5 extinguishes the polarity within t = 100s.
The cell remains static and adopts a transient elliptic shape. If log(ζ∗B) ∈ [−0.5, 0.7],
Lmax is increasing until it adopts a plateau at log(ζ∗B) ≥ 0. Bmax slightly decreases
for log(ζ∗B) ∈ [−0.5,−0.25] and recovers for values log(ζ∗B) ∈ [−0.25, 0.7]. For values
log(ζ∗B) > 0.7, the cell adopts an elliptic shape and fails to maintain polarity.
Figure 4.7 panel f shows the migration velocity of the cell in dependance of the intensity
of active force. If F ∗act < 0.1, the cell remains motionless. If F ∗act > 0.1, there is an
almost linear relation between vmean and F ∗act.
While in the mechanical subsystem slight parameter deviations from the original cali-
bration primarily induce shape changes without influencing the polarization character-
istics, parameter variations in the biochemical subsystem may have a switch-like effect
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on the maintenance of the patterning mechanism. Although the particular choice of
the rate functions f1, f2, g is to a large extent arbitrary, a necessary qualitative fea-
ture of f1(τ, u) is its bistability with respect to u. More precisely, it is required that
[u 7→ f1(τ, u)] : R → R has a non-empty parameter regime [τ−, τ+] in which the dy-
namical system u′ = f1(τ, u) is bistable. While in the mechanical subsystem slight
parameter deviations from the original calibration primarily induce shape changes with-
out influencing the polarization characteristics, parameter variations in the biochemical
subsystem may have a switch-like effect on the maintenance of the patterning mecha-
nism. Although the particular choice of the rate functions f1, f2, g is to a large extent
arbitrary, a necessary qualitative feature of f1(τ, u) is its bistability with respect to u.
More precisely, it is required that [u 7→ f1(τ, u)] : R → R has a non-empty parameter
regime [τ−, τ+] in which the dynamical system u′ = f1(τ, u) is bistable.
An explanation and the contributing necessary conditions for patterning mechanism are
presented in Chapter 5.

4.6 Discussion

In this section we compare the simulation results to biological data.
In the Simulation part we demonstrated that the model cell adopts a pinned wave-front
in response to suitable stimuli and that polarization exhibits the demanded qualitative
features of maintenance and amplification, as presented in Section 1.2.1. We demon-
strated that in response to a single external stimulus an emerging wave-pattern of active
Rac predefines the cell front and that the concentration of RhoA is increased in the
back of the cell. F-actin is locally increased at spots of high Rac activity. Regions,
where the F-actin concentration exceeds a certain threshold where interpreted as the
lamellipodium. These simulation results coincide with experimental observations on the
polarization characteristics of mammalian neutrophils [113].
In the simulations the cell morphology changes due to the generation of the Lamel-
lipodium, characterized by a broad front and a tapered rear of the cell. We demonstrated
that simultaneously to the generation of the Lamellipodium directional cell movement
occurs. The movement approaches a constant speed within the first 80 seconds of about
v∗ = 0.19µm/s that is maintained throughout the duration of the simulation. In vitro
experiments suggest, that leukocytes in response to fMLP adopt a morphological steady
state within 2 to 3 minutes [110], which fits the time required by the model in very good
agreement. Moreover the mean migration speed obtained by the model is in a good
agreement with experimental measurements. The in vitro measured mean migration
speed for neutrophils in focal chemoattractant chambers is of the order 10−1− 100µm/s

[39].
We demonstrated that the model cell is sensitive to new incoming stimuli such that the
cell realigns towards new incoming stimuli. If the stimuli are applied at opposite ends,
the cell transiently develops a dumbell-like shape. The model cell repolarizes due to the
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dissolving of the lamellipodium at the former front and the lamellipodium reassembles at
the new, triggered Rac front. This coincides with experimental observations of prepolar-
ized and fMLP-reexcited neutrophils in cell chamber assays [114]. In other experimental
settings the lamellipodium of neutrophils often tends to remain intact and cell migration
follows a semicircular path (”U” turn) in response to a spatially change of the stimulus
[110, 111]. For this purpose we performed test simulations with a spatially changing
stimulus over time. However, the simulations revealed that our model cell lacks of this
feature. Thus, the model captures feature 2) presented in Section 1.2.1 to a certain
extent: Reversal repolarization is captured well, but only for special stimuli, while a ’U”
turn response to certain spatially variable stimuli is not achieved by the model.
To a certain extend the model cell is capable to resolve multiple-front conflicts by the
resolution of these multiple fronts into a single axis of polarity. However, we demon-
strated that the characteristic crucially depends on the design of the stimuli. If stimuli
of the same duration and intensity are applied at opposite ends of the cell, a depolariza-
tion of the cell may occur. In this event the cell readopts its predefined spherical resting
state.
In the simulations we validated that the Rac activity front is confined by membrane
tension. An artificial reduction of membrane tension induces spreading of active Rac
across the whole cell domain. On the other hand, we demonstrated that mechanical ma-
nipulations affect the polarization process. If one end of the model cell is kept fixed and
the other end is polarized, the cell elongates until membrane tension exceeds a critical
level which induces depolarization. This characteristic coincides with experimental ob-
servations in which polarized neutrophils depolarize if the cell body is highly elongated
by external mechanical manipulations [11]
We demonstrated that the model cell responds to a spatially uniform increased stimulus
by swelling. The cell readopts the spherical resting state if the stimulus is removed. Cell
swelling in response to a homogenous chemoattractant has been observed in cells like
budding yeast [7] and is not directly related to neutrophil polarization characteristics.
We addressed certain limitations of the model. The model does not exhibit noise sen-
sitiveness. The model does either not respond to noisy initial conditions at all or it
develops unrealistic polarity patterns. A further limitation is that the model is not
capable of fusing neighboring wave-fronts into one single front, which we consider as a
restriction for the demanded feature 4) in Section 1.2.1.
Finally, we demonstrated that the cell requires for a stable polarization a stimulus which
spatially decreases superlinearly. To obtain robust polarization in response to a linearly
decreasing stimulus, the stimulus has to be transferred into a superlinearly decreasing
signal. It is conceivable that the signal conduction from external linear gradients to in-
terior signals acting on Rho GTP yields a nonlinear transformation of the gradient. On
a multicellular level, e.g., it has been shown that cells can amplify shallow gradients by
transforming them into steep local gradients [112]. We conjecture that this also applies
to a certain extent on a singular cell level.
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Taking the main aspects into consideration and reconsider the demanded features pre-
sented in Section 1.2.1, we conclude that the model captures the features 1) and 2) quite
well. Feature 3) is captured for certain types of stimuli, but the model does not exhibit
reorientation in response to spatially variable stimuli. The model renders feature 4)
quite accurately but is limited to the case in which competing stimuli are sufficiently far
apart from each other. Feature 5) is not supported by the model. We have validated
that the model exhibits feature 6), 7) and 8). Finally, we demonstrated feature 9), the
demanded ability to depolarize and to readopt a spherical resting state if membrane
tension is artificially increased.



Chapter 5

Mechanism of Mechanochemical
Wave-Pinning

In this chapter we present a simplified, spatially one dimensional version of the model
in which the ability to exhibit mechanochemical wave-pinning is retained. This chapter
can be read without knowledge about the subsequent chapters. In contrast to the orig-
inal model, we neglect the boundary forces and the internal pressure. Furthermore, we
assume that the polarity field is implicitly given by p = 1, and that the transition of the
active force from front to back is smooth.

The simplified model again consists of three interconnected units: biochemical signalling
of Rho GTPases, cytoskeletal mechanics, and membrane tension. The simplified model
considers the concentration profile of the Rho GTPases Rac and RhoA along a cell di-
ameter transect, front to back, approximated as a one-dimensional segment: Active Rac
and active RhoA are assumed to affect the mechanics of the cytoskeleton in two different
ways. Active Rac induces a protrusive force which leads to an extension of the cell front
and active RhoA induces a contractile force which leads to a shrinkage of the posterior.
Again, we assume that membrane tension is proportional to the diameter of the cell and
that it promotes RhoA activation and inhibits Rac activation.
To model Rho activation, we take a very simple reaction-diffusion approach. The active
Rho proteins are assumed to be slowly diffusing with respect to the size of the cell and
the time-scale in which polarization occurs, while the distribution of inactive Rho is
treated as a constant for simplicity. The activation functions for Rac and RhoA depend
on membrane tension. To preserve a general approach of the patterning mechanism,
we omit the explicit modelling of the Rho-related reaction functions. Instead, we list
qualitative features which the reaction functions need to satisfy. In order to describe
actomyosin mechanics as simple as possible, we resort to an extension of former models
[37, 38] describing the actomyosin as a mechanochemical gel: Filamentous actin (F-actin)
is treated as an active material with viscous properties. We assume that both, F-actin

70
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and myosin is always present in sufficiently high amounts and that they are distributed
homogeneously, such that we may tread them as constants. F-actin treadmilling and
myosin contractions take place at different locations of the cell. Usually treadmilling oc-
curs in the lamellipodium at the front of the cell, where the concentration of active Rac
is high. Myosin contractions, on the other hand, take place at the rear of the cell, where
the concentration of active Rac is low [58]. In the model, we artificially distinguish be-
tween the lamellipodium and the cell body by subdividing the cell domain with respect
to the profile of active Rac: We identify the lamellipodium as the set of points, where
the active Rac concentration exceeds a predefined value and identify the complement
with the cell body. We assume that the force due to treadmilling in the lamellipodium
is directed towards the outward pointing boundary normal and that the force exerted
by myosin contractions is oriented inwardly with respect to the boundary at the dorsal
cell.
In response to a local perturbation of the chemical subsystem at steady-state, a trav-
elling wave of active Rac is triggered which moves inside the cell domain and locally
defines the lamellipodium. Simultaneously the generated force in the lamellipodium ex-
tends the cell domain, which increases membrane tension. Membrane tension is assumed
to be an upstream for RhoA and Rac: On the one hand increased membrane tension
inhibits Rac activation, on the other hand increased membrane tension promotes RhoA
activation. An increase of active RhoA, in turn, induces a shortening of the cell domain
by affecting myosin contractions. The mutual inhibitory feedback-loop between Rac and
membrane tension may induce the wave to stall and to obtain a persistent wave front of
active Rac.
In this chapter, we formulate the model and list necessary conditions on the parameters
and reaction functions such that the model may exhibit mechanochemical wave-pinning
as depicted above. By the application of matched asymptotic analysis, we give a phe-
nomenological explanation of this phenomenon.
Thereby we assume that a perturbation of the system at steady-state initiates a transi-
tion layer between two stable points of the system. We demonstrate how the transition
layer generates a travelling-wave-like solution which is stalled and then is maintained
due to the dynamical organization of membrane tension. We argue that the stalled
wave-profile may approach a standing shock-wave on longer time scales. In the biologi-
cal context, this result represents a persisting pattern of high Rac concentration at the
front and a low Rac concentration at the back of the cell.

5.1 Model equations

We consider a one dimensional strip of the cell from top view, see Figure 5.1 (a). We
assume that the strip contains a fraction of the plasma membrane, where active Rho
is located, and a fraction of the AMC. We assume that appreciable chemical gradients
do not develop in the height direction of the cell and thus consider a single coordinate
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Figure 5.1: (a) Our model represents a 1-D strip across the cell diameter with end-
points x− and x+, shown top-down and sideview. (b) Possible choice of the position φ

in the transition layer.

x. We assume that the height of the plasma membrane and of the AMC is negligible,
respectively. Thus, we approximate both the plasma membrane and the AMC as residing
in the same 1-D domain. The edges of the strip may be convected due to the active
mechanical behavior of the cytoskeleton. For the initial resting state, we assume a cell
diameter of L = 10µm. At time t ∈ R, the cell strip is denoted by

Ωt = (x−(t), x+(t)),

where the boundary points

x+(t) = max
{
x(t) | x′(t) = v(t, x(t)), x(0) ∈ (0, 10)

}
,

x−(t) = min
{
x(t) | x′(t) = v(t, x(t)), x(0) ∈ (0, 10)

}
depend on the displacement by the velocity of the actomyosin flow; see Figure 5.1 (a).
We define the space-time cylinder

Ω(t) :=
⋃
t∈I

({t} × (x−(t), x+(t))) .

as the spatio-temporal domain on which the model equations will be defined. The active
forms of Rac and RhoA on Ω(t) are modelled by a reaction-diffusion approach:

∂tu−Du∆u+ div(uv) = f1(τ, u),

∂tw −Dw∆w + div(wv) = f2(τ, u, w).
(5.1)

Here, u denotes the concentration of active Rac, w denotes the concentration of active
RhoA in mol/µm2, respectively. The variable τ is a dimensionless measure of membrane
tension and will be defined in the following. Du and Da are the diffusion coefficients of
membrane based Rac and Rho in µm2/s. Rac and RhoA activation are modelled by the
kinetic functions f1 and f2, which will be specified in Section 5.4. For simplicity, we do
not model the dynamics of the inactive forms explicitly.
Since Ωt may be convected by the velocity field v, the reaction-diffusion system for
Rac and RhoA transform on Ω(t) in Euler coordinates to a reaction-diffusion-convection
system with the convection term div(uv) and div(wv), respectively [79]. The variable τ
is a measure for membrane tension, normalized such that the initial tension is τ0 = 1



Chapter 5. Mechanism 73

and defined by

τ = 0.1(x+(t)− x−(t)).

y The velocity field describes the material flow of actomyosin. The constitutive equation
of the active material is here given by

σ = η∂xv + σact.

The total stress σ consists of viscous stress η∂xv , where η is the viscosity, and an
actively generated stress σact that is assumed to be dependent on the active Rac and
Rho concentrations u and w. Neglecting inertial forces, typically valid on a cellular
scale, we write the force balance as

∂xσ = ξv,

where we have introduced a friction coefficient ξ to account for relative motion against
the substrate. Locally, the actively generated force −g := ∂xσ

act is subdivided into
two regions. In the lamellipodium F-actin treadmilling is assumed to exert a constant
force ζF pointing to the outer boundary. For the cell body, we assume that exerted
force due to myosin contractions is proportional to the deviation of the active RhoA
concentration w from its steady state concentration w0. The generation and localization
of the lamellipodium is controlled by active Rac: We identify the lamellipodium as the
set of points in Ωt for which u exceeds a threshold value uthr. Thus, we set for a small
δ > 0

g(y, w) = ζF , wherever y ≥ uthr, (5.2)

and

g(y, w) = ζBK5(w − w0), wherever y < uthr − δ. (5.3)

Since we presuppose the existence of analytic solutions, the transmission y 7→ g(y, w) on
[uthr−δ, uthr] is assumed to be smooth. Thus we model the active force by a smooth func-
tion g(y, w), monotonous in y, that satisfies (5.2) and (5.3). Taken together actomyosin
mechanics in Ω(t) are modelled by the equation

η∂2
xv − ξv = g(u,w). (5.4)

For the reaction-diffusion equations (5.1), we assume that the total mass is conserved
within Ωt if Rho activation is inhibited, i.e. if f1 = f2 = 0. This assumption leads to
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zero-flux boundary conditions:

∂xu(x−) + v(x−)u(x−) = ∂xu(x+) + v(x+)u(x+) = 0,

∂xw(x−) + v(x−)w(x−) = ∂xw(x+) + v(x+)w(x+) = 0.

Moreover, we assume that no force on the boundaries of Ωt is applied, which yields

∂xv(x−) = ∂xv(x+) = 0.

The initial conditions of subsystem (5.1) are chosen such that the system is at homoge-
nous steady state. This will be specified in Section 5.4.

5.2 Nondimensionalization

5.2.1 Scaling parameters

Let v∗ be a typical velocity. Let m be a typical concentration for u and w. Let ξ1, ξ2 be
typical rates of the reaction functions f1 and f2, respectively. The initial domain length
of the cell strip is denoted by L. We introduce the dimensionless variables u, w, v, vm,
x, t by writing

u = mu, w = mw v = v∗v, vm = v∗vm, x = Lx, t = L(ξ1Du)−1t.

We introduce the dimensionless reaction functions f1 and f2 defined by

f1(τ, u) := 1
mξ1

f1(τ, u), f2(τ, u, w) := 1
mξ2

f2(τ, u, w),

where ξ1 and ξ2 are parameters of the dimension 1s−1. ξ1 and ξ2 stand for the typical
reaction speeds of the respective functions. The rescaled active force function g takes
the form

g(u,w) := 1
ζF
g(u,w).

In particular in the upper and lower bounds g adopts the values

g(u,w) :=

1 if u ≥ uthr

ζ(w − w0) if u < uthr − δ,
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where w0 = m−1w, uthr = m−1uthr, and δ = m−1δ.
We set

ε1 =
(
Du

ξ1L2

)1/2
, ε2 = v∗

ξ1L
, ε3 = ξ2

ξ1
,

ε4 =
(
− ηv∗

ζFL2

)1/3
, ξ = −ξv

∗

ζF
, ζ = −ζBm

ζF
.

5.2.2 Parameter values

We take for L the length of the cell strip at rest: L = 10µm. Active Rho proteins
are attached to the plasma membrane. For typical normal conditions, the diffusion
coefficient of membrane-based Rho protein is of the order 0.1µm2s−1 [98]. Hence, we
take Du = Dv = 0.1µm2s−1. We premise that the reaction functions f1 and f2 act
on timescales of 1 s and 102 s, respectively. This will be expressed by taking the corre-
sponding rates ξ1 = 1s−1 and ξ2 = 10−2s−1. For v∗ we take the mean migration speed
of the 2D-model, calculated in Chapter 4: v∗ = 0.19µm/s. The concentration m is set
to m = 1µmol/dm2. For the viscosity coefficient we assume η = 107Pa s and the factors
contributing to the actively generated forces are set to ζF = ζB = −2.1 · 108Pa.
The used parameters are the same as for the original 2D-model, see Table 4.1.
A comparison between the rescaled parameters reveals that ε1, ε2, ε3, ε4 are of the same
magnitude of about 10−2. Thus, we take

ε := ε1 = ε2 = ε3 = ε4

as an approximation.

5.2.3 The dimensionless system

Substituting these expressions in system (5.1), (5.4) and dropping the bars on the di-
mensionless variables and parameters, and using the same symbol fi (i = 1, 2), g for the
dimensionless right-hand sides, we obtain the non-dimensional system

ε∂tu− ε2∆u+ εvm∇u = f1(τ, u), (5.5)

ε∂tw − ε2∆w + εdiv(wv) = εf2(τ, u, w), (5.6)

−ε3∆v + ξv = g(u,w), (5.7)

τ = x+(t)− x−(t), (5.8)



Chapter 5. Mechanism 76

with the boundary conditions

ε∂xu(x−) + εvu(x−) = ε∂xu(x+) + εvu(x+) = 0,

ε∂xw(x−) + εvw(x−) = ε∂xw(x+) + εvw(x+) = 0,

∂xv(x−) = ∂xv(x+) = 0.

(5.9)

The system is defined on the rescaled space-time cylinder

Ω(t) =
⋃
t∈I

({t} × (x−(t), x+(t))) ,

where

x+(t) = max
{
x(t) | x′(t) = v(t, x(t)), x(0) = X ∈ (0, 1)

}
,

x−(t) = min
{
x(t) | x′(t) = v(t, x(t)), x(0) = X ∈ (0, 1)

}
.

Assumptions on Ωt

Ωt is assumed to remain simply connected, which requires that if X1 < X2, then
x(t,X1) < x(t,X2) for all t. This implies that the mapping

X 7→ x(·, X)

is injective. Consequently, if the mapping is differentiable follows that the metric tensor
∂Xx(t,X) does not vanish for any (t,X). By construction the mapping [X 7→ x(·, X)] is
surjective. Therefore the inverse Λ(t, x) of [X 7→ x(·, X)] exists, which gives the initial
location of a position x at time t.
By assuming that Ωt is simply connected, the boundary values can be written as solutions
of the ODEs

x′+(t) = v(t, x+(t)), x+(0) = 1,

x′−(t) = v(t, x−(t)), x−(0) = 0.

5.3 Analysis outline

We are interested in wave-like solutions of the variable u if the parameter ε is very small
( 0 < ε << 1). In general, wave-solutions of parabolic equations are only defined on
unbounded domains. In order to attribute to wave-like solutions on bounded domains,
we introduce the notion asymptotic wave-front solution for a parabolic equation that is
defined on a bounded domain. Therein a suitable expansion of the solution is rescaled
to an inner domain depending on ε which formally approaches an unbounded interval
if ε tends to zero. In the inner domain we seek travelling wave-front solutions for the
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leading order term of the expansion. Afterwards the travelling wave-front solution has
to match the boundary conditions of the original system. This approach is based on
matching asymptotic expansions (cf. [115]) and will be specified for our needs in the
following.
As a starting point, consider the reaction-diffusion equation

ε∂tz − ε2∂2
xz = f(z) on (0, T )× (a, b), (5.10)

where f : R → R is a smooth function, T > 0 is a given time, and −∞ ≤ a < b ≤ ∞
refer to the bounds of the domain.

Definition 5.1. Let a = −∞, b =∞. Equation (5.10) possesses a wave-front solution

Z(λ) := z(t, x), λ := x− ct,

with wave-speed c ∈ R if (Z, c) is a solution of equation (5.10) satisfying

lim
λ→−∞

Z(λ) 6= lim
λ→∞

Z(λ).

Now consider the case in which (a, b) is finite and equation (5.10) is complemented with
the boundary conditions

∂xz(t, a) = ∂xz(t, b) = 0 for 0 < t < T. (5.11)

We are interested in wave-like solutions of the bounded system.

Definition 5.2. Assume that for every t ∈ (0, T ) there is an element φ(t) ∈ (a, b) and
a segmentation

U(t) = {(a, φ(t)− ε), (φ(t)− ε, φ(t) + ε), (φ(t) + ε, b)}

of (a, b), such that equation (5.10) possess a solution u, analytic with respect to ε, on
each element of U(t). We refer to this solution as an asymptotic wave-front solution to
the leading order of the boundary-value problem (5.10)–(5.11) if for the expansion

u = u0 + u1ε+ u2ε
2 + ... (5.12)

the following statements hold:

(1) Outer solution. The leading-order term u0(t, x) of expansion (5.12) is constant on
(a, φ(t)− ε) and (φ(t) + ε, b), respectively, with

u−0 6= u+
0 ,

where u−0 := u0(t, ·)|(a, φ(t)− ε) and u+
0 := u0(t, ·)|(φ(t) + ε, b).
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(2) Inner solution. Let x ∈ (φ(t) − ε, φ(t) + ε). The leading-order term u0(t, λ) of
expansion (5.12) possesses a wave solution U0(λ) in the sense of Definition 5.1
(with respect to the stretched coordinate λ = x−φ(t)

ε ).

(3) Matching inner and outer solution. The inner and outer solutions satisfy

lim
λ→±∞

U(λ) = u±0 .

It should be stressed that this approach serves only as an approximation of the orig-
inal solution. Nevertheless, it provides an insight into the structure of the patterning
mechanism.

5.4 Patterning mechanism

The patterning mechanism is based on the following characteristics: The scaling-parameter
ε is thought to be very small (ε << 1), and the right-hand sides satisfy the following
properties:

(i) Bistability. The dynamical system dtu = f1(τ, u) is bistable for fixed τ in a para-
meter range τmin ≤ τ ≤ τmax. The initial tension τ0 = 1 is contained in [τmin, τmax].
The stable points are u−(τ), u+(τ). The unstable point is uc(τ). It holds u−(τ) <
uc(τ) < u+(τ).

(ii) Mechanical response. The threshold uthr satisfies uc(τ) < uthr < u+(τ) for τmin ≤
τ ≤ τmax.

(iii) Velocity-sign condition. The integral mapping

I(τ) =
∫ u+(τ)

u−(τ)
f1(τ, u) du

is continuous and vanishes for a unique τc ∈ [τmin, τmax].

(iv) Intermediate wave-control 1. We write f+(τ, y) := f2(τ, u+(τ), y). For any τ ∈
[τmin, τmax] the ODE

dty = f+(τ, y), y(0) > 0,

has a unique, non-negative solution.

(v) Intermediate wave-control 2. We write f−(τ, y) := f2(τ, u−(τ), y). For any τ ∈
[τmin, τmax] a solution w−(τ) of the ODE

dty = f−(τ, y), y(0) = w0,
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satisfies

0 ≤ w−(τ)− w0


< ζ−1 if τ < τc,

= ζ−1 if τ = τc,

> ζ−1 if τ > τc.

In particular, we assume that f−(τ, w0) = 0 if τ = τ0. Moreover, for any parameter
y > w0 and τ ∈ (τ0, τmax] holds

f−(τ, y)


< 0 if τ < τc,

= 0 if τ = τc,

> 0 if τ > τc.

The dynamics of system (5.5)–(5.9) take place on three time scales, short-time (of the
order t ∈ O(ε)), intermediate time (of the order t ∈ O(1)), and long-time (of the order
t ∈ O(1/ε)). On the intermediate time-scale the wave is pinned. We will briefly explain
how a wave-like solution in u(t, x) is initiated on the short time scale and is pinned on
the intermediate time scale by using matched asymptotics with respect to the parameter
ε.

5.4.1 Perturbation of the initial values at short times

We consider system (5.5)–(5.9) to be initially at homogenous steady state. In particular,
we take for u the lower homogenous steady state, i.e. u = u0 = u−(τ0). Assume now
that the initial value of the first equation in (5.5) is perturbed by the addition of a
monotonous function fstim(x) with the property

fstim(x−(0)) = u−(τ0), fstim(x+(0)) = u+(τ0).

Since [u 7→ f(τ, u)] is bistable, we assume that this perturbation initiates a transition
layer: There is a xs ∈ L(0) such that u(t, x) for x ≥ xs ∈ L(0) tends to u+(τ0) and that
u0(ts, x) for x < xs ∈ L(0) tends to u−(τ0).

5.4.2 Behavior at intermediate times

The assumed profile for u obtained in the short time scale provides the initial condi-
tion for u on the intermediate time scale t ∈ O(1). We use the technique of matched
asymptotic expansions to show that to the leading order a travelling wavefront evolves
which is pinned within the intermediate time scale. At first we discuss the outer solution
and afterwards we discuss the inner solution. Let φ(t) be the position of the transition
zone where u transfers from u−(τ) to u+(τ). We refer to φ(t) as the location of the
wave-front; see Figure 5.1 (b).
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Outer solution We analyze system (5.5) – (5.9) in the vicinity of the boundary.
Therefore it is convenient to describe the system in Lagrangian coordinates, see e.g.
[116]. By construction, in Lagrangian coordinates the advection terms in equations
(5.5), (5.6) drop out, and system (5.5)–(5.8) takes on (t,X) ∈ I × (0, 1) the form

ε∂tuX − ε2∂X

( 1
M
∂XuX

)
= f1(τ, uX),

ε∂twX − ε2∂X

( 1
M
∂XwX

)
= εf2(τ, uX , wX),

−ε3∂X

( 1
M
∂XvX

)
+ ξvX = 1{uX≥uthr} + ζ1{uX<uthr}(wX − w

0),

τ = x+(t)− x−(t).

The boundary condition transform to

ε
1
M
∂XuX(0) = ε

1
M
∂XuX(1) = 0,

ε
1
M
∂XwX(0) = ε

1
M
∂XwX(1) = 0,

∂xv(0) = ∂xv(1) = 0.

Here

uX(t,X) = u(t, x(t,X)), wX(t,X) = w(t, x(t,X)), vX(t,X) = v(t, x(t,X))

are the trajectories of the concentrations u, w with the initial position X at time t = 0
and the advection-velocity of the initial position X, respectively. M is induced by the
metric tensor and given by

M(X) = |∂Xx(t,X)|.

The boundary locations at time t, in particular, read as x−(t) = x(t,X = 0) and
x+(t) = x(t,X = 1).
Let now x ∈ (x−(t), φ(t)−O(ε)) or x ∈ (φ(t)+O(ε), x+(t)). Since Ωt is simply connected,
this is equivalent to X ∈ (0,Λ(t, φ(t)−O(ε)) or X ∈ (Λ(t, φ(t) +O(ε), 1). Expanding

uX(t,X) = uX0(t,X) + uX1(t,X)ε+ ...

and likewise for wX , vX , substituting the expansions into System (5.5) – (5.8), and
retaining the leading order terms yield the outer solution:

f1(τ, uX0) = 0, (5.13)

∂twX0 = f2(τ, uX0, wX0), (5.14)

vX0 = g(uX0, wX0), (5.15)

τ = x+(t)− x−(t). (5.16)
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For the boundary conditions (5.9) we obtain to the zeroth-order homogenous Neumann-
conditions :

∂XuX0(t, 0) = ∂XuX0(t, 1) = 0,

∂XwX0(t, 0) = ∂XwX0(t, 1) = 0,

We obtain from (5.13) and its homogenous Neumann-boundary conditions the outer
solution of u0:

uX0(t,X) =

u+(τ), 0 ≤ X < Λ(t, φ(t)−O(ε)),

u−(τ), Λ(t, φ(t) +O(ε)) < X ≤ 1,
(5.17)

which is equivalent to

u0(t, x±) =

u+(τ), x−(t) ≤ x < φ(t)−O(ε),

u−(τ), φ(t) +O(ε) < x ≤ x+(t).
(5.18)

Apart from the outer solution of u0 we obtain qualitative data of τ . Since τ is an integral
expression over the whole domain, τ is affected by changes in the size of the domain.
This will be shown now.
Substitution of (5.17) in (5.14) yields for X → 0 and X → 1 the expressions

dtwX0(t, 0) = f−(τ, wX0(t, 0)), dtwX0(t, 1) = f+(τ, wX0(t, 1)). (5.19)

due to the homogenous Neumann conditions in x−, x+. Substitution of (5.17) in (5.15)
yields for X → 0 and X → 1

v0(t, x−) = ζ

ξ
(w0(t, x−)− w0), v0(t, x+) = 1

ξ
. (5.20)

Equation (5.19) and equation (5.16) imply

dtτ = 1
ξ

(
1− ζ(w0(t, x−)− w0)

)
(5.21)

From condition (v) and equation (5.20) we obtain

dtτ


< 0 if τ > τc,

= 0 if τ = τc,

> 0 if τ < τc.

(5.22)
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Consequently, τ is increasing in the beginning of the intermediate time-scale. Further-
more, differentiation of (5.21) with respect to t yields for τ > τ0

d2
t τ


< 0 if τ > τc,

= 0 if τ = τc,

> 0 if τ < τc.

(5.23)

τ is a spatially global variable and the qualitative behavior of u depends on changes of
τ . In the next paragraph will be shown how τ locally affects the inner solution of (5.5).

Inner solution We will show now that to the leading order the inner solution has a
wave-like solution. For the treatment of the inner solution, we reconsider the system in
Eulerian coordinates. Close to the front φ(t), a stretched coordinate λ = (x− φ(t))/ε is
introduced. The inner solutions of u and v are denoted by U and V , respectively, where

U(t, λ) = u(t, (x− φ(t))/ε), (5.24)

V (t, λ) = v(t, (x− φ(t))/ε) (5.25)

Note that (5.24) is not a wave-front solution in the strict sense, since the wave-speed
dφ/dt is not constant. We consider the expansions

U(t, λ) =U0(t, λ) + U1(t, λ)ε+ ...,

V (t, λ) =V0(t, λ) + V1(t, λ)ε+ ...,

φ(t) =φ0(t) + φ1(t)ε+ ... .

Substitution of these expansions into (5.5) and writing f1(τ, U) as a Taylor series with
respect to ε yields

ε∂tU0(t, λ)− ε∂λU0(t, λ)1
ε
dtφ0(t)− ε2∂2

λU0(t, λ) 1
ε2 + εV0∂λU0(t, λ)1

ε

= f1(τ, U0)− εU0∂λV0(t, λ)1
ε

+ higher order terms in ε.
(5.26)

In order to simplify this equation, it would be desirable to get rid of the dilution term
∂λV0(t, λ) on the right hand side. The numerical simulations in the Chapter 4 indeed
reveal that after some spatial fluctuations V0 settles to an almost spatially constant value
at intermediate times. The reason behind this is that after some time both, the active
force at the front and the active force at the back, are approximately equal, which induces
|∇g(u, v)| ≈ 0. At this point this cannot be shown from our asymptotic approach.
Therefore, to keep the analysis simple, we assume henceforth that the expansion of V
on the intermediate time scale takes the form

V (t, λ) = V0(t) + V1(t, λ)ε+ higher order terms in ε.
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(This is, for example, the case if the gradient ∇g : R2 → R2 is of the order of ε, i.e.

|∇g(y1, y2)| ≤ ε for all (y1, y2) ∈ R2.)

Under this assumption, the dilution term U0∂λV0(t, λ) on the right hand side of (5.26)
vanishes. If we neglect in (5.26) higher order terms, we obtain to the leading order the
equation

∂2
λU0 − (dtφ0 − V0)∂λU0 + f1(τ, U0) = 0., (5.27)

where V0 only depends on t. Inner and outer solution of u0 match if the solution of
(5.27) adopts the limits

lim
λ→−∞

U0(t, λ) = u−(τ), lim
λ→∞

U0(t, λ) = u+(τ). (5.28)

Due to the scaling of (5.5) we may neglect the term ε∂tU0(t, λ) in which the time
derivative of U0 appeared. The advantage is that we can consider now equation (5.27),
due to the bistability of f1(τ, U0), as a classical wave-equation at each time t > 0.
The following statement holds:

Theorem 5.3. For each (t, τ) ∈ R+ × [τmin, τmax] exists a smooth solution Uφ0 (t, λ, τ)
of equation (5.27) satisfying (5.28). The solution is unique up to translation, i.e.: If
U
φ
0 (t, λ, τ) is also a solution, a suitable h ∈ R exists such that

Uφ0 (t, λ+ h, τ) = U
φ
0 (t, λ, τ).

Moreover, there is a constant M > 0 such that(∫ ∞
−∞

(∂λUφ0 (t, λ, τ))2 dλ

)
< M for all t ∈ R. (5.29)

The velocity of the wavefront relative to the moving cell is

c(t, τ) := dtφ0 − V0 =
(∫ ∞
−∞

(∂λUφ0 (t, λ, τ))2 dλ

)−1 ∫ u+(τ)

u−(τ)
f(τ, s) ds. (5.30)

Proof. A proof of the existence and uniqueness up to translation can be found in [117].
Corollary 1.3.5 in [117] implies due to the continuity of I(τ)∫ ∞

−∞
(∂λUφ0 (t, λ, τ))2 dλ ≤ |I(τ)| ≤ max

τ∈[τmin,τmax]
|I(τ)| =: M.

Multiplying (5.27) by ∂Uφ0 /∂λ and subsequent integration from λ = −∞ to λ = +∞
yield equation (5.30).
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Wave-pinning We demonstrate now how the wave-speed of a wave-front solution of
(5.27), (5.28) is affected by the system. Theorem 5.3 states that the wave-speed is
controlled by the generation of tension τ . Two considerable cases may occur: τ > τc

and τ < τc. We will show that in both cases the system approaches τc.
It is easy to see that the mapping [t 7→ c(t, τ(t))] is continuous on R. Consider the case
where τ > τ0 and c(t, τ(t)) < 0. Then, the right hand side of (5.30) is negative and
condition (iii) implies τ(t) ∈ (τ0, τc). From relation (5.22) and relation (5.23) we obtain
dtτ(t) > 0 and d2

t τ(t) > 0 as long τ(t) < τc. This implies that a time t−c ∈ R exists such
that

τ → τc for t→ t−c .

From condition (iii) and (5.30) follows

c(t, τ(t))
(∫ ∞
−∞

(∂λUφ0 (t, λ, τ))2 dλ

)
→ 0 for t→ t−c .

The mapping [λ 7→ Uφ0 (t, λ, τ)] is smooth and (5.28) implies that the mapping is non-
constant for any (t, τ) ∈ R+ × (τ0, τmax]. This implies ‖Uφ0 (t, ·, τ)‖C(R) > 0. Hence, we
obtain

c(t, τ(t))→ 0 for t→ t−c .

Assume c(τ) < 0. Similar as above can be shown that a time t+c exists such that

c(τ)→ 0 for t→ t+c .

We obtain that in both cases the velocity approaches pointwise to zero in finite time.
Figuratively, this means that the wave-speed oscillates around zero at times t ∈ O(1).

5.4.3 Behavior at long times

We investigate the behavior of zeroth-order solution on the long time scale tl = 1
ε t,

whereby we assume that the initial conditions for u on the long time-scale are given by
an asymptotic wave-solution as presented in the former section.

Lemma 5.4. Let tl = 1
ε t. Then v has the scaling property

v

(
t

ε

)
= 1
ε
v(tl).

Proof. Let X be the initial value of the trajectory x(t) = x(t,X) generated by the field
v(t, x). We obtain

v(t, x(t)) = ∂tx

(
t

ε

)
= 1
ε
∂tlx(tl) = v(tl, x(tl)).
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Figure 5.2: Intuitive illustration of mechano-chemical wave-pinning based on the
velocity-sign condition (iii). The left column shows the reaction rate f1(τ, u) in de-
pendency of u for fixed τ . The column in the middle shows the response of τ due to
increasing membrane tension induced by the elevation of u. The right column displays
the related spatial distribution u. The arrow denotes the current velocity c(τ) of the
travelling wave-front. A1 (resp. A2) is the enclosed area between the negative (resp.
positive) part o f(τ, u) and the abscissa. If A1 < A2 (resp. A1 > A2) follows I(τ) > 0

(resp. I(τ) < 0). If A1 = A2 is I(τ) = 0 and the wave is stalled.

Once again we consider system (5.5)–(5.8), but now on the time-scale tl = t/ε. Writing
u, w, v as expansions

u = u0 + u1ε+ ...,

w = w0 + w1ε+ ...,

v = v0 + v1ε+ ...,

and substitution into (5.5)–(5.6) yields up to zeroth order on the time scale tl

∂tlu0 + ∂x(v0u0) = f1(τ, u0), (5.31)

∂tlw0 + ∂x(v0w0) = 0, (5.32)

where we used Lemma 5.4. Moreover, if we assume that u0 possesses a wave-like solu-
tion as constructed in the former section, we obtain from (5.8) for values close to the
boundaries

ξv0 = 1, if x is close to x+(t),

ξv0 = ζ(w0 − w0
0) if x is close to x−(t).

(5.33)
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The boundary conditions imply that close to the boundaries w0 is constant. In the
intermediate timescale holds that τ is close to τc. Thus, we obtain from condition (v)
that w − w0 ≈ ζ−1 at intermediate times. If we assume that close to the boundary
w0
l := ζ−1 − w0 is the initial value for w on the long time scale, we can deduce from

(5.33) that the boundaries x− and x+ are convected with the same speed, as long as
the wave-like solution in u0 persists. In this case, the interval does not change in size at
longer time scales. It follows τ(tl) = τc and v0 = const.
Now we consider the behaviour of the solution u0 at long times and assume that the
solutions on this scale are analytical in ε. (If we considerd (5.5) with respect to the
stretched coordinate λ = (x−φ(tl))/ε once again, and matched the equations, we would
obtain the same result.) Consider the moving coordinate λ = x− x−(tl) and set λl = 0,
λr = x+(tl = 0)−x+(tl = 0). With respect to this coordinate, equation (5.31) transforms
to

∂tlu0(tl, λ) = f1(τc, u0) on I × (λl, λr), (5.34)

since v0(x+(t)) = v0(x−(t)). The boundary conditions transform to

∂λu0(tl, λl) = ∂λu0(tl, λr) = 0.

We assume that the initial value u0
0 for u0 at long times is given by the constructed

wave-solution of u0 that is generated at intermediate times. Moreover, since τ(tl) = τc,
we may deduce that the initial value u0

0 has the wave-speed c(τc) = 0, which means that
the wave moves with the same speed as the reference frame [x−(tl), x+(tl)]. Then we
can express u0

0 in dependency of λ and obtain that u0
0(λ) is sigmoidal and satisfies the

boundary conditions

u0
0(λl) = u−(τc), u0

0(λr) = u+(τc), dλu
0
0(λl) = dλu

0
0(λr) = 0.

Since [y 7→ f(τc, y)] is bistable, it is well known that the dynamical system (5.34) under
these initial values approaches to

u0(tl, λ)→

u+(τc), if u0
0(λ) > uc(τc),

u−(τc), if u0
0(λ) < uc(τc),

for tl →∞.

Since u0
0(λ) is sigmoidal, we can deduce that limtl→∞ u0(tl, λ) has the shape of a shock

wave: There a λc ∈ (λl, λr) exists such that

lim
tl→∞

u0(tl, λ) =

u+(τc), if λ > λc,

u−(τc), if λ < λc.

Consequently, if the assumptions hold, the stalled wave persists at longer times spans,
but looses regularity and transforms into a shock wave.
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5.5 Discussion

We presented a simple, spatially one-dimensional model of tension-mediated Rho GT-
Pase polarization. We rescaled the system to a non-dimensional system where the reac-
tions and diffusions take place on different powers of a small scaling parameter ε. Based
on matched asymptotic analysis we have argued heuristically how a wave solution in the
zeroth order approximation u0 of u evolves and is stalled with respect to the moving
reference interval. We argued that at longer time scales the stalled wave-solution may
transform into a shock wave that moves with the same speed as the reference interval.
These characteristics can be interpreted as a pattern mechanism that enables a cell to
generate a persistent front and a persistent back. Bistability of the activation function
for Rac in a certain parameter regime is a necessary condition for our mechanism to
work. In a biological context bistability may arise from positive feedback due to GEF-
Rho complex formation which catalyzes Rho activation [63].
The novelty of the presented pattern mechanism is that it depends on the coupling be-
tween a system of reaction-diffusion equations (for u, w) that are weakly coupled with
an integral equation (for τ), which globally affects the reaction functions. The presented
explanation of the generation of wave patterns is purely phenomenological and must
not be regarded as a rigorous proof. A major simplification is that we only investigated
terms of zeroth order. To this order the scaling of the system allowed us to ignore the
time derivative ε∂tU0 such that we could find travelling wave-solutions. For higher order
terms the time derivative cannot be neglected and the analysis becomes far more com-
plex. Since then we cannot find wave solutions in a classical sense for these terms, we
have to consider if the higher order solutions approach to a wave (or, in the most trivial
scenario, approach to zero). However, if the higher order solutions in fact do approach
to a wave, it can be shown that the wave-speed must be different from zero, cf. Theorem
5.2.2.1 in [117]. On the other hand, a non-zero wave-speed may perturb the amount of
membrane tension τ , which in turn slows the wave-speed. This interaction may lead to
an oscillatory behavior where one part of the system tries to approach to a state which
is unstable for the other part.
Analytically this behavior seems to be hard to verify for multiple reasons. Firstly, a
stability analysis requires knowledge about the spectrum of the linearized system. How-
ever, the spatial differential operators are defined on unbounded domains. There, the
spectrum of the Laplace operator includes not only discrete eigenvalues, but also a con-
tinuous spectrum. Moreover, it can be shown that the linerarized equations for the
higher-order system have a zero eigenvalue. In order to cope with these characteristics,
a different notion of stability is required which is called stability with shift and classical
asymptotic stability results cannot be applied. (We refer to [117] for a deeper treatment
of stability properties of travelling wave solutions.) Secondly, we cannot treat perturba-
tions of τ near τc as a classical bifurcation problem, where we could seek for conditions
of a Hopf-related bifurcation since τ affects the quality of the solution at finite time in
a way that prevents to solution to approach a steady state.
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In numerical simulations of a related model, however, oscillations in the wave-speed are
observable [108]. Since the oscillations seem to be partly independent of the choice of
the time iteration size and of the mesh size which represents the domain Ωt, it is likely
that the oscillations emerge form the approach of higher order solutions to waves with
non-zero speed and the repelling impact of tension τ .
Nevertheless, the asymptotic explanation presented in this chapter provides an insight of
the qualitative behavior of the solution. The necessary conditions for mechanochemical
wave-pinning listed in Section 5.4 give an account of the coupling between cell mechanics
and biochemical signalling in order to achieve robust polarity patterns. In this context,
we consider our model as a minimal model with the ability to exhibit mechanochemical
wave-pinning, which may serve as an guideline for more detailed mechanochemical po-
larization models.
Thereby the model provides possible biological implications. We hypothesized that
membrane tension inhibits Rac- and promotes RhoA-activation. Although the molec-
ular mechanisms by which cells sense and respond to mechanical signals are not fully
understood, there are several known mechanisms by which a cell could translate mem-
brane tension into chemical signals [43]. It is known that Rac activation is catalyzed
by GEF-complex formation while RhoA inactivation is facilitated by GAP interaction
[63]. A possible implication of our model is that membrane tension may mechanically
promote the recruitment of Rac specific GEF and RhoA specific GAP.
The small parameter ε exploited in our analysis depends on several biological param-
eters, including the diffusion coefficients, the reaction rates and the domain size. Our
fundamental assumption 0 < ε1 << 1 is satisfied by virtue of the ratio between the
slow diffusion of membrane based Rho-proteins and the relatively large size of the do-
main. Assuming a typical cell diameter of 10µm, a reaction time scale for Rac activation
ζ1 = 1s−1, and diffusion coefficients Du = Dw = 0.1µm2s−1, the non-dimensional factor
of the diffusion of Rho proteins is ε1 ≈ 0.03. We consider ε1 to be sufficiently small to
use an matched asymptotic approach. However, if the diffusion coefficient is increased
by a magnitude, the activation speed η1 is increased to ξ1 > 10 s−1, or the cell length
is decreased to L ≤ 0.1 µm, the scaling parameter ε1 is of the order 0.1. For this order
matched asymptotic analysis is not suited anymore to justify the phenomenon of wave-
pinning. On the contrary, based on findings for a comparable model [33], we conjecture
that in this setting wave-based pattern formation fails. (Similar considerations apply to
the assumption 0 < ε2 << 1.)
Such predictions are partially experimentally testable. Cell fragments whose ability to
polarize is retained [53] could be made successively smaller to test the effect of the do-
main size. In the model the activation rate of Rac can be varied by changes in membrane
tension. If membrane tension is drastically increased, we expect that Rac activity pat-
terns extinguish. Aspiration experiments in neutrophils show that increased membrane
tension can result in dissipation of polarity [11], which supports this thesis.
A further requirement of the model is ε3 << 1, which means that RhoA activation
has to be slower than Rac activation. Since the model neglects possible delays due to
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downstream effectors targeting at actin treadmilling and AMC contractions, we cannot
conclude directly that this characteristic has to be mirrored by experimental investi-
gations. However, if we also take the mechanical response into consideration, from a
biological viewpoint the requirement suggests that Rac mediated front protrusions oc-
cur at shorter time scales (of seconds) than RhoA mediated contractions of the rear
(within minutes), which may be experimentally testable by the manipulation of the
amounts of Rac and RhoA in a cell [118].
The parameter ε4 represents the rescaled viscosity of the actin gel. Assuming the values
η = 107 Pa s, ζF = −2.1 · 108 Pa, and v∗, L as listed above, the non-dimensional factor
is ε4 ≈ 0.04. In the model equations ε4 occurs with a cubic power. We consider mild pa-
rameter variations in ε4 as unproblematic. The analysis of the model is unaffected if ε4

is increased to the order 10−1. (Then ε4 has a quadratic power in the model equations.)
If ε4 is drastically increased, we expect that contractile and protrusive forces globally
interfere with each other such that the cell looses its ablilty to move. In consequence
the cell is not able to generate membrane tension which prevents the establishment of
a persistent front of active Rac. This expectation could be tested experimentally in the
case in which the protrusive force is highly attenuated. This may be obtained when the
already polarized cell hits an obstacle which resists the protrusive force.



Chapter 6

Discussion

6.1 Model summary

We proposed a mechanochemical model to explain cell polarization in neutrophils. Ex-
perimental investigations have shown both, biochemical and mechanical signal transmis-
sion to be necessary for a persistent polarization in neutrophils [11]. Membrane tension
is regarded as a suppressor of Rac activation. Our model includes this role of membrane
tension and provides an account how biochemical and mechanical signalling could inter-
play to generate locally confined activity patterns of the Rho distribution in response
to external gradients. We computationally demonstrated that the mechanism captures
certain key features of polarity in neutrophils and generates a cone-like cell morphology
with a broad cell front and a tapered rear. The model contains a strongly simplified cir-
cuit consisting of the functional units Rho GTPase signalling, actin polymerization, and
force exertion due F-actin treadmilling and myosin contractions. In response to an ex-
ternal stimulus, Rac is locally activated. Active Rac promotes actin polymerization and
directional F-actin treadmilling and suppresses RhoA activation. Subdomains whose
F-actin concentration exceed a certain threshold were identified with the lamellipodium.
The pushing force generated by F-actin treadmilling propels the lamellipodium forward.
This induces an increase of membrane tension due to the spatial extension of the cell do-
main. The increase of tension prevents active Rac to spread across the cell and confines
it to the leading edge. If tension would increase without restriction, also the remaining
Rac activity front would expire. In the model, however, membrane tension is down-
regulated by RhoA: Increasing tension promotes RhoA activation. Since Rac is thought
to inhibit RhoA, active RhoA is predominantly generated at the rear of the model cell.
The emerging contractile force due to increased RhoA activity leads to a retraction of
the rear, which lowers membrane tension. Consequently, membrane tension in a po-
larized cell is increased by a pushing force and constrained by a retracting force. The
increased tension suppresses Rac activation globally. In the lamellipodium, where the
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Rac concentration is already high, however, autocatalysis of Rac counteracts tension me-
diated Rac inhibition and prevents the activity front from expiration. Thus, the model
combines two essential suggestions, the confinement of Rac signals to the leading edge
[11] and the maintenance of cell protrusion due to F-actin-myosin-balancing generation
in tension [53].

6.2 Model features and limitations

The polarization process of neutrophils exhibits certain qualitative features, see Section
1.2.1. A significant mathematical model for neutrophil polarization should reproduce
these features. In Section 4.6 we assessed the simulation results displayed in Section 4.3
with respect to biological data.
We demonstrated that in our model membrane tension confines active Rac patterns to
the leading edge, which has been observed in neutrophils [11]. We come to the conclusion
that the proposed model exhibits a number of biologically essential properties of cellular
polarization:

• The model cell responds to various stimuli, graded and localized, by spatially
amplifying the stimulus, and attaining a polarized state.

• The polarization is maintained even after the signal is removed.

• The model cell remains sensitive to new incoming stimuli, and reverses its polarity
in response to a new sufficiently chosen stimulus at the back of the cell.

• The model cell has the ability to resolve conflicting fronts by forming a single front
of activity.

The model produces macroscopic data which are compared to experimental findings, see
Section 4.3. The model cell develops an approximately constant shape within the first
150s after the stimulation. Biologically, we interpret this time span as the required time
for the cell to fully polarize, i.e. to develop a lamellipodium which enables the cell to
move across the substrate due to a persistently generated Rac front. In this sense, in vitro
experiments suggest, that upon stimulation with fMLP polymorphonuclear leukocytes
fully polarize within 2 to 3 minutes [110], which matches the required time in the model.
With respect to a fully polarized cell, our model generates an average migration speed
of the cell of about 0.19µm/s. The in vitro measured migration speed of neutrophils
is of the order 10−1–100µm/s [39]. The migration speed can be fitted more precisely
by varying the magnitude of the active force term Fact, (see Figure 4.7). There is
evidence that the migration velocity crucially depends on the compound of the substrate
[119]. Thus, a more realistic fitting would also include a specific calibration of the
adhesion parameter ξ. Unfortunately, broad experimental data for this parameter is
not yet accessible. The default state of a resting neutrophil adhering to a flat surface
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is approximately spherical. In response to Rac activation triggered by graded external
signals, a broad flat front, i.e. the lamellipodium, and a tapered posterior is generated
[120]. Our model exhibits this behavior. We conclude:

• The model cell develops a front of increased Rac activity which is directed to the
stimulus. Initiated movement of the model cell approaches a constant migration
speed.

• The model cell develops a "V"-shape with a broad front and a tapered rear.

• The model cell adopts a dumbell-like shape if two spatially opposite stimuli are
applied.

• The model cell approaches a spherical resting state if active Rac is erased.

From a mathematical point of view, we explained in Chapter 5 how the propagation
of a wave-like solution of a reaction-diffusion system on a moving domain is pinned
through the coupling with an integral operator. We used a matched asymptotic analysis
approach for a related model that is spatially one-dimensional and explained how under
certain assumptions a travelling wave-front like solution for the zeroth-order terms of a
suitable expansion of the system is achieved and how the wave-pattern is finally stalled.
It should be stressed that the presented explanation does not provide a rigorous proof
for the existence of pinned waves. However, the explanation provides at least an insight
of the generation of pinned wave-patterns and gives necessary conditions.

The model possesses certain limitations, some originate in the mathematical modelling,
some are exposed by the simulation results.
In Section 3.7 we highlighted the model assumptions that we regard as crucial. While
we consider the thin layer approximation and the simplistic submodel of actin-binding
dynamics as relatively unproblematic, the assumption that inactive Rho can be treated
as a constant and the oversimplified description of the AMC are shortages of the model.
In particular, the assumption that AMC mechanics can be described by a purely viscous
material with a constant viscosity η may be not adequate. Since the active process
of actin filamentation affects AMC mechanics, we expect that η also depends on the
actin concentration. However, the rheology of actin gels is highly complex and not well
understood yet, such that reliable assumptions on η cannot be provided. A model of
the AMC described by a viscoelastic material would be more biologically reasonable.
Moreover, a viscoelastic description might exhibit different polarization characteristics.
In a viscoelastic medium the global mechanical response to local perturbations is quasi
instantaneous compared to the global response of viscous media. This property may
equip the mechanochemical polarisation processes with a higher sensitiveness to local
signals that only occur for short times.
Further limitations are obtained by the simulations. In Section 4.3 we concluded that
the model does not exhibit sensitiveness to noise. We did not intend the model to exhibit
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this feature and we do not consider the lack of this feature as critical, since multiple
redundant pathways for the achievement of cell polarization have been identified and it
is not yet clear which one accounts to noise sensitiveness [34].
A graver limitation is that the model is very likely not capable of fusing neighboring
wavefronts into one single front. We conjecture that this dues the patterning mech-
anism, since it requires a sufficiently slow diffusion of active Rac to work. Thus, an
increased diffusion coefficient for Rac is not well suited to fuse the wave-front. A bi-
ologically reasonable modification that potentially endows the model with the ability
to fuse neighboring fronts aims at the explicit inclusion of inactive Rac. Inactive Rac
might diffuse faster than active Rac [97]. While active Rac is locally pinned, inactive
Rac might be free to diffuse on a medium range and become activated at the periphery
of the pinned wave patterns. This might locally smoothen the patterns and induce a
fusion of closely neighboring wavefronts.
Finally, a limitation is that the cell requires for a stable polarization a stimulus which
spatially decreases superlinearly. However, it is conceivable that external linear chemical
gradients are processed in a nonlinear way, such that the input signal for Rac activation
is superlinearly decreasing. On a multicellular level, e.g., it has been shown that cells
can amplify shallow gradients by transforming them into steep local gradients [112]. We
conjecture that this also may occur on a singular cell level.

6.3 Contributions of the model

The major contribution of the model is the proposal of a mechanochemical mechanism
that gives an account how active Rac patterns may remain confined to the cell front
due to the generation of membrane tension. There is a growing demand for models
accounting to mechanochemical patterning in general [22, 41] and for models accounting
to GTPase-tension interactions in cell polarization in particular [11]. Purely mechanical
[14, 15, 121, 122] as well as purely chemical mechanisms [7] have been proposed to give
an account for cell polarization. The diversity of these models exhibit a wide range
of abilities to generate patterns which have been qualitatively characterized over the
last decades. Mechanochemical patterning with respect to cell polarization, however,
represents a new, not yet well understood class [22, 41].
We provided a reaction-diffusion based wave-propagation processes, whose propagation
is pinned due to a mechanical response. The disclosure of the necessary qualitative
properties for the reaction terms and the AMC mechanics may be of importance for
future studies. In each modelling step, the necessary conditions for the patterning
mechanism are highlighted. We summarized the conditions in Chapter 5. Consequently,
the mechanism is not restricted to particular choices of the functions we suggested in
this thesis, but rather consists of basic units whose modelling requires certain qualitative
characteristics. Thus, our approach may provide a suitable framework for more complex
and more biologically relevant models aiming at mechanochemical cell polarization.
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6.4 Model design and model comparison

The mechanical unit in our model adopts ideas from [14, 37] by introducing competition
between polymerization and protrusion at different sites in the cell via membrane tension,
and the treatment of the ACM as an active viscous gel, respectively. Actin gels are
commonly endowed with a with a polarity field [85]. Our very simple version of the
polarity field segregates the cell into regions of protrusive and contractile forces. Since
active Rac orchestrates the segregation, regions of propelling fronts and increased Rac
activity geometrically coincide. In response to a single stimulus the model cell generates
a cone-like morphology where active Rac is predominantly located at the front while
active RhoA is located in the tapered back.
The biochemical unit of the model is related to the patterning mechanism presented by
Mori et al. [8]. Therein, a reaction-diffusion system is described in which a triggered
travelling wave of slow diffusing active Rho is locally pinned by a fast diffusing inactive
Rho. Experimental investigations on neutrophils, however, have shown that the required
diffusion coefficient is unrealistically high [11]. Unlike Mori’s and other generic models
for cell polarization containing Rho GTPase related chemical signalling which require
fast diffusing quantities to serve as a long-range signal conductor [1–3, 24–28, 118], the
presented model transmits long-range signals mechanically via changes in membrane
tension. Therefore, our proposed model avoids the issue to rely on unrealistically high
diffusion coefficients.

6.5 Outlook

The model suggests a number of experimental tests that could be used to check its va-
lidity. For example, the model predicts that multiple fronts of polarity can be resolved
by the expiration of all fronts except for one. In the model the maintained front is deter-
mined by the actual choice of the stimulus: The front created in response to the longest
stimulus dominates. Currently, it is not known if a neutrophil decides in accordance to
this prediction.
Another example refers to the model prediction by which changes in membrane tension
affect the activation rate of Rho. In reality, Rho activation is not mediated via a simple
reaction scheme as used in the model, but by a whole process in which Rho GDP is
dephosphorylated to Rho GTP via GEF. The Hill terms in the on-rates of the reaction
functions f1,2 model the autocatalysis which may be mediated by GEF. Hence, we hy-
pothesize that membrane tension suppresses GEF mediated activation.
The presented minimal model provides the necessary features for more complex and
more biologically relevant models. We propose a mechanism that explains how changes
in membrane tension qualitatively affect Rho GTPase activity in order to generate po-
larity pattern, but does not give an account which molecular links translate mechanical
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into chemical signals. However, there are several aspirants that may provide a mecha-
nism capable of translating plasma membrane tension into chemical signals. A possible
mechanism of tension sensation in neutrophils relying on the properties of the actin nu-
cleation machinery has been suggested by [11]: Actin is a down- as well as an upstream
effector for SCAR/WAVE. The complex stimulates actin assembly, and, on the other
hand, the presence of F-actin is required to remove the complex from the membrane.
It has been shown that this characteristic results in multiple propagating waves of the
SCAR/WAVE complex, that appear to organize actin filamentation at the leading edge.
Furthermore, it has been shown that the waves extinguish if mechanical barriers pre-
vent them from propagation [123]. Houk et al. [11] hypothesize that increased membrane
tension could similarly extinguish waves by antagonizing propagation. Moreover, in neu-
trophils is SCAR/WAVE is also feeds back on Rac activation. Since our model is bases
on a wave-process, an adaption of the model including SCAR/WAVE dynamics seems to
be well suited and could give a model based prediction about possible mechanosensitive
linkages containing Rho GTPases, SCAR/WAVE, and cell mechanics.
The model considers the AMC as a viscous material. From a more realistic point of
view, the AMC can be characterized as a viscoelastic active material [103]. While the
purely viscous behavior of the AMC affects the generation of membrane tension with a
delay, an elastic response at short time scales would influence membrane tension instan-
taneous. An adaption of the model with respect to a viscoelastic could improve some
model features like the required time to repolarize in response to new incoming stimuli.
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Proof of Theorem 3.1

A.1 A priori estimates

We require suitable energy estimates that state the uniformly boundedness of uε with
respect to ε > 0. The boundedness will be required later to apply certain compactness
properties.

Lemma A.1. Let uε be a solution of (3.5)–(3.6). Then constants M > 0, C > 0,
independent of ε > 0, exist such that for 0 < ε < M the following estimates hold:

‖∂tuε‖L∞(I,L2(Ω0,Rm)) + ‖uε‖L∞(I,H1(Ω0,Rm)) ≤ C, (A.1)
1√
ε
‖χΩiε∂tuε‖L∞(I,L2(Ωiε,Rm)) + 1√

ε
‖χΩiεuε‖L∞(I,L2(Ωiε,Rm)) ≤ C (i = 1, 2),

(A.2)
1√
ε
‖χΩiε∇x′uε‖L∞(I,L2(Ωiε,Rm)) + ε1+l

√
ε
‖χΩiε∇yuε‖L∞(I,L2(Ωiε,Rm)) ≤ C, (i = 1, 2),

(A.3)

Moreover, the growth conditions on f ij imply the pointwise bounds

0 ≤ uε ≤ C exp(−mT ) for a.e. (t, x) ∈ I × Ω. (A.4)
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Proof. We test (3.5) with (u0
jε, u
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for a.e. t ∈ I. The inequality holds since z 7→ f(z) is Lipschitz-continuous. Therefore,
there exists a constant C > 0 such that

|f(z)| ≤ C(1 + |z|) ∀z ∈ Rn.

Adding up the estimates for j = 1, ...,m and subsequently integration with respect to
t ∈ I yields

1
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(A.5)

for a.e. t ∈ I, where we used that ‖D0
j‖L∞(Ω0

ε), ‖D
i
j‖L∞(Ωiε), ‖D

i
j‖L∞(Ωiε) ≥ c (i = 1, 2).

Grönwall’s inequality implies that for a suitable M > 0 and ε ≤M the time dependent
functions on the right hand side can be estimated by
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From condition (3.7) we can deduce
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Application of this estimate in the right-hand side of (A.5) yields
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Now, in the same way as in the proof of Lemma 3.1 in [124], we obtain
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as well as the pointwise bounds (A.4).

A.2 Auxiliaries

In this section we will present the required tools that enable us to consider the limit
case of system (3.1)–(3.6).
From a more general point of view, we are interested in the behavior of the solution uε
if the thickness of the layers approaches zero. This will be done by the investigation of
the asymptotic behavior of the sequence uε for ε→ 0. In this case the domains Ω1

ε and
Ω2
ε approach to interface Σ and the bulk domain Ω0

ε approaches

Ω := (0, 1)n−1 × (0, H).

In order to introduce a suitable notion of convergence, we investigate the behavior of uε
with respect to a reference domain on which test-functions will be defined. This is the
roughly idea behind the concept of two-scale convergence.

A.3 Two-scale convergence

For different ε > 0 the respective solutions uε are defined on different domains. Thus, we
cannot apply classical compactness arguments that are required to obtain the existence
of the limit case limε→∞ uε.
The concept of convergence in the two-scale sense allows lower dimensional approxima-
tion and provides suitable compactness theorems to consider the limit case.
Let Gε := Σ′× (0, ε) for a bounded, convex Lipschitz-domain Σ′ ⊂ Rn−1. To investigate
the equations in the limit Gε → Σ := Σ′ × {0}, we introduce the reference layer Σ′ ×Z,
where Z := (0, 1).

Definition A.2 (Weak two-scale convergence). A sequence (uε){ε>0} with elements uε ∈
L2(I, L2(Gε)) converges weakly in the two-scale sense to u0(t, x′, y) ∈ L2(I, L2(Σ′ ×Z))
if

lim
ε→0

1
ε

∫
I

∫
Gε
uε(t, x)ϕ

(
t, x′,

y

ε

)
dx dt =

∫
I

∫
Σ′

∫
Z
u0(t, x′, y)ϕ(t, x′, y) dy dx′ dt

for every test function ϕ ∈ C(I × Σ′ × Z)
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Definition A.3 (Strong two-scale convergence). A sequence (uε){ε>0} with elements
uε ∈ L2(I, L2(Gε)) which converges weakly in the two-scale sense to u0 ∈ L2(I, L2(Σ′ ×
Z)) is said to converge strongly in the two-scale sense if

lim
ε→0
‖uε‖L2(I,L2(Gε)) = ‖u0‖L2(I,L2(Σ′×Z)).

A simple consequence is formulated in the following

Remark A.4. If u0 does not depend on y ∈ Z, it can be verified easily that the weakly
convergent sequence uε → u0(t, x′) in the two-scale sense converges strongly in the two-
scale sense if and only if

lim
ε→0

1√
ε
‖uε − u0‖L2(I,L2(Gε)) = 0.

The compactness properties of sequences in the two-scale sense are achieved by cer-
tain boundedness criteria. For weakly convergent sequences in the two-scale sense the
following holds:

Proposition A.5. Let uε be a sequence in L2(I ×Gε), such that

1√
ε
‖uε‖L2(I×Gε) ≤ C,

with a constant C > 0, independent of ε. Then there exists a subsequence, again denoted
by uε, and a limit function u0 ∈ L2(I, L2(Σ × Z)) such that

uε → u0 weakly in the two-scale sense.

Proof. The proof is a time-dependent version of the proof of Theorem 1 in [125].

A simple, but yet remarkable observation is that the weak two-scale convergence of uε
and ∇x′uε induce the weak two-scale convergence of ε∇yuε. This is directly obtained
through the application of the divergence theorem, which will be shown now.

Lemma A.6. Let uε be a sequence in L2(I,H1(Gε)) and C a constant independent of
ε, such that

1√
ε
‖uε‖L2(I×Gε) + 1√

ε
‖∇x′uε‖L2(I×Gε) ≤ C.

Then there exists a function u0 ∈ L2(I, L2(Σ′ × Z)) and a subsequence, again denoted
by uε, such that

uε → u0(t, x′, y) weakly in the two-scale sense,

∇x′uε → ∇x′u0(t, x′, y) weakly in the two-scale sense,

ε∇yuε → ∇yu0(t, x′, y) weakly in the two-scale sense.
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Proof. Let uε ∈ L2(I × H1(Gε)) satisfy the estimate. Proposition A.4 allows us to
extract a subsequence, again denoted by uε, such that

uε → u0 and ∇x′uε → ∇x′u0 weakly in the two-scale sense.

We show now that ε∇yu1(t, x′, y) weakly converges to ∇yu0(t, x′, y) in the two-scale
sense. The divergence theorem implies∫

I

∫
Gε
uεdivx′ϕ

(
x′,

xn
ε

)
dxn dx

′ dt+ 1
ε

∫
I

∫
Gε
uεdivyϕ

(
x′,

xn
ε

)
dxn dx

′ dt

= −
∫
I

∫
Gε
∇x′uεϕx′

(
x′,

xn
ε

)
dxn dx

′ dt−
∫
I

∫
Gε
∇yuεϕy

(
x′,

xn
ε

)
dxn dx

′ dt,

(A.6)

for test functions ϕ ∈ C∞0 (I ×Σ′×Z)n, where we used the notation divx′ϕ := div (ϕx′),
divyϕ := div (ϕy) for ϕ = (ϕx′ , ϕy). This is equivalent to

ε
1
ε

∫
I

∫
Gε
uεdivx′ϕ

(
x′,

xn
ε

)
dxn dx

′ dt+ 1
ε

∫
I

∫
Gε
uεdivyϕ

(
x′,

xn
ε

)
dxn dx

′ dt

= −ε1
ε

∫
I

∫
Gε
∇x′uεϕx′

(
x′,

xn
ε

)
dxn dx

′ dt− 1
ε

∫
I

∫
Gε
ε∇yuεϕy

(
x′,

xn
ε

)
dxn dx

′ dt.

Since uε, ∇x′uε weakly converge in the two-scale sense, the first term on the left hand
side and the first term on the right hand side vanish for ε → 0. Thus, we obtain for
ε→ 0

−1
ε

∫
I

∫
Gε
ε∇yuεϕy

(
x′,

xn
ε

)
dxn dx

′ dt→
∫
I

∫
Σ′

∫
Z
u0 divyϕ dydx′dt (A.7)

which is equivalent to ε∇yu1(t, x′, y)→ ∇yu0(t, x′, y) in the two-scale sense.

The limit system presented in Theorem 3.1 has no transmission conditions and the
equations are formulated independently of the reference layer. A necessary condition
therefore is that the weak two-scale limit of uε is constant in y ∈ Z. In this case Lemma
A.6 is equivalent to

Corollary A.7. Let uε be a sequence in L2(I,H1(Gε)) and u0 ∈ L2(I,H1(Σ′ × Z))
constant with respect to y ∈ Z, such that

uε → u0(t, x′), ∇x′uε → ∇x′u0(t, x′),

converge weakly in the two-scale sense, respectively.
Then

ε∇yuε → 0 converges weakly in the two-scale sense.

Proof. The assertion follows directly from equation (A.7) and the application of the
divergence theorem with respect to the variable y on the right hand side.
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In order to obtain convergency of the right hand sides of (3.1) to the right hand sides of
(3.9)–(3.11), strong convergence in the two-scale sense is required. In general, it is not
trivial to establish the strong convergence of sequences in the two-scale sense for trans-
mission problems since suitable extensions are required to apply classical compactness
theorems. Fortunately, the case covered in Corollary A.7 endows the sequence with a
"natural" scaling function such that we can map the sequence into the reference space
L2(I,H1(Σ′ × Z)) easily.

Proposition A.8. Let uε ∈ L2(I,H1(Gε)) be a sequence, such that ∂tuε ∈ L2(I, L2(Gε)),
and let u0 ∈ L2(I,H1(Σ′ × Z)) be constant with respect to y ∈ Z, such that

uε → u0(t, x′), ∂tuε → ∂tu0(t, x′), ∇x′uε → ∇x′u0(t, x′), ε∇yuε → 0

converge weakly in the two-scale sense, respectively. Then converges

uε → u0(t, x′)

strongly in the two-scale sense.

Proof. We define the scaled function

uε(t, x′, y) := uε
(
t, x′, εy

)
for (t, x′, y) ∈ I × Σ′ × Z.

Then

1
ε

∫
I

∫
Gε
|uε(t, x)|2dxdt =

∫
I

∫
Σ′

∫
Z
|uε(t, x′, y)|2dydx′dt. (A.8)

Moreover, it can be seen easily that uε, ∇uε, and ∂tuε are elements of L2(I, L2(Σ′ ×Z)
which weakly converge to u0, ∇′xu0, and ∂tu0, respectively. The Lemma of Aubin-Lions
implies that the embedding

L2(I, L2(Σ′ × Z)) ↪→ {u ∈ L2(I,H1(Σ′ × Z)) : ∂tu ∈ L2(I, L2(Σ′ × Z))}

is compact. Thus, there exists a subsequence, again denoted by uε, such that

uε → u0 in L2(I, L2(Σ′ × Z))

for ε→ 0. From A.8 we can deduce

lim
ε→0

1√
ε
‖uε‖L2(I×Gε) = lim

ε→0
‖uε‖L2(I×Σ′×Z) = ‖u0‖L2(I×Σ′×Z)

Finally, for the proof of Theorem 3.1 we need control of the traces on ∂Gε. The required
statement gives the following lemma.
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Lemma A.9. Let the conditions of Lemma A.6 hold. For all testfunctions ϕ ∈ C∞(I×
Σ′) converge∫

I

∫
Σ′×{ε}

ε∇yuε(t, x′, ε)ϕ(t, x′)dx′dt→
∫
I

∫
Σ
∇yu0(t, x′, 0)ϕ(t, x′)dx′dt,∫

I

∫
Σ′×{0}

ε∇yuε(t, x′, 0)ϕ(t, x′)dx′dt→
∫
I

∫
Σ
∇yu0(t, x′, 0)ϕ(t, x′)dx′dt,

for ε→ 0.

Proof. This is a special case of Proposition 5 in [125] since ε∇yuε converges weakly in
the two-scale sense to ∇yu0.

Remark A.10. The definition of Gε is equivalent to Ω2
ε if Σ′ = (0, 1)n−1. To investigate

two-scale convergence for functions defined on Ω1
ε, we replace Gε by

Gε := Σ′ × (ε, 2ε).

It is easy to see that all results still remain valid if for this particular Gε two-scale
convergence is defined as in Definition A.2.

A.4 Proof of the main theorem

We proof Theorem 3.1. The proof is split in multiple parts. At first we present several
preliminary results which will be used in the main part of the proof. Then we consider
the convergence of system defined in the bulk. In the third part the convergence of the
system defined in the layers is considered. Thereafter we will show that in the limit-case
the transmission conditions reduce to homogenous Neumann-conditions. The existence
of solutions for the limit-system is well known. In the last step the uniqueness of the
solutions of the limit system is proofed.

Proposition A.11 (Convergence in the bulk region). There exists a subsequence uε of
weak solutions of (3.1)–(3.4) and a limit function u0 ∈ L2(I,H1(Ω,Rm)), with ∂tu0 ∈
L2(I, L2(Ω,Rm)), such that

1) ujε → u0 strongly in L2(I, L2(Ω));

2) ∇ujε → ∇u0 weakly in L2(I, L2(Ω));

3) ∂tujε → ∂tu0 weakly in L2(I, L2(Ω)).

Proof. Considering the energy estimates given in Section A.1 the proof is almost identical
to the proof of Proposition 2.1 in [124].
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Proposition A.12 (Weak convergence of the fluxes). Let ϕ ∈ C∞(I × Σ′ ×H) and
set ϕε(t, x) = ϕ

(
t, x′, H−2ε

H y + 2ε
)
. There exists a subsequence uε of weak solutions of

(3.1)–(3.4), such that ∫
I

∫
S1
ε

∇yu0
jεϕ

εdx′dt→
∫
I

∫
Σ
∇yu0

j0ϕdx
′dt

for all ϕ ∈ C∞(I × Σ′ ×H).

Proof. A similar assertion is proofed in [124], Section 5.2. An adaptation of the proof
ist left to the reader.

Proposition A.13 (Weak two-scale convergence in the layers). There exists a subse-
quence uε of weak solutions of (3.1)–(3.4), and a limit function uij0 ∈ L2(I,H1(Σ′×Z)),
with ∂tuij0 ∈ L2(I, L2(Σ′ × Z)) (i=1,2), such that

uijε → uij0(t, x′), ∇x′uijε → ∇x′uij0, ε∇yuijε → ∇yuij0,

∂tu
i
jε → ∂tu

i
j0,

(A.9)

converge weakly in the two-scale sense, respectively.

Proof. We directly obtain the statements of the first two rows from Lemma A.1, Propo-
sition A.4, and Lemma A.6. We also obtain from Lemma A.1 and Proposition A.4 that
∂tu

i
jε converges weakly in the two-scale sense to a function uij(t, x′, y). Thus, we obtain

by partial integration with respect to t∫
I

∫
Σ′

∫
Z
uij(t, x′, y)ϕ dydx′dt = lim

ε→0

1
ε

∫
I

∫
Ωiε
∂tu

i
jεϕ

(
t, x′,

xn
ε

)

= lim
ε→0

1
ε

{∫
Ωiε
U ijε(x′, xn)ϕ

(
0, x′, xn

ε

)
dx+

∫
I

∫
Ωiε
uijε∂tϕ

(
t, x′,

xn
ε

)
dxdt

}

for all test functions ϕ ∈ C∞(I × Σ′ × Z). From (3.7) and Lemma A.6 we deduce that
U ijε(x′, xn) converges weakly in the two-scale sense to an element of L2(I, L2(Σ′ × Z)).
For a suitable subsequence of uε, we obtain uij(t, x′, y) = ∂tuj0(t, x′, y).

Convergence of the system in the bulk region

Proof. Consider test functions ϕ ∈ C∞0 (I × Ω,Rm) with supp(ϕ) ⊂ I × Ω/Σ. For fixed
ε0 satisfying

dist{Σ, supp(ϕ)} ≥ 2ε0

holds fo every ε < ε0

supp(ϕ) ∩
(
Ω1
ε ∪ Ω2

ε

)
= ∅.
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Let ε < ε0. Testing (3.5) with ϕ as defined above yields∫
I

∫
Ω0
ε

∂tu
0
jεϕ dx dt+

∫
I

∫
Ω0
ε

D0
j∇u0

jε∇ϕ dx dt

+D0
j

∫
I

∫
∂Ω0

ε/Σ
∂νu

0
jεϕ dS dt =

∫
I

∫
Ω0
ε

fj(u0
ε)ϕ dx dt.

Due to Proposition A.11 and Proposition A.12, we can proceed as in [124], Section 6.1,
and obtain a subsequence, such that for ε→ 0∫

I

∫
Ω
∂tu

0
j0ϕ dx dt+

∫
I

∫
Ω
D0
j∇u0

j0∇ϕ dx dt

=
∫
I

∫
Ω
fj(u0

0)ϕ dx dt,∫
I

∫
∂Ω0

ε/Σ
D0
j∂νu

0
jεϕ dS dt = 0

and
u0
j (0, x) = U0

j0(x), for a.e. x ∈ Ω.

Thus, (3.9), (3.12), and (3.15) hold.

Convergence of the system in the layers Here we derive the set of the equations
on the limit-layer Σ′. The main idea is to show the convergency to a limit-system in
which the derivatives in the y-direction vanish. The obtained system does not depend
explicitly on y ∈ Z anymore. Under assumption (3.7) for the initial conditions will be
shown that the whole solution is indeed independent of y ∈ Z. Then, we can apply the
compactness properties presented in Section A.2.

Proof. 1) We start with the weak formulation (3.5) and consider the test functions

ϕεj(t, x) = ϕj

(
t, x′,

2y
ε
− 1

)
, (A.10)

where ϕj ∈ C∞(I × Σ′ × Z). Let Γ1
ε := Ω1

ε/(S1
ε ∪ S2

ε ). Testing of (3.5) with ϕεj(t, x)
yields

1
ε

∫
I

∫
Ω1
ε

∂tu
1
jεϕ

ε
j(t, x)dx dt+ 1

ε

∫
I

∫
Ω1
ε

D1
j∇x′u1

jε∇x′ϕεj(t, x)

+2ε2lD
1
j∇yu1

jε∇yϕj
(
t, x′,

2y
ε
− 1

)
dx dt+ 1

ε

∫
I

∫
Γ1
ε

D1
j∂νu

1
jεϕ

ε
j(t, x)dS dt

=1
ε

∫
I

∫
Ω1
ε

f1
j

(
u1
ε

)
ϕεj(t, x)dxdt−

∫
I

∫
S1
ε∪S2

ε

ε1+2lD
1
j∇yu1

jε · νϕj
(
t, x′,

2y
ε
− 1

)
dx′dt

(A.11)

where we used the identity ∇xnϕε = 2
ε∇yϕj

(
t, x′, 2y

ε − 1
)
. Since l > 1/2, we obtain

from Proposition A.13 and the imposed homogenous Neumann-conditions of u1
ε on Γ1

ε
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that in the limit for ε→ 0 the left hand side is∫
I

∫
Σ′

∫
Z
∂tu

1
j0(t, x′, y)ϕj(t, x′, y) +D1

j∇x′u1
j0(t, x′, y)∇x′ϕj(t, x′, y)dydx′dt

Lemma A.9 states that the trace term on the right hand side tends to zero for ε→ 0:∫
I

∫
S1
ε∪S2

ε

ε1+2lD
1
j∇yu1

jε · νϕj
(
t, x′,

2y
ε
− 1

)
dx′dt

= ε2l
∫
I

∫
S1
ε∪S2

ε

D
1
jε∇yu1

jε · νϕj
(
t, x′,

2y
ε
− 1

)
dx′dt→ 0.

Since f1
j is Lipschitz-continous and ‖u1

ε‖L2(I,L2(Σ′×Z)) ≤ C
√
ε, the estimate

‖f1
j (uiε)‖L2(I,L2(Σ′×Z)) ≤ C0(ε+ ‖u1

ε‖L2(I,L2(Σ′×Z))) ≤ C1
√
ε

holds. Thus, we can deduce from Proposition that f1
j (uiε) converges weakly in the two-

scale sense to an element f1
j0 ∈ L2(I, L2(Σ′×Z)). Consequentely we obtain from (A.11)

for ε→ 0∫
I

∫
Σ′

∫
Z
∂tu

1
j0(t, x′, y)ϕj(t, x′, y) +D1

j∇x′u1
j0(t, x′, y)∇x′ϕj(t, x′, y)dydx′dt

=
∫
I

∫
Σ′

∫
Z
f1
j0ϕj(t, x′, y)dydx′dt.

(A.12)

Since we tested with functions that do not vanish on the boundary of I × Σ′ × Z, we
obtain in particular weak homogenous Neumann conditions for uj0 on I × Σ′ × Z.
2) We show now that u(t, x′, y) = u(t, x′) for a.e. (t, x′, y) ∈ I × Σ′ × Z and that the
initial conditions (3.13) hold.
The initial conditions are obtained by testing (3.5) with test functions

ψ

(
t, x,

x

ε

)
= ξ(t)ϕ

(
x′,

2y
ε
− 1

)
,

where ϕ ∈ C∞0 (Σ′×Z) and ξ ∈ C∞(I) such that ξ(T ) = 0. Passing ε→ 0 yields for the
time derivative∫

I

∫
Σ′

∫
Z
∂tu

1
j0ξ(t)ϕ

(
x′, y

)
dydxdt = −

∫
Σ′

∫
Z
U1
j0ξ(0)ϕ

(
x′, y

)
dydxdt

−
∫
I

∫
Σ′

∫
Z
u1
j0∂tξ(t)ϕ

(
x′, y

)
dydxdt,

which is equivalent the initial conditions (3.13) if f1
j0 = f1

j (u1
0) (which will be shown in

the next steps). If ϕ is constant with respect to x′ ∈ Σ′, we obtain∫
I

∫
Σ′

∫
Z
−f1

j0ϕ(y)ξ(t) + u1
j0∂tξ(t)ϕ(y) dydxdt = −

∫
Σ′

∫
Z
U1
j0ξ(0)ϕ(y) dydx
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Moreover, we can deduce from estimate (3.7) and Theorem 1 in [125] that U1
j0 is constant

in y ∈ Z. Thus
(∫

Z
ϕ(y) dy

)−1 ∫
I

∫
Σ′

∫
Z
−f1

j0ϕ(y)ξ(t) + u1
j0∂tξ(t)ϕ(y) dydxdt = −

∫
Σ′
U1
j0ξ(0)dx.

The right hand side does not depend on y ∈ Z. Therefore the left hand side does not
depend on y ∈ Z, which implies

∂tu
1
j0(t, x′, y) + f1

j0(t, x′, y) = ∂tu
1
j0(t, x′) + f1

j0(t, x′) for a.e. (t, x′, y) ∈ (I × Σ′ × Z).

From (A.12) we can deduce now that

u1
j0(t, x′, y) = u1

j0(t, x′) for a.e. (t, x′, y) ∈ (I × Σ′ × Z).

3) We show that f1
j0 = f1

j (u1
0). Part 2) of the proof implies that u1

j0(t, x′), ∂tu1
j0(t, x′)

and ∇x′u1
j0(t, x′) are almost everywhere independent of y ∈ Z. According to Proposition

A.8 there exists a subsequence, again denoted by u1
ε(t, x′, y), such that

u1
ε(t, x′, y)→ u1

0(t, x′) strongly in the two-scale sense.

Since f1
j (·) is Lipschitz-continuous, follows from Proposition 3 in [125] for ε→ 0

f1
j (u1

ε(t, x′, y))→ f1
j (u1

0(t, x′)) weakly in the two-scale sense.

4) Part 2) and 3) of this proof imply that a solution of∫
I

∫
Σ′
∂tu

1
j0(t, x′)ϕj(t, x′)dx′dt

+
∫
I

∫
Σ′
D1
j∇x′u1

j0(t, x′)∇x′ϕj(t, x′)dx′dt =
∫
I

∫
Σ′
f1
j (u1

0(t, x′))ϕj(t, x′)dx′dt.
(A.13)

is a solution of (A.12).
Thus (3.10), (3.13), and (3.16) hold in the weak sense.
5) If we replace ϕεj(t, x) in (A.10) by

ϕεj(t, x) = ϕj

(
t, x′,

y

ε

)
and repeat the arguments from the first part of the proof, we obtain∫

I

∫
Σ′

∫
Z
∂tu

2
j0(t, x′)ϕj(t, x′, y)dydx′dt

+
∫
I

∫
Σ′

∫
Z
D2
j∇x′u2

j0(t, x′)∇x′ϕj(t, x′, y)dydx′dt =
∫
I

∫
Σ′

∫
Z
f2
j (u2

j0)ϕj(t, x′, y)dydx′dt.

Thus, (3.11) and (3.17) hold in the weak sense. The initial conditions (3.14) are obtained
similarly as in part 5) of this proof.
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Convergence of the transmission conditions Here we derive the the limit of the
transmission conditions for the macroscopic model.

Proof. Let ϕ ∈ C∞(I × Σ′ ×H). Testing (3.5) with ϕε(t, x) = ϕ
(
t, x, H−2ε

H y + 2ε
)

yields ∫
S1
ε

D0
j∇yu0

jεϕ
εdx′ = ε

∫
S1
ε

D0
j ε∇yu1

jεϕ
εdx′.

Integration over t ∈ I and sending ε→ 0 yields, considering Lemma A.9, that the right
hand side vanishes. On the other hand states Proposition A.12 that∫

I

∫
S1
ε

D0
j∇yu0

jεϕ
εdx′dt→

∫
Σ
D0
j∇yu0

j0ϕdx
′dt

converges for ε→ 0. Thus ∫
I

∫
Σ
D0
j∇yu0

j0ϕ
εdx′dt = 0,

which is the weak formulation of (3.16).

Uniqueness of the limit-solution The uniqueness of solutions for solutions of (3.1)–
(3.4) is a well known fact. Nevertheless, we will present the proof for the sake of com-
pletion.

Proof. Let u and u be solutions of the limit-system given in Theorem 3.1 with the same
initial data. If we subtract the weak formulations of both solution from another and
test the result with ũj := uj − uj , we obtain for j = 1, ...,m

1
2
d

dt
‖ũ0

j (t)‖2L2(I,L2(Ω)) + c‖∇ũ0
j (t)‖2L2(I,L2(Ω)) ≤

∫
Ω

(f0
j (u0)− f0

j (u0))ũ0
jdx,

1
2
d

dt
‖ũij(t)‖2L2(I,L2(Σ)) + c‖∇ũij(t)‖2L2(I,L2(Σ)) ≤

∫
Σ

(f ij(ui)− f ij(ui))ũijdx, i = 1, 2,

where we used the condition ‖D0
j‖L∞(Ω0

ε), ‖D
i
j‖L∞(Ωiε) ≥ c. Adding up the equations

with respect to the indices j and usage of the Lipschitz-continuity of the right-hand sides
yields for a.e. t ∈ I

d

dt
‖ũ0(t)‖2L2(I,L2(Ω)) ≤ C‖ũ

0(t)‖2L2(I,L2(Ω)),

d

dt
‖ũi(t)‖2L2(I,L2(Ω)) ≤ C‖ũ

i(t)‖2L2(I,L2(Ω)), i = 1, 2.

Application of Grönwall’s inequality on the inequalities yields u0(t, x) = u0(t, x) for a.e.
(t, x) ∈ I × Ω and ui(t, x) = ui(t, x) for a.e. (t, x) ∈ I × Σ′ (i = 1, 2).
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Active Gel Theory

We briefly describe a basic version of the active gel theory for actin-networks. In com-
mon, there are two strategies to model the characteristics of the actomyosin complex of
a cell, the build from the bottom approach and the phenomenological approach.
The build from the bottom approach takes the molecular composition of the cytoskele-
ton under consideration and pieces their functional units in a way that the end result
fits the qualitative behavior of the actomyosin complex on the macroscopic level. This
model approach has the big advantage, that it ensures clarity about the interplay of
the functional units observed in the experiment. However, on a scale of a typical cell
size, this approach is computationally too expensive to realize. Furthermore, if, as in
this thesis, rather a description of the qualitative behavior of the whole actin-myosin
cytoskeleton, than a deeper knowledge of its functional units is required, a build from
the bottom approach would distract from the essentials due to its complexity.
Another approach to model cytoskeletal dynamics is phenomenologically and bases
on the observation, that the actin-myosin cytoskeleton behaves fluid-like on longer
timescales and on a macroscopic level. This observation dates back to the late sev-
enties when micrograph experiments became more elaborated and has been more and
more refined over the years [54, 126]: While unbounded G-actin monomers merely have
the characteristic of a sol, a cross-linked network of actin filaments forms a viscoelastic
gel with a mesh size of a few tens of nanometre. At short time-scales, the mechanical
response after a perturbation of the gel is elastic with a shear modulus E in the range
of 103 − 105 Pa [88]. On longer timescales, the actin gel flows with a finite viscosity
η of the order 100 Pa s [89]. After an elastic response, the gel starts to flow after a
timespan [0, t∗]. t∗ is called relaxation time. From a polymer physics point of view the
actin network does have a similar rheology as liquid crystals over long time scales. This
observation inspired theoretical scientists to interpret actomyosin as a physical gel, for
which a proper equilibrium temperature can be defined and well-established theoretical
methods exist.
The rheologic model which is commonly used to describe the mechanical properties of
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the actomyosin network is the Maxwell model. To a linear order this model consist of
a combination of a Hooke element, describing the elastic part as a linear spring, and a
Newton element, describing the viscous part as a linear damper. In the Maxwell model
Hooke and Newton elements are connected in series. Due to the damper the deforma-
tion is unlimited and irreversible. If the strain rate changes, the purely viscous behavior
is overlain with a immediate elastic response due to the Hooke element. The elastic
response prevails the viscous response as long as the material needs to counterbalance
the spring force by the viscous force. In the Maxwell model the relaxation time thus is
given by Et∗ = η, and the series connection implies the stress-stain relation

ε̇ =
σ̇pas
αβ

E
+
σpas
αβ

η
, (B.1)

where σpas
αβ denotes the stress tensor due to the passive mechanics of the gel and the

strain-rate tensor ε̇ is in the terms of the local velocity-field vα given by

ε̇ = 1
2(∂αvβ + ∂βvα),

where we used Einstein’s notation, which will be used unmentioned from now on.
In addition to constitutive equation (B.1), the law of momentum conservation in also
important. However, since in viscoelastic gels on scales of micrometers inertial forces are
negligible, momentum conservation is commonly replaced by a force balance condition.
Let σtot

αβ be the total stress tensor (i.e. the sum of all stresses to be considered). Then
force-balance is given by

∂α(σtot
αβ −Πδαβ) + F ext

β = 0, (B.2)

where F ext
β is an external force, and Π is the pressure [85].

Equations (B.1), (B.2) need to be exerted to describe the mechanics of the F-actin net-
work properly, since the network is also endowed with a polarity, due to its averaged
directional alignment. Thus, in addition to the material- and the force-balance equa-
tion, a polarity field has to be defined. This is typically done in analogy to studies of
the directional alignment of liquid crystals [103]. On average, F-actin networks align
parallel to each actin filament and the (+)- and (−)-ends are pointing in the same di-
rection, respectively. This naturally induces the existence of a polarity field p = (pα)α,
consisting of unit vectors, which locally run parallel to the F-actin alignment. This has
the following impact on the stress tensor: A fully parallel polarized F-actin network is
stiff in the sense, that if the orientation on the molecules is changed due to an external
perturbation the polarization field becomes nonhomogeneous and torque arises, which
causes the molecules to remigrate to the parallel position. This torque is associated
with an orientational field h = (hα)α proportional to the second spatial derivative of the
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polarity field p, which yields

h = K∇2p,

where K denotes the Franck constant [103]. Taking the polarity under consideration,
the total stress tensor comprises a stress σpol

αβ due to torque generation, which reads in
the linear hydrodynamic theory as

σpol
αβ = vαhβ. (B.3)

and has to be added to σtot
αβ in the force-balance equation (B.2) [85].

The system (B.1)-(B.3) is suitable to describe the mechanics of a passive network consist-
ing only of F-actin. However, the treatment of F-actin networks as a passive and purely
viscoelastic material holds only in the abscence of myosin II and ATP. In a more recent
and prominent in vitro experiment performed in the group of Schmidt [127], Myosin II
is added to a permanently crosslinked probe of actin filaments and in order to measure
the rheology of this complex a so-called micro-rheology approach, where the motion of
beads interspersed in the the gel is studied, is done. In the absence of ATP, the beads
remain, apart from minimal fluctuations, at their original position, since the myosin
motors are inactive. As in physical gels, the actomyosin complex behaves as a classical
thermal equilibrium system. The scenario changes, when ATP is added to the probe.
Due to the activation of the treadmilling process and myosin motor activity through
hydrolysis, the beads are moved across the gel. In this case, the gel is permanent out of
equilibrium, thus a proper equilibrium-temperature cannot be defined and methods from
physical or chemical gel theory are not applicable, since an active force is continuously
generated. In fact, the actomyosin gel can be characterized as an active gel, where the
actively generated stress is fuelled by ATP consumption, leading the statement and the
total stress hast to be composed of an internal active and a passive part. Taking the
polarity induced from equation (B.3) also under consideration, the total stress is given
by

σtot
αβ = σpas

αβ + σpol
αβ + σact

αβ .

The actively generated force related to the stress tensor σact
αβ then must depend on the

chemical potential difference ∆µ of ATP and its hydrolysis products ADP and inorganic
phosphate Pi:

∆µ = µADP − µADP − µPi.

If ∆µ = 0, the chemical reaction is at equilibrium and no energy is produced and in the
case where ∆µ > 0, the free energy ∆µ is consumed per hydrolyzed ATP molecule. To
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linear order the active internal stress has the form

σact
αβ = ζ∆µpβ, (B.4)

where the stress is exerted along the field pβ, because myosin motors slide along F-actin.
The activity coefficient ζ is a material property of the cytoskeleton that describes both,
the activity of myosin II motors and ATP consumption in the tread- milling process. In
general, ζ is a phenomenological parameter, which has to be estimated from experiments
[128], [129].
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Methods

C.1 Numerical implementation

The code used for the simulations is implemented in MATLAB v.8.6 (R2015b). In parts,
three preexistent codes were modified and included:

1) The convection of the domain Ωt is computed by a code of Sumengen [130] which
bases on a level set method as described in [131].

2) The triangulation of the domain was computed at each time step with aid of a
pre-implemented Delaunay algorithm provided by MATLAB [132].

3) The solution of the boundary operator for the mechanical system, including cur-
vature force, is obtained by the finite-element technique presented provided by the
MATLAB PDE toolbox.

All other components of the code contributed to the author.
To avoid technical, but yet simple extensions for our modelled system case, we illustrate
how the code processes the reduced toy model

∂tu− div(∇u− uv) = fu(t, x, τ, u) on Ω(t) (C.1)

(∆v +∇(∇ · v))− v = fv(u,∇u) on Ω(t). (C.2)

It can be seen easily that the operator ∆v +∇(∇ · v) is apart from a positive constant
equivalent to the original operator ∆v+∇⊥(rotv). The advantage of this representation
is that the ellipticity of the operator −∆v − ∇(∇ · v) can be verified more easily. The
right hand side f(t, x, τ, u) is a smooth scalar-valued function, for which we assume that
it models the actin and Rho kinetics and the stimulus. The function

fv(u,∇u) := ∇Π(u) + F
act(u)
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is supposed to mimic the active force and the pressure term. More precisely Π denotes
term (3.50) where a, a0 are replaced by u, u0. For the convergence of the spatial iteration
process described in the following, we require continuous and uniformly bounded right
hand sides. Therefore we replace F act as defined in (3.41), where a are replaced by u,
by a mollified version. We introduce the mollifier

j(x) :=


c exp

(
− 1

1−x2
4

)
, if |x| < 1,

0, else.

The constant c > 0 is chosen such that ‖j‖L1 = 1. We consider

F
act(u) := ζF1{u≥uthr}p ∗ j(u),

where ’∗’ denotes the convolution operator, and uthr is a constant that is an element of
the image of u.

The polarity field p, F act are chosen as in the original model, but spatially mollified by
a convolution with suitable Dirac delta functions. The boundary conditions are

(Du∇u+ uv) · n = 0 on Γ(t)

and the boundary conditions for v are given by (3.51), where we set a = a0 = 1 to keep
the description simple. The initial conditions are u0, Ω0, where u0 is a homogenous
steady state of (C.1) at time t = 0, and Ω0 is a circle with radius R > 0.
In the following, we sketch how the code works. We will point out the important steps
and skip some details by referring to literature. The presentation of the code will mostly
informally and, for the sake of universality, not code specific.

C.1.1 Preliminaries

In order to increase the accuracy of the numerical computation, a priori estimates are
required. More precisely, we require Lipschitz continuity on the right hand sides of
(C.1) and (C.2). To enforce Lipschitz continuity, we replace the right hand sides of
the original system by specific cutoff function: For a function f : Rn → Rm we define
the cutoff function (f(x))αβ of f with upper bound α ∈ Rm and lower bound β ∈ Rm

component wise by

(fi(x))αβ =


αi if fi(x) ≥ αi,

fi(x) if βi < fi(x) < αi,

βi if βi ≤ fi(x),

i = 1, ...,m.

The advantage of replacing the original non-linearities by cut versions is that the induced
uniformly boundedness implies Lipschitz continuity, since the original non-linearities are
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smooth. We choose constants αw, βw, L > 0 such that the right-hand sides fw (w = u, v)
in (C.1), (C.2) satisfy

|(fw(t, x, y))αβ − (fw(t, x, z))αβ |m ≤ L|y − z|n ∀y, z ∈ Rn, i = 1, ...,m,

where | · |n,m denotes the 1-norm in Rn,m and m,n = 1, 2, depending on the considered
function.
To assure that the cutoffs coincide with the original functions, test simulations were
performed, in which the bounds αw, βw were fitted such that the components w = u, v

of the solution satisfy

(fw(t, x, w(t, x)))αwβw = fw(t, x, w(t, x)).

To keep the notation simple, we will write in the following fw instead of (fw)αwβw , and
keep in mind that the considered a priori estimates always refer to the cutoff functions.

C.1.2 Evolution of the level set

In the level set method, the boundary of the cell is described by the zero level contour of
a signed distance function φ. In this setting is Ωt ⊂ R2 represented by the set of points
x ∈ R2 for which φ(t, x) is non-positive. The boundary ∂Ωt corresponds to the set of
points satisfying φ(t, x) = 0.
We explain briefly how the evolution of the level set function progresses. For a discussion
of the details, we refer to [131], Chapter 6.
The level set function φ(t, x) satisfies

φ(t, x) =

−d, if x ∈ Ωt,

+d, if x ∈ R2/Ωt,

where d represents the Euclidian distance between x and the boundary ∂Ωt. This char-
acteristic is realized by the evolution of the initial conditions

φ(0, x) =

−d, if x ∈ Ω0,

+d, if x ∈ R2/Ω0,

under the transport equation

∂tφ+ v · ∇φ = 0 on I × R2, (C.3)

where v = v(t, x) represents the velocity field at each time step, governed by the active-
gel-equation (C.2).
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C.1.3 Numerical implementation

For the numerical computation of the evolution of φ we used an algorithm which bases on
the Stencil local Lax-Friedrichs method (SLLF) (cf. [131], section 6.4) and was originally
published by [130].
In the algorithm is R2 in (C.3) replaced by a rectangular grid G×G, where

G := {x ∈ R : x = nr, n ∈ N}

for a fixed r > 0. Equation (C.3) is completed by periodic boundary conditions and
discretized on G×G. The domain Ωt is approximated by the subset of points x ∈ G×G
on which the function φ(t, x) is negative.

The initial domain, defined by the level-set, is successively convected in time and space
by the application of the SLLF-method on equation (C.3). In particular, equation (C.3)
is solved in time by an implicit Euler method. Starting at time t = 0 SLLF generates
successively (not necessarily equidistant) time iteration steps dt1, dt2, ..., and the cor-
responding timespan t = 0, t1 = dt1, t2 = t1 + dt2,... . After each iteration the level set
function φ is spatially convected. In the SLLF-method provided by [130] the convection
at time tn has to be determined by the velocity field v(tn, x). Since the field v(tn, x)
is a priori unknown, we modified the preexisting code by taking v(tn−1, x) instead of
v(tn, x).
If there is no likelihood of confusion, we denote by ∂Ωtn = {φ(tn, x) = 0 : x ∈ G × G}
the boundary of the discretized domain at time tn, obtained by the level-set method.
The interior of the domain at time tn is Ωtn = {φ(tn, x) < 0 : x ∈ G×G}.
We briefly sketch the framework of the complete code and comment on it afterwards
more in detail: Let T > 0 be an upper bound for the simulated time and let 0 ≤ tn < T

be a time date attained by the Euler method.
The evolution of the level set and the subsequent time tn + dt, starting at t0 = 0, and
the computations of the equations in the bulk are determined by a while-loop. Thereby
the code processes the following scheme:
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While tn ≤ T

1) allocation of ∂Ωtn = {φ(tn, x) = 0 : x ∈ G×G};

2) main body of the code:

2.1) implementation of a triangular mesh on Ωtn ;

2.2) spatial solution of the equations (C.1), (C.2) on Ωtn at time tn;

2.3) extrapolation of the velocity field v(tn, x) defined on Ωtn to v(tn, x) de-
fined on the whole grid G×G;

3) computation of the time step dt by the SLLF-method;

4) iteration step size control; the algorithm checks if dt < b, where b > 0 is a
bound defined later; otherwise a new step size

dt < b

is chosen;

5) computation of the boundary ∂Ωtn+dt by the level set method, where the
solution φ(tn+dt, x) is determined by (C.3) with the velocity field v = v(tn, x);

6) reinitialisation of φ as a signed distance function;

7) time-step transferation tn+1 := tn + dt;

end.

The iteration steps 1), 3), 5) and 6) are executed by the level set method provided by
[130].
Item 2.1) is devoted to the mesh implementation. The implementation is described in
Section C.1.4. Item 2.2) consists of an algorithm, in which both, the kinetic and the
mechanical equations are discretized in time and then solved numerically due to a semi-
linear approach. This approach consists of a compound of two schemes. First an explicit
Euler method is applied to discretize the PDE system in time and subsequently a finite
elements method is applied for the spatial discretization. The discretization scheme is
presented in Section C.1.5.
The approach may produce unstable solutions that oscillate and grow unconstrained if
dt is chosen too large. In order to avoid this effect, the code constrains the step size in 4)
the bound b, which prevents the numerical solution of (C.1) and (C.2) from oscillating.
The construction of b is presented in Section C.1.5.
In step 5) dt is used to compute the evolution of the level set. In the temporal iteration
of this scheme the values of the level set function tend to smear off and φ may loose the
characteristic to be a signed distance function. To avoid this, the code reinitializes φ in
step 6) as a signed distance function. This is done as described in [133]. Subsequently
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Figure C.1: Illustration of the triangulation after thinning. The left plane shows the
original grid. The right panel shows the thinned out grid for the case ρ = (−1, 0). Used

parameters: G = {1, 2, ..., 40}, ∂Ωt = {x ∈ G×G : ‖x− (20, 20)‖2 ≤ 17}, n = 7.

the code passes the new gained time tn+1 and continues the procession starting again at
step 1). The code continues to execute until tn exceeds the predefined bound T .

C.1.4 Mesh generation

This section refers to item 2.1). The numerical treatment of the equations requires the
generation of a mesh approximating the points contained in Ωt.
The common approach is to take at each time t the predefined points of the grid (x, y) ∈
G × G, that satisfy ϕ(t, x, y) ≤ 0 and to construct an equidistant triangularization
between these points. However, the issue of this approach is that the mesh size of the
resulting mesh accords one-to-one with the size of the grid G × G. In our particular
case are the concentration fluctuations of the chemical ingredients at the front highly
dynamic, which requires a high mesh resolution at the front. On the other hand the
concentrations at the back of the cell remain almost constant. An equidistant mesh
induced by G × G has to be fine gained to capture the dynamics at the front. This is
numerically very costly, since both, the computation of the evolution of the level set
requires all points defined in G×G and the spatial discretisation of the PDE contained
in Ωt takes even triangles in consideration on which values hardly differ.
In order to speed up the calculations, the code generates an inhomogeneous, adaptive
mesh at any considered time t > 0. At t = 0 an initial mesh is generated as follows:

1) Find all points p ∈ G×G, such that φ(0, p) ≤ 0, and set Ω0 = {p};

2) generate a Delaunay triangularization and obtain the triangles {tr(p)} with respect
to these points;

3) find all edges of {tr(p)} whose start- and endpoints coincidence with ∂Ω0 and label
them as boundary edges {e(p)}.
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With respect to the the initial mesh {p, tr, e} the equations (C.1), (C.2) are solved
numerically as described in the next section.
For times t > 0 the mesh is generated such that it is densely grained at the front an
coarse grained at the back. This is realized in two steps. If t > 0, the mesh representing
the domain Ωt is created at first again as in item 1), i.e. it is defined as the set of
all points p such that φ(t, p) ≤ 0. Subsequently the domain is segregated in a front
and a back. To differ between front and back, we introduce a measure ρ for the mean
orientation of the cell:

ρ(t) := 1
|Ωt|

∫
Ωt
∇u dx.

The code determines (a discrete approximation of) the line

g = {m+ sR : s ∈ R},

where m is the centre of mass of Ωt and R is a vector satisfying R ⊥ ρ(t−) and where t−
denotes the former time step of t. The front ΩF

t and the back ΩB
t are then defined by

ΩF
t := {x ∈ Ωt : x = sρ+ y, y ∈ g, s > 0},

ΩB
t := {x ∈ Ωt : x = sρ+ y, y ∈ g, s ≤ 0}.

In the second step is ΩB
t thinned with respect to a predefined coarseness n ∈ N. All

points ajk ∈ G × G can be relabelled by the index i = |G|(k − 1) + j. With respect to
this index the code removes p ∈ ΩB

t from ΩB
t iff p = ajk satisfies

mod (i, n) = 0.

After this step ΩF
t and ΩB

t are merged by redefining Ωt as

Ωt := ΩF
t ∪ ΩB

t ,

and a Delaunay triangulation for the set of points that are contained in Ωt is generated.
This provides the triangles {tr(p)} and the boundary edges {e(p)}. An example of the
thinned mesh is shown in Figure C.1.

Remark C.1. The thinning of ΩB
t can only be applied if the cell is stimulized by a

single, locally confined stimulus since only in this case a single wave front is generated.
For simulations of the repolarization behavior and the response to multiple stimuli the
regular mesh, constructed as in the items 1)-3), has to be used.

C.1.5 Numerical solution of the PDE system on Ωt for a fixed time t

This section refers to item 2.2) in the main body of the code in which the equations
(C.1), (C.2) are solved at time t numerically. This is realized in three subsequent steps:



Appendix C. Numerical methods 119

1) the equations are discretized in time,

2) the equations are discretized in space,

3) the discretized equations are solved.

1) Forward Euler method method is applied in order to discretize the equations (C.1),
(C.2) in time. Let t− a time yield by the algorithm as described in the while loop and
let dt be the corresponding time step. We consider the scheme at time t = t−+ dt. The
time derivative is approximated by

∂tu ≈
1
dt

(u(t)− u(t−)).

The temporal approximation of (C.1), (C.2) then is

dt(−∆u(t, x) + div(u(t, x)v(t, x)) + u(t, x) = dtfu(t, x, u(t, x)) + u(t−, x),

(∆v(t, x) +∇(∇ · v(t, x)))− v(t, x) = fv(u(t, x),∇u(t, x)).
(C.4)

2) The difficulty in (C.4) is that at time t both, the velocity v(t, x) in the divergence
part of the first equation and the values of the reaction rate fu(t, x, u(t, x)) are unknown.
In order to apply FE-methods for linear elliptic equations, the code recursively approx-
imates (C.4) by the following scheme:
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Set

fu(t, x, u) := fu(t, x, u(t, x))− 1
|Ωt|

∫
Ωt
fu(t, x, u(t, x)) dx

u(t−, x) := u(t−, x)− 1
|Ωt|

∫
Ωt
u(t−, x) dx

(C.5)

and seek approximated solutions of the system

dt(−∆u(t, x) + div(u(t, x)v(t, x)) + u(t, x) = dtfu(t, x, u(t, x)) + u(t−, x),

(∆v(t, x) +∇(∇ · v(t, x)))− v(t, x) = fv(u(t, x),∇u(t, x)),
(C.6)

on Ωt with zero-flux boundary conditions with respect to un and(
∇v + (∇v)T

)
· n = −ζB1{u<uthr}K5(u− − u0)n+ γm1 (κm − κ0)n

−γm2
(∫

Γt
1 ds

)
n+ (Π(u−)−Π0)n,

on Γt.
Let u1(x) = u(t, x), v1(x) = v(t, x). Recall that t, t−, dt, u(t−, x), v(t−, x) are known
from the former temporal iteration step. Initially, the active gel equation

(∆v1(x) +∇(∇ · v1(x)))− v1(x) = fv(u(t−, x),∇u(t−, x)) (C.7)

is numerically solved for v0 such that the boundary condition above are satisfied. Then
the diffusion reaction equation

dt(−∆u1(x) + div(u1(x)v1(x))) + u1(x) = dtfu(t, x, u(t−, x)) + u(t−, x) (C.8)

is solved numerically for u1. The code iterates n-times the following rule:

Let un−1, vn−1 be the solutions obtained from the (n − 1)-th iteration step.
Solve

(∆vn(x) +∇(∇ · vn(x)))− vn(x) = fv(un−1,∇un−1) (C.9)

on Ωt and(
∇vn + (∇vn)T

)
· n = −ζB1{un−1<uthr}K5(un−1 − u0)n+ γm1 (κm − κ0)n

−γm2
(∫

Γt
1 ds

)
n+ (Π(un−1)−Π0)n,

(C.10)

on Γt. Then solve

dt(−∆un(x) + div(un(x)vn(x))) + un(x) = dtfu(t, x, un−1(x)) + u(t−, x) on Ωt

(C.11)

and
(∇un − unvn)n = 0

on Γt.
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If we neglect the boundary-force impact on v, i.e. if we replace equation (C.10 ) by

vx1n = vx2n = 0 on ∂Ωt,

the following statement holds under certain assumptions on the domain Ωt:

Theorem C.2. Let Ωt ⊂ R2 be an open, bounded, Lipschitz-domain that is dense in
R2. Assume that vn converges weakly to v ∈ L2(Ωt,R2) for n→∞.
There is a constant b > 0 such that the iteration scheme defines sequences

(un)n∈N ⊂ L2(Ωt) and (∇un)n∈N ⊂ L2(Ωt,R2),

such that the L2-limit u(x) := limn→∞ un(x) and the weak limit ∇u, where ∇un ⇀ ∇u
in L2(Ω,R2), is a solution of (C.6) if the time iteration step satisfies dt < b.

Proof. The proof is presented in Appendix C.2.

The upper bound b depends on t, Ωt, the parameters of the PDE system, and the
cutting bounds α, β. The derivation of b can be obtained if the occurring constants in
Appendix C.2 are calculated explicitly. We skip the explicit representation of b, since
its calculation is long-winded, but yet straight forward. The only constant which does
not directly follow from the used estimates in Appendix C.2 is the required Poincare
constant Cp. Fortunately Friedrich’s inequality states that

Cp ≤ d,

where d is the diameter of Ωt (cf. [134]).

Remark C.3. If higher regularity results are applied, it can be shown for a sufficiently
small b that ∇un → ∇u in L2(Ωt). In this case, the assumption on the weakly conver-
gence of vn can be omitted since this implies vn → v in L2(Ωt) due to the Lipschitz-
continuity of the right hand sides. However, the determination of the bound b such that
the convergency of ∇un is guaranteed is very complex. We had to choose an open cover
of the domain Ωt on which localized energy estimates for a difference scheme had to be
obtained (cf. [135], theorem 6.3.1). This is computationally very costly, because the
domain changes after each temporal iteration step. Therefore we decided to validate
experimentally wether dt is chosen small enough to prevent ‖vn‖L2(Ωt,R2) from unrealis-
tically oscillations. Fortunately this is the case if b is chosen as demanded in the proof
of Theorem C.2. For this choice of b the sequences un and vn seem to converge to a limit
even if the force boundary-conditions (C.10) on vn are considered:
In the simulations we chose the iteration length n = 10. This choice yields regular
results, which hardly differ from the results obtained if n > 10 is chosen. Figure C.2
displays a convergence plot. The error ‖un(x)−un−1(x)‖L∞(Ωt) decreases almost linearly
and the error ‖vn(x)− vn−1(x)‖L∞(Ωt,R2) is almost constant, approaching zero.
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Figure C.2: Left panel: A posteriori error of the Rho concentration profile for the
cell model after t = 30s and dt = 0.001 with parameters taken from Table 4.1. The
x-axis denotes the iteration steps (n = 1, ..., 50). The y-axis denotes the error ‖un(x)−
un−1(x)‖L∞(Ω30). Right panel: A posteriori error of the velocity profile.The x-axis is the
same as in the left panel. The y-axis represents the error ‖vn(x)− vn−1(x)‖L∞(Ω30,R2).

In addition, a bound for the temporal stepsize with respect to the mesh is required. We
did not perform a stability analysis for the numerical scheme. For the control of the
temporal stepsize we simply took the bound dt ≤ ch2, where c = Du/4 and h is the
diameter of the smallest triangle of the triangularization. The choice of this bound is
numerically very costly. However, the code seems to remain stable with this setting.

3) We discuss the spatial discretization of the system. For the finite elements scheme,
we approximate un(t, x) and vn(t, x) by a finite Fourier series. More precisely, we seek
approximated solutions which are spatially constant on each triangle q ∈ {tr}. The
approximated solution un (resp. vn) of un (resp. vn) has the form

un(t, x) =
∑
q∈{tr}

uqn(t)φ|q(x),

vn(t, x) =
∑
q∈{tr}

vqn(t)φ|q(x),

where φ|q ∈ {ω : Ωt → R|ω|q ∈ P1(q), continuous in edge points}, P1(q) is polynomial of
order 1, defined on q, is the node basis function of the triangle q. Moreover, the righthand
side dtfu(t, x, un−1)+u(t−, x) of (C.27) is also approximated by a finite Fourier sequence:

fn(x) =
∑
q∈{tr}

dt(f qn(t) + uq(t−))φ|q(x). (C.12)

The right hand side of (C.9) is also approximated by a finite Fourier series, similar
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to (C.12). We denote each Fourier coefficient by F qn = (F q1,n, F
q
2,n) and approximate

Fn(t, x) := −fv(un−1(t, x),∇un−1(t, x)) by

Fn(x) :=
∑
q∈{tr}

F qn(t)φ|q(x).

The task is to determine the coefficients uqn(t), vqn(t), such that the weak formulations
of equations (C.6)–(C.10) are satisfied for any test function ω ∈ {ω : Ωt → R|ω|q ∈
P1(q), continuous in edge points}. The FE-scheme provided by the MATLAB PDE tool-
box was used to determine the coefficients.
4) u(t, x) and v(t, x) for x ∈ Ωt are computed successively done at each time t > 0
obtained from the level set scheme.

C.1.6 Transmission of the variables to G×G

v(t, x) is defined on Ωt ( (G×G). The level set method, however, requires for a velocity
field that is defined on whole mesh G × G. To avoid irregularities in the evolution of
(C.3), the code extrapolates (resp. interpolates) v|Ωt to v|G×G by the nearest-neighbour
method:
If x ∈ G × G is a point outside of the boundary ∂Ωt, the closest point y ∈ ∂Ωt to x is
computed and v(t, x) := v(t, y) is set. If x ∈ (G×G)\Ωt is a point in the inner of ∂Ωt,
then v(t, x) is defined as the mean value of the three nearest points contained in Ωt.
After the expansion of v(t, x) on G × G, the evolution of (C.3) is computed by the
SLLF-method, which yields a new temporal iteration step dt+ and a new time date
t+ := t+ dt+ (cf. section C.1.2). The zero-level set of ϕ(t+, x) represents the boundary
of the domain Ωt+ . Subsequently a new mesh on Ωt+ as described in section C.1.4 is
generated by the code.
Finally the whole area of Ωt+ and consequently the membrane tension τ is computed.
The code now proceeds as explained in the former paragraphs.
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C.2 L2–Convergence of the iteration scheme.

Throughout this Appendix we write for convenience Ω := Ωt. Moreover, we denote by
‖ · ‖ both the L2-norm ‖ · ‖L2(Ω), as well as the L2-norm ‖ · ‖L2(Ω,R2).
Under the assumption that vn weakly converges to v, we show that (un)n∈N, (vn)n∈N
as defined by the recursion rule (C.7)-(C.11) are sequences in L2(Ωt), L2(Ωt,R2), re-
spectively, whose limits are a fixed point of equation (C.6) if the time iteration step
size dt > 0 is sufficiently small. Throughout this appendix we assume that fu, fv are
smooth and bounded. Since a smooth, bounded function is Lipschitz continuous, there
is a constant L > 0 such that for all y1, y2, z1, z2 ∈ R

|fu(·, ·, y1)− fu(·, ·, y2)| ≤L|y1 − y2|,

|fv(·, ·, y1, z1)− fv(·, ·, y2, z2)| ≤L (|y1 − y2|+ |z1 − z2|) .

Moreover, it is easily verified that [u 7→ fu(·, ·, u)] as defined in (C.5) maps elements of
L2(Ω) Lipschitz-continuously onto L2(Ω). Thus, a constant L > 0 exists, such that for
all u1, u2 ∈ L2(Ω)

‖fu(·, ·, u1)− fu(·, ·, u2)‖ ≤L‖|u1 − u2‖|.

In the following the originally defined function fu is not used. In order to keep the
notation as simple as possible, we drop the line from fu and simply write fu. For the
same reason we will write u(t−, x) instead of u(t−, x).

C.2.1 A priori estimates

Lemma C.4. There is a constant c > 0 independent of u, such that for every u ∈
W 1,2(Ω) a solution v ∈W 2,2(Ω,R2) of

∆v +∇(∇ · v)− v = fv(u,∇u) (C.13)

with zero-flux boundary conditions satisfies

‖v‖W 2,2(Ω,R2) ≤ c. (C.14)

Proof. With aid of the Lax-Milgram lemma can be shown easily, that the mapping

[v 7→ −∆v −∇(∇ · v) + v] ∈ L(H2
2 (Ω,R2), L2(Ω,R2)), δ ∈ [0, 1)

is an isomorphism. Moreover is fv(u,∇u) ∈ L2(Ω,R2), which implies v ∈ H2
2 (Ω,R2) =

W 2,2(Ω,R2), and

c0‖v‖W 2,2(Ω,R2) ≤ ‖fv(u,∇u)‖
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for an appropriate constant c0 > 0. Since fv(·,∇·) is bounded, we obtain

c0‖v‖W 2,2(Ω,R2) ≤ c1

for an appropriate constant c1 > 0.

Due to standard arguments provided by Lp-regularity theory and the embeddingW 2,2(Ω) ↪→
C(Ω) we obtain

Corollary C.5. Let v be a solution of (C.13). It holds v ∈ W 2,2(Ω,R2) and it exists a
constant c > 0 independent of u such that

‖v‖C(Ω,R2) ≤ c.

Identical to the proof of Lemma C.4 can be shown

Corollary C.6. Let g, h ∈W 1,2(Ω). Let v ∈W 2,2(Ω) be a solution of

∆v +∇(∇ · v)− v = fv(g,∇g)− fv(h,∇h).

on Ω with zero-flux boundary conditions. Then a constant c > 0 exists such that

‖v‖W 2,2(Ω,R2) ≤ c‖fv(g,∇g)− fv(h,∇h)‖. (C.15)

Lemma C.7. Let v ∈ C0(Ω,R2) and g ∈ L2(Ω). The equation

dt(−∆u+ div(uv)) + u = g (C.16)

on Ω with zero-flux boundary conditions satisfies has a unique solution u ∈ W 2,2(Ω).
Moreover it exists a constant c > 0, such that(

1− dt
(1

2‖v‖C0(Ω,R2)

)2
)
‖u‖L2(Ω) ≤ ‖g‖L2(Ω). (C.17)

Proof. Since the right hand side is an element of L∞(Ω), follows the assertion about the
existence and uniquness directly from the theory of elliptic PDE (cf. e.g. [138]).
For convenience, we set ‖ · ‖C := ‖ · ‖C(Ω). In order to verify (C.17), we take the weak
formulation of the considered PDE and test it with u. Since we have zero-flux boundary
conditions, this yields the estimate

dt‖∇u‖2 + ‖u‖2 ≤ ‖g‖‖u‖+ dt‖v‖C
∫

Ω
|u∇u| dx (C.18)

Application of Young’s inequality for p = q = 2 and ε = ‖v‖−1
C leads to

dt‖v‖C
∫

Ω
|u∇u| dx ≤ dt‖∇u‖2 + dt

1
4‖v‖

2
C‖u‖2.
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Thus, from (C.18) follows the estimate

‖u‖2 ≤ ‖g‖‖u‖+ dt
1
4‖v‖

2
C‖u‖2

⇔
(

1− dt14‖v‖
2
C

)
‖u‖2 ≤ ‖g‖‖u‖.

This proves (C.17).

Lemma C.8. Let conditions as formulated in lemma C.7 with g := dtfu(t, x, u) + u

hold. The mean value of a solution u of (C.16) is zero:

1
|Ω|

∫
Ω
u dx = 0.

Proof. Take the weak solution of (C.16) and test it with the constant test function ϕ = 1.
This yields

1
|Ω|

∫
Ω
u dx = 1

|Ω|

∫
Ω
dtfu(t, x, u) + u dx.

Recall, that dtfu(t, x, u) + u is constructed such that∫
Ω
dtfu(t, x, u) + u dx = 0

holds.

C.2.2 Proof of convergence

Proof. (1) Let (un, vn) be solutions obtained by (C.7)-(C.11) after the n-th iteration
step, and let (u, v) be a solution of (C.4). Subtracting the weak formulation of (C.11)
substituted with un, vn from the weak formulation of (C.4) yields if we set wn := u−un

dt

∫
Ω
∇wn∇φdx+ dt

∫
Ω
vnun∇φ− vu∇φdx+

∫
Ω
wnφdx

= dt

∫
Ω

(fu(t, x, u)− fu(t, x, un−1))φdx
(C.19)

for all φ ∈ H1(Ω). Testing the weak equation with the test function wn := u−un implies
the estimate

dt‖∇wn‖2 + ‖wn‖2 ≤dt‖fu(t, x, u)− fu(t, x, un−1)‖‖wn‖

+ dt

∫
Ω
|vnun∇wn − vu∇wn| dx

(C.20)

The Lipschitz-continuity of fu and the iteration rule imply

‖fu(t, x, u)− fu(t, x, un−1)‖‖wn‖ ≤ L‖wn−1‖‖wn‖,
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and the second summand of the right hand side can be estimated by standard inequalities
as follows ∫

Ω
|vu∇wn − vnun∇wn| dx ≤

∫
Ω
|(v − vn)u+ vnwn||∇wn| dx

≤ ‖u‖‖v − vn‖C0(Ω)‖∇wn‖+ ‖vn‖C0(Ω)‖wn‖‖∇wn‖.
(C.21)

From corollary C.5 follows ‖vn‖C0(Ω), ‖v‖C0(Ω) < c1 for a suitable constant c1 > 0.
Consequently, we obtain from Lemma C.7 and the boundedness of fv and u(t−, x) that
for appropriate constants c2, c3 > 0 holds

‖u‖ ≤ c2
c3 − dt

.

We choose dt < 1/2c3. Then we have ‖u‖ ≤ c4, where c4 := 2c2/c3. From C(Ω) ↪→
W 1,2(Ω), estimate (C.15), and the Lipschitz-continouty of fv follows the existence of a
constant c5 > 0, such that

‖v − vn‖C0(Ω) ≤ c5‖fv(u,∇u)− fv(un−1,∇un−1)‖ ≤ c5L (‖wn−1‖+ ‖∇wn−1‖) .

Observe, that in the second estimate the iteration rule was used. Application of these
estimates in (C.20) yields

dt‖∇wn‖2 + ‖wn‖2 ≤ dt cL(‖wn‖‖wn−1‖+ ‖wn−1‖‖∇wn‖)

+dt cL‖∇wn‖‖∇wn−1‖+ dt‖wn‖‖∇wn‖
(C.22)

for an appropriate constant c > 0.
(2) We apply Young’s inequality on each summand of the right hand side which contains
the term ‖wn‖. Thus, we obtain

‖wn−1‖‖wn‖ ≤
cL dt

2 ‖wn−1‖2 + 1
2cL dt

‖wn‖2,

‖wn‖‖∇wn‖ ≤
dt

2 ‖∇wn‖
2 + 1

2 dt‖wn‖
2.

Application of these inequalities on the right hand side of (C.22) leads to the estimate

‖∇wn‖2 ≤ dt
(cL)2

2 ‖wn−1‖2 + cL‖wn−1‖‖∇wn‖

+ cL‖∇wn‖‖∇wn−1‖+ dt

2 ‖∇wn‖
2

We choose dt < 1. Thus we can write

‖∇wn‖2 ≤ dt (cL)2‖wn−1‖2 + 2cL (‖wn−1‖‖∇wn‖+ ‖∇wn‖‖∇wn−1‖) .

On the right hand side of this inequality appears ‖∇wn‖ exclusively with a power of
first oder. It is now easy to verify, that there exists a constant c > 0 (independent of dt,
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since we already chose dt < 1), such that

‖∇wn‖ ≤ c(‖wn−1‖+ ‖∇wn−1‖).

Thanks to Lemma C.8 we know, that the mean value of wn−1 is zero. We obtain by
application of Poincare’s inequality ‖wn−1‖ ≤ Cp‖∇wn−1‖, where Cp is the Poincare
constant. Thus, there exists a constant c1 > 0, such that

‖∇wn‖ ≤ c1‖∇wn−1‖. (C.23)

(3) We apply Young’s inequality on each summand on the right hand side of (C.22)
which contains the term ‖∇wn‖. This yields

‖wn−1‖‖∇wn‖ ≤
3cL

4 ‖wn−1‖2 + 1
3cL‖∇wn‖

2,

‖∇wn‖‖∇wn−1‖ ≤
3cL

4 ‖∇wn−1‖2 + 1
3cL‖∇wn‖

2,

‖wn‖‖∇wn‖ ≤
3
4‖wn‖

2 + 1
3‖∇wn‖

2,

and from (C.22) we obtain in a similar way as in (2) the estimate

‖wn‖2 ≤ dt c(‖wn‖‖wn−1‖+ ‖wn−1‖2 + ‖∇wn−1‖2 + ‖wn‖2)

for a constant c > 0 (independent of dt). Subtraction of dt‖wn‖2 from both sides and
subsequent application of Young’s inequality in the term ‖wn‖‖wn−1‖ gives us

‖wn‖2 ≤ dt c2(‖wn−1‖2 + ‖∇wn−1‖2) (C.24)

for a suitable constant c2 > 0.
(4) By induction we obtain from (C.23) and (C.24)

‖wn‖2 ≤ (dt c)n(‖w0‖2 + ‖∇w0‖2)

for a suitable constant c > 0. If we choose dt < 1/c, follows ‖wn‖ → 0 if n → ∞.
Therefore un → u converges in L2(Ω).
Form the weak formulation (C.19) we can deduce that for n→∞

∇wn + u(vn − v)→ 0 weakly in L2(Ω).

Since we assumed that vn converges weakly to v ∈ L2(Ω,R2) for n→∞, follows

∇un −∇u→ 0 weakly in L2(Ω).
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Remark C.9. The subtraction of the mean value of fu − u(t−, x) is essential for the
convergence of the iteration scheme. If we performed the iteration as described above
without subtracting the mean value, we would obtain the convergence estimate

‖∇(u− un)‖L2(Ωt) ≤ c
(
‖(u− un−1)‖L2(Ωt) + ‖∇(u− un−1)‖L2(Ωt)

)
. (C.25)

This estimate is sharp and from it follows that the scheme does not converge for any
dt. However, if the iteration is performed with the subtraction of the mean value of
fu − u(t−, x), we yield the same estimate (C.25), but we also can estimate with aid of
Poincare’s inequality

‖(u− un−1)‖L2(Ωt) ≤ c‖∇(u− un−1)‖L2(Ωt),

which implies for a suitable constant c > 0

‖∇(u− un)‖L2(Ωt) ≤ c‖∇(u− un−1)‖L2(Ωt).

This estimate is suitable to enforce the convergence of the scheme. See appendix C.2
for details.

2.2) Let now n be the final iteration step. The code computes

g := 1
|Ω|

∫
Ω
dt fu(t, x, un−1) + u(t−, x) dx (C.26)

and solves

dt(−∆un + div(unvn(t, x)) + un = dtfu(t, x, un−1) + u(t−, x) + g

(∆vn +∇(∇ · vn)− v(t, x) = fv(un−1,∇un−1),
(C.27)

numerically for un, vn. (Recall that dt fu + u(t−, x) = dt fu + u(t−, x) + g.) These
solutions were taken as approximated solutions of system (C.4).
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Existence of the one-dimensional
system for short times

We heuristically argued that the one-dimensional system (5.5)–(5.8) is has the ability
of generating patterns. This gives rise to the question whether the system possesses a
solution at all. Due to its description as a moving boundary problem, it is not evident
that the system is well defined. In this appendix we will show that at least for sufficient
short times a solution for a comparable system exists.
A proof of the original system of the 2-dimensional setting is in preparation.

We assume that at short times, the impact of τ on the system is negligible. Moreover, we
neglect the RhoA dynamics characterized by the variable w. We consider the normalized
PDE-system

∂tu−∆u+∇(uv) = f(u) on Ω(t),

−∆v + v = g(u) on Ω(t),
(D.1)

with zero-flux boundary conditions and given initial value u0 for u in (D.1). The as-
sumptions for the initial conditions and the right-hand sides will be declared in the next
section. As before, the moving domain Ωt is convected by the velocity field V along the
normal direction of the boundary:

V = v on ∂Ωt = {x|x′(t, x0) = v(t, x0), x0 ∈ ∂Ω0}, (D.2)

where

Ω0 := (0, 1) (D.3)

is the initial domain of the 1D problem.
We act on the following assumptions: Let f, g : R→ R be Lipschitz-continuous, and let
u0 be sufficiently smooth.

130
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We will show that on suitable Banach spaces equation (D.1) possesses a solution at
sufficiently short times t. This is mathematically precisely formulated in Theorem D.21,
which is the main result of this appendix.

D.0.1 Outline of the poof

The proof can be broadly separated in three steps: reformulation, reduction, and proving
existence. In the first step, we will reformulate the original moving boundary system
on a fixed reference frame by the introduction of a boundary location function φ. The
reformulation is constructed in section D.0.3 and leads to a parabolic-elliptic system
that is coupled to a "displacement" ODE. In the next step this system will be reduced
to a degenerated parabolic system by solving the elliptic part of the system a priory in
dependency of the unknown variables. This is done in section D.0.4. The last step is
presented in section D.0.5, where the short time existence for the reduced system on
suitable Banach-spaces is proven.
In the proof we consult techniques and results from the theory of analytic semigroups
as presented in [139] and [140]. The disadvantage of this approach is that it does not
deliver a numerical scheme which theoretically corroborates the convergence assumption
of the implemented scheme, used in numerical simulation in Chapter 4. The advantage,
however, is that analytic semigroup theory provides a very abstract tool for the treatment
of evolution equations, which presents a prospect of a possible generalization of the
presented proof to a 2-dimensional spatial setting.

D.0.2 Preliminaries

Definition D.1 (Spaces of continuous functions and generalized Sobolev spaces). Let
X,Y be real Banach spaces and α ∈ R+. We denote by

Cα(X,Y ) (resp. BUCα(X,Y ) )

the space of [α]-fold differentiable functions (resp. the space of [α]-fold differentiable
uniformly bounded functions) from X to Y , whose [α]-th derivative is Hölder continuous
with Hölder exponent α− [α]. For the sake of a simple notation, we will, unless stated
otherwise, write

‖u‖ := ‖u‖BUC0(X,Y ).

The space of all locally Lipschitz continuous functions from X to Y is denoted by

C1−(X,Y ).
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Let Ω ⊂ RN be smoothly bounded. We denote by

W s
p := W s

p (Ω), 1 ≤ p <∞

either the usual Sobolev space, if s ∈ N, or the Slobodeckij space, if s ∈ R+\N. In the
particular case s ∈ R+\N consists the Slobodeckij space of functions u ∈W [s]

p such that

[∂αu](s−[s])p
p :=

∫
Ω×Ω

|∂αu(x)− ∂αu(y)|p

|x− y|(s−[s])p+N dx dy <∞, |α| = [s].

The Slobodeckij-space, endowed with the norm

‖u‖W s
p

:=

‖u‖p
W

[s]
p

+
∑
|α|=[s]

[∂αu](s−[s])p
p

1/p

is a Banach space. Let K = R,C. We denote by F the Fourier transform on S ′(RN ,K),
the Schwarz space of tempered K-valued distributions. Lastly, we put

‖u‖Hs
p

:= ‖(1−∆)s/2u‖p,

where (1−∆)s/2 := F−1(1 + ξ2)s/2F . Then the Bessel potential spaces, Hs
p(RN ,K), are

defined as

Hs
p(RN ,C) := ({u ∈ S ′(RN ,K) | ‖u‖Hs

p
<∞}, ‖ · ‖Hs

p
), 1 < p <∞, s ∈ R.

We denote by D and by D′ the space of K-valued test functions and distributions on Ω,
respectively, and by

rΩ ∈ L(S ′(RN ,K),D′)

the ’restriction operator’, given by

〈rΩu, ϕ〉 := 〈u, ϕ〉, u ∈ S ′(RN ,K) ϕ ∈ D.

Then the Bessel potential spaces over Ω are defined by restriction, i.e.

Hs
p := Hs

p(Ω,K) = rΩH
s
p(RN ,K).

Definition D.2 (Multiplier-spaces of uniformly elliptic Operators). In the following

Au = −∂x(α∂xu+ βu) + γ∂xu+ δu,

denotes an uniformly elliptic operator with boundary operator

Bu := T (α∂xu+ βu) + εTu,

where T denotes the trace operator. The pair (A,B) is called a linear, uniformly elliptic
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boundary-value operator. The set of all these operators is denoted by E = E(Ω). We
topologize the set of these boundary-value problems by identifying them with subsets of
the Banach spaces

E0 :=
[
BUC0(Ω)

]3
× L∞(Ω)× C0(∂Ω), resp.

by means of the identification

(A,B)↔ (α, β, γ, δ, ε)

and set
E0 := E ∩ E0.

It can be shown that E0 ⊂ E0 is open; see [139], Chapter 4.1, Remark 8.6.

Definition D.3 (Analytic semigroup). Let E and F be Banach spaces over K such that
E ↪→ F . We write

A : dom(A) ⊂ E → F

if A is a linear operator with domain dom(A) in E and im(A) in F . We denote D(A)
by the domain of A endowed with its graph norm. Then D(A) ↪→ E, A ∈ L(D(A), F ),
and D(A) is a Banach space iff A is closed; see [139], Section 3.
Let E0, E1 be Banach spaces with E1 ↪→ E0. We denote by

H(E1, E0)

the set of all A ∈ L(E1, E0), such that A, considered as a linear operator in E0 with
domain E1, is the negative infinitesimal generator of an analytic semigroup {e−tA : t ≥ 0}
on E0, that is in L(E0)

We refer to [140], for the general theory of analytic semigroups and assume that the
reader has a working knowledge of that theory.

Definition D.4 (Boundary problem spaces). Suppose (A,B) ∈ E and Ssp ∈ {W s
p , H

s
p :

1 ≤ p <∞}. We define

Ssp,B :=

{u ∈ S
s
p : B = 0}, if 1 + 1/p < s ≤ 2,

Ssp, if 0 ≤ s < 1 + 1/p.

Moreover, we define the set of singular positive values by

Σ+
p := {1 + 1/p}.
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Definition D.5 (Interpolation spaces). Let X ↪→ Y be real Banach spaces such that
X is dense in Y with respect to the norm of Y . We denote by

[X,Y ]θ, 0 < θ < 1

the complex interpolation space, and by

(X,Y )θ,q, 0 < θ < 1, 1 ≤ q ≤ ∞

the real interpolation space of the couple (X,Y ).

We refer to [141] for the general theory of interpolation spaces and only list the particular
properties of interpolation spaces that are required for the proof:

Lemma D.6 ([139], Theorem 7.2). Suppose that 1 < p <∞ and

−2 + 1/p < s0 < s1 < 1 + 1/p.

Moreover, suppose that 0 < θ < 1 and s0, s1, sθ := (1− θ)s0 + θs1 /∈ Σ+
p . Then

[Hs0
p,B, H

s1
p,B]θ = Hsθ

p,B,

(Hs0
p,B, H

s1
p,B)θ,p = W sθ

p,B, sθ /∈ N,

[W s0
p,B,W

s1
p,B]θ = W sθ

p,B, sθ /∈ N,

(W s0
p,B,W

s1
p,B)θ,p = W sθ

p,B, sθ /∈ N.

D.0.3 Abstract formulation

The aim of this section is to introduce suitable Banach spaces and to reformulate the
moving boundary problem (D.1)-(D.3) as an abstract evolution equation on a fixed
reference frame Ω0.

Definition D.7 (Pull-back & push-forward). For fixed t > 0 we denote the set of all C1-
diffeomorphisms, mapping from Ω0 onto Ωt by Diff1(Ω0,Ω(t)). For Φ ∈ Diff1(Ω0,Ω(t)),
we define the pull-back operator Φ∗ and the push-forward operator Φ∗ by

Φ∗a := a ◦ Φ, for a ∈ C0(Ω(t),R), (D.4)

Φ∗b := b ◦ Φ−1, for b ∈ C0(Ω0,R), (D.5)

respectively.
In the following we will consider time depending pull-backs and push-forwards induced
by a mapping φ ∈ C([0, t],Ω0). Therefore we denote formally by φ−1 the spatial inverse
of φ at time t, i.e.

φ−1(t, φ(t, x0)) = x0.
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Definition D.8. Let Φ ∈ Diff1(Ω0,Ω(t)) ∩ BUC(Ω0). For sufficiently regular functions
w, r : Ω0 → R we define the operators

A11(Φ, r)w :=− Φ∗ (div (∇Φ∗w − Φ∗w Φ∗r)) ,

C(Φ)r :=− Φ∗ (div (∇Φ∗r)) + r,

and the corresponding boundary operators by

B11(Φ, r)w :=− Φ∗ (∇Φ∗w − Φ∗w Φ∗r) on ∂Ω0,

b(Φ)r :=− Φ∗ (∇Φ∗r) on ∂Ω0.

Furthermore we define the right-hand side nonlinearities

F1(φ,w) := f(w)− φ∗∇φ∗w, G(w) := g(w).

Taking these definitions under consideration, the equations (D.1)–(D.2) of the original
system transform to

The abstract system I We consider the PDE system

∂tw +A11(φ, r)w = F1(w) on I × Ω0,

C(φ)r = G(w) on I × Ω0,

∂tφ = r on I × Ω0,

(D.6)

with the boundary conditions

B11(φ, r)w = 0 on I × ∂Ω0,

b(φ)r := 0 on I × ∂Ω0,
(D.7)

and the initial values

w(0) = w0 on Ω0,

φ(0) := x on Ω0.
(D.8)

Definition D.9 (Classical solution of the abstract system). For a given initial value
w0 ∈ C1(Ω0) we call the triple (w, r, φ) a classical (lokal-in-time) solution of the abstract
system, if a t+ = t+(w0) > 0 exists, such that

w ∈ C2((0, t+)× Ω0),

r(t, ·) ∈ C2((0, t+)× Ω0) for t ∈ (0, t+),

φ ∈ C2((0, t+),Diff2(Ω0))

satisfies (D.6)-(D.8) in the classical sense.
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Definition D.10 (Classical solution of the moving boundary system). For a given
initial value u0 ∈ C1(Ω0) we call (u, v,Ωt) a classical (lokal-in-time) solution of the free
boundary system, if a t+ = t+(u0) > 0 exists, such that

u ∈ C2((0, t+), C2(Ωt)),

(u(t, ·), v(t, ·)) ∈ C2(Ωt)× C2(Ωt) for t ∈ (0, t+),
(D.9)

satisfies (D.1)-(D.3) point-wise on
⋃
t∈(0,t+)({t} × Ωt).

Lemma D.11. Let w0 = φ∗0u0 := u0(φ(0, x0)) be sufficiently smooth. Let (w, r, φ) be a
classical (lokal-in-time) solution in the sense of definition D.9. Then (u, v), where

u := φ∗w, v := φ∗r,

is a classical (lokal-in-time) solution in the sense of definition D.10 with initial value
u0.

Proof. Symbolically we distinct between x ∈ Ωt and x0 ∈ Ω0. The mapping φ(t, ·) maps
at each time t ∈ [0, t+) a point x0 ∈ Ω0 bijectively onto

x ∈ Ωt := Im (φ(t, ·)) .

Hence, the normal velocity V of ∂Ωt = {x|x = φ(t, x0) ∧ x0 = 0, 1} satisfies the Stefan-
condition (D.2):

V (x)|∂Ωt = ∂tφ(t, x0)|x0=0,1 = r(t, x0)x0=0,1 = v(t, x)|∂Ωt .

Apparently (u, v) satisfies condition (D.9). Moreover we obtain for open subsets I ⊂
(0, t+), U ⊂

⋂
t∈I Ωt and (t, x) ∈ I × U the transformated time derivative

∂tu(t, x) = ∂tφ∗(t, w(t, x)) = ∂tw(t, φ−1(t, φ(t, x0)))

= ∂tw(t, ζ)|ζ=φ−1(t,φ(t,x0)) + ∂ζw(t, ζ)|ζ=φ−1(t,φ(t,x0))∂tφ
−1(t, φ(t, x0))

= φ∗φ
∗∂tw(t, x0) + φ∗∇φ∗w(t, x0),

since differentiation of the inverse yields

∂tφ
−1(t, φ(t, x0)) = ∂tφ

−1(t, ζ)|ζ=φ(t,x0)∂tφ(t, x0) = 1.

Similarly, we obtain the transformed operators

div(∇u− uv)(t, x) = A11(φ, r)w(t, x0),

(−div(∇v) + v)(t, x) = C(φ)r(t, x0),
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and in the same way we obtain that the transformations of the corresponding boundary
conditions. Substitution of these expressions in the abstract system yields the assertion.

In the further course we will show that the abstract system possesses a weak solution
at sufficiently short times. As usual, under additional regularity assumptions may be
shown that a weak solution of a parabolic-elliptic system is also a solution in the classical
sense.

Definition D.12 (Weak solution of the abstract system). Let I = (0, T ), T > 0. Fix
1 < s < 2 and choose w0 ∈ W s

2,B11
(Ω0). We call (w, r, φ) a weak solution of the system

if

(w, φ) ∈ C(I,W s
2,B11(Ω0)× BUC1(Ω0)) ∩ Cs(I, Lp(Ω0)× BUC1(Ω0)),

r ∈ L∞(I,W s
2 (Ω0)).

satisfy (D.6)-(D.8) in the distributive sense.

Finally, we have to define the set of admissible functions describing the boundary defor-
mation:

Definition D.13.

Ad :=
{
φ ∈ BUC2(Ω0) : inf

x∈Ω0
|∂xφ| 6= 0

}
. (D.10)

Remark D.14. It holds Ad ⊂ Diff1(Ω0) ∩ BUC(Ω0). Thus, φ∗ and φ∗ exist for φ ∈ Ad
and the operators in definition D.8 are well defined in the weak L2-formulation.

D.0.4 The reduced system

In this step the degenerated parabolic-elliptic system (D.6) is reduced to a degenerated
parabolic system, by expressing the inverse of the elliptic operator C as a mapping
depending on (r, φ).

Lemma D.15. Let φ ∈ Ad. The Operator

[r 7→ C(φ)r] ∈ L(H2
2,b, H

0
2 )

is an isomorphism. Moreover for fixed r ∈ H0
2 holds

[φ 7→ C−1(φ)r] ∈ C1−(Ad, H2
2,b). (D.11)

Proof. 1) We show the first assertion. Let φ ∈ Ad be fixed. We set g := 〈∂xφ|∂xφ〉, where
〈·|·〉 denotes the Euclidian inner product. Observe that the main part of C(φ), as defined
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in Definition D.8, is the Laplace-Beltrami operator with respect to the Riemannian
tensor g. Thus C(φ) can be written with respect to local coordinates as

C(φ)r = − 1√
|g|
∂x

(
1√
|g|
∂xr

)
+ r on Ω0.

and the space H2
2,b transforms to a domain independent of φ, simply containing homoge-

nous Neumann boundary conditions:

H2
2,b =

{
r ∈ H2

2 |
∂xr(0)√
|g|

= ∂xr(1)√
|g|

= 0
}

=
{
r ∈ H2

2 | ∂xr(0) = ∂xr(1) = 0
}
. (D.12)

We set C̃(φ)r :=
√
|g|C(φ)r. Since φ ∈ Ad,

√
|g| ∈ BUC(Ω0) and

√
|g| > 0 hold. Thus,

operator C̃(φ) is uniformly elliptic, with sufficient regular coefficients, such that

C̃(φ) ∈ L(H2
2,b, H

0
2 )

is an isomorphisms. This follows from standard results for elliptic partial differential
equations, cf. [138]. Consequently

C(φ) ∈ L(H2
2,b, H

0
2 )

is an isomorphism.
2) We verify assertion (D.11). Let U be a bounded subsection of Ad such that ∂U ∩
∂Ad = ∅. Let φ1, φ2 ∈ U . The first assertion assures that for given f ∈ H0

2 solutions
u1, u2 ∈ H2

2,b of

−div
(

1√
|gi|
∇ui

)
+
√
|gi|ui =

√
|gi|f on Ω0 (i = 1, 2) (D.13)

exist, where gi = 〈∂xφi|∂xφi〉. From the standard Lp-theory for elliptic PDE, we obtain
the estimate

‖ui‖H2
2
≤ c1‖f‖H0

2
, (D.14)

where the constant c1 = c1(Ω0, U) does not depend on ui, φi, f , i = 1, 2. Subtracting the
first from the second equation in (D.13) and subsequent multiplication of ω := (u1−u2)
on both sides leads after integration to

∫
Ω0
∇ω

(
1√
|g1|
∇u1 −

1√
|g2|
∇u2

)
dx+

∫
Ω0
ω

(√
|g1|u1 −

√
|g2|u2

)
dx

≤
∫

Ω0

∣∣∣∣ω(
√
|g1| −

√
|g2|)f

∣∣∣∣ dx,
(D.15)

where we used partial integration and the fact that the integral vanishes on the boundary
due to the boundary conditions implied by (D.12). Using standard inequalities, the first
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term on the left hand side can be estimated as∫
Ω0
∇ω

(
1√
|g1|
∇u1 −

1√
|g2|
∇u2

)
dx ≥ inf | 1√

|g1|
|‖∇ω‖2H0

2

−‖∇ω‖H0
2
‖∇u2‖H0

2
‖
√
|g1| −

√
|g2|‖.

For the second term on the left hand side we obtain∫
Ω0
ω

(√
|g1|u1 −

√
|g2|u2

)
dx ≥ inf

√
|g1|‖ω‖2H0

2

−‖
√
|g1| −

√
|g2|‖‖ω‖H0

2
‖u2‖H0

2
,

while the right hand side can be estimated by∫
Ω0

∣∣∣∣ω(
√
|g1| −

√
|g2|)f

∣∣∣∣ dx ≤ ‖√|g1| −
√
|g2|‖‖f‖H0

2
‖ω‖H0

2
.

In summary we obtain that (D.15) yields the estimate

inf
(

1√
|g1|

)
‖∇ω‖2H0

2
+ inf

(√
|g1|

)
‖ω‖2H0

2
≤ κ(u1, u2, f)‖

√
|g1| −

√
|g2|‖, (D.16)

where
κ(u1, u2, f) := ‖∇ω‖H0

2
‖∇u2‖H0

2
+ ‖ω‖H0

2
‖u2‖H0

2
+ ‖f‖H0

2
‖ω‖H0

2
.

Thanks to (D.14) it holds κ(u1, u2, f) < K for a suitable constant K > 0 independent
of (u1, u2, f). Moreover, since φ1, φ2 ∈ U , and U is bounded in Ad, it is easy to verify
that a constant c2 = c2(U,Ω0) independent of φ1, φ2 exists, such that

min
{

inf
(

1√
|g1|

)
, inf

√
|g1|

}
≥ c2.

If U ⊂ Ad is chosen sufficiently small, it can be shown that a constant c3 = c3(U,Ω0)
independent of φ1, φ2 exists, such that∥∥∥∥√|g1| −

√
|g2|

∥∥∥∥ ≤ c3‖φ1 − φ2‖ for φ1, φ2 ∈ U.

(The details of this proof will be shown in a more general version in the proof of Lemma
D.19.) In summary, we obtain from inequality (D.16)

[φ 7→ C−1(φ)f ] ∈ C1−(Ad, H1
2,b). (D.17)
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We consider once again (D.13). Subtraction of equation (D.13) with respect to i = 2
from equation (D.13)with respect to i = 1 yields

1√
|g1|

∆ω = −
(

1√
|g1|
− 1√

|g2|

)
∆u2 −∇

1√
|g1|
∇ω −∇

(
1√
|g1|
− 1√

|g2|

)
∇u2

+
√
|g1|ω − (

√
|g1| −

√
|g2|)(u2 − f).

Multiplication of ∆ω on both sides and integration leads after the application of (D.14),
the Minkowski- and the Hölder inequality to the estimate

inf
(

1√
|g1|

)
‖∆ω‖2H2

0
≤ γ‖∆ω‖H2

0
, (D.18)

where for a suitable constant c4 independent of φi, ui, (i = 1, 2)

γ := c4

∥∥∥∥∥ 1√
|g1|
− 1√

|g2|

∥∥∥∥∥
BUC1(Ω0)

+
∥∥∥∥√|g1| −

√
|g2|

∥∥∥∥
BUC(Ω0)

+ ‖ω‖H1
2


In the proof of Lemma D.19 will be shown that the first two summands on the right
hand side can locally estimated by a Lipschitz expression. From (D.17) we know that
‖ω‖H1

2
can locally estimated by a Lipschitz expression. Hence, from (D.18) follows for a

constant L = L(Ω0, U)

c2‖∆ω‖H2
0
≤ L‖φ1 − φ2‖BUC1(Ω0),

which proofs the assertion.

Applying standard results from the regularity theory of elliptic partial differential equa-
tions, we obtain

Lemma D.16. Let φ ∈ Ad. Then for fixed r ∈ H1
2 is

[φ 7→ C−1(φ)r] ∈ C1−(Ad, H3
2,b).

The two lemmata above imply

Lemma D.17. The following mapping conditions hold:

[(φ, r) 7→ C−1(φ)r] ∈ C1−(Ad×H0
p ,BUC1(Ω0)),

[(φ, r) 7→ C−1(φ)r] ∈ C1−(Ad×H1
p ,BUC2(Ω0)).

Proof. We only prove the first mapping property. The second assertion follows in an
almost identical way.
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Let (φ1, r1), (φ2, r2) ∈ Ad×H0
p , and u1, u2 ∈ H2

p be the solutions of

C(φi)ui = ri on Ω0

with homogenous Neumann boundary conditions. Subtraction of u2 from u1 and appli-
cation of the H2

2,b-norm yields

‖u1 − u2‖H2
2,b
≤ ‖C−1(φ1)r1 − C−1(φ2)r1‖H2

2,b
+ ‖C−1(φ2)r1 − C−1(φ2)r2‖H2

2,b
.

Lemma D.15 implies that it only remains to show that the second term on the right
hand side can be estimated suitably: From the standard theory for elliptic PDEs (cf.
e.g. [138]) follows the energy estimate

‖C−1(φ2)r1 − C−1(φ2)r2‖H2
2,b
≤ c(φ2)‖r1 − r2‖H0

2
,

where c(φ2) depends continuously on φ. In summary, we obtain that

[(φ, r) 7→ C−1(φ)r] ∈ C1−(Ad×H0
p , H

2
2,b).

Due to the embedding H2
2,b ↪→ BUC1(Ω0) follows the assertion.

Definition D.18 (The reduced system). We set u = (u1, u2) := (w, φ). Moreover for
F (u) := (F1(u), F2(u)) we set F2(u) := C−1(u2)G(u1). We introduce the operators

A(u) :=
(
A11(u2, F2(u)) 0

0 0

)
(D.19)

and

B(u) :=
(
B11(u2, F2(u)) 0

0 0

)
. (D.20)

The reduced system formally transforms to the abstract, degenerated evolution equation

∂tu+A(u)u = F (u) for t > 0, u(0) = u0. (D.21)

with values in a set whose elements u(t) satisfy B(u)u = 0.

D.0.5 Well-posedness of the reduced system

Lemma D.19. [(φ, r) 7→ A11(φ, r)] ∈ C1−(Ad× BUC1(Ω0), E0(Ω0))
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Proof. Let g := 〈∂xφ|∂xφ〉. By the same argument as in the proof of lemma D.15
A11(φ, r) can be written in local coordinates as

A11(φ, r)w =− 1√
|g|
∂x

(
1√
|g|
∂xw

)
+ r√

|g|
∂xw + ∂xr√

|g|
w

=− ∂x
( 1
|g|
∂xw

)
+ 1√

|g|

(
r + ∂x

1√
|g|

)
∂xw + ∂xr√

|g|
w,

where the last term is the non-divergence representation of the operator. Hence, it is to
show that the mapping

Ad× BUC1(Ω0) 3 (φ, r) 7→
(

1
|g|
, 0, 1√

|g|

(
r + ∂x

1√
|g|

)
,
∂xr√
|g|
, 0
)
∈ E0

is locally Lipschitz continuous. Due to the definition of Ad is g ∈ BUC1(Ω0). Thus,
the components of A11(φ, r) are elements of E0(Ω0). Exemplarily, we will show that the
first term of the third component[

(φ, r) 7→ 1√
|g|
r

]
∈ C1−(Ad× BUC1(Ω0),BUC0(Ω0)) (D.22)

is locally Lipschitz continuous. The whole assertion for the remaining components fol-
lows similarly or even more easily.
Choose φ0 ∈ Ad, r0 ∈ BUC1(Ω0) and keep them fixed. Moreover, since infx∈Ω0 |∂xφ| > 0
we can choose a L > 0 such that ∥∥∥∥ 1

(∂xφ0 − L)2

∥∥∥∥ <∞.
Let φ, φ′ ∈ {φ : ‖φ − φ0‖BUC2 < L} and r, r′ ∈ {r : ‖r − r0‖BUC1 < L}. Recall√
|g| = |∂xφ|. Usage of standard estimates yields∥∥∥∥ r

|∂xφ|
− r′

|∂xφ′|

∥∥∥∥ ≤ ∥∥∥∥ 1
∂xφ′∂xφ

∥∥∥∥ (‖∂xφ′‖‖r − r′‖+ ‖r′‖‖∂xφ− ∂xφ′‖)

≤
∥∥∥∥ 1

(∂xφ0 − L)2

∥∥∥∥ ((‖∂xφ0‖+ L)‖r − r′‖+ (‖r0‖+ L)‖∂xφ− ∂xφ′‖
)
.

(D.23)

It follows that

Ad× C1 3 (φ, r) 7→ 1√
|g|
r ∈ BUC0(Ω0) (D.24)

is locally Lipschitz continuous.

Lemma D.20. [(φ, r) 7→ A11(φ,C−1(φ)(r))] ∈ C1−(Ad×H0
p , E0)

Proof. The assertion follows from lemma D.17, lemma D.19, and the property that
compositions of locally Lipschitz continuous functions in BUCτ (Ω0), τ > 0, remain to
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be locally Lipschitz continuous.

We have now provided all auxiliaries to proof the short time existence of the abstract
system.

Theorem D.21. Let 1 < s < 2. For each u1,0 ∈ W s
2,B11

(Ω0) a time t+(u0) > 0 exists,
such that equation (D.21) posses a unique solution

u ∈ C((0, t+),W s
2,B11(Ω0)× BUC2(Ω0)) ∩ Cs((0, t+), Lp(Ω0)× BUC2(Ω0)).

Proof. 1) Set Ej := Ej ×BUC2(Ω0), j = 0, 1, where E0 := H0
2,a(Ω0) and E1 := H2

p (Ω0).
Define the set of interpolation spaces F := {(·, ·)θ : 0 < θ < 1)} by

(·, ·)θ :=

[·, ·]θ if θ = 1/2,

(·, ·)θ else.

Then (E0, E1) a densely injected Banach space couple and [139], Theorem 7.2, implies

Eθ := (E0, E1)θ = W 2θ
2,B11(Ω0), 0 < θ < 1, 2θ /∈ Σ+

p .

Consequently is (E0,E1) is a densely injected Banach space couple and

Eθ := (E0,E1)θ = Eθ × BUC2(Ω0), 0 < θ < 1, 2θ /∈ Σ+
p .

Fix 0 < τ ≤ r ≤ s < 2 and set

α := 1− (2− s)/2, β := 1− (2− r)/2, γ := 1− (2− τ)/2.

Then

0 < γ ≤ β < α < 1 (D.25)

and

Eα = W s
2,B11(Ω0), Eβ = W r

2,B11(Ω0), Eγ = W τ
2,B11(Ω0).

Moreover, it is easy to verify that Ad is an open subset of BUC2(Ω0). Consequentely

Xβ := Eβ ×Ad

is open in Eβ.
2) Since Eβ ↪→ H0

p , we have [u 7→ (A11, a)(u)] ∈ C1−(Xβ, E0) due to lemma D.20. If we
denote by A11 the E0-realization of (A11, a), we obtain

A11 ∈ C1−(Xβ,H(E0, E1)),



Appendix D. Existence 144

thanks to [139], Theorem 8.5. From [142], Theorem 2.1, we obtain

A ∈ C1−(Xβ,H(E0,E1)), (D.26)

where A denotes the E0 realization of A.
3) We are going to verify

F ∈ C1−(Xβ,Eγ), γ ≤ 1/2. (D.27)

Consider the first component F1 : W r
2,a(Ω0) → W τ

2,a(Ω0). By the choice of γ ≤ 1/2 it
necessarily follows r > 1 > τ . Hence, there exists a Hölder exponent ζ ∈ (0, 1) such that

W r
2,a(Ω0) ↪→ Cζa(Ω0) ↪→W τ

2,a(Ω0).

Since F1 : R→ R is Lipschitz continuous, it is easy to verify that the mapping

F1 : Cζa(Ω0)→ Cζa(Ω0)

is Lipschitz continuous. Thus, the mapping F1 : W r
2,a(Ω0) → W τ

2,a(Ω0) is Lipschitz
continuous.
Consider the second component F2. Recall

F2(u) = C−1(u2)u1.

Since r > 1, we have u1 ∈ H1
2 . It follows from Lemma D.17 that (D.27) holds.

4) The assertion follows now from (D.25), (D.26), (D.27) and the the application of
[139], Theorem 12.1.
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